Analyzing Issues of Privacy and
Offline Transactions In Central Bank
Digital Currencies

by

Michael Lee

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Applied Science
in
Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2023

(© Michael Lee 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Abstract

With the popularity of cryptocurrencies like bitcoin and Ethereum, many central banks
have begun to look into issuing their own digital currency. For many central banks, the
goal of a central bank digital currency (CBDC) is to provide a user experience similar to
paper money, but fully digital. The central bank also plays an important role in the system,
namely acting as a source of trust. This source of trust is an important differentiator, as it
incentivizes the use of alternative technologies to confirm transactions, rather than using
inefficient consensus protocols such as a proof-of-work blockchain.

In order to act as a true paper money alternative, two of the biggest hurdles that
need to be overcome are privacy and offline transactions. In this thesis, we will examine
these issues in more detail, discussing what problems they pose and what (if any) solutions
have been presented in the existing literature. Additionally, we will be offering our own
solutions, using hash chains to provide user privacy, and presenting a prototype CBDC
system for offline transactions.

11

Acknowledgements

I would like to thank my supervisor, Dr. Anwar Hasan, for his help and support, not
only in writing this thesis, but also throughout my degree as a whole. Without his guiding
aid, I could not have completed this journey.

I would like to also thank the professors who taught me so much during my time at
the University of Waterloo: Dr. David Jao, Dr. Mahesh Tripunitara, Dr. Wojciech Golab,
Dr. Mark Crowley, and Dr. Guang Gong. Thank you all.

Additionally, I would like to thank Brett Mollin from Ripple and the kind folks in the
XRP Ledger Developers discord server for their help aid in helping me configure rippled
and XRPL. Thank you also to William Park for creating the UI.

Lastly, I would like to thank my parents and family for their love and support. A
special thank you to my dad, for sparking a curiosity and fascination with computers that
has lasted a lifetime, and without whom I would not have taken on this endeavour.

v

Dedication

This is dedicated to my parents, Allen and Victoria.

Table of Contents

Author’s Declaration
Abstract
Acknowledgements
Dedication

List of Figures

List of Tables

List of Abbreviations

1 Introduction

ii

iii

iv

ix

xi

1.1 Contributions
1.2 Outline.

2 Background
2.1 Public-key Cryptography
2.1.1 RSA Encryption
2.1.2 RSA Digital Signatures L.
2.2 Cryptographic Hashing

vi

[\

SS NS S B SGIN

221 SHA-256
2.3 Merkle Tree L
2.4 Blockchaino
2.4.1 Permissioned vs Permissionless Blockchains
242 Bitcoin oo
24.3 Ethereum
244 XRP Ledger
2.5 Homomorphic Encryption
2.6 Zero-Knowledge Proofs
2.7 Threshold Cryptography

Analysis of CBDC Requirements and Existing Systems

3.1 CBDC Criteria and Features
3.1.1 Traditional Requirements
3.1.2 Design Considerations
3.1.3 Privacy
3.1.4 Offline Transactions

3.2 Recently Proposed CBDC Systems
3.2.1 Platypus CBDC
3.2.2 Chaum-Style Blind-Signature CBDC
3.2.3 Project Hamilton
324 KAIME
3.2.5 Conclusion and Summary of the Different Systems

Privacy Analysis and Offline Transaction Solution

4.1 Privacy implementation
4.2 Data Collection and Access
4.3 Hash Chains and User Privacy

vii

10
11
11
12
14
14
15

16
16
17
20
20
22
22
22
24
26
27
29

4.3.1 What is a Hash Chain?

4.3.2 Using Hash Chains t

4.4 Offline Transaction Solution

5 CBDC Prototype

51 Overview.
52 Setup.
5.3 Transactions Process . . .

5.3.1 Offline Transactions

5.4 Experimental Results . . .

6 Conclusion and Future Work

6.1 Conclusion
6.2 Future Work
References

o Protect User Privacy

viil

37
37
38
38
39
41

45
45
46

48

List of Figures

2.1
2.2

3.1
3.2

5.1
2.2
2.3
0.4
2.5
2.6
2.7

Structure of a Merkle Tree 9
Bitcoin Blockchain Structure 10
Platypus Transaction Sequence Diagram 23
Chaum Blind Signature Transaction Sequence Diagram 25
Wallet Setup and Interactions with Three Users 38
Transaction Sequence Diagram 39
Number of Transactions Processed Over Time 42
Number of Seconds It Took to Process a Transaction Over Time 43
Distribution of Time Taken to Process a Transaction 43

Number of Ledger Indices Elapsed During Transaction Processing Over Time 44

Distribution of Number of Ledger Indices Elapsed During Transaction Pro-
CESSING . . . v v o o e 44

X

List of Tables

3.1

3.2

3.3

4.1

Excerpt from Table 1: Core CBDC' features in [17], listing and detailing

CBDC features. (Commentary italicized in brackets) 18
Excerpt from Table 2: Summary - key design and technology decisions in

[18], listing and explaining design and technology trade-offs. 19
Summary of four CBDC systems 30
Comparison of privacy provided by the four CBDC systems 34

List of Abbreviations

AML Anti-Money Laundering 24, 31
BIS Bank for International Settlements 16

CBDC Central Bank Digital Currency 1, 10, 16, 31, 37, 45

CTF Combating the Financing of Terrorism 24, 31
ECDSA Elliptic Curve Digital Signature Algorithm 4
GCD Greatest Common Divisor 5, 6

RSA Rivest-Shamir-Adleman 4, 6

SHA Secure Hash Algorithm 7

UHS Unspent Funds Hash Set 26, 32

UTXO Unspent Transaction Output 26

XRP The native currency of Ripple Labs’ XRP Ledger 13, 37

XRPL XRP Ledger 2, 10, 12, 37, 45

zk-SNARK Zero-Knowledge Succinct Non-Interactive ARgument of Knowledge 15, 22

ZKP Zero-Knowledge Proof 14, 31, 40

X1

Chapter 1

Introduction

A Central Bank Digital Currency (CBDC) is defined by the Bank for International Set-
tlements as “a digital payment instrument, denominated in the national unit of account,
that is a direct liability of the central bank” [17]. Put more simply, it is a digital currency
issued by a central bank, as opposed to digital currencies such as Bitcoin or Ethereum
which are run by private entities. With the rise in popularity of these privately issued
digital currencies, and a decline in the usage of paper money, central banks have begun
to investigate the feasibility of issuing their own digital currency. Though many, such as
the Bank of Canada, do not have any plans to issue a CBDC in the near future, it is
important to investigate technologies now so that they can be implemented quickly and
efficiently in the future, should a central bank choose to do so. By issuing a CBDC, central
banks hope to reduce the risk of an alternative currency, one which the central bank would
have no control over, dominating domestically. Importantly, if an alternate currency were
to dominate, it would greatly hinder the central bank’s ability to direct monetary policy.
This means that how a central bank issues a digital currency, as well as what features said
currency would have, is of great importance. Should the roll-out of a CBDC go poorly,
whether because of technology issues, because it has less features than existing digital cur-
rencies, or due to any other number of reasons, it will have a difficult time reducing the
usage and popularity of competing digital currencies. In the worst case it may have the
opposite effect of what was intended and drive users towards alternate currencies. This is
why coming up with solutions to the existing problems now facing CBDCs is so important.

Despite the similarities to well known cryptocurrencies like Bitcoin and Ethereum,
CBDCs have a number of differences that make them wholly unique, the biggest being
that CBDCs have the central bank as a source of trust. This makes technologies such as
permissioned blockchains (as opposed to the permissionless blockchains used by most other

1

cryptocurrencies) more appealing, while also reducing the amount of resources required by
protocols such as proof-of-work.

With the goal of many central banks being to have their CBDC act as a digital form
of paper money, privacy is another key feature that is shared with cryptocurrencies. In
other words, not only is it a feature that many users would expect and want from a digital
currency, but it is a feature that central banks would like to include as well. However,
unlike with most cryptocurrencies, how user data is protected and secured becomes much
more complicated due to the need to strictly enforce fiscal compliance. Compared to
paper money, the ability to more easily enforce fiscal compliance within a digital currency
ecosystem is a major draw for central banks. However, the discussion on how best to
balance compliance with privacy is still ongoing.

Another cash-like feature that is seen as a key requirement by central banks is the
ability to perform transactions without a connection to the internet. Yet, as we will see,
this is a feature that goes entirely unmentioned in many of the proposed systems.

1.1 Contributions

It is the two issues of user privacy and offline transactions that will be the main focus of
this thesis. On the privacy side, we will examine the current literature, taking a look at
privacy goals, stakeholders, and ideas surrounding privacy. We will also take a look at how
different systems handle user data, whom they protect user data from, and their overall
privacy measures. Lastly, we will take a look at how hash chains could be used in order to
protect user privacy.

For offline transactions, we have created a prototype CBDC system that emulates offline
transactions for the purposes of studying and aiding further development. The system,
built off Ripple Labs’ XRP Ledger (XRPL) blockchain technology, simulates a CBDC
application, allowing users to deposit, withdraw, and initiate transactions to exchange
money between users. These transactions can happen in real time or offline, in which case
the users’ balances are updated locally, then updated on the online ledger once one of them
has reconnected to the system.

1.2 Outline

The remainder of the thesis is organized as follows: Chapter 2 provides an overview of
cryptographic concepts, how they work and their relevance, to hopefully allow those with

little prior knowledge to understand the ideas presented in this thesis. Specifically, public-
key cryptography, cryptographic hashing, Merkle trees, blockchain systems, homomorphic
encryption, zero-knowledge proofs, and threshold cryptography will be covered. Chap-
ter 3 discusses the existing related literature, looking at key features and requirements for
CBDCs, what central banks are looking for, and the current issues facing CBDCs. In ad-
dition, we will be examining proposed CBDC systems, specifically Platypus CBDC, a pro-
posed system using Chaum-style blind-signatures, MIT’s Project Hamilton, and KAIME.
In Chapter 4, we will go into more details on our strategy for offline transactions, as well as
discussing privacy in CBDC systems, looking at who has access to user data, how proposed
systems handle user data, and how hash chains could be used to provide privacy. Chapter 5
details the XRPL-based prototype CBDC system developed for this thesis, how it works,
and what benefits it provides. Lastly, Chapter 6 concludes the thesis and discusses possible
future work.

Chapter 2

Background

While the layperson may think of cryptography simply as a way to send messages secretly,
the field of cryptography covers much more, and allows us to do things such as hiding
and confirming identities, or proving knowledge of a secret without giving the secret away.
In this section, we will cover topics to familiarize readers with cryptographic techniques
discussed and used in this thesis, and in digital currency systems in general.

2.1 Public-key Cryptography

Public-key cryptography, also called asymmetric key cryptography, allows two parties to
communicate securely, without having to share a common key beforehand (as would need
to be done in traditional symmetric key cryptosystems). To do this, these systems use
key pairs, consisting of a private key and a public key (hence public-key cryptography).
Public keys are shared with everyone, while the private keys are kept hidden. In addition
to allowing for secure communication, these key pairs can also be used to confirm the
identity of a sender using digital signatures. To take a look at public-key cryptography
in more detail, we will use RSA, as it is one of the oldest public-key cryptosystems, it is
still widely used, and it is simpler/easier to understand compared to other commonly used
public-key cryptosystems, such as those based on elliptic curves defined over finite fields
[2]. With that being said, elliptic curve cryptography does generate smaller keys sizes and
requires less computation when compared to RSA for the same security level, and hence
is better suited for more constrained environments. This is also true for digital signatures,
which we will cover shortly, and these advantages are why Bitcoin and Ethereum both use
Elliptic Curve Digital Signature Algorithm (ECDSA) as their signature schemes [1][11].

4

2.1.1 RSA Encryption

To encrypt a message using RSA, two large prime numbers p and ¢ are chosen, and the
product, N, is calculated. We then compute the public key (e, N) and private key d by
performing the following operations:

1. Calculate ¢(N) = (p —1)(¢ — 1).

2. Choose a value e that is coprime to ¢(N). That is, e is between 1 and ¢(N) and
GCD(e,(N)) =1

3. Calculate d = ¢! mod ¢(N) (e.g., by using the extended Euclidean algorithm)

Notably, e and d now have the property that for any number m

(m®)* = m mod N.

If two parties, Alice and Bob, want to communicate using RSA, they will both compute
private and public keys individually, and share the public keys with one another. When
Alice sends a message to Bob, she will first convert her message m into an integer (e.g. by
taking the binary representation of the message). Next, using Bob’s public key (e, V), she
will compute

c=m° mod N.

The resulting ciphertext, ¢, is then sent to Bob, who can decrypt it using his private key
d by computing
¢ = (m%)% = m mod N.

If Bob wants to send a message back to Alice, the procedure would be repeated, but using
Alice’s key pair.

2.1.2 RSA Digital Signatures

Digital signatures are a feature of public-key cryptosystems that allow for authentication,
and can function much like a real life signature. The most common use case is to confirm
the identity of a message’s sender (for this to be completely effective, the recipient must
already know the public key of the sender), though they can be used for other, related,
tasks as well.

Once again using RSA, supposing Alice already knows Bob’s public key, if Bob wants
to prove that a message he is sending is from himself, he can sign it by first calculating the
message’s hash h(m) (Section 2.2). Next, Bob can sign the message using his private key
d by calculating

s(m) = (h(m))? mod N.

When Alice receives Bob’s message and signature, she can calculate the message’s hash
herself, then use Bob’s public key to compute
s(m)® mod N = h(m).

If the two hashes match, Alice knows the message she received was indeed from Bob.

In terms of digital currencies, signatures are used in a number of ways. For example,
they are often used for transaction authorization. By having the individual sending funds
sign the transaction, the transaction processor can verify the origin of the transaction, and
thereby verify that the transaction is not from a malicious actor trying to spend someone
else’s funds.

Blind Signatures

Blind signatures, introduced by David Chaum in Blind Signatures for Untraceable Pay-
ments, are a variation of digital signatures that are of particular note for digital currencies.
They allow users to preserve privacy when providing a message to be signed by a server
(central bank, ledger, etc.), while hiding the contents of the message. The process of hiding
the message’s contents is called blinding.

Still using RSA, obtaining a blind signature is done by performing the normal signature
algorithm on a blinded message. To blind the message, after obtaining the server’s public
signing key (e, N), we follow the steps below:

1. Choose a number r at random where the GCD of r and N is 1 (r and N are co-prime)
2. Calculate the blinding factor r* mod N

3. Using the blinding factor, obtain the blinded message m' = mr® mod N

We can then send m' to the server, which will sign the message as normal by computing

s’ = (m)¥ mod N.

and return s’. We can then obtain the signature s for the original message m by calculating
s=sr"" mod N.

Using this, we are able to obtain a signature for m, despite the server never knowing the
contents of m.

2.2 Cryptographic Hashing

Hashing takes an arbitrary amount of data as input, and maps it to an output of fixed
size. This output is called a “digest,” “hash value,” or simply “hash.” When used in
cryptographic applications, it is important that the hashing algorithm used is secure: That
is, the hashing algorithm is collision resistant, second pre-image resistant, and pre-image
resistant. Collision resistance means that the probability that two different inputs output
the same hash is negligible. We say that the algorithm has second pre-image resistance
if, given an input, there’s a negligible probability of finding a second input that gives the
same hash value as the first input. Lastly, the algorithm is pre-image resistant if, given a
hash value, there is a negligible probability of finding an input that will result in that hash
value.

2.2.1 SHA-256

To better understand how hashing works, we can take a look at SHA-256. Developed by
NIST and the NSA SHA-256 [21] and published in 2001, it is widely used for internet
communication, as well as in many cryptocurrencies, including Bitcoin, due to its security,
compact size (256 bits), and computationally simple operations (logical shifts, rotations,
and XOR). This makes SHA-256 not only efficient in terms of memory size, but also fast
[3].

To obtain a hash value, we start by creating an array, h, of size 8, with the elements
being the first 32 bits of the fractional parts of the square roots of 2, 3, 5, 7, 11, 13, 17, and
19 (the first 8 prime numbers). We also initialize a second array, k, of size 64, as a set of
constants consisting of the first 32 bits of the fractional parts of the cube roots of the first
64 prime numbers. Fach of these array elements are 32 bit unsigned integers, represented
in big-endian. We then take the value we want to hash, x, and a 64 bit integer, [, which is
the number of bits in x. Next, we obtain 2’ = (x || 1 || z || 1), where || is the concatenation
operation, and z is a number of zeros such that the number of bits in 2’ is divisible by

7

512. 2’ is then broken down into 512 bit chunks. For each chunk, an array, w, of size 64,
is initialized, with each element consisting of 32 bits. The chunk is then copied into the
first 16 elements of the array. To calculate the remaining 48 indices, the following loop is
executed:

for i from 16 to 64:
s0 (w[i-15] >>> 7) @ (w[i-15] >>> 18) @ (w[i-15] >> 3)
s1 = (wli-2] >>> 17) @& (w[i-2] >>> 19) & (w[i-2] >> 10)
wli] = wl[i-16] + sO0 + w[i-7] + si

Here, >>> represents the bit rotation right operation, and >> represents the bit shift
right operation. Once we have filled w, we copy the values of h to a temporary array, h'.
The compression function is then run, which looks like the following:

for i from 0 to 64
S1 = (h’[4] >>> 6) @ (h’[4] >>> 11) & (h’[4] >>> 25)
ch = (h’[4] A h’[5]) & ((= h’[4]) A h’[6])
templ = h’[7] + S1 + ch + k[i] + w[i]
SO = (h’[0] >>> 2) @ (h’[0] >>> 13) & (h’[0] >>> 22)
maj = (h’[0] A h’[1]) & (h’[0] A h’[2]) & (h’[1] A h’[2])
temp2 = SO + maj

for j from 7 to O
h’[j] = h{j-1]

h’[4] += templ

h’[0] = templ + temp2

The final step for each of the chunks is to add the result of each element in A’ to its

corresponding element in A (i.e., h[i| = h[i] + h'[i]). Once each chunk is processed, we can
obtain the hash value by concatenating each element in h, giving us:

v =h{O] [AT | AL2] I R3] I A[4] (1 A[S) [I AI6] || 2[7).

2.3 Merkle Tree

Merkle trees, also known as hash trees, are a data structure consisting of hash values, that
can be used for data verification. In a Merkle tree, leaf nodes consist of the hash value

8

for some piece of data, and each parent node contains the hash of the concatenation of its
child nodes. That is, node n; = h(n;—10 || ni—1,1), where h(z) is a hash function, || is the
concatenation operation, and n,_1 and n;_1; are the two child nodes of n;. This results
in a binary tree structure, which can be seen in Figure 2.1. Given a piece of data, x;, that
is claimed to be contained in the tree, to verify this claim, the user only needs the root
and the structure of the tree initially. The user can verify x; by finding a path from the
root to x;’s hash. Then, by querying the tree’s owner for the values of sibling nodes along
our path, they can verify if the resulting hash chain gives the same value as the root.

Ta0 = h(z10 || 1,1)

/\

T1,0 = h(%,o || 1’0,1) T11 = h($0,2 || 1’0,3)
Zo,o = ho,o(mo) To,1 = h0,1<m1) Zo,2 = ho,Q(mz) To,3 = h0,3(m3)
mo mi mao ms

Figure 2.1: Structure of a Merkle Tree

2.4 Blockchain

A blockchain is the backbone for many digital and cryptocurrencies. Introduced by Satoshi
Nakamoto in their Bitcoin whitepaper [14], a blockchain is a distributed, peer-to-peer,
ledger which stores records and information (usually transactions in the case of digital
currencies). At a high level, users will broadcast any transactions they perform to the

Block b, Block b,

. h(b:c—l) nonce h(b:C) nomnce L s

Merkle Tree Merkle Tree

Figure 2.2: Bitcoin Blockchain Structure

network. Systems on the network will then collect these transactions into blocks. These
systems store a record of previous blocks, and using the most recent one, will add its hash
to the block being created. This chain of block hashes is what gives the ledger its name,
blockchain. Once a system has computed a satisfactory block, it will broadcast the block to
the network. If other systems agree that the block is valid, they will accept the new block
and add it to their blockchain, and use its hash when creating the next block. Who and
how transactions and blocks are validated is an important differentiator between different
blockchains, and is what we will focus on below.

2.4.1 Permissioned vs Permissionless Blockchains

One differentiator of note is how we choose who can perform validation. Most of the
largest blockchains, such as Bitcoin and Ethereum, are permissionless blockchains. In
permissionless blockchains, anyone can join and participate in the consensus protocol.
In other words, participants are self-selecting, though they need to expend resources in
order to participate. These systems rely on an honest majority, where the majority of
actors behave according to the outlined protocol. To enforce this, these systems offer
incentives in the form of their ledger’s native cryptocurrency to miners. In contrast to this
are permissioned blockchains, where participants are selected using an external selection
process. Permissioned blockchains align well with CBDCs, as they can leverage the central
bank being a source of trust. Hyperledger Fabric, Quorum, and Corda are all examples of
permissioned blockchains. Additionally, although the XRPL is a permissionless blockchain,
it has features that resemble a permissioned blockchain, as specific nodes can be specified
as validators and there is no incentive involved with being a validator.

10

2.4.2 Bitcoin

To interact with the Bitcoin blockchain, all Bitcoin users must generate a key pair, with
the public key being used as their address. In order to perform a transaction, the sender
must supply their wallet’s address, amount, a record of where the bitcoins being sent came
from (usually one larger transaction or multiple smaller ones, compared to the amount
being sent), and a destination address (or addresses if “change” needs to be returned to
the sender). This transaction is then signed by the sender and broadcast to the network,
who will verify the signature. Systems on the network collect these transactions, and store
them in a Merkle tree. The resulting Merkle tree is then added to a new block, with the
tree’s root hash and the hash of the previous (i.e. most recent) block being contained in
the new block’s header. Lastly, in order to save disk space, branches of the Merkle tree
already included in previous blocks are stubbed off from the new block.

In Bitcoin, and other proof-of-work cryptocurrencies, each block also includes a nonce,
an additional value such that the resulting block’s hash meets the requirement of having
a specified number of leading zero bits. As the hashing algorithm being used is crypto-
graphically secure, due to pre-image resistance, the only way to find such a hash is to try
numerous values for the nonce until a satisfactory value is found. As a side note, the high
energy concerns that have become associated with cryptocurrencies is due to this repeated
hash calculation with difference nonce values.

The resulting block, illustrated in Figure 2.2, is then broadcast to the network. Other
systems will verify its validity, and will then use it as the latest block in their chain. In
the event that more than one block is found and broadcast at the same time, systems will
continue to operate on whichever block they received and verified first, but will switch
to any other chain of blocks that becomes longer than the one they are operating on.
Summarily, the longest, valid, blockchain is always considered to be the correct version of
the ledger. Transactions can be said to be timestamped into the block they were included
in, as it would take a majority of the network’s computing power to falsify new transactions,
or to re-create previous blocks and subsequently to create a longer, divergent chain. The
network operates under the premise that such a concentration of computing power is not
feasible. This is how the double spending problem is dealt with.

2.4.3 Ethereum

Along with Bitcoin, Ethereum is one of the most popular blockchain systems. The largest
difference between the two is transaction verification. When verifying a transaction using

11

Bitcoin, all that is being computed is that the user has sufficient funds for the transaction,
and that the signature on the bitcoin(s) being spent is valid. Ethereum expands this model,
and allows users to define what function must be satisfied in order for the transaction
to be valid. In the Ethereum system, accounts contain ether, and are either externally
owned and controlled by a key-pair (the account is owned and controlled by an individual),
or are contract accounts controlled by a contract code. It is these contract codes that
give Ethereum its programmability. Ethereum features its own low-level, Turing-complete
programming language for use in these contract codes, and when a contract account receives
a transaction/message (defined by whether the sender is an externally owned account or a
contract account), the contract code is executed as a part of the verification process. These
transactions/messages not only contain the amount of ether being sent, but also any data
the contract code may require, as well as how much gas (ether) is allowed to be used in
processing the contract code as an additional fee. This fee is based off how many bytes of
additional data the transaction/message contains, combined with how many computational
steps it takes for the execution of the contract code. These fees ensure that code terminates
eventually, and act as an anti-denial of service method. The sender is only charged for the
amount of gas “used” in the computation, though if the transaction fails (for example, if
the specified maximum amount of gas is consumed before reaching the end of the code),
then none of the consumed gas will be refunded.

In addition to this programmability, the structure of the blocks in the blockchain is also
slightly different. Unlike a block on the Bitcoin block chain, an Ethereum block contains a
copy of the transaction list and the most recent state, along with a block number and the
proof-of-work difficulty’. As the entire state is stored in each block, the tree containing
transaction records is also different compared to Bitcoin, using a Patricia tree instead of
the standard Merkle tree.

2.4.4 XRP Ledger

The XRP Ledger (XRPL) is an open source blockchain developed by Ripple Labs, which
uses the “XRP Ledger Consensus Protocol,” a consensus protocol for transaction vali-
dation, rather than proof-of-work or proof-of-stake. In the consensus protocol, validator
servers are responsible for forming this consensus. Servers connect to multiple of these
validators, selecting ones not expected to collude with others. During each round, when
forming a consensus, validators propose a set of transactions to include in the next version
of the ledger. A consensus is reached if a large enough percentage (a super majority) of

In September 2022, Ethereum switched from proof-of-work to proof-of-stake.

12

proposals agree on a set of transactions and the resulting ledger. If a consensus cannot be
reached, validators modify their proposals by adding transactions contained in proposals
from most other validators that they trust, and by temporarily removing transactions not
included by those other validators. Ripple states that the ledger can progress without is-
sues as long as fewer than 20% of validators are faulty. However, if between 20% and 80%
of validators are faulty, the network will be unable to make progress, and if greater than
80% of trusted validators collude, then they could confirm invalid transactions. Overall, it
takes about 3-5 seconds for the XRPL to settle a transaction.

Each ledger, more accurately, “ledger version,” contains the settings, balances, and
objects being stored on the ledger, the transactions applied to the previous ledger to make
the current ledger, and metadata about the current ledger version, including the ledger’s
index, hash, and parent ledger. In addition, each ledger contains the entirety of the current
state, meaning that the current state does not need to be calculated from previous ledger
versions. These ledgers can be accessed and read by any individual, and transactions are
pseudonymous (that is, they include an identity, but the identity does not reveal who the
person actually is), which can present privacy concerns.

The native cryptocurrency of the XRPL is XRP. XRP is not only traded on the ledger,
but is also required to be held in a wallet as a reserve, and when executing a transaction,
an additional transaction cost must also be paid. Also tradeable on the XRPL are tokens.
Tokens can be used to represent any asset, though in order to receive tokens, the receiving
account must first create a “line of trust” between itself and the account that created the
token. Both tokens and account reserves (a minimum amount of XRP that an account
must hold in order to initiate transactions) are used to construct the CBDC prototype.
Tokens are used to represent our CBDC currency, while holding XRP and meeting the
account reserve can be used to confirm that a user has been validated and onboarded
properly, meeting any regulatory requirements.

In addition to XRP balance and any tokens possessed, a user’s wallet also consists of
an address, sequence number (to maintain transaction order), account transaction history,
and transaction authorization method. Each time an account submits a transaction, a
sequence number must be included in the transaction. The sequence number increases by
one for each validated transaction, and sequence numbers cannot be skipped. That means
that the provided user’s sequence number in a transaction must be exactly one greater
than the previous one, or the transaction will be rejected. The transaction authorization is
usually a master public/private key pair that is intrinsic to the wallet, though alternatives
include a different key pair that can be rotated, or a signer list used for multi-signing.

As the XRPL is open source, it is also possible to run private networks that do not

13

interact with the main XRP ledger. These private networks must consist of at least three
validator nodes, though they can be running on the same machine, with each validator
being bound to a different port (this is the set up used to create the CBDC prototype
system presented later in this thesis).

2.5 Homomorphic Encryption

Homomorphic encryption is a form of encryption in which computational operations per-
formed on encrypted ciphertexts will be reflected in the plaintext when decrypted. For
example, given homomorphic encryption and decryption functions (F(z) and D(z)), if we
perform an addition operation on two homomorphically encrypted values, ¢; = F(m;) and
¢ = E(my), the resulting cipher text when decrypted will the sum of the two plaintext
values (D(c¢;+¢2) = mq+msg). A somewhat trivial example for a homomorphic encryption
scheme is given in [22]. If we want to encrypt the plaintext value m, we can select a natural
number, g, as a base and obtain ciphertext ¢ by taking g to the power of m, or ¢ = ¢g™. Let
x be some value we want to use to perform a mathematical operation on m. Multiplication
can now be performed without decrypting ¢ through exponentiation

If we encrypt = using the same base, addition can be performed by multiplying the two
encrypted values, and subtraction by dividing the values

¢ g m—x
T g{L‘

<

2.6 Zero-Knowledge Proofs

A Zero-Knowledge Proof (ZKP), or more specifically a non-interactive zero knowledge
proof, is a cryptographic primitive that allows a user (prover) to prove the validity of a
statement to a verifier, without providing any additional information to the verifier beyond
the statement and its validity. ZKPs are highly applicable in digital currency systems as
a method of preserving privacy, for example proving that a user has sufficient funds for
a transaction without revealing how much they are holding in their account. One of the

14

most common ZKP systems for cryptocurrencies is the Zero-Knowledge Succinct Non-
Interactive ARgument of Knowledge (zk-SNARK), as the generated proofs are small, only
a few hundred bytes in size, and can often be verified in less than 10ms [20]. The mathe-
matics behind zk-SNARKSs are complex, and use polynomial arithmetic as the basis for its
proofs. As a high level overview, a prover generates a proof by translating their statement
into an arithmetic circuit that uses publicly available, homomorphically encrypted values.
These values, called the “Common Reference String” (CRS), are generated in a one-time
trusted setup, in which the required parameters are generated and encrypted before being
discarded. As the values are homomorphically encrypted, the polynomial arithmetic of the
arithmetic circuit can be performed without knowing the underlying values. This allows
the verifier to evaluate the circuit, and verify the authenticity of the statement. The need
for a trusted setup is often cited as a weakness of zk-SNARK, as fake proofs could be
generated if a party were to know the unencrypted parameters, though this is much less
of a concern for CBDCs, where the central bank is a source of trust and authority.

2.7 Threshold Cryptography

In threshold cryptography, a secret is encrypted with a public key, while a private key
to decrypt the secret is distributed amongst a number of parties. The parties must work
together for the secret to be decrypted. Specifically, a number of parties greater than a
specified threshold must combine their keys in order to decrypt the secret. For example,
in Shamir’s secret sharing [25] a polynomial f(x) with degree ¢t — 1 that uses the secret as
the constant term, is randomly selected, where ¢ is the threshold. For each party, 4, (7, y;)
is shared, where y; = f(i). The secret can be reconstructed if at least ¢ individuals share
their given coordinate pair with one another by using the Lagrange interpolation formula.

15

Chapter 3

Analysis of CBDC Requirements and
Existing Systems

In this chapter, we will take a look at some of the existing literature on CBDCs. Specifically,
we will first examine what is wanted from a CBDC and what the requirements are from
both a consumer and central bank perspective. We will then discuss the design decisions
and trade-offs associated with these requirements, and lastly we will take a look at a sample
of recently proposed CBDC systems, and how well they align with these requirements.

3.1 CBDC Criteria and Features

The Bank for International Settlements (BIS) compiled a report from a number of central
banks detailing what they believe to be the key concepts and characteristics of a CBDC.
This includes outlining the motivations for a CBDC, what hurdles a CBDC would need
to overcome, and prominent features of importance, as well as design decisions that would
need to be made and their foreseen associated trade-offs [17][18]. We can use their paper
as a template for examining these features and requirements.

To discuss these features and requirements, as well as CBDC systems as a whole, we can
break these criteria down into four categories. First, we can look at tradition requirements.
By this, we want to examine requirements related to the client side or user experience (how
the payment system should function from a user perspective) and requirements from the
server side (how the system should run and be built by a central bank). Next are design
decisions of the system, which include the underlying technology and how the system

16

is configured. Last are privacy and offline transactions. While both of these could be
discussed in the previous sections, due to their importance to CBDCs and to this thesis as
a whole, we will discuss them on their own.

3.1.1 Traditional Requirements

Starting from the user or client side, the user experience is an important factor in a payment
system, as a poor user experience will greatly hamper growth and adoption rates, in spite
of whatever technology and features the system touts. Following this, there are three main
criteria that need to be examined. The first aspect to consider is the convenience of making
transactions in the CBDC system. As the BIS puts it, payments should ideally, “be as easy
as using cash, tapping with a card, or scanning a mobile phone.” Second is the speed of
transactions, or how long a transaction takes from end-to-end. Ideally, transactions should
be settled nearly instantaneously (a matter of seconds at most). Lastly is the acceptance
and availability of the CBDC, as it is important that the digital currency be accepted and
usable in the same way paper money is. Importantly, the BIS puts offline transactions, in
addition to point of sale and person-to-person transactions, in this category, though offline
transactions will be discussed later as previously mentioned. All three of these measures
can be considered a measurable and benchmarkable aspect of the user experience, and it
is important that they be taken into consideration when designing any kind of payment
system.

Server side requirements look at the requirements a central bank or other institution
should adhere to when running a CBDC. These requirements, again coming from the BIS
report, include the resilience of the system, its availability, its throughput, how scalable
the system is, and lastly, security. While availability and resilience both relate to uptime,
availability refers mainly to system uptime, while resilience refers to the ability to make
payments during operational failures and disruptions such as natural disasters or electrical
outages (i.e., when the system is unavailable), and also includes the ability to make offline
transactions. Next, throughput looks at a system’s ability to quickly process transactions,
while scalability refers to both the ability to handle large numbers of transactions, as well
as being able to expand this capacity in the future. Lastly, extra care must be taken with
the security of the system, as there is potential for serious financial harm should an exploit
be found. This goes beyond just the design of the CBDC itself, and extends to how the
systems and servers are set up, both in reference to the physical setup and to the software.
These requirements place importance on considering how a CBDC system will be deployed
in the real world when designing a system, with the hope that methods used in traditional
data centers can be replicated for any potential CBDC system.

17

Instrument features

Convenient CBDC payments should be as easy as using cash, tapping with a card
or scanning a mobile phone to encourage adoption and accessibility.
Accepted A CBDC should be usable in many of the same types of transactions

and available | as cash, including point of sale and person-to-person. This will include
some ability to make offline transactions (possibly for limited pe-
riods and up to predetermined thresholds).

System features
Secure Both the infrastructure and participants of a CBDC system should be
extremely resistant to cyber attacks and other threats. This should
also include ensuring effective protection from counterfeiting.

Instant Instant or near-instant final settlement should be available to end
users of the system. (No time scale specified, but likely no greater than
a few seconds.)

Resilient A CBDC system should be extremely resilient to operational fail-
ure and disruptions, natural disasters, electrical outages and other
issues. There should be some ability for end users to make offline pay-
ments if network connections are unavailable.

Available End users of the system should be able to make payments 24/7/365.
(100% uptime is not feasible in the real world, but uptime as good as
or greater than existing electronic payment methods is likely the goal)
Throughput | The system should be able to process a very high number of trans-
actions. (Specifics on what constitutes a high number of transactions
not given, though it would likely vary from country to country depend-
ing on population size.)

Scalable To accommodate the potential for large future volumes, a
CBDC system should be able to expand.

Flexible and | A CBDC system should be flexible and adaptable to changing
adaptable conditions and policy imperatives.

Table 3.1: Excerpt from Table 1: Core CBDC features in [17], listing and detailing CBDC
features. (Commentary italicized in brackets)

18

Design and technology trade-offs

Security/offline
transactions

There may be a desire for a CBDC to enable users to settle transac-
tions peer-to-peer, similarly to banknotes. This heightens the need
for fraud protection and other security features. Depending on the
features, the number or value of transactions permitted offline could
be capped (before being reset by a verified online transaction).

Cost of service
provision/
universal access

Banknotes create the same user experience for all users. CBDC,
assuming multiple devices are available, can create differing expe-
riences. For example, smartphone users will have greater function-
ality than those with stored value cards. Active dedicated devices
can close that gap, albeit at a higher cost.

Privacy/
compliance

Privacy is designed to hide information and compliance to reveal it
as required. A combination of cryptography and operational or in-
stitutional arrangements may enable both features and satisfy users
that privacy is well preserved. As an example, multiple agencies
could hold fragments of decryption keys that are only brought to-
gether after due process to reveal information.

Privacy/ capacity
and scalability

Privacy techniques that are computationally demanding may be
costly and impose limits on a system’s capacity and scalability.

Programmability /
performance

Heavy use of programmable functions will require a higher level of
technical performance from the system, adding costs or reducing
operational resilience.

Table 3.2: Excerpt from Table 2: Summary - key design and technology decisions in [18],
listing and explaining design and technology trade-offs.

19

3.1.2 Design Considerations

Beyond the traditional requirements, we also have design decisions more specific to CBDCs.
While the underlying system may dictate some of these decisions, it is important for central
banks to determine the features they require, and use a technology that supports these
decisions. Here, we will discuss offline transactions and privacy, as well as two other areas
brought up by the BIS: ledger design and the design of financial policy instruments.

Ledger design is broken down by the BIS into the following five categories: structure,
authenticated scheme, additional functionality, access, and governance. Structure mainly
deals with whether a ledger is centralized, decentralized, or somewhere in between. A cen-
tralized ledger would force the usage of intermediates for the transferring of liabilities, which
in turn would make anti-fraud and security measures easier to incorporate. A decentralized
ledger, on the other hand, could have other advantages such as making peer-to-peer and
offline transactions easier to implement. The authentication scheme refers to the way in
which transactions will be authenticated, such as using an identity or token-based scheme,
some form of multi-factor authentication, etc. Additional functionality examines what, if
any, functionality the ledger should have beyond keeping records, with payment synchro-
nization being given as an example. Ledger access looks at who should have read or write
permissions to the ledger, and is mostly concerned with balancing privacy and security
versus potential competition and diversity within a CBDC ecosystem. Lastly, governance
refers to how to manage and set the roles of the operator, participants, and any other
stakeholders.

As a CBDC is purely digital, there is potential for adding features to the currency that
would not be possible with paper money. These financial policy instruments, specifically
whether or not to make the currency interest-bearing or whether to impose a cap/limit on
individual holdings, can have large consequences. Imposing a limit could impede adoption
and limit the effectiveness of any interest-bearing decisions, yet could reduce risks to the
financial system, such as any type of bank run. If a CBDC is interest-bearing, the interest
rate would need to be competitive, which induces financial stability risks, namely due to
the disintermediating of banks. Imposing negative interest rates has also been proposed,
but this would once again impede the adoption and usage of a CBDC.

3.1.3 Privacy

One of the biggest concerns with CBDC is the need to enforce financial compliance while
balancing user privacy. The paper titled Mapping the Privacy Landscape for CBDC' [1], by

20

Auer et al, identifies who they believe to be the three main stakeholders when it comes to
privacy, viz. privacy enthusiasts, law enforcement, and data holders. Privacy enthusiasts
are concerned with maintaining their privacy. Law enforcement needs access to records to
investigate financial crime. Data holders may record and/or monetize financial data. Data
holders include merchants, banks, and payment processors. We will use these stakeholders
to discuss privacy in this section.

Also in their paper, Auer et al. use the terms soft privacy to describe CBDC systems in
which, “judicial oversight [is used] to allow human discretion in balancing exceptional ac-
cess to payment data with privacy,” and hard privacy to describe systems that “eliminatel[s]
human intervention by relying solely on cryptography and, perhaps, tamper-resistant hard-
ware.”

While hard privacy is preferred by privacy enthusiasts, the authors argue that hard
privacy is too strict and rigid, and cannot adequately cover every scenario in which law
enforcement may need access to financial records. Using transaction value thresholds as
an example for hard privacy, where access is allowed to records of transactions above a
certain value, they point out that there are scenarios where access to records of a number
of low-value transactions may aid in solving time-sensitive crimes by tracking a criminal’s
spending. In addition, any bad actors aware of these hard privacy rules could adapt their
methods to avoid law detection. There are also the concerns that malicious data holders
would end up with more data than law enforcement through data hoarding or through
malicious means. At the same time, the paper argues that soft privacy is also insuffi-
cient. While soft privacy would appease law enforcement and data holders, its similarity
to contemporary payment systems would do little to incentivize the on-boarding of privacy
enthusiasts. Auer et al. claim that a hybrid approach is necessary, and that an ideal system
would protect bulk data records, but offer plaintext access in, “justified cases... rooted in
appropriate law.”

Auer et al. also offer other ideas and solutions, such as having the central bank process
and record all transactions in order to prevent the data from abuse by law enforcement
and politicians. This would also minimize the amount that data holders have access to, as
a central bank, itself, should have no interest in monetizing the data, though commercial
banks could still serve a purpose, such as ensuring users are compliant during the on-
boarding procedures, and by continuing to offer traditional payment services. Lastly, Auer
et al. dismiss the idea of using cryptographically protected identities when on-boarding
users. Though these could be used for selective traceability by law-enforcement, the au-
thors believe that this is outweighed by the, “greater costs [imposed] on commercial banks
with additional computation, procedures, and internal controls relating to the involved

cryptography.”

21

3.1.4 Offline Transactions

Central banks place a large importance on the ability of CBDC systems to offer offline
transaction capabilities. In their report titled A central bank digital currency for offline
payments [13], Minwalla et al. provide insight into, and categorization of, offline trans-
actions for a CBDC, notably, the differentiation between intermittent offline transactions
and extended offline transactions. A CBDC that supports intermittent offline transactions
allows for users to perform transactions during temporary internet outages. They require
at least one of the users to connect back to the online system to complete and settle the
transaction. CBDCs that support extended offline transactions allow transfer and settle-
ment of funds over a local network, without needing a connection to the internet or to a
wider system. This allows peer-to-peer transactions in areas without regular internet ac-
cess, and also implies the transitivity of funds — that is, that funds received can be re-spent
immediately. In an intermittent offline transaction system, such transitivity is not present,
as re-synchronizing with the central system is required to finalize and settle funds before
they can be spent again.

The paper also raises considerations and concerns related to offline transactions in a
CBDC system. It mentions security concerns, for both hardware and software, and ac-
knowledges the elevated risks associated with offline transactions. The accessibility bene-
fits that offline transactions facilitate are also discussed, especially with an extended offline
transaction system. Such a system not only gives an alternate form of payment to those
in remote communities, but may also have built-in privacy preserving features.

3.2 Recently Proposed CBDC Systems

Here, we will discuss a number of recently proposed CBDC systems, and compare them
to the requirements and design decisions outlined above. These systems are diverse, each
using different cryptographic techniques. Each system also has a different focus in terms of
the requirements and design decisions we just mentioned. Four different CBDC systems are
discussed: Platypus [27], a Chaum-style blind-signature based CBDC system [7], Project
Hamilton [11], and KAIME [10].

3.2.1 Platypus CBDC

The Platypus CBDC, proposed by Wiist et al., uses zero-knowledge proofs, specifically zk-
SNARK, in order to facilitate secure transactions. The use of zero-knowledge proofs not

22

Sender Recipient Central Bank
T
™ Request Address

T T

I I

P I

e 1] .
I I

I

I

Transaction (details, sender zkp) :

Transaction (details, sender zkp,

recipient zkp) "
Signature(sender),

Signature(sender) Signature(recipient) :

Figure 3.1: Platypus Transaction Sequence Diagram

only allows for secure transactions, but also allows for additional parameters to be added
as additional information in the transaction. This allows for hard privacy measures to be
implemented, such as disclosing identity when transactions are over a specific threshold,
which is otherwise protected. While this method provides flexibility to how transactions
operate, and would not significantly add to the zero-knowledge proof complexity, the adapt-
ability is limited, as a new trusted setup for the zero-knowledge proof would need to be
created if additional parameters were ever added.

In this system, users must first register with the central bank to establish their identity.
This identity would then be associated with a key pair. This is not only used for regulatory
purposes, but the private key is the sole means of authentication as well. In the transaction
process, as illustrated in Figure 3.1, the recipient first shares their public key with the
sender (e.g. using a QR code). Both then create zero-knowledge proofs that they have
updated their wallet correctly. These are then sent to the central bank by the recipient.
The proofs are verified by the central bank, which signs the transaction before sending it
back to the recipient. The recipient is then responsible for forwarding the signature to the
sender, though the sender can also check the publicly readable transaction log to verify the
transaction in the case they do not receive the signed transaction from the recipient (note
that only the central bank servers can write to this log).

Examining the system in terms of server side requirements, the system should have good
scalability, reliability, and availability, as verification of zero-knowledge proofs is quick, and
the system’s only other responsibilities are to sign and record transactions. The provided
benchmarks also show that the system is capable of hundreds of transactions per second
on a single computer using consumer-grade hardware, with a server throughput of 600-950

23

transactions/second. For the user, generating the zero-knowledge proofs is also relatively
quick, though requires at least moderately powerful hardware, with the slowest provided
benchmark taking 1.5 seconds to generate a zero-knowledge proof using an iPhone 13.
The system requires a connection to the central bank system, however, raising issues with
regards to offline transactions.

3.2.2 Chaum-Style Blind-Signature CBDC

Chaum et al. propose a CBDC based on Chaum blind signatures. This scheme mimics
paper money, in that it uses tokens with specific, fixed, discrete denominations. The tokens
are key pairs, in which only the token’s owner knows the private key. The token is signed
by the central bank, which has a different signature for each denomination. In other words,
the denomination of a given token is determined by which of the central bank’s signatures
was used to sign the token. These central bank key pairs would have an expiry date, which
would also impose a time limit on the tokens, meaning users would have to exchange
their existing tokens with those that have a newer, equivalent signature. The authors
state that this has the advantage of improving efficiency (as it would reduce the number
of transactions the central bank would need check for double spending), of improving
security (bad actors would have less time and incentive to try and attack/discover the
bank’s private keys), and of allowing for the implementation of limited fiscal policies.
Specifically, a sort of negative interest could be imposed by charging a fee for this sort
of tokens exchange, and/or a conversion limit could be implemented to reduce the risk of
a bank run (or other financial stability factors) or to ensure financial compliance (Anti-
Money Laundering (AML)/Combating the Financing of Terrorism (CTF)). The expiration
of tokens, however, would likely harm the adoption rate for the CBDC.

As tokens represent specific, discrete values, when performing a transaction, multiple
tokens may be required, and it may be necessary to convert a token to an equivalent value
of multiple tokens of smaller value (obtain change), in much the same manner as paper
money. Unlike with paper money, the customer would need to obtain any change before the
transaction, going through the central bank to do so. Once they have exact change for the
transaction, the customer signs the bill of sale using the necessary tokens, and transmits
the signature to the merchant. The merchant validates the signatures and forwards the
associated signed tokens to their commercial bank, who then forwards them again to the
central bank. The central bank verifies the signatures on the tokens and checks for double
spending. Once everything has been validated and the tokens have been recorded as spent,
the commercial bank’s account is updated, who in turn updates the merchant’s account.

24

Sender Recipient| |[Commercial Bank||Central Bank
-:- Request address :

- 1

Signed transaction

»
>

Validate

T

I

I

I

I

I

I

I

I

Signed transaction | validate :
» I

I
I
I

Signed transaction

Validate and
update commercial
<_ ________

e = || Update bank balance

balance

I
1 I
I recipient I
I I
I I I

Figure 3.2: Chaum Blind Signature Transaction Sequence Diagram

This process (summarized as a sequence diagram in Figure 3.2), would only take a few
hundred milliseconds according to the paper’s authors.

As can be seen when detailing a transaction, in their proposal, the authors outline
their system as having a two-tier architecture. The role of the central bank is to create the
tokens and to verify transactions. Consumers and merchants, on the other hand, interact
with commercial banking institutions, and need to go through them to withdraw and/or
spend tokens.

The use of blind signatures in this system has a number of implications. First, it hides
the identity of users. This puts compliance responsibilities on commercial banks, much
like with existing money, as transactions must go through these commercial banks. One
advantage the system has over paper money, though, is income transparency, which is a
consequence of the way transactions are performed. This also has the additional benefit
of making tax evasion more difficult. Second, as the system only really uses key-exchange
protocols, the complexity of the hardware required is very low, as the process is not very
computationally demanding.

The responsibilities of the central bank in this system are fairly simple. Blind signatures
are no different than regular digital signatures, from the signer’s perspective. This is to say

25

that normal data center availability, reliability, and scalability methods can easily be used
for this system, which should be capable of very high throughput. This means that the cost
of the system for the central bank, and commercial banks as well, should be comparable to
those of modern real time gross settlement systems currently used in the banking industry.
The simplicity of the system does mean that there is very little in the way of additional
features that could be added, aside from those already discussed. Lastly, due to the ledger
(which is simply a database in this system) only being accessible by the central bank, it
would make offline transactions infeasible.

3.2.3 Project Hamilton

Project Hamilton is a “hypothetical CBDC” created by the Massachusetts Institute of
Technology, in collaboration with the Federal Reserve Bank of Boston. This CBDC is
similar in function to Bitcoin and blockchains, and uses Unspent Transaction Output
(UTXO) tokens. The UTXOs consist of a monetary value, an encumbrance predicate, and
a serial number. The encumbrance predicate is used to authorize the use of its UTXO in a
transaction, and contains the public key of the user who is able to authorize its use. The
serial number is a unique value derived by taking the hash of the transaction that created
the UTXO and appending it with the UTXO’s index in that transaction’s output (i.e. the
position number this UTXO had in the transaction’s list of output UTXOs). In this way,
UTXOs are deterministically generated and recursively incorporate the transaction history
of the UTXO.

In project Hamilton, when performing a transaction, existing UTXOs are completely
consumed, and new UTXOs will be created, where the sum of the new UTXOs’ values equal
that of the spent UTXOs’. To perform a transaction, the recipient shares their public key
with the sender. The sender then creates the transaction, consisting of the UTXOs being
spent, assigning the values each new UTXO should have, and specifying the encumbrances
for each of the new UTXOs. The consumption of each UTXO being spent is authorized
by signing the transaction with the corresponding private key. This list of signatures is
added to the transaction to finalize the transaction’s creation. It is then shared with all
parties involved in the transaction before it is sent to the central bank. The central bank
verifies that the syntax of the transaction is correct, that the value of the input UTXOs
and requested output UTXOs are equal, and that each of the UTXOs being spent matches
the signature provided for it. If the transaction is valid, the serial number of each output
UTZXO is generated, then all UTXOs are hashed. The central bank keeps a set of hashes
for all unspent UTXOs (an Unspent Funds Hash Set (UHS)), rather than the UTXOs
themselves, and checks that the UTXOs being spent are in the UHS. Once verified, the

26

old UTXOs are removed from the UHS, and the output UTXOs are added. The UHS
can only be accessed by the central bank, but users are able to query the existence of a
UTXO'’s hash in the UHS. Returning to the users, they are also able to compute the serial
numbers of the output UTXOs, and can query the central bank for the existence of the
output UTXOs. Once the users see that the output UTXOs exist in the central bank’s
UHS, they know that the transaction was successfully computed.

A limitation of this system is that the user must be aware of any UTXOs they receive,
meaning that if they are not made aware that funds have been sent to them, those funds
are essentially lost. In addition, the need to query the central bank for the existence of
UTXOs greatly hampers any future ability for offline transactions. As only a UTXO’s hash
is being stored, it does allow for some flexibility in design of the digital currency, as the
specific data structure of the UTXO is malleable. Also worth mentioning in regard to the
UTXOs and UHS is privacy. As only hashes are stored, the UHS provides some privacy to
the user, though user and spending data could still be tracked by the government/central
bank before the UTXOs are hashed, as identifying information is present in the transaction
in the form of public keys.

In terms of operation, a central bank could run project Hamilton similarly to a tradi-
tional data center. MIT offers two implementations for transaction verification, one that
uses an atomizer (in which an “ordering server [is used] to create a linear history of all
transactions” [11]), and another that uses two-phase commits, with the atomizer being the
slower of the two. Both can be implemented with Raft fault tolerance, and the two-phase
commit implementation also allows for sharding to improve scalability. Transactions can be
processed fairly quickly, with the benchmarks averaging from 0.5 to 0.7s, depending on im-
plementations, and can be submitted by fairly low-powered devices, as generating hashes
and signing transactions are the most computationally complex tasks asked of a user’s
device. System throughput benchmarks are also very high, with the two-phase commit
implementation processing 1.7 million transactions/second, and the atomizer processing
170 thousand per second.

3.2.4 KAIME

KAIME aims to better address privacy between users, the central bank, and commercial
banks. Proposed by Dogan and Bicakci, it utilizes public key signatures and encryption,
as well as zero-knowledge proofs, homomorphic encryption, and threshold cryptography.
In the system, hard privacy techniques are implemented to encrypt user data, with soft
privacy used to allow regulatory agencies access to this data in justified cases, though

27

the criteria for this are not specified. This aligns with the strategy laid out in [I]. In
this system, the central bank does not have any control over the status of user accounts,
and their main responsibility is issuing the digital currency. Commercial banks have the
responsibility of registering users, performing know-your-customer procedures and setting
up customer accounts, though users generate their own keys. In KAIME, commercial
banks have no ability to see a user’s balance or transaction details without the said user’s
permission. To ensure compliance, a group of authorized institutions, named “regulatory
agencies” in the paper, are responsible for conducting audit procedures and other related
tasks. They are able to access user data only by joint decision, through the use of threshold
encryption.

In KAIME, a user’s balance is stored, homomorphically encrypted, on a distributed
ledger. Each user also has a wallet containing one key pair used for encryption, a second
key pair used for signing, the regulatory agencies’ public key, and the user’s balance. To
perform a transaction, after receiving the recipient’s public key (e.g., with a QR code),
the sender encrypts the value they are sending thrice, once with their public key, a second
time with the receiver’s public key, and a third time using the regulatory agencies’ key.
The sender then generates two zero-knowledge proofs that show the plaintext of the three
encrypted values are equal. Finally, two more zero-knowledge proofs are generated, this
time being “range proofs,” showing that the user has sufficient funds for the transaction,
and that the encrypted value is within the range of 0 and 23'-1. This transaction is then
signed with the sender’s public signing key, before being submitted to the blockchain. After
the transaction and proofs have been verified, the ledger is updated homomorphically.

Analyzing the privacy of this transaction data with regards to regulatory agencies,
this method conceals the details of the transaction by default. However, as the value is
encrypted using the regulatory agencies’ public key, if enough of the agencies agree it is
necessary, the transaction history and balance of a user can be decrypted and accessed by
these agencies through threshold encryption. Contrasting this, as mentioned previously,
commercial banks and financial institutions can also be given access to a user’s transaction
history and balance, though the method through which banks can access this data is very
different. To facilitate this, the bank gives the user a one-time public key, which the
user uses to encrypt their transaction history. The user creates equality proofs, and sends
them with the transaction history to the bank. This information is needed for traditional
financial system functions, such as issuing a credit score.

There is also the ability to add additional privacy measures to transactions, hiding
the recipient’s identity. To do so, the sender selects any number of additional users. The
amount being sent is partitioned into three separate transactions, and three transactions are
sent to the recipient and to each of the additional users selected, with only the transactions

28

being sent to the recipient having any value (the other transactions have a plaintext value
of 0). In this way, it is impossible to tell who the actual recipient is, as all accounts are
homomorphically updated, with only one account’s balance actually increasing in value.
The authors point out that ring signatures and zero-knowledge proofs could also be used
to hide the identity of the sender, though it would undermine the effectiveness of the
regulatory authorities.

There are a few areas not discussed in the KAIME paper that we can make estimates
on, based in part on the previously discussed CBDC systems. First is that the speed of
transactions is likely to be fairly slow, in the order of multiple seconds. Creating a single
zero-knowledge proof in [27] took up to 1.5 seconds, so if extrapolating for KAIME, we
can expect it to take up to 6 seconds to send the transaction, which is fairly slow. On
the server side, verification and updating the ledger should be relatively quick, though the
authors do not go into detail on how the server would operate beyond its basic functions.
Lastly, there does not appear to be any thought given to implementing additional features
such as interest-bearing, nor to offline transactions.

3.2.5 Conclusion and Summary of the Different Systems

As we can see, there are a number of different technologies that could be used when
designing a CBDC, all with different advantages and disadvantages, giving central banks
a number of different options depending on where their priorities lie. Of course, this is
not an exhaustive overview, but does give an idea of the diversity available, and shows
that a blockchain is just one of many possible technologies for a digital currency. The four
systems we have discussed have been summarized into the table below:

29

Platypus

ZKPs used to prove transactions are non-fraudulent

ZKPs provide user privacy; identity only disclosed when ex-
ceeding thresholds

Transaction creation can take time

Chaum-Style Blind-
Signature System

Tokens have discrete, specific units of value (like paper money)
based on signature from the central bank

Blind signatures provide privacy to users from the central bank
when tokens are being signed /redeemed

Signatures expire, requiring users to exchange tokens

Has two-tier architecture, with central bank responsible for
minting and verifying tokens, while commercial banks handle
transactions and ensure financial compliance

Project Hamilton

UTXOs used to prevent double spending

Most mature architecture of the four, with the implementation
using a distributed system and testing including fault tolerance.

KAIME

Largest focus on privacy out of the four systems

Has two-tier architecture, similar to the Chaum blind signature
system

Most complex of the four systems, using multiple ZKPs, thresh-
old cryptography, and homomorphic encryption

Table 3.3: Summary of four CBDC systems

30

Chapter 4

Privacy Analysis and Offline
Transaction Solution

One of the big issues facing CBDCs is the need to ensure compliance (i.e., AML/CTF)
while protecting user privacy. This privacy issue is not only concerned with who can access
user data, but also how user data is being protected, and what the consequences of such
protection measures are. In this chapter, we will discuss and compare the privacy measures
of some of the proposed CBDC, how they are providing users privacy, and who user data is
being protected from, whether it be public sector entities (i.e., government, central bank,
law enforcement, etc.), private sector entities (merchants, retailers, payment providers,
etc.), or both.

4.1 Privacy implementation

As discussed in the previous chapter, when examining the implementation of privacy mea-
sures in CBDC systems, it is useful to classify them on a spectrum between “hard privacy”
and “soft privacy” (as proposed by Auer et al.). For example, on either end of the spectrum
we can look at Platypus for hard privacy, and Project Hamilton for soft privacy.

Summarizing the relevant details from the previous chapter, the Platypus CBDC sys-
tem is reliant on ZKPs, and adds additional parameters to these proofs in order to protect
user privacy. Users are required to provide their identity when creating a wallet, and these
additional parameters specify under what conditions public sector entities can gain access
to this data, which is otherwise protected. For example, a transaction may require the user

31

to disclose their identity if the transaction would put their balance above a specified thresh-
old (holding limit), or if the value of the transaction itself is above a specified threshold
(receiving limit). This use of cryptographic systems for its privacy measures firmly cements
Platypus as using hard privacy measures. One limitation of the hard privacy implementa-
tion in this case is its rigidness due to the use of ZKPs. If any of the parameters needs to
be changed, due to inflation for example, a new trusted setup would need to be generated,
and any CBDC devices or applications would need to be updated to use this new trusted
setup. Also, like other systems that rely on hard privacy, bad actors could avoid detection
with prior knowledge of the thresholds and other hard privacy triggers.

Conversely, MIT’s Project Hamilton relies almost entirely on soft privacy measures to
protect user data. Like Bitcoin, Project Hamilton only provides users with pseudonymity;,
though it is an improvement over Bitcoin as the ledger (UHS) does not store identifiable
information such as wallet addresses. As Project Hamilton does not provide means of
ensuring compliance, users would likely need to link their wallet to their identity, much like
with Platypus. Similar to current electronic payment systems, no guarantees are made by
the system to protect user data. Instead the user must trust that public sector entities only
access this data when issued a warrant or similar permission. In addition, wallet addresses
and other identifiable information is supposed to be discarded when the transaction is
stored in the UHS, though there is no mechanism preventing this information from being
stored by public sector entities. Similarly, recipients (i.e., private sector entities) would
still be able to collect information on user spending when receiving a transaction.

Looking at these examples, we get a better understanding of why Auer et al. believe a
hybrid approach is necessary, where both hard and soft privacy measures are used to protect
user privacy. This approach does have its own trade-offs, however. Namely, it greatly
increases the complexity of the system, as can be seen in the CBDC system KAIME. In
KAIME;, transaction amounts are encrypted and hidden from public sector entities, but are
guaranteed using ZKPs, and account balances are updated using homomorphic encryption.
However, the contents of the transaction can be decrypted using threshold cryptography
if enough parties (regulatory agencies) agree that the transaction/parties involved in the
transaction needs to be investigated. Here, while there are many hard privacy measures
being utilized, there are also soft privacy measures in the form of the regulatory agencies
who have the power to decrypt transactions. As account balances and transaction amounts
are hidden from public sector entities, transactions require four ZKPs. This complexity has
a real world cost in the form of the time required to complete a transaction. Extrapolating
from the benchmarks provided for Platypus (as KAIME does not provide any), proof
generation alone could be expected to take around 6 seconds, a non-negligible amount of
time. Though this does assume single threaded performance, the benchmarks in Platypus

32

were generated using a powerful and expensive phone (an iPhone 13). This presents a
serious detriment to adoption, both due to the time that transactions will take, and also
due to the lack of accessibility (requiring relatively powerful hardware, lest transactions
take even more time). In order for a system like KAIME to see widespread adoption,
serious changes would need to be made in order to reduce the complexity, and therefore
the amount of time it takes to perform transactions.

4.2 Data Collection and Access

Broadly, when we examine privacy in CBDC systems, the two major parties we are con-
cerned with hiding user information from are public sector entities (i.e., government, central
bank, etc.) and private sector entities (merchants, retailers, payment providers, etc.). Tak-
ing a closer look at the CBDC systems discussed so far, which entities that user data is
protected from varies greatly. From the previous section we know Project Hamilton only
provides pseudonymity to the user from both private and public sector entities, and not
true privacy. KAIME provides privacy from both entities, but at the cost of complexity and
slow transaction generation (also discussed in the previous section). Platypus also provides
user data protection from both private sector and public sector entities, though relies on
hard privacy measures. Lastly, the Chaum blind signature system provides privacy from
public sector entities but leaks data to some private sector entities.

Discussing these systems more in depth, Project Hamilton only provides pseudonymity;,
since transactions share information from the sender with the recipient, information that
can be used to track the sender. Though this is limited to transactions that involve the same
retailer or payment provider, the level of privacy is similar to that of credit cards. KAIME
does not share data thanks to its usage of ZKPs and homomorphic encryption. Similarly,
Platypus also uses ZKPs to hide information from both public and private sector entities.
Finally, the Chaum blind signature system provides user data protection from the public
sector through the use of blind signatures, which hides transaction details from the central
bank. Though for private sector entities, while the transaction process does not provide the
recipient with information that could be tied to the sender, the commercial banks (which
the system relies on for the facilitation of transactions) can track transaction details. This
puts the level of privacy provided by the system about on par with traditional electronic
payment methods, where the payment processing company can still collect details on any
transaction performed.

33

Platypus Hides data from public and private sector entities

Relies on hard privacy
Privacy from public sector and some private sector entities

Chaum-Style Blind-
Signature System
Project Hamilton

Commercial banks still have access to transaction details
Pseudonymity from both public and private sectors

Soft privacy only
Privacy from both private and public sectors

Combination of hard and soft privacy
Considerably more complex and slower than other systems

KAIME

Table 4.1: Comparison of privacy provided by the four CBDC systems

4.3 Hash Chains and User Privacy

While privacy protecting measures against public sector entities have been proposed, such
as those found in KAIME (Section 3.2.4), this section will focus on providing privacy from
non-governmental (i.e. private sector) entities. Specifically, in systems where the recipient
is able to view the details of a submitted transaction, we can employ hash chains to provide
authentication while hiding the sender’s identity.

4.3.1 What is a Hash Chain?

Hash chains are created by repeatedly using the output of a hash function as input for the
same function. Hash chains are a more specialized form of a Merkle tree (Section 2.3), where
each node only has a single child. In this way, we are creating a line by “chaining” hash
values, which is then often used for authentication. For example, given a seed z, we can
create a hash chain of length 5 by calculating h(h(h(h(h(x))))). A server can be supplied
with the final hash value in the hash chain, denoted as h°(x) using the previous example,
and when a user needs to be authenticated, the user only needs to supply the second to
last value in the hash chain (h*(z)). Each successive authentication uses the previous
value in the chain relative to the most recently given value (h3(z), followed by h*(z), etc.).
The server authenticates the user by hashing the value supplied by the user, and verifying
that it matches the value it has stored. This method of authentication gains its security
from the security properties of cryptographic hashing algorithms (Section 2.2), namely the
collision resistance, second pre-image resistance, and pre-image resistance.

34

4.3.2 Using Hash Chains to Protect User Privacy

With traditional electronic payment methods (namely credit and debit cards), there is very
little in the way of preventing parties from tracking an individual’s spending, as credit card
details! are given as part of the transaction. This is especially true for payment providers,
as they are able to record transactions from a multitude of retailers that a card is used
at. This gives payment providers access to a tremendous amount of personal information,
which they can use to estimate other details, such as an individual’s socioeconomic status.
There do exist services, such as Apple Pay, that hide payment details from merchants
and payment providers, though this simply shifts the burden of trust from one system to
another. One of the goals of CBDCs is to provide privacy at a level similar to paper money,
but with the convenience of traditional digital payments. Similar to how Apple Pay works,
where merchants and retailers (along with their payment providers) are not given your true
credit card number, we can obscure a user’s digital wallet details by using a hash chain
during a transaction to deny these private sector entities the ability to collect information
about the customer.

Like normal hash chain identification, when creating a transaction, the sender can
provide the (n — 1)™ hash in the chain, where n is the most recently used hash, as the
sender’s identifier. Then, when the central bank performs verification, they can identify
the user by calculating h(h"~*(z)), and verify that it matches the hash value stored for that
user. After obtaining a user’s account and performing the normal transaction verification
and commitment, the account is also updated with the provided hash value A"~!(x). With
this, the source of the funds can be hidden from private sector entities, while the central
bank is able to identify the user. Finally, when providing the hash, we would want to
encrypt it using the central bank’s public key in order to prevent private sector entities
from following a hash chain. As an aside, encrypting an identifier without the hash chain
is not enough, as without the hash chain, the encrypted identifier would be the same in
every transaction.

In systems where transaction details are visible to any entity, a hash chain of the
recipient’s address can also be used in place of their address in the transaction. While this
would keep the recipient’s identity obscured as well, it could add complications to sharing
wallet addresses, especially for larger retailers due to concurrency issues (though privacy
would likely be less of a concern for these entities). Sharing addresses using static media,
such as a printed QR code, would also be much more difficult in this system, though not

IFor the sake of simplicity, credit cards will be used as a stand-in for any other traditional electronic
payment methods

35

impossible (e.g., having the QR code link to a URL which would provide an up-to-date
address).

Lastly, if we would want to provide some level of protection from the central bank, we
could take an approach similar to KAIME and use threshold cryptography to encrypt a
user’s identity, requiring a number of regulatory agencies to agree in order to discover the
person associated with a hash chain. While this would only provide pseudonymity to the
central bank, overall, it is much more simple than KAIME, and would provide stronger
overall privacy protection when compared to Project Hamilton.

4.4 Offline Transaction Solution

One of the major concerns with offline transactions is how to prevent double spending.
One possible solution to mitigate this risk is to incorporate heuristics into the payment
systems used by merchants and retailers. The payment system could store a copy of the
ledger locally, keeping it as up to date as possible. Then, in the event of an internet
outage, the most recent copy of the ledger could be used to assign a risk factor for each
potential offline transaction. Depending on how the ledger is set up, and specifically what
information is publicly accessible, there are a number of factors that could be used in the
heuristic analysis. For example, if accounts are only pseudonymous, the payment system
could check the user’s past transactions with the retailer, and use information such as how
often and how long the user has shopped at the retailer, and if the transaction looks similar
or dissimilar to past transactions. If account balances are publicly viewable, the retailer
could even verify that the user had sufficient funds, and determine risk based on how large
the difference is between the transaction amount and the account balance. Although not
eliminating the risk, by employing heuristics, the risk of fraud could be reduced greatly, to
the point that retailers could feel confident accepting these offline transactions. As a final
measure, users could be penalized if they submitted fraudulent transactions. To comply
with monetary policies, accounts in a CBDC system would need to be tied to a user’s
identity. As the transaction would be signed with the user’s key private key, a retailer
could provide proof that the user (or at least someone with access to the user’s account)
submitted a transaction for which they did not have the funds. Potential penalties could
include various fines, or outright banning from the CBDC platform in the worst case.

36

Chapter 5

CBDC Prototype

For this thesis, a prototype CBDC system was created using XRPL. This system was built
on top of Ripple’s rippled service on Linux, in conjunction with their xrpl-py Python library.
A web-based UI was created as well using React, with Flask for the backend. Notably, the
system includes provisions for offline transactions, something that is sorrowfully lacking in
the current literature.

The XRP ledger was chosen for a few reasons. First was its consensus protocol, as it
aligns well with the requirements for a CBDC, especially compared to other blockchain
protocols like proof-of-work. Compared to proof-of-work, the consensus protocol requires
significantly less electricity [24], one of the main detriments of many blockchain systems.
In general, XRPL’s consensus protocol is well suited for CBDC, as CBDCs have a trusted
party (i.e., the central bank). We are able to capitalize on that as the rippled setup allows
designating specific machines as trusted validators. Another reason why the XRPL was
chosen was its ability to easily exchange tokens between users, allowing for easy creation
and exchange of CBDCs, and also allowing for the exchange of other CBDCs on the same
XRPL network.

5.1 Overview

Within the system, both XRP and tokens, representing the CBDC currency, are utilized.
In this case, an account’s wallet containing XRP and meeting the XRP reserve signifies
that the user it belongs to has been on-boarded and meets any compliance and regulatory
requirements.

37

Supplies token to Hot
wallet

Tokens transferred between
(Deposits/withdrawals)

Supplies

Master |*RPte
wallet

User 1 User 2 User 3
Wallet Wallet Wallet

S~ AT

Direct token transfers

Figure 5.1: Wallet Setup and Interactions with Three Users

5.2 Setup

To start the system, three rippled processes are spun up to create the XRP ledger. A
master wallet is created on initialization that is used as the source of all XRP. As stated
earlier, wallets (accounts) must contain enough XRP to meet the account reserve, and
when a wallet is created, the master wallet provides enough XRP to meet this threshold,
signifying that a user has been on-boarded. Once the ledger is running, two wallets are
created in order to handle the minting and distribution of tokens. A “cold wallet” is used
to generate the CBDC tokens, which it transfers to a “hot wallet” responsible for the actual
distribution of the tokens (this is in line with Ripple’s recommended practices for issuing
tokens). When creating a new account, a user first generates a new wallet. This includes
a private/public key pair, as well as the user’s wallet’s address. The user will be given this
address when being on-boarded, so that XRP can be transferred to their wallet, once again
signifying that they have met any compliance requirements. The final step is to create a
line of trust between the user’s wallet and the token-issuing cold wallet so they can receive
the CBDC tokens. The various wallet relationships and transactions are summarized in
Figure 5.1.

5.3 Transactions Process

The transaction process follows the normal XRPL token transaction flow, as illustrated
in Figure 5.2. When executing a transaction, a payment object is first created, which

38

Recipient Sender Ledger
T T
I Request address ™

AN .

I
I
I
: Submit signed tx
| Ll
I
I

Verify payment T I
|
[

__________ L I
| | |

Figure 5.2: Transaction Sequence Diagram

includes the address of the sender’s wallet, the address of the destination wallet, and the
quantity and type of token being transferred. When connected to the network, some
of these fields, such as specifying which ledger index the transaction must be submitted
by, can be populated automatically during the signing process by querying the network.
This payment object is then signed by the sender before being submitted to the ledger.
The ledger then verifies the transaction before committing it to the ledger and notifying
the sender that the transaction completed successfully. The recipient can then query the
network and verify that their funds have been updated.

5.3.1 Offline Transactions

In this system, intermittent offline transactions can also be performed. To do so, a wallet
address is shared with the sender, who specifies how many tokens to transfer. As the
user is offline, their device must fill the payment object parameters by itself. The only
real consequence of this is that the transaction fee cannot be obtained from the ledger
(though this would likely always be zero when deploying XRPL in a CBDC system), and
that the maximum ledger index for the transaction must be decided without knowing the
current ledger index. The problem this presents is that the ledger index is incremented by
1 each time it updates, and transactions with a ledger index less than the current index
will be rejected. This does not pose as large a problem as one might think, however, as an
appropriate maximum ledger index can be easily estimated. For example, an arbitrarily
large value may be selected if there is no expiry on the transaction, otherwise, an estimate

39

can be obtained by taking the value and time of generation for the last known index.
From there, given a target expiry time, an estimate could be calculated and used as the
maximum ledger index, as the ledger updates regularly every 3-5 seconds. It would likely
be necessary to select an index on the larger side of the estimate, as the transaction will
be rejected if the index selected is too small, while a larger estimate only provides a larger
window during which the transaction can be submitted. Once the payment object has been
created and signed, it can be serialized and shared with the receiver, so that either the
sender or receiver could submit the transaction once they were back online. The prototype
also includes functionality to automatically submit these transactions once the user comes
back online, and also keeps track of their balance and account sequence number. This
allows the system to keep track of the number of transactions that need submitting, the
order they need to be submitted in, and also will not allow the user to create transactions
that require more funds than they have available/have already promised to spend.

Here, we can employ the heuristics mentioned in Section 4.4. Specifically for our XRPL-
based system, we can check a user’s funds as proposed previously, as well as see how many
transactions an individual has purported to have performed while offline (as an individual’s
account sequence number is provided as part of the transaction, and is also stored in the
ledger). A large purported number of offline transactions could be deemed more risky, and
in such a case, the merchant could also request to be provided with signed copies of these
previous transactions. With this, the merchant would also not have to wait for the previous
transactions to be submitted to the ledger before theirs could be, as all transactions could
be submitted by the merchant. It would also allow the merchant to be more confident
about the self-reported state of the user’s account. This does raise privacy concerns, as
it would give the merchant access to previous transactions. In future work, this could be
expanded, encrypting the transactions with a public key from the central bank to hide
the details of the transactions, and perhaps utilizing ZKPs to show that the sum of the
transactions is as reported by the user.

Expanding on the penalties also mentioned in Section 4.4, should a user be found to
have provided a fraudulent transaction (or other financial crimes) using the CBDC system,
native XRPL functionality could be leveraged in our system. If XRP transactions by non-
authorized parties are banned, for example, the minimum reserve could be increased. By
increasing the reserve while simultaneously distributing XRP to all other accounts such
that they met this new reserve, a user/users could effectively be banned from the system.
Other limitations could also be put in place, such as limiting the number of transactions
a user could perform, or requiring the user to pay a specified fine before allowing them
access to the platform again.

40

5.4 Experimental Results

This section will discuss the results from testing of the CBDC prototype system. The
testing was performed on a computer equipped with an Intel Core i5-11400, 80GB of RAM
(two 8GB sticks and two 32GB sticks), and a 7200 RPM SATA HDD. As discussed in
the last section, all three rippled instances were running on this machine, with the Python
xrpl-py library being used to conduct the transactions. Although the hardware and rippled
configuration is not ideal, it was used due to time and resource constraints, as well as due
to the changes made to the API (discussed more in Chapter 6).

To perform the experiment, a total of 4500 transactions were executed, with the amount
of time taken for the transactions to complete being recorded. These transactions consisted
of unique wallet pairs being selected, and a single tokens being transferred from one wal-
let to another. The test completed in approximately 286.88 seconds, giving an average
throughput of 15.7 transactions/second (Figure 5.3). While performance may have been
lacking, it is not a true indication of the potential capacity, as real-world XRP ledgers are
able to reach much higher throughputs (up to 1500 transactions/second [29]). There are
a few likely causes for this low performance. First is the setup of the system, with three
instances of the rippled service running on a single machine. The XRPL requires a mini-
mum of three instances, and while these can all be run from a single machine, the intended
deployment is to be across multiple machines. Deploying the instances on a single machine
likely led to a significant degradation in performance, and resource monitoring during the
benchmark indicated a CPU bottleneck. If the CBDC system were to be redeployed with
remediation of these factors, we would expect to see throughput much closer to existing
XRPL networks, as only minor configuration changes were made to rippled for the CBDC
prototype.

Looking at the data more closely, each transaction took between 5 and 32 seconds
(Figure 5.4). Mean transaction time was 20.80 seconds, with a 90" percentile of 23.92
seconds and 99" percentile of 27.12 seconds (Figure 5.5). This corresponded to a standard
deviation of 2.60 seconds. We can also examine the number of ledger indices that passed
between a transaction being submitted and being included in the ledger (i.e. ledger deltas).
This tells us how many times the ledger was updated between when the transaction was
submitted, and when it was verified. Overall, the ledger was updated 85 times during
the 286.88 seconds it took to complete the 4500 transactions, and all transactions were
completed in between 1 and 8 updates (Figure 5.6). The mean number of ledger deltas
was 5.81, with a both a 90" and 99" percentile of 7 ledger updates. This, and the low
standard deviation of 0.716, can be seen in (Figure 5.7).

41

Number of Transactions

Transaction Count Over Time

4000 =

3000 =

2000 =

1000

|
0

| | | | | | | | | | |
25 50 75 100 125 150 175 200 225 250 275 300

Time (seconds)

Figure 5.3: Number of Transactions Processed Over Time

42

Transaction Latency Over Time (Time)

w
S
1

N}
Ut
1

—
ot
1

—
o
1

ot
1

Time to Process Transaction (seconds)

T T T T T T T T T T T T
0 25 50 75 100 125 150 175 200 225 250 275 300

Time (seconds)

Figure 5.4: Number of Seconds It Took to Process a Transaction Over Time

Count of Transaction Latencies (Time)

900

800 =

700 =

600 =

500

Count

400

300

200

Figure 5.5: Distribution of Time Taken to Process a Transaction

43

Transaction Latency Over Time (Ledger Indices)

T T T T T T T T T T T T
0 25 50 75 100 125 150 175 200 225 250 275 300

Time (seconds)

Indices Between Submission and Acceptance
IS
1

Figure 5.6: Number of Ledger Indices Elapsed During Transaction Processing Over Time

Count of Transaction Latencies (Indices)
2835

3000

2500 =

2000 =

1500

Count

1000

500 =
182

37

— [ap) <t L0 Ne) I~ 0
Number of Indices Between Submission and Acceptance

Figure 5.7: Distribution of Number of Ledger Indices Elapsed During Transaction Process-
ing

44

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Two of the large, outstanding issues still facing CBDCs are that of privacy and offline
transactions. How to adequately handle privacy and user data is a topic of great importance
for central banks looking to issue a digital currency, and there is still much room for
discussion. CBDCs not only need to address how user data is being protected and under
what circumstances it can be accessed, but also who the user data is being protected from
(whether it be the government, merchants, or other third parties), and how user data
could still be collected. Equally as important is the impact these privacy measures have
on compliance measures, and how to balance the two. Using hash chains was one solution
that was proposed in this thesis, although as can be seen from how different each of the
examined systems handled privacy, it is far from the only solution.

As noted previously, the ability to perform transactions offline is an important require-
ment for many central banks, yet there seems to be a major disconnect in the perception
of this importance between central banks and researchers. Presented in this thesis was a
prototype CBDC system built on Ripple’s XRPL, in which transactions can be serialized
and submitted at a later date in order to mimic the behaviour of offline transactions, and
the proposal that this system could be combined with heuristics in order to provide a
greater degree of trust in the transaction, even if the transactions could not be guaranteed
cryptographically.

45

6.2 Future Work

To build on what was presented in this thesis, the prototype CBDC system could be
expanded further, deploying it to a larger network, and implementing some of the ideas
presented here. An easy first step would be the implementation of heuristics in order to
assign risk factors to presented offline transactions, and to use that risk factor to determine
if the transaction should be accepted or rejected. This could be combined with a service
to review fraudulent offline transactions, and to issue penalties accordingly. In addition,
deploying the system as a proper XRPL network, rather than on a single machine, should
allow for higher throughput and lower latencies. Unfortunately, between the development
of the prototype and the time of writing for this thesis, the rippled service and xrpl-
py libraries were updated. This update changed the API, making programs and scripts
written for the older version (like the CBDC system) incompatible. To run the prototype,
therefore, would require an update/rewrite, or for the user to manually install the older
versions of the service and Python libraries (rippled version 1.10.1-1 and xrpl-py version
1.8.0).

An alternative way to expand in this work could be a CBDC implementation featuring
the privacy measures presented here. There are factors that would need to be considered
if hash chains were used to hide a user’s identity, such as balancing the length of the chain
with the time it would take to generate, and what to do when approaching the end of the
hash chain. This raises additional questions, such as:

e Would a new chain be issued, and if so, how would it be generated?
e How would any changes be synchronized if the user had multiple devices?

e What are the security concerns that arise with the chosen method?

If a dataset is available, it would also be pertinent to determine what data a government
entity could extract if users were pseudonymous. Also, what data would a government
entity need to collect in order to determine a user’s identity, and how could this data be
hidden? These are important factors to consider, as they are likely the weakest part of the
proposal.

Likely any system built with an emphasis on privacy would not be based on XRPL, due
to the pseudonymous nature of its ledger, but seeing as the rippled service is open source,
an ambition extension of this thesis could be combining the two approaches, providing
greater levels of user privacy, while also offering the ability to submit transactions offline.

46

This would complicate determining the risk factor of a submitted transaction, as some
information that could be extracted before, such as the number of transactions the user
has performed while offline, could no longer be determined. Ultimately, a different set of
heuristics would likely need to be used, and would probably be unable to offer the same
degree of confidence.

47

References

[1] Raphael Auer, Rainer Bohme, Jeremy Clark, and Didem Demirag. Mapping the
privacy landscape for central bank digital currencies: Now is the time to shape what
future payment flows will reveal about you. Queue, 20(4):16-38, sep 2022.

2] Elaine Barker, Lily Chen, Allen Roginsky, Apostol Vassilev, and Richard Davis. Rec-
ommendation for pair-wise key-establishment schemes using discrete logarithm cryp-
tography. Technical report, National Institute of Standards and Technology, 2018.
Last accessed 01 December 2023.

[3] Daniel J. Bernstein and Tanja Lange (editors). eBACS: ECRYPT Benchmarking
of Cryptographic Systems. https://bench.cr.yp.to/results-nistlwe-hash.html, Last ac-
cessed 30 November 2023.

4] Vitalik Buterin. Ethereum: A next-generation smart contract and decentralized ap-
g p
plication platform., May 2023. Last accessed 01 December 2023.

[5] George Calle and Daniel Eidan. Central bank digital currency: an innovation in
payments, April 2020. Last accessed 01 December 2023.

(6] David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L.
Rivest, and Alan T. Sherman, editors, Advances in Cryptology, pages 199-203, Boston,
MA, 1983. Springer US.

[7] David Chaum, Christian Grothoff, and Thomas Moser. How to issue a central bank
digital currency, 2021. Last accessed 01 December 2023.

[8] Quynh H. Dang. Secure hash standard. Technical report, National Institute of Stan-
dards and Technology, 2015. Last accessed 01 December 2023.

[9] Sriram Darbha and Rakesh Arora. Privacy in CBDC technology. Report, Bank of
Canada, 2020. Last accessed 01 December 2023.

48

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Ali Dogan and Kemal Bicakci. KAIME : Central bank digital currency with realistic
and modular privacy. Cryptology ePrint Archive, Paper 2023/713, 2023. https:
//eprint.iacr.org/2023/713. Last accessed 01 December 2023.

James Lovejoy, Cory Fields, Madars Virza, Tyler Frederick, David Urness, Kevin Kar-
waski, Anders Brownworth, and Neha Narula. A high performance payment processing
system designed for central bank digital currencies. White paper, Digital Currency
Initiative, Massachusetts Institute of Technology, February 2022. Last accessed 01
December 2023.

Ralph C. Merkle. Method of providing digital signatures, 09 1979. US Patent 4309569.

Cyrus Minwalla, John Miedema, Sebastian Hernandez, and Alexandra Sutton-Lalani.
A central bank digital currency for offline payments. Report, Bank of Canada, 2023.
Last accessed 01 December 2023.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009. Last accessed
01 December 2023.

A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder. Bitcoin and Cryp-
tocurrency Technologies: A Comprehensive Introduction. Princeton University Press,
2016.

Bank of Canada. Contingency planning for a central bank digital currency, 2020. Last
accessed 25 September 2023.

Bank of Canada, European Central Bank, Bank of Japan, Sveriges Riksbank,
Swiss National Bank, Bank of England, Board of Governors Federal Reserve System,
and Bank for International Settlements. Central bank digital currencies : Founda-
tional principles and core features. Report, Bank for International Settlements, 2020.
Last accessed 01 December 2023.

Bank of Canada, European Central Bank, Bank of Japan, Sveriges Riksbank,
Swiss National Bank, Bank of England, Board of Governors Federal Reserve Sys-
tem, and Bank for International Settlements. Executive paper - central bank digital
currencies : Foundational principles and core features. Report, Bank for International
Settlements, 2020. Last accessed 01 December 2023.

Edwin Ayisi Opare and Kwangjo Kim. A compendium of practices for central bank
digital currencies for multinational financial infrastructures. IEEE Access, 8:110810—
110847, 2020.

49

https://eprint.iacr.org/2023/713
https://eprint.iacr.org/2023/713

[20] Bryan Parno, Craig Gentry, Jon Howell, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. Cryptology ePrint Archive, Paper 2013/279, 2013.
https://eprint.iacr.org/2013/279. Last accessed 25 September 2023.

[21] Wouter Penard and Tim van Werkhoven. On the secure hash algorithm family. Cryp-
tography in context, pages 1-18, 2008.

[22] Maksym Petkus. Why and how zk-SNARK works. CoRR, abs/1906.07221, 2019. Last
accessed 25 September 2023.

[23] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. Cryptographic communi-
cations system and method, 12 1977. US Patent 4405829.

[24] Crystal Andrea Roma and M. Anwar Hasan. Energy consumption analysis of XRP
validator. In 2020 IEEFE International Conference on Blockchain and Cryptocurrency
(ICBC), pages 1-3, 2020.

[25] Adi Shamir. How to share a secret. Commun. ACM, 22:612-613, 1979.

[26] S. Shetty, C.A. Kamhoua, and L.L. Njilla. Blockchain for Distributed Systems Security.
Wiley, 2019.

[27] Karl Wiist, Kari Kostiainen, Noah Delius, and Srdjan Capkun. Platypus: A cen-
tral bank digital currency with unlinkable transactions and privacy preserving regu-
lation. Cryptology ePrint Archive, Paper 2021/1443, 2021. https://eprint.iacr.
org/2021/1443. Last accessed 01 December 2023.

[28] XRPL. Consensus protocol - xrpl.org, 2023. https://xrpl.org/consensus.html.
Last accessed 25 September 2023.

[29] XRPL. XRP - xrpl.org, 2023. https://xrpl.org/xrp-overview.html. Last accessed
01 December 2023.

20

https://eprint.iacr.org/2013/279
https://eprint.iacr.org/2021/1443
https://eprint.iacr.org/2021/1443
https://xrpl.org/consensus.html
https://xrpl.org/xrp-overview.html

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Contributions
	Outline

	Background
	Public-key Cryptography
	RSA Encryption
	RSA Digital Signatures

	Cryptographic Hashing
	SHA-256

	Merkle Tree
	Blockchain
	Permissioned vs Permissionless Blockchains
	Bitcoin
	Ethereum
	XRP Ledger

	Homomorphic Encryption
	Zero-Knowledge Proofs
	Threshold Cryptography

	Analysis of CBDC Requirements and Existing Systems
	CBDC Criteria and Features
	Traditional Requirements
	Design Considerations
	Privacy
	Offline Transactions

	Recently Proposed CBDC Systems
	Platypus CBDC
	Chaum-Style Blind-Signature CBDC
	Project Hamilton
	KAIME
	Conclusion and Summary of the Different Systems

	Privacy Analysis and Offline Transaction Solution
	Privacy implementation
	Data Collection and Access
	Hash Chains and User Privacy
	What is a Hash Chain?
	Using Hash Chains to Protect User Privacy

	Offline Transaction Solution

	CBDC Prototype
	Overview
	Setup
	Transactions Process
	Offline Transactions

	Experimental Results

	Conclusion and Future Work
	Conclusion
	Future Work

	References

