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Abstract

Lane detection is a critical component in autonomous vehicles and advanced driver as-
sistance systems (ADAS), enabling accurate lane tracking and vehicle positioning. While
traditional lane detection methods based on handcrafted features and heuristics have lim-
itations in challenging environments, the adoption of machine learning (ML) techniques
has shown promise. However, many existing ML models struggle with detecting a variable
number of lanes, making them less effective in complex driving scenarios.

A simple solution involves the use of High Definition (HD) Maps. HD Maps offer
comprehensive road information necessary for autonomous driving, but their high cost and
inflexibility pose challenges for frequent updates and modifications. This research proposes
an innovative approach, the Improved LaneNet (ILaneNet) network, to strike a balance
between ML techniques and HD maps. By augmenting input images with a lane parameter
namely the number of lanes, we aim to enhance lane detection accuracy without incurring
the prohibitive costs of HD maps. ILaneNet seeks to achieve real-time precision in locating
and tracking lane markings, even in challenging conditions like inadequate lighting and
intricate road layouts.

The objective of this study is to develop a flexible, cost-effective, and robust lane detec-
tion system that adapts to diverse driving scenarios. By incorporating pertinent informa-
tion into the network, we demonstrate improved adaptability and potential advancements
in autonomous driving technologies. We also introduce new evaluation metrics namely ca-
pacity, lost capacity and unsafe driving measure to assess lane detection techniques more
comprehensively. We also propose evaluation of lane detection techniques by using a lane
abstraction approach instead of the traditional line abstraction method. Through exten-
sive evaluation and comparisons, we showcase the superiority of ILaneNet over LaneNet in
detecting lanes. This research contributes to bridging the gap between ML techniques and
HD maps, offering a viable solution for effective and efficient lane detection in autonomous
vehicles and ADAS.
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Chapter 1

Introduction

1.1 Motivation

Road accidents have become a prevalent global cause of fatalities, with factors like irrespon-
sible driving and inadequately designed road structures contributing to the rising number
of unfortunate incidents. According to the World Health Organization [61], approximately
1.3 million people lose their lives due to road traffic crashes, and between 20 and 50 million
more suffer non-fatal injuries, with many enduring disabilities as a result of their injuries.
Astonishingly, 94 % of these accidents are caused by human error, highlighting the potential
for significant reduction if human error could be minimized [40].

Addressing this issue, autonomous vehicles and advanced driver assistance systems
emerge as possible solutions to decrease human error. The anticipated benefits of au-
tonomous vehicles include crash prevention, reduced travel times, improved fuel efficiency,
and parking benefits, with estimated savings of up to $2000 per year per autonomous ve-
hicle and potentially reaching nearly $4000 when considering comprehensive crash costs
[16].

The concept of autonomous guided vehicles (AGVs) has already gained significant trac-
tion across various industries, where they are used for patient transportation, automated
warehouses, hazardous environments, and controlled human transport within carefully des-
ignated areas. The system model for autonomous guided vehicles is given in Figure 1.1.

The system model of autonomous vehicles represent a multi-layered framework that
shows how the different components work together to make the autonomous vehicles func-
tion. Inputs to the autonomous vehicles are given by sensors on the vehicles. Inputs from
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cameras and laser scanners are used by the perception model to perceive its environment.
GPS, IMU and other on-board sensors assist in localization of the vehicle. The outputs of
the localization and perception module are used in planning and vehicle control.

Figure 1.1: Autonomous Vehicle System Model

For further advancements in AGV implementation, certain obstacles must be addressed.
One crucial aspect for AGVs’ successful navigation in intricate and unstructured environ-
ments lies in their vision capabilities. Overcoming challenges related to sensor technology,
environmental recognition, and real-time decision-making will be vital to enable AGVs to
navigate effectively and safely in complex surroundings.

By leveraging the potential of autonomous vehicles and AGVs, we can aspire to re-
duce road accidents and enhance overall transportation efficiency. As technology continues
to evolve and further research is conducted, the seamless integration of these intelligent
systems into our daily lives becomes increasingly promising. This could significantly con-
tribute to safer roads and more streamlined operations across various industries.
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1.2 Problem Statement

Lane detection is a crucial vision problem in the context of autonomous vehicles and
advanced driver assistance systems (ADAS). It involves the identification and tracking of
lane markings on the road to determine the vehicle’s position within its lane. Modern
cars heavily rely on lane detection to ensure safe and precise navigation on roads and
highways. The ultimate aim is to achieve real-time accuracy in locating and tracking
the lane markings, even in challenging environmental conditions like inadequate lighting,
intense glare, or intricate road layouts.

Several methods have been proposed to detect lanes. Traditional methods which rely
on handcrafted features and heuristics were initially proposed . However, this method is
prone to fail in challenging scenarios such as adverse weather conditions, occlusions caused
by other vehicles, and complex urban road network. In such challenging environments, the
limitations of traditional lane detection techniques become evident, emphasizing the need
for more robust and adaptable solutions.

With the advent of machine learning and deep learning techniques, researchers have
explored their application to the lane detection problem. However, many existing neural
networks face limitations in detecting a variable number of lanes, as they are often designed
to detect only a fixed number of lanes. By detecting a variable number of lanes, we refer to
a scenario in which the lane detection algorithm is capable of identifying and delineating
any number of lanes present on the road, without being constrained by a predetermined
limit. Although some networks, such as Lanenet, can handle variable lane detection, there
is still considerable room for improvement in this area.

One common observation among deep learning networks is that they typically take
an image as input and produce an output that represents the detected lanes. However,
this approach neglects some valuable publicly available data, such as the actual number
of lanes and their widths, which could be beneficial in solving the lane detection problem
more accurately.

On the other end of the spectrum, High Definition (HD) Maps have emerged as a po-
tential solution. The authors in study [8] defines an HD map as a map which contains all
critical static properties (for example: roads, buildings, traffic lights, and road markings)
of the road/environment necessary for autonomous driving, including the object that sen-
sors cannot appropriately detect due to occlusion. However, adopting HD maps for lane
detection poses significant challenges. First and foremost the process of generating an HD
map is very expensive. Secondly, these maps cannot be easily modified frequently due to
the high cost involved in their creation and maintenance.
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This thesis aims to find a middle ground between the two prevailing approaches to
lane detection. The goal is to augment the input image with other lane parameters while
keeping the approach simple, cost-effective, and, most importantly, flexible enough to add
or modify relevant information easily.

By exploring this middle ground, we seek to enhance lane detection accuracy by lever-
aging additional data while avoiding the prohibitive costs and limitations associated with
HD maps. Ultimately, we aim to create a robust and adaptable lane detection system that
can effectively navigate complex driving scenarios and contribute to the advancement of
autonomous driving technologies.

1.3 Objectives

The objectives for this thesis have been categorized into short-term and long-term objec-
tives. The short-term objectives are those that have been achieved within the scope of this
thesis. First and foremost, we propose ILanenet as an Improved Lane detection network
using the NoL (number of lanes) parameter. By fusing the number of lanes associated with
an image into the detection process, ILanenet offers a new approach to address lane de-
tection challenges. In addition, we reinterpret performance evaluation metrics as capacity,
lost capacity and unsafe driving measure which offer a more comprehensive and nuanced
assessment of lane detection techniques. Furthermore, we introduce a shift in the evalua-
tion paradigm by advocating the use of a lane abstraction approach for assessing detected
lanes, diverging from the conventional line abstraction methodology.

The long-term objectives represent broader and more ambitious research goals that
extend beyond the current scope of this thesis. These objectives, such as exploring the
cost-effectiveness of the augmented lane detection approach compared to High Definition
(HD) Maps or dynamically updating the model with new data for improved adaptability,
can be pursued in future research by other researchers.

By delineating between short-term and long-term objectives, this thesis has laid the
groundwork for further advancements in the field of lane detection, providing a valuable
contribution and setting a direction for future investigations to build upon the achieved
results and explore new possibilities.
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1.3.1 Short-term Objectives

Objective 1: Implement and Understand Lanenet Model

The first objective is to implement an existing lane detection network called Lanenet[41].
By replicating Lanenet, we aim to gain a comprehensive understanding of its architecture,
properties, and functionalities. Lanenet requires input images of road scenes or frames
captured from a camera mounted on a vehicle, with RGB images of resolution 1280× 720
pixels. The Lanenet network will be trained and evaluated on the TuSimple dataset [1], a
widely used benchmark dataset for lane detection tasks. The TuSimple dataset[1] contains
a large collection of labeled road scene images captured under various driving conditions.
For each image, they also provide the 19 previous frames, which are not annotated. The
annotations come in a JSON format, indicating the x-position of the lanes at various
discretized y-positions. On each image, the current (ego) lanes and left/right lanes are
annotated, and this is also expected on the test set. Additionally, in situations involving
lane changes, a 5th lane may be added to prevent any ambiguity during the lane detection
process. This successful implementation will serve as a reliable baseline for comparing and
validating the enhancements proposed in this thesis.

Objective 2: Improve on Lanenet’s Detection Capabilities

Building on Objective 1, Lanenet will be modified to incorporate the NoL parameter. This
strategic modification improves the accuracy and adaptability of Lanenet. The proposed
network, Improved Lanenet, which shall be called ILanenet will build upon Lanenet con-
sidered in Objective 1. Instead of feeding only the image into the network as an input, the
number of lanes will be fed as input to the network in addition to the input image. The
hypothesis is that additional lane parameters will make Improved Lanenet perform better
than Lanenet. The number of lanes is chosen as an additional input because the number
of lanes on the road is less likely to change and is information that is readily available.

Objective 3: Evaluate the performance of Lanenet and ILanenet

After developing both Lanenet and ILanenet, their performance will be evaluated on the
TuSimple dataset[1] named in Objective 1. In pursuit of this objective, both networks will
be subjected to testing on the same dataset which encompasses various road conditions and
lane configurations. To quantify the effectiveness of the network, metrics namely capacity,
lost capacity, accuracy and unsafe driving measure will be used to evaluate the network’s
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ability to detect and segment lane markings correctly. By conducting this comprehensive
evaluation, the thesis aims to demonstrate the superiority and practical applicability of
ILanenet over Lanenet.

Objective 4: Visualize and Analyze the Lane Detection Results

Objective 4 of the thesis is to visually analyze the lane detection results, comparing
ILanenet with Lanenet. This analysis aims to showcase the effectiveness of incorporat-
ing lane numbers alongside the data. By comparing sample images from both approaches,
the thesis demonstrates what makes ILanenet outperform Lanenet in accurately detecting
and adapting to various lane configurations, thereby proving its improved effectiveness in
real-world scenarios.

1.3.2 Long-term objectives:

1. Explore incorporating lane parameters with machine learning approaches that can
handle variable lane detection: In this thesis, lane parameters were applied to only
one existing start of the art model. But how sure are we that this would generalize
well to other existing models? This is a question that can be explored in the future
by researchers.

2. Conduct analysis to compare the cost-effectiveness of incorporating lane parameters
into deep learning networks with the use of High Definition (HD) Maps: It is expected
that our approach of incorporating lane parameters into existing models should have
a lower cost compared to HD Maps. This is because incorporating lane parameters
takes advantage of already existing data and does not take into account every static
object on the road. However, the exact amount of cost that is saved is not known.
This can also be an area of research to find out the approximate percentage of savings
that result from incorporating lane parameters.

3. Explore methods for dynamically updating the lane detection network with new data,
enabling easy and efficient adaptation to changing road conditions: As road condi-
tions change over time, the data used to augment the lane detection network might
require updates to reflect these modifications. For instance, additional lanes might be
introduced, or road widths could be altered. To address this challenge, future work
can explore methods that facilitate rapid and cost-effective incorporation of new data
into the lane detection model. By investigating efficient techniques, future researchers
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can develop mechanisms to update the model promptly without significant compu-
tational overhead or financial burden. This exploration will contribute to enhancing
the model’s real-world applicability, ensuring it remains adaptable to dynamic road
scenarios and leading to further advancements in the field of lane detection.

1.4 Impact of Objectives on Autonomous Vehicles

The objectives outlined in this thesis have a significant impact on the broader picture
of lane detection technology and its applications in the field of autonomous vehicles and
advanced driver assistance systems.

1. Improved Lane Detection Accuracy: Enhancing lane detection accuracy is cru-
cial for the safe and reliable operation of autonomous vehicles. Accurate lane detec-
tion ensures that self-driving cars can precisely identify and follow lanes, reducing
the risk of accidents and enabling smooth lane changes.

2. Enhanced Adaptability: Developing a lane detection network with enhanced
adaptability allows autonomous vehicles to navigate diverse and ever-changing road
conditions effectively. This adaptability is essential as road layouts and lane con-
figurations can vary significantly, especially in urban environments with complex
intersections and construction zones.

3. Effective Visualization and Analysis: The visualization and analysis of lane
detection results help researchers and developers understand the network’s strengths
and weaknesses better. This insight can lead to more informed decisions and further
improvements in lane detection algorithms.

4. Identification of Limitations and Enhancements: Identifying limitations and
proposing enhancements guide future research and development efforts. Understand-
ing the scenarios where the network may struggle and finding ways to address these
challenges will lead to more robust and reliable lane detection systems.

The successful achievement of these objectives advances the state of lane detection tech-
nology, making autonomous vehicles safer, more reliable, and better equipped to handle
real-world driving conditions. By contributing to the broader picture of autonomous driv-
ing technology, the thesis can pave the way for the widespread adoption and integration of
autonomous vehicles into our transportation systems, transforming the way we travel and
improving road safety for all.
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1.5 Thesis Breakdown

We provide an overview of the structure and content. In Chapter 2, we conduct a compre-
hensive review of the existing literature concerning lane detection, setting the foundation
for our research. Chapter 3 introduces the core of our study, presenting the Lanenet net-
work for Lane Detection, along with its improved version, ILanenet. In Chapter 4, we
delve into the experimentation and present the results obtained, offering insights into the
performance and efficacy of our proposed ILanenet against Lanenet. Lastly, in Chapter
5, we turn our attention to possible future work, where we discuss potential avenues for
further research and development. This early summary serves as a roadmap, providing a
glimpse into the forthcoming chapters of this thesis.
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Chapter 2

Literature Review

2.1 Lane Detection Methods

In the past two decades, a number of researches have been made in the fields of lane
detection and prediction [12, 22, 64, 31]. These approaches can be broadly categorized
into two main categories:

1. Traditional Methods

2. Deep-Learning Methods

2.1.1 Traditional Methods

Prior to the emergence of deep learning technology, road lane detection was typically
approached through geometric modeling, involving methods such as line detection or line
fitting. Fundamental attributes like texture, gradient, geometric configurations, and colors
are harnessed to identify and align lane lines in road images. The lane detection procedure
involves four main stages: image preprocessing, feature extraction, model fitting, and lane
tracking. Image pre-processing techniques consist of conversion of coloured RGB images
to grayscale, noise reduction, Region of Interest (ROI) selection, edge detection [13].

ROI selection involves the utilization of three principal methodologies: vanishing point
detection, perspective analysis along with a projective model, and sub-sampling [36]. Van-
ishing point detection has been a common approach adopted by various studies. The idea
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behind using the vanishing point is that a correctly estimated vanishing point provides a
strong clue about the region to localize. The authors in study [26] tackled a similar prob-
lem, road detection, by a two step process: the estimation of the vanishing point associated
with the main (straight) part of the road, followed by the segmentation of the correspond-
ing road area based on the detected vanishing point. The subsequent method, referred to
as perspective analysis combined with the implementation of a projective model, leverages
the concept that parallel lane markings within the real-world plane converge at a vanishing
point within the image plane. This approach frequently employs perspective analysis to re-
fine the scope of detection to a precise region, which is then identified as the ROI. Through
the skillful establishment of a cohesive projection that interconnects the image plane, real-
world plane, and camera plane, the process of extracting the ROI is streamlined. In study
[32], a perspective projection model connects the camera and road plane, projecting lane
marker edge points onto a road-space grid. The central lane line is defined by points on
the grid’s upper and lower edges, with each grid segment described by its offset from the
lower-left point and the horizontal deviation between endpoints. Sub-sampling constitutes
the third strategy employed to ascertain the ROI. In subsampling either a predefined or an
adaptive region of the image is used to determine the ROI. Examples are given in [48] [51].

Edge detection operators in image processing can be classified into two fundamental op-
erators: Gradient and Laplacian operators, although there are additional operators that do
not strictly adhere to these categories [49]. The gradient method detects edges by looking
for the maximum and minimum in the first derivative of the image. The Laplacian method
searches for the zero crossings in the second derivative of the image to find edges. Gradient
based edge detectors include Roberts, Sobel and Prewitt edge detection operators while an
example of Laplacian based edge detector is Marrs-Hildreth edge detector. The authors
in study [49] studied various edge detectors and concluded that under noisy conditions,
Canny, LoG, Sobel, Prewitt, Roberts’s exhibited better performance, respectively. They
also concluded that Canny’s edge detection algorithm has a better performance compared
to the others on images.

Generally, there are two kinds of features for extracting lane lines: colors and edges [42].
Lane detection techniques for extracting the lane lines can be grouped into three categories:
edge-based methods, color-based methods, and hybrid (edge and color) methods [36]. The
Hough transform and its variants, such as, Adaptive Hough Transform and Probablistic
Hough Transform are the most popular edge-based methods [36]. Steerable filter is also
an edge-based technique that has been applied in many research [47][50][38][56] with good
results especially when road markings exhibit a clear and uniformly smooth appearance.
Color-based methods have the limitation of being influenced by lighting and are not widely
used by researchers, because they are influenced by lighting. An example of a colour based
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method, HSILMD, was proposed by the authors in [52]. In HSILMD, full-color images are
transformed into HSI color representation within a region of interest (ROI) to detect the
road surface on the host vehicle. Using the Fuzzy c-Means algorithm, intensity distribution
differences within an ROI row of pixels are recorded and clustered, enabling lane marking
detection via selected intensity and saturation thresholds. Hybrid methods usually combine
width, length, and location of lines with gray levels and brightness values of pixels, which
improve the extraction results. An example is given in [5].

Images captured by vehicle cameras are captured in a continuous sequence. This se-
quential nature of image acquisition allows for an overlap between lanes detected in the
current frame and those from the preceding frame. By leveraging information from both
the current and previous frames, we can anticipate lane positions and track their evolution
over time, enabling a more robust and accurate lane tracking process. Common trackers
include Kalman filters and Particle filters[13].

2.1.2 Deep-learning-based Methods.

Deep-learning algorithms are the future, as they are highly adaptive and self-learning.
They increase lane detection and recognition ability to a new level. Convolution neural
network (CNN) possess some unique properties such as high detection accuracy, automatic
feature learning, and end-to-end recognition. Deep Learning Lane detection methods can
be grouped into four main categories according to [67]: Encoder-decoder CNN, FCN with
optimization algorithms, CNN+RNN and GAN model.

1) Encoder-decoder CNN: A common application of the encoder-decoder CNN architec-
ture is observed in semantic segmentation tasks [67]. Typical examples include LaneNet[41]
and IBN-Net [33]. In the original LaneNet which we would improve upon in this paper, an
encoder-decoder network was used for binary and instance segmentation. Binary segmen-
tation consists of segmenting the pixels into lanes and background. Instance segmentation
consists of generating embeddings for lane pixels. IBN-Net improves on LaneNet by using
an attention-based encoder-decoder network for lane detection. IBN-Net’s encoder-decoder
network also generates a binary and instance embedding. The difference between IBN-Net
and LaneNet in the encoder-decoder network is that the encoder and decoder are connected
by a self-attention layer.

2) FCN with optimization algorithms: In FCN with optimization, optimization algo-
rithms, such as, clustering and subsampling are followed to achieve the goal of lane de-
tection, lane-marking identification, and vanishing-point extraction [67]. For instance, in
VPGNet[30], the comprehensive understanding of road scenes is achieved by integrating
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multiple tasks through a unified deep learning architecture. The architecture employs the
concept of a vanishing point to guide the predictions of lane markings and road regions.
By leveraging the vanishing point as a guiding factor, VPGNet optimizes the joint predic-
tion of lane information and road layout, resulting in improved accuracy and robustness
in handling complex road scenes. Deep learning methods for lane detection involving clus-
tering is dominated by semantic segmentation algorithms. Image pixels are classified by
the deep neural network, and the lane line information is extracted by clustering and other
post-processing methods. An example of a deep learning method involving clustering is
LaneNet.

3) CNN+RNN: CNN + RNN methods for lane detection are based on the idea that
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) can syn-
ergistically exploit both spatial and sequential information within road scenes. CNNs are
proficient at discerning intricate spatial patterns within images, making them well-suited
for recognizing lane markings and road structures. Through a series of convolutional and
pooling layers, CNNs are adept at extracting progressively abstract features, which are
crucial for accurate lane detection. However, the analysis of road scenes necessitates the
consideration of not only spatial features but also the temporal evolution of lane configu-
rations. RNNs excel at modeling sequential data by incorporating memory of prior inputs,
thus capturing the dynamic nature of lane movements over frames. By fusing the capabil-
ities of RNNs with CNNs, the combined architecture gains the ability to comprehend both
instantaneous lane contexts and their evolution through time [67][27].

4) GAN model: Given that certain lane detection methods rely on semantic segmen-
tation, and given that Generative Adversarial Networks (GANs) are equipped to perform
semantic segmentation tasks, GANs can also serve a purpose in lane detection applications.
A common strategy to leverage GANs for semantic segmentation includes constructing a
loss function for the segmentation network (generator) with two key components: the first
relates to precise pixel-wise prediction or label fitness (Lfit), while the second involves an
adversarial loss term aimed at maintaining higher-level consistency attributes. These terms
are conditioned on the input image, effectively guiding the network’s learning process. The
role of the discriminator is to evaluate the authenticity and quality of the predictions gen-
erated by the generator in a GAN. Examples of this approach are given by [35][19][65].

Deep learning based lane detection algorithms can also be grouped into three types
[54]:

1. Semantic segmentation

2. Instance segmentation

12



3. End-to-end approach

Semantic segmentation

In semantic segmentation, the task is to assign a specific class label to every individual pixel
within an image, effectively dividing the image into various meaningful regions or objects.
As illustrated in Figure 2.1, this technique is often used in lane detection, where each pixel
in the output image is categorized as either belonging to a lane line or representing the
background. This fine-grained pixel-level classification provides a comprehensive under-
standing of the visual content within an image. By segmenting an image into semantically
meaningful regions, it becomes possible to extract critical information about the objects
and their spatial distribution, making it a crucial component in lane detection.

Figure 2.1: Semantic Segmentation

Instance segmentation

In instance segmentation, the goal is to precisely identify and distinguish individual in-
stances of objects within an image. In the context of the image presented in Figure 2.2,
instance segmentation enables the differentiation and labeling of each individual lane line.
These lane lines are not only detected but are also assigned distinct and discernible colors
or labels, making it possible to track and identify each lane line separately.
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Figure 2.2: Instance Segmentation

End-to-end approach

The goal of lane detection is to find lane lines and estimate the lane lines with a polynomial.
In both semantic and instance segmentation, the output of the deep learning pipeline
needs to be further processed to detect which polynomial best fits the detected lane lines.
However, in the end-to-end approach, the deep learning pipeline outputs an estimate of the
polynomial which best fits the detected lane lines and hence requires no further processing.

2.1.3 Datasets

Datasets play a pivotal role in the development, testing, and validation of lane detection
algorithms. They contain a wealth of annotated images or videos, often captured by
vehicle-mounted cameras or sensors, and are used to train lane detection algorithms. Some
common datasets include: TUSimple dataset, CULane dataset, Unsupervised LLAMAS
and BDD100K dataset.

1) TUSimple dataset - The TuSimple dataset comprises of 6,408 images captured from
US highways, with 3,626 designated for training, 2,782 for testing, and 358 for validation.
The test set includes road images captured on US highways, showcasing various weather
conditions.

2) CULANE dataset - The CULane dataset consists of a training set of 88,880 samples,
a validation set comprising of 9,675 samples, and a test set consisting of 34,680 samples.
These datasets were collected from real-world scenarios using cameras positioned on six ve-
hicles driven by different drivers in Beijing. The test set is categorized into several distinct
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scenarios, each presenting unique challenges. These categories encompass normal scenarios,
crowded scenes, low-light or night scenarios, scenarios with no visible lane markings, shad-
owy conditions, scenarios with arrow markings, scenarios affected by intense dazzle light,
curved road scenarios, and crossroad scenarios. This categorization allows for evaluation
of lane detection algorithms on a wide range of real-world driving conditions.

3) Unsupervised LLAMAS dataset - Comprising of 100,042 labeled lane marker images,
the unsupervised LLAMAS dataset stems from approximately 350 kilometers of recorded
drives. The image labels are automatically generated, first by projecting markers into
camera images, and then through further optimization to enhance label accuracy. The
dataset annotations include pixel-level annotations for dashed lane markers, as well as the
3D and image space endpoints for individual markers, along with lane associations for
each marker. The challenges presented within this dataset encompass a pixel-level binary
segmentation problem, a segmentation problem intertwined with lane association, and a
lane estimation task.

4) BDD100K dataset - This dataset is drawn from more than 50,000 rides across New
York and the San Francisco Bay Area city from streets, residential areas, and highways.
It contains 100K driving videos, each lasting 40 seconds. The videos are split into train-
ing (70K), validation (10K) and testing (20K) sets. The dataset is made of 720p high
resolution images, with a frame rate of 30 fps and GPS/IMU recordings to preserve the
driving trajectories. Ten tasks are associated with the dataset: image tagging, lane detec-
tion, drivable area segmentation, road object detection, semantic segmentation, instance
segmentation, multi-object detection tracking, multi-object segmentation tracking, domain
adaptation, and imitation learning.

2.1.4 Integration of Lane Detection Methods

The enhancement of the lane detection system hinges on the amalgamation of various
methodologies across algorithmic, systemic, and sensorial levels within the detection frame-
work. Prominent players in the automation sector, including Tesla and Mobileye, have
adopted distinctive integration approaches to amplify the capabilities of their lane de-
tection systems [62]. Integration at the algorithmic level entails the fusion of different
lane detection algorithms to ascertain accurate lane positions and elevate overall efficiency.
In terms of system-level integration, diverse object detection systems collaborate concur-
rently to enhance real-time communication. Sensor level integration finally complements
each other’s modality disadvantages and makes the system more robust . An illustrative
case of algorithmic integration is evident in the successive fusion of the Hough transform,

15



RANSAC, and spline model, as exemplified in [60][59]. This fusion adeptly leads to precise
lane detection, even in intricate scenarios like steep curves and varying lighting conditions.

In the context of system integration, ongoing investigations revolve around the fusion of
lane detection and road detection systems [22][7]. The sequence starts by initially detecting
the road area, preceding the lane detection process. This approach serves to expedite lane
marking recognition and ensures the precise delineation of the Region of Interest (ROI).
The interconnected nature of lane and road boundaries enriches accuracy. The pinnacle of
integration lies in sensor level integration—a pivotal phase that combines the distinctive
characteristics of each sensor’s modalities to enhance the collective functionality of the
overarching sensor system, as detailed in [13].

2.2 Lane Detection Evaluation Methods

Evaluating lane detection systems is a crucial step in assessing their performance and
ensuring their reliability for real-world applications. Before deploying a lane detection
system in real-world situations, it’s common practice to evaluate its performance using
recorded data or simulated environments. Evaluation allows researchers and developers
to assess the system’s behavior under controlled conditions, compare its outputs against
ground truth data, and identify areas where improvements are needed. Since this evaluation
doesn’t occur in real time, it provides a comprehensive understanding of the system’s
strengths and limitations without the constraints of immediate responsiveness.

Some methods have been proposed for evaluating lane detection systems [44][41]. Most
Lane detection datasets come with their own metric. For example, CULANE dataset [44]
evaluates lane predictions by calculating F1 score, precision and recall as shown in Equa-
tions 2.1, 2.2 and 2.3. A lane marking is described as a line having a width equivalent
to a certain number of pixels. A lane marking is successfully detected if the Intersection
over Union(IOU) of the ground truth and the predicted lane is greater than some thresh-
old. That is, predictions whose IoUs are larger than certain threshold are viewed as true
positives (TP).

F-measure =
(1 + β2) · Precision · Recall
β2 · Precision + Recall

(2.1)

Precision =
TP

TP + FP
(2.2)

Recall =
TP

TP + FN
(2.3)
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In Lanenet [41], the accuracy, the average correct number of points per image, of lane
detection is evaluated using the expression in Equation 2.4.

Accuracy =
∑
im

Cim

Sim

(2.4)

where im is an image in the dataset, Cim is the number of correctly predicted points in im
and Sim the number of ground-truth points in im. A point is correct when the difference
between a ground-truth and predicted point is less than a certain threshold. The expression
for calculating the false positive score and false negative score are given in Equation 2.5
and 2.6 respectively:

False Positive Score (FPSl) =
F l
pred

N l
pred

(2.5)

False Negative Score (FNSl) =
M l

pred

N l
gt

(2.6)

with F l
pred being the total number of falsely predicted lane lines, N l

pred the total number

of correctly predicted lane lines, M l
pred the total number of missed ground-truth lane lines

and N l
gt being the total number of all ground-truth lane lines.
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Chapter 3

Methodology

3.1 Introduction

Traditional lane detection methods typically use a combination of carefully designed hand-
crafted features and heuristics to identify lanes in a road scene. These methods often
require computationally intensive post-processing and are not easily scalable to different
road conditions. In contrast, newer approaches employ deep learning models that are
trained to segment lane pixels, even in the absence of visible lane markings. These methods
have the advantage of being able to handle a wide range of road scenes. However, they are
typically designed to detect a fixed number of lanes, such as the lanes directly in front of the
vehicle, ego-lanes, and struggle with detecting lane changes or variable lane configurations.

Among the plethora of deep learning networks used for lane detection, Lanenet was
chosen for several compelling reasons. Chief among these is its lightweight architecture,
which renders it exceptionally amenable to training and integration within our framework.
This deliberate selection of Lanenet stems from its distinct advantages over comparable
networks like CLRNET[66] and CULANE[44].

One notable feature of Lanenet is its modest batch size prerequisite. Unlike other
networks, such as CLRNET, which mandates a batch size of 32, Lanenet operates efficiently
with a notably smaller requirement of just 8. This efficiency not only expedites the training
process but also mitigates resource demands, ultimately enhancing overall training efficacy
and expediency.

Additionally, Lanenet’s innovative two-step approach to lane detection is instrumental
in reducing computational overhead. This methodical process effectively minimizes the
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number of pixels that need to be clustered by clustering only lane pixels, resulting in a
more streamlined and less resource-intensive operation. By design, this approach not only
simplifies the network’s computational demands but also bolsters its capacity for real-time
processing. These factors collectively culminate in a network that not only ensures efficient
training but also optimizes computational resources, aligning seamlessly with our project
objectives and performance benchmarks.

The Lanenet Network deals with the challenge of identifying variable lane configura-
tions. In the original paper, the problem of identifying lanes is formulated as an instance
segmentation problem in which each lane is an instance. The identified lanes are then
fitted in bird’s eye view before being projected back onto the original image by a perspec-
tive matrix. One novelty introduced was predicting the perspective matrix using a neural
network. Traditional approaches often relied on a fixed perspective matrix. This resulted
in incorrect results when there were changes in the road-plane.

Within this section, we delve into our methodology, starting with the presentation of
the well-established Lanenet network. Subsequently, we introduce an enhanced version of
the network which we call ILanenet. ILanenet capitalizes on the utilization of not only the
input image but also an additional input parameter: the number of lanes depicted (NoL)
within the image. This innovative integration significantly enhances the performance of
Lanenet.

3.2 Lanenet Architecture

LaneNet is structured as a two-step lane detection network as illustrated in Figure 3.1.
Two-step lane detection methods are composed of a feature extracting step and a post-
processing step [53].

LaneNet’s feature extraction stage comprises of the use of deep learning techniques
to semantically segment the image into two distinct categories: binary segmentation and
instance segmentation. Binary segmentation classifies the pixels into either a background
or lane. Instance segmentation segments the image pixels in such a way as to distinguish
lane pixels from each other. This means that not only are the pixels classified as either
background or lane, but individual lane pixels are embedded in such a way that pixels that
belong to the same lane are similar while those that belong to different lanes are dissimilar.

The post-processing phase focuses on refining the extracted information. This phase
primarily involves clustering, which groups lane pixels into clusters. Lane pixels belong-
ing to the same lane will be in the same cluster. Finally, the fitting operation employs
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mathematical models to precisely define the trajectory of each lane, further enhancing the
accuracy of lane boundary representation. The details of each part of Lanenet’s architec-
ture are explained below. Similar processes in both ILanenet and Lanenet have the same
number in Figure 3.1 and Figure 3.6.

Figure 3.1: Lanenet Architecture [41]

3.2.1 Explanation of Blocks in Lanenet Architecture

Input Image (input 1) and Resize Image (process 2): In the image processing
pipeline, input images are resized from their original resolution of αm × βn × c pixels to
a reduced resolution of (m × n × c), where αm, βn,m, n, c ∈ N. One of the reasons for
resizing the image before feeding it into the network is to reduce the number of parameters
and prevent potential memory constraints. When working with neural networks, the size
of the input data directly impacts the number of parameters that need to be processed and
stored during training and inference. By resizing the image, we effectively reduce its spatial
dimensions, resulting in a smaller input size. This reduction in size directly translates to
a decrease in the number of parameters required by the network, ultimately helping to
alleviate memory-related issues, such as RAM crashes. Resizing the image also provides
computational benefits. Smaller input sizes lead to faster processing times, allowing the
network to analyze and make predictions more efficiently. Additionally, the reduced pa-
rameter count can enhance the overall training speed and optimize resource utilization.
However, it’s important to strike a balance when resizing the image. If the image is resized

20



too drastically, crucial details may be lost, potentially compromising the network’s ability
to accurately detect and interpret features in the image. Hence, it’s necessary to consider
the trade-off between parameter reduction and maintaining sufficient image resolution for
effective analysis and prediction.

Shared Encoder (process 3): The ENet[45] Encoder-Decoder segmentation network
was selected due to its efficiency, as it is a fast and compact architecture. This network
comprises five stages in total. The first stage contains a single block. Stage 1 consists of
five bottleneck blocks. Stage 2 and stage 3 share a similar structure, but stage 3 doesn’t
downsample the input initially. These first three stages together form the encoder portion
of the network. Stages 4 and 5 form the decoder.

Lanenet’s architecture is based on the ENet encoder-decoder network, with two no-
table modifications. Firstly, the output of ENet was adapted to create a two-branched
network, accommodating both binary segmentation and instance segmentation branches
within Lanenet. Secondly, ENet’s encoder had more parameters than its decoder, which
results in suboptimal outcomes when the entire encoder was shared[41]. Consequently, in
Lanenet, only the first two stages (stages 1 and 2) of ENet’s encoder are shared between
the two branches, while the full ENet decoder (stages 4 and 5) serves as the backbone for
each separate branch. This means that stage 3 of ENet’s encoder is not utilized in Lanenet.

In terms of the output, the final layer of the segmentation branch produces a one-
channel image for binary segmentation, whereas the last layer of the embedding branch
generates an N-channel image, with N representing the embedding dimension. The shared
encoder algorithm is given in Table 1 in the appendix section utilizing Algorithms 3, 4, 5,
6 and 7 which are also in the appendix section.

Segmentation branch (process 5): The segmentation branch of lanenet plays a
critical role in binary image segmentation, classifying each pixel in an input image as
either lane or background. Its primary objective is to identify and delineate lane markings
within the road scene, a crucial task for autonomous vehicles and other computer vision
applications. However, a common challenge in binary segmentation tasks like lane detection
is class imbalance, where the abundance of background pixels greatly outweighs the lane
pixels in an image. This imbalance can lead to a skewed learning process, where the model
may prioritize classifying most pixels as background, which is suboptimal for accurate lane
detection. To combat this, LaneNet addresses the class imbalance issue by employing
class-weighted cross-entropy loss during training. By assigning different weights to the
two classes, the network is encouraged to pay more attention to the underrepresented lane
class, ensuring that it doesn’t overlook the critical task of identifying lane markings amidst
the sea of background pixels.

21



The pseudocode for this branch is presented in Algorithm 8 in the appendix section.

Embedding Branch (process 4): The embedding branch of the network is designed
to produce embeddings of lane pixels. The embeddings are designed such that lane pixels
belonging to the same lane have similar embeddings while lane pixels belonging to different
lanes have different embeddings. As outlined in the original paper[41], this is achieved using
a clustering loss function which minimizes the distance between pixel embeddings belonging
to the same lane while maximizing pixel embeddings belonging to different lanes.

The consequence is that pixels with similar embeddings – pixels that belong to the
same lane – will cluster together, forming unique clusters per lane. To do this, a variance
term (Lvar), that applies a pull force on each embedding towards the embedding of a lane
is introduced. In this context, the embedding of a lane refers to the mean embedding of
pixels belonging to that lane. Also, a distance term (Ldist), that pushes the cluster centers
away from each other is introduced. Both terms are hinged: the pull force activates when
an embedding is at a distance of more than δv from its cluster center. The force of pushing
between the centers comes into effect only when the centers are at a distance less than δd
from each other. In this context, δv represents the maximum allowable distance between an
embedding and the mean embedding of its corresponding cluster. Also, δd represents the
minimum distance allowed between cluster centers. Let K denote the number of clusters
(lanes), Nk the number of elements in cluster k where 1 ≤ k ≤ K, xi a pixel embedding,
µk the embedding of cluster k, ∥·∥ the L2 distance, and [x]+ = max(0, x) the hinge, the
total loss L is equal to Lvar + Ldist. The quantities Lvar and Ldist are defined in Equation
(3.1).


Lvar =

1
K

∑K
k=1

1
Nk

∑Nk

i=1 [∥µk − xi∥ − δv]
2
+

Ldist =
1

K(K−1)

∑K
kA=1

∑K
kB=1,kA ̸=kB

[δd − ∥µkA − µkB∥]
2
+

(3.1)

The LaneNet clustering process is performed iteratively with the loss function in Equa-
tion (3.1) until the network converges. Upon convergence of the network, clusters will
emerge in the embeddings of lane pixels. These clusters will exhibit a separation distance
larger than δd from adjacent clusters, with each cluster possessing a radius smaller than δv.
The pseudocode for the embedding branch is given in Algorithm 9 in the appendix section.

Product (process 6) and Clustering (process 7): In the binary segmentation
map of the image, the background pixels are 0s and the lane pixels are 1s. To isolate
the embeddings specific to the lane pixels, the results from the embedding branch and the
segmentation branch are multiplied together. This process filters out all non-lane pixels,
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leaving us with only the embeddings associated with the lane pixels. Subsequently, we can
employ clustering techniques to determine which lane pixels correspond to distinct lane
lines. The LaneNet clustering process is performed iteratively, and it involves a specific
condition set in the loss function defined in Equation (3.1). This condition requires that
δd and δv satisfy the relationship δd > 6δv.

What this condition accomplishes is the ability to select a random lane embedding and
subsequently identify other lane embeddings that belong to the same lane. This is achieved
by applying a threshold within a radius of 2δv. This process is repeated iteratively until
all lane embeddings have been correctly assigned to their respective lanes.

To ensure that outlier lane embeddings are not inadvertently selected during this thresh-
olding process, a two-step approach is employed. First, a clustering algorithm known as
mean shift is used to shift the selected point closer to the cluster center. This step helps
to refine the initial selection. After this shift, the thresholding process is applied, which
results in the accurate identification of lane embeddings within the specified radius, ulti-
mately preventing the inclusion of outliers.

Lane Fitting (process 8) and Splines (output 9): The original LaneNet imple-
mentation introduced H-Net for lane fitting. H-Net was a neural network that predicted
the perspective transform matrix which will be used to convert the lane to Bird’s Eye View
(BEV). The working of H-Net is described as follows:

Let a lane pixel pi = [xi, yi, 1]
T ∈ P, where P is the set of pixels belonging to a

particular lane. The transformed pixel to BEV is given by p′
i = [x′

i, y
′
i, 1]

T ∈ P′ is equal to
Hpi where H is the output of H-Net. Next, the least-squares algorithm is used to fit an
n-degree polynomial, f(y′), through the transformed pixels P′.

To get the x-position, x∗
i of the lane at a given y-position yi, the point pi = [−, yi, 1]T is

transformed to p′
i = Hpi = [−, y′i, 1]T and evaluated as: x′∗

i = f(y′i). Note that the x-value
is of no importance and indicated with ’-’. By re-projecting this point p′∗

i = [x′∗
i , y

′
i, 1]

T

into the original image space we get: p∗
i = H−1p′∗

i with p∗
i = [x∗

i , yi, 1]
T . Hence, we can

evaluate the x-values at different y positions. The algorithm for lane fitting is given in
Algorithm 11 utilizing Algorithm 10.

Loss function: The following loss function was constructed to train H-Net. Given
M ground-truth lane points pi = [xi, yi, 1]

T ∈ P where |P| = M, the points are first
transformed using the output of H-Net, H. This is shown in Equation (3.2):

P′ = HP (3.2)
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with p′
i = [x′

i, y
′
i, 1]

T ∈ P′. Through these projected points, we fit a polynomial f(y′) =
µy′2 + νy′ + ρ using the least squares closed-form solution as shown in Equation (3.3):

w = (YTY)−1YTx′ (3.3)

with w = [µ, ν, ρ]T , x′ = [x′
1, x

′
2, ..., x

′
M ]T and

Y =

y
′2
1 y′1 1
...

...
...

y
′2
M y′M 1


for the case of a 2nd order polynomial. The fitted polynomial is evaluated at each y′i
location, giving us a x′∗

i prediction. These predictions are projected back: p∗
i = H−1p′∗

i

with p∗
i = [x∗

i , yi, 1]
T and p′∗

i = [x′∗
i , y

′
i, 1]

T . The loss function for projecting points back to
the original image space is shown in Equation (3.4).

Loss =
1

M

∑
i=1,M

(x∗
i − xi)

2 (3.4)

Since the lane fitting is done by using the closed-form solution of the least squares
algorithm, the loss is differentiable. We use automatic differentiation to calculate the
gradients.

Notice that to convert the image from BEV back to the original image space, we used:
p∗
i = H−1p′∗

i . When we attempted to implement H-Net, we noticed that during training
of H-Net, H-Net outputted matrices that were non-invertible. The consequence was that
we couldn’t convert from BEV back to the original space. Thus we couldn’t calculate the
loss and training of the network was halted. Hence we decide to circumvent this issue by
skipping the lane fitting step entirely. Despite skipping this step, we still had adequate
performance for both LaneNet and ILaneNet.

3.3 Selection of Region of Interest (ROI)

Lane detection methods often employ a two-step pipeline, involving lane candidate gen-
eration and subsequent fitting of lane curves. Fitting models such as cubic polynomials,
splines, and clothoids are commonly used to describe the lane curves parametrically. This
curve fitting process is crucial not only for simplifying the lane curve description but also
for enhancing detection accuracy by eliminating outliers.
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While CNN-based methods focus on predicting lane candidate positions, the task of
fitting these candidates into lane curves is typically accomplished using non-learning meth-
ods. Directly fitting lane curves in the image space may not yield optimal results due to
perspective distortion. A more effective approach involves transforming the original image
into a Bird’s Eye View (BEV) through inverse perspective projection and performing curve
fitting in this transformed space. This process is shown in Figure 3.2

(a) Input Image (b) Selection of ROI in Image

(c) Original Image with Predicted Lanes (d) Image transformed to BEV

(e) Transformed Image with Lane Fitted (f) Original Image with Fitted Lane

Figure 3.2: Process of Fitting Lanes on an Image

Camera calibration and the calculation of the homographic transformation matrix are
typically carried out prior to vehicle movement. However, relying on a fixed homography
may fail to adequately address perspective distortion caused by variations in the relative
pose between the vehicle and the ground plane (e.g., due to hilly terrain or camera instabil-
ity), leading to inaccurate lane fitting. Moreover, there are scenarios where pre-calibrating
the camera in advance is not feasible.

To resolve this issue, in Lanenet, a neural network called H-Net was utilized and trained
using a custom loss function. The purpose of the training was to optimize the network to
predict the parameters of a perspective transformation matrix, denoted as H. By accurately
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estimating H, the transformed lane points can effectively be fitted with a second or third-
order polynomial.

The neural network is designed to take the input image as a condition and generate
the projected transformation parameters, enabling the network to adapt to changes in the
ground plane. This adaptability ensures that the lane fitting remains accurate even when
the ground plane undergoes variations.

The matrix H comprises six degrees of freedom, representing the parameters necessary
to perform the perspective transformation. Through training and optimization, the H-Net
network learns to predict these parameters, ultimately improving the precision of the lane
fitting process.

H =

a b c
0 d e
0 f 1


The zeros are placed to enforce the constraint that horizontal lines remain horizontal under
the transformation.

In order to train H-Net, the following loss function is constructed. Assuming we have
N ground truth points, pi = [xi, yi, 1]

T ∈ P , a quadratic polynomial of the form f(y′) =
µy′2 + νy′ + ρ using the least squares closed-form solution:

w = (YTY)−1YTx′

with w = [µ, ν, ρ]T , x′ = [x′
1, x

′
2, ..., x

′
N ]

T and

Y =

y
′2
1 y′1 1
...

...
...

y
′2
N y′N 1


for the case of a 2nd order polynomial. By evaluating the fitted polynomial at each location
y′i , a prediction x′∗

i is obtained. Subsequently, these predictions are projected back: using
the p∗

i = H−1p′∗
i with p∗

i = [x∗
i , yi, 1]

T and p′∗
i = [x′∗

i , y
′
i, 1]

T . The loss is:

Loss =
1

N

∑
i=1,N

(x∗
i − xi)

2

Since the lane fitting is done by using the closed-form solution of the least squares
algorithm, the loss is differentiable and hence automatic differentiation to calculate the
gradients.
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3.3.1 H-Net Architecture

As discussed earlier, to address the issue of fitting a polynomial through lane pixels in the
original image space, a more effective approach is often employed. This involves projecting
the image into a bird’s-eye view representation, where the lanes appear parallel to each
other. In this transformed perspective, curved lanes can be accurately fitted using lower-
order polynomials, typically ranging from 2nd to 3rd order. This technique offers a solution
to the challenge of accommodating curved lanes without the need for excessively high-order
polynomials in the original image space..

To tackle this problem, a neural network called H-Net was trained with a custom loss
function. H-Net is optimized end-to-end and tasked with predicting the parameters of a
perspective transformation matrix H. This tailored matrix ensures that the transformed
lane points can be optimally fitted with 2nd or 3rd order polynomials. Crucially, the
network’s prediction is conditioned on the input image, enabling it to adapt the projection
parameters in the presence of ground-plane changes. This adaptability guarantees accurate
lane fitting even when the ground plane undergoes modifications.

H-Net is trained for a 3rd-order polynomial fit, with a scaled version of input image
with dimension 128× 64. The network is trained using Adam with a batch size of 10 and
learning rate 5e-5 until convergence. Table 3.1 presents the network architecture of H-Net.

It’s crucial to emphasize that H-Net’s network design intentionally maintains a compact
size. To reduce input dimensions, it utilizes max pooling. The remaining components of
the network consist of successive sequences of 3×3 convolutions, batch normalization, and
Rectified Linear Units (ReLUs), ultimately concluding with two fully-connected layers.

3.4 Training of Lanenet

Lanenet is trained using a specific configuration: it employs an embedding dimension of 4,
with δv set to 0.5 and δd set to 3. The input images are rescaled to a fixed size of 512×256.
During training, the network utilizes the Adam optimizer with a batch size of 8 and a
learning rate of 5e-4. The training process continues until convergence is reached, ensuring
optimal performance. The algorithm and flowchart for training is given in Algorithm 1
and Figure 3.3 respectively.
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Type Filters Size/Stride Output
Conv+BN+ReLU 16 3x3 128x64
Conv+BN+ReLU 16 3x3 128x64

Maxpool 2x2/2 64x32
Conv+BN+ReLU 32 3x3 64x32
Conv+BN+ReLU 32 3x3 64x32

Maxpool 2x2/2 32x16
Conv+BN+ReLU 64 3x3 32x16
Conv+BN+ReLU 64 3x3 32x16

Maxpool 2x2/2 16x8
Linear+BN+ReLU 1x1 1024

Linear 1x1 6

Table 3.1: H-Net network architecture.

Algorithm 1 Lanenet Model

Input:
U : Input Images
Y : Binary Segmentation Image
Z : Instance Segmentation Image

1: procedure
2: R← Resize(U)
3: for i← 1 to epochs do
4: A← Shared Encoder(R)
5: B ← Embedding Branch(A)
6: C ← Segmentation Branch(A)
7: L1← Compute Embedding Loss(B,Z)
8: L2← Compute Segmentation Loss(C, Y )
9: Update Weights to Minimize Losses
10: end for
11: end procedure
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Figure 3.3: Flowchart for training LaneNet

3.5 Testing of Lanenet

In the lane detection process using LaneNet, after the image is provided as an input
to the trained embedding and segmentation model, two outputs are obtained: a binary
segmentation map and an embedding map.

The binary segmentation map indicates which pixels in the image belong to the lane
and which pixels do not. It assigns a binary value (typically 1 or 0) to each pixel, effectively
separating the lane region from the background.

Simultaneously, the embedding map is generated, which assigns a vector or feature
representation to each pixel in the image. This embedding encodes information about the
pixel’s position and characteristics relevant to lane detection.

Next, the lane pixels are clustered into different instances based on their embeddings.
This clustering step groups pixels that belong to the same lane, allowing the algorithm to
distinguish multiple lanes if present in the image.

Once the lane pixels are separated into distinct instances, a curve fitting process is
applied to each instance. This involves fitting a curve or line to the clustered pixels,
aiming to accurately represent the lane trajectory.

Finally, a spline representation is outputted for each lane, which provides a smooth and
continuous estimation of the lane’s shape. Splines are commonly used to describe curves in
a flexible and precise manner, allowing for smooth lane boundaries to be generated. This
is shown in Figure 3.4.
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Figure 3.4: Pipeline for Testing an Image in Lanenet

3.5.1 Improved Lanenet

To add the number of lanes (NoL) to the input image, we were inspired by the Conditional
GAN network[6]. Hence, we first one-hot encoded the NoL. The one-hot encoded repre-
sentation of the number of lanes was subsequently fed into a fully connected (FC) layer.
This FC layer processes the lane information and produces an output with dimensions
that can be later reshaped for concatenation with the input image. An FC layer connects
every input neuron to every output neuron. Finally, the FC layer output was reshaped and
concatenated with the original image. This now becomes the input to the LaneNet model
and this new modification to the network is called ILaneNet.

To illustrate this process, assume that we have an input image of size 1280 × 720 × 3
(αm width×βn height ×c channels) and aim to rescale it to a target size of 512 × 256 ×3
(m width× n height× c channels). In the LaneNet approach, we directly scale the image
to the target size of 512× 256× 3 (m width× n height× c channels).

However, in the ILaneNet approach, the image is scaled to a slightly different shape,
specifically, 512× 255× 3 (m width× (n− 1) height× c channels). The lane information is
one-hot encoded and then passed through a fully connected layer with a size of 512× 3 =
1536 (m · c). We assumed that the possible lane values range from 1 to m · c (where m · c
is the maximum possible value). Hence, our one-hot encoding was performed as follows:
1 lane can be encoded as [1, 0, 0, . . . , 0], 2 lanes can be encoded as [0, 1, 0, . . . , 0], 3 lanes
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can be encoded as [0, 0, 1, . . . , 0] and m · c lanes can be encoded as [0, 0, 0, . . . , 1]. In this
encoding, each position in the array corresponds to a possible number of lanes, and only
one position is “hot” (set to 1) while the others are “cold” (set to 0) to indicate the specific
value of the number of lanes.

After passing the encoded lanes through a fully connected layer, it is reshaped into a
tensor of size 512×1×3 (m width×1 height×c channels). The reshaped lane information
is then concatenated with the rescaled image, which has a size of 512 × 255 × 3, to form
an output of size 512× 256× 3. This results in the same shape as the rescaled image used
in the LaneNet approach. The output of concatenation would now be used as the input
tensor for the LaneNet network.

The ILaneNet architecture is depicted in Figure 3.6. The intricate process of merging
the inputs is detailed in Figure 3.5. We have also provided a pseudocode detailing how the
lanes and input image are merged in Algorithm 2.

Figure 3.5: Concatenating image with lanes
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Figure 3.6: ILanenet Architecture

Algorithm 2 Add Lane Information

Input:
I : Input image (αm× βn× c)
NoL : Number of Lanes where NoL > 0
m : Width of the target image
c : Number of channels in input image
n : Height of the target image

Output:
outImg : Image with added lane information (m× n× c)

1: procedure
2: // Resize the input image to m× (n− 1)× c
3: resizedImg ← ResizeImage(I, (m, n-1, c))
4: // One-hot encode lane information
5: laneInfo← EncodeLaneInformation(NoL)
6: // Extract lane information using FCN network
7: extractedInfo← FCN(laneInfo, size=mc)
8: // Reshape output
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Algorithm 2 Add Lane Information Continued

9: laneInfo← Reshape(extractedInfo, (m, 1, c))
10: // Concatenate lane information with the image
11: outImg ← Concatenate(resizedImg, laneInfo)
12: return outImg
13: end procedure

3.6 New Performance Metrics

We introduce a new performance metric, which we refer to as the capacity of the lane
detection system. The expression for capacity is given in Equation 3.5. The term “capacity
of the lane detection system” offers a novel perspective on understanding the accuracy of
a lane detection system.

To illustrate this idea, consider a scenario with two lanes on the road. If the lane
detection system can accurately identify both of these lanes, it signifies that more vehicles
can smoothly traverse the road. In essence, this means the lane detection system possesses
a higher capacity because it enables the full utilization of available lanes, thereby promoting
efficient traffic flow.

Conversely, if the system can only detect one lane accurately while overlooking the
other, it implies that all vehicles may be restricted to a single portion of the road. This
can lead to suboptimal road usage, potentially resulting in traffic congestion. In such cases,
the lane detection system is deemed to have a lower capacity because it cannot effectively
harness all the lanes, which in turn limits traffic efficiency.

In this context, the assessment of capacity takes a global perspective, considering a
network of autonomous vehicles whose paths are centrally planned. The emphasis is on the
system’s ability to orchestrate the movement of multiple vehicles, ensuring they navigate
the road with optimal efficiency by leveraging the full spectrum of available lanes.

We therefore define the term “capacity” as the system’s ability to detect and effectively
utilize existing lane markings/lanes on the road. Conversely, lost capacity refers to the
system’s inability to effectively utilize existing lane markings/ lanes on the road.

In addition to capacity and lost capacity, we also introduce a new metric known as
unsafe driving measure. The unsafe driving measure evaluates the extent to which the
lane detection system may provide inaccurate lane predictions that could lead the driver
to make unsafe decisions. When the system generates false positives, it mistakenly indicates
the presence of a lane where there isn’t one. These false positives can mislead the driver
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into believing that a section of the road is a legitimate lane. As a result, an autonomous
vehicle may attempt to maneuver into this supposed lane, thinking it’s safe to do so. This
leads to unsafe driving. The expressions for capacity, lost capacity and unsafe driving
measure are given in Equations 3.5, 3.6 and 3.7 respectively:

Capacityl =
TP l

TP l + FN l
(3.5)

Lost Capacityl = 1− Capacityl (3.6)

Unsafe Driving Measurel =
FP l

TP l + FN l
(3.7)

with TP l being the number of correctly predicted lanes, FP l being the number of wrongly
predicted lanes and FN l being the number of missed ground-truth lanes. It is also worth
noting that the expression for capacity and unsafe driving measure coincide with the ex-
pression for recall and false positive score.

When abstracting a lane as a line, it may not provide sufficient information for practical
use. Imagine a scenario where the network outputs only one lane line. In this case, the
system lacks crucial details about the lane’s boundaries. This makes it challenging for a
vehicle to determine where it should pass. To address this limitation, we introduce a more
advanced lane abstraction approach.

In the lane abstraction approach, instead of focusing solely on individual lane lines,
we consider entire lanes as distinct entities. This means that we count the number of
lanes present in the scene, providing a more comprehensive representation of the road
layout. This approach is valuable because it offers a clearer understanding of the road
configuration, enabling vehicles to make more informed decisions regarding lane changes
and safe navigation.

To better suit the lane abstraction approach, modifications were introduced to the
following equations to consider lanes rather than lines. The expressions for false positive
score and false negative score in the lane abstraction approach are given in Equations (3.8)
and (3.9) respectively.

FPSL =
FL
pred

NL
pred

(3.8)
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FNSL =
ML

pred

NL
gt

(3.9)

with FL
pred being the number of wrongly predicted lanes, NL

pred the number of predicted
lanes, ML

pred the number of missed ground-truth lanes and NL
gt being the number of all

ground-truth lanes. The expressions for capacity, lost capacity and unsafe driving measure
in the lane abstraction approach are given in Equations 3.10, 3.11 and 3.12 respectively:

CapacityL =
TPL

TPL + FNL
(3.10)

Lost CapacityL = 1− CapacityL (3.11)

Unsafe Driving Measure =
FPL

TPL + FNL
(3.12)

with TPL being the number of correctly predicted lanes, FPL being the number of wrongly
predicted lanes and FNL being the number of missed ground-truth lanes.
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Chapter 4

Experimentation and Results

The experiments conducted in this thesis were thoughtfully designed to align perfectly
with the stated objectives. The primary focus was to evaluate the performance of two lane
detection methods, namely LaneNet and ILaneNet, while also visualizing and analyzing the
obtained lane detection results. Furthermore, the investigation of the limitations associated
with the proposed ILaneNet was another critical aspect of the research. The remaining
sections describe the datasets used and the experiments that were performed.

4.1 Dataset

The TuSimple dataset was chosen as our primary dataset for several compelling reasons.
To begin with, the dataset consists of 6,408 road images captured on US highways, with
each image having a resolution of 1280×720. This resolution provides a substantial amount
of detail and context, which is crucial for training a robust computer vision model.

Next, the dataset’s size is substantial, with 3,626 images allocated for training, 358
for validation, and 2,782 for testing. This ample number of images is vital for effectively
training our neural network. A larger dataset can help prevent overfitting, as the model
has access to a diverse range of road scenarios, ensuring it can generalize well to unseen
data.

Additionally, we employed data augmentation techniques to further expand the training
dataset. Data augmentation involves applying various transformations such as rotation,
flipping, and scaling to the existing images, effectively creating new samples. This process
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enhances the model’s ability to handle different road conditions and perspectives, making
it more robust to variations encountered during real-world deployment.

One key aspect of our dataset selection was having diversity in road conditions. This
diversity was found in the TuSimple dataset which contains road images under various
weather conditions. This diversity is essential for assessing the model’s generalization
capabilities and performance in adverse scenarios. By evaluating the model on real-life
data with different weather conditions, we can gain a better understanding of its reliability
and readiness for deployment in practical environments.

Moreover, the TuSimple dataset being a real-life dataset is a significant advantage.
Real-life datasets are more likely to include challenging scenarios and situations that might
not be fully represented in synthetic or simulated datasets. This aspect makes the TuSimple
dataset more suitable for training and evaluating a real-world application, as it ensures our
model is exposed to a wide range of complexities and challenges found in actual highway
scenes.

The factors listed above make the TuSimple dataset a fitting choice for our project.

4.2 Hyperparameter Tuning

4.2.1 Selection of Embedding Dimensionality for LaneNet and
ILaneNet

In our pursuit to enhance the performance of lane detection networks, we recognized the
significance of selecting an appropriate number of dimensions for the embedding layer in
both LaneNet and ILaneNet. As explained earlier, the embedding layer plays a critical
role in representing information about the specific lane instance. The choice of the embed-
ding dimensionality is a delicate balance between achieving higher model expressiveness
while avoiding overfitting and computational inefficiencies. Higher dimensions allow for
increased feature richness and complexity, potentially leading to improved lane detection
results. However, excessively high-dimensional embeddings can lead to overfitting, where
the model becomes overly specialized to the training data and performs poorly on unseen
data. Similarly, lower-dimensional embeddings may be computationally efficient but might
lose important discriminative information, resulting in reduced accuracy. Our objective was
to find the optimal number of dimensions that strikes a balance between computational
efficiency, expressiveness and generalization.
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To address this crucial aspect of our research, we conducted experiments to evalu-
ate different embedding dimensionality settings. We systematically varied the number of
dimensions and assessed the model’s performance across a range of metrics, including ac-
curacy, false negative score and false positive score. The results for the experiments are
summarized in Table 4.1.

Table 4.1: Comparison of embedding dimensionality for LaneNet

Embedding Dimension Accuracy FPSl FNSl

1 84.96 44.1 37.17
2 92.81 23.5 11.3
4 92.3 23 11.1
5 92.9 22.9 10.9
7 93.2 21.9 10.0
9 92.6 22.6 11.8

From Table 4.1, we can see that an embedding dimension of 1 produces the least
accuracy of 84.96% with the worst false positive score and the worst false negative score of
44.1% and 37.17% respectively. This shows that an embedding dimension of 1 is inadequate
for capturing information about the lane instance a pixel belongs to. We also observe from
the table that as the embedding dimension increases from 2 to 7, we get a corresponding
increase in better results for accuracy, false positive score and false negative score. This
can be attributed to the embedding dimension proving sufficient parameters to better
capture information about the specific lane instance a lane belongs to. From an embedding
dimension of 9, we start to see that the accuracy, false positive and false negative score
starts to drop. This could be the result of the model having more than enough parameters
and tending to become more specialized to the training data.

Considering that there is at most 1% difference between accuracy, false positive score
and false negative score for an embedding dimension from 2 to 7, we chose an embedding
dimension of 4 because it was the most computationally efficient.

4.2.2 Impact of Minimum Area Threshold on Lane Detection
Performance

In the experimentation section of our research, we investigated the influence of the mini-
mum area threshold on the performance of our lane detection algorithm. This parameter
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plays a critical role in filtering out small and irrelevant regions from the binary segmenta-
tion output, with the aim of improving the accuracy and robustness of the lane detection
process.

The minimum area threshold is a user-defined parameter that specifies the minimum
allowable area for a component to be considered a valid lane region. After applying im-
age morphology operations and connected component analysis to the binary segmentation
result, each identified component’s area is evaluated.

We conducted a series of experiments where we varied the minimum area threshold
over a range of values.

Through these experiments, we aimed to find the optimal minimum area threshold that
strikes a balance between removing false positives and preserving genuine lane markings.
A threshold that is too high might filter out small but valid lane regions, leading to missed
detections and reduced recall. On the other hand, a threshold that is too low may allow
noise and artifacts to be considered as valid lanes, reducing the overall accuracy and
precision of the lane detection system.

By systematically evaluating the minimum area threshold, we were able to identify that
a threshold hold value of 100 yielded the best lane detection performance. This optimal
value provided an effective trade-off between noise removal and lane preservation, leading
to accurate and reliable lane detection results.

Furthermore, we investigated the impact of the minimum area threshold on the algo-
rithm’s computational efficiency. Setting a higher threshold generally reduces the number
of components to process, potentially speeding up the lane detection process. However,
an excessively high threshold might remove genuine lane markings, necessitating a careful
balance between accuracy and computational cost.

The results and analyses obtained from these experiments contributed valuable in-
sights into the significance of the minimum area threshold in lane detection. The findings
guided us in determining the best threshold setting to achieve superior lane detection
performance, which is crucial for real-world applications such as autonomous driving and
driver-assistance systems.

4.2.3 Selection of Backbone and Clustering Algorithm

In this section of the experimentation, we focused on the crucial task of selecting the most
suitable backbone and clustering algorithm for LaneNet. A backbone network is used for
feature extraction. Clustering plays a fundamental role in grouping lane feature points and
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identifying lane boundaries accurately. The performance and effectiveness of the clustering
algorithm significantly impact the overall quality of lane detection results. The results of
our experiments are given in Table 4.2.

Table 4.2: Comparison of Backbone and Clustering Methods for LaneNet

Backbone Clustering Accuracy
BiseNetV2 DBScan 52.23%

ENet Meanshift 92.3%

To make an informed decision, we evaluated multiple clustering algorithms, each with
its unique strengths and characteristics. The selected algorithms for comparison included
K-means, DBSCAN (Density-Based Spatial Clustering of Applications with Noise), and
Mean Shift clustering.

Each clustering algorithm was applied to the lane embeddings extracted from the im-
ages, and the ability for the clustering algorithm to distinguish between lanes was assessed
and compared. The accuracy of lane detection was computed to objectively evaluate the ef-
fectiveness of each clustering method. Additionally, visual inspection of the lane detection
results was performed to gain qualitative insights into the clustering performance.

KMeans was the least suitable algorithm for lane embeddings based on visual evidence
in ILaneNet. In LaneNet, since we don’t supply the NoL, we can’t use the KMeans algo-
rithm since we don’t know what the number of clusters will be. In ILaneNet, we possess
the knowledge of the number of lanes, enabling us to specify the number of clusters to
be provided to the KMeans algorithm.he inherent problem is rooted in the fundamental
operation of KMeans, which involves the random selection of an embedding to establish
clusters. The inherent problem with this approach lies in the fact that KMeans often se-
lects multiple embeddings from the same lane, leading to the erroneous grouping of a single
lane into multiple clusters.

DBScan was found to perform better compared to KMeans when the same backbone
network was used but worse compared to the Meanshift algorithm with ENet backbone.
One advantage of DBScan is that there is no requirement to specify the number of clusters
and hence the approach can be used for both LaneNet and ILaneNet. However, selecting
parameters for DBScan namely the epsilon value and the mininum number of points can
be challenging. An epsilon value of 0.35 with minimum number of samples of 1000 was
found to work well for DBScan.

The Mean Shift clustering algorithm was found to work best with the ENet backbone.

40



Mean shift clustering algorithm, a non-parametric approach, allows for adaptive density
estimation and is well-suited for datasets with varying densities.

The results of our experiments shed light on the strengths and weaknesses of each
clustering algorithm for lane detection. We identified the algorithm that yielded the most
accurate and reliable lane boundaries across diverse driving scenarios. Additionally, we
analyzed the computational performance of each algorithm, ensuring the selected method
strikes a balance between accuracy and efficiency.

4.2.4 Fixed Homography vs Conditional Homography

We also conducted experiments where lanes were fitted with two different approaches:
fixed homography and conditional homography, both of which were implemented using the
DBScan clustering algorithm. In fixed homography, we chose a fixed perspective trans-
formation matrix for all images in the test set. In conditional homography, while we did
not incorporate H-Net into our experiments, we successfully derived the transformation
matrix for each image within the LaneNet framework, as described in [37], enabling us to
apply perspective transformation within LaneNet. The results of these experiments are
presented in Table 4.3.

Table 4.3: LaneNet Fixed Homography vs Conditional Homography

Backbone Clustering Algorithm Homography Type Accuracy (%)
BiseNetV2 DBScan Fixed Homography 52.23
BiseNetV2 DBScan Conditional Homography 65.49

Referring to Table 4.3, it can be observed that using conditional homography led to a
notable accuracy improvement of 13.26%. This outcome aligns with the findings from the
initial LaneNet implementation, where H-Net was employed to generate the perspective
transform matrix, and conditional homography similarly yielded accuracy gains. The ratio-
nale behind this accuracy enhancement lies in the fact that conditional homography takes
into consideration groundplane variations and leverages this data to make an informed
selection of an appropriate perspective matrix.

4.3 Results

The final configuration for LaneNet and ILaneNet used E-net as a backbone together with
the Meanshift algorithm. The results of running LaneNet and ILaneNet on the TuSimple
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Dataset are given in Tables 4.4, 4.5 and 4.6. Additionally, the reasons for the results are
also explained in this section.

Table 4.4: Lane Abstraction

NETWORK USED CAP. LOST CAP. UNSAFE DRIV. MEASURE
ILaneNet 87.5 % 12.5 % 27.3 %
LaneNet 80.4 % 19.6 % 38.5 %

Table 4.5: Line Abstraction

NETWORK USED CAP. LOST CAP. UNSAFE DRIV. MEASURE ACC
ILaneNet 93.1 % 6.9 % 13.9 % 94.5 %
LaneNet 88.9 % 11.1 % 23.0 % 92.3 %

Table 4.6: Speed metrics

Metric LaneNet ILaneNet
Forward pass time per image (ms) 43.5 51.6
Clustering time per image (ms) 231.8 232.8
Total time per image (ms) 275.34 284.4

Quantitative Analysis: The outcome of running the experiments are given in Table
4.4 and Table 4.5.

Line Abstraction For line abstraction, it is evident that ILaneNet is superior to LaneNet
across all metrics. ILaneNet exhibits slightly higher accuracy compared to LaneNet, im-
plying that ILaneNet correctly classifies a slightly greater number of data points than
LaneNet. However, this improvement is so slight that it may not be considered a signifi-
cant advantage of ILaneNet over LaneNet.

ILaneNet’s greatest strengths over LaneNet lie in terms of reducing false positives
and false negatives, resulting in a higher capacity (recall) for the lane detection system.
ILaneNet achieves a recall of approximately 93.1%, meaning it’s more likely to identify all
existing lane lines compared to LaneNet. In terms of capacity, this suggests that ILaneNet
is more likely to have vehicles utilizing all available lanes, reducing the likelihood of lost
capacity. This is also reflected in the lost capacity score.

ILaneNet demonstrates an unsafe driving measure (false positive score) of approxi-
mately 13.9%, significantly lower than LaneNet’s score of 23.0%. This implies that drivers
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(a) Ground Truth (b) LaneNet detects False
Positive

(c) ILaneNet does not detect
False Positive

(d) Ground Truth (e) LaneNet detects False
Positive

(f) ILaneNet does not detect
False Positive

(g) Ground Truth (h) LaneNet misses a Lane (i) ILaneNet identifies the
missed Lane

Figure 4.1: Lane Detection in LaneNet and ILaneNet

utilizing LaneNet are more likely to identify false lanes as real lanes, potentially leading to
unsafe maneuvers compared to drivers utilizing ILaneNet.

Lane Abstraction As we discussed earlier, assessing metrics such as used capacity, lost
capacity, and unsafe driving measures in terms of lanes provides more meaningful insights
compared to assessing them in terms of individual lines. The results for lane-based assess-
ments are presented in Table 4.4. In this table, it is evident that ILaneNet outperforms
LaneNet across these crucial metrics. Specifically: ILaneNet achieves a higher used capac-
ity of 87.5% compared to LaneNet’s 80.4%. This signifies that ILaneNet is more proficient
at identifying lanes compared to LaneNet. Consequently, ILaneNet also exhibits a lower

43



lost capacity compared to LaneNet.

ILaneNet demonstrates a lower unsafe driving measure, with a score of 27.3%, in con-
trast to LaneNet’s score of 38.5%. This implies that vehicles utilizing ILaneNet are less
likely to result in unsafe driving compared to LaneNet.

Visual Analysis: From Figure 4.1 presented above, we can gain some insight into
the lane detection capabilities of LaneNet and ILaneNet.

In the context of false positive detection, the ground truth images (Figures 4.1a and
4.1d) serve as the baseline, representing the actual lane markings. LaneNet’s performance,
as shown in Figures 4.1b and 4.1e, reveal that it tends to detect additional, false positive
lane markings not present in the ground truth. This suggests that LaneNet may have a
tendency to over-detect lanes in certain scenarios. Conversely, ILaneNet’s results in Figures
4.1c and 4.1f demonstrate that it is more conservative in its lane detection approach.
ILaneNet does not detect these false positive lane markings, which is advantageous when
accuracy and avoiding false alarms are paramount.

Additionally, when considering missed lane detection, Fig. 4.1g represents the ground
truth with all the lane markings correctly annotated. However, Figure 4.1h shows that
LaneNet misses one of the lane markings present in the ground truth. This indicates that
LaneNet may have limitations in accurately identifying all lane markings. In contrast,
Figure 4.1 i illustrates ILaneNet’s ability to successfully identify the missed lane mark-
ing, showcasing its strength in capturing lane markings that may be overlooked by other
algorithms.

These sample observations give an insight into the strengths of each algorithm. LaneNet
overall has a higher false positive rate and also tends to miss lane markings. Conversely,
ILaneNet excels in capturing missed lane markings while avoiding false positives. This
makes ILaneNet a better model compared to LaneNet overall.

Speed Metrics: The speed metrics for both LaneNet and ILaneNet are given in Table
4.6. From Table 4.6, we notice that LaneNet takes a shorter time of 275.34ms compared to
ILaneNet which takes a slightly longer time of 284.4ms to process an image. This makes
sense because additional time will be required to merge the total number of lanes with
the input image in ILaneNet. Once the total number of lanes have been merged with the
input image, we can see that it takes a similar amount of time to cluster both images.
In conclusion, having an additional time of about 10ms to process the image in ILaneNet
is a small price to pay for the significant advantage that ILaneNet gives in reducing false
negatives and false positives.
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Chapter 5

Conclusion and Future Work

In conclusion, this thesis introduced an enhanced lane detection model, ILanenet, designed
to provide robust and accurate lane detection in a variety of driving scenarios. By incorpo-
rating multiple inputs, including the driving scene and the number of lanes, and leveraging
a fully connected layer for feature extraction, ILanenet demonstrated improved perfor-
mance compared to its predecessor, Lanenet. It showcased the ability to avoid false lane
recognition and maintain accuracy across diverse road conditions.

In addition, we introduced new performance evaluation metrics namely capacity, lost
capacity and unsafe driving measure which offer a more comprehensive and nuanced assess-
ment of lane detection techniques. Furthermore, we also introduced a shift in the evaluation
paradigm by advocating the use of a lane abstraction approach for assessing detected lanes,
diverging from the conventional line abstraction methodology. We also compared the time
to process images in both Lanenet and ILanenet and found that ILanenet takes slightly
more time to process an image compared to Lanenet. However, this is a good tradeoff to
make if we look at the benefit ILanenet provides over Lanenet.

While this thesis marks a significant step forward in the field of lane detection, there
are several promising avenues for future work and research. Firstly, we plan to further
enhance ILanenet by utilizing information from the number of lanes to extrapolate the
positions of missing lanes, addressing scenarios where lane markings may be obscured or
incomplete. This improvement will contribute to a more comprehensive and precise lane
detection system.

Additionally, the elimination of false positives remains a critical focus of our future
work. We intend to refine ILanenet’s architecture and training methods to minimize the
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occurrence of false lane detections, thereby enhancing its reliability for real-world applica-
tions. This will be vital for ensuring the safety and effectiveness of autonomous vehicles
and advanced driver-assistance systems.

Furthermore, we aim to explore the integration of ILanenet with other advanced tech-
nologies, such as simultaneous localization and mapping (SLAM) and object detection, to
provide a more holistic understanding of the driving environment. This multidimensional
approach will contribute to a more comprehensive and context-aware perception system
for autonomous vehicles.

In summary, this thesis has laid the foundation for a more robust and accurate lane
detection system, ILanenet, and has outlined a roadmap for future research, focusing on
extrapolating missing lanes, eliminating false positives, and integrating advanced technolo-
gies to enhance the capabilities of ILanenet in the dynamic field of autonomous driving
and computer vision. These efforts will contribute to safer and more reliable autonomous
driving systems and further advance the state of the art in lane detection technology.
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APPENDIX

Algorithm 3 Initial

Input:
U : A matrix of pixels of a low resolution of the input image
maxPoolKernelSize : Kernel size for maxpool layer
maxPoolStride : Stride size for maxpool layer
IC : Number of Channels of Input Image
OC : Number of Channels of Output Image
convK : Kernel size for conv layer
convS : Stride size for conv layer
convP : Padding size for conv layer
Activation : PReLU Activation function

Output:
downsampledImg : Downsampled version of the Image

1: procedure
2: maxPoolOut← MaxPooling(maxPoolKernelSize, maxPoolStride)(U)
3: strideOut← Conv(IC, OC, convK, convP, convS)(I)
4: downsampledImg ← ConcatenateHorizontally(maxPoolOut, strideOut)
5: downsampledImg ← batchNorm(downsampledImg)
6: downsampledImg ← Activation(normImg)
7: return downsampledImg
8: end procedure

Algorithm 4 ConvBA

Input:
I : Input Feature Map
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Algorithm 4 CONVBA Continued

Input:
IC : Number of input channels
OC : Number of output channels
S : Stride for convolution (default: 1)
kSize : Size of kernel for regular bottle neck
pad : Padding for regular bottle neck (default: 0)
dil : Space between kernel elements (default: 1)
bias : Specifies whether bias are in the convolutional layers (default: True)
Activation : Activation function to be used

Output:
downsampledImg : Downsampled version of the Image

1: procedure
2: convOut← Conv2d( IC, OC, kSize, S, pad, dil, bias)(I)
3: bnOut← BatchNorm2d(convOut)
4: aOut← Activation(bnOut)
5: return aOut
6: end procedure

Algorithm 5 DownsamplingBottleneck

Input:
I : Input Feature Map
R : Ratio which computes the number of channels after projection
C : Number of input channels
kSize : Size of kernel for regular bottle neck
pad : Padding for regular bottle neck
dropoutProb : Drop out probability
bias : Specifies whether bias are in the convolutional layers
activation : Activation function to be used
stride : Stride for convolution

Output:
downsampledFeatureMap : Downsampled version of the Feature Map
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Algorithm 5 DownsamplingBottleneck Continued

1: procedure
2: OC ← C / R
3: maxOut← MaxPool( kSize, stride )(I)
4: conv2Out← ConvBA( C, OC, kSize+1, stride, bias)(maxOut)
5: conv3Out← ConvBA( C, OC, kSize-1, stride, bias)(conv2Out)
6: dropOut← Dropout(dropoutProb)(conv3Out)
7: paddedMaxOut← Zeropad(maxOut)
8: downsampledFeatureMap← Add(paddedMaxOut, dropOut)
9: return downsampledFeatureMap
10: end procedure

Algorithm 6 UpsamplingBottleneck

Input:
I : Input Feature Map
R : Ratio which computes the number of channels after projection
C : Number of input channels
kSize : Size of kernel for regular bottle neck
pad : Padding for regular bottle neck
dil : Space between kernel elements
asymmetric : Indicates if convolution is assymetric or not
dropoutProb : drop out probability
bias : Specifies whether bias are in the convolutional layers
activation : activation function to be used
stride : Stride for convolution (default: 1)
OutputSize : Size of output after unpooling and convtranspose

Output:
downsampledFeatureMap : Downsampled version of the Feature Map

1: procedure
2: OC ← C / R
3: mainConvOut← ConvBA( C, OC, kSize-1, stride, bias)(I)
4: maxUnpoolOut← MaxUnpool( kSize, unpoolOutputSize )(mainConvOut)
5: conv1Out← ConvBA( C, OC, kSize-1, bias)(I)
6: convTOut← ConvTranspose2d( IC, IC, kSize, stride, bias)(I)
7: bnOut← BatchNorm2d(convOut)
8: aOut← Activation(bnOut)
9: conv3Out← ConvBA( C, OC, kSize-1, stride, bias)(conv2Out)
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Algorithm 6 Upsampling Bottleneck Continued

10: dropOut← Dropout( p=dropoutProb)(conv3Out)
11: paddedMaxOut← Zeropad(maxOut)
12: downsampledFeatureMap← Add(paddedMaxOut, dropOut)
13: return downsampledFeatureMap
14: end procedure

Algorithm 7 BottleNeck

Input:
I : Input Feature Map
R : Ratio which computes the number of channels after projection
C : Number of input channels
kSize : Size of kernel for regular bottle neck
pad : Padding for regular bottle neck
dil : Space between kernel elements
asymmetric : Indicates if convolution is assymetric or not
dropoutProb : drop out probability
bias : Specifies whether bias are in the convolutional layers
activation : activation function to be used
stride : Stride for convolution (default: 1)

1: procedure
2: OC ← C / R
3: conv1Out← ConvBA( C, OC, kSize, stride, bias)(I)
4: if asymmetric = True then
5: conv2Out← ConvBA( C, C, (kSize,1), stride, (pad, 0), dilation, bias)(conv1Out)
6: conv2Out← ConvBA( C, C, (1, kSize), stride, (0, pad), dil, bias)(conv2Out)
7: else
8: conv2Out← ConvBA( C, C, kSize, stride, pad, bias)(conv1Out)
9: end if
10: conv3Out← ConvBA( C, OC, kSize, stride, bias)(conv2Out)
11: dropOut← Dropout( p=dropoutProb)(conv3Out)
12: addOut← Add(I, conv3Out)
13: return addOut
14: end procedure
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Table 1: ENet architecture

Name Type

initial

ENet Stage 1

bottleneck1.0 downsampling
4× bottleneck1.x

ENet Stage 2

bottleneck2.0 downsampling
bottleneck2.1
bottleneck2.2 dilated 2
bottleneck2.3 asymmetric 5
bottleneck2.4 dilated 4
bottleneck2.5
bottleneck2.6 dilated 8
bottleneck2.7 asymmetric 5
bottleneck2.8 dilated 16

Algorithm 8 Binary Segmentation Branch

Input:
I : Input Feature Map
stageFourOC : Number of output channels in stage four of ENet
stageFourIC : Number of input channels in stage four of ENet
stageFourIC : Number of input channels in stage five of ENet
kSize : Size of kernel for regular bottle neck
pad : Padding for regular bottle neck
dp : drop out probability
bias : Specifies whether bias are in the convolutional layers
act : activation function to be used
S : Stride for convolution
binarySegDim : The output dimension of binary segmentation

Output:
bOut : Output of binary segmentation
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Algorithm 8 Binary Segmentation Branch Continued

1: procedure
2: upOut← UpsamplingBottleneck(stageFourOC, stageFourIC, dp, act)(I)
3: regularOut← RegularBottleneck(stageFourIC, pad, dp, act)(upOut)
4: regOut← RegularBottleneck(stageFourIC, pad, dp, act)(regularOut)
5: upOut← UpsamplingBottleneck(stageFiveOC, stageFiveIC, dp, act)(regOut)
6: regOut← RegularBottleneck(stageFiveIC, pad, dp, activation)(upOut)
7: bOut← ConvTranspose(stageFiveIC, binarySegDim, kSize, S, pad, bias)(regOut)
8: return bOut
9: end procedure

Algorithm 9 Embedding Branch

Input:
I : Input Feature Map
stageFourOC : Number of output channels in stage four of ENet
stageFourIC : Number of input channels in stage four of ENet
stageFourIC : Number of input channels in stage five of ENet
kSize : Size of kernel for regular bottle neck
pad : Padding for regular bottle neck
dp : drop out probability
bias : Specifies whether bias are in the convolutional layers
act : activation function to be used
S : Stride for convolution
embedDim : The output dimension of the embedding branch

Output:
binaryOut : Output of binary segmentation

1: procedure
2: upsampleOut← UpsamplingBottleneck(stageFourOC, stageFourIC, dp, act)(I)
3: regularOut← RegularBottleneck(stageFourIC, pad, dp, act)(upsampleOut)
4: regOut← RegularBottleneck(stageFourIC, pad, dp, act)(regularOut)
5: upsampleOut← UpsamplingBottleneck(stageFiveOC, stageFiveIC, dp, act)(regOut)
6: regOut← RegularBottleneck(stageFiveIC, pad, dp, activation)(regOut)
7: embedOut← ConvTranspose(stageFiveIC, embedDim, kSize, S, pad, bias)(embedOut)
8: return embedOut
9: end procedure
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Algorithm 10 PerspectiveTransformation

Input:
perspectiveParam: Perspective transformation parameters for the image
P : Lane pixels such that pi = [xi, yi, 1]

T ∈ P
Output:

P’: Projected lane pixels
1: procedure
2: H ← MakePerspectiveMatrix(perspectiveParam) // Algorithm 12
3: P ′ ← HP
4: return P ′

5: end procedure

Algorithm 11 Lane Fitting

Input:
E : Lane instance and their associated lane pixels

Output:
V: parameters of a spline for each lane instance

1: procedure
2: splines = []
3: for lane instance ∈ E do
4: lane instance pixels ← PerspectiveTransformation(pixels of lane instance)

// Algorithm 10
5: X ← x-coordinates of lane instance pixels in the form [x1, x2, . . . , xn]
6: Y ← y-coordinates of lane pixels in the form [y1, y2, . . . , yn]
7: w ← (YTY)−1YTX′

8: append w to V
9: end for
10: return V
11: end procedure
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Algorithm 12 MakePerspectiveMatrix

Input:
A: Encoded version of the input image
inChannels : Number of Channels of Input Image
outChannels: Number of Channels of Output Image
filters : Array of filters to be used in each iteration
kernelSizes : Array of filter sizes to be used in each iteration
maxPoolKernelSize : Kernel size of maxpool to be used
maxPoolStride : Stride for maxpool layer
activation : Activation function to be used
N : Number of times to loop

Output:
perspectiveParam : Perspective transformation parameters for the image

1: procedure
2: for i← 1 to N do
3: convOut← Conv(inChannels, internalChannels, filters[i], kernelSizes[i])(I)
4: bnOut← BatchNorm2D(inChannels)(convOut)
5: activationOut← Activation(activation)(bnOut)
6: convOut← Conv(inChannels, internalChannels, filters[i], kernelSizes[i])(I)
7: bnOut← BatchNorm2D(inChannels)(convOut)
8: activationOut← Activation(activation)(bnOut)
9: maxPoolOut← MaxPooling(maxPoolKernelSize,maxPoolStride)(activationOut)
10: end for
11: perspectiveParam← Linear(maxPoolOut)
12: return perspectiveParam
13: end procedure
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