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Abstract 

Wastewater-based surveillance (WBS) is an effective public health tool that has been used to detect 

human viruses for decades. Most recently it has been applied to monitor SARS-CoV-2 RNA in municipal 

wastewater to track the prevalence and spread of COVID-19 in communities during the pandemic. Much of 

this work has been performed at the wastewater treatment plant (WWTP) prior to treatment, where it has 

been shown that WBS is closely related to clinical infections and hospitalizations. The application of WBS 

has gradually expanded to include upstream sites within the sewershed where neighbourhood and building-

scale surveillance can be performed. However, sampling in these upstream environments introduces 

additional challenges for sampling and interpretation. The intermittent flow and composition of wastewater 

in the sewers close to the source greatly influences the variability and ability to accurately detect and 

quantitate the target viral fragments. One approach to circumvent some of these challenges is to employ a 

passive sampling approach where a chosen material is immersed in the sampled medium and left to passively 

accumulate a target analyte of interest over time. The sampling material is consistently exposed to the 

sampling environment which may reduce the likelihood of false negative detections. In this thesis, a two-

tiered, trigger-based wastewater surveillance program was developed on the University of Waterloo 

(Waterloo, Ontario) campus residences during an active public health emergency (COVID-19 pandemic). 

The objective was to determine if WBS using passive sampling can be used to inform institution-level public 

health action.  

Preliminary pilot studies validated a passive sampling method capable of detecting SARS-CoV-2 

RNA in a municipal sewage system. Three candidate materials held in plastic frames (e.g., torpedo shaped 

perforated tubes) were tested for their efficacy in this application, including electronegative membrane filters 

and standard tampons. Cotton gauze was selected as the sampling medium for routine surveillance as it was 

able to detect the virus the most consistently and retained more suspended solids than the other materials 

tested. Twenty-four-hour passive samples were then collected three days per week over an eight-month 

surveillance period at selected utility holes associated with residences on the University of Waterloo campus. 

Two nucleocapsid gene targets (N1 and N2) of SARS-CoV-2 as well as the endogenous fecal indicator pepper 

mild mottle virus (PMMoV) were washed from the samplers, concentrated, extracted, and then quantified 

using real-time quantitative polymerase chain reaction (RT-qPCR). PMMoV is an endogenous indicator 

associated with human feces which has been used to normalize SARS-CoV-2 concentrations and account for 

dilution effects. The SARS-CoV-2 results were reported to the University health team in near real time (<12 

h from sample collection). The developed workflow prioritized surveillance population coverage and minimal 

resource usage to address a variety of complex stakeholder needs and best support public health decision-

making.  
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The period of the study included two contrasting exposure scenarios prior to and after the rapid 

emergence of the SARS-CoV-2 Omicron (B.1.1.529) variant. In the fall of 2021, community viral burden 

was low and a tiered sampling network was able to isolate individual clinical cases at the building-scale. In 

the winter of 2022 wastewater signals were quickly elevated by the emergence of the highly transmissible 

Omicron variant.  The high prevalence of SARS-CoV-2 shifted surveillance objectives from isolating cases 

to monitoring trends. Throughout the surveillance period, comparisons between detection results and reported 

clinical cases revealed that passive samplers positively identified all but one of 203 infected individuals over 

eight months. In one instance surveillance led to the pre-symptomatic detection of a single individual at a site 

monitoring over 1300 students. WBS detected the infected individual two days in advance of clinical testing 

confirmation, demonstrating the efficacy of the tiered passive sampling approach in supporting public health 

action. Remarkably, SARS-CoV-2 concentrations on passive samplers were significantly correlated with 

confirmed clinical cases within the upstream sewershed. The strongest correlations were observed when 

clinical cases were assumed to have been shedding for 10 days from reporting illness. Additionally, 

comparisons between SARS-CoV-2 concentrations detected in campus sewers and in municipal wastewater 

influent suggest that the spread of COVID-19 on the campus was similar to that of the broader community. 

Periods of increasing and decreasing viral burden were captured at both sampling scales and closely mirrored 

each other in winter 2022. These results add to the mounting evidence that passive samplers are capable of 

producing semi-quantitative data that reflects the prevalence of disease within the sewer catchment. 

Alongside routine surveillance, methodological refinement occurred in parallel with routine surveillance 

efforts with the goal of maximizing data insight and actionability. This included routinely evaluating samples 

for evidence of RT-qPCR inhibition which saw a marked increase when students returned to campus and 

wastewater production increased. Modifications to the workflow were made to reduce inhibition and increase 

confidence in surveillance results. PMMoV concentrations on passive samplers were not reflective of 

upstream population differences and normalization of SARS-CoV-2 with PMMoV did not improve 

correlations with a clinical dataset. The results suggest that saturation of the material occurred during the 

exposure period thus limiting the utility of PMMoV as a normalizer to account for dilution effects. 

This investigation demonstrates that passive sampling can be used as an effective tool to guide highly 

localized public health action. Spatially refined wastewater surveillance can support pandemic management 

decision making by acting as an early warning system, providing a basis for targeted health intervention and 

possible clinical testing, and is able to track spatiotemporal variations in viral RNA concentrations. The utility 

of a tiered surveillance approach described in this thesis demonstrates the importance of developing versatile 

methodologies that can be applied at varying spatial scales to address emerging public health challenges. 
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Chapter 1 

Wastewater-based surveillance and SARS-CoV-2 

 
The novel coronavirus-19, or severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the 

virus responsible for the COVID-19 disease. The virus originated in Wuhan, China in 2019 and was later 

declared a global pandemic by the World Health Organization (WHO) in March 2020 (World Health 

Organization, 2020). Individuals who become infected with SARS-CoV-2 can experience a wide array of 

symptoms including headaches, fever, malaise, shortness of breath, and diarrhea (Gao et al., 2020; Zhang et 

al., 2020). As of February 2023, there have been over 756 million confirmed cases of COVID-19 worldwide, 

resulting in more than 6.8 million deaths globally (World Health Organization, 2023). In response to the 

COVID-19 pandemic, researchers around the globe began to explore the use of wastewater-based 

surveillance (WBS) to track disease prevalence in communities. WBS exploits the phenomenon of fecal 

shedding – a process where an individual infected with SARS-CoV-2 releases both intact and fragmented 

virus through their stool which can later be detected downstream in wastewater (Ahmed et al., 2020; Hrudey 

et al., 2022; Kitajima et al., 2020; Xiao et al., 2020). WBS demonstrated its use as a public health tool during 

the re-emergence of Poliovirus in the early 2000s (Aguiar-Oliveira et al., 2020; Hovi et al., 2001; Manor et 

al., 1999) and its continued use to monitor illicit drug consumption (Choi et al., 2018; Huizer et al., 2021; 

O’Keeffe, 2021). Over the last three years, in what has been an unprecedented period of collaboration, the 

COVID-19 Wastewater Coalition was created under the Canadian Water Network to rapidly disseminate 

knowledge between researchers and accelerate progress in developing a useful, scientifically rigorous 

framework for WBS (Canadian Water Network, 2023b; Manuel et al., 2021). Now, three years later, the 

outcomes of these efforts have been fully realized with integrated WBS programs established in all thirteen 

Canadian provinces and territories (Canadian Water Network, 2023). Support for WBS has expanded because 

of its ability to closely track trends in clinical cases, forecast key public health metrics, and fill a critical 

knowledge gap especially when clinical testing capacity is reduced (Cheng et al., 2023; Hrudey et al., 2022; 

Manuel et al., 2022).  

Along with municipal wastewater programs under development at the beginning of the pandemic, 

researchers began exploring the application of WBS in upstream settings where targeted public health 

intervention would be desirable. A key focus for such efforts included an array of congregate living facilities 

such as long-term care homes, homeless shelters, prisons, daycares, universities and even the Olympic 

Village at the Tokyo 2020 Olympic games, each presenting their own unique challenges related to pandemic 

management (Akingbola et al., 2022; Harris-Lovett et al., 2021; Hrudey et al., 2022; Kitajima et al., 2020, 

2022; Ouslander & Grabowski, 2020). Maintaining operations in these facilities where vulnerable and largely 
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sedentary populations reside was logistically challenging (Harris-Lovett et al., 2021; Ouslander & 

Grabowski, 2020; Ryan et al., 2021). It was thought that similar methodologies used downstream at the 

wastewater treatment plant (WWTP) could be applied in these upstream settings to provide building-scale 

public health data in near real-time. Institutions could reap the benefits of spatially refined surveillance by 

following up positive wastewater detections with targeted clinical testing or mitigating public health 

measures. Once a clinical case or cases were identified through testing, the individual(s) could be moved to 

isolation so that the facility can resume normal operations. While this solution to address institutional health 

challenges was promising, sampling in these environments introduced unique, site-specific challenges for 

practitioners of WBS globally (Bivins et al., 2022a; Harris-Lovett et al., 2021; Kitajima et al., 2020; Schang 

et al., 2021). Of primary concern was the need for a suitable method to address the pulse-input flows 

characteristic of upstream sampling sites. Given the intermittent nature of human toileting patterns, discrete 

sampling methods risk missing an infected individual’s input into the system during non-sampling intervals. 

This could result in a type II error by failing to detect the target despite its presence in the system during the 

sampling window. Addressing this limitation should be a top priority for upstream WBS programs where 

positive detections are used to guide targeted public health action.  

In tandem with the development of upstream WBS programs, in spring 2021 the Department of 

Housing at the University of Waterloo (the University) was preparing to reopen on-campus residence 

buildings to the general population. At the time, a massive COVID-19 vaccination program was underway 

in Canada whereby the end of July 2021, 67.2% of college-aged students in Ontario had received one dose 

of a Health Canada approved COVID-19 vaccine (Public Health Agency of Canada, 2023). On campus, 

several public health measures were developed to protect human health while maintaining facility operations 

heading into the fall term. These measures included implementing occupancy limits, restrictions on shared 

bathroom and dining facilities and a framework for case management and contact tracing. However, under 

shifting provincial public health guidance there was still concern for the efficacy of existing tools to detect 

asymptomatic cases in residence. SARS-CoV-2 variants of concern (VOC) also introduced uncertainty. 

These distinct viral lineages arise from naturally occurring mutations in the virus which can alter its physical 

and immunological properties (Volz et al., 2021; World Health Organization, 2023b). VOCs are lineages that 

have been classified on their potential to adversely impact human health, such as increased transmissibility 

or associated disease severity (World Health Organization, 2023b). Reports of waning vaccine longevity and 

immunity under emerging VOCs furthered concerns for case load management in the fall semester 

(Mallapaty, 2021; Pilishvili et al., 2021; Shrotri et al., 2021; Spurbeck et al., 2021; Thomas et al., 2021) which 

prompted the University to require students to have a second dose of a COVID-19 vaccine before November 

1, 2021. The University also did not employ any invasive testing requirements at any time, meaning no 

student was ever required to take a clinical PCR test. Asymptomatic individuals or infected individuals 
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intentionally evading public health protocols also birthed potential for widespread transmission in these close-

quarters communities. Given these challenges, WBS served as an attractive tool for campus decision makers 

to monitor disease prevalence on campus. It was hypothesized that building-scale WBS could provide an 

additional layer of evidence to support the implementation or potential easing of public health restrictions in 

communities. It also provided the potential for early detections to be identified and isolated to minimize 

transmission potential within afflicted communities. However, the University was no exception to the 

previously described challenges with building-scale surveillance. A suitable method needed to be developed 

and scaled using existing wastewater infrastructure and be designed to maximize actionability of the data. 

This institutional need coupled with knowledge gaps in building-scale WBS literature serve as the basis for 

this thesis.  

 

1.1 Overview of SARS-CoV-2 
SARS-CoV-2 is a coronavirus belonging to the Coronaviridae family (Hasöksüz et al., 2020). 

Coronaviruses are enveloped, positive-sense, single stranded, RNA viruses that have been shown to infect a 

variety of animals and humans (Hasöksüz et al., 2020). SARS-CoV-2 is the seventh coronavirus known to 

infect human beings (Andersen et al., 2020; Nalbandian et al., 2021). The viral genome hosts a highly 

conserved nucleocapsid (N) gene which is responsible for encoding proteins that associate with the viral RNA 

gene and form the ribonucleoprotein core (Chang et al., 2006). Two regions of interest on the N-gene form 

the basis for diagnostic tests developed by the U.S. Centre for Disease Control (CDC) and are known as N1 

and N2 (Centers for Disease Control and Prevention, 2021).  

Human-to-human transmission of the virus occurs primarily through the transfer of aerosolized liquid 

particles caused by coughing, sneezing, and speaking at a conversational distance (World Health 

Organization, 2021). An individual can become infected through the inhalation of an infectious particle. To 

a lesser extent, people may also become infected by touching their eyes, nose, or mouth after touching a 

surface contaminated with infectious viral particles (World Health Organization, 2021). Studies suggest that 

individuals are most infectious immediately prior to the development of symptoms and in the early stages of 

infection, though this timeline can vary depending on the severity of the disease (Cevik et al., 2021; Jones et 

al., 2021; World Health Organization, 2021). In addition to the stage of infection, environmental conditions 

have also been shown to influence the transmissibility of the virus. Due to the mechanism of transmission, 

areas which are poorly ventilated or crowded can enable the aerosols to remain suspended in the air for a 

longer period of time (World Health Organization, 2021). Poor ventilation allows for infectious particles to 

travel farther, beyond a conversational distance, thus increasing the zone of transmission. Exposure time also 

plays a role in transmissibility, with longer periods of time in these settings increasing the risk of infection 
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(World Health Organization, 2021; Yu et al., 2020). These transmission dynamics have provided the basis 

for many of the public health measures enacted in countless jurisdictions (including the University) over the 

past three years, including social distancing, personal masking, aerosol barriers and building capacity limits.   

Individuals who become infected with SARS-CoV-2 can experience a wide array of symptoms with 

varying degrees of severity (Gao et al., 2020; W. Zhang et al., 2020). Recent research has shown that 

symptoms can persistent well beyond the acute phase of infection and can affect multiple organ systems 

(Nalbandian et al., 2021). Chronic kidney disease, chest palpitations and thromboembolism have all been 

documented as chronic symptoms of COVID-19 (Nalbandian et al., 2021). These reasons in part make 

minimizing transmission a top priority for health care systems with finite resources. While symptomatic cases 

make up the majority of all infections globally, a meta-analysis on SARS-CoV-2 including nearly 30 million 

individuals undergoing clinical COVID-19 testing found that 40.5 ± 7.5% of all cases are asymptomatic (Ma 

et al., 2021). These individuals do not experience symptoms associated with COVID-19 despite still being 

able to transmit the virus to others (Jones et al., 2021; Lee et al., 2020).  

 

1.2 Viral shedding in humans 
Throughout the course of infection, a person infected with SARS-CoV-2 will release the virus 

through various bodily functions in a process known as viral shedding (Zapor, 2020). The virus leaves the 

body as both intact SARS-CoV-2 viruses and inert viral fragments through various shedding pathways 

(Zapor, 2020). For SARS-CoV-2, shedding primarily occurs via the pharynx and gastrointestinal (GI) tract, 

though urine, saliva and other bodily fluids can produce detectable amounts of virus as well (Crank et al., 

2022; Karia & Nagraj, 2020). Infection of the pharynx enables the detection of the virus via a nasopharyngeal 

swab to be used in clinical molecular testing. Alternatively, infection of the GI tract can cause the excretion 

of the virus embedded in feces (Cevik et al., 2021; Gao et al., 2020; Holshue et al., 2020; Zhang et al., 2020). 

This process is known as gastrointestinal shedding or fecal shedding. Fecal shedding occurs in at least 50-

66% of all infected people, whether they are symptomatic or asymptomatic (Chan et al., 2021; Lo et al., 

2020a; Xiao et al., 2020). Fecal viral shedding provides the basis for non-invasive population-level testing 

methods to be discussed in the next section.  

The rate at which viral shedding occurs is highly variable. One of the most influential factors is the 

stage of infection, where peak respiratory shedding occurs anywhere between symptom onset and day five 

of infection, coinciding with period of peak transmissibility (Cevik et al., 2021; Jones et al., 2021). While the 

majority of cases produce peak shedding within this timeframe, respiratory viral shedding up to six days in 

advance of symptom onset has been documented (He et al., 2020). Fecal shedding is less predictable. It has 
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been reported that fecal shedding variability is much more erratic than respiratory shedding, highlighting the 

complexity of factors which govern this process (Walsh et al., 2020; Zheng et al., 2020). Fecal viral shedding 

has been shown to last significantly longer than respiratory viral shedding in approximately 70% of patients, 

sometimes persisting weeks and even months following infection and particularly for individuals with pre-

existing health conditions (Cevik et al., 2021; He et al., 2020; Morone et al., 2020; Natarajan et al., 2022). 

Recent research has shown that shedding rates may also be variant-specific and change as new mutations in 

the virus occur (Prasek et al., 2023). Still, fecal shedding patterns generally follow the same trends observed 

in clinical settings wherein the peak viral load is reached in the first week following infection (Cheung et al., 

2020; Natarajan et al., 2022; Zhang et al., 2021). 

The presence of symptoms and their severity plays a major role in an individual’s viral load and 

consequently, the viral load in which they excrete into wastewater. One study reported that patients 

experiencing gastrointestinal symptoms, such as diarrhea, had a 2.4-fold increased likelihood of excreting 

detectable levels of SARS-CoV-2 RNA in their stool, compared to individuals with no GI symptoms (Zhang 

et al., 2021). Cheung et al. (2020) came to similar conclusions, reporting that patients with diarrhea had a 

higher stool RNA positivity than those without. Symptom prevalence and severity may also be sex-linked. 

Sierpinski et al. (2020) found that non-hospitalized females infected with COVID-19 had a significantly 

higher incidence of GI symptoms compared to non-hospitalized males. This suggests that a greater proportion 

of females shed detectable levels of SARS-CoV-2 in stool than males (Sierpiński et al., 2020). Physical health 

at the time of infection may also mediate shedding dynamics. As one example, obesity and diabetes have 

been associated with an increased severity of COVID-19 symptoms and consequently a prolonged period of 

viral shedding (Zhong et al., 2022). Age plays an indirect role in shedding dynamics as well. Since younger 

adults tend to be in better overall health than senior cohorts, they may tend to exhibit less severe symptoms 

associated with COVID-19. One study administering over 700 clinical tests to college-aged students found 

that 79.2% of all COVID-19 cases had no symptoms at all (Schmitz et al., 2021) – a significantly higher 

proportion than the previously cited global estimate of 40.5 ± 7.5% (Ma et al., 2021). This suggests that 

younger populations, such as undergraduate level students, may have a lower incidence of symptoms and 

consequently produce lower levels of SARS-CoV-2 RNA in their stool. This highlights the utility of a WBS 

approach to monitoring disease prevalence in communities where asymptomatic transmission is expected to 

be high. 

In clinical settings, COVID-19 vaccinations have been shown to significantly reduce the risk of 

developing severe symptoms, especially in young adults (Zhong et al., 2022). This in turn translates to a 

reduced viral load in stool where detectable. Most recently, the outcomes of vaccination campaigns have 

been realized in WBS applications where the immunity gained from vaccines has translated to a significantly 
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reduced viral load and positivity measured in wastewater (Bivins & Bibby, 2021). However, much of the 

work to characterize the effects of vaccines on viral loads in wastewater, and their associated implications 

for surveillance is on-going. Certainly, viral shedding is a dynamic process with considerable variability 

between individuals and within populations.  

 

1.3 Wastewater-based surveillance 
Wastewater is a complex matrix of greywater and blackwater that is produced by a host of human 

activities. Greywater is generated from sinks, washing machines, bathtubs, showers, and industrial processes 

which introduce chemicals such as disinfectants and detergents into the wastewater system (Global Water, 

2022). Consequently, greywater contains few human pathogens. Alternatively, blackwater (also known as 

sewage, or brown water) comes from toilets and contains fecal matter and urine which is human pathogen-

rich (Global Water, 2022). Both types of introduce inhibiting substances into the system which can interefere 

with the detection and quantification of a target analyte downstream in the RT-qPCR process. In wastewater, 

these substances can include humic and fluvic acids, heavy metals, proteins, salts and other chemical 

constituents making wastewater composition spatially and temporally diverse (Bitter et al., 2022; Bivins et 

al., 2022a). Wastewater captures various social, industrial, and biological processes in the form of biotic and 

abiotic constituents which can be measured (Choi et al., 2018; Hrudey et al., 2022; O’Keeffe, 2021). The 

study of wastewater-based epidemiology (WBE) aims to analyze these constituents to make inferences about 

human health (O’Keeffe, 2021). Most recently, however, the term wastewater-based surveillance (WBS) has 

been used to make the distinction between epidemiological research-related applications and on-going public 

health tracking and monitoring. The phenomenon of viral shedding is one such process that can be exploited 

for use in WBS. Fecal shedding inputs the SARS-CoV-2 into wastewater, thus enabling the detection and 

quantification of the virus downstream. With 86% of Canadians relying on municipal wastewater systems 

daily, wastewater is abundantly available as a sampling medium (Environment and Climate Change Canada, 

2020) which allows for efficient monitoring disease prevalence in a significant portion of the population.  

The fecal shedding of SARS-CoV-2 RNA is one example of a WBS application, though the concept 

is not new. One of the first applications of WBS occurred in 1954 where Bayer was able to trace a familial 

schistosome outbreak to a population of snails contaminated from sewage sources near a municipal dam 

(Bayer, 1954). Earlier studies sampling municipal water sources were able to identify the sources of several 

infectious disease outbreaks (Bivins et al., 2022a; Moore, 1948). In the late 1990s and early 2000s, WBS 

arose as a useful tool to monitor the re-emergence of Poliovirus in several countries and was shown to be 

highly sensitive (Aguiar-Oliveira et al., 2020; Hovi et al., 2001; Manor et al., 1999). For example, Hovi et al. 

(2001) reported being able to detect 1 out of 10,000 people shedding poliovirus RNA by analyzing a single 



 

 7 

400 milliliter wastewater sample (Hovi et al., 2001). In Hawaii, Diemert and Yan embarked on a year-long 

monitoring campaign of Salmonella to fill data gaps in clinical infection rates (Diemert & Yan, 2020). These 

applications provided the foundational knowledge upon which WBS for SARS-CoV-2 has been built. Outside 

of infectious diseases, WBS has been applied to monitor illicit drug consumption, dietary patterns, human 

stress and a host of other endpoints to make inferences about human health and lifestyle (Huizer et al., 2021; 

O’Keeffe, 2021). The application of WBS has continued to be an effective as a public health tool during the 

COVID-19 pandemic.  

 

1.4 Discrete methods for wastewater sampling 
Wastewater samples are conventionally collected one of two ways. The first method is to use a 

composite sampler (also known as an autosampler) which is a device that can draw aliquots of wastewater 

for a specified time interval (Agriculture and Agri-Food Canada, 2020). The aliquots are combined to form 

a composite sample representative of the wastewater produced in the sampling window. This sampling 

approach can be time-weighted or flow-weighted, with the latter integrating pre-determined flow thresholds 

to trigger a sampling event (Agriculture and Agri-Food Canada, 2020; Augusto et al., 2022). These devices 

have been heavily used in wastewater surveillance for SARS-CoV-2, especially at the municipal level where 

sampling occurs at a wastewater treatment plant (WWTP) (Cheng et al., 2023; Dhiyebi et al., 2023; Hrudey 

et al., 2022). Composite samplers work well in these downstream applications where wastewater flow and 

composition are subject to less temporal variability. The major benefit of this sampling approach is the 

resulting quantitative data which has demonstrated its use to track and even lead COVID-19 case trends 

(Bibby et al., 2021; Cheng et al., 2023; D’Aoust et al., 2021). Similar benefits are sowed through the 

collection of grab samples – another common, discrete sampling method. Grab (or static) samples involve 

the collection of a single known volume of wastewater at a particular time and place (Agriculture and Agri-

Food Canada, 2020). It represents only the wastewater passing through the system at that moment, similar to 

a “snapshot” in time. Grab samples also produce quantitative data but lack the time-weighted integration that 

composite samples can produce (Agriculture and Agri-Food Canada, 2020). Both composite samples and 

grab samples can be collected at any point of access throughout the wastewater system, including upstream 

of the WWTP. The method selection largely depends on the research question, logistical constraints and 

requirements for data analysis.  

In this thesis, the term ‘upstream sampling’ refers to any wastewater sampling performed upstream 

of the WWTP. As the sampling location moves further upstream, away from the WWTP, the sampler moves 

closer to the source of the wastewater. This concept is employed in the sampling site selection process which 

allows practitioners of WBS to refine their surveillance efforts to highly specified spatial scales, isolating 
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wastewater from communities, a given street, or even a specific building. At upstream sampling sites where 

wastewater composition is more dynamic, the discrete nature of both composite and grab sampling risks 

missing the target analyte of interest (Rafiee et al., 2021; Schang et al., 2021; Wilson et al., 2022). This can 

result in the observance of false negatives, where the sampler did not detect the target analyte despite its 

presence in the system during the sampling window. This limitation has been cited in several studies 

investigating the detection and quantification of SARS-CoV-2 upstream of the WWTP (George et al., 2022; 

Habtewold et al., 2022; Rafiee et al., 2021; Schang et al., 2021). For this reason, many researchers and 

institutions have looked to passive sampling for its simplicity, affordability, and efficacy in these sampling 

environments.  

 

1.5 Passive sampling 
Passive sampling for infectious diseases has been practiced for several decades. Moore was one of 

the first to use a passive sampling approach to select for Salmonella typhi and was able to trace multiple 

human outbreaks back to the upstream fecal contamination of water (Moore, 1948). In his 1948 report, Moore 

cited that the most successful sampling method was a “strip of gauze, 4 feet by 6 inches in size, folded into 

eight thicknesses, secured with a string” – a sampling apparatus known today as the Moore swab, which is 

still widely used for environmental monitoring (Moore, 1948; Rafiee et al., 2021). Passive samplers are 

constantly exposed to the sampling medium – in this case, wastewater. This exposure increases the likelihood 

of the passive sampler to collect an analyte of interest, compared to the discrete sampling nature of 

conventional composite or grab samplers (Bivins et al., 2022a; Habtewold et al., 2022; Li, Verhagen, et al., 

2022; Schang et al., 2021). This quality makes passive simply particularly advantageous in upstream 

sampling settings where fluctuations in wastewater flow and composition can be extreme (Corchis-Scott et 

al., 2021; Welling et al., 2022). Passive samplers also do not require electricity, can be made using readily 

available and affordable materials, and critically for surveillance applications, they often require less 

processing time compared to whole wastewater samples (Górecki & Namieśnik, 2002; Jain et al., 2022; 

Schang et al., 2021; Wilson et al., 2022).  

 

1.5.1 Theory 
 

In contrast to discrete sampling, passive sampling is based on the spontaneous free flow of analytes 

from the sampling medium (i.e., wastewater) to a collection medium (i.e., the passive sampler) (Górecki & 

Namieśnik, 2002). Unlike composite and grab samples which involve some action, passive samplers remain 

sampling without intervention or force – they are deployed and left to passively accumulate an analyte of 
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interest. This technique can be used on virtually any sampling medium in which the sampler can be immersed, 

including wastewater. The net flow of the target analyte from the sampling environment to the sampling 

medium occurs spontaneously until equilibrium (saturation) is reached or until the sampling session is 

terminated – whichever occurs first (Górecki & Namieśnik, 2002). To understand when this occurs, the 

kinetics of a given targets uptake and retention must be conceptualized as either an equilibirium or non-

equilibrium operation.  

In a non-equilibrium operation, the analyte of interest accumulates on the sampling material at a rate 

which is typically modeled using first-ordered kinetics (Salim & Górecki, 2019). Since the saturation point 

of the material is not reached, practitioners can estimate a time-weighted average of the analyte concentration 

on the sampling medium using a calibrated kinetic model provided two assumptions are met. The first is that 

the transfer of the analyte to the sampling medium is irreversible – that is, that no loss of the analyte occurs 

once it is captured (Górecki & Namieśnik, 2002). This is referred to as the “zero-sink” assumption (Górecki 

& Namieśnik, 2002). The second assumption is that the uptake rate of the target analyte is constant (linear) 

throughout the exposure period. If these assumptions are met, a calibration can be performed to empirically 

determine a suitable exposure duration based on the uptake rate and the sorption capacity of the sampling 

material (Salim & Górecki, 2019). 

In an equilibrium operation, the concentration on the sampler will remain constant assuming the 

target analyte in the sampling medium remains constant (Górecki & Namieśnik, 2002). Once equilibrium is 

reached, the concentration of the target analyte on the sampling medium can be used to estimate the 

concentration of the target analyte in the sampling environment using an empirically determined partitioning 

coefficient (Salim & Górecki, 2019). Under equilibrium operations, however, changes in the medium being 

sampled (such as the constantly changing composition of flowing wastewater) can bias the estimated 

concentrations depending on the temporal scale over which those changes occur. Consequently, wastewater 

sampling for SARS-CoV-2 violates assumptions under both equilibrium operations which has largely limited 

the use of passive sampling for this purpose to generate qualitative data.  

 

1.5.2 Limitations of passive samplers 
 

Passive samplers are not without limitations. Primarily, it is difficult to produce truly quantifiable 

data from passive samplers. In the context of wastewater surveillance for SARS-CoV-2, the total volume of 

wastewater flowing through the sampler during the sampling period is unknown. Due to this restraint, passive 

sampling for SARS-CoV-2 RNA in wastewater violates the assumptions under both the equilibrium and non-

equilibrium operations described above. The composition of wastewater also varies both spatially and 
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temporally. The biological and chemical constituents in wastewater that result from diverse upstream 

activities produce a wide range of physicochemical variation that can influence the uptake of the target analyte 

on the passive sampler (Bivins, et al., 2022a; Bivins, et al., 2022b; Habtewold et al., 2022; J. Li, Verhagen, 

et al., 2022). Excessive suspended solids and biocolloids in the wastewater can lead to adsorption and capture 

competition between analytes (Bitter et al., 2022; Hayes et al., 2021, 2022; Schang et al., 2021). 

Environmental factors such as temperature and pH may also influence the uptake of the target analyte on the 

sampling material and influence the quality and degradation of RNA in the sewer system (Bitter et al., 2022; 

Bivins et al., 2022a; Li et al., 2022; Li et al., 2023). Additionally, the concentration of SARS-CoV-2 in 

wastewater is dependent on both the viral load and fecal shedding rate of infected persons within the 

catchment, which as previously discussed is highly variable (He et al., 2020; Karia & Nagraj, 2020). The 

input into the system in conjunction with same-day fluctuations in water use patterns make the concentration 

of SARS-CoV-2 in the sampled wastewater all but constant.  

Research on the calibration of passive samplers for SARS-CoV-2 uptake and retention is limited. 

This is primarily because there is also no standard approach to capture viral RNA using passive sampling. 

The pressure under which many SARS-CoV-2 surveillance programs were established over the last three 

years has left a patchwork of different collection, processing, and analytical methods to solve similar 

institutional-level issues (Harris-Lovett et al., 2021; O’Keeffe, 2021; Twigg & Wenk, 2022). The selection 

of the sampling material is another factor that has varied between groups. Researchers have tested various 

materials from sponges and cheesecloth to medical gauze and feminine hygiene products for their efficacy in 

capturing SARS-CoV-2 RNA in wastewater (Habtewold et al., 2022; Jain et al., 2022; Li et al., 2022; Rafiee 

et al., 2021; Schang et al., 2021). The basis for material selection has been variable depending on individual 

assessments of efficacy, affordability, and the intended application for surveillance. Additionally, there are 

logistical challenges to performing calibrations in-situ related to replication and sample collection. For 

example, the fouling or ragging of sampling units (a term to describe the entanglement and blockage of the 

sampler by in-situ debris) may become a significant confounding factor if multiple samplers are deployed at 

the same site. Multiple samplers would be a desirable experimental design if a suitable level of replication 

and statistical power is to be achieved. However even if a suitable in-situ calibration were performed, the 

presence of SARS-CoV-2 and its concentration in wastewater is subject to temporal variability which may 

limit findings. Similarly, bench-scale data may have limited applications to in-situ sampling environments 

given the absence of complex wastewater matrices that would be encountered in a real sewage system (Bivins 

et al., 2022a). Site-specific wastewater matrices may limit the applicability of findings between geographical 

regions. For these reasons, it has been extremely difficult to characterize the empirical kinetic qualities of 

passive samplers.  
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1.5.3 Passive sampling to produce semi-quantitative data 
 

The physicochemical variations of flowing wastewater make it impossible to utilize passive sampling 

to measure SARS-CoV-2 concentrations accurately and precisely in these systems. Although, evidence to 

support that passive samplers can produce semi-quantitative (involving less than quantitative accuracy) data 

is mounting. Bivins et al., (2022a), performed an analysis of five studies that made comparisons between 

SARS-CoV-2 concentrations on passive samplers and in paired whole wastewater samples. They found that 

aggregating the datasets produced a weak linear relationship (y = 0.40x + 3.0, r2 = 0.41) (Bivins et al., 2022). 

To account for the methodological differences between each study, they assessed each relationship 

individually and found that the linear fit of the studies ranged from 0.27 to 0.56. As a consequence of the 

diverse methods and environments across which these studies were performed, it is difficult to draw any 

universal conclusions from these findings. Nonetheless, it is promising that multiple studies have reported a 

significant relationship between the SARS-CoV-2 concentrations on passive samplers and the concentrations 

in wastewater.  

Most studies utilizing a passive sampling approach have focused on reporting qualitative data 

(presence/absence). However, several studies have made attempts to produce semi-quantitative data using 

other endpoints. One approach is to estimate the volume of water passive through the sampler directly, based 

on flow data measured directly at the sampling site. Other studies have indirectly estimated wastewater 

volumes based on flush counts, water usage data and electricity usage  (Acer et al., 2022; Sweetapple et al., 

2022). As observed with varying success at the municipal level, endogenous indicators have also been used 

to normalize the amount of SARS-CoV-2 to the amount of fecal matter present in the system (Cheng et al., 

2023; D’Aoust et al., 2021; Dhiyebi et al., 2023; Sakarovitch et al., 2022). This is primarily to account for 

the dilution effects that could influence the detection and quantification of SARS-CoV-2 in the sample. One 

of the most used endogenous indicators for SARS-CoV-2 has been pepper mild mottle virus (PMMoV). 

PMMoV is a plant virus belonging to the genus Tobamovirus (Kitajima et al., 2018). The virus infects species 

of bell and ornamental peppers and are consequently found in their processed food products, such as hot 

sauce (Kitajima et al., 2018). Like SARS-CoV-2, PMMoV is also shed through the gastrointestinal tract 

making it a good indicator of human feces (Corchis-Scott et al., 2021; J. Li, Verhagen, et al., 2022; Wilson 

et al., 2022). The global distribution of PMMoV, its correlation with fecal contamination, and its stability in 

water under various conditions make it a suitable endogenous reference candidate (Kitajima et al., 2018; 

Symonds et al., 2018). Theoretically, this is an effective approach to account for the variations in discharge 

that are most common in upstream applications. However, recent research demonstrates that the use of 

PMMoV to normalize the SARS-CoV-2 signal does not improve correlations with clinical cases or 

hospitalizations (Cheng et al., 2023; Dhiyebi et al., 2023). In the case of passive sampling, the quantification 
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of PMMoV harbours the same limitations as SARS-CoV-2. The equilibrium dynamics of the virus onto 

various sampling media are uncharacterized which limits meaningful interpretation of PMMoV-normalized 

passive sampling data.  

 

1.5.4 Passive sampling applications for SARS-CoV-2 surveillance 
 

At the onset of this investigation, several studies had utilized discrete sampling techniques to 

implement building-level WBS for SARS-CoV-2 on university campuses (Betancourt et al., 2021; Bivins & 

Bibby, 2021; Colosi et al., 2021; Gibas et al., 2021; Karthikeyan et al., 2021; Scott et al., 2021a; Wong et al., 

2021). While the utility of grab and composite sampling in these environments often translated to meaningful 

public health action, practitioners of building-scale WBS highlighted several limitations to their use. Of 

primary concern is the ability of discrete methods to collect a representative sample. The success of close-to-

source sampling, as achieved through building-scale WBS, is largely governed by periods of intermittent 

high and low flows related to human activity in the sewershed (Anderson-Coughlin et al., 2022; Fahrenfeld 

et al., 2022; Lee et al., 2023). These pulse-input events translate to significant temporal variability in 

wastewater composition which can have significant implications on detecting the virus. Grab samples are 

most subject to this variability given sampling occurs at a single point in time (Agriculture and Agri-Food 

Canada, 2020). Composite samplers aim to address this gap by sampling at regular time or flow-weighted 

intervals (Agriculture and Agri-Food Canada, 2020). However, even composite samplers may fail to capture 

the virus despite its presence in wastewater during the sampling window, particularly when disease 

prevalence in the surveillance catchment is low (Li et al., 2022; Rafiee et al., 2021; Schang et al., 2021). Early 

practitioners of upstream WBS also highlighted challenges with using composite samplers for routine 

surveillance. These devices typically require a power source to operate the pump, which is often not readily 

available at selected sampling points. Additionally, sample integrity to minimize RNA degradation prior to 

the sample being collected requires cool storage conditions which may not be offered by all composite 

samplers. One review paper reported that the average cost per automatic sampling unit was $3,000 – $5,000 

USD (Harris-Lovett et al., 2021), with refrigerated sampling units costing even more. The same review 

reported that multiple WBS programs on university campuses experienced vandalism and theft of sampling 

units, thus impacting the reliability of reporting efforts (Harris-Lovett et al., 2021). These factors in 

combination often call for alternate approach for sampling of buildings where reliable and rapid reporting are 

called for.  

In August 2021 the scientific literature on passive sampling for SARS-CoV-2 in wastewater was in 

its infancy. At the time, just two studies had piloted the use of passive sampling for SARS-CoV-2 and 

demonstrated potential for scalability in routine surveillance. Schang et al., (2021), were one of the first 
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groups to apply passive sampling for the detection of SARS-CoV-2. Their study investigated the efficacy of 

cotton buds, electronegative membranes and medical gauze for the capture and retention of SARS-CoV-2 

RNA at various sewershed scales. Additionally, the group also tested four different material housing vessels 

– porous enclosures that prevent the ragging (entanglement and blockage by debris) of the sampler while still 

allowing wastewater and suspended solids to flow through it. They found that a novel 3D-printed torpedo 

shaped housing vessel had the lowest ragging incidence of the vessels tested. The authors reported that 

electronegative membranes produced the highest detection rate amongst passive sampling materials (41%), 

followed by gauze (31%) and cotton buds (25%) (Schang et al., 2021). Passive sampling materials also 

detected SARS-CoV-2 RNA in 13 of 33 sampling days where autosamplers did not, underscoring the 

potential for discordance between the two approaches in upstream applications (Schang et al., 2021). The 

authors highlight that passive samplers detected SARS-CoV-2 RNA more often than grab or composite 

samplers when wastewater concentrations fell below 1.8 SARS-CoV-2 gene copies per mL, indicating the 

superior performance by passive samplers at lower concentrations in wastewater (Schang et al., 2021). This 

is an important consideration for designing WBS programs, especially in environments where viral burden is 

expected to be low and when periods of high wastewater flow are expected.  

Hayes et al. (2021) further expanded on passive sampling method development by comparing 

different materials using a novel 3D-printed sampling cage. They tested similar materials at both bench-scale 

and in-situ. The results demonstrate that both cheesecloth and electronegative membrane filters performed 

similarly in terms of total RNA retention and detection frequency. Gauze was also assessed in this 

investigation where the authors conclude that despite its superior performance for solid retention, SARS-

CoV-2 concentrations in electronegative membranes were higher (Hayes et al., 2021). The authors suggest 

that while efficient solid retention is critical for detecting the virus, excessive retention can impede recovery 

through the accumulation of inhibitors. Hayes et al., (2021) also reported complete discordance between 

passive samplers and grab samples, echoing evasion concerns reported by Schang et al., (2021). Based on 

these early findings, this investigation aimed to determine if a passive sampling approach can be used to 

address institution-scale public health challenges to reliably detect SARS-CoV-2 and report in near real time. 
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1.6 Research Goals 
The goal of this research is to determine if SARS-CoV-2 wastewater surveillance can be used on the 

University of Waterloo campus to inform public health action and response. This research aimed to address 

an urgent institutional problem related to public health management during an operationally challenging 

return to campus life. In parallel, the success of wastewater surveillance programs at the municipal level 

prompted questions about how methodologies could be applied to monitor highly targeted upstream 

populations. This thesis explores the application of this concept in the context of a post-secondary Canadian 

institution as pandemic dynamics shifted in real time. Additionally, this thesis describes the challenges and 

lessons learned from both a practical and analytical perspective that advance our understanding of the 

applications for WBS. Such efforts will be a critical part of pandemic preparedness in the future.   
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2. Chapter 2 

Implementing an adaptive, two-tiered SARS-CoV-2 wastewater-based 

surveillance program on a university campus using passive sampling 
 

Research presented in Chapter 2 has been published as: 

Haskell, B. R., Dhiyebi, H. A., Srikanthan, N., Bragg, L. M., Parker, W. J., Giesy, J. P., & Servos, M. R. 

(2024). Implementing an adaptive, two-tiered SARS-CoV-2 wastewater surveillance program on a university 

campus using passive sampling. Science of the Total Environment, 912, 168998. 

https://doi.org/10.1016/j.scitotenv.2023.168998 

 

2.1 Introduction  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for 

coronavirus disease 2019 (COVID-19) and the resulting pandemic. Once infected, up to two-thirds of 

individuals release the virus via the gastrointestinal tract in a process known as viral shedding (Chan et al., 

2021; Lo et al., 2020b; Y. Zhang et al., 2021). SARS-CoV-2 embedded in feces can later be quantified 

downstream in wastewater using analytical methods which typically target specific regions (e.g., N1, N2) of 

the SARS-CoV-2 nucleocapsid gene in the extracted, purified RNA sample (US CDC, 2021; Zhang et al., 

2022). This also applies to other targets of interest, such as pepper mild mottle virus (PMMoV) found in 

foods containing peppers, that has been used as an endogenous wastewater indicator of fecal material to 

normalize SARS-CoV-2 (Corchis-Scott et al., 2021; D’Aoust et al., 2021; Dhiyebi et al., 2023; Kitajima et 

al., 2018; Scott et al., 2021b; Symonds et al., 2018). Shedding of fragments of SARS-CoV-2 in feces has 

enabled wastewater-based surveillance (WBS) to be applied to monitor populations of interest around the 

globe (Akingbola et al., 2022; Corchis-Scott et al., 2021; Gibas et al., 2021; Godinez et al., 2022; Jain et al., 

2022; Scott et al., 2021a). SARS-CoV-2 WBS programs are now well-established and have demonstrated the 

ability to accurately forecast key COVID-19 public health metrics which has increased acceptance and 

adoption by public health administrators and confidence in the approach by the general population (Cheng et 

al., 2023; Hrudey et al., 2022). As the utility of wastewater surveillance became realized, practitioners began 

to apply these surveillance principles to address institutional challenges in facilities with high population 

density. Prisons, long-term care homes, dormitories and other congregate living settings became a focus for 

applying wastewater surveillance programs with the potential to act as an early warning system for localized 

outbreaks (Akingbola et al., 2022; Betancourt et al., 2021; Hrudey et al., 2022). Although widespread clinical 

testing served as a primary approach for many institutions, this option proved to be challenging and costly in 
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the face of supply chain issues (Ouslander & Grabowski, 2020; Peccia et al., 2020). WBS offered an adaptive, 

scalable, and sensitive solution to monitor spatial and temporal trends in community viral burden (Bivins et 

al., 2022; Colosi et al., 2021; Corchis-Scott et al., 2021). The potential for WBS to act as a leading indicator 

of disease prevalence also drew interest from a variety of public health stakeholders, particularly when 

clinical testing efforts were limited or unavailable entirely (Bibby et al., 2021; Fahrenfeld et al., 2022). 

Sampling upstream from the wastewater treatment plant (WWTP), especially at building-scale, 

introduces a series of unique challenges including high temporal variation due to pulse-inputs into the sewage 

system. Human behaviour within the sewer catchment drives wastewater flow, volume and timing. Toilet 

flushes, water appliance usage and showering directly influence the temporal variability of wastewater. 

Several studies have shown that SARS-CoV-2 concentrations in wastewater can fluctuate by orders of 

magnitude over a short period of time, which demonstrates the importance of sampling design to optimize 

the potential capture of the viral signal  (Anderson-Coughlin et al., 2022; Betancourt et al., 2021; Welling et 

al., 2022). Use of discrete sampling methods, such as grab and composite samplers, may miss significant 

sewer inputs if they occur in the intervals between sample collection (George et al., 2022; Habtewold et al., 

2022; Schang et al., 2021; West et al., 2023). An additional consideration is the lack of security and electricity 

required to operate automatic sampling units at some sites. Autosamplers are also often too costly for 

localized surveillance programs, especially if multiple units are required (Karthikeyan et al., 2021; Schang et 

al., 2021; Wright et al., 2022). As an alternative, passive sampling has been increasingly employed in 

upstream wastewater sampling to address these limitations (Acer et al., 2022; Bivins, Kaya, et al., 2022; 

Hayes et al., 2021; J. Li, Ahmed, et al., 2022). Passive sampling is a monitoring technique that uses sampling 

media to passively accumulate analytes of interest over time (Górecki & Namieśnik, 2002). The sampling 

medium remains immersed in the environment for the entire sampling period, which makes it less likely to 

miss significant fecal shedding events (Schang et al., 2021). Several studies have documented superior 

performance by passive samplers in the detection of SARS-CoV-2 when compared with composite and grab 

samples, especially at lower concentrations of SARS-CoV-2 in wastewater (Liu et al., 2022; Rafiee et al., 

2021; Schang et al., 2021). Additionally, passive samplers have advantages for a diverse array of applications 

because they are affordable, simple to produce and use, do not require electricity and can be easily concealed 

(Habtewold et al., 2022; Jiang et al., 2022; Schang et al., 2021).  

The University of Waterloo is home to Canada’s fourth largest post-secondary housing operation 

with over 5,600 beds catering primarily to undergraduate students. Like many other institutions, concerns 

over the effectiveness of existing clinical tools to monitor pandemic status in the residences led to 

considerable uncertainty around managing the reopening of the campus while minimizing the risk to the 

community. Therefore, in the summer of 2021 a pilot upstream wastewater surveillance program for SARS-

CoV-2 was deployed on campus residence buildings. The goal of the project was to determine if passive 
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sampling could be used as an effective tool to inform localized public health action and decision-making. 

The design of the surveillance program prioritized maximal surveillance coverage of the campus residences, 

efficient use of resources and optimization of actionability of the data. Twenty-four-hour passive samples 

were collected three times per week from late August 2021 to April 2022 using cotton medical gauze as a 

sampling medium. Results were rapidly reported within 12 hours of sample collection to a campus committee 

responsible for implementing public health interventions. The program was adapted as needed as knowledge 

of the wastewater system progressed, the pandemic trajectory changed, and public health requirements 

shifted. This trigger-based approach surveillance program is among the first to report on the use of passive 

sampling in a university setting. Efforts to maximize surveillance coverage and minimize resource usage are 

critical to informing future surveillance programs as funding and resource availability are both spatially and 

temporally variable.  

 

2.2 Materials and Methods 
2.2.1 University background 

The University of Waterloo (Waterloo, ON, Canada) is a public research university in Canada with 

an annual enrolment of ~42,000 students, 90% of which are undergraduate students (University of Waterloo, 

2022). The University operates 12 residences buildings across a ~400 ha campus, collectively housing over 

5,600 students when at maximum capacity. Residence halls are categorized by two designations: (1) 

traditional-style residences which are characterized by washroom facilities shared by up to 25 individuals, 

and (2) apartment-style residences wherein three to four students share a private bathroom and kitchen. 

Residence operations closed as a result of the pandemic in March 2020 with the exception of some 

international students who remained on campus due to travel restrictions. The reopening of campus housing 

to the broader student community was scheduled for September 2021 at the onset of this study. Students were 

required to have at least one dose of a Health Canada approved COVID-19 vaccine by move-in day and to 

receive their second dose no later than November 1, 2021. Public health protocols were established for 

residents including active screening during move-in, mandatory mask wearing in public spaces, take-out only 

at cafeterias and foot-traffic decals. Gauze was used as the collection substrate in the passive samplers for the 

routine surveillance. Experiments conducted with passive torpedo samplers in the campus sewer 

demonstrated that although both gauze and electronegative membranes could capture a SARS-CoV-2 signal, 

significantly more solids and total RNA were collected on the gauze (Appendix A – Section 1). The gauze 

more consistently detected the SARS-CoV-2 and at higher total copy numbers.   
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2.2.2 Passive sampler design and use 
The passive samplers were housed in torpedo-shaped vessels (15 x 3 x 3 cm) developed by Schang 

et al. (2021) that were 3D printed by WaterPuris Inc. (Kitchener, ON, Canada) using clear, durable V2 resin 

(Formlabs, Somerville, MA, USA). Modifications were made to the original print file to increase the 

thickness of the sampler walls to minimize in-situ warping. A fishing leader line was fed through the sampler 

and secured on the interior with a standard safety pin. The vessels were loaded with a loosely folded 2.76 x 

2.76 cm sterile cotton gauze pad (Fisher Scientific, Mississauga, ON) then secured with a lid to create the 

sampling apparatus (Appendix A – Figure A-6). The exterior end of the fishing leader line was tied to a 45.3 

kg test saltwater fishing line (Goture Co., San Francisco, CA, USA) which was affixed to a heavy-duty 

neodymium magnet hook with swiveling carabiner. The magnetic hook was then affixed to the interior of the 

utility hole rim to maintain the sampler in position. Samplers were typically deployed between 8-10 a.m. and 

remained in place for 24 hours. Upon collection, samples were transferred on ice to the laboratory for 

processing. Samplers were cleaned with a 10% bleach solution before redeployment to avoid cross-day 

contamination.  

 

2.2.3 RNA concentration and extraction  
In a sterile biological safety cabinet, each sample was transferred to an individual 50 mL sterile 

polypropylene centrifuge tube (Sigma Aldrich, MO, USA) containing 15 mL of Dulbecco’s phosphate 

buffered saline (DPBS) (Fisher Scientific, Mississauga, ON) with added 0.01% v/v polysorbate-20 (Fisher 

Scientific, Mississauga, ON). The tubes were placed on a 16-tube vertical tube rotator (Fisher Scientific, 

Mississauga, ON) and spun at 40 rpm for 15 min at 4°C, then placed on a digital vortex mixer (Fisher 

Scientific, Mississauga, ON) at 2000 rpm for 30 s to release trapped solids. Gauze was then removed from 

the tubes using a pair of sterile forceps and squeezed on the interior wall of the centrifuge tube to ensure the 

original 15 mL DPBS/polysorbate-20 volume was retained. The sampling material was then discarded, and 

the remaining solution was centrifuged at 12,000 RCF for 30 min at 4°C with no brake. Following 

centrifugation, the supernatant was carefully discarded using a pipette.  

A 140 – 150 mg sample of the generated pellet was sterilely placed into a 2 mL glass-style bead 

beating tube provided in the QIAGEN® RNeasy Power Microbiome® RNA extraction kit (QIAGEN®, 

Germany, No. 26000-50). Each tube then received 100 µL of TRIzol reagent (Fisher Scientific, Mississauga, 

ON) and 650 µL of PM1 (a kit-based reagent, QIAGEN®) mixed with beta 2-mercaptoethanol (Fischer 

Scientific, MA, USA) in a 99:1 ratio. The remainder of the extraction was performed in adherence to the 

manufacture’s protocol using the QIAGEN® Qiacube® (QIAGEN®, Germany, Serial No.: 02278). A Bead 

Ruptor 12 Bead Mill Homogenizer (Fischer Scientific, MA, USA) was used for 5 minutes at 3.55 m/s to 
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homogenize the samples. Following extraction, the resulting purified RNA was eluted into a 100 µL 

suspension of RNAse-free water. An extraction blank (whole-process control) was included with each batch 

of samples to screen for contamination. Additionally, samples and extraction blanks were analyzed for total 

RNA content by measuring a one µL subsample of the RNA elution using the NanoDrop One 

spectrophotometer (ThermoFisher Scientific, Mississauga, Ontario). 

 

2.2.4 Analytical methods 
 

Extracted RNA underwent 1-step reverse transcriptase quantitative polymerase chain reaction (RT-

qPCR) for SARS-CoV-2 (N1, N2 gene targets) and PMMoV. Detailed assay information can be found in the 

Appendix A (Sections 2 and 3). In Fall 2021 N1 and PMMoV were quantified in a duplexed assay. All assays 

were then run on either the CFX96 Touch or the CDX Opus Real-Time PCR systems using CFX Maestro 

Software for CFX Real-Time PCR Instruments (Bio-Rad Laboratories, Hercules, CA, USA).  

Based on experiments conducted in our lab and regional reports of an N1 dropout in late 2021 (Miller 

et al., 2021; Wang et al., 2022; Wollschläger et al., 2021), N2 was measured in all samples during Winter 

2022 in a simplex assay to draw comparisons between the two targets. To evaluate the presence of inhibition, 

when possible, samples were plated in 1x and 10x dilution and compared using the corrected concentration 

of PMMoV on the sampler. The actual PMMoV concentration is measured in the undiluted sample and the 

theoretical or expected PMMoV concentration is derived from the 10x dilution. Samples were considered 

inhibited if the ratio of theoretical to actual PMMoV concentrations exceeded two. Inhibition ratios were used 

to assign confidence to negative samples and assist in interpreting results. An undiluted sample negative for 

SARS-Cov-2 which had no evidence of inhibition would be less likely to produce a false negative result 

compared to an inhibited sample. Diluted an inhibited sample may reduce inhibitory effects enough to allow 

a SARS-CoV-2 detection to be made, mitigating the false negative interpretation. 

To define a positive sample, a one GC/reaction threshold was used as the absolute minimum 

concentration for a RT-qPCR detection to occur. Given that both the RNA elution and pellet were 

subsampled, the sampler detection limit was determined in order to identify the minimum number of GCs 

required to make a positive detection. This is assuming that there are no viral losses during the extraction 

process and that the resulting pellet and RNA elution were homogenous. The sampler detection limit was 

calculated using the following formula:  

 

Equation 1. 𝑆𝑎𝑚𝑝𝑙𝑒𝑟	𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛	𝑙𝑖𝑚𝑖𝑡	 = 0 !	#$
%$&	'()*+,-.
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Individual PCR wells were categorized based on the amplified SARS-CoV-2 concentration. A 

sample was considered positive if at least two of three PCR wells amplified above the sampler detection limit, 

or if all three wells produced a Cq value regardless of concentration. For samples where two or less wells 

amplified SARS-Cov-2 below the sampler detection limit, these were classified as ‘trace’ detections.  

 

2.2.5 Two-tiered sampling network 
 

A thorough survey of wastewater infrastructure identified surveillance sites that were organized into 

a two-tiered network (Figure 2-1) which maintained 85% surveillance coverage of the on-campus residence 

population. Site information including upstream occupancy data is presented in Appendix A (Table A5). A 

decision-making framework (Figure 2-2) was developed to create thresholds for determining when building-

scale (upstream) sampling would be triggered. If a sample was positive for SARS-CoV-2, both the upstream 

and building-cluster (downstream) sites were sampled the subsequent sampling day to isolate the probable 

source of the signal. If a sample produced a positive result in at least two of three technical replicates below 

the assay limit of detection (1 N-GC/reaction) it was classified as a trace detection. In these cases, upstream 

sampling was also triggered. Both tiers of the surveillance network were sampled until they each produced 

non-detections for three consecutive sampling days. 
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Figure 2-1. Two-tiered wastewater surveillance networks (Branches A-E) highlighting downstream sites 

(red squares) and associated upstream sampling sites (yellow circles). Campus residence buildings within 

each sewershed are highlighted in yellow. Sewers and flow direction are denoted by the blue arrows. 

 

 

Figure 2-2. Decision-making framework for determining event-to-event sampling sites. 
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2.2.6 Sampling frequency  
 

Twenty-four-hour passive samplers were deployed three times per week between August 2021 and 

April 2022. Surveillance period 1 (fall 2021) began on August 18, 2021, and ceased on December 17, 2021. 

Following the holiday break, surveillance period 2 (winter 2022) began on January 7, 2022, and ceased on 

April 29, 2022, following the final exam period. 

 

2.2.7 Municipal wastewater sampling 
 

Influent from the City of Waterloo WWTP located approximately 4 km northeast of the University 

campus was sampled as part of a larger WBS program. Samples collected using a 24-h composite sampler 

were processed in accordance with the methods described in Cheng et al., 2023. Briefly, polyethylene glycol 

(4 g) and NaCl (0.9 g) were added to a 40 mL influent sample that was centrifuged at 12,000g for 1.5 h after 

settling overnight.  The pellet was analyzed using the same kit-based extraction method and quantified with 

similar RT-qPCR methods as described above (Cheng et al., 2023).  

 

2.2.8 Clinical case data 
 

Anonymized case data for each residence building was provided by the University of Waterloo 

Department of Housing after the project had concluded and was completely independent of wastewater 

surveillance collection. Clinical case data was collected solely based on students self-reporting illness as there 

was no mandatory clinical testing on the campus. Clinical cases therefore include only individuals who 

volunteered that they had tested positive (PCR test or rapid antigen test) and reported results to the University. 

It is possible that some students may not have reported illness to the University Housing unit.  

To identify relationships between known clinical cases and passive sampler data, three assumed 

shedding periods were applied to the clinical dataset to account for fecal shedding variability. Cases were 

counted for each shedding period from the date of symptom onset (if known), or the day the student reported 

the illness to the University. In Fall 2021, in accordance with the Public Health guidelines at the time, students 

who were symptomatic or had tested positive were moved to an isolation facility outside of the surveillance 

catchment for a 10-day period. These cases were included in the tracker on the day the student was moved to 

isolation, as well as the day of return, and any additional days counted in the assumed shedding period. In 

Winter 2022, Public Health guidelines shifted to a five-day isolation period. During this time most students 

were ordered to “Stay-In-Place” to self-isolate in their assigned residence accommodations, contrary to 

moving to a dedicated isolation space as was done in Fall 2021. In these cases, students were included in the 
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tracker for the entire assumed shedding period as they were still contributing to the wastewater signal. 

Individual cases were counted for an assumed 5-day, 10-day and 21-day shedding period and compared with 

SARS-CoV-2 concentrations on passive samplers. In a separate analysis to account for the decay of detectable 

virus in stool over the course of infection, cases were assigned a contribution factor (CF) for each day in the 

shedding period based on an exponential decay formula (Equation 1). The formula aims to capture the 

theoretical decrease in fecal shedding load where a represents the initial contribution strength (100%), r is 

the assumed decay factor of either 25%, 50% or 75%, and x is the elapsed time in days. This analysis was 

performed under an assumed 10 and 21-day shedding period.  

 

Equation 2.              CF = a(1 – r)x 

 

2.2.9 Data analysis 
 

Standard curve slope and y-intercepts from RT-qPCR were used to quantify viral targets using the 

instrument’s recorded Cq value. Logarithmic transformation of wastewater data collected at both the WWTP 

and on campus fit a normal distribution, allowing for use of parametric tests. Correlation analysis was 

performed using the Pearson’s product method or Spearman’s rank method depending on data normality. A 

Wilcoxan rank-sum test was used to identify differences in median N1 and N2 concentrations within samples. 

A Pearson Chi-square test was used to compare detection frequencies between residence style types. To draw 

comparisons between target analyte concentrations in different residence style types, a one-way ANOVA 

was used. Concordance metrics were calculated using conventional formulas. All statistical analyses were 

performed using IBM SPSS Statistics 29 (SPSS Inc., Chicago, IL, USA) and visualizations were generated 

using Microsoft Excel Version 16 (Microsoft Corp., Redmond, WA, USA).  

 
2.2.10 Reporting plan and reporting 

 
The research team provided results to the Department of Housing and University Safety Office within 

12 hours of sample collection in Fall 2021 with reporting three days per week. In Winter 2022 reporting was 

performed once per week given the project scope changes subsequently discussed. The research team and 

campus partners met weekly throughout the surveillance project to discuss results and response plans. In the 

event of a positive detection campus partners utilized several adaptive response strategies for targeted 

communities including direct email notification and public messaging. The research team and campus 

stakeholders hosted a public information session on the WBS program and worked jointly to develop and 

update an online dashboard relaying the status of wastewater surveillance in each residence complex. Clinical 

reporting and case management was managed and tracked internally by Department of Housing staff 
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throughout the project and performed independently of the WBS program. A project timeline including 

university COVID-19 policies is presented in the Appendix A (Figure A-7). 

 

2.3 Results and discussion 
To address an institutional public health need, a wastewater network was strategically sampled to gain 

building-scale information on SARS-CoV-2 prevalence. Motivated by the ability for WBS to detect 

asymptomatic cases, University decision-makers sought to follow up positive wastewater detections with 

targeted public health action to minimize risk to students and staff. The surveillance program was initially 

designed to end on November 1, 2021, coinciding with the double vaccination deadline for students living 

on-campus. However, results over the Fall 2021 semester would extend the surveillance program an 

additional six months. During this time, passive samplers were evaluated for their performance 

characteristics, concordance with known clinical cases and relation to the prevalence of COVID-19 in the 

broader community.  

 

2.3.1 Passive sampler performance and inhibition 
 

Solids captured by passive samplers generated a mean wet pellet weight of 0.670 ± 0.265 g with a 

minimum and maximum capture of 0.115 g and 2.178 g respectively, indicating that cotton gauze was able 

to collect a range of solid masses. Similarly, the elution extracts yielded a mean total RNA concentration of 

973.6 ± 421.6 ng/µL with concentrations ranging between 76.3 and 3063.4 ng/µL. The mean pellet mass 

from samples collected in the two weeks prior to student move in were much lower compared to the remainder 

of the semester, likely attributed to the low wastewater flow observed during that period. Only 3% of the 

passive samplers in this study exhibited ragging, a term used to describe partial or full blockage of the 

sampling unit through the collection of in-situ debris. This is similar to Schang et al., (2021), who reported 

the ragging rate on their torpedo-style housing units to be less than 10% (Schang et al., 2021). Despite this 

finding, all samples tested positive for PMMoV indicating the presence of fecal matter in every sample. 

Gauze captured a mean PMMoV concentration of 6.79 ± 0.376 log10 gene copies (GC)/sampler across 

sampling sites. Mean PMMoV concentrations on passive samplers between downstream sites were not 

significantly different (One-way ANOVA, F = 1.979, d.f. = 4, 418, P = 0.097; Appendix A – Figure A-8) 

despite known upstream population differences. Additionally, while there was a significant relationship 

between log-transformed wet pellet mass and PMMoV GC/sampler, the relationship was weaker than 

expected (Pearson-product moment correlation, r = 0.422, N = 575, P < 0.001). Using the PMMoV 

concentrations derived from the diluted samples did not improve strength of the relationship, which indicated 
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that inhibition of PMMoV was not a significant factor. Together these results suggest that the amount of 

PMMoV captured and retained by the passive sampler is not reflective of upstream population differences. 

While the normalization of SARS-CoV-2 targets by PMMoV has been used successfully in on-campus 

surveillance programs using discrete sampling methods (J. Lee et al., 2023; Scott et al., 2021b) results of the 

study reported here suggest PMMoV may not be a suitable normalization target for SARS-CoV-2 when using 

gauze as a sampling medium. This conclusion is supported by Habtewold et al., (2022) who did not observe 

the linear accumulation of PMMoV in gauze samplers, and Li et al., (2022) who reported saturation of the 

material in eight hours, followed by viral losses. It is possible that normalization by PMMoV could be used 

in gauze-based applications for exposure durations under 24 hours, but further work is needed to characterize 

the equilibrium kinetics of the material in-situ. Although other normalizing metrics were considered for use 

in this study (including flush counts, electricity and water usage), this information was either unavailable or 

not feasible to collect during the rapid deployment of the current surveillance program. For these reasons 

subsequent data analyses were only performed on un-normalized SARS-CoV-2 data only.  

In Fall 2021 there were reports of a potential dropout of the N1 target caused by mutations in the 

SARS-CoV-2 N-gene (Miller et al., 2021; Wang et al., 2022; Wollschläger et al., 2021). To safeguard against 

diagnostic evasion, N2 was quantified in simplex along with the N1/PMMoV duplex reaction in Winter 2022. 

Retrospective analysis using a Wilcoxon rank-sum test indicated a statistically significant difference between 

the median N1 and N2 signals in Winter 2022 (Wilcoxan signed rank test, Z = 10.848, P < 0.001) with a 

mean N1:N2 ratio of 0.714. However, the correlation coefficient between the log-transformed N1 and N2 

measurements (Appendix A – Figure A-10) was 0.969 (Pearson’s method, r = 0.969, N = 277, P < 0.01). 

While the N1 dropout observed at the onset of the Omicron wave (Miller et al., 2021; Wang et al., 2022; 

Wollschläger et al., 2021) might have caused part of this divergence, slight differences or bias in the assays 

cannot be ruled out. However, both N1 and N2 behaved similarly and were capable of tracking temporal 

trends in SARS-CoV-2 signal. The N1 duplexed assay was also able to detect all clinical cases known to the 

University in Fall 2021, assigning additional confidence to surveillance efforts during this period.  

Samples collected in the two weeks preceding student move in did not indicate any presence of 

inhibition. However, persistent inhibition was observed after student move in at all sites, possibly reflective 

of the detergents, cleaners and other chemicals input to the wastewater system (Appendix A - Figure A-11). 

In Fall 2021, 90 of 203 (44.3%) tested samples were deemed inhibited which was of concern for the purposes 

of detecting low SARS-CoV-2 concentrations in wastewater. Reducing sample inhibition was a top priority 

for public health officials who sought to follow up positive detections with building-specific action and who 

relied on negative results to confirm the existing public health measures in place. Therefore, a methodological 

change was made to target a smaller pellet subsample mass to prevent overloading of the extraction column. 
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This change was made on September 27, 2021, which generally reduced the severity of inhibition in passive 

samples. In Fall 2021 there were two diluted samples that made a positive detection despite the same 

undiluted sample testing negative. These findings demonstrate the importance of assessing and mitigating 

inhibition even when the surveillance program is driven by qualitative passive sampling results. While this 

diagnostic evasion of SARS-CoV-2 is a concern, these two detections did not lead to the identification of any 

new cases and no subsequent positive detections were made in the days that followed. In Winter 2022, 87 of 

288 (30.2%) tested samples demonstrated some degree of inhibition with no apparent temporal or spatial 

trends. Given the magnitude of SARS-CoV-2 concentrations measured in Winter 2022 and inhibition 

estimates derived by PMMoV concentrations on passive samplers, there was significantly less concern 

regarding the diagnostic evasion of N-gene targets during this surveillance period.  

  

2.3.2 Surveillance in fall 2021 – low COVID-19 prevalence  
 

A total of 291 samples were collected over 52 sampling days in Fall 2021. Of these samples, 12 

(4.1%) tested positive for SARS-CoV-2, an additional 8 (2.8%) detected trace levels of SARS-CoV-2 but 

most samples (93.1%) tested negative for SARS-CoV-2 (Figure 2-3). The total number of samples positive 

for SARS-CoV-2 was variable across sites and ranged from zero to four. The first two positive SARS-CoV-

2 detection of Fall 2021 (Figure 2-3 – Branches B, E) were made within the two weeks prior to student move 

in and were followed by negative results on subsequent sampling dates, indicating the presence of at least 

one transient non-student case in each surveillance catchment. Following student move in over the week of 

September 6, other positive and trace-level detections translated to eight separate triggers of upstream 

sampling. Four of the eight upstream sampling triggers were succeeded by non-detections at both the 

upstream and downstream sites. A positive downstream detection followed by non-detections at all 

surveillance sites indicated to public health decision-makers that the infected individual was no longer in the 

community and transmission risk was reduced. In two other instances, upstream sampling sites were able to 

refine the probable origin of the positive signal to a small building subunit within the sewershed. In both 

examples, upstream sampling was able to refine the origin of the signal from a population of 1550 students 

to just 292 (Figure 2-3 – Branch C). This enabled highly targeted public health intervention by means of 

notification, increasing student risk awareness and communicating best practices such as frequent hand 

washing and encouraging the use of face masks. Had invasive clinical testing been a component of the 

University’s response to a positive wastewater detection, spatial refinement would minimize the number of 

clinical tests needed to identify the infected person(s) and consequently improving the ability to isolate 

individual(s) and optimize efficiency.



 

 

 

 

Figure 2-3. Qualitative results for all sites by surveillance period. Negative detections are highlighted in green, positive detections are highlighted in red, and 

yellow squares indicate a trace detection of SARS-CoV-2 RNA. Sites were not sampled on days that are coloured white. Grey blocks indicate the site was not 

included in the surveillance program for that respective period of time. Samples that were lost during collection or that could not be retrieved due to weather 

constraints contain an ‘x’. 
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The remaining two upstream sampling events were linked to a clinical COVID-19 case known to the 

University. On November 3, 2021, the downstream site D0 produced 1.79x104 N1 genomic copies 

(GC)/sampler – the maximum detection observed in Fall 2021 (Figure 2-4). The detection triggered upstream 

sampling the following sampling day where the upstream site tested negative for SARS-CoV-2, and the 

downstream site continued to test positive, though substantially reduced in signal (~79% reduction from 

November 3 – November 5). This combination of results prompted response action in two candidate residence 

buildings. Retrospective analysis of the clinical dataset revealed that a single student began experiencing 

symptoms on November 4 and reported a positive PCR test to the University on November 5. The following 

day the student was moved to an isolation space outside the surveillance catchment. This timeline indicates 

that SARS-CoV-2 was detected in wastewater 24 h in advance of the individual becoming symptomatic, two 

days before clinical test confirmation, and three days before the student was moved into a quarantine facility 

(Figure 2-4). This single case was detected at a sampling site collecting wastewater from nearly 1300 

individuals, indicating a high degree of methodological sensitivity.  

This example demonstrates the efficacy of the tiered approach in achieving an actionable degree of 

spatial surveillance while maximizing resource and personnel use. It also adds to mounting evidence that 

WBS has the potential to provide early detection and outbreak notification at the building-scale, especially 

in this setting where a comprehensive clinical testing program was not in place (Bibby et al., 2021; Corchis-

Scott et al., 2021). However, it also highlights the challenges that convalescent cases within the surveillance 

catchment can pose to data interpretation. Upon the students return to their original accommodation following 

the 10-day isolation period, positive detections continued to be made until November 19. Fecal shedding 

duration of SARS-CoV-2 can be variable between individuals (Cevik et al., 2021; Xiao et al., 2020), with 

prolonged shedding periods confounding interpretation and reporting efforts (Cavany et al., 2022; Colosi et 

al., 2021; Corchis-Scott et al., 2021; Sellers et al., 2022). In the absence of mandatory clinical testing, there 

is no way to know whether the same individual contributed to the later positive detections or not.  One 

interesting point of note, however, is that the quantification of SARS-CoV-2 on the passive sampler during 

the initial detection period closely mirrored what is known about viral shedding in clinical settings. While 

extended periods of fecal shedding have been documented, viral shedding tends to peak within five to six 

days of infection followed by a rapid decline (Cavany et al., 2022; Cevik et al., 2021; Natarajan et al., 2022; 

Y. Zhang et al., 2021). This suggests that passive samplers might be sensitive enough to capture the fecal 

shedding variability of a single individual while simultaneously monitoring a much larger community. Under 

the assumption that all detections made at D-0 in November were from the same person, this places the 

individuals fecal shedding duration at approximately 16 days which is close to the previously estimated mean 

fecal shedding duration of 17.2 days (Cevik et al., 2021). Due to the episodic nature of positive detections 

across sites throughout Fall 2021 and the low COVID-19 prevalence in the community, isolating the origin 
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of these signals worked as intended. While positive detections were informative for public health decision-

makers, the widespread non-detections observed across campus in Fall 2021 validated the efficacy of existing 

public health measures in place. 

 

 

Figure 2-4. WBS results for Surveillance Branch D over November 2021. N1-GC per sampler on log scale 

from November 3 – 26, 2021. The downstream site is denoted by circles where positive detections are filled 

in red and non-detections are empty. The associated upstream site is produced only non-detections in the 

sampling period and are denoted by X marks. All non-detections were assigned a value of one (1) for 

graphical purposes. The green and red shaded areas signify when the student was living in their original 

accommodation and when they were moved a quarantine facility respectively. 

 

2.3.3 Surveillance in winter 2022 – high COVID-19 prevalence  
 

The arrival and spread of the SARS-CoV-2 Omicron (B.1.1.529) variant in Ontario demanded major 

scope changes to the surveillance project. While Omicron has a comparable period of communicability 

compared to other SARS-CoV-2 Variants of Concern (VOC), it has been shown to be significantly more 

transmissible (Public Health Ontario, 2023). This was reflected in the rapid increase in the numbers of clinical 

case and hospitalizations in Ontario that occurred in January 2021 (Cheng et al., 2023). Because few students 

were on campus during the Holiday Break, sampling was not conducted during this period. Although only a 

portion of the students returned during the first two weeks in January 2022 all sites tested positive for SARS-
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CoV-2, some up to 10-fold greater than the strongest detection made in the Fall 2021. Given that upstream 

sampling no longer provided useful information on the probable origin of a positive signal, the two-tiered 

approach was no longer needed. Instead, only downstream sites were included in surveillance in an attempt 

to identify changes in the SARS-CoV-2 signal to inform the easing (or further implementation) of public 

health restrictions. In Winter 2022, there were a total of 295 samples were collected (Figure 2-5). In contrast 

to the previous surveillance period, 42 sampling days produced just 10 (3.4%) samples that were negative for 

SARS-CoV-2, 6 (2.0%) detected trace-levels of SARS-CoV-2, and 278 (94.2%) samples tested positive. 

Similar to other WBS programs on university campuses (Jain et al., 2022; J. Lee et al., 2023), all downstream 

sites at the University closely followed trends measured downstream at the municipal WWTP (Figure 2-5).
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Figure 2-5. Wastewater surveillance data for downstream campus sampling sites (Panels A0, B3, B0, C1, 

C0, D0, E0) and the City of Waterloo WWTP (bottom panel). For campus data, the total number of new cases 

reported to the University (vertical black bars) is on the primary y-axis, and the log-transformed SARS-CoV-

2 concentrations on passive samplers (red circles) and non-detections (‘x’ marks) are on the secondary y-

axis. Municipal wastewater data (Panel WWTP) is presented as the log-transformed N-GC/mL of wastewater 

with the red line representing the one-week moving average. The holiday break is denoted in each panel 

where there were no on-campus sampling activities from December 18, 2021 – January 6, 2022.   
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2.3.4 Detections at traditional and apartment-style residence buildings 
 

Several on-campus WBS programs have prioritized traditional-style residence buildings that shared 

bathroom and dining facilities on the assumption that they would pose a greater transmission risk to 

residents and consequently result in a greater detection frequency compared to apartment-style residence 

buildings (Anderson-Coughlin et al., 2022; Kotay et al., 2022; Scott et al., 2021a). In this study there was 

no statistical difference between the detection frequencies of traditional and apartment-style residence 

buildings, X2, (1, N = 312, P = 0.721).  To compare the overall SARS-CoV-2 burden between residence 

styles a one-way ANOVA was performed of the data from the sites measuring the two residence styles. 

Traditional-style residences had a significantly higher mean SARS-CoV-2 load compared to apartment-

style residences for both log-transformed N1 (One-way ANOVA, F = 6.630, d.f. = 1, 158, P = 0.011) and 

N2 (One-way ANOVA, F = 4.285, d.f. = 1, 152, P = 0.040) data. Boxplots are presented in Appendix A 

(Figure A-12). While it is possible that traditional-style residences carry a greater COVID-19 burden, this 

result might also be attributed to other intrinsic factors unique to apartment-style residence buildings. For 

example, apartment-style residences on the campus had a lower population density compared to traditional-

style buildings and access to ensuite appliances such as dishwashers and washing machines which introduce 

additional greywater into the sewage system (Anderson-Coughlin et al., 2022). The additional greywater 

could accumulate more inhibitors and cause an increased dilution effect, thereby reducing SARS-CoV-2 

concentration on passive samplers at these sites. Nonetheless, these results suggest that residence style may 

not need to be a key consideration for WBS site selection. 

 

2.3.5 Passive sampling concordance with epidemiological data  
 

Unlike Fall 2021, interpretation of the wastewater signal in Winter 2022 was challenging given that 

most students were required to stay in place for self-isolation. As observed at site D0 in the Fall of 2021 

and as other studies have reported, the presence of convalescent cases within the sewershed can confound 

the interpretation of wastewater data (Cavany et al., 2022; Colosi et al., 2021; Corchis-Scott et al., 2021; 

Sellers et al., 2022). There was strong concordance between same-day clinical case reports and detections 

in wastewater (Table 2-1; sensitivity = 98.2%) meaning the method was able to detect all but one clinical 

case known to the University. This single case was reported on the last day of surveillance in Fall 2021. It 

is possible that this student moved out or did not use the restroom facilities within their assigned 

accommodation during the sampling window, or that they did not shed a detectable amount of the virus. 

The method also demonstrated strong predictive power in accurately identifying the absence of clinical 

cases upstream (Table 2-1; negative predictive value (NPV) = 99.6%). A large number of positive 
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wastewater detections were made in the absence of a clinical case being reported, producing a positive 

predictive value (PPV) of 16.7% which is less than other upstream sampling programs have reported 

(Bivins et al., 2022; Welling et al., 2022). However, this result is not surprising given the limitations of the 

clinical dataset. The absence of mandatory clinical testing and voluntary reporting resulted in a high degree 

of uncertainty in estimating the methodological positive predictive ability.  Other studies which paired 

wastewater surveillance with comprehensive clinical testing programs observed significantly higher PPVs 

(Bivins et al., 2022; Welling et al., 2022). Given these limitations and that college-aged students have a 

significantly higher proportion of asymptomatic cases compared to older cohorts (Schmitz et al., 2021), 

widespread diagnostic evasion was anticipated. One study which administered over 700 clinical tests on a 

university campus found that nearly 80% of all cases were asymptomatic (Schmitz et al., 2021). This is 

likely reflected to some degree in the discordance between wastewater testing and the clinical dataset. As 

previously mentioned, the indiscriminate nature of WBS does not allow for distinction between new 

COVID-19 cases and convalescent cases within the sewershed, particularly when sick individuals reside in 

the same building as the rest of the population under surveillance. Despite asymptomatic and unreported 

cases reducing the same-day PPV, the true value of the surveillance program was realized in these 

detections where discordance was followed up by targeted public health intervention. This is the case for 

more than 83% of all positive samples which had no known clinical cases associated.  

 

Table 2-1. Comparison of same-day results between wastewater surveillance detection and the associated 

presence or absence of clinical cases upstream. Counts represent all sites across both surveillance periods.  

  Clinical Testing 

  + - 

Wastewater + 53 264 

- 1 267 

Sensitivity (98.2%), Specificity (50.3%), PPV (16.7%), NPV (99.6%) 

 

Recognizing the variability of fecal viral shedding, a 5-day, 10-day and 21-day shedding period 

were applied to clinical cases to identify any significant relationships with passive sampling data. The five 

and ten-day shedding periods were selected since they represent the required isolation periods for Fall 2021 

and Winter 2022 respectively, as recommended by the provincial government at the time. A 21-day 

shedding period was also evaluated to account for the possibility of a longer shedding period and is similar 

to the 17-day mean shedding period reported by Cevik et al., 2021. Initially, cases were counted for the 
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entire shedding period. Clinical case counts could not be normalized by transformation, therefore, the 

Spearman’s rank method was used to identify significant correlations between case counts and log-

transformed SARS-CoV-2 concentrations on passive samplers (Table 2-2). The 10-day assumed shedding 

period produced the strongest correlation with both N1 and N2 followed by the 5-day and 21-day shedding 

periods (Table 2-2). However, this approach fails to capture the exponential reduction in SARS-CoV-2 

concentrations in the stool of infected patients following peak shedding which occurs approximately five 

days after infection (Cavany et al., 2022; Cevik et al., 2021; Natarajan et al., 2022; Y. Zhang et al., 2021). 

Since nearly all individuals in our dataset were symptomatic, it was assumed that peak shedding occurred 

on the day illness was reported. Of the different conditions tested, an assumed 21-day shedding and a decay 

rate constant of 25% produced the strongest correlation for both log-transformed N1 and N2 concentrations 

(Table 2-2). Within the two tested shedding periods, correlation coefficients decreased as the decay rate 

constant increased. However, applying contribution factors (CFs) to clinical cases to account for signal 

decay over the shedding period did not improve correlation strength overall compared to whole case counts. 

This is likely a consequence of unreported cases in the sewershed contributing to the wastewater signal 

during periods when the decay analysis tracks the decline in known cases. Therefore, this analysis might 

be best suited to monitoring applications where more is known about the clinical dynamics of the population 

under surveillance. A better understanding of decay rates in SARS-CoV-2 fecal shedding might assist 

practitioners with the interpretation of wastewater data, particularly when convalescent cases are present in 

the sewershed and confound results.  

Table 2-2. Spearman's rank correlation coefficients between log-transformed on-campus passive 

sampling data and known clinical case counts under various assumptions. All correlations are significant 

at the P < 0.01 level. 

Shedding 
Period 

Decay 
Factor 

N1 N2 

5-day - 0.480 0.471 

10-day - 0.561 0.561 

21-day - 0.475 0.455 

10-day 25% 0.523 0.522 

10-day 50% 0.502 0.495 

10-day 75% 0.490 0.479 

21-day 25% 0.528 0.521 

21-day 50% 0.498 0.485 

21-day 75% 0.483 0.466 
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2.3.6 Relationship between campus passive sampling and regional (quantitative) wastewater 
surveillance 
 

To compare the SARS-CoV-2 burden on campus to the broader community, comparisons were 

made between log-transformed passive sampling data and SARS-CoV-2 concentrations in wastewater 

collected at the municipal WWTP. Logarithmic transformation produced an approximately normal 

distribution for WWTP data and for campus sampling data (Appendix A – Figures A-13 and A-10 

respectively). There was no significant relationship between passive sampler and WWTP N1 concentrations 

in Fall 2021 due to the large number of non-detections for SARS-CoV-2 measured on campus and the 

comparatively low viral prevalence in the community (Pearson product-moment correlation, r = 0.204, N 

= 8, P = 0.629). Alternatively, the persistent positive detections on campus in Winter 2022 made for a more 

suitable comparison. All downstream sampling sites on campus measured two distinct peaks in SARS-

CoV-2 concentrations in Winter 2022 – the first peak immediately following the return from the holiday 

break, and the second occurring towards the end of March where clinical cases reported to the University 

were at their maxima. These peaks closely coincide with the peaks observed in municipal wastewater 

samples collected at the City of Waterloo WWTP and were also observed in WBS programs at other 

universities during the same time period (Jain et al., 2022; J. Lee et al., 2023). Analysis of SARS-CoV-2 

concentrations on passive samplers and in wastewater produced a weak, positive correlation for both N-

gene targets (Table 2-3). While these measurements were not paired, similar linear relationships between 

passive and discrete sampling methods have been previously reported using a variety of sampling materials 

(Bivins, Kaya, et al., 2022; Habtewold et al., 2022; Schang et al., 2021).  

 

Table 2-3. Pearson correlation coefficients between log-transformed on campus passive sampling data 

and log-transformed SARS-CoV-2 concentrations in wastewater measured at the WWTP during winter 

2022. All correlations are significant at the P < 0.001 level.  

  Campus  
Passive Samplers 

  N1 N2 

Municipal  
WWTP 

N1 0.397 0.372 

N2 0.403 0.386 
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These results suggest that drawing comparisons between building-scale and community-scale WBS 

might be dependent on disease-prevalence within the sewershed. This was largely due to the episodic nature 

of positive detections on campus in Fall 2021 which produced significant discordance with the WWTP 

dataset. Additionally, near-source sampling is known to produce significant day-to-day variation in SARS-

CoV-2 levels due to variable flow regimes, fecal shedding dynamics and other factors which mediate viral 

input into the sewage system (Bivins & Bibby, 2021; Corchis-Scott et al., 2021; Rondeau et al., 2023). 

Downstream at the WWTP where wastewater is drawn from a larger catchment, wastewater composition 

may be less prone to temporal density variability. Alternatively, when disease prevalence in the community 

is comparatively high and detectable at both sampling scales, the results demonstrate that building-scale 

sampling may be redundant. SARS-CoV-2 concentrations in municipal wastewater closely resembled that 

of the campus through time, indicating that the municipal surveillance program might have been a suitable 

surrogate for the overall incidence of disease within on campus residence buildings. It is also important to 

recall that many students at the University who do not live in residence are living in the surrounding area 

serviced by municipal WWTP. The interaction between the University population and the wider 

community, and therefore transmission of COVID-19, may have contributed to this similarity in results. 

Nonetheless, there were several campus samples in Winter 2022 that tested negative for SARS-CoV-2 

which validated known clinical information and provided useful spatial data for public health officials. 

These periods of lower disease prevalence would have otherwise not been detected had surveillance only 

been performed at the WWTP. 

The correlation coefficients presented in Table 2-3 also support mounting evidence that passive 

sampling has the potential to generate semi-quantitative data (Bivins et al., 2022; Habtewold et al., 2022; 

Hayes et al., 2021). Despite several studies demonstrating a limited capacity for gauze to act as a passive 

sampling medium for SARS-CoV-2 (Habtewold et al., 2022; Li et al., 2022), the results demonstrate the 

material’s efficacy over a 24-hour sampling period both in terms of epidemiological concordance and 

quantitative potential. However, it is still unclear what portion of this sampling window is most reflective 

of the SARS-CoV-2 concentrations observed on the passive samplers. This is largely due to the poorly 

characterized uptake and retention kinetics of the material and the site-specific characteristics known to 

govern these dynamics (Bivins et al., 2022). As previously discussed, standard cotton gauze likely becomes 

saturated with PMMoV within 8 hours of sampler deployment (Habtewold et al., 2022; J. Li, Verhagen, et 

al., 2022), however the saturation capacity (equilibrium) and breakthrough point for SARS-CoV-2 have not 

yet been determined. This is largely due to confounded results by the accumulation of inhibitors and the 

inability to characterize potential viral exchanges and losses when samplers are deployed in-situ 

(Habtewold et al., 2022; J. Li, Verhagen, et al., 2022). Other investigations have highlighted the utility of 

electronegative membrane filters in passive sampling for SARS-CoV-2, citing linear uptake of multiple 
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genetic targets of interest in excess of 24 hours (Habtewold et al., 2022; J. Li, Verhagen, et al., 2022). Such 

a material would provide the benefit of time-integrated sampling which can be used to make inferences 

about the population under surveillance and improve confidence in the sampling window. As the demand 

for WBS programs for SARS-CoV-2 begin to wind down, research should continue to characterize the 

equilibria kinetics of these materials to better interpret passive sampling data in future applications. 

 

2.4  Conclusions 
This investigation demonstrated the ability for passive sampling to act as a critical public health 

surveillance tool to support institution-level decision-making. The two-tiered sampling network proved 

extremely useful in minimizing time and resource usage without compromising the number of individuals 

under surveillance. It also enabled same-day analysis and reporting which was critical for stakeholders 

involved in the public health response. Most importantly, the tiered model was effective in isolating the 

origin of positive SARS-CoV-2 signals when COVID-19 prevalence in the campus community was low. 

This enabled decision makers to implement targeted communication-based public health measures that 

would have significantly reduced clinical testing needs had a mandatory program been in place. While the 

approach to WBS must remain site and context-specific, the results demonstrates that a tiered design may 

be most useful in resource-limited settings and especially when clinical testing is not available. The early 

detection potential of passive sampling was also realized in Fall 2021 when a single pre-symptomatic case 

was detected, leading to the prompt isolation of the student to prevent transmission. In Winter 2022 when 

COVID-19 burden was high, the tiered approach needed to be modified to maximize data actionability and 

temporally monitor trends in SARS-CoV-2. This provided decision-makers with an additional layer of 

evidence to support the public health restrictions. Beyond building-scale applications, passive sampling 

trends on campus in Winter 2022 closely mirrored regional pandemic dynamics and was significantly 

correlated with SARS-CoV-2 concentrations in the local municipal wastewater treatment plant. Wastewater 

surveillance filled a critical gap in the return to campus as an independent, holistic means to track the 

emergence of SARS-CoV-2 on the University campus. The WBS program was also insulated from many 

of the biases involved in clinical testing including test-seeking behaviours, student participation, and 

changes in test eligibility. Applying this research advances our knowledge in the detection and 

quantification of SARS-CoV-2 in wastewater and validates the ability of passive sampling data to produce 

actionable data related to human health. Further advancing these methodologies can be applied to detect a 

variety of genetic targets and will be an essential component to pandemic and healthcare preparedness in 

the future.   
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3. Chapter 3 

Conclusions and implications for the next pandemic 

 
As demonstrated in Chapter 2, passive sampling can be used as an effective tool to monitor disease 

prevalence at the building-scale and inform localized public health action. Passive sampling demonstrated 

its reliability and sensitivity by positively identifying nearly all known clinical cases over the surveillance 

period. In fall 2021, wastewater led clinical test results in at least one infected student providing a two-day 

advanced warning. In winter 2022, cotton gauze as a sampling medium demonstrated its propensity to 

capture quantifiable differences in SARS-CoV-2 RNA over time, expanding the materials previously 

understood utility for long-term surveillance applications. The workflow for processing passive samplers 

also produced results faster than conventional sampling methods and prioritized stakeholder end use of the 

data. Implementing passive sampling under the two-tiered model also offered several benefits to the 

surveillance program which should be considered in future monitoring endeavors. When implemented over 

the fall 2021 term, the tiered sampling approach demonstrated its capacity for scalability and efficient use 

of resources while surveilling a relatively large population. The decision-making framework for 

determining when and where to sample guided surveillance efforts to refine the origin of SARS-CoV-2 

RNA to the building and sub-building level while maintaining a short turnaround time for results. This 

approach may be particularly advantageous in low-resource settings where sampling capacity is a key 

limiting factor. As demonstrated here, the utility of passive sampling WBS data was best realized in the 

absence of a clinical testing program. WBS supplemented existing public health data to implement rapid, 

targeted follow-up to a relatively small community of impacted students. Despite refined spatial resolution 

having limited utility in winter 2022, passive samplers demonstrated the ability to track trends in SARS-

CoV-2 concentrations at all sampled sites. This was achieved in the absence of flow data or an endogenous 

indicator to account for dilution effects, further demonstrating the utility of cotton gauze to act as an 

effective passive sampling medium for SARS-CoV-2. This applies both in terms of epidemiological 

concordance and quantitative potential. Passive sampling data was significantly correlated with known 

clinical cases and with SARS-CoV-2 concentrations in municipal wastewater demonstrating the ability for 

passive samplers to generate semi-quantitative data. It also demonstrated that viral transmission on campus 

was similar to the broader community. In summary, passive sampling can support institution-scale public 

health action by: 

1. Reliably detecting the presence of SARS-CoV-2 RNA in wastewater to act as an early alert 

system. Passive sampling circumvents many of the challenges associated with grab and composite 
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samplers for routine public health surveillance. Its sensitivity and concordance with epidemiological 

data make WBS data attractive to its end users and assign confidence to reporting.  

2. Providing an additional layer of evidence to support existing public health measures when 

negative results are obtained. In terms of qualitative reporting, passive sampling may afford more 

confidence in negative results compared to those obtained by discrete sampling methods.  

3. Tracking trends in the viral load of afflicted communities, particularly when disease prevalence 

in the community is high. Beyond qualitative applications, passive samplers can track measurable 

differences in the viral signal through time that are positively related to the SARS-CoV-2 burden 

within the upstream catchment.  

By taking a passive sampling approach under a tiered, trigger-based sampling design, public health action 

and decision-making can be further supported by:  

1. Providing spatial information on where infected persons may reside. Building-scale resolution 

of WBS can allow for highly targeted intervention, thus providing the most immediate utility for 

public health action.  

2. Identifying target populations for clinical testing, thereby minimizing associated resource 

usage. When positive wastewater detections are followed up with clinical testing, building-scale 

surveillance resolution can help to minimize the number of associated tests required to identify the 

source or sources.  

3. Minimizing the number of sites required to surveil a given population. By clustering upstream 

sites together, more people can be monitored with less effort. This has direct financial implications 

for WBS programs, most of which rely on specialized equipment and costly reagents.  

4. Maintaining a reasonable turnaround time to identify a positive detection to the building-

level. When a downstream site tests positive for SARS-CoV-2, the workflow and simplistic two-

tiered design enables follow up testing at upstream sites to occur within a few days. This allows for 

timely follow up and the afforded confidence that the persistence of the signal is originating from 

a resident (as opposed to a transient source). This time could be shortened further depending on 

laboratory capacity and financial resources.  

5. Scaling to expand or reduce the scope of the surveillance program, as needed. The tiered aspect 

of the surveillance program was only useful when disease prevalence in the community was 

comparatively low. The nested design of the sampling regime allows for sites to be easily added or 

removed as institutional and epidemiological conditions change.  
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3.1 Limitations 
While the use of passive sampling to support spatially refined public health surveillance has been 

demonstrated, there are some limitations which should be considered. First, human behaviour plays a 

significant role in this study. Although routine surveillance efforts may assume that students use the 

restroom facilities within their assigned accommodation, this may not always be the case. Students move 

between residence buildings and the main campus frequently, especially when in-person classes resumed 

in February 2022. Another assumption is that all positive detections originate from residents within the 

sewershed. On a university campus, residence halls are often frequented by visitors, contractors and 

employees who may contribute to the wastewater profile. Both of these transient factors have implications 

for reporting results. Under the tiered model, either may have incidentally triggered an alert in one building 

while the infected person remains undetected in their original accommodation or elsewhere on campus.  

Limitations exist on the analysis of fecal shedding periods and in the linear relationships reported 

between clinical cases and passive sampling data. Of primary restraint is the lack of a comprehensive 

clinical dataset. Self-reported illness, lack of clinical testing and asymptomatic infections introduce 

uncertainty in the case counts and are almost certainly reflected to some degree in the correlation outputs 

and concordance metrics presented in Chapter 2. While this is a limitation of the analysis, WBS is effective 

at informing public health action in the absence of clinical testing. Had a comprehensive clinical testing 

program been in place, WBS still would have provided relevant, independent information that would 

support interpretation of the spread of COVID-19. The data available to establish the relationships was 

often lacking during the pandemic. As so many practitioners of WBS have come to realize, what is 

demanded by an on-going public health crisis does not always align with the ideals of controlled 

experimental design. Tradeoffs had to be made in real time, under shifting public health guidance, to 

prioritize data actionability.  

It is important to recall that passive sampling data involves less than quantitative accuracy and 

precision. While this study has demonstrated that gauze as a sampling medium is capable of tracking 

temporal SARS-CoV-2 trends in wastewater, it may not be a suitable sampling media for direct quantitative 

applications. For example, enumerating clinical cases in the sewershed using passive sampling data requires 

calibration of the material which is challenging for previously described reasons. The equilibria kinetics of 

cotton gauze in a complex matrix such as wastewater are largely uncharacterized and vary spatially. This 

imposes a limitation in understanding what portion of the sampling window the SARS-CoV-2 concentration 

on the passive sampler is most representative of. As previously discussed, the few existing calibration 

studies suggest cotton gauze saturates for PMMoV within eight hours, but results are universally 

confounded for SARS-CoV-2 (Habtewold et al., 2022; Li et al., 2022).  If future calibration studies are able 
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to conclusively determine that gauze becomes saturated with SARS-CoV-2 within 24 hours, surveillance 

efforts could be modified to reflect the effective sampling window and target specific peak hours of the day 

where the most wastewater production is expected. Efforts to characterize these qualities would be of 

benefit to similar upstream WBS studies, both future and in retrospect.  

 

3.2 Considerations for future WBS programs 
WBS has grown considerably in the near century since its inception. Remarkably, Moore’s original 

cotton swab design demonstrated its utility through time by its modern application in environmental 

monitoring, WBS and this very investigation. The rich history of WBS demonstrates the importance of 

documenting lessons learned for consideration in future public health crises to improve the power of 

wastewater surveillance as a monitoring tool. 

 

3.2.1 Passive sampler design and processing 
 

Since concluding routine surveillance in this study, WBS for SARS-CoV-2 using passive sampling 

has been applied in several bench-scale and in-situ applications to assess passive sampler performance and 

surveil populations of interest (Acer et al., 2022; Jain et al., 2022; Mangwana et al., 2022; West et al., 2023; 

Wilson et al., 2022). As observed with discrete sampling methods, the approaches to passive sampling have 

been variable between research groups. Differences in resource availability, workflow and data use have 

translated to variations in chosen sampling material, wash eluents and concentration methods (Appendix 

B; Table B-1). This study involved the use of cotton gauze as a sampling medium which has been previously 

described as having a potentially limited capacity for exposure durations over eight hours (Habtewold et 

al., 2022; J. Li, Verhagen, et al., 2022). However, none of those studies directly analyzed the solid fraction 

of swab eluates, instead opting for the filtration of the resulting liquid and performing RNA extraction 

directly from a filter paper. This may explain some of the discordance between results. However, it is true 

that other materials may be better suited depending on the application in question. For example, materials 

such as electronegative membrane filters which have been shown to linearly accumulate SARS-CoV-2 over 

extended sampling durations may be better suited to quantitative applications. This of course, is provided 

that the practitioner can meet the time and resource demands associated with processing the material. 

Particularly under a public health emergency, tradeoffs may need to be made to find the right balance of 

priorities, including priorities related to sampling material and subsequent processing. Practitioners of WBS 

should make their best attempt to understand these factors and address the research or surveillance objective 

at hand.  
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3.2.2 Analytical considerations 
 

There are many analytical tools that can be used to detect SARS-CoV-2 and other viruses in 

wastewater, each with their unique advantages, limitations, and costs. This investigation used RT-qPCR to 

detect and quantify SARS-CoV-2 and PMMoV RNA concentrations on passive samplers. RT-qPCR is 

relatively affordable despite requiring commercially produced primers and probes, MasterMix and 

specialized equipment. RT-qPCR can take longer to perform compared to some other less sensitive 

techniques since the process involves repetitive thermal cycling to amplify the target sequence in a sample. 

Digital droplet PCR (ddPCR) as used by West et al., (2023) has a similar cycling time but higher costs 

associated with specialized reagents and equipment. The advantage of ddPCR is the superior precision it 

provides by splitting the sample into thousands of individual reactions to generate an absolute quantitative 

value and that it does not rely on standard curves for quantitation. However, this precision may often not 

be needed in passive sampling applications where qualitative data is collected. To minimize resource costs, 

one study employed the use of reverse transcription loop-mediated isothermal amplification (RT-LAMP) 

to detect the virus in a building-scale surveillance project (Bivins et al., 2022b). They report that despite 

RT-LAMP being approximately 20 times less sensitive than ddPCR, it may still be useful in resource-

limited environments where WBS is desirable (Bivins et al., 2022b). The authors also cite that they were 

able to process and analyze samples within three hours, which is five to nine hours faster than the workflow 

described in this thesis. However, qualitative data would have limited use in building-scale surveillance 

when disease burden in the community is high, as observed in this study in winter 2022. RT-LAMP also 

reduces the probability of detection when viral signals are extremely low, because of reduced detection 

limits. There were several trace-level detections in fall 2021 that may have gone undetected with the use of 

a less sensitive methods. In keeping with the adaptive nature of WBS, practitioners may find it appropriate 

to use a combination of methods depending on pandemic conditions and resource constraints.  

RT-qPCR has been widely used in passive sampling applications because of its relative sensitivity 

and affordability. In this investigation, two different RT-qPCR assays were used to quantify two N-gene 

targets and PMMoV. However, the results indicate that there may have been opportunity for further time 

and cost savings related to routine surveillance. As described in Chapter 2, the primary assay used 

throughout the eight-month surveillance period duplexed the N1 SARS-CoV-2 gene with PMMoV. As 

previously discussed, PMMoV has been widely used to normalize SARS-CoV-2 concentrations in 

wastewater, but its application in passive sampling at the time was untested. Conclusions from Chapter 2 

and other studies published since indicate that gauze is not a suitable sampling media for PMMoV beyond 

eight hours of exposure. Therefore, surveillance programs using cotton gauze, and possibly other cotton-

based materials would not benefit from quantifying PMMoV. Alternative normalization tools such as 
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wastewater production volume or flush counts may be a more appropriate alternative. If exposure conditions 

and sampling material are suitable, and PMMoV is a desired endpoint of the surveillance program, it should 

be quantified in simplex. As demonstrated in Chapter 2, discordance in the quantification between the two 

N-gene targets may have resulted from a combination of the natural dropout of the N1 gene in the virus 

circulating in the community, and biases in the duplexed assay. High concentrations of PMMoV in 

wastewater samples relative to SARS-CoV-2 may lead to binding competition for nucleotides within the 

RT-qPCR reaction. Assessing N-gene targets separately and mitigating inhibition improves the odds of 

detection and provides the best conditions for measuring temporal variations in SARS-CoV-2 

concentrations. While optimizing assay performance should be a top priority for all WBS programs, this 

study was still able to demonstrate that N1 and N2 were reliably detected in samples and tracked similar 

temporal trends on SARS-CoV-2 concentrations on passive samplers. This suggests that either N-gene 

target could be suitable for long-term surveillance and that measuring both routinely may be redundant. 

 

3.2.3 Infrastructure management recommendations 
 

The design phase of the WBS program revealed several site-specific challenges which could limit 

the scope of similar surveillance programs in the future. These considerations should be taken into account 

when defining the population under surveillance, sampling frequency and feasibility, and logistical 

considerations with respect to sample collection. The first recommendation is to consistently maintain and 

update wastewater infrastructure blueprints.  The on-campus residence buildings house a combination of 

old and newly constructed wastewater infrastructure reflective of an expanding residence program over the 

last several years. The sewer network survey undertaken in August 2021 revealed several discrepancies 

between existing blueprints and new infrastructure that had yet to be reflected on these documents. As 

reported by other institutions (Harris-Lovett et al., 2021), this included new and unmapped sewage and 

storm water infrastructure, unmarked maintenance access points, unmarked connections between buildings, 

and in some cases, blueprints for entire buildings were not initially available. A patchwork of sewer 

schematics were eventually obtained from several different campus stakeholders, but consolidating this 

information would be of great benefit to future WBS efforts undertaken on campus.  

One persistent challenge in site selection for this study was the inability to isolate wastewater 

influent from individual buildings or building subunits. On the University campus there were several 

candidate sites that had confounding sources of wastewater. Strong-armed by utility hole locations and 

inaccessible cleanouts, the surveillance program often had to rely on building cluster-level surveillance, 

thereby broadening the list of potentially affected communities. While little can be done to modify existing 

wastewater infrastructure, the future construction or repair of building sewers for residence 
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accommodations, as well as the main campus, should incorporate accessible indoor cleanouts for future 

sampling endeavors. This recommendation comes at a time when the University aims to address a severe 

student housing shortage in the province (Lundy, 2023) through the recent announcement to expand the 

residence program by the addition of a new 500-bed facility set to open in 2026 (UW Media Relations, 

2023). This will not only improve ease of access to sampling sites but also help to mitigate costs related to 

the number of samples required. Such infrastructure would also allow for a more feasible comparison of 

passive samples and composite samplers in-situ and could serve a wide variety of other research and 

surveillance interests as well.  

 

3.3 The future of WBS 
WBS has demonstrated its versatility as a public health tool over decades of being successfully 

implemented in diverse applications. At its core, WBS aims to fill the knowledge gaps associated with 

conventional public health tracking. It does so independent of human test-seeking behaviours and other 

factors that influence the quality and scope of clinical datasets. These characteristics have popularized the 

approach during the COVID-19 pandemic and will continue to attract public health practitioners into the 

future. As its rich history demonstrates, WBS is adaptive in scope and scale, and can be a responsive tool 

to solve novel problems. Research on WBS will continue to expand as new pathogens emerge and as new 

epidemiological research questions arise. In the context of SARS-CoV-2, adaptations were made at all 

levels of public health to address emerging VOCs. This included exploring new SARS-CoV-2 endpoints, 

optimizing existing assays and developing new ones. Congruently, other endpoints have been widely 

incorporated into existing WBS programs to maximize public health data gleaned from a single sample. 

This includes the use of WBS to track influenza, respiratory syncytial virus and the monkeypox virus.  

A major part of the success of WBS during COVID-19 was the effective communication of its 

strengths, limitations and potential to support public health. Skepticisms of WBS during the initial stages 

of the pandemic were grounded in uncertainties around effectiveness, added value and financial costs. 

However, public understanding and acceptance of the approach has significantly broadened. WBS data 

became routinely reported alongside other public health metrics, and critically, were made accessible to all 

people. The public often relied on WBS to gain a better understanding of pandemic dynamics in their 

communities, especially when clinical testing was no longer reliable. Without public support, WBS would 

not be possible. It is critical that surveillance efforts remain transparent, accessible, and understandable to 

all stakeholders in order to maximize the benefits WBS can offer. This applies at all spatial surveillance 

scales whether at or upstream of the WWTP.  
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The suite of indicators that can be detected and monitored using WBS make it a powerful tool for 

a variety of end users in the absence of other non-invasive testing means. On campus, WBS results were 

relied on by both University decision-makers and student residents to understand public health risks within 

building-scale communities. WBS supported existing public health measures by providing an additional 

layer of evidence to detect and isolate individual cases. Passive sampling was able to deliver meaningful 

results in a fast and affordable fashion, demonstrating its utility at various sampling scales to address 

changing surveillance needs. These factors will only become more important considerations in the delivery 

of WBS programs as novel pathogens emerge and new institutional challenges arise. In the public health 

practitioner’s toolbox, WBS stands superior in its scope of potential applications and versatility in sampling 

scale. Given its most recent successes, WBS will be a critical component of our response to the next 

pandemic.   
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A. Appendix A 

Supplemental Material for Chapter 2 

 

1. Passive Sampler Validation Experiment 

1.1 Introduction 

Several pilot studies were performed in advance of the fall 2021 academic semester to assess the 

possibility of feasibility SARS-CoV-2 RNA in on-campus wastewater. These experiments were designed 

to compare the efficacy of three candidate passive sampling materials: cotton gauze, electronegative 

membrane filters and standard tampons, the latter of which was quickly abandoned due to logistical 

constraints in sampler processing. These materials were selected based on their availability, affordability, 

and early promise from previous research (Hayes et al., 2021; Rafiee et al., 2021; Schang et al., 2021). 

Unfortunately, the low SARS-CoV-2 viral load in wastewater during this time precluded meaningful 

comparisons between materials. Therefore, following the conclusion of the routine surveillance program, a 

method validation experiment was performed to (1) assess the efficacy of cotton gauze and electronegative 

membranes, and (2) to better understand the variability associated with passive samplers.  In this 

experiment, multiple torpedoes were deployed along the same sewer channel to improve statistical power 

and make direct comparisons between the materials in-situ.  

 

1.2 Materials and methods 
1.2.1 Passive sampling material selection 

Two materials were compared in this experiment: (1) cotton gauze pad, 7.62 cm2 (Fischer Scientific, 

Mississauga, Ontario), and (2) electronegative cellulose nitrate membrane filter, 37 mm, 0.45 mM pore size 

(Sartorius AG, Göttingen, Germany).  

 

1.2.2 Sampling locations 
Three utility holes were identified along a sewer main that had no known infiltration points between 

sites. Therefore, passive sampling materials within and between sites were expected to capture the same 

number of SARS-CoV-2 N-gene fragments. This sewer line drains a large municipal subdivision before 

ultimately connecting to the campus Health Services building complex. These sites were selected primary 
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on the basis that they sample the same wastewater with the added benefit that a municipal water source 

would increase the odds of a positive detection, regardless of material type.  

 

  

  

  

  

  

  

  

  

  

  

  

 

Figure A-1. Sampling sites for torpedo replication experiment. The blue arrows delineate the sewer channel 

and flow direction. Yellow circles indicate the locations of three sampling sites: SM44-REV (upstream), 

SM47-REV (midstream) and SM44-REV (downstream). The former two sites are separated by 

approximately 100 m of sewer pipe whereas the latter two are separated by approximately 500 m of sewer 

pipe. 

 

1.2.3 Modified sampling apparatus 
Passive sampler design was completed in accordance with the methods described in the main methods 

of this paper with one modification. To improve statistical power, three torpedo units were affixed in a line 

using fishing line to create a singular sampling unit (Figure A-2). Each torpedo housed one electronegative 

membrane and one gauze pad in a randomized position (front and back).  
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Figure A-2. Triple torpedo sampling apparatus (A) loaded with electronegative membrane filter and 

medical gauze, and (B) sampling apparatus immediately following collection. 

 

1.2.4 Sampler processing and RT-qPCR 

Sampler processing, RNA extraction and analytical methods were carried out in accordance with the 

methods described in the materials and methods section of this research paper. However, electronegative 

membranes were processed slightly differently compared to gauze. Membranes did not undergo the 

DPBS/Polysorbate-20 washing step, but rather, were directly adding into the 2 mL bead beating tube for 

RNA extraction.  

 

1.2.5 Statistical analyses 
A two-way ANOVA was used to compare quantified N-gene targets on a raw and normalized to 

PMMoV basis with site ID and material type as independent factors. The same analysis was repeated using 

total RNA per gram of pellet as the dependent variable. All assumptions of the parametric two-way 

ANOVA were met. All statistical analyses and visualizations were performed and created using IMB SPSS 

Statistics, Version 29.0 (Armonk, NY: IBM Corp.).  
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1.3 Results 
Sampler unit collection revealed minimal ragging of the torpedoes increasing confidence in consistent 

wastewater exposure between materials and sampling sites. Both gauze and membrane filters were able to 

detect N1 and N2 at all three sites in this experiment. Gauze had a 100% detection rate for both N-gene 

targets across sites, whereas approximately 77% of membrane filters detected either N-gene target (Table 

A-1).  

 

Table A-1. Binary detection results for passive sampling validation experiment. Positive detections indicate 

at least two of three technical replicates detected the respective SARS-CoV-2 N-gene target. 

 N1 N2 

 Detected Not 
Detected 

Detected Not Detected 

Gauze 9 0 9 0 

Membrane 6 3 8 1 

 

 

Raw N-gene quantification (Figure A-3) and total RNA (Figure A-4) on passive samplers were 

compared on a per gram of wet pellet basis to account for differences in material surface area. N-gene 

normalization by PMMoV was also explored (Figure A-5). Based on a two-way ANOVA, there is there is 

insufficient evidence to suggest an interactive effect between material type and site ID (Two-way ANOVA, 

F = 2.670, P = 0.110, d.f. = 2, 12). However, material types did differ with gauze producing significantly 

higher concentrations of SARS-CoV-2 GC per gram of pellet (Two-way ANOVA, F = 26.423, P < 0.001, 

d.f. = 1,12). Gauze still produced significantly higher ratios than membranes did when SARS-CoV-2 

concentrations were normalized by PMMoV (Two-way ANOVA, F = 11.095, P = 0.006, d.f. = 1, 12). This 

suggests that given the methodology used, gauze outperforms membrane filters in collecting SARS-CoV-

2 from wastewater over a 24-hour period. In addition to collecting the most SARS-CoV-2 RNA, gauze pads 

also collected more total RNA per gram than membranes did (Two-way ANOVA, F = 42.70, P < 0.001, 

d.f. = 1, 12). These were desirable characteristics for the material to have given that the collection and 

retention of suspended solids from wastewater was a top priority.   
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Figure A-3. Boxplot of raw N-gene copies per gram of pellet by site ID and material type. Gauze boxplots 

are shaded blue and electronegative membrane filter boxplots are white, where n = 3 for each box. 

 

 

 

Figure A-4. Boxplot of total RNA (ng) per gram of pellet by site ID and material type. Gauze boxplots are 

shaded, and electronegative membrane filter boxplots are white, where n = 3 for each box. 
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Figure A-5. Boxplot of N-gene copies normalized to PMMoV gene copies by site ID and material type. 

Gauze boxplots are shaded blue and electronegative membrane filter boxplots are white, where n = 3 for 

each box. 

 

1.4 Conclusions 
 

 Cotton gauze was able to collect significantly more total RNA and SARS-CoV-2 gene fragments 

than electronegative membranes did. While the variability observed in cotton gauze was higher, the material 

was able to detect both N-gene targets at all sites where the electronegative membranes did not. The 

normalization of SARS-CoV-2 by PMMoV produced similar results. Given these findings, higher 

quantification of SARS-CoV-2, and a higher detection rate served as the primary basis for the selection of 

gauze as a passive sampling medium in the current study. However, the selection of substrate for passive 

sampling should be validated for each study as subtle differences in the sewers, materials, and methods may 

lead to differences in effectiveness of each in different WBS application scenarios.   
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2. Analytical Methods for RT-qPCR 
 

Elution extracts were analyzed in triplicate using reverse transcriptase quantitative polymerase 

chain reaction (RT-qPCR) for two regions of the nucleocapsid (N) gene for SARS-CoV-2 (N1 and N2) 

using TaqPath™ 1-Step RT-qPCR Master Mix, GC (Life Technologies, Thermo Scientific, Mississauga, 

Ontario). N-gene assays were performed using the primers developed by the CDC (Centers for Disease 

Control and Prevention, 2021). The region of the coat protein of the endogenous fecal indicator Pepper 

Mild Mottle Virus (PMMoV) was also quantified through RT-qPCR using the same Master Mix (Table A-

2). Reactions occurred in a 96-well plate (Bio-Rad Laboratories, Hercules, CA, USA) which was sealed 

with clear strip caps and mixed on a PCR plate vortex at 400 rpm for 30 seconds. All assays were then run 

on either the CFX96 Touch or the CDX Opus Real-Time PCR systems using CFX Maestro Software for 

CFX Real-Time PCR Instruments (Bio-Rad Laboratories, Hercules, CA, USA) with the cycling conditions 

described in Table A-3. Primer and probe sequences for all other genetic targets are presented in Table A-

4. 

The N1 and PMMoV targets were duplexed into a single assay where each reaction contained 5 

mL of 4X Master Mix, 10 mM of primers, 5 mM of probes, 6 mL of nuclease-free water and 5 mL of RNA 

extract for a total reaction volume of 20 mL. The N2 assay was run in simplex with each reaction containing 

5 mL of 4X Master Mix, 10 mM of primers, 5mM of probe, 7.5 mL of nuclease-free water and 5 mL of 

RNA extract for a total reaction volume of 20 mL. Appendix Tables 1-3 present additional information on 

primer and probe sequences and assay cycling conditions. Each plate had a minimum of six no-template 

controls (NTC) reactions, three no reverse-transcriptase control (NRT) reactions, a standard curve and 

positive controls. Standard curves were serially diluted where the starting material for N-gene targets was 

EDX SARS-CoV-2 Standard (Bio-Rad, No.: COV019). All other targets were quantified using dsDNA 

gBlock standards (Integrated DNA Technologies, Coralville, IA, USA) with all standards verified by dPCR 

(QIAcuity, Qiagen, Hilden, Germany). The N1 and PMMoV duplex assay was performed on all samples 

in both surveillance periods whereas the N2 simplex assay was performed only in winter 2022. All primer 

and probe dilutions were made, and concentrations verified using the NanoDrop One device (Thermo 

Scientific, Mississauga, Ontario). Standard starting material concentrations were routinely verified using 

digital PCR (QIAcuity, Qiagen, Hilden, Germany). 
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Table A-2. Synthetic oligonucleotides (gBlock) sequences for pepper mild mottle virus that was supplied 

by Integrated DNA Technologies (Coralville, IA, USA). 

Genetic 
Target 

Sequence (5’ to 3’) 

PMMoV AGGTAATGGTAGCTGTGGTTTCAAATGAGAGTGGTTTGACCTTAACGTTTGA
GAGGCCTACCGAAGCAAATGTCGCACTTGCATTGCAACCGACAATTACATCA
AAGGAGGAAGGTTCGTTGAAG 

 

Table A-3. RT-qPCR cycling conditions for assays performed in this study. The denature and 

anneal/elongation steps were repeated for 45 cycles. 

Assay Stage 

Preheat 
(°C; min) 

Reverse 
Transcription  

(°C; min) 

Activation  
(°C; min) 

Denature  
(°C; min) 

Anneal/ 
Elongation  
(°C; min) 

N1/PMMoV  
duplex 

25; 2 50; 15 95; 2 95; 3 55; 30 

N2 simplex 25; 2 50; 15 95; 2 95; 3 60; 30 

 

Table A-4. Primers and probes used in this study were provided by Millipore Sigma. 

Primer/ 
Probe1 

Final 
Concentration 

(nM) 

Sequence  
(5’ to 3’) 

Probe 
Reporter/ 
Quencher 

Reference 

N1-FP 500 GACCCCAAAATCAGCGAAAT - (Centers 
for Disease 
Control and 
Prevention, 

2021) 

N1-RP 500 TCTGGTTACTGCCAGTTGAATC
TG 

- 

N1-P 125 ACCCCGCATTACGTTTGGTGGA
CC 

6-FAM/BHQ-
1 

N2-FP 500 TTACAAACATTGGCCGCAAA - 

N2-RP 500 GCGCGACATTCCGAAGAA - 

N2-P 125 ACAATTTGCCCCCAGCGCTTCA
G 

6-FAM/BHQ-
1 

PMMoV-
FP 

400 GAGTGGTTTGACCTTAACGTTG
A 

- (Zhang et 
al., 2006) 

PMMoV-
RP 

400 TTGTCGGTTGCAATGCAAGT - 

PMMoV-P 125 CCTACCGAAGCAAATG Cy5/BHQ-1 
1 FP = forward primer; RP = reverse primer; P = probe  
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3. RT-qPCR Quality Assurance and Control (QAQC) 
Standard curves were run on each plate and had at least four points with triplicate analysis for each 

point. On select surveillance days where this condition was not met, an average standard curve was applied 

provided other QAQC measures were met. Average standard curves were created with ten replicates per 

standard point. Standard curve slopes typically ranged from -3.1 to -3.6 with a requirement for reaction 

efficiencies to fall between 90% and 110%. Standard curves also had an R2 value of 0.98 or greater. All 

standard curve technical replicates as well as positive controls had a standard deviation of 0.5 Cq or less. 

Where QAQC standards were not met the plate was rerun. Run information for assays performed each 

sampling day is presented in Appendix C.  
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4. Supplemental Figures and Tables 

 
Figure A-6. Passive sampling apparatus prior to deployment: A torpedo-shaped housing vessel (Schang 

et al., 2021) loaded with cotton gauze and secured by an elastic band. 

 

Figure A-7. Key events during implementation of the WBS program including COVID-19 policies 

administered by the University. 
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Figure A-8. Boxplot of transformed PMMoV GC/sampler on log scale between five downstream sites. 

Potential outliers are denoted by circles and asterisks. 

 

 

 

 

 

Figure A-9. Histogram (left) and Q-Q plot (right) of PMMoV GC/sampler for all samples. 

 



 

 73 

 

 

 

 

 

 

 

 

Figure A-10. Histogram (left) and Q-Q plot (right) of N1 GC/sampler (top panels) and N2 GC/sampler 

(bottom panels) for passive samplers. 

Figure A-11. Inhibition ratio of samples collected over fall 2021 and winter 2022. A sample was deemed 

inhibited if the inhibition ratio exceeded 2. 
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Figure A-12. Boxplots for N1 (left) and N2 (right) GC per sampler in log scale comparing traditional and 

apartment-style residence buildings. Potential outliers are noted by circles. 

 

 

 

 

 

 

 

 

Figure A-13. Histograms (left) and Q-Q plots (right) of log-transformed N1 (top panels) and N2 (bottom 

panels) GC/mL of wastewater collected at the City of Waterloo WWTP
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Table A-5. All wastewater surveillance sampling sites, their associated occupancies and infrastructure 
characteristics. All sampling sites were located within a gravity sewer system.  

Surveillance 
Branch 

Designation Upstream Occupancy Site Characteristics 
Fall 2021 Winter 2022 

A0 Downstream 331 443 • 300 mm concrete 
• Shallow channel; ~2 m from surface 
• Adjacent to laundry facility 

B3 
 
 
 
 

B2 
 
 

B1 
 
 

B0  

Upstream 288 315 • 250 mm concrete 
• Deep, curved channel; ~8 m from 

surface 
• Distance to downstream site (B0): ~ 

Upstream 292 306 • 150 mm concrete 
• Shallow channel; <1 m from surface 
• Y-junction (mixing point) 

Upstream 243 306 • 250 mm concrete 
• Shallow channel; ~2 m from surface 
• Y-junction (mixing point) 

Downstream 920 1029 • 300 mm concrete 
• Shallow channel; ~2 m from surface 

C3 
 

C2 
 
 
 
 

C1 
 
 
 

C0  

Upstream 292 306 • 200 mm concrete 
Shallow channel; ~3 m from surface 

Upstream 194 204 • 200 mm concrete 
• Deep channel; ~5 m from surface 
• Adjacent to cafeteria; site prone to 

pooling 
Downstream 486 510 • 300 mm concrete 

• Persistent pooling; major infiltration by 
tree roots 

• Shallow channel; ~3 m from surface 
Downstream 1552 1651 • 450 mm concrete 

• Deep channel; >15 m from surface 
• Collects influence from C1 and B0 
• Vertical y-junction (mixing point) 

D1 
 
 

D0 

Upstream 480 572 • 200 mm concrete 
• Shallow channel; < 1 m from surface 

Downstream 1298 1394 • 200 mm concrete 
• Shallow channel; ~2 m from surface 
• Y-junction (mixing point) 

E1 
 
 

E0  

Upstream 429 450 • 200 mm concrete 
• Shallow channel; <1 m from surface 
• Y-junction (mixing point) 

Downstream 643 675 • 200 mm concrete 
• Shallow channel; ~2 m from surface 
• Y-junction (mixing point) 
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B. Appendix B 

Summary of relevant literature 
 

Table B-1. Summary of publications reporting the use of passive sampling in building-scale wastewater surveillance of SARS-CoV-2 RNA. This table was taken 

from (Bivins et al., 2022b) with some modifications and adapted to include Haskell et al., 2023 (Chapter 2) and other most recently published data1. For ‘Fraction 

used for analysis’, swab sorbate refers to the solids and liquids retained by the sampler from wastewater and eluate refers to the resulting solution if the sampler is 

washed with an eluent.  

Citation Setting Location Population Sampling 
frequency 

Material Housing 
vessel 

Exposure 
duration 

Fraction used 
for analysis 

Viral 
concentration 

method 

Analytical 
methods 

Haskell et al., 
20231 

University Waterloo, 
Ontario, Canada 

194 to 1552   3 days per 
week  

Cotton gauze Torpedo 24 h Swab sorbate + 
eluate; solids 
fraction 

Centrifugation RT-qPCR 

Schang et al., 
2021 

Municipal Melbourne, 
Victoria, 
Australia 

260 to 2.6 M  NR Cotton gauze; 
electronegative 
filter; cotton 
buds 

Colander; 
boat; box; 
torpedo 

3 to 24 h  Direct extraction 
(cotton bud, 
electronegative 
filter); eluate 
(gauze)  

Filtration via 
electronegative 
membrane 

RT-qPCR 

Hayes et al., 
2021 

Office 
complex, 
University 

Halifax,  
Nova Scotia, 
Canada 

Unknown 15 events over 
5 months 

Cotton gauze; 
cheesecloth; 
cellulose 
sponge; 
electronegative 
filter 

COSCa 24 h 
48 h 
72 h 

Eluate NA RT-qPCR 

Habtewold et 
al., 2022 

Municipal Guelph,  
Ontario,  
Canada 

NR 3 events over 1 
month 

Cotton gauze; 
cotton bud; 
electronegative 
filter 

Torpedo 4 h 
8 h 
24 h 
48 h 
72 h 
96 h 

Direct extraction 
(cotton bud, 
electronegative 
filter); eluate 
(gauze)  

Filtration via 
electronegative 
membrane 

RT-qPCR 

Corchis-Scott 
et al., 2021 

University Windsor, 
Ontario,  
Canada 

~200 3 days per 
week to daily 

Tampon None 20 h 
 

Eluate Ultrafiltration 
via CP Select 

RT-qPCR 

Bivins et al., 
2021 

University South Bend, 
Indiana,  
USA 

1627 1 day per week Tampon None 3 h  Eluate solid 
fraction 

NA RT-LAMP2 
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Citation Setting Location Population Sampling 
frequency 

Material Housing 
vessel 

Exposure 
duration 

Fraction used 
for analysis 

Viral 
concentration 

method 

Analytical 
methods 

Rafiee et al., 
2021 

Municipal Tehran,  
Iran 

NR 2 events over 5 
months 

Cotton gauze Stainless 
steel wire 
cage 

16 h Swab sorbate + 
eluate liquid 
fraction 

PEG 
precipitation 

RT-qPCR 

Liu et al., 
2022 

University Atlanta,  
Georgia,  
USA 

NR 1 event per 
week 

Cotton gauze None 24 to 72 h Swab sorbate + 
eluate 

Skimmed milk 
flocculation; 
PEG 
precipitation 

RT-qPCR 

Wang et al., 
2022 

University Atlanta,  
Georgia,  
USA 

91 to 600  1 event per 
week 

Cotton gauze None 24 to 72 h Swab sorbate + 
eluate 

Skimmed milk 
flocculation; 
PEG 
precipitation 

RT-qPCR 

Kitajima et 
al., 2022 

Olympic 
village 

Tokyo,  
Japan 

NR NR NR NR NR NR NR RT-qPCR 

Hayes et al., 
2022 

Bench 
scale; 
Residential; 
Office 
complex; 
University 

Halifax,  
Nova Scotia, 
Canada 

Unknown 23 events over 
15 weeks 

Electronegative 
filter 

COSCa 24 to 72 h Eluate NA RT-qPCR 

Li et al., 
2022 

Municipal  Queensland, 
Australia 

13,000 to 
231,000 

2 events Electronegative 
filter; cotton 
buds; cotton 
gauze; tampon 

Hair roller 
(tampon); 
torpedo 
(others)  

Up to 48 h Swab sorbate 
(tampon); eluate 
(cotton gauze); 
direct extraction 
(membrane, 
cotton buds) 

Ultrafiltration 
(tampon); 
Filtration via 
electronegative 
membrane 
(gauze eluate) 

RT-qPCR 

Jain et al., 
20221 

University; 
Municipal 

Saskatoon, 
Saskatchewan, 
Canada 

125 to 399 5 days per 
week 

Electronegative 
filter; cotton 
gauze 

Torpedo 24 to 72 
hours 

Swab sorbate + 
eluate  

Magnetic bead-
based 
separation 

RT-qPCR 

Wilson et al., 
20221 

Bench-
scale; 
Hospital 

Edmonton, 
Alberta,  
Canada 

Unknown 2 days per 
week 

Cotton gauze; 
tampons 

Torpedo 48 to 144 h Swab sorbate + 
eluate 

Centrifugation RT-qPCR 

Kevill et al., 
20221 

Bench-
scale 

Bangor,  
North Wales, 
United Kingdom 

40,000  1 event Tampons; 
electronegative 
filter 

None 1 h  Swab sorbate; 
Swab sorbate + 
eluate; Direct 
extraction  

PEG 
Precipitaiton;  

RT-qPCR 

Acer et al., 
20221 

University  Amherst, 
Massachusetts, 
USA 

NR Three to five 
times per week 

Tampons   None 24 h Swab sorbate + 
eluate  

Filtration via 
electronegative 
membrane 

RT-qPCR 

Mangwana et 
al., 20221 

University Cape Town,  
South Africa 

6,500 Twice per 
week over 28 
weeks 

Cotton gauze Torpedo 21 h Swab sorbate + 
eluate; solids 
fraction 

Centrifugation RT-qPCR 
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Citation Setting Location Population Sampling 
frequency 

Material Housing 
vessel 

Exposure 
duration 

Fraction used 
for analysis 

Viral 
concentration 

method 

Analytical 
methods 

West et al., 
20231 

University; 
Long-term 
care home; 
Municipal 

Detroit, 
Michigan,  
USA 

< 500 
(University); 
500 – 2,000 
(Long-term 
care home); 
12,000 
(Municipal) 

126 events 
over 5 months 

Tampons Stainless 
steel wire 
cage 

3 to 4 h  Swab sorbate + 
eluate 

NA ddPCR3 

1 Publication not included in Bivins et al., 2022 table.  
2 Reverse transcription loop-mediated isothermal amplification  
3 Digital droplet polymerase chain reaction  
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C. Appendix C 

Quality control and assurance metrics for routine RT-qPCR 
Table C-1. RT-qPCR quality control and assurance metrics. Flags for analysis are highlighted in yellow.  

PCR Date Target Efficiency 
(%) 

R2 Slope Y-intercept No. 
standard 

curve 
points 

% NTCs 
amplified 

% NRTs 
amplified 

Cq+control 
(Mean) 

Cq+control 
(SDev.) 

Plate 
passes 
QAQC 

Plate 
qualifiers 

2021-08-18 N1 110 0.985 -3.111 37.99 4 33 0 30.97 0.21 NO LC, R 
2021-08-20 N1 90 0.985 -3.578 40.68 4 33 33 32.60 0.05 NO LC, R 
2021-08-23 N1 118 0.980 -2.963 37.91 10 0 0 32.60 0.41 NO ASC, R 
2021-08-25 N1 96 0.970 -3.416 39.45 5 50 0 31.10 0.02 NO LC, R 
2021-08-25 N2 100 0.987 -3.334 39.30 7 0 0 32.08 0.13 YES R 
2021-08-30 N1 110 0.995 -3.103 37.91 4 17 0 31.44 0.21 NO LC, R 
2021-09-01 N1 79 0.985 -3.971 40.16 5 67 0 32.99 0.11 NO LC, R 
2021-09-01 N1 115 0.987 -3.006 37.98 4 17 0 31.73 0.20 NO LC, R 
2021-09-03 N1 99 0.995 -3.342 39.00 4 17 0 32.36 0.18 YES R 
2021-09-06 N1 106 0.986 -3.193 38.18 4 33 0 31.93 0.04 YES LC, R 
2021-09-08 N1 92 0.985 -3.539 38.94 4 67 0 31.86 0.18 NO HC, NR, RR 
2021-09-08 N1 103 0.993 -3.259 39.71 4 33 0 33.31 0.24 YES R 
2021-09-10 N1 99 0.988 -3.358 40.07 4 17 0 32.39 0.19 YES R 
2021-09-13 N1 105 0.985 -3.212 38.07 4 17 0 33.33 0.21 YES LC, R 
2021-09-15 N1 

      
0 

  
YES R 

2021-09-17 N1 108 0.987 -3.153 38.52 4 0 0 32.31 0.24 YES R 
2021-09-20 N1 101 0.989 -3.295 38.83 4 8 0 31.45 0.05 YES R 
2021-09-22 N1 100 0.992 -3.331 37.91 5 17 0 30.99 0.21 YES R 
2021-09-24 N1 95 0.995 -3.458 38.86 5 0 0 31.80 0.24 YES R 
2021-09-29 N1 107 0.995 -3.161 39.30 4 0 0 32.87 0.31 YES R 
2021-10-01 N1 92 0.987 -3.529 39.48 4 33 0 32.36 0.15 NO LC, R 
2021-10-04 N1 89 0.951 -3.619 38.65 10 0 0 31.87 0.29 NO ASC, R 
2021-10-06 N1 108 0.993 -3.154 39.07 5 11 0 32.83 0.17 YES R 
2021-10-08 N1 92 0.990 -3.517 39.00 5 11 0 32.23 0.08 YES R 
2021-10-13 N1 99 0.992 -3.335 39.31 5 0 0 32.96 0.08 YES R 
2021-10-18 N1 96 0.987 -3.422 39.29 4 33 0 31.75 0.49 NO LC, R 
2021-10-20 N1 104 0.992 -3.226 38.06 4 0 0 32.01 0.04 YES R 
2021-10-20 N2 101 0.992 -3.309 40.24 7 0 0 33.50 0.21 YES R 
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PCR Date Target Efficiency 
(%) 

R2 Slope Y-intercept No. 
standard 

curve 
points 

% NTCs 
amplified 

% NRTs 
amplified 

Cq+control 
(Mean) 

Cq+control 
(SDev.) 

Plate 
passes 
QAQC 

Plate 
qualifiers 

2021-10-22 N1 94 0.988 -3.471 39.84 4 0 0 33.16 0.19 YES R 
2021-10-25 N1 100 0.985 -3.315 39.69 5 9 0 32.98 0.22 YES R 
2021-10-27 N1 102 0.993 -3.272 38.70 4 0 0 32.91 0.10 YES R 
2021-10-29 N1 92 0.991 -3.544 39.67 4 0 0 32.58 0.08 YES R 
2021-11-01 N1 

      
0 

  
NO NR 

2021-11-03 N1 102 0.996 -3.266 39.74 3 17 0 32.53 0.24 YES LC, R 
2021-11-05 N1 105 0.994 -3.208 39.77 3 0 33 31.97 0.23 YES R 
2021-11-05 N2 100 0.989 -3.333 40.22 7 0 0 33.83 0.25 YES R 
2021-11-08 N1 101 0.996 -3.303 39.64 4 0 0 32.51 0.11 YES R 
2021-11-10 N1 

    
10 0 

 
31.87 0.19 NO ASC, R 

2021-11-12 N1 98 0.986 -3.378 40.17 4 0 0 32.63 0.17 YES R 
2021-11-15 N1 93 0.993 -3.491 39.50 4 0 0 32.20 0.06 YES R 
2021-11-17 N1 97 0.980 -3.399 39.16 4 7 0 31.08 0.17 YES R 
2021-11-19 N1 92 0.984 -3.530 39.17 4 0 0 31.64 0.24 YES R 
2021-11-22 N1 105 0.986 -3.204 39.29 4 0 0 32.29 0.07 YES R 
2021-11-24 N1 92 0.991 -3.526 39.37 5 0 0 32.12 0.13 YES R 
2021-11-26 N1 94 0.996 -3.487 38.51 5 8 0 31.36 0.18 YES R 
2021-11-29 N1 113 0.991 -3.055 39.24 10 11 0 32.11 0.21 NO ASC, R 
2021-12-03 N1 108 0.982 -3.148 39.52 5 0 0 32.01 0.10 YES R 
2021-12-06 N1 92 0.982 -3.541 39.69 5 0 33 30.78 0.08 YES R 
2021-12-08 N1 100 0.982 -3.322 38.54 5 0 0 30.27 0.21 YES R 
2021-12-10 N1 121 0.978 -2.898 39.70 10 0 0 32.40 0.11 NO ASC, R 
2021-12-13 N1 78 0.875 -3.982 40.55 10 0 33 31.29 0.18 NO ASC, R 
2021-12-15 N1 97 0.986 -3.399 38.44 5 0 0 31.27 0.13 YES R 
2021-12-17 N1 130 0.852 -2.760 39.54 10 0 33 31.81 0.14 NO ASC, R 
2022-01-07 N1 77 0.979 -4.016 41.07 10 0 0 32.06 0.13 NO ASC, R 
2022-01-07 N2 104 0.994 -3.223 39.79 5 0 0 33.21 0.07 YES R 
2022-01-10 N1 107 0.981 -3.164 39.41 4 0 0 31.47 0.17 YES R 
2022-01-10 N2 92 0.988 -3.545 39.62 4 0 0 30.52 0.05 YES R 
2022-01-12 N2 102 0.995 -3.274 39.20 5 0 0 32.45 0.35 YES R 
2022-01-12 N1 97 0.983 -3.387 40.01 5 0 0 31.69 0.05 YES R 
2022-01-14 N2 93 0.992 -3.500 39.78 5 8 0 31.97 0.19 YES R 
2022-01-18 N1 83 0.916 -3.801 40.62 10 0 0 31.36 0.08 NO ASC, R 
2022-01-18 N2 96 0.996 -3.424 40.56 5 0 0 32.87 0.17 YES R 
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PCR Date Target Efficiency 
(%) 

R2 Slope Y-intercept No. 
standard 

curve 
points 

% NTCs 
amplified 

% NRTs 
amplified 

Cq+control 
(Mean) 

Cq+control 
(SDev.) 

Plate 
passes 
QAQC 

Plate 
qualifiers 

2022-01-19 N2 99 0.988 -3.357 40.53 5 0 0 32.96 0.11 YES R 
2022-01-19 N1 100 0.980 -3.324 40.74 4 0 0 32.24 0.15 YES R 
2022-01-21 N1 106 0.969 -3.197 39.27 10 0 0 31.30 0.16 NO ASC, R 
2022-01-21 N2 108 0.997 -3.137 39.72 5 0 0 32.65 0.05 YES R 
2022-01-24 N2 95 0.992 -3.455 39.86 5 0 0 32.84 0.19 YES R 
2022-01-24 N1 110 0.986 -3.104 38.33 4 67 67 31.12 0.13 YES HC, R 
2022-01-28 N1 105 0.960 -3.209 36.85 10 0 0 29.99 0.15 NO ASC, R 
2022-01-28 N2 104 0.987 -3.236 39.54 4 0 0 32.72 0.18 YES R 
2022-01-31 N1 108 0.990 -3.153 39.54 4 0 0 31.68 0.12 YES R 
2022-01-31 N2 98 0.992 -3.363 39.39 5 0 0 31.84 0.01 YES R 
2022-02-02 N2 99 0.995 -3.337 39.72 5 0 0 32.36 0.14 YES R 
2022-02-02 N1 95 0.990 -3.451 39.94 4 0 0 31.35 0.14 YES R 
2022-02-07 N1 99 0.986 -3.345 38.49 5 0 0 30.63 0.18 YES R 
2022-02-07 N2 106 0.989 -3.180 39.51 5 0 0 32.21 0.12 YES R 
2022-02-09 N2 99 0.987 -3.353 39.87 4 0 0 32.06 0.09 YES R 
2022-02-09 N1 96 0.993 -3.429 40.68 4 0 0 32.04 0.17 YES R 
2022-02-11 N2 108 0.993 -3.136 39.55 5 0 0 32.29 0.22 YES R 
2022-02-11 N1 104 0.998 -3.230 39.21 4 0 0 31.07 0.21 YES R 
2022-02-11 N2 106 0.996 -3.189 37.48 

 
0 0 30.04 0.16 YES R 

2022-02-14 N2 96 0.995 -3.435 39.43 
 

0 0 31.54 0.11 YES R 
2022-02-14 N1 103 0.981 -3.245 36.91 

 
0 0 29.61 0.26 YES R 

2022-02-14 N1 88 0.905 -3.634 39.94 10 0 0 31.25 0.24 NO ASC, R 
2022-02-16 N1 98 0.987 -3.366 40.46 5 0 0 33.03 0.12 YES R 
2022-02-16 N2 93 0.993 -3.490 40.07 5 17 0 33.02 0.28 YES R 
2022-02-18 N2 90 0.990 -3.580 39.77 5 8 0 32.53 0.20 YES R 
2022-02-18 N1 110 0.992 -3.113 39.87 5 0 0 32.95 0.36 YES R 
2022-02-23 N2 109 0.995 -3.121 38.29 4 0 0 32.34 0.14 YES R 
2022-02-23 N1 107 0.993 -3.169 40.06 5 8 0 32.41 0.06 YES R 

2022-02-25 N2 96 0.990 -3.421 40.05 4 11 0 33.28 0.27 YES R 
2022-02-25 N1 - - - - - 0 0 32.11 0.08 NO NR 
2022-02-28 N2 101 0.996 -3.301 39.13 5 0 0 32.23 0.06 YES R 
2022-02-28 N1 109 0.985 -3.122 39.50 5 17 0 32.10 0.10 YES R 
2022-03-02 N2 96 0.995 -3.428 39.92 5 0 0 33.04 0.20 YES R 
2022-03-02 N1 84 0.945 -3.772 38.68 5 0 0 32.93 0.19 NO NR 
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PCR Date Target Efficiency 
(%) 

R2 Slope Y-intercept No. 
standard 

curve 
points 

% NTCs 
amplified 

% NRTs 
amplified 

Cq+control 
(Mean) 

Cq+control 
(SDev.) 

Plate 
passes 
QAQC 

Plate 
qualifiers 

2022-03-04 N2 105 0.995 -3.216 40.08 4 0 0 32.54 0.12 YES R 
2022-03-04 N1 109 0.981 -3.134 39.15 5 8 0 32.13 0.15 YES R 
2022-03-07 N2 103 0.991 -3.259 38.48 5 0 0 31.63 0.03 YES R 
2022-03-07 N1 91 0.948 -3.547 39.90 10 11 0 32.13 0.11 NO ASC, R  
2022-03-09 N2 107 0.988 3.156 38.93 5 0 0 32.80 0.22 YES R 
2022-03-09 N1 106 0.991 -3.187 39.27 5 17 0 32.36 0.24 YES R 
2022-03-11 N2 108 0.988 -3.140 39.46 5 0 0 33.45 0.08 YES R 
2022-03-11 N1 110 0.991 -3.112 39.91 5 11 0 32.73 0.19 YES R 
2022-03-14 N2 97 0.981 -3.390 40.00 4 0 0 32.38 0.12 YES R 
2022-03-14 N1 - - - - - 0 0 32.46 0.26 NO ASC, R 
2022-03-16 N2 104 0.998 -3.224 38.40 5 0 0 31.62 0.04 YES R 
2022-03-16 N1 98 0.985 -3.384 39.18 5 0 0 31.79 0.04 YES R 
2022-03-18 N2 108 0.991 -3.155 38.91 5 0 0 32.59 0.19 YES R 
2022-03-18 N1 90 0.937 -3.583 40.58 10 0 0 32.12 0.21 NO ASC, R 
2022-03-21 N2 99 0.995 -3.341 40.26 5 0 0 33.63 0.02 YES R 
2022-03-21 N1 72 0.921 -4.252 43.08 10 17 0 - - NO ASC, R 
2022-03-23 N2 98 0.996 -3.377 39.62 5 0 0 32.78 0.14 YES R 
2022-03-23 N1 109 0.983 -3.129 39.91 6 0 0 32.83 0.13 YES R 
2022-03-25 N1 102 0.983 -3.271 39.45 5 0 0 32.72 0.15 YES R 
2022-03-25 N2 93 0.993 -3.490 39.65 5 8 0 32.15 0.19 YES R 
2022-03-28 N2 103 0.994 -3.252 39.84 5 0 0 33.18 0.15 YES R 
2022-03-28 N1 110 0.984 -3.113 39.99 5 0 0 32.83 0.34 YES R 
2022-03-30 N2 98 0.991 -3.374 40.58 5 0 0 33.60 0.25 YES R 
2022-03-30 N1 99 0.982 -3.344 40.28 6 0 0 32.15 0.23 YES R 
2022-04-01 N2 110 0.993 -3.110 39.89 5 0 0 33.43 0.10 YES R 
2022-04-01 N1 110 0.981 -3.107 40.06 7 0 0 32.59 0.27 YES R 
2022-04-04 N2 97 0.997 -3.409 39.55 5 0 0 32.42 0.08 YES R 
2022-04-04 N1 91 0.980 -3.562 40.14 6 0 0 32.43 0.25 YES R 
2022-04-08 N2 95 0.996 -3.440 39.57 5 0 0 32.52 0.20 YES R 
2022-04-08 N1 96 0.980 -3.425 39.82 7 0 0 32.40 0.42 YES R 
2022-04-11 N2 104 0.989 -3.241 39.74 4 0 0 32.88 0.24 YES R 
2022-04-11 N1 

     
0 0 

  
NO ASC, R 

2022-04-13 N2 98 0.996 -3.362 39.98 4 0 0 33.65 0.24 YES R 
2022-04-13 N1 91 0.981 -3.554 40.25 7 0 0 32.48 0.06 YES R 
2022-04-18 N2 104 0.992 -3.232 39.37 5 0 0 32.75 0.20 YES R 
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PCR Date Target Efficiency 
(%) 

R2 Slope Y-intercept No. 
standard 

curve 
points 

% NTCs 
amplified 

% NRTs 
amplified 

Cq+control 
(Mean) 

Cq+control 
(SDev.) 

Plate 
passes 
QAQC 

Plate 
qualifiers 

2022-04-18 N1 102 0.981 -3.268 39.83 7 0 0 32.83 0.37 YES R 
2022-04-20 N2 99 0.995 -3.335 38.91 5 0 0 31.89 0.12 YES R 
2022-04-20 N1 94 0.997 -3.487 39.06 5 0 0 31.84 0.23 YES R 
2022-04-22 N2 97 0.996 -3.402 39.38 4 0 0 32.37 0.29 YES R 
2022-04-22 N1 93 0.984 -3.506 39.55 6 0 0 32.07 0.08 YES R 
2022-04-25 N2 104 0.995 -3.239 38.54 5 0 0 31.71 0.12 YES R 
2022-04-25 N1 93 0.990 -3.502 39.19 7 0 0 31.77 0.28 YES R 
2022-04-27 N2 93 0.985 -3.492 39.19 5 0 0 32.13 0.28 YES R 
2022-04-27 N1 94 0.988 -3.479 38.48 6 0 0 31.50 0.10 YES R 
2022-04-29 N2 94 0.996 -3.477 39.45 5 0 0 32.52 0.26 YES R 
2022-04-29 N1 102 0.980 -3.285 38.89 6 0 0 32.17 0.03 YES R 
ASC – An average standard curve from the last ten plates were used to quantify the target 
LC – Low contamination; amplification of negative controls did not interfere with interpretation of results 
HC – High contamination; amplification of negative controls confounded results  
R – Qualitative results were reported 
NR – No results were reported 
RR – Assay was performed again (rerun) 


