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Abstract

Excessive variation in critical-to-quality characteristics, referred to as process outputs
in this thesis, is a common issue in manufacturing industries. Most variation reduction
frameworks initially investigate the process to identify the cause(s) of output variation and
then seek a solution to eliminate the effect of the identified cause(s). However, among
all causes, usually, only a few have a large contribution to the overall variability. The
literature refers to them as the dominant cause(s).

Identifying the dominant cause(s) is an effective and recommended initial step in reduc-
ing output variation; however, it is often not straightforward. An effective strategy for this
step is to employ the method of elimination, i.e., starting with a large number of suspect
causes and progressively, after each investigation, eliminating groups of suspects, thereby
homing in on the identity of the actual dominant cause(s). Once the dominant cause(s) is
identified, verifying it before proceeding with corrective actions is crucial.

Although identifying and verifying a dominant cause is the recommended first step in
variation reduction projects, we believe some of the employed statistical tools for these
purposes are not the most efficient and lack a thorough scientific analysis. This thesis aims
to bridge this gap by proposing study designs and analysis methods that retain valuable
ideas from the existing literature but are better suited for the goal of identifying or verifying
the dominant causes(s). Our objective is to contribute to the enrichment of the field of
statistics in problem-solving and variation reduction, which needs further development.

This thesis is structured in an integrated format, comprising five chapters: the intro-
duction, three papers, and the conclusion.

Chapter 1 is devoted to a literature review and provides some background on some
important variation reduction approaches such as the Taguchi method, Six Sigma, the
Shainin SystemTM, and the Statistical Engineering algorithm. The focus and main interest
of this thesis are on the Statistical Engineering algorithm and the Shainin SystemTM.

Chapter 2 is devoted to a critical examination of group comparison, an investigation type
often used in the method of elimination to help identify the dominant cause(s). With group
comparison, we select two groups of six or more parts, one group consisting of parts with
large output characteristic values and the other group consisting of parts with low output
characteristic values. For these selected parts, we measure as many input characteristics as
possible that are still suspect dominant causes (and possible to determine after observing
the output). If an input is a dominant cause, its values must differ substantially between
the two groups. The existing analysis procedures frame the group comparison investigation
as a hypothesis test, which we demonstrate is unreliable and inefficient. Instead, we frame

v



the question as an estimation problem based on maximum likelihood. A critical evaluation
reveals that our proposed method is superior.

Chapter 3 is devoted to a critical assessment of component swapping, another investiga-
tion type often used in the method of elimination. The component swapping investigation
is applicable when assembled products can be disassembled and reassembled without sig-
nificant damage. Component swapping consists of a series of studies to determine whether
the dominant cause(s) acts within the assembly process or within one or more of the com-
ponents. It selects two products, one with a high and one with a low output value, and then
conducts a two-phased investigation to identify the home of the dominant cause. Although
the investigation plan is valuable, we demonstrate that the existing analysis procedures are
unreliable. This chapter explores an improved plan and analysis procedure. We proposed
a reliable alternative analysis procedure based on maximum likelihood. It also addresses
a critical gap in the existing literature by effectively alerting users to possible important
interactions either between assembly and components or among individual components.

Chapter 4 investigates how to verify a dominant cause effectively. All existing anal-
ysis procedures only use a randomized controlled experiment for the verification study.
However, we demonstrate that experimental studies alone cannot provide all the required
information, and we also require observational studies. This chapter lists some viable com-
posite study designs, assesses their relative merits, and recommends proper sample sizes.
It also investigates how to systematically conduct a verification study in the era of smart
manufacturing.

In Chapter 5 we conclude and present some directions for future research.
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Chapter 1

Introduction

1.1 Motivation

In today’s intensely competitive world, companies across the globe are trying to ensure
the quality of their services or manufactured products. Although no universal definition
exists for quality, the American National Standards Institute and the American Society for
Quality Control (1978) define it as “the totality of features and characteristics of a product
or service that bears on its ability to satisfy given needs”.

According to Juran (1989), ensuring quality in processes involves the execution of
three fundamental activities: quality planning, quality control, and quality improvement.
Quality planning encompasses activities such as establishing quality targets, developing
processes, identifying customers, and determining their needs. Quality control involves
implementing operational strategies to maintain quality standards by evaluating actual
performance. Meanwhile, quality improvement entails making continuous and systematic
beneficial changes to enhance process quality. This thesis primarily focuses on quality im-
provement, explicitly emphasizing the application of statistical methods for investigating
the causes of quality deficiencies.

An important class of quality improvement efforts is reducing the process output varia-
tion. This addresses a common challenge industrial engineers face, particularly in contem-
porary manufacturing, where extremely tight tolerances are imposed on critical-to-quality
characteristics such as dimensions. The rationale behind these strict standards is that ex-
cessive variation in these quality characteristics can produce defective items (necessitating
scrap and rework) and low-quality products, ultimately leading to low overall performances
and customer dissatisfaction.
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In the context of variation reduction, the established literature recommends following
Juran’s diagnostic and remedial journeys (Juran and Gryna (1980); Smith (1988); Wagner
(1993); Ho and Sculli (1997); MacDuffie (1997)). In other words, we first investigate the
process to identify the cause(s) of variation (the diagnosis), and then, we seek a solution
to eliminate or mitigate the effect of the identified cause(s) (the remedy). This is a recom-
mended approach since, with knowledge of the important cause(s) of variation, it is usually
easier/cheaper to reduce the process output variation in a sustainable way.

Process output variation usually arises from a large number of sources (i.e., process
inputs), such as variability in materials, manufacturing conditions, operators, etc. However,
among all these causes of variation, typically only a few greatly impact the output variation,
while many have only a marginal contribution (De Mast et al. (2019)). Gryna and Juran
(1988) called this principle after Pareto, and they referred to them as the “vital few”
causes, which are few in number but account for almost all of the overall variation, and the
“trivial many” causes, which are large in number, but even their combined contribution is
often negligible.

Steiner and MacKay (2005) refer to the one or a few sources of variation with the most
substantial impact on the overall variability as the dominant cause(s). Note that we are not
primarily interested in identifying statistically significant causes, but rather in identifying
the dominant causes. The reason is that with large sample sizes, causes with only small
contributions to the output variation may also be statistically significant. These minor
causes are typically a mere distraction to practitioners as addressing them is not a very
effective way to reduce the output variation.

Identifying the dominant cause(s) of process output variation is often challenging, re-
quiring a systematic approach. The challenge arises from the typically complex and ex-
tensive search space, consisting of numerous potential causes, some of which may be inad-
equately defined or unidentified properties of the process. Traditional strategies, such as
brainstorming about suspect dominant causes followed by experiments to establish their
effects, can be overwhelming or easily lead to an incorrect search space (Mooren et al.
(2012); De Mast et al. (2019)). This thesis focuses on identifying the dominant causes of
excessive process output variations (i.e., the diagnostic journey) and assumes that these
dominant causes exist.

Diagnosing and remedying variation problems in manufacturing processes is easier when
we are systematic. In the following, we provide a concise introduction to some process
improvement strategies in the existing literature.
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1.2 Background and Literature Review

Four of the most important statistical process improvement strategies in the industrial
statistics literature are the Taguchi method (Taguchi (1986); Nair (1992)), Six Sigma’s
DMAIC method (Hahn et al. (1999, 2000); De Mast and Lokkerbol (2012)), the Shainin
SystemTM (Shainin (1993b); Bhote and Bhote (2000); Steiner et al. (2008a)), and the
Statistical Engineering algorithm (Steiner and MacKay (2005)). These strategies have
different tools, techniques, and terminologies; however, they have many similarities.

While Statistical Process Monitoring and Control (SPC) charts can be considered a
variation reduction tool, this thesis does not regard it as a practical variation reduction
strategy. The reason is that SPC is very passive, i.e., we must wait until a control chart
signals. Moreover, it does not provide much guidance on corrective actions once a control
chart signals.

In the following, we briefly introduce and compare the four strategies. For a compre-
hensive comparison, see Ledolter and Swersey (1997), Vining and Meyers (1990), De Mast
et al. (2000), and De Mast (2004).

1.2.1 The Taguchi Method

Genichi Taguchi, a Japanese quality engineer, introduced a novel perspective, arguing that
when a product’s quality characteristic deviates from its intended target, even if it falls
within the specification limits, there is a substantial loss to society. This loss encompasses
various dimensions, including financial costs associated with redesign and rework, delay in
project timelines, material wastage, and harm to the company’s brand reputation. It also
considers the impact on customers, who may experience dissatisfaction due to receiving
suboptimal quality products.

Taguchi proposed using an experimental design aimed at optimizing product or process
parameters to minimize the loss that a customer is likely to experience and enhance overall
quality. Therefore, rather than a quality characteristic itself, he focused on a loss function
of the characteristic. Although there are different loss functions in the literature, a standard
function for a product with two-sided specification limits is the quadratic loss function

L(y) = k(y − t)2,

where L(y) denotes the loss associated with the observed quality characteristic y, the
constant k is the quality loss coefficient, and t is the target value. This loss function
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illustrates that the minimum loss occurs when the observed quality characteristics precisely
matches the target value, and deviation from the target, in either direction, increases the
loss, even if y falls within the specification limits.

The experiment proposed by Taguchi distinguishes between control and noise variables.
Setting control variables (i.e., fixed inputs) to a desired value is possible and feasible. In
contrast, noise variables (i.e., varying inputs) are not controlled, and their values change
haphazardly. Taguchi’s idea revolves around selecting the settings for control variables
(based on the experiment results) such that the process becomes robust against the effect
of variation in the noise variables. After that, the method targets the process mean by
manipulating control variables affecting the process mean (and not the variance). For
further variation reduction, practitioners can use tolerance design. To do so, they narrow
the tolerance limit of the important noise variables. This leads to a variation reduction of
the noise variables, and as a result, the variation of the quality characteristic decreases.

The Taguchi method exploits the advantages of experimental investigation and rec-
ognizes the importance of understanding and managing interaction effects to improve the
process. However, instead of understanding the system, Taguchi focuses on finding optimal
settings for the process. This is a consequence of studying the loss function instead of defin-
ing the problem in terms of a directly measurable characteristic. Moreover, this method
picks the optimal variables’ combination based on only a one-shot experiment (De Mast
(2004)). However, design of experiment experts usually recommend starting with a small
experiment, and after that, conducting a sequence of experiments based on the findings of
the earlier ones (Nair (1992)).

Moreover, Taguchi provides limited guidance for how to identify the potential causes.
This limited guidance is based primarily on basic tools such as brainstorming, fishbone
diagrams, and flowcharting (Ross (1988)). These basic tools list all potential dominant
causes based on the engineers’ knowledge. As a consequence, the actual dominant cause
may be overlooked (Mooren et al. (2012)).

1.2.2 Six Sigma

Six Sigma is a company-wide philosophy aimed at improving quality. Linderman et al.
(2003) define it as “an organized and systematic method for strategic process improve-
ment and new product and service development that relies on statistical methods and the
scientific method to make dramatic reductions in customer-defined defect rates.”

Six Sigma is a comprehensive program that enhances organizational structure and has
two primary aspects. The first aspect provides structures and metrics for strategic co-
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ordination, which is more relevant to quality management than statistical improvement.
The second aspect focuses on significantly improving a defined process, often referred to
as the “Breakthrough Cookbook” or the “DMAIC-loop” method (Harry (1997)). In this
discussion, we specifically focus on the quality improvement aspect of Six Sigma.

Six Sigma encompasses several variants (e.g., see Harry (1997), Breyfogle (1999), and
Pyzdek (2001)), each outlining different descriptions of steps and recommended tools.
However, most variants adhere to the DMAIC phase structure, which represents a stepwise
strategy involving five phases: Define, Measure, Analyze, Improve, and Control. DMAIC
incorporates a comprehensive set of industrial statistics techniques and tools, including
design of experiments, control charts, tolerance design, and robust design (De Mast et al.
(2000)). It is also possible to apply the Six Sigma improvement strategies to a new process
using Six Sigma’s DMADV, which stands for Define, Measure, Analysis, Design, and Verify
(Pyzdek (2001)).

Six Sigma’s DMAIC is one of the most complete statistical improvement strategies.
This program strongly emphasizes aligning quality characteristics with customer demands
related to quality, delivery, or cost. However, similar to the Taguchi method, it focuses on
modelling the effect of candidate causes once identified. It does not offer an efficient and
systematic method for identifying candidate causes in the first place. Six Sigma employs
techniques and tools such as brainstorming, flowcharting, fishbone diagrams, statistically
designed experiments, and multivari charts. As a consequence, Six Sigma (similar to the
Taguchi method) tends to create too many candidate causes or fail to identify important
causes as candidates (Mooren et al. (2012); De Mast and Lokkerbol (2012)). Furthermore,
the center of Six Sigma is on experimentation; however, to improve existing processes, we
can generate valuable clues about the dominant causes using observational studies.

1.2.3 The Shainin SystemTM

The Shainin SystemTM, introduced by Dorian Shainin, is a coherent stepwise variation
reduction strategy with several problem-solving techniques developed for manufacturing
environments (Shainin (1993b)). This system revolves around a set of easy-to-apply and
easy-to-understand tools without using advanced techniques. It is “[...] developed for and
is best suited to problem-solving on operating, medium to high volume processes where
data are cheaply available” (Steiner et al. (2008a)). The primary implementation of the
Shainin SystemTM is in parts and assembly operations.

Shainin (1993a) believed that subjective problem-solving strategies such as fishbone
diagrams and brainstorming have no place in discovering the potential causes of serious

5



problems. Instead, he proposes inductive reasoning based on observed process data and
their patterns. This approach proves effective, especially when no prior knowledge of
potential causes exists. He proposed a sequential approach called the method of elimination
to search for the dominant cause. This method begins with a large pool of suspect dominant
causes, and after each investigation, eliminates groups of suspects, thereby homing in on
the identity of the actual dominant cause(s).

The method of elimination consists of a series of often observational tools. Steiner
et al. (2008a) provide a critical review of some notable elimination tools within the Shainin
SystemTM, such as Group Comparison, Component SearchTM, Variable SearchTM, and the
Multivari chart. See Bhote and Bhote (2000) for a more comprehensive list. In subsequent
chapters of this thesis, we will delve deeper into the first two tools mentioned above.
However, in what follows, we discuss some of the limitations of the Shainin SystemTM.

Shainin (1993b) employs statistically simple tools that usually require relatively small
sample sizes. While straightforward and integrative tools are highly recommended, the
analysis associated with most of these tools relies on graphical approaches or nonpara-
metric tests, which can be nonintuitive and weak in practical applications (Steiner et al.
(2008a)). With modern statistical software readily available, calculation complexity is less
of a concern, easily allowing for the seamless integration of standard and more straight-
forward analyses alongside graphical tools. Furthermore, the Shainin SystemTM solely
concentrates on the diagnosis journey, assuming that the solution is obvious once the dom-
inant cause is identified. We believe this assumption is unrealistic. In addition, in some
circumstances, it may not be feasible or cost-effective to identify the dominant cause(s) of
output variation, a scenario not addressed by the Shainin SystemTM.

1.2.4 The Statistical Engineering Algorithm

Shainin (1993b) suggests a valuable system designed to address a variety of variation re-
duction problems. He deserves credit for adeptly combining known statistical methods
into sequential strategies in an understandable and coherent way. However, some of the
statistical tools associated with the Shainin SystemTM are not necessarily the most effi-
cient options (see Steiner et al. (2008a)). In order to use the best elements of the Shainin
SystemTM, Steiner and MacKay (2005) propose an enhanced alternative approach called
the Statistical Engineering algorithm. This algorithm, similar to the Shainin SystemTM, ad-
vocates the use of simple-to-understand and easy-to-apply variation reduction techniques.
Nevertheless, it enhances certain tools employed by the Shainin SystemTM by introducing
more standard alternative analysis methods. Moreover, unlike the Shainin SystemTM, the
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Statistical Engineering algorithm avoids employing strange hyperbole with trademarks or
service marks.

As previously mentioned, the Shainin SystemTM solely focuses on the diagnostic journey.
In contrast, the Statistical Engineering algorithm takes a more comprehensive approach,
encompassing both remedial and diagnostic journeys. It offers seven variation reduction
approaches that allow improvement: fixing the obvious, desensitization, feedforward con-
trol, feedback control, making a process robust, 100% inspection, and moving the process
center. The first three approaches require an identified dominant cause, and the latter four
are designed to work in cases where identifying a dominant cause is not possible or cost-
effective. These different potential remedies represent a unique and advantageous feature
of the algorithm, enhancing its efficiency.

1.3 Goal and Outline

In manufacturing industries, many processes suffer from excessive process output variation.
While Section 1.2 briefly discussed some widely-used approaches (namely, the Taguchi
method, Six Sigma, the Shainin SystemTM, and the Statistical Engineering algorithm),
they mainly emerged in practice and in the field by practitioners. Consequently, some of
their suggested tools lack a comprehensive scientific analysis.

This thesis aims to bridge this gap by proposing enhanced methods with superior
efficiency and reliability. Our objective is to contribute to the enrichment of the field of
statistics in problem-solving and variation reduction, which needs further development.

As mentioned, following Juran’s diagnostic and remedial journeys is a recommended
variation reduction approach. For the diagnostic journey, practitioners typically begin by
preparing a list of potential causes, and subsequently, they employ statistically designed ex-
periments to pinpoint the dominant cause(s) of variation among these candidates. Similar
to many other statistical techniques, the Taguchi method and Six Sigma offer minimal guid-
ance for the identification of candidate causes. Their search for potential dominant causes
is limited to subjective techniques such as brainstorming. Nevertheless, brainstorming is
inefficient since it can easily lead to being stuck in the wrong search space or overlooking
the actual dominant cause.

This thesis centers on the diagnostic journey (i.e., discovering the potential causes
of variation), which has ample room for improvement and requires more attention. Our
focus and interest are mainly on the Statistical Engineering algorithm and the Shainin
SystemTM. Instead of relying on brainstorming, these strategies use inductive reasoning
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from observational data and their patterns to discover the potential causes of output varia-
tion. However, some of their proposed statistical tools do not currently represent the most
efficient options. Therefore, this thesis aims to identify valuable process improvement ideas
currently proposed in conjunction with poorly chosen statistical analysis and integrate and
reconcile them with traditional statistical methods.

In Chapter 2, we assess whether the group comparison procedure used by the Statistical
Engineering algorithm and the Shainin SystemTM is reliable. Group comparison is a way
to identify the dominant cause(s) of process output variation after using the method of
elimination as much as possible so that the list of potential dominant causes is relatively
short. Group comparison is an investigation plan that exploits the idea of leveraging,
that is, selecting parts with low and high output values. Its requirement is being able to
measure the input values later than the output values. Our main finding is that Shainin’s
group comparison procedure is unreliable and inefficient in identifying the dominant cause.
Therefore, we propose a new efficient and reliable analysis procedure based on maximum
likelihood. A critical evaluation reveals that our proposed method is superior. We also
provide a tangible example and compare the outcomes of both methods.

Chapter 3 is dedicated to a critical assessment of the Component SearchTM procedure
proposed by the Shainin SystemTM and the Statistical Engineering algorithm. Component
SearchTM, also referred to as component swapping, is another method of elimination tool
that effectively narrows down the search space for the dominant cause of process output
variation in an assembly operation. This approach consists of a series of investigations
aimed at determining whether the dominant cause operates within the assembly process
or within one or more of the product’s components. Component swapping is applicable to
assembled products where parts can be disassembled and reassembled without any compo-
nents or subassemblies facing significant change or damage. While the investigation plan
based on leveraging is valuable, current analysis procedures are unreliable in identifying
the dominant cause(s) due to the utilization of poorly chosen statistical tools. Chapter
3 introduces a superior and reliable alternative analytical approach based on maximum
likelihood. Furthermore, it addresses a critical gap in the existing literature by effectively
alerting users to interactions between assembly and components or among components.

Chapter 4 centers on the critical task of effectively verifying a dominant cause, a ques-
tion that has not been properly answered in the existing literature. Both the Statistical
Engineering algorithm and the Shainin SystemTM emphasize the importance of verifying
that we have identified the true (dominant) cause(s) before moving on to the remedial
journey. In other words, we should make sure that the suspect(s) is not only a cause of
variation but also dominant. This is important because a misidentified (dominant) cause
can obstruct the process improvement efforts. While it might initially seem that a ran-
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domized controlled experiment is enough to verify a dominant cause, we demonstrate that
experimental studies alone cannot provide all the required information. A carefully planned
experiment can identify whether a suspect is a cause of variation; however, we also require
observational studies to investigate whether it is also dominant. Chapter 4 proposes some
viable composite study designs, assesses their relative merits, and recommends proper sam-
ple sizes. It also investigates how to systematically conduct a verification study in the era
of smart manufacturing. Moreover, this chapter provides a tangible example of how our
proposed procedure works.

Chapter 5 provides a conclusion and some potential future work.
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Chapter 2

Identifying Dominant Causes using
Group Comparison

Dorian Shainin’s group comparison procedure is a way to identify the dominant cause(s)
of variation in a process based on an investigation plan that exploits the idea of leveraging.
In this chapter, we study whether Shainin’s procedure is sound. Our main finding is that
Shainin’s procedure is unreliable in identifying the dominant cause, and in addition, the
procedure is inefficient. We propose a new reliable and efficient analysis procedure based on
the method of maximum likelihood estimation. A critical evaluation reveals our proposed
method is superior. We also provide a tangible example and compare both methods’
outcomes.

2.1 Introduction

One of the tools associated with the Shainin SystemTM is paired comparison, also called
group comparison (Bhote and Bhote (2000)). The goal of group comparison is to help
identify suspect dominant causes when we have exploited the method of elimination as
much as possible and are conducting investigations focused on considering individual in-
puts. With group comparison, we select two groups of six or more (often eight) parts, one
group (called the “best of the best” (BOB) in Shainin et al. (1997)) consisting of parts
with large values for the quality characteristic Y , and the other group consisting of parts
with low values for Y (called the “worst of the worst” (WOW) in Shainin et al. (1997)).
For the parts in both groups, we measure as many input characteristics as possible that
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are still suspect dominant causes. Note that in many variation reduction problems, the
terminology of BOB and WOW is confusing since it may not be the case that higher and
lower output values imply best or worse parts. For this reason, in what follows, we use the
neutral terms “Upper” and “Lower” to refer to the two groups.

Group comparison, like many other of Shainin’s tools, uses the idea of leveraging,
that is comparing extremes (Bhote and Bhote (2000)) as defined by the “Upper” and
“Lower” groups. Leveraging is an excellent way of gaining information in the search for a
dominant cause with relatively small sample sizes. Leveraging works because if a candidate
is a dominant cause, its value must substantially differ between the “Upper” and “Lower”
groups. Note that it is somewhat misleading to claim that a group comparison investigation
requires measurements from only a small sample of parts (typically 12 to 16) with extreme
values. To select these extreme parts, we must measure Y for a large number of parts. We
call this the baseline data.

The purpose of this chapter is to provide a critical assessment of group comparison as
advocated by Shainin (1993b) and Bhote and Bhote (2000), and to propose an improved
analysis procedure. We are interested to learn whether Shainin’s group comparison method
is reliable and effective, and whether it can be improved. Moreover, we believe that the
study-design principle of leveraging may have broader applicability and could possibly be a
valuable addition to the literature on the design of statistical studies (Browne et al. (2009b,
2010a)). Therefore, we are also interested to learn how well leveraging works in the group
comparison procedure.

In Section 2.2, we provide an example to explain the group comparison procedure and
provide a critical assessment. We demonstrate that the investigation plan is valuable, but
the proposed analysis is less than ideal. To address these limitations, in the next two
sections, we propose a new efficient and reliable analysis procedure based on maximum
likelihood estimation, and we assess its merits. Note that our proposed procedure retains
the valuable ideas of leveraging and the elimination strategy but alters the suggested
analysis for the group comparison investigation. In Section 2.3, we consider the case of
a continuous input X and use simulation studies to compare the new analysis approach
with the previously promoted approach. Section 2.4 is similar to Section 2.3 but addresses
binary inputs. In Section 2.5, we apply the new procedure to the example from Section 2.2
and compare the results with the ones from Bhote and Bhote (2000) and Shainin (1993b)
procedure. We provide a summary and discussion in Section 2.6.
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2.2 Shainin and Bhote’s Group Comparison Proce-

dure

In this section, we describe the group comparison procedure as presented by Shainin
(1993b), and Bhote and Bhote (2000). We also provide an example to demonstrate how
group comparison works. Note that while the example is based on a real case, we have
changed many details to fit the expository purpose of this chapter better. Next, we for-
mulate points of criticism of Shainin’s group comparison procedure and identify where the
procedure can be improved.

2.2.1 Example

Mooren et al. (2012) describe an example in a machining process for large casted metal
parts, where the monitoring system frequently stops the process due to the imminent drill
break signals. Once the line stops, suspect drill bits will be replaced. The frequent out-of-
control signals lead to excessive line downtime and the replacement of drill bits far before
their specified lifespan. The engineers found that the line stoppages were triggered by high
peaks in the drill bits’ torque. Since none of the analyzed drill bits showed any sign of
wear-out, the large variation in torque was caused by another phenomenon. At first, the
engineers tried to identify the cause(s) of significant torque variation using a brainstorming
session, planning to use an experiment to identify the primary cause(s). However, since
the engineers and operators alike did not have the faintest idea about the cause(s), the
result of the brainstorming was a long list of hunches, most of which were too unspecific to
test in an experiment. The engineers concluded that they needed a more systematic search
strategy. To begin with, they defined a scale for rating the severity of the torque peaks,
ranging from Y = 1.0 (no peaks in torque visible) to Y = 5.0 (high peaks in torque). Note
that this scale is continuous.

A group comparison study brought a breakthrough. The engineers observed the process
over four days, during which 52 drill bits were used as the baseline, and they followed the
procedure described in Bhote and Bhote (2000). Based on this procedure, eight drill bits
with the highest torque peaks, called the “Upper” group, and eight drill bits with the least
visible torque peaks, called the “Lower” group, were selected. Then, the sixteen selected
drill bits were divided into eight pairs, each consisting of one drill from the “Upper” and
one drill from the “Lower” group. The most extreme drill bits with the highest and lowest
quality characteristic values are denoted Pair 1, the drill bits with the second highest and
second lowest quality characteristic values are Pair 2, and so on. The objective of a group
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comparison is to identify the process inputs (X’s) that could explain the difference in
torque behavior in the “Upper” and “Lower” groups of drill bits. To identify such X’s,
the engineers checked all drill bits on several characteristics. Some of them were measured
on a continuous scale (e.g., dimension), while others were visual characteristics judged on
a two- or three-point scale. Table 2.1 shows how the ten candidate X’s were measured or
judged for both drill bits in each of the eight pairs.

To decide which of the candidate X’s appear to explain the differences in torque be-
havior, Bhote and Bhote (2000) and Shainin (1993b) use the Tukey end-count procedure
to compare X values in the “Lower” and “Upper” groups. The end-count procedure is
a nonparametric test for comparing two samples introduced by Tukey (1959), which we
explain in more detail in Section 2.2.2. The end-count values for each X are given at the
bottom of Table 2.1.

The test finds that the Cutting Edge Appearance and Sagging values are significantly
different for the “Upper” and “Lower” groups. Therefore, these candidates are identified as
dominant causes of variation in torque behaviour. The end-count test finds no significant
differences for the other eight candidateX’s, thus ruling these out for further consideration.
Note that pairing does not influence the calculated end-count. We discuss the rationale
for pairing in Section 2.2.2.

2.2.2 Group Comparison Procedure

The example illustrates the goal and use of a group comparison investigation. Given
that there is excessive variation in a quality characteristic Y , the purpose is to identify
which (if any) out of a number of candidate causes is a dominant cause of variation.
Group comparison starts from a baseline sample of nb randomly selected parts, for which
the quality measurements Yi, i = 1, . . . , nb are given. The obvious way to look for a
dominant cause would be to measure all candidate causes for all nb parts in the baseline
sample. Group comparison, however, instead exploits the idea of leveraging, which means
we measure the X’s only for those parts having extreme output values, as these parts
are likely to contain the most information about the dominant cause. The “Lower” and
“Upper” groups of parts are defined as follows:

• Let the “Lower” group L be the nl parts having the smallest output values, that is,
L = {(1), (2), . . . , (nl)}, where (1), (2), . . . represent the parts having the smallest
output value, second smallest output value, and so on.
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Pair 1
Upper 5.0 125 78 0.11 7 34 8 467 Yes Mild Artifact
Lower 1.0 130 80 0.12 7 30 9 360 No No OK

Pair 2
Upper 4.9 110 80 0.14 8 33 7 404 No Yes Artifact
Lower 1.2 105 80 0.09 5 35 8 460 No Yes OK

Pair 3
Upper 4.8 110 80 0.12 7 33 9 432 No No Artifact
Lower 1.2 115 75 0.09 8 32 8 564 Yes No OK

Pair 4
Upper 4.7 130 85 0.11 9 30 8 476 No No Artifact
Lower 1.3 115 75 0.13 5 31 9 454 No Mild OK

Pair 5
Upper 4.7 125 80 0.12 6 30 8 576 No No Artifact
Lower 1.4 120 75 0.09 7 31 8 489 No Yes OK

Pair 6
Upper 4.6 115 80 0.14 7 34 8 372 No Mild Artifact
Lower 1.5 120 88 0.10 5 32 7 447 Yes No OK

Pair 7
Upper 4.5 110 78 0.12 6 33 9 471 No Yes Artifact
Lower 1.5 135 80 0.10 8 33 8 503 Yes Mild OK

Pair 8
Upper 4.5 125 80 0.12 7 34 8 453 No Mild OK
Lower 1.6 115 88 0.09 9 31 8 422 Yes No Artifact

Tukey end-count 2 5 8 4 2 3 2 3 3 a 14

Table 2.1: Results of group comparison of eight “Upper” and eight “Lower” drill bits.

aIt is not clear how to extend the end-count method to an ordinal input with three levels. However,
based on the observed results, it does not appear that Discoloration is an important input.
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• Let the “Upper” group U be the nu parts having the largest output values, that is,
U = {(nb − nu + 1), (nb − nu + 2), . . . , (nb)}.

With this plan, group comparison needs to measure the X’s for only nl+nu(< nb) parts.
Therefore, leveraging is beneficial when measuring suspect dominant causes is costly or
time-consuming, as is usually the case. However, the necessary condition for this approach
is the possibility of measuring the X values at a later stage than the Y values. This
condition would not be met if, for example, a process temperature is a candidate X, unless
the process temperatures were logged at the production time.

Bhote and Bhote (2000) and Shainin (1993b) describe the procedure as a paired com-
parison procedure. As illustrated in Table 2.1, parts are studied in pairs, each consisting
of a part from the “Upper” and a part from the “Lower” group. Although the pairing is
often arbitrary, we see the potential value of comparing paired upper and lower parts one
against the other, as this may stimulate the identification of new candidate X’s that would
not have been considered before. As a matter of fact, in the example, it was such a direct
visual comparison of bad drill bits against good drill bits that made the team aware of the
artifacts in the Cutting Edges Appearance, as the differences stood out.

In the group comparison procedure, the end-count is calculated for each of the candidate
X’s separately, as presented in Table 2.1. To do so, parts should be ranked by their input
values from smallest to largest, regardless of whether the part is from the “Upper” or
“Lower” group. For example, the first candidate cause, Top Angle, gives 105 (L; 1.2), 110
(U ; 4.5), 110 (U ; 4.8), 110 (U ; 4.9), 115 (L; 1.2), 115 (L; 1.3), 115 (L; 1.6), 115 (U ; 4.6), 120
(L; 1.4), 120 (L; 1.5), 125 (U ; 4.5), 125 (U ; 4.7), 125 (U ; 5.0), 130 (L; 1.0), 130 (U ; 4.7), 135
(L; 1.5), with U and L indicating parts’ membership in the “Upper” and “Lower” groups
and the parts’ output values given in parentheses. The end-count is the number of values
in the one group exceeding all values in the other, plus the number of values in the other
group falling below all those in the first group, where neither value can be zero (Tukey
(1959)). For example, the end-count for Top Angle is 1 + 1 = 2. Bhote and Bhote (2000)
offer a table specifying critical values for the end-count needed to achieve certain levels of
significance for testing whether X has an effect on Y . For nl = nu = 8, end-counts of 7, 10,
and 13 are significant at the confidence levels of 95%, 99%, and 99.9%, respectively. Thus,
an end-count of two is not significant, and we conclude that Top Angle is not a dominant
cause.

On the other hand, Cutting Edge Appearance has a sorted sequence of OK (L; 1.0), OK
(L; 1.2), OK (L; 1.2), OK (L; 1.3), OK (L; 1.4), OK (L; 1.5), OK (L; 1.5), Artifact (L; 1.6),
OK (U ; 4.5), Artifact (U ; 4.5), Artifact (U ; 4.6), Artifact (U ; 4.7), Artifact (U ; 4.7), Artifact
(U ; 4.8), Artifact (U ; 4.9), and Artifact (U ; 5.0), with an end-count of 14, which is significant
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at the 99.9% level. Tukey (1959) does not explain how to deal with binary inputs, so we
always sort the sequence using the output values that gives us the maximum end-count.
From Table 2.1, the second highest end-count is for Sagging. Since the end-count of eight
is significant at the 95% level, Sagging is also identified as a dominant cause. The end-
count values for all the other characteristics are less than seven, meaning that they are not
significant causes of variation. Therefore, the procedure identifies Cutting Edge Appearance
and Sagging as dominant causes.

2.2.3 Critique of Group Comparison

The first criticism is that the implementation of the end-count method does not work well
for discrete inputs, particularly when the quality characteristic Y is discrete as well. One
issue is that there are many ties in the rank order when the input is binary. Moreover, it is
unclear how to extend the end-count analysis to the case where the inputs are categorical
variables with more than two values.

A more substantial criticism concerns the efficiency of the procedure. The analysis
based on end-count values ignores all the observed output values in the baseline for parts
not included in the “Upper” and “Lower” groups. As mentioned before, to select the
extreme parts, we need to determine the Y values for a large number nb of parts. Thus,
it is wasteful to use the data for only the extreme parts. Moreover, Bhote and Bhote
(2000) and Shainin (1993b) procedure discards observed output values for the extreme
parts, and instead, only uses the “Upper” and “Lower” group membership information. It
is inefficient not to use the continuous Y values and instead, only use the dichotomized
“Upper” and “Lower” labels.

However, the most important point of criticism is that the described procedure frames
the problem as whether a candidateX affects Y , whereas the question should be whetherX
is a dominant cause of variation in Y . In the following, we demonstrate that the Bhote and
Bhote (2000) and Shainin (1993b) end-count-based analysis, which is supposed to identify
dominant causes of variation, is likely to identify minor causes. This issue becomes more
likely as the baseline sample size increases.

To quantify this claim and allow for a more precise discussion of these ideas, assume
that the effect of a candidate cause X on the quality characteristic Y is approximately
linear with intercept α and slope β, i.e.,

Y = α + βX + ϵ, (2.1)
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where the error, denoted ϵ, has a mean zero and includes noise (e.g., measurement variation)
and the effects of other causes. Denoting V ar(X) = σ2

X , V ar(ϵ) = σ2
ϵ , and assuming X

and ϵ are independent, we have σ2
Y = V ar(Y ) = β2σ2

X + σ2
ϵ . Then, X is a large cause

of variation if holding it fixed would substantially reduce the output variation σ2
Y . A

candidate cause X is strictly a dominant cause of variation only if β2σ2
X > σ2

ϵ , as this
implies that the variation transmitted to Y from X is larger than the variation due to
noise and other causes. However, we are likely interested in identifying any cause with a
large effect. In what follows, it is convenient to consider the squared correlation between
X and Y given by

ρ2 =
β2σ2

X

β2σ2
X + σ2

ϵ

, (2.2)

where 0 ≤ ρ2 ≤ 1 (the required calculations are available in Appendix A.1). Using this
parameterization, X is strictly a dominant cause if ρ2 > 0.5, since then β2σ2

X > σ2
ϵ . Note

that ρ2 is the population-parameter version of the R2 value (coefficient of determination)
of a linear regression fit of Y on X.

In the following, for simplicity, we add a normality assumption for X and ϵ in Model
2.1, i.e., X ∼ N(µ

X
, σ2

X) and ϵ ∼ N(0, σ2
ϵ ). To illustrate the issue, we calculate the

probability of having end-count values equal to, or greater than, ten (the 99% significance
level). For the simulation, we select nl = nu = 8, which is a common choice in the group
comparison investigation (Shainin (1993b); Bhote and Bhote (2000)). Also, without loss
of generality, we simulate data with α = 0, σϵ = 1, µ

X
= 0, and σX = 1. We also set

β so that ρ2 ∈ {0.0, 0.1, . . . , 0.5}. Figure 2.1 compares the simulation results for different
baseline sample sizes (nb ∈ {50, 100, 400, 1000, 5000}) using 5000 simulation runs.

Figure 2.1 reveals that the analysis based on the end-count test (with nl = nu = 8)
depends strongly on the baseline sample size. For a given value of ρ2, as nb increases, the
probability of observing end-counts higher than ten increases. This increase is especially
clear when 0.1 ≤ ρ2 ≤ 0.3. However, note that X is actually not a dominant cause in this
range since ρ2 < 0.5. Therefore, Figure 2.1 nicely reveals the problem that even when X is
not a dominant cause, with a large nb, the end-count method often will mistakenly conclude
that it is. This is undesirable for many reasons as it may lead us in many unproductive
directions and waste resources in future studies. We ran the same simulation study for
different nl and nu sizes. Increasing nl and nu, the relative positions of the lines for a fixed
ρ2 do not change, but the probability of observing a statistically significant result reaches
one faster, and the same problem still exists. Note that for Figure 2.1, we could have used
a different threshold for the end-count values, like 7 or 13 instead of 10, but the qualitative
conclusions remain the same.
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Figure 2.1: Probability of having Tukey end-count equal to or greater than ten vs. ρ2 for
different baseline sample sizes with nl = nu = 8.

In summary, as Figure 2.1 illustrates, the effect of misidentifying a non-dominant cause
as the dominant cause is even more pronounced for larger baseline sample sizes. Although
X’s with ρ2 ≤ 0.1 do not have a big contribution to the output variation, if nb is large,
the analysis based on the end-count test might misidentify them as interesting, spurring
subsequent effort.

Identifying the dominant cause(s) involves estimating the relative size of the effects of
X’s onto Y . Therefore, we propose that the problem should be framed as an estimation
problem, which is more informative, rather than as a hypothesis-testing problem on ρ2.
The next section outlines our procedure for estimating ρ2.

2.3 Proposed Group Comparison Analysis Procedure

for Continuous Inputs

In this section, we first explain our proposed group comparison analysis procedure when
X is continuous. Then, we compare the proposed approach with Shainin’s procedure via
simulation. Finally, we evaluate the performance of our procedure in comparison with two
competing study plans. The case where inputs are binary is described in Section 2.4.
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2.3.1 Statistical Modelling and Proposed Procedure

Here, the statistical model and assumptions are the same as in Section 2.2.3. For all nb

parts in the baseline, we observe the quality characteristic values yi, i = 1, 2, . . . , nb. For
the parts in the “Upper” and “Lower” groups, we have, in addition, the input values. Thus,
our available data are:

• yi for i ∈ {1, . . . , nb} − {U ∪ L}

• (yi, xi) for i ∈ {U ∪ L}

Corresponding to this data and the assumed model, the log-likelihood function is

l = log
(
P (Xi = xi for i ∈ {U ∪ L};Y1 = y1, . . . , Ynb

= ynb
)
)

= log
(
P (Xi = xi|Yi = yi for i ∈ {U ∪ L})× P (Y1 = y1, . . . , Ynb

= ynb
)
)

= log
( ∏

i∈{U∪L}

P (Xi = xi|Yi = yi) ×
nb∏
i=1

P (Yi = yi)
)

= log
( ∏

i∈{U∪L}

P (Xi = xi|Yi = yi)
)
+ log

( nb∏
i=1

P (Yi = yi)
)

=
∑

i∈{U∪L}

log
(
P (Xi = xi|Yi = yi)

)
+

nb∑
i=1

log
(
P (Yi = yi)

)
, (2.3)

with
Yi ∼ N(α + β µ

X
, β2σ2

X + σ2
ϵ ).

Based on our assumptions, (Xi, Yi) have the following bivariate normal distribution

BV N

([
µ

X

α + β µ
X

]
,

[
σ2
X ρ σX

√
β2σ2

X + σ2
ϵ

ρ σX

√
β2σ2

X + σ2
ϵ β2σ2

X + σ2
ϵ

])
,

and (Xi|Yi = yi) follows a normal distribution with E (Xi|Yi = yi) = µ
X
+ σX√

β2σ2
X+σ2

ϵ

ρ (yi−

α − βµ
X
) and V ar(Xi|Yi = yi) = σ2

X(1 − ρ2) (Rao (1973)). We suggest using maximum
likelihood to estimate the model parameters α, β, µ

X
, σ2

X , and σ2
ϵ . Finally, an estimate for

ρ2 is obtained by plugging the estimated model parameters into Equation 2.2.
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2.3.2 Comparison of the Proposed Procedure to Shainin’s Pro-
cedure

Figure 2.1 demonstrates that Shainin’s end-count-based procedure does not take into ac-
count the baseline sample size and, in some cases, has a large probability of misidentifying
a cause as dominant even when it is not. Our proposed analysis procedure frames group
comparison as an estimation problem rather than a hypothesis test. If desired, we could
translate our estimates into decisions about whether we believe a given candidate cause is
dominant or not in a variety of ways. One option is to simply compare our point estimate
for ρ2 to a given value, say 0.5 (or any other threshold). A more sophisticated alternative
is to make a decision considering the confidence interval for our estimate. Note that we
discuss confidence intervals for our estimates in Section 2.5. We leave it up to practitioners
to interpret the procedure’s estimates (and uncertainty bounds) in a way that makes sense
in their context (this could depend on other factors such as cost).

To be able to directly compare our proposed procedure to Shainin’s one, we have to
add some decision rules to our procedure. Therefore, for illustration, we select a decision
threshold of 0.26, i.e., if ρ̂2 > 0.26, we conclude the candidate cause is dominant. We select
this low threshold intentionally to ensure that for the case of nl = nu = 8 and nb = 100,
the probability of identifying a candidate cause with an actual value of ρ2 = 0.5 as the
dominant cause equals 0.994 for both our proposed and the end-count procedures. This
way, we can directly and fairly compare Shainin’s procedure and our maximum likelihood
estimation-based approach. Note that we would likely not recommend such a low threshold
in applications. Figure 2.2 compares the results.

Figure 2.2 demonstrates the enhanced reliability of our procedure, as it is less likely
to misidentify non-dominant causes as dominant. For example, when ρ2 = 0.25, the
probability of misidentification is 72% for Shainin’s group comparison procedure and 58%
for our proposed procedure. While not shown here, recall that our proposed procedure
considers the baseline sample size in the analysis. So, we will not see arbitrarily large
probabilities of concluding a non-dominant cause is dominant, as we see in Figure 2.1 for
the end-count analysis, even if the baseline size is large.

2.3.3 Evaluation of the Proposed Procedure for Continuous In-
puts

Here, we demonstrate the efficiency of leveraging in our estimation-based procedure
through a comparison of two competing study plans. The main goal is to illustrate the
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Figure 2.2: Probability of having ρ̂2 ≥ 0.26 vs. ρ2 for our proposed procedure and Shainin’s
procedure when nl = nu = 8 and nb = 100.

value of selecting extreme parts (i.e., leveraging). For the proposed plan, we measure
the X values only for the nl + nu baseline parts with extreme output values, and we call
this the “Leveraged” plan. Alternatively, we could measure the X values for all baseline
parts. Then, the data are (yi, xi) for all nb parts, and we call this the “Full” plan. A
third approach is to measure the X values for nl + nu randomly selected parts from the
baseline, and we call this the “Random” plan.

Via simulation, we compare the three plans by calculating their standard deviation of
ρ̂2, denoted by SD(ρ̂2), for ρ2 ∈ {0, 0.1, 0.2, . . . , 0.9}. Note that we have five parameters in
Model 2.1, namely α, β, σϵ, µX

, and σX , but ρ
2 depends only on β, σϵ and σX . Without loss

of generality, we simulate data with µ
X
= 0, σX = 1, and α = 0. Also, we fix σϵ = 1 and

determine the corresponding β so that ρ2 ∈ {0, 0.1, 0.2, . . . , 0.9}. In each simulation run,
we estimate all model parameters (α, β, σϵ, µX

, and σX) by maximizing the likelihood, and
we find the corresponding realization of ρ̂2. Then, via 1000 simulation runs, we estimate
SD(ρ̂2) for all nine possible combinations of nb ∈ {100, 400, 1000} and nl = nu ∈ {5, 8, 16}.
Figure 2.3 presents the results.

As we would expect, Figure 2.3 demonstrates that the “Full” plan gives the lowest
SD(ρ̂2) for all examined combinations. It is also clear that the “Leveraged” plan always
lies about halfway between the “Random” and “Full” plans. This reveals that leveraging
is a valuable idea, as measuring the X values for the nl + nu extreme parts yields a more
precise estimate of ρ2 than measuring the X values for nl + nu randomly selected parts.
Recall that while the “Leveraged” plan is not better than the “Full” plan, it requires much
less effort since we only measure the X values for a small number of parts. Moreover,
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Figure 2.3: SD(ρ̂2) vs. ρ2 for nl = nu ∈ {5, 8, 16} and nb ∈ {100, 400, 1000} for all “Full”,
“Leveraged”, and “Random” plans when inputs are continuous.

SD(ρ̂2) decreases as nl, nu, and nb increase. However, nl and nu have a larger contribution
in this decrease than nb. Figure 2.3 also reveals that increasing nb does not change SD(ρ̂2)
considerably. Thus, if it is an effort to increase the baseline sample, it is not worth it.

To give an idea about suitable sample sizes, we discuss the situation where nb = 400.
Our focus is on the situation that ρ2 ≈ 0.5 since we are mainly interested in estimating
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the effects of X’s with ρ2 close to 0.5 or higher. Increasing nl and nu from five to eight
reduces SD(ρ̂2) from approximately 0.136 to 0.104, which can be beneficial in many cases.
However, increasing the sample size further to nl = nu = 16, i.e., a further doubling of the
amount of effort, yields only marginal improvement in SD(ρ̂2).

In conclusion, unlike the end-count analysis, which is framed as a hypothesis test, our
proposed likelihood-based analysis estimates the magnitude of the effect of X onto Y .
Thus, to identify a dominant cause, our proposed estimation-based approach is preferred.
Compared to the end-count analysis, this new approach is less likely to misidentify a non-
dominant cause as the dominant cause.

2.4 Proposed Group Comparison Analysis Procedure

for Binary Inputs

In practical applications, there may be a combination of continuous and binary candidate
inputs. While a standard Tukey end-count test, as described by Bhote and Bhote (2000),
is not applicable to discrete inputs, we can reverse the process by considering the actual
values of the quality characteristic, as briefly explained for Top Angle in Section 2.2.2.
Instead of the end-count procedure, this section proposes a maximum-likelihood method
similar to Section 2.3.1 for binary inputs. To distinguish the type of inputs, we denote
binary inputs with X∗. Note that there are also other possible extensions that one could
consider, including the case where the inputs are ordinal.

2.4.1 Statistical Modelling and Proposed Procedure for Binary
Inputs

Assume that the effect of the binary input X∗ onto the continuous quality characteristic
Y is approximately linear given by

Y = α + βX∗ + ϵ,

where X∗ and ϵ are independent, and the distribution of X∗ is

X∗ =

{
−1 with probability q,

+1 with probability 1− q,
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where 0 < q < 1. Note that in some applications, we may assume q is known. For example,
suppose X∗ represents two parallel processing streams. Then, due to equal volumes in the
two streams, q ≈ 0.5.

To make the conclusion more general, we continue with the assumption that q is un-
known. Given that setup, V ar(X∗) = 4 q (1−q) and V ar(Y ) = β2 (4 q)(1−q)+σ2

ϵ . Similar
to the continuous case, it is convenient to consider the squared correlation between Y and
X∗ given by

ρ∗2 =
β2(4q)(1− q)

β2(4q)(1− q) + σ2
ϵ

, (2.4)

where 0 ≤ ρ2
∗ ≤ 1 (the calculations are similar to those in Appendix A.1, but with slight

modifications). Using this parameterization, X∗ is strictly a dominant cause if ρ∗2 > 0.5.

Based on the assumptions, the marginal distribution of Y is

P (Yi = yi) = q P (Yi = yi|X∗
i = −1) + (1− q) P (Yi = yi|X∗

i = +1), (2.5)

with (Yi|X∗
i = ±1) ∼ N(α± β, σ2

ϵ ).

To estimate the parameters (namely, α, β, σϵ, and q), we select a subsample of size
nl + nu from the baseline and determine the corresponding values of x∗. Note that the
conditional distribution of (X∗|Y = y) only depends on the y value and not on how the
part is selected.

Similar to the continuous case, the likelihood has two components, one comes from
the baseline data, and the other comes from the selected parts with measured x∗ values.
Therefore, the log-likelihood is the same as in Equation 2.3, but with four parameters (α, β,
σϵ, and q) instead of five, and X∗ instead of X. The conditional distribution of (X∗|Y = y)
and the required calculations to achieve the log-likelihood are available in Appendix A.2.

Given data, we suggest using maximum likelihood to derive the estimates α̂, β̂, σ̂2
ϵ , and

q̂. Finally, an estimate for ρ∗2 is obtained by plugging the estimates into Equation 2.4.

2.4.2 Evaluation of the Performance of the Procedure for Binary
Inputs

Similar to Section 2.3.3, we conduct a simulation study to estimate SD(ρ̂∗
2
) for ρ∗2 ∈

{0, 0.1, 0.2, . . . , 0.9} for the “Full”, “Random”, and “Leveraged” plans. Here, we have four
parameters in the model (α, β, σϵ, and q); however, ρ∗2 depends only on β, σϵ, and q. We
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simulate data with q = 0.5 and α = 0. We also set σϵ = 1, leading to β =
√

ρ∗2

1−ρ∗2
. Similar

to Section 2.3.3, we estimate SD(ρ̂∗
2
) using 1000 simulation runs for all nine possible

combinations of nb ∈ {100, 400, 1000} and nl = nu ∈ {5, 8, 16}, and in each simulation run,
we estimate α, β, σϵ, and q. Figure 2.4 presents the results.

Figure 2.4: SD(ρ̂∗
2
) vs. ρ∗2 for nl = nu ∈ {5, 8, 16} and nb ∈ {100, 400, 1000} for all

“Full”, “Leveraged”, and “Random” plans when inputs are binary.
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Figure 2.4, as we would expect, shows that the “Full” plan leads to the lowest SD(ρ̂∗
2
)

for all examined combinations. It is also clear that the “Leveraged” plan almost always lies
between the “Random” and “Full” plans. However, the difference between the “Leveraged”
and “Random” plans is very small when ρ∗2 is large. The reason is that a large ρ∗2 means
X∗ is clearly a dominant cause, and the distribution of Y on X∗ = −1 and X∗ = 1 is

non-overlapping. Moreover, SD(ρ̂∗
2
) decreases as nb, nu, and nl increase. This is even

more visible with larger values of nl and nu.

For the results shown in Figure 2.4, we estimate q as one of the model’s parameters

to calculate SD(ρ̂∗
2
). It is noteworthy that the results are almost the same whether we

assume q (say, q = 0.5) or estimate it.

2.5 Performance of the Proposed Procedure on the

Example

Sections 2.2.1 and 2.2.2 demonstrate that the Bhote and Bhote (2000) and Shainin (1993b)
procedure identifies Sagging and Cutting Edge Appearance as dominant causes, with end-
count values of 8 and 14, respectively. In the example, the team looked into the Sagging
issue, but this line of inquiry did not produce any interesting conclusions. The Cutting
Edge Appearance, however, put the team on the right track. The cutting edges of the drill
bits in the “Upper” group showed no irregularities, while the drill bits in the “Lower”
group showed visible grinding artifacts. These imperfections seemed to improve the per-
formance of the drill bits to the extent that their absence in the “Upper” group drill bits
appeared to be responsible for the high peaks in torque, triggering line stoppages from
the monitoring system. This could be understood as these artifacts could function as chip
breakers, resulting in smaller chips that can be removed more easily by the cooling liquid.
The team reasoned that the absence of such artifacts on the cutting edges would result
in larger chips, which may create obstructions and cause peaks in torque. This conclu-
sion suggested redesigning the drill bits to include similar artifacts that function as chip
breakers. This remedy was implemented in the process, which solved the problem.

Using the likelihood-based proposed procedure, our conclusion is in line with what the

team concludes. For Sagging, we have σ̂Y =
√

β̂2σ̂2
X + σ̂2

ϵ =
√
0.385 + 1.14 = 1.23 (since

the estimates of β̂, σ̂ϵ, and σ̂X are 41.4, 1.07, and 0.015, respectively). This means that
if our efforts would achieve the complete elimination of the variability in torque due to
Sagging, then σ̂Y =

√
1.14 = 1.07. So, the potential reduction in σY is no more than 14%,

26



and Sagging with ρ̂2 = 0.255 is not a dominant cause. Cutting Edge Appearance, however,
is identified as a dominant cause with ρ̂2 = 0.662. For the remaining eight variables, we find
low values of ρ̂2, meaning that they are not dominant causes of variation. The estimated
ρ2 values and their 95% confidence intervals for all variables are reported in Table 2.2.
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ρ̂2 (Equation
2.2 or 2.4)

0.001 0.001 0.255 0.018 0.034 0.001 0.001 0.076 0.003 0.662

95% C.I.
on ρ2

(0.000,
0.162)

(0.000,
0.156)

(0.062,
0.565)

(0.000,
0.204)

(0.000,
0.305)

(0.000,
0.166)

(0.000,
0.155)

(0.000,
0.615)

(0.000,
0.201)

(0.138,
0.848)

Tukey
End-count

2 5 8 4 2 3 2 3 3 14

95% Bootstrap
Interval for

Tukey End-count
(2, 7) (2, 8) (3, 16) (2, 9) (2, 10) (2, 7) (2, 8) - - -

Table 2.2: Results of Tukey end-count, ρ̂2, and their 95% intervals for the drill bits example.

Table 2.2 uses the fractional-random-weight bootstrap method to determine the confi-
dence intervals (Xu et al. (2020)). Although some of the confidence intervals are somewhat
wide, the precision of our procedure is dramatically better than the end-count procedure.
To see the point, we determined 95% bootstrap intervals for end-count when inputs are
continuous by using a standard parametric bootstrap. It is not clear how to implement
that for the noncontinuous inputs; hence, there are three empty entries in the last row of
Table 2.2. Note that for all continuous candidate causes, the critical value (at the 95%
significance level) of seven is included within the 95% interval. This demonstrates that
the Bhote and Bhote (2000) and Shainin (1993b) procedure, which discards all observed
output values that are not in the “Upper” and “Lower” groups, discretizes the remaining
ones, and uses nonparametric statistics, is quite inefficient. Note that the baseline sample
size nb is uncharacteristically small in the example, and the inefficiency will be even more
extreme for more common baseline sizes.
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2.6 Summary and Discussion

This chapter provides a critical assessment of the Bhote and Bhote (2000) and Shainin
(1993b) group comparison investigation used as a part of the method of elimination to
help identify the dominant cause(s) of the variation in a quality characteristic of interest.

The strategy of group comparison based on the idea of leveraging appears to be highly
effective. It yields more precise estimates compared to a random sampling strategy, while
significantly reducing the required effort compared to a full sampling plan.

The specific implementation of the end-count-based strategy proposed by Bhote and
Bhote (2000) and Shainin (1993b), however, was found to be suboptimal. First, it frames
the problem as a significance test (whether candidate inputs affect Y ), whereas the goal of
the procedure is to identify the dominant causes. This is much better captured by framing
it as an estimation problem. As given, the procedure is likely to identify many minor
causes unjustly as dominant causes.

Second, the analysis based on end-count values makes inefficient use of the data. Out-
put values not in the “Upper” and “Lower” groups are discarded, and the remaining output
values are reduced to a dichotomy (“Upper” or “Lower”). Our maximum-likelihood pro-
cedure makes full use of the available information.

Note that the idea of leveraging does not work well when the quality characteristic
is binary, particularly when the input is binary as well. Even with a continuous quality
characteristic and a binary input, there are many ties in the rank order for calculating the
end-count values. However, we can extend the proposed end-count analysis and utilize the
actual quality characteristic values for the selected parts instead of just labelling them as
in the “Upper” and “Lower” groups. That way, we can rank the parts in terms of the
quality characteristic and calculate the end-count. However, it is unclear how to extend
the end-count analysis when the discrete input is ordinal or categorical with more than
two levels.

Besides the evaluation and improvement of the group comparison procedure itself, we
contribute a study of the idea of leveraging. This design principle is useful for studies
that aim to estimate the correlation between input and quality characteristic variables.
Leveraging may make the study more efficient if a large baseline sample is available whose
Y values have been determined but whose input values are yet to be measured. The idea
of leveraging is to select a subsample from the baseline sample consisting of parts having
the largest and smallest output values. These parts give the most information about
the desired correlation. Our study found that, in the group-comparison application, a
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“Leveraged” sample is more efficient than a “Random” sample of parts from the baseline.
On the other hand, “Leveraged” samples were found to give about half the estimation
precision as a “Full” sample, but with only a small fraction of the input measurements.
Note that we do not necessarily have to select the most extreme parts to have an effective
leveraging. In some situations, it may be desirable not to select wildly outlying parts for
fear that they may be due to a cause that rarely acts.

Later, in Chapter 3, we discussed Shainin’s Components SearchTM procedure, which
also exploits the idea of leveraging (Bhote and Bhote (2000); Shainin and Shainin (1988);
Steiner and MacKay (2005)). Moreover, Browne et al. (2009a,b, 2010a,b) applied the idea
of leveraging in the context of Gauge R&R studies. The precision of measurement systems
is often expressed in the Gauge R&R statistic γ, defined as the correlation of repeated
measurements of the same part. Leveraging allows efficient estimation of a correlation
coefficient. In this case, the baseline data consists of a large number of parts measured
once. Then, only for the leveraged sample, which consists of parts with extremely large
and small values in the baseline data, we collect the repeated measurements required to
estimate γ.

As discussed, this study assumes that the effect of the input on the quality characteristic
is approximately linear. If we are not sure about the linearity assumption, we recommend
checking it by measuring a small number of input values for the parts with intermediate
output values. Since our point is clue generation, linearity is often a reasonable initial
assumption to keep the problem simple.

Moreover, we considered having only one dominant cause in Model 2.1. This has the
advantage of being easy to understand and representative of how the idea works. Although
in real-world problems, there might be multiple large causes, and they could even be
correlated with other inputs or the dominant cause might be an interaction, we made this
simplifying assumption to be able to focus on the main idea of the new procedure.
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Chapter 3

Identifying Dominant Causes using
Component Swapping

Component swapping is a valuable approach for identifying problems in assembled prod-
ucts. Shainin’s component-swapping procedure is a widely utilized systematic strategy
for identifying the dominant cause(s) of excessive output variation of an assembly pro-
cess. Despite its practical popularity and intuitive appeal, the existing literature lacks a
comprehensive investigation into its merits and drawbacks. Our critical evaluation reveals
that although this procedure incorporates valuable ideas, it is unreliable in identifying the
dominant cause(s) of variation due to the utilization of poorly chosen statistical tools. We
introduce an alternative analytical approach based on more sophisticated new and existing
statistical techniques. We substantiated the effectiveness and superiority of our proposed
method through extensive simulation studies. Furthermore, our proposal addresses a gap
present in the literature by effectively alerting users to important interactions between
assembly and component, or among components.

3.1 Introduction

Component swapping is a well-known problem-solving strategy. It is an efficient strategy
for identifying the cause(s) of problems with assembled products. A tangible illustration
of component swapping is when we connect a laptop to a projector using a cable, and the
image is not projected. To diagnose the problem, the initial step is to ascertain whether
disconnecting and reconnecting the projector and laptop resolves the issue. If this action
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is ineffective, the next phase is comparing the malfunctioning configuration (consisting of
three components: laptop, projector, and cable) with a functional configuration (laptop,
projector, and cable). The aim is to find the specific component(s) responsible for the
malfunction. This may be achieved by swapping components between the two configu-
rations until the malfunctioning system begins to function correctly while the previously
functional system begins to malfunction. For instance, one could start by swapping the
projectors between the two configurations. If the malfunctioning system now works and
the functional system fails, the issue is in the projector, not in the cable or laptop. Then,
one could apply component swapping recursively by swapping components between the
good and defective projectors to identify the component(s) within the projector causing
the problem. On the other hand, if swapping the projectors has no effect, the investigation
would move on to the next component, such as the cable. We swap components between
the two systems until we identify the component(s) that causes the functional system to
malfunction while allowing the defective system to function.

Component swapping is an example of the general problem-solving strategy of hierar-
chical search or the method of elimination, which motivates why component swapping can
be an efficient search strategy (Chittaro and Ranon (2004); De Mast (2011, 2013); Shainin
(1993b); Steiner et al. (2008a,b)). Although most descriptions of the strategy are in loose
and general terms, the strategy was formalized for a specific type of problem, which is
identifying the dominant cause(s) of variation in assembled products. Excessive variation
in critical-to-quality characteristics of assembled products is a common issue extensively
studied in quality and industrial engineering. For this type of problem, a few concrete op-
erationalizations of component swapping have been proposed, such as Shainin and Shainin
(1988), Bhote and Bhote (2000), and Steiner and MacKay (2005). The literature in qual-
ity and industrial engineering has documented many applications of component-swapping
studies in variation-reduction projects (e.g., Kiatcharoenpol et al. (2023); Panchal et al.
(2020); Pietraszek et al. (2016); Ghurka and Pawar (2015); Mooren et al. (2012)). This
chapter discusses component swapping in the context of trying to identify the dominant
cause(s) of excessive variation.

Proponents of the component-swapping strategy claim that it is more efficient for iden-
tifying causes compared to alternative approaches, such as designed experiments. Although
the literature has discussed the component-swapping strategy (e.g., Dasgupta et al. (2011);
Amster and Tsui (1993); Logothetis (1990); Steiner et al. (2008a,b)), a systematic exami-
nation of its merits and drawbacks is still lacking. This chapter has four objectives:

(i) To evaluate known implementations of the component-swapping strategy, particularly
those of Shainin and Shainin (1988) and Bhote and Bhote (2000);
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(ii) To propose an alternative operationalization driven by sound statistical techniques
and subsequently assess its efficiency;

(iii) To provide well-grounded recommendations for users, allowing them to apply the
component-swapping strategy safely; and

(iv) To identify study-design principles that may hold broader interest.

The structure of this chapter is as follows. In Section 3.2, we present and critically
assess the component-swapping procedure proposed by Shainin and Shainin (1988) and
Bhote and Bhote (2000). Section 3.3 is devoted to explaining our proposed procedure and
our recommendations. In Section 3.4, we evaluate our proposed procedure and demonstrate
its superiority. We provide discussion and conclusions in Sections 3.5 and 3.6, respectively.

3.2 Shainin’s Component-Swapping Procedure

To the best of our knowledge, among the various implementations of the general
component-swapping strategy discussed in the literature, Shainin and Shainin (1988)
is the only one that operationalizes the strategy into a concrete procedure, albeit for
a specific type of problem. It is commonly used in quality engineering and covered in
many variation-reduction and statistical-engineering courses. Moreover, they provide
the clearest and most specific procedure, including decision boundaries with a statistical
motivation. However, the paper is unclear about a stopping rule for the procedure once
the dominant cause is identified. Therefore, we consider a slightly modified procedure
incorporating the stopping criterion from Bhote and Bhote (2000). This latter reference
has the procedure proposed by Shainin and Shainin (1988) as its origin. Thus, we refer
to this slightly modified procedure as “Shainin’s procedure”. Appendix B.1 provides an
overview of various alternative implementations in the peer-reviewed literature. In this
section, we present and critically assess Shainin’s component-swapping procedure.

3.2.1 Outline of the Procedure

The application context of the component-swapping procedure is to identify the dominant
sources of variation in a critical-to-quality characteristic Y for assembled products. We
assume the assembled product has at least two components or subassemblies that can be
disassembled and reassembled without significantly changing or damaging the product.
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As commonly recognized in the quality engineering literature, excessive variation in
the critical process output, denoted Y , is typically caused by many sources. However,
usually, only a few of them have a disproportionate impact on the overall variation, while
many others contribute only marginally. Juran refers to the important causes as the “vital
few”, which are few in number but account for almost all of the overall variation, and
the unimportant causes as the “trivial many”, which are large in number but collectively
contribute negligibly (Gryna and Juran (1988); Panahi et al. (2021, 2023)). In this chapter,
we refer to the “vital few” causes of variation as the dominant causes.

The component-swapping procedure investigates whether the excessive variation in Y
can be attributed to one or a few components or, alternatively, whether it is the process
of assembling products that substantially contributes to the variation in Y . We define ρ2A
as the contribution of the assembly process to the overall variation in Y by

ρ2A =
σ2
A

σ2
Y

, (3.1)

where σ2
Y = V ar(Y ), and σ2

A = σ2
Y − V ar(Y |A) is the variance in Y due to (causes in) the

assembly process. Moreover, we define ρ2Ci
as the contribution of a component Ci to the

overall variation by

ρ2Ci
=

σ2
Ci

σ2
Y

, (3.2)

where σ2
Ci

= σ2
Y −V ar(Y |Ci) is the variance in Y due to (causes in) Ci. Note that Ci could

be a single or a group of components. The objective of the component-swapping procedure
is to identify the component(s) with the largest contribution of ρ2C in σ2

Y , or alternatively,
to identify whether the contribution of the assembly process ρ2A is large enough to be
considered a dominant cause.

Shainin’s procedure starts by selecting two assembled products from a baseline of pre-
viously assembled products, whose output values have been measured. From this baseline,
we select the two products with high and low y values, effectively representing the excessive
output variation. Selecting extreme products, since they contain more information than
average ones, is a commonly employed study-design principle in variation reduction known
as leveraging (Panahi et al. (2021); Steiner et al. (2008a,b)).

The component-swapping procedures, then, consist of two phases. Phase I investigates
whether the assembly process is the dominant cause of variation. This involves disassem-
bling and reassembling the selected individual products multiple times and re-measuring
the output value. By doing so, we can determine the extent of variation attributed to the
assembly process. If Phase I suggests that assembly is not a dominant cause of output
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variation, we proceed to Phase II, where we subsequently swap components between the
two extreme products until we identify the component(s) that account for the majority of
the output variation. Below, we present and assess Shainin’s implementation of these two
phases.

3.2.2 Phase I of Shainin’s Procedure (Disassembling and Re-
assembling)

The procedure requires a baseline sample of nb products for which the quality (output)
measurements Yi, i = 1, . . . , nb are given. We assume that the baseline data are readily
available from previous investigations or can be collected at a relatively low cost. Then, in
Phase I, we select the two products with the lowest and highest y values from the baseline.
We refer to them as the “Low” and “High” products and denote their original output
values (as observed in the baseline) by yL0 and yH0 .

Subsequently, we disassemble and reassemble each of these two products r times (with
the implementation of Shainin and Shainin (1988), r = 2) and remeasure the output values
after each disassembly/reassembly. This yields the results given in Table 3.1.

Low product High product
y values from the baseline yL0 yH0

y values after disassembling
and reassembling r times

yL1 yH1
...

...
yLr yHr

Table 3.1: Data collection and notation for Phase I of the component-swapping procedure
with Shainin’s choice of selecting two extreme products.

Shainin and Shainin (1988) recommend r = 2, and their procedure concludes that the
assembly process is not the dominant cause of variation if both the following are satisfied:

• Max(yL0 , y
L
1 , y

L
2 ) < Min(yH0 , yH1 , yH2 ) (this criterion is an application of Tukey’s end-

count test with complete separation; Tukey (1959));

• D > 1.07 R̄ , where D = Median(yH0 , yH1 , yH2 ) − Median(yL0 , y
L
1 , y

L
2 ), and R̄ =

[Range(yH0 , yH1 , yH2 ) +Range(yL0 , y
L
1 , y

L
2 )]/2.

The constant 1.07 tunes the decision threshold for D to a 95% confidence level of
misidentifying assembly as a cause if in fact it has no effect. If either of the above two
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criteria is not satisfied, we conclude assembly is the dominant cause, and the procedure
stops. Otherwise, we proceed to Phase II.

3.2.3 Phase II of Shainin’s Procedure (Swapping Components)

In Phase II, drawing from engineering knowledge, we assess the components of the product
according to their plausibility of being the dominant cause of variation. Let the compo-
nents’ descending ranking be C1, C2, C3, . . . , and denote the components that cannot be
swapped (e.g., part housing) or are no longer under suspicion by CR. Starting with the
top-ranked component C1, we swap components between the low and high products one by
one while remeasuring the output values after each swap. This yields the results presented
in Table 3.2. For instance, yLC1=H represents the output value in the low product after
swapping component C1, that is replacing component C1 in the low product with the one
that was originally in the high product.

Low product High product
y values from the baseline yL0 yH0

y values after swapping component C1 yLC1=H yHC1=L

y values after swapping component C2 yLC2=H yHC2=L
...

...
...

y values after swapping components C1 and C2 yLC1,C2=H yHC1,C2=L
...

...
...

Table 3.2: Notation for Phase II of the component-swapping procedure.

To determine whether component (or a group of components) Ci is the dominant cause,
after each swap we compare yLCi=H and yHCi=L with the decision intervals (calculated from
the results of Phase I) given by DIL = Median(yL0 , y

L
1 , . . . , y

L
r ) ± t(2r,0.95)R̄/d2(r + 1) and

DIH = Median(yH0 , yH1 , . . . , yHr )± t(2r,0.95)R̄/d2(r+1), where d2(r+1) is a known constant
from the control-charting literature (Ryan (1989)). In Shainin’s implementation, r = 2,
and we have t(4,0.95) = 2.776 and d2(3) = 1.693.

After each swap, Bhote and Bhote (2000) make a conclusion based on the following
criteria:

• If yHCi=L ∈ DIH and yLCi=H ∈ DIL, there are only minor changes in the output values
after swapping Ci, i.e., Ci is an unimportant component. Thus, we eliminate Ci from
further consideration and swap the next ranked component.
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• If yHCi=L < Max(DIL) and yLCi=H > Min(DIH), there are complete changes in the
output values after swapping Ci, i.e., Ci is an important component and explains
the variation we have seen in the output. Thus, we identify Ci as the sole dominant
cause of variation and stop the component-swapping process.

• Otherwise, there are partial changes in the output values after swapping Ci, i.e., Ci

is important, but does not on its own explain the output variation. Thus, we retain
Ci, swap the next ranked component, and continue exploring other components that
also cause a partial change.

Figure 3.1 presents some fictitious examples and their corresponding conclusion.

Figure 3.1: Some fictitious examples of different conclusions (following by Bhote and Bhote
(2000)).

In situations where we identify more than one component with partial changes, it is
necessary to conduct a capping run, where we simultaneously swap all the components that
led to partial changes and investigate whether their combined effect is the dominant cause.
The outcomes of these capping runs are also incorporated into Table 3.2. For instance,
assuming both C1 and C2 individually result in partial swaps, yLC1,C2=H represents the
output value in the low product after simultaneously swapping both C1 and C2. Note that
by concluding the combined effect as the dominant cause, the dominant cause could be
the sum of the two main effects C1 +C2 or their interaction effect C1C2. However, we use
the notation C1 + C2 here, because Shainin’s procedure does not distinguish between the
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two cases. We stop the procedure if this simultaneous swap results in complete changes.
Otherwise, we continue swapping the next-ranked components until we either identify all
the important causes or eliminate all the ranked components. If the latter occurs, the
dominant cause lies among the remaining components CR, or we have made an incorrect
conclusion somewhere along the way. Figure 3.2 provides the flowchart of Phase II in
Shainin’s procedure.

Figure 3.2: Flowchart of Shainin’s procedure in Phase II, where the ranked components
are C1, C2, C3, etc.

3.2.4 Shainin’s Procedure: Issues and Points for Improvement

We evaluate the performance of Shainin’s procedure using extensive systematic simulation
studies, with details presented in Section 3.4. These simulations reveal that Shainin’s
Phase I procedure is unreliable in identifying assembly as the dominant cause when it
is indeed the dominant cause. For instance, with a baseline sample size nb = 1000 and
following their recommendation of selecting two extreme products and r = 2, Shainin’s
procedure identifies assembly as the dominant cause only 20% of the time, when its actual
contribution to the overall variation in Y is 50% (i.e., ρ2A = 0.5). Moreover, Shainin’s Phase
II procedure is unreliable in identifying the dominant cause among the components. It often
identifies the combined effect of two or more components as the dominant cause, even if
only a single component is the dominant cause. For instance, with their recommendation
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of r = 2, assuming only two components, and setting nb = 1000, Shainin’s procedure
misidentifies the combined effect of C1 and C2 as the dominant cause approximately 85%
of the times, when C1 individually is the dominant cause with 75% contribution to the
overall variation in Y (ρ2C1

= 0.75, ρ2C2
= 0.20, and ρ2A = 0.05). Moreover, as mentioned

before, after conducting a capping run, Shainin’s procedure fails to differentiate whether
the involved components together are the dominant cause, or if it is the interaction effect
between them.

The surprisingly poor performance of Shainin’s procedure appears to stem partly from
the use of unsophisticated estimators, such as R̄, to estimate variation. However, a more
fundamental problem appears to arise from their use of decision criteria that are derived
from statistical significance tests. The decision criteria in both Phase I (the Tukey end-
count test and the decision threshold forD) and Phase II (DIL andDIH) identify assembly
or components if they are significant causes of variation (with 95% confidence). This is
obviously at odds with the authors’ own claims that they intend to identify dominant causes
(Shainin and Shainin (1988), Bhote and Bhote (2000)). This creates an issue because a
statistically significant cause does not necessarily imply a dominant cause.

3.3 Proposed Procedure

Considering the abovementioned issues, Shainin’s implementation is a problematic ba-
sis for evaluating the merits of component-swapping strategies. This section introduces
an alternative to Shainin’s analysis procedure. While Shainin’s procedure is based on
significance-testing decision intervals, our proposed analysis aims to estimate the propor-
tion of variation based on more sophisticated estimators.

3.3.1 Proposed Phase I Analysis (Disassembling and Reassem-
bling)

In this subsection, our focus is on Phase I of the component-swapping procedure. We first
explore how best to estimate ρ2A, and then we provide our recommendations for investigat-
ing irregularities to further improve the conclusion of the procedure.
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3.3.1.1 Estimation of ρ2A

We propose an analysis that aims to estimate the proportion of variation ρ2A in Y due
to assembly; however, note that we cannot separately estimate the output variation due
to the assembly process and the variation due to measurement error. We can only es-
timate the proportion of variation in Y due to the combined effect of all assembly- and
measurement-related causes. However, we assume that as a standard early step in many
variation reduction projects, we have previously assessed the measurement system and have
found that the measurement variability is small (Steiner and MacKay (2005)). For sim-
plicity, we refer to the variation due to assembly- and measurement-related causes as the
variation due to assembly, denoted by σ2

A, and estimate its contribution ρ2A using Equation
3.1.

If assembly accounts for the dominant proportion of the overall variation in Y (e.g.,
ρ2A > 0.5), we conclude that assembly is the dominant cause that should be addressed, and
we stop the procedure. To estimate σ2

Y and σ2
A, we can use the baseline data y1, . . . , ynb

and
the results of the Phase I investigation (i.e., disassembly/reassembly) where we obtain yij,
with j = 0, 1, . . . , r (see Table 3.2). In Shainin’s procedure, where we select two extreme
products, we have i = L or H (the low and high products selected from the baseline).
However, in what follows, we allow for the selection of more than two products and denote
the number of products selected as k. For instance, as we shall suggest, one could select
the low and high products, resulting in k = 2, or also include the product with the median
y value, resulting in k = 3.

Our proposed estimation approach for ρ2A is inspired by Browne et al. (2009b, 2010a),
who explored the estimation of proportions of variances from similar study designs in
the context of measurement-system assessment. Browne et al. (2009b, 2010a) proposed
four approaches: a maximum likelihood estimator, a regression estimator, an ANOVA
estimator, and a combined estimator. To select the most suitable estimator for our context,
we conducted extensive simulation studies whose results are given in Appendix B.3.1.
Based on the outcomes of these studies, we recommend the following combined estimator
as it has a closed form, low bias, and low standard deviation compared to the alternatives:

ρ̂2A =1 +
q(1− ρ̂2AANV

− r−1)− vF (2− ρ̂2AReg
)

2 (vF − q)

+

√(
q(1−ρ̂2AANV

−r−1)−vF (2−ρ̂2AReg
)
)2
−4(vF − q)

(
vF (1−ρ̂2AReg

)+qr−1(1−ρ̂2AANV
)
)

2 (vF − q)
,
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where ρ̂2AANV
=

∑k
i=1

∑r
j=1(yij−ȳiPhI)

2

k(r−1)s2b
, ρ̂2AReg

=1−
∑k

i=1 (ȳ
i
PhI−ȳb)(y

i
0−ȳb)∑k

i=1(yi0−ȳb)
2 , vF = 2(nb−1)2(k(r−1)+nb−3)

k(r−1)(nb−3)2(nb−5)
,

q−1 =
∑k

i=1

(yi0−ȳb)
2

s2b
, and ȳb and s2b represent the sample mean and variance of the baseline

data. Later, in Section 3.4, we demonstrate the good performance of this estimator.

3.3.1.2 Check for Irregularities

The analysis presented in Section 3.3.1.1 relies on certain assumptions, which may be
compromised by variance heterogeneity or interaction effects (between components and as-
sembly). We recommend conducting a variance equality test such as Bartlett’s or Levene’s
test (Bartlett (1937), Levene (1960)) as part of the Phase I analysis. We test whether the
variance of yij for j = 1, . . . , r is equal across the products i = 1, . . . , k.

If equality of variances is rejected, the heteroscedasticity may be due to an interaction
effect between the assembly process and one or more components. Such an interaction im-
plies that the results of disassembly and reassembly vary depending on the specific compo-
nent within the product, making reassembly easier for some products but more challenging
for others. Detecting evidence of such irregularities can be challenging, especially when
the study involves only extreme products, as in Shainin’s procedure with i = L or i = H.
To gain more insight into more common products, it is beneficial to also include a baseline
product with a median y value (Prashar (2016), Cox (2011)). Appendix B.3.2 reveals that
in some scenarios, selecting a median product considerably increases the probability of
identifying interaction effects between the assembly process and components.

3.3.2 Proposed Phase II Analysis (Swapping Components)

In this subsection, we focus on Phase II of the component-swapping procedure. While we
extended the notation and analysis of Phase I to allow the selection of k ≥ 2, in Phase II,
we only use the two extreme products, i.e., i = L and i = H. We first explore how best to
estimate ρ2C , and then we provide our recommendations for investigating irregularities to
further improve the conclusion of the procedure.

3.3.2.1 Estimation of ρ2C

Phase II aims to estimate the proportion of variation in Y due to components. Therefore,
after swapping component Ci, we estimate its contribution ρ2Ci

to the output variation as
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defined in Equation 3.2. Then, if desired, we could translate our estimates into decisions
about whether we believe Ci is a dominant cause by comparing ρ̂2Ci

to a given threshold,
say 0.5 (or any other threshold). Below, we introduce two viable estimators for ρ2Ci

: the
ANOVA and LVR estimators. With each estimator, we estimate ρ2Ci

after each swap while
using all the Phase I and II results available at that time (except the Phase I results for
the median product).

ANOVA Estimator

Table 3.3 presents the situation where we have swapped components C1 and C2, and we
have also conducted a capping run where C1 and C2 are swapped simultaneously. We
denoted the components from the low and high product as −1 and 1, respectively. The
column labelled C1C2 represents the interaction between C1 and C2.

Phase Results C1 C2 C1C2 CR

yL0 -1 -1 1 -1
Baseline

yH0 1 1 1 1
yL1 -1 -1 1 -1
...

...
...

...
...

yLr -1 -1 1 -1
yH1 1 1 1 1
...

...
...

...
...

Phase I

yHr 1 1 1 1
yLC1=H 1 -1 -1 -1Phase II

(Swap C1) yHC1=L -1 1 -1 1
yLC2=H -1 1 -1 -1Phase II

(Swap C2) yHC2=L 1 -1 -1 1
yLC1,C2=H 1 1 1 -1Phase II

(Swap C1 and C2) yHC1,C2=L -1 -1 1 1

Table 3.3: Component-swapping procedure presented as runs with factors and levels.

The ANOVA estimator uses the observed data in Phases I and II but ignores the original
baseline values yL0 and yH0 . The first results in Phase II come from swapping the top-ranked
component C1. After obtaining these results, we fit the ANOVA model Y ∼ C1 + CR. At
this stage, attempting to include C2 or C1C2 in the model would be futile, as these effects
would be confounded with CR. Our estimator of ρ2C1

is based on the sums-of-squares in

41



the analysis of variance. Let SSC1 be the sum-of-squares of the C1 factor, and SST be the
total sum-of-squares. Then, ρ̂2C1

is given by

ρ̂2C1
=

SSC1

SST

.

Note that this value is commonly reported as R2 in a standard analysis of variance.
If the estimated contribution of C1 is dominant (e.g., ρ̂2C1

≥ 0.5), we stop the procedure.
However, if C1 is a minor cause, i.e., a substantial proportion of the output variation is still
unaccounted for (e.g., ρ̂2C1

< 0.5), we proceed to swap C2 and fit the model Y ∼ C1+C2+CR

to all the now available data. Similarly, we derive ρ̂2C1
and ρ̂2C2

from the new sum-of-squares.
If the estimated contribution of C2 is dominant (e.g., ρ̂2C2

≥ 0.5), we stop the procedure. If
both estimates account for a reasonably large amount of the output variation but neither is
individually dominant (e.g., 0.25 < {ρ̂2C1

, ρ̂2C2
} < 0.5), we conduct a capping run (i.e., swap

C1 and C2 together) and fit the model Y ∼ C1 +C2 +C1C2 +CR, enabling us to estimate
the contribution ρ̂2C1C2

of the interaction effect. If C1C2 is also identified as a minor cause,
we continue with C3 and further down the ranked list of components.

Leveraged Variance Ratio (LVR) Estimator

The ANOVA estimator uses the data from the 2r replications in Phase I and the results
in Phase II (e.g., yLC1=H and yHC1=L when we swap C1). However, it does not incorporate
the observed output values in the baseline. The LVR estimator, on the other hand, also
incorporates the baseline values for the selected extreme products, i.e., yL0 and yH0 . This
may be helpful since it defines the range of the nb baseline data, conveying information
about the variation in Y . The term leveraged in the name of this estimator refers to our
use of the extreme values yL0 and yH0 . Note that the LVR estimator is a novel approach
not previously documented in the literature.

After swapping component Ci between the two extreme observations from the baseline,
we introduce the following estimator

ρ̂2Ci
= Min

(
V ar(ȳLPhI , y

L
Ci=H) + V ar(ȳHPhI , y

H
Ci=L)

2V ar(yL0 , y
H
0 )

, 1

)
, (3.3)

where ȳLPhI = (yL1 + · · ·+ yLr )/r and ȳHPhI = (yH1 + · · ·+ yHr )/r.

After obtaining ρ̂2Ci
, we can determine whether Ci is the dominant cause by comparing

it to a threshold, say 0.5, as before. If Ci is not the dominant cause, we proceed to
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swap the next-ranked component. If none of the swapped components is identified as
the dominant cause, we conclude that the dominant cause lies among CR and assign the
remaining proportion of variation to CR.

In capping runs, multiple components are simultaneously swapped, and since we also
have data from previous individual component swaps, Equation 3.3 changes. In this case,
to estimate the proportion of variation due to a swapped component, we use the average of
the variances when the setting of the swapped component changes while other components
remain unchanged, and we pool it across different combinations of the levels of the other
components. For instance, if we simultaneously swap Ci and Cj, we obtain the following
estimates:

ρ̂2Ci
=Min

(
V ar(ȳLPhI ,y

L
Ci=H

)+V ar(yLCj=H
,yLCi,Cj=H

)+V ar(yHCi,Cj=L
,yHCj=L

)+V ar(yHCi=L
,ȳHPhI)

4V ar(yL0 , y
H
0 )

,1

)
,

ρ̂2Cj
=Min

(
V ar(ȳLPhI ,y

L
Cj=H

)+V ar(yLCi=H
,yLCi,Cj=H

)+V ar(yHCi,Cj=L
,yHCi=L

)+V ar(yHCj=L
,ȳHPhI)

4V ar(yL0 , y
H
0 )

,1

)
,

ρ̂2CR
=Min

(
V ar(ȳLPhI ,y

H
Ci,Cj=L

)+V ar(yLCj=H
,yHCi=L

)+V ar(yLCi=H
,yHCj=L

)+V ar(yLCi,Cj=H
,ȳHPhI)

4V ar(yL0 , y
H
0 )

,1

)
,

and ρ̂2CiCj
= Max

(
1− (ρ̂2A + ρ̂2Ci

+ ρ̂2Cj
+ ρ̂2CR

), 0
)
.

To illustrate why these estimators make sense, consider the formula for the first equa-
tion, ρ̂2Ci

, and note that it is obtained by averaging the variances under the conditions
listed in Table 3.4.

Variance term Ci changes from Cj remains unchanged at CR remains unchanged at
V ar(ȳLPhI , y

L
Ci=H) Low to High Low Low

V ar(yLCj=H , y
L
Ci,Cj=H) Low to High High Low

V ar(yHCi,Cj=L, y
H
Cj=L) High to Low Low High

V ar(yHCi=L, ȳ
H
PhI) High to Low High High

Table 3.4: Conditions under each variance composites of the ρ̂2Ci
formula.

3.3.2.2 Check for Irregularities

Our simulations illustrate that both the ANOVA and LVR estimators become unreliable
when there are strong interaction effects between components (see Appendix B.4.2 for a

43



detailed discussion). We propose the incorporation of the following two criteria into the
procedure for alerting the user to such situations:

• “Partial criterion”: |V ar(ȳHPhI , y
H
u=L)−V ar(ȳLPhI , y

L
u=H)|/V ar(yL0 , y

H
0 ) (all from Equa-

tion 3.3) exceeds a given threshold, say 0.2 for u ∈ {Ci, Cj}. This criterion is satisfied
when swapping component u has a large effect on one product, but not the other.
This is a classic sign of an important interaction. Note that the threshold of 0.2 is ar-
bitrary; however, our simulation studies show its effectiveness in delivering favorable
results.

• “Extreme criterion”: Swapping one or more components yields output values that
are more extreme than the most extreme values observed in baseline and Phase I,
i.e., yHu=L > Max(yH0 , yH1 , . . . , yHr ), or yLu=H < Min(yL0 , y

L
1 , . . . , y

L
r ) for component or

components u.

We recommend verifying the above criteria after each swap to check for evidence of
interactions between components. If such interactions exist, these criteria will often detect
evidence of them. See Appendix B.4.2 for a more detailed discussion of how well these
criteria work.

3.3.3 Proposed Approach

Based on the outcomes of our simulation studies, we recommend the following study design:

1. Select k = 3 baseline products: one with the lowest, one with the highest, and one
with a median output value.

2. In Phase I, disassemble and reassemble each selected product r = 5 times. The choice
of r = 5 and k = 3 is based on Monte Carlo simulations. It provides a balanced trade-
off between estimation precision, the ability to detect irregularities, and the amount
of effort. Further motivation for this design choice is given in Appendix B.3.3.

3. Use the combined estimator from Section 3.3.1.1 to estimate ρ2A.

4. Perform a variance equality test such as Bartlett’s and/or Levene’s test to detect
irregularities. Note that while Bartlett’s test identifies irregularities more often (see
Appendix B.3.2), it is more sensitive to the normality assumption (Levene (1960)).
Further investigations are required if there is evidence of interaction between assembly
and components.
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5. If ρ̂2A is large (say greater than 0.5, and there are no irregularities), identify assembly
as the dominant cause and stop the procedure; otherwise, proceed to Phase II.

6. In Phase II, rank components in descending order of plausibility based on engineering
knowledge (or combine components into subassemblies if ranking is challenging or if
there are many components). Select the two products with the most extreme y values
from the k = 3 products used for Phase I, and label them the low and high products.

7. Swap the next top-ranked component Ci between the low and high products, and
estimate ρ2Ci

using LVR.

8. Check for irregularities using the Extreme and Partial criteria. If there is evidence
of interaction between two or more components, keep Ci as potentially being part of
a dominant cause.

9. If ρ̂2Ci
is large (say greater than 0.5, and there are no irregularities), identify Ci as

the dominant cause and stop the procedure. Otherwise, if ρ̂2Ci
is small (say less than

0.25), eliminate Ci from the suspect list, whereas if ρ̂2Ci
is of a moderate size (say

between 0.25 and 0.5), keep Ci as potentially being part of a dominant cause.

10. If we have so far identified two or more components as potentially being part of
a dominant cause, swap them all simultaneously to see if their combined effect is a
dominant cause. If this capping run identifies the dominant cause, stop the procedure;
otherwise, keep the components involved in the capping run as potentially being part
of a dominant cause.

11. Repeat steps 7 to 10 until we either identify the dominant cause or have no further
swaps to try.

3.4 Evaluation of the Proposed Procedure

Both Shainin’s procedure and our procedure proposed above were evaluated by means of
comprehensive Monte Carlo simulation studies. This section summarizes our main findings.
Detailed information regarding these studies can be found in Appendix B. Below, we outline
the objectives of each study:

• Appendix B.2 evaluates Shainin’s procedure using simulation studies. Appendices
B.2.1 and B.2.2 are devoted to Phase I and Phase II, respectively. The evaluation
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is based on the probability of identifying the actual dominant cause for different ρ2A
and ρ2C values.

• Appendix B.3 outlines the proposed Phase I setup and analysis. In Appendix B.3.1,
we introduce four viable estimators for ρ2A and compare their corresponding bias and
standard deviation, denoted as Bias(ρ̂2A) and SD(ρ̂2A), across different ρ2A values.
In Appendix B.3.2, we examine how well we can identify the interaction between
assembly and component(s) with or without a median product. In Appendix B.3.3,
we assess the choices of design parameters for Phase I, namely, r and k, based on
SD(ρ̂2A).

• Appendix B.4 explores the proposed Phase II setup and analysis. In Appendix B.4.1,
we compare the ANOVA and LVR estimators using bias, standard deviation, and
mean square error of ρ̂2C , denoted as Bias(ρ̂2C), SD(ρ̂2C), and MSE(ρ̂2C), across dif-
ferent ρ2C values. In Appendix B.4.2, we examine how well we can identify the
interaction between two or more components using the Partial and Extreme criteria
for different magnitudes of interaction effects.

The main findings are presented below for each possible scenario.

3.4.1 Scenario: Assembly is the Dominant Cause

Our proposed procedure is more reliable than Shainin’s Phase I procedure in identifying
assembly as the dominant cause when it is indeed the dominant cause. Figure 3.3 compares
the probability of identifying assembly as the dominant cause for different ρ2A values using
Shainin’s procedure (with their recommendation of k = r = 2), our proposed estimator
with Shainin’s recommended sample size of k = r = 2, and our proposed estimator with
our recommended sample size of k = 3 and r = 5. Moreover, we use a threshold of 0.5,
that is, we identify assembly as the sole dominant cause if ρ̂2A ≥ 0.5.

Figure 3.3 reveals what we noted earlier, namely, that Shainin’s procedure has a small
chance of identifying assembly as the dominant cause, even when it is indeed the dominant
cause. For instance, when ρ2A = 0.6, Shainin’s procedure identifies assembly as the domi-
nant cause only 30% of the time. However, our combined estimator with the same sample
size as Shainin’s one (i.e., k = r = 2) performs much better and identifies assembly as the
dominant cause 68% of the time for ρ2A = 0.6. With our recommended sample size (k = 3
and r = 5), the proposed estimator has a detection probability of 82% for ρ2A = 0.6.
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Figure 3.3: Probability of identifying assembly as the dominant cause vs. ρ2A using Shainin’s
procedure, our proposed estimator with Shainin’s recommended sample size, and our pro-
posed procedure with k = 3 and r = 5.

3.4.2 Scenario: Interaction between Assembly and Components
is the Dominant Cause

Shainin’s procedure has no effective means of identifying an interaction effect between
assembly and components. Our proposed procedure identifies such interactions using an
equal variances test, recommended as part of the Phase I analysis. Especially when a
median product is included in Phase I (as recommended), the proposed procedure reli-
ably identifies assembly by component interactions. For instance, consider the scenario
described in detail in Appendix B.3.2, where there was a large interaction between assem-
bly and component(s). Then, by only selecting two extreme products, the probability of
detecting the interaction is 12% and 8% using Bartlett’s and Levene’s tests, respectively.
However, by also including the median product, we increase the probabilities to 90% and
20%, respectively. See Appendix B.3.2 for a detailed discussion.

3.4.3 Scenario: One Component is the Dominant Cause

The LVR and ANOVA estimators are more reliable than Shainin’s Phase II procedure in
identifying a single component as the dominant cause when it is indeed the sole dominant
cause. Figure 3.4 compares the probability of identifying a single component C1 as the
dominant cause for different ρ2C1

values using Shainin’s procedure, ANOVA, and LVR when
only two components exist, and ρ2C2

= 1 − ρ2C1
− ρ2A, and ρ2A = 0.05. Note that in this
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simulation, for Shainin’s procedure, we follow their recommendation of r = 2, and for
ANOVA and LVR estimators, we follow our recommendation of r = 5. Moreover, we use a
threshold of 0.5, that is, we identify component C1 as the sole dominant cause if ρ̂2C1

≥ 0.5.

Figure 3.4: Probability of identifying C1 as the dominant cause vs. ρ2C1
using Shainin’s

procedure, ANOVA, and LVR estimators when there are only two components.

Figure 3.4 reveals that Shainin’s procedure is unreliable when the dominant cause is a
single component. For instance, when ρ2C1

= 0.6, the probability of identifying C1 as a dom-
inant cause is as low as 0.005% using Shainin’s procedure. Therefore, as Appendix B.2.2
reveals, Shainin’s procedure often identifies the combined effect of two or more components
as the dominant cause, even when it is actually a single component.

Figure 3.4 also reveals that both LVR and ANOVA estimators are more reliable than
Shainin’s procedure in correctly identifying a single dominant cause. The performances
of the LVR and ANOVA estimators are quite similar; however, Appendix B.4.1 reveals
that the LVR estimator is more robust against large assembly variation. Therefore, we
recommend using the LVR estimator for Phase II of component swapping.

3.4.4 Scenario: Interaction between two Components is the
Dominant Cause

Shainin’s procedure cannot distinguish between scenarios where the dominant cause is the
additive effect of two components, i.e., Ci+Cj, and cases where the dominant cause is due
to an interaction between these components, i.e., CiCj. Our proposed Phase II procedure
addresses this issue by supplementing the LVR or ANOVA analysis with the Partial and

48



Extreme criteria. If either the Partial or Extreme criteria is satisfied, we conclude there is
evidence of an interaction. This approach often detects evidence of such interactions, as
elaborated in detail in Appendix B.4.2.

3.5 Discussion

The efficiency of component swapping is commonly attributed to its implementation of
leveraging, ranking components, and hierarchical study design. Employing the principle of
leveraging reduces the number of runs by focusing only on the most informative products,
i.e., the ones with extreme output values. Moreover, the procedure swaps components in
a user-defined order (based on engineering insights). If the initial ranking is reasonably
successful, it substantially reduces the total number of required runs, particularly when
the product has a large number of components (Dasgupta et al. (2011)). Furthermore,
many systems can be decomposed into a hierarchical structure (Chittaro and Ranon (2004);
De Mast (2011, 2013)), where products consist of subassemblies, and these subassemblies, in
turn, consist of individual components (or smaller subassemblies). Following this principle,
we enhance the efficiency and narrow the search space by first identifying the subassembly
associated with the dominant cause, and then searching for the dominant cause only among
the components of the identified subassembly.

At first glance, a readily apparent alternative to the component-swapping procedure for
identifying the dominant cause(s) of variation is a factorial experiment with the components
treated as factors. Despite the resemblance, there is a fundamental distinction between the
presented component-swapping procedure and a factorial experiment. Namely, the −1 and
+1 values in Table 3.3 signify whether components originate from products with extremely
low and high output values in the baseline. These values do not correspond to the low and
high settings that an experimenter selected for a factor (some unknown characteristic of a
component) for the experiment. As a result, the standard design of experiments framework
is not directly applicable within the context of component swapping. To illustrate the point,
we note that factorial designs, lauded for being able to identify interactions in the normal
context, cannot identify interactions when applied in the context of component swapping.
For example, consider a scenario with only two components, C1 and C2, where a large
interaction between them is the dominant cause, as depicted in Figure 3.5. This figure
presents a classic interaction plot, showing output values for the four combinations of two
possible values for C1 and C2, denoted as – and + to represent small and large values,
respectively. In this scenario, combinations (C1, C2) = (−,+) [denoted “b” in Figure 3.5]
and (C1, C2) = (+,−) [denoted “c” in Figure 3.5] both yield output values (Y ) near the

49



bottom of the baseline distribution for Y . Similarly, (C1, C2) = (−,−) [denoted “d” in
Figure 3.5] and (C1, C2) = (+,+) [denoted “a” in Figure 3.5] both yield output values
(Y ) near the top of the baseline distribution. In this scenario, when we select a pair of
extreme products from the baseline for the component swap investigation, we are likely
to select some combination of products a or d (for the high product) and b or c (for the
low product). However, note that in a component swap investigation, the true relationship
between C1, C2, and Y (as shown in Figure 3.5) is unknown to us. Our awareness is limited
to identifying which components (C1 and C2) originate from the low and high products
(and accordingly, we label them in our analysis). Suppose we happen to select products a
and b in Figure 3.5 as the two extremes to use in the component swapping. For these two
assemblies, C2 is at virtually the same level, while C1 is very different. Thus, swapping
components C1 will seem to explain all the variation in Y , and we will misidentify C1

(rather than the C1C2 interaction) as the dominant cause. Alternatively, we could just as
likely select another extreme pair, say products a and c in Figure 3.5. With this pair, on
the other hand, C2 seems to explain all the variation in Y , and we will misidentify C2 as
the dominant cause.

Figure 3.5: Interaction plot of the artificial example where the dominant cause is a large
interaction between C1 and C2.

Figure 3.5 addresses the pure interaction case. However, we also fail to identify other
types of interactions. This is not surprising due to the problem setup, that is how we select
the extreme products for component swapping investigation and assign the levels for the
components. To explain, consider the situation where we only swap component C1. In this
case, if we include the Phase I data, we have results from four different combinations of
components C1 and all the remaining components (denoted as C2 here for simplicity). This
appears to correspond to a 22 factorial experiment with some constraints. In particular,
we have yLC1=L ≊ yL0 , y

H
C1=H ≊ yH0 , and yL0 ≤ yLC1=H , y

H
C1=L ≤ yH0 . That is, we expect the
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results from swapping C1 to almost always lie between the results obtained from the two
extreme products selected from the baseline. A consequence of this constraint is that the
traditional estimate of the interaction for a 22 factorial experiment is largest when it equals
the two main effects (see Appendix B.4.3). As a result, the interaction effect cannot be
larger than 33% of the total. Therefore, as Appendix B.4.2.3 shows, without checking for
irregularities (as recommended), neither the ANOVA nor LVR methods identify evidence
of such large interaction.

3.6 Conclusions

Component swapping is a widely used strategy to identify the causes of problems in as-
sembled products. Despite its practical popularity and intuitive appeal, there has been a
noticeable absence of a comprehensive and systematic study of its merits and drawbacks.
In this chapter, while keeping valuable ideas from the existing literature, we introduced
our proposed procedure. We compared our proposal to one of the most well-known alter-
natives, namely Shainin’s component-swapping procedure. Our evaluation demonstrated
that Shainin’s procedure suffers from poorly chosen statistical tools and analysis, and it
frames the analysis as a significance test rather than an estimation problem. We demon-
strated how unreliable these tools are, as they often result in incorrect conclusions. More-
over, whereas the literature offers no effective means of identifying interaction effects, our
proposal signals to users that interactions may affect the results. Notably, we distinguish
between interactions among assembly and components and interactions among two or more
components.
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Chapter 4

Verification of a Dominant Cause of
Output Variation

Finding the dominant cause(s) of variation in process improvement projects is an impor-
tant task. Before trying to reduce variation in the dominant cause or mitigate the effect
of variation in the dominant cause to reduce output variation, it is strongly recommended
that we verify we have identified the true (dominant) cause. This chapter is about how
best to verify we have correctly identified a dominant cause, as the existing literature
does not properly answer this question. Although it may seem that a randomized con-
trolled experiment is sufficient for this purpose, we show that experimental studies alone
cannot provide all the required information. A carefully planned experiment can identify
whether a suspect is a cause of variation; however, we also require additional information
(from observational studies) to determine whether it is dominant and not just significant.
This chapter lists some viable composite study designs, assesses their relative merits, and
recommends proper sample sizes. We also investigate how to systematically conduct a
verification study in the era of smart manufacturing. Moreover, we provide a tangible
example to illustrate our proposed procedure.

4.1 Introduction

The search for the dominant cause(s) is typically difficult due to the large number of pos-
sible important causes, some of which are poorly defined or unidentified properties of the
process. Thus, traditional strategies such as brainstorming about the suspect dominant
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causes followed by experiments to establish the effect of each of these causes can be over-
whelming or lead to an incorrect search space (Mooren et al. (2012); De Mast et al. (2019)).
To overcome this problem, Statistical Engineering and the Shainin SystemTM propose a
sequential approach called the method of elimination, which usually consists of a series of
observational studies (e.g., multivari study (De Mast et al. (2001)), variation transmission
(Steiner and MacKay (2005)), group comparison (Panahi et al. (2021))) or off-line experi-
mental studies (e.g., component swap (Steiner and MacKay (2005))). The idea is to start
with a large number of suspect dominant causes and to eliminate groups of suspects after
each investigation, thereby homing in on the actual dominant cause(s).

After shortlisting the suspect dominant causes to only one or just a few process inputs
(using the method of elimination or other approaches), Steiner and MacKay (2005) strongly
recommend verifying that we have identified the true (dominant) cause of the output vari-
ation, i.e., making sure that the suspect(s) is both a cause of variation in the output and
also dominant before we move to the remedial journey. We require a verification study
because in the search for the dominant cause using the method of elimination, often many
investigations are observational. Although these observational studies are appropriate for
clue generation, they typically lack the rigor and systematic design that allows for strong
causal inferences. If we misidentify the (dominant) cause, it will be challenging to success-
fully improve the process successfully, and we may waste considerable resources in a futile
search for a way to improve the process. This chapter focuses on how best to verify the
suspected dominant cause(s).

We believe the proper design of verification studies is substantially more challenging
than statisticians and process engineers may believe, which motivates this chapter. One
issue is that to verify a dominant cause, it is insufficient to merely estimate a variance
component (Searle et al. (1992)). Instead, it is necessary to establish the causal mechanism
that produces variation in the process output, and therefore, a verification study must allow
causal inference (De Mast et al. (2023)). Second, the challenge in a verification study is not
in the statistical models and their analysis (which can be straightforward), but instead in
collecting a useful combination of experimental and observational data. Therefore, interest
lies in the design of experiments, the design of observational studies, and a strong awareness
of what can and cannot be estimated from each.

The structure of this chapter is as follows. In Section 4.2, we define the notation and
the goal of the verification study. Section 4.3 discusses different types of experimental
and observational study designs. Section 4.4 explains some viable combinations of study
designs in the context of verifying a dominant cause. It also compares the relative merits
of each design through simulation studies. Section 4.5 applies the proposed procedure to a
realistic example. Section 4.6 discusses how to verify a dominant cause in the era of smart
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manufacturing. We provide a conclusion and discussion in Section 4.7.

4.2 Motivation and Definitions

This section defines the goal of the verification study. However, we first present a motivat-
ing example to demonstrate the problem’s complexity and importance.

Consider the production of agricultural produce, where a quality characteristic Y must
be maintained within the tolerance limits. Excessive variation in Y is primarily attributed
to the use of different types of fertilizers across various plots of land (mostly type A, but
for some plots, types B or C). To investigate the situation, statisticians would typically
collect data on the corresponding Y from plots of land treated with different fertilizer types
(A, B, and C) and fit an ANOVA model such as

Yij = µi + ϵij,

where µi represents the fixed effect of the fertilizer type i for i = 1, 2, 3 (A, B, C). Ad-
ditionally, ϵij represents an i.i.d. N(0, σ2

ϵ ) error component that accounts for all other
sources of variation. An analysis of variance allows us to determine whether the fertilizer
type is a significant source of variation in Y , and a decomposition of sums of squares allows
an assessment of whether this factor appears to be a dominant component of variation.
However, even if in the collected data, fertilizer type accounts for a substantial part of the
variation in Y , this does not demonstrate that the type of fertilizer causes this variation,
and therefore, intervention in this factor (e.g., using only a single type of fertilizer) may
not result in smaller variation in Y . The reason is that the observed fertilizer effect may
be spurious due to a confounding factor. For instance, more than one farmer may work the
land, each using a different type of fertilizer, but the true cause of variation in Y is due to
other differences in the farmers’ working methods unrelated to the type of fertilizer. Ob-
servational studies and variance decompositions are unsuited to distinguish spurious effects
caused by confounders from true causal effects; therefore, in isolation, they are insufficient
for the verification study.

The go-to approach for studying causal effects has long been randomized controlled
experiments (including screening experiments), as they can demonstrate cause-and-effect
relationships when designed and executed carefully (Holland (1986); Rubin (2005); Pearl
(2009)). Suppose that, in addition to fertilizer type, crop density (i.e., number of plants
per square meter) is a suspected cause of variation in Y . Then, for example, a 32 factorial
experiment could be conducted with both fertilizer and crop density set at three levels
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each and four replications (36 total runs). For causal inference purposes, plots of land
should be randomly assigned to each run. From the experiment, a model such as

Yij = µi + β Xj + ϵij

can be fitted, where crop density Xj ∼ N(µX , σ
2
X), and β represents its effect on Y .

Let p1, p2, and p3 denote the probabilities that a customer gets a product treated with
fertilizers A, B, or C. Then, the quality variation of a randomly selected product is
V ar(Y ) =

∑3
i=1 pi(µi−

∑
pjµj)

2+β2σ2
X +σ2

ϵ . The proportion of variation in Y attributed
to crop density would then be β2 σ2

X/Var(Y ). From the experiment, the estimated β would
represent the causal effect ofX onto Y (the possible spurious effects created by confounders
are likely minimized by randomization). However, the problem is that σ2

X (i.e., the variance
of the crop density in the fields) cannot be estimated from the experiment. The reason is
that the crop densities used in the 36 runs were not randomly drawn from N(µX , σ

2
X), but

instead were set by the experimenter according to the chosen low, middle, and high levels of
the 32 factorial design (the controlled part in a randomized controlled experiment). For the
same reason, the experimental data also cannot be used to estimate Var(Y ). Therefore, to
estimate β2 σ2

X/Var(Y ) in the population, the experimenter must also consider previously
collected observational data or collect additional observational data. This could be a
sample of x values representative of N(µX , σ

2
X), but it could also be a sample of paired

(x, y) observations. Therefore, a verification study requires a combination of data collected
in a statistically designed experiment and additional observational data drawn from the
data-generating distribution (further possibilities will be discussed in Section 4.6).

In what follows, we introduce our notation and definitions, as well as formalize the
goal of the verification study. For simplicity, consider the situation where we have only one
suspect dominant cause to verify. Note that since we assume that the method of elimination
has been utilized to narrow down the possible suspect dominant causes (see Steiner and
MacKay (2005) for further discussion), having only a small number of remaining suspects
is typical in the context of a verification study. However, we also briefly discuss verification
studies with multiple suspect dominant causes in Section 4.7.

To facilitate a more precise discussion of these concepts, assume that the effect of
a continuous suspect dominant cause X on the output Y is approximately linear, with
intercept α and slope β, i.e.

Y = α + β X + ϵ, (4.1)

where ϵ is an i.i.d. error component including noise (e.g., measurement variation) and the
effects of all causes other than X. Since X is the suspect dominant cause of variation in Y ,
it is a process input that naturally varies as the process operates under normal operating
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procedures, including process controls 1. Denoting E(X) = µX , V ar(X) = σ2
X , V ar(ϵ) =

σ2
ϵ , and assuming that X and ϵ are independent, we obtain σ2

Y = V ar(Y ) = β2 σ2
X + σ2

ϵ .
Then, X is a large cause of variation if holding it fixed would substantially reduce the
output variation σ2

Y . A suspect cause X is strictly a dominant cause of variation only if
β2 σ2

X > σ2
ϵ . In what follows, it is convenient to consider the squared correlation between

X and Y, given by

ρ2 =
β2 σ2

X

β2 σ2
X + σ2

ϵ

, (4.2)

where 0 ≤ ρ2 ≤ 1. Using this parameterization, X is strictly a dominant cause if ρ2 > 0.5,
since then β2σ2

X > σ2
ϵ . Note that here we deliberately propose a simple yet reasonable

model to keep the focus on the study design. Nevertheless, the conclusion drawn from this
study can be readily extended to more complex models.

To verify X as a dominant cause in Model 4.1, the goal is to determine whether:

The causal contribution of X to the output variation (i.e., β2σ2
X) is large compared

to the variation due to noise and other causes (i.e., σ2
ϵ ).

Meeting this goal requires estimating three parameters: β, σX , and σϵ, or two of these
three parameters along with σY , given that σ2

Y = β2σ2
X + σ2

ϵ . Note that besides these
parameters, we also need to estimate the nuisance parameters α and µX to fit Model 4.1.

Plugging in the estimated parameters into Equation 4.2, we obtain an estimate for
ρ2. Subsequently, we can compare ρ̂2 to a predetermined threshold, such as 0.5 (or any
other threshold if we wish to verify large but not necessarily strictly dominant causes), to
determine whether X is a dominant (important) cause. A more sophisticated alternative
involves using the confidence interval for the estimate of ρ2 to make a decision. We leave
it up to the practitioner to interpret the procedure’s estimates (and uncertainty bounds)
in a way consistent with their context (this could depend on other factors such as cost).

As the motivating example illustrates, we need observational data to estimate σX , and
an experiment alone does not provide sufficient information. Moreover, it is important
that the estimated β represents the causal effect of X onto Y , and is not affected by
spurious correlations. Therefore, two potential approaches to estimate β (and thus σϵ) are
randomized controlled experiments and causal inference from observational data. In the
next section, we focus on study designs that combine randomized controlled experiments

1Note that we treat X as a random variable. Therefore, we implicitly assume that even if X is
deliberately changed on occasion (e.g., due to process controllers), we look at the process over a long
enough time to justify modelling X as a random variable.
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and observational data. In Section 4.6, we discuss study designs that allow causal inference
from observational data alone.

4.3 Study Designs and Models

This section outlines some potential observational and experimental study designs that
could be utilized to achieve the verification study goal and identifies which parameters can
be estimated from each design. We will use the notation (x, y)E to denote data consisting
of tuples of paired x, y values from an experiment, whereas, for example, we use (y)O to
denote data consisting of only output values from an observational investigation. Later in
Section 4.4, we determine some viable data combinations to verify a dominant cause.

In the following, for simplicity, we add a normality assumption for X and ϵ so that
X ∼ N(µ

X
, σ2

X) and ϵ ∼ N(0, σ2
ϵ ) in Model 4.1. Then, Y ∼ N(α + βµ

X
, β2σ2

X + σ2
ϵ ), and

(X, Y ) has a bivariate normal distribution with means and variances as given above and
a correlation ρ, where ρ2 is given by Equation 4.2. As mentioned earlier, we deliberately
assume simple models to focus attention on the design questions. Section 4.7 discusses other
model assumptions and multiple suspect dominant causes in the verification experiment.
At the end of each of Subsections 4.3.1 through 4.3.4, we provide the corresponding log-
likelihoods, which will be used in the simulation study presented in Section 4.4 to evaluate
the relative merits of the viable study designs.

4.3.1 Experimental (x, y)E Data

An obvious way to check the causal link between X and Y and estimate β is to conduct an
experiment, in which we deliberately manipulate the levels of X and apply experimental
design principles such as randomization, replication, blocking, and balance. Note that
since we use experimental designs, we assume it is possible to set X to any desired level.
This may not be straightforward in this context since X is a process input that naturally
varies as the process operates (and this is why the effect of varying X results in variation
in a process output).

For the verification experiment, when X is continuous and the relationship between X
and Y is linear, we recommend selecting only two levels at the extreme ends of the X values
that we expect to encounter in the regular operation of the process. If X is continuous
and the relationship between X and Y is nonlinear, we probably want to select three or
more levels of X. While it is desirable to select extreme levels of X (to obtain more precise
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estimates of β), it is important to avoid choosing extreme levels that exceed the typical
range observed in the process. The reason is to prevent any process equipment potential
damage/break or to violate the presumed linear/nonlinear relationship.

Assuming Model 4.1, we conduct a simple two-level experiment with the low and high
settings of X, and nE

2
replications at each level, where nE is the total number of experi-

mental runs. Also, we order the replicates randomly. Then, we have (xi, yi)E data where
xi is either the low or high setting for i = 1, 2, . . . , nE. With this experiment, we can
estimate β and σϵ in Model 4.1. Then, to establish a causal relationship, we want to see a
small p-value for the significance test of H0 : β = 0 vs. HA : β ̸= 0 from the experimental
data. Recall that with the experimental data, since we deliberately set the levels of X, we
cannot estimate σX , and thus, ρ2. For a similar reason, the coefficient of determination
R2 calculated from the experimental data is not a reliable estimator for ρ2. In summary,
(x, y)E data are sufficient to estimate β and σϵ, but not σX .

By considering Model 4.1 and the normality assumptions for ϵ, we have Y |x ∼ N(α +
βx, σ2

ϵ ) for any fixed x. The log-likelihood when the data come from such an experiment
depends only on α, β, and σϵ, and is

lE = −nE

2
log(2πσ2

ϵ ) +

nE∑
i=1

− 1

2σ2
ϵ

(
yi − (α + βxi)

)2
. (4.3)

4.3.2 Observational Paired (x, y)O Data

Suppose we select a representative sample of paired X, Y values collected from the process
operating under regular conditions. These data might already be available from previous
method of elimination investigations. However, if such data are unavailable, we could
collect them by measuring X, tracing parts through the process, and then measuring their
corresponding Y values. Note that part tracing may be difficult and expensive in some
processes. Using data from such a study and Model 4.1, we can estimate β, σ

X
, and σϵ.

However, when a confounding variable, denoted C, exists, the estimated β and σϵ from
(x, y)O data may fail to accurately reflect the direct causal effect of X onto Y . To better
illustrate this issue, suppose we observe a correlation between X and Y in an observational
data set, while the true causal effects are as depicted by the arrows in the causal diagram
in Figure 4.1.

In Figure 4.1, the correlation between X and Y in (x, y)O data aliases the direct effect
of X onto Y with the spurious correlation induced by the confounding variable C. Con-
sequently, reliable estimation of β from (x, y)O data is not possible unless we can either
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Figure 4.1: A possible causal diagram between X, Y , and C.

assume no C exists, or we also have data on the confounder C. Generally, the causal
mechanisms involved are often complex, creating myriad confounding effects that make
the estimation of β from (x, y)O data treacherous. One potential solution is combining the
observational and experimental data, as we discussed in this and the following section. An
alternative approach is to determine the right confounders as far as possible and collect
(x, y, c)O data. By including the right confounders as explanatory variables in the analy-
sis, spurious correlations can be eliminated. This approach is discussed in Section 4.6. In
summary, if we assume no C exists, (x, y)O data are enough to estimate β, σ

X
, and σϵ.

However, if confounder issues are not clear and effectively addressed, we must treat (x, y)O
data as (x)O&(y)O data for the verification study.

Since (X, Y ) has a bivariate normal distribution as discussed in Section 4.3, the log-
likelihood with nO observations of (x, y)O data is

lO =− nO log
(
2πσX

√
(β2 σ2

X + σ2
ϵ )(1− ρ2)

)
+

1

2(1− ρ2)

nO∑
i=1

((xi − µ
X
)2

σ2
X

+
(yi − α− βµ

X
)2

β2 σ2
X + σ2

ϵ

− 2 ρ (xi − µ
X
)(yi − α− βµ

X
)

σX

√
β2 σ2

X + σ2
ϵ

)
.

(4.4)

4.3.3 Observational (x)O Data

Another type of data is a representative sample of only X values. This data is usually less
expensive to gather than (x, y)O data, and in some situations, (x)O data may already be
available because it was collected for another purpose. From (x)O data, we can estimate
σX , but clearly not σϵ and β. In summary, (x)O data alone are not enough to verify a
dominant cause, but they may complement data from another study.

Since X ∼ N(µ
X
, σ2

X), the corresponding log-likelihood with nOx observations of (x)O
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data is

lOx = −nOx

2
log(2πσ2

X) +

nOx∑
i=1

− 1

2σ2
X

(
xi − µ

X
)2. (4.5)

4.3.4 Observational (y)O Data

We could also select a representative sample of only Y values. This data is also usually
less expensive to gather than (x, y)O data, and in fact, are often collected in the first step
of variation reduction projects to establish the problem baseline. From (y)O data, we can
estimate σ2

Y = β2 σ2
X+σ2

ϵ , but clearly not any of the three parameters individually. Similar
to (x)O data, (y)O data alone are not enough to verify a dominant cause, but they may
complement data from another study.

Since Y ∼ N(α+ βµ
X
, β2σ2

X + σ2
ϵ ), the corresponding log-likelihood with nOy observa-

tions of (y)O data is

lOy = −nOy

2
log
(
2π(β2σ2

X + σ2
ϵ )
)
+

nOy∑
i=1

− 1

2 (β2σ2
X + σ2

ϵ )

(
yi − α− βµ

X

)2
. (4.6)

4.4 Some Viable Composite Study Designs

In practice, we may have different combinations of data from different study designs. Ta-
ble 4.1 summarises the notation and what we can estimate from the four study designs
discussed in Section 4.3.

Data Sample size What can we estimate? Log-likelihood function

(x, y)E nE β, σϵ lE
(x, y)O nO β, σX , σϵ (assuming no C) lO
(x)O nOx σX lOx

(y)O nOy β2σ2
X + σ2

ϵ lOy

Table 4.1: Different verification study designs and notation.

In this section, we present four viable composite study designs appropriate for verifying
a dominant cause and briefly explain them. When combining the data from various sources,
it is of course important to establish that all data we collected are in the same reference
period.
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(i) (x, y)O and (x, y)E
In this case, we can estimate σX and β2 σ2

X +σ2
ϵ using only (x, y)O data. To estimate

β and σϵ, we can use both (x, y)O and (x, y)E data, assuming no confounder exists.
However, if a confounder exists, the estimated β and σϵ from (x, y)O data may not
accurately reflect the direct causal effect of X onto Y . Thus, with this combination
of data sources, we suggest testing the hypothesis of whether β from (x, y)O data is
equal to β from (x, y)E data (Cohen et al. (2003) pp. 46-67). If the hypothesis is not
rejected, we suggest combining (x, y)O and (x, y)E data to estimate β and σϵ. As we
typically have more observational than experimental data, using the pooled estimate
of σϵ in Equation 4.2 leads to more precise estimate of ρ2. However, if the hypothesis
test is rejected, since the β and σϵ estimated from (x, y)O data do not reliably reflect
the causal effect, we must treat (x, y)O data as (x)O&(y)O data for the verification
study. This scenario is discussed in situation (ii).

(ii) (x)O&(y)O and (x, y)E
In this case, we can estimate σX from (x)O data and σ2

Y = β2σ2
X +σ2

ϵ from (y)O data.
We can also estimate β and σϵ from (x, y)E data. This enables us to estimate ρ2.

(iii) (x)O and (x, y)E
In this case, we can estimate σX from (x)O data as well as β and σϵ from (x, y)E
data. This enables us to estimate ρ2.

(iv) (y)O and (x, y)E
In this case, we can estimate σ2

Y = β2 σ2
X+σ2

ϵ from (y)O data as well as β and σϵ from
(x, y)E data. In this case, we can solve for σX by plugging in the available estimates
of β, σY , and σϵ. This enables us to estimate ρ2.

Above, we identified four composite study designs suitable for verifying a dominant
cause. In the following, we determine suitable sample sizes for each design, thereby es-
tablishing their relative required effort. To determine whether the relationship between X
and Y is causal, we assess the effect of different experimental (nE) based on the power of
the hypothesis test H0 : β = 0 vs. HA : β ̸= 0. Figure 4.2 represents the results of analyt-
ical power calculation (details are given in Appendix C.1) for nE ∈ {6, 8, 10, . . . , 32} when
ρ2 = 0.5 and the two levels of X are selected as µ

X
± 2σX . Figure 4.2 suggests that even

with small sample sizes such as nE = 6, we have strong power, and with nE = 8, we achieve
a power of almost one. In this context, having a high power is important because mistak-
enly eliminating X as the cause of variation in Y when it is the actual cause can waste
considerable time and effort. Also, note that in this study, our focus is on ρ2 = 0.5 as we are
mainly interested in estimating the effects of strictly dominant inputs (i.e., ρ2 ≥ 0.5), and
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ρ2 = 0.5 has the lowest power among them. For other ρ2 values, although the results are
slightly different, the overall conclusions remain the same. Moreover, the power increases
if we select more extreme levels of X for our experiment.

Figure 4.2: Power of the test H0 : β = 0 vs. HA : β ̸= 0 for nE ∈ {6, 8, 10, . . . , 32} when
ρ2 = 0.5 and the X levels are µ

X
± 2σX .

Next, through simulation, we investigate how well we can estimate ρ2 for each viable
composite study design. Since in these cases we always have (x, y)E, we will refer to the
different combinations by only the type of observational data they contain.

In the simulation, for each study design, we calculate the standard deviation of the
estimated ρ2 values for different sample sizes, assuming ρ2 = 0.5. In Model 4.1, we have
five parameters to estimate, namely α, β, σϵ, µX

, and σX , but ρ
2 depends only on β, σϵ,

and σX . In the simulation, without loss of generality, we generate data with α = 0, µ
X
= 0,

and σX = 1. Also, we fix β = 1 and determine the corresponding σϵ so that ρ2 = 0.5,
i.e., we consider σϵ = 1. In each simulation run, we first estimate all the five parameters,
and then we obtain ρ̂2 by plugging the estimates into Equation 4.2. Using 2000 simulation
runs, we estimate the bias and standard deviation of ρ̂2, denoted by Bias(ρ̂2) and SD(ρ̂2),
where Bias(ρ̂2) = ρ̂2 − ρ2.

To estimate the parameters in Model 4.1 when we have (x, y)O or (x)O&(y)O data, we
use maximum likelihood estimation. Assuming the independence of different parts used in
each study, the overall log-likelihood can be written as the sum of the log-likelihoods with
non-zero corresponding sample sizes provided by Equations 4.3 to 4.6.

We propose a similar but slightly different approach in cases with only (x)O or only
(y)O data. Here, only (x, y)E data provide information about α, β, and σϵ. In these cases,
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if we use maximum likelihood to estimate these parameters since nE is typically relatively
small, the obtained σ̂ϵ will be biased. To correct the bias, we suggest instead to estimate
σ2
ϵ with a nE − 2 divisor, i.e., we multiply the estimate of σ2

ϵ from the maximum likelihood
by nE

nE−2
. If we only have (x)O data, µ

X
and σX are estimated using the sample mean

and sample variance of (x)O data. Similarly, if we only have (y)O data, µ
X

and σ2
X are

estimated using (ȳO)−α̂

β̂
and Max

( s2
(y)O

−σ̂2
ϵ

β̂2
, 0
)
, respectively, where (ȳ)O and s2(y)O are the

sample mean and sample variance of (y)O data.

First, we investigate the relative merits of the viable composite study designs for nE = 8
(recall that this experimental sample size gives very high power for the hypothesis test
H0 : β = 0 vs. HA : β ̸= 0 from (x, y)E data), where the observational sample sizes are
{50, 100, 150, . . . , 1000}. Figure 4.3 presents the results for Bias(ρ̂2) = ρ̂2−ρ2 and SD(ρ̂2).

Figure 4.3: Bias(ρ̂2) (left panel) and SD(ρ̂2) (right panel) for different viable combinations
of data when ρ2 = 0.5 and nE = 8.

The left panel of Figure 4.3 shows that the bias for all combinations is fairly small. As
expected, the right panel reveals that the most precise estimates arise when we supplement
the experiment with (x, y)O data. However, recall that to use such data, we must assume
no confounder with a large influence exists. Figure 4.3 also reveals that only having (y)O
data does not provide very valuable information in terms of SD(ρ̂2), whereas (x)O data
help considerably more. Having (x)O&(y)O data is only slightly better than (x)O data
because (y)O data are not very informative, even though (x)O&(y)O data represent twice
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as many observational data. Figure 4.3 also reveals that by increasing the observational
sample sizes to more than roughly 200, SD(ρ̂2) will not reduce much. We also investigated
the mean squared error of ρ̂2 and the conclusions remain consistent.

Second, we investigate the relative merits of the viable composite study designs for
nO, nOx, or nOy = 200, when nE ∈ {6, 8, 10, . . . , 32}. Figure 4.4 presents the results for
Bias(ρ̂2) = ρ̂2 − ρ2 and SD(ρ̂2).

Figure 4.4: Bias(ρ̂2) (left panel) and SD(ρ̂2) (right panel) for different viable combinations
of data when ρ2 = 0.5 and there are 200 observational data.

The left panel of Figure 4.4 shows that the bias for all combinations is fairly small,
where again (x, y)O data result in the least bias. The right panel reveals that when we
have (x)O, (y)O, or (x)O&(y)O data, as nE increases, SD(ρ̂2) decreases. However, the
results from (x, y)O data show that having more experimental data does not help in terms
of SD(ρ̂2). Therefore, in the absence of (x, y)O data, although the recommendation made
by Shainin (1993b) to use nE = 6 in a verification experiment results in high power for the
hypothesis test, it is too small to precisely estimate ρ2. In these cases, we leave it up to
the practitioner to decide on the appropriate size of nE in a way that the corresponding
SD(ρ̂2) makes sense in their context. We also investigated the mean squared error of ρ̂2

and the conclusions remain consistent.
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4.5 Performance of the Proposed Procedure on an

Example

Steiner and MacKay (2005, 2006) describe a project whose goal was to reduce the high
Crossbar Dimension variation in a mold manufacturing context. If the crossbar was too
long, components pressure fitted into the base tended to move or fall out. If the crossbar
was too short, there was breakage during insertion.

To quantify the problem, they planned and executed a baseline investigation (with our
notation, this corresponds to (y)O data) in which six consecutive parts were systematically
sampled from the process each hour for five days. Note that the team did not use random
selection because they were interested in how the process varied over time. The histogram
of results (not shown here) demonstrates the full range of Crossbar Dimension seen in the
baseline is −0.25 to 2.1, and the dominant cause acts hour-to-hour with some evidence of
smaller day-to-day differences. From the baseline, the team estimated the overall standard
deviation of the dimension (σY ) to be 0.45. The goal was to reduce it to less than 0.25.

The team tried to identify the cause of significant variation in Crossbar Dimension using
a systematic search strategy. After ensuring that the measurement system was highly ca-
pable, they eliminated all process inputs that varied from one part to the next. They could
identify only five inputs in the process that changed hour-to-hour. The team conducted an
investigation in which 40 parts were selected systematically, four per hour over a two-day
period. For each part, the team measured the Crossbar Dimension and recorded the five
inputs: Die Temperature, Nozzle Temperature, Barrel Temperature, Hydraulic Pressure,
and Cavity Pressure.

Using scatter plots, the team found a strong relationship between Barrel Temperature
and Crossbar Dimension (shown in Figure 4.5), while there was little evidence of a rela-
tionship between Crossbar Dimension and the other inputs (not shown here). Since the
range of dimension in the observational study matched that seen in the baseline, shown
by the dashed lines in Figure 4.5, the team concluded that the dominant cause had acted.
Hence, Barrel Temperature was a suspect dominant cause.

To verify the suspect dominant cause, the team conducted an experiment with the
low level for Barrel Temperature as 75◦ and the high level as 80◦. Barrel Temperature
was difficult to hold fixed in normal production; however, it could be controlled for the
experiment and changed in a few minutes. The team set the Barrel Temperature, made
25 parts to ensure a stabilized temperature, and measured the next ten parts. Then, they
quickly changed the Barrel Temperature for the second run. There were two runs with
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Figure 4.5: Observational data for Crossbar Dimension vs. Barrel Temperature.

ten repeats per run and no replication. Figure 4.6 presents the Crossbar Dimension values
from the experiment.

Figure 4.6: Experimental data for Crossbar Dimension vs. Barrel Temperature.

From Figure 4.6, the team informally verified that Barrel Temperature was the domi-
nant cause of variation in Crossbar Dimension since the selected Barrel Temperature levels
in the experiment were previously seen in the process and the Crossbar Dimension values
matched the process baseline. However, we should be cautious about drawing a conclusion
since we may worry about confounding between Barrel Temperature and some other input
in the observational study. Also, in other similar situations, the results may not be as
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clear. As a result, it would be helpful to have a more formal and systematic way to draw
conclusions from a verification study.

To implement our proposed procedure to this example, we first perform a two-sample t-
test on the experimental data. The p-value indicates a causal relationship between Crossbar
Dimension and Barrel Temperature. Next, since we have both (x, y)O and (x, y)E data
(situation (i) in Section 4.3), we need to investigate whether the estimated β from the
observational data is close to the one from experimental data. In this example, they are
0.325 and 0.320, respectively. A formal hypothesis test on the two slopes fails to reject
the hypothesis that the two β’s are equal (Cohen et al. (2003), pp. 46-67). Thus, there
is no evidence that Barrel Temperature correlates with some other input(s) (even ones
not measured) that strongly affects Crossbar Dimension. Therefore, we can use either
of the two β estimates, or better yet, use a pooled estimate. Using maximum likelihood
estimation, we estimate the model parameters as µ̂X = 76.585, σ̂2

X = 2.208, α̂ = −22.906,

β̂ = 0.309, and σ̂2
ϵ = 0.065. Plugging the estimates into Equation 4.2, we have ρ̂2 = 0.765.

Since ρ̂2 is very large, we have verified that Barrel Temperature is the dominant cause.

Note that in the previous sections, we discuss the situations where the suspect domi-
nant cause follows a normal distribution. However, one can easily extend the idea to other
distributions. For instance, Appendix C.2 discusses the model, results, and our recommen-
dations for binary suspect dominant causes in detail.

4.6 Verification Experiments in the Era of Smart

Manufacturing

The study designs discussed so far are a combination of observational and experimental
data. Two recent developments open the way for alternative approaches, namely, the
recent spur of new ideas and techniques in causal inference from observational data and
the large-scale adoption of new digital technologies for collecting and storing process data.
In this section, we briefly introduce these new data-collection systems, and we describe
how they may offer an easier way to do a verification study, exploiting recent advances in
causal modelling.

As mentioned before, to estimate σ
X

and/or σY , we require an observational study
where the X and/or Y values are collected from the regular process. The traditional way of
collecting such data is to conduct a separate study where we systematically observe/collect
information regarding the selected X and/or Y values. In modern manufacturing, however,
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we may have access to observational data collected automatically from the production pro-
cess using inexpensive sensors. For example, currently, many manufacturing processes have
one or some of the following systems: Enterprise Resource Planning (ERP), Manufactur-
ing Execution Systems (MES), and Supervisory Control and Data Acquisition (SCADA).
These business management systems help an organization collect, store, manage, and in-
terpret data from many business activities. Since they operate in (or near) real-time and
use a common database maintained by a database management system, they provide an
integrated and continuously updated view of core business processes. In the following, we
briefly explain each system.

As the name suggests, the ERP system helps plan resources in an organization. This
high-level system provides information regarding the production schedule (e.g., product P
is scheduled to be produced in the specific time T by machine M). Modern ERP systems
may include material purchase and inventory management, production and operations
planning, and logistics management. They can also include accounting, sales planning,
and engineering tools.

MES translates the production schedule (from the ERP) to instructions for individual
machines (e.g., we should produce A amount of product P , and to do so, we need V parts).
This level-two system helps plan and execute process commands for the machines. It aims
to maintain the proper quality of the products using maintenance of the inputs and quality
control.

SCADA is a level-three control system that provides more detail than ERP and MES.
SCADA aims to translate the instructions of MES to sensors. In other words, SCADA uses
a network of computers, Programmable Logic Controllers (PLCs), sensors, and graphical
user interfaces to create high-level supervisory management and control for operators con-
trolling a large process plant or machinery. Note that ERP, MES, and SCADA systems
work with relational databases, i.e., instead of having observational data in one table, there
are lots of linked tables. To achieve the tidy data format, for data prepossessing, say we
can run a query in SQL.

These systems could provide (x, y)O data with many X’s simultaneously at virtually no
added expense. In addition to making data collection easier and automatic, the availability
of such large data sets on many variables in the production process may obviate the need
for a randomized controlled experiment. Namely, in some circumstances, it may be possible
to demonstrate that X and Y are causally related from the large amount of observational
data readily collected by ERP, MES, or SCADA systems.

Making causal inferences from observational data has drawn a lot of attention in the
recent academic literature (see e.g., Lederer et al. (2019) and Hernan et al. (2019)). The
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structural causal modelling proposed by Pearl (2009) integrates and generalizes earlier ap-
proaches, such as path analysis, structural equations modelling, and the potential-outcome
framework proposed by Rubin (2005). The danger is that an observed correlation between
X and Y in the observational data is induced by confounding variables, without X and Y
being directly causally related. The idea of causal inference from observational data is that
sometimes, it is possible to deconfound X and Y by including such confounders C in the
regression analysis. When done right, the inclusion of C as additional explanatory vari-
ables ensures that the estimated relation between X and Y only reflects the causal effect
of X onto Y . The approach requires subtlety because including extra variables C in the
analysis could also create a confounding problem. The näıve idea of simply including all
possible variables in the analysis in the hope this will eliminate all confounding problems
is therefore misguided. Pearl’s backdoor criterion (Pearl (2009)) offers a simple graphical
approach to determine a suitable set of variables C that deconfound X and Y , and assess
the adequacy of controlling for a particular covariate set.

For a full treatise on causal inference from observational data, we refer the reader
to Pearl and Mackenzie (2018), which is an excellent and easily read treatise on causal
inference from observational data. Note that if we only have data on X and Y , there is no
way to tell whether an observed correlation between X and Y is causal or spurious.

Provided that a suitable set C of deconfounders is included in the analysis (as demon-
strated by the “backdoor criterion”, for instance), then with (x, y, c)O data, we can fit the
model

Y = α + βX + γ C + ϵ, (4.7)

where C is independent of ϵ, but not necessarily from X. Note that we deliberately kept
Model 4.7 simple to illustrate the idea; however, C and γ could be vectors. Using Model
4.7, we can demonstrate the causal relationship between X and Y by testing H0 : β = 0
vs. HA : β ̸= 0. This data is also sufficient to estimate the size of the causal relationship
since it also allows us to estimate the squared correlation between X and Y (in presence
of confounders C), given by

ρ2C =
β2σ2

X + γ2σ2
XC/σ

2
X + 2βγ σXC

β2σ2
X + γ2σ2

C + 2βγ σXC + σ2
ϵ

, (4.8)

where σC is the standard deviation of C and σXC is the covariance between X and C,
and 0 ≤ ρ2C ≤ 1 (the derivation of Equation 4.8 is available in Appendix C.3). Using this
parameterization, X is strictly a dominant cause if ρ2C > 0.5. Moreover, the inclusion of C

as an explanatory variable ensures that β̂ reflects the causal effect of X onto Y , because
the spurious part of the correlation is now accounted for in γ̂.
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In summary, causal inference based on observational data is a thriving field with sub-
stantial recent advances. The above may give the reader an idea of the new possibilities for
verification studies that emerge in modern, data-rich manufacturing environments based
on ERP, MES, SCADA, and similar systems.

4.7 Conclusion and Discussion

This chapter provides a systematic way to verify the dominant cause of the process output
variation. At first glance, we may believe that a formal experiment can be used to verify a
dominant cause; however, we show that an experiment alone cannot provide all the required
information for the verification study. From experimental data, we can establish a causal
effect between X and Y , but the coefficient of determination R2 from experimental data
is not a reliable estimator for the relative effect size of X on Y . Observational studies, on
the other hand, are appropriate for clue generation and estimation of the effect size of X
onto Y ; however, they typically lack the rigor and systematic design that allows for strong
causal inferences. As explained, we suggest two approaches for providing all the required
information to verify a dominant cause. The first approach involves a combination of
(x, y)E experimental with either (x, y)O, (x)O, or (y)O data. The second approach entails
using (x, y, c)O observational data. The existing literature on verification studies has not
previously considered any of these combinations.

This chapter in addition to listing some viable composite study designs for the verifi-
cation study, compares their relative merits via simulation. The simulation results reveal
that the most precise estimates for the effect size of X onto Y arise when we supplement
the experiment with observational (x, y)O data. However, in this case, the estimated β
from (x, y)O data may not reflect the direct strength of the causal effect of X onto Y due
to possible confounding. To overcome this problem, we suggest first testing whether β̂
from (x, y)O data is equal to β̂ from (x, y)E data, and then follow our provided guideline.

Sections 4.3 and 4.4 investigate the case where the suspect dominant cause is continuous
and follows a normal distribution. The supplementary material discusses binary suspect
dominant causes. Although we only provide the model and results for these two common
cases, one can easily extend the idea to other distributions for X. We recommend a robust
study for future work. Before fitting any formal model, we recommend examining the data
graphically and checking the model assumptions.

Moreover, we consider having only one suspect in Model 4.1. This has the advantage
of being easy to understand and representative of how the idea works. However, in real-
world problems, there might be more than one suspect dominant cause, and they could
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even be correlated with other X’s in this study, or the suspect dominant cause might be an
interaction. However, since we use the method of elimination before moving to a verification
experiment, the number of remaining suspect dominant causes should be relatively small.
With two or more suspect dominant causes, we recommend conducting a full factorial
verification experiment incorporating all the suspect dominant causes simultaneously. After
that, for each suspect dominant cause that shows a significant causal link to the output,
we supplement the analysis with some observational data (usually already collected) to
investigate whether the causal link is dominant or not.
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Chapter 5

Conclusion and Future Work

5.1 Summary and Conclusion

Excessive variation in critical-to-quality characteristics is an important challenge in man-
ufacturing industries. The recommended approach to reduce this variation involves first
identifying the causes of this variation and then seeking solutions to eliminate or mitigate
the effect of the identified causes. However, our focus is only on identifying the dominant
cause(s) rather than any causes. The reason is that minor causes are often a mere dis-
traction for practitioners. This thesis focused on identifying and verifying the dominant
cause(s) of process output variation.

Following the introduction and literature review, our exploration unfolds across three
key chapters: two chapters contributed to a deeper understanding of the challenges and
solutions associated with identifying dominant cause(s), and one chapter dedicated to the
ones associated with verifying the identified dominant cause(s).

Chapter 2 provided a critical assessment of the group comparison investigation pro-
posed by Bhote and Bhote (2000) and Shainin (1993b), an effective method of elimination
tool for identifying the dominant causes of output variation. We first demonstrated that
their strategy based on the idea of leveraging is highly effective, particularly when mea-
suring input characteristics is costly or time-consuming. However, our critical assessment
reveals that their analysis procedure is inefficient and, more importantly, unreliable in
identifying the actual dominant causes. In other words, due to framing the analysis as a
significance test rather than an estimation problem, the analysis often misidentifies minor
causes as the dominant ones, leading to unproductive directions and wasting resources for
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future studies. While retaining the valuable idea of leveraging from the existing literature,
we propose an alternative likelihood-based analysis procedure. This novel approach sub-
stantially enhances the reliability and efficiency of identifying dominant causes. We also
provided a tangible example and compared the outcomes of both methods.

Chapter 3 extended our exploration to the component swapping investigation, another
effective method of elimination tool to identify dominant causes of variation. Similar to
Chapter 2, we retain the valuable idea of leveraging from the existing literature while
proposing our superior estimation-based procedure. We compared our proposal to one
of the most well-known alternatives, Shainin’s component-swapping procedure (Shainin
(1993b)). Our evaluation demonstrated that Shainin’s component swapping procedure
suffers from poorly chosen statistical tools and analysis, as it again frames the analysis
as a significance test rather than an estimation problem. We demonstrated the unreli-
ability of these tools, as they often lead to incorrect identifications of dominant causes.
Moreover, whereas the literature lacks effective means of identifying interaction effects,
our proposal signals to users that important interactions may affect the results. Notably,
we distinguished between interactions among assembly and components and interactions
among two or more components.

We devoted Chapter 4 to introduce a systematic approach for verifying the dominant
cause of the process output variation. Conducting a verification study (i.e., verifying that
we have identified the true dominant cause) is strongly recommended before proceeding
with the remedial journey. This is because, during the search for the dominant cause using
the method of elimination, many investigations are observational. While these observa-
tional studies are appropriate for generating clues, they often lack the rigor and systematic
design required for making strong causal inferences. We demonstrated that although it
may initially seem that a formal experiment can be used to verify a dominant cause, an
experiment alone cannot provide all the required information for the verification study.
An experiment determines whether a suspect is a cause of variation, but additional infor-
mation from observational studies is needed to determine whether it is dominant. This
chapter listed some viable composite study designs and assessed their relative merits. We
also delved into how to systematically conduct a verification study in the era of smart man-
ufacturing. Moreover, we provide a tangible example to illustrate our proposed procedure.

5.2 Future Work

This thesis has uncovered various opportunities for future studies and advancements in
the field of statistical process improvement and variation reduction. In the following, we
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outline several promising avenues for further investigation.

In this thesis, we made certain simplifying assumptions for the sake of clarity and
representation of how the proposed study designs operate. Nonetheless, real-world man-
ufacturing processes often present greater complexities, and researchers can extend these
concepts to more intricate scenarios. For instance, we primarily focused on having a single
dominant cause, whereas in the real world, processes may have multiple large causes, some
of which could be correlated with other inputs. However, given the nature of the method
of elimination, the number of dominant causes should generally remain relatively small.
Furthermore, the dominant cause might be an interaction between two or more inputs.
While we addressed interaction identification in Chapter 3, there is potential to explore
this challenge in other tools associated with the method of elimination. Additionally, we
assumed an approximately linear relationship between input and output characteristics.
While linearity is a reasonable initial assumption for clue generation, future studies could
delve into nonlinear models.

This thesis limited the simulation studies to some specific distributions for input char-
acteristics, namely, normal and binary distributions in Chapters 2 and 4, and normal dis-
tribution in Chapter 3. Although we do not limit our proposed study designs to a specific
distribution, we added these distribution assumptions to be able to assess our maximum
likelihood-based approaches. Future studies can explore other distributional assumptions
and provide recommended sample sizes for different data types.

In Chapters 2 and 3, we used the idea of leveraging to identify the dominant causes
and demonstrated its efficiency. In addition to group comparison and component swapping
investigations, we believe that leveraging can be advantageous in the context of variation
transmission studies. A variation transmission study is another effective tool associated
with the method of elimination, aimed at determining whether variation observed in an
intermediate operation is transmitted through to the downstream operation or if the down-
stream operations add substantial variation. To do so, Steiner and MacKay (2005) propose
selecting a sample of products over a sufficiently extended timeframe that allows the dom-
inant cause to act. Then, they measure the output characteristics of all samples after
each process stage and analyze the resulting data to determine the stage where the domi-
nant cause resides. However, we believe that leveraging is a more efficient and cost-effective
approach to conducting variation transmission studies, where we select some extreme prod-
ucts and measure only their output characteristics in each process stage. Subsequently, by
comparing the variability among these stages to the one observed in the final output, we
can narrow the search space to the stage(s) exhibiting the largest variation differences.
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Appendix A

Group Comparison - Details and
Additional Findings

A.1 The Derivation of ρ2 Formula

In the following, we show how to obtain Equation 2.2. Assuming Model 2.1 and the
independence between X and ϵ, we have

E(XY ) = E
(
X (α + βX + ϵ)

)
= αE(X) + β E(X2) + E(X)E(ϵ)

= αE(X) + β
(
V ar(X) + E2(X)

)
+ E(X)× 0

= αE(X) + β σ2
X + β E2(X)

Therefore, the covariance between X and Y is given by

Cov(X, Y ) = E(XY )−E(X)E(Y ) = αE(X)+β σ2
X+β E2(X)−E(X)×

(
α+β E(X)

)
= β σ2

X

As a result, the squared correlation between X and Y is given by

ρ2 =
Cov2(X, Y )

σ2
X σ2

Y

=
(β σ2

X)
2

σ2
X (β2 σ2

X + σ2
ϵ )

=
β2 σ2

X

β2 σ2
X + σ2

ϵ

which is Equation 2.2.

82



A.2 The Conditional Distribution of (X∗|Y = y) for

Binary X∗

The conditional distributions of P (X∗
i = −1|Yi = yi) and P (X∗

i = 1|Yi = yi), which were

discussed in Section 2.4.1, are
(q)P (Yi|X∗

i =−1)

P (Yi=yi)
and

(1−q)P (Yi|X∗
i =+1)

P (Yi=yi)
, respectively. As a result,

P (X∗
i = x∗

i |Yi = yi) =
(
1−x∗

i

2
) q P (Yi|X∗

i = −1) + (
1+x∗

i

2
)(1− q)P (Yi|X∗

i = +1)

P (Yi = yi)
,

where (Yi|X∗
i = ±1) ∼ N(α± β, σ2

ϵ ) and the denominator is given by Equation 2.5. Then,
for binary inputs, the log-likelihood can be derived by using Equation 2.5 and plugging the
above equation into Equation 2.3.
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Appendix B

Component Swapping - Details and
Additional Findings

B.1 An Overview of Variants of Component-Swapping

Procedures in the Literature

The existing literature presents slightly different component-swapping procedures. Table
B.1 compares the data collection and analysis procedure used in Phase I. Note that all
these procedures select two extreme products for disassembling and reassembling.

Table B.1 reveals some inconsistencies within the component-swapping literature. Note
that only Shainin and Shainin (1988) explicitly explained the origin of the threshold value
d, while the others failed to provide a statistical reference. Therefore, this paper focuses
solely on examining Shainin’s procedure, and thus, d = 1.07.

Table B.2 is devoted to Phase II and compares two of the most important component-
swapping procedures, which are proposed by Shainin and Shainin (1988) and Bhote and
Bhote (2000). Although both procedures employ the same decision intervals, their conclu-
sions and subsequent steps do not always align.
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Literature
Recommended number
of disassembling and
reassembling (r)

D is the
difference
between

Threshold value d in
the decision criterion

D > d× R̄
Shainin and Shainin (1988)
Ledolter and Swersey (1997)

Dasgupta et al. (2011)
r = 2 Medians d = 1.07

Logothetis (1990)
Bhote (1991)

Amster and Tsui (1993)
r = 1 Means d = 5

Antony (1999)
Bhote and Bhote (2000)
Ghurka and Pawar (2015)
Pietraszek et al. (2016)

Prashar (2016)

r = 2 Medians d = 1.25

Cox (2011) a r = 2 Medians d = 5
Steiner and MacKay (2005) r ≥ 3 The analysis is based on graphical tools

Table B.1: Comparison of Phase I component-swapping procedures in some literature
where R̄ represents the average of the ranges.

Literature Situation Conclusion Consequent step

S
h
ai
n
in

an
d

S
h
ai
n
in

(1
98
8)

Both swapped results lie within
the corresponding DI’s

No significant change
(insignificant cause)

Eliminate the swapped component
from consideration

Swap the next-
ranked component

One or both of the swapped
results fall outside the
corresponding DI’s

Significant change
(significant cause)

Keep the swapped component
under consideration

Swap the next-
ranked component.

B
h
ot
e
an

d
B
h
ot
e
(2
00
0)

Both of the swapped results lie
within the corresponding DI’s

Minor change
(unimportant cause)

Eliminate the swapped component
from consideration

Swap the next-
ranked component

Both swapped results fall
outside the corresponding DI’s

Complete change
(dominant cause)

Stop the procedure

Only one of the swapped
results falls outside the
corresponding DI’s

Partial change
(part of the dominant causes)
Keep the swapped component

under consideration

Swap the next-
ranked component.

Table B.2: Comparison of Phase II component-swapping procedures in some literature.

aCox (2011) cites Bhote and Bhote (2000) and Antony (1999), but they used d = 1.25.
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As Table B.2 demonstrates, Shainin and Shainin (1988) continue the search after iden-
tifying a dominant cause. They only eliminate non-significant components and continue
swapping the next-ranked components. Therefore, their procedure keeps any significant
components in the analysis and later conducts a capping run. Consequently, they tend to
identify the combined effect of two or more components as the dominant cause, even when
the dominant cause is a single component. On the other hand, Bhote and Bhote (2000)
distinguish between complete, partial, and minor changes. Therefore, their procedure will
stop after identifying the dominant cause and only retain components under consideration
if there is a partial change.

Figures B.1 and B.2 provide flowcharts of the Phase II procedures for Shainin and
Shainin (1988) and Bhote and Bhote (2000), respectively. In these figures, we assume that
only two components C1 and C2 are swappable, C1 is the top-ranked component, and CR

denotes the remaining components.

Figure B.1: Flowchart of the Phase II component-swapping procedure proposed by Shainin
and Shainin (1988).
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Figure B.2: Flowchart of the Phase II component-swapping procedure proposed by Bhote
and Bhote (2000).

B.2 Evaluation of Shainin’s Procedure

Here, we present our data generation model and critiques of Shainin’s procedure for Phases
I and II.

B.2.1 Shainin’s Phase I Procedure

To assess the reliability of Shainin’s Phase I, procedure we conducted a simulation study
and estimated the probability of identifying assembly as the dominant cause. In our model,
we denote the properties of all components by C with an effect of βC on Y , properties of
the assembly-related causes by A with an effect of βA on Y , and let βCA be their interaction
effects. Assuming that their effects on the output characteristic Y are approximately linear
with intercept α, we have

Y = α + βC C + βAA+ βCAC A+M, (B.1)

where the error, denoted M , models the measurement variation. Note that Model B.1 is
unsuitable for analyzing the Phase I data because we cannot observe the values of A and
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C in component swapping. However, we use this model to generate simulation data.

In the simulations, for simplicity, we assume βCA = 0, C ∼ N(µC , σ
2
C), A ∼ N(µA, σ

2
A),

and M ∼ N(0, σ2
M) in Model B.1. Moreover, without loss of generality, we set α = 0, βA =

βC = 1, µA = µC = 0, and σ2
Y = 1. Note that we would not conduct a component-swapping

investigation without first confirming that measurement variation is small. Therefore, for
illustration, we assume there is no measurement variation, i.e., σ2

M = 0. Our results do
not markedly change for small measurement variation. We also set σ2

C and σ2
A such that

ρ2A ∈ {0.0, 0.1, . . . , 1.0} (as defined by Equation 3.1), consider a baseline of nb = 1000
samples, select k = 2 extreme products, and disassemble and reassemble them r = 2 times.
Then, in each run, we investigate whether Shainin’s procedure identifies assembly as the
dominant cause or not. Note that Shainin’s procedure eliminates assembly as the dominant
cause when Max(yL0 , y

L
1 , y

L
2 ) < Min(yH0 , yH1 , yH2 ) and D > 1.07 × R̄. The first criterion is

an application of the Tukey end-count test and is equivalent to having an end-count of six
(Tukey (1959)). However, we show below that the former criterion is not very helpful. We
run the simulation with and without the end-count criterion. Figure B.3 demonstrates the
result for 5000 simulation runs for different ρ2A values.

Figure B.3: Probability of identifying assembly as the dominant cause using Shainin’s
Phase I procedure vs. ρ2A with and without the end-count criterion when there is no
measurement error, r = 2, and nb = 1000.

Figure B.3 reveals that Shainin’s procedure leads to very similar results whether we
consider the end-count criterion or not. Thus, the end-count criterion is not very helpful.
It also reveals that with their recommendation of r = 2, Shainin’s procedure is unreliable
in correctly identifying assembly as the dominant cause when it is indeed the dominant
cause. For instance, Shainin’s procedure identifies assembly as the dominant cause only
20% of the time, when its actual contribution to the overall variation in Y is 50%.

88



B.2.2 Shainin’s Phase II Procedure

To investigate the reliability of Shainin’s procedure in identifying the dominant cause
among components, we conducted a simulation study and estimated the probability of
identifying each component as the dominant cause. In the simulation, we add the simpli-
fying assumption that we can only swap C1, C2, or both simultaneously and CR represents
the effect of the remaining components. The conclusions, however, can be extended to
more general cases. Note that with our notation, Ci could be a single or a group of com-
ponents. Assuming an approximately linear relationship between the effect of components
and the output characteristic Y with intercept α, we have

Y = α∗+βC1 C1+βC2 C2+βC1C2 C1C2+βCR
CR+βA A+

∑
i∈{C1,C2,C1C2,CR}

βiA i A+M∗, (B.2)

where M∗ reflects the measurement effects.

Note that Model B.2 is unsuitable for analyzing the results of Phase II data because
we cannot observe the characteristics of any components. However, we use this model to
generate simulation data.

To simulate data in Phase II, for simplicity, we first assume there is no interaction
between assembly and components, i.e., βiA = 0 for i ∈ {C1, C2, (C1, C2), CR} in Model
B.2. Later in Appendix B.3.2, we assess the situation where there is an interaction between
assembly and component(s). Moreover, for simplicity, we assume C1 and C2 are the only
components, i.e., βCR

= 0. We also assume C1 ∼ N(µC1 , σ
2
C1
), C2 ∼ N(µC2 , σ

2
C2
), A ∼

N(µA, σ
2
A), and M∗ ∼ N(0, σ2

M∗). Without loss of generality, we set α∗ = 0, µC1 = µC2 =
µA = 0 and σ2

C1
= σ2

C2
= σ2

A = 1 in Model B.2. We also assume no measurement variation,
i.e., σ2

M∗ = 0. Since we have completed Phase I, we assume only a small proportion of the
total variation in Y is due to the assembly process, e.g., ρ2A = 0.05.

Here, for simplicity, we also add the simplifying assumption of having no interaction
between components (i.e., βC1C2 = 0). However, later in Appendix B.4.2, we consider cases
with such interactions. Therefore, we set different sets of values to βC1 , βC2 , and βA such
that ρ2A = 0.05, ρ2C1

= {0.01, . . . , 0.94}, and ρ2C2
= 1−ρ2C1

−ρ2A. In each simulation run, we
follow Shainin’s recommendation of selecting two extreme products and r = 2. Figure B.4
demonstrates the probability of identifying C1 vs. the combined effect of C1 and C2 as the
dominant causes by Shainin’s procedure using 5000 simulation runs for different sizes of
ρ2C1

when nb = 1000. Note that by concluding the combined effect as the dominant cause,
the dominant cause could be the sum of the two main effects C1 + C2 or their interaction
effect C1C2. However, we use the notation C1 +C2 here because Shainin’s procedure does
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not distinguish between the two cases. The remaining times, Shainin’s procedure identifies
C2 as the dominant cause.

Figure B.4: Probability of identifying C1 vs. C1 + C2 as the dominant cause by Shainin’s
procedure for different ρ2C1

values when ρ2A = 0.05, r = 2, and nb = 1000.

Figure B.4 reveals that unless ρ2C1
or ρ2C2

are extreme, e.g., higher than 0.85, Shainin’s
procedure tends to identify C1 +C2 as the dominant cause. For instance, when ρ2C1

= 0.75
and there is no interaction between C1 and C2, Shainin’s procedure identifies C1 + C2 as
the dominant cause almost 85% of the time.

B.3 Proposed Phase I Setup and Analysis

Here, our focus is on Phase I of our proposed component-swap procedure. We allocate Ap-
pendix B.3.1 to present different approaches to estimate ρ2A and propose our recommended
method among them. Appendix B.3.2 is devoted to identifying assembly by component
interaction effects. We provide our recommended values for Phase I design parameters in
Appendix B.3.3.

B.3.1 Estimating ρ2A

Phase I of component swapping, in which we disassemble and reassemble extreme assem-
blies, is to some extent like the measurement assessment study proposed by Browne et al.
(2009b, 2010a). They suggested leveraging to select several extreme parts from a baseline
and then remeasuring the parts several times each. From this data, they estimated the
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proportion of variation due to the measurement system. We propose to adopt the analysis
proposed by Browne et al. (2009b, 2010a) to our situation. They showed the benefits of
selecting extreme parts from a baseline for a measurement assessment investigation.

Here, we consider four approaches to estimate ρ2A. The first method is based on Maxi-
mum Likelihood. The other three methods estimate ρ2A using Phase I data conditional on
the values of the output of the selected assemblies from the baseline. The second approach
uses regression because the conditional mean of the Phase I data depends on ρ2A. The
third is based on the analysis of variance (ANOVA), which uses the variation within the
Phase I data for each product. The fourth estimator combines the regression and ANOVA
estimators.

B.3.1.1 Maximum Likelihood Estimator for ρ2A

There are two types of available data for the Phase I analysis: the baseline and the measured
output values after we disassemble and reassemble the selected products r times. Therefore,
the log-likelihood is the summation of the following pieces:

- l0: the log-likelihood contribution for µY and σ2
Y using the nb randomly selected Y

values for the baseline data, where Y ∼ N(µY , σ
2
Y ).

- l1, . . . , lk: the k log-likelihood contributions for µY , σ2
Y , ρ2A, where li corresponds

to the output values from disassembling and reassembling of the ith, i = 1, . . . , k
selected products r times. For the i ∈ {1, . . . , k} selected independent products, the
r repeated disassembling and reassembling given the observed extreme y from the
baseline has the following multivariate normal (MVN) distribution:Y i

1
... Y i

0 = yi0
Y i
r

 ∼ MVN

[µY + (1− ρ2A)(y
i
0 − µY )

] 1...
1

 ,
∑
r

 ,

where
∑

r is the r × r covariance matrix given by

∑
r

= σ2
Y ρ

2
A

2− ρ2A 1− ρ2A
. . .

1− ρ2A 2− ρ2A

 .
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Therefore, the overall log-likelihood is given by

− nb

2
log σ2

Y − 1

2σ2
Y

(
(nb − 1)s2b + nb(ȳb − µY )

2
)
− rk

2
log (σ2

Y ρ
2
A)−

k

2
log (1 + r − r ρ2A)

−
∑k

i=1

∑r
j=1(y

i
j − ȳiPhI)

2

2σ2
Y ρ

2
A

− r

2σ2
Y ρ

2
A(1 + r − rρ2A)

k∑
i=1

(
ȳiPhI − µY − (1− ρ2A)(y

i
0 − µY )

)2
,

where ȳb and s2b represent the sample mean and variance of the baseline data, and ȳiPhI =
(yi1 + · · ·+ yir)/r is the average of Phase I data for the ith product.

Although maximum likelihood is an efficient estimator, we need to use numerical itera-
tion to find the maximum likelihood estimates (MLEs) as there is no closed-form solution.
Therefore, in the following, we propose alternate estimators with closed forms.

B.3.1.2 Regression Estimator for ρ2A

Since Y ∼ N(µY , σ
2
Y ), for i ∈ {1, . . . , k}, the distribution of the average of the r measure-

ments arising from disassembling and reassembling (i.e., Ȳ i
PhI) given the observed output

value in the baseline (i.e., yi0) follows a normal distribution, namely

Ȳ i
PhI |(Y i

0 = yi0) ∼ N
(
µY + (1− ρ2A)(y

i
0 − µY ), σ

2
Y ρ

2
A(1− ρ2A + r−1)

)
.

We can use regression to estimate ρ2A, because Ȳ i
PhI for i ∈ {1, . . . , k} are mutually

independent, the mean depends on ρ2A linearly (and µY that can be estimated by baseline
sample mean ȳb), and the variance is the same for all k products. Following Browne et al.
(2009b, 2010a), we have

ρ̂2AReg
= 1−

∑k
i=1 (ȳ

i
PhI − ȳb)(y

i
0 − ȳb)∑k

i=1 (y
i
0 − ȳb)

2 .

B.3.1.3 ANOVA Estimator for ρ2A

Note that to obtain ρ̂2AReg
, we only used the average of the r disassembling and reassembling

output values from Phase I, and not their variability. To use the variation information
within Phase I data for each selected product, we propose an ANOVA estimator. Following
Browne et al. (2009b, 2010a), its closed form is

ρ̂2AANV
=

∑k
i=1

∑r
j=1

(
yij − ȳiPhI

)2
k (r − 1) s2b

,
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where s2b represents the sample variance of the baseline data. Note that to have a non-zero
denominator, we require r ≥ 2.

B.3.1.4 Combined Estimator for ρ2A

Although regression and ANOVA estimators have closed forms, they are not as good as
the MLE. We can obtain an estimator with a closed form having similar properties as
the MLE, if we combine ρ̃2Reg and ρ̃2ANV as they are uncorrelated (Browne et al. (2009b,
2010a)).

Suppose ρ̃2AReg
and ρ̃2AANV

have known variances σ2
Reg and σ2

ANV , respectively. Then, the
minimum variance linear combination is given by

σ2
ANV

σ2
Reg + σ2

ANV

ρ̃2Reg +
σ2
Reg

σ2
Reg + σ2

ANV

ρ̃2ANV .

Substituting the quantities, Browne et al. (2009b, 2010a) demonstrated that 1− ρ̂2ACom

is the smaller root of

(vF − q) (1− ρ2ACom
)2 +

(
q(1− ρ̂2AANV

− r−1)− vF (2− ρ̂2AReg
)
)
(1− ρ2ACom

)

+
(
vF (1− ρ̂2AReg

) + q r−1(1− ρ̂2AANV
)
)
= 0,

where ρ2ACom
is the the combined estimate of ρ2A, vF = 2(nb−1)2(k(r−1)+nb−3)

k(r−1)(nb−3)2(nb−5)
, q−1 =∑k

i=1

(yi0−ȳb)
2

s2b
, and s2b is the sample variance of the baseline data. Note that we choose the

smaller root since the other one gives estimates of ρ2A less than zero, while 0 ≤ ρ2A ≤ 1.
Therefore,

ρ̂2ACom
= 1 +

q(1− ρ̂2AANV
− r−1)− vF (2− ρ̂2AReg

)

2 (vF − q)

+

√(
q(1−ρ̂2AANV

−r−1)−vF (2−ρ̂2AReg
)
)2
−4(vF − q)

(
vF (1−ρ̂2AReg

)+qr−1(1−ρ̂2AANV
)
)

2 (vF − q)
.

To compare the four different estimators of ρ2A, we use 1000 simulation runs, and in
each run, we estimate the bias and standard deviation of ρ̂2A with the four estimators for
different ρ2A values and r ∈ {2, 10}.
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We assume the same simulation setup as in Appendix B.2.1 to generate the data.
Figures B.5 and B.6 provide the results for Bias (ρ̂2A) = ρ2A − ρ̂2A and SD (ρ̂2A) of Phase I
estimators for different ρ2A values.

Figure B.5: Bias(ρ̂2A) vs. ρ
2
A for different estimation methods with r = 2 (left panel) and

r = 10 (right panel) when nb = 1000 and k = 2.

Figure B.6: SD(ρ̂2A) vs. ρ2A for different estimation methods with r = 2 (left panel) and
r = 10 (right panel) when nb = 1000 and k = 2.
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Figures B.5 and B.6 reveal that the MLE has the lowest standard deviation. However,
it has a high bias for low r and high ρ2A values. ANOVA is the best estimator in terms of
bias, but it has a dramatically high standard deviation, particularly for low r values and
high ρ2A. Moreover, the regression and combined estimators exhibit similar bias behaviour,
but the combined estimator slightly outperforms the regression estimator with a smaller
SD(ρ̂2A). Therefore, we recommend using the combined estimator, which has a closed form
and provides a low standard deviation of ρ̂2A with a negligible bias.

B.3.2 Identifying Interaction between Assembly and Compo-
nent(s)

To evaluate the effectiveness of our proposed “checks for irregularities” in Section 3.3.1.2
in signalling possible important interactions, we use simulation to calculate the p-value
of Bartlett’s and Levene’s variance equality tests. To do so, we conduct simulations with
and without selecting the median product (in addition to the two extreme products) and
summarize the results of 1000 simulations in Figure B.7. In the simulation, we assume
ρ2AC = 0.80 and ρ2A = ρ2C = 0.10. In the left panel of Figure B.7, we disassemble and
reassemble k = 2 extreme products r = 8 times each, and in the right panel, we disassemble
and reassemble k = 3 products including one median and two extreme products r = 5
times each. Note that with these settings, we have more data in the left panel (rk = 16
vs. rk = 15).

Figure B.7 confirms that when there is strong interaction, despite the left panel bene-
fiting from more data, using only the extreme products usually does not suggest unequal
variances. Therefore, using only extreme products, the irregularity check is unlikely to
provide evidence of interaction even though there is a strong interaction between assembly
and component(s). On the other hand, we more often reject the variance equality as-
sumption when we also disassemble and reassemble the median product (the right panel),
particularly when using Bartlett’s test. Therefore, to ensure the model assumption is not
violated, we recommend using the median as well as the extreme products in Phase I. We
also simulated other scenarios in which assembly or components are the dominant cause,
and there is no interaction (results not shown here). In both cases, the rejection rate from
both Bartlett’s and Levene’s tests are close to 0.05, indicating that the tests reject the
variance equality assumption only when the assembly process and components interact.
Figure B.7 reveals Bartlett’s test superiority in identifying evidence of interaction between
assembly and component(s) in case such interaction exists. However, Bartlett’s test is
more sensitive to the normality assumption (Levene (1960)). Therefore, if the normality
assumption is a concern, we recommend Levene’s test.
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Figure B.7: Boxplots of p-values of Bartlett’s and Levene’s tests when there is extreme
interaction between the assembly process and components without (the left panel with
k = 2 and r = 8) and with (the right panel with k = 3 and r = 5) the median product
where dashed lines indicate the critical value of 0.05.

B.3.3 Recommended Parameters for Phase I

Selecting k products from the nb baseline data and disassembling and reassembling each of
them r times leads to a total number of nb+rk measurements. However, collecting baseline
data is usually much cheaper than collecting the disassembling and reassembling data since
the baseline data often have already been collected for another purpose. Therefore, to
compare different designs, we fix nb and investigate how different r and k combinations
with rk fixed affect the standard deviation of ρ̃2A using the combined estimator introduced
in Appendix B.3.1. We also investigate whether selecting the median and the k−1 extreme
products (we call this the “Leveraged” plan) is more beneficial than selecting k random
products from the baseline (we call this the “Random” plan).

To examine the trade-off between r and k, we consider nb = 400. Note that these results
are not sensitive to the baseline size unless it is small (e.g., less than 50). We examine two
situations: rk = 30 and rk = 15. While assuming r ≥ 2 (to avoid a zero denominator in
the ρ2A estimator’s formula) and k ≥ 2 (to include at least two random/extreme products),
there are six and two possible combinations of k and r when rk = 30 and rk = 15,
respectively. If k = 2, we select two extreme products and no median product; however,
for k > 2, we select one median and k − 1 extreme products. Through 5000 simulation
runs, we estimate SD(ρ2A) for each design and summarize the results in Figure B.8.
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Figure B.8: SD(ρ̂2A) vs. k with r = 30/k (the left panel) and r = 15/k (the right panel)
for the “Leveraged” and “Random” plans when nb = 400 and ρ2A ∈ {0.2, 0.8}.

Figure B.8 demonstrates that leveraging is a valuable idea, as the “Leveraged” plan
consistently yields lower SD (ρ̂2A) compared to the “Random” plan, particularly when as-
sembly is the dominant cause (e.g., ρ2A = 0.8). The results also indicate that, for the
“Leveraged” plan, selecting more products and performing a small number of disassem-
blies and reassemblies leads to slightly more precise conclusions than disassembling and
reassembling fewer products more times, especially when assembly is the dominant cause
and rk is high.

While the relationship between r and k is more evident in the left panel of Figure
B.8 and rk = 30 allows us to explore a wider range of r and k combinations, collecting
this amount of disassembly and reassembly data would often be too expensive. Instead, we
believe rk = 15 is a more economical sample size. As illustrated in the right panel of Figure
B.8, rk = 15 yields very similar performance in terms of SD (ρ̂2A) for both combinations
of r and k. Consequently, to propose a Phase I design, we also consider other criteria,
including obtaining more precise estimates in Phase II and being better able to identify
irregularities. Compared to k = 5 and r = 3, the setting k = 3 and r = 5 allows us
to collect more disassembly and reassembly measurements for the two extreme products
used in Phase II. This leads to more precise estimates for Ȳ L

PhI and Ȳ H
PhI . Moreover, with

this combination, Bartlett’s and Levene’s tests are more effective in identifying evidence of
potential assembly by component(s) interactions. Therefore, we recommend setting k = 3
and r = 5 for the Phase I study design, i.e., selecting a low, median, and high product from
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the baseline and disassemble and reassemble them r = 5 times. Selecting a low, median,
and high product from the baseline, i.e., k = 3 also aligns with the recommendation of
Steiner and MacKay (2005) for measurement assessment studies.

B.4 Proposed Phase II Analysis

Here, the simulation setup is like Appendix B.2.2. We devote Appendix B.4.1 to compare
the ANOVA and LVR estimators for a few scenarios when there is no interaction between
components. In Appendix B.4.2, we consider some scenarios where there are component-
by-component interaction effects.

B.4.1 Comparison between the ANOVA and LVR Estimators

We conducted a comprehensive analysis between ANOVA and LVR, under the simplifying
assumption of having only two non-interacting components. Through 1000 simulation runs,
we estimate ρ2C1

for ρ2C1
∈ {0.0, 0.1., . . . , 1.0}, where ρ2C2

= 1 − ρ2C1
− ρ2A. The simulation

setting is the same as Appendix B.2.2 (involving two extreme products), but with our
recommendation of r = 5. Figure B.9 represents the results of Bias

(
ρ̂2C1

)
= ρ2C1

− ρ̂2C1
,

SD(ρ̂2C1
), and MSE

(
ρ̂2C1

)
= Bias2

(
ρ̂2C1

)
+ SD2(ρ̂2C1

) when we only have two components,
and we first swap C1. Figure B.9 also compares the estimators for ρ2A = 0.05 and ρ2A = 0.35.
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Figure B.9: Bias(ρ̂2C1
) (left panel), SD(ρ̂2C1

) (middle panel), and MSE(ρ̂2C1
) (right panel)

vs. ρ2C1
for ANOVA and LVR estimators when ρ2A = 0.05 (first row) and ρ2A = 0.35 (second

row) for nb = 1000 and r = 5.

Figure B.9 reveals that the LVRmethod is more robust against large assembly variations
compared to the ANOVA estimator.

B.4.2 Identifying Interaction between Two or More Components

To investigate how well we can identify interactions between components, we conducted
a simulation study and estimated the probability of identifying each component as the
dominant cause using ANOVA and LVR estimators. Considering the sequential nature of
the ANOVA and LVR methods, different simulation runs may correspond to a different
number of swaps due to different stopping times. We use similar assumptions and simula-
tion settings as Appendix B.2.2, however, we allow interaction between components (i.e.,
βC1C2 ̸= 0). Therefore, we set different sets of values for βC1 , βC2 , βC1C2 , βCR

, and βA (and
thus ρ2C1

, ρ2C2
, ρ2C1C2

, ρ2CR
, and ρ2A) to match various scenarios. In each simulation run, we

select two extreme products from a baseline of nb = 1000 products and disassemble and
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reassemble them r = 5 times. Through 1000 simulation runs, we investigate the proba-
bility of identifying C1, C2, C1C2, and CR as the dominant causes using the ANOVA and
LVR methods. In the simulation, we make decision by comparing ρ̂2Ci

to the threshold 0.5.
Then, we investigate the effect of considering our proposed Partial and Extreme criteria
on identifying an interaction between components. We limited the simulation results to
only a few representative scenarios in the following subsections.

B.4.2.1 Scenario: No Interaction between Components

To check that our proposed criterion for identifying interactions does not lead to many false
alarms, we consider a scenario with no interaction between components. An example of
this scenario is when we set ρ2C1

= 0.20, ρ2C2
= 0.75, ρ2C1C2

= 0, ρ2CR
= 0, and ρ2A = 0.05. To

illustrate, Figure B.10 provides an example of the interaction and data collection plot for
one simulation run. This figure denotes the data related to the low and high products in
red and blue colors, respectively. In the left panel of Figure B.10, the red and blue crosses
demonstrate the true (but unknown) values of C1 and C2 for the high and low products,
respectively. In the right panel of Figure B.10, the circles represent the disassembly and
reassembly results, and the crosses show the results when components are swapped.

Figure B.10: An example of interaction and data collection plot when there is no interaction
between components.

Figure B.11 and Table B.3 compare the ANOVA and LVR methods using 1000 simu-
lation runs when we apply the component-swapping procedure and stopping rules. In this
scenario, C2 is the dominant cause and the blue and red horizontal dashed lines show the
true values for ρ2C1

and ρ2C2
, respectively. The results demonstrate that LVR leads to less

biased estimates and slightly more often identifies the actual dominant cause.
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Figure B.11: Boxplots of ρ̂2i for i ∈ {C1, C2, C1C2, CR} for ANOVA and LRV estimators
when

(
ρ2C1

, ρ2C2
, ρ2C1C2

, ρ2CR
, ρ2A
)
= (0.20, 0.75, 0, 0, 0.05).

C1 C2 C1C2 CR C1 + C2

ANOVA 0.001 0.992 0.000 0.000 0.007
LVR 0.000 0.993 0.000 0.000 0.007

Table B.3: Probability of the dominant cause identifications when(
ρ2C1

, ρ2C2
, ρ2C1C2

, ρ2CR
, ρ2A
)
= (0.20, 0.75, 0, 0, 0.05).

Table B.4 reveals how adding the Partial and Extreme criteria affects our ability to
identify interactions. In this scenario, only 1.3% of the time we identify evidence of C1C2

interaction using the “Either of Partial or Extreme” criterion.

Interaction Identification Methods Partial Extreme Either of Partial or Extreme
Probability of Identifying

C1C2 as the Dominant Cause
0.000 0.013 0.013

Table B.4: The effect of adding Partial and Extreme criteria when(
ρ2C1

, ρ2C2
, ρ2C1C2

, ρ2CR
, ρ2A
)
= (0.20, 0.75, 0, 0, 0.05).

B.4.2.2 Scenario: Mild Interaction between Components

An example of this scenario is when we set ρ2C1
= 0.65, ρ2C2

= 0.29, ρ2C1C2
= 0.01, ρ2CR

= 0,
and ρ2A = 0.05. Recall that when there is an interaction, we can no longer interpret the
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ρ2’s as the proportion of variability in the output explained by that source. To illustrate
the scenario, Figure B.12 provides an example of the interaction and data collection plot
for one simulation run.

Figure B.12: An example of interaction and data collection plot when there is a mild
interaction between components.

Figure B.13 and Table B.5 compare the ANOVA and LVR estimators using 1000 sim-
ulation runs. In this scenario, C1 is the dominant cause, but there is a mild interaction
between C1 and C2. The results demonstrate that the ANOVA method leads to less biased
estimates and more often identifies the actual dominant causes. However, both the LVR
and ANOVA estimators fail to identify any evidence of the mild C1C2 interaction.
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Figure B.13: Boxplots of ρ̂2i for i ∈ {C1, C2, C1C2, CR} for ANOVA and LRV estimators
when

(
ρ2C1

, ρ2C2
, ρ2C1C2

, ρ2CR
, ρ2A
)
= (0.65, 0.29, 0.01, 0, 0.05).

C1 C2 C1C2 CR C1 + C2

ANOVA 0.888 0.002 0.000 0.000 0.110
LVR 0.966 0.020 0.000 0.000 0.014

Table B.5: Probability of the dominant cause identifications when(
ρ2C1

, ρ2C2
, ρ2C1C2

, ρ2CR
, ρ2A
)
= (0.65, 0.29, 0.01, 0, 0.05).

Table B.6 reveals how adding the Partial and Extreme criteria affects the interaction
identifications. In this scenario, we often identify evidence of C1C2 interaction using the
“Either of Partial or Extreme” criterion.

Interaction Identification Methods Partial Extreme Either of Partial or Extreme
Probability of Identifying

C1C2 as the Dominant Cause
0.870 0.011 0.873

Table B.6: The effect of adding Partial and Extreme criteria when(
ρ2C1

, ρ2C2
, ρ2C1C2

, ρ2CR
, ρ2A
)
= (0.65, 0.29, 0.01, 0, 0.05).

B.4.2.3 Scenario: Large Interaction between Components

An example of this scenario is when we set ρ2C1
= 0.40, ρ2C2

= 0.50, ρ2C1C2
= 0.05, ρ2CR

,
and ρ2A = 0.05. To illustrate, Figure B.14 provides an example of the interaction and data
collection plot for one simulation run.
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Figure B.14: An example of interaction and data collection plot when there is a large
interaction between components.

Figure B.15 and Table B.7 compare ANOVA and LVR estimators using 1000 simulation
runs. In this scenario, C2 is the dominant cause, but C1 is also a large cause and there
is a large C1C2 interaction. The results demonstrate that LVR identifies the main effect
dominant causes with higher probability, but neither analysis approach identifies the large
interaction.

Figure B.15: Boxplots of ρ̂2i for i ∈ {C1, C2, C1C2, CR} for ANOVA and LRV estimators
when

(
ρ2C1

, ρ2C2
, ρ2C1C2

, ρ2CR
, ρ2A
)
= (0.40, 0.50, 0.05, 0, 0.05).
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C1 C2 C1C2 CR C1 + C2

ANOVA 0.231 0.593 0.000 0.000 0.176
LVR 0.307 0.691 0.000 0.000 0.002

Table B.7: Probability of the dominant cause identifications when(
ρ2C1

, ρ2C2
, ρ2C1C2

, ρ2CR
, ρ2A
)
= (0.40, 0.50, 0.05, 0, 0.05).

Table B.8 reveals how adding the Partial and Extreme criteria affects the interaction
identifications. In this scenario, we often identify evidence of C1C2 interaction using the
“Either of Partial or Extreme” criterion.

Interaction Identification Methods Partial Extreme Either of Partial or Extreme
Probability of Identifying

C1C2 as the Dominant Cause
0.836 0.361 0.893

Table B.8: The effect of adding Partial and Extreme criteria when(
ρ2C1

, ρ2C2
, ρ2C1C2

, ρ2CR
, ρ2A
)
= (0.40, 0.50, 0.05, 0, 0.05).

B.4.2.4 Scenario: Pure Interaction between Components

An example of this scenario is when we set ρ2C1
= 0.10, ρ2C2

= 0.10, ρ2C1C2
= 0.75, ρ2CR

= 0,
and ρ2A = 0.05. To illustrate, Figure B.16 provides an example of the interaction and data
collection plot for one simulation run.

Figure B.16: An example of interaction and data collection plot when there is a pure
interaction between components.
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Figure B.17 and Table B.9 compare ANOVA and LVR estimators using 1000 simulation
runs. In this scenario, C1C2 is the dominant cause. The results demonstrate that both
estimators identify C1 and C2 with almost equal probabilities and fail to identify evidence
of C1C2 interaction. Section 3.5 provides an explanation for these results, demonstrating
how the selection of extreme products affects the conclusion in this scenario.

Figure B.17: Boxplots of ρ̂2i for i ∈ {C1, C2, C1C2, CR} for ANOVA and LRV estimators
when

(
ρ2C1

, ρ2C2
, ρ2C1C2

, ρ2CR
, ρ2A
)
= (0.10, 0.10, 0.75, 0, 0.05).

C1 C2 C1C2 CR C1 + C2

ANOVA 0.489 0.510 0.000 0.000 0.001
LVR 0.493 0.507 0.000 0.000 0.000

Table B.9: Probability of the dominant cause identifications when(
ρ2C1

, ρ2C2
, ρ2C1C2

, ρ2CR
, ρ2A
)
= (0.10, 0.10, 0.75, 0, 0.05).

Table B.10 reveals how adding the Partial and Extreme criteria affects the interaction
identifications. In this scenario, we almost always identify evidence of C1C2 interaction
using the “Either of Partial or Extreme” criterion.

Interaction Identification Methods Partial Extreme Either of Partial or Extreme
Probability of Identifying

C1C2 as the Dominant Cause
0.658 0.906 0.911

Table B.10: The effect of adding Partial and Extreme criteria when(
ρ2C1

, ρ2C2
, ρ2C1C2

, ρ2CR
, ρ2A
)
= (0.10, 0.10, 0.75, 0, 0.05).
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B.4.3 Interaction Identification as the Dominant Cause

In the following, we elaborate on why data from a component swapping study analyzed as a
factorial experiment never concludes that an interaction is the dominant cause. While here
we added the simplifying assumption of having only two components, the argument can be
extended to experiments involving more than two components. This is important because,
in classical factorial experiments, we can identify the interaction effect as the dominant
cause. However, as we explain later, the interaction effect cannot exceed 33% of the total
in component swapping due to the selection of extreme assemblies for the experiment.

Using the notation used by Montgomery (2017) notation, consider a 22 factorial exper-
iment with factors A and B, each having the low and high settings of − and +. Then, as
shown in Table B.11, we have four treatment combinations.

Factor A Factor B Name of the Combination
− − (1)
+ − a
− + b
+ + ab

Table B.11: Four treatment combinations and their names in a 22 factorial experiment.

Note that, in the component-swapping investigation, we use the two selected extreme
assemblies to label the levels of factors A and B. Therefore, the run with A and B at the
high setting yields yL0 , and the run with A and B at the low setting yields yH0 . In other
words, (1) ≈ yL0 and ab ≈ yH0 .

Following the notation used by Montgomery (2017) and the preceding explanation, we
can write the effects as follows:

A ≈ ab+ a− b− (1) ≈ (yH0 − yL0 ) + a− b,

B ≈ ab+ b− a− (1) ≈ (yH0 − yL0 ) + b− a,

AB ≈ ab+ (1)− a− b ≈ (yH0 + yL0 )− a− b.

When we swap components, the results almost always fall between yL0 and yH0 . Oth-
erwise, we may not have selected the two extreme assemblies from the baseline. There-
fore, yL0 ≤ a ≤ yH0 and yL0 ≤ b ≤ yH0 . The consequence of these constraints is that
yL0 − yH0 ≤ AB ≤ yH0 − yL0 , and the size of the interaction effect AB is the largest when
either of the following satisfied:
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(i) a = b = yL0 , resulting in AB = A = B = yH0 − yL0 , or

(ii) a = b = yH0 , resulting in AB = A = B = yL0 − yH0 .

Therefore, in a component-swapping investigation using extreme assemblies, the three
effects should have equal magnitude to maximize the interaction effect. In other words,
estimating an interaction effect larger than 33% of the total is impossible, and we never
conclude that the interaction effect is the dominant cause.
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Appendix C

Verification Study - Details and
Additional Findings

C.1 Analytical Power Calculation for the Test H0 :

β = 0 vs. HA : β ̸= 0

Denote the low and high settings of X by x− and x+, respectively. By using the ex-
perimental data, the above hypothesis test can be written as H0 : µY |x+ = µY |x− vs.
HA : µY |x+ ̸= µY |x− , where µY |X+ = E(Y |X = x+) and µY |x− = E(Y |X = x−). Using the
measured mean values ȳ|x+ and ȳ|x− from nE

2
experimental observations in each group,

we estimate the parameters of interest. Then, considering Model 4.1 and the normality
assumption for the residuals, the corresponding estimators are normally distributed with

means µY |x+ and µY |x− , and variance σ2
ϵ

nE/2
. Then, the test is based on the statistic

T =
(ȳ|x+)− (ȳ|x−)

2 sϵ√
nE

,

where sϵ represents the pooled sample standard deviation of y|x+ and y|x−. Under the
alternative hypothesis, T has a noncentral t-distribution on nE−2 degrees of freedom with
noncentrality parameter

θ =
µ

Y |x+
− µ

Y |x−

2σϵ√
nE

.
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The power to detect a difference of δ = µY |x+ − µY |x−with two-sided significant level
0.05 is given by

Power = 1− Tn
E
−2

(
t
(0.975;n

E
−2)

| δ
2σϵ√
nE

)
+ Tn

E
−2

(
− t

(0.975;n
E

−2)
| δ
2σϵ√
nE

)
, (C.1)

where Tdf (.|θ) is the cumulative distribution function of the noncentral t-distribution with
df degrees of freedom and noncentrality parameter θ, and t(0.975;nE−2) is the probability of
the t-distribution with n

E
− 2 degrees of freedom being less than 0.975.

From Model 4.1, we have µY |x± = α+β x±. Also, Figure 4.2 considers x± = µ
X
±2σX .

Therefore,
δ = (α + β x+)− (α− β x−) = 4 β σX .

So, the power formula provided in Equation C.1 simplifies to

Power = 1− Tn
E
−2

(
t
(0.975;nE−2)

|4 β σX

2σϵ√
nE

)
+ Tn

E
−2

(
− t

(0.975;n
E

−2)
|4 β σX

2σϵ√
n
E

)
.

Considering ρ2 =
β2σ2

X

β2σ2
X+σ2

ϵ
= 0.5 in Figure 4.2, we have σϵ = β σX . As a result, the

power of the test simplifies to

Power = 1− Tn
E
−2

(
t
(0.975;n

E
−2)

|2
√
nE

)
+ Tn

E
−2

(
− t

(0.975;nE−2)
|2√n

E

)
. (C.2)

From Equation C.2, it is clear that the power of the test depends only on the experi-
mental sample size, nE. Figure 4.2 represents the results when nE ∈ {6, 8, 10, . . . , 32}.

C.2 Study Designs and Models for Binary Causes

In practice, suspect dominant causes may not be continuous variables and instead may be
binary. For example, we may find that the suspect dominant cause is the process stream
number when a process consists of two streams running in parallel.

For simplicity, consider the situation where we have only a single binary suspect, de-
notedX∗ to verify. However, we discuss a verification study with multiple suspect dominant
causes in Section 4.7. Also, we model the effect of X∗ on the output Y as

Y = α + β X∗ + ϵ, (C.3)
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where X∗ and ϵ are independent, and the distribution of X∗ is

X∗ =

{
−1 with probability q,

+1 with probability 1− q,

with 0 < q < 1. Note that in some applications, we may assume q is known. For example,
suppose X∗ represents two parallel processing streams. Then, if there are approximately
equal volumes in the two streams, we know q ≈ 0.5.

To make our results more general, we continue with the assumption that q is unknown.
Given this setup, V ar (X∗) = 4 q (1− q) and V ar (Y ) = β2(4 q)(1− q)+σ2

ϵ . Therefore, X
∗

is strictly a dominant cause of variation if β2(4q)(1 − q) > σ2
ϵ . Similar to the continuous

case, it is convenient to consider the squared correlation between Y and X∗ given by

ρ∗2 =
β2(4q)(1− q)

β2(4q)(1− q) + σ2
ϵ

, (C.4)

where 0 ≤ ρ∗2 ≤ 1. Using this parameterization, X∗ is strictly a dominant cause if ρ∗2 >
0.5.

To verify X∗ as a dominant cause in Model C.3, the goal is to determine whether:

The causal contribution of X∗ to the output variation (i.e., β2(4 q)(1 − q)) is large
compared to the variation due to noise and other causes (i.e., σ2

ϵ ).

Meeting this goal requires estimating three parameters: β, σϵ, and q, or two of these
three along with σY , given that σ2

Y = β2 (4 q) (1− q) + σ2
ϵ . Note that besides these param-

eters, we also need to estimate the nuisance parameter α to fit Model C.3. Plugging in the
estimated parameters into Equation C.4, we obtain an estimate for ρ∗2.

Here, we consider the same study designs as Section 4.4. Assuming ϵ ∼ N(0, σ2
ϵ ), the

log-likelihood when we have experimental (x∗, y)E data is given by Equation 4.3. This is
true because the distribution of (Y |x∗) does not depend on the distribution X∗. However,
the log-likelihoods are different for the various types of observational data and are given
below.

1. With observational paired (x∗, y)O data, we have

P (X∗
i = x∗

i , Yi = yi) = (
1− x∗

i

2
) q P (Yi|X∗

i = −1)+ (
1 + x∗

i

2
)(1− q) P (Yi|X∗

i = +1),
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where (Yi|X∗
i = ±1) ∼ N(α± β, σ2

ϵ ). So, the log-likelihood is

l∗O =

nO∑
i=1

log

(
q (

1−x∗
i

2
)√

2πσ2
ϵ

e
− (yi−α+β)2

2σ2
ϵ

)
+

(
(1− q)(

1+x∗
i

2
)√

2πσ2
ϵ

e
− (yi−α−β)2

2σ2
ϵ

)
. (C.5)

2. With only observational (x∗)O data, we have

P (X∗
i = x∗

i ) = q(
1− x∗

i

2
) + (1− q)(

1 + x∗
i

2
),

where x∗
i ∈ {−1,+1}. So, the log-likelihood is

l∗Ox =

nOx∑
i=1

log

(
q(
1− x∗

i

2
) + (1− q) (

1 + x∗
i

2
)

)
. (C.6)

3. With only observational (y)O data, we have

P (Yi = yi) = q P (Yi = yi|X∗
i = −1) + (1− q) P (Yi = yi|X∗

i = +1) ,

where (Yi|X∗
i = ±1) ∼ N(α± β, σ2

ϵ ). So, the log-likelihood is

l∗Oy =

nOy∑
i=1

log

(
q√
2πσ2

ϵ

e
− (yi−α+β)2

2σ2
ϵ +

1− q√
2πσ2

ϵ

e
− (yi−α−β)2

2σ2
ϵ

)
. (C.7)

In the following, we investigate different experimental and observational sample sizes
to verify the dominant cause. Similar to Section 4.4, to first assess the effect of different
experimental sample sizes (i.e., nE), we calculate the power of the hypothesis test H0 : β =
0 vs. HA : β ̸= 0 from (x, y)E data using Equation C.1. However, here X∗ is binary and
x∗± = ±1. Therefore,

δ =
(
α + βx∗+)− (α− βx∗−) = 2β.

So, the power formula provided in Equation C.1 simplifies to

Power = 1− Tn
E
−2

(
t(0.975;nE−2) |

√
n

E
β

σϵ

)
+ Tn

E
−2

(
−t(0.975;nE−2) |

√
n

E
β

σϵ

)
.

As in Section 4.4, our focus is on the case where ρ∗2 = 0.5. Also, we focus on q=0.5
because it is likely the most common case and, more importantly, has the lowest power.
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Considering ρ∗2 = β2(4 q)(1−q)
β2(4 q)(1−q)+ σ2

ϵ
= 0.5 and q = 0.5, we have σϵ = β. So, the power of the

test simplifies to

Power = 1− Tn
E
−2

(
t(0.975;nE

−2) |
√
n

E

)
+ Tn

E
−2

(
−t(0.975;nE

−2) |
√
n

E

)
. (C.8)

From Equation C.8, the power of the test depends only on nE. Figure C.1 represents
the results of the analytical power calculation for nE ∈ {6, 8, 10, . . . , 32} when ρ∗2 = 0.5
and q = 0.5. For other ρ∗2 values, although the results are slightly different, the overall
conclusions remain the same.

Figure C.1: Power of the test H0 : β = 0 vs. HA : β ̸= 0 from (x, y)E data for nE ∈
{6, 8, 10, . . . , 32} when ρ∗2 = 0.5 and X∗ is binary with q = 0.5.

Figure C.1 reveals that to achieve a high power for the hypothesis test with binary X∗,
we need larger nE values compared to the continuous suspect case. We leave it up to the
practitioner to decide on the appropriate size of nE in a way that makes sense in their
context, but our recommendation is to have at least twelve experimental samples to obtain
a power close to 0.90. If doing the experiment is not too expensive, nE = 16 gives the
power of almost 0.95, which is highly reliable. Similar to Section 4.4, having a high power
is important because mistakenly eliminating X∗ as the cause of variation in Y when it is
the actual cause can waste considerable time and effort.

Through simulation, we investigate how well we can estimate ρ∗2 for each viable com-
posite study design. In Model C.3, we have four parameters to estimate, namely, α, β, σ2

ϵ ,
and q, but ρ∗2 depends only on β, σϵ, and q. In the simulation, without loss of generality,
we generate data with α = 0. We also generate X∗ with q = 0.5 as it is likely to be the
most common case. Similar to Section 4.4, we fix β = 1 and determine the corresponding
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σϵ so that ρ∗2 = 0.5, i.e., we consider σϵ = 1. In each simulation run, we first estimate all

the four parameters, and then we obtain ρ̂∗
2
by plugging the estimates into Equation C.4.

We summarize the results of 2000 simulation runs using the bias and standard deviation

of ρ̂∗
2
, denoted by Bias(ρ̂∗

2
) and SD(ρ̂∗

2
), respectively.

To estimate the parameters in Model C.3 when we have (x∗, y)O, (x
∗)O &(y)O, or (y)O

data, we use maximum likelihood estimation. Assuming the independence of different
parts used in each study, the overall log-likelihood can be written as the sum of the log-
likelihoods with non-zero corresponding sample sizes provided by Equations 4.3, C.5, C.6,
and C.7.

When we only have (x∗)O as the observational data, only (x∗, y)E data provide infor-
mation about α, β, and σ2

ϵ . In this case, if we use maximum likelihood to estimate these
parameters, since nE is typically relatively small, the obtained σ̂2

ϵ will be biased. For this
case, as in Section 4.4, to correct the bias, we suggest instead estimating σ2

ϵ with a nE − 2
divisor. Note that in this case, q is estimated by the proportion of (x∗)O data that equals
−1.

First, we investigate the relative merits of the viable composite study designs for nE =
16 (recall that this experimental sample size gives very high power for the hypothesis test
H0 : β = 0 vs. HA : β ̸= 0 from (x∗, y)E data), where the observational sample sizes

are {50, 100, 150, . . . , 1000}. Figure C.2 presents the results for Bias(ρ̂∗
2
) = ρ̂∗

2 − ρ∗2 and

SD(ρ̂∗
2
). Note that in Figure C.2, similar to Section 4.4, when the observational sample

size is n, nO = n, nOx = n, and nOy = n for the (x∗, y)O, (x
∗)O, and (y)O cases, and

nOx = nOy = n for the (x∗)O &(y)O case.

The left panel of Figure C.2 demonstrates that the bias for all combinations is fairly
small. The right panel reveals that, as in Section 4.4, the most precise estimates arise when
we supplement the experiment with (x∗, y)O data. However, recall that to use such data,
we must assume no confounder with a large inference exists. Figure C.2 also reveals that
unlike in Section 4.4, only having (x∗)O data does not provide very valuable information

in terms of SD(ρ̂∗
2
), whereas (y)O data help considerably more. Having (x∗)O &(y)O data

is only slightly better than (y)O data because (x∗)O data are not very informative, even
though (x∗)O &(y)O data represent twice as many observational data.

Second, we investigate the relative merits of the viable composite study designs for
nO, nOx, or nOy = 200, when nE ∈ {12, 14, . . . , 32}. Figure C.3 presents the results for

Bias(ρ̂∗
2
) = ρ̂∗

2 − ρ∗2 and SD(ρ̂∗
2
).
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Figure C.2: Bias(ρ̂∗
2
) (left panel) and SD(ρ̂∗

2
) (right panel) for different viable combina-

tions of data when ρ∗2 = 0.5 and nE = 16.

Figure C.3: Bias(ρ̂∗
2
) (left panel) and SD(ρ̂∗

2
) (right panel) for different viable combina-

tions of data when ρ∗2 = 0.5 and there are 200 observational data.
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The left panel of Figure C.3 shows that the bias for all combinations is fairly small. The

right panel reveals that when we have (x∗)O data, as nE increases, SD(ρ̂∗
2
) substantially

decreases, but SD(ρ̂∗
2
) is still worse than the other data combinations. However, when

we have (x∗, y)O, only (y)O, or (x
∗)O &(y)O data, having more experimental data does not

help much in terms of SD(ρ̂∗
2
).

C.3 The Derivation of ρ2C Formula for (x, y, c)O Data

Consider Model 4.7 when the mean and standard deviation of X are denoted by µX and
σX , and the corresponding values for C are µC and σC , respectively. Then, E(Y ) =
α + β µX + γ µC , and V ar(Y ) = σ2

Y = β2σ2
X + γ2σ2

C + 2βγσXC + σ2
ϵ . So,

E(XY ) =E
(
X(α + βX + γ C + ϵ)

)
=αE(X) + βE(X2) + γE(XC) + E(X)E(ϵ)

=αµX + β
(
V ar(X) + E2(X)

)
+ γ
(
σXC + E(X)E(C)

)
+ 0

=αµX + βσ2
X + βµ2

X + γ
(
σXC + µXµC

)
.

As a result,

σXY =E(XY )− E(X)E(Y )

=
(
αµX + βσ2

X + βµ2
X + γ(σXC + µXµC)

)
− µX(α + βµX + γµC)

=βσ2
X + γσXC .

Therefore,

ρ2C =
σ2
XY

σ2
Xσ

2
Y

=
(βσ2

X + γσXC)
2

σ2
X(β

2σ2
X + γ2σ2

C + 2βγσXC + σ2
ϵ )

=
(βσX + γσXC/σX)

2

β2σ2
X + γ2σ2

C + 2βγσXC + σ2
ϵ

=
β2σ2

X + γ2σ2
XC/σ

2
X + 2βγσXC

β2σ2
X + γ2σ2

C + 2βγσXC + σ2
ϵ

,

which is Equation 4.8.

116


	List of Figures
	List of Tables
	Introduction
	Motivation
	Background and Literature Review
	The Taguchi Method
	Six Sigma
	The Shainin SystemTM
	The Statistical Engineering Algorithm

	Goal and Outline

	Identifying Dominant Causes using Group Comparison
	Introduction
	Shainin and Bhoteâ•Žs Group Comparison Procedure
	Example
	Group Comparison Procedure
	Critique of Group Comparison

	Proposed Group Comparison Analysis Procedure for Continuous Inputs
	Statistical Modelling and Proposed Procedure
	Comparison of the Proposed Procedure to Shaininâ•Žs Procedure
	Evaluation of the Proposed Procedure for Continuous Inputs

	Proposed Group Comparison Analysis Procedure for Binary Inputs
	Statistical Modelling and Proposed Procedure for Binary Inputs
	Evaluation of the Performance of the Procedure for Binary Inputs

	Performance of the Proposed Procedure on the Example
	Summary and Discussion

	Identifying Dominant Causes using Component Swapping
	Introduction
	Shaininâ•Žs Component-Swapping Procedure
	Outline of the Procedure
	Phase I of Shaininâ•Žs Procedure (Disassembling and Reassembling)
	Phase II of Shaininâ•Žs Procedure (Swapping Components)
	Shaininâ•Žs Procedure: Issues and Points for Improvement

	Proposed Procedure
	Proposed Phase I Analysis (Disassembling and Reassembling)
	Estimation of A2
	Check for Irregularities

	Proposed Phase II Analysis (Swapping Components)
	Estimation of C2
	Check for Irregularities

	Proposed Approach

	Evaluation of the Proposed Procedure
	Scenario: Assembly is the Dominant Cause
	Scenario: Interaction between Assembly and Components is the Dominant Cause
	Scenario: One Component is the Dominant Cause
	Scenario: Interaction between two Components is the Dominant Cause

	Discussion
	Conclusions

	Verification of a Dominant Cause of Output Variation
	Introduction
	Motivation and Definitions
	Study Designs and Models
	Experimental (x,y)E Data
	Observational Paired (x,y)O Data 
	Observational (x)O Data
	Observational (y)O Data

	Some Viable Composite Study Designs
	Performance of the Proposed Procedure on an Example
	Verification Experiments in the Era of Smart Manufacturing
	Conclusion and Discussion

	Conclusion and Future Work
	Summary and Conclusion
	Future Work

	References
	APPENDICES
	Group Comparison - Details and Additional Findings
	The Derivation of 2 Formula
	The Conditional Distribution of (X*|Y=y) for Binary X*

	Component Swapping - Details and Additional Findings
	An Overview of Variants of Component-Swapping Procedures in the Literature
	Evaluation of Shaininâ•Žs Procedure
	Shaininâ•Žs Phase I Procedure
	Shaininâ•Žs Phase II Procedure 

	Proposed Phase I Setup and Analysis
	Estimating A2
	Maximum Likelihood Estimator for A2
	Regression Estimator for A2
	ANOVA Estimator for A2
	Combined Estimator for A2

	Identifying Interaction between Assembly and Component(s)
	Recommended Parameters for Phase I

	Proposed Phase II Analysis
	Comparison between the ANOVA and LVR Estimators
	Identifying Interaction between Two or More Components
	Scenario: No Interaction between Components
	Scenario: Mild Interaction between Components
	Scenario: Large Interaction between Components
	Scenario: Pure Interaction between Components

	Interaction Identification as the Dominant Cause


	Verification Study - Details and Additional Findings
	Analytical Power Calculation for the Test H0:=0 vs. HA:=0 
	Study Designs and Models for Binary Causes
	The Derivation of 2C Formula


