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Abstract

Cloud-based architectures have become integral elements of modern networking infras-
tructure and are characterized by a large number of servers operating in parallel. Opti-
mizing performance in these systems, with a particular focus on specific metrics such as
system response time and the probability of loss, is critical to ensure user satisfaction.
To address this challenge, this thesis analyzes load balancing policies that are designed to
efficiently assign incoming user requests to the servers such that the system performance
is optimized. In particular, the thesis focuses on a specialized category known as ”ran-
domized dynamic load balancing policies”. These policies optimize system performance by
dynamically adapting assignment decisions based on the current state of the system while
interacting with a randomly selected subset of servers. Given the complex interdependen-
cies among servers and the large size of these systems, an exact analysis of these systems
is intractable. Consequently, the thesis studies these systems in the system size limit. It
employs relevant limit theorems, including mean-field techniques and Stein’s approach, as
crucial mathematical tools. Furthermore, the thesis evaluates the accuracy of these lim-
its when applied to systems of finite size, providing valuable insights into the practical
applicability of the proposed load balancing policies.

Motivated by different types of user requests or jobs, the thesis focuses on two main
job categories: single-server jobs which can only run on a single server to represent non-
parallelizable requests, and multiserver jobs, which can run on multiple servers simultane-
ously modeling parallelizable requests.

The first part of the thesis studies single-server jobs in a system comprising a large
number of processor sharing servers operating in parallel, where servers have different pro-
cessing speeds and unlimited queueing buffers. The objective is to design randomized
load balancing policies that minimize the average response time of jobs. A novel policy
is introduced that allocates incoming jobs to servers based on predefined thresholds, state
information from a randomly sampled subset of servers, and their processing speeds. The
policy subsumes a broad class of other load balancing policies by adjusting the threshold
levels, offering a unified framework for concurrent analysis of multiple load balancing poli-
cies. It is shown that under this policy, the system achieves the maximal stability region.
Moreover, it is shown that as the system size approaches infinity, the transient and station-
ary stochastic occupancy measure of the system converges to a deterministic mean-field
limit and the unique fixed point of this mean-field limit, respectively. As a result, the
study of the asymptotic average response time of jobs becomes feasible through the fixed
point of the mean-field limit. The analysis continues by studying error estimation related
to asymptotic values in finite-sized systems. It is shown that when the mean delay of the
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finite-size system is approximated by its asymptotic value, the error is proportional to the
inverse square root of the system size.

Subsequently, the thesis analyzes adaptive multiserver jobs in loss systems, where they
can be parallelized across a variable number of servers, up to a maximum degree of paral-
lelization. In loss systems, each server can process only a finite number of jobs simultane-
ously and blocks any additional jobs beyond this capacity. Therefore, the goal is to devise
randomized job assignment schemes that optimize the average response time of accepted
jobs and the blocking probability while interacting with a sampled subset of servers. A
load balancing policy is proposed, where the number of allocated servers for processing
each job depends on the state information of a randomly sampled subset of servers and the
maximum degree of parallelization. Employing Stein’s method, it is shown that, provided
that the sampling size grows at an appropriate rate, the difference between the steady-state
system and a suitable deterministic system that exhibits optimality, decreases to zero as
the system size increases. Thus, as the system size approaches infinity, the steady-state
system achieves a zero blocking probability and optimal average response time for accepted
jobs. Additionally, the thesis analyzes error estimation for these asymptotic values in finite-
sized systems and establishes the error bounds as a function of the number of servers in
the system.
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Chapter 1

Introduction

Cloud-based architectures have become an essential component of modern networking, of-
fering a versatile framework for a wide array of applications. These applications span
from non-parallelizable tasks like sequential machine learning in areas such as text pro-
cessing, speech analysis, and financial analysis [1, 2], to parallelizable tasks exemplified
by Google’s Borg system [3], the MapReduce framework [4], TensorFlow [5], and erasure
codes [6]. With the increasing scale and complexity of these applications (jobs), comput-
ing clusters often consist of hundreds of thousands of servers. Service providers who excel
in delivering robust system performance, particularly in terms of minimizing latency and
reducing the probability of loss, achieve a remarkable competitive advantage by ensuring
user satisfaction [7, 8]. A central question to be addressed is how to effectively schedule the
incoming load and network traffic in these large and complex systems to optimize specific
performance metrics.

A promising class of solutions includes load balancing policies that try to distribute
the incoming workload across servers. These policies determine which servers an incoming
job should join based on a predefined assignment scheme. Load balancing policies can be
categorized as static, dynamic, or combining these two, depending on the level of system
information they use. Static load balancing policies assign jobs to servers following rules
that are oblivious to the system’s state; however, dynamic load balancing policies adopt
their job assignment scheme based on the system’s state at job arrival instants. Generally,
there exists a trade-off between the amount of information a policy uses and the system’s
performance. In other words, dynamic load balancing policies exploit the extra data from
the system to make more informed decisions for routing incoming tasks, leading to improved
performance.
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Ideally, a dynamic load balancing policy that has knowledge of the entire system’s state
should achieve optimal system performance. This arises from the ability to compare the
states of all servers in the system and select the ones with the quickest processing time as
destination servers. However, in real systems, it is not always possible for a job to access
the state information of all servers, due to the high communication overhead involved. For
instance, consider the well-known load balancing policy, the Join-the-Shortest-Queue (JSQ)
policy. Under the JSQ policy, each incoming task requires access to the state information
of all servers to join the server with the fewest jobs waiting in its queue [9, 10]. However,
in a system with n servers where jobs arrive at the system at a rate proportional to the
number of servers, O(n), this policy requires a message rate of O(n) messages per unit
of time. This messaging overhead can quickly become prohibitive and make the policy
expensive, or even impossible to implement in large-scale systems.

To account for the communication overheads and implementation complexities of load
balancing policies, it is imperative to concurrently evaluate both the policy’s performance
and its scalability. Considering this fact, randomized dynamic load balancing policies offer
a practical solution. In these policies, upon arrival of a job, only a random subset of servers
is accessible to incoming jobs, and the assignment scheme is based on the state information
of the sampled servers. Incorporating random subset access significantly reduces the com-
munication overhead, while still leveraging dynamic system information to achieve almost
as good performance. In this dissertation, we focus on the design and analysis of random-
ized dynamic load balancing policies with the objective of optimizing system performance
in terms of specific metrics of interest in large-scale networks.

The design of randomized load balancing policies relies on the specific nature of jobs in
the system, which can be broadly categorized into two main types, single-server jobs and
multiserver jobs. Single-server jobs are employed to model non-parallelizable applications.
These jobs are limited to running on a single server, determined by the job assignment
scheme at their arrival instant. Once assigned to a server, the job remains there for
the entire duration of its processing. Figure 1.1 illustrates a schematic of such systems,
featuring a single dispatcher responsible for directing jobs to servers following a specific
load balancing policy and highlighting three parallel servers. In this particular scenario,
the JSQ policy is employed and the incoming job is assigned to server 2 which currently
has the fewest number of jobs waiting in its queue.

On the other hand, multiserver jobs are employed to represent parallelizable applica-
tions. In systems with multiserver jobs, each job can run on multiple servers simultaneously.
The selection of destination servers, which can be more than one, is determined by the job
assignment scheme at the time of job arrival. Jobs are divided into smaller parts referred
to as sub-jobs or tasks, with each sub-job being allocated to one of the destination servers.
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Figure 1.1: Schematic of a system with a single dispatcher, 3 parallel servers, and single-
server jobs.

Once sub-jobs join the servers, they remain on their respective server until their processing
is complete. Figure 1.2 illustrates a schematic of such systems, featuring a single dispatcher
and three servers. In this schematic, the incoming job is assigned to servers 2 and 3 based
on a predefined rule.

This dissertation focuses on the development and performance evaluation of random-
ized dynamic load balancing policies for single-server and multiserver jobs in large-scale
systems. A drawback inherent in dynamic randomized schemes is the new interactions
they introduce among system components. In particular, using system state information
to assign incoming jobs leads to interdependencies among servers. This complexity, com-
bined with the system’s large size, makes the precise analysis of such networks challenging.
For Markovian load balancing policies, which make assignments based on only the current
state of the system, the time evolution of the system can often be described through a
Markov process. Consequently, a comprehensive study of the system requires an analysis
of the underlying Markov process. In cases where the system size is large, it becomes fea-
sible to study the system’s asymptotic behavior through the application of limit theorems
suitable for Markov processes. Two particularly relevant techniques for this purpose are
the mean-field technique and Stein’s method. These methods show the convergence of the
underlying Markov process to an appropriate process in transient and stationary regimes,
respectively.

By applying the mean-field technique and Stein’s method, this thesis shows the effec-
tiveness of randomized load balancing policies in achieving excellent system performance
with minimal communication overhead as the system size approaches infinity. These results
provide strong approximations for large systems but are estimates for finite-sized systems.
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Figure 1.2: Schematic of a system with a single dispatcher, 3 parallel servers, and multi-
server jobs, where the job is split into two sub-jobs and joins servers 2 and 3.

While prior research typically ends here, an important question remains: how accurate
are these approximations when assessing performance for large but finite systems? In this
dissertation, we not only develop new policies and evaluate their asymptotic performance
but also study the accuracy of these approximations in relation to the system size, offering
practical insights for real-world, large-scale systems.

1.1 Two Key Models

In this dissertation, we study two key models suitable for addressing single-server jobs and
multiserver jobs. Our primary objective is to study job assignment schemes for large-scale
systems and evaluate their performance in the context of finite-sized systems. We achieve
this by characterizing each model by an appropriate Markov process. It is important to
highlight that addressing the distinct challenges presented by each model necessitates the
use of different methodologies.

1.1.1 Processor Sharing Systems with Single-Server Jobs

Many jobs inherently resist parallelization and must be executed on single servers. A prac-
tical design approach to reduce the processing time of these jobs (i.e., the time it takes for
a server to process a job after it joins the server’s queue) involves increasing the capac-
ity of individual servers and efficiently distributing this capacity among all concurrently
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processed jobs by that server. A conceptually straightforward yet highly effective resource-
sharing approach is the round-robin scheduling technique. In this approach, each job is
allocated a specific time slot to use the available server capacity. If a job is not completed
in its allocated time slot, it gets temporarily interrupted but retains its position in the
queue to continue work in the next allocated time slot. As a result, smaller tasks do not
become delayed by larger ones before they start processing, as they are given their turn
for processing. As the time slot duration in the round-robin fashion approaches zero, it
can be closely approximated by the Processor Sharing (PS) service discipline [11, 12, 13].
Consequently, processor sharing servers are appropriate mathematical models for practical
systems employing the round-robin approach.

In the processor sharing service discipline, once a job joins a server’s queue, it imme-
diately starts processing, and the server’s processing capacity is distributed proportionally
among all jobs in its queue. For example, if a server with a unit speed has two jobs in
its queue, each job is allocated a processing speed of 1/2. Furthermore, we assume each
server has an infinite queue, ensuring that every incoming job is accepted into the system
without rejection. Since job loss is not a concern in this system, and jobs receive variable
processing speeds based on the total number of jobs in the server’s queue (referred to as
its occupancy), the primary objective is to develop effective load balancing policies that
minimize the occupancy of each server. This optimization ensures that each job receives
the maximum processing speed, thus minimizing the average response time in the system
(the time elapsed between a job’s arrival and its departure from the system).

To achieve this objective, we propose a novel randomized load balancing policy deter-
mined by predefined thresholds. This policy randomly samples a finite number of servers
and adjusts its behavior depending on whether the sampled servers’ occupancies are below
or above the specified thresholds. The ability to control these threshold levels in the policy
allows for the design of a wide range of load balancing policies, both existing and new.
Consequently, this approach enables the comprehensive study of different load balancing
policies within a unified and systematic framework.

When the system size is large and the threshold-based load balancing policy is imple-
mented, the interaction between each individual server and the rest of the system becomes
weak. This characteristic allows for the application of the mean-field technique to analyze
the underlying Markov process describing the system. The technique is based on the Law
of Large Numbers (LLN) and is briefly explained in Section 1.5.1. As the system size
approaches infinity, the Markov process converges to a deterministic process known as its
mean-field limit. This limit serves as a good approximation for the transient behavior of the
large-scale system. Importantly, when the equilibrium points of this mean-field limit are
globally asymptotically stable, they effectively describe the system’s stationary distribu-
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tion. This property facilitates a detailed analysis of the system’s steady-state performance.

Considering that the aforementioned results are based on limits and asymptotic condi-
tions, it is imperative to evaluate the accuracy of mean-field approximations for systems
of finite size. To measure this gap, we study the fluctuations in the empirical distribution
of the system around its established mean-field limit, in both transient and stationary
regimes. By applying Functional Central Limit Theorems (FCLT), we quantify the accu-
racy of these estimations as a function of the system’s size.

1.1.2 Loss Systems with Multiserver Jobs

As discussed in the preceding subsection, system designers have effectively utilized the
power of high-speed computation by continuously improving hardware capabilities and
expanding server capacities. While this approach has undoubtedly reduced response times
for job requests, it has also highlighted a fundamental limitation: the processing time
of an individual job is constrained by the capacity of a single server and surpassing this
limitation is unattainable. This constraint becomes particularly apparent when we consider
multiserver jobs that can be parallelized across multiple servers. This paradigm shift
underscores the importance of exploiting the inherent parallelism of jobs whenever possible
to achieve better system performance.

Multiserver jobs, amenable to parallelization, consist of smaller constituent components
known as sub-jobs or tasks. Each of these sub-jobs is executed on separate servers, running
in parallel with other sub-jobs. These jobs are distinguished into two primary categories,
rigid and adaptive, based on how their sub-job quantity and server requirements depend on
the dynamic state of the system. Rigid multiserver jobs maintain a fixed and predetermined
number of sub-jobs, irrespective of the current system state [14]. In contrast, adaptive
multiserver jobs exhibit flexibility, adjusting the number of sub-jobs based on the system
state and available resources. This adaptability can significantly reduce unnecessary delays,
unlike rigid jobs, which may experience stalls when resource requirements are unmet.

Within the category of adaptive multiserver jobs, a further distinction is made between
moldable and malleable jobs. In moldable jobs, once job processing commences, the re-
source allocation remains constant throughout the job’s execution [15, 16]. Conversely,
malleable jobs allow for resource allocation modifications while the job is actively running
[17, 18]. As a result, designing load balancing policies for moldable jobs is relatively sim-
pler, requiring resource allocation decisions only at job arrival times, while still delivering
high-quality performance through adaptability rooted in the system’s state for determining
the number of sub-jobs.
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We study the behavior of moldable multiserver jobs in an Erlang loss system as our
mathematical framework, aiming to comprehend the impact of parallelism on system per-
formance. In the loss model, servers can concurrently process a finite number of jobs at a
constant rate and there is no queueing buffer in the system. Consequently, arriving jobs
that cannot find an available server immediately are blocked. In loss systems, jobs confront
two distinct outcomes, they are either blocked and discarded from the system permanently,
or admitted into the system and start their service immediately. Traditionally, in loss sys-
tems with single-server or rigid multiserver jobs, the primary focus was on minimizing the
blocking probability, given that the response time of an accepted job remained constant
and equal to the service rate of a single-server. However, with the advent of adaptive
multiserver jobs, characterized by their ability to adaptively parallelize and accommodate
varying job response times, the objective is twofold: designing load balancing policies that
simultaneously reduce both the blocking probability and average response time.

To achieve this objective, we propose a randomized load balancing policy. This policy
involves randomly selecting a subset of servers and constraining each job’s subdivision to
a specific threshold determined by the maximum degree of parallelism. This limitation
arises from the realization that attempting to parallelize a job beyond this degree can
substantially impair the job’s response time due to the excessive communication overhead
involved. Furthermore, not all jobs possess the inherent characteristics to be subdivided
into an arbitrary number of sub-jobs. By comparing the number of available resources in
the sampled set against this threshold, the policy determines the degree of parallelism for
each job, indicating the number of parallel servers allocated for its execution.

The introduction of job splitting into the load balancing policy gives rise to strong
coupling among servers, requiring the utilization of analytical techniques other than the
mean-field technique. One relevant technique in this context is Stein’s method, which
is briefly outlined in Section 1.5.2. Stein’s method quantifies the distance between the
steady-state distribution of the underlying Markov process and an ideal target distribution
that we aim for the system to converge toward. Showing that this distance diminishes as
the system size approaches infinity enables the establishment of bounds on steady-state
system performance as a function of the system size. Consequently, this method not only
provides performance approximations for large steady-state systems but also allows for the
derivation of error bounds for these approximations.
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1.2 Related Literature

We have structured our literature review into three primary categories: load balancing poli-
cies for single-server jobs, load balancing policies for multiserver jobs, and the evaluation
of these policies’ performance in finite-sized systems.

Load Balancing for Single-Server Jobs The first works of load balancing prob-
lems go back to [19] and [20] in which the JSQ policy was considered for a system of two
identical First-Come First-Serve (FCFS) servers. The stationary distribution of server oc-
cupancy was established for each server. Subsequently, the optimality of the JSQ policy was
studied for a two-server system in [21], and for an n-server system in [9]. It was shown that
this policy minimizes the expected response time of jobs. The JSQ policy was also studied
under the processor sharing service discipline in [10] for general job length distributions.
The queue length distribution at each server was approximated and through simulations,
it was shown that the stationary distribution is near insensitive to the distribution of job
size as long as the mean remains the same.

To address the problem of high communication overhead associated with the JSQ policy,
randomized JSQ(d) policy was proposed in seminal works [22] and [23], where every arrival
randomly sampled a finite number of servers, d ≤ n, in a system of n servers and joined
the shortest queue among the sampled servers. A system of n FCFS servers with Poisson
job arrivals and exponential job sizes was studied in the limit (as n → ∞) using mean-field
techniques. It was shown that in the case d = 2, the stationary queue sizes decay doubly
exponentially which is an exponential improvement over the case d = 1, whereas d = 3
only has a constant factor improvement over the case d = 2. This phenomenon is known
as the ”the power of two choices”.

Generalization of the JSQ(d) problem to queueing networks with general service time
distributions and different service disciplines, was established in [24]. Using an ansatz of
asymptotic independence of any finite subset of servers, it was shown that under the pro-
cessor sharing service discipline, the queue length distribution at each server is insensitive
to the service distribution of jobs. However, this ansatz was initially proved only for the
FCFS case with the service time of jobs having a decreasing hazard rate 1. In [25], this
ansatz was proved for the processor sharing service discipline and general service time dis-
tributions, and the insensitivity of the equilibrium point of the mean-field limit to the job
length distributions was established.

The homogeneous system was generalized in [26] and [27] to heterogeneous processor

1A service distribution with Cumulative Distribution Function (CDF) F , and Probability Density
Function (PDF) f , has a hazard rate h which is given by h(t) = f(t)/(1− F (t)).
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sharing systems, where it was shown that a naive random selection of servers with dif-
ferent capacities can cause instability. However, in later work in [28], it was shown that
by guaranteeing the existence of every different server type in the selection set, named as
type-based JSQ(d) policy, the maximal stability region (also called the maximal through-
put region in contemporary literature) can be recovered. The maximum stability region
corresponds to the stability region by pooling the resources of all the servers.

Despite the favorable job response time properties of the JSQ(d) policy, it was shown
in [29] that achieving zero asymptotic mean waiting delay under this policy in a system
with n servers is impossible when the number of selected servers, d < n, remains constant
and there is no memory at the dispatcher. This observation classifies research into two
distinct directions, whether involving a variable amount of d or incorporating memory at
the dispatcher. The JSQ(d(n)) policy was studied in [30] where the number of selected
servers d(n), grows with the number of servers n and there is no memory at the dispatcher.
It was shown that the fluid limit of the system under the JSQ(d(n)) policy converges to
that of the JSQ policy as long as d(n) grows to n, but the exact growth rate of d(n) is not
important. However, for the diffusion limit of the system to converge to that of the JSQ
system, a minimum growth rate must be satisfied by d(n). A sufficient condition for this
convergence is that d(n)/

√
n log(n) → ∞.

In contrast, in [31] a new pull-based load balancing policy was introduced by incorpo-
rating memory at the dispatcher. This policy is called Join-the-Idle-Queue (JIQ) policy in
which the memory keeps track of all idle servers and the incoming job joins the queue of
one of the idle servers. If there is no idle server, it joins any one of the servers uniformly at
random. It was shown that the JIQ policy effectively reduces the communication overhead
compared to the JSQ(2) policy. In [32], the JIQ policy was studied using the mean-field
fluid limit methods, and a set of differential equations to describe the system behavior was
proposed as n → ∞. Through mean-field analysis, the asymptotic optimality of this policy
was studied in [33, 34], where it was shown that the steady-state probability of an arriving
customer waiting for service vanishes as n → ∞.

When the system is operating under heavy traffic conditions, i.e., the arrival rate of
the system is approaching its total capacity, the JIQ policy performs poorly compared to
other state-dependent policies like JSQ(d), since the probability of finding no idle server
available in the system is high. Motivated by this observation, a more general threshold-
based scheme was studied in [35, 36] where an incoming job is routed to a server whose
occupancy is below some threshold. If all servers are loaded above the threshold, the
job is assigned uniformly to one of the servers. This policy is known as the Join-Below-
Threshold (JBT) policy and can be considered as an extension of the JIQ policy. It was
shown that the JBT policy achieves heavy-traffic delay optimality in homogeneous systems.
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By heavy-traffic delay optimality, it means that the delay corresponds to the delay in a
resource-pooled system. This policy was also studied in [37] where a slightly different
version of the policy was studied. The incoming job joins the server whose occupancy is
below a common threshold. However, if there is no such server, the job is routed to the
shortest queue among d randomly selected servers. Such a modification thus subsumes the
JSQ(d) policy. The JBT policy was also studied in [38] for a heterogeneous resource-sharing
system and the authors showed excellent delay performance for such systems.

Load Balancing for Multiserver Jobs The problem of load balancing for mul-
tiserver jobs has been of great interest to researchers. Different models and policies are
introduced for these jobs. One classic theoretical model is Fork-Join (FJ) system. In an
FJ system with n servers, an incoming job is split into n independent tasks at the fork
station, and each task joins one server, processed in an FCFS order. When all tasks are
complete, the delay of the job is determined by the maximum delay of its tasks at the
join station. The stationary joint workload distribution of FJ systems with two servers,
Poisson job arrivals and exponential service times is studied in [39]. However, the analysis
of FJ systems in the general case of more than two servers is extremely challenging due to
the complex correlations between the fork and join stations. The existing literature only
provides approximations and bounds on the performance metrics of the system such as
upper bounds on the delay performance of the system, as can be seen in studies like [40]
and [41]. A comprehensive survey of the existing results on FJ systems is presented in [42].

A generalization of FJ systems is partial or limited FJ systems, where in a system
with n servers, the incoming job is split into k < n tasks. When the number of tasks is
fixed, upper bounds on the tail distribution of the response time of jobs are obtained in
[41]. These bounds are derived for a policy that assigns tasks randomly to servers and for
four scenarios of system parameters by combining renewal and non-renewal arrivals with
non-blocking and blocking servers. The study is extended in [43] to heterogeneous systems
with slow and fast servers. A probabilistic routing policy for task assignment is proposed
and bounds on the average completion time of jobs are calculated. Additionally, when the
number of tasks is not fixed and can vary with the number of servers n, it is shown in [44]
that when k(n) = o(n1/4), any k(n) subset of servers becomes asymptotically independent
as n → ∞. This asymptotic independence leads to an upper bound on the mean response
time of jobs in the non-asymptotic regime. Another policy named batch-filling policy which
is a variant of the JSQ(d) policy for multiserver jobs, is proposed in [45]. In this policy,
tasks are assigned sequentially to the shortest queue in a sampled subset of servers. This
policy achieves zero queueing delay, meaning that every task of the job starts its process
immediately.

In limited FJ systems, each server has its own queue, and tasks wait in the queue of
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the server to start their service. However, an alternative queueing model is when there is a
central queue from which tasks are dispatched to servers. If the number of available servers
is less than the number of job’s tasks, the job will wait in the central queue until there are
enough resources available. The stationary distribution of the number of jobs in systems
with two servers is studied in [14] and [46]. In these systems, the job at the head of the
queue may not fit into the system immediately, therefore blocking later arrivals from service
and leaving servers idle. This incurs an extra waiting time in the system. However, it is
shown in [47] and [48] as the system load, the number of tasks, and the number of servers
scale, jobs can achieve zero asymptotic waiting time. Analogous results are studied in [49],
where the mean response time is minimized under heavy traffic limit, while the number
of servers remains unscaled. An alternative approach to address the extra waiting time is
by dropping the job at the head of the queue if it cannot fit into the system. Multiserver-
job systems with a central queue and blocking have been of considerable interest and are
studied well such as in [50] and [51], where the goal is to minimize the blocking probability
of each job.

Another class of queueing models for multiserver jobs involves variable server allocation.
Prior research in this domain has predominantly focused on the use of speedup functions;
these functions measure the ratio of a job’s original service time to its accelerated service
time when parallelized. In other words, speedup functions denote the amount of accel-
eration jobs can get by joining multiple servers. One well-known example of a speedup
function is Amdahl’s law [52], which accounts for scenarios where only a part of the job is
parallelizable, while the remaining part receives no parallelization. In [53], the optimality
of concave and sublinear speedup functions for exponential job sizes is studied. It is shown
that when the jobs can be parallelized into any number of sub-jobs, the policy that shares
servers equally among the jobs in the system minimizes the mean response time. In [54],
it is assumed that some jobs can split into any number of parts, while others follow a
threshold parallelization approach where the level of parallelization is limited to a specific
threshold. Optimal policies are derived for this speedup function when job sizes are expo-
nential. Additionally, in [55], a work-conserving finite skip framework is introduced, which
includes threshold parallelism as a special case. The mean response time of the system
is characterized by heavy traffic conditions. Nevertheless, these studies make specific as-
sumptions each job has access to the full set of servers, consider linear speedup functions
and assume no system blocking.

Performance of Load Balancing Policies in Finite Systems Many of the stud-
ies mentioned earlier have primarily employed limit theorems to evaluate the system perfor-
mance in the asymptotic regime, i.e., as the system size n approaches infinity. However, to
obtain a more comprehensive understanding of how these load balancing policies function

11



in finite-sized systems, it is essential to investigate the accuracy of these asymptotic results.
Researchers typically employ two approaches to investigate these accuracies: first, studying
accuracy at the process level for any finite time duration; second, analyzing accuracy at a
given instant, such as in the stationary regime.

When the focus is to derive approximation accuracies at a process level, explicit bounds
on the deviation of Discrete-Time Markov Chains (DTMCs) from their mean-field limit
were studied in [56], both in transient time and in stationary regime. This study focuses
on numerical methods to compute the error bounds and does not provide a general an-
alytic result. In [57], the accuracy of the mean-field limit in a system of n servers was
studied under the JSQ(d) policy and FCFS server discipline. The fluctuation process was
constructed as the gap between the empirical measure of the system and its mean-field
limit. Suitable FCLTs were obtained to show that under a light traffic regime (i.e., when
the arrival rate of the system is strictly below the total capacity of the system), the scaled
fluctuation process converges to an Ornstein–Uhlenbeck (OU) process as the system size
grows to infinity. However, the author did not consider the performance issues in steady-
state. Such FCLTs were employed in [58] to study the accuracy of blocking probability
approximations in Erlang-Loss models under the JSQ(d) policy and light traffic regime.
It was shown that the gap between the exact average blocking probability of a job in the
system with n servers and the limiting average blocking probability is O( 1√

n
). The results

were extended in [59] to the Halfin-Whitt regime (a heavy-traffic regime) [60] and new
bounds on the mean-squared difference between the blocking probability of the system
and its asymptotic value were obtained.

The alternate approach is to focus on the accuracy only in the stationary regime. The
problem of mean-field accuracy was studied in [61] for finite-dimensional Continuous-Time
Markov Chains (CTMCs). Using Stein’s method, it was shown that under some mild
conditions, the mean-square difference between the stationary distribution of a system of
size n and the fixed point of its mean-field limit is O( 1

n
). The results were extended in [62]

to study this convergence rate under heavy traffic conditions. Stein’s method was also used
in [63] where the convergence rate for expectations of performance functionals was obtained
in both finite and infinite-dimensional systems. It was shown that if the dynamical system
is asymptotically exponentially stable, the convergence rate for a system of size n is O( 1

n
).

Unlike the order-wise scaling results, researchers were able to obtain calculable error
bound on the accuracy of mean-field limits. This problem was addressed in [64] and
[65], where the mean-field approximations were refined by finding the constant related to
the terms 1

n
and 1

n2 , respectively. A combination of Stein’s method and the State Space
Concentration was used in [66] to obtain calculable error bounds on the heavy-traffic mean-
field approximations for a class of FCFS systems with the JSQ(2) policy. The mean-field
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accuracy and its refinement for heterogeneous systems were studied in [67], using Stein’s
method. It was shown that in a system of size n, the mean-field accuracy is O( 1

n
), and the

accuracy of refined mean-field limit is O( 1
n2 ).

1.3 Notation

In this section, we establish the notation and terminology that will be used throughout
the dissertation. We denote R as the set of real numbers, Z as the set of integers, and
N as the set of natural numbers. Additionally, we use R+ and Z+ to represent the sets
of non-negative real numbers and non-negative integers, respectively. Furthermore, for an
integer m, we use [m] to represent the set {1, 2, . . . ,m}.

For the analysis in Chapter 2, we define the space U as the space of tail probabilities for
non-negative integer-valued random variables with finite mean. Additionally, we introduce
the space U(n) to denote the space of tail occupancy probabilities for each server in a
system of n servers.

In the context of two vector spaces X and Y equipped with some norm ∥.∥, a function
f : X → Y is said to be Lipschitz with respect to that norm if for any a, b ∈ X , there exists
some finite constant K > 0 such that ∥f(b)− f(a)∥ ≤ K ∥b− a∥. Also, for any metric
space X , C(X ) denotes the space of all continuous functions f : X → R. For any bounded
function f ∈ C(X ), we define its supremum norm as

∥f∥∞ = sup
x∈X

|f(x)|.

Consider two stochastic processes x(n) and x defined on probability spaces
(
Ω(n),F (n),P(n)

)
and (Ω,F ,P), respectively. The sequence x(n) is said to converge in distribution to x and
is written x(n) ⇒ x, if for all bounded, real-valued and continuous functions f , we have
limn→∞

∫
Ω(n) f

(
x(n)
)
dP(n) =

∫
Ω
f(x) dP. For a martingale M(t), its quadratic variation

will be denoted by < M >t.

For the asymptotic notation, let f(n) and g(n) be positive real-valued increasing func-

tions. We define f(n) to be o (g(n)) if lim supn→∞
f(n)
g(n)

= 0, f(n) to be O (g(n)) if

lim supn→∞
f(n)
g(n)

< ∞, f(n) to be ω (g(n)) if lim infn→∞
f(n)
g(n)

= ∞, and f(n) to be Ω (g(n))

if lim infn→∞
f(n)
g(n)

> 0. Moreover, we define f(n) to be Θ (g(n)) if f(n) is O (g(n)) and

Ω (g(n)).
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1.4 Contributions and Outline

In this section, we provide a brief overview of the contributions of this thesis. We start by
studying single-server job systems in Chapter 2. Our focus is on systems consisting of a
single central dispatcher and n processor sharing servers working in parallel. The servers
in this system exhibit heterogeneity in their processing speeds, where they are categorized
into distinct groups, with servers in each group sharing the same processing speed. We
introduce a novel randomized type-based join below threshold policy, that addresses the
heterogeneity in the system by selecting a finite number of servers from each group. Based
on the sampled servers’ occupancies normalized to their speeds and predefined thresholds,
the destination server is selected. Our primary evaluation metric is the average response
time of jobs in the system. Our contributions can be summarized as follows.

• Introduction of the Randomized Type-Based JBT Policy: We propose a ran-
domized type-based JBT policy, where assignment decisions depend on predefined
threshold levels and the instantaneous occupancy of sampled servers normalized to
their processing speeds. This policy accommodates changes in threshold levels, en-
abling the derivation of various load balancing policies suitable for heterogeneous
systems, such as JSQ(d), JIQ, and more. Consequently, it provides a unified and
systematic framework for studying a wide range of load balancing policies in hetero-
geneous environments.

• System Stability Analysis: We show that for every arrival rate below the total
system capacity, the processor sharing system employing the type-based JBT policy
is stable, irrespective of the threshold values in the system. In this context, stability
means that the average response time of jobs remains bounded. This result holds
true for every arrival rate of nλ(n) where λ(n) < 1.

• Mean-Field Limit Analysis: We show that the stochastic empirical measure of
servers’ occupancies converges to a deterministic mean-field limit in large system
asymptotic. This limit is described by a set of Ordinary Differential Equations
(ODEs) that capture the transient behavior of the system at any finite time t ≥ 0 as
the system size grows (n → ∞).

• Fixed Point Global Asymptotic Stability Analysis: Exploiting the monotonic-
ity of the system of ODEs, we prove that the mean-field limit has a unique fixed point
that is globally asymptotically stable. This critical property enables us to establish
the interchangeability of the order of limits in time (t) and system size (n). Conse-
quently, we can analyze the stationary distribution of a system of n servers, showing
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that this distribution converges to the aforementioned fixed point as n → ∞. Further-
more, the steady-state average response time of jobs in the system can be expressed
in relation to this unique fixed point for large values of n.

In Chapter 3, we build upon the results from Chapter 2 by analyzing the gap between
the stochastic empirical measure of the system and its corresponding mean-field limit.
Specifically, we characterize the sensitivity of this gap to variations in the system’s arrival
rate λ(n). This study is carried out for large yet finite system sizes n. To achieve our
objective, we construct a fluctuation process that quantifies the scaled difference between
the empirical occupancy measure of the system and its mean-field limit. Our contributions
are outlined below.

• Convergence of Fluctuation Process in the Transient Regime: Employing
FCLTs, we show that the fluctuation process in the transient regime converges to an
OU process. The characteristics of this OU process, including its drift and diffusion
coefficients, depend on the mean-field limit and system parameters. The limiting OU
process effectively captures the asymptotic behavior of the gap between the empirical
occupancy measure of the system and its mean-field limit in the transient regime.
Importantly, this gap has been established to scale as O( 1√

n
) as the system size n

approaches infinity.

• Fixed Point Exponential Stability Analysis: To study the fluctuations process
in the stationary regime, it is imperative to establish the local exponential stability
of the mean-field limit derived in Chapter 2 at its fixed point, due to technical con-
straints. We rigorously prove this result in the case of homogeneous systems (where
all servers have the same speed). However, in the heterogeneous case, analytical con-
firmation of this property becomes infeasible, and we provide numerical evidence to
support it. Such difficulties have been encountered in prior research by other scholars
[61, 63, 64], where exponential stability of the fixed point was assumed.

• Convergence of Fluctuation Process in the Stationary Regime: Under the
local exponential stability of the fixed point of the mean-field limit, we show that the
fluctuation process in the stationary regime converges to a stationary OU process.
The fixed point of the mean-field limit and system parameters entirely determine
the mean and covariance of this OU process. This limiting OU process exhibits a
discrepancy of O( 1√

n
) between the stationary measure of the finite system and the

fixed point of the mean-field limit as n tends to infinity.
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• Error Estimation: Finally, we use these results to derive error estimates for approx-
imating the mean delay in finite systems when employing the mean-field distribution
instead of the measure associated with finite systems. Results show that the error
scales as O( 1√

n
), for which the constant can be precisely calculated.

In Chapter 4, we move to adaptive multiserver jobs that can be parallelized across a
varying number of servers, up to a maximum degree of parallelism d. We introduce a
speedup function to measure the amount of acceleration received in the processing time of
a job through parallelization and assume that this speedup function is linear in the number
of servers processing the job up to d. We consider systems consisting of a single central dis-
patcher and n parallel loss servers. Our objective is to devise job assignment schemes that
optimize system performance in terms of average response time and blocking probability
while interacting with a sampled subset of servers of size k(n). Our key contributions in
this chapter are as follows.

• Introduction of the Greedy Job Assignment Scheme: We introduce a job
assignment scheme in which each incoming job uses as many servers as available in
the sampled subset, up to the threshold d. If a job cannot find any available server
upon arrival, it is blocked.

• Full Server Access: When jobs have access to all servers (k(n) = n), we show that
all arriving jobs tend to find at least d available servers in the system. Specifically, our
results indicate that the blocking probability approaches zero and the mean response
time of jobs approaches its minimum possible value of 1/d with error bounds of O( 1√

n
)

and O( 1
n
), respectively, as the system size increases.

• Limited Server Access: In the case each job has access to only a randomly sampled
subset of size k(n) ≪ n, we show that the greedy scheme still achieves the same
performance asymptotically as long as the size k(n) of the sampled subset of servers
grows at an appropriate rate. In particular, we show that both the mean response
time and the blocking probability exhibit convergence to their respective optimal
values with error bounds of O(n−(1−α)/2) where α denotes the rate at which the
arrival rate of jobs approaches to the critical load of the system.

• Heterogeneous Workloads: We extend our results to heterogeneous systems with
multiple arrival streams, each associated with different job sizes and maximum de-
grees of parallelism. We show analogous asymptotic optimality results hold in this
heterogeneous context as well.
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In Chapter 5, we expand on the preceding chapter’s results, considering scenarios where
the speedup function is no longer linear. This can occur due to the communication overhead
involved in breaking down a job into smaller sub-jobs and assigning them to multiple
servers. Within the same system featuring a single dispatcher and n loss servers, we
introduce a probabilistic assignment scheme and establish its asymptotic optimality in the
system size limit. The key contributions in this chapter are as follows.

• Criterion For Optimality: In cases where jobs receive a nonlinear speedup, de-
termining the optimal system behavior becomes less straightforward. We formulate
an optimization problem and show that under specific conditions—namely when the
speedup function is strictly increasing, concave, and sublinear— the optimal system
can be at most two-dimensional. This result simplifies the study of the optimal
behavior, enhancing our understanding of it.

• No Parallelization in Heavy Traffic: We show that when the system operates
under heavy traffic conditions and the speedup function is strictly increasing, concave,
and sublinear, no advantage is gained from parallelization. In such scenarios, the
optimal strategy is to assign each job to individual servers.

• Asymptotic Optimality: We introduce a deterministic system that mimics the
optimal behavior in the stationary regime and devise a probabilistic job assignment
scheme to guide the original system toward this deterministic system. We prove
that the system achieves optimal performance as the system size approaches infinity.
Specifically, the blocking probability tends to zero, and the mean response time of
jobs converges to the deterministic system’s mean response time, which represents
the optimal value for large values of n.

Chapter 6 includes a summary of our results and a discussion on potential future
extensions. Additional material can be found in the Appendix.

1.5 Brief Overview of Techniques

1.5.1 Mean-Field Technique

The mean-field technique, initially introduced in the field of physics by [68], is a valu-
able tool for analyzing the behavior of stochastic systems characterized by a large number
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of interacting particles that exhibit random interactions. The fundamental concept un-
derlying this technique involves replacing the collective impact of all interactions on an
individual particle with a single averaged effect. As the number of particles approaches in-
finity, due to the LLN, this averaged effect becomes precise, exactly describing the original
high-dimensional dynamical system. For the sake of simplicity and clarity, we provide an
overview of this technique in the context of homogeneous systems, where all particles are
identical, and each particle takes values in a finite set of states denoted as E = {1, 2, . . . , s}.

Let us consider a system comprising n particles, with x
(n)
i (t) representing the fraction

of these n particles in state i ∈ E at time t. Consequently, x(n)(t) =
(
x
(n)
1 (t), . . . , x

(n)
s (t)

)
characterizes the system’s state at time t. Since the system’s state is quantified by the
scaled number of particles, it guarantees that each individual particle’s contribution to the
overall state changes of the system is O(1/n), ensuring a weakly interacting system for
large system sizes n.

We assume that the process
(
x(n)(t), t ≥ 0

)
, representing the empirical distribution of

the system, behaves as a continuous-time Markov process and possesses a unique stationary
distribution. Due to the Markovian nature of the system, it is certain that only one particle
can change state and transition at any given time t, with probability one. Let ru,v(x) be
independent of n and denote the rate at which a single particle switches from state u ∈ E
to state v ∈ E, given the current empirical measure of the system is x. Noting that there
are nx

(n)
u particles in state u undergoing this transition, the transition rate of the entire

system is O(n), while the size of each transition is O(1/n).

We introduce the drift function f defined on the state space E as follows.

f(x) =
∑
v ̸=u

ru,v(x) · (v − u) .

This drift function is independent of the system size n. In [69, Theorem 2.1-p.456], it is
shown that if the drift function f is Lipschitz continuous and the initial empirical distribu-
tion x(n)(0), converges in probability to a constant x0, then the stochastic process x(n)(·)
converges in distribution to a deterministic process whose dynamics is governed by f as
n → ∞. In simpler terms, the drift function f captures the average changes in the original
system x(n)(·) that starts from the state x. This convergence implies that the Functional
Law of Large Numbers (FLLN) applies to the entire path of the system, allowing us to
analyze the time evolution of the original system at any finite time t.

The aforementioned convergence, however, does not provide any information about the
stationary distribution of the system. Nonetheless, it is possible to study the system’s
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stationary behavior through the equilibrium points or fixed points of the mean-field limit.
Using Prohorov’s theorem [70], it can be established that if the mean-field limit has a
unique fixed point that is globally asymptotically stable (i.e., the mean-field limit converges
to this fixed point as t → ∞, regardless of the initial state of the system), then the order
of limits with respect to time (t) and system size (n) can be interchanged for the empirical
distribution. In other words, limn→∞ limt→∞ x(n)(t) = limt→∞ limn→∞ x(n)(t). This implies
that the system’s stationary distribution converges to this unique fixed point as n → ∞.

1.5.2 Stein’s Method

As discussed in the previous subsection, the study of stochastic systems in the stationary
regime using mean-field techniques involves a systematic approach comprising three key
steps:

• Transient Regime Convergence: The initial step requires establishing the con-
vergence of the empirical distribution of the system to its mean-field limit in the
transient regime.

• Global Asymptotic Stability: Subsequently, it is imperative to demonstrate that
the resulting mean-field limit possesses a unique fixed point that is globally asymp-
totically stable.

• Interchange of Limits: Finally, the possibility of interchanging the limits in system
size (n) and time (t) must be verified.

When these three steps are combined effectively, it becomes possible to validate that

lim
n→∞

x(n)(∞) = P,

where x(n)(∞) denotes the stationary distribution of the system, and P represents the
fixed point of the mean-field limit.

However, establishing the global asymptotic stability of this fixed point can be challeng-
ing, particularly in cases where standard properties such as monotonicity are not satisfied.
Additionally, for systems characterized by strong coupling among particles, it may be im-
possible to establish a mean-field limit. Systems discussed in Chapters 4 and 5, for instance,
fall into this category.
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A direct method to study the system in the stationary regime is Stein’s method [71, 72].
Stein’s method involves quantifying the distance between two distributions: one to be
approximated (e.g., the stationary distribution of the interacting system) and another, a
desired distribution to serve as an approximation target. The first application of Stein’s
method to study stationary distributions of Markov processes can be traced back to [73],
which highlights its applicability whenever the distribution to be approximated is the
stationary distribution of a Markov process. The power of Stein’s method in approximating
steady-state conditions has gained recognition in several recent publications, including
[74, 75, 76, 61, 62, 63].

Considering that the empirical distribution of the system represented as x(n)(.), follows
a Markov process, it can be deduced that the expected drift of any appropriate function
V under the generator of this Markov process, denoted as G, becomes zero in the steady
state. In other words,

E
[
GV

(
x(n)
)]

= 0,

where x(n) denotes the steady-state distribution of the system, with the explicit dependence
on time (t) removed.

The method proceeds by selecting a simple deterministic dynamical system that mimics
the behavior of the desired system for large values of n. Assuming this simple system is
described by a set of ODEs ẋ(n) = f

(
x(n)
)
for a suitable function f , the drift of the function

V under this system can be expressed as ∂V
∂x(n)f

(
x(n)
)
. By comparing the generator of the

original system with that of the deterministic system, we can write:

E
[
GV

(
x(n)
)
− ∂V

∂x(n)
f
(
x(n)
)]

= −E
[

∂V

∂x(n)
f
(
x(n)
)]

. (1.1)

Equation (1.1) is referred to as Stein’s (or Poisson’s) Equation. Let us represent our
quantities of interest by a target function h

(
x(n)
)
. Then solving the equation

− ∂V

∂x(n)
f
(
x(n)
)
= h

(
x(n)
)

allows us to select the function V in a way that the quantities of interest are expressed as
the difference between the generator of the original system and the generator of the simple
dynamical system, providing a means to establish bounds on these quantities. It should be
noted that since Stein’s method operates in the pre-limit regime, all results are established
for systems of finite size. Consequently, it is also possible to determine error bounds by
constructing suitable Lyapunov functions.
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1.6 Conclusion

In this introductory chapter, we have introduced the framework for our study of processor
sharing systems with single-server jobs and loss systems with multiserver jobs. We have
outlined the core objectives along with the challenges associated with each, that will guide
our research through the subsequent chapters. Employing analytical techniques such as
the mean-field technique, FCLT, and Stein’s method, our goal is to discover approaches for
enhancing system performance and resource allocation in practical, real-world scenarios.
The paper [77] presents the results for processor sharing systems with single-server jobs,
while the study of loss systems with multiserver jobs is detailed in [78].
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Chapter 2

Mean-Field Analysis of
Threshold-Based Load Balancing
Policies in Processor Sharing Systems

In this chapter, we study the problem of threshold-based randomized load balancing poli-
cies for processor sharing systems with a large number of servers working in parallel. Due
to the heterogeneity of vendors and configurations, these servers are grouped into different
types, each exhibiting a different processing speed. Under threshold-based policies, when
a job arrives, it is permanently assigned to a single server based on predefined thresholds,
instantaneous system state, and server speeds. The objective is to minimize the response
time of jobs in the system while making them less dependent on the type of server that is
used. To achieve this, we consider different thresholds for each server type and introduce
a new load balancing policy named ”type-based Join-Below-Threshold (type-based JBT)”
policy, defined later in Section 2.1. This policy subsumes different classes of policies like
JIQ, JSQ(d), etc., and provides a unified framework to analyze the system performance
in the heterogeneous context. Previous research in processor sharing systems mainly con-
centrated on specific policies. Analyzing system performance requires understanding the
system’s mean-field limit and the stability of its fixed point. Establishing that the fixed
point of the mean-field limit is globally asymptotically stable, is a challenging task and
depends on the dynamics of the mean-field system. In this chapter, through the introduc-
tion of the type-based JBT policy, we establish a comprehensive framework to prove this
stability property across a wide range of load balancing policies, both existing and new.
The approach is based on the theory of Feller semigroup of operators for Markov processes
for establishing the mean-field limit and exploiting the monotonicity of the mean-field limit
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for showing the stability of its fixed point.

The rest of the chapter is organized as follows. In Section 2.1, we describe the system
model and introduce additional notation. Section 2.2 offers a brief overview of previous
research results. In Section 2.3, we show that the stability region of the system corresponds
to the maximal stability region achievable. In Section 2.4 we study the transient behavior of
the system and show that for every finite time, the empirical measure of servers’ occupancy
converges weakly to its mean-field limit. In Section 2.5, we present results on the stability
properties of the fixed point of the mean-field limit and the stationary behavior of the
system. Finally, Section 2.6 includes concluding remarks.

2.1 System Model

We consider a single dispatcher that routes arriving jobs to n processor sharing servers
working in parallel. Servers have different capacities and are clustered into M groups
based on their capacities. We denote the set of all groups by the set [M ] = {1, 2, ...,M}
where each server in the groupm ∈ [M ] has capacity Cm. Thus the set C = {C1, C2, ..., CM}
indicates all different server capacities in the system. Without loss of generality, we assume
that the set C is sorted in ascending order, i.e., C1 ≤ C2 ≤ ... ≤ CM . Additionally, the
fraction of servers in each group m ∈ [M ] is assumed to be fixed and is denoted by
γm ∈ [0, 1]. Obviously,

∑
m∈[M ] γm = 1. Moreover, we assume without loss of generality

that the normalized system capacity
∑

m∈[M ] γmCm = 1.

Jobs arrive at the system following a Poisson process with the rate nλ(n) = n(λ −
β√
n
) ≥ 0 where λ ∈ R+ and β ∈ R are constants. Each job brings with it an amount of

workload that is exponentially distributed with unit mean. Inter-arrival times and service
requirements of jobs are independent of each other. Recent work [25] has established that
the characterization of the mean-field limit does not depend on the exponential job length
assumption but indeed for any general service time distribution with the same mean and
finite second moments. Upon each arrival, the dispatcher assigns the job to one of the n
servers based on the type-based JBT load balancing policy defined in Definition 2.1. Once
the job joins the queue, it will start its service immediately. The job will be processed with
a service rate reciprocal to the number of jobs in the queue, i.e., if there are N jobs in a
type m server, the job will be processed at the rate Cm

N
.

Definition 2.1. In the type-based JBT policy, at each arrival instant, dm ≥ 1 servers
of type m are selected uniformly at random for all m ∈ [M ]. The job is then routed
to the server whose occupancy is less than or equal to some predefined server-dependant
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threshold αm. If there are multiple servers below their thresholds, servers with the highest
capacity are nominated. If there is more than one nominated server, one of them is selected
uniformly at random as the destination server. In the case all

∑
m∈[M ] dm selected servers

are occupied above their thresholds, the job is routed to the server with the minimum
expected delay, or in other words, the highest processing rate per unfinished job. That is,
among dm selected servers of the same type m, the server with the fewest number of jobs,
qm,min, is nominated. Then, among nominated servers of different types, the server with
the largest value of Cm

qm,min
is chosen as the destination server.

At any step of the selection process, ties between servers of different capacities are
broken by selecting the server with the highest capacity, and between servers with the
same capacity are broken by choosing any server uniformly at random.

Remark 2.1. We consider different thresholds αm for different server types m. For ex-
ample, we could choose thresholds such that C1

α1
= C2

α2
= ... = CM

αM
. In such a case, delays

between different server types will be similar. In another setting, we could choose all
αm to be negative. In that case, the arrival will always be dispatched to the server with
the minimum expected delay. If we choose all thresholds αm to be zero, then Join-the-
Idle-Queue (JIQ) policy is achieved, where in the absence of idle servers, the minimum
expected delay policy is applied. Moreover, by setting only some thresholds αm to zero,
it is guaranteed that the job will be dispatched to that server of type m only when it is
idle. These arguments show that by choosing thresholds αm in a certain way, different
load balancing policies can be achieved. Thus the type-based JBT policy in Definition 2.1
subsumes a class of different load balancing policies. The following analysis assumes that
the thresholds αm for type m servers are general.

2.1.1 Additional Notation

We define the following real sequence spaces.

U = {(uk, k ∈ Z+) , u0 = 1, uk ≥ uk+1 ≥ 0 ∀k ∈ Z+,
∑
k

|uk| < ∞},

U(n)
m = {(uk, k ∈ Z+) ∈ U, nγmuk ∈ N ∀k ∈ Z+}, m ∈ [M ].

The space U is the space of tail distributions for non-negative integer-valued random vari-
ables with finite mean, and the space U(n) =

∏
m∈[M ] U

(n)
m which is the M -fold Cartesian

product of spaces U(n)
m , is the space of tail distributions for heterogeneous systems with n

servers and M different types. Additionally, let UM be the M -fold Cartesian product of
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the space U. We equip spaces U(n) and UM with the metric induced by the ℓ2-norm where
for an element u = (uk,m, k ∈ Z+,m ∈ [M ]), we have

∥u∥22 =
∑

m∈[M ]

∑
k∈Z+

|uk,m|2.

The space UM is compact and hence complete and separable under ℓ2-norm (proof is
given in Appendix A.1). Also for u,v ∈ UM , the inequality u ≤ v implies element-wise
comparison, i.e., uk,m ≤ vk,m for all k ∈ Z+ and m ∈ [M ].

2.2 A Brief Review of Previous Results

In this section, we provide an overview of prior mean-field analysis relevant to systems
with infinite queueing buffers. Given that the type-based JBT policy in this specific for-
mat has not been previously studied, we shift our focus to a closely related policy that can
offer valuable insights. As highlighted in Remark 2.1, the type-based JBT policy includes
the minimum expected delay policy as a special case (when all thresholds are negative).
This particular policy is equivalent to the JSQ(d) policy in homogeneous systems where all
servers have identical processing speeds. Consequently, we revisit the analysis of homoge-
nous systems under the JSQ(d) policy, as presented in [22, 23]. We restate their results as
a fundamental basis for our study.

The system studied in [22, 23] includes n servers that follow the FCFS service discipline.
Jobs arrive as a Poisson process with a rate of nλ, where λ < 1, and job sizes are distributed
exponentially with a mean of 1. Upon arrival, each job independently and uniformly selects
a constant number d ≥ 2 of servers and joins the queue of the server with the minimum
occupancy at that moment.

To align with our notation, let x
(n)
i (t) denote the fraction of servers containing at least

i jobs in a system of n servers at time t. Then the state of the system at any time t can be

described by an infinite-dimensional vector x(n)(t) =
(
x
(n)
0 (t), x

(n)
1 (t), x

(n)
2 (t), . . .

)
and only

requires information about the occupancy of queues.

First, the system was compared to another system in which each job randomly joins a
server, i.e., when d = 1. We refer to the latter system as the static random system. By
employing an argument based on majorization, it was demonstrated in [22] that the size of
the longest queue in the original system with d ≥ 2 is stochastically dominated by the size
of the longest queue in the random static system. Using this observation, in conjunction
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with the stability of the random static system, it was established that the original system
is stable for every λ < 1, implying that the expected number of jobs in the system remains
finite for all times t.

Subsequently, it was shown that as the system size n approaches infinity, under the
condition that x(n)(0) converges to a constant x(0), the system state x(n)(.) converges to
a deterministic system denoted as x(.), where x(.) is the solution to the following set of
ordinary differential equations:{

dxi

dt
= λ

(
xd
i−1 − xd

i

)
− (xi − xi+1), i ∈ N,

x0 = 1.
(2.1)

The process x(.) is referred to as the mean-field limit of the system.

Additionally, the fixed point of the mean-field limit was studied. A fixed point of the
mean-field limit is a point P where dP

dt
= 0. It was demonstrated that the system described

by Equations (2.1) with d ≥ 2 possesses a unique fixed point, given by{
Pi = λ

di−1
d−1 , i ∈ N,

P0 = 1.
(2.2)

Furthermore, it was shown in [22] that the fixed point (2.2) is globally exponentially
stable, implying that the mean-field limit described by Equations (2.1) converges exponen-
tially fast to this fixed point as t → ∞. Using this result, it was demonstrated that for

d ≥ 2, we have E
[
x
(n)
k (∞)

]
→ Pk as n → ∞, for every k ∈ Z+, where x

(n)
k (∞) denotes the

equilibrium fraction of servers with at least k jobs. Combining this with Little’s law and
noting that the fixed point is bounded, it was demonstrated that the expected time a job
spends in the steady-state system for d ≥ 2 converges to

Td(λ) =
∞∑
i=1

λ
di−d
d−1 , (2.3)

as n → ∞.

2.3 Throughput Optimality

In this section, we provide a formal definition of the system’s stability region and demon-
strate that the system discussed in this chapter indeed achieves the maximal stability
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region.

Definition 2.2. The stability region is the set of all arrival rates for which the underlying
Markov process describing the time evolution of the system is positive recurrent.

Therefore, the maximal stability region corresponds to the stability region when pooling
the resources of all the servers. With this definition, Λ = {λ(n) : 0 ≤ λ(n) < 1} is the
maximal stability region that a heterogeneous network defined in Section 2.1 can achieve.

Lemma 2.3.1. The heterogeneous system defined in Section 2.1 with the type-based JBT
routing policy is stable for any value of λ(n) ∈ Λ, and hence it is throughput optimal.

Proof. For each incoming job, let the set of all selected servers at its arrival instant, be its
potential destination set. Any arbitrary set A corresponds to a potential destination set
if it has exactly dm servers of type m for all m ∈ [M ]. The probability of sampling one
specific potential destination set A is given by PA = 1∏

m∈[M ] (
nγm
dm

)
. Also, let C(k) denote

the capacity of the kth server in the set {1, 2, . . . , n} where C(k) ∈ C. We use the results
of [79, Theorem 2.5] to establish the system’s stability. The system is stable, if

ρ = max
B⊆{1,2,...,n}


(∑

k∈B

C(k)

)−1

nλ(n)
∑
A⊆B

PA

 < 1. (2.4)

If the set B does not have at least dm servers of type m for all m ∈ [M ], then PA and
consequently ρ become zero. Therefore, we denote the number of type m servers in the set
B with Bm and focus on scenarios where Bm ≥ dm for all m ∈ [M ]. Then we can write
the traffic intensity ρ in Equation (2.4) as

ρ = max
B⊆{1,2,...,n}

dm≤Bm≤nγm,∀m∈[M ]


(∑

k∈B

C(k)

)−1

nλ(n)
∑
A⊆B

PA

 . (2.5)

Only
∏

m∈[M ]

(
Bm

dm

)
different subsets of B correspond to a potential destination set. This

gives

ρ = max
B⊆{1,2,...,n}

dm≤Bm≤nγm,∀m∈[M ]


nλ(n)

∏
m∈[M ]

(
Bm

dm

)
∑

m∈[M ]

BmCm

∏
m∈[M ]

(
nγm
dm

)
 . (2.6)
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We show that the term
∏

m∈[M ]

(
Bm

dm

)
/
∑

m∈[M ] BmCm is increasing in each Bm. Indeed, for

a fixed l ∈ [M ], let FBl
=
(
Bl

dl

)∏
m̸=l

(
Bm

dm

)
/
(∑

m̸=l BmCm +BlCl

)
. With this definition,

FBl+1 =
(
Bl+1
dl

)∏
m ̸=l

(
Bm

dm

)
/
(∑

m̸=l BmCm + (Bl + 1)Cl

)
. We show that

FBl+1

FBl

≥ 1.

FBl+1

FBl

=

(
Bl+1
dl

)∏
m̸=l

(
Bm

dm

) (∑
m∈[M ] BmCm

)
(
Bl

dl

)∏
m̸=l

(
Bm

dm

) (∑
m̸=l BmCm + (Bl + 1)Cl

) . (2.7)

By simplifying the expression above, we get

FBl+1

FBl

=
(Bl + 1)

(∑
m∈[M ] BmCm

)
(Bl + 1− dl)

(∑
m∈[M ] BmCm + Cl

) . (2.8)

By expanding the terms in the denominator, we have

FBl+1

FBl

=
(Bl + 1)

(∑
m∈[M ] BmCm

)
(Bl + 1)

(∑
m∈[M ] BmCm

)
+ (1− dl)Cl +BlCl − dl

(∑
m∈[M ] BmCm

) . (2.9)

Since dl ≥ 1, it immediately follows that the numerator is greater than or equal to the

denominator and
FBl+1

FBl

≥ 1. This is true for each l ∈ [M ], hence the maximum of Equa-

tion (2.6) occurs at Bm = nγm for all m ∈ [M ] which gives

ρ = λ(n). (2.10)

Equation (2.10) indicates that if λ(n) ∈ Λ, then ρ < 1 and the system is stable.

2.4 Mean-Field Analysis: Transient Behavior of the

System

In this section, we study the behavior of the system as the number of servers increases,
specifically as n approaches infinity.

For any k ∈ Z+ and l,m ∈ [M ], we define
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⌈k⌉lm = max

(⌈
k
Cl

Cm

⌉
, αl + 1

)
,

⌊k⌋lm = max

(⌊
k
Cl

Cm

⌋
+ 1, αl + 1

)
,

where ⌈a⌉ gives the smallest integer greater than or equal to a and ⌊a⌋ returns the greatest
integer smaller than or equal to a.

We characterize the state of the system with n servers at time t using the notation

x(n)(t) =
(
x
(n)
k,m(t), k ∈ Z+,m ∈ [M ]

)
. In this representation, x

(n)
k,m(t) represents the frac-

tion of all nγm servers that have at least k jobs in service at time t. Obviously, x(n)(t)
takes values in the space U(n). Under the type-based JBT policy, Poisson job arrivals and
exponential service times, the process x(n)(·) is a Markov process. This is attributed to
the policy’s dependence solely on the current system state to make routing decisions and
the memoryless property of the exponential distribution. We define the generator of this
Markov process in the following lemma.

Lemma 2.4.1. Under the type-based JBT policy, the generator A(n) of the Markov process
x(n)(.), acting on continuous functions g ∈ C(U(n)) is given by

A(n)g(u) =nλ(n)
∑

m∈[M ]

αm+1∑
k=1

[
1− (uαm+1,m)

dm

1− uαm+1,m

(uk−1,m − uk,m)
M∏

l=m+1

(uαl+1,l)
dl

×
(
g

(
u+

e(k,m)

nγm

)
− g(u)

)]

+nλ(n)
∑

m∈[M ]

∞∑
k=αm+2

[
((uk−1,m)

dm − (uk,m)
dm)

m−1∏
l=1

(u⌈k−1⌉lm,l)
dl

M∏
l=m+1

(u⌊k−1⌋lm,l)
dl

×
(
g

(
u+

e(k,m)

nγm

)
− g(u)

)]

+n
∑

m∈[M ]

∞∑
k=1

γmCm (uk,m − uk+1,m)

(
g

(
u− e(k,m)

nγm

)
− g(u)

)
, (2.11)

where u ∈ U(n) and e(k,m) = (ek′,m′ , k′ ∈ Z+,m
′ ∈ [M ]) is the unit sequence with ek,m = 1

and ek′,m′ = 0 for all other elements.
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Proof. By definition, the generator A(n) of the Markov process x(n)(·) is given by

A(n)g(u) =
∑
v ̸=u

r(u → v)(g(v)− g(u)), (2.12)

where r(u → v) denotes the transition rate from state u to state v. Thus it is sufficient
to identify the transition rates based on the type-based JBT policy. Let x(n)(t) be in the
state u ∈ U(n). A new incoming job will join a type m server with exactly k − 1 jobs, if
one of the following cases happens.

1. k− 1 ≤ αm: In this case, the job will join a type m server whose occupancy is below
its threshold and has exactly k − 1 jobs, if

• there exists at least one such server, and

• all selected servers of higher capacities are occupied above their thresholds.
Otherwise, the job would have been routed to a server with higher capacity.

This case happens with probability

(
1− (uαm+1,m)

dm
) uk−1,m − uk,m

1− uαm+1,m

M∏
l=m+1

(uαl+1,l)
dl . (2.13)

2. k− 1 > αm: In this case, the job will join a type m server whose occupancy is above
its threshold and has exactly k − 1 jobs, if

• there exists at least one such server, and

• all selected servers are occupied above their thresholds, otherwise the job would
have been routed to some server below its threshold, and

• Cm

k−1
is the maximum value of capacity per unfinished job. That is, for all selected

servers of lower capacities l = 1, . . . ,m − 1 with minimum occupancy ql,
Cl

ql
≤

Cm

k−1
, and for all selected servers of types l = m + 1, . . . ,M with minimum

occupancy ql, we should have Cl

ql
< Cm

k−1
.

Combining all these together, the probability of occurrence of this event is given by

(
(uk−1,m)

dm − (uk,m)
dm
)m−1∏

l=1

(u⌈k−1⌉lm,l)
dl

M∏
l=m+1

(u⌊k−1⌋lm,l)
dl . (2.14)

30



Also, a job will depart a type m server with exactly k jobs at the rate γmCm(uk,m−uk+1,m).
Substituting the transition rates (2.13)-(2.14) and the departure rate into the definition of
the generator (2.12), we get the expression given in (2.11) for the generator A(n).

In the next theorem, we state the weak convergence of the process x(n)(.) to a deter-
ministic process x(.).

Theorem 2.4.2. If x(n)(0) ⇒ x0 ∈ UM as n → ∞, then the process x(n)(·) converges in
distribution to a deterministic process x(·) as n → ∞. The process x(·) lies in the space
UM and is the unique solution to the following set of differential equations.

x(0) = x0,

ẋ(t) = f(x(t)),
(2.15)

where the mapping f : UM →
(
R{0,1,2,...})M is given by

f0,m(x) = 0, m ∈ [M ],

fk,m(x) =
λ(1− (xαm+1,m)

dm)

γm(1− xαm+1,m)
(xk−1,m − xk,m)

M∏
l=m+1

(xαl+1,l)
dl − Cm(xk,m − xk+1,m),

m ∈ [M ], 1 ≤ k ≤ αm + 1,

fk,m(x) =
λ

γm
((xk−1,m)

dm − (xk,m)
dm)

m−1∏
l=1

(x⌈k−1⌉lm,l)
dl

M∏
l=m+1

(x⌊k−1⌋lm,l)
dl

− Cm(xk,m − xk+1,m), m ∈ [M ], k > αm + 1.
(2.16)

The deterministic process x(·) is called the mean-field limit of the system.

Proof. Proof of this theorem follows from the theory of operator semigroups for Markov
processes. If the corresponding operator semigroups converge and the limiting operator
semigroup is Feller, then from the convergence of initial distributions, we can conclude
that x(n)(·) ⇒ x(·). Details are given below.

Let (T (n)(t), t ≥ 0) and (T (t), t ≥ 0) be semigroup of operators corresponding to the
processes x(n)(·) and x(·), respectively. For any continuous function g ∈ C(UM), we have

T (n)(t)g(u) = E
[
g
(
x(n)(t)

)
| x(n)(0) = u

]
,

T (t)g(u) = g(x(t,u)),
(2.17)
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where x(t,u) denotes the mean-field process x(t) starting at x(0) = u. Also, let A(n) and
A be the generators of operator semigroups (T (n)(t), t ≥ 0) and (T (t), t ≥ 0), respectively.
Then by definition, we have

Ag(u) =
d

dt
g(x(t,u))

∣∣∣∣
t=0

, (2.18)

and the generator A(n) is given in Lemma 2.4.1.

We define the space D ⊆ C(UM) as the space of all continuous functions g such that
∂g

∂uk,m
, ∂2g

∂u2
k,m

and ∂2g
∂uk,m∂uk′,m′

exist for all k, k′ ∈ Z+ and m,m′ ∈ [M ], and are uniformly

bounded by some finite constant K. Then, with the ℓ2-norm for the space UM and super-
mum norm for the space C(UM), it is seen that the space D is dense in the space C(UM).
We claim that the mean-field process x(.) is in the space D that we show next.

Lemma 2.4.3. The mean-field process x(.) is in the space D where for each k, k′, s ∈ Z+

and m,m′, l ∈ [M ], the bounds of partial derivatives are given by∣∣∣∣∂xs,l(t,u)

∂uk,m

∣∣∣∣ ≤ eat,∣∣∣∣∣∂2xs,l(t,u)

∂u2
k,m

∣∣∣∣∣ ,
∣∣∣∣ ∂2xs,l(t,u)

∂uk,m∂uk′,m′

∣∣∣∣ ≤ b0
a
(e2at − eat),

(2.19)

where a = 2λmaxm dm
minm γm

∑
m dm + 2maxm Cm, and b0 =

10λ
minm γm

(
∑

m dm)
3.

Proof. See Appendix A.2

For any function g ∈ D, as n → ∞ we have

nγm

(
g

(
u+

e(k,m)

nγm

)
− g(u)

)
→ ∂g(u)

∂uk,m

,

nγm

(
g

(
u− e(k,m)

nγm

)
− g(u)

)
→ −∂g(u)

∂uk,m

.

(2.20)

From Equations (2.11) and (2.20), as n → ∞, we have
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A(n)g(u) →
∑

m∈[M ]

αm+1∑
k=1

[(
λ(1− (uαm+1,m)

dm)

γm(1− uαm+1,m)
(uk−1,m − uk,m)

M∏
l=m+1

(uαl+1,l)
dl

− Cm (uk,m − uk+1,m)

)
∂g(u)

∂uk,m

]

+
∑

m∈[M ]

∞∑
k=αm+2

[(
λ

γm
((uk−1,m)

dm − (uk,m)
dm)

m−1∏
l=1

(u⌈k−1⌉lm,l)
dl

M∏
l=m+1

(u⌊k−1⌋lm,l)
dl

− Cm (uk,m − uk+1,m)

)
× ∂g(u)

∂uk,m

]
,

(2.21)

which is equivalent to

A(n)g(u) → d

dt
g(x(t,u))

∣∣∣∣
t=0

. (2.22)

From Equation (2.18), we have

A(n)g(u) → Ag(u), ∀g ∈ D. (2.23)

Let D0 ⊆ D ⊆ C(UM) be the set of those functions in D that depend only on finitely
many components of u. Then D0 is dense in D, and also in C(UM). By Lemma 2.4.3, it
is easy to see that T (t)g(u) ∈ D, for all functions g ∈ D0. In other words, T (t) : D0 → D,
for all t ≥ 0. From [69, Proposition 3.3, p.17], it follows that the space D is the core
of generator A. Then from Equation (2.23) and [69, Theorem 6.1, p.28], convergence
of associated semigroup of operators in the space C(UM) is guaranteed, and we have
T (n)(t)g(u) → T (t)g(u) for every function g ∈ C(UM) and for all t ≥ 0. Also, it is obvious
that T is a Feller semigroup. Following the arguments in the beginning of the proof and
[69, Theorem 2.11, p.172], if x(n)(0) ⇒ x(0), then the process x(n)(·) weakly converges to
the process x(·).

Now, we show that if the initial value x0 of the process x(·) lies in the space UM , then
this process will remain in the space UM for all time. Assume xk,m(t) = xk+1,m(t) for some
k,m and t. Then fk,m(x(t)) ≥ 0 and fk+1,m(x(t)) ≤ 0. Also, if xk,m(t) equals 0, then
its associated time derivative fk,m(x(t)) ≥ 0, and if xk,m(t) equals 1, then its associated
time derivative fk,m(x(t)) ≤ 0. Moreover, it is obvious that x0,m(t) = 1. These conditions
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guarantee that 1 = x0,m(t) ≥ xk,m(t) ≥ xk+1,m(t) ≥ 0 for all k ∈ Z+, m ∈ [M ] and t ≥ 0.
The summabality of the process x(·) follows from the stability of the pre-limit process
x(n)(·). Thus, the process x(·) lies in the space UM . The uniqueness of this process follows
by the Lipschitz property of the integral operator and the Picard-Lindelöf theorem, which
is straightforward and is left out to the reader.

2.5 Steady-State Analysis of the System

Thus far, our focus has been on analyzing the transient dynamics of the system. In this
section, we shift our focus to the steady-state behavior, which is characterized by the
process x(n)(∞). We establish a formal connection between this process and the fixed
point of the mean-field limit, P. Specifically, we show that the fixed point P exhibits
global asymptotic stability, and as a result, it serves as a robust approximation for the
process x(n)(∞) as n approaches infinity.

2.5.1 Global Asymptotic Stability of the Fixed Point

Any fixed point P of the mean-field limit satisfies f(P) = 0. In the next theorem, we show
that this fixed point is unique, and starting from any initial point, the mean-field process
converges to this unique fixed point.

Theorem 2.5.1. Let x(t,u) denote the mean-field process at time t starting from u and
let P denote the fixed point of the mean-field process. If λ < 1, then limt→∞ x(t,u) = P for
all u ∈ UM . This implies the uniqueness and global asymptotic stability of the fixed point.

Proof. The derivative of the mean-field limit given by Equation (2.16) is quasi-monotone.
In other words, for each k ∈ Z+ and m ∈ [M ], fk,m(x) is non-decreasing in xs,l for all s ̸= k
and l ̸= m. From the quasi-monotonicity of the mean-field derivatives and [80, pp.70-74],
if u ≤ u′ for u,u′ ∈ UM , then x(t,u) ≤ x(t,u′) for all t ≥ 0. This leads to the following
inequality

x (t,min(P,u)) ≤ x(t,u) ≤ x (t,max(P,u)) , (2.24)

for all t ≥ 0. Using the above inequality and the squeeze theorem, it is sufficient to show
that limt→∞ x(t,u) = P for all u ≥ P and all u ≤ P.
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For each N ∈ N, we define zN(t,u) =
∑

m∈[M ] γm
∑

k≥N xk,m(t,u) and zN(u) =∑
m∈[M ] γm

∑
k≥N uk,m. For the convenience of notation, we consider all αm to be the

same and equal to α. The general case with different αm is similar but at the expense of
notation. Referring to Equation (2.16), for 1 ≤ N ≤ α + 1, we have

dzN(t,u)

dt
=
∑

m∈[M ]

γm

α+1∑
k=N

dxk,m(t,u)

dt
+
∑

m∈[M ]

γm

∞∑
k=α+2

dxk,m(t,u)

dt

= λ
∑

m∈[M ]

1− (xα+1,m(t,u))
dm

1− xα+1,m(t,u)
(xN−1,m(t,u)− xα+1,m(t,u))

M∏
l=m+1

(xα+1,l(t,u))
dl

+ λ
M∏
l=1

(xα+1,l(t,u))
dl −

∑
m∈[M ]

γmCmxN,m(t,u),

(2.25)

and for N > α + 1, we have

dzN(t,u)

dt
=
∑

m∈[M ]

γm

∞∑
k=N

dxk,m(t,u)

dt

=
∑

m∈[M ]

γm

∞∑
k=α+2

dxk,m(t,u)

dt
−
∑

m∈[M ]

γm

N−1∑
k=α+2

dxk,m(t,u)

dt

= λ
M∏
l=1

(xα+1,l(t,u))
dl −

∑
m∈[M ]

γmCmxN,m(t,u)

− λ
∑

m∈[M ]

N−1∑
k=α+2

((xk−1,m(t,u))
dm − (xk,m(t,u))

dm)
m−1∏
l=1

(x⌈k−1⌉lm,l(t,u))
dl

×
M∏

l=m+1

(x⌊k−1⌋lm,l(t,u))
dl . (2.26)

More specifically, for N = 1 we have

dz1(t,u)

dt
= λ−

∑
m∈[M ]

γmCmx1,m(t,u). (2.27)
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We show that zN(t,u) is uniformly bounded in t for all N ∈ N. Since zN(t,u) is decreasing
in N , it is enough to show that z1(t,u) is uniformly bounded in t. Consider the case
u ≤ P. From inequality (2.24), it follows that x(t,u) ≤ x(t,P) = P. This gives z1(t,u) ≤
z1(P) for all t ≥ 0. On the other hand, consider the case u ≥ P. Then again from
inequality (2.24), we have x(t,u) ≥ x(t,P) = P, or equivalently

∑
m∈[M ] γmCmx1,m(t,u) ≥∑

m∈[M ] γmCmP1,m. From Equation (2.27), we have

dz1(t,u)

dt
≤ λ−

∑
m∈[M ]

γmCmP1,m =
dz1(P)

dt
= 0, (2.28)

which means z1(t,u) ≤ z1(u) for all t ≥ 0. Hence, we conclude that zN(t,u) is uniformly
bounded in t for all N ≥ 1.

The derivative of xk,m(t,u) is bounded for all k ∈ Z+ and m ∈ [M ]. Thus, the
convergence limt→∞ x(t,u) = P holds for all u ≥ P, if∫ ∞

t=0

(xk,m(t,u)− Pk,m) dt < ∞, ∀k ∈ N,m ∈ [M ], (2.29)

and similarly holds for all u ≤ P, if∫ ∞

t=0

(Pk,m − xk,m(t,u)) dt < ∞, ∀k ∈ N,m ∈ [M ]. (2.30)

Two inequalities (2.29) and (2.30) are similar and we only show the case u ≥ P. It is
equivalent to show that∫ ∞

t=0

∑
m∈[M ]

γmCm(xk,m(t,u)− Pk,m) dt < ∞, ∀k ∈ N. (2.31)

We use the induction method. First, we need to show that the inequality (2.31) is true for
k = 1, i.e., ∫ ∞

t=0

∑
m∈[M ]

γmCm(x1,m(t,u)− P1,m) dt < ∞. (2.32)

From Equation (2.27) and the fact that dz1(P)
dt

= 0, we have
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dz1(t,u)

dt
=

dz1(t,u)

dt
− dz1(P)

dt
= −

∑
m∈[M ]

γmCm(x1,m(t,u)− P1,m), (2.33)

which gives

∫ T

t=0

∑
m∈[M ]

γmCm(x1,m(t,u)− P1,m) dt = −
∫ T

t=0

dz1(t,u)

dt
dt = z1(u)− z1(T,u). (2.34)

z1(t,u) is uniformly bounded in t and the r.h.s. of the above integral is bounded, indepen-
dent of T . Thus, as T → ∞, we have∫ ∞

t=0

∑
m∈[M ]

γmCm(x1,m(t,u)− P1,m) dt < ∞. (2.35)

Now, we show that inequality (2.31) is true for all 2 ≤ k ≤ α + 1. Assume it holds for
all 1 ≤ k ≤ L − 1 for some 2 ≤ L ≤ α + 1. We show it is also true for k = L. From
Equation (2.25), we have

dz1(t,u)

dt
− dzL(t,u)

dt
= λ

∑
m∈[M ]

1− (xα+1,m(t,u))
dm

1− xα+1,m(t,u)
(1− xL−1,m(t,u))

M∏
l=m+1

(xα+1,l(t,u))
dl

−
∑

m∈[M ]

γmCm(x1,m(t,u)− xL,m(t,u)). (2.36)

Since dz1(P)
dt

= dzL(P)
dt

= 0, we have

dz1(t,u)

dt
− dzL(t,u)

dt
=

dz1(t,u)

dt
− dzL(t,u)

dt
− dz1(P)

dt
+

dzL(P)

dt

= λ
∑

m∈[M ]

1− (xα+1,m(t,u))
dm

1− xα+1,m(t,u)
(1− xL−1,m(t,u))

M∏
l=m+1

(xα+1,l(t,u))
dl

− λ
∑

m∈[M ]

1− (Pα+1,m)
dm

1− Pα+1,m

(1− PL−1,m)
M∏

l=m+1

(Pα+1,l)
dl
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−
∑

m∈[M ]

γmCm(x1,m(t,u)− P1,m) +
∑

m∈[M ]

γmCm(xL,m(t,u)− PL,m).

(2.37)

Taking integrals on both sides and using the fact that xk,m(t,u) ≥ Pk,m, we have

∫ T

t=0

∑
m∈[M ]

γmCm(xL,m(t,u)− PL,m) dt ≤
∫ T

t=0

(
dz1(t,u)

dt
− dzL(t,u)

dt

)
dt

+

∫ T

t=0

λ
∑

m∈[M ]

1− (xα+1,m(t,u))
dm

1− xα+1,m(t,u)

× (xL−1,m(t,u)− PL−1,m)
M∏

l=m+1

(xα+1,l(t,u))
dl dt

+

∫ T

t=0

∑
m∈[M ]

γmCm(x1,m(t,u)− P1,m) dt, (2.38)

or equivalently

∫ T

t=0

∑
m∈[M ]

γmCm(xL,m(t,u)− PL,m) dt ≤
∫ T

t=0

(
dz1(t,u)

dt
− dzL(t,u)

dt

)
dt

+ λmax
m

dm

∫ T

t=0

∑
m∈[M ]

(xL−1,m(t,u)− PL−1,m) dt

+

∫ T

t=0

∑
m∈[M ]

γmCm(x1,m(t,u)− P1,m) dt. (2.39)

zN(t,u) is uniformly bounded in t for allN and hence the first term on the r.h.s. is bounded,
independent of T . From the assumption of the induction for N = L − 1 and N = 1, it
is evident that the second and third terms on the r.h.s. are also finite, independent of T .
Hence, the result follows immediately as T → ∞.

Finally, we need to show that inequality (2.31) is true for all k > α + 1. Assume it is
true for all 1 ≤ k ≤ L − 1 for some L > α + 1. We show it is also true for k = L. From
Equation (2.26) and the fact that dzL(P)

dt
= 0, we have
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dzL(t,u)

dt
=
dzL(t,u)

dt
− dzL(P)

dt

=λ

(
M∏
l=1

(xα+1,l(t,u))
dl −

M∏
l=1

(Pα+1,l)
dl

)
−
∑

m∈[M ]

γmCm(xL,m(t,u)− PL,m)

−λ
∑

m∈[M ]

L−1∑
k=α+2

((xk−1,m(t,u))
dm − (xk,m(t,u))

dm)
m−1∏
l=1

(x⌈k−1⌉lm,l(t,u))
dl

×
M∏

l=m+1

(x⌊k−1⌋lm,l(t,u))
dl

+λ
∑

m∈[M ]

L−1∑
k=α+2

((Pk−1,m)
dm − (Pk,m)

dm)
m−1∏
l=1

(P⌈k−1⌉lm,l)
dl

M∏
l=m+1

(P⌊k−1⌋lm,l)
dl .

(2.40)

From the fact that x(t,u) ≥ P, we can rewrite the above equation as

dzL(t,u)

dt
≤ λ

(
M∏
l=1

(xα+1,l(t,u))
dl −

M∏
l=1

(Pα+1,l)
dl

)
−
∑

m∈[M ]

γmCm(xL,m(t,u)− PL,m)

− λ
∑

m∈[M ]

L−1∑
k=α+2

((xk−1,m(t,u))
dm − (xk,m(t,u))

dm)
m−1∏
l=1

(x⌈k−1⌉lm,l(t,u))
dl

×
M∏

l=m+1

(x⌊k−1⌋lm,l(t,u))
dl

+ λ
∑

m∈[M ]

L−1∑
k=α+2

((xk−1,m(t,u))
dm − (Pk,m)

dm)
m−1∏
l=1

(x⌈k−1⌉lm,l)
dl

×
M∏

l=m+1

(x⌊k−1⌋lm,l)
dl . (2.41)

By rearranging the terms, we can write∑
m∈[M ]

γmCm(xL,m(t,u)− PL,m) ≤ −dzL(t,u)

dt
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+ λ

(
M∏
l=1

(xα+1,l(t,u))
dl −

M∏
l=1

(Pα+1,l)
dl

)

+ λ
∑

m∈[M ]

L−1∑
k=α+2

((xk,m(t,u))
dm − (Pk,m)

dm)

×
m−1∏
l=1

(x⌈k−1⌉lm,l(t,u))
dl

M∏
l=m+1

(x⌊k−1⌋lm,l(t,u))
dl , (2.42)

or equivalently

∫ T

t=0

∑
m∈[M ]

γmCm(xL,m(t,u)− PL,m) dt ≤
∫ T

t=0

−dzL(t,u)

dt
dt

+

∫ T

t=0

λ

(
M∏
l=1

(xα+1,l(t,u))
dl −

M∏
l=1

(Pα+1,l)
dl

)
dt

+ λmax
m

dm

∫ T

t=0

∑
m∈[M ]

L−1∑
k=α+2

(xk,m(t,u)− Pk,m) dt.

(2.43)

zL(t,u) is uniformly bounded in t which guarantees that the first term is bounded and
independent of T . From this and the assumption of the induction for k = α+ 1, ..., L− 1,
it follows that the r.h.s. of the above inequality is finite, independent of T , and as T → ∞,
it is immediately verified that∫ ∞

t=0

∑
m∈[M ]

γmCm(xL,m(t,u)− PL,m) dt < ∞. (2.44)

This completes the proof of the global asymptotic stability of the fixed point P.

Remark 2.2. Theorem 2.5.1 shows that for each k ∈ Z+ and m ∈ [M ], the convergence
of xk,m to Pk,m is faster than t−θ for θ > 1. Thus,
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∥x(t,u)−P∥22 =
∑

m∈[M ]

∑
k∈Z+

|xk,m(t,u)− Pk,m|2

≤
∑

m∈[M ]

∑
k∈Z+

(t−θ|uk,m − Pk,m|)2

= t−2θ ∥u−P∥22 ,

(2.45)

and hence,

∥x(t,u)−P∥2 ≤ t−θ ∥u−P∥2 . (2.46)

Indeed, we will show in Chapter 3 that the convergence rate of the mean-field limit to
its fixed point is exponential in the homogeneous case, i.e. M = 1. In the heterogeneous
case, the proof is much more complicated and we conjecture that it also holds for which
we provide numerical evidence.

The interchange of limits for the process x(n)(·) follows from Prohorov’s theorem [70]
and Theorem 2.5.1. It can be readily verified that

lim
n→∞

lim
t→∞

x(n)(t) = lim
t→∞

lim
n→∞

x(n)(t). (2.47)

This shows that the stationary distribution of servers, which exists and is unique due to
the stability of the system, converges to the unique fixed point of the mean-field limit as
n → ∞. In other words,

lim
n→∞

x(n)(∞) = P. (2.48)

Therefore, the asymptotic mean response time of jobs in the steady-state system can be
calculated as follows. For a given system of size n, the average number of jobs at equilibrium

is equal to nE
[∑

m∈[M ] γm
∑∞

k=1 x
(n)
k,m(∞)

]
. Let the mean sojourn time of jobs be denoted

by E
[
D(n)

]
. Then by Little’s law, we have

nλ(n)E
[
D(n)

]
= nE

 ∑
m∈[M ]

γm

∞∑
k=1

x
(n)
k,m(∞)

 . (2.49)

Due to the stability of the system, the above sum is finite and we have
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λ(n)E
[
D(n)

]
=
∑

m∈[M ]

γm

∞∑
k=1

E
[
x
(n)
k,m(∞)

]
. (2.50)

By taking limits from both sides, we get

lim
n→∞

E
[
D(n)

]
=

1

λ

∑
m∈[M ]

γm

∞∑
k=1

Pk,m. (2.51)

Hence, the asymptotic mean response time of jobs converges to the mean response time of
jobs in the mean-field limit.

2.6 Conclusion

In this chapter, we studied randomized threshold-based load balancing policies designed for
a class of large heterogeneous processor sharing systems. These policies exhibit remarkable
adaptability, allowing for versatile configuration of threshold settings to accommodate a
wide array of load balancing policies. First, we demonstrated that policies within this
category achieve the maximal attainable stability region and hence are throughput optimal.
Moreover, we showed that as the system size n approaches infinity, the transient empirical
occupancy measure of servers converges to its deterministic mean-field limit. The mean-
field limit, represented by an infinite system of ODEs, captures the system’s behavior
for finite times t in the system size limit. Additionally, we established that the stationary
empirical distribution of system occupancy converges to the unique fixed point of the mean-
field limit as n tends to infinity. The convergence offers an opportunity to approximate
the complicated stationary measure of the system with the fixed point of the mean-field
limit in the infinite regime enabling an analysis of the system’s asymptotic mean response
time in relation to that of the mean-field system.
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Chapter 3

Mean-Field Fluctuations in
Threshold-Based Load Balancing
Policies and Finite-Sized Systems

In this chapter, we build upon the results presented in Chapter 2, with the goal of un-
derstanding how well the mean-field distribution approximates the empirical occupation
measure of the system when the system size is large but finite. We continue to study
large-scale heterogeneous processor sharing systems with n servers and M distinct server
speeds. These servers are accessed by jobs following the type-based JBT policy, as detailed
in Section 2.1. Prior research on evaluating the accuracy of mean-field approximations has
predominantly focused on the stationary regime, offering error estimates exclusively dur-
ing steady-state conditions. However, we study the error estimates in both transient and
stationary regimes. To achieve this, we introduce a fluctuation process that represents the
difference between the actual system occupancy distribution and its mean-field limit and
study the limiting behavior of this fluctuation process as the system size tends to infinity.
Via the use of Functional Central Limit Theorems (FCLTs), we show that as the system
size n tends to infinity, the diffusion-scaled fluctuation process converges to an Ornstein-
Uhlenbeck process whose drift and diffusion coefficients depend on the mean-field limit of
the system. These results enable us to estimate the error of the mean-field approximations
to the empirical occupancy measures associated with a system with n servers. We then use
these results to show that the mean response time of jobs in a finite-sized system can be
approximated by the response time given by the mean-field limit and the error is O( 1√

n
)

for which the constants can be precisely calculated.

The remainder of this chapter is structured as follows. In Section 3.1, we present
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functional central limit theorems in the transient regime and demonstrate the convergence
of the scaled fluctuation process to an OU process. In Section 3.2, we study the fluctuation
process in the stationary regime and provide practical applications of the results we derive.
In Section 3.3, we present numerical evidence to validate the accuracy of results. Finally,
concluding remarks are found in Section 3.4.

3.1 Transient Behavior of the Fluctuation Process

In this section, we study fluctuations in the empirical distribution of system occupancy
around its mean-field limit in the transient regime. We consider the system model described
in Section 2.1. We introduce the diffusion-scaled fluctuation process at time t, denoted as
Z(n)(t), defined as

Z(n)(t) =
(
Z

(n)
k,m(t), k ∈ Z+,m ∈ [M ]

)
, (3.1)

with each component Z
(n)
k,m(t) given by

Z
(n)
k,m(t) =

√
nγm

(
x
(n)
k,m(t)− xk,m(t)

)
∈ R, (3.2)

where the processes x(n)(·) and x(·) represent the empirical distribution of servers in a
system with n servers and its mean-field limit, respectively. The mean-field limit x(·) is
established in Chapter 2, Section 2.4. To characterize the time evolution of the empirical
distribution x(n)(·), we consider two sets of mutually independent unit rate standard Pois-
son processes, denoted as (Nk,m, k ∈ N,m ∈ [M ]) and (Dk,m, k ∈ N,m ∈ [M ]). Specifically,
the process Nk,m represents arrivals to all type m servers with exactly k−1 unfinished jobs,
while the process Dk,m accounts for departures from servers of type m that have exactly
k processing jobs. Using arrival and departure rates derived in the proof of Lemma 2.4.1
and applying random time changes to Poisson processes as outlined in [81], we can express
the time evolution of a type m ∈ [M ] server as follows.

x
(n)
0,m(t) = 1,

x
(n)
k,m(t) = x

(n)
k,m(0) +

1

nγm
Nk,m

(
nλ(n)

∫ t

s=0

1−
(
x
(n)
αm+1,m(s)

)dm
1− x

(n)
αm+1,m(s)

(
x
(n)
k−1,m(s)− x

(n)
k,m(s)

)
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×
M∏

l=m+1

(
x
(n)
αl+1,l(s)

)dl
1(k≤αm+1) ds+ nλ(n)

∫ t

s=0

(
(x

(n)
k−1,m(s))

dm − (x
(n)
k,m(s))

dm
)

×
m−1∏
l=1

(
x
(n)
⌈k−1⌉lm,l(s)

)dl M∏
l=m+1

(
x
(n)
⌊k−1⌋lm,l(s)

)dl
1(k>αm+1) ds

)

− 1

nγm
Dk,m

(
nγmCm

∫ t

s=0

(
x
(n)
k,m(s)− x

(n)
k+1,m(s)

)
ds

)
, k ∈ N. (3.3)

We introduce three operators W1, W2, and W3, which map the space UM to the space(
R{0,1,2,...})M . For any u ∈ UM and m ∈ [M ], these operators are defined as follows.

(W1(u))0,m = (W2(u))0,m = (W3(u))0,m = 0,

(W1(u))k,m =
λ(1− (uαm+1,m)

dm)

γm(1− uαm+1,m)
(uk−1,m − uk,m)

M∏
l=m+1

(uαl+1,l)
dl , 1 ≤ k ≤ αm + 1,

(W1(u))k,m =
λ

γm
((uk−1,m)

dm −
(
uk,m)

dm
)m−1∏

l=1

(u⌈k−1⌉lm,l)
dl

M∏
l=m+1

(u⌊k−1⌋lm,l)
dl , k > αm + 1,

(W2(u))k,m = Cm(uk,m − uk+1,m), k ∈ N,

(W3(u))k,m =
β
√
γm

λ
(W1(u))k,m, k ∈ N.

(3.4)
Furthermore, we define the operator W = W1 −W2. This operator W corresponds to the
mapping f that governs the dynamics of the mean-field limit, as defined in Equation (2.16).
Moreover, for a given fixed m ∈ [M ], the operator W1,m : UM → R{0,1,2,...} is expressed as

(W1,m(u))k = (W1(u))k,m , k ∈ Z+. (3.5)

The operators W2,m, W3,m, and Wm are defined analogously.

Lemma 3.1.1. For each m ∈ [M ], the operators W1,m, W2,m, W3,m, and therefore Wm,
are Lipschitz with respect to both the ℓ1-norm and the ℓ2-norm.

Proof. See Appendix A.3.

Combining Equations (2.15)-(2.16) with Equations (3.2)-(3.4), we can write the fluctu-
ation process as
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Z
(n)
k,m(t) =

√
nγm

(
x
(n)
k,m(t)− xk,m(t)

)
=

√
nγm

(
x
(n)
k,m(0) +

1

nγm
Nk,m

(
nγm

∫ t

s=0

(
W1(x

(n)(s))
)
k,m

ds

−√
nγm

∫ t

s=0

(
W3(x

(n)(s))
)
k,m

ds
)

− 1

nγm
Dk,m

(
nγm

∫ t

s=0

(
W2(x

(n)(s))
)
k,m

ds

)
− xk,m(0)

−
∫ t

s=0

(W1(x(s)))k,m ds+

∫ t

s=0

(W2(x(s)))k,m ds

)
, m ∈ [M ], k ∈ Z+.

(3.6)
We write the Poisson processes in their compensated forms and reorganize the terms to
obtain

Z
(n)
k,m(t) = Z

(n)
k,m(0) +

√
nγm

∫ t

s=0

((
W (x(n)(s))

)
k,m

− (W (x(s)))k,m

)
ds

−
∫ t

s=0

(
W3(x

(n)(s))
)
k,m

ds+M
(n)
k,m(t), m ∈ [M ], k ∈ Z+,

(3.7)

where M
(n)
k,m(t) is a centered martingale that is uniquely characterized by its quadratic

variation

< M
(n)
k,m >t=

∫ t

s=0

((
W1(x

(n)(s))
)
k,m

+
(
W2(x

(n)(s))
)
k,m

− 1
√
nγm

(
W3(x

(n)(s))
)
k,m

)
ds.

(3.8)

For each m ∈ [M ], we group all the independent and centered martingales M
(n)
k,m(t) into

M
(n)
m (t) =

(
M

(n)
k,m(t), k ∈ Z+

)
. With this definition and Equation (3.5), we can reformulate

Equation (3.7) as

Z(n)
m (t) = Z(n)

m (0) +
√
nγm

∫ t

s=0

(
Wm(x

(n)(s))−Wm(x(s))
)
ds−

∫ t

s=0

W3,m(x
(n)(s)) ds

+M(n)
m (t), m ∈ [M ],

(3.9)
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where Z
(n)
m (t) =

(
Z

(n)
k,m(t), k ∈ Z+

)
for the given value of m. The Stochastic Differential

Equation (SDE) (3.9) describes the behavior of the fluctuation process for servers of type
m in the transient regime. We claim that this fluctuation process is stochastically bounded
on any finite time interval [0, T ] and we prove it in the subsequent lemma.

Lemma 3.1.2. If lim supn→∞ E
[∥∥Z(n)(0)

∥∥2
2

]
< ∞, then for any finite T > 0, we have

lim supn→∞ E
[
sup0≤t≤T

∥∥Z(n)(t)
∥∥2
2

]
< ∞.

Proof. First, we show that the martingale

M(n)(t) =
(
M(n)

m (t),m ∈ [M ]
)
=
((

M
(n)
k,m(t), k ∈ Z+

)
,m ∈ [M ]

)
(3.10)

is square-integrable with respect to the ℓ2-norm. From the definition of ℓ2-norm and the
martingale property, we have

E
[∥∥M(n)(t)

∥∥2
2

]
= E

 ∑
m∈[M ]

∑
k∈Z+

|M (n)
k,m(t)|

2


=
∑

m∈[M ]

∑
k∈Z+

E
[
< M

(n)
k,m >t

]
= E

[∥∥< M(n) >t

∥∥
1

]
. (3.11)

The equation above establishes a connection between the ℓ2-norm of the martingale and
the ℓ1-norm of its quadratic variation. Utilizing the Lipschitz property of operators W1,
W2, and W3 with respect to the ℓ1-norm, and taking into account that the process x(n)(·) is
summable for all n, we can deduce from Equation (3.8) that the ℓ1-norm of the quadratic
variation of the martingale M(n)(t) is finite. Therefore, the martingale M(n)(t) is indeed
square-integrable. Referring to Equation (3.9), we have

Z(n)
m (t) = Z(n)

m (0) +
√
nγm

∫ t

s=0

(
Wm(x

(n)(s))−Wm(x(s))
)
ds−

∫ t

s=0

W3,m(x
(n)(s)) ds

+M(n)
m (t). (3.12)

We take the norm of both sides and obtain
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∥∥Z(n)
m (t)

∥∥
2
≤
∥∥Z(n)

m (0)
∥∥
2
+
√
nγm

∫ t

s=0

BW

∥∥x(n)(s)− x(s)
∥∥
2
ds+

∫ t

s=0

BW3

∥∥x(n)(s)
∥∥
2
ds

+
∥∥M(n)

m (t)
∥∥
2
, (3.13)

where BW and BW3 are the ℓ2 Lipschitz constants associated with operators W and W3,
respectively. Employing the Cauchy-Schwartz inequality, we have

∥∥Z(n)
m (t)

∥∥2
2
≤ 4
(∥∥Z(n)

m (0)
∥∥2
2
+ nγmB

2
W t

∫ t

s=0

∥∥x(n)(s)− x(s)
∥∥2
2
ds+B2

W3
t

∫ t

s=0

∥∥x(n)(s)
∥∥2
2
ds

+
∥∥M(n)

m (t)
∥∥2
2

)
. (3.14)

By the definition of ℓ2-norm, we have

∥∥x(n)(s)− x(s)
∥∥2
2
=
∑
l∈[M ]

∥∥∥x(n)
l (s)− xl(s)

∥∥∥2
2
. (3.15)

Substituting the above expression into inequality (3.14), we obtain

∥∥Z(n)
m (t)

∥∥2
2
≤ 4
(∥∥Z(n)

m (0)
∥∥2
2
+B2

W tβm

∫ t

s=0

∥∥Z(n)(s)
∥∥2
2
ds+B2

W3
t

∫ t

s=0

∥∥x(n)(s)
∥∥2
2
ds

+
∥∥M(n)

m (t)
∥∥2
2

)
, (3.16)

where βm = maxl∈[M ]
γm
γl
. Summing over all m ∈ [M ], we can write

∥∥Z(n)(t)
∥∥2
2
≤4
(∥∥Z(n)(0)

∥∥2
2
+B2

W tβ

∫ t

s=0

∥∥Z(n)(s)
∥∥2
2
ds+MB2

W3
t

∫ t

s=0

∥∥x(n)(s)
∥∥2
2
ds

+
∥∥M(n)(t)

∥∥2
2

)
, (3.17)

where β =
∑

m∈[M ] βm. Applying Gronwall’s Lemma, we obtain

∥∥Z(n)(t)
∥∥2
2
≤ 4

(∥∥Z(n)(0)
∥∥2
2
+MB2

W3
t

∫ t

s=0

∥∥x(n)(s)
∥∥2
2
ds+

∥∥M(n)(t)
∥∥2
2

)
e2βB

2
W t2 . (3.18)
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By taking the supremum of both sides, we get

sup
0≤t≤T

∥∥Z(n)(t)
∥∥2
2
≤ 4

(∥∥Z(n)(0)
∥∥2
2
+MB2

W3
T 2 sup

0≤t≤T

∥∥x(n)(t)
∥∥2
2
+ sup

0≤t≤T

∥∥M(n)(t)
∥∥2
2

)
e2βB

2
WT 2

.

(3.19)

By Doob’s Inequality,

E
[
sup

0≤t≤T

∥∥Z(n)(t)
∥∥2
2

]
≤ 4

(
E
[∥∥Z(n)(0)

∥∥2
2

]
+MB2

W3
T 2E

[
sup

0≤t≤T

∥∥x(n)(t)
∥∥2
2

]

+ 4E

∑
k∈Z+

∑
m∈[M ]

< M
(n)
k,m >T

)e2βB2
WT 2

. (3.20)

The ℓ1-norm of the process x(n)(t) is finite, in accordance with the definition of the
space U(n). Additionally, through a comparison of norms, we establish that

∥∥x(n)(t)
∥∥
2
≤∥∥x(n)(t)

∥∥
1
, which implies that its ℓ2-norm is also finite. Furthermore, the martingale

M(n)(t) is square-integrable, implying that its quadratic variation lies in the L1 space.
This shows that the fluctuation process is stochastically bounded on any finite time inter-
val [0, T ] and completes the proof.

In the sequel, we define a new set of SDEs and show that as the system size increases,
the fluctuation process in the transient regime converges in distribution to the solution of

these SDEs. For this purpose, let the operator L :
(
R{0,1,2,...})M →

(
R{0,1,2,...})M , be the

linearization of mean-field equations (2.15)-(2.16) around a solution h(t) to these equations.
Then we can write

dg

dt
= L(h(t))g(t), (3.21)

where for u ∈ UM and for w ∈
(
R{0,1,2,...})M , the operator L(u) is given as follows.
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(L(u)w)0,m = 0, m ∈ [M ],

(L(u)w)k,m =
dm−1∑
i=1

λi

γm
(uαm+1,m)

i−1(uk−1,m − uk,m)
M∏

l=m+1

(uαl+1,l)
dlwαm+1,m

+
λ(1− (uαm+1,m)

dm)

γm(1− uαm+1,m)

M∏
l=m+1

(uαl+1,l)
dl(wk−1,m − wk,m)

+
M∑

i=m+1

λdi
γmuαi+1,i

1− (uαm+1,m)
dm

1− uαm+1,m

(uk−1,m − uk,m)
M∏

l=m+1

(uαl+1,l)
dlwαi+1,i

− Cm(wk,m − wk+1,m), m ∈ [M ], 1 ≤ k ≤ αm + 1,

(L(u)w)k,m =
λdm
γm

((uk−1,m)
dm−1wk−1,m − (uk,m)

dm−1wk,m)
m−1∏
l=1

(u⌈k−1⌉lm,l)
dl

M∏
l=m+1

(u⌊k−1⌋lm,l)
dl

+
m−1∑
i=1

λdi
γmu⌈k−1⌉im,i

((uk−1,m)
dm − (uk,m)

dm)
m−1∏
l=1

(u⌈k−1⌉lm,l)
dl

M∏
l=m+1

(u⌊k−1⌋lm,l)
dlw⌈k−1⌉im,i

+
M∑

i=m+1

λdi
γmu⌊k−1⌋im,i

((uk−1,m)
dm − (uk,m)

dm)
m−1∏
l=1

(u⌈k−1⌉lm,l)
dl

M∏
l=m+1

(u⌊k−1⌋lm,l)
dlw⌊k−1⌋im,i

− Cm(wk,m − wk+1,m), m ∈ [M ], k > αm + 1.
(3.22)

For each m ∈ [M ], we define the operator L(u)m :
(
R{0,1,2,...})M → R{0,1,2,...} such that

(L(u)mw)k = (L(u)w)k,m for k ∈ Z+. With this operator in place, we are now ready to
introduce the limiting set of SDEs.

Definition 3.1. Let Z(t) = (Zm(t),m ∈ [M ]) = ((Zk,m(t), k ∈ Z+),m ∈ [M ]) represent a
solution to the following set of SDEs.

Zm(t) = Zm(0) +
√
γm

∫ t

s=0

L(x(s))mZ(s) ds−
∫ t

s=0

W3,m(x(s)) ds+Mm(t), m ∈ [M ],

(3.23)

where the process x(·) denotes the mean-field limit, and Mm(t) = (Mk,m(t), k ∈ Z+) is a
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collection of independent, real-valued, continuous and Gaussian martingales Mk,m(t) that
are uniquely characterized by their deterministic quadratic variation

< Mk,m >t=

∫ t

s=0

((W1(x(s)))k,m + (W2(x(s)))k,m) ds. (3.24)

The solution to the above set of SDEs is an OU process.

The following theorem provides sufficient conditions for ensuring both the uniqueness
and boundedness of the solution to the set of SDEs (3.23).

Theorem 3.1.3. If E
[
∥Z(0)∥22

]
< ∞, then SDEs (3.23) have a unique strong solution

Z(t). Furthermore, E
[
sup0≤t≤T ∥Z(t)∥22

]
< ∞ for any finite T > 0.

Proof. In the first part of the proof, we establish the uniqueness of the solution. We start
by showing that, for any u ∈ UM and m ∈ [M ], the operator L(u)m is bounded. Let us

consider w ∈ (R0,1,2,...)
M
. We have

∥L(u)mw∥22 =
∑
k∈Z+

|(L(u)w)k,m|2

≤
(
4λ2maxm d2m

minm γ2
m

(
(αM + 1)(1 + max

m
d2m) + 4 + K̃1 + K̃2

)
+ 16C2

M

)
∥w∥22 ,

(3.25)

where K̃1 and K̃2 are two positive finite constants such that for each m ∈ [M ],

∞∑
k=αm+2

m−1∑
l=1

∣∣w⌈k−1⌉lm,l

∣∣2 ≤ K̃1 ∥w∥22 , (3.26)

∞∑
k=αm+2

M∑
l=m+1

∣∣w⌊k−1⌋lm,l

∣∣2 ≤ K̃2 ∥w∥22 . (3.27)

Hence, for every m ∈ [M ], the operator L(u)m is bounded with the bound denoted as

BL, where B
2
L = 4λ2maxm d2m

minm γ2
m

(
(αM + 1)(1 + maxm d2m) + 4 + K̃1 + K̃2

)
+16C2

M . Using this

result, we show the uniqueness of the solution to SDEs (3.23). Consider two solutions
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Z(1)(t) =
(
Z

(1)
m (t),m ∈ [M ]

)
starting from Z(1)(0) and Z(2)(t) =

(
Z

(2)
m (t),m ∈ [M ]

)
start-

ing from Z(2)(0). Then for each m ∈ [M ], we have

Z(1)
m (t)− Z(2)

m (t) = Z(1)
m (0)− Z(2)

m (0) +
√
γm

∫ t

s=0

L(x(s))m
(
Z(1)(s)− Z(2)(s)

)
ds. (3.28)

Therefore,∥∥Z(1)
m (t)− Z(2)

m (t)
∥∥
2
≤
∥∥Z(1)

m (0)− Z(2)
m (0)

∥∥
2
+
√
γmBL

∫ t

s=0

∥∥Z(1)(s)− Z(2)(s)
∥∥
2
ds. (3.29)

From the Cauchy-Schwartz inequality, we have

∥∥Z(1)
m (t)− Z(2)

m (t)
∥∥2
2
≤ 2

(∥∥Z(1)
m (0)− Z(2)

m (0)
∥∥2
2
+ γmB

2
Lt

∫ t

s=0

∥∥Z(1)(s)− Z(2)(s)
∥∥2
2
ds

)
.

(3.30)
By summing over all m ∈ [M ], we have

∥∥Z(1)(t)− Z(2)(t)
∥∥2
2
≤ 2

(∥∥Z(1)(0)− Z(2)(0)
∥∥2
2
+B2

Lt

∫ t

s=0

∥∥Z(1)(s)− Z(2)(s)
∥∥2
2
ds

)
.

(3.31)
From Gromwall’s Lemma, we have

∥∥Z(1)(t)− Z(2)(t)
∥∥2
2
≤ 2eB

2
Lt

2 ∥∥Z(1)(0)− Z(2)(0)
∥∥2
2
. (3.32)

Hence,

E
[∥∥Z(1)(t)− Z(2)(t)

∥∥2
2

]
≤ 2eB

2
Lt

2E
[∥∥Z(1)(0)− Z(2)(0)

∥∥2
2

]
. (3.33)

The above inequality guarantees that if the initial conditions are bounded and satisfy
Z(1)(0) = Z(2)(0), then the two solutions Z(1)(t) and Z(2)(t) are almost surely identical for
every rational t. Since these solutions have continuous sample paths, we can conclude that
Z(1)(t) = Z(2)(t) for every t ≥ 0.

Next, we establish the boundedness of this solution when its initial starting point is
bounded. By applying the same arguments as in the proof of Lemma 3.1.2, we can demon-
strate that the martingale M(t) = (Mm(t),m ∈ [M ]) = ((Mk,m(t), k ∈ Z+),m ∈ [M ]) is
square-integrable with respect to the ℓ2-norm.
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From Equation (3.23) we have

Zm(t) = Zm(0) +
√
γm

∫ t

s=0

L(x(s))mZ(s) ds−
∫ t

s=0

W3,m(x(s)) ds+Mm(t). (3.34)

By taking the ℓ2-norm of both sides, we get

∥Zm(t)∥2 ≤ ∥Zm(0)∥2 +
√
γm

∫ t

s=0

BL ∥Z(s)∥2 ds+

∫ t

s=0

BW3 ∥x(s)∥2 ds+ ∥Mm(t)∥2 ,

(3.35)

where BL is the bound on the operator L and BW3 is the Lipschitz constant associated
with the operator W3. Using the Cauchy-Schwartz inequality, we have

∥Zm(t)∥22 ≤ 4
(
∥Zm(0)∥22 + γmB

2
Lt

∫ t

s=0

∥Z(s)∥22 ds+B2
W3

t

∫ t

s=0

∥x(s)∥22 ds+ ∥Mm(t)∥22
)
.

(3.36)

Summing over all m ∈ [M ], we obtain

∥Z(t)∥22 ≤ 4
(
∥Z(0)∥22 +B2

Lt

∫ t

s=0

∥Z(s)∥22 ds+MB2
W3

t

∫ t

s=0

∥x(s)∥22 ds+ ∥M(t)∥22
)
.

(3.37)

Applying Gronwall’s Lemma, we have

∥Z(t)∥22 ≤ 4

(
∥Z(0)∥22 +MB2

W3
t

∫ t

s=0

∥x(s)∥22 ds+ ∥M(t)∥22
)
e2B

2
Lt

2

. (3.38)

By taking the supremum of both sides, we obtain

sup
0≤t≤T

∥Z(t)∥22 ≤ 4

(
∥Z(0)∥22 +MB2

W3
T 2 sup

0≤t≤T
∥x(t)∥22 + sup

0≤t≤T
∥M(t)∥22

)
e2B

2
LT

2

. (3.39)
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Finally, applying Doob’s Inequality gives

E
[
sup

0≤t≤T
∥Z(t)∥22

]
≤ 4

(
E
[
∥Z(0)∥22

]
+MB2

W3
T 2 sup

0≤t≤T
∥x(t)∥22

+ 4E

∑
k∈Z+

∑
m∈[M ]

< Mk,m >T

)e2B2
LT

2

. (3.40)

The proof is completed by noting that the process x(t) is summable and the martingale
M(t) is square-integrable.

The following theorem states the weak convergence of the fluctuation process to a
unique OU process in the transient regime.

Theorem 3.1.4. Let Z(t) be the unique strong solution to the set of SDEs (3.23). Assume
Z(n)(0) converges in distribution to Z(0) as n → ∞, then the process Z(n)(t) also converges
in distribution to the process Z(t).

Proof. From the weak convergence of the initial process, we conclude the sequence Z(n)(0)
is tight i.e. ∀ϵ > 0 we can find a compact set Kϵ such that P(Z(n)(0) ∈ Kϵ) > 1 − ϵ
and the probability of the process Z(n)(0) lying outside the set Kϵ is negligible. We can
construct another random variable x(n,ϵ)(0) such that it coincides with x(n)(0) on the set
{Z(n)(0) ∈ Kϵ} and outside of this set, the corresponding fluctuation process, Z(n,ϵ)(0), is
uniformly bounded in n. Therefore, without loss of generality, we can assume the process
Z(n)(0) is uniformly bounded in n. Boundedness of the process Z(n)(t) then follows from
Lemma 3.1.2. We complete the proof by showing that Theorem 4.1 on page 354 of [69]
holds. We need to show conditions (4-1) - (4-7) of this theorem hold.

Fix m ∈ [M ]. Take B
(n)
m (t) equal to Z

(n)
m (t) − Z

(n)
m (0) − M

(n)
m (t) and

(
A

(n)
m (t)

)
k,s

as

the covariation between martingales M
(n)
k,m(t) and M

(n)
s,m(t). We want to show B

(n)
m (t) and(

A
(n)
m (t)

)
k,s

converge to Zm(t) − Zm(0) − Mm(t) and the covariation function between

martingales Mk,m(t) and Ms,m(t), respectively.

By replacing x
(n)
m (t) with xm(t) +

Z
(n)
m (t)√
nγm

and from Equations (3.4)-(3.5) we have
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Wm(x
(n)(t))−Wm(x(t)) = L(x(t))m

(
Z̃(n)(t)√

n

)
+ g

(
Z̃(n)(t)√

n

)
, (3.41)

where Z̃(n)(t) =
(
Z̃

(n)
l (t), l ∈ [M ]

)
such that Z̃

(n)
l (t) =

Z
(n)
l (t)
√
γl

and g
(

Z̃(n)(t)√
n

)
is

O
(

(Z̃(n)(t))2

n

)
.

From the definitions of functions B
(n)
m (t) and A

(n)
m (t), conditions (4-1)-(4-2) and (4-4)-(4-

5) follow immediately. Condition (4-3) holds due to the fact that jumps of the fluctuation
process are of size 1√

nγm
. Condition (4-6) follows from Equation (3.41) and Lemma 3.1.2.

Finally, condition (4-7) holds due to the existence of the mean-field limit.

3.2 Steady-State Behavior of the Fluctuation Process

In this section, we study the asymptotic behavior of the fluctuation process in equilib-
rium, specifically the behavior of Z(n)(∞) as n → ∞. From Theorem 2.5.1, we know that
the mean-field process will eventually converge to its unique fixed point P. Thus, with-
out loss of generality we can assume that the mean-field process is located at P for all
times. Let B(t) = (Bm(t),m ∈ [M ]) = ((Bk,m(t), k ∈ Z+),m ∈ [M ]) represent a collection
of independent and centered Brownian motions Bk,m such that Vk,m = var(Bk,m(1)

2) =
2Cm(Pk,m − Pk+1,m). Therefore, for each m ∈ [M ], the infinitesimal covariance of the pro-
cess Bm(t) is given by diag(Vm), with Vm = (Vk,m, k ∈ Z+). From Equation (3.24) and the
fact that f(P) = W (P) = 0, it immediately follows that if the mean-field process is fixed
at P, then the processes Bm(t) and Mm(t) have the same distribution for all m ∈ [M ].

In order to study the fluctuation process in the stationary regime, a key requirement
is the local exponential stability of the fixed point of the mean-field limit. The following
definition and remark describe this stability and its equivalence in the linearized system.

Definition 3.2. Let x(t,u) be the mean-field process at time t starting from u. The fixed
point of the mean-field process P, is said to be locally exponentially stable in ℓ2-norm, if
there exist some positive constants c, δ and K < ∞, such that

∥x(t,u)−P∥2 ≤ Ke−δt ∥u−P∥2 , ∀ ∥u−P∥2 ≤ c. (3.42)
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Remark 3.1. The nonlinear system described by Equations (2.15)-(2.16) is locally expo-
nentially stable at P if and only if the linearized system (3.21)-(3.22) around the solution
P is exponentially stable at the origin [82]. In other words, all eigenvalues of the infinite
matrix associated with L(P) have negative real parts.

In Lemma 3.2.1, we show that when the queueing system is homogeneous (M = 1), the
linearized mean-field system around its fixed point P exhibits exponential stability at the
origin. This implies the local exponential stability of the fixed point. We conjecture that
these results also extend to the heterogeneous case (M > 1), although establishing a direct
proof is notably challenging. However, all cases we have considered appear to confirm this
and we provide numerical evidence in Remark 3.2.

Lemma 3.2.1. Let the queueing system be homogeneous (M = 1) and let H(t) be a solution
to the linearized mean-field equations around P, i.e.,

dH(t)

dt
= L(P)H(t). (3.43)

Then, H(t) = H(0)eL(P)t and there exist δ > 0 and K < ∞ such that

∥H(t)∥2 ≤ Ke−δt ∥H(0)∥2 . (3.44)

Proof. The result follows if we show that L(P) defined by Equations (3.21)-(3.22) is Hur-
witz, i.e., all the eigenvalues have strictly negative real parts.

The process H(t) can be written as H(t)1(k∈Ω) ∪H(t)1(k∈Ω̄) where Ω = {k ∈ Z+ : k ≤
α + 1} and Ω̄ = Z+ − Ω. On the space Ω, the process H(t) evolves as a finite Markov
process which can be shown to have an exponentially stable generator. However on Ω̄, we
have

L(P)H(t) = λd(P d−1
k−1Hk−1 − P d−1

k Hk)− C(Hk −Hk+1)

= λdP d−1
k−1Hk−1 − (λdP d−1

k + C)Hk + CHk+1. (3.45)

We can write the operator L(P) in the matrix format,

A =


−(ξ1 + C) C 0 0 . . .

ξ1 −(ξ2 + C) C 0 . . .
0 ξ2 −(ξ3 + C) C . . .
...

...
...

. . .

 , (3.46)
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where ξi = λdP d−1
i . The operator L∗(P) defines a state-dependent birth-death process

whose birth rates depend on the distribution P and death rates are constant. Note that
ξi is monotone decreasing (associated with the tail distribution Pi). Define

A = (ξ1 + C)B. (3.47)

Then,

B =


−1 C

ξ1+C
0 0 . . .

ξ1
ξ1+C

− ξ2+C
ξ1+C

C
ξ1+C

0 . . .

0 ξ2
ξ1+C

− ξ3+C
ξ1+C

C
ξ1+C

. . .
...

...
...

. . .

 . (3.48)

Let M = BT + I. Since all row sums of BT except for the first row are zero, it follows
that M is a sub-stochastic matrix. Hence applying the standard Perron-Frobenius theory
to the N-W (North-West) truncation of M of order k denoted by Mk, states that the
maximum eigenvalue of Mk indicated by Rk is such that 0 < Rk < 1. Moreover from [83,
Theorem 6.8, p.211], it follows that 1 > . . . > Rk > Rk+1 > . . . > R ≥ 0, where R is the
spectral radius of M . This implies that all the eigenvalues of BT = M − I are strictly
negative from which it follows that AT and hence A have only negative eigenvalues. Thus
the operator L(P) is exponentially stable on both spaces Ω and Ω̄ and we can write

∥∥eL(P)tH(0)
∥∥
2
≤ Ke−δt ∥H(0)∥2 , (3.49)

with −δ being smaller than the smallest eigenvalue of L(P) on Ω and Ω̄, which are all
negative.

Remark 3.2. In Table 3.1, we provide numerical evidence to validate the Hurwitz property
of the operator L(P) in the heterogeneous case. We investigate the eigenvalues of the
truncated operator L(P) of order 100 for different system parameters. From Table 3.1, it
is seen the maximum of the real part of the eigenvalues is negative in all cases. This leads
us to conjecture that the result is true in the general heterogeneous case provided that the
system is stable.

We define a new set of SDEs and show that if the fixed point of the mean-field limit is
locally exponentially stable, the fluctuation process Z(n)(∞) converges to the solution of
these SDEs.
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Table 3.1: Maximum real part of the eigenvalues of the truncated operator L(P) for dif-
ferent system parameters

M = 2, γ1 = γ2 = 0.5, d1 = d2 = 2, C1 = 2/3, C2 = 4/3, α1 = 1, α2 = 2

λ 0.8 0.85 0.9 0.95
Rk -0.3128 -0.2542 -0.1795 -0.0830

M = 2, γ1 = γ2 = 0.5, d1 = d2 = 2, C1 = 1/2, C2 = 3/2, α1 = 1, α2 = 3

λ 0.8 0.85 0.9 0.95
Rk -0.2771 -0.2344 -0.1784 -0.0977

M = 3, γ1 = γ2 = γ3 = 1/3, d1 = d2 = d3 = 2, C1 = 1/2, C2 = 1, C3 = 3/2
, α1 = 1, α2 = 2,α3 = 3

λ 0.8 0.85 0.9 0.95

Rk -0.3452 -0.2977 -0.2366 -0.1464

Definition 3.3. Let the process Z(t) = (Zm(t),m ∈ [M ]) = ((Zk,m(t), k ∈ Z+),m ∈ [M ])
be a solution to the following set of SDEs.

Zm(t) = Zm(0) +
√
γm

∫ t

s=0

L(P)mZ(s) ds−
∫ t

s=0

W3,m(P) ds+Bm(t), m ∈ [M ].

(3.50)
A solution to the above set of SDEs is an OU process.

In the following theorem, we study some properties of SDEs (3.50).

Theorem 3.2.2. Assume E
[
∥Z(0)∥22

]
< ∞. Then there is a unique strong solution to the

set of SDEs (3.50). This solution is given by

Zm(t) = e
√
γmL(P)mtZm(0)−

∫ t

s=0

e
√
γmL(P)m(t−s)W3,m(P) ds+

∫ t

s=0

e
√
γmL(P)m(t−s)dBm(s),

(3.51)

for each m ∈ [M ]. Additionally, E
[
sup0≤t≤T ∥Z(t)∥22

]
< ∞.
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Proof. The proof follows mutatis mutandis from the proof of Theorem 3.1.3 and hence is
omitted.

From Lemma 3.2.1 and Theorem 3.2.2, the following theorem follows immediately.

Theorem 3.2.3. Let Z(t) = (Zm(t),m ∈ [M ]) be the unique solution to the set of SDEs
given by (3.50). For any given m ∈ [M ], the process Zm(t) converges in distribution to a
Gaussian process as t → ∞. This Gaussian process is uniquely determined by its mean,
which is equal to −

∫∞
s=0

e
√
γmL(P)msW3,m(P) ds and its covariance given by∫∞

s=0
e
√
γmL(P)msdiag(Vm)e

√
γmL∗(P)ms ds.

Lemma 3.2.4. Assume the mean-field limit is fixed at its equilibrium point P for all

t ≥ 0. If lim supn→∞ E
[∥∥Z(n)(0)

∥∥2
2

]
< ∞, then lim supn→∞ supt≥0 E

[∥∥Z(n)(t)
∥∥2
2

]
< ∞.

Under the invariant distribution, we conclude lim supn→∞ E
[∥∥Z(n)(0)

∥∥2
2

]
< ∞.

Proof. Given that the mean-field limit is located at P, for each m ∈ [M ], we have

Z(n)
m (t) =

√
nγm

(
x(n)
m (t)−Pm

)
, (3.52)

where x
(n)
m (t) =

(
x
(n)
k,m(t), k ∈ Z+

)
and Pm = (Pk,m, k ∈ Z+) for the specific value of m.

Then we can write

x(n)
m (t) =

Z
(n)
m (t)

√
nγm

+Pm. (3.53)

From Equations (3.9) and (3.53) and noting that Wm(P) = 0, we have

x(n)
m (t) = x(n)

m (0) +

∫ t

s=0

Wm(x
(n)(s)) ds− 1

√
nγm

∫ t

s=0

W3,m(x
(n)(s)) ds+

1
√
nγm

M(n)
m (t).

(3.54)
Also, let x(t,u) be the mean-field limit at time t starting from u. Then, from Equa-
tion (2.15) and noting that the operators f and W are the same for each m ∈ [M ], we
have

xm(t,u) = um +

∫ t

s=0

Wm(x(s,u)) ds, (3.55)
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where xm(t,u) = (xk,m(t,u), k ∈ Z+) and um = (uk,m, k ∈ Z+) for the given m. At time
t0 + h, we can write the fluctuation process as

Z(n)
m (t0 + h) =

√
nγm

(
x(n)
m (t0 + h)− xm(h,x

(n)(t0)) + xm(h,x
(n)(t0))−Pm

)
. (3.56)

We define

Z(n)
m (t0, h) =

√
nγm

(
x(n)
m (t0 + h)− xm(h,x

(n)(t0))
)
. (3.57)

Then we can rewrite the fluctuation process as

Z(n)
m (t0 + h) = Z(n)

m (t0, h) +
√
nγm

(
xm(h,x

(n)(t0))−Pm

)
. (3.58)

From Equations (2.46) and (3.58), there exist some positive D < ∞ and θ > 1, such that

∥∥Z(n)
m (t0 + h)

∥∥2
2
≤ 2

∥∥Z(n)
m (t0, h)

∥∥2
2
+ h−2θD2

∥∥Z(n)
m (t0)

∥∥2
2
. (3.59)

By summing over all m ∈ [M ], we get

∥∥Z(n)(t0 + h)
∥∥2
2
≤ 2

∥∥Z(n)(t0, h)
∥∥2
2
+ h−2θD2

∥∥Z(n)(t0)
∥∥2
2
. (3.60)

Also, from Equation (3.55), we can rewrite Equation (3.57) as

Z(n)
m (t0, h) =

√
nγm

(
x(n)
m (t0 + h)− x(n)

m (t0)
)
−√

nγm

∫ h

s=0

Wm(x(s,x
(n)(t0))) ds. (3.61)

From Equation (3.54) for the term x
(n)
m (t0 + h)− x

(n)
m (t0), we get

Z(n)
m (t0, h) =

√
nγm

[∫ t0+h

s=t0

Wm(x
(n)(s)) ds− 1

√
nγm

∫ t0+h

s=t0

W3,m(x
(n)(s)) ds

+
1

√
nγm

(
M(n)

m (t0 + h)−M(n)
m (t0)

)]
−√

nγm

∫ h

s=0

Wm(x(s,x
(n)(t0))) ds,

(3.62)

or equivalently
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Z(n)
m (t0, h) =

√
nγm

∫ h

s=0

(
Wm(x

(n)(s+ t0))−Wm(x(s,x
(n)(t0)))

)
ds

−
∫ t0+h

s=t0

W3,m(x
(n)(s)) ds+

(
M(n)

m (t0 + h)−M(n)
m (t0)

)
.

(3.63)

By taking the ℓ2-norm of both sides and using the Cauchy-Schwartz inequality we get

∥∥Z(n)
m (t0, h)

∥∥2
2
≤ 3

[
nγmB

2
Wh

∫ h

s=0

∥∥x(n)(s+ t0)− x(s,x(n)(t0))
∥∥2
2
ds

+B2
W3

h

∫ t0+h

s=t0

∥∥x(n)(s)
∥∥2
2
ds+

∥∥M(n)
m (t0 + h)−M(n)

m (t0)
∥∥2
2

]
.

(3.64)

By the definition of ℓ2-norm, we can replace the term
∥∥x(n)(s+ t0)− x(s,x(n)(t0))

∥∥2
2
with∑

l∈[M ]

∥∥∥x(n)
l (s+ t0)− xl(s,x

(n)(t0))
∥∥∥2
2
, and we get

∥∥Z(n)
m (t0, h)

∥∥2
2
≤ 3

[
B2

Whβm

∫ h

s=0

∥∥Z(n)(t0, s)
∥∥2
2
ds+B2

W3
h

∫ t0+h

s=t0

∥∥x(n)(s)
∥∥2
2
ds

+
∥∥M(n)

m (t0 + h)−M(n)
m (t0)

∥∥2
2

]
,

(3.65)

where βm = maxl∈[M ]
γm
γl
. By taking sum over all m ∈ [M ], we can write

∥∥Z(n)(t0, h)
∥∥2
2
≤ 3

[
B2

Whβ

∫ h

s=0

∥∥Z(n)(s, t0)
∥∥2
2
ds+MB2

W3
h

∫ t0+h

s=t0

∥∥x(n)(s)
∥∥2
2
ds

+
∥∥M(n)(t0 + h)−M(n)(t0)

∥∥2
2

]
,

(3.66)

where β =
∑

m∈[M ] βm. For any T > 0, by Gronwall’s Lemma, we can find a positive
constant KT depending on T , such that
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sup
0≤h≤T

∥∥Z(n)(t0, h)
∥∥2
2
≤ KT

(
KT + sup

0≤h≤T

∥∥M(n)(t0 + h)−M(n)(t0)
∥∥2
2

)
. (3.67)

From Equations (3.60) and (3.67), we can find a positive constant ST as a function of T
such that for every 0 ≤ h ≤ T , we have

E
[∥∥Z(n)(t0 + h)

∥∥2
2

]
≤ LT + T−2θD2E

[∥∥Z(n)(t0)
∥∥2
2

]
. (3.68)

We choose T sufficiently large such that T−2θD2 ≤ ϵ < 1. Then for all integer n and N ,
we have

E
[∥∥Z(n)((N + 1)T )

∥∥2
2

]
≤ LT + ϵE

[∥∥Z(n)(NT )
∥∥2
2

]
. (3.69)

We use induction to get

E
[∥∥Z(n)(NT )

∥∥2
2

]
≤ LT

(
N∑
j=1

ϵj−1

)
+ ϵNE

[∥∥Z(n)(0)
∥∥2
2

]
, (3.70)

or

E
[∥∥Z(n)(NT )

∥∥2
2

]
≤ LT

1− ϵ
+ E

[∥∥Z(n)(0)
∥∥2
2

]
. (3.71)

From Equation (3.68), we have

sup
0≤h≤T

E
[∥∥Z(n)(NT + h)

∥∥2
2

]
≤ LT +D2E

[∥∥Z(n)(NT )
∥∥2
2

]
. (3.72)

Substituting Equation (3.71) into (3.68), we get

sup
0≤h≤T

E
[∥∥Z(n)(NT + h)

∥∥2
2

]
≤ LT +D2

(
LT

1− ϵ
+ E

[∥∥Z(n)(0)
∥∥2
2

])
. (3.73)

N is an arbitrary integer, and hence the above inequality reduces to

sup
0≤h≤T

E
[∥∥Z(n)(t)

∥∥2
2

]
≤ LT +D2

(
LT

1− ϵ
+ E

[∥∥Z(n)(0)
∥∥2
2

])
. (3.74)
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Let Z(n)(∞) denote the fluctuation process (3.52) in equilibrium. Then by ergodicity and
Fatou’s Lemma, we have

E
[∥∥Z(n)(∞)

∥∥2
2

]
≤ lim inf

t≥0
E
[∥∥Z(n)(t)

∥∥2
2

]
≤ sup

t≥0
E
[∥∥Z(n)(t)

∥∥2
2

]
. (3.75)

To show that lim supn→∞ E
[∥∥Z(n)(∞)

∥∥2
2

]
< ∞, we need to find x(n)(0) such that

lim supn→∞ E
[∥∥Z(n)(0)

∥∥2
2

]
< ∞. For some finite R, we choose x

(n)
k,m(0) such that − 1

2nγm
≤

x
(n)
k,m(0)−Pk,m ≤ 1

2nγm
for 1 ≤ k ≤ R andm ∈ [M ]. Additionally, we set x

(n)
k,m(0) = 0 for k >

R and m ∈ [M ]. Consequently, lim supn→∞ E
[∥∥Z(n)(0)

∥∥2
2

]
= lim supn→∞

∑
m∈[M ]

R
4nγm

= 0

and this completes the proof.

We will now establish the weak convergence of the fluctuation process in equilibrium.

Theorem 3.2.5. If the finite-sized system is in equilibrium, and the fixed point of its
mean-field limit exhibits local exponential stability, then the process Z(n)(t) converges in
distribution to the unique solution of the set of SDEs (3.50). Additionally, the initial
process Z(n)(0) converges weakly to the invariant distribution of this process.

Proof. From Lemma 3.2.4 and the Markov inequality, the sequence Z(n)(0) is tight. We
can now select a convergent subsequence with a square integrable limit denoted as Z∞(0).
Applying Theorem 3.1.4 yields that the chosen subsequence converges in distribution to
the unique OU process Z∞(t) that solves the set of SDEs (3.50) and starts at Z∞(0).
Furthermore, from [69, Lemma 7.7, Theorem 7.8, P.131], it is established that the limit
of any sequence of stationary processes remains stationary. Consequently, the subsequnce
Z∞(t) has the stationary distribution of the unique OU process that solves the SDEs (3.50).
Since this applies to every convergent subsequence, we can deduce the desired result. This
concludes the proof.

3.2.1 Applications

In this section, we study various applications of the fluctuation process. We begin with
the first problem, wherein we analyze the discrepancy between the empirical distribution
of servers in a finite-sized system and the mean-field distribution. We provide the order of
convergence for both transient and stationary regimes. In the second problem, we focus on
the accuracy of performance approximation for finite-sized systems. Specifically, we show
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that the stationary mean response time of jobs in the finite-sized system can be estimated
by the mean response time of a system whose distribution is given by the mean-field
distribution, and the accuracy of this estimation is O( 1√

n
).

Remark 3.3. We have observed that the scaled difference between x
(n)
m (t) and xm(t)

(representing the empirical distribution of type m servers in a system of size n and the
mean-field limit of type m servers, respectively) by the scaling parameter

√
nγm converges

to an OU process, both in transient and stationary regimes. Applying the continuous
mapping theorem with functions

f1(x) = |x|,
f2(x) = x2,

to the functional central limit theorems derived in Sections 3.1 and 3.2, and taking into
account that the limiting OU process possesses finite first and second moments, we conclude
that the ℓ1 difference between the empirical distribution of servers and their mean-field limit
is O( 1√

n
), and the mean-squared difference is O( 1

n
). It is worth noting that the result for

the mean-squared difference in the stationary regime and for finite-dimensional systems
was previously presented in [61, 62].

In Theorem 3.2.6, we provide the order of accuracy when approximating the mean
response time of jobs in the finite-sized system by its asymptotic value. We also identify
the constant related to the term O( 1√

n
).

Theorem 3.2.6. Let E
[
D(n)

]
and E[D] denote the mean sojourn time of jobs in the system

of size n and in the limiting system, respectively. If λ(n) ∈ Λ, then the error between these
two terms is bounded by O( 1√

n
). More precisely, we have

lim
n→∞

√
n
(
E
[
D(n)

]
− E[D]

)
=

β

λ2

∑
m∈[M ]

γm

∞∑
k=1

Pk,m +
1

λ

∑
m∈[M ]

√
γm

∞∑
k=1

νk,m, (3.76)

where νm = (νk,m, k ∈ Z+) = −
∫∞
s=0

e
√
γmL(P)msW3,m(P) ds.

Proof. For a given system of size n, the average number of jobs at equilibrium is equal to

nE
[∑

m∈[M ] γm
∑∞

k=1 x
(n)
k,m(∞)

]
. Let the mean sojourn time of jobs be denoted by E

[
D(n)

]
.

We can apply Little’s law to get
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nλ(n)E
[
D(n)

]
= nE

 ∑
m∈[M ]

γm

∞∑
k=1

x
(n)
k,m(∞)

 . (3.77)

Due to the stability of the system, the above sum is finite and we can deduce that

λ(n)E
[
D(n)

]
=
∑

m∈[M ]

γm

∞∑
k=1

E
[
x
(n)
k,m(∞)

]
. (3.78)

From Theorem 3.2.3 and Theorem 3.2.5, we know that the diffusion limit of type m servers
in the stationary regime has mean vector νm = −

∫∞
s=0

e
√
γmL(P)msW3,m(P) ds. This implies

E
[
lim
n→∞

Z(n)
m (∞)

]
= νm. (3.79)

However, from Lemma 3.2.4 we have

lim sup
n→∞

E
[∥∥Z(n)(∞)

∥∥2
2

]
< ∞, (3.80)

which enables us to interchange the order of limit and expectation in Equation (3.79).
Consequently,

lim
n→∞

√
nγm

(
E
[
x(n)
m (∞)

]
−Pm

)
= νm, (3.81)

This further leads to

E[x(n)
m (∞)] = Pm +

νm√
nγm

+ o(
1√
n
). (3.82)

Now, from Equation (3.78), we obtain

λ(n)E
[
D(n)

]
=
∑

m∈[M ]

γm

∞∑
k=1

(
Pk,m +

νk,m√
nγm

)
+ o(

1√
n
). (3.83)

Since β
λ
√
n
< 1, we can conclude

E
[
D(n)

]
=

1

λ

(
1 +

β

λ
√
n
+ o(

1√
n
)

) ∑
m∈[M ]

γm

∞∑
k=1

(
Pk,m +

νk,m√
nγm

)
+ o(

1√
n
). (3.84)
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But we know 1
λ

∑
m∈[M ] γm

∑∞
k=1 Pk,m = E[D], where E[D] is the mean sojourn time of jobs

in the limiting system. Hence

E
[
D(n)

]
= E[D] +

β

λ2
√
n

∑
m∈[M ]

γm

∞∑
k=1

Pk,m +
1

λ

∑
m∈[M ]

γm

∞∑
k=1

νk,m√
nγm

+ o(
1√
n
). (3.85)

Finally

E
[
D(n)

]
= E[D] +

β

λ2
√
n

∑
m∈[M ]

γm

∞∑
k=1

Pk,m +
1

λ

∑
m∈[M ]

√
γm

∞∑
k=1

νk,m√
n

+ o(
1√
n
). (3.86)

Or equivalently

lim
n→∞

√
n
(
E
[
D(n)

]
− E[D]

)
=

β

λ2

∑
m∈[M ]

γm

∞∑
k=1

Pk,m +
1

λ

∑
m∈[M ]

√
γm

∞∑
k=1

νk,m. (3.87)

Remark 3.4. In the proof above, it is observed that O( 1√
n
) terms depend on the fixed point

of the mean-field limit and β associated with the arrival process. These terms are nonzero
constants for β ̸= 0 and are zero for β = 0. This is due to the fact that the vector νm given
by νm = −

∫∞
s=0

e
√
γmL(P)msW3,m(P) ds depends on the operator W3,m(P) =

β
√
γm
λ

W1,m(P)
defined in Equation (3.4). This guarantees that when β = 0, the operator W3,m and hence
the vector νm become zero. Consequently, the O( 1√

n
) term becomes zero. Therefore, we

can conclude the convergence rate for β = 0 is faster than O( 1√
n
).

Remark 3.5. Bounds on the higher-order moments of the difference between the average
mean delay and the asymptotic delay can be obtained following the same approach.

3.3 Numerical Results

In this section, we present numerical results to validate the accuracy of our analysis. Specif-
ically, we investigate the error between the mean response time of jobs in the system of
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size n and in the limiting system, numerically. We find this error for different values of n
and we show it is bounded by an O( 1√

n
) term.

The mean response time of jobs in the limiting system is determined by the sum of an
infinite series, as outlined in Equation (2.51). However, for practical numerical computa-
tion, we have focused on the first 500 components of Pk,m for each m ∈ [M ]. Beyond this
point, these components become negligible. We computed the fixed point of the mean-field
limit, denoted as P, by solving a set of 500 nonlinear equations for each m ∈ [M ]. To ob-
tain the mean response time of jobs in a finite-sized system with n servers, we conducted
simulations by averaging the response times of the initial 5 × 106 jobs entering the sys-
tem. These simulations were independently repeated 100 times. The system parameters
employed for these experiments were as follows: M = 2, γ1 = γ2 = 0.5, d1 = d2 = 2,
C1 = 2/3, C2 = 4/3, α1 = 1, α2 = 2, λ = 0.95, and two values of β = 0 and β = 1.

The asymptotic delay is 2.4110, and simulation results are summarized in Table 3.2.
When β is zero, λ(n) is constant and independent of the system size. From Table 3.2, it is
evident that E

[
D(n)

]
−E[D] decreases at a rate faster than O( 1√

n
) as n increases, and the

scaled difference between the asymptotic mean response time and the mean response time
of the finite-size system, with the scaling parameter

√
n, tends to zero. This observation is

consistent with Theorem 3.2.6, since when β = 0, Equation (3.4) results in W3,m(P) = 0,
which leads to a zero value for νm. Indeed, we can verify that in this case, the rate of
convergence is O( 1

n
).

In Table 3.3, we present the results for the same system parameters, but with nonzero
β = 1. The asymptotic delay remains unchanged at 2.4110. This is because the arrival
rate to the system with an infinite number of servers is the same, regardless of the value
of β. However, when the system size is finite and β is non-zero, the arrival rate of the
system increases as the system size grows, as reported in Table 3.3. Consequently, the
mean response times of jobs converge from below to their asymptotic delay. The scaled
difference between the mean response time of jobs in the system of finite size and the
asymptotic delay, with the scaling parameter

√
n, converges to some nonzero constant

depending on β and P, which is consistent with Theorem 3.2.6.

3.4 Conclusion

In this chapter, we assessed the accuracy of the mean-field limit for a class of large hetero-
geneous processor sharing systems. Our investigation centered on the fluctuations in the
empirical distribution of servers’ occupancy around its mean-field limit, at a diffusion scale.
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Table 3.2: Difference between the mean response time of jobs in the system of finite size
and in the limiting system with β = 0

n λ(n) E
[
D(n)

]
E
[
D(n)

]
− E[D]

50 0.95 2.6318 0.2208

100 0.95 2.5191 0.1081

200 0.95 2.4651 0.0541

300 0.95 2.4475 0.0365

400 0.95 2.4360 0.0250

600 0.95 2.4299 0.0189

800 0.95 2.4244 0.0134

1000 0.95 2.4208 0.0098

1500 0.95 2.4159 0.0049

2000 0.95 2.4142 0.0032

2500 0.95 2.4139 0.0029

4000 0.95 2.4135 0.0025
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Table 3.3: Difference between the mean response time of jobs in the system of finite size
and in the limiting system with β ̸= 0

n λ(n) E
[
D(n)

]
E
[
D(n)

]
− E[D]

50 0.8086 1.9182 -0.4928

100 0.8500 1.9982 -0.4128

200 0.8793 2.0670 -0.3440

300 0.8923 2.1057 -0.3053

400 0.9000 2.1317 -0.2793

600 0.9092 2.1644 -0.2466

800 0.9146 2.1860 -0.2250

1000 0.9184 2.2038 -0.2072

1500 0.9242 2.2321 -0.1789

2000 0.9276 2.2501 -0.1609

2500 0.9300 2.2626 -0.1484

4000 0.9342 2.2812 -0.1298
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Using FCLT, we showed the convergence of this process to an OU process in the transient
regime. Exploiting the local exponential stability of the fixed point of the mean-field limit,
we extended our analysis to derive the FCLT for the stationary regime. Using these results,
we obtained error bounds for approximating the mean response time of jobs in a finite-size
system, with the response time given by the mean-field limit. We established that this
error diminishes at a rate of O( 1√

n
) and identified the constant associated with this term.

Notably, we demonstrated that when the arrival rate remains unperturbed (β = 0), this
constant becomes zero, indicating a faster convergence rate.
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Chapter 4

Performance of Loss Systems with
Adaptive Multiserver Jobs and
Linear Speedup

In this chapter, we study large loss systems with adaptive multiserver jobs where each job
or request can be split into a flexible number of sub-jobs up to a maximum limit. The
number of sub-jobs a job is split into depends on the number of available servers found upon
its arrival. The sub-jobs are then processed in parallel on different servers, resulting in a
reduction in the original job’s execution time by a factor of i when there are i sub-jobs being
processed in parallel. We refer to i as the linear speedup factor. These jobs for instance
can represent requests for files in a file-server system where each file is stored at multiple
locations from where different parts of the file can be downloaded in parallel. We study the
problem of optimal assignment of such requests when each server can process at most one
sub-job at any given instant and there is no waiting room in the system. Prior research
in this field often assumed that each job had access to the state information of all servers,
with no system blocking. In addition, we consider limited system knowledge, where upon
arrival of a job, it can only access a randomly sampled subset of servers. We analyze the
steady-state system performance with full and limited system access. We develop a load
balancing policy and demonstrate its effectiveness in achieving optimal average response
time of jobs and zero blocking probability as the system size increases. Moreover, in cases
with limited system access, we show that to achieve the same asymptotic performance
results, it is necessary that the sampling size grows at a specific rate. The analysis uses
Stein’s and Lyapunov drift methods to establish state space collapse for large system sizes.

The remainder of this chapter is organized as follows. Section 4.1 introduces the sys-

71



tem model, providing the foundational framework for our analysis. Section 4.2 outlines
the criteria for optimality. The key results regarding the system’s asymptotic optimality
along with error bounds in finite-sized systems are presented in Section 4.3, with a focus on
full system access in Subsection 4.3.1 and limited system access in Subsection 4.3.2. The
applicability of these results to heterogeneous workloads is discussed in Section 4.4. Nu-
merical results are provided in Section 4.5. Finally, we conclude with our closing remarks
in Section 4.6.

4.1 System Model

We consider a system with a single dispatcher and n parallel servers. Each server can
process only one job at any given time and there is no waiting room in the system. It is
assumed that each job can be processed simultaneously at a maximum of d ≥ 1 servers. A
job’s inherent processing time, i.e., the time it would take to process the job at one server,
is assumed to be independent and exponentially distributed with unit mean. When a job
is run in parallel on i ∈ [d] servers, a speedup of i is obtained. That is, the job’s processing
time is reduced by a factor of i in comparison to its inherent service time.

Jobs arrive at the system according to a Poisson process with the rate nλ(n), where
λ(n) = 1 − βn−α ≥ 0 for some α ∈ [0, 1) and β > 0. Varying the value of α enables the
study of the system under different traffic regimes: (i) α = 0, β ∈ (0, 1) corresponds to the
stable regime, (ii) α = 1/2 corresponds to the Halfin-Whitt regime, and (iii) α ∈ (0, 1/2)
(resp. α ∈ (1/2, 1)) corresponds to the sub-Halfin-Whitt (resp. super-Halfin-Whitt) regime.
When a job arrives, it must be immediately and irrevocably assigned to a subset of at most
d servers where it is processed until it leaves the system. We are interested in the following
two scenarios.

1. Full system access: In this scenario, each job has access to the states of all the
servers in the system.

2. Limited system access: In this scenario, each job has access to the states of only
a random subset of k(n) servers chosen uniformly at random.

Note that k(n) = n corresponds to the case with full system access. A job must be assigned
to at most d of the k(n) servers the job has access to. If none of these k(n) servers are found
idle upon the entry of the job, then the job is discarded or blocked, which corresponds to
a loss.
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Our objective is to design job assignment schemes that eliminate blocking and minimize
the mean response time of accepted jobs at a steady state in the large system limit, as
n → ∞. We address this problem in each of the scenarios with full and limited system
access.

Remark 4.1. A key aspect of the system is that when a job is assigned to i ∈ [d] idle
servers, it is divided into i equal sub-jobs or tasks. Since all sub-jobs have equal sizes and
join the idle servers with the same processing speed simultaneously, their processing time
is identical. This synchronized execution results in the overall job’s processing time being
equivalent to that of a single sub-job. Consequently, for a job with a size E and a maximum
degree of parallelism d, the minimum attainable response time is E

d
.

To facilitate our analysis, we use the following notation. For each i ∈ [d], we let
Xi(t) denote the number of jobs that are being processed simultaneously at i servers at
time t ≥ 0. We define xi(t), i ∈ [d], as xi(t) = Xi(t)/n, i.e., the scaled number of jobs
being processed simultaneously at i servers at time t. Clearly, under any Markovian job
assignment scheme (a scheme which makes assignments based on the current state of the
system), the process x(·) = (xi(·), i ∈ [d]) is Markov with a unique stationary distribution.
By omitting the explicit dependence on t, we denote by x = (xi, i ∈ [d]) the state of the
system distributed according to its stationary distribution. Additionally, we define the
fraction of busy servers at steady-state as q1 = q1(x) =

∑
i∈[d] ixi, and the fraction of idle

servers at steady-state as q0 = q0(x) = 1− q1.

4.2 Criterion for Optimality

In this section, we develop a job assignment scheme that optimizes system performance
as n → ∞. To accomplish this, we first need to establish the criteria for what defines an
optimal assignment policy.

Let D denote the time spent by an accepted job in the system in the steady state and
Pb denote the steady-state blocking probability of a job. Since the total departure rate of

jobs at steady-state is nE
[∑

i∈[d] ixi

]
= nE [q1], applying the rate conservation principle

and Little’s law, we obtain

λ(n)(1− Pb) = E [q1] , (4.1)

73



λ(n)(1− Pb)E [D] = E

∑
i∈[d]

xi

 (4.2)

Since a job can be processed at a maximum of d servers simultaneously, the minimum
possible value for the average response time of jobs, E [D], according to Remark 4.1, is
1/d. From the above equations, it is clear that for any Markovian job assignment scheme
to achieve the minimum steady-state mean response time of 1

d
while maintaining a zero

blocking at steady-state (i.e., Pb = 0), E [xi] for each i ∈ [d] must satisfy:

E [xi] = 0, ∀i ∈ [d− 1], (4.3)

E [xd] =
λ(n)

d
. (4.4)

Let x∗ =
(
0, . . . , 0, λ(n)

d

)
. Hence, any scheme for which E

[
∥xi − x∗

i ∥
2] ≤ ε for any ε > 0

and n sufficiently large, is asymptotically optimal. Below we define a greedy job assignment
scheme that aims to achieve this.

Greedy Assignment Scheme: Under the greedy assignment scheme, upon arrival of
a job, if l ≥ 1 servers are found available among the k(n) servers the job has access to,
then min(d, l) of these available servers are used to process the job, i.e., under the greedy
scheme all the available servers up to a maximum of d servers are used to process the
incoming job.

4.3 Comparison with a Fluid Limit: Stein’s Approach

In order to characterize the system’s performance under the greedy scheme, we follow
Stein’s method to compare the dynamics of the system under the greedy scheme to that
of a deterministic fluid limit. Our aim is to show for n sufficiently large, the system under
the greedy scheme essentially behaves as the fluid limit.

The Fluid Limit: The deterministic fluid limit to which we compare the dynamics of
the original system is defined through the following system of ODEs.

żi = −izi, ∀i ∈ [d− 1], (4.5)
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żd = λ(n)− dzd. (4.6)

Intuitively, in the above system, all arriving jobs find d or more available servers upon
entry. It is easy to see that starting from any initial state, the above system converges
to x∗ as t → ∞. Therefore, the deterministic system (4.5)-(4.6) is optimal in the steady
state. Below we attempt to bound the distance between the steady-state performance of
the original system and that of the fluid limit.

To this end, we denote by Ai(x) the probability with which an incoming job is processed
at i ∈ {0, 1, . . . , d} servers when the system is in state x. Specifically, Ai(x) represents the
probability of finding exactly i idle servers when i ∈ {0, 1, . . . , d− 1}, and the probability
of having d or more idle servers when i = d. It is important to note that in this context,
A0(x) corresponds to the blocking probability in state x, and

∑d
j=0 Aj(x) = 1.

When k(n) = n, by the definition of the greedy scheme, these probabilities are given
by

Ai(x) =

{
1(nq0 = i), if i ∈ {0, 1, 2, . . . , d− 1},
1(nq0 ≥ d), if i = d.

(4.7)

Similarly, when k(n) < n, the probabilities Ai(x) are given by means of a hypergeometric
distribution. Specifically,

Ai(x) =


(nq0

i )(
nq1

k(n)−i)
( n
k(n))

, if i ∈ {0, 1, 2, . . . , d− 1} ,∑
l≥d

(nq0
l )(

nq1
k(n)−l)

( n
k(n))

, if i = d.
(4.8)

In the lemma below, using Stein’s method of generator comparison, we express the
mean squared distance between xd and x∗

d as a function of the probability Ad(x) of finding
at least d available servers upon entry at the steady state of the system. This expression is
later used to bound the mean squared distance under different scenarios of server access.

Lemma 4.3.1. Under the equilibrium measure of the system:

E
[
(λ(n)− dxd)

2
]
=

d

n
λ(n)E [Ad(x)] + λ(n)E [(1− Ad(x))(λ(n)− dxd)] . (4.9)

In particular, when k(n) = n, we have

E
[
(λ(n)− dxd)

2
]
=

d

n
λ(n)E [Ad(x)] + E

[
1

(
q1 > 1− d

n

)
(λ(n)− dxd)

]
. (4.10)
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Proof. We consider the Lyapunov function V (x) = 1
2d
(λ(n)−dxd)

2. Let G be the generator
of the Markov chain x(·). Furthermore, let L be the generator of the system of ODEs given
by (4.5)-(4.6). The core of Stein’s approach is to compare the drift of the function V under
G to that under L. We note that under L the drift of V is given by

LV (x) =
∂V

∂xd

(x)ẋd = −(λ(n)− dxd)ẋd = −(λ(n)− dxd)
2. (4.11)

Similarly, under G the drift of V is given by

GV (x) =
∑
x′ ̸=x

r(x, x
′
)
(
V (x

′
)− V (x)

)
,

where r(x, x
′
) denotes the transition rate from state x to state x

′
. Given that the probability

of having d or more idle servers is Ad(x), the function V (x) will transit from state x to
state x + ed

n
at the rate nλ(n)Ad(x), where ed denotes the d-dimensional unit vector with

one at the dth position. Additionally, the system will transit from state x to the state
x − ed

n
, if one of the jobs occupying d servers departs the system. As there are nxd jobs

split into d sub-jobs, the departures occur at the rate ndxd. Thus,

GV (x) = nλ(n)Ad(x)

(
V

(
x+

1

n
ed

)
− V (x)

)
+ ndxd

(
V

(
x− 1

n
ed

)
− V (x)

)
. (4.12)

Under the equilibrium measure, E [GV (x)] = 0, and hence

E [GV (x)− LV (x)] = E [−LV (x)] = E
[
(λ(n)− dxd)

2
]
. (4.13)

Therefore, to bound E [(λ(n)− dxd)
2] it is sufficient to bound E [GV (x)− LV (x)]. This is

done as follows. Using Taylor series expansion of V and noting that LV (x) = −
(

∂V
∂xd

)2
we have

E [GV (x)− LV (x)] = E
[
nλ(n)Ad(x)

(
1

n

∂V

∂xd

(x) +
1

2n2

∂2V

∂x2
d

(ξ)

)]
+ E

[
ndxd

(
− 1

n

∂V

∂xd

(x) +
1

2n2

∂2V

∂x2
d

(θ)

)]
+ E

[(
∂V

∂xd

(x)

)2
]
, (4.14)

where ξ and θ are d-dimensional vectors. Simplifying the RHS of the above and using
∂2V
∂x2

d
(y) = d for any vector y yields

E [GV (x)− LV (x)] = E
[(

λ(n)Ad(x)− dxd +
∂V

∂xd

(x)

)(
∂V

∂xd

(x)

)]
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+
d

2n
E [λ(n)Ad(x) + dxd] . (4.15)

Jobs that occupy d servers in the system have an arrival rate of nλ(n)Ad(x) and a departure
rate of ndxd. Since the system is in steady state, the rate conservation law applies, requiring
these quantities to be equal on average. Hence E [dxd] = λ(n)E [Ad(x)]. Finally, noting
that ∂V

∂xd
(x) = −(λ(n)− dxd) in the above, we have the desired result.

The first terms on the RHS of Equations (4.9) and (4.10) are O( 1
n
). Therefore, to

establish the convergence of xd to x∗
d, it is sufficient to show that the second term in the

above expressions scales as O( 1
n
). In the following sections, we establish this both when

the jobs have access to all servers (i.e., k(n) = n) and when the jobs have access to only a
subset of servers (i.e., k(n) < n).

4.3.1 Full System Access

We begin by considering the case when k(n) = n, i.e., when every arrival has access to the
complete set of servers. We first show that for k(n) = n, the second term in Equation (4.10)
is always negative. We use sample path arguments to establish this in the following lemma.

Lemma 4.3.2. For k(n) = n, if the system starts at a state where
∑

i∈[d−1] xi(0) = 0, then

at all times t ≥ 0, we have
∑

i∈[d−1] xi(t) ≤ 1/n. Furthermore, if λ(n) = 1− β/nα ≥ 0 for

α ∈ [0, 1) and β > 0, then at steady-state we have

E
[
1

(
q1 > 1− d

n

)
(λ(n)− dxd)

]
≤ 0, (4.16)

for all sufficiently large n.

Proof. Let us denote the sum,
∑

i∈[d−1] xi, at any state x by Sd−1(x). If the system starts

at a state where Sd−1(x) = 0, then Sd−1(x) remains zero until the number of free servers
in the system drops strictly below d since all arrivals finding d or more free servers will
only increase xd keeping the other components of x the same. Once the number of free
servers drops strictly below d, the next arrival increases Sd−1(x) from zero to at most 1/n.
Let us call this job the tagged job. If upon arrival of the tagged job, the sum Sd−1(x)
increases to 1/n, then the system becomes fully busy after the arrival of the tagged job
as the tagged job occupies all remaining servers. Hence, until the tagged job leaves the
system, subsequent arrivals either find the system fully busy (hence are blocked) or find at
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least d servers available (which occurs if a job occupying d servers departs before the arrival
occurs and the tagged job leaves the system). In either case, Sd−1(x) remains constant at
1/n until the tagged job departs. When the tagged job departs, Sd−1(x) again drops to
zero. From this point onward we can apply the same chain of arguments as above. This
shows that Sd−1(x) never increases beyond 1/n which proves the first part of the lemma.

If the system starts at a state satisfying Sd−1(x) > 1/n, then it is easy to see that
with non-zero probability the system enters the set of states where Sd−1(x) = 0 in finite
time. However, the first part of the lemma implies that starting from states satisfying
Sd−1(x) = 0, it is not possible to reach states satisfying Sd−1(x) > 1/n and the chain
always remains in states satisfying Sd−1(x) ≤ 1/n. Hence, the states with Sd−1(x) > 1/n
are transient, and the states with Sd−1(x) ≤ 1/n form a single, finite communicating class.
Therefore, there exists a unique invariant probability measure of the chain concentrated
only on the states satisfying Sd−1(x) ≤ 1/n. This implies that at steady-state we have
q1(x) =

∑
i∈[d] ixi < dxd + dSd−1(x) ≤ dxd + d/n with probability one. Hence, when q1 >

1−d/n, we have dxd > 1−2d/n. When λ(n) is a function of n and varies as λ(n) = 1−β/nα

for α ∈ [0, 1) and β > 0, it increases at a slower rate than 1 − 2d/n. Thus, it holds that
dxd ≥ λ(n) for all n sufficiently large. This shows that E

[
1
(
q1 > 1− d

n

)
(λ(n)− dxd)

]
≤ 0

for all sufficiently large n.

Combining Lemmas 4.3.1 and 4.3.2, we conclude the following.

Corollary 4.3.3. Let k(n) = n and λ(n) = 1− β/nα ≥ 0 for α ∈ [0, 1) and β > 0. Then,
under the equilibrium measure, we have

E
[
(λ(n)− dxd)

2
]
≤ dλ(n)

n
, (4.17)

for all sufficiently large n.

The above lemma and corollary establish that as the system size n increases, the higher
dimensional system undergoes a state space collapse and reduces to a lower dimension.
Specifically, the d-dimensional system simplifies to one dimension for large system size,
where it can be fully described by only the jobs occupying d servers simultaneously. This
result has important implications, as it guarantees that every accepted arrival into the
system attains the minimum possible average response time in the asymptotic limit. Con-
sequently, the system demonstrates asymptotic optimality in terms of average response
time.

In the following theorem, we further demonstrate this result, along with the asymptotic
optimality in terms of the blocking probability. Specifically, we establish that the system
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achieves the minimum average response time of 1
d
and zero blocking probability as n → ∞.

Additionally, we present upper bounds for the performance of finite-sized systems.

Theorem 4.3.4. Let k(n) = n, and λ(n) = 1− β/nα ≥ 0, where α ∈ [0, 1) and β > 0. In
the steady-state regime, as n → ∞, the blocking probability of the system converges to zero,
and the mean response time of accepted jobs converges to 1

d
. Additionally, for finite-sized

systems with n large enough, the error in the blocking probability is bounded by O( 1√
n
), and

the error in mean response time is bounded by O( 1
n
).

Proof. By the rate conservation law, we have

E [q1] = λ(n) (1− Pb) ,

where Pb denotes the steady state blocking probability of the system. On the other
hand, from the definition of q1 =

∑
i∈[d] ixi, we have dxd ≤ q1 which leads to E [dxd] ≤

λ(n) (1− Pb). Hence,

P 2
b ≤ 1

λ(n)2
(E [λ(n)− dxd])

2 ≤ 1

λ(n)2
E
[
(λ(n)− dxd)

2] ≤ d

nλ(n)
,

where the second inequality follows from Jensen’s inequality and the last inequality follows
from Corollary 4.3.3.

Note that λ(n) = 1− β/nα. If α = 0 and 0 < β < 1, then it readily follows that

P 2
b ≤ d

n(1− β)
, (4.18)

and the steady state blocking probability of the system converges to zero with an error
bound of O( 1√

n
) for sufficiently large values of n. If α > 0 and β > 0, since β

nα < 1 for
large n, we have

P 2
b ≤ d

n

(
1 +

β

nα
+O(

1

n2α
)

)
≤ d

n
+ o(

1

n
). (4.19)

Hence, again the steady state blocking probability of the system converges to zero with an
error bounded by O( 1√

n
) when n is finite.

Consider the mean response time of accepted jobs in the steady state given by E [D].
From Little’s law for the stationary regime, we have
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λ(n)(1− Pb)E [D] = E

∑
i∈[d]

xi

 .

From Lemma 4.3.2, the first d− 1 states of the system form a single finite communicating
class in steady-state, such that

∑
i∈[d−1] xi ≤ 1/n. Moreover, dxd ≤ q1, due to the definition

of q1. Thus

E [D] ≤ 1

λ(n)(1− Pb)

(
1

n
+

E [q1]

d

)
.

But we know that E [q1] = λ(n) (1− Pb) by the rate conservation law. Therefore,

E [D] ≤ 1

d
+

1

nλ(n)(1− Pb)
.

If α = 0 and 0 < β < 1, then from Equation (4.18), and the fact that
√

d
n(1−β)

< 1 for

large n, we have

E [D] ≤ 1

d
+

1

n(1− β)

(
1 +

√
d

n(1− β)
+O(

1

n
)

)
≤ 1

d
+

1

n(1− β)
+ o(

1

n
). (4.20)

If α > 0 and β > 0, then from Equation (4.19), and the facts
√

d
n
< 1 and β

nα < 1, for

large n, we have

E [D] ≤ 1

d
+

1

n

(
1 +

β

nα
+O(

1

n2α
)

)(
1 +

√
d

n
+ o(

1

n
) +O(

1

n
)

)
≤ 1

d
+

1

n
+ o(

1

n
). (4.21)

Therefore, the asymptotic value of the mean response time of the system is 1
d
, with an

error bound of O( 1
n
).
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4.3.2 Limited System Access

We now study the system with k(n) < n. Under this condition, the arrivals have access to
a limited subset of servers of size k(n), which are randomly sampled upon their arrival. We
identify sufficient conditions on system parameters that guarantee the state space collapse
results in the asymptotic limit. As a consequence, the system maintains the property of
asymptotic optimality in terms of mean response time and blocking probability, even with
limited subset access. However, the error bounds in the finite systems are different and
depend on the specific characteristics of the sampled set.

In the following lemma, we derive an upper bound on the probability of an arrival not
finding d idle servers in the sampled set of size k(n).

Lemma 4.3.5. If q1 ≤ 1− ε for ε > 0, we have

1− Ad(x) ≤ d(k(n))d (1− ε)k(n)−d .

Proof. From the definition of assignment policies for k(n) ≤ n in Equation (4.8) we have

1− Ad(x) =
d−1∑
i=0

(
nq0
i

)(
nq1

k(n)−i

)(
n

k(n)

) =
d−1∑
i=0

(
k(n)

i

)
(q0)

i(q1)
k(n)−i,

for n sufficiently large. Moreover, from the fact q0 ≤ 1 and the assumption q1 ≤ 1− ε , we
have

1− Ad(x) ≤
d−1∑
i=0

(k(n))i(1− ε)k(n)−i

i!

≤ d(k(n))d(1− ε)k(n)−d

for n sufficiently large.

Lemma 4.3.6. If λ(n) = 1− β/nα ≥ 0 for α ∈ [0, 1) and β > 0, we have

E [(1− Ad(x))(λ(n)− dxd)] ≤ λ(n)d(k(n))d
(
1− β

2nα

)k(n)−d

+ d E

(∑
i∈[d]

xi)1

(
q1 > 1− β

2nα

) . (4.22)
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Proof. We consider two cases where the fraction of busy servers exceeds the threshold
1− β

2nα and when it is below that threshold. We have

E [(1− Ad(x))(λ(n)− dxd)] =E
[
(1− Ad(x))(λ(n)− dxd)1

(
q1 ≤ 1− β

2nα

)]
(4.23)

+E
[
(1− Ad(x))(λ(n)− dxd)1

(
q1 > 1− β

2nα

)]
. (4.24)

We bound each of the terms above in (4.23) and (4.24).

Consider the term in expression (4.23). We assume q1 ≤ 1 − β
2nα , otherwise this term

will trivially become zero due to the indicator function. Thus, we have q1 ≤ 1 − ε with
ε = β

2nα > 0, and from Lemma 4.3.5, we conclude that

E
[
(1− Ad(x))(λ(n)− dxd)1

(
q1 ≤ 1− β

2nα

)]
≤ λ(n)d(k(n))d

(
1− β

2nα

)k(n)−d

. (4.25)

Consider the second term given by expression (4.24). We have

E
[
(1− Ad(x))(λ(n)− dxd)1

(
q1 > 1− β

2nα

)]

≤E
[
(1− Ad(x))(q1 −

β

2nα
− dxd)1

(
q1 > 1− β

2nα

)]
≤E

[
(1− Ad(x))(q1 − dxd)1

(
q1 > 1− β

2nα

)]

=E

(1− Ad(x))(
∑

i∈[d−1]

ixi)1

(
q1 > 1− β

2nα

)
≤d E

(1− Ad(x))(
∑

i∈[d−1]

xi)1

(
q1 > 1− β

2nα

)
≤d E

(∑
i∈[d]

xi)1

(
q1 > 1− β

2nα

) ,

(4.26)
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where the second line follows from the indicator function 1
(
q1 > 1− β

2nα

)
and the definition

of λ(n) = 1− β
nα ; the fourth line follows from the definition of q1 =

∑
i∈[d] ixi; and the last

line follows from the non-negativity of xi. Combining all the bounds together, we get the
desired result.

In the following lemma, we establish an upper bound for expression (4.26). We intro-
duce a new Lyapunov function V2(x) =

∑
i∈[d] xi 1 (q1 > λ(n) + δ) for a positive δ, and

show that outside of a suitable compact set, the drift of this Lyapunov function is strictly
negative. Consequently, this implies that with high probability, the function V2(x) remains
within that compact set.

Intuitively, when the fraction of busy servers exceeds a threshold that tends to one as n
grows, the number of accepted jobs into the system cannot increase substantially. In other
words, the occurrence of two events of a significantly high number of busy servers and the
acceptance of jobs into the system is highly improbable.

Lemma 4.3.7. For any δ ∈ (0, β
nα ), define the following Lyapunov function.

V2(x) =
∑
i∈[d]

xi 1 (q1 > λ(n) + δ) . (4.27)

If V2(x) ≥ κ for some κ > 0, then GV2(x) ≤ −δ and E [V2(x)] ≤ κ+ 2
nδ
, for all sufficiently

large n.

Proof. Assume V2(x) ≥ κ for some κ > 0. This implies

1 (q1 > λ(n) + δ) = 1, (4.28)

and
q1 > λ(n) + δ. (4.29)

Let us calculate the drift of V2(x) under G, when V2(x) ≥ κ > 0. From the definition of
the generator G in Lemma 4.3.1, we have

GV2(x) =
∑
i∈[d]

nλ(n)Ai(x)
(
V2

(
x+

ei
n

)
− V2(x)

)
+
∑
i∈[d]

nixi

(
V2

(
x− ei

n

)
− V2(x)

)
,

where ei denotes the d-dimensional unit vector with one at the ith position. Therefore,
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GV2(x) =
∑
i∈[d]

nλ(n)Ai(x)

(∑
j∈[d]

(
xj +

ei
n

)
1

(
q1 +

i

n
> λ(n) + δ

)

−
∑
j∈[d]

xj 1 (q1 > λ(n) + δ)

)

+
∑
i∈[d]

nixi

∑
j∈[d]

(
xj −

ei
n

)
1

(
q1 −

i

n
> λ(n) + δ

)
−
∑
j∈[d]

xj 1 (q1 > λ(n) + δ)

 .

However, under the assumption V2(x) ≥ κ > 0, from Equations (4.28) and (4.29), we have

1

(
q1 +

i

n
> λ(n) + δ

)
= 1, for any i ∈ [d],

and

1

(
q1 −

i

n
> λ(n) + δ

)
= 1, for any i ∈ [d], and n sufficiently large.

As a consequence, for n large enough, we have

GV2(x) =
∑
i∈[d]

nλ(n)Ai(x)(
1

n
) +

∑
i∈[d]

nixi(−
1

n
)

= λ(n)
∑
i∈[d]

Ai(x)−
∑
i∈[d]

ixi

≤ λ(n)− q1

≤ −δ,

(4.30)

where the third line follows from the fact
∑

i∈[d] Ai(x) ≤ 1 and the last line follows from

condition (4.29). This shows that outside of the set {x : V2(x) ≤ κ, κ > 0}, the function
has a negative drift and completes the first part of the lemma.

For the second part, we use the results from [84, Theorem 1 - (i)] which we recall in
Appendix B.1. Under the notation of of Appendix B.1, we have pmax = n and νmax = 1/n.
Hence

E [V2(x)] ≤ κ+
2pmax(νmax)

2

δ
(4.31)
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≤ κ+
2n(1/n2)

δ
(4.32)

= κ+
2

nδ
. (4.33)

and this completes the proof.

Combining Lemmas 4.3.1,4.3.6 and 4.3.7, we obtain the following.

Corollary 4.3.8. Let λ(n) = 1 − β/nα ≥ 0 for α ∈ [0, 1) and β > 0. Then, in the
stationary regime, we have

E
[
(λ(n)− dxd)

2
]
≤ 2d

n
λ(n)

(
1 +

2nα

β

)
+ λ(n)2d(k(n))d

(
1− β

2nα

)k(n)−d

, (4.34)

for all n sufficiently large.

Proof. The result follows by choosing κ = 1
n
and δ = β

2nα in Lemma 4.3.7 and combining
with Lemmas 4.3.1 and 4.3.6.

In the following theorem, we present the main performance bounds for systems with a
finite size. We obtain sufficient conditions on the growth rate of the size of the sampling
set k(n), for the system to achieve asymptotic optimality.

Theorem 4.3.9. Let λ(n) = 1−β/nα ≥ 0, for α ∈ [0, 1) and β > 0, and k(n) = nα log(n).
If β > 2(α(d−1)+1) when α > 0, then in the steady state regime, as n → ∞, the blocking
probability of the system converges to zero, and the mean response time of accepted jobs
converges to 1

d
. Furthermore, in finite-sized systems, the error in these estimations is

bounded by O(n−(1−α)/2) for n large enough.

Proof. Let Pb denote the blocking probability of the system. By the rate conservation
law λ(n) (1− Pb) = E [q1] ≥ E [dxd], and from the same arguments as in the proof of
Theorem 4.3.4, we have

P 2
b ≤ 1

λ(n)2
E
[
(λ(n)− dxd)

2]
≤ 2d

nλ(n)

(
1 +

2nα

β

)
+ dnαd(log(n))d

(
1− β

2nα

)nα log(n)−d

, (4.35)
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where the last inequality follows from Corollary 4.3.8 when k(n) = nα log(n), and n is
sufficiently large. If α = 0 and 0 < β < 1, we have

P 2
b ≤ 2d

n(1− β)

(
1 +

2

β

)
+ o(

1

n
). (4.36)

Thus, as n → ∞, the blocking probability of the system approaches zero, and for sufficiently
large values of n, it is upper bounded by O( 1√

n
)

If α > 0 and β > 2(α(d− 1) + 1), then from Equation (4.35) we have

P 2
b ≤ 2d

nλ(n)
+

4d

βλ(n)
nα−1 + dnαd(log(n))d

(
1− β

2nα

)nα log(n)−d

.

Based on the properties of β, the second term in the above bound is the dominant term
and we have

P 2
b ≤ 4d

βλ(n)
nα−1 + o(nα−1).

For n large enough, β
nα < 1, and we have

P 2
b ≤ 4d

β
nα−1

(
1 +

β

nα
+O(

1

n2α
)

)
+ o(nα−1)

=
4d

β
nα−1 + o(nα−1). (4.37)

As a consequence, the blocking probability of the system approaches zero as n → ∞, and
for n large enough, it is upper bounded by O(n−(1−α)/2).

Let E [D] denote the mean response time of accepted jobs. From Little’s law in the
stationary regime, we have

λ(n) (1− Pb)E [D] = E

∑
i∈[d]

xi

 = E

 ∑
i∈[d−1]

xi

+ E [xd] .

For the first d− 1 components of the system state, note that
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E

 ∑
i∈[d−1]

xi

 ≤ E

 ∑
i∈[d−1]

ixi

 = E [q1 − dxd] ≤ E [λ(n)− dxd] ,

where the equality follows from the definition of q1 =
∑

i∈[d] ixi; and the last inequality

follows from the rate conservation law E [q1] = λ(n)(1 − Pb) ≤ λ(n). Moreover, for the
dth component of the system state, we have dxd ≤ q1 due to the definition of q1 and
E [xd] ≤ E[q1]

d
. Hence

E [D] ≤ 1

λ(n) (1− Pb)

(
E [λ(n)− dxd] +

E [q1]

d

)
=

1

λ(n) (1− Pb)
E [λ(n)− dxd] +

1

d
,

where the last line follows from the rate conservation law. Therefore,

(
E [D]− 1

d

)2

≤ 1

λ(n)2 (1− Pb)
2 (E [λ(n)− dxd])

2

≤ 1

λ(n)2 (1− Pb)
2E
[
(λ(n)− dxd)

2] ,
where the second inequality follows from Jensen’s inequality.

For α = 0 and 0 < β < 1, from Corollary 4.3.8 and Equation (4.36), we have

E
[
D − 1

d

]2
≤ 1

(1− β)2
(
1− 2

√
2d

n(1−β)
(1 + 2

β
) + o( 1

n
)
) (2d(1− β)

n

(
1 +

2

β

)
+ o(

1

n
)

)
.

But 2
√

2d
n(1−β)

(1 + 2
β
) + o( 1

n
) < 1, for n large enough and hence

E
[
D − 1

d

]2
≤ 1

(1− β)2

(
1 + 2

√
2d

n(1− β)
(1 +

2

β
) + o(

1

n
) +O(

1

n
)

)
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×
(
2d(1− β)

n

(
1 +

2

β

)
+ o(

1

n
)

)
≤ 2d

n(1− β)

(
1 +

2

β

)
+ o(

1

n
). (4.38)

This shows that the mean response time of accepted jobs converges to 1
d
as n → ∞, with

an error bound in finite-sized systems of O( 1√
n
).

If α > 0 and β > 2(α(d− 1) + 1), from Corrolary 4.3.8 and Equation (4.37) we have

E
[
D − 1

d

]2
≤ 1(

1− 2β
nα

) (
1− 2

√
4d
β
nα−1 + o(nα−1)

) (4d

β
nα−1 + o(nα−1)

)
.

For n large enough, 2β
nα < 1 and 2

√
4d
β
nα−1 + o(nα−1) < 1, and we have

E
[
D − 1

d

]2
≤
(
1 +

2β

nα
+O(

1

n2α
)

)(
1 + 2

√
4d

β
nα−1 + o(nα−1) +O(nα−1)

)

×
(
4d

β
nα−1 + o(nα−1)

)
≤ 4d

β
nα−1 + o(nα−1). (4.39)

As a consequence, the mean response time of accepted jobs converges to 1
d
with an error

bound of O(n−(1−α)/2) for large values of n, and this completes the proof.

4.4 Heterogeneous Workloads

So far we have considered the case with homogeneous job arrivals. The results can be
extended to the heterogeneous case of multi-class arrivals where jobs of different classes
correspond to different sizes and can have a different maximum degree of parallelism.

We consider a system with L classes of arrival streams denoted as [L] = {1, 2, . . . , L}.
Each arrival from class ℓ ∈ [L] follows a Poisson process with the rate nλℓ(n) where
λℓ(n) = 1−βℓn

−αℓ ≥ 0, for some αℓ ∈ [0, 1) andβℓ > 0. These arrivals bring jobs where the

88



undivided length of the job follows an exponential distribution with an average of 1
µℓ
. It is

assumed that the system has sufficient capacity to handle the incoming workload. This is
formally expressed as ρ =

∑
ℓ∈[L]

λℓ(n)
µℓ

< 1.

The job assignment policy is such that upon the arrival of a job, k(n) servers are
uniformly and randomly selected from the total of n servers. Depending on the number
of free servers in the sampled subset, each arrival of class ℓ is split into a maximum of dℓ
sub-jobs and receives a speedup of i when it is divided to i ∈ [dℓ] parts.

The state of the system is represented by the double vector x = ((xℓ,i, ℓ ∈ [L]) , i ∈ [dℓ]),
where xℓ,i denotes the fluid scaled number of class ℓ jobs being processed by i servers
simultaneously. Additionally, the fraction of busy servers is denoted by q1, where q1 :=
q1(x) =

∑
ℓ∈[L]

∑
i∈[dℓ] ixℓ,i, and the fraction of idle servers is denoted by q0 := q0(x) =

1− q1(x).

We show that as the system size increases, each arrival from class ℓ finds at least dℓ
free servers to join, and hence xℓ,dℓ converges in probability to λℓ(n)

µℓdℓ
for every ℓ ∈ [L]. This

convergence implies a state space collapse result, where the system’s dimension reduces
to a lower dimension. The formal statement of this result is given in Proposition 4.4.1.
The proof of the proposition follows similar arguments to those in Lemma 4.3.1 and Sec-
tion 4.3.2, with necessary adjustments made to address the multiple arrival streams with
heterogeneous workloads.

Proposition 4.4.1. Consider a system with L classes of arrival streams. Let ρ =
∑

ℓ∈[L]
λℓ(n)
µℓ

<
1. Then, under the equilibrium measure, we have

E

∑
ℓ∈[L]

(λℓ(n)− µℓdℓxℓ,dℓ)
2

 ≤ c

n
+
∑
ℓ∈[L]

λℓ(n)
2dℓ(k(n))

dℓ

(
1 + ρ

2

)k(n)−dℓ

, (4.40)

where c =
∑

ℓ∈[L] λℓ(n)µℓdmax

(
1 + µmax +

4µmax

µ2
min(1−ρ)

)
, with µmax = max

ℓ
µℓ, µmin = min

ℓ
µℓ,

dmax = max
ℓ

dℓ, and n is sufficiently large.

Sketch of the Proof. The proof relies on similar arguments as presented in Lem-
mas 4.3.1, 4.3.5 and 4.3.7. However, some adjustments are needed to accommodate the
presence of multiple arrival streams as follows.

• In Lemma 4.3.1, we modify the Lyapunov function to V (x) =
∑

ℓ∈[L]
1

2µℓdℓ
(λℓ(n) −

µℓdℓxℓ,dℓ)
2, and update the system of ODEs with generator L as follows.
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ẋℓ,i = −µℓixℓ,i, ∀ℓ ∈ [L] and i ∈ [dℓ − 1],

ẋℓ,dℓ = λℓ(n)− µℓdℓxℓ,dℓ , ∀ℓ ∈ [L].

This results in

E

∑
ℓ∈[L]

(λℓ(n)− µℓdℓxℓ,dℓ)
2

 =
∑
ℓ∈[L]

λℓ(n)µℓdℓ
n

E [Aℓ,dℓ(x)]

+ E

∑
ℓ∈[L]

λℓ(n)(1− Aℓ,dℓ(x))(λℓ(n)− µℓdℓxℓ,dℓ)

 . (4.41)

The first term on the RHS is O( 1
n
), and we need to bound the second term. We

consider two cases for the second term; when the fraction of busy servers q1 is below
a threshold uniformly bounded away from one, and another where q1 is above the
same threshold.

• In the first case where q1 is below the threshold 1 − ε < 1, we adapt the results of
Lemma 4.3.5. We introduce Aℓ,i(x), representing the probability that a class ℓ job
finds i ∈ {0, 1, ..., dℓ} free servers upon arrival in state x. The probabilities Aℓ,i(x)
take a similar form as in Equation (4.8) and are defined below.

Aℓ,i(x) =


(nq0

i )(
nq1

k(n)−i)
( n
k(n))

, if i ∈ {0, 1, 2, . . . , dℓ − 1} ,∑
i≥dℓ

(nq0
i )(

nq1
k(n)−i)

( n
k(n))

, if i = dℓ.

Then, for each class ℓ ∈ [L], we have

1− Aℓ,dℓ(x) ≤ dℓ(k(n))
dℓ (1− ε)k(n)−dℓ ,

given that q1 ≤ 1− ε for some ε > 0. By carefully selecting ε = 1−ρ
2
, we ensure that

the second term on the RHS of Equation (4.41) approaches zero as n → ∞.

• In the second case, where q1 is above the same threshold 1− ε = 1+ρ
2
, we redefine the

Lyapunov function V2(x) from Lemma 4.3.7 as
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V2(x) =
∑
ℓ∈[L]

1

µℓ

∑
i∈[dℓ]

xℓ,i 1

(
q1 >

1 + ρ

2

)
.

We then show that GV2(x) ≤ −1−ρ
2

when V2(x) ≥ κ for some κ > 0. Thus, the
Lyapunov function V2(x) converges to zero in probability. This implies that when the
number of busy servers is sufficiently high in the system, the incoming workload to the
system diminishes considerably. By manipulating terms in the second expression on
the RHS of Equation (4.41), we rewrite it in terms of V2(x) and show its convergence
to zero as n → ∞.

Combining all the results together, we obtain the desired bound in Proposition 4.4.1.

4.5 Numerical Results

In this section, we present simulation results to validate the accuracy of our analysis. We
conducted all simulation experiments independently, repeating them 100 times. At each
iteration, we measured system performance metrics for the first 5 × 106 jobs arriving at
the system.

Figure 4.1 illustrates the simulation results when jobs have access to the full state
of the system, i.e., when k(n) = n. The maximum degree of parallelism is considered
to be d = 2. Different values of λ(n) are considered including (i)α = 0, β = 0.2, (ii)
α = 1/2, β = 5, and (iii)α = 2/3, β = 5. Figure 4.1(a) displays the mean response time of
accepted jobs obtained through simulations, alongside the theoretical upper bounds derived
in Theorem 4.3.4. This figure highlights a clear convergence of the average response time
to the theoretically computed value of 1/d as the system size n increases. Moreover,
the upper bounds derived are indeed tight in the asymptotic regime and the convergence
occurs at a rate of O( 1

n
). Figure 4.1(b) presents the blocking probability of the system,

along with the theoretical upper bounds. This figure shows that the rate at which the
blocking potability approaches zero exceeds O( 1√

n
), as the system size n increases. In

fact, upon closer inspection of the simulation results, it becomes evident that the rate of
convergence for the blocking probability when k(n) = n also is O( 1

n
).

Figure 4.2, illustrates the system performance metrics for the same heavy traffic pa-
rameters when the jobs have access to only a sampled subset of servers upon their arrival.
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(a) Mean response time of accepted jobs (b) Blocking probability of the system

Figure 4.1: System performance metrics for different system sizes n, sampling size k(n) = n,
degree of parallelism d = 2, and various values of load parameters (i)α = 0, β = 0.2,
(ii)α = 1/2, β = 5, (iii)α = 2/3, β = 5.

The sampling size k(n) is chosen to be k(n) = ⌈nα log(n)⌉. Figures 4.2(a) and 4.2(b) illus-
trate the mean response time of accepted jobs and the blocking probability of the system,
respectively. Additionally, upper bounds on system performance metrics are provided. It
is observed that the upper bounds are not tight in the partial system access scenario.

The simulation results align consistently with the theoretical results presented in The-
orems 4.3.4 and 4.3.9, where it is proven that all arrivals are accepted to the system and
distributed across d servers. Moreover, as the graphs indicate, when the sampling size
k(n) equals the total number of servers n, the upper bound on the average response time
is tight, demonstrating a convergence rate of O( 1

n
).

4.6 Conclusion

In this chapter, we studied the performance of adaptive multiserver-job systems with n
servers. The system load was modeled as 1− βn−α ≥ 0, where α ∈ [0, 1) and β > 0. Upon
arrival, each incoming job had the flexibility to split into a maximum of d smaller tasks,
based on the system state and available resources. We showed that when arriving jobs
had complete knowledge of the system state and all servers were accessible, the system
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(a) Mean response time of accepted jobs (b) Blocking probability of the system

Figure 4.2: System performance metrics for different system sizes n, sampling size k(n) =
⌈nα log(n)⌉, degree of parallelism d = 2, and various values of load parameters (i)α =
1/2, β = 5, (ii)α = 2/3, β = 5

achieved the optimal average response time of 1/d and zero blocking probability in the
limit as the system size approached infinity. We further characterized the error bounds in
finite-sized systems, demonstrating a bound of O(1/

√
n) for the blocking probability and

O(1/n) for the mean response time. When arrivals had partial knowledge of the system
state, sampled upon their arrival, similar optimal performance measures were attainable.
A necessary condition was that the sampling size must grow at rate ω (nα). In this case,
the error bound was established as O(n−(1−α)/2) for both the mean delay and blocking
probability.

93



Chapter 5

Performance of Loss Systems with
Adaptive Multiserver Jobs and
Sublinear Speedup

In this chapter, we expand upon the analysis from the previous chapter to study systems
in which the speedup in job processing time is no longer linear, meaning that it does not
directly correspond to the number of servers used to process the job. This nonlinearity
is a result of the additional overheads that arise in real-world scenarios involving parallel
processing. For example, consider a file-server system where requests are made to access
files stored redundantly across multiple locations, allowing for simultaneous downloads of
different file segments. This introduces challenges such as managing chunk sequence num-
bers and file reconstruction. These complexities result in job processing speedup being
a sublinear function of the number of servers employed. In particular, we focus on sce-
narios where the speedup function exhibits the characteristics of being strictly increasing,
sublinear, and concave concerning the number of servers used for job processing. Within
the same system model as in the previous chapter, we characterize the optimal state of
the system and show that it is at most two-dimensional. A key observation from this
optimal solution is that, under heavy traffic, parallelization no longer offers performance
advantages. In such cases, the optimal approach is to assign jobs to individual servers.
We introduce a probabilistic load balancing policy and demonstrate that, as the system
size increases, the system converges to this established optimal state. As a result, it is
asymptotically optimal in terms of average job response time and blocking probability.

The subsequent sections of this chapter are structured as follows. The criteria for
optimality are outlined in Section 5.1. The main results regarding the system’s asymptotic
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optimality are presented in Section 5.2, including an analysis of state space collapsing to
one dimension, addressed in Subsection 5.2.1, and state space collapsing to two dimensions,
discussed in Subsection 5.2.2. Numerical insights are provided in Section 5.3. We draw
our conclusions in Section 5.4.

5.1 Criterion for Optimality

As in our prior study in Chapter 4, the initial step requires the establishment of criteria for
optimality. We begin by introducing the concept of a speedup function, which quantifies
the acceleration in job processing time when executed across multiple servers concurrently.
We assume that when a job is parallelized across i ∈ [d] servers, it receives a speedup
of si where si is a sublinear, strictly increasing and concave function of i satisfying 1 =
s1 < s2 < . . . < sd, and si/i ≥ si+1/(i + 1) for all i ∈ [d − 1]. The goal is to design
job assignment schemes that eliminate the occurrence of job blocking and minimize the
average response time of accepted jobs in the steady state system as n → ∞. However,
identifying the optimal dynamics of this system is not clear. To explain, let us consider
the rate conservation principle and Little’s law as follows.

λ(n)(1− Pb) = E

∑
i∈[d]

sixi

 , (5.1)

λ(n)(1− Pb)E [D] = E

∑
i∈[d]

xi

 . (5.2)

An ideal optimal system state can be x∗, characterized by an expected value E [x∗] =
(0, 0, . . . , λ(n)/sd). This state achieves an average response time of jobs equal to 1/sd
which is the smallest attainable value based on Remark 4.1, and ensures zero blocking
probability. However, the proposed system state x∗, may not always be feasible due to the
physical constraints of the system. Specifically, consider the fraction of busy servers q1.
We find that

E [q1] =
∑
i∈[d]

iE [xi] =
d

sd
λ(n).
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The above quantity must always be bounded by one as the fraction of busy servers
cannot exceed the total number of servers in the system. However, given that sd < d
(which is the case unless we encounter a scenario in which si = i for all i ∈ [d], effectively
reverting to the linear speedup case), and depending on the specific value of λ(n), it may
not be possible to satisfy the physical constraint associated with q1.

To this end, we formulate an optimization problem that aims to minimize the steady-
state mean response time of the jobs subject to the constraint that the steady-state blocking
probability is zero and the physical limitations of the system are satisfied. Therefore, to
achieve the optimal system performance, the expected system state E [x] should be the
solution to the optimization problem presented below.

minimize
y=(yi,i∈[d])∈Rd

+

∑
i∈[d]

yi

subject to
∑
i∈[d]

siyi = λ(n),

∑
i∈[d]

iyi ≤ 1,

(5.3)

where the objective function corresponds to minimizing the total expected number of jobs
in steady-state (note that by (5.2) this sum is proportional to the mean response time of
accepted jobs when Pb = 0), the first constraint corresponds to the zero blocking condition
obtained by setting Pb = 0 in (5.1), and the last constraint comes from the fact that the
total expected number of occupied servers cannot exceed the total number of servers in
the system. Note that λ(n) ≤ 1 and s1 = 1 guarantee the existence of an optimal solution
to (5.3) since the d-dimensional vector y = (λ(n), 0, . . . , 0) is always a feasible solution.
Let y∗ = (y∗i , i ∈ [d]) denote an optimal solution to the above optimization problem. In
the proposition below, we characterize the optimal solution y∗ of (5.3) as a function of the
normalized arrival rate λ(n) and the speed-up function.

Proposition 5.1.1. Let si be a strictly increasing, concave function of i satisfying

1 =
s1
1

≥ s2
2

≥ . . . ≥ sd
d
. (5.4)

The following results hold.

(i) If λ(n) ≤ sd
d
, then the optimal solution is unique and is given by y∗ = (0, 0, . . . , 0, λ(n)

sd
).

(ii) If λ(n) = si/i for some i ∈ [d], then the optimal solution is unique and satisfies
y∗i1 = λ(n)/si1 and y∗j = 0 for all j ̸= i1, where i1 = max{i ∈ [d] : λ(n) = si/i}.
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(iii) If λ(n) ∈ ( si+1

i+1
, si

i
) for some i ∈ [d− 1] satisfying si+1

i+1
< si

i
, then an optimal solution

to (5.3) can be obtained by setting

y∗i =
1
i

(
λ(n)− si+1

i+1

)
si
i
− si+1

i+1

, (5.5)

y∗i+1 =
1

i+1

(
si
i
− λ(n)

)
si
i
− si+1

i+1

, (5.6)

y∗j = 0,∀j /∈ {i, i+ 1}. (5.7)

Furthermore, the above solution is unique if si − si−1 > si+1 − si > si+2 − si+1.

Proof. The Lagrangian function is given by

L (y, ν, θ0, θ1, . . . , θd) =
∑
i∈[d]

yi + ν

∑
i∈[d]

siyi − λ(n)

+ θ0(
∑
i∈[d]

iyi − 1)−
∑
i∈[d]

θiyi,

where ν, θ0 ≥ 0, and θi ≥ 0 for i ∈ [d] represent the Lagrange multipliers corre-
sponding to their respective constraints. Slater’s condition for strong duality holds since
y = (λ(n), 0, . . . , 0) is a feasible solution for all λ(n) ≤ 1. Consequently, any primal opti-
mal solution y = (y1, . . . , yd) and dual optimal solution (ν, θ0, θ1, . . . , θd) must satisfy the
Karush-Kuhn-Tucker (KKT) conditions outlined below.

∂L
∂yi

= 1 + νsi + θ0i− θi = 0,∀i ∈ [d], (Stationarity) (5.8)

θ0 ≥ 0, θi ≥ 0,∀i ∈ [d], (Dual Feasibility) (5.9)

θ0

∑
i∈[d]

iyi − 1

 = 0, θiyi = 0,∀i ∈ [d], (Complimentary Slackness) (5.10)

∑
i∈[d]

siyi = λ(n),
∑
i∈[d]

iyi ≤ 1, yi ≥ 0,∀i ∈ [d]. (Primal Feasibility) (5.11)

From the primal feasibility constraint (5.11):
∑

i∈[d] siyi = λ(n) > 0, it is necessary that

yi > 0 for at least one i ∈ [d]. Then, the condition (5.10): θiyi = 0 requires the corre-
sponding Lagrange multiplier θi to be set to zero.

Let θi = 0 for K ≥ 1 distinct indices of i ∈ {i1, i2, . . . , iK} ⊆ [d] with i1 < i2 < . . . < iK ,
and θi > 0 for all other indices. Equation (5.8) gives rise to the relationship below.
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1 + νsik + θ0ik = θik = 0, ∀k ∈ [K]. (5.12)

This results in

−θ0
ν

=
sik2 − sik1
ik2 − ik1

, ∀k1 < k2, k1, k2 ∈ [K]. (5.13)

We show that all indices {i1, i2, . . . , iK} are consecutive. Assume it is not true, and ik+1 <
ik+1 for some k ∈ [K]. Then, (ik, ik+1) is a non-empty set and for any i ∈ (ik, ik+1), we
must have θi > 0. Consequently, Equation (5.8) for i and ik yields

1 + νsi + θ0i = θi > 0, ∀i ∈ (ik, ik+1) (5.14)

1 + νsik + θ0ik = θik = 0. (5.15)

The above equations result in

−θ0
ν

>
si − sik
i− ik

, ∀i ∈ (ik, ik+1) . (5.16)

Combined with Equation (5.13), we get

sik+1
− sik

ik+1 − ik
>

si − sik
i− ik

, ∀i ∈ (ik, ik+1) , (5.17)

which is equivalent to

si <

(
1− i− ik

ik+1 − ik

)
sik +

i− ik
ik+1 − ik

sik+1
, ∀i ∈ (ik, ik+1) . (5.18)

Note that i−ik
ik+1−ik

∈ (0, 1) for any i in (ik, ik+1). Thus, the above inequality violates the

concavity of the speedup function and is not feasible. Therefore, ik + 1 < ik+1 cannot
happen for any k ∈ [K], and we have

ik+1 = ik + 1, ∀k ∈ [K − 1]. (5.19)

From Equation (5.13), we conclude that

sik+1
− sik = −θ0

ν
= ∆, ∀k ∈ [K − 1], (5.20)
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where ∆ is a positive constant independent of i and k. We consider two cases: one where
θi = 0 for at least two distinct indices of i, i.e., K ≥ 2, and the other where θi = 0 for a
single index i, i.e., K = 1.

1. θi = 0 for at least two distinct indices of i ∈ [d]:

If θi = 0 for more than one i ∈ [d], then θ0 must be non-zero. Otherwise, Equation
(5.8) leads to ν = −1/si for those i ∈ [d] where θi = 0, contradicting the strictly

increasing property of si. Thus, θ0 > 0, and Equation (5.10): θ0

(∑
i∈[d] iyi − 1

)
= 0,

implies
∑

i∈[d] iyi = 1. Since yi is non-zero only for i ∈ {i1, i2, . . . , iK}, this leads to
a system of equations

K∑
k=1

sikyik = λ(n), (5.21)

K∑
k=1

ikyik = 1. (5.22)

However, from Equations (5.19) and (5.20), we have ik = i1 + (k − 1) and sik =
si1 + (k − 1)∆ for any k ∈ [K]. As a result, we can rewrite the above system as

si1

K∑
k=1

yik +∆
K∑
k=2

(k − 1)yik = λ(n), (5.23)

i1

K∑
k=1

yik +
K∑
k=2

(k − 1)yik = 1. (5.24)

Solving these equations results in

(si1 −∆i1)
K∑
k=1

yik = λ(n)−∆, (5.25)

K∑
k=1

(k − 1)yik = 1− i1

K∑
k=1

yik . (5.26)

We consider two sub-cases: one where ∆ = λ(n) and another where ∆ ̸= λ(n).
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• Sub-Case 1, ∆ = λ(n): In this sub-case, Equation (5.25) implies that

(si1 −∆i1)
K∑
k=1

yik = 0.

Since yi > 0 for all i ∈ {i1, . . . , iK}, it follows that si1 −∆i1 = 0. However, from
Equation (5.12) and the definition of ∆ in Equation (5.20), we derive

siK −∆iK = siK−1
−∆iK−1 = . . . = si1 −∆i1 = 0,

which leads to
sik
ik

= ∆ = λ(n), for all k ∈ [K]. Substituting into Equation (5.12)
leads to

νλ(n) + θ0 = − 1

ik
, ∀k ∈ [K].

This contradicts the possibility of having multiple values of ik that satisfy the
above equation, rendering this sub-case infeasible.

• Sub-Case 2, ∆ ̸= λ(n): In this sub-case, Equations (5.25)-(5.26) imply that

K∑
k=1

yik =
λ(n)−∆

si1 −∆i1
, (5.27)

K∑
k=2

(k − 1)yik = 1− i1

K∑
k=1

yik =
si1 − λ(n)i1
si1 −∆i1

. (5.28)

Since
∑K

k=2(k − 1)yik = 1 − i1
∑K

k=1 yik < 1, and from Equation (5.28), we

conclude that λ(n) > ∆. This, alongside the condition that
∑K

k=1 yik > 0 and
Equation (5.27), imply that si1 −∆i1 > 0. Additionally, we have

siK −∆iK = siK−1
−∆iK−1 = . . . = si1 −∆i1 > 0,

and from the definition of ∆ in (5.20), we get

sik
ik

> ∆ = sik+1 − sik , ∀k ∈ [K − 1]. (5.29)
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This condition leads to

si1
i1

>
si2
i2

> . . . >
siK
iK

. (5.30)

Under the above condition and considering
siK
iK

≤ λ(n) ≤ si1
i1
, the objective

function simplifies to
∑K

k=1 yik = λ(n)−∆
si1−∆i1

. A feasible solution to achieve this

objective function when
sik+1

ik+1
≤ λ(n) ≤ sik

ik
is given by

yik =

1
ik

(
λ(n)− sik+1

ik+1

)
sik
ik

− sik+1

ik+1

, yik+1
=

1
ik+1

(
sik
ik

− λ(n)
)

sik
ik

− sik+1

ik+1

, yi = 0, ∀i /∈ {ik, ik+1}.

From Equation (5.13), it is seen that when sik−sik−1
> sik+1

−sik > sik+2
−sik+1

,
then k = 2 is the only feasible option and the above solution is unique.

2. θi = 0 for exactly one index i:
Let i1 be the index for which θi = 0. Therefore, θi > 0 for all i ̸= i1, and the
condition (5.10): θiyi = 0 implies yi = 0 for all i ̸= i1. As a result, from primal
feasibility constraint (5.11):

∑
i∈[d] siyi = λ(n), we get

yi1 =
λ(n)

si1
, yi = 0,∀i ̸= i1.

Two sub-cases emerge based on whether λ(n) < si1/i1 or λ(n) = si1/i1.

• Sub-Case 1, λ(n) < si1/i1: In this sub-case, the condition (5.11):
∑

i∈[d] iyi =

i1yi1 < 1 requires θ0 = 0. Consequently, from Equation (5.8) we obtain

1 + νsi1 = θi1 = 0

1 + νsi = θi > 0, ∀i ̸= i1.

The above inequalities imply si < si1 for all i ̸= i1. Given the strictly increasing
property of si, it follows that i1 = d and y∗ = (0, . . . , 0, λ(n)/sd).

• Sub-Case 2, λ(n) = si1/i1: In this sub-case, the only non-zero component yi1 is
given by

yi1 =
λ(n)

si1
=

1

i1
.
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With this value, the objective function becomes 1/i1 and is minimized at i =
max{i1 : λ(n) = si1/i1} = max{i1 : si1 = λ(n)i1}. Hence,

y∗ = (0, . . . , 0, λ(n)/si, 0, . . . , 0) ,

where i corresponds to the given maximum index.

This completes the analysis of all possible cases and sub-cases.

Based on Proposition 5.1.1, it is evident that the optimal solution y∗ is characterized
by having at most two nonzero components. We introduce the set I∗ = {i ∈ [d] : y∗i > 0},
representing the indices of these nonzero components. Therefore, |I∗|= 1, or 2. A job
assignment scheme aligning the system’s state x with the conditions E [xi] = y∗i for all
i ∈ I∗ and E [xi] = 0 for all other indices replicates the optimal behavior and leads to
asymptotic optimality in the steady state. We proceed to present such a scheme.

Probabilistic Assignment Scheme: In the probabilistic assignment scheme, when
an incoming job arrives, it is divided into i ∈ [d] sub-jobs with probabilities pi. These sub-
jobs are assigned to i available servers, provided there are sufficient free servers within
the system. In the event of an insufficient number of available servers, the job becomes
blocked. The probabilities pi are determined as follows.

pi =
siy

∗
i

λ(n)
, i ∈ [d]. (5.31)

Note that
∑

i∈[d] pi =
∑

i∈I∗ pi = 1 due to the first constraint of the optimization problem.

Moreover, under the proposed assignment scheme, the probabilities Ai(x) as the probability
with which an incoming job is processed at i ∈ [d] servers when the system is in state x is
given by

Ai(x) =

{
pi1 (nq0 ≥ i) , i ∈ I∗,

0, i ∈ [d]− I∗.
(5.32)

Remark 5.1. An alternative approach to job assignment involves simplifying the system’s
state to a single dimension. An example of such a scheme is the I-greedy assignment
scheme, where I := max{i ∈ [d] : λ(n) ≤ si/i}. Under this scheme, all available servers
are used up to a maximum of I servers. In cases where no free server is available, a job is
subjected to blocking. The selection of the parameter I depends on both the normalized
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arrival rate of the system and the specific characteristics of the speedup function. This
choice is essentially grounded in the optimality criterion established in Proposition 5.1.1
such that a zero blocking probability is required. The analytical approach to this policy
follows a similar methodology to that of the greedy job assignment scheme, with necessary
adjustments required to accommodate the introduction of the new threshold level I and
the nonlinearity associated with the speedup function. Under this policy a zero blocking
probability and an average response time of 1

sI
are achieved, with the analysis details left to

the astute reader. The discussion provided here serves as supplementary information and
in the subsequent sections of this thesis, we will place our emphasis on the probabilistic
routing scheme.

Remark 5.2. Proposition 5.1.1 provides a key result regarding job parallelization under
heavy traffic conditions. In this context, the normalized arrival rate is represented as
λ(n) = 1 − βn−α, where α > 0 and β > 0. This implies that 1 = limn→∞ λ(n) = si1/i1,
where i1 = max{i ∈ [d], si/i = 1}. If i1 > 1, it is implied that si = i for all i ∈ [i1], leading
to a system with linear speedup functions. Therefore, in the context of sublinear functions
within the asymptotic regime and under heavy traffic conditions, we conclude that i1 = 1,
and job parallelization fails to improve system performance. Consequently, the optimal
strategy in these scenarios involves allocating all incoming jobs to individual servers to get
a zero blocking probability in the system.

5.2 Comparison with a Fluid Limit: Stein’s Approach

In order to analyze the system’s performance under the probabilistic job assignment scheme,
we introduce a simple dynamical system and characterize the difference between the gen-
erator of the original Markov process x(·) and the generator of this dynamical system.

The Fluid Limit: The simple dynamical system that we want the original steady-state
system to converge to its fixed point is described by a set of ODEs defined below.

żi = siy
∗
i − sizi, i ∈ [d], (5.33)

where y∗ is the solution to the optimization problem in Proposition 5.1.1. It is important
to note that the fixed point of this system corresponds to y∗.

In the following lemma, we evaluate the accuracy of representing the system state x by
the fixed point of the fluid model (5.33). Based on the assignment probabilities described
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in (5.32), it is evident that the arrival rate of jobs being split into i ∈ [d] − I∗ sub-jobs
is zero. Given that the system is in a stationary state, through sample path arguments,
we conclude that these jobs will eventually vanish in the stationary state, leaving only the
jobs occupying i ∈ I∗ sub-jobs. Consequently, the state space collapses to |I∗| dimensions
and it is sufficient to study xi only for i ∈ I∗. More specifically, the objective is to show
that as n approaches infinity, E [xi] converges in probability to limn→∞ y∗i for i ∈ I∗.

Lemma 5.2.1. Under the equilibrium measure of the system, we have

E

[∑
i∈I∗

cisi (xi − y∗i )
2

]
=

λ(n)

n

∑
i∈I∗

ciE [Ai(x)] +
∑
i∈I∗

E
[
cisiy

∗
i 1

(
q1 > 1− i

n

)
(y∗i − xi)

]
,

(5.34)
where ci > 0 for i ∈ I∗.

Proof. We introduce a Lyapunov function V (x) =
∑

i∈I∗
ci
2
(xi − y∗i )

2, where ci is a strictly
positive constant for every i ∈ I∗. We compare the drift of this function under G, the
generator of the Markov chain x(·), to that under L, the generator of the system of ODEs
given by (5.33). We note that under L the drift of V is given by

LV (x) =
∑
i∈I∗

∂V

∂xi

(x)ẋi =
∑
i∈I∗

ci (xi − y∗i ) si (y
∗
i − xi) = −

∑
i∈I∗

cisi (xi − y∗i )
2 . (5.35)

Following similar arguments as in the proof of Lemma 4.3.1 for the generator G, we have

GV (x) =
∑
i∈I∗

nλ(n)Ai(x)

(
V

(
x+

1

n
ei

)
− V (x)

)
+ nsixi

(
V

(
x− 1

n
ei

)
− V (x)

)
,

(5.36)
where ei denotes the d-dimensional unit vector with a value of one at the ith position. In
the steady state, the expectation of the drift of any suitable function V under G is zero,
which can be expressed as

E [GV (x)] = 0. (5.37)

From Equation (5.35), we can rewrite the above equation as

E [GV (x)− LV (x)] = E [−LV (x)] = E

[∑
i∈I∗

cisi (xi − y∗i )
2

]
. (5.38)

104



The above equation provides a means to establish bounds on E
[∑

i∈I∗ cisi (xi − y∗i )
2] by

comparing the drift of the function V under G to that under L. Using the Taylor series
expansion of V and combining Equation (5.35) and (5.36), we have

E [GV (x)− LV (x)] =
∑
i∈I∗

E
[
nλ(n)Ai(x)

(
1

n

∂V

∂xi

(x) +
1

2n2

∂2V

∂x2
i

(ξ)

)]
+
∑
i∈I∗

E
[
nsixi

(
− 1

n

∂V

∂xi

(x) +
1

2n2

∂2V

∂x2
i

(θ)

)
− ∂V

∂xi

(x)ẋi

]
, (5.39)

where ξ and θ are d-dimensional vectors. Simplifying the RHS of the above and using the
fact that ∂2V

∂x2
i
(y) = ci for any vector y, we get

E [GV (x)− LV (x)] =
∑
i∈I∗

E
[
(λ(n)Ai(x)− sixi − ẋi)

∂V

∂xi

(x)

]
+

1

2n

∑
i∈I∗

ciE [λ(n)Ai(x) + sixi] . (5.40)

From Equation (5.33), and using the form of Ai(x) = pi1 (nq0 ≥ i) =
siy

∗
i

λ(n)
1 (nq0 ≥ i), we

can rewrite the above as

E [GV (x)− LV (x)] =
∑
i∈I∗

E
[
siy

∗
i (1 (nq0 ≥ i)− 1)

∂V

∂xi

(x)

]
+

1

2n

∑
i∈I∗

ciE [λ(n)Ai(x) + sixi] . (5.41)

Finally, from ∂V
∂xi

(x) = ci (xi − y∗i ), and the equality E [sixi] = λ(n)E [Ai(x)], we arrive
at the desired result. This last equality stems from the system being in the stationary
regime, where the arrival rate and departure rate of each class of jobs that occupy i servers
simultaneously should be equal on average for each value of i ∈ [d]. This completes the
proof.

To establish the convergence of xi to y∗i for i ∈ I∗, it is sufficient to show that the
second term on the right-hand side of Equation (5.34) converges to zero as n → ∞. In
the following sections, we provide a detailed analysis of this result for both scenarios when
|I∗|= 1 and when |I∗|= 2.

105



5.2.1 State Space Collapse to One Dimension

Here, we study the system when |I∗|= 1, implying that the optimal solution y∗ comprises
only one nonzero component. According to Proposition 5.1.1, this scenario occurs when
the arrival rate satisfies λ(n) ≤ sd

d
or λ(n) = si

i
for a specific i ∈ [d]. We show that in this

particular setting, the system achieves asymptotic optimality. More precisely, it achieves
both a blocking probability of zero and the minimum achievable average response time for
accepted jobs as n approaches infinity. Additionally, we provide upper bounds on system
performance for finite system sizes.

Lemma 5.2.2. Let I∗ = {i1} for some i1 ∈ [d]. Then, under the equilibrium measure of
the system we have

∑
i∈I∗

E
[
i1

(
q1 > 1− i

n

)
(y∗i − xi)

]
≤ i1

n
. (5.42)

Proof. Noting that I∗ = {i1}, we arrive at the following equation.

∑
i∈I∗

E
[
i1

(
q1 > 1− i

n

)
(y∗i − xi)

]
= E

[
i11

(
q1 > 1− i1

n

)(
y∗i1 − xi1

)]
. (5.43)

Additionally, when I∗ = {i1}, as discussed earlier, it follows that the probabilities pi(x) are
zero for all i ̸= i1, while pi1 = 1. Therefore, by sample path arguments, we conclude that in
the stationary regime, xi = 0 for i ̸= i1. This implies q1 =

∑
i∈[d] ixi = i1xi1 . Substituting

this into Equation (5.43), we obtain

∑
i∈I∗

E
[
i1

(
q1 > 1− i

n

)
(y∗i − xi)

]
= E

[
1

(
q1 > 1− i1

n

)(
i1y

∗
i1
− q1

)]
≤ E

[
1

(
q1 > 1− i1

n

)
(1− q1)

]
≤ i1

n
, (5.44)

where the second line follows from the constraints of the optimization problem, which
specify that

∑
i∈[d] iy

∗
i ≤ 1. This implies i1y

∗
i1
≤ 1. The last line is a consequence of the

indicator function.
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Combining Lemmas 5.2.1 and 5.2.2, we get the following corollary.

Corollary 5.2.3. Let I∗ = {i1} for some i1 ∈ [d]. Under the equilibrium measure of the
system we have

E

[∑
i∈I∗

i

y∗i
(xi − y∗i )

2

]
≤ 2

i1
n
. (5.45)

Proof. The proof is straightforward by selecting ci =
i

siy∗i
for i ∈ I∗ in Lemma 5.2.1, and

noting that y∗i1 =
λ(n)
si1

when I∗ = {i1}.

In the following theorem, we show that the system achieves asymptotic optimality in
terms of the average response time of accepted jobs and the blocking probability. Addition-
ally, we present upper bounds on the system’s performance for finite-sized configurations.

Theorem 5.2.4. Let I∗ = {i1} for some i1 ∈ [d]. Then, the steady-state blocking proba-
bility of the system converges to zero with an error bound of O( 1√

n
), while the steady-state

mean response time of accepted jobs remains at 1
si1

for sufficiently large values of n.

Proof. The proof follows the same reasoning as the proof of Theorem 4.3.4. The detailed
analysis is given in Appendix A.4.

5.2.2 State Space Collapse to Two Dimensions

We now consider the scenario where the normalized arrival rate λ(n) satisfies λ(n) ∈(
si1+1

i1+1
,
si1
i1

)
for some i1 ∈ [d− 1]. Consequently, as per Proposition 5.1.1, we conclude that

the optimal solution y∗ consists of two nonzero components, and I∗ = {i1, i1 + 1}. We
present similar asymptotic optimality results as in the previous section.

Lemma 5.2.5. Let I∗ = {i1, i2}, where i2 = i1 +1 and i1 ∈ [d− 1]. Under the equilibrium
measure of the system, we have

∑
i∈I∗

E
[
i1

(
q1 > 1− i

n

)
(y∗i − xi)

]
≤ i1

n
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+ E
[
1

(
q1 = 1− i1

n
, r1 ≤ λ(n) + δ

)(
i2y

∗
i2
− i2xi2

)]
+ i2E [1 (r1 > λ(n) + δ) (xi1 + xi2)] , (5.46)

where r1 =
∑

i∈I∗ sixi denotes the departure rate of the system, δ ∈ (0, 1− λ(n)) and n is
sufficiently large.

Proof. Since I∗ = {i1, i2}, we have

∑
i∈I∗

E
[
i1

(
q1 > 1− i

n

)
(y∗i − xi)

]
= E

[
i11

(
q1 > 1− i1

n

)(
y∗i1 − xi1

)]
+ E

[
i21

(
q1 > 1− i2

n

)(
y∗i2 − xi2

)]
= E

[
1

(
q1 > 1− i1

n

)(
i1y

∗
i1
+ i2y

∗
i2
− i1xi1 − i2xi2

)]
(5.47)

+ E
[
1

(
1− i2

n
< q1 ≤ 1− i1

n

)(
i2y

∗
i2
− i2xi2

)]
(5.48)

We consider each of the terms (5.47) and (5.48) independently and establish suitable bounds
for each.

Let us start with expression (5.47). Considering the optimal solution y∗, it is clear that
i1y

∗
i1
+ i2y

∗
i2
= 1. Furthermore, through sample path analysis, we can deduce that xi = 0

for all i ̸∈ I∗ in the stationary regime. Therefore, we can simplify the expression for q1,
reducing it to q1 = i1xi1 + i2xi2 . Hence,

E
[
1

(
q1 > 1− i1

n

)(
i1y

∗
i1
+ i2y

∗
i2
− i1xi1 − i2xi2

)]
= E

[
1

(
q1 > 1− i1

n

)
(1− q1)

]
≤ i1

n
,

(5.49)

where the inequality follows from the indicator function.

Now, let us examine expression (5.48). According to the lemma statement, we have i2 =
i1 + 1. Therefore, the indicator function 1 − i1+1

n
< q1 ≤ 1 − i1

n
ensures that q1 = 1 − i1

n
.

Consequently,
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E
[
1

(
1− i2

n
< q1 ≤ 1− i1

n

)(
i2y

∗
i2
− i2xi2

)]
= E

[
1

(
q1 = 1− i1

n

)(
i2y

∗
i2
− i2xi2

)]
.

(5.50)

We analyze the term (5.50) under two distinct conditions related to the departure rate of
the system: when it is either less than the arrival rate or greater than it. To facilitate this
analysis, we define r1 as the departure rate of the system, given by r1 =

∑
i∈I∗ sixi. For

any δ ∈ (0, 1− λ(n)), we can write

E
[
1

(
q1 = 1− i1

n

)(
i2y

∗
i2
− i2xi2

)]
= E

[
1

(
q1 = 1− i1

n
, r1 ≤ λ(n) + δ

)(
i2y

∗
i2
− i2xi2

)]
(5.51)

+ E
[
1

(
q1 = 1− i1

n
, r1 > λ(n) + δ

)(
i2y

∗
i2
− i2xi2

)]
(5.52)

As per Proposition 5.1.1, the optimal solution y∗i2 is determined by the following.

y∗i2 =

1
i2

(
si1
i1

− λ(n)
)

si1
i1

− si2
i2

. (5.53)

The set I∗ = {i1, i2} is only applicable when
si2
i2

< λ(n) <
si1
i1
. Consequently, we can infer

that y∗i2 < 1
i2

or equivalently i2y
∗
i2
< 1. On the other hand, the fraction of busy servers is

characterized by q1 = 1− i1
n
. Therefore, by choosing a n sufficiently large, we ensure that

i2y
∗
i2
≤ q1. Thus,

E
[
1

(
q1 = 1− i1

n
, r1 > λ(n) + δ

)(
i2y

∗
i2
− i2xi2

)]
≤ E

[
1

(
q1 = 1− i1

n
, r1 > λ(n) + δ

)
(q1 − i2xi2)

]
≤ E

[
1

(
q1 = 1− i1

n
, r1 > λ(n) + δ

)
q1

]
≤ i2E

[
1

(
q1 = 1− i1

n
, r1 > λ(n) + δ

)∑
i∈I∗

xi

]
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≤ i2E

[
1 (r1 > λ(n) + δ)

∑
i∈I∗

xi

]
, (5.54)

where the second line follows from the inequality i2y
∗
i2

≤ q1 and the fourth line follows
directly from the definition of q1, which is given as q1 =

∑
i∈I∗ ixi.

Combining (5.49), (5.51) and (5.54) we get the desired result.

In the following lemmas, we further bound the terms established in Lemma 5.2.5.

Lemma 5.2.6. Let I∗ = {i1, i2}, where i2 = i1 +1 and i1 ∈ [d− 1]. Under the equilibrium
measure of the system, we have

E
[
1

(
q1 = 1− i1

n
, r1 ≤ λ(n) + δ

)(
i2y

∗
i2
− i2xi2

)]
≤ si1

n
(

si1
i1

− si2
i2

) +
δ

si1
i1

− si2
i2

, (5.55)

where r1 =
∑

i∈I∗ sixi denotes the departure rate of the system and δ ∈ (0, 1− λ(n)).

Proof. Given that I∗ = {i1, i2} and the system is in the stationary regime, we can employ
similar reasoning as in previous lemmas to determine that the fraction of busy servers is
defined as q1 = i1xi1 + i2xi2 . Consequently, from the indicator function, we can express the
following system of equations.

i1xi1 + i2xi2 = 1− i1
n
. (5.56)

si1xi1 + si2xi2 ≤ λ(n) + δ. (5.57)

By solving the equation for xi1 and substituting in the inequality, we obtain

xi1 =
1

i1
− 1

n
− i2

i1
xi2 , (5.58)

si1
i1

− si1
n

− si1i2
i1

xi2 + si2xi2 ≤ λ(n) + δ. (5.59)

We rewrite inequality (5.59) as(
si1
i1

− λ(n)

)
− i2xi2

(
si1
i1

− si2
i2

)
≤ si1

n
+ δ. (5.60)
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Noting that y∗i2 =
1
i2

( si1
i1

−λ(n)
)

si1
i1

−
si2
i2

, the result follows.

In the following lemma, we introduce a new Lyapunov function, denoted as V2(x) =
1
(∑

i∈I∗ sixi > λ(n) + δ
)∑

i∈I∗ xi, where δ is a positive constant. This function provides
insights into scenarios where the system’s departure rate is sufficiently high, resulting in
most servers being occupied, and thus, limiting the acceptance of new jobs. More precisely,
we show that outside of a suitable compact set, the drift of this Lyapunov function is
negative. This observation implies that, with high probability, the function V2(x) remains
in that compact set.

Lemma 5.2.7. Let λ(n) = 1− β/nα ≥ 0 for α ∈ [0, 1) and β > 0. For any δ ∈ (0, β/nα),
we define the following Lyapunov function.

V2(x) = 1

(∑
i∈I∗

sixi > λ(n) + δ

)∑
i∈I∗

xi. (5.61)

If V2(x) ≥ κ for some κ > 0, then GV2(x) ≤ −δ, and furthermore, E [V2(x)] ≤ κ+ 2
nδ
, for

all n sufficiently large.

Proof. The proof follows from the same arguments as in the proof of Lemma 4.3.7 and
hence is omitted here.

Through the combination of Lemma 5.2.1 and Lemmas 5.2.5- 5.2.7, we derive the
following.

Corollary 5.2.8. Let si be a strictly increasing, concave function of i satisfying 1 = s1
1
≥

s2
2

≥ . . . ≥ sd
d
, and assume λ(n) = 1 − β/nα ≥ 0 for some α ∈ [0, 1) and β > 0. If

λ(n) ∈
(

si1+1

i1+1
,
si1
i1

)
for some i1 ∈ [d− 1], then under the equilibrium measure of the system

we have

E

[∑
i∈I∗

i

y∗i
(xi − y∗i )

2

]
≤ c

n
+

β

2
(

si1
i1

− si1+1

i1+1

)n−(α+ε) +
4(i1 + 1)

β
nε−(1−α), (5.62)

where c = λ(n)
∑

i∈I∗
i

siy∗i
+ 2i1 + 1 +

si1
si1
i1

−
si1+1
i1+1

, ε ∈ (0, 1− α) and n is sufficiently large.
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Proof. The result follows by choosing ci =
i

siy∗i
for i ∈ I∗ in Lemma 5.2.1, δ = β

2nα+ε for some

ε ∈ (0, 1−α) and κ = 1
n
in Lemmas 5.2.6 and 5.2.7, and combining with Lemma 5.2.5.

In the following theorem, we establish the asymptotic optimality of the system.

Theorem 5.2.9. Let si be a strictly increasing, concave function of i satisfying 1 = s1
1
≥

s2
2
≥ . . . ≥ sd

d
. Assume that λ(n) = 1 − β/nα ≥ 0 for α ∈ [0, 1) and β > 0. If λ(n) lies

in the interval
(

si1+1

i1+1
,
si1
i1

)
for some i1 ∈ [d − 1], then the steady-state blocking probability

of the system, denoted by Pb, converges to zero as n → ∞. Additionally, the steady-state
mean response time of jobs, denoted by E [D], converges to its minimum possible value as
n → ∞. In other words,

lim
n→∞

Pb = 0, (5.63)

lim
n→∞

E [D] =
y∗i1 + y∗i1+1

σ
=

1− si1+1−si1
σ

si1 − i1 (si1+1 − si1)
, (5.64)

where σ = limn→∞ λ(n).

Proof. The proof follows from Corollary 5.2.8, considering the rate conservation principle
and Little’s law.

5.3 Numerical Results

In this section, we present the results of our simulations conducted under the conditions of a
strictly increasing, sublinear, and concave speedup function. The simulations were repeated
100 times, each time simulating the arrival of the first 5 × 106 jobs to the system. The
system was configured with the following parameters d = 2, s1 = 1, s2 = 1.5 and various
traffic regimes including (i)α = 0, β = 0.2, (ii) α = 1/2, β = 5 and (iii)α = 2/3, β = 5.

Figure 5.1 presents the system’s performance metrics when the probabilistic job assign-
ment scheme is employed. In Figure 5.1(a), the mean response time of accepted jobs is
illustrated, while Figure 5.1(b) depicts the blocking probability of the system. Across all
traffic regimes, it is observed that the blocking probability of the system consistently con-
verges to zero as the system size n increases. Furthermore, when the system operates under
heavy traffic conditions, i.e., α > 0, the optimal solution y∗ asymptotically converges to
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(a) Mean response time of accepted (b) Blocking probability of the system

Figure 5.1: System performance metrics for different system sizes n, degree of parallelism
d = 2, speedups s1 = 1, s2 = 1.5 and various values of load parameters (i)α = 0, β = 0.2,
(ii)α = 1/2, β = 5, and (iii)α = 2/3, β = 5.

the value (1, 0) as the system size n tends to infinity. This convergence results in the mean
response time of accepted jobs converging to 1, as demonstrated by the graphs. Conversely,
when the traffic conditions are such that α = 0 and β = 0.2, the optimal solution is given
by y∗ = (0.2, 0.4), and the mean response time of jobs converges to

∑
y∗i /(1−β) = 0.75 as

depicted in the graph. These empirical results align with the theoretical findings derived
in Theorems 5.2.4 and 5.2.9, underscoring the robustness of our analysis in various traffic
scenarios.

5.4 Conclusion

In this chapter, our focus was on adaptive multi-server job systems, where the concept of a
perfect speedup in job processing time was not applicable. Our objective was to optimize
system performance in the asymptotic limit, across varying traffic regimes. When the
speedup function was strictly increasing, sublinear, and concave with respect to the number
of servers assigned to job processing, we identified the optimal system state and showed
that it is at most two-dimensional. This optimal state underscored a critical observation:
Under heavy traffic conditions, the advantages of parallelizing jobs across multiple servers
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diminish as the system size increases, and the optimal approach is to assign each job to
an individual server. Moreover, this optimal solution enabled us to represent the optimal
system with a simplified, at most two-dimensional fluid model, offering a powerful tool
for comprehending and predicting system performance. We devised a probabilistic job
assignment scheme and showed that in the large system size limit, the original system
can be approximated by this fluid model, resulting in zero blocking probability and the
minimum average response time of jobs.
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Chapter 6

Conclusions and Future Work

We conclude with a summary of the contributions of this thesis and discuss the extensions
and issues that can be addressed in future work.

6.1 Summary

In this thesis, we have focused on the design and analysis of randomized dynamic load
balancing policies in large-scale networks arising in applications such as Infrastructure-as-
a-Service (IaaS) clouds. These policies play a crucial role in efficiently allocating incoming
user requests to servers, based on job assignment schemes that are adapted to the current
state of a sampled subset of servers. The objective is to optimize system performance in
terms of specific metrics such as the mean response time of jobs and the probability of
loss. Due to complex interdependencies among servers which is caused by incorporating
system state into routing decisions and the large size of these systems, the exact analysis
of these systems is intractable. To address this challenge, we have employed relevant limit
theorems, including mean-field techniques and Stein’s approach, to study the system as
its size converges to infinity. Additionally, we have evaluated the accuracy of these limits
when applied to systems of finite size using FCLTs and Stein’s method.

In Chapter2, our focus was on the analysis of large heterogeneous processor sharing sys-
tems, where servers varied in processing speeds and were categorized into distinct groups
based on their speeds. We introduced a randomized threshold-based load balancing policy
in which servers were sampled from each different group to incorporate the inherent het-
erogeneity in the system. Job assignments were made then based on the sampled servers’
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occupancy, processing speeds, and predetermined server-specific thresholds. We showed
that this policy ensures system stability for any arrival rate strictly below the system’s
total capacity, making it a throughput-optimal system. Under certain assumptions on the
initial empirical random measure of the system, we showed that as the system size tends to
infinity, the empirical occupancy measure converges to a deterministic limit, characterized
by a set of ODEs. This deterministic system, known as the mean-field limit, offers a reliable
approximation for the system’s empirical measure over finite time periods. Furthermore,
we established the global asymptotic stability of the fixed point of the mean-field limit,
relying on the monotonicity properties of the system of ODEs. Combining these results,
we showed that the empirical stationary distribution of the system converges to this unique
fixed point in the system size limit. Consequently, we demonstrated that the asymptotic
steady-state mean response time of jobs corresponds to the response time of the mean-field
limit when it reaches its fixed point. Notably, these results proved to be independent of the
specific threshold values in the system, rendering them applicable to any load balancing
policy that conforms to the proposed framework.

In Chapter 3, we extended the results from Chapter 2 to evaluate the accuracy of
representing the empirical measure of a finite-size system by its mean-field limit. Our
focus was on large heterogeneous processor-sharing systems operating under two distinct
regimes including the heavy traffic Halfin-Whitt regime and a sub-critical regime where
the arrival rate always remains below the system’s total capacity. We introduced the
fluctuation process as the difference between the system’s empirical measure and its mean-
field limit. Using FCLTs, we showed that as the system size approaches infinity, the
diffusion-scaled fluctuation process converges to an OU process whose drift and diffusion
coefficients depend on the traffic regime and the mean-field limit. Furthermore, using
that the mean-field limit of the system exhibited local exponential stability at its unique
fixed point, we demonstrated analogous convergence results for the fluctuation process in
the stationary regime. Based on these outcomes, we established the rates at which the
empirical measure of the system approached its limit, both in transient and stationary
regimes. This rate scaled proportionally with the inverse square root of the system size
in the Halfin-Whitt traffic regime and exhibited even faster convergence in the sub-critical
regime. Additionally, we showed that the average response time of jobs in the finite-size
system followed a similar rate of convergence toward its asymptotic value.

In Chapter 4, we studied large loss systems with adaptive multiserver jobs. These jobs
had the flexibility to run on a variable number of servers, up to a maximum of d servers.
A key assumption was that the job’s processing time decreased proportionally with the
number of servers allocated to it. Within this context, we established a criterion for the
asymptotic optimality of the steady-state system in terms of the mean response time of
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jobs and the blocking probability. To achieve this, we introduced a greedy job assignment
scheme where a random subset of servers was sampled, and the number of servers assigned
to process the job depended on the available servers within this sampled subset. We
demonstrated that in scenarios where incoming jobs possessed complete knowledge of the
system state and all servers were accessible, the steady-state system approached the optimal
average response time of 1/d and zero blocking probability as the system size grew to
infinity. Furthermore, we quantified error bounds for these values in finite-size systems as
functions of the number of servers. Moreover, we studied cases where arrivals had partial
knowledge of the system state, determined upon their arrival. We showed that the system
achieves similar optimal performance measures. However, achieving this required that the
sampling size increased at a rate exceeding nα, where α represented the rate at which the
arrival rate approached its critical value and n was the number of servers. Additionally,
we extended these results to systems with multiple arrival streams, each characterized
by varying job sizes and degrees of parallelization. Remarkably, the same asymptotic
optimality results held true. Our analysis covered a range of traffic regimes, including the
mean-field regime and the (sub- and super-) Halfin-Whitt regimes.

In Chapter 5, we expanded on the results from the previous chapter, addressing sce-
narios where a job’s processing time does not exhibit a linear relationship with the number
of servers assigned to it. Specifically, we considered speedup functions that were strictly
increasing, concave, and sublinear with respect to the number of servers allocated to a job.
Firstly, we established the optimal behavior for such systems. We introduced a proba-
bilistic job assignment scheme and showed that as the system size approaches infinity, the
steady-state system achieves the optimal system performance as defined by zero blocking
probability and the minimal achievable average response time for accepted jobs. A key
result is that in heavy traffic regimes, under these conditions for the speedup function, job
parallelization does not enhance system performance. Instead, the optimal approach in
heavy traffic involves assigning each job to individual servers.

6.2 Future Work

Following the results presented in this dissertation, further research can be carried out to
address the following issues.

• An open problem in Chapter 3 is demonstrating the local exponential stability of
the mean-field limit at its fixed point, specifically in the context of heterogeneous
systems. While we delivered rigorous proof in the homogeneous case, addressing this
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question in the heterogeneous scenario remains an open challenge. Establishing this
property enhances the robustness and quality of this study.

• In Chapters 4 and 5, we considered adaptive multiserver jobs, where the length
of an undivided job follows an exponential distribution with a mean of one. We
established the asymptotic optimality of the system under various load balancing
policies, including the greedy assignment scheme for linear speed functions, and the
I-greedy and probabilistic assignment schemes for sublinear speedup functions. An
interesting question arises: Do the results carry over to the case of non-exponential
job lengths, i.e., are such state-dependent multi-rate models insensitive to the job
length distribution? We conjecture that this is indeed true and we provide numerical
evidence to support the claim below. The proof of this conjecture presents an open
challenge, requiring the construction of Markov processes on continuous state spaces
and analysis of their corresponding generators.

In Figure 6.1, we provide numerical evidence to support the insensitivity of the sys-
tem, focusing on the scenario where jobs receive sublinear speedup and the I-greedy
assignment policy is applied (as discussed in Remark 5.1). We consider three different
job length distributions: the exponential distribution, the deterministic distribution,
and the Mixed-Erlang distribution, all having the same unit mean. The Mixed-Erlang
distribution comprises sums of independent exponentially distributed random vari-
ables (referred to as an Erlang distribution) where the number of exponential phases
is equal to i ∈ {1, 2, . . . , N} with probability pi, and

∑N
i=1 pi = 1. Each exponential

phase is assumed to have a mean of 1
µp
. Consequently, we have

∑N
i=1 ipi
µp

= 1.

We calculate µp based on the given values of pi. Our system parameters are as follows:
α = 0, β = 0.2, d = 4, s1 = 1, s2 = 1.8, s3 = 2.5, s4 = 3, N = 2, p1 = 0.4, and p2 = 0.6.
With these parameters, following Remark 5.1, we find that I = 3. Consequently, the
mean response time of jobs converges to 1

sI
= 1

2.5
= 0.4.

The graphs illustrate that the system’s performance is insensitive to the exact distri-
bution of job lengths and remains asymptotically optimal for all job size distributions.

• In Chapter 5, we considered a probabilistic assignment scheme in which each incoming
job is split into i ∈ [d] sub-jobs with probabilities pi. If there aren’t enough available
servers, the job is blocked. An adjusted version of this policy involves splitting a
job into i ∈ [d] sub-jobs and in the event of an insufficient number of available
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(a) Mean response time of accepted jobs (b) Blocking probability of the system

Figure 6.1: System performance metrics for different system sizes n, sampling size k(n) = n,
arrival rate parameters α = 0, β = 0.2, degree of parallelism d = 4, speedups s1 = 1, s2 =
1.8, s3 = 2.5, s4 = 3 and various job length distributions.

servers, allowing the job to occupy any available servers left in the system. The job
gets blocked only when the system is full. This modified policy results in updated
assignment probabilities, given by

Ai(x) = 1 (nq0 ≥ i) pi + 1 (nq0 = i)
∑
j>i

pj.

Let us refer to the probabilistic policy employed in Chapter 5 as ”scheme 1”, and
the modified version introduced here as ”scheme 2”. Figure 6.2 provides numerical
evidence comparing these two policies, demonstrating that scheme 2 is also asymptot-
ically optimal and offers better results in terms of blocking probability in finite-sized
systems. Studying this modified policy further, along with analyzing its asymptotic
behavior and performance characteristics, could be a valuable avenue for future re-
search.

• The model we have introduced in Chapters 4 and 5 assumes that each incoming user
request is compatible with all the servers in the system. However, in scenarios like
file retrieval systems, where an original file is recovered from multiple data chunks
stored in parallel, jobs can only be assigned to servers if they meet specific compat-
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(a) Mean response time of accepted jobs (b) Blocking probability of the system

Figure 6.2: System performance metrics for different system sizes n, sampling size k(n) = n,
degree of parallelism d = 2, speedups s1 = 1, s2 = 1.5 and different arrival rate parameters
(i)α = 0, β = 0.2, (ii)α = 2/3, β = 5.

ibility criteria, such as having the required data. Incorporating these compatibility
restrictions into the system model remains an open challenge. An intriguing question
that emerges is: how many of the servers should be compatible with a specific type
of arrival to ensure that the system achieves asymptotic optimality? This problem
presents an avenue for further research.

• In Chapter 5, we introduced two job assignment schemes: the I-greedy and the
probabilistic scheme. Both of these policies rely on having knowledge of the arrival
rate λ(n) and system parameters si, i ∈ [d]. However, in practice, the exact speed-
up function and the precise region in which λ(n) lies may not be readily known.
An alternative approach is to employ adaptive policies that eliminate the need for
detailed system parameter knowledge. These adaptive policies determine the arrival
rate region by monitoring job blocking occurrences. We present two such adaptive
policies.

(i) In the first adaptive policy, the initial degree of parallelism is set to one. At
each arrival instance, we increment the degree of parallelism by one, with a
maximum value of d. However, once the first job blocking event occurs, the
degree of parallelism is reset to one, and the process begins again.
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(ii) In the second policy, instead of increasing the degree of parallelism with each
job arrival, we begin with the maximum degree of parallelism, which is d. If
blocking occurs, we reduce the degree of parallelism by one until there is no
blocking. We conjecture that this policy achieves a similar level of performance
as the I-greedy policy.

Importantly, these policies do not require a priori knowledge of the arrival rate and
speedup function and align well with practical applications. The analysis of these
policies remains an open problem, leading to intriguing questions regarding the sys-
tem’s performance when employing such policies.
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Appendix A

Proofs

In this section, we provide some technical proofs not included in the main text.

A.1 Proof of Compactness of the Space UM

Since the Cartesian product of compact spaces is compact, it is sufficient to show that the
space U is compact under the ℓ2-norm. Consider a sequence of elements {un}∞n=1 where
for each n,

un = (un
0 , u

n
1 , u

n
2 , ..., u

n
k , ...) ∈ U. (A.1)

For a fixed k ∈ Z+, the sequence {un
k}∞n=1 is a bounded real sequence. Thus by

the Bolzano-Weierstrass theorem, it has a convergent subsequence in R. By the pro-
cess of diagonalization, we can find a subsequence {unl}∞l=1 such that for some ũ =
(ũ0, ũ1, ũ2, ..., ũk, ...),

lim
l→∞

unl
k = ũk, ∀k ∈ Z+. (A.2)

We show that the limit ũ lies in the space U and also the subsequence {unl}∞l=1 converges
to this limit under the ℓ2-norm. From Equation (A.2), it is obvious that ũ0 = 1, and
ũk ≥ ũk+1 for every index k. Also,

131



∑
k∈Z+

|ũk| =
∑
k∈Z+

lim
l→∞

|unl
k | = lim

l→∞

∑
k∈Z+

|unl
k | < ∞. (A.3)

These conditions guarantee that ũ ∈ U. Moreover, from Equation (A.2), we can find
finite N ∈ N, such that

|unl
k − ũk| <

√
ϵ

N
, ∀l ≥ N, ∀k ∈ Z+. (A.4)

We choose l sufficiently large such that

N∑
k=1

|unl
k − ũk|2 ≤ N sup

k
|unl

k − ũk|2 < ϵ. (A.5)

By letting N to go to infinity, we get

∞∑
k=1

|unl
k − ũk|2 < ϵ. (A.6)

The above inequality holds for every positive ϵ, consequently the ℓ2 convergence holds.
Thus we have shown that every sequence of elements in the space U has a convergent
subsequence with the limit in the same space U and this completes the proof.

A.2 Proof of Lemma 2.4.3

For a fixed k ∈ Z+ and m ∈ [M ], we define x′(t) as the partial derivative of the process
x(t) with respect to uk,m. By differentiating Equation (2.16) with respect to uk,m, we get

dx′
s,l

dt
=

dl−1∑
i=1

λi

γl
(xαl+1,l)

i−1x′
αl+1,l(xs−1,l − xs,l)

M∏
j=l+1

(xαj+1,j)
dj

+
λ(1− (xαl+1,l)

dl)

γl(1− xαl+1,l)
(x′

s−1,l − x′
s,l)

M∏
j=l+1

(xαj+1,j)
dj
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+
M∑

i=l+1

λdi
γlxαi+1,i

1− (xαl+1,l)
dl

1− xαl+1,l

(xs−1,l − xs,l)
M∏

j=l+1

(xαj+1,j)
djx′

αi+1,i

− Cl(x
′
s,l − x′

s+1,l), l ∈ [M ], 1 ≤ s ≤ αl + 1, (A.7)

dx′
s,l

dt
=

λdl
γl

((xs−1,l)
dl−1x′

s−1,l − (xs,l)
dl−1x′

s,l)
l−1∏
j=1

(x⌈s−1⌉jl,j)
dj

M∏
j=l+1

(x⌊s−1⌋jl,j)
dj

+
l−1∑
i=1

λdi
γlx⌈s−1⌉il,i

((xs−1,l)
dl − (xs,l)

dl)
l−1∏
j=1

(x⌈s−1⌉jl,j)
dj

M∏
j=l+1

(x⌊s−1⌋jl,j)
djx′

⌈s−1⌉il,i

+
M∑

i=l+1

λdi
γlx⌊s−1⌋il,i

((xs−1,l)
dl − (xs,l)

dl)
l−1∏
j=1

(x⌈s−1⌉jl,j)
dj

M∏
j=l+1

(x⌊s−1⌋jl,j)
djx′

⌊s−1⌋il,i

− Cl(x
′
s,l − x′

s+1,l), l ∈ [M ], s > αl + 1. (A.8)

For the simplicity of notation, we have dropped the time argument t in the above
equations. Also at t = 0, we have

x′
s,l(0) =

{
1 , s = k, l = m

0 , otherwise
(A.9)

From [85, Lemma 3.1] with a = 2λmaxm dm
minm γm

∑
m dm + 2maxm Cm, b0 = 0, and c = 1, we

get the upper bound for the first partial derivative. If we differentiate
dx′

s,l

dt
one more time

with respect to uk,m or uk′,m′ , we can use the same Lemma 3.1 of [85] to get the upper
bound for the second partial derivative.

A.3 Proof of Lemma 3.1.1

We provide results for the operator W1,m for a particular fixed value of m ∈ [M ], em-
ploying the ℓ2-norm. Similar results for other cases can be derived analogously. Using
Equations (3.4)-(3.5) and considering the definition of ℓ2-norm, we can establish the fol-
lowing relationship for any pair of vectors u,v ∈ UM

∥W1,m(u)−W1,m(v)∥22 =
∑
k∈Z+

|(W1(u))k,m − (W1(v))k,m|2
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=
αm+1∑
k=1

∣∣∣∣∣λ(1− (uαm+1,m)
dm)

γm(1− uαm+1,m)
(uk−1,m − uk,m)

M∏
l=m+1

(uαl+1,l)
dl

− λ(1− (vαm+1,m)
dm)

γm(1− vαm+1,m)
(vk−1,m − vk,m)

M∏
l=m+1

(vαl+1,l)
dl

∣∣∣∣∣
2

+
∞∑

k=αm+2

∣∣∣∣∣ λγm ((uk−1,m)
dm − (uk,m)

dm)
m−1∏
l=1

(u⌈k−1⌉lm,l)
dl

M∏
l=m+1

(u⌊k−1⌋lm,l)
dl

− λ

γm
((vk−1,m)

dm − (vk,m)
dm)

m−1∏
l=1

(v⌈k−1⌉lm,l)
dl

M∏
l=m+1

(v⌊k−1⌋lm,l)
dl

∣∣∣∣∣
2

. (A.10)

From the inequality |a1bp1 − a2b
p
2| ≤ |a1 − a2|+ p|b1 − b2| for a1, a2, b1 and b2 ∈ [0, 1], we

get

∥W1,m(u)−W1,m(v)∥22 ≤ 3
λ2d2m
γ2
m

αm+1∑
k=1

∣∣∣∣∣
M∑
l=m

dm(uαl+1,l − vαl+1,l)

∣∣∣∣∣
2

+|uk−1,m − vk−1,m|2 + |uk,m − vk,m|2
]

+ 2
λ2

γ2
m

∞∑
k=αm+2

∣∣∣∣∣
m∑
l=1

dl(u⌈k−1⌉lm,l − v⌈k−1⌉lm,l)

∣∣∣∣∣
2

+

∣∣∣∣∣
M∑
l=m

dl(u⌊k−1⌋lm,l − v⌊k−1⌋lm,l)

∣∣∣∣∣
2


≤λ2maxl d
2
l

minl γ2
l

(3M max
l

d2l (αM + 1) + 6 + 2MK1 + 2MK2)

× ∥u− v∥22 , (A.11)

where K1 and K2 are some positive finite constants such that for each m ∈ [M ],

∞∑
k=αm+2

m∑
l=1

∣∣u⌈k−1⌉lm,l − v⌈k−1⌉lm,l

∣∣2 ≤ K1 ∥u− v∥22 , (A.12)
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∞∑
k=αm+2

M∑
l=m

∣∣u⌊k−1⌋lm,l − v⌊k−1⌋lm,l

∣∣2 ≤ K2 ∥u− v∥22 . (A.13)

So we can write ∥W1,m(u)−W1,m(v)∥2 ≤ BW1 ∥u− v∥2, where

B2
W1

= λ2maxl d
2
l

minl γ2
l

(3M max
l

d2l (αM + 1) + 6 + 2MK1 + 2MK2). (A.14)

This completes the Lipschitz property for the operator W1,m with respect to the ℓ2-
norm.

A.4 Proof of Theorem 5.2.4

According to the rate conservation law, we can express

E

∑
i∈[d]

sixi

 = λ(n) (1− Pb) , (A.15)

where Pb represents the steady-state blocking probability of the system. Since xi = 0
for every i ̸∈ I∗ and I∗ = {i1}, we deduce

E [si1xi1 ] = λ(n) (1− Pb) . (A.16)

Therefore, we have

P 2
b ≤ 1

λ(n)2
(E [λ(n)− si1xi1 ])

2

≤ 1

λ(n)2
E
[
(λ(n)− si1xi1)

2]
≤

s2i1
λ(n)2

E
[(
y∗i1 − xi1

)2]
, (A.17)

where the second inequality follows from Jensen’s inequality, and the last inequality stems
from the fact that y∗i1 =

λ(n)
si1

when I∗ = {i1}. From Corollary 5.2.3, we derive
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P 2
b ≤

s2i1
λ(n)2

2i1
n

y∗i1
i1

= 2
si1

nλ(n)
. (A.18)

Again, the last equality follows from the relationship y∗i1 = λ(n)
si1

. Note that λ(n) =

1− β/nα. If α = 0 and 0 < β < 1, it readily follows that

P 2
b ≤ 2

si1
n(1− β)

. (A.19)

Consequently, the steady-state blocking probability of the system converges to zero with
an upper bound of O( 1√

n
). If α > 0 and β > 0, as β

nα < 1 for sufficiently large n, we arrive
at

P 2
b ≤ 2

si1
n

(
1 +

β

nα
+O(

1

n2α
)

)
≤ 2

si1
n

+ o(
1

n
). (A.20)

Hence, once again, the steady-state blocking probability of the system converges to zero
with an error bound of O( 1√

n
).

Now, let us consider the mean response time of accepted jobs in the stationary regime,
denoted as E [D]. According to Little’s law, we have

λ(n)(1− Pb)E [D] = E

∑
i∈[d]

xi

 = E [xi1 ] . (A.21)

The last equality follows from the fact that only the ith1 component remains in the
steady state, as the other components have an arrival rate of zero. We already know that
E [si1xi1 ] = λ(n) (1− Pb) according to the rate conservation law. Therefore,

E [D] =
1

si1
. (A.22)

This equation shows that the mean response time of accepted jobs is equal to 1
si1

for

sufficiently large n.
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Appendix B

Useful Results

We recall in this section Theorem 1 of [84]. This result is used in the proof of Lemmas 4.3.7
and 5.2.7.

B.1 Tail Bounds

Consider a continuous time Markov chain X(t) which takes values in some countable set
X , with a stationary probability distribution π. For any two vectors x, x

′ ∈ X , let p(x, x
′
)

denote the transition probability from state x to state x
′
. For a given function Φ : X → R+

such that Eπ [Φ(X(t))] < ∞, let

νmax = sup
x,x′∈X,p(x,x′ )>0

|Φ(x′)− Φ(x)|< ∞

Namely, νmax is the largest possible change of the function Φ during an arbitrary transition.
Also, let

pmax = sup
x∈X

∑
x′∈X ,Φ(x)<Φ(x′ )

p(x, x
′
) < ∞.

Namely, pmaxis the tight upper bound on the probability that the value of Φ is increasing
during an arbitrary transition.

(i) If there exists a Lyapunov function Φ such that for any x ∈ X with Φ(x) > B,

GΦ(x) =
∑
x′ ̸=x

p(x, x
′
)
(
Φ(x

′
)− Φ(x)

)
≤ −γ,
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for some γ > 0 and B ≥ 0, then for any m = 0, 1, 2, ...,

Pπ (Φ(X(t)) > B + 2νmaxm) ≤
(

pmaxνmax

pmaxνmax + γ

)m+1

.

As a result,

Eπ [Φ(X(t))] ≤ B +
2pmax(νmax)

2

γ
.
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