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Statement of Contributions

• Chapter 1 reviews the background and the proceeding results for our research.

• Chapter 2 introduces the notions and techniques used to graphically transform dif-
ferent CSS codes using the ZX calculus. This is based on Kissinger’s ZX normal form
proposed in [57].

• Chapter 3 generalizes the ZX normal form for CSS stabilizer codes to CSS subsystem
codes. It also provides bidirectional rewrite rules for any CSS encoder. This technique
was proposed by Jiaxin Huang and myself.

• Chapter 4 provides explicit graphical derivations for morphing the Steane and the
quantum Reed-Muller codes. This scheme was initially proposed by Michael Vasmer
[92]. The graphical interpretation was proposed by Lia Yeh. The edge cases were
proposed by myself.

• Chapter 5 focuses on the switching protocol between the Steane code and the quan-
tum Reed-Muller code. Through the ZX calculus, we provide a graphical interpre-
tation of this protocol as gauge-fixing the J15, 1, 3, 3K subsystem code, followed by
syndrome-determined recovery operations. The idea of using a different fault-tolerant
protocol (i.e., code-switching) rather than the magic state distillation was originally
brought up by my supervisor, Michele Mosca. Aleks Kissinger encouraged us to ex-
plore the connections between code-switching and subsystem code gauge-fixing. To
answer this question, I visualized both protocols using the ZX diagrams and showed
that they are different interpretations of the same measurement-based procedure.

• Chapter 6 concludes our work and proposes future directions. This is based on the
discussions among all co-authors.

The research deliverable in this thesis is the joint work of all co-authors.
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Abstract

In this work, we present a generic approach to transform CSS codes by building upon
their equivalence to phase-free ZX diagrams. Using the ZX calculus, we demonstrate
diagrammatic transformations between encoding maps associated with different codes. As
a motivating example, we give explicit transformations between the Steane code and the
quantum Reed-Muller code, since by switching between these two codes, one can obtain
a fault-tolerant universal gate set. To this end, we propose a bidirectional rewrite rule to
find a (not necessarily transversal) physical implementation for any logical ZX diagram in
any CSS code.

We then focus on two code transformation techniques: code morphing, a procedure
that transforms a code while retaining its fault-tolerant gates, and gauge fixing, where
complimentary codes can be obtained from a common subsystem code (e.g., the Steane and
the quantum Reed-Muller codes from the J15, 1, 3, 3K code). We provide explicit graphical
derivations for these techniques and show how ZX and graphical encoder maps relate several
equivalent perspectives on these code-transforming operations.
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Chapter 1

Introduction

Quantum computation has demonstrated its potential in speeding up large-scale computa-
tional tasks [4, 100] and revolutionizing multidisciplinary fields such as drug discovery [21],
climate prediction [89], chemistry simulation [69], and the quantum internet [38]. How-
ever, in a quantum system, qubits are sensitive to interference and information becomes
degraded [73]. To this end, quantum error correction [82, 84] and fault tolerance [47, 58]
have been developed to achieve large-scale universal quantum computation [48].

Stabilizer theory [46] is a mathematical framework to describe and analyze properties
of quantum error-correcting codes (QECC). It is based on the concept of stabilizer groups,
which are groups of Pauli operators whose joint +1 eigenspace corresponds to the code
space. Stabilizer codes are a specific type of QECC whose encoder can be efficiently
simulated [1, 45]. As a family of stabilizer codes, Calderbank-Shor-Steane (CSS) codes
permit simple code constructions from classical codes [17, 18, 84, 86].

As a language for rigorous diagrammatic reasoning of quantum computation, the ZX
calculus consists of ZX diagrams and a set of rewrite rules [27, 91]. It has been used
to relate stabilizer theory to graphical normal forms: notably, efficient axiomatization
of the stabilizer fragments for qubits [5, 51, 72], qutrits [90, 95], and prime-dimensional
qudits [12]. This has enabled various applications, such as measurement-based quantum
computation [72, 83], quantum circuit optimization [30, 43] and verification [68], as well
as classical simulation [25, 57]. Beyond these, ZX-calculus has been applied to verify
QECC [36, 39], represent Clifford encoders [54], as well as study various QECC such as
tripartite coherent parity check codes [22, 24] and surface codes [40, 41, 42, 81]. Specific
to CSS codes, ZX-calculus has been used to visualize their encoders [55], code maps and
code surgeries [33], their correspondence to affine Lagrangian relations [31], and their
constructions in high-dimensional quantum systems [32].

In this thesis, we seek to answer some overarching questions about QECC construc-
tions and fault-tolerant implementations. We focus on CSS codes and leverage the direct
correspondence between phase-free ZX diagrams and CSS code encoders [55]. Given an
arbitrary CSS code, based on its normal form, we propose a bidirectional rewrite rule to
find a (not necessarily transversal) physical implementation for any logical ZX diagram.
Furthermore, we demonstrate diagrammatic transformations between encoding maps as-
sociated with different codes. Here, we focus on two code transformation techniques: code
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morphing, a procedure that transforms a code while retaining its fault-tolerant gates [92],
and gauge fixing, where complimentary codes (such as the Steane and the quantum Reed-
Muller codes) can be obtained from a common subsystem code [3, 74, 77, 94]. We provide
explicit graphical derivations for these techniques and show how ZX and graphical encoder
maps relate several equivalent perspectives on these code transforming operations.
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Chapter 2

Preliminaries

We start with some definitions. The Pauli matrices are 2× 2 unitary operators acting on
a single qubit. Let i be the imaginary unit.

I =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
, Y = iXZ =

[
0 −i
i 0

]
.

Let P1 be the single-qubit Pauli group, P1 =
〈
i,X, Z

〉
, I, Y ∈ P1.

2.1 The Stabilizer Formalism and CSS Codes

Definition 1. Let U ∈ U(2). In a system over n qubits, 1 ≤ i ≤ n,

Ui = I ⊗ . . .⊗ I ⊗ U ⊗ I ⊗ . . .⊗ I

denotes U acting on the i-th qubit, and identity on all other qubits.

Let Pn be the n-qubit Pauli group. It consists of all tensor products of single-qubit
Pauli operators.

Pn =
〈
i,X1, Z1, . . . , Xn, Zn

〉
.

The stabilizer formalism is a mathematical framework to describe and analyze the
properties of certain QECC, called stabilizer codes [46, 47]. Consider n qubits and let
m ≤ n. A stabilizer group S =

〈
S1, . . . , Sm

〉
is an Abelian subgroup of Pn that does

not contain −I. The codespace of the corresponding stabilizer code, C, is the joint +1
eigenspace of S, i.e.,

C = {|ψ⟩ ∈ C2n ; S|ψ⟩ = |ψ⟩,∀S ∈ S}.

The number of encoded qubits in a stabilizer code is k = n−m, where m is the number
of independent stabilizer generators [46]. Moreover, we can define the centralizer of S as

N (S) = {U ∈ Pn; [U, S] = 0,∀S ∈ S}.
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One can check that N (S) is a subgroup of Pn and S ⊂ N (S). We remark that the
notions of normalizer and centralizer coincide for any stabilizer group. In what follows, we
will use them interchangeably. As we will see later, N (S) provides an algebraic structure
for the subsystem codes. The code distance, d, of a stabilizer code is the minimal weight
of operators in N (S)/⟨iI⟩ that is not in S. We summarize the properties of a stabilizer
code with the shorthand Jn, k, dK.

Finally, we introduce some notation for subsets of n-qubit Pauli operators, which will
prove useful for defining CSS codes.

Definition 2. Let M be an m × n binary matrix and P ∈ P1/⟨iI⟩. In the stabilizer
formalism, M is called the stabilizer matrix, and MP defines m P-type stabilizer generators.

MP :=

{
n⊗

j=1

P [M ]ij ; 1 ≤ i ≤ m

}
.

CSS codes are QECC whose stabilizers are defined by two orthogonal binary matrices
G and H [17, 84]:

S = ⟨GX , HZ⟩, GH⊺ = 0,

H⊺ is the transpose of H. This means that the stabilizer generators of a CSS code can be
divided into two types: X-type and Z-type. For example, the J7, 1, 3K Steane code [84] in
Figure 2.1a is specified by

G = H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


3×7

. (2.1)

Accordingly, the X-type and Z-type stabilizers are defined as

SX
1 = X1X3X5X7, SX

2 = X2X3X6X7, SX
3 = X4X5X6X7

SZ
1 = Z1Z3Z5Z7, SZ

2 = Z2Z3Z6Z7, SZ
3 = Z4Z5Z6Z7.

The logical operators X and Z are defined as

X = X1X4X5 and Z = Z1Z4Z5. (2.2)

In Section 2.2, we define CSS subsystem codes. In Section 2.3, we define several CSS
codes that will be used in subsequent sections. In Section 2.4, we introduce the basics of
the ZX calculus and the phase-free ZX normal forms.

2.2 The CSS Subsystem Codes

Subsystem codes [60, 75] are QECC where some of the logical qubits are not used for
information storage and processing. These logical qubits are called gauge qubits. By
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fixing gauge qubits to some specific states, the same subsystem code may exhibit different
properties, for instance, having different sets of transversal gates [10, 62, 63, 74, 99]. This
provides a tool to circumvent restrictions on transversal gates such as the Eastin-Knill
theorem [37].

Based on the construction proposed in [75], we describe a subsystem code using the
stabilizer formalism.

Definition 3. Given a stabilizer group S, a gauge group G is a normal subgroup of N (S),
such that S ⊂ G and that G/S contains anticommuting Pauli pairs. In other words, one
can write

S =
〈
S1, . . . , Sm

〉
, G =

〈
S1, . . . , Sm, g

X
1 , g

Z
1 , . . . , g

X
r , g

Z
r

〉
, 1 ≤ m+ r ≤ n.

(S,G) defines an Jn, k, r, dK subsystem code where n = m+ k+ r. The logical operators are
elements of the quotient group L = N (S)/G.

Under this construction, n physical qubits are used to encode k logical qubits with r
gauge qubits. Alternatively, we can think of the gauge group G as partitioning the code
space C into two subsystems: C = A⊗B. Logical information is encoded in A and L serves
as the group of logical operations. Gauge operators from G act trivially on subsystem
A, while operators from L act trivially on subsystem B. Therefore, two states ρA ⊗ ρB

and ρ′A ⊗ ρ′B are considered equivalent if ρA = ρ′A, regardless of the states ρB and ρ′B.
When r = 0, G = S. In that case, an Jn, k, 0, dK subsystem code is essentially an Jn, k, dK
stabilizer code.

CSS subsystem codes are subsystem codes whose stabilizer generators can be divided
into X-type and Z-type operators. In what follows, we provide an example to illustrate
their construction.

2.3 Some Interesting CSS Codes

We start by defining the stabilizer groups for the J7, 1, 3K Steane code, the J15, 1, 3K ex-
tended Steane code [3], and the J15, 1, 3K quantum Reed-Muller code [59]. They are derived
from the family of J2m−1, 1, 3K quantum Reed-Muller codes, with a recursive construction
of stabilizer matrices [87]. The Steane code has transversal logical Clifford operators, and
the quantum Reed-Muller code has a transversal logical T gate. Together these operators
form a universal set of fault-tolerant gates. In Chapter 5, the relations between these codes
are studied from a diagrammatic perspective.

For brevity, their corresponding stabilizer groups are denoted as Ssteane, Sex, and Sqrm.
As per Definition 2, consider three stabilizer matrices F , H, and J . Note that G is defined
in Equation (2.1). 0 and 1 denote blocks of 0s’ and 1s’ respectively. Their dimensions can
be inferred from the context.
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F =

[
G 0 G
0 1 1

]
4×15

, H =
[
G 0

]
3×15

,

J =

 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1


3×15

.

Then, the stabilizer groups are defined as

Ssteane =
〈
GX , GZ

〉
, Sex =

〈
FX , FZ , HX , HZ

〉
, Sqrm =

〈
FX , FZ , HZ , JZ

〉
. (2.3)

Geometrically, one can define Ssteane and Sqrm with the aid of Figure 2.1. In Figure 2.1a,
the Steane code is visualized on a 2D lattice. Since the Steane code is self-dual, every
coloured face corresponds to an X-type and Z-type stabilizer. In Figure 2.1b, the quantum
Reed-Muller code is visualized on a 3D lattice. Every coloured face corresponds to a
weight-4 Z-type stabilizer. Every coloured cell corresponds to a weight-8 X-type stabilizer.
For the Steane code, the logical operators defined in Equation (2.2) correspond to an edge
in the triangle. For the quantum Reed-Muller code, the logical X operator corresponds to
a weight-7 triangular face, and the logical Z operator corresponds to a weight-3 edge of the
entire tetrahedron. An example is shown below.

X = X1X2X3X4X5X6X7 and Z = Z1Z4Z5 (2.4)

Given such representations, the Steane code and the quantum Reed-Muller code are
also special cases of colour codes [7, 8, 62].

1

2

3

45

6

7

(a) Visualize the Steane code.

1

2

3

45

6

78

9

10

11
12

13

14

15

(b) Visualize the quantum Reed-Muller code.

Figure 2.1: Each vertex represents a physical qubit. Each edge serves as an aid to the eye. They
do not imply any physical interactions or inherent structures. In Figure 2.1a, the Steane code is
visualized as a 2D colour code. In Figure 2.1b, the quantum Reed-Muller code is visualized as a
3D colour code.

From Equation (2.3), the extended Steane code is self-dual, and its encoded state is
characterized by the lemma below. It shows that Sex and Ssteane are equivalent up to some
auxiliary state.

Lemma 1 ([3]). Any codeword |ψ⟩ of the extended Steane code can be decomposed into a
codeword |ϕ⟩ of the Steane code and a fixed state |η⟩. That is,
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|ψ⟩ = |ϕ⟩ ⊗ |η⟩,

where |η⟩ = 1√
2
(|0⟩|0⟩ + |1⟩|1⟩), |0⟩ and |1⟩ are the logical 0 and 1 encoded in the Steane

code.

Since the logical information |ϕ⟩ encoded in the Steane code is not entangled with |η⟩,
to switch between the Steane code and the extended Steane code, one may simply add or
discard the auxiliary state |η⟩. This property will prove useful in Chapter 5.

Next, we define the J15, 1, 3, 3K CSS subsystem code [94]. As per Definition 3, let Ssub

and G be its stabilizer group and gauge group respectively.

Ssub =
〈
FX , FZ , HZ

〉
, G =

〈
FX , FZ , HX , HZ , JZ

〉
. (2.5)

Let Lg = G/S and L = N (S)/G. One can verify that

Lg =
〈
HX , JZ

〉
, L =

〈
X,Z

〉
. (2.6)

Thus, the CSS subsystem code has one logical qubit and three gauge qubits, and they are
acted on by Lg and L respectively. From Chapter 3 onwards, we call operators in Lg as
gauge operators.

Moreover, Ssub can be viewed as the stabilizer group of a J15, 4, 3K CSS code, with
logical operators L′. This code appears in an intermediary step of the gauge fixing process
in Chapter 5.

L′ := Lg ∪ L =
〈
HX , JZ , X, Z

〉
. (2.7)

2.4 The ZX Calculus

The qubit ZX-calculus [26, 27, 28, 91] is a quantum graphical calculus for diagrammatic
reasoning of any qubit quantum computation. Every diagram in the calculus is composed
of two types of generators: Z spiders, which sum over the eigenbasis of the Pauli Z operator:

α..
.

..
.m n := |0⟩⊗n⟨0|⊗m + eiα|1⟩⊗n⟨1|⊗m, (2.8)

and X spiders, which sum over the eigenbasis of the Pauli X operator:

α..
.

..
.m n := |+⟩⊗n⟨+|⊗m + eiα|−⟩⊗n⟨−|⊗m. (2.9)

The ZX-calculus is universal [27] in the sense that any linear map from m qubits to
n qubits corresponds exactly to a ZX diagram, by the construction of Equations (2.8)
and (2.9) and the composition of linear maps.

Furthermore, the ZX-calculus is complete [49, 53]: Any equality of linear maps on any
number of qubits derivable in the Hilbert space formalism, is derivable using only a finite set
of rules in the calculus. The smallest complete rule set to date [93] is shown in Figure 2.2.
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Some additional rules, despite being derivable from this rule set, will be convenient to use
in this paper. They are summarized in Figure 2.3.

β

α...

...

...
......

α + β=

kπ = kπ

kπ

= π
2

π
2

-π
2

...
... = =

=

α... ... = α... ...

√
2

√
2

π
4

-π
4 =α1 α2 α3 = β1 β2 β3eiγ = 1

(fusion) (id)

(strong complementarity (sc)) (π-copy)

(Hadamard)
(colour change)

(Euler decomposition) (scalar)

Figure 2.2: These eight equations suffice to derive all other equalities of linear maps on qubits [93].
k ∈ Z2. αi, βi and γ are real numbers satisfying the trigonometric relations derived in [29]. Each
equation still holds when we replace all spiders with their corresponding spiders of the opposite
colour. Whenever there are any two wires with ... between them, the rule holds when replacing
this with any number of wires (i.e., 0 or greater).

...
... = ...

...

(Hopf)

(Non-destructive measurement)

kπ kπ

kπ =
√
2

(π-copy’)

kπ

kπ

(X ⊗X ⊗ . . .⊗X Measurement) (Z ⊗ Z ⊗ . . .⊗ Z Measurement)

...
...

Figure 2.3: Some other useful rewrite rules, each derivable from the rules in Figure 2.2. k ∈ Z2.
Each equation still holds when we interchange X and Z spiders.

When a spider has phase zero, we omit its phase in the diagram, as shown below. A
ZX diagram is phase-free if all of its spiders have zero phases. For more discussions on
phase-free ZX diagrams, we refer readers to consult [55].

... 0:=
... :=

...
...

...
...

...
...0
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2.5 The ZX Normal Form for CSS Codes

Due to the universality of the ZX calculus, quantum error-correcting code encoders, as
linear isometries, can be drawn as ZX diagrams [54]. Moreover, the encoder for a CSS
code corresponds exactly to the phase-free ZX (and XZ) normal form [55].

Definition 4. For a CSS stabilizer code defined by S, let
{
SX
i ; 1 ≤ i ≤ m1

}
⊂ S be the

X-type stabilizer generators and
{
Xj; 1 ≤ j ≤ k

}
be the logical X operators, m1 + k < n.

Its ZX normal form can be found via the following steps:

(a) For each physical qubit, introduce an X spider.

(b) For each X-type stabilizer generator SX
i and logical operator Xj, introduce a Z spider

and connect it to all X spiders where this operator has support.

(c) Give each X spider an output wire.

(d) For each Z spider representing Xj, give it an input wire.

As an example, the ZX normal form for the Steane code is drawn in Figure 2.4a. The
XZ normal form can be constructed based on the Z-type stabilizer generators

{
SZ
i ; 1 ≤ i ≤

m2

}
⊂ S and the logical Z operators

{
Zj; 1 ≤ j ≤ k

}
by inverting the roles of X and Z

spiders in Definition 4. Note that m1+m2+ k = n. Correspondingly, the XZ normal form
for the Steane code is drawn in Figure 2.4b.

In [55], Kissinger gave an algorithm to rewrite any phase-free ZX diagram into both
the ZX and XZ normal forms. In Appendix A, we prove that it is sufficient to represent a
CSS code encoder using either one of the forms.

1

2

3

4
5

6

7
=

1

2

3
4

5

6

7

(a) The Steane code encoder in the ZX normal form.

1

2

3

4
5

6

7
=

1

2

3
4

5

6

7

(b) The Steane code encoder in the XZ normal form.

Figure 2.4: The XZ and ZX normal forms of the Steane code.
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Chapter 3

The Graphical Construction of CSS
Encoders

3.1 The ZX Normal Form for CSS Subsystem Codes

We generalize the ZX normal form for CSS stabilizer codes to CSS subsystem codes as
follows.

Definition 5. For an Jn, k, r, dK CSS subsystem code defined by (S,G), let
{
SX
i ; 1 ≤ i ≤ m

}
be the X-type stabilizer generators,

{
LX
gt ; 1 ≤ t ≤ r

}
be the X-type gauge operators, and{

Xj; 1 ≤ j ≤ k
}

be the logical X operators, m + k + r < n. Its ZX normal form can be
found via the following steps:

(a) For each physical qubit, introduce an X spider.

(b) For each stabilizer generator SX
i , logical operator Xj and gauge operator LX

gt, introduce
a Z spider and connect it to all X spiders where this operator has support.

(c) Give each X spider an output wire.

(d) For each Z spider representing Xj, give it an input wire.

(e) For all Z spiders representing LX
gt, attach to them a joint arbitrary input state (i.e.,

a density operator ρ).

Similar to CSS stabilizer codes, CSS subsystem codes also have an equivalent XZ normal
form, which can be found by inverting the role of Z and X in the above procedure.

For n > 3, below we exemplify the ZX normal form for an Jn, 1, 2, dK CSS subsystem
code with three X-type stabilizers generators

{
SX
1 , S

X
2 , S

X
3

}
, two X-type gauge operators{

LX
g1
, LX

g2

}
, and one logical operator

{
X
}
. For simplicity, we substitute wires connecting

Z and X spiders by .... The detailed connectivities are omitted here, but they should be

10



clear following step (b) in Definition 5. This notation will be used in the remainder of this
paper.

1

LX
g3

LX
g1

2
3

15

...
SX
2

...

X̄ ...

SX
1

...

...

...
ρ

SX
3

...

LX
g2 ...

SX
4

...

.

3.2 Pushing through the Encoder

For any Jn, k, dK CSS code, its encoder map E is of the form:

k
{

E
...

...
}
n.

Definition 6. Let Xi and Zi be the X and Z operators acting on the i-th logical qubit.
Let Xi and Zi be the physical implementation of Xi and Zi respectively. Diagrammatically,
they can be represented as

=EX1 E X1
=EZ1 E Z1

and .
...

...
...

...
...

...
...

...
...

...
...

...

In other words, pushing Xi (or Zi) through E yields Xi (or Zi). Using ZX rewrite
rules along with the ZX (or XZ) normal form, we can prove Lemma 2. Although this is
a well-known fault-tolerant property of the CSS codes, this graphical proof reveals how
logical Pauli operators are propagated through the encoder.

Lemma 2. For any CSS code, all Xi and Zi are implementable by multiple single-qubit
Pauli operators. In other words, all CSS codes have transversal Xi and Zi.

Proof. Consider an arbitrary CSS code. Without loss of generality, represent its encoder
E in the ZX normal form following Definition 4. Then proceed by applying the π-copy’
rule on every Xi (the X spider with a phase π on the left-hand side of the encoder E).

Beyond just X or Z spiders, one can push any logical ZX diagram through the encoder.
Such pushing is bidirectional, and the left-to-right direction is interpreted as finding a
physical implementation for a given logical operator.

11



Proposition 1. Let E be the encoder of a CSS code. For any ZX diagram L on the
left-hand side of E, one can write down a corresponding ZX diagram P on the right-hand
side of E, such that EL = PE. In other words, P is a valid physical implementation of L
for that CSS code.

Proof. We proceed as follows. First, unfuse all spiders on the logical qubit wires of L,
whenever they are not phase-free or have more than one external wire:

=α

α...
...

=α

...
external
wires

external
wires

α

...

or
.

For each X (or Z) spider on the logical qubit wire, rewriting E to be in ZX (or XZ)
normal form and applying the strong complementarity (sc) rule yields:

E E=...
......

... E E=...
......

...or
.

On the left-hand side, a phase-free X (or Z) spider acts on the i-th logical qubit; on the
right-hand side, phase-free X (or Z) spiders act on all physical qubits wherever X i (or Zi)
has support. Therefore, any type of L can be pushed through E, resulting in a diagram P
which satisfies EL = PE.

In [39], it was proved that a physical implementation P of a logical operator L satisfies
L = E†PE. This is implied by EL = PE as E†E = I.

3.3 Examples

To illustrate Lemma 2 and proposition 1, we use the J4, 2, 2K code for an example. This
code is defined by the stabilizer group S = ⟨X1X2X3X4, Z1Z2Z3Z4⟩ and a set of logical
operators L:

L = {X1, Z1, X2, Z2}, X1 = X1X2, Z1 = Z1Z3, X2 = X1X3, Z2 = Z1Z2.

Its ZX and XZ normal forms are shown in Figure 3.1. Figure 3.1a is the ZX normal form
defined by the logical X operators and the X-type stabilizer generator. Figure 3.1b is the
XZ normal form defined by the logical Z operators and the Z-type stabilizer generator.
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1

2

1

2

3

4

(a) The ZX normal form.

1

2

1

2

3

4

(b) The XZ normal form.

Figure 3.1: Represent the encoder of the J4, 2, 2K code in two equivalent normal forms.

Example 1 (Implement a Logical X Gate). In Figure 3.2, we show how to find the physical
implementation of a logical X gate by pushing a logical X spider through the encoder. We
use this example to articulate the proof of Lemma 2.

1

2

3

4

1̄

2̄

(π-copy’)
=======

The ZX
=========
Normal Form

E

1

2

3

4

1̄

2̄

π
π

(fusion)
======

1

2

3

4

1̄

2̄

π

π

E

π

π

E :=X1

π

π

1

2

3

4

1̄

2̄

=: E X1

(fusion)
======

The ZX
=========
Normal Form

π
π

.

Figure 3.2: For the J4, 2, 2K code, X1 = X1X2.
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In what follows, we use Examples 2 to 5 to articulate the proof of Proposition 1.
Example 2 (Implement a Logical XX Measurement). The fundamental building block
for lattice surgery is a multi-qubit Pauli measurement across two lattices. In Figure 3.3,
we show that a non-destructive logical-qubit measurement in (i) can be implemented by a
non-destructive physical-qubit measurement in (v).

To start, substitute the J4, 2, 2K encoder by Figure 3.1a, as shown in (ii). Then, consider
the bottom lattice (i.e., the second code block) and the Z spider with a kπ phase as an
exterior attachment to the X spider in the top lattice (i.e., the first code block). Applying
the strong complementarity (sc) rule to the top lattice yields (iii), which is the partially
fixed ZX diagram. After that, consider the top-fixed lattice as an attachment to the bottom
lattice and apply the sc rule. This results in (iv), which is equivalently expressed in (v).
This transformation agrees with the graphical derivation for the colour code lattice surgery
[50].

E

kπ kπ

1

2

1

2
3

4

1

2

1

2
3

4

The ZX
=========
Normal Form

(sc)
====

kπ

1

2

1

2
3

4

1

2

1

2
3

4

(sc)
====

kπ

1

2

1

2
3

4

1

2

1

2
3

4

The ZX
=========
Normal Form

E

E

kπ

E

(i) (ii) (iii)

(iv) (v)

Figure 3.3: By pushing the logical XX measurement through the encoder, we show that a Pauli
measurement of two logical blocks can be implemented by a Pauli measurement of multiple physical
qubits.
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Example 3 (Implement a Logical CNOT Gate). To push a logical CNOT through the
encoder, we proceed by case distinctions.

Case 1: When a CNOT acts on two logical qubits within one code block.

In Figure 3.4, we push the CNOT through the encoder by applying Proposition 1.
Equivalently, we find the physical implementation of a logical CNOT for the J4, 2, 2K
code.

Case 2: When a CNOT acts on two logical qubits across two code blocks.

In Figure 3.5, after applying a sequence of rewrite rules, a logical CNOT is pushed
through the encoder. As a result, we find the physical implementation of a logical
CNOT acting on two code blocks. Alternatively, in Figure 3.6, we apply Proposition 1
and derive the same result.

E (id)
==== E Proposition 1

========== E

Proposition 1
========== E

(fusion)
====== E

(i) (ii) (iii)

(iv) (v)

Figure 3.4: When a logical CNOT acts within one code block, push the CNOT through the
encoder by applying Proposition 1. As a result, we find a non-transversal implementation of this
logical CNOT gate, as shown in (v).
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E1

1

2

1

2
3
4

1

2

1

2
3

4

The XZ Normal Form forE1==================
The ZX Normal Form forE2

(sc)
====

(fusion)
======

E2

(i) (ii)

(v) (vi)

1

2

1

2
3

4

1

2

1

2
3

4

(iii)

1

2

1

2
3

4

1

2

1

2
3

4

(iv)

(sc)
====

The XZ Normal Form forE1==================
The ZX Normal Form forE2

1

2

1

2
3

4

1

2

1

2
3

4

E1

E2

Figure 3.5: When a logical CNOT acts on two code blocks, push the CNOT through the encoder
by applying a sequence of rewrite rules. As a result, we find a transversal implementation of this
logical CNOT gate, as shown in (vi).
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E1

Proposition 3.2.1
===========

E2

(i) (ii)

(v)

(iii) (iv)

=

E1

E2

Proposition 3.2.1
===========

E1

E2

(Fusion)
======

E1

E2

E1

E2

kπ

kπ

kπ

Figure 3.6: When a logical CNOT acts on two code blocks, push the CNOT through the encoder
by applying Proposition 1. In (v), k ∈ Z2. We can interpret the physical implementation in terms
of the following steps. First, prepare a logical ancilla in the |+⟩ state. For each physical qubit
where X2 = X1X3 or Z1 = Z1Z3 has support, apply a CNOT on this qubit and the ancilla. Next,
measure the ancilla in the Pauli Z basis. Finally, if the measurement output is k = 1, apply a
Pauli X correction on the physical qubits where X2 = X1X3 has its support.
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Example 4 (Implement a Logical T Gate). In Figure 3.7, we push a logical T gate through
the encoder by applying a sequence of rewrite rules. This helps visualize the techniques used
in proving Proposition 1.

E

1

2

1

2

3

4

The XZ
=========
Normal Form

(fusion)
======

(i) (iii)

π/4

E

(ii)

π/4 π/4

(sc)
====

2

1

2

3

4

(iv)

π/4

1

(fusion)
======

(v)

1

2

1

2

3

4

π/4

(fusion)
======

(v)

1

2

1

2

3

4

π/4

The XZ
=========
Normal Form E

(vi)

π/4

Figure 3.7: A logical T gate is pushed through the encoder by applying a sequence of rewrite
rules. As a result, we find a non-transversal implementation of this logical T gate, as shown in
(vi).

Example 5 (Implement a Logical Hadamard Gate). In Figure 3.8, we show how to find
a physical implementation of a logical Hadamard gate by applying Proposition 1.
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E

1

2

1

2

3

4

The XZ
=========
Normal Form

Euler
==========
Decomposition

(i)

(iv)

E

(ii)

π/2

Proposition 3.2.1
===========

π/2π/2

(fusion)
====== E

(iii)

π/2 π/2π/2

π/2 π/2π/2

1

2

1

2

3

4

(v)

π/2

π/2

π/2

The ZX
=========
Normal Form

1

2

1

2

3

4

(vi)

π/2

π/2

π/2

Proposition 3.2.1
===========

1

2

1

2

3

4

(vii)

π/2 π/2

π/2

The XZ
=========
Normal Form

1

2

1

2

3

4

(viii)

π/2 π/2

E

π/2 π/2π/2

(x)

Phase Gadgets
========== E π/2

π/2

(xi)

π/2

π/2

1

2

1

2

3

4

(ix)

π/2 π/2π/2

=

Proposition 3.2.1
===========

Figure 3.8: To push a logical Hadamard gate through the encoder, we first apply the Euler
decomposition (ii). After unfusing logical spiders (iii), apply Proposition 1 three times and each
time with a convenient normal form. As a result, we find a non-transversal implementation of
this logical Hadamard gate, as shown in (xi).
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Chapter 4

Graphical Morphing of CSS Codes

One way to transform CSS codes is known as code morphing. It provides a systematic
framework to construct new codes from an existing code while preserving the number
of logical qubits in the morphed code. Here, we present this procedure by rewriting the
encoder diagram using the ZX calculus. We start by revisiting the code morphing definition
in [92].

Definition 7. Let S be a stabilizer group and C be its joint +1 eigenspace. C is called the
parent code. Let Q denote the set of physical qubits of C and R ⊆ Q. Then S(R) is a
subgroup of S generated by all stabilizers of S that are fully supported on R. Let C(R) be
the joint +1 eigenspace of S(R), and C(R) is called the child code. Given the parent code
encoder EC, concatenate it with the inverse of the child code encoder E†

C(R). This gives the
morphed code C\R.

Definition 8. Let M be a stabilizer generator of a CSS code. Let supp(M) be the set of
physical qubits where M acts non-trivially. For brevity, we call supp(M) the support of
M . There are three types of qubit coverage of R concerning supp(M).

• When |supp(M) ∩R| = |supp(M)|, M is fully-supported on R.

• When 0 < |supp(M) ∩R| < |supp(M)|, M is partially-supported on R.

• When |supp(M) ∩R| = 0, M is not supported on R.

In Figure 4.1 we use the J7, 1, 3K Steane code to illustrate different types of qubit
coverage. Without loss of generality, consider its ZX normal form. Its X-type stabilizer
generators and their respective supports are as follows.

SX
1 = X1X3X5X7, supp(SX

1 ) = {1, 3, 5, 7},
SX
2 = X2X3X6X7, supp(SX

2 ) = {2, 3, 6, 7},
SX
3 = X4X5X6X7, supp(SX

3 ) = {4, 5, 6, 7}.

In Figure 4.1a, take R1 = {2, 3, 6, 7} ⊂ Q. Since |supp(SX
1 ) ∩ R1| = |{3, 7}| = 2 < 4,

|supp(SX
3 ) ∩ R1| = |{6, 7}| = 2 < 4, SX

1 and SX
3 are partially supported on R1. Since

|supp(SX
2 ) ∩R1| = |{2, 3, 6, 7}| = 4, SX

2 is fully supported on R1.
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In Figure 4.1b, take R2 = {2, 3} ⊂ Q. Since |supp(SX
1 ) ∩ R2| = |{3}| = 1 < 4,

|supp(SX
2 ) ∩ R2| = |{2, 3}| = 2 < 4, SX

1 and SX
3 are partially supported on R2. Since

|supp(SX
3 ) ∩R2| = |∅| = 0, SX

3 is not supported on R2.

1

2

3

4
5

6

7

(a) R1 = {2, 3, 6, 7} corresponds to the 4 X spi-
ders in the blue dashed box.

1

2

3

4
5

6

7

(b) R2 = {2, 3} corresponds to the 2 X spiders
in the blue dashed box.

Figure 4.1: Given the ZX normal form of the Steane code, Q = {1, 2, 3, 4, 5, 6, 7}. Different choices
of R ⊂ Q provide different coverage for an X-type stabilizer generator.

Figure 4.2 provides two equivalent interpretations for the code morphing process. In
Figure 4.2a, Definition 7 is depicted by the circuit diagram. Since EC(R) is an isometry,
E†

C(R)EC(R) = I. By construction, the equation shown in Figure 4.2a holds [92]. Moreover,
the parameters of C = Jn, k, dK, C(R) = Jn1, k1, d1K, and C\R = Jn2, k2, d2K are character-
ized below. Let m,m1,m2 be the number of stabilizer generators for C, C(R), and C\R
respectively. Then

n2 = n− n1 + k1, k2 = k, m2 = (n− k)− (n1 − k1) = m−m1, d1, d2 ∈ N.

Figure 4.2b provides a concrete example of applying Definition 7 to the J7, 1, 3K Steane
code, where S = {1, 2, 3, 4, 5, 6, 7} and R = {2, 3, 6, 7}. As a result, the J5, 1, 2K code is
morphed from the parent code along with the J4, 2, 2K child code. This morphed code
inherits a fault-tolerant implementation of the Clifford group from the J7, 1, 3K code, which
has a transversal implementation of the logical Clifford operators. This morphing process
is represented in the ZX diagram by cutting the edges labelled by 1 and 2 adjacent to the
X spider. This is equivalent to concatenating the ZX diagram of E†

J4,2,2K in Figure 4.2a.
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EC

EC(R)

... ...

...... E†
C(R)

...
=

EC\R

... ...

...

(a) Code morphing in the circuit diagram

1
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3

4

5

6

7

(id)
======
(fusion)

1

2

1

2

3

4

5
6

7

EC

1

2

3

4

5

6

7

EC\R

CUT−−−→

1

2

EC\R EC(R)EC(R)

(b) Code morphing of the Steane code in the ZX diagram

Figure 4.2: Code morphing can be visualized using both circuit and ZX diagrams. In Figure 4.2a,
code morphing is viewed as a concatenation of the parent code encoder EC and the inverse of the
child code encoder E†

C(R). In Figure 4.2b, the encoder EC of the Steane code is represented in the
ZX normal form. As described in Proc. 1, by applying ZX rules (id) and (fusion) in Figure 2.2,
we can perform code morphing by bipartitioning it into the encoder EC\R of the morphed code
C\R = J5, 1, 2K, and the encoder EC(R) of the child code C(R) = J4, 2, 2K.

Next, we generalize the notion of code morphing and show how ZX calculus could be
used to study these relations between the encoders of different CSS codes. More precisely,
we provide an algorithm to morph a new CSS code from an existing CSS code.

Procedure 1. Given a parent code C and a child code C(R) satisfying Definition 7, con-
struct the encoder of C in the ZX normal form. Then the code morphing proceeds as
follows:

(a) Unfuse every Z spider which is supported on c qubits within R and f qubits outside
R, c ̸= 0, f ̸= 0.

(b) Add an identity X spider between each pair of Z spiders being unfused in step (a).

(c) Cut the edge between every identity X spider and the Z spiders supported on the f
qubits in R.

It follows that the subdiagram containing R corresponds to the ZX normal form of
EC(R). It has the same number of X spiders as R, so n1 = |R|. Suppose that there are h
Z spiders being unfused. Then h must be bounded by the number of Z spiders in the ZX
normal form of EC. As each spider unfusion introduces a logical qubit to C(R), k1 = h.
On the other hand, the complement subdiagram contains n − n1 + k1 X spiders as each
edge cut introduces a new X spider into the complement subdiagram. It also contains k
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logical qubits as the input edges in the ZX normal form of EC are invariant throughout the
spider-unfusing and edge-cutting process. This gives the ZX normal form for the encoder
of the morphed code C\R = Jn2, k2, d2K, where n2 = n − n1 + k1, k2 = k, d2 ∈ N. As a
result, the ZX normal form of EC is decomposed into the ZX normal forms of EC(R) and
EC\R respectively.

As the XZ and ZX normal forms are equivalent for CSS codes, Proc. 1 can be carried
out for the XZ normal form by inverting the roles of Z and X at each step.

Here, we exemplify the application of Proc. 1 by morphing two simple CSS codes.
Unlike Figure 4.2b, Example 6 chooses a different subset of qubits, R = {4, 5, 6, 7}, to
obtain the J6, 1, 1K morphed code. In Example 7, we visualize the J10, 1, 2K code morphing
from the J15, 1, 3K quantum Reed-Muller code. The J10, 1, 2K code is interesting because it
inherits a fault-tolerant implementation of the logical T gate from its parent code, which
has a transversal implementation of the logical T gate.

Example 6. Let the parent code C be the Steane code and the child code be C(R) = J4, 3, 1K.
By Proc. 1, we obtain the morphed code C\R = J6, 1, 1K. Note that for C(R), there is one X-
type stabilizer generator and no Z-type stabilizer generator. This means that C(R) cannot
detect a single-qubit X error, so it has a distance of 1. In C\R, the physical qubit labelled
3 is not protected by any X-type stabilizer. Therefore, C\R is of distance 1.
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7
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(fusion)

EC(R)EC\REC
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EC\R EC(R)

Example 7. Let the parent code C be the quantum Reed-Muller and the child code be
C(R) = J8, 3, 2K. By Proc. 1, we obtain the morphed code C\R = J10, 1, 2K. For brevity, the
X spiders representing physical qubits and the logical qubit wires inputting to the Z spiders
are omitted.
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Chapter 5

Graphical Code Switching of CSS Codes

Another way to transform CSS codes is known as code switching. It is a widely studied
technique in quantum error correction. Codes with complementary fault-tolerant gate sets
are switched between each other to realize a universal set of logical operations. As a case
study, we focus on the code switching protocol between the Steane code and the quantum
Reed-Muller code [3, 74, 77]. Since this process is bidirectional, the reasoning for one
direction can be simply adjusted for the opposite direction. Recall in Lemma 1, we showed
that the extended Steane code is equivalent to the Steane code up to some auxiliary state.
In what follows, we focus on the backward switching from the quantum Reed-Muller code
to the extended Steane code.

Using the ZX calculus, we provide a graphical interpretation for the backward code
switching. More precisely, it is visualized as gauge-fixing the J15, 1, 3, 3K subsystem code,
followed by a sequence of syndrome-determined recovery operations.

We first characterize the relations between the quantum Reed-Muller code, the extended
Steane code, and the J15, 1, 3, 3K subsystem code. For brevity, we denote these codes as
Cqrm, Cex and Csub, and their respective encoders as Eqrm, Eex, and Esub.

Lemma 3. When the three gauge qubits are in the |+++⟩ state, Csub is equal to Cex, as
shown in Figure 5.1.

Esub

|+⟩
|+⟩
|+⟩ =

{
Gauge qubits

Logical qubit
...

Eex ...

Figure 5.1: Csub is equivalent to Cex up to a fixed state of gauge qubits.

Proof. According to Definition 3, represent Esub in the XZ normal form. With a sequence
of rewrite rules, we obtain exactly the XZ normal form for Eex which captures both the
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Z-type stabilizer generators SZ
i and the logical Z operators LZ
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, 1 ≤ i ≤ 4, 1 ≤ j ≤ 3.
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Alternatively, if one chooses to represent Esub in the ZX normal form, the proof pro-
ceeds by applying the (fusion) rule to the Z spiders and identifying the gauge operators
LX
g1
, LX

g2
, LX

g3
of Csub as the stabilizers SX

5 , S
X
6 , S

X
7 of Cex, respectively:
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Corollary 2. When the three gauge qubits are in the |000⟩ state, Csub is equal to Cqrm.

In [3, 74], code switching is described as a gauge fixing process. Further afield, [94]
provides a generic recipe to gauge-fix a CSS subsystem code. Here, we generalize Lemma 3
and describe how to gauge-fix Csub to Cex using the ZX calculus.

Proposition 3. Gauge-fixing Csub in the following steps results in Cex, as shown in Fig-
ure 5.2.

(a) Measure three X-type gauge operators LX
gi

and obtain the corresponding outcomes
k1, k2, k3 ∈ Z2.

(b) When ki = 1, the gauge qubit i has collapsed to the wrong state |−⟩. Apply the
Z-type recovery operation LZ

gi
.

25



2

15

Esub

1

...

3

4

5

6

7

k1π k2π k3π

=

...

2

15

Eex

1

3

7

k1π

k1π

k1π

k1π

k2π

k2π

k2π

k2π

k3π

k3π

k3π

k3π

8

9

10

11
...

...

...
...

Figure 5.2: Gauge-fixing Csub to Cex in the circuit diagram.

Proof. In Figure 5.3, we proceed by applying a sequence of ZX rewrite rules. By Defi-
nition 5, construct the ZX normal form of Esub in the blue dashed box of (i). Then the
three gauge operators LX

gi
are measured in step (a). The subsequent equalities follow from

Figures 2.2 and 2.3. Next, we observe that the purple dashed box in (iii) is exactly the
encoder of the J15, 4, 3K stabilizer code. By Lemma 3.2 in [55], it can be equivalently ex-
pressed in the XZ normal form, as in (iv). By Proposition 1, pushing each Z spider with
the phase kiπ across EJ15,4,3K results in (v). In step (b), Pauli Z operators are applied based
upon the measurement outcome ki, which corresponds to the recovery operations in the
red dashed box of (v). After that, the gauge qubits of Csub are set to the |+++⟩ state.
By Lemma 3, we obtain the XZ normal form for Eex, as shown in the orange dashed box
of (vi). Therefore, the equation in Figure 5.2 holds.
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Figure 5.3: The graphical proof for Proposition 3.
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Figure 5.4: The switching from Cqrm to Cex provides an alternative interpretation of Proposition 3.
After measuring LX

g1 , L
Z
g1 is removed from the stabilizer group Sqrm and the recovery operation is

performed based on the measurement syndrome. Note that unrelated X and Z spiders are omitted
from the ZX diagrams.

We sum up by explaining how to obtain Cex and Cqrm by gauge-fixing Csub. In Proposi-
tion 3, we showed that measuring the X-type gauge operators LX

gi
followed by the Z-type

recovery operations LZ
gi

is equivalent to adding LX
gi

to the stabilizer group Ssub. This results
in the formation of Cex. Analogously, measuring the Z-type gauge operators LZ

gi
followed

by the X-type recovery operations LX
gi

is equivalent to adding LZ
gi

to Ssub. Thus, we obtain
Cqrm.

Alternatively, gauge-fixing Csub can be viewed as a way of switching between Cex and
Cqrm [3, 77]. As an example, in Figure 5.4, we visualize the measurement of LX

g1
:=

X1X3X5X7 in order to switch from Cqrm to Cex. The effect of measuring other X-type
gauge operators can be reasoned analogously.

By Definition 5, construct the XZ normal form of Eqrm in (i). Then measure LX
g1

and apply a sequence of rewrite rules to the ZX diagram. In (v), the stabilizer LZ
g1

:=
Z2Z3Z10Z11 is removed from the stabilizer group Sqrm. Meanwhile, the recovery operation
can be read off from the graphical derivation: (Z2Z3Z10Z11)

k1 =
(
LZ
g1

)k1 , k1 ∈ Z2.

Overall, ZX visualization provides a deeper understanding of the gauge fixing and
code switching protocols. On top of revealing the relations between different CSS codes’
encoders, it provides a simple yet rigorous test for various fault-tolerant protocols. Beyond
this, it will serve as an intuitive guiding principle for the implementation of various logical
operations.
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Chapter 6

Conclusion

In this thesis, we generalize the notions in [55] and describe a normal form for CSS subsys-
tem codes. Built upon the equivalence between CSS codes and the phase-free ZX diagrams,
we provide a bidirectional rewrite rule to establish a correspondence between a logical ZX
diagram and its physical implementation. With these tools in place, we provide a graphical
representation of two code transformation techniques: code morphing, a procedure that
transforms a code through unfusing spiders for the stabilizer generators, and gauge fixing,
where different stabilizer codes can be obtained from a common subsystem code. These
explicit graphical derivations show how the ZX calculus and graphical encoder maps relate
several equivalent perspectives on these code transforming operations, allowing potential
utilities of ZX to simplify fault-tolerant protocols and verify their correctness.

Looking ahead, many questions remain. It is still not clear how to present the general
code deformation of CSS codes using phase-free ZX diagrams. Besides, understanding code
concatenation through the lens of ZX calculus may help derive new and better codes. In
addition, it would be interesting to look at other code modification techniques derived from
the classical coding theory [71].
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Appendix A

The Complementary Proof

A.1 The ZX and XZ Normal Forms are Equivalent for
a CSS Code

An Jn, k, dK CSS code C is generated by orthogonal subspaces V = Span{v1, . . . , vm1} and
W = Span{w1, . . . , wm2}. V, W ⊂ Fn

2 , m1 = dimV and m2 = dimW . m1 and m2 denote
the number of independent X-type and Z-type stabilizer generators respectively. Then, the
stabilizer generators of C can be expressed as

SX
i =

n⊗
t=1

X(vi)t , SZ
j =

n⊗
t=1

Z(wj)t .

Let S be the stabilizer group of C. Then

S =
〈
SX
i , S

Z
j ; 1 ≤ i ≤ m1, 1 ≤ j ≤ m2

〉
.

Let E be the encoder of C. Since E is an isometry from the k logical qubit space to
the n physical qubit space, E†E = Ik and k = n−m1 −m2 [46]. When a CSS code is not
maximal, m1 +m2 < n. Then k > 0 and its logical operators can be expressed as

X i =
n⊗

t=1

X(vi)t , m1 ≤ i ≤ m1 + k

Zj =
n⊗

t=1

Z(wj)t , m2 ≤ j ≤ m2 + k

When a CSS code is maximal, S is maximal and V ⊕U = Fn
2 . Thus m1+m2 = n. k = 0

means that there is no degree of freedom for the encoded logical information. Therefore,
the maximal CSS code is uniquely determined by S. More precisely, it is the joint +1
eigenstate of the n independent stabilizer generators.
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In Appendix A.1.1, we visualize a stabilizer generator of a CSS code using the ZX
diagrams. In Appendix A.1.2, we explain the map-duality of a ZX diagram. This allows
us to move spiders around and bend wires. In Appendix A.1.3, we leverage this property
and prove Proposition 4, which states that it is sufficient to represent a CSS code using
one of its ZX and XZ normal forms.

A.1.1 Represent a Stabilizer Generator Using the ZX Diagrams

In [55], a pictorial way was introduced to represent non-destructive Pauli measurements.

MX...X =

{ k∏
X...X

:=
1

2
(I + (−1)kX ⊗ · · · ⊗X)

}
k=0,1

MZ...Z =

{ k∏
Z...Z

:=
1

2
(I + (−1)kZ ⊗ · · · ⊗ Z)

}
k=0,1

Definition 9. When k = 0, we obtain a phase-free version of the diagrams in Figure 2.3.
They represent the X- and Z-type stabilizer generators, which are the projections onto the
+1 eigenspace of a Pauli operator.

∏0
X...X ∝

...

∏0
Z...Z ∝

...

Figure A.1 use four examples to illustrate this notion. We can read off a Pauli projection
from each ZX diagram. In Figure A.1a, since the X spiders are supported on the first two
qubits, Pauli X acts on them and we get I + XXI. In Figure A.1b, since the X spiders
are supported on all three qubits, we get I +XXX. Similarly, in Figures A.1c and A.1d,
Pauli Z acts on qubits where Z spiders are supported.

(a) I +XXI (b) I +XXX (c) I + IZZ (d) I + ZZZ

Figure A.1: Up to a scalar, each projection in {I + XXI, I + XXX, I + IZZ, I + ZZZ} is
represented by Figures A.1a to A.1d respectively. Here, I is short for I⊗3.
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A.1.2 The Map-State Duality of a ZX Diagram

Next, we introduce wires that are commonly used in a ZX diagram. In Figure A.2, a
single wire corresponds to a one-qubit identity operator. A crossing wire corresponds to a
SWAP operation. Wires in the shape of a cup or cap allow us to “bend” inputs around to
become outputs and vice-versa. This corresponds to performing the partial transpose in
the computational basis.

Figure A.2: In addition to spiders, a ZX diagram could contain identity wires, swaps, cups, and
caps [55].

Cups and caps help establish a bijection between a linear map E : C⊗k
2 → C⊗n

2 and
the state |E⟩ ∈ C⊗(k+n)

2 , as shown in Figure A.3. This property is known as the map-
state duality. It allows us to deform a ZX diagram arbitrarily by moving spiders around,
bending, and unbending the wires. So long as the order of the diagram’s inputs and outputs
is preserved, the deformed ZX diagram can be recovered to represent the same matrix [91].

E
1

k

...
1

n

... 7→
E

...
1

n

...

k′

1′...

|E⟩ :=

Figure A.3: Given some linear map E from k qubits to n qubits, we can transform it into a
(k + n)-qubit state |E⟩ by applying the Choi-Jamiołkowski isomorphism.

A.1.3 The ZX and XZ Normal Forms for a CSS Code

Recall in [55], a CSS code permits a ZX normal form EX which is constructed from the X-
type stabilizer generators and the logical X operators. It also permits an XZ normal form
EZ which is constructed from the Z-type stabilizer generators and the logical Z operators.

We start by considering the maximal CSS code, which is uniquely determined by the
X- and Z-type stabilizer generators.

Lemma 4. For any maximal CSS code |E⟩ over n physical qubits, its ZX normal form
EX is equivalent to its XZ normal form EZ. In other words, EX and EZ correspond to the
same linear map.

Proof. Let S be the maximal stabilizer group that uniquely fixes |E⟩,

S = ⟨SX
1 , . . . , S

X
m1
, SZ

1 , . . . , S
Z
m2

⟩, 0 ≤ m1,m2 ≤ n, m1 +m2 = n.
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By Definition 4,

EX =

m1∏
i=1

(
I + SX

i

)
|0⟩⊗n, EZ =

m2∏
j=1

(
I + SZ

j

)
|+⟩⊗n.

Note that Z|0⟩ = |0⟩ and thus SZ
j |0⟩⊗n = |0⟩⊗n. For all 1 ≤ j ≤ m2, since

[
SZ
j , S

X
i

]
= 0

for all 1 ≤ i ≤ m1, we have

SZ
j EX = SZ

j

(
m1∏
i=1

(
I + SX

i

)
|0⟩⊗n

)

=

m1∏
i=1

SZ
j

(
I + SX

i

)
|0⟩⊗n

=

m1∏
i=1

(
I + SX

i

)
SZ
j |0⟩⊗n

=

m1∏
i=1

(
I + SX

i

)
|0⟩⊗n = EX .

Hence, EX is stabilized by every Z-type stabilizer generator of S. It follows that EX is
in the joint +1 eigenspace of S.

Note that X|+⟩ = |+⟩ and thus SX
i |+⟩⊗n = |+⟩⊗n. Reasoning analogously, we have

SX
i EZ = SX

i

(
m2∏
j=1

(
I + SZ

j

)
|+⟩⊗n

)

=

m2∏
j=1

SX
i

(
I + SZ

j

)
|+⟩⊗n

=

m2∏
j=1

(
I + SZ

j

)
SX
i |+⟩⊗n

=

m2∏
j=1

(
I + SZ

j

)
|+⟩⊗n = EZ .

Hence, EZ is stabilized by every X-type stabilizer generator of S. It follows that EZ is in the
joint +1 eigenspace of S. By the uniqueness of the maximal CSS code, EX = EZ = |E⟩.

As an exercise, we use Example 8 to illustrate this proof.

Example 8. Consider a maximal stabilizer group S = ⟨SX
1 , S

X
2 , S

Z
1 , S

Z
2 ⟩, where

SX
1 = X1X3, SX

2 = X1X2X3X4, SZ
1 = Z2Z4, SZ

2 = Z1Z2Z3Z4.

Let |E⟩ be the maximal CSS code uniquely fixed by S. Let EX and EZ be its ZX and XZ
normal forms respectively. Then EX = EZ.
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Proof. According to Definition 4, EX is defined by the X-type stabilizer generators. In
Figure A.4, after relocating the Z spiders, EX in (i) is transformed into a semantically
equivalent diagram in (ii). After unfusing the wires and applying Definition 9,

EX =
∑
b∈V

|b⟩, V = Span{v1, v2}, v1 =


1
0
1
0

 , v2 =


1
1
1
1

 .

1

2

3

4

SX
1

SX
2

1

2

3

4

SX
1

SX
2

(i) (ii)

=

SX
1

SX
2

(iii)

(fusion)
======

1

2

3

4

Definition
======== (I + SX

2 )(I + SX
1 )|0000⟩ =

∑1
i,j=0(S

X
2 )j(SX

1 )i|0000⟩ =
∑

b∈V |b⟩

EX :=

Figure A.4: The ZX normal form of the maximal CSS code fixed by S. The equalities hold up to
a scalar.

Similarly, EZ is defined by the Z-type stabilizer generators. In Figure A.5, after relo-
cating the X spiders, EZ in (i) is transformed into a semantically equivalent diagram in
(ii). After unfusing the wires and applying Definition 9,

EZ =
∑
b∈W

|b⟩, W = Span{w1, w2}, w1 =


1
1
1
1

 , w2 =


0
1
0
1

 .

1

2

3

4

SZ
1

SZ
2

(i) (ii)

= SZ
2SZ

1

(iii)

(fusion)
======

1

2

3

4

Definition
======== (I + SZ

2 )(I + SZ
1 )|++++⟩ =

∑1
i,j=0(S

Z
2 )

j(SZ
1 )

i|++++⟩ =
∑

b∈W |b⟩

EZ :=

1

2

3

4

SZ
1

SZ
2

Figure A.5: The XZ normal form of a maximal CSS code fixed by S. The equalities hold up to a
scalar.
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By direct computation, we can show that up to a scalar, EZ = EX :

EZ = (I + SZ
2 )(I + SZ

1 )|++++⟩

= (I + SZ
2 )(I + SZ

1 )
∑
v∈F4

2

|v⟩

= (I + SZ
2 )
∑
v⊥w1

|v⟩, where SZ
1 =

n⊗
t=1

Z(w1)t

=
∑

v⊥w1,v⊥w2

|v⟩, where SZ
2 =

n⊗
t=1

Z(w2)t

=
∑
c⊥c′

|c⟩, ∀c′ ∈ W, where W = Span{w1, w2}

=
∑
b∈V

|b⟩, where V = Span{v1, v2}

= EX .

Proposition 4. For any non-maximal CSS code C over n physical qubits, its ZX normal
form EX is equivalent to its XZ normal form EZ . In other words, EX and EZ correspond
to the same linear map.

Proof. Suppose towards contradiction that EX and EZ correspond to different linear maps.
After bending the input wires of EX and EZ and turning them into the output wires, we
obtain a maximal CSS code whose ZX and XZ normal forms are E ′

X and E ′
Z respectively.

Since EX ̸= EZ , E ′
X ̸= E ′

Z . By Lemma 4, E ′
X = E ′

Z . This yields a contradiction. Therefore,
EX = EZ .
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