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Abstract

In this thesis, we study some foundational aspects of detector models in quantum
field theory (QFT) related to signaling and localization, and we analyze certain fric-
tions with relativistic causality. We characterize the spatiotemporal information that
can be extracted from the field using various detector models in different regimes and
we define a signaling estimator, based on quantum metrology, that can be used to
quantify how much signaling can be transmitted reliably through the quantum field.
We analyze ‘impossible measurements’ scenarios in which the microcausality condi-
tion in QFT is not sufficient for blocking superluminal signaling between multiple
detectors coupled to the field.

Further, since QFT does not admit a straightforward particle or field ontology, we
ask: what do detectors detect? We answer this question by interpreting the detector’s
response in different regimes, for single-particle wavepacket states or coherent states
of the field. In the weak coupling regime, we demonstrate in detail how detector
models can be used to save particle-like phenomenology, related to the phenomenon
of resonance and ‘time-of-arrival’. In the strong coupling regime, we demonstrate how
a continuous pointer variable can get correlated with smeared field time-averages.
Finally, adapting the formalism of the quantum Brownian motion, we develop an
improved field-detector interaction model that is exactly solvable and can be used
to characterize the weak, strong and intermediate regime. Apart from an improved
description of field measurements and resonance, this models clearly demonstrates
the modulation of particle-field duality by a single tunable parameter (the coupling
strength), which is a novel feature that is in principle experimentally accessible.

Extended abstract in Greek

Η Κβαντική Θεωρία Πεδίου ενοποιεί τη κβαντική θεωρία με την (ειδική) θεωρία

της σχετικότητας και είναι η περισσότερο πειραματικά επιβεβαιωμένη θεωρία εως σήμε-

ρα. Αυτή η ενοποίηση κβαντικής θεωρίας και σχετικότητας αφορά τους νόμους της

δυναμικής εξέλιξης, ενώ μέχρι σήμερα δεν υπάρχει πλήρης και κοινώς αποδεκτή θεωρία

μέτρησης (π.χ. αναγωγή της κβαντικής κατάστασης) για τη Κβαντική Θεωρία Πεδίου

που να μην παραβιάζει τις αρχές της θεωρίας της σχετικότητας. Τα μοντέλα μέτρησης

είναι χρήσιμα εργαλεία για την περιγραφή των τοπικών μετρήσεων στην Κβαντική Θε-

ωρία Πεδίου, μέσω της τοπικής σύζευξης ενός κβαντομηχανικού συστήματος μέτρησης

(ανιχνευτή) στο κβαντικό πεδίο.
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Σε αυτήν την διατριβή μελετάμε θεμελιώδεις πτυχές των μοντέλων μέτρησης στην

Κβαντική Θεωρία Πεδίου, σε σχέση με τον σωματιδιακό εντοπισμό και την αιτιακή με-

τάδοση πληροφορίας. Αναλύουμε τις ασυμβατότητες που προκύπτουν μεταξύ των προ-

βλέψεων των μοντέλων και συγκεκριμένων εννοιών σχετικιστικής αιτιότητας π.χ. την

απαίτηση για μη υπερφωτεινή μετάδοση σήματος. Χαρακτηρίζουμε την τοπική πληροφο-

ρία που μπορεί να εξαχθεί από το κβαντικό πεδίο μέσω μιας σειράς μοντέλων μέτρησης,

για ασθενείς και ισχυρές αλληλεπιδράσεις μεταξύ του ανιχνευτή και του κβαντικού πε-

δίου, χρησιμοποιώντας διαταρακτικές και μη διαταρακτικές μεθόδους αντίστοιχα. Με

βάση τη κβαντική μετρολογία, ορίζουμε έναν νέο εκτιμητή που ποσοτικοποιεί την πληρο-

φορία που λαμβάνει ο ανιχνευτής, τον οποίο χρησιμοποιούμε για να αναλύσουμε ποιοτικά

και ποσοτικά την πληροφορία που μπορεί να μεταδοθεί αξιόπιστα μέσω του κβαντικού

πεδίου. Επίσης, μελετάμε περιπτώσεις ‘αδύνατων μετρήσεων’ [1] στις οποίες το αξίωμα

της μικροαιτιότητας στην Κβαντική Θεωρία Πεδίου δεν επαρκεί για τον αποκλεισμό της

υπερφωτεινής μετάδοσης πληροφορίας μεταξύ απομακρυσμένων ανιχνευτών που είναι

συζευγμένοι με το κβαντικό πεδίο.

Από την σκοπιά της Κβαντικής Θεωρίας Πεδίου όπως χρησιμοποιείται στην φυσική

υψηλών ενεργειών, τα κβαντικά πεδία περιγράφουν τη δυναμική και τις συμμετρίες μίας

σειράς σωματιδίων. ’Ομως υπάρχουν θεωρήματα τα οποία αναδεικνύουν ότι η Κβαντική

Θεωρία Πεδίου δεν επιδέχεται ερμηνεία μόνο με βάση την έννοια του σωματιδίου, ή μόνο

με βάση την έννοια του πεδίου. Επανεξετάζουμε τον κυματοσωματιδιακό δυισμό στην

Κβαντική Θεωρία Πεδίου με βάση την απόκριση των ανιχνευτών σε διάφορα μοντέλα

μέτρησης, και συγκρίνουμε τις προβλέψεις διαφορετικών μοντέλων για κυματοπακέτα

ή συνεκτικές καταστάσεις του πεδίου. Στην περίπτωση ασθενούς σύζευξης πεδίου-

ανιχνευτή, ανακτούμε σωματιδιακή φαινομενολογία που σχετίζεται με το φαινόμενο του

συντονισμού και του ‘χρόνου άφιξης’ του κυματοπακέτου. Στην περίπτωση ισχυρής

σύζευξης πεδίου-ανιχνευτή, δείχνουμε πώς μια συνεχής μεταβλητή του ανιχνευτή συ-

σχετίζεται με τις πεδιακές μέσες τιμές. Τέλος, με βάση επιλύσημα μοντέλα, προτείνουμε

ένα βελτιωμένο μοντέλο μέτρησης το οποίο μπορεί να περιγράψει τις περιπτώσεις ασθε-

νούς, ισχυρής, αλλά και ενδιάμεσης σύζευξης. Εκτός από τη βελτιωμένη περιγραφή

της τοπικής μέτρησης πεδίων και σωματιδίων, αυτό το μοντέλο αναδεικνύει ότι ο σω-

ματιδιακός δυισμός ρυθμίζεται από μία μόνο παράμετρο, την ισχύ της σύζευξης μεταξύ

πεδίου και ανιχνευτή. Αυτή είναι μία νέα πτυχή των τοπικών μετρήσεων μέσω μοντέλων

μέτρησης στην Κβαντική Θεωρία Πεδίου, η οποία μπορεί να διερευνηθεί και πειραμα-

τικά σε πειραματικές διατάξεις στις οποίες η ισχύ σύζευξης δεν είναι δεδομένη, αλλά

μεταβαλόμενη (π.χ. οπτομηχανική σε κοιλότητα). Συνολικά, η έρευνα αυτή συμβάλλει

στην καλύτερη κατανόηση και εφαρμογή των μοντέλων μέτρησης, με σκοπό τη συνε-

πή εφαρμογή τους στον τομέα της κβαντικής οπτικής και της σχετικιστικής κβαντικής

πληροφορίας.
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Chapter 1

Introduction

This thesis is concerned with two aspects of local quantum measurements in rela-
tivistic spacetime, that are implemented using detector models in Quantum Field
Theory (QFT):

• Localization: interpreting the spatiotemporal information that can be ex-
tracted from detection events that are localized in space and time. Addressing
questions like the following: Which field observable is being probed in a partic-
ular detection set-up? How much does this depend on the state of the field, the
characteristics of the detector and the detector-field coupling? In which cases
does the particle-like phenomenology of the detector’s response arise, and in
which cases can we measure local field averages? Or, overall, what do detectors
detect?

• Signaling: characterizing the signaling possibilities between probes that are
locally coupled to a quantum field, and identifying possible frictions with rel-
ativistic causality. Addressing questions like the following: What constraints
does relativity impose on the possible quantum operations? Are the causal
relations that are encoded in the structure of relativistic spacetime, and are
reflected in the kinematics and dynamics of the quantum field, sufficient for
preventing the probes from signaling superluminally? Which notion of rela-
tivistic causality in QFT can guaranty the causality of the detectors’ response?

Detector models are a simple and useful tool for exploring many issues relevant to
information and measurements in QFT [2]. The main example of such models is the
Unruh-DeWitt particle detector [3, 4], originally employed in the discussion of the
Unruh effect, and extensively used in the field of relativistic quantum information.
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Particle detector models, as their name suggests, were originally introduced to tackle
the challenges associated with the notion of particle in relativistic QFT, that is, to
deal with the complications that the naive notion of particle introduces in scenarios
involving non-inertial observers or curved spacetimes.

Many known arguments suggest that QFT does not admit a particle ontology
[5, 6, 7] and that detector models can be used to save particle phenomenology [6, 8].
In addition, there is controversy around field ontology [9]. We are agnostic about
the issue of QFT ontology and we make no claim that particle detector models are
fundamental. Rather, we view them as useful tools for extracting particle or field
phenomenology in certain regimes. The inapplicability of the particle concept in
relativity has motivated the pragmatic response “a particle is whatever a particle
detector detects” [10]. But since no (particle or field) ontology is straightforwardly
applicable in QFT, it is still worth asking (in a sense the inverse) question “what do
detectors detect?”. For example, it is interesting to analyze relevant cases in which
the detector’s response is insensitive to the particle content (in the Fock space sense)
of the quantum field, and establish cases in which the detector is correlated with field
(rather than particle) quantities, shedding new light to the particle-field duality.

When more than one detection events are considered, one can analyze causality
in detector models in QFT. In particular, in this thesis (and the corresponding joint
work [11, 12]) we analyze the signaling relations between detectors. The analysis
of causality in this context is seemingly independent of answering what a detector
detects. One can analyze causality by means of joint probabilities of abstract mea-
surement outcomes. These outcomes correspond to induced positive operator-valued
measures (POVM) elements (first defined in [13] and further developed in [14]) which
do not admit an obvious interpretation. In this thesis (and the corresponding joint
work [15]) we offer an interpretation of the induced POVMs by means of the field or
particle aspect of the field in certain detection set-ups, using a variety of models that
capture the weak and/or strong coupling regime. Conceptually, this can be helpful
also for analyzing the reliable transmission of information between detectors.

Overall, it is curious that the particle notion seems to be particularly problematic
in relativity, both at the level of ontology (what the theory is about) and phenomenol-
ogy (particle detection). As we will explain, QFT models that reproduce a clean
particle phenomenology introduce friction with relativistic causality. We start by
reviewing the main no-go result against particle ontology in the next subsection, to
then dive into the details of particle phenomenology in QFT measurements (chapter
4).
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No particles in relativistic quantum theory

Here I include a brief exposition of a no-go theorem by Malament [5] against the
particle concept in relativistic quantum theory (following my previous exposition in
[16]). Then, I make some remarks that are relevant for the content of this thesis.
The theorem states that any candidate of a relativistic quantum theory will include
the following elements: a Hilbert space H, the rays of which represent the pure
states of the system, a strongly continuous unitary representation U(α) in H of the
translation group α in Minkowski space M, α → U(α). Considering the foliation of
Minkowski spacetime by a family of spacelike hypersurfaces Σt in a fixed frame, we
also require an assignment of a projection operator P∆ on H for every open bounded
spatial subregions ∆ ⊂ Σ, that is ∆ → P∆. These elements, put together, comprise
what is called a localization structure (M,H,∆ → P∆, α → U(α)) and amounts to
specifying states, dynamics and measurement tools, along with the symmetries of
the underlying spacetime that we wish to represent in the Hilbert space. Note that
the theorem is only concerned with translations, and not boosts. The premises and
the conclusion of the theorem are the following (see figure 1.1):

P1 Translation Covariance: for all vectors α and spatial sets ∆ in M

it holds that P∆+α = U(α)P∆U(−α).

P2 Energy Condition: for all future directed unit timelike vectors in
M, Û(tα) = exp(−itĤ(α)). The spectrum of the self-adjoint Hamitonian
operator Ĥ is bounded from below.

P3 Localizability: for ∆1,∆2 ⊂ Σt disjoint spatial sets in the same
hyperplane Σt, it holds that P∆1P∆2 = P∆2P∆1 = 0.

P4 Locality: if ∆1 ⊂ Σt1 ,∆2 ⊂ Σt2 for t1 ̸= t2 and such that the two
spatial intervals are spacelike separated, it holds that [P∆1 , P∆2 ] = 0.

Conclusion: P∆ = 0 ∀∆.

The theorem states that the localization structure (M,H,∆ → P∆, α → U(α))
that satisfies the premises P1-P4 has trivial projectors. This means that given a
state ρ of the system, the probabilities that correspond to measurements over any
region ∆ will vanish, i.e., Prob(∆) = tr (P∆) = 0,∀ρ,∆ (independently of the size of
∆). Some remarks are in order:
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∆1

∆2

α Σt1

Σt2

Figure 1.1: By Σt we denote a set of spacelike hypersurfaces that foliate Minkowski
spacetime. ∆1,∆2 are two spacelike separated spatial subregions (∆2 does not inter-
sect the forward lightcone of ∆1) and α is a timelike vector.

• The role of the locality axiom: The locality axiom P4 is obviously stronger
than P3. The two together comprise what is also known as the microcausality
condition. P4 is the only relativistic premise of the theorem, and it is linked to
the following statement: If one performs a non-selective measurement in region
∆1, then the statistic of a measurement in region ∆2 should be unaffected.
Namely, microcausality implies that

tr (ρP∆2) = tr (ρ′P∆2) (1.1)

where
ρ′ = P∆1ρP∆1 + (1 − P∆1)ρ(1 − P∆1). (1.2)

It is easy to check that microcausality implies statistical independence in this
sense 1, by plugging (1.2) into (1.1). The relation between microcausality
and statistical independence (e.g. no-signaling) will be discussed in the next
chapters, in a QFT context.

• The role of symmetries: The theorem assumes only spacetime transla-
tions and not Lorentz boosts, so in this sense the full spacetime symmetry
of Minkowski cannot be blamed for the result. This is important for clarify-
ing that the conclusion follows due to the microcausality (and some dynamical
assumptions) and it is not an issue of Lorentz covariance. It is often assumed
that the friction comes from the fact that the non-selective state update (1.2)
is not Lorentz covariant, but this is an independent issue. A covariant state

1The inverse is trickier. In [17] one finds a general proof that microcausality is necessary and
sufficient for statistical independence of bipartite spacelike separated generalised non-selective op-
erations.
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update rule does not necessarily address the frictions that come from assuming
microcausality (after all, microcausality is an independent axiom [18]).

• The role of dynamics: P2 assumes that the Hamiltonian is bounded from
below. This is a dynamical assumption that is also typically blamed for the
result of the non-existence of a position operator in relativity. Indeed, the
proof of the theorem is making use of a non-trivial Lemma 2 which is about
how the local projectors are ‘moved around’ by the unitaries (see figure 1.1).
This lemma is exactly what links P3 with P4 (which refers to local projectors
at different hyperplanes). We will not elaborate on this more, but the moral is
that the representation of dynamics can play an important role in restricting
the measurement theory.

• Local entities vs local measurements: The moral drawn from Malament’s
theorem is typically that there is no position operator in relativistic set-ups and,
as a result, the quantum mechanical wave function of a relativistic particle can-
not be defined in Minkowski spacetime. This is because we could parameterize
the points of each spatial hypersurface in figure 1.1 by x and define the local
projectors as PVMs of a position operator with spectrum x as

P∆ =

∫
∆

dx |x⟩ ⟨x| . (1.3)

Indeed in Quantum Mechanics (QM) only the position operator has local out-
comes in terms of its spectrum, and as a result P∆ can only correspond to the
proposition ‘the particle is found in region ∆’. One could argue that the result
is in fact more general than that (see discussion in [19]) and it concerns the
possibility of local measurement records in general, not necessarily attached to
position measurements. Of course, in a full QFT set up the local projectors
would have to be linked with possible values of field-related quantities (e.g.
field amplitudes). Also, some of the premises, e.g., P3 would not hold since the
local QFT projectors are not orthogonal in spacelike separation. But this alter-
native way of viewing Malament’s theorem highlights that one’s commitment
to ontology (e.g. particle ontology) is necessarily linked to the measurement
theory that can or cannot be formulated ‘on top’ of a given theory, as well as
to the consequences that it might have for the measurement problem [19, 20].

2Let U(t) = eitH be a family of strongly continuous one-parameter group of unitary operators,
where the spectrum of the generator H is bounded from below, and P1, P2 two projector operators
such that (i) P1P2 = 0, and (ii) there is ϵ > 0 such that [P1, U(−t)P2U(t)] = 0 ∀t ∈ (−ϵ, ϵ). Then
it follows that P1U(−t)P2U(t) = 0 ∀t.

5



Relativistic causality in QFT

Many discussions of causality in QFT focus on the axiom of microcausaltiy, namely
that spacelike separated field operators commute. Nevertheless, the operational
meaning of the microcausality condition is not clear unless there is a clearly for-
mulated measurement theory 3[18, 22]. Further, there are other assumptions, e.g.
about the dynamics, that play an important role. In [23], Earman and Valente ar-
gue that a dynamical axiom (the local time-slice property) is needed in order to
enforce relativistic causality. They distinguish two aspects of relativistic causality
that are relevant to our discussion: no superluminal signaling (i.e., by performing
local operations on quantum fields) and no superluminal propagation of quantum
fields.

Assume an association of local algebras A(O) to bounded regions of spacetime
O. Then microcausality states that if two regions O1 and O2 are causally disjoint,
then the elements of A(O1) commute with the elements of A(O2). The local time-
slice property states that if O1 ⊂ O2 and O1 contains a Cauchy surface for O2, then
A(O1) = A(O2). Microcausality is a kinematical axiom that imposes an indepen-
dence or separability requirement. In contrast, the axiom of the time-slice property
concerns dynamics. Positing an axiom that imposes a dynamical constraint can ex-
clude spacelike dependencies between expectation values in one region and unitary
operations performed in a spacelike separated region by enforcing the requirement
that fields cannot propagate faster than the speed of light. Intuitively, if the fields
cannot propagate faster than the speed of light, then the effects of local operations
on the fields should not be able to propagate faster than the speed of light either.

Earman and Valente [23] argue that this intuition about needing a dynamical
axiom like the time-slice property to exclude superluminal signaling is supported by
considering classical field theories. In classical relativistic field theories, the prohi-
bition on superluminal field propagation is typically enforced by the field equations.
More specifically, the field equations are a system of symmetric, quasi-linear, hy-
perbolic partial differential equations that are associated with a set of causal cones
that typically4 do not permit superluminal propagation of the field [24]. Deter-
minism keeps the fields propagating within the causal cones. Consider the initial
value problem for a system of field equations. The specification of ‘initial’ data on

3The intuition that microcausality should suffice for causality considerations comes from scat-
tering theory (because it enforces the cluster decomposition property) [21] but beyond asymptotic
scattering it does not have an a priori operational meaning for local measurements.

4In atypical cases the causal cones of the hyperbolic partial differential equations could differ
from the null cones of the spacetime, which would in principle permit superluminal signaling [24, 23].
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a closed subset S of points in Cauchy surface Σ picks out a unique solution of the
field equations in the future and past domains of dependence of S, D(S).5 Note that
determinism is a fact about what the initial state and dynamical laws entail about
future states, not an epistemic matter of what we can know or predict.

To appreciate the role of microcausality, one needs to introduce a notion of opera-
tion. QFT by definition is a theory of local ‘observables’ that reside and dynamically
evolve in spacetime. In QFT it is far from obvious how to move from local observables
to local operations, and in fact the standard axioms of measurement theory (Born
rule, Lüders’ rule) are not part of the standard axiomatic formulations of QFT. Nev-
ertheless, algebraic QFT has traditionally been given an operational interpretation
in terms of local measurement operations [25] that are in principle implementable
in a local laboratory, but this is a schematic interpretation that is not obvious how
to apply. Indeed, in a recently proposed framework for measurement theory in alge-
braic QFT proposed by Fewster and Verch (FV framework)[26] this interpretation is
abandoned, as we argued in [27, 28].

An argument by Sorkin [1] that we will examine carefully in the next chapter
establishes that the straightforward extension of non-relativistic measurement theory
to QFT is not possible due to frictions with relativistic causality. As we will argue,
the infeasibility of idealized measurements in QFT necessitates the formulation of
measurement frameworks and models, in which some kind of probe is locally coupled
to the quantum field. Whether the causality conditions of the underlying theory
are respected or not, depends on the locality properties of the dynamical interaction
between the probe and the system. Indeed, as we emphasized in [27] the fact that the
FV framework does not reproduce the ‘impossible measurements’ (see [29]) is thanks
to the local time-slice-property. In this thesis we will focus on analyzing frictions
with relativistic causality that are introduced by considering non-relativistic models
in QFT, tracking the role of microcausality as well as the dynamical assumptions
about the field-detector couplings.

Detector models in QFT

Detector models are defined through specifying the details of the dynamical inter-
action of a detector system with the quantum field. When the detector system is
modeled as a non-relativistic quantum mechanical system, the model is not guaran-
teed to comply with the notions of relativistic causality of the underlying QFT.

5The domain of dependence D(S) of S is the set of points p such that every inextendible causal
curve through p meets S [23].
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Different aspects of the detector response depend on different field quantities.
A field theory can be equivalently described through its correlation functions. For
example, leading order in perturbation theory, the excitation probability of a single
two-level system weakly coupled to the field is a functional of the field two-point
function (Wightman function) W (x, x′) = ⟨Φ̂(x)Φ̂(x′)⟩. This functional depends on
the characteristics of the coupling and the detector system [30]. It is well known that
the Wightman function leaks outside the lightcones, but this does not imply friction
with causality. The Wightman function contains information about the dynamics,
but it is not a dynamical object, it is a correlator, and it is known that generic states
in QFT (not only the vacuum) exhibit spacelike correlations [31]. The fact that this
leakage of the Wightman function outside the lightcones does not lead to causality
issues at the level of detector models has been analyzed in the context of the Fermi
two-atom problem [32, 33].

The Wightman function can be decomposed into its symmetric and antisymmetric
parts, which depend on the anti-commutator and the commutator respectively:

W (x, x′) =
1

2
⟨{Φ̂(x), Φ̂(x′)}⟩+ i

2
⟨[Φ̂(x), Φ̂(x′)]⟩. (1.4)

It is known in the particle detector literature that, roughly, the anti-commutator part
is related to correlations (that can be extracted from the vacuum even in spacelike
separation [34, 35]) and the commutator part is related to signaling. The interplay
between the two term has been studied in the context of entanglement harvesting,
to ensure that the detectors do not get correlated through communication [36].

As we will analyze in detail, signaling between detectors is governed by the (time-
ordered) commutator [37, 12], i.e., the retarded Green’s function that is supported
in the future lightcone of the source. As a result, there is no ‘leakage’ of signaling
outside the lightcone unless the source itself is not compact. In chapter 3 we will
investigate non-trivial dependence of the signaling term on the internal states and
frequencies of the detectors. Other features of the detector’s response depend on
other Green’s functions of the field [38], all of which can be expressed in terms of the
Wightman function [39]). As it becomes more explicit in histories-based approaches,
the joint/conditional probabilities (or the signaling possibilities) of an arbitrary num-
ber of detectors depend on higher-order correlators [40]. One of the morals that we
will draw from the analysis of the Sorkin-type problem is that when more than two
detectors are involved the fact that the commutator vanishes in spacelike separation
(microcausality) is not sufficient for blocking superluminal signaling.

Finally, in this thesis, we will also consider non-perturbative methods and solv-
able models. In these cases, the analysis of causality changes, and it depends on
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the method we use to solve the dynamics of the combined field-detector system.
For Unruh-DeWitt-type detector models, we will demonstrate non-perturbative ar-
guments that rely on the causal factorization of detector-field interactions (in the
interaction picture). In solvable models like the Quantum Brownian Motion (QBM)
the dynamics is solved in the Heisenberg picture, which introduces non-trivial ‘mix-
ing’ of the degrees of freedom of the detector system with the environment. We will
not analyze the causal behavior of the QBM model (even though potential causal-
ity issues have been observed in the literature [41]) but we will draw attention to
some related features. Overall, it remains an open challenge to formulate notions of
causality that are beyond the scattering-like treatment of detector models in QFT
and beyond perturbation theory 6 (e.g. for cases in which the causal factorization of
detector-field interactions does not hold).

The content and the structure of this thesis

Chapter 2 can be viewed as an extension of the introduction, as it is based on review
material that we presented in [27, 28]. First, we identify some episodes in the early
history of QFT that are relevant for the formulation of local QFT measurements.
This is valuable for tracking the role that the scattering paradigm played in these
developments [42], and for revisiting the arguments that went into the initial debates
around quantum field measurability [43]. Then, we will explicitly present the ‘im-
possible measurements’ arguments [1, 44] as a no-go result with the logical form of a
reductio argument and investigate the consequences for measurement in QFT. This
is useful for classifying all possible responses to ‘impossible measurements’, and for
setting up the ground for analyzing ‘impossible measurements’ that are induced by
detector-field interactions in the next chapter (based on our analysis in [11]).

In chapter 3 we focus on causality and signaling in detector models in QFT.
We define a signaling estimator based on quantum metrology that captures non-
trivial dependencies of signaling on the internal states and the internal frequencies
of the detector systems. This estimator can also be used to characterize causality for
non-compact detector-field interactions, leading order in perturbation theory [12].
Non-perturbatively, we prove the causal factorization of compactly supported and
causally orderable detector-field interactions. We demonstrate that causal factoriza-
tion is sufficient for blocking superluminal signaling and retrocausation in bipartite
scenarios, but it is not enough for blocking the Sorkin-type problem.

6It is scattering-like in the sense that the detected is measured after the interaction is off (not
necessarily in the asymptotic future).
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In chapter 4 we address the question “what do detectors detect?”. For some detec-
tor systems, the question can be phrased as “when and where does a detector ‘click’,
and why?”. We demonstrate that the answer highly depends on the physical inter-
action that one chooses for probing the field’s state locally, for particle-like states of
the field that are defined by means of local creation operators [45]. Typically, fixed-
particle states of the field (e.g. wavepackets) are defined by means of the global
momentum-space creation and annihilation operators. Accordingly, the particle-like
phenomenology relies on the phenomenon of resonance, i.e., the transition between
the detector’s energy levels (‘click’) that happens when, roughly, the energy of the
wavepacket matches the detector’s energy gap. We study resonance in detail, for
the Unruh-DeWitt model as well as for a solvable model that we propose adapting
the formalism of the quantum Brownian motion (QBM). In contrast to standard
perturbation techniques, this model also recovers the relativistic Breit-Wigner res-
onant behavior in the weak coupling regime. For detector models that work in the
strong coupling regime, we show that the detector’s pointer variable is correlated
with time-extended smeared field amplitudes, and it is insensitive to the particle
content of the field’s state. Finally, we demonstrate that the solvable model based
on QBM confirms the association of field and particle properties in the strong and
weak coupling regimes, respectively, but it can also describe the intermediate regime,
in which the field-particle characteristics ‘merge’. The modulation of particle-field
duality by a single tunable parameter (the coupling strength) is a novel feature that
is, in principle, experimentally accessible.

We summarize and conclude in chapter 5. Note that most of the calculations
that go into the results presented in this thesis are in appendices in an attempt to
maintain continuity. Of course, the appendices are referenced frequently in the main
text. In the beginning of each chapter, there is a small introduction to the chapter
and summary of the main results.
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Chapter 2

Local measurements in QFT

This chapter starts with a historical flashback to the 1930’s, when QM was already
well established and von Neumann was publishing the famous axiomatic formulation
[46], which initiated quantum measurement theory as we know it today. At the same
time, QFT was in the making and people like Bohr, Rosenfeld, Landau and Peierls
were arguing about quantum field measurability, and the very concept of a quantum
field [43, 47]. The overlap between these two research fields (quantum measurement
theory and quantum field theory) has not been significant in the decades to follow,
mostly because QFT got established as a theory about scattering [42]. The no-go
argument by Sorkin (1993) [1] is precisely about the incompatibility between standard
measurement theory and QFT. Today, three decades after Sorkin’s argument and
nine decades after the initial debates, we are witnessing a convergence of the two
topics and the development of a variety of approaches to local measurement theory
for QFT [26, 14, 40, 48].

In this chapter, we briefly revisit the initial debates about quantum field measur-
ability. Roughly, Bohr and Rosenfeld were the first to argue that the mathematical
idealisation of ‘field at a point’ is not physically meaningful and that instead one
can measure field averages over extended spacetime regions by coupling suitable test
bodies to the quantum field. Then, we present Sorkin’s argument about ‘impossible
measurements’ in the form of a no-go result, to analyse the relationship between all
recent responses (including the one that we presented in [11], see section 3.3). In
the end of this chapter we motivate the introduction of detector models in QFT, as
a useful tool for modeling local measurements in QFT, before we dive into certain
aspects of detector models in the next chapters.
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2.1 Some historical episodes

Bohr and Rosenfeld’s 1933 [43] and 1950 [49] papers are two of only five references
in Sorkin 1993 [1]. Sorkin mentions them as “one of the few attempts I know of to
design concrete models of field measurements”. We will first consider the historical
context of Bohr and Rosenfeld’s papers, and then discuss Sorkin’s suggested use of
Bohr and Rosenfeld’s proposal.

The debate about quantum field measurability in the 1930’s was centered around
the uncertainty principle or, more generally, Bohr’s complementarity. First, Heisen-
berg attempted to extend the uncertainty principle to a relativistic set-up to argue
that the limitations on quantum field measurements are exactly analogous to the
ones in non-relativistic quantum mechanics [50]. Landau and Peierls [47] argued that
the limitations on quantum measurement are more severe in QFT than in quantum
mechanics, challenging the physical basis of the theory. Bohr and Rosenfeld [43]
responded to their argument, challenging their assumption of electrically charged
pointlike particles as test bodies. Instead, they argue that one must consider spa-
tially extended charged test bodies, whose atomistic structure can be ignored and
whose charge density can be adjusted. As a result, the physical predictions of the the-
ory would correspond to field averages over extended spacetime regions, and would
not rely on the idealisation of ‘field at a point’. By controlling the macroscopic charge
density of the macroscopic test body one can control the effect of local field fluctu-
ations and, envisioning a suitable compensation mechanism, the spacetime averages
of field amplitudes over bounded regions can be measured in principle (up to the
limitations that follow from the field commutation relations). The emphasis on the
macroscopic aspect of the test body that is ‘measuring’ the quantum field is in line
with Bohr’s views about quantum measurement.

The debate between Bohr & Rosenfeld and Landau & Peierls about quantum
field measurement has been characterized as the “small war of Copenhagen” [51].
This debate framed much of the discussion about the role of complementarity, the
correspondence principle, and the relation of a (not yet settled) mathematical for-
malism for measurable quantities. From 1936 to 1946, with the gradual development
and establishment of S-matrix theory by Heisenberg, there is a gradual shift from
epistemological to more pragmatic arguments in the spirit of the S-matrix program
[42]. After the renormalization of QED at the end of the 1940’s, Bohr and Rosenfeld
write the second paper on the measurability of QFT [49], where they reviewed the
proposal for measuring field averages over an extended region, and they also propose
an idealized arrangement for measuring charge-current densities over the boundary.
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The proposed arrangement involves a distribution of test bodies over the boundary
of a region for measuring the flux. They consider “the effect of the charge-current
density appearing as a consequence of actual or virtual electron pair production by
the field action of the displacement of the test bodies during the measuring pro-
cess” and determine that “these effects, which are inseparably connected with the
measurements, do not in any way limit the possibilities of testing the theory” [49].
In this second paper they do not put as much emphasis on the macroscopic aspect
of the test bodies, since for accurate flux measurements the atomistic structure of
the test bodies might come into play [52, p.411]. The issue of microscopic versus
macroscopic, as well as quantum versus classical treatment of the measuring appara-
tus, continued to be relevant in the debate surrounding quantum measurement. In
the 1960’s, Rosenfeld and collaborators (Daneri, Loinger, Prosperi, see [53]) worked
out an account of macroscopic quantum apparatus based on thermodynamical ar-
guments (‘irreversibility’ of measurement records etc.), arguing against some of the
philosophical consequences that followed from von Neumann’s (and later Wigner’s)
account of measurements, such as interpretations of the state ‘collapse’ [54].

Sorkin suggests that Bohr and Rosenfeld’s proposal for measuring smeared-field
amplitudes might provide a testing ground for Sorkin’s claim that there are ideal
measurement scenarios in QFT in which superluminal signaling is predicted to oc-
cur. Sorkin suggests that the set-up in Bohr and Rosenfeld (1933) could be used to
model ideal measurement in his proposed scenario if the ‘classical’ treatment of the
apparatus were replaced by a quantum one “in order to learn how close they come
to actually fulfilling the requirements for an ideal measurement” [1]. He elaborates
that “specifically, one can ask whether they actually measure the field averages they
claim to, and whether the probabilities of the different possible outcomes are those
predicted by the quantum formalism (with special reference to the use of the pro-
jection postulate after the first measurement, since its effect could only be seen in
a full quantum treatment).” Sorkin conjectures that the quantum version of Bohr
and Rosenfeld’s model for ideal measurements on fields in local regions will exhibit
superluminal signaling when applied to Sorkin-type scenarios.

Essentially, Sorkin is calling for Bohr and Rosenfeld’s proposed measurements of
field averages to be modified to fit into the framework of von Neumann measure-
ments, which is commonly used today. This is indeed very natural (and in section
4.1 we present how local field averages can get correlated with a continuous pointer
variable that is locally coupled to the quantum field), nevertheless, it should be
noted that Bohr and Rosenfeld’s view of quantum measurement is very different in
spirit than von Neumann’s, in which another microscopic system is coupled to the
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quantum system that is to be measured. Moreover, Bohr and Rosenfeld intention-
ally avoided adopting von Neumann’s framework for measurement, which laid the
groundwork for what is today known as quantum measurement theory [46]. Both
works were published in the early 1930’s. Rosenfeld had studied what he later called
the ‘Neumanistics’ ([54], p.30), and he later clarified that Bohr’s goal had never
been to provide a measurement theory in von Neumann’s style [54]. Nevertheless,
Sorkin’s comments on the Bohr and Rosenfeld papers raise the following questions,
that are partially addressed in the next two chapters: Does a microscopic probe that
is dynamically coupled to the field actually measure field averages, and with what
accuracy? What are the constrains imposed on the probe by the field commutation
relations? Do we get impossible measurements by suitably applying the state update
rule on probes that are locally coupled to the field?

2.2 Impossible measurements

As Sorkin’s 1993 paper “Impossible measurements on quantum fields” [1] illustrates,
the natural generalization of the non-relativistic measurement scheme to relativistic
quantum theory fails because it entails superluminal signaling. Sorkin uses a mini-
mal theoretical framework for relativistic quantum theory to construct examples of
impossible measurements. He assumes the basic elements of ideal measurement the-
ory for quantum mechanics, including Lüders’ rule for state update for non-selective
measurements. Measurement theory is adapted to Minkowski spacetime by mak-
ing the natural assumption that causal order defines a partial temporal order. The
microcausality principle that operators associated with spacelike separated regions
commute is also imposed. When the system is not being measured, the Heisenberg
picture representation for the dynamics is used. Sorkin produces examples of mea-
surement scenarios that comply with all of these requirements, yet the expectation
values for a measurement confined to one bounded region depend on the details of
a measurement that is carried out in a spacelike separated bounded region. This
conclusion is clearly unacceptable because it violates the prohibition on superlumi-
nal signaling or information transfer that is typically understood to be a hallmark of
relativistic theories.

As we shall explain, Sorkin-type impossible measurement scenarios yield a no-go
result that takes the form of reductio ad absurdum argument. Different approaches
to formulating a measurement theory for QFT can be classified according to how
they respond to this reductio argument.
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2.2.1 The reductio argument

The ‘impossible measurement’ scenarios presented by Sorkin [1] and Borsten, Jubb,
and Kells [55] are a type of no-go result. No-go results (such as Bell’s theorem,
or Malament’s theorem) have played an important role in foundations of quantum
theory because they identify a set of assumptions that cannot all be true. There
is an essential difference between no-go theorems and no-go results, like the one we
present here. No-go theorems can also take the form of a reduction argument, where
the conclusion is provable based on mathematically-stated premises, i.e., a deductive
argument. The ‘impossible measurements’ reductio argument is a more informal
argument, i.e., the conclusion is established by producing examples that fulfill all
the premises and they lead to the unacceptable conclusion. This is a significant
difference, and one that makes no-go theorems much more powerful, but for our
purposes what is important is that the informal ‘impossible measurement’ reductio
argument serves the heuristic functions of motivating and guiding the formulation of
a measurement theory for QFT.

Following the presentation of ‘impossible measurement’ examples in Borsten,
Jubb, and Kells [55], here is the reductio argument:

P1 Local degrees of freedom: An observable Ak is associated with a
region of Minkowski spacetime Ok by restriction of the field Φ to Ok [1].
We denote this as Ak ∈ A(Ok).

P2 Dynamics: When measurements are not being performed, use the
Heisenberg picture representation (i.e., time-dependence is carried by the
observables).

P3 Ideal measurement theory for relativistic quantum theory:

(a) Detection assumptions:

(i) eigenstate-eigenvalue link: the measurement outcomes are the eigen-
values of the self-adjoint operator corresponding to the observable [55]

(ii) Born rule: In a state ρ, the probability of an outcome n that corre-
sponds to a projector En is given by Prob(n) = tr(ρEn).

(b) Preparation assumption:

The state at time t′ after a non-selective measurement is determined by
applying Lüders’ rule (for non-selective measurement) to the state at time
t prior to the measurement.
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Lüders’ rule for non-selective measurement for arbitrary self-adjoint ob-
servables:

By the spectral theorem, A =
∫∞
−∞ λdE(λ) where E(·) maps Borel sub-

sets B ⊆ R to projectors on H. For a set of mutually disjoint Borel sets
B = {Bn}n∈I that covers R (with I some countable indexing set), each Bn

represents a possible bin for a measurement outcome. The correspond-
ing projectors (not necessarily rank-1) En := E(Bn) resolve the identity∑

n∈IEn = 1H. Lüders’ rule for non-selective measurement for arbitrary
self-adjoint observables:

ρ(t) → ρ(t′) := EA,B (ρ(t)) =
∑
n

Enρ(t)En (2.1)

(c) Relativistic temporal ordering:

Define the temporal ordering relation Oj ≺ Ok iff some point of Oj

causally precedes some point of Ok. Take the transitive closure of ≺.
Regions must be chosen such that this extended ≺ is a partial order (i.e.,
cannot have both Oj ≺ Ok and Ok ≺ Oj).

P4 Microcausality: IfOj andOk are spacelike separated, then [Aj, Ak] =
0 for all Aj ∈ A(Oj), Ak ∈ A(Ok).

C Conclusion: There are bounded, spacelike separated regions O1 and
O3 for which the expectation values of a measurement confined to O3

depends on which unitary operation is performed in O1.

That the conclusion of the argument follows from the premises is established by
the examples set out in the following two subsections. Premise P3 sets out the as-
sumptions of ideal measurement theory for relativistic quantum theory. Parts (a) the
detection assumption and (b) the preparation assumption are carried directly over
from NRQM. This is a generalization of Lüders’ rule for non-selective measurement
for discrete observables: For a compact self-adjoint observable A, A =

∑
n λnEn,

where λn are distinct eigenvalues and En are associated projectors onto associated
eigenspaces that resolve the identity. A selective measurement is conditioned on ob-
taining the outcome λn. A non-selective measurement is not conditioned on obtain-
ing any particular outcome. Lüders’ rule for non-selective measurement for discrete
observables: ρ(t) → ρ(t′) =

∑
nEnρ(t)En. As we will see, the notion of finite reso-

lution of the measurement will play an important role in the analysis of impossible
measurements.
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The relativistic ingredient of P3 is (c), which specifies a temporal ordering rela-
tion for regions in Minkowski spacetime. Ordering spacetime regions is much more
involved than ordering spacetime points. This is because for two spacetime points
p,q we say that p ≺ q simply if a future-directed timelike curve connects p with q
(then p causally precedes q). P3 makes use of this to define a partial order between
regions, by declaring that a region that includes p causally precedes a region that
includes q. P4 Microcausality is an uncontroversial assumption within QFT that is
also known as Local Commutativity or Einstein Causality. As Sorkin [1] notes, ≺
may be extended to some non-unique linear order. P4 Microcausality ensures that
different choices of linear order do not affect the expectation values for any sequence
of projective measurements associated with the set of regions.

The conclusion is that there are bounded, spacelike separated regions O1 and
O3 for which the expectation values of a measurement confined to O3 depends on
which unitary operation is performed in O1. A further argument can be made that
this conclusion is unacceptable because it allows for superluminal signaling. This
further argument relies on additional assumptions, including assumptions of ideal
measurement theory. As a consequence of the detection assumptions P3(a), the
probabilities for measurement outcomes in O3 are dependent on which measurements
are carried out in spacelike separated region O1. If we assume that parties can
make multiple measurements on identically prepared systems to build up statistics
following Borsten et al. [55], then in principle an observer in O3 could determine
whether a measurement was carried out in spacelike separated region O1. This
violates the prohibition on superluminal signaling or information transfer which is
typically understood to be a hallmark of relativistic theories.

2.2.2 Examples that establish the reductio argument

Sorkin offers two versions of his no-go result, a QFT version and a QM version with
qubits on Minkowski spacetime. We will begin by reviewing the QFT version and
then we will argue that the QM version is not so compelling. Consider O1 and O3, two
bounded spacelike separated regions of Minkowski spacetime, and a unitary element
of the local algebra A(O1) that is characterized by a parameter λ, i.e., Uλ ∈ A(O1).
This can be thought of as a local unitary ‘intervention’ that will transform the
state of the field |ψ0⟩ → Uλ |ψ0⟩ := |ψ1⟩. Independent of the interpretation of this
‘local kick’, prohibition of superluminal signaling entails that expectation values of
observables outside the causal future of O1 should not depend on the value of λ.
In this case of two spacetime regions, this is guaranteed by microcausality, which
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O1

O2

O3

Figure 2.1: Region O2 is a thickened hypersurface between O1 and O3.

imposes [Uλ, C] = 0 ∀λ and for all C ∈ A(O3). As a result of microcausality

⟨ψ1|C|ψ1⟩ = ⟨ψ0|U∗
λ C Uλ|ψ0⟩

= ⟨ψ0|CU∗
λUλ|ψ0⟩

= ⟨ψ0|C|ψ0⟩. (2.2)

This expectation value is independent of λ, and so the value of λ cannot be used to
signal to spacelike separated regions.

The situation changes dramatically if one considers a third region O2 ‘between’
O1 and O3 that is partially in the causal future of O1 and partially in the causal past
of O3. Roughly speaking, this third region can ‘link’ the first two in counterintuitive
ways. The region O2 is chosen by Sorkin to be a thickened hypersurface that lies in
the chronological future of O1 and in the chronological past of O3 (see Figure 2.1).
Associated with O2 is a non-selective measurement of the projector P2 = |ψ2⟩ ⟨ψ2|.
Applying the non-selective Lüder’s rule to the state |ψ1⟩ = Uλ |ψ0⟩, it is easy to see
that the expectation values of C is

⟨C⟩ = ⟨U∗
λP2CP2Uλ⟩0 + ⟨U∗

λ(1− P2)C(1− P2)Uλ⟩0, (2.3)

where we denote with ⟨...⟩0 the expectation value over the state |ψ0⟩. This expression
is equal to prob(P2 = 1)Exp(C,P2 = 1) + prob(P2 = 0)Exp(C,P2 = 0) and will
generally depend on λ. Sorkin is choosing a particular state |ψ2⟩ to be a superposition
of the vacuum and an one-particle state to demonstrate the λ− dependence, but the
details of the derivation are not important. Simply one has to notice that, in general,
the λ−dependence on the r.h.s. of (2.3) will not drop out (as it did in (2.2)) since
Uλ is guaranteed to commute with C but not with P2 ∈ A2(O2), because O1 and O2
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are not spacelike separated. This λ-dependence instantiates the conclusion of the no-
go result, since it allows for superluminal signaling between the spacelike separated
regions O1 and O3 (bacause, in principle, a signal can be encoded in the value of λ).

To fully appreciate the no-go result, it is important to analyze the role of region
O2 in terms of the premises that are laid down in the previous section. Local Com-
mutativity (P4) provides the ground for thinking of regions O1 and O3 as ‘separate’
or statistically independent in a bipartite scenario. By invoking a third ‘intervention
region’ O2 we open up the possibility of signaling between O1 and O3 (Conclusion).
This is because the non-selective measurement that is associated with region O2 up-
dates or ‘prepares’ the state over which the expectation value of C is evaluated, in
accordance with the standard rules set out in P3. More explicitly, the preparation as-
sumption (b) (Lüders’ rule) is used for the measurement over O2, while the detection
assumptions (a) go into the evaluation of the expectation value of C.

A temporal ordering relation t < t′ is needed to apply Lüders’ rule. Premise (c)
defines a relativistic temporal ordering relation, which reflects the causal structure
of Minkowski spacetime, i.e., Oi ≺ Oj if Oj is partially in the causal future of Oi.
Before the transitive closure is taken, this ordering relation does not apply for regions
O1 and O3, that is, they are not ‘comparable’ and it does not hold that O1 ≺ O3.
Based on this ordering relation we can only claim that O1 ≺ O2 and O2 ≺ O3.
Once we take the transitive closure to obtain a partial order, O1 ≺ O2 and O2 ≺ O3

implies O1 ≺ O3 and we can apply the measurement rules accordingly. Then, the
influence, or signaling, between the regions O1 and O3 is ‘mediated’ by region O2,
and it was made possible through taking the transitive closure (as Sorkin points
out in [1]). Perhaps the involvement of a third region would partially demystify the
conclusion, but from a local perspective of the observers that one could associate with
O1 and O3, the non-selective measurements over O2 should be irrelevant. Thus, one
of the problems posed by this example is the consistent description of multi-partite
measurements (involving more than two parties) in relativistic spacetimes. For an
arbitrary number of measurements, one would have to extend the partial order to a
total order (which always exists, but it is not unique).

Sorkin also offers a ‘baby’ QM version of the no-go result. In this case, there are
two qubits that one can think of as embedded over regions O1 and O3 in Minkowski
spacetime. The two qubits are initially in an entangled state, and the first one can
potentially be flipped by a local unitary operation (analogue to the local unitary
over region O1) before a global projector is applied to the total system (analogue
to the non-selective measurement over O2). Evidently, the expectation values of
observables of the second qubit (analogue to O3) will generally depend on whether
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O1
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Figure 2.2: Region O2 partially invading the future lightcone of O1 and the past
lightcone of O3.

the first qubit was flipped or not before the global operation. This is not surprising
because the global projection presupposes some notion of global access to the total
system. Sorkin suggests that this example is “in a sense ... all we need, since one
would expect to be able to embed it in any quantum field theory which is sufficiently
general to be realistic” [1].

While it is true that NRQM should somehow be related to QFT, it does not follow
that the QM example is sufficient for Sorkin’s purposes. Precisely how NRQM relates
to QFT is a non-trivial and somewhat controversial matter. It is not obvious which
features of Sorkin’s QM example should be expected to carry over to QFT. The value
of Sorkin’s quantum field theoretic example is that it clearly demonstrates which set
of assumptions adapted from NRQM cannot be transferred to QFT. Furthermore,
there are disanalogies between the two examples that seem relevant. In the case of
the two qubits there is no third ‘disjoint’ party. The ‘third’ system is simply the
total system. Of course, operations over the total system are by definition global.
In the QFT example, there is a non-trivial third party O2, seemingly ‘disjoint’ from
O1 and O3. Nevertheless, that third party is responsible for an operation which,
loosely speaking, would also ‘connect’ O1 and O3. Another disanalogy is that the
initial state of the QM system must be entangled over the qubits, while there are
no restrictions on the initial state in the QFT example. This is more obvious in an
example given by Borsten et al. that is presented in the next section, which uses a
factorized state.

At first glance, Sorkin’s QFT example that illustrates his no-go result seems to be
very particular to the choice of O2 to be a thickened hypersurface (Figure 2.1). It is
definitely bothersome, but not really surprising, that such global operations, like the
one over region O2, can cause signaling between the two spacelike separated parties.
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The global projector represents an operation that presupposes some notion of global
access to the total system. Sorkin recognizes this shortcoming of his example, but
insists that there is still a genuine problem for QFT: “in a way it is no surprise
that a measurement such as of [A2], which occupies an entire hypersurface, should
entail a physical non-locality; but surprising or not, the implications seem far from
trivial...What then remains of the apparatus of states and observables, on which the
interpretation of quantum mechanics is traditionally based?”

Unfortunately, the problem raised by Sorkin cannot be easily dismissed by sim-
ply excluding global operations. Borsten et al [55] supply examples that establish
that the problem persists for general bounded regions O2 that partially invade the
future lightcone of O1 and the past lightcone of O3, i.e., J+(O1)

⋂
O2 ̸= ∅ and

J−(O3)
⋂
O2 ̸= ∅1 (Figure 2.2). As we shall discuss in the next section, Borsten et

al. posit a general condition on allowed local operators that guarantees no-signaling
for non-selective measurement.

Some examples of seemingly innocent locally implementable operations that lead
to ‘impossible measurements’ are given in [55] (and also [56]). For finite-dimensional
Hilbert spaces, it is particularly interesting for quantum information purposes to
analyse the causal behaviour of operations that correspond to measuring observables
of the type Â⊗1+1⊗ B̂ versus Â⊗ B̂ on the tensor product of two local subsystems
H1 ⊗ H2. In [55] it was shown that the latter can be problematic, despite the
expectation that such a ‘factorized’ operation should be locally implementable in
the Hilbert space sense (by means of local operations and classical communication
(LOCC)).

2.3 Eliminating the ‘impossible’

Sorkin-type impossible measurement scenarios clearly illustrate the moral that mi-
crocausality (P4) is not by itself sufficient to rule out superluminal signaling in rel-
ativistic quantum theories. There are three general strategies for responding to a
reductio argument: (1) rejecting one (or more) of the premises, (2) adding a premise
that blocks the derivation of the conclusion, or (3) arguing that the conclusion is
only apparently unacceptable and can actually be tolerated. We will investigate the
former two approaches.

1The causal future/past J+/−(x) of a spacetime point x is the set of all points reached from x

by smooth future-directed causal curves. For a spacetime region O we write J
±
(O) =

⋃
x∈O J

±
(x)

[26].
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2.3.1 Ad hoc approach

The most straightforward response is an ad hoc one: target P1 and P3, which taken
together entail that the measurable observables include all Ak that can be obtained
by restricting the field Φ to any region O. An ad hoc resolution of the reductio can be
obtained by simply excluding any observable that can lead to superluminal signaling.
Sorkin proposes (but does not endorse) restricting the regions to which observables
may be assigned. For example, imposing the restriction that measurable observables
may only be defined on regions that are strictly causally ordered (i.e., for regions
Oj and Ok, all x ∈ Oj causally precede all y ∈ Ok or vice versa). As Sorkin notes,
it is difficult to imagine how the possibility of performing a measurement operation
could depend on spacetime in this way (see also [57]). There are presumably not
‘spacetime police’ to ensure that laboratory measurements are only carried out when
they are strictly causally ordered.

Borsten et al. [55] propose a different ad hoc resolution of the reductio that
imposes a restriction directly on the observables rather than the associated regions
(see also [56, 58]). They argue that the following condition rules out superluminal
signaling by non-selective measurements in Sorkin-type scenarios:

An operator A2 ∈ A(O2) with resolution B will not enable signaling iff (2.4)
[EA2,B(A3), A1] = 0, as an operator equation, for all A1,3 ∈ A(O1,3),

where EA2,B is the (dual) operation that is defined in (2.1) 2. One way to understand
this condition is the following: for measurements of A1 and A3 to be statistically
independent in a scenario where an operation is performed over region O2, it is not
sufficient that A1 commutes with A3, but it should commute with the outcome of the
dual non-selective map on A3 (and a given measurement resolution). Again, the logic
is that this condition is imposed for the purpose of excluding superluminal signaling.
The condition can be enforced by ‘banning’ observables A2 that do not satisfy it, or
else bringing in some notion of coarse-graining that entails a measurement resolution
that is large enough for the criterion to be met 3. Both options are ad hoc, as long
as they are demanded only to avoid superluminal signaling, and would have to be
further motivated on physical grounds. The ad hoc approach is agnostic regarding

2Comparing with (2.1), the operation in (2.4) is the dual operation, since it acts on the observ-
ables and not the states. See subsection 3.3.2 for a concrete example.

3In [59] the measurement resolution is introduced by considering Gaussian measurements. It
is pointed out that, in particular examples, the allowed accuracy of a Gaussian measurement is
determined by all future experiments. Some mechanism would have to constrain future experiments
accordingly.
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the details of how such a measurement would be implemented (model-independent)
but it provides a consistency check for a given model.

2.3.2 The detector models approach

Detector models in QFT are introduced to model the coupling of non-relativistic
quantum mechanical detector systems to relativistic quantum fields. The relativistic
quantum fields are not ‘directly’ measurable, but can only be measured indirectly
through their dynamical coupling to a controllable detector system, or probe4. This
von Neumann-like approach involves modeling the measurement as a dynamical pro-
cess, where the quantum field and the probe are suitably coupled for a finite (or
possibly infinite) time, the measurement duration. After the coupling has been
switched off (or becomes negligible), the probe can be directly measured, and quan-
tum measurement theory is applied to the detector system. The outcomes can be
translated into statements about the quantum field, at least in principle. In this
sense, the quantum field is measured by the detector system. If the detector-field
coupling is local, then the detector can be thought of as a local probe that is locally
measuring the quantum field.

The requirement that the detector system is controllable is more naturally ful-
filled if the detector is chosen to be a non-relativistic system. This means that it is
well-described by non-relativistic quantum mechanics and the measurement theory
that comes with it. Crucially, we can consider projective measurements over the
detector system with the usual Lüders state update rule and probability assignments
that correspond to each possible outcome. This is an advantage because the notion of
a measurement outcome that is associated to a finite-rank projector is typically not
available in QFT, as an implication of the Reeh-Schlieder theorem and arguments
that local algebras are generically Type III von Neumann algebras, which by defini-
tion do not contain finite-rank projectors [60, 26, 61]. It is not clear that generalizing
from projectors to POVMs addresses this problem because the spectral theorem no
longer holds, and therefore cannot be appealed to as support for the interpretation
of the probabilities as probabilities of measurement outcomes [62]. Even though it
can be a relief that the usual notion of a measurement outcome can be maintained

4Often the terms ‘detector’ and ‘probe’ are used interchangeably, especially if it is not clear
from the context whether we are modeling a macroscopic or microscopic detector coupled to the
field. A microscopic quantum mechanical system (like a spin or an atom) is commonly called a
‘probe’ of the field, while this term is not used for explicitly macroscopic detector systems (like a
superconducting qubit, see below).
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through the introduction of a detector system, the association of detector outcomes
with induced field observables is far from straightforward. Partial answers to the
question ‘What do detectors detect?’ have been given [63, 64, 13], but a systematic
account is still missing.

Originally particle detector models were introduced to extract particle phenomenol-
ogy in QFT (in curved spacetimes) related to the Unruh and Hawking effects [3, 65].
Since quantum field theories do not permit a particle ontology [66, 7], this motivated
the operational approach that ‘a particle is what a particle detector detects’ advo-
cated by Davies and others [3, 67, 7]. The Unruh-DeWitt detector model has become
a paradigm example in the field of Relativistic Quantum Information (RQI). RQI
was born out of the need to merge quantum information theory with relativity the-
ory, using tools from QFT [68, 2]. RQI describes quantum communication through
quantum fields (e.g. [69]) and the entanglement structure of QFT by locally cou-
pling multiple detectors to the quantum field (e.g.[35, 70]). In the realm of quantum
information, the notion of operations performed in local regions that is informally
used in the application of quantum mechanics becomes central. As we argue in [28],
RQI-related research has revitalized the topic of formulating local measurements for
QFT.

2.3.3 Other approaches

Fewster and Verch recently proposed a measurement framework (FV framework) for
algebraic quantum field theory (AQFT) [26], in which they adopt a ‘top down’ ap-
proach that aims to treat measurements in general and quantum field systems in
general. Both the quantum field system and the measurement probe are modeled
using AQFT. The initial motivation for this approach was to provide a framework
in which the localization properties of observables of Unruh-DeWitt detectors could
be studied [71]. Subsequently, their framework was used to addresses the ‘impossible
measurements’ problem [29]. The strategy involves rejecting many of the premises of
the ‘impossible measurements’ reductio argument as well as adding as premises ax-
ioms from AQFT. In particular, a new measurement theory for AQFT is formulated
to replace much of premise P3. In the axiomatic context of AQFT, it is recognized
that microcausality by itself is insufficient to rule out superluminal signaling for rea-
sons unrelated to impossible measurements (see [17, 23] and the discussion in the
introduction); additional dynamical axioms or assumptions are needed, like the ax-
iom of local primitive causality. An important goal of this approach is the principled
one of determining which physical principles are needed to consistently represent
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relativistic quantum systems and the measurements performed on them.

As we have stressed, the detector models approach is pragmatic in spirit. The
adoption of different approaches means that the detector models approach and the
FV framework prioritize different goals. A central goal of the detector models frame-
work is to construct models that adequately describe realistic detectors, including
detectors that can actually be built in a lab. In contrast, the FV framework has the
primary goal of supplying a framework for measurement in QFT that is generally
applicable. Many pragmatic choices are made in the course of constructing a model
for a particular detector, including the use of NRQM to model the detector, the
smearing functions and field-detector couplings, and the acceptance of FAPP argu-
ments ruling out impossible measurements. In contrast, the FV framework focuses
on formulating a fully relativistic measurement theory based on the general physical
principles of AQFT in which impossible measurement scenarios cannot arise at all.
There is a lot of interesting work to be done in (search of) the overlap of the two
approaches (see e.g. [72]), as well as interesting interpretational questions (see e.g.
[73]).

Finally, it is important to point out that Sorkin’s motivation for formulating the
‘impossible measurements’ issue is to advocate for the sum-over-histories approach
to quantum theory. As he puts it in the abstract of [1], “It is argued that this
problem leaves the Hilbert space formulation of quantum field theory with no definite
measurement theory, removing whatever advantages it may have seemed to possess
vis a vis the sum-over-histories approach, and reinforcing the view that a sum-over-
histories framework is the most promising one for quantum gravity.” To the best of
our knowledge, one cannot find a complete response to the Sorkin problem in the
histories literature, even though the problem is clearly articulated in older [74] and
more recent [75, 76] literature. Here we will simply expose Sorkin’s arguments in
favor of histories-based approaches with some comments.

Sorkin presents the following dilemma: one can either further restrict the allowed-
measurement regions and the corresponding ordering relation, or else select the al-
lowed observables on “some more ad hoc basis.” In his words, the problem is “fore-
shadowed by our need to take a transitive closure in defining ≺” (see premise P3c)
and as a result one could “further restrict the allowed measurement regions Oj in
such a manner that the transitive closure we took in defining ≺ would be redundant.
For example, we could require that for each pair of regions Oj, Ok all pairs of points
x ∈ Oj and y ∈ Ok be related in the same way” [1, p.9]. Of course, this would
block the Sorkin problem by excluding the configuration of regions in figures 2.1 and
2.2. This further restriction of ≺ would imply that one can only consider temporal
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supports that consist of spacetime regions that are pairwise related like two ‘thick-
ened’ spacetime points (fully spacelike, fully timelike, or fully lightlike), blocking the
possibility that a region partially invades the forward lightcone of another region.
This is a global restriction, perhaps an ‘all-at-once’ constraint as in [77], that is hard
to reconcile with the local perspective. As Sorkin puts it “it is difficult to see how the
ability to perform a measurement in a given region—or the effect of that measure-
ment on future probabilities—could be sensitive to whether some other measurement
was located totally to its past, or only partly to its past and partly spacelike to it”
[1]. It is also noteworthy that the initial definition of ≺ already excludes cases that
might be of physical interest, such as overlapping regions, which were considered by
Bohr and Rosenfeld in [43], and regions that intersect the causal past of each other,
which are relevant for the study of possible spacetime embeddings of general process
matrices [78]. In general, by restricting ≺ one might exclude physically interesting
cases. Finally, regarding the second possibility of restricting the allowed observables,
Sorkin points out that the inability of two coupled subsystems to signal through the
measurement of an observable that is additive suggests that one could still allow
integrals of spatially smeared observables over a spatial subset of a hypersurface (see
[76]). However, spacetime smeared fields do not possess this additive character due
to the time-extension (see, e.g., [79]).

A histories-based formalism that explicitly treats QFT measurement through the
introduction of coarse-grained pointer variables is the Quantum Temporal Proba-
bilities (QTP) formalism [80, 40]. Joint probabilities of the pointer variables are
defined by means of unequal-time correlation functions, and the consistency condi-
tion is satisfied for a certain degree of coarse-graining (see also [81]). A connection
of this formalism to the closed-time-path (CTP) integral was recently established
in [40]. In general, as is also pointed out in [75], it is not obvious in general how
to establish standard causality conditions in the path-integral formalism (‘in-out’
formalism) beyond scattering theory (see discussion in [42]). The CTP formalism
(Schwinger-Keldysh or ‘in- in’ formalism [82, 83]) is better suited for analysing the
causal behaviour of local QFT measurement, thanks to its emphasis to real-time
causal evolution [84]. Also, the QTP program demonstrates how the CTP formalism
provides the ‘right’ correlation functions that go into the definition of joint proba-
bility distributions over outcomes of coarse-grained pointer variables that are locally
coupled to the field [40]. Time is also treated as a random variable (in analogy to
stochastic processes) and time-of-arrival problems can be described accordingly. It
is work in progress to evaluate the causal behaviour in bipartite scenarios and in
multi-partite Sorkin-type set-ups using this framework, and to fully analyse how the
possibilities of signaling are encoded in the CTP correlation functions.
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Chapter 3

Detector models in QFT: frictions
with relativistic causality

In this chapter, we review the zoo of Unruh-DeWitt-type detector models in QFT,
paying careful attention to the derived or ad hoc elements that are introduced by
construction of the model. This is helpful for analyzing the signaling properties of
each variant, and identifying sources of friction with relativistic causality. We start
by analyzing signaling in general bipartite scenarios, defining a signaling estimator
that is inspired by quantum metrology. Then we analyze tripartite scenarios, to see
how ‘impossible measurements’ can arise in detector-induced measurements. As we
will argue, the advantage of the detector approach is that such a causality violation
can be quantified in terms of the relevant scales, and can be handled by specifying
the regime of validity of the model on a case-by-case basis.

3.1 Constructing detector models

Like any other model, detector models are an addition to the underlying theory and,
as a result, they are not a priori guaranteed to comply with its premises. Detector
models raise a major concern when the underlying theory is relativistic QFT: Are the
predictions of the non-relativistic model respectful of relativistic causality? This is
a justified concern, especially because the detector is chosen to be a non-relativistic
quantum-mechanical system and, as such, alien to Minkowski spacetime. From this
perspective, the non-relativistic quantum-mechanical nature of the detector seems
like a serious drawback. On the other hand, thanks to its non-relativistic nature,
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the detector system is localizable in the usual quantum-mechanical terms. First-
quantized non-relativistic systems admit a position representation, which implies
that their states will be representable, and localizable, by means of their spatial
wavefunction. Such a representation is known not to be available for relativistic
systems [5]. Relativistic quantum fields are localized in a different sense: they are
operator-valued objects that are locally defined over space and time (e.g., in AQFT by
associating algebras of observables to bounded spacetime regions [25]). Since the field
(relativistic) and the detector system (non-relativistic) enjoy very different notions
of localization, it is first important to clarify the sense in which they can be locally
coupled. The fact that issues of localization are relevant for detector models in QFT
is more explicit when one is not only considering the detector’s internal degrees of
freedom, but also the detector’s position (of center-of-mass, see e.g. [65, 85, 86, 87]).

There is a zoo of detector models in the literature. The simplest version of
the Unruh-DeWitt (UDW) model involves a scalar quantum field coupled to a non-
relativistic quantum system (e.g. a two-level system, a harmonic oscillator, or an
atom). There have been attempts to extend the model beyond the scalar field, e.g.,
to spinor fields [88], but this complication is not relevant for our purposes. Also,
for simplicity, we will only refer to the case of linear coupling between the detector
and the field, even though more complicated couplings, e.g., quadratic, have been
investigated in the literature [88, 89, 90]. A careful treatment of the modeling of
light-matter interaction with UDW-type detectors beyond the scalar approximation
can be found in [91].

Perhaps the most well-known detector model that has been considered in this
literature is the pointilke UDW detector model, in which it is assumed that the
detector is coupled to the field over a timelike trajectory. This is prescribed by the
interaction Hamiltonian that generates translations with respect to the proper time
τ associated to the detector’s trajectory. In the interaction picture, this Hamiltonian
is given by

Ĥint = λχ(τ)µ̂(τ)⊗ ϕ̂(x(τ)). (3.1)

Here λ is the coupling strength, χ(τ) is the switching function, which is usually
assumed to be integrable, and x(τ) is the trajectory of the detector parametrized
by its proper time τ . The Hamiltonian couples the field along the worldline of the
detector to an internal degree of freedom of the detector µ̂. In the case that the
detector is represented as a two-level system with energy gap Ω, µ̂ is the monopole
operator µ̂(t) = eiΩtσ̂+ + e−iΩtσ̂− where σ̂± the operators that map between the
ground and excited state. The point-like model can exhibit ultraviolet divergences
related to the coincidence limit of the time-ordered n-point functions. One strategy
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for avoiding the divergences of the point-like model is to introduce a finite extension
of the detector-field interaction through a smearing, but as we will see this introduces
issues with the covariance and the causality of the model that are due to the extension
of the interaction and are absent in the point-like model [92, 11].

The simplest generalization of the point-like interaction Hamiltonian (3.1) in-
volves a linear coupling between the detector observable µ̂(t) and the scalar field
operator ϕ̂(t,x)

Ĥint = λχ(t)µ̂(t)⊗
∫

dxF (x)ϕ̂(t,x) (3.2)

where the switching function χ(t) models the duration of the interaction between
field and detector and the smearing function F (x) specifies the spatial extension of
the interaction (in the proper frame of the detector system) [93, 94]. The support
of these functions specifies the spacetime region O over which the detector is cou-
pled to the field, i.e., O = suppχ(t)F (x). If both the smearing and the switching
functions are compactly supported, then the interaction region O is bounded. Note
that the interaction region need not coincide with the (initial) localization region of
the quantum-mechanical detector system. Commonly both functions (switching and
smearing) are introduced as a phenomenological input of the model, especially when
the detector system is macroscopic. The switching is modeling the mechanism for
switching the interaction on and off, whenever such mechanism is available, 1 and the
smearing is modeling the ‘size’ of the interaction, which in general will not coincide
with the apparent size of the detector.

It is perhaps curious that even in the case of an explicitly macroscopic detector
system (e.g. in superconducting circuits [95]) the physical intuition that ‘the interac-
tion happens where the detector is’ is not fulfilled. In [95] the authors investigate the
model-dependence of the predictions for different smearing functions and different
cut-off functions that determine ‘how many’ field mode functions are relevant for the
detector-field interaction. The result suggests that, in this case, the real shape and
size of the macroscopic detector do not affect the prediction as much as the choice of
a UV cutoff. This means that one can directly model the feature of finite extension,
based on mathematical convenience, without worrying about how the microscopic
details of the detector affect the smearing function. In other studies, where the de-
tector is explicitly a microscopic probe (e.g. the electron of an atom coupled to the
quantum electromagnetic field), the smearing function has been associated with the
microscopic nature of the probe (e.g., the orbitals of a hydrogen atom interacting

1For elementary interactions the switching function is harder to motivate, since, for example,
the coupling of an electron coupled to the electromagnetic field cannot be ‘switched off’.
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with the electromagnetic field in a light-matter interaction [70]). It is common to at-
tribute the smearings to the detector (e.g. ‘smeared’ detector as opposed to pointlike
detector) even though smearing the field operator is more accurate mathematically.
Conceptually, it is preferable to attribute the smearing (the ‘shape’ of the interac-
tion) to neither the detector nor the field but to their joint interaction. As they
put it in [95], “the shape of the qubit cannot be determined just with an individual
description of the qubit itself. Rather, this shape belongs neither to the qubit nor to
the line but to both of them in interaction with each other, constituting a property
that becomes evident and relevant in and through interactions between the relevant
quantum systems”.

Overall, the choice of switching and smearing functions is a crucial input of the
model that can critically affect its predictions. This choice can be motivated by the
underlying (i.e., microscopic) physics, first principles, mathematical convenience, or
even aesthetics. On mathematical grounds, the smearing functions were first intro-
duced as a cure to the UV divergences of the point-like model [4] where the detector
interacts with the field in a point-like manner. The UV divergences of the point-like
model come from the distributional character of the ‘field at a point’. Concretely, the
response function of a detector at leading order in perturbation theory is a function
of the field’s Wightman function and can be regulated in different ways through the
introduction of suitable switchings and smearings [96, 97]. In this literature, it is typ-
ical that the smearing depends on a regulator ϵ (e.g., Gaussian/Lorentzian function)
for the purpose of regularizing the response of a point-like detector (e.g., excitation
probability) in the limit ϵ→ 0 [96]. Without taking the limit, an infinitely extended
smearing function is unphysical since it implies a ‘non-local’ coupling between the
field and the detector in all space.

Finally, let us consider the ‘covariant’ generalization of the Unruh-DeWitt inter-
action Hamiltonian [94, 92], where the switching and the smearing come together to
form a spacetime smearing function Λ(x) e.g. Hint(t) = λ

∫
dV Λ(x)µ̂(τ(x))⊗ ϕ̂(x). In

this interaction Hamiltonian both the field and the detector operator are ‘smeared’
by Λ in the sense that the detector inherits spatial dependence through its proper
time τ = τ(x) in a general reference frame with coordinates x. For example, if we
are considering Lorentz boosts in Minkowski spacetime, µ̂(τ) = µ̂(γ(t − vx)) in a
boosted frame with coordinates (t,x). The detector observable µ̂ is only time- (and
not space-) dependent in its proper frame, where the spacetime smearing function
factorizes like Λ(x) = χ(τ)F (x) in terms of the switching and the smearing func-
tions. The time duration and the spatial extension of the interaction can only be
defined separately in the detector’s proper frame (e.g. Fermi normal coordinates in
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curved spacetime [92]), while they mix in a general reference frame [93, 94, 98]. This
‘covariant’ form of the interaction Hamiltonian was proposed in [94] for a consistent
description of detector physics in curved spacetimes, even though the model fails to
be fully covariant due to the non-relativistic nature of the detector [92].

To give a definition of what we mean by a non-relativistic detector model, it will
be useful to write the interaction Hamiltonian (density) in the following general form
that we introduced in [11] (see also [80])

ĥ(x) = λΛ(x)Ĵ(x)⊗ ϕ̂(x) (3.3)

where Ĵ(x) is a current operator that is associated with the detector. This form of
the interaction Hamiltonian covers the zoo of detector models that one finds in the
contemporary literature (see [80]). In principle, the detector current (through which
the particle detector couples to the field) could be derived using an effective field
theory approach (e.g.[80, 99, 100]). We say that the detector model is non-relativistic
if the detector current is not microcausal over the extension of the interaction region,
that is, if [

Ĵ(x), Ĵ(x′)
]
̸= 0 where x, x′ ∈ O are spacelike separated. (3.4)

This characterization is not about the state of motion of the detector system (how
fast it accelerates) or whether it is described by field degrees of freedom. It has
to do with how we ‘embed’ the detector’s dynamics in spacetime. For example, a
detector system that is described by many discrete degrees of freedom e.g. by the
non-relativistic QFT that is used in condensed matter physics will not satisfy (3.4).
Or a smeared detector model whose internal dynamics is defined by non-relativistic
quantum mechanics will not satisfy (3.4) independently of its state of motion.

In general, the microcausality condition (3.4) will not be satisfied by the detector
current operators when one considers spacelike separated points within the exten-
sion of the interaction region O = suppΛ due to the non-relativistic dynamics of
the detector system [11]. This observation will become important when analyzing
the frictions with relativistic causality in the following subsections. Note that the
pointlike detector model trivially satisfies (3.4) and is fully causal, since there are
no spacelike separated points over the detector’s timelike trajectory. Nevertheless,
as we mentioned above, the pointlike model suffers from divergences. We see that
there is a trade-off between the divergent behavior and the causal behavior of the
models: attributing extension to the detector system for avoiding the divergences
leads to frictions with relativistic causality. In the next sections we will describe how
this can be managed in the context of detector models.
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3.2 Signaling between detectors

As we discussed in the previous chapters the relativistic QFT satisfies several notions
of relativistic causality at the kinematical and dynamical level. The microcausality
is a kinematical condition that roughly states which spacetime regions are in a sense
‘independent’. We also discussed that detector models are not necessarily respectful
of the notions of relativistic causality of the underlying theory. This raises the
question: are the signaling relations between detectors coupled to the field sufficiently
constrained by microcausality, or other dynamical assumptions for the QFT? Does
microcausality prevent two detectors that are coupled to the field over spacelike
separated regions from signaling to each other? We will answer these questions in
the general case, including detector-field interactions that are non-compact in space
and time (e.g. always ‘on’) and cases in which more than two detectors are involved.

3.2.1 The role of microcausality

Consider two detectors in spacelike separated regions. For example, consider two
two-level systems A,B coupled to the field through the interaction Hamiltonian

Ĥint =
∑
ν=a,b

λνχν(t)µ̂ν(t)⊗
∫

dxFν(x)ϕ̂(x, t) (3.5)

Since the two detectors are not directly coupled to each other, the question is: how
much signaling can be ‘transmitted’ through their coupling to the quantum field?
Does microcausality prevent them from signaling superluminally?

Previously, it was shown in [37] that after A and B have interacted with the field,
and assuming that A interacts with the field before B in some reference frame 2, the
state of detector B at leading order in perturbation theory is

ρ̂(2)b = λaλbρ̂
(2)
b,signal +

∑
ν=a,b

λ2ν ρ̂
(2)
ν,noise (3.6)

where the noise term is local on detector B, and all the influence of the presence of
detector A on detector B’s density matrix is captured by the ‘non-local’ term that is
proportional to λaλb. This signaling part of the density matrix can be written as

ρ̂
(2)
b,signal = 2

∫
dtdt′χa(t)χb(t

′)C(t, t′)d̂(t, t′) (3.7)

2As we will see next, this is a non-trivial assumption that does not hold in the general case when
the switching functions are not compactly supported over two distinct time intervals.
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where
C(t, t′) :=

∫
dxdx′Fa(x)Fb(x

′)⟨[ϕ̂(t,x), ϕ̂(t′,x′)]⟩. (3.8)

Without going through the details (since we will generalize these expressions below),
in (3.7) we denote as d̂ an operator on the Hilbert space of B that depends on the
states and the internal frequencies of the detectors A,B. The important point is that
if both smearings are compactly supported, the integrations in (3.7) and (3.8) are
performed over two disjoint and spacelike separated spacetime regions, suppχaFa and
suppχbFb. Then, microcausality guarantees that the field commutator vanishes in
spacelike separation, and there is no superluminal signaling between the two detectors
at second order in perturbation theory [37]. In the case of point-like interactions,
this argument can be extended to higher orders in perturbation theory 3 [101].

In [12] we generalized (3.7) and (3.8) for general detector models (possibly in
curved spacetimes) using the Hamiltonian density (3.3)

Ĥint(τ) =
∑
ν=a,b

λν

∫
E(τ)

dEĴν(x)⊗ ϕ̂(x). (3.9)

E(τ) is a one-parameter family of spacelike surfaces, where τ is a global function
whose level curves represent the planes of simultaneity of the detector’s center of
mass and (under some assumptions [94]) τ is the detector’s proper time. dE denotes
the family of induced measures on the surfaces E(τ). Note that we have assumed
that the two detectors share the same proper time. Also, for convenience, we have
absorbed the spacetime smearing function in the definition of the detector current
operator, i.e., Ĵν(x) := Λν(x)Ĵν(x) (comparing with (3.3)).

If we assume that the state is initially uncorrelated, i.e. ρ̂initial = ρ̂a ⊗ ρ̂b ⊗ ρ̂ϕ,
the general expression for signaling is (derived in appendix A.2)

ρ̂
(2)
b,sign = −i[Σ̂, ρ̂b] where Σ̂ =

∫ ∫
dV dV ′ ⟨Ĵa(x

′)⟩Gr(x, x
′)Ĵb(x), (3.10)

and where Gr(x, x
′) is the retarded Green’s function

Gr(x, x
′) = −iθ(τ(x)− τ(x′)) ⟨[ϕ̂(x), ϕ̂(x′)]⟩ . (3.11)

We see that, for general switching functions (dropping the assumption that the
switching functions are compactly supported and non-overlapping), the role of the
field commutator in (3.8) is played by the field’s retarded Green’s function in (3.10).

3In [11] we provided a non-perturbative argument for no-signaling based on the causal factor-
ization of compactly supported (spacelike separated) detector-field interactions (see section 3.3).
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The operator Σ̂ can be understood as the current associated with detector B
smeared by the propagated expectation value of the current associated with detector
A. In the case of the massless Klein-Gordon field in a 3+1 dimensional flat space-
time, for instance, the propagator takes the familiar form of the Lienard-Wiechert
potentials

Gr[⟨Ĵa⟩](t,x) =
∫

d3x′ ⟨Ĵa⟩ (tr,x′)

2|x− x′|
(3.12)

where tr = t − |x′| is the retarded time. We see that the operator Σ̂ carries all
the information about the signaling from detector A to B. In the next section we
demonstrate that the variance of Σ̂ bounds the Fisher information of B, i.e., the
information that detector B can ‘learn’ about the coupling of A to the same quantum
field.

Notice that if the ‘source’ ⟨Ĵa(x
′)⟩ is spacelike separated from the ‘receiver’ Ĵb,

Σ̂ is the zero operator and there is no superluminal signaling. This is because
Gr(x, x

′) ⟨Ĵa(x
′)⟩ is supported in the future lightcone of A’s interaction region. Nev-

ertheless, it is quite common in the detector literature to use smearing functions
that are not compactly supported. For example, Gaussian smearings are chosen for
the sake of computational convenience and analytical results. In their seminal paper
on the Unruh effect [65], Unruh and Wald introduce the coupling of the position
operator x̂t (e.g. of an electron) to the field as

Ĥint = λχ(t)

∫
dx ϕ̂(t,x)⊗ δ(x− x̂t). (3.13)

In this interaction Hamiltonian, the field operator is defined over the spectrum
of the position operator of the non-relativistic particle, and the particle’s current is
Ĵ(x) = χ(t)δ(x− x̂t). This type of interaction Hamiltonian can resemble the dipole
coupling in the light-matter interaction [70, 64]. To make sense of this (3.13) it is
useful to bring it in a more familiar form by representing δ(x− x̂t) in the detector’s
Hilbert space. The Dirac delta distribution δ(x− x̂t) is defined over an (interaction
picture) orthonormal basis {|it⟩} of the Hilbert space of the detector:

δ(x− x̂t) =
∑
ij

⟨it|δ(x− x̂t)|jt⟩ |it⟩⟨jt|

=
∑
ij

∫
dnx′⟨it|δ(x− x̂t) |x′

t⟩ ⟨x′
t| jt⟩ |it⟩⟨jt|

=
∑
ij

ψ∗
i (x)ψj(x) |it⟩⟨jt| . (3.14)
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If we define Fij(x) = ψ∗
i (x)ψj(x) the interaction Hamiltonian (3.13) becomes

Ĥuw = λχ(t)
∑
ij

∫
dnxFij(x)ϕ̂(t,x)⊗ |it⟩ ⟨jt| (3.15)

which consists of multiple terms of smeared field operators coupled to rank-one de-
tector operators that correspond to all possible transitions between the elements of
the basis {|it⟩}, which we can understand as the eigenstates of a chosen observable.
Note that the smearing function of the field operator is not introduced by hand in
(3.15), in contrast with (3.5). The smearing functions Fij(x) are not a freedom of the
model, and instead they are determined by the kind of transition we are interested
in.

The expectation value of the current in (3.13) is

⟨Ĵa⟩ (x) = χa(t) ⟨δ(x− x̂a
t )⟩ = χa(t)|ψa(t,x)|2. (3.16)

If we plug this current into (3.10) we see that there is non-zero signaling even if the
detectors are ‘centered’ in spacelike separation. Intuitively, the detectors are ‘over-
lapping’ even when in spacelike separation due to the quantum-mechanical ‘tails’.
These ‘tails’ are obscuring relativistic causality when the detectors are put in contact
with the underlying relativistic QFT. This contact between the non-relativistic de-
tector system and the relativistic quantum field is a unique feature of non-relativistic
detector models.

As we will see next, in [12] we analyzed and quantified the apparent causality
violations introduced by two detectors that are mostly spacelike separated (when the
overlap of their ‘tails’ is ‘small’) from the perspective of quantum metrology. Perhaps
counter-intuitively, the causal ‘overlap’ depends not only on how fast the tails decay
and on the characteristics of the spacetime, but also on the internal characteristics of
the detector systems (e.g., the internal frequencies Ωa,b). Nevertheless, one can derive
frequency-independent bounds to the information that B can gain for detector A’s
interaction with the field [12]. Quantifying this cross-talk between distant detector
systems is important in the analysis for entanglement harvesting, for which one needs
to distinguish between genuine harvesting and the correlations that are established
through communication [102, 36].

3.2.2 Signaling estimator

In this section, we generalize the signaling estimator defined in [37] for general de-
tector models, beyond the assumption of compact support for the interaction and
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for general globally hyperbolic spacetimes. For this purpose, we define a signaling
estimator based on an adapted version of the quantum Fisher information to per-
turbative regimes. In the previous section, we showed that the signaling between
two detectors is governed by the operator Σ̂ in (3.10). This definition, without fur-
ther assumptions, is merely formal. Indeed, given an arbitrary globally hyperbolic
space-time, the retarded Green’s function Gr is guaranteed to exist as an ordinary
distribution acting over compactly supported functions [103]. Therefore, it is not a
priory guaranteed that the expression (3.10) makes sense if, e.g., the mean value of
Ĵa(x

′) is not compactly supported. However, it is known that this is not a problem in
many of the common cases studied in the literature whenever there are no infrared
ambiguities in the theory.

In the spirit of [37] one could be tempted to define a signaling estimator as the
norm of the operator Σ̂ or ρ̂(2)b,signal in (3.10) 4. While this would be always well-defined
for finite-dimensional particle detectors (e.g. two-level systems), this may not be well-
defined for more general models (e.g. harmonic oscillators [104]). In particular, the
operator Σ̂ involves the smearing of the operator Ĵb(x), which does not have well-
defined support as an operator in general. To build a meaningful signaling estimator
for the general case, we are forced therefore to specify the particular configuration
of the state of the detectors.

In what follows, we will define a signaling estimator based on quantum metrol-
ogy [105], which is precisely concerned with the estimation of a parameter that is
(dynamically) encoded in the state of a quantum system. Based on this signaling
estimator, we will claim that there is no signaling if B cannot access the parametric
information that is encoded in the state of detector A after its interaction with the
field. To make it more concrete, we will establish that there will be no signaling
if B cannot infer the value of the coupling constant λa through its local statistics,
following the logic of local quantum estimation [105].

A core concept in parameter estimation in quantum metrology is the so-called
quantum Fisher information [105, 106]. Given a family of density matrices that are
dependent on some parameter, say λ, the quantum Fisher information yields lower
bounds on the variance of the distribution of possible values of λ given some certain
measurement statistics on the system. When the quantum Fisher information is
close to zero, the statistical variance of the optimal parameter estimation grows to
infinity, which is a consequence of the Cramer-Rao bound [105].

4Note that, ρ̂(2)b,signal is self-adjoint, but it is not guaranteed to be positive, as it can be seen from
(3.10).
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In our case, we are going to consider the dependence of the partial state of detector
B on λa so that the quantum Fisher information estimates how much the information
about whether A coupled to the field or not (and how strongly) is accessible to B.
Note that the whole influence of any parameter of A on B is conditional to the
coupling constant λa being nonzero. We will make direct use of the following result:
given a one-parametric family of density matrices ρ̂(λ) =

∑
pm(λ) |m(λ)⟩⟨m(λ)|, and

a generator Ĥ such that
i∂λρ̂(λ) = [Ĥ, ρ̂(λ)], (3.17)

the quantum Fisher information at λ is defined as F(λ) = tr(∂λρ̂(λ)L̂λ) where L̂λ
the symmetrized logarithmic derivative of ρ̂(λ) [107]. In terms of the eigenstates and
eigenvalues of ρ̂(λ) the Fisher information can be written as (for detailed derivation,
see [106])

F(λ) = 2
∑

{pl+pm>0}

|⟨l|∂λρ̂(λ)|m⟩|2

pl + pm
, (3.18)

where the summation happens over l,m such that pl + pm > 0 and we have dropped
the λ dependence to simplify the notation. Then, the Fisher information is bounded
by the variance of the generator F(λ) ≤ 4(∆ρ̂λĤ)2 [106].

Since in our setup the relevant parameter is the coupling strength of detector A
and our signaling estimator will be defined around the regime of weak couplings, we
can expand the Fisher information at the lowest orders in the coupling constants and
compute the Fisher information around the value λa = 0. To be more explicit, we
are interested in the estimation of the parameter λa (close to zero) from the local
statistics of B after the interaction, at leading order in perturbation theory. From
equations (3.6), (3.10), we find that

∂λa ρ̂b(λa)|λa=0 = −iλb[Σ̂, ρ̂b] + O(λ2b), (3.19)

since λb is a constant that does not depend on λa. It is easy to see by direct
substitution of (3.19) in (3.18) that the expression for the Fisher information of
detector B with respect to the parameter λa is given by

Fb(λa)|λa=0 = 2λ2b
∑

{pl+pm>0}

(pl − pm)
2

pl + pm

∣∣∣⟨l|Σ̂|m⟩
∣∣∣2 + O(λ3b). (3.20)

Note that at leading order, the change on ρ̂b(λa) with λa is given by taking the
commutator with the self-adjoint operator Σ̂, which means that at leading order the
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dependence on λa is given by the action of a unitary with generator Σ̂. When the
family of density matrices is generated by the action of a unitary group over a pure
state, it holds that the quantum Fisher information coincides with four times the
variance of the generator of the unitary [106]. This means that, at leading order,

Fb(0) = 4λ2b

(
⟨ψb|Σ̂2|ψb⟩ − ⟨ψb|Σ̂|ψb⟩

2
)
+ O(λ3b). (3.21)

When the unitary group acts over general mixed states, the variance gives an upper
bound for the quantum Fisher information [106]

Fb(0) ≤ 4λ2b

(
⟨Σ̂2⟩ρ̂b − ⟨Σ̂⟩

2

ρ̂b

)
+ O(λ3b). (3.22)

Therefore, we can define the following signaling estimator

S = ⟨Σ̂2⟩ρ̂b − ⟨Σ̂⟩
2

ρ̂b
, (3.23)

namely, the variance of Σ̂, generalizing the estimator defined in [37] to unbounded
operators. In our case, the Fisher information estimates signaling by bounding the
information that one detector can ‘learn’ about the coupling of other detectors to
the same quantum field. Note that (3.23) is exact (at leading order) for initially pure
detector states and provides an upper bound if the initial states are non-pure, as in
(3.22).

For the purposes of quantifying whether the setup is devoid of apparent superlu-
minal signaling, having an upper bound to the Fisher information is enough. Con-
cretely, the predictions of a given model are reliable if the upper bound is sufficiently
‘small’ given the initial states of the detectors and the choice of background space-
time. In this sense, this estimator defines the regime of validity of each model.
Nevertheless, this estimator may not be faithfully estimating the amount of signal-
ing that the sender can transmit to the receiver, if simultaneously the variance is
large, the detectors’ operators are not bounded and the initial states are mixed. In
that case, to obtain a faithful measure of signaling one would have to calculate the
actual Fisher information (i.e., not only its upper bound) which can be involved
depending on the model under consideration.

Substituting Eq. (3.10) into the signaling estimator (3.23), we get

S =
1

2

∫∫
dV dV ′ Gr[⟨Ĵa⟩](x)Gr[⟨Ĵa⟩](x′) ⟨{Ĵb(x), Ĵb(x

′)}⟩

− (Gr[⟨Ĵb⟩ , ⟨Ĵa⟩])2, (3.24)
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where {·, ·} denotes the anti-commutator and

Gr[⟨Ĵb⟩ , ⟨Ĵa⟩] =
∫

dV Gr[⟨Ĵa⟩](x)⟨Ĵb(x)⟩ (3.25)

is the ‘overlap’ of the expectation values of the currents, convolved with the retarded
Green’s function. This estimator captures the main features outlined in [37] to
quantify signaling. A first consistency check is that, indeed, if the functions ⟨Ĵa⟩ (x),
⟨Ĵb⟩ (x), and ⟨{Ĵb(x), Ĵb(x

′)}⟩ are compactly supported, and if the support of these
functions are space-like separated with respect to each other, then the estimator is
zero, i.e., there is no signaling between strictly spacelike separated detectors.

The signaling estimator will not be zero if these functions are not compactly
supported, but one would expect that detectors that are, in some sense, ‘centered’
(or ‘strongly’ supported) around a region cannot significantly influence events outside
the future lightcone of this region. Therefore, for any notion of effective localization
of a detector, we can define a notion of effective lightcone based on the signaling
estimator (3.24). Roughly speaking, two detector interactions ‘centered’ in spacelike
separation can be considered to be effectively spacelike separated if the estimator is
negligible. It is useful to consider some examples in which non-compact smearings or
switchings arise, to examine which quantities contribute to the signaling estimator
between two distant systems. Also, to appreciate the role of the internal dynamics
(e.g. the internal frequency of a two-level system, or the spreading of a particle’s
wavefunction).

Example: two two-level systems interacting with the field

Consider the case of two Unruh-DeWitt detectors that interact with a quantum
field in a curved spacetime background. In the case of Unruh-DeWitt detectors, the
currents can always be written covariantly as

Ĵν =
∑
s=±1

Λsν σ̂
s
ν (3.26)

where the detector index ν ∈ {A,B} and where we have defined

Λsν(τν ,xν) = χµ(τν)Fν(xν)e
isΩντν (3.27)

for two different set of coordinates (τν ,xν) for ν ∈ {A,B}. The operators σ̂±1
ν := σ̂±

ν

represent the ladder operators associated with each two-level system.
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Given this decomposition, the operator Σ̂ can be written as

Σ̂ =
∑

s,s′=±1

σ̂sb ⟨σ̂sa⟩Gr[Λ
s
b,Λ

s′

a ]

=
∑

s,s′=±1

σ̂sb ⟨σ̂sa⟩ I(s′Ωa, sΩb), (3.28)

where we have defined

I(s′Ωa, sΩb) := Gr[Λ
s
b,Λ

s′

a ]. (3.29)

Then, from the definition (3.23), the signaling estimator for this model is given
by the variance of the operator Σ̂ in equation (3.28)

S =
∑

s,s′=±1

⟨σ̂sa⟩⟨σ̂s
′

a ⟩
[
I(sΩa,Ωb)I(s

′Ωa,−Ωb)

−
∑

u,u′=±1

⟨σ̂ub⟩⟨σ̂u
′

b ⟩I(sΩa, uΩb)I(s
′Ωa, uΩb)

]
. (3.30)

Note that, in the case of two-level systems, one can maximize the signaling be-
tween the detectors for all possible states (the optimal value Smax will play a fun-
damental role in what follows). Indeed, we notice that the second term is negative
and vanishes for ⟨σ̂±

b ⟩ = 0. Then, if we write the expectation value of the ladder
operators associated with detector A in polar form, i.e. ⟨σ̂±

a ⟩ = re±iα with 0 ≤ r ≤ 1,
we realize that the first term can be written as

S = r2
∣∣eiαI(Ωa,−Ωb) + e−iαI(Ωa,Ωb)

∣∣2
= r2

(
|I(Ωa,−Ωb)|2 + |I(Ωa,Ωb)|2

+2Re ei2αI(Ωa,Ωb)I
∗(Ωa,−Ωb)

)
. (3.31)

We see that in the signaling estimator there is a contribution coming from an
interference term. If we write this interference term in polar form, that is

I(Ωa,Ωb)I
∗(Ωa,−Ωb) = e−iβ|I(Ωa,Ωb)||I(Ωa,−Ωb)|, (3.32)

where β is just the principal argument of the complex number (3.32). The signaling
estimator can be written then as

S = r2
(
|I(Ωa,−Ωb)|2 + |I(Ωa,Ωb)|2

+2 cos(α− β)|I(Ωa,Ωb)||I(Ωa,−Ωb)|) , (3.33)
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which is maximum when setting r = 1 and α = β. Therefore, the maximum value
for the signaling estimator is achieved when the state of the detector B is diagonal in
the basis of its free Hamiltonian, and the state of detector A is such that ⟨σ̂±

a ⟩ = eiβ.
For these states, the maximum value of the signaling estimator takes the form

Smax = (|I(Ωa,−Ωb)|+ |I(Ωa,Ωb)|)2 . (3.34)

Example: two quantum particles interacting through a quantum field

One can also consider models of the Unruh-Wald type, which describes the interaction
between two spinless charged particles through a scalar field and is modeled by
Hamiltonians like

Ĥuw =
∑

ν∈{A,B}
λνχν(t)

∫
dx ϕ̂(t,x)⊗ δ(x− x̂ν(t)). (3.35)

In that case,

Ĵν(x) = χν(t)δ(x− x̂ν(t)), (3.36)

which leads to

⟨Ĵa⟩ (x) = χa(t) ⟨δ(x− x̂a(t))⟩
= χa(t)|ψa(t,x)|2, (3.37)

where ψa(t,x) is the A’s wave function and

⟨Ĵb(x)Ĵb(x
′)⟩

= χb(t)χb(t
′) ⟨δ(x− x̂b(t))δ(x

′ − x̂b(t
′))⟩

= χb(t)χb(t
′)ψ∗

b(t,x)ψb(t
′,x′)Gb(t− t′,x,x′), (3.38)

where

Gb(t− t′,x,x′) = ⟨x|Ûb,free(t− t′)|x′⟩ . (3.39)

Ûb,free is the unitary operator associated with the internal (uncoupled) dynamical
evolution of B, and therefore Gb is the uncoupled propagator of detector B. In contrast
to the case that we will review in the next section, unless there are further constraints,
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there is no optimization with respect to the states that will set the second term of
(3.24) to zero, since

Gr[⟨Ĵb⟩ , ⟨Ĵa⟩] =
∫

dtdxχb(t)|ψb(t,x)|2

×
∫

dt′dx′Gr(t,x, t
′,x′)χa(t

′)|ψa(t
′,x′)|2 (3.40)

is non-zero in general for valid normalized states of A, B. We can still derive a bound
from the first term of (3.24) we derive the bound

S ≤
∫

dtdx

∫
dt′dx′Gr[⟨Ĵa⟩](t,x)Gr[⟨Ĵa⟩](t′,x′)

× Gb(t− t′,x,x′)χb(t)χb(t
′)ψ∗

b(t,x)ψb(t
′,x′) (3.41)

where

Gr[⟨Ĵa⟩](t,x) =
∫

dt′dx′Gr(t,x, t
′,x′)χa(t

′)|ψa(t
′,x′)|2. (3.42)

We see that in this caseGr[⟨Ĵa⟩] is a convolution of the field’s retarded propagator,
detector A’s switching function and the probability density of A. If A’s wavefunction
at t = 0 is compactly supported on a spatial region ∆ and detector A interacts with
the field only at t = 0 with a delta switching function χa(t) = δ(t) then

Gr[⟨Ĵa⟩](t,x) =
∫
∆

dx′Gr(t,x, 0,x
′)|ψa(0,x

′)|2 (3.43)

is compactly supported in the causal future of ∆. On the other hand, if the switch-
ing function has a non-zero extension in time e.g. a finite time extension ϵ > 0,
Gr[⟨Ĵa⟩](t,x) is supported on the whole t > 0 plane due to the instantaneous spread-
ing of A’s wavefunction [108], i.e., the fact that ψa(ϵ,x

′) has support everywhere for
all ϵ > 0. The upper bound of (3.41) can be written as

S ≤
∫

dtdx

∫
dt′dx′ψab(t

′,x′)Gb(t− t′,x,x′)ψ∗
ab(t,x) (3.44)

where
ψab(t,x) := Gr[⟨Ĵa⟩](t,x)χb(t)ψb(t,x) (3.45)

This is the ‘overlap’ of the propagated current of A (3.37) with B’s wavefunction
and switching function. Due to the non-relativistic internal dynamics of A, B this
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overlap will generally be non-zero, i.e., there is no valid choice of the states of A, B
such that the upper bound vanishes, and in fact, there is always some signaling. This
is a major difference with respect to the previous example of the two-level system,
where one could choose valid states such that S = 0 (e.g. for ⟨µ̂a⟩ = 0). In this
sense, the influence of the tails is more pernicious in the Unruh-Wald model than it
is for the usual Unruh-DeWitt detector.

Example: signaling between a spin and a continuous pointer variable

Here we consider a setup similar to the thought experiments in [38] which investigate
the interplay between complementarity and relativistic causality. The ‘sender’ is a
spin system locally coupled to the field in a spacetime region, and the ‘receiver’ is a
continuous pointer variable linearly coupled to the field in another spacetime region.
Namely,

Ĵa(x, t) = χa(t)Fa(x)σ̂a(t) (3.46)

Ĵb(x, t) = χb(t)Fb(x)k̂b(t) (3.47)

where σ̂a is the internal degree of freedom of the sender that couples to the field and
k̂b is the conjugate to the pointer variable of the receiver x̂b, i.e., [x̂b, k̂b] = iℏI. We
consider, for simplicity, that the pointer variable does not have internal dynamics,i.e.
k̂b(t) = k̂b, so that it only ‘shifts’ based on its interaction with the field and the
influence of A. Taking into account the definitions (3.23) and (3.25)

S = Var Gr[Ĵb, ⟨Ĵa⟩], (3.48)

and that in this case

Gr[Ĵb, ⟨Ĵa⟩] = k̂bGr[χbFbĴb, ⟨Ĵa⟩], (3.49)

we get that

S =

(∫
dxdt χb(t)Fb(x)Gr[⟨Ĵa⟩](x, t)

)2

(∆kb)
2 (3.50)

where (∆kb)
2 = ⟨k̂2b⟩ − ⟨k̂b⟩2 and assuming for convenience that the conjugate pointer

variable is centered around zero (⟨k̂b⟩ = 0). We see that the initial variance of the
conjugate pointer variable modulates the amount of signaling from A to B, times
the integral prefactor in (3.50) that quantifies the causal overlap of the sender and
the receiver. Notice that if the pointer variable conjugate momentum starts in an
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eigenstate of k̂b, then ∆kb = 0 and there is no signaling. This is expected since in that
case the state of the receiver is an eigenstate of the local interaction Hamiltonian and
there is no internal dynamics, so time evolution on the partial system of the receiver
is trivial.

Notice that if we consider that the sender is coupled to the field for all times
(adiabatic switching) even if the sender and receiver are fixed at two distant spatial
locations xa,xb they are not spacelike separated if the interaction of A is always
‘on’. In this case, the prefactor of (3.50) is given by∫

dtdt′χb(t)G
ab
r (t, t′)χa(t

′)⟨σ̂a(t
′)⟩, (3.51)

where Gab
r (t, t′) = Gr(t,xb, t

′,xa). In [38] it was shown that the distinguishability of
B (i.e. the ability of B to distinguish between the up and down state of the spin A)
depends on the overlap

∫
dtdt′χb(t)G

ab
r (t, t′)χa(t

′). Comparing with the prefactor
(3.51) that goes into our signaling estimator, we see that this definition does not
take into account the effect of the internal dynamics of the spin and the choice of the
initial state. This suggests that there might be cases where the ability of A to signal
to B is different than e.g. the distinguishability, or some other measure of causality.
Thus, it would be interesting to investigate the effect of the internal dynamics and
choice of initial state on the causality of the setup.

3.2.3 Signaling estimator for smeared UDW detectors: gap
dependence and resonant phenomena

In this section we will analyze of the signaling estimator for the more familiar case
of the usual smeared Unruh-DeWitt detector. Namely, the interaction Hamiltonian
of two inertial comoving two-level systems interacting with a scalar field is given by

Ĥsm =
∑
ν=a,b

λνχν(t)µ̂ν(t)⊗
∫

dxFν(x)ϕ̂(t,x), (3.52)

where µ̂ν(t) = eiΩνtσ̂+
ν +e

−iΩνtσ̂−
ν , where σ+

ν , σ
−
ν are the ladder operators and Ων is the

energy gap between the two levels. We want to ask: which ingredients that define
the detector-field interaction are relevant for the signaling estimator? In previous
studies the effect of the internal frequencies was neglected, so we wanted to know
how the internal frequencies of the two-level systems affect their ability to signal.
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To particularize the general expression for the signaling estimator (3.30) to the
two-level Unruh-DeWitt detector in flat space-time of n+1 dimensions, we consider
the current

Ĵν(x) = χν (t)Fν (x)µ̂ν (t). (3.53)

where ν = A,B. In flat spacetime, the field propagators are translationally invariant,
meaning that they only depend on the difference of spacetime points. This allows us
to write the expression for the functions I(Ω,Ω′) appearing in the expression for the
optimal signaling estimator defined in (3.30) as

I(Ω,Ω′) =

∫
dtdxGr(t,x)

∫
dyFa(y)Fb(x+ y)

×
∫

dsχa(s)e
iΩsχb(t+ s)eiΩ

′(t+s), (3.54)

which is derived by simply substituting Gr(x, x
′) = Gr(x − x′) and performing a

change of variables.

Further, the propagators in flat spacetime are tempered distributions, which in
particular implies that they admit a Fourier transform. In terms of the Fourier
transform the integral takes the form

I(Ω,Ω′) =

∫
dkdk0 G̃r(k, k0)F̃

∗
b (k)F̃a(k)χ̃

∗
b(k0 + Ω′)χ̃a(k0 + Ω), (3.55)

where F̃a,b is the n-dimensional Fourier transforms of Fa,b and χ̃a,b is the one-
dimensional Fourier transforms of χa,b:

F̃ (k) =
1

(2π)n/2

∫
dnxe−ikxF (x) (3.56)

χ̃(k0) =
1

(2π)1/2

∫
dte−ik0tχ(t). (3.57)

For the Klein-Gordon field the Fourier transform of the retarded propagator is given
by

G̃r(k, k
0) =

1

(2π)(n+1)/2

1

−(k0 − iϵ)2 + ω2
k

(3.58)
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where ω2
k = m2 + k2 and ϵ is a regulator that will have to be taken to go to zero

after the integrals are performed. Therefore, the integral in (3.55) is given by

I(Ω,Ω′) =
1

(2π)n+1
lim
ϵ→0+

∫
dk F̃ ∗

b (k)F̃a(k)

×
∫

dk0
χ̃∗

b(k
0 + Ω′)χ̃a(k

0 + Ω)

−(k0 − iϵ)2 + ω2
k

. (3.59)

We will analyze the dependence of the estimator on the frequencies Ωa,Ωb. In
[12] we also analyzed the behavior of the estimator as the smearing and switching
functions of the detectors vary. We will study the dependence of the signaling esti-
mator in the particular case of two UDW detectors that interchange signals through
a massless scalar field in a flat spacetime of 3+1 dimensions. In order to simplify
the explicit evaluation, we recall that the two detectors are comoving and at rest in
some inertial frame, and further assume that the switching and smearing functions
are given by Gaussian functions. The centers of the Gaussians that define the de-
tectors’ spacetime smearing will be separated by a constant spacetime vector, which
in the comoving coordinate frame takes the explicit components z = (z0, z). We call
z0 := ∆ the time distance and |z| := L the spatial distance. Both smearing functions
have spatial width R and temporal width T (see (A.44) and (A.50) in appendix A.3).

Recall that the maximum signaling between the two detectors (equation (3.34))
is given by

Smax = (|I(Ωa,−Ωb)|+ |I(Ωa,Ωb)|)2 . (3.60)

Through simple analysis (see Appendix A.3), particularizing the Green function in
expression (3.54) to the case of a massless scalar field in 3+1 dimensions we get

I(Ωa,Ωb) =
R√
πL

e−
L2

4R2

∫ ∞

0

du ue
−u2

4 (e
uL
2R − e−

uL
2R )Ip(Ru,Ωa,Ωb) (3.61)

where

Ip(L,Ωa,Ωb) = − T

8π3/2L
e−

T2(Ωb−Ωa)2

4 e−
(L+∆)2

4T2 ei(Ωb+Ωa)L (3.62)

happens to be the value of I(Ωa,Ωb) for two pointlike detectors with identical switch-
ing separated by a spatial distance L. In other words, we can express I(Ωa,Ωb) as a
spatial integral of the expression for pointlike detectors.

46



Regarding the behavior of the signaling estimator with respect to the detectors’s
energy gap, in general, we would expect that signaling decreases in the limit of
very large gap of either detector. The fact that the signaling estimator vanishes
in the large gap limit is clear from equation (3.59), since in this case the signaling
estimator is given by an integral of smooth functions and the dependence on the
internal frequencies of the detectors is just a translation in momentum space. For
smooth, integrable smearing profiles and switching functions the limit of the integral
when Ωa or Ωb goes to infinity can be taken inside the integral, and this limit vanishes.
We would also expect the signaling estimator to be the largest in resonance (that is,
when |Ωa| = |Ωb|).

It is interesting to consider the pointlike limit. In this case (see Figure 3.1) the
signaling does not vanish when Ω → ∞ while in resonance |Ωa| = |Ωb| = Ω. This is
expected since in the pointlike limit the smearing function becomes a delta which is
not a smooth function and the arguments given above do not apply. Furthermore,
in the pointlike limit, the signaling estimator reaches an asymptote as the resonant
frequency Ω grows (with every other parameter fixed) independently of the initial
state of detector A if the state is of the form

ρ̂a =
1

2
(1+ cosασ̂x + sinασ̂y). (3.63)

The value of the upper bound for the signaling estimator (3.34) behaves, as expected,
as an enveloping curve for different values of the initial state of A. Whereas the
behavior of the maximum signaling is monotonic, the behavior of the particular
signaling estimator for a fixed state of detector A (Eq. (3.30)) becomes oscillating.
We relate this phenomenon, already observed in [102], with the fact that for a fixed
state and an interaction duration long enough, the detector interacts mostly with
some frequencies of the field around its internal frequency Ωa. Therefore, if the
detectors are separated by a fixed spacial distance, it is to be expected that signaling
will be maximum when they are separated by one of these wavelengths. This can
be seen directly from equation (3.62), where we see that the signaling estimator will
oscillate in Ω exactly with frequency L−1.

We also observe a resonance phenomenon in Figure 3.2 where both detectors are
pointlike separated by spatial distance L and both switchings are Gaussian functions
of width T . Detector B (the receiver) is centered around zero. As expected, we see
that the signaling is higher when A is centered on the (smeared) past light cone of
B, and when the two frequencies match.

Finally, in Figure 3.3 we see the effect of the spatial smearing on signaling when
the centers of the two detector-field interactions are in spacelike separation. To
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α = 1

α = 0

Figure 3.1: The three oscillatory curves (blue, orange, green) give the signaling
estimator for different states of detector A as parametrized by a phase α (α = 0, 1, 2)
as a function of the detectors’ gap Ωa = Ωb = Ω. The red curve that is decreasing
monotonically is the Smax. This is for pointlike detectors that are separated by L
and both switchings are peaked around zero with temporal width T , and such that
L/T = 5. Notice that the signaling estimator at this spatial separation is S ≪ 1, so
the detectors are effectively out of causal contact.

see how much the Gaussian smearing affects signaling and when we stop being in
effective spacelike separation as we increase the smearing width R, we study the
worst-case scenario: in order to maximize the signaling estimator, we choose the
frequencies such that the detectors are in resonance, and we plot the signaling as a
function of the spatial width R of the smearing for constant L/T = 4. One would
expect that the bigger the width the causal connection between the tails of the two
smearings grows, which would lead to more signaling. Indeed, this is what happens
until some critical value, after which the signaling decreases (see figure 3.3). This
might seem counter-intuitive, but since the smearing function is a normalized density,
the interaction overall vanishes in the limit of R/T → ∞. In this sense, even though
we would expect that the tails are indeed enabling signaling between the detectors,
we also observe a ‘dilution’ effect. Similar behavior was also observed previously in
[37].
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Figure 3.2: Signaling estimator between two pointlike detectors that are separated
by a spatial distance L and with a time-lapse ∆. The peaks of the switchings are
separated by time ∆ with temporal width T . Detector B (the receiver) has internal
gap Ωb = 2 and is centered around zero. The color bar quantifies how much signal it
can receive from A depending on where A is in space and time, for different values
of Ωa(Ωa = 1, 2, 3, 4 from up left to down right).
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Figure 3.3: Signaling estimator for two smeared detectors with spatial smearings
of width R and whose centers are separated by a spatial distance L. The spatial
separation L is such that L/T = 4 (where T is the duration of the interaction). Both
switching functions are peaked around t = 0, so the two detectors are effectively
spacelike separated (S ≪ 1). We have set Ωa = Ωb = Ω.
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3.3 Impossible measurements: a pragmatic approach

To summarize, so far we have analyzed signaling in general bipartite scenarios. At
the level of perturbation theory we have seen that compactly supported detector-
field interactions behave causally in spacelike separation, and we defined a signaling
estimator that captures (at leading order) the ‘overlap’ between detectors that are
‘mostly’ spacelike separated. We concluded that at the level of perturbation theory,
this ‘cross-talk’ between detectors can be managed. Yet, we saw that the geometric
intuition that the signaling has to be ‘small enough’ if the centers are ‘far enough’
(in comparison to the width of e.g. the Gaussian spacetime smearings) only captures
the upper bound to signaling. If one wants to calculate the actual signaling, one has
to take into account the internal dynamics and the internal states of the detector
systems in a given configuration.

In other words, how ‘far’ two distant two-level systems depends non-trivially on
the internal frequencies (which perhaps can be explained as a resonance or interfer-
ence effect) and on how much coherence there is in their internal states (intuition
about the state dependence of another (related) signaling estimator can be found in
[109]). This can be thought as a difference between the spacetime notion of distance
(set by the lightcone structure) and the quantum informational notion of distance
that is defined through our signaling estimator. In fact, for a given model, one can
draw effective lightcones that capture the signaling possibilities. The discrepancy
between the two notions can be argued to be ‘small’ but further study is required in
different spacetimes e.g. in cosmology.

Finally, we observed a ‘dilution’ effect when one considers bigger widths of the
spatial smearing. That is, there is a critical value for the effective size of the in-
teraction beyond which the signaling estimator drops despite the overlap increasing.
This might imply that this model is bound to describe microscopic detector systems,
or probes, and cannot describe realistically the macroscopic limit of a macroscopic
device (this can be evaluated case-by-case by analyzing which scales contribute to
the critical size of the interaction). This might not be a surprise, since intuitively
it should not be possible to describe a macroscopic device only by ‘spreading’ out a
single degree of freedom, but one would have to consider a bigger number of degrees
of freedom distributed in space.

Overall, the infinite ‘tails’ of the interactions in space and time do not pose a
methodological threat at the level of perturbation theory. Nevertheless, the non-
perturbative arguments that we gave in [11] only hold for compact detector-field
interactions because they are based on the causal factorization property. This prop-
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erty holds for causally orderable compactly supported interactions (see appendix
A.1) thanks to microcausality, and it does not hold for non-compact interactions be-
cause strictly speaking, they are not causally orderable 5. This obscures the causality
arguments at the non-perturbative level.

In bipartite scenarios, we showed that causal factorization guarantees no superlu-
minal signaling and no retrocausation [11]. Consider two compactly supported and
causally orderable detector-field interactions governed by a Hamiltonian Ĥint of the
general form (3.9). We denote by Ŝa+b the joint scattering map that corresponds to
both interactions

Ŝa+b = TeiĤint . (3.64)

In general, it is not clear whether this map factorizes, namely whether it can be
written as a product of Ŝa and Ŝb that correspond to each detector-field interaction.
We showed that if the two interactions A,B are causally orderable and say A precedes
B (see the definitions and the proof in A.1) then

Ŝa+b = ŜbŜa, (3.65)

which is called the causal factorization property. This implies that

ρ̂a = trb,ϕ(Ŝa+b ρ̂0 Ŝ
†
a+b) = trb,ϕ(ŜbŜa ρ̂0 Ŝ

†
aŜ

†
b)

= trb,ϕ(Ŝa ρ̂0 Ŝ
†
aŜ

†
bŜb) = trb,ϕ(Ŝa ρ̂0 Ŝ

†
a). (3.66)

so A cannot receive a signal from B that is not in its causal past (no retrocausation).
Similarly, in the special case that the two are spacelike separated, it holds that

ŜbŜa = ŜaŜb (3.67)

and there is no superluminal signaling (independently of the state ρ̂0). Nevertheless,
as we will see in the next subsection, in more complicated scenarios that involve more
than two regions, causal factorization does not guarantee no-signaling in spacelike
separation. Yet, in the case of weak coupling one can quantify the causality violation
by means of the relevant scales of the problem, and see that it is sub-leading order
in perturbation theory.

5We say that A and B are causally orderable if J−(Oa) ∩ Ob or J−(Ob) ∩ Oa are empty, where
by J− we denote the causal past.
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3.3.1 Impossible dynamics?

Consider the impossible measurement scenario for local regions O1, O2, and O3 de-
picted in Fig. 3.2. A unitary ‘kick’ is implemented over region O1, possibly through
the coupling of a detector to the field, which then can be disregarded. In particular,
the initial state of the detectors plus field has the form ρ̂initial = Û ρ̂0Û

† where ρ̂0 is
an arbitrary state of the joint system, and Û = 1a ⊗ 1b ⊗ Ûϕ is an arbitrary unitary
acting on the field’s Hilbert space. Two detectors A, B interact with the field over
the regions O2,3 respectively.

If detector A were not coupled to the field, the expectation values of observables
D̂b of detector B that are evaluated after both interactions are ‘off’ would not depend
on Uϕ, since B only interacts with the field in the causal complement of O1. In [11]
we derived that in the presence of detector A, the condition that B’s observables D̂b

are not sensitive to the local ‘kick’ Ûϕ is

V̂ †D̂bV̂ = D̂b, (3.68)

where
V̂ = Ŝa+bÛ Ŝ

†
a+b. (3.69)

Condition (3.68) is equivalent to

[D̂b, V̂ ] = 0. (3.70)

Using the causal factorization condition (since O2,3 are causally orderable) condition
(3.68) becomes6

[Ŝ†
bD̂bŜb, ŜaÛ Ŝ

†
a] = 0. (3.71)

To make sense of (3.71) we can think of Ŝ†
bD̂bŜb as an induced observable that resides

on region O3 and ŜaÛ Ŝ
†
a as the local ‘kick’ propagated through the coupling to A.

Next, we have to examine the localization of ŜaÛ Ŝ
†
a. That is, how does the

coupling to detector A ‘propagate’ the local ‘kick’ over region O1 to region O3?
Crucially, it turns out that the localization of ŜaÛ Ŝ

†
a includes the forward lightcone

of region O2 (see Fig. 3.2) and, as a result, the expectation values for detector
B in O3 will depend on the local ‘kick’. By expanding condition (3.71) one finds
that this is because [Ĵa(x), Ĵa(x

′)] ̸= 0 for spacelike separated points within the
extension of region O2 (i.e., suppΛ) due to the non-relativistic dynamics. This result

6where we have omitted the tensor product with the identities 1a (in the first input) and 1b (in
the second) to simplify the notation.
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links superluminal signaling with superluminal propagation within the device that
is implementing the measurement. The physical intuition is that, when a detector is
spatially extended, the information propagating inside the detector is not constrained
to travel subluminally since the detector is a non-relativistic system. In Sec. 3.1 we
argued that suppΛ cannot be straightforwardly interpreted as the region occupied
by the detector, but the main point is that if the detector current Ĵa were another
relativistic field, and as such obeyed microcausality, then its coupling to the field
over region O2 would not change the localization of the local ‘kick’ over O1 and no
observable in O3 would be sensitive to the ‘kick’.

This structural issue of using non-relativistic detector models, namely that they
are defined using currents that do not obey a microcausality condition, can be toler-
ated by conducting a rigorous analysis of the regimes of validity of the models. That
is, the severity of the causality violations in physically reasonable situations can be
quantified. This is not only necessary for justifying the use of the models, but also
for making sense of this abstract type of causality violations in concrete scenarios
that can represent ‘realistic’ detection experiments. Since for point-like detectors
there is no superluminal propagation, one can disregard this kind of faster-than-light
signaling for ‘small enough’ detectors. Whether a detector is small or not will de-
pend, of course, on the parameters of the problem. One can also argue, in terms
of the coupling strength, that in the weak coupling limit the Sorkin-type problem is
of at least O(λn) when n detectors are involved. As explained above, the signaling
between any two detectors A and B is of second order, i.e., of order λaλb (see Eq.
(3.6)). This is because the λ2a and λ2b terms are ‘local’ to each detector and do not
allow for the detectors to ‘see each other’. Similarly, in the tripartite case of detec-
tors A, B and C in the Sorkin-type configuration, the coupling constants have to be
combined for detector C to ‘see’ A through B, and so the superluminal signaling is of
at least third order λaλbλc. In fact, in [11] we showed explicitly that, for UDW-type
detectors in the tripartite scenario, the superluminal signaling is of fourth order in
perturbation theory [11] while most relevant calculations are of second order in the
coupling constant.

To summarize, the detector models approach addresses Sorkin-type scenarios by
adopting a pragmatic attitude towards modeling the measurement of relativistic
quantum fields. Because detector models are not fully relativistic, superluminal
signaling is in principle possible when tripartite measurement scenarios are modeled
using either compactly or non-compactly coupled detectors. However, superluminal
signaling in these Sorkin-type scenarios is for all practical purposes (FAPP) ruled out
by perturbative calculations that show that the effect can be treated as happening
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outside the regime of validity of the model.

3.3.2 Impossible measurements in the detector-based mea-
surement theory

In the previous section, we exposed the dynamical understanding of how the ‘impos-
sible measurements’ arise in extended detector-field interactions in concrete models,
without making explicit use of any measurement theory. In particular, there was no
reference to measurement outcomes (only the evaluation of an expectation value) and
state update. In this section, we will demonstrate the consequences of this dynamical
argument for the detector-based measurement theory [14], by checking whether the
detector-induced state update satisfies the causality condition (2.4) by Borsten et al.

A detector-based measurement theory for QFT that specifies the state update
rules for the field that are induced by projective measurements on the detectors has
been developed by Polo-Gómez, Garay, and Martín-Martínez in [14]. In terms of the
reductio argument in Sec. 2.2.1, the detector models approach rejects assumption P3
that ideal measurement theory is applied directly to the field system. Instead, pro-
jective measurements (modeled by rank-1 projection operators) are only performed
on detectors, and a generalized Lüders’ rule (defined through POVM elements, first
introduced in [13] for the Unruh-DeWitt model) is induced as a state update rule for
the field. Measurements on the field are carried out by first allowing the detector and
field to interact in some region, and then measuring the detector in the causal future
of this region when the detector and field are no longer coupled (for all practical
purposes).

Assume that the initial state of the detector-field system is a separable state
represented by the density operator ρ = ρd ⊗ ρϕ. Given the interaction Hamiltonian
Ĥint between the field and the detector, the evolved state is Ŝ1ρŜ

†
1, where Ŝ1 =

Texp
[
−i
∫ t1
−∞ dtĤint(t)

]
and t1 is a time after which the detector-field interaction is

turned off. At a later time t2 ≥ t1 a projective measurement P̂ (t2) (denoted as P̂2)
is applied to the detector system and the total state is updated as follows

ρ′ =
(P̂2 ⊗ 1)Ŝ1ρŜ

†
1(P̂2 ⊗ 1)

tr
(
(P̂2 ⊗ 1)Ŝ1ρŜ

†
1

) (3.72)

Note that the unitary scattering operator Ŝ1 is supported over the interaction region,
while the projection operator only depends on time since there is not an explicit
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spatial dependence of the detector operators. The readout of the detector happens
at an arbitrary time point after the detector-field interaction is ‘off’ and as a result
there cannot be any effect on the state of the field. This seems to suggest an epistemic
(rather than ontic) interpretation of the state update of the field 7, namely that the
state of the field does not ‘collapse’ in any way but rather we update our information
about what the state of the field was all along (given the initial state of the field and
the involved detector-field dynamical interactions).

Assuming that the initial state of the detector is ρd = |ψ⟩ ⟨ψ| and that after the
interaction with the field the detector is projected by means of the rank-one projector
|i⟩ ⟨i| (e.g. onto the i−th energy eigenstate of the detector) and by tracing out the
detector system, equation (3.72) gives

ρ′ϕ =
M̂i,ψρϕM̂

†
i,ψ

trϕ
(
ρϕM̂

†
i,ψM̂i,ψ

) , (3.73)

where
M̂i,ψ := ⟨i|Ŝ1|ψ⟩ (3.74)

the POVM elements. In the regime of weak coupling between the field and the
detector one can use the Dyson expansion for the scattering operator Ŝ1, using Ĥint

from (3.5)
M̂i,ψ = ⟨i|ψ⟩1+ λM̂

(1)
i,ψ + λ2M̂

(2)
i,ψ + O(λ3) (3.75)

where

M̂
(1)
i,ψ = −i

∫
dtdxχ(t)F (x)⟨i|µ̂(t)|ψ⟩ϕ̂(t,x) (3.76)

M̂
(2)
i,ψ = −

∫
dtdt′θ(t− t′)χ(t)χ(t′)

∫
dxdx′F (x)F (x′)⟨i|µ̂(t)µ̂(t′)|ψ⟩ϕ̂(t,x)ϕ̂(t′,x′).

In the case of non-selective measurements, Polo-Gómez et al. [14] show that

ρ
(ns)
ϕ =

∑
i

M̂i,ψρϕM̂
†
i,ψ

= trd
(
Ŝ1(|ψ⟩ ⟨ψ| ⊗ ρϕ)Ŝ

†
1

)
(3.77)

This is important for our purposes, since the analysis of the Sorkin-type problem does
not rely on selective, but on non-selective (trace-preserving) measurements. We see

7In [27] we discuss this point further, as a common feature of candidate state update rules in
relativistic spacetime.
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that by summing over all possible outcomes i the updated state only depends on the
dynamical coupling between the field and the detector. Polo-Gómez et al. explain
that “this is because the projective measurement acts only on the detector once the
interaction has been switched off, and it does not provide additional information
since being non-selective the outcome is not known”. This point is important for
showing that the expectation values of observables Â that are defined in spacelike
separation from the detector-field interaction region do not change due to the non-
selective measurement. That is,

trϕ(ρϕÂ) = trϕ(ρ
(ns)
ϕ Â) (3.78)

since [Ŝ1, Â] = 0 thanks to the fields obeying the microcausality condition.

Nevertheless, as we will demonstrate, a non-selective state update of the type
(3.77) can enable ‘impossible measurements’ when more than two regions are in-
volved. Consider the Sorkin-type scenario in Fig. 3.2, with Â ∈ A(O3) and the
non-selective measurement happening over region O2 (that is, M̂i,ψ ∈ A(O2)). Call
ρ
(ns)
ϕ := E2[ρϕ]. Then, we will show that the map E2 does not satisfy the condition

(2.4) by Borsten et al. [55]. Note that, E2 (as defined in (3.77)) does not correspond
to an idealized projective measurement (a non-selective state update rule that is
defined by means of projectors, see (2.1)). The criterion (2.4) by Borsten et al still
applies, since as they mention in [44] the criterion holds for any ‘valid’ state update
map E2 (that leads to well-defined expectation values ⟨Â⟩ over region O3). This
includes state update maps that follow from particular probe prescriptions, as in the
detector-based measurement theory that we consider here, or the FV framework [29].
In our case, since the effect of the non-selective measurement only depends on the
unitary scattering map (Ŝ1 in (3.77), Ŝa in what follows) the dynamical analysis of
the previous section applies almost straightforwardly.

Using the notation of the previous section, first we rewrite condition (3.71) as:

[Ŝ†
aŜ

†
bD̂bŜbŜa, Û ] = 0, (3.79)

where Û represents the unitary ‘kick’ in O1. Taking the trace of the action of this
operator on any state ρaρbρϕ of the total system yields

tra,b,ϕ

(
[Ŝ†

aŜ
†
bD̂bŜbŜa, Û ] ρaρbρϕ

)
= 0 (3.80)

tra,ϕ
(
[Ŝ†

a(trbŜ
†
bD̂bŜbρb)Ŝa, Û ] ρaρϕ

)
= 0. (3.81)
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Defining
Φ̂b := trb

(
Ŝ†

bD̂bŜbρb

)
, (3.82)

the induced field observable that corresponds to the measurement of the expectation
value of the detector observable D̂b, we have that

tra,ϕ
(
[Ŝ†

aΦ̂bŜa, Û ] ρaρϕ

)
= 0. (3.83)

Performing the trace over detector A, this equation can be written as

trϕ
(
[Ed2(Φ̂b), Û ] ρϕ

)
= 0 (3.84)

where
Ed2(Φ̂b) := tra

(
Ŝ†

aΦ̂bŜaρa

)
(3.85)

is the dual non-selective map. If we demand that Eq. (3.84) holds for all states of
the field ρϕ we get the condition

[Ed2(Φ̂b), Û ] = 0, (3.86)

which is precisely in the form of the criterion (2.4) for the induced maps and observ-
ables (3.85) and (3.82) that we defined above. What we showed is that in this case,
condition (3.86) is equivalent to the dynamical condition (3.79) that we derived in
the previous section, and fails to be satisfied for the reasons that we exposed there.
Written in this form, the violation of (3.86) shows that, in general, the (dual) state
update map Ed2 does not define an observable in the causal complement of O1, where
the unitary ‘kick’ Û is supported (see also analysis in [59]).
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Chapter 4

What do detectors detect?

In this chapter, we will first examine in detail how particle detector models can
be used to retrieve particle-like phenomenology in the weak coupling regime (and
long-time limit). In particular, we will examine the phenomenon of resonance and
time-of-arrival. Roughly, these two notions correspond to energy versus time mea-
surements, and we will argue that these two measurements are complementary. Then
we will examine the strong coupling regime using a continuous pointer variable that
is locally coupled to the quantum field, and we will show explicitly that it gets corre-
lated with field averages. We will also consider the solvable QBM model to see how
it reproduces particle/field phenomenology in the weak/strong coupling regimes, re-
spectively. Solvable models can be useful for characterizing the detector’s response
also in intermediate regimes, where one expects that neither the field nor the parti-
cle concept can be used to fully characterize the detector’s response. Intermediate
regimes are experimentally accessible in implementations with tunable couplings, for
example, in circuit quantum electrodynamics [110], cavity optomechanics [111], Ryd-
berg atoms [112] or in analogue gravity experiments with Bose-Einstein condensates
[113].

In the previous chapters, we discussed that there is a variety of models that are
defined through specifying what system is coupled and how it is coupled to the field,
as well as how the dynamics is solved. Perturbation theory is typically used in the
usual Unruh-DeWitt-type models. One can also achieve non-perturbative results for
instantaneous interactions (with δ switching, see e.g. [33, 114, 115]). In this chapter,
we provide a non-perturbative pointer variable analysis for an arbitrary switching
function which, as we will show, ‘weights’ the field time-average that the pointer
variable gets correlated with. Then, we compare the results of this analysis with the

58



predictions of the solvable model based on QBM.

Each model has advantages and disadvantages, and while the results are in prin-
ciple comparable, we will see that not all methods are applicable in exactly the
same set-ups. For example, we will see that a quantum harmonic oscillator coupled
to the field can be assigned an arbitrary smearing and switching function in the
pointer variable analysis, but only in the limit that the oscillator is gapless (trivial
internal dynamics). In the case of a finite gap, we can solve the full dynamics of
a quantum harmonic oscillator coupled to the field using the QBM model, but this
is solvable only for constant switching functions and pointlike smearings. Then, for
weak couplings, one can try to compare the QBM model with the pointlike UDW
in the long-time limit (and two-level approximation) and as we will see there are
some essential differences e.g. in the study of resonance. As we will demonstrate, in
contrast to standard perturbation techniques, the improved model based on QBM
recovers the relativistic Breit-Wigner resonant behavior in the weak coupling regime.

4.1 Strong coupling: pointer variables correlated with
field averages

von Neumann introduced a simple measurement model in which the pointer variable
X̂ of some apparatus gets correlated with an observable Â of the measured system
through the dynamical interaction between system and apparatus [46], but the anal-
ysis is easily extended to continuous pointer variables (see e.g. [116]). Assume that
the interaction Hamiltonian is Ĥint = δ(t)Â ⊗ P̂ where P̂ is the conjugate pointer
variable, i.e., [X̂, P̂ ] = i. For an ideal apparatus, it is assumed that the pointer
variable only changes during the interaction with the microscopic system. Once this
interaction is over, the pointer variable X̂ is frozen, i.e., [ĤA, X̂] = 0. It is typical to
assume the stronger condition that the self-dynamics of the apparatus is negligible,
i.e., ĤA = 0. Also, we assume that X̂ is a continuous pointer variable, so that it
gets correlated with a continuous system observable Â through the time-evolution
operator

Û(t) = e−iĤst

∫
da|a⟩⟨a| ⊗ e−iaP̂ (4.1)

where we see that each possible value of Â is correlated with the displacement op-
erator exp[−iaP̂ ] that displaces the pointer variable by the value a. One can derive
that the probability distribution of the pointer variable after the interaction with the
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system is [116]

P (x) =

∫
daw(x− a)|⟨a|Ψ0⟩|2 (4.2)

where |Ψ0⟩ the state of the system before the (instantaneous) interaction and

w(x− a) = ⟨ψ0|Êx−a|ψ0⟩ (4.3)

where |ψ0⟩ the initial state of the apparatus and Êx the eigenprojections of the pointer
variable. We see that the initial probability distribution |⟨a|Ψ0⟩|2 over the outcomes
α is modified through the integral kernel w(x − a) that encodes the characteristics
of the pointer variable and the interaction.

Here, we generalize the analysis above to the case of scalar field measurements.
The idea is that for strong couplings, a continuous pointer variable is correlated with
field averages. Using the pointer variable method for suitable detector-field coupling,
we can calculate the detector’s probability distribution non-perturbatively beyond
instantaneous interactions (δ switchings).

Consider a one-dimensional pointer variable P̂ coupled to a smeared field operator
Φ̂[F ] :=

∫
dxF (x)Φ̂(x) for a time interval that is dictated by a switching function

χ(t) as described by the interaction Hamiltonian

Ĥint = χ(t)Φ̂[F ]⊗ P̂ . (4.4)

The full Hamiltonian in the Schrödinger picture is

Ĥ(t) = Ĥ0 + χ(t)Φ̂[F ]⊗ P̂ (4.5)

where Ĥ0 = Ĥf ⊗ 1+ 1⊗ Ĥd. The time evolution operator is

Û(t) = Te−i
∫ t dsĤ(s) (4.6)

which we can decompose as (see appendix B.1)

Û(t) = e−iĤ0tŜ(t) (4.7)

where
Ŝ(t) = Te−i

∫ t dsχ(s)Φ̂s[F ]⊗P̂ (s). (4.8)
The main ‘trick’ of the pointer variable analysis is to make use of the simple form
that the operator Ŝ(t) takes when it acts on eigenstates |p⟩ of the conjugate pointer
variable P̂ , namely that

Ŝ(t) (1f ⊗ |p⟩ ⟨p|) = Te−i
∫ t dsχ(s)Φ̂s[F ]⊗P̂ (s) (1F ⊗ |p⟩ ⟨p|)

= Te−ip
∫ t dsχ(s)Φ̂s[F ] ⊗ |p⟩ ⟨p| (4.9)
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if it holds that
[Ĥd, P̂ ] = 0, (4.10)

which is easy to see using the Dyson expansion for the time-ordered exponential. We
see that the self-dynamics of the detector does not have to be zero (or negligible with
respect to the interaction with the field) as long as it commutes with the conjugate
pointer variable. That is, the detector can be a free particle 1 with Ĥd = P̂ 2/2M .

We want to know the probability distribution of the possible values x of the
pointer variable X̂ that is conjugate to the variable P̂ , i.e., [X̂, P̂ ] = i. Using (4.9)
we find that (see appendix B.1 for derivation)

p(t, x) =
1

2π

∫
dpdp′ei(p−p

′)xψ(p, t)ψ∗(p′, t)trf
(
Ûχ(t, p)ρ0Û

†
χ(t, p

′)
)
, (4.11)

where we have defined
Ûχ(t, p) := Te−ip

∫ t dsχ(s)Φ̂s[F ]. (4.12)

We have denoted as ρ̂0 the initial state of the field and

ψ(p, t) = ⟨p|e−itĤd|ψ0⟩ (4.13)

where |ψ0⟩ the detector’s initial state. Notice that if we switch off the interaction,
Hamiltonian (4.11) simply gives p(t, x) = |ψ(t, x)|2. The effect of the interaction on
the statistics of the pointer variable is encoded in the integral kernel trf (...) in (4.11).

Now the question is: Which field observable is the pointer variable correlated
with? We will show that the pointer variable is correlated with time-averaged field
amplitudes. We can rewrite (4.11) as

p(t, x) = trf (Π̂x(t)ρ̂0Π̂
†
x(t)), (4.14)

where
Π̂x(t) :=

1√
2π

∫
dpeipxψ(p)Ûχ(t, p). (4.15)

This defines a set of POVMs that corresponds to the possible outcomes of the pointer
variable (see (B.28) in appendix B.1). Using the Magnus expansion (B.23) we can
rewrite (4.15) as

Π̂x(t) =
1√
2π

∫
dpψ(p) exp

(
− i

2
p2ct + ip(x− Φ̂sm(t))

)
(4.16)

1which will allow us to compare with the case of a harmonic oscillator in the limit Ω → 0 (section
4.3.2).
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where

ct = −i
∫ t

ds

∫ s

ds′χ(s)χ(s′)[Φ̂s[F ], Φ̂s′ [F ]] (4.17)

and

Φ̂sm(t) :=

∫ t

dsχ(s)Φ̂s[F ]. (4.18)

The expression (4.16) seems to suggest that the pointer variable is correlated with
(a function of) the time-averaged smeared field operator Φ̂sm(t). For example, when
the field is in the vacuum state (4.14) is

p0(t, x) =

∫
dpdp′eix(p−p

′)ψ(p)ψ∗(p′)e−ct(p
2+p′2)⟨0|e−i(p−p′)Φ̂sm(t)|0⟩. (4.19)

The case of Gaussian measurements

For example, if we assume a Gaussian profile for the wavefunction of the pointer
variable

ψ(p) =
1

(2πσ2
p)

1/4
exp

[
− p2

4σ2
p

]
(4.20)

we get (see appendix B.1)

Π̂†
x(t)Π̂x(t) =

1√
2πΣt

exp

−
(
x− Φ̂sm(t)

)2
2Σ2

t

 (4.21)

where

Σt =

√
1

4σ2
p

+ c2tσ
2
p. (4.22)

So we see that the ‘resolution’ of the average-field measurements depends on the
initial spread of the conjugate pointer variable and the smeared field Green’s function.
Then

⟨x̂(t)⟩ = 1√
2πΣt

⟨
∫

dx x exp

−
(
x− Φ̂sm(t)

)2
2Σ2

t

⟩ (4.23)

and we get that

⟨x̂(t)⟩ = ⟨Φ̂sm(t)⟩ = ⟨
∫ t

dsχ(s)Φ̂s[F ]⟩. (4.24)
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Indeed the average pointer variable at time t is equal to the (up to t) time-average of
the smeared field operator. For example, if the field is initially in the vacuum state,
or any fixed-particle state, it holds that ⟨Φ̂⟩ = 0 and so the average pointer variable
is not shifted. Then, one has to look at higher moments of the pointer variable

⟨x̂n(t)⟩ =
∫

dx xnp(x, t)

=

∫
dx xn trf

(
Π̂†
x(t)Π̂x(t)ρ̂0

)
. (4.25)

In this case, based on (4.21) it is easy to check that

⟨x̂2(t)⟩ = ⟨Φ̂2
sm(t)⟩+ Σ2

t (4.26)

which implies that the variance of the pointer variable is ‘tracking’ the variance of
the field average (in the sense of [117])

(∆x̂(t))2 = (∆Φ̂sm(t))
2 + Σ2

t (4.27)

where
Σ2
t =

1

4σ2
p

+ c2tσ
2
p (4.28)

It is easy to see that the uncertainty relation for the pointer variable leads to a lower
bound for the noise Σt,

Σt ≥
√

|ct|. (4.29)

The lower bound to the noise does not depend on the initial state of the pointer
variable, but only on the localization area of the field, and the strength of the coupling
as encoded in ct. In appendix B.2 we calculate how the noise scales in the case of
masless field in 3+1 dimensions. Assuming spacetime smearings of widths σt, σx in
space and time accordingly, then

Σt ≥
λ√
2π

√
σt

σx(σ2
t + σ2

x)
. (4.30)

In this example, this bound expresses the limitation to the field measurability in
terms of the size of the spacetime region that the pointer variable is addressing and
the coupling strength.
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Connection to histories approach: time-extended propositions

In the usual quantization procedure, one quantizes single-time observables of the
classical configuration space of a system. A classical observable A(t) is mapped to
a quantum observable Â(t) that is a self-adjoint operator with spectral projections
that correspond to all possible values. It is not obvious in this standard account how
one can measure time-averages of observables, or what is the quantum counterpart
of a time-averaged classical observable (see e.g. [118]). It is worth pointing out that
the proposition that corresponds to

∫ t
dsχ(s)⟨Φ̂s[F ]⟩ = a is represented by the class

operator [79]

C(a) =

∫
dk

2π
e−ikaeitĤTeik

∫ t dsχ(s)Φ̂s[F ]

=

∫
dk

2π
e−ikaUχ(t, k) (4.31)

which went into the POVM that we defined above (see (4.12)). To this extent, we
can convince ourselves that this POVM corresponds to a smeared field time average.
We see that time-extended propositions for a given system are not associated with
projectors, but with class operators (products of projector operators in the Heisen-
berg picture) which are not projectors (since a given projector does not commute
with itself at different times). This implies that when one is interested in formulat-
ing time-extended propositions (or measurements) histories-based formalisms arise
naturally because there are no ‘yes-no’ type questions for time-extended observables.

4.1.1 Example: detecting a coherent state

In this section we consider the response of the continuous pointer variable to a
coherent state

|f⟩ = eiΦ̂0[f ] |0⟩ (4.32)

where
Φ̂0[f ] =

∫
dxf(x)Φ̂(0,x). (4.33)

The expectation value of the pointer variable is

⟨x̂(t)⟩ = ⟨f |Φ̂sm(t)|f⟩

= ⟨f |
∫ t

dsχ(s)Φ̂s[F ]|f⟩. (4.34)
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Using the BCH formula

⟨f |Φ̂sm(t)|f⟩ = −i
∫ t

dsχ(s)[Φ̂0[f ], Φ̂s[F ]] (4.35)

For Gaussian functions

f(x) =
1

(
√
2πσ)3

e−
x2

2σ2 (4.36)

F (x) =
1

(
√
2πσ)3

e−
(x−L)2

2σ2 . (4.37)

In appendix B.3, for a massless field in 3+1 dimension we derive that

⟨f |Φ̂sm(t)|f⟩ =
∫ t

dsχ(s)C(s) (4.38)

where

C(s) =
π2
√
2πσ

L

(
exp

[
−(L+ s)2

4σ2

]
− exp

[
−(L− s)2

4σ2

])
, (4.39)

and Φ̂sm(t) is defined in (4.34). If we assume a switching function that is compactly
supported only in the time interval [t−, t+] where t± = T ±∆, we get that

⟨f |Φ̂sm|f⟩ =√
2π3σ2

L

(
erf
[
t+ + L

2σ

]
− erf

[
t− + L

2σ

]
+ erf

[
t+ − L

2σ

]
− erf

[
t− − L

2σ

])
. (4.40)

This is equal to the expectation value of the pointer variable. We would expect that
the signal peaks at T = L, roughly, when the coherent state arrives at the location
where the pointer variable is coupled to the field. Indeed, the first two and the last
two terms can be thought of as smoothened box functions around T ±L. This means
that the detector has to be placed on the future or past lightcone of the localized
coherent state (centered at zero).

More generally, instead of (4.32) we can also define a coherent state in terms of a
field operator Φ̂ that is also smeared in time 2. Let us smear the field operator with
the spacetime smearing function f(x)

iΦ̂[f ] = i

∫
dxf(x)

∫
dk
(
uk(x)âk + u∗k(x)â

†
k

)
= â†[λ]− â[λ] (4.41)

2Inspired by the writing Φ̂(f) = â(KEf) + â∗(KEf) where f smooth compactly supported in
Minkowski spacetime, Ef a solution to the equation of motion and K : sol → H the one particle
Hilbert space [66].
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for
λ(k) = i

∫
dxf(x)u∗k(x) (4.42)

and so we can bring the coherent state in the usual form 3

eiΦ̂[f ] |0⟩ = eâ
†[λ]−â[λ] |0⟩ . (4.43)

Then, we consider the covariant commutation relations [60]

[Φ̂[f ], Φ̂[f ′]] = iE(f, f ′) (4.44)

and (abusing notation) we denote Φ̂sm(t) in (4.34) as Φ̂[χF ]. Then it follows from
the BCH formula that

⟨f |Φ̂[χF ]|f⟩ = E(f, χF ) (4.45)

and
⟨f |Φ̂2[χF ]|f⟩ = ⟨0|Φ̂2[χF ]|0⟩+ E2(f, χF ). (4.46)

Then subtracting the square of (4.45) from the square of (4.46) we calculate the
variance

(∆Φ̂sm(t))f = (∆Φ̂sm(t))0 (4.47)

The variance is the same as in the vacuum state (since the coherent state is basically
like a displaced vacuum state, the mean value is different than in the vacuum but
the variance is not).

Finally, we can consider the full probability distribution of the pointer variable
when the field is in a coherent state. Using the Weyl relations

eiΦ̂[f ]eiΦ̂[f ′] = e−
i
2
E(f,f ′)eiΦ̂[f+f ′] (4.48)

Given a coherent state |f⟩ of the field, the probability distribution for the pointer
variable is

pf (x, t) =

∫
dpdp′eix(p−p

′)ψ(p)ψ∗(p′)e−ct(p
2+p′2)ei(p

′−p)E(f,χF )⟨0|ei(k′−k)Φ̂[χF ]|0⟩.

(4.49)

Looking at the full probability, the question is: Can this detector distinguish |f⟩ from
the vacuum, and how well? The intuition from the analysis and the examples above is

3Note that this state is different than the time-ordered version TeiΦ̂[f ] |0⟩ that is created by a
source term in the Hamiltonian.
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that this continuous pointer variable should be able to distinguish the coherent state
from the vacuum since it measures field amplitudes, and the pointer variable behaves
as an ‘antenna’. Yet, we notice something counter-intuitive: comparing (4.49) with
the vacuum probability (4.19) we see that the f -dependence appears only as a phase
that depends on the overlap E(f, χF ). That is, when the spacetime support of the
pointer variable coincides with the support of the coherent state the phase vanishes
(since E(f, f) = 0) and the probability becomes equal to the vacuum probability.
In other words, it seems like when we couple the pointer variable ‘on top’ of the
coherent state, the detector becomes transparent. We were able to explain this by
taking into account that when f is time extended, it entails not only Φ̂ elongation
but also ˙̂

Φ = Π̂ elongation. At the same time, since the coupling of the pointer
variable to the field is time-extended by means of the switching, the pointer variable
is sensitive to both quadratures. One can analyze the response of the pointer variable
by means of how ‘aligned’ the relative angles of the coherent state and the coupling.
The full analysis will appear elsewhere [119].

4.2 Weak coupling: detecting a wavepacket

The particle-like interpretation of the detector’s response mostly relies on the phe-
nomenon of resonance, that is, the detector ‘clicking’ (only) when the detector’s
energy gap ‘matches’ the energy of an (almost) monochromatic wavepacket. It is
curious that this simple phenomenon is not so well understood in the literature of
detector models in QFT. Here, we partially review previous analysis of wavepacket
detection in the Unruh-DeWitt model [120, 120] and then we present our analysis in
the next subsection. Then, we consider wavepacket detection in the solvable model
based on QBM, and we argue that the perturbative techniques cannot capture the
resonant behavior in full.

Consider the interaction Hamiltonian

Ĥint = λχ(t)µ̂(t)Φ̂t[F ] (4.50)

where
µ̂(t) = eiωtσ+ + e−iωtσ− (4.51)

the monopole operator of a two-level system. The excitation probability is

P+(∞) = λ2
∫ ∞

−∞
dtdt′χ(t)χ(t′)e−iω(t−t

′)tr(Φ̂t[F ]Φ̂t′ [F ]ρ̂0). (4.52)
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We can decompose the smeared field two-point function as

tr(Φ̂t[F ]Φ̂t′ [F ]ρ̂0)

=

∫
dxdx′F (x)F (x′) (W (x, t;x′, t′) +W (x′, t′;x, t) +W0(x, t;x

′, t′))

(4.53)

where

W (x, t;x′, t′) :=

∫
dkdk′u∗k(x, t)uk′(x′, t′)ρk,k′ (4.54)

W0(x, t;x
′, t′) :=

∫
dkuk(x, t)u

∗
k(x

′, t′) (4.55)

and
ρk,k′ = tr(âk′ ρ̂0â

†
k) (4.56)

the one-particle reduced density matrix. This demonstrates that all the information
of the response for a single detection (leading order to perturbation theory) is encoded
in (4.56). So the detector response is the same for multi-particle states that give the
same one-particle reduced density matrix. For a one-particle wavepacket state

|ψ⟩ =
∫

dkψ̃(k)â†k |0⟩ (4.57)

(4.56) is simply ρk,k′ = ψ̃(k)ψ̃∗(k′). If we define

ψ(x, t) :=

∫
dkuk(x, t)ψ̃(k), (4.58)

which happens to be the Newton-Wigner wavefunction of the wavepacket [121], the
excitation probability factorizes as follows

P+(∞) = P0 + Pψ (4.59)

where P0 the vacuum excitation probability (see equation 4.64 below) and

Pψ =

∣∣∣∣∫ dteiωtχ(t)

∫
dxF (x)ψ(x, t)

∣∣∣∣2 + ∣∣∣∣∫ dteiωtχ(t)

∫
dxF (x)ψ∗(x, t)

∣∣∣∣2 . (4.60)

Writing explicitly the Newton-Wigner wavefunction as

ψ(x, t) =
1

√
2π

3

∫
dk√
2ωk

ψ̃(k)eikx−iωkt (4.61)
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If we write (4.60) in momentum space we can recognize the usual ‘counter-rotating’
and ‘co-rotating’ terms

Pψ =

∣∣∣∣∫ dk

4π
√
2ωk

F̃ (k)χ̃(ω + ωk)ψ̃(k)

∣∣∣∣2 + ∣∣∣∣∫ dk

4π
√
2ωk

F̃ (k)χ̃(ω − ωk)ψ̃(k)

∣∣∣∣2 ,
(4.62)

where χ̃, F̃ the usual Fourier transforms of the switching and smearing functions.
We want to analyze whether there is a resonance effect when the wavepacket is
almost monochromatic at the wavelength of the detector energy gap. We also want
to analyze the role that the spatial smearing plays in the wavepacket detection, as
we have not assumed that the detector is pointlike.

For the study of resonance, it is typical to assume that the interaction is always
on, namely χ(t) = 1. In this case, the first ‘counter-rotating’ term vanishes (because
χ̃(ω + ωk) = δ(ω + ωk)) and we have that

Pψ =

∣∣∣∣∫ dk

4π
√
2ωk

F̃ (k)ψ̃(k)δ(ω − ωk)

∣∣∣∣2 . (4.63)

Also, notice that in the long-time limit the vacuum contribution to the excitation
probability vanishes for similar reasons. Indeed, from (4.52),(4.53),(4.55) and (4.59)
we get that

P0 = λ2
∫

dtdt′χ(t)χ(t′)e−iω(t−t
′)

∫
dxdx′F (x)F (x′)

∫
dkuk(x, t)u

∗
k(x

′, t′)

=
λ2

2(2π)3

∫
dk

|k|
|F̃ (k)|2|χ̃(ω + ωk)|2. (4.64)

This means that the vacuum contribution is also ‘counter-rotating’ and will vanish
in the long-time limit, or more precisely in the adiabatic limit (where one assumes a
family of switching functions of finite width T and takes the limit T → ∞ [122, 123]).

The spatial smearing effectively selects the frequencies of the field that the detec-
tor is sensitive to. In [64] it was observed that if the support of the Fourier transform
of the smearing F̃ (k) does not include the detector gap ω, or if F̃ (±ω) is negligible,
the excitation probability is also negligible, that is, the detector becomes transpar-
ent to the resonant frequency. This is easy to see, especially in the long-time limit,
through (4.63). For example, consider a massless scalar field in 1 + 1 dimensions, a
Gaussian smearing function

F (x) =
1√
2πσx

e
− x2

2σ2
x (4.65)
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and a Gaussian wavepacket

ψ̃(k) =
1√
2πσk

e
− (k−k0)

2

2σ2
k . (4.66)

Through equation (4.63) we see that the excitation probability is given by the overlap
of F̃ (k) with ψ̃(k) evaluated at the frequency of the detector:

Pψ =
λ2e−ω

2σ2
x

4π4σ2
kω

e
−
(

ω−ω0
σk

)2

, (4.67)

where ω0 = ωk0 . The exponential factor e−ω2σ2
x captures the effect of the detector’s

size on the excitation probability. We see that for the probability to not be signifi-
cantly smaller than the one of the pointlike model, it has to hold that 1/σx ≫ ω. That
is, the width of the Fourier of the smearing function F̃ (k) should be much larger than
the detector energy gap. We also see that the excitation probability peaks at ω = ω0.
Nevertheless, in arbitrary spacetime dimension, it is not clear whether the excitation
probability increases in amplitude the more monochromatic the wavepacket, i.e., in
the limit σk → 0, and counter-intuitive behavior of the monochromatic limit was
pointed out in [124]. We will elaborate on this issue in the next subsection.

4.2.1 Resonance and time-of-arrival in the smeared UDW
model

There are two related but distinct questions: Does the excitation probability ‘peak’
when the wavepacket is (almost) monochromatic at the frequency of the detector
gap? and, does the excitation probability ‘peak’ at the expected ‘time-of-arrival’ of
the wavepacket at the detector location? As we will see, in some sense these two
questions are complementary. The intuition is that ‘the more monochromatic the
wavepacket the better the measurement of its energy (due to resonance) and the
worse the time-of-arrival measurement (since an almost monochromatic wavepacket
is very delocalized). In what follows, we will refine this intuition by analyzing what
it is that the detector’s response is sensitive to.

We will assume that the detector is centered around L, and the wavepacket is
centered at zero with momentum k0. This will help us understand resonance and
time-of-arrival in terms of the configuration of the detector and the wavepacket in
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space and time. We define the overlap of the spatial smearing with the Newton-
Wigner wavefunction of the wavepacket

ψF (t) :=

∫
dxF (x)ψ(x, t) (4.68)

and so the expression (4.60) becomes

Pψ = λ2
∣∣∣∣∫ dteiωtχ(t)ψF (t)

∣∣∣∣2 + λ2
∣∣∣∣∫ dteiωtχ(t)ψ∗

F (t)

∣∣∣∣2 . (4.69)

As we argued above, we will assume that the width of the Fourier F̃ (k) is much
larger than the momentum of the wavepacket 1/σx ≫ |k0| so that F̃ (k) ≃ F̃ (k0)
since we will assume an almost monochromatic wavepacket

ψF (t) =

∫
dk√
2ωk

F̃ (k)eikL−iωktψ̃(k)

≃ F̃ (k0)ψ(L, t). (4.70)

Since the almost monochromatic wavepacket is around k0 we can change variables
k = k0 + q with |q| ≪ 1 to estimate that

ψ(L, t) ≃ uk0(L, t)ψ̃(L− v0t) (4.71)

where v0 = k0/ωk0 the ‘relativistic velocity’ (see appendix C). The function ψ̃ is
peaked at q = 0 so the maximum value is obtained for some time t when L and v0

are aligned (that is, when we ‘shoot’ the wavepacket towards the detector’s center)
and the problem essentially reduces to a one-dimensional problem. This is compatible
with our observation in [15] that the detector is detecting spherical waves (and not
plane waves) and might explain some of the counter-intuitive behavior that was
observed in [124] that in particular spacetime dimensions that excitation probability
decreases in the monochromatic limit.

For the rest, we denote L := |L| and v0 := |v0|. If we choose χ, ψ̃ to be Gaussian
functions with width σt, σk we get

Pψ =
λ2|F (k0)|2

2ω0

σ2
k,t

2σ2
kσ

2
t

e
− (T−L/v0)

2

(σ2
t +σ̃2

k
)

(
e−2σ2

k,t(ω−ω0)2 + e−2σ2
k,t(ω+ω0)2

)
(4.72)

where

µk,t =
T σ̃2

k +
L
v0
σ2
t

σ2
t + σ̃2

k

(4.73)
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and
σk,t =

σtσ̃k√
σ2
t + σ̃2

k

, (4.74)

where σ̃k = σk/v0. We see that indeed the probability peaks at ω = ω0 and that
there is an overall factor that peaks at the expected ‘time-of-arrival’ time T = L/v0.

Time-of-arrival probability of a relativistic particle

Note that the probability (4.72) that we derived in the example above is not a gen-
uine time-of-arrival probability, it is the total probability at t → ∞. Temporal
probabilities are not easy to define since there is no time operator. For example, in
non-relativistic quantum mechanics |ψ(t,x)|2 is a probability density over x labeled
by t (but not over t) which means that we cannot integrate it over a time interval
to decide how likely it is that the particle will be found at these times. A method
for defining temporal probabilities in the context of detector models in QFT can be
found in [80, 125]. The QTP program is based on the formalism of the decoher-
ent histories approach, and it constructs temporal probabilities that are associated
with propositions about the first-crossing time of the particle, given that suitable
conditions are satisfied by the switching function (interpreted as a time sampling
at leading order). It leads to the same expressions as we derived above at leading
order in perturbation theory, but it provides the tools for assigning the temporal
coarse-graining that is needed for constructing well-defined temporal probabilities.

Assuming a switching function that is peaked around T we have that

PT = λ2
∫

dsds′χ(s− T )χ(s′ − T )e−iω(s−s
′)|F̃ (k0)|2ψ(L, s)ψ∗(L, s′). (4.75)

We perform the following change of variables: S = (s+ s′)/2 and ξ = s− s′. We get

PT =

∫
dSχ(s− T )P (s) (4.76)

where
P (s) = λ2|F̃ (k0)|2

∫
dξeiωξχ(ξ)ψ∗(L, s+

ξ

2
)ψ(L, s− ξ

2
). (4.77)

The probability (4.76) is a well-defined probability with respect to the time T ,
namely it satisfies Kolmogorov additivity when integrated over time-intervals ∆T if

72



∆T ≫ σt the width of the Gaussian sampling function χ. This means that time-of-
arrival propositions are additive only if they are very coarse-grained. If we increase
the resolution of the time-measurements the consistency condition is not satisfied.

The time-of-arrival-like factor (see (4.72)) does not arise in the standard analysis
of resonance because it is typical to assume the long-time limit i.e., χ(t) = 1 (for
killing the counter-rotating term and the vacuum noise term) to obtain a sharp peak
at the resonant frequency. From this perspective, it is problematic that we assumed
a Gaussian switching function of finite width in the example above. By doing so, we
realize the two-fold role that this timescale plays if we view it as a time resolution:
the more we want to resolve the time-of arrival, we introduce noise and in that
sense we lose the resonant behavior. At the same time, for small time-resolution,
the expression is not even a well-defined temporal probability (since the additivity
condition cannot be satisfied).

4.3 The QBM model

In the previous sections, we saw that a field-particle interaction with an UDW cou-
pling corresponds (i) to a measurement of field properties if the apparatus Hamil-
tonian is negligible compared to the interaction term, and (ii) to a measurement of
particle properties if the interaction is weak compared to the apparatus Hamilto-
nian. In this section, we present a model that incorporates both cases for different
parameter regimes. Furthermore, this model, being solvable, can be used to char-
acterize intermediate regimes. This analysis is base on QBM models, which admit
exact solutions for their time evolution [126, 127, 128, 129, 130].

4.3.1 Solving the Heisenberg equations of motion

For this purpose, we consider the analogy between the detector interacting with the
quantum field and the quantum Brownian motion (QBM) model in which a quantum
harmonic oscillator of frequency Ω0 is interacting with a bath of harmonic oscillators
indexed by i, which is described by the Hamiltonian

Ĥ =
P̂ 2

2M
+

1

2
Mω2

0X̂
2 +

∑
i

(
p̂2i
2mi

+
1

2
miω

2
i q̂

2
i

)
+ X̂ ⊗

∑
i

ciq̂i (4.78)
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The Unruh-DeWitt type Hamiltonian that couples linearly the quadrature of the
quantum harmonic oscillator to the quantum field with interaction Hamiltonian

Ĥint = λX̂ ⊗ Φ̂(x0) (4.79)

is of the QBM form (4.78) if we decompose the field as a bath of quantum harmonic
oscillators indexed by i = k, defined in appendix D. Choosing x0 = 0 the coupling
constants are

ck =
λ

√
ωk

. (4.80)

The form of the coupling constants specifies the spectral density of the environment.
In this case (see appendix D.1) the spectral density is

I(ω) = πλ2ω. (4.81)

The spectral density being proportional to ω is the definition of an Ohmic environ-
ment. That is, through the QBM model we see that a quantum harmonic oscillator
linearly coupled to a scalar quantum field in a pointlike manner ‘perceives’ the field
as an Ohmic environment. This is not the case e.g. for a smeared coupling between
the field and the oscillator4. The QBM model can be solved for a certain class of en-
vironments, and the Ohmic case is the simplest. The model is easily solvable because
the Heisenberg equations of motion are linear

˙̂
X(t) = P̂ (t)/M (4.82)
˙̂
P (t) = −Mω2

0X̂(t)− λΦ̂(t, 0) (4.83)

(□−m2) Φ̂(t,x) = −λδ(x)X̂(t). (4.84)

The solution to (4.84) is

Φ̂(t,x) = Φ̂0(t,x)− λ

∫ t

0

dt′Gr(t,x; t
′, 0)X̂(t′) (4.85)

where Φ̂0(t,x) is the free solution and Gr is the retarded propagator of the Klein-
Gordon equation. Combining this with the equations of motion above we get

¨̂
X(t) + ω2

0X̂(t)− λ2

M

∫ t

0

dt′Gr(t
′,x; t, 0)X̂(t) = −λΦ̂(t, 0) (4.86)

4When more than one oscillator is involved, one can argue that extended interactions are effec-
tively pointlike if they are small with respect to the relative distance of the oscillators [131].
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which is a linear integro-differential equation with an operator-valued source.

The solutions to the Heisenberg equations of motion can be found through the
Laplace transform (see e.g. [116]) and are given by

X̂(t) = u̇(t)X̂(0) +
1

M
u(t)P̂ (0)− λ

M

∫ t

0

dt′u(t− t′)Φ̂0(t
′) (4.87)

where Φ̂0(t) is the solution to the free Klein Gordon equation and u(t) is the homo-
geneous solution which satisfies

ü(t) + ω2
0u(t)−

λ2

M

∫ t

0

dt′Gr(t, x0; t
′, x0)u(t

′) = 0. (4.88)

By integration by parts, we write this as

ü(t) + ω̄2u(t) +
λ2

M

∫ t

0

dt′γ(t− t′)u̇(t′) = 0 (4.89)

where γ is the so-called dissipation kernel, and ω̄2 = ω2
0− 2λ2

M
γ(0) is the renormalized

frequency of the detector. The field’s Green function in (4.88) is the derivative of the
so-called dissipation kernel (see e.g. [132]) which is related to the spectral density as
follows

γ(t) =

∫ ∞

0

dω

2π

I(ω)

ω
cos(ωt) (4.90)

For a massless field and a pointlike coupling

γ(t) =
λ2

4π
δ(t), (4.91)

and equation (4.89) becomes

ü+ 2Γu̇+ ω̄2u = 0, (4.92)

where Γ = λ2

8πM
. The solutions are

u(t) =

{
sin(ωt)
ω

e−Γt, ω =
√
ω̄2 − Γ2, Γ < ω̄

sinh(Γ′t)
Γ′ e−Γt, Γ′ =

√
Γ2 − ω̄2, Γ > ω̄

(4.93)
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This means that one can analyze the behavior of this model in the weak/strong
coupling regimes in terms of the underdamped/overdamped solutions of a classical
damped harmonic oscillator (see e.g.[126]).

From (4.87) we see that

X̂(t) = X̂0(t)−
λ

M
Φ̂u(t) (4.94)

where
X̂0(t) := u̇(t)X̂(0) +

1

M
u(t)P̂ (0) (4.95)

and

Φ̂u(t) :=

∫ t

0

dt′u(t− t′)Φ̂0(t
′). (4.96)

So we see that the position operator of the harmonic oscillator is basically tracking
the field operator smeared/convolved in time with the homogeneous solution. The
more the dissipation (stronger coupling Γ > ω̄) the more local in time this ‘tracking’
becomes. For the variances, it holds that

(∆X̂(t))2 = (∆X̂0(t))
2 +

λ2

M2
(∆Φ̂u(t))

2. (4.97)

4.3.2 The strong coupling regime: field measurements

We want to see to what extent we can reproduce the result of this section of this
chapter, where we established that the pointer variable is correlated with field aver-
ages. First, we will have to solve the QBM model with a coupling to the momentum
of the harmonic oscillator and then consider the case in which the bare frequency of
the harmonic oscillator is zero (gapless pointer variable). In the previous section we
saw that the quadratures of the harmonic oscillator are ‘tracking’ the field operator
convoluted with u, u̇ i.e. the homogeneous solution and its derivative. This is a
convolution that is non-local in time, depending on how strong the dissipation is. Of
course, the dissipation did not appear in the pointer variable analysis, and we should
be able to recover that the pointer variable is correlated with the time average of
Φ̂(t,x0) weighted by χ(t) = 1.

In appendix D.2 we solve the equations of motion for the QBM model with
interaction Hamiltonian

Ĥint = λΦ̂(t,x0)⊗ P̂ (t) (4.98)
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We find (see (D.34)) that u(t) satisfies

ü(t) + ω2
0(1− 2Mγ(0))u(t) + 2πλ2Mω2

0u̇(t) = 0 (4.99)

which for ω0 = 0 simply reduces to ü(t) = 0, and as a result we have that u̇(t) = 1
(no dissipation). Then, the solution to the equation of motion for the conjugate
pointer variable X̂(t) is reduced to

X̂(t) = X̂(0)−
∫ t

0

dt′Φ̂0(t
′). (4.100)

As we argued in the first section, this corresponds to strong coupling in the sense
that the self-dynamics of the oscillator is negligible. We see that without internal
dynamics there cannot be dissipation, even for strong couplings.

4.3.3 The weak coupling regime: resonance

The homogeneous solution for Γ < Ω̄ is

u(t) =
sin(ωt)

ω
e−Γt (4.101)

where
ω =

√
ω̄2 − Γ2. (4.102)

We will assume that the state of the field is a wavepacket, and we will calculate the
average energy of the harmonic oscillator (in the long-time limit) which is

⟨Ĥ⟩ = (∆P̂ )2

2M
+
Mω̄2(∆X̂)2

2
. (4.103)

This is because ⟨X̂⟩ = ⟨P̂ ⟩ = 0 for Fock states of the field, and as a result (∆X̂) =
⟨X̂2⟩ and (∆P̂ ) = ⟨P̂ 2⟩. Note that we have used the renormalized and not the bare
frequency of the harmonic oscillator in (4.103). The variance of X̂ is given by (4.97)
where ∆X̂0(t) = 0 for t≫ 1/Γ (see appendix D.3). Assuming that the environment
is in a one-particle state

|ψ⟩ =
∫

dpψ(p− p0)â
†
p |0⟩ (4.104)

Then,
(∆Φ̂u(t))

2 = (∆Φ̂0(t))
2 + (∆Φ̂u,ψ(t))

2 (4.105)
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where (∆Φ̂u,ψ(t)) the state-dependent part, which is

(∆Φ̂u,ψ(t))
2 =

∣∣∣∣∫ dpψ∗(p− p0)vu,p(t)

∣∣∣∣2 (4.106)

where

vu,p(t) :=

∫ t

0

dt′up(t
′,0)u(t− t′) (4.107)

and up comes from the usual mode decomposition of the field. Further, we assume
that the wavepacket is centered around L, namely ψ(p−p0) = χ(p−p0)e

ipL, where
ψ(p− p0) is peaked around p0 (almost monochromatic) and that Γ|L| ≫ 1. We get
we get

(∆Φ̂u,f (t))
2 =

|ψ(t,L)|2

8Ω̄2|p0|

(
1

Γ− i(|p0|+ Ω̄)
− 1

Γ− i(|p0| − Ω̄)

)2

. (4.108)

where
ψ(t,L) =

∫
dpχ(p− p0)e

−i|p|te−ipL. (4.109)

Performing a similar calculation for ∆P̂ (t), which is related to ∆Φ̂u̇, (see appendix
D.3) we get

⟨Ĥ(t)⟩ = |Ψ(t,L)|2

2M |p0|
|p0|2 + ω̄2

|(ω̄2 − |p0|2)− 2iΓ|p0||2
+N (4.110)

where the vacuum noise is given by

N =
λ2

2M
(∆Φ̂u̇,0(t))

2 +
λ2ω̄2

2M
(∆Φ̂u,0(t))

2. (4.111)

If we perform the calculation with a smeared coupling between the harmonic oscil-
lator and the field (as in [133]) we see that the noise term diverges logarithmically
as the size of the smearing vanishes. It can be shown that this noise term represents
the leading order behavior of the noise in a power expansion involving a UV cutoff.
What we see in (4.110) is that when the dissipation Γ is small (weak coupling) the
energy of the oscillator sharply peaks when the wavepacket’s energy coincides with
the renormalized frequency of the oscillator. The form of the resonance is of the
(expected) Breit-Wigner form [134]. Indeed, resonances of the Breit-Wigner type
require absorption effects that can only be captured non-perturbatively, or after a
partial resummation of the perturbative series [116].

78



4.4 Detecting a massive particle

In most of the calculations above, we assumed a massless scalar field (even though
most expressions are general) for the purpose of modeling the interaction of a detector
with the electromagnetic field. The formalism is quite general, so in principle it can
be applied to the case of a massive scalar field to model the detection of a massive
field excitation, or a massive particle (at least for small masses, as in the case of
neutrinos). The analysis of the localized detection of a massive particle in quantum
field theory yields some interesting qualitative results that are absent in the quantum
mechanical description.

To motivate what follows, consider a non-relativistic quantum particle of non-zero
mass m. Its state admits a spatial representation by means of spatial wavefunction
ψ(x, t). Then the probability of detecting the quantum-mechanical particle at loca-
tion x and at time t is given by the square amplitude of its wavefunction |ψ(x, t)|2.
In comparison, when a relativistic quantum particle is described as an excitation of
a massive scalar field, the |ψ|2 description is not available for two distinct but related
reasons: the absence of a spatial wavefunction, and the non-availability of idealized
measurements. Instead, one has to model dynamically the detection process, by
choosing a coupling between the detector and the massive scalar field. The observa-
tion is that the localized detection of a relativistic quantum particle, e.g. in which
locations it is most likely to be detected, can be highly dependent on the physical
interaction that we choose for probing it. This seems to suggest that localization of
a quantum-field-theoretical state is a relational property that can only be defined in
relation to another physical system that is interacting with the quantum field in one
way or another [135, 8].

4.4.1 Where something is (found) depends on how you look
for it

Consider an initial state, in which the field is in a wavepacket state and the detector
initially in the ground state

|Ψ0⟩ = |g⟩ ⊗
∫

dyψ(y)â†y |0⟩ (4.112)

where
ây :=

∫
dke−ikyâk (4.113)
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the non-relativistic localization scheme 5. We assume an interaction Hamiltonian of
the form

Ĥint = λχ(t)µ̂(t)⊗
∫

dxF (x)Ô(x, t) (4.114)

where Ô(x, t) is a (composite) operator of a massive scalar Klein Gordon field. We
will compare the probability of the wavepacket detection (which is associated with
the detector’s excitation probability) for two different choices of the operator Ô: 1.
Ô(x, t) = ϕ̂(x, t) and 2. Ô(x, t) = ∂xϕ̂(x, t).

To demonstrate the point in the simplest way possible, we will look at the prob-
ability amplitude that the detector goes to the excited state and the field to the
ground state6 (the calculation of the full excitation probability can also be found
in appendix C.2). Using the Dyson expansion of the interaction Hamiltonian, the
probability amplitude of this transition is

Π(τ) = λ

∫ τ

dtχ(t)⟨e|µ̂(t)|g⟩
∫

dx

∫
dyF (x)ψ(y)⟨0|Ô(t,x)â†y|0⟩+ O(λ2). (4.115)

To evaluate the integral kernel ⟨0|Ô(t,x)â†y|0⟩ it is useful to express the field operator
in terms of the non-relativistic localization scheme

ϕ̂(t,x) =

∫
dz
(
K(t,x− z)âz +K∗(t,x− z)â†z

)
(4.116)

where the integral kernels are given by the Fourier transform of the field’s mode
functions

K(t,x− z) =

∫
dkvk(t,x)e

−ikz. (4.117)

The following function arises in the excitation probability amplitude

ψ̃(x, t) :=

∫
dyK(t,x− y)ψ(y). (4.118)

It is easy to check (see appendix C.2) that ψ̃ is the Newton-Wigner wavefunction of
the relativistic particle. For the case of coupling to the amplitude Ô(x, t) = ϕ̂(x, t)
the probability amplitude is

Πampl(τ) = −λ
∫ τ

dtχ(t)⟨e|µ̂(t)|g⟩
∫

dxF (x)ψ̃(t,x) + O(λ2). (4.119)

5note that ψ(y) does not admit the wavefunction interpretation in general, for details see [45].
6Note that first order in the coupling constant λ for the probability amplitude corresponds to

second order for the probability (which is typically the leading order).
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We see that the detection probability amplitude Πampl depends on the overlap of
the Newton-Wigner wavefunction of the particle with the smearing function (which
roughly represents where the detector is). For the case of the derivative coupling
Ô(x, t) = ∂xϕ̂(x, t), using that

∂xϕ̂(t,x) =

∫
dz
(
∂xK(t,x− z)âz + ∂xK

∗(t,x− z)â†z
)

(4.120)

we get that

Πder(τ) = −λ
∫ τ

dtχ(t)⟨e|µ̂(t)|g⟩
∫

dxF (x)∂xψ̃(t,x) + O(λ2). (4.121)

Comparing with (4.119) we see that detection probability amplitude Πder is sen-
sitive to the spatial derivative of the Newton-Wigner wavefunction, rather than the
amplitude. This is counter-intuitive from a quantum-mechanical perspective, since
the spatial derivative of a wavefunction is irrelevant for the |ψ|2 prescription of the
detection probability.

The observation that the localized detection of a relativistic quantum particle
in which locations it is most likely to be detected, can be highly dependent on the
physical interaction that we choose for probing it, can shed light on the localization
problem in QFT. The localization problem stems from the fact that it is difficult
to define a good notion of particle localization in relativity, without running into
problems with relativistic causality. This is supported by no-go results, like the one
by Malament (that we reviewed in the introduction) and others [5, 6, 108]. Attempts
of relativistic generalizations of the wavefunction (or the position operator), like the
Newton Wigner wavefunction (by means of which we have written the detector’s
response to a wavepacket) are not fully relativistic (for example, the corresponding
Newton Wigner operator defined in [39] does not obey microcausality). The ob-
servation above suggests that the non-existence of a relativistic wavefunction, or a
relativistic position operator, is a feature that one can incorporate by explicitly mod-
eling the detection process, since a relativistic position operator would have to be
interaction-dependent. In this sense, detector models are useful in analyzing the lo-
calization problem. It will be interesting to further investigate the above observation
for realistic interactions (electromagnetic, weak, gravitational) for charged and/or
massive particles or neutrinos, to see how far one could ‘stretch’ the discrepancy
between the different wavefunctions (local probability distributions) that one can
attach to a single particle.
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Chapter 5

Summary and conclusions

Sorkin’s impossible measurements problem highlights that the straightforward ex-
tension of standard measurement theory to QFT leads to friction with relativistic
causality, for reasons that are independent of other foundational issues in relativis-
tic quantum theory (covariance, entanglement, Reeh-Schlieder property etc). We
presented the ‘impossible measurement’ problem as a reductio argument, that is,
we identified the premises that go into the examples that were previously presented
in the literature, and lead to the unacceptable conclusion (superluminal signaling).
The logical structure of a reductio argument is useful for disentangling this problem
from other foundational issues, and for classifying the various responses. We also
provided a brief historical introduction to the topic of local measurements in QFT,
by revisiting the initial historical episodes in the 1930’s.

The overall diagnosis is that ‘impossible measurements’ arise from a ‘mismatch’
between the causal structure of spacetime and the operations that we assume ‘on top’.
The causal structure of spacetime is encoded in a partial order, which is straightfor-
wardly defined for pointlike events, but not so straightforwardly for events that reside
over extended spacetime regions (e.g. measurements of field averages). One moral
is that microcausality is not sufficient for blocking the ‘impossible measurements’
scenarios when more than two regions are involved. One can impose ad hoc condi-
tions on the allowed operations, or the allowed configuration of regions, but these
conditions are hard to motivate physically. Detector models are useful for making
sense of these abstract ad hoc conditions. We quantified the problem by means of
the relevant scales in a given detection set-up, and we provide a case-by-case analysis
for arguing that the problem can be pushed outside the regime of validity of each
model.
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With this analysis, one can appreciate the role that the dynamics plays in defin-
ing, or restricting, the possible operations. This blurs the strict dichotomy between
dynamics and measurements or operations, which is particularly relevant for the for-
mulation of the measurement problem. We showed that, pragmatically, ‘how much’
causality violation one gets depends on ‘how local’ the dynamics is. In scattering-like
treatments, like the detector models approach and the FV-framework in algebraic
QFT, the problem/resolution boils down to the non-locality/locality of the scat-
tering map respectively: in the detector models approach one can give pragmatic
arguments for excluding ‘impossible measurements’ FAPP, while in the FV frame-
work ‘impossible measurements’ are fully eliminated in principle thanks to the nice
locality property of the dynamics. Finally, the ‘impossible measurements’ problem
is still an open problem beyond (generalized) scattering theory, in histories-based
formalisms.

In chapter 3 we provided an exhaustive analysis of signaling for the variety of
detector models in QFT. The main question was the following: Is the quantum
informational notion of causality, that follows from the signaling relations between
detectors, compatible with the spacetime notions of causality? In bipartite scenarios
and for causally orderable interactions, we proved that superluminal signaling and
retrocausation are blocked thanks to the causal factorization of the detector-field
interactions, which is a non-perturbative result. In the perturbative regime, we
applied tools from quantum metrology to define a new signaling estimator (leading
order in perturbation theory) that can be used to analyze causality for noncompact
detecor-field interactions that are not causally orderable. Based on this estimator, we
showed that the signaling possibilities are restricted by the field’s retarded Green’s
function and as a result, for compactly supported interactions, the Fisher information
is non-zero only in the forward lightcone of the coupling region. For noncompact
interactions, we showed that the causal overlap non-trivially depends on the internal
states (coherence in the energy basis) and on the internal frequencies. Nevertheless,
one can derive a maximum bound to the signaling estimator and draw effective
lightcones, that reflect the signaling possibilities, on a case-by-case basis. Quantifying
this ‘cross-talk’ between detectors that are ‘mostly’ spacelike separated in a given
spacetime, is important for causality considerations, as well as for entanglement
harvesting.

In chapter 4 we addressed the following questions: If QFT does not admit a
straightforward particle (or field) ontology, how can we interpret the detector’s re-
sponse using the notion of field or particle? What do particle detectors detect, and
in what regimes? The Unruh-DeWitt particle detector is usually thought of as a
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detector that ‘clicks’ (gets excited) depending on its state of motion and the state of
the field. For fixed-particle states of the field, e.g. momentum-space wavepackets, we
demonstrated when, where and why the detector ‘clicks’ in terms of resonance and
‘time-of-arrival’. We showed that in the monochromatic limit, the detector ‘clicks’ at
a time-of-arrival given by the relativistic velocity. Studying resonance in the smeared
Unruh-DeWitt model, we found that response depends on the overlap of the smear-
ing function with the wavepacket’s Newton Wigner wavefunction. We showed that a
clean particle-like phenomenology can only be achieved in the long-time limit (con-
stant switching), which kills the noise and the counter-rotating terms (that is, the
detector ‘clicks’ only at the ‘right’ frequency and only due to the wavepacket). Try-
ing to view the long-time limit as a limiting case of the adiabatic switching (e.g.
Gaussian switching function) we found the following trade-off: the more we resolve
the ‘time-of-arrival’ the worst the description of resonance, because the noise is zero
only in the long-time limit. In this sense, time and energy measurements are com-
plementary in this set-up.

Regarding field measurements, we considered detectors that do not ‘click’, that
is, a gapless continuous pointer variable that ‘shifts’ according to the smeared field
time-average and is insensitive to the particle content of the field. This pointer
variable analysis works non-perturbatively, in the limit that the detector-field inter-
action is much stronger than the detector’s self-dynamics. Then, we considered a
quantum harmonic oscillator detector, that can both ‘click’ and ‘shift’ because it is
characterized by discrete energy levels but also continuous variables. For pointlike
couplings, the dynamics is solvable (in the long-time limit) using the formalism of
quantum Brownian motion. This improved detector model based on QBM, being
solvable, can be used to characterize the weak, strong and intermediate regime. A
new feature that comes into play (due to the non-negligible self-dynamics of the
detector), is the dissipation induced by the field environment. The qualitative be-
havior of this model depends on the relation between two parameters: the dissipation
and the renormalized frequency of the detector (given a cut-off scale). For strong
dissipation, one gets that the continuous pointer variable of the detector is ‘track-
ing’ the field averages. For weak dissipation, we get resonance in the Breit-Wigner
form. This is an improved description of resonance with respect to the perturbative
treatment, because it takes into account at least a partial ressumation. It is also
an improved description of field measurements with respect to the pointer variable
analysis, where we had to assume a gapless detector. The gap causes the dissipation
with the environment, and the dissipation determines how close the continuous vari-
able is ‘tracking’ the field. This analysis sheds new light on the field/particle duality
in QFT measurements induced by detector models.
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Finally, we considered the localized detection of a massive wavepacket. In pre-
vious work, we showed explicitly that a massive scalar field can be described as
a continuously infinite tensor product of local harmonic oscillators âx, â†x with fre-
quency given by the mass of the field. The fact that there is no position operator
for the relativistic particle implies that there is no |ψ|2 prescription for its localized
detection. In fact, the probability of detection in a particular location highly de-
pends on the physical interaction that we are using to probe the local excitation of
the field. We showed, for example, for derivative coupling of the detector to ∂xΦ̂ the
detection probability depends on the spatial derivative (rather than the amplitude)
of the wavepacket’s Newton-Wigner wavefunction. This is an example of a local-
ization feature that is absent in the quantum mechanical description, that is worth
investigating further. It should be possible to define ‘induced’ interaction-dependent
position operators for relativistic particles in QFT.

Epilogue: Localization, signaling and the QFT measurement problem

No-go results by Sorkin and Malament imply that there can be no localized ideal
measurements in relativistic spacetime due to friction with relativistic causality. For
local QFT measurements, these results necessitate the introduction of probe systems
that are dynamically coupled to the field. The fact that localization in QFT can
only be defined through a particular dynamical interaction with a probe, can lead
to a whole new intuition about the microscopic world and how we interact with it.
Further, several results suggest that relativistic QFT does not admit a particle ontol-
ogy. Considerations of QFT in curved spacetime support the argument that ‘QFT is
a theory about fields’(e.g. [66]), but the field ontology is also not easy to establish,
especially beyond the scalar field theory. Perhaps this suggests that the field/particle
concepts, that are describing very well the ontology of our classical world, are not
quite applicable in the quantum regime. These concepts are reflected in the quantum
theories through the process of quantization, but they cannot be used to establish
an ontology for the quantum theory, and they only arise phenomenologically.

Classical theories come with ‘obvious’ ontological commitments, and the entities
predicted by the theory are the ‘carriers’ of causal relations. This intuitive physical
picture breaks down in QFT, since it is not clear what the theory is ‘about’ and
measurement theory/frameworks/models are necessary for extracting its empirical
content. The details of how the empirical content of QFT is extracted is important
for considerations of causality, as well as for the very formulation of the measure-
ment problem (see discussion in [73]). In this thesis, we emphasized the role that

85



the dynamics plays both for the signaling relations that are compatible with QFT
and for retrieving field/particle phenomenology. Dynamics is ‘physical’ (intrinsic to
the theory) and it can bring back some of the intuitive physical picture of the world,
its causal structure and the entities that reside in it. An emerging theme in the
Philosophy of QFT literature is that, indeed, dynamics seems to be playing an im-
portant role for the formulation of the measurement problem in QFT (see discussion
in [136, 137, 138]).
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Appendix A

Signaling between detectors

A.1 Causal factorization of detector-field interactions

In this appendix we provide a proof of the causal factorization of the scattering op-
erator for compactly supported detectors. The proof relies on elementary properties
of unitary propagators. Consider a general time-dependent interaction Hamiltonian
of the form,

Ĥ(t) = Ĥa(t) + Ĥb(t), (A.1)

and its associated Schrodinger equation

∂t|ψ(t)⟩a+b = −i(Ĥa(t) + Ĥb(t)) |ψ(t)⟩ , (A.2)

or, more conveniently, in its integral form

|ψ(t)⟩a+b = |ψ(t′)⟩a+b

− i

∫ t

t′
dt(Ĥa(t

′′) + Ĥb(t
′′)) |ψ(t′′)⟩a+b . (A.3)

By recursively applying this integral equation, disregarding domain issues, we can
formally write the evolution of the state as the action of a two-parametric group of
unitary operators, also known as the unitary propagator, Ûa+b(t, t

′):

|ψ(t)⟩ = Ûa+b(t, t
′) |ψ(t′)⟩ =

∑
n

(−i)n

n!

∫ t

t′
dt1· · ·

∫ t

t′
dtn (A.4)

× T(Ĥa(t1) + Ĥb(t1)) . . . (Ĥa(tn) + Ĥb(tn)) |ψ(t′)⟩ ,
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where the second line is the Dyson expansion of the operator Ûa+b(t, t
′). The time

ordering of two time-dependent operators Â(t) and B̂(t) as

TÂ(t)B̂(t′) := θ(t− t′)Â(t)B̂(t′) + θ(t′ − t)B̂(t′)Â(t), (A.5)

where the definition is similar for higher orders. It is useful to define unitary propa-
gators that are associated to local evolution for each detector, that is

Ûν(t, t
′) |ψ(t′)⟩ =

∑
n

(−i)n

n!

∫ t

t′
dt1· · ·

∫ t

t′
dtnTĤν(t1) . . . Ĥν(tn) |ψ(t′)⟩ , (A.6)

where ν ∈ {A,B}. In order to describe the dynamics of the detection process, we
are particularly interested in the scattering operator, that is, the limit

Ŝa+b = lim
t′→−∞

lim
t→∞

Ûa+b(t, t
′) (A.7)

when the Hamiltonians are given by the expressions

Ĥa,b(t) =

∫
E(t)

dE ĥa,b(x). (A.8)

Consider that the supports Λa and Λb of the two detector-field interactions are
causally orderable with A preceding B with respect to some foliation. Then we want
to show that the scattering map factorizes, i.e.

Ŝa+b = ŜbŜa. (A.9)

To show this we find the Schrodinger equation of the factorized dynamics and prove
that it coincides with the full dynamics. Then we will use a uniqueness argument to
prove that therefore the dynamics coincide. Consider the family of states

|ψ(t)⟩ab = Ûb(t,−∞)Ûa(t,−∞)|ψ⟩0 (A.10)

where |ψ⟩0 is a fixed vector. It holds that

∂t|ψ(t)⟩ab

= −i
(
Ĥb(t) + Ûb(t,−∞)Ĥa(t)Û

†
b(t,−∞)

)
|ψ(t)⟩ab . (A.11)

Let us first distinguish two trivial cases. First, consider that A precedes B, with
respect to the foliation T (x). Then, there exists a number tc such that

Ĥb(tc) = Ĥa(tc) = 0 (A.12)
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and

Ĥb(t) = 0 t < tc (A.13)

Ĥa(t) = 0 t > tc. (A.14)

This implies that

Ûb(t,−∞)Ĥa(t)Û
†
b(t,−∞) = Ĥa(t) (A.15)

for all t, since Ûa(t,−∞) is only different from the identity operator, Î, when Ĥb(t) =
0. Second, if the supports are spacelike separated, then

[Ĥb(t), Ĥa(t
′)] = 0 (A.16)

for all t, t′ ∈ R, and therefore

Ûb(t,−∞)Ĥa(t)Û
†
b(t,−∞) =

∑
n

(−i)n

n!

∫ t

−∞
dt1· · ·

∫ t

−∞
dtn (A.17)

× T
[
. . . [Ĥa(t), Ĥb(t1)] . . . ,×Ĥb(tn)

]
= Ĥa(t).

More generally if the detectors are causally orderable, essentially (assuming, with-
out proof, that the adjoint action of the unitary evolution can be carried inside the
integral (A.18)) then

Ûb(t,−∞)Ĥa(t)Û
†
b(t,−∞) =

∫
E(t)

dE Ûb(t,−∞)ĥa(x)Û
†
b(t,−∞). (A.18)

For each x ∈ supp(Λa), ĥa(x) is either causally connected or spacelike separated to
the support of B, so we can choose the corresponding proof from the two ones given
above to show that it remains unchanged under the adjoint action of Ûb(t,−∞).
Therefore

Ûb(t,−∞)Ĥa(t)Û
†
b(t,−∞) =

∫
E(t)

dE ĥa(x) = Ĥa(t).

Altogether, the conclusion is that if A precedes B for some observer then |ψ(t)⟩ab
fulfills (A.2), and since (A.2) is a linear differential equation, the vector

|φ(t)⟩ = |ψ(t)⟩ab − |ψ(t)⟩a+b (A.19)
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also fulfils (A.2). Now, setting |φ(−∞)⟩ = 0 implies |φ(t)⟩ = 0 for all t, since the
solution is unique and |φ(t)⟩ = 0 is a solution with initial condition |φ(−∞)⟩ = 0.
Therefore, we have shown that

|ψ(t)⟩a+b = |ψ(t)⟩ab = Ûa(t,−∞)Ûb(t,−∞)|ψ⟩0, (A.20)

for all t, and more concretely,

Ŝa+b|ψ⟩ = |ψ(∞)⟩a+b

∣∣
|ψ(−∞)⟩a+b=|ψ⟩ = ŜaŜb|ψ⟩, (A.21)

for all states in the Hilbert space.

A.2 Derivation of operator Σ̂

Consider the case of two general detectors, A and B, which interact with the field
according to the interaction Hamiltonian∑

ν=A,B

Ĥν(τ) =
∑
ν=A,B

∫
E(τ)

dE ĥν(x). (A.22)

where in this case the corresponding Hamiltonian densities will be given by

ĥa(x) = λaĴa(x)⊗ 1b ⊗ ϕ̂(x) (A.23)

and

ĥb(x) = λb1am⊗ Ĵb(x)⊗ ϕ̂(x). (A.24)

The joint evolution in the interaction picture of the detectors and the field can
be described as a unitary operator acting over the joint initial state of the field-
detectors system ρ̂initial. Then the state in the asymptotic future will be given by the
transformation

ρ̂final = Ûa+b ρ̂initial Û
†
a+b. (A.25)

The unitary implementing the time evolution can be formally written in terms of the
Dyson series

Ûa+b =
∑
n

(−i)n

n!

∫ ∞

−∞
dτ1· · ·

∫ ∞

−∞
dτnT

(
Ĥa(τ1) + Ĥb(τ1)

)
. . .
(
Ĥa(τn) + Ĥb(τn)

)
.

(A.26)
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This means that we can rewrite (A.25) as

Ûa+b ρ̂initial Û
†
a+b =

∑
n

(−i)n

n!

∫
dτnT

[
Ĥ(τn), . . . [Ĥ(τ1), ρ̂initial] . . .

]
. (A.27)

If the couplings are weak, we can truncate the series at next to leading order

Ûa+b ρ̂initial Û
†
a+b = ρ̂initial − i

∫ ∞

−∞
dτ [Ĥa(τ) + Ĥb(τ), ρ̂initial] (A.28)

− 1

2

∫ ∞

−∞

∫ ∞

−∞
dτdτ ′T

[
Ĥa(τ) + Ĥb(τ), [Ĥa(τ

′) + Ĥb(τ
′), ρ̂initial]

]
+ O(λ3).

where the time-ordering operator is defined as follows

TÂ(t)B̂(t′) := θ(t− t′)Â(t)B̂(t′) + θ(t′ − t)B̂(t′)Â(t) (A.29)

for two time-dependent operators Â(t) and B̂(t). The local statistics of the detector
B will be given by the partial trace

ρ̂b = tra,ϕ(Ûa+b ρ̂initial Û
†
a+b). (A.30)

and the signaling term can be defined as

ρ̂
(2)
b,signal =

∂2

∂λa∂λb
tra,ϕ(Ûa+b ρ̂initial Û

†
a+b)|λa=λb=0. (A.31)

Note that, given any operator Ô, it follows that

tra,ϕ([Ĥa(τ), Ô]) = 0 (A.32)

since Ĥa(τ) only depends on operators of detector A and the field, and thereby can
be permuted within the partial trace. This allows us to disregard multiple terms in
(A.32), thereby leading to

ρ̂b = tra,ϕ(ρ̂initial)− i

∫ ∞

−∞
dτtra,ϕ[Ĥb(τ), ρ̂initial]

− 1

2

∫ ∞

−∞

∫ ∞

−∞
dτdτ ′tra,ϕT

[
Ĥb(τ), [Ĥb(τ

′), ρ̂initial]
]

− 1

2

∫ ∞

−∞

∫ ∞

−∞
dτdτ ′tra,ϕT

[
Ĥb(τ), [Ĥa(τ

′), ρ̂initial]
]

+ O(λ3), (A.33)
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or, more conveniently, we can use the Jacobi identity in the last commutator and
again the cyclic property of the partial trace acting over Ĥa(τ):

ρ̂b = tra,ϕρ̂initial − i

∫ ∞

−∞
dτtra,ϕ[Ĥb(τ), ρ̂initial]

− 1

2

∫ ∞

−∞

∫ ∞

−∞
dτdτ ′tra,ϕT

[
Ĥb(τ), [Ĥb(τ

′), ρ̂initial]
]

− 1

2

∫ ∞

−∞

∫ ∞

−∞
dτdτ ′tra,ϕ

[
T[Ĥb(τ), Ĥa(τ

′)], ρ̂initial

]
+ O(λ3). (A.34)

Note that the first three terms do not contribute to the signaling term (A.31), since
they do not depend on λa. Therefore the signaling term will be given by

ρ̂
(2)
b,signal = −1

2

∫ ∞

−∞

∫ ∞

−∞
dτdτ ′

∫
E(τ)

dE

∫
E(τ ′)

dE′tra,ϕ
[
Ĵa(x

′)⊗ Ĵb(x)⊗ T[ϕ̂(x), ϕ̂(x′)], ρ̂initial

]
.

(A.35)

Now, consider that the state is initially uncorrelated, i.e. ρ̂initial = ρ̂a ⊗ ρ̂b ⊗ ρ̂ϕ.
This gives the following compact expression

ρ̂
(2)
b,signal = −i[Σ̂, ρ̂b] (A.36)

where we have defined the operator

Σ̂ =

∫ ∫
dV dV ′ ⟨Ĵa(x

′)⟩Gr(x, x
′)Ĵb(x)

=

∫
dV Gr[⟨Ĵa⟩](x)Ĵb(x). (A.37)

Here Gr(x, x
′) is the retarded Green function

Gr(x, x
′) = −iθ(τ(x)− τ(x′)) ⟨[ϕ̂(x), ϕ̂(x′)]⟩ , (A.38)

whereas dV denotes the element of volume with respect to the background metric

dV = dxn+1
√
|g|, (A.39)

and where
√
|g| is the determinant of the metric. Note that we have used the fact

that ∫
dτ

∫
dE(τ) =

∫
dxn+1

√
|g|
∫

dτδ(τ(x)− τ)

=

∫
dxn+1

√
|g| =

∫
dV. (A.40)
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A.3 Signaling estimator for Gaussian smearings and
switchings in 3+1 dimensional Minkowski space-
time

In 3 + 1 dimensions the Green’s function is

Gr(t− t′,x− x′) = − 1

4π

δ(t− t′ − |x− x′|)
|x− x′|

(A.41)

We will consider Gaussian smearing and switching functions to evaluate the expres-
sion

I(Ωa,Ωb) =

∫
dtdt′χb(t)e

iΩbtχa(t
′)e−iΩat′C(t− t′) (A.42)

where
C(t− t′) = − 1

4π

∫
dxdx′Fb(x)Fa(x

′)
δ(t− t′ − |x− x′|)

|x− x′|
(A.43)

We consider that B is centered around zero, i.e.,

Fb(x) =
1

(
√
2πR)3

e−
x2

2R2 (A.44)

and A is centered around z with the same width R. Let’s introduce the following
non-orthogonal change of variables: we keep the variable x and we define a new
integration variable y = x − x′ (the Jacobian is 1). We then first perform the
integral with respect to x in (A.43) which is a convolution of the two Gaussian
smearings ∫

dxFb(x)Fa(x− y) =
1

(
√
π2R)3

e−
(y+z)2

4R2 (A.45)

Then
C(t− t′) = − 1

4π

∫
dye−

(y+z)2

4R2
δ(t− t′ − |y|)

|y|
(A.46)

Calling τ = t− t′ and |z| := L

C(τ) = −e
− L2

4R2

2

∫ ∞

0

|y|d|y|e−
|y|2

4R2
2R2

L|y|

(
e

L|y|
2R2 − e−

L|y|
2R2

)
δ(τ − |y|) (A.47)
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Altogether,

I(Ωa,Ωb) =
4πe−

L2

4R2

(2
√
π)3LR

∫
|y|d|y|e−

|y|2

4R2

(
e

L|y|
2R2 − e−

L|y|
2R2

)
Ip(|y|,Ωa,Ωb) (A.48)

where Ip is the expression of I for two pointlike detectors with identical switchings
separated by a distance |y|,

Ip(|y|,Ωa,Ωb)

= − 1

4π

∫
dtdt′χb(t)e

iΩbtχa(t
′)e−iΩat′

δ(t− t′ − |y|)
|y|

= − 1

4π

∫
dtdτχb(t)e

i(Ωb−Ωa)tχa(t− τ)eiΩaτ
δ(τ − |y|)

|y|

= −e
iΩa|y|

4π|y|

∫
dtχb(t)χa(t− |y|)ei(Ωb−Ωa)t (A.49)

Now we evaluate this for Gaussian switching functions

χb(t) =
1√
2π
e−

t2

2T2 (A.50)

and A displaced by ∆ we have

Ip(|y|,Ωa,Ωb) = − eiΩa|y|

8π2|y|

∫
dtei(Ωb−Ωa)te−

t2

2T2 e−
(t−(|y|+∆))2

2T2 (A.51)

which is a Gaussian integral that gives

Ip(|y|,Ωa,Ωb) =
T
√
π

8π2|y|
e

i(Ωa+Ωb)|y|
2 e

i(Ωb−Ωa)∆
2 e−

(Ωb−Ωa)2T2

4 e−
(|y|+∆)2

4T2 (A.52)

Finally, changing variables u := |y|/R we get

I(Ωa,Ωb) =
R√
πL

e−
L2

4R2

∫ ∞

0

du ue
−u2

4 (e
uL
2R − e−

uL
2R )Ip(Ru,Ωa,Ωb) (A.53)

where

Ip(L,Ωa,Ωb) = − T

8π3/2L
e−

T2(Ωb−Ωa)2

4 e−
(L+∆)2

4T2 ei(Ωb+Ωa)L. (A.54)
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Appendix B

Field measurements

B.1 Pointer variable analysis

We consider a one-dimensional pointer variable P̂ coupled to a smeared field operator
Φ̂[F ] :=

∫
dxF (x)Φ̂(x) for a time interval that is dictated by a switching function

χ(t) as described by the interaction Hamiltonian

Ĥint = χ(t)Φ̂[F ]⊗ P̂ . (B.1)

The full Hamiltonian in the Schroedinger picture is

Ĥ(t) = Ĥ0 + χ(t)Φ̂[F ]⊗ P̂ (B.2)

where Ĥ0 = Ĥf ⊗ I+ Ĥd. The time evolution operator is

Û(t) = Te−i
∫ t dsĤ(s) (B.3)

where the explicit time dependence of the Hamiltonian is introduced by the switching
function. Since generally [ĤF , Ĥint] ̸= 0 and [ĤD, Ĥint] ̸= 0 the time evolution
operator does not factorize. For this, we define

Ŝ(t) := eiĤ0tÛ(t). (B.4)

The time derivative of Ŝ(t) is

∂tŜ(t) = iĤ0e
iĤ0tÛ(t) + eiĤ0t∂tÛ(t)

= iĤ0e
iĤ0tÛ(t) + eiĤ0t

(
−iĤ0 − iĤint

)
Û(t)

= −ieiĤ0tĤintÛ(t). (B.5)
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To get Ŝ(t) on the right-hand-side we introduce the free evolution operator and its
inverse and by using (B.4) we get

∂tŜ(t) = −iχ(t)eiĤ0t
(
Φ̂[F ]⊗ P̂

)
e−iĤ0tŜ(t)

= −iχ(t)
(
Φ̂t[F ]⊗ P̂ (t)

)
Ŝ(t) (B.6)

where

Φ̂t[F ] :=

∫
dxF (x)Φ̂(x, t) (B.7)

P̂ (t) = eiĤDtP̂ e−iĤDt (B.8)

are the Heisenberg (or interaction) picture operators. The equation of motion

∂tŜ(t) = −iχ(t)
(
Φ̂t[F ]⊗ P̂ (t)

)
Ŝ(t) (B.9)

is solved by
Ŝ(t) = Te−i

∫ t dsχ(s)Φ̂s[F ]⊗P̂ (s) (B.10)

which is the so-called scattering operator, but for finite time t.

Going back to the definition (B.4) we get that

Û(t) = e−iĤ0tŜ(t) (B.11)

where Ŝ(t) is given by (B.10). Namely, we have shown that

Te−i
∫ t
0 ds(Ĥ0+χ(s)Φ̂[F ]⊗P̂) = e−iĤ0tTe−i

∫ t
0 dsχ(s)Φ̂s[F ]⊗P̂ (s). (B.12)

If ρ̂0 the initial state of the field and ρ̂d = |ψ0⟩ ⟨ψ0| the initial state of the detector,
the reduced density matrix of the detector due to the interaction is

ρ̂d(t) = trf
(
Û(t)(ρ̂0 ⊗ |ψ0⟩ ⟨ψ0|)Û †(t)

)
=

∫
dpdp′trf

(
e−iĤ0tŜ(t) |p⟩ ⟨p| (ρ̂0 ⊗ |ψ0⟩ ⟨ψ0|) |p′⟩ ⟨p′| Ŝ†(t)eiĤ0t

)
(B.13)

where we have used the definition (B.4) and we have inserted two resolutions of
identity in the basis of the conjugate pointer variable.
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Here comes the main ‘trick’ of the pointer variable analysis: by using the Dyson
expansion of the time-ordered exponential one can see that

Ŝ(t) (1f ⊗ |p⟩ ⟨p|) = Te−i
∫ t dsχ(s)Φ̂s[F ]⊗P̂ (s) (1F ⊗ |p⟩ ⟨p|)

= Te−ip
∫ t dsχ(s)Φ̂s[F ] ⊗ |p⟩ ⟨p| , (B.14)

if it holds that
[Ĥd, P̂ ] = 0. (B.15)

We see that the self-dynamics of the detector does not have to be zero (or negligi-
ble with respect to the interaction with the field) as long as it commutes with the
conjugate pointer variable. That is, the detector can be a free particle with

Ĥd =
P̂ 2

2M
(B.16)

which will allow us to compare with the case of a harmonic oscillator in the limit
Ω → 0. Using (B.14)

ρd(t)

=

∫
dpdp′ trf

(
e−iĤ0tTe−ip

∫ t dsχ(s)Φ̂s[F ] |p⟩ ⟨p| (ρ̂0 |ψ0⟩ ⟨ψ0|) |p′⟩ ⟨p′|Teip
′ ∫ t dsχ(s)Φ̂s[F ]eiĤ0t

)
=

∫
dpdp′ trf

(
e−iĤFtTe−ip

∫ t dsχ(s)Φ̂s[F ]ρ̂0 |p⟩ ⟨p|ψ(t)⟩⟨ψ(t)|p′⟩ ⟨p′|Teip
′ ∫ t dsχ(s)Φ̂s[F ]eiĤft

)
=

∫
dpdp′ trf

(
Ûχ(t, p)ρ̂0Û

†
χ(t, p

′)
)
ψ(p, t)ψ∗(p′, t) |p⟩ ⟨p′| (B.17)

where we have defined
Ûχ(t, p) := Te−ip

∫ t dsχ(s)Φ̂s[F ]. (B.18)

Since the Hamiltonian of the system is simply the free Hamiltonian (B.16) we
can substitute ψ(p, t) = ψ(p). So both the free dynamics of the detector and the
field (due to the cyclic property of the trace) have dropped out.

Now we want to know the probability distribution of the possible values x of the
pointer variable X̂ that is conjugate to the variable P̂ , namely

[X̂, P̂ ] = i. (B.19)

Using the Fourier transform we get that

p(t, x) =
1

2π

∫
dpdp′ei(p−p

′)xψ(p)ψ∗(p′)trf
(
Ûχ(t, p)ρ0Û

†
χ(t, p

′)
)
. (B.20)
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We see that the factor trf
(
Ûχ(t, p)ρ0Û

†
χ(t, p

′)
)

plays the role of an integral kernel
that depends on the interaction Hamiltonian and the state of the field and affects
the statistics of the pointer variable. If we define

Π̂x(t) :=
1√
2π

∫
dkeikxψ(k)Ûχ(t, k) (B.21)

then,
p(t, x) = trf (Π̂x(t)ρ̂0Π̂

†
x(t)). (B.22)

We use the Magnus expansion to decompose the time-ordered exponential (B.18)
as

Te−ip
∫ t dsχ(s)Φ̂s[F ] = e−ip

∫ t dsχ(s)Φ̂s[F ]e−
1
2
Ctp2 (B.23)

where

Ct =

∫ t

ds

∫ s

ds′χ(s)χ(s′)[Φ̂s[F ], Φ̂s′ [F ]] (B.24)

the time-ordered commutator of the smeared field operators. We see that Ct is
imaginary (C∗

t = −Ct) so we define ct s.t.

Ct = ict. (B.25)

We will also call

Φ̂sm(t) :=

∫ t

dsχ(s)Φ̂s[F ]. (B.26)

Then (B.21) becomes

Π̂x(t) =
1√
2π

∫
dpψ(p) exp

(
− i

2
p2ct + ip(x− Φ̂sm(t))

)
(B.27)

From (B.21) we can see that this defines a set of POVMs for the measurement of
the pointer variable. Indeed∫

dx Π̂†
x(t)Π̂x(t) =

1

2π

∫
dx

∫
dpdp′ei(p−p

′)xψ(p)ψ∗(p′)Ûχ(t, p)Û
†
χ(t, p

′)

=
1

2π

∫
dx

∫
dpdp′ψ(p)e−

i
2
p2ctψ∗(p′)e−

i
2
p′2ctei(p−p

′)(x−Φ̂sm(t))

=

∫
dpdp′δ(p− p′)ψ(p)e−

i
2
p2ctψ∗(p′)e−

i
2
p′2ctei(p−p

′)Φ̂sm(t)

=

∫
dp|ψ(p)|21f = 1f (B.28)
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where we have used that the initial state of the pointer variable is square normalized
and that exp[λΦ̂] = 1f for λ = 0.

For example, if we assume a Gaussian wavefunction of width σp for the pointer
variable

ψ(p) =
1

(2πσ2
p)

1/4
exp

[
− p2

4σ2
p

]
(B.29)

then

Π̂x(t) =
1

(2πσ2
p)

1/4

1√
2π

∫
dp exp

[
−αtp

2

2
+ ip

(
x− Φ̂sm(t)

)]
(B.30)

where
αt :=

1

2σ2
p

+ ict. (B.31)

This is the Fourier transform of a Gaussian with a complex coefficient, and it con-
verges since Re(αt) > 0. So we have

Π̂x(t) =
1

(2πσ2
p)

1/4

1
√
αt

exp

−
(
x− Φ̂sm(t)

)2
2αt

 (B.32)

and

Π̂†
x(t)Π̂x(t) =

1√
2πσp

∣∣∣∣ 1
√
αt

∣∣∣∣2 exp
[
−Re(1/αt)

(
x− Φ̂sm(t)

)2]
(B.33)

which becomes

Π̂†
x(t)Π̂x(t) =

1√
2πΣt

exp

−
(
x− Φ̂sm(t)

)2
2Σ2

t

 (B.34)

where

Σt =

√
1

4σ2
p

+ c2tσ
2
p. (B.35)

B.2 Noise calculation: massless 3+1 case

We want to evaluate

c =

∫
dsds′

∫
dxdx′F (x)F (x′)χ(s)χ(s′)Gr(s− s′,x− x′) (B.36)
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for Gaussian switching

χ(t) =
λ√
2πτ

e−
t2

2τ2 (B.37)

and Gaussian smearing

F (x) =
1

√
2π

3
l3
e−

x2

2l2 (B.38)

and for the massless scalar field in 3+1 dimensions where

Gr(s− s′,x− x′) = − 1

4π

δ(s− s′ − |x− x′|)
|x− x′|

(B.39)

We write (B.36) as

c =

∫
dsds′χ(s)χ(s′)

∫
dxdx′F (x)F (x′)C(s− s′) (B.40)

where
C(s− s′) =

∫
dxdyF (x)F (x− y)

δ(s− s′ − |y|)
|y|

(B.41)

and y = x− x′. Doing the convolution of the Gaussians we get

C(s− s′) = − 1

4π(
√
π2l)3

∫
dy exp

(
− y2

4l2

)
δ(s− s′ − |y|)

|y|
. (B.42)

Calling r = |y| and t = s− s′

C(t) = − 1

(
√
π2l)3

∫
drr exp

(
− r2

4l2

)
δ(t− r) (B.43)

and

c = − 1

(
√
π2l)3

∫
dsdtχ(s)χ(s− t)

∫
drr exp

(
− r2

4l2

)
δ(t− r)

= − 1

(
√
π2l)3

∫
drr exp

(
− r2

4l2

)∫
dsχ(s)χ(s− r)

= − λ2

(
√
π2l)3

√
π2τ

∫
drr exp

(
− r2

4l2
− r2

4τ 2

)
= − λ2τ

8π2l(τ 2 + l2)
. (B.44)
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B.3 Response of pointer variable to coherent state

We want to evaluate

⟨f |Φ̂sm(t)|f⟩ = −i
∫ t

dsχ(s)[Φ̂0[f ], Φ̂s[F ]] (B.45)

where f, F Gaussian smearing functions of width σ that are centered around 0,L
respectively, so that L := |L| is the spatial distance between the centers of the initial
coherent state and the interaction region of the pointer variable. For a massless field
in 3 + 1 dimensions the commutator is

[Φ̂(t,x), Φ̂(t′,x′)] =
i

4π

δ(t− t′ + |x− x′|)− δ(t− t′ − |x− x′|)
|x− x′|

. (B.46)

Following [37] we define

C(t− t′) = i[Φ̂t[f ], Φ̂t′ [F ]]

= i

∫
dxdx′f(x)F (x′)[Φ̂(t,x), Φ̂(t′,x′)] (B.47)

for the Gaussian functions

f(x) =
1

(
√
2πσ)3

e−
x2

2σ2 (B.48)

F (x) =
1

(
√
2πσ)3

e−
(x−L)2

2σ2 . (B.49)

All together,

C(t− t′) = − 1

32π4σ6

∑
j=1,−1

j

∫
dxdx′e−

x2

2σ2 e−
(x′−L)2

2σ2
δ(t− t′ + j|x− x′|)

|x− x′|
(B.50)

to account for the two terms in the commutator (B.47). The two terms correspond to
the advanced and the retarded Green’s function, and will both contribute for general
switching function. Changing variables to u = x+ x′ and v = x− x′ we get

C(t− t′) = − 1

64π4σ6

∑
j=1,−1

j

∫
dudve−

(u+v)2

8σ2 e−
(u−v−2L)2

8σ2
δ(t− t′ + j|v|)

|v|
(B.51)
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which can be further simplified as

C(t− t′) = − e−
L2

2σ2

64π4σ6

∑
j=1,−1

j

∫
dudve−

|u|2+2uL

4σ2 e−
|v|2−2vL

4σ2
δ(t− t′ + j|v|)

|v|
(B.52)

First, we solve the integral over du

2π

∫ ∞

0

d|u||u|2e−
|u|2

4σ2

∫ 1

−1

d(cosθ)e
|u|Lcosθ

2σ2 =
8πσ2

L

∫ ∞

0

d|u||u|e−
|u|2

4σ2 sinh
(
L|u|
2σ2

)
(B.53)

where ∫ ∞

0

d|u||u|e−
|u|2

4σ2 sinh
(
L|u|
2σ2

)
= 4σ3

√
2π3e

L2

4σ2 . (B.54)

We put this back into (B.52) and we perform the integration over dv for each term

− j
π
√
2π3e−

L2

4σ2

2σL

∫ ∞

0

d|v||v|e−
|v|2

4σ2

∫ 1

−1

d(cosθ)e−
|v|Lcosθ

2σ2 δ(t− t′ + j|v|)

= j
πσ

√
2π3e−

L2

4σ2

L

∫ ∞

0

d|v|e−
|v|2

4σ2 sinh
(
|v|L
2σ2

)
δ(t− t′ + j|v|)

= j
πσ

√
2π3

L
e−

L2

4σ2 e−
(t−t′)2

4σ2 sinh
(
jL(t− t′)

2σ2

)
. (B.55)

All together we have that

C(t− t′) =
π
√
2π3σ

L
e−

L2+(t−t′)2

4σ2

(
sinh

(
L(t− t′)

2σ2

)
− sinh

(
jL(t′ − t)

2σ2

))
(B.56)

which takes the form

C(t− t′) =
π
√
2π3σ

L

(
exp

[
[L− (t′ − t)]2

4σ2

]
− exp

[
[L+ (t′ − t)]2

4σ2

])
(B.57)

where we see an explicit pick on the ligntcone. Now, from (B.45) we see that

⟨f |Φ̂sm(t)|f⟩ =
∫ t

dsχ(s)C(s). (B.58)
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Appendix C

Wavepacket detection

C.1 Resonance and time-of-arrival

Here we will make the almost-monochromatic approximation for the NW wavefunc-
tion of the wavepacket. We define q = k−k0, and we will keep terms that are O(|q|).
We Taylor expand the field frequencies around k0 as follows

ωk =
√
(k0 + q)2 +m2 ≃

√
ω2
k0

+ 2k0q ≃ ωk0

(
1 +

k0q

ω2
k0

+ O(|q|2)
)
. (C.1)

So at leading order we get that

ωk = ωk0 + v0q (C.2)

where
v0 = k0/ωk0 (C.3)

the relativistic velocity, which is basically the wavepacket’s group velocity. Then

ψ(L, t) =

∫
dk√
2ωk

ei(kL−ωkt)ψ̃(k − k0)

≃ 1√
2ωk0

∫
dqei(k0+q)L−iωk0

t−iv0qtψ̃(q)

= eik0L−itωk0 ψ̃(L− v0t) (C.4)
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So overall we get that

Pψ = (C.5)

λ2
|F (k0)|2

2ω0

(∣∣∣∣∫ dtei(ω−ω0)tχ(t− T )ψ̃(L− v0t)

∣∣∣∣2 + ∣∣∣∣∫ dtei(ω+ω0)tχ(t− T )ψ̃(L− v0t)

∣∣∣∣2
)

where ω the energy gap of the detector and ω0 = ωk0 the dominant frequency of the
wavepacket. The function ψ̃ is picked at q = 0 so the maximum value is obtained for
some time t when L and v0 are aligned (that is, when we ‘shoot’ the wavepacket to-
wards the detector’s center) and the problem essentially reduces to a one-dimensional
problem. For the rest we denote L := |L| and v0 := |v0|. If we choose χ, ψ̃ to be
Gaussian functions with width σt, σk we get

χ(t− T )ψ̃(L− v0t) =
1

2πv0σ̃kσt
e
− (t−T )2

2σ2
t e

− (t−L/v0)
2

2σ̃2
k (C.6)

where σ̃k = σk/v0. The two Gaussians can be combined

χ(t− T )ψ̃(L− v0t) =
1

2πv0σ̃kσt
e
− (T−L/v0)

2

2(σ2
t +σ̃2

k
) e

− (t−µk,t)
2

2σ2
k,t (C.7)

where

µk,t =
T σ̃2

k +
L
v0
σ2
t

σ2
t + σ̃2

k

(C.8)

and
σk,t =

σtσ̃k√
σ2
t + σ̃2

k

. (C.9)

After the Fourier transform we get

Pψ =
λ2|F (k0)|2

2ω0

σ2
k,t

2σ2
kσ

2
t

e
− (T−L/v0)

2

(σ2
t +σ̃2

k
)

(
e−2σ2

k,t(ω−ω0)2 + e−2σ2
k,t(ω+ω0)2

)
. (C.10)

C.2 Detecting massive wavepackets

Let’s consider an initial state

|Ψ0⟩ = |g⟩ ⊗
∫

dyψ(y)â†y |0⟩ (C.11)
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where
ây :=

∫
dke−ikyâk (C.12)

the non-relativistic localization scheme. The interaction Hamiltonian is of the form

Ĥint = λχ(t)µ̂(t)⊗
∫

dxF (x)Ô(x, t) (C.13)

where Ô(x, t) is a composite operator of a massive scalar Klein Gordon field. Using
the Dyson expansion of the time evolution operator we get

|Ψ(τ)⟩ =
(
1+

∫ τ

dtĤint(t) +

∫ τ

dt1

∫ t1

dt2Ĥint(t1)Ĥint(t2) + ...

)
|Ψ0⟩ (C.14)

First order in λ we get

|Ψ(τ)⟩ = |g⟩ ⊗
∫
dyψ(y)â†y |0⟩

+ λ

∫ τ

dtχ(t)

∫
dxF (x)Ô(x, t)

∫
dyψ(y)â†y |0⟩ ⊗ µ̂(t) |0⟩+ ... (C.15)

For example, if we are interested in the probability amplitude Π that the detector
gets excited and the field gets to its ground state (first order in λ, second order for
the probability)

Π(τ) = λ

∫ τ

dtχ(t)⟨e|µ̂(t)|g⟩
∫

dx

∫
dyF (x)ψ(y)⟨0|Ô(t,x)â†y|0⟩+ O(λ2) (C.16)

If we express the field operator in terms of the non-relativistic localization scheme
we take the non-local relation

Φ̂(t,x) =

∫
dz
(
K(t,x− z)âz +K∗(t,x− z)â†z

)
(C.17)

where
K(t,x− z) =

∫
dkvk(t,x)e

−ikz (C.18)

and vk(t,x) the modes over which we expand the field operator. In the case of
derivative coupling

Ô(t,x) = ∂xΦ̂(t,x), (C.19)
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the field integral Kernel is∫
dx

∫
dyF (x)ψ(y)⟨0|∂xΦ̂(t,x)a†y|0⟩. (C.20)

The ‘trick’ is that by integrating by parts we get that

Π(τ) = λ

∫ τ

dtχ(t)⟨e|µ̂(t)|g⟩
∫

dyψ(y)

∫
dx∂xF (x)K(t,x− y)

= −λ
∫ τ

dtχ(t)⟨e|µ̂(t)|g⟩
∫

dxF (x)∂xψ̃(t,x), (C.21)

where

ψ̃(x, t) :=

∫
dyK(t,x− y)ψ(y). (C.22)

We realize that this is the wavepacket convoluted with the field’s Wightman function,
or equivalently the Newton-Wigner wavefunction

ψ̃(t,x) =

∫
dy

(∫
dk
e−iωkte−ik(y−x)

√
2ωk

)
ψ(y) =

∫
dk√
2ωk

eikx−iωktψ(k). (C.23)

For example, if we consider ultra non-relativistic particle excitations e.g. the
Fourier transform of ψ(x) is compactly supported in [−Λ,Λ] where Λ << m, then

ψ̃(x, t) :=
e−imt√
2m

ψ(x) (C.24)

Then the probability amplitude becomes

Πder =
λ√
2m

∫
dte−imtχ(t)⟨e|µ̂(t)|g⟩

∫
dxF (x)∂xψ(x) (C.25)

Under the same approximation, for the interaction Hamiltonian that involves
Ô(t,x) = Φ̂(t,x) we get

Πampl =
λ√
2m

∫
dte−imtχ(t)⟨e|µ̂(t)|g⟩

∫
dxF (x)ψ(x) (C.26)

Note that this is a feature of the detection process in QFT that is relevant even
in the ultra-non-relativistic limit. In that limit, the non-locality between the field
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operator and the non-relativistic localization scheme in (4.116) is ‘switched-off’. If
the Fourier transform of ψ(y) in (4.112) is compactly supported in [−Λ,Λ] where
Λ << m, then

ψ̃(x, t) :=
e−imt√
2m

ψ(x), (C.27)

and the probability amplitude becomes

Πder =
λ√
2m

∫
dte−imtχ(t)⟨e|µ̂(t)|g⟩

∫
dxF (x)∂xψ(x) + O(λ2). (C.28)

Under the same (crude) approximation, for the spatial derivative coupling we get

Πampl =
λ√
2m

∫
dte−imtχ(t)⟨e|µ̂(t)|g⟩

∫
dxF (x)ψ(x) + O(λ2). (C.29)

Also, if we look at any possible transition for the field, the excitation probability
of the detector is

Pg→e(τ) = λ2
∫ τ

dtdt′χ(t)χ(t′)eiΩ(t−t′)
∫

dxdx′F ∗(x)F (x′)⟨ψ|Φ̂(t,x)Φ̂(t′,x′)|ψ⟩

= 2λ2
∣∣∣∣∫ τ

dte−iΩtχ(t)

∫
dxF (x)ψ̃∗(x, t)

∣∣∣∣2
+ λ2

∫ τ

dtdt′χ(t)χ(t′)eiΩ(t−t′)
∫

dxdx′F (x)K(x− x′, t− t′)F ∗(x′)

(C.30)

where we have used that ψ is square integrable and that
∫
dzK(x−z, t)K(z−x′, t′) =

K(x−x′, t−t′) for the evaluation of the second term. In the case of derivative coupling
we get

Pg→e(τ) = 2λ2
∣∣∣∣∫ τ

dte−iΩtχ(t)

∫
dxF (x)∂xψ̃

∗(t,x)

∣∣∣∣2
+ λ2

∫ τ

dtdt′χ(t)χ(t′)eiΩ(t−t′)
∫

dxdx′F (x)F ∗(x′)

×
∫

dz ∂xK(x− z, t)∂x′K(x′ − z, t′). (C.31)
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Appendix D

The QBM model

D.1 The coupling of a quantum harmonic oscillator
to a quantum field

We will consider one quantum harmonic oscillator interacting with a field environ-
ment

Ĥenv =

∫
dk ωkâ

†
kâk (D.1)

where

âk =

√
ωk

2
q̂k + i

√
1

2ωk

p̂k (D.2)

such that [q̂k, p̂k′ ] = δk,k′ .

We can perform the canonical transformation q̂′k =
√
ωkq̂k and p̂′k = p̂k/

√
ωk in

terms of which
âk =

1√
2
(q̂′k + ip̂′k). (D.3)

Then
Ĥenv =

∫
dk

ωk

2

(
q̂′2k + p̂′2k

)
(D.4)

which can be brought in the QBM form with mk = 1/ωk and Ωk = ωk. The
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interaction Hamiltonian is

Ĥint = λΦ̂(x0)⊗ X̂

= λ

∫
dkeikx0Φ̂k ⊗ X̂

= λ

∫
dk
√
ωk

(cos(kx0)q̂
′
k + isin(kx0)p̂

′
k)⊗ X̂ (D.5)

If we set x0 = 0

Ĥint = λ

∫
dk
√
ωk

q̂′k ⊗ X̂. (D.6)

Note that the form that the coupling takes a different form depending on the point in
which we couple the harmonic oscillator (in a different location the harmonic oscilla-
tor is not only coupled to the q̂′ s but also to the p̂′ s of the environment).Compared
with the QBM interaction Hamiltonian (4.78) the coupling constants are

ck =
λ

√
ωk

. (D.7)

The spectral density that is associated with the bath of quantum harmonic oscillators
in the environment is given by

I(ω) = π

∫
dk

c2k
2mkωk

δ(ω − ωk) (D.8)

which gives

I(ω) = π2λ2ω. (D.9)

The fact that the spectral density of the scalar field environment is proportional to
ω (Ohmic environment) simplifies significantly the calculations. Crucially, this holds
only in the pointlike interaction. In the case of smeared couplings the quantum field
environment is effectively Ohmic only in some regimes.

If we consider the interaction Hamiltonian

Hint = λΦ̂[F ]⊗ X̂ (D.10)

Using the decomposition above

Hint = λ

∫
dk
√
ωk

(β(k)q′k + s(k)p′k)⊗ X̂ (D.11)
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where

c(k) =

∫
dxF (x)cos(kx) (D.12)

s(k) =

∫
dxF (x)sin(kx) (D.13)

If we choose F (x) centered around zero then s(k) = 0 and we get that

ck =
λc(k)
√
ωk

(D.14)

It is easy to check that in the case of Gaussian smearing,

F (x) =
1

l3
√
2π

3 e
− |x|2

2l2 , (D.15)

the spectral density is

I(ω) ∼ λ

l2
ωe−

ω2

l2 (D.16)

so the environment is not Ohmic.

D.2 QBM coupled to momentum

Consider the Hamiltonian

Ĥ = Ĥenv +
P̂ 2

2M
+
Mω2

0

2
X̂2 + λP̂ (t)⊗ Φ̂(t,x0) (D.17)

The equations of motion for the harmonic oscillator are

dX̂(t)

dt
=
P̂ (t)

M
− λΦ̂(t,x0) (D.18)

dP̂ (t)

dt
=Mω2

0X̂(t) (D.19)

and the combined equations of motion for the field give

□Φ̂(t) = λP̂ (t)δ(x− x0) (D.20)
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we will call Φ̂0(t,x) the solution to the homogeneous equation □Φ̂0(t,x) = 0. The
full solution is

Φ̂(t,x) = Φ̂0(t,x0) + λ

∫ t

Gr(x, t;x0, s)P̂ (s)ds (D.21)

Combining the equations we get that

d2X̂(t)

d2t
−Mω2

0X̂(t) = λ
dΦ̂0(x0, t)

dt
+ λ2

d

dt

∫ t

Gr(x0, t;x0, s)P̂ (s)ds (D.22)

In general, equation (D.22) does not take the usual integrodifferential form. It is
better to use the canonical transformation

X̂ ′ = P̂ (D.23)

P̂ ′ = −X̂ (D.24)

The interaction Hamiltonian (D.17) becomes

Ĥ = Ĥenv +
P̂ ′2

2M ′ +
M ′ω′2

0

2
X̂ ′2 + λX̂ ′ ⊗ Φ̂(t,x0) (D.25)

where

M ′ =
1

Mω2
0

(D.26)

ω′
0 = ω0. (D.27)

We will set x0 = 0 and we will denote Φ̂0(t) := Φ̂0(t,0). Then the solutions are

X̂ ′(t) = u̇(t)X̂ ′(0) +
u(t)

M ′ P̂
′(0)− λ

M ′

∫ t

0

dt′u(t− t′)Φ̂0(t
′) (D.28)

and

P̂ ′(t) =M ′üX̂ ′(0) + u̇(t)P̂ ′(0)− λ

∫ t

0

dt′u̇(t− t′)Φ̂0(t
′) (D.29)

where u(t) such that

ü(t) + Ω̄′2u(t) +
2

M ′

∫ t

0

γ(t− t′)u̇(t′) = 0 (D.30)
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where
γ̇(t− t′) = η(t− t′) (D.31)

and
η(t− t′) := λ2Gr(x0, t;x0, t

′). (D.32)

The frequency ω̄′ is

ω̄′2 = ω′2 − 2γ(0)

M ′ (D.33)

Going back to the original variables we get that = where u satisfies

ü(t) + ω̄′2u(t) +
2

M ′

∫ t

0

γ(t− t′)u̇(t′)dt′ = 0. (D.34)

From the pointlike spectral density we get

γ(t− t′) = πλ2δ(t− t′) (D.35)

so we have
ü(t) + ω2

0(1− 2Mγ(0))u(t) + 2πλ2Mω2
0u̇(t) = 0 (D.36)

or
ü(t) + Ω̄′2u(t) + Γu̇(t) = 0 (D.37)

which we solve demanding the initial conditions u̇(0) = 1 and u(0) = 0. The solution
is

u(t) =
sin(ωt)
ω

e−
Γt
2 (D.38)

where

ω :=

√
Γ2

4
− ω̄′2 (D.39)

Again we see that for ω0 = 0 we get that u̇ = 1 (no dissipation).

D.3 Resonance in the QBM

The homogeneous solution for Γ < ω̄ is

u(t) =
sin(ωt)

ω
e−Γt (D.40)

where
ω =

√
ω̄2 − Γ2. (D.41)
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The average energy of the harmonic oscillator is

⟨Ĥ⟩ = (∆P̂ )2

2M
+
Mω̄2(∆X̂)2

2
. (D.42)

This is because ⟨X̂⟩ = ⟨P̂ ⟩ = 0 for Fock states of the field, and as a result (∆X̂) =
⟨X̂2⟩ and (∆P̂ ) = ⟨P̂ 2⟩. Note that we have used the renormalized and not the bare
frequency of the harmonic oscillator in (4.103).

The variance ∆X̂ is given by (4.97) where

(∆X̂0(t))
2 = ü2(t)⟨X̂2(0)⟩+ u̇2(t)⟨P̂ 2(0)⟩

+ u̇(t)ü(t)
(
⟨X̂(0)P̂ (0)⟩+ ⟨P̂ (0)X̂(0)⟩

)
(D.43)

which vanishes for t≫ 1/Γ because there is an overall prefactor e−Γt. Then,

(∆Φ̂u(t))
2 = (∆Φ̂0(t))

2 + (∆Φ̂u,ψ(t))
2 (D.44)

where

(∆Φ̂u,0(t))
2 =

∫
dp |ψ(p− p0)|2

∫
dk |vu,k(t)|2

=

∫
dk |vu,k(t)|2 (D.45)

is independent of the state of the wavepacket (since ψ is normalized) and also time-
independent. On the other hand

(∆Φ̂u,ψ(t))
2 =

∣∣∣∣∫ dpψ(p− p0)vu,p(t)

∣∣∣∣2 (D.46)

is the state-dependent part of the ‘signal’ where

vu,p(t) :=

∫ t

0

dt′up(t
′,0)u(t− t′), (D.47)

the convolution of the field’s modes with the homogeneous solution. Plugging in
(D.40):

vu,p(t) = − ie−Γt

2ω
√

2ωp

(
eiωt

∫ t

0

dt′e−i(ωp+ω)t′+Γt′ − e−iωt
∫ t

0

dt′e−i(ωp−ω)t′+Γt′
)
.

(D.48)

126



So overall,

∆Φ̂2
u,ψ(t) =

∣∣∣∣∣ 1

2iω

∫
dp
ψ(p− p0)√

2ωp

(
e−iωpt − eiω̄t−Γt

Γ− i(ωp + ω)
− e−iωpt − e−iωt−Γt

Γ− i(ωp − ω)

)∣∣∣∣∣
2

, (D.49)

If we assume ψ(p − p0) = χ(p − p0)e
ipL, where χ is picked around p = 0 and

Γ|L| ≫ 1 (and for t >> 1/Γ)

∆Φ̂2
u,ψ(t) =

∣∣∣∣∣ 1

2iω
√

2|p0|

(
1

Γ− i(|p0|+ ω)
− 1

Γ− i(|p0| − ω)

)∣∣∣∣∣
2

×
∣∣∣∣∫ dpχ(p− p0)e

ipLe−i|p|t
∣∣∣∣2 (D.50)

Defining

Ψ(t,L) =

∫
dpχ(p− p0)e

−i|p|te−ipL (D.51)

we get

(∆Φ̂u,ψ(t))
2 =

|Ψ(t,L)|2

8ω2|p0|

∣∣∣∣ 1

Γ− i(|p0|+ ω)
− 1

Γ− i(|p0| − ω)

∣∣∣∣2 , (D.52)

or, simplifying

(∆Φ̂u,ψ(t))
2 =

|Ψ(t,L)|2

2|p0|
1

|(ω̄2 − |p0|2)− 2iΓ|p0||2
, (D.53)

Similarly,
(∆P̂ (t))2 = (∆P̂0(t))

2 − λ2(∆Φ̂u̇(t))
2 (D.54)

where

(∆P̂0(t))
2 =M2ü2(t)∆(X̂(0))2 + u̇2(t)(∆P̂ (0))2

+Mü(t)u̇(t)
(
⟨X̂(0)P̂ (0)⟩+ ⟨P̂ (0)X̂(0)⟩

)
(D.55)

which should also vanish for t≫ 1/Γ. Then

(∆Φ̂u̇(t))
2 = (∆Φ̂u̇,0(t))

2 + (∆Φ̂u̇,ψ(t))
2 (D.56)

where
(∆Φ̂u̇,0(t))

2 =

∫
dk|vu̇,k(t)|2 (D.57)
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and

(∆Φ̂u̇,f (t))
2 =

∣∣∣∣∫ dpψ(p− p0)vu̇,p(t)

∣∣∣∣2 (D.58)

is the state-dependent part, where

vu,p(t) :=

∫ t

0

dt′up(t
′,0)u̇(t− t′). (D.59)

The derivative of the homogeneous solution can be written as

u̇(t) =
ω̄

ω
e−Γtcos(ωt+ ϕ) (D.60)

where ϕ is such that

tan(ϕ) =
Γ

ω
. (D.61)

Then

vu̇,p(t) =
ω̄e−Γt

2ω
√

2ωp

(
ei(ωt+ϕ)

∫ t

0

dt′e−i(ωp+ω)t′+Γt′ + e−i(ωt+ϕ)
∫ t

0

dt′e−i(ωp−ω)t′+Γt′
)
.

(D.62)
Following the same steps as above, we get

(∆Φ̂u,ψ(t))
2 =

|Ψ(t,L)|2

2

|p0|
|(ω̄2 − |p0|2)− 2iΓ|p0||2

, (D.63)

Overall, we have that

⟨Ĥ(t)⟩ = |Ψ(t,L)|2

2M |p0|
|p0|2 + ω̄2

|(ω̄2 − |p0|2)− 2iΓ|p0||2
+N (D.64)

where the vacuum noise is given by

N =
λ2

2M
(∆Φ̂u̇,0(t))

2 +
λ2ω̄2

2M
(∆Φ̂u,0(t))

2. (D.65)
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