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Abstract

This study focuses on factors that may influence the outcomes of CI builds triggered by
commits modifying and/or adding DevOps artefacts to the projects, i.e., DevOps-related
CI builds. In particular, code ownership of DevOps artefacts is one such factor that could
impact DevOps-related CI builds.

There are two main strategies as suggested in prior work: (1) all project developers
need to contribute to DevOps artefacts, and (2) a dedicated group of developers needs to
be authoring DevOps artefacts.

To analyze which strategy works best for OSS projects, we conduct an empirical analysis
on a dataset of 892,193 CircleCI builds spanning 1,689 Open-Source Software projects.
First, we investigate the impact of code ownership of DevOps artefacts on the outcome
of a CI build on a build level. Second, we study the impact of the Skewness of DevOps
contributions on the success rate of CI builds at the project level.

Our findings reveal that, in general, larger code ownership and higher Skewness values
of DevOps contributions are related to more successful build outcomes and higher rates
of successful build outcomes, respectively. However, we also find that projects with low
skewness values could have high build success rates if the number of developers in the
project is relatively small. Thus, our results suggest that while larger software organizations
are better off having dedicated DevOps developers, smaller organizations would benefit
from having all developers involved in DevOps.
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Chapter 1

Introduction

DevOps is a development methodology that bridges the gap between Development (Dev)
and Operations (Ops) [40]. It plays a central role in projects, orchestrating effective com-
munication and collaboration throughout the software development process. DevOps, cou-
pled with automated deployment, is made possible through a well-defined set of practices
[40]. Among various DevOps practices, Continuous Integration (CI) is popular because it
is directly associated with the automation of the release cycles of software products. These
processes hold immense importance in software development, enabling teams to stream-
line workflows and deliver high-quality software. In fact, large software organizations like
Google and Mozilla invest millions of dollars just for CI services (excluding the cost of
developers who maintain CI) [36].

However, implementing CI in software repositories can substantially burden project
maintainers. The time to receive feedback from the build process could increase, and the
operational costs associated with build execution also increase as a result[42].

Therefore, it is imperative to understand better the factors affecting CI systems to
optimize release pipelines while lowering operational costs. To that end, many previous
studies [57, 89, 46] have been aimed at understanding the factors that affect the outcome
of CI builds. For example, change-set size [57], the files changed [89], the day of the week
and the time of day [46] are some factors influencing the CI build outcomes. Moreover, a
comprehensive understanding of these factors and those affecting the outcomes of CI builds
associated with DevOps artifacts (that define DevOps pipelines) provides a competitive
advantage to project maintainers. This advantage allows them to expedite the delivery
of reliable solutions to end users while achieving cost efficiencies in the current fast-paced
technological environment.
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Several prior studies have looked into the aspects of developers who are working on
DevOps artefacts of projects. For example, Wiedemann et al. [87] highlight the importance
of having a dedicated team responsible for DevOps within an organization. They mention
that the expertise required to manage and automate the operations of the IT infrastructure
is vastly different from that needed for a software developer, and as such, individuals who
possess these skills should be specifically sought after. On the other hand, major tech
companies, such as Amazon, push a contradictory ideology – you build it, you run it [78].
This ideology advocates that all software developers responsible for building a product
should also be responsible for everything required to run or operate it (including DevOps).
They mention that developers who practice this ideology would also use the same creativity
in supporting the applications they built, leading to a better overall experience for the end
users.

The above two schools of thought are contradictory. Thus, we perform an empirical
study to see if it is effective for everyone in a project to be involved in DevOps or if
only a subset of people is authoring the DevOps artefacts in a project. In particular, this
thesis investigates the impact of code ownership of DevOps artefacts, on the outcomes of
DevOps-related CI builds (which we refer to as DevOps CI builds in the rest of this study).
Focusing exclusively on DevOps CI builds allows for a targeted examination of the specific
challenges and opportunities associated with the DevOps pipeline. DevOps CI builds are
uniquely characterized by the presence of specialized artifacts that are pivotal for seamless
integration, deployment, and scalability.

Therefore, by concentrating our analysis on DevOps CI builds, we aim to provide a
nuanced understanding of how code ownership influences the success or failure of builds
within the context of DevOps practices. This focused approach enables us to uncover
insights that are directly applicable to the challenges and intricacies inherent in modern
DevOps workflows, contributing to a more targeted and meaningful exploration of the
research question at hand.

We conduct our analysis on a large dataset of 892,193 CircleCI1 builds triggered from
the commits related to DevOps artefacts, spanning 1,689 Open-Source Software (OSS)
projects. Below, we discuss the research questions that we answer in this thesis and pre-
view the corresponding results:

(RQ1) Does the code ownership of DevOps artefacts affect outcomes of DevOps
CI builds in OSS?

Motivation and approach.

1https://circleci.com/
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To investigate the impact of code ownership on outcomes of DevOps CI builds, we
extend the definition of code ownership by Bird et al. [8] to measure ownership over time,
and we term this new metric “total chronological ownership”, i.e., the code ownership of
an author at the time a build is triggered. We construct a mixed-effects logistic regression
model [9] on a build level and investigate the relationship between total chronological own-
ership and DevOps CI build outcomes. Note that to avoid confounding effects, we further
control the model for other factors discussed in the previous work on [89, 57], such as the
number of commits associated with the build.
Results : Our mixed-effects logistic regression model shows that the code ownership of De-
vOps artefacts is related to the outcome of DevOps CI builds. In fact, there is a statistically
significant positive relationship (coefficient = 0.173893) between the total chronological
code ownership of DevOps artefacts and successful DevOps CI builds, i.e., as a developer’s
DevOps code ownership increases, so does the likelihood of their CI builds succeeding.

(RQ2) Does the Skewness of DevOps contributions affect the success rate of
DevOps CI builds in OSS projects?

Motivation and Approach: Understanding the impact of code ownership on DevOps
CI builds on a project level is crucial for improving the overall software development and the
developer community in OSS. A more skewed distribution of DevOps contributions reflects
that a majority of developers are making only minor contributions to DevOps (small code
ownership) while a few developers are making significant contributions to DevOps (large
code ownership), and vice versa. We use a linear regression model to study the relationship
between the Skewness of DevOps contributions and the success rate of DevOps CI builds.
We further control this model for features, such as the number of DevOps authors and the
number of DevOps commits.

Results: Our results show that the Skewness of DevOps contributions in OSS projects
has a statistically significant positive impact on projects’ success rate of DevOps builds.
We find that the linear regression coefficient is 1.28 for modelling the rate of successful
DevOps CI builds. Thus, the higher the Skewness, the higher the successful rate of DevOps
CI builds in projects. Accordingly, confining DevOps-related changes to a specific group
of developers enhances the likelihood of successful builds. Therefore, project maintainers
may actively promote the idea that fewer people should be responsible for maintaining
most of the DevOps artefacts.
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Our study reveals that code ownership of DevOps artefacts strongly impacts the out-
come of DevOps CI builds and informs project maintainers to take cognizance of our
findings while forming development teams.

The three major contributions of our study are (1) an in-depth analysis of build-level
code ownership of DevOps artefacts, (2) an in-depth analysis of project-level code own-
ership of DevOps artefacts, (3) a large dataset of 892,193 DevOps CI builds and the
build-level and project-level features and the scripts to reproduce this dataset and our
statistical analyses (RQ1 and RQ2).2

1.1 Key Definitions

In this section, we present the terminologies and corresponding definitions we will use
throughout this thesis.

DevOps Artefact. A file pertaining to a DevOps tool,3 e.g., the Dockerfile is a DevOps
artefact pertaining to a containerization tool called Docker.4

DevOps Commit. A git commit that modifies/adds or deletes at least one DevOps
artefact, e.g., a commit (hash #da500aa) that contains changes to four files, including a
Dockerfile.

DevOps Build. A CI build associated with at least one DevOps commit, e.g., a CI
build that contains a few commits, including the above commit (#da500aa that modify a
Dockerfile).

2https://zenodo.org/records/10146006
3https://periodictable.digital.ai/
4https://www.docker.com/
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Chapter 2

Experimental Design

This chapter describes our process for collecting and curating the dataset we use to address
our research questions. In Figure 2.1, we provide an overview of our study design, which
we detail below.

2.1 Data Preparation

Our study integrates data from various sources (i.e., GitHub API and Gallaba et al. [24])
to acquire the data needed for our analysis. Below, we describe the data preparation steps
in detail.

2.1.1 Filtering the dataset

We begin with the dataset of CircleCI build records collected by Gallaba et al. [24]. This
dataset contains 22 million CircleCI builds across 7,795 GitHub repositories for eight years.
We first perform project-level filtering to eliminate toy projects, inspired by previous work
[54, 43], by using thresholds of the number of commits and the number of builds.

• Number of commits: Fig. 2.2 plots candidate threshold values of the number of
commits against the number of surviving projects. We selected a threshold of 250
commits because it is closer to a “knee” in the curve. This threshold selects 3,247
projects.

5



Figure 2.1: Experimental design overview.

Figure 2.2: Commit thresholds.

• Number of builds: In Fig. 2.3, we illustrate candidate threshold values for the
number of builds against the number of surviving projects, with a threshold of 500
builds chosen due to its proximity to a “knee” in the curve, resulting in a dataset of
17,304,451 builds across 1,794 projects.

The dataset provided by Gallaba et al. [24] contains the outcome for every build, which
could be one of the following: success, failed, timeout, infrastructure fail, etc. We select
the builds with either the success status or failed status.

2.1.2 Retrieving commit data

After filtering the projects and builds of interest, the next step is extracting commit data
associated with builds. The original dataset provided by Gallaba et al. [24] contains

6



Figure 2.3: Build thresholds.

DevOps Category Regular Expression DevOps Tool
Continuous .*[.]circleci/config[.]yml$ CircleCI
Integration .*[.]github/workflows/.* GitHub Actions
Containers .*[.]dockerfile$ Docker

.*mesos-master[.]sh$ MesOs
Deployment *[.]gocd[.]yml$ GoCD

.*appspec[.]yml AWS Code Deploy
Configuration .*[.]tf$ Terraform

.*ansible[.]cfg$ Ansible

Table 2.1: Some regex patterns for detecting DevOps files.

commit information associated with each build in the dataset. In addition, we need the
files associated with the change sets of commits to identify whether a certain commit is a
DevOps commit. Gallaba et al.’s dataset does not contain the files changed in commits.
Thus, we use the GitHub API to extract the files in the change set of each commit.

2.1.3 Identifying DevOps-related commits and builds

To filter DevOps commits and builds, we analyze which files are DevOps files in the change
sets of commits associated with builds. If there is a DevOps file in a commit, we consider
it as a DevOps commit, and if there is any DevOps commit associated with a build, we

7



Build Build Number Outcome

DevOps Build 1 t Failed

DevOps Build 2 t+1 Success

Table 2.2: Failed DevOps CI builds.

consider that build as a DevOps CI build.

To identify DevOps files, we rely on the periodic table of DevOps tools published by
Xebia labs1 for a comprehensive list of all DevOps tools and the categories of their usage.
Since there is a large variety of DevOps tools, we select the tools used for Continuous Inte-
gration, Deployment, Containers, and Configuration because such practices are commonly
used in projects that use DevOps [74]. These DevOps tools include Kubernetes, Docker,
Travis CI, etc.

Next, we review the above tools’ documentation and list the filenames or file extensions
of their configuration files. Then, we build a DevOps file classifier based on a regular-
expression (Regex) search to detect DevOps artefacts by examining the filenames, file
extensions, and directories in which they are stored. Table 2.1 shows regex patterns we
use and the corresponding tools they detect. To ensure the validity of this classifier, we
manually checked a sample of files. We found that the Cohen’s Kappa agreement level [11]
is 0.82 between the coder and the classifier, showing a strong agreement. Then, we use this
DevOps file classifier to analyze all the files in every commit in every build in our filtered
project dataset.

We find 444,630 DevOps commits and 1,467,710 DevOps builds. Five projects did
not have any DevOps builds, so we remove them from the study, reducing the number of
projects in our dataset to 1,789. To be certain that build failures in our dataset resulted
from changes to DevOps artefacts within the build and not source files, we consider a failed
build as a failed “DevOps” build if and only if there is a successful DevOps build observing
right after it. We assume that the failed DevOps builds, in this case, are indicative of issues
with DevOps artefacts and a subsequent successful build signifies a deliberate response
by the development team to address and rectify the identified issues within the DevOps
process. Table 2.2 describes what we define as a failed DevOps build.

We drop all other failed builds with DevOps commits that do not meet this criterion.
To mitigate the bias of the previous build’s outcome introduced by this step, we excluded

1https://periodictable.digital.ai/
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the successful builds immediately after failed DevOps builds. Doing so reduced the number
of builds in our dataset to 996,924 across 1,789 projects.

2.1.4 Merging author identities

GitHub allows multiple names and email addresses to be associated with the same GitHub
account. As a result, we notice that some commits within a project have very similar names
and are most likely the same person. For example, some commits could be contributed by
Mark Smith while others would be contributed byM. Smith. To account for this, we write a
script to merge similar author names. We leverage previous work on string matching author
names [21, 14] and computed the jaro-winkler similarity between the author names. If
this value was greater than 0.9 [14], we assume the authors are the same and merge their
contributions. To ascertain that this script works as it should, we manually merge the
authors from 92 (minimum sample size) random repositories and found a Cohen’s Kappa
agreement score [11] of 0.91 with our script, which shows a strong agreement.

2.1.5 Identifying DevOps developers

We extract the DevOps developers who authored the DevOps commits in our dataset.
More specifically, we define a DevOps developer as one that makes at least one DevOps
commit to the project. We group all DevOps commits in each project by the author names
to see all the authors and the corresponding number of DevOps commits they made.

We exclude repositories with only one developer from our dataset. This results from
the bias they introduce as the chronological ownership of every build in such repositories
would be 100%, and it is impossible to compute the Skewness of DevOps contributions by
authors if there is just one author. This further reduces the number of repositories in our
dataset from 1,789 to 1,689, and DevOps builds to 978,009. We also drop builds that have
more than one DevOps contributor. This reduces the number of DevOps builds to 892,193.
We decide to drop these builds as they are a small subset of our dataset i.e. about ten
percent.

We also exclude commits made by bots from this analysis. To do this, we built a
regex-based bot classifier that checked if the author of a commit was a bot or not. We
evaluated the performance of this bot classifier by manually classifying 400 author names
and computing the Cohen’s Kappa agreement with it. We obtained a score of 0.88, which
shows a strong agreement.

9



2.2 RQ1 Design of the Build-Level Analysis

In our RQ1, we analyze the build-level impact of the DevOps code ownership on build
outcomes. Below, we detail the steps.

2.2.1 Computing build-level DevOps ownership

Following Bird et al.’s [8] definition of code ownership, we define chronological code own-
ership of DevOps artefacts as the percentage of the number of commits made by a DevOps
developer to the total number of DevOps commits in the project up until when the build
is triggered. For instance, the first DevOps build that an author (author A) in a project
triggers would have a chronological ownership value of 100%, provided all DevOps commits
before the time the build was triggered were made by the same author. Similarly, assuming
another author (author B) makes a DevOps commit that triggers another DevOps build.
If there are ten DevOps commits in total at the time of this build, author B ’s chronological
ownership would be 10%.

2.2.2 Constructing the logistic regression model

Based on previous work [42, 90, 57], we collect 17 features to serve as control features
to our model. Some of these features include the number of commits in the build, the
number of lines of code changed, the time the build was triggered, etc. We first eliminate
colinearity from the features by leveraging the varclus function in the Hmisc 2 package
(in R). A total of 16 control features survived the analysis. We build an initial model with
these features, and then we analyze the Variance Inflation Factors (VIF) to detect multi-
collinearity [6]. Following the previous work by Nadri et al. [55], we remove features with
VIF values greater than three. Table 2.3 shows the 14 features that survive. Using these
features, we build a mixed-effects logistic regression model to investigate the relationship
between the chronological ownership of DevOps artefacts and the outcome of DevOps
CI builds. Moreover, the use of this “mixed-effects” model accounts for the hierarchical
nature of the data by including the name of the repositories as a random effect.

2https://www.rdocumentation.org/packages/Hmisc/versions/5.1-1
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Category Feature Definition
Change size number of devops commits Number of DevOps commits in the build
(inspired by
[46])

devops change size Number of lines changes in DevOps artefacts

Files
Changed

gh diff files removed Number of files removed from the build

[46, 90, 89] num of devops artefacts Number of DevOps artefacts in the build
Link to Last prev built result Outcome of the last build
Build
[33, 57]

same committer Boolean value showing if the last build was
triggered by the same developer

Triggering
Commit

gh is pr Boolean value showing if the build is part of
a Pull Request

[46, 33, 73] day week Day of the week the build was triggered
time of day Time of the day the build was triggered

Cooperation
[90]

num of distinct authors Number of distinct authors in the build

Committer
History

committer fail history The fail rate of the builds by the current com-
mitter in the past

[57, 65] committer recent fail

history

The fail rate of the last five builds by the
current committer

committers avg exp Average number of builds per committer at
the time the build was triggered

Ownership total chronological

ownership

Percentage of DevOps commits made by cur-
rent committer to the total number of De-
vOps commits at the time of the build

Table 2.3: Features used in the mixed-effects logistic regression model.

11



Figure 2.4: Density plot of DevOps contributions (right-skewed) in helm/helm.

2.3 RQ2 Design of the Project-Level Analysis

Understanding code ownership is not only about who owns what but also unveils insights
into how developers contribute to DevOps tasks across the entire project. Our RQ2 delves
into the lasting impact of code ownership during the build stage, exploring whether it cre-
ates a cascading effect that shapes the distribution of DevOps contributions among authors
at the project level. This investigation aims to uncover how optimizing code ownership
can seamlessly enhance collaborative efforts and overall project efficiency. Below, we detail
our analysis.

2.3.1 Computing project-level DevOps ownership

We compute the Skewness3 of the distribution of DevOps contributions made by DevOps
developers for every project in our dataset. The Skewness measures how distorted a par-
ticular distribution is from the normal distribution. A positive Skewness value corresponds
to a right-skewed distribution, and a negative Skewness value corresponds to a left-skewed
distribution. A Skewness value of zero reflects a normal distribution.

3https://www.scribbr.com/statistics/skewness/
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Figure 2.5: Boxplot of the Skewness to DevOps contributions.

Figure 2.6: Boxplot of the rate of successful DevOps builds.

Fig. 2.4 shows the helm/helm project’s density plot4 corresponding to the number of
contributions made by authors on DevOps commits. The x-axis shows the number of De-
vOps contributions, and the y-axis shows the density of developers. This figure shows an
overwhelming majority of developers who made a few DevOps contributions. Thus, the dis-
tribution of the author contributions is right-skewed, and the Skewness value is 6.49 (+ve).
Such a right-skewed distribution indicates that a majority of the developers in the project
made a relatively small number of contributions to DevOps, while a few developers made
most of the contributions. This is particularly relevant to our definition of code ownership
of DevOps artefacts because it shows that a few developers in the project have significantly
higher ownership of DevOps artefacts than the rest. This also implies that a dedicated
group of DevOps developers may maintain DevOps artefacts in the project. Similarly, a
left-skewed distribution indicates that the project does not have a potential group of devel-
opers working on DevOps artefacts, (i.e., all developers, in general, make both DevOps and
non-DevOps contributions. We use this Skewness as a proxy to project-level DevOps code
ownership, and investigate its impact on the failure rate of DevOps CI builds in the project.

4A density plot is a representation of the distribution of a numeric variable. It uses a kernel density
estimate to show the probability density function of the variable

13
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Table 2.4: Features used in the linear regression model.

Feature Definition
number of repo builds[75] Total number of builds project in the project
number of devops artefacts Total number of DevOps artefacts in the project
project maturity [62, 55] Number of days since the first build was made
recent failure rate Failure rate of last five builds in the project
commits per build Average number of commits per build in the project
number of devops authors [4] Total number of DevOps developers in the project
forks [62, 55, 4] Total number of forks on GitHub 5

repo skewness Skewness of developer contributions to DevOps in the project

2.3.2 Constructing the linear regression model

We use a linear regression model to model the impact of project-level code ownership (i.e.,
Skewness) on project-level CI build success rate. To obtain the success rate of each project
in our dataset, we express the number of successful DevOps builds over the total number
of DevOps builds as a percentage. Since the Skewness is not the only feature influencing
DevOps build failure rate, we also collect several project-level control features, such as the
number of stars, forks, contributors, etc., based on the prior studies [93, 37].

We first remove collinearity and multicollinearity among the extracted features. Table
2.4 shows the surviving features after removing collinearity and multicollinearity. Next, we
pass these features into a linear regression model. We present results in Section 3.

Challenges of extracting our datasets for the analyses needed for RQ1 and
RQ2. Identifying DevOps commits and extracting the features needed to construct the
two models are challenging and demanding. For each of the 15,655,048 CircleCI builds
in our initial dataset, we call the GitHub API for every commit within the build, which
is costly. To speed up the data collection, we employ multiprocessing6 for querying and
fetching the results from the GitHub API. This enables us to parallelize the API calls,
processing multiple requests simultaneously. The resource usage (in total) amounts to
nearly 7.6 CPU core years. It took us about ten months to gather the data completely.

6https://docs.python.org/3/library/multiprocessing.html
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Chapter 3

Results

3.1 (RQ1) Does the code ownership of DevOps arte-

facts affect the outcome of DevOps CI builds in

OSS?

To analyze the impact of chronological code ownership of DevOps artefact on DevOps
build outcomes, we construct a mixed-effects logistic regression model (Section 2.2). The
model’s performance is evaluated using conditional R2. In particular, the conditional R2

metric measures the total variance explained by both fixed and random effects. Our model
achieved a value of 0.74, indicating that it explains approximately 74% of the variance with
both fixed and random effects considered.

In Table 3.1, we present the impact of different features (including the chronological
code ownership) on the outcomes of DevOps CI builds. The coefficients ’ magnitudes signify
their strength, while the coefficients ’ signs indicate the direction of the relationship of the
corresponding feature and the DevOps CI build outcome. A negative coefficient shows
that as the feature increases, the dependent variable (the DevOps build outcome) becomes
more likely to be a failure and vice versa. Conversely, a larger magnitude shows that a
feature has a stronger impact on the DevOps CI build outcome and vice versa. Note that
we also show the statistical significance levels of all the coefficients in the p-value column.

In addition, following the previous work [55, 62], we compute the odds ratio of each
feature to better understand the relationship between the dependent and independent
variables. We show the odds ratios in the Odds column of Table 3.1. The interpretation of
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the odds ratio depends on the type of variable. In particular, for continuous variables, the
odds ratio shows the chances of the dependent variable occurring per unit change in the
independent variable, while for categorical variables, the odds ratio shows the chances of
the dependent variable occurring compared to the default value of the categorical variable
[55]. Below, we describe the main observations from the table and the corresponding
discussions.

Observation 1: Higher levels of chronological code ownership of DevOps artefacts
in a build leads to more successful DevOps CI builds.

Chronological code ownership (build-level code ownership) of a DevOps CI build is the
percentage of the number of commits made by a DevOps developer to the total number
of DevOps commits in the project up until when the build is triggered (Section 2.2.1).
Table 3.1 shows that the chronological ownership of DevOps artefacts has a statistically
significant impact (p<0.001 ) on the outcome of DevOps CI builds. Its positive coefficient
indicates that a high code ownership is associated with an increased probability of achieving
a successful build outcome. From the odds ratio of the total chronological ownership
(exp(0.173893) = 1.19), we can deduce that the chances of a successful build would
increase by 19% for every percentage increase in an author’s DevOps commits relative to
the total number of DevOps commits in the project.

Furthermore, we use the ANOVA test [69] to determine how much of the variance in
build outcomes can be explained by total chronological ownership. We found that code
ownership of DevOps artefacts explains 0.69% of the variance of DevOps CI builds’ build
outcomes. While this percentage of explained variance may be modest, the model coef-
ficients establish a robust and statistically significant correlation between higher levels of
code ownership in DevOps artefacts and increased success in DevOps CI builds, under-
scoring the impact of code ownership on the overall outcomes of DevOps CI builds. This
observation about code ownership complements Wiedemann et al.’s [87] work, which em-
phasizes the positive correlation between a concentrated group of developers overseeing
DevOps artifacts and enhanced success in DevOps CI builds.

Despite observing a positive relationship between code ownership and DevOps build
outcomes, a close inspection of our dataset reveals several instances where DevOps builds
deviate from this trend. To delve deeper into such deviations, we further analyze builds
that failed with high code ownership and those that are successful with low code ownership.
We consider builds with high code ownership to be those with code ownership within the
upper quartile (top 25%) and builds with low ownership to be those with ownership within
the lower quartile (bottom 25%).

16



Discussion 1: DevOps builds that fail despite having high levels of chronological
code ownership are early builds and vice versa.

A project’s first set of DevOps CI builds typically has higher ownership because fewer
authors have made contributions at the time. For example, suppose there are ten DevOps
commits in a project; six of these commits are made by committer A, while the remaining
four are made by committer B. If a build is triggered by committer A, then this build would
have chronological ownership of 60%; in the opposite case, where that build is submitted by
committer B, the chronological ownership value would be 40%, which are both substantial
levels of chronological ownership.

Our analysis shows 24,971 failing builds with such high ownership levels. These builds
are concentrated in the early stages of repository timelines, often associated with the initial
configuration of CI pipelines, making them more prone to errors.

For builds failing with high code ownership, we find that the mean and median values
for the number of builds before a build are 511.6 and 113, respectively. In contrast,
when considering the entire dataset, these values are notably higher at 5,847 and 1,467,
underscoring the unique characteristics of builds with high code ownership. An illustrative
case is the #60032dd1e1d87f460fac092f build of the pankona/gomo-simra project, with
chronological code ownership of 93.33% at the time but fails; the number of builds before
that particular build is 37, which is much smaller than the mean and the median of the
entire dataset.

Likewise, the rationale extends to successful builds despite low ownership levels. We
find 204,951 such builds in our dataset, which often appear later in the repository time-
lines, depicting cases where the pipeline must have been set thoroughly and extensively
tested. We find that, for builds in this category, the number of builds before a build

is much higher than that of the entire dataset; the mean and median are 13,853 and 6,467,
respectively, clearly surpassing the corresponding values for the whole dataset, which are
5,847 and 1,467.

Observation 2: As the number of DevOps artefacts in a build increases, the like-
lihood of a successful build decreases.

Another interesting observation we made from our model (Table 3.1) is that the number
of DevOps artefacts in a build also has a statistically significant effect (p<0.01 ) on the
outcome of the build. Its coefficient indicates a negative relationship between the number
of DevOps artefacts and the dependent variable (the build outcome), i.e., as the number of
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DevOps artefacts increases, the build’s success becomes less likely. In addition, the odds
ratio of this feature (exp(-0.039625)=0.96) shows that for every extra DevOps artefact
in the build, there is a 4% decrease in the chances that the build succeeds. A similar
trend is also observed in the DevOps change size feature, which measures the number
of lines changed in all DevOps artefacts in the build. Table 3.1 shows that there is a 5%
(exp(-0.050963)=0.95) decrease in the chances of success of a build for every line changed
in a DevOps artefact. This observation is in line with the prior work of Luo et al. [46],
who modeled CI build outcomes (regardless of being related to DevOps files). They found
that as more files are changed in a build, there is less chance for that build to result in a
successful one.

Observation 3: As the committers’ average experience increases, the likelihood of
the DevOps CI build’s outcome being a success also increases.

Table 3.1 shows that the average number of builds of committers at the time of the
current build (committers’ average experience) has a statistically significant (p<0.001 )
effect on the outcome of DevOps CI builds. Its positive coefficient shows that provided
all other features remain constant, as the committers’ average experience increases, the
chances of that build’s success also increase.

Our results further show that the committers’ average experience explains about 44%
of the variance of the DevOps CI build outcome by conducting the ANOVA test. We be-
lieve this is because the committers’ average experience is pivotal in capturing the typical
instability observed during the initial stages of build creation, where inexperienced con-
tributors may encounter challenges. It is not uncommon for early builds to exhibit failures
as they are being set up. It is also worth noting that the committers’ average experience
is a historical statistic [57] and Ni et al. [57] reports that historical statistical features are
the most critical features in predicting the outcome of a build.

Summary RQ1: On a build level, code ownership of DevOps artifacts does matter.
The result of our experiments distinctly reveal a positive relationship between the code
ownership of DevOps artifacts and outcomes of DevOps CI builds.
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3.2 (RQ2) Does the Skewness of DevOps contribu-

tions affect the success rate of DevOps CI builds

in OSS?

We construct a linear regression model (Section 2.3) to investigate the project-level impact
of code ownership (i.e, the Skewness of DevOps contributions) on the DevOps build success
rate of the 1,689 projects in our dataset. Table 3.2 shows the model results. As similar to
Table 3.1 in RQ1, the magnitude and sign of the Coefficient column in Table 3.2 represents
the strength and direction of the relationship between the feature and the dependent
variable (build success rate), respectively. From the table, we make the below observations.

Observation 4: A high Skewness of DevOps contributions within a project is related
to elevated success rates in DevOps builds in that project.

From Table 3.2, we observe that the Skewness of DevOps contributions has a statisti-
cally significant (p-value<0.05 ) effect on the success rate of DevOps CI builds. We also
use the ANOVA test [69] to determine how much of the variance in the success rate of
DevOps builds is explained by the Skewness of DevOps contributions, and we find this
value to be about 2.8%. The model coefficient of the Skewness is positive, indicating that
as the Skewness of DevOps contributions in a project increases, the rate of successful De-
vOps builds increases. For example, the helm/helm project shown in Figure 2.4 (Section
2) has a Skewness of 6.49; the success rate of DevOps CI builds in this project is 91.38%.
Furthermore, from figures 2.5 and 2.6 (in Section 2), we see that the median Skewness and
success rate of DevOps builds are 3.05 and 87.62 respectively. Thus, helm/helm has a high
Skewness and a high success rate of DevOps CI builds.

Although highly skewed DevOps contributions elevate the success rate of DevOps builds
in projects, we still find some projects in our dataset that deviate from this trend. We
perform an extended analysis, investigating the characteristics of the deviated projects to
understand the underlying reasons for such deviations better. In particular, we investigate
projects with high Skewness values and low build success rates as well as projects with low
Skewness values and high success rates. We consider projects with high Skewness values to
be the ones with Skewness values in the upper quartile, i.e., the top 25%; on the other hand,
we consider the projects with low Skewness values to be the ones with Skewness values in
the lower quartile (bottom 25%). Similarly, we obtain projects with high Skewness and
low build success rates. This analysis reveals that 78 projects have high Skewness values
and low build success rates.
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Discussion 2: Projects with high Skewness of DevOps contributions and low (De-
vOps CI) build success rates have more complex builds.

By delving deeper into the attributes of these projects, we find that they have more
intricate builds, i.e., builds with a high average number of lines changed per build. The
mean and median of the average number of lines changed per build in a project with high
Skewness values with low build success rates are 36,015 and 1,944, respectively, and are
much higher than those for the projects in our entire dataset (mean and median of the
whole dataset are 12,167 and median 1,247, respectively).

On the other hand, we find 97 projects with low Skewness values and high build success
rates. These projects have a much lower number of DevOps developers.

Discussion 3: Projects with low Skewness values and high build success rates have
a smaller number of developers.

For example, hanami/validations project has a Skewness of 0.707, a build success rate
of 95.41%, and has just three DevOps developers. In general, among the projects with low
Skewness values and high build success rates, we find that the mean and median number
of developers are four and six, respectively, which are much less than the mean (61) and
median (20) values of the entire dataset. The fact that these projects have high build
success rates despite having a smaller number of developers implies that when a project
has a small number of developers, a more balanced allocation of contributions may improve
the DevOps build success rate.

Because the number of developers in a project impacts the DevOps build success rate,
we decide to look at the distribution of the number of developers in the projects that
fully satisfy our Observation 4, i.e., the projects with high Skewness values and high build
success rates.

Discussion 4: Although the total number of developers that contribute to projects
with high Skewness values and high build success rates is large, the number of DevOps
developers that make most of the DevOps commits is relatively small.

This analysis reveals that the number of DevOps developers in such projects is much
larger compared to our entire dataset and to the projects with low Skewness values and
high success rates. In particular, the mean and median of the number of developers for
projects with high Skewness values and high success rates are 222 and 113, respectively.
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Furthermore, in the projects with high Skewness values and high build success rates, to
examine how many developers are accountable for the majority of the DevOps commits, we
retrieve the number of developers in each project who are responsible for 80% of the total
DevOps commits in the project. We find that the mean and median numbers of DevOps
developers contributing to 80% of the DevOps commits made in these projects are seven
and three, respectively. This reinforces the idea that, despite a sizable developer pool, a
select few shoulder most changes in DevOps artefacts (Observation 1 in RQ1), resulting in
increased ownership and success in DevOps CI builds.

Summary RQ2: On a project level, the Skewness of DevOps contributions does
affect the success rate of passed DevOps CI builds. Our results show a statistically
significant positive relationship between the two.

21



Table 3.1: Results of the build-level mixed-effects logistic regression model.

Feature Coefficient P-Value Odds

number of devops commits 0.034758 3.32e-10 *** 1.04

devops change size -0.050963 1.22e-12 *** 0.95

prev built resultcanceled -0.383202 3.54e-09 *** 0.68

prev built resultfailed -2.031670 < 2e-16 *** 0.13

prev built result infrastructure fail 0.338537 0.096438 . 1.40

prev built resultno tests 0.281516 0.054136 . 1.33

prev built resultsuccess 0.485515 < 2e-16 *** 1.63

prev built resulttimedout -0.035349 0.834786 0.97

num of distinct authors 0.002759 0.612027 1.00

num of devops artefacts -0.039625 1.94e-08 *** 0.96

gh diff files removed 0.019927 0.000883 *** 1.02

gh is prTrue -0.413991 < 2e-16 *** 0.66

day weekMonday -0.050158 0.003287 ** 0.95

day weekSaturday -0.096326 2.75e-05 *** 0.91

day weekSunday -0.022346 0.344655 0.98

day weekThursday -0.026590 0.110966 0.97

day weekTuesday -0.014659 0.377967 0.98

day weekWednesday -0.060893 0.000232 *** 0.94

time of day 0.001523 0.758338 1.00

same committerTrue -0.461960 < 2e-16 *** 0.63

committer fail history -0.035224 3.92e-06 *** 0.96

committer recent fail history -1.220983 < 2e-16 *** 0.29

committer avg exp 1.837764 < 2e-16 *** 6.28

total chronological ownership 0.173893 < 2e-16 *** 1.19
Significance codes: 0: ***, 0.001: **, 0.05: *
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Table 3.2: Results of the project-level linear regression model.

Feature Coefficient P-Value
number of repo builds 5.148e-05 0.000244 ***
number of devops files -2.745e-04 0.931195

project maturity -7.436e-04 0.177558
recent failure rate -1.344e-01 <2e-16 ***
commits per build -2.092e-02 0.521927

number of devops authors -5.267e-04 0.904448
forks -6.500e-05 0.711234

repo skewness 2.286e-01 0.019384 *
Significance codes: 0: ***, 0.001: **, 0.05: *
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Chapter 4

Threats To Validity

4.1 Construct Validity

We use a regular expression-based classifier to decide whether a code artefact is a DevOps
artefact. This also cascades into our definitions for DevOps commits and DevOps builds.
We rely solely on the project’s file names, extensions, and directories to make our classifica-
tion. Relying on a regular expression-based classifier could lead to misclassifying artefacts,
when distinguishing between DevOps and other file types. To mitigate this, we randomly
select a sample of 400 files within our dataset and manually classify these files. We then
compute the Cohen’s Kappa agreement score [11] between the file classifier and the coder.
We find an agreement level of 0.82, which indicates a near-perfect agreement.

In addition, as a result of GitHub allowing developers to use aliases, the same author in a
project could make commits with different names.1,2 This poses a challenge for quantifying
each author’s DevOps contributions to the project. To mitigate this threat, we leverage
previous work [21, 14] and compute the jaro-winkler similarity between author names.
If the calculated similarity exceeds 0.9 [14], we assume they are the same author and sum
up the contributions. To ensure the validity of this method to merge aliases, we examined
all authors from a random sample of projects within our dataset and manually merged
authors. We also computed the Cohen’s Kappa score between the jaro-winkler method
and the coder and got a value of 0.91, indicating a near-perfect agreement.

1https://git-scm.com/book/en/v2/Git-Basics-Git-Aliases
2https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-

github/managing-email-preferences/setting-your-commit-email-address
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4.2 Internal Validity

We may have missed confounding factors that could impact the interpretations of our
results, e.g., we observe that the previous build outcome has a significant impact on the
current build outcome (Table 3.1 in Section 3.2). However, the true root cause for this,
in the context of failing builds, may be that developers retry failed builds, assuming there
is some flakiness in the build [7]. We call them failure streaks, i.e., a series of arbitrarily
retried builds after a failure without making any changes. Whether our features share
causal or correlational relationships with DevOps build outcomes is a potential direction
for future work.

Our definition of DevOps builds may be biased. We define DevOps commits as commits
that add and/or modify DevOps artefacts; considering the builds triggered by DevOps
commits. This is because a build may be associated with DevOps commits and other
commits, and thus, the build’s outcome could result from a commit that is not a DevOps
commit. Consequently, the failure of a build that we consider a DevOps build may not be
failed because of a DevOps commit but because of another commit. To ensure that we only
consider DevOps builds that failed only because of a DevOps commit (and not because
of other commits), we consider failed DevOps builds as the DevOps builds preceded by a
successful DevOps build, as depicted in Table 2.2 in Section 2.1.3. Doing so also mitigates
biases in our results, for example, due to failure streaks.

4.3 External Validity

Our models rely on data from projects executed on CircleCI, so our results may not be
reflected on other CI services. Nonetheless, given their shared characteristics, we believe
that the outcomes of our study could be adapted to other CI services. For instance, the
utilization of YAML and the general structure of pipelines are often consistent across these
services. However, we also recognize the need for future studies focusing on other CI
services to ensure comprehensive insights.
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Chapter 5

Related Work

5.1 DevOps Technologies

In contemporary software engineering, the emergence of DevOps represents a relatively
recent but pivotal concept. Several studies [39, 12, 74, 18] defined the term DevOps.
For example, Jabbari et al. [39] defined DevOps as “a development methodology aimed
at bridging the gap between Development and Operations.” Among several benefits of
adopting DevOps, the major one is that it forces the development and operations teams
to interact with each other more than before, leading to enhanced collaboration and com-
munication [64].

However, adopting DevOps is not without its limitations; several studies [30, 13, 74,
71, 85], thus, focused on the problems in adopting DevOps practices in organizations.
Grande et al. [30] conducted a systematic literature review to investigate the challenges of
practicing DevOps in globally distributed teams. They found the following challenges: the
complex and extensive skillset required, communication challenges between the developers
and operations team, and employee resistance to change. Diel et al. [13] focused solely on
the communication challenges and reported that the geographical distance between team
members and their frequency of interaction could influence the communication gap. In
addition, other studies [79, 34] discussed the challenges of configuring complex DevOps
files. In particular, Tamraw et al. [79] and Henkel et al. [34] discussed the challenges
of configuring build files (e.g., Makefiles) and writing Dockerfiles, respectively. These
studies further suggested tools to help developers work on such files.

Other work studied the tasks of DevOps developers [44, 88]. For example, Kerzazi et al.
[44] conducted an empirical analysis of online job postings, aiming to identify and compare
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the primary responsibilities of DevOps engineers. This analysis revealed that automation
is the essential activity expected by DevOps developers, which is further explored in several
other studies [53, 86].

While many of the above studies explore various facets of DevOps, our work takes
a distinct approach by examining DevOps from a different perspective. Specifically, our
work shed light on the quantitative impact of code ownership of DevOps artefacts and the
Skewness of DevOps contributions in a project which has not been extensively studied.

5.2 Continuous Integration (CI)

CI is a DevOps practice that frequently integrates code changes into a shared code base
[16]. CI provides several advantages to the software teams that adopt it [82, 36]. For
example, Vasilescu et al. [82] studied a dataset of 246 OSS projects that use CI. They
found that CI improves the productivity of project teams. While CI is advantageous for
projects, other studies revealed the difficulties of adopting CI. Among the several challenges
that come with CI, build failures are a challenge that is unavoidable for many projects
[60, 59, 83, 45, 52, 84, 76, 25]. For example, Kerzazi et al. [45] analyzed 3,214 builds
produced in a large software company over a period of 6 months. They found that a
substantial proportion (17.9%) of builds are failing. In addition, Vassallo et al. [83]
analyzed build failures in 349 OSS projects and 418 proprietary projects. Furthermore,
this study revealed, for both the OSS and proprietary projects, the overall percentage of
failing builds during the period of observation is 26%, which is much higher compared to
Kerzazi et al. [45]’s results. This analysis showed that failures related to deployments and
release preparation are among the key categories of build failures.

Due to challenges of observing build failures, several studies [46, 65, 33, 90, 89, 57, 10, 66]
focused on predicting build outcomes in advance. For example, Luo et al. [46] constructed
four build outcome prediction models for the TravisTorrent dataset. They found that the
number of commits in a build is the most critical factor determining the probability of build
failures. Hassan et al. [33] conducted a similar study on the same dataset but restricted
their investigation to projects using Ant, Gradle, and Maven. They utilized a random
forest model and found the outcome of the previous build to be the most crucial factor in
predicting build outcomes. Furthermore, Saidani et al. [65] used deep learning to predict
CI build outcomes. They also leveraged the TravisTorrent dataset but restricted the study
to the top ten projects with the highest number of builds.

In addition to the issue of build failures, there are several other challenges. The need
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to restart builds has been highlighted as a substantial drain on CI build time [50, 15, 72],
and longer build durations [28, 22, 24, 27] are known to not only overuse CI resources but
also increase the time to feedback. To that end, previous work also focused on reducing
the time-to-feedback of CI builds [2, 3, 68, 23]. For example, Abdalkareem et al. [2, 3]
proposed a method to detect when to skip CI builds based on commits that do not affect
the source code (e.g., Readme files). This method could reduce the number of commits
triggering CI by 18%.

The aforementioned prior work focused on CI builds in general. Our study thoroughly
analyzes CI builds associated with commits on DevOps artefacts (i.e., DevOps builds).
Besides, our study discusses how the code ownership of DevOps artefacts impacts the
outcome of DevOps CI builds.

5.3 Code Ownership

Several studies have studied the relationship between code ownership and software quality
[8, 81, 20, 32, 61, 19]. Bird et al. [8] conducted an empirical study on two large proprietary
software projects, investigating the relationship between different code ownership metrics
and the prevalence of software failures. They find that in all cases, metrics like the num-
ber of low-expertise developers and the proportion of ownership of the top owner have a
relationship with the occurrence of pre-release faults and post-release failures. Foucault et
al. [20] replicated the Bird et al.’s [8] study in the context of OSS projects. They studied
seven OSS projects and found that the results in the OSS context were inconsistent with
those of Bird et al., i.e., code ownership does not impact software quality in OSS projects.
Thongtanunam et al. [81] extended the work done by Bird et al. [8] and Foucault et al. [8]
by using new code ownership metrics that consider code review. They performed empirical
analyses on six releases of two large OSS projects, and found that code ownership metrics
that consider code review are related to software quality.

Several prior studies have delved into the dynamics of having dedicated DevOps de-
velopers versus employing full-stack developers. For example, Wiedemann et al. [87] un-
derscore the significance of establishing a dedicated DevOps team within an organization.
The study emphasizes that the expertise needed to oversee and automate IT infrastructure
operations differs substantially from that of a software developer. In contrast, major tech
companies, such as Amazon, advocate for a model where all software developers respon-
sible for product development also run and operate the product. The article “Why You
Should Run What You Build” by Stephen [78] highlights that developers embracing this
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approach apply the same creativity used in building applications to DevOps, ultimately
enhancing the overall user experience.

While code ownership has been studied in the context of open source and code quality,
the existing studies does not investigate the code ownership in the context of CI. Our
study extends the existing studies by focusing solely on the influence of code ownership
(i.e., chronological code ownership and skewness of DevOps contributions) on the DevOps
CI builds.
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Chapter 6

Conclusion

By studying the impact of code ownership of DevOps artefacts on the outcome and success
rate of 892,193 DevOps CI builds across 1,689 OSS GitHub projects, we make the following
two conclusions:

Large software organizations are better off having dedicated DevOps develop-
ers handle all DevOps-related commits. In Section 3, both RQs point to the same
conclusion: higher levels of build-level (Observation 1) and project-level (Observation 4)
code ownership are correlated to more successful outcomes for DevOps CI builds. Thus, we
advise software practitioners to take advantage of this relationship by ensuring dedicated
developers handle DevOps-related tasks in the project. However, it is essential to note that
our recommendation does not advocate for an exclusive focus on DevOps responsibilities as
our study did not focus on contributions to only DevOps. Rather, our findings underscore
the importance of having individuals primarily responsible for managing DevOps artifacts
within the repository. These dedicated DevOps developers can also actively engage in code
development when needed, promoting a flexible and collaborative approach. Doing so al-
lows developers with high ownership to focus on DevOps files while gaining project-specific
DevOps knowledge that can benefit the project in the long run.

Smaller software organizations would benefit from all their developers work-
ing on DevOps code. Our findings also show that while having a dedicated team is
paramount for larger organizations, relatively smaller organizations (e.g., six developers,
as we observe in Discussion 3 in Section 3.2) could also benefit by letting all the developers
work on DevOps artefacts. This collaborative approach may foster a more integrated and
agile development process in the early stages of larger projects as well.
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While our results show that DevOps code ownership impacts DevOps CI builds, we also
propose a broader hypothesis—code ownership, in a general sense, could impact CI builds.
For example, developers are often rotated among different project components, which may
change their ownership of other components and ultimately affect the CI build outcomes.
To the best of our knowledge, no existing work on build prediction models has considered
the impact of code ownership when creating models for CI build outcome prediction. We
encourage future researchers to consider the chronological code ownership and the skew-
ness of contributions (to specific files and/or code components) when curating features for
their prediction models.

Data Availability. https://zenodo.org/records/10146006
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practices in Global Software Engineering? Possible challenges and benefits. Computer
Standards & Interfaces, 87:103767, 1 2024.

[32] Michaela Greiler, Kim Herzig, and Jacek Czerwonka. Code Ownership and Software
Quality: A Replication Study. In 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories, pages 2–12. IEEE, 5 2015.

[33] Foyzul Hassan and Xiaoyin Wang. Change-Aware Build Prediction Model for Stall
Avoidance in Continuous Integration. In 2017 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM), pages 157–162. IEEE,
11 2017.

[34] Jordan Henkel, Christian Bird, Shuvendu K Lahiri, and Thomas Reps. Learning from,
Understanding, and Supporting DevOps Artifacts for Docker. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, ICSE ’20, pages
38–49, New York, NY, USA, 2020. Association for Computing Machinery.

[35] Michael Hilton, Nicholas Nelson, Danny Dig, Timothy Tunnell, Darko Marinov, et al.
Continuous integration (ci) needs and wishes for developers of proprietary code. 2016.

[36] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig. Usage,
costs, and benefits of continuous integration in open-source projects. In Proceedings
of the 31st international conference on automated software engineering, 2016.

[37] Dongyang Hu, Tao Wang, Junsheng Chang, Gang Yin, and Yang Zhang. Multi-
Discussing across Issues in GitHub: A Preliminary Study. In 2018 25th Asia-Pacific
Software Engineering Conference (APSEC), pages 406–415, 2018.

[38] Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Addison-Wesley Professional, 1st
edition, 2010.

35



[39] Ramtin Jabbari, Nauman bin Ali, Kai Petersen, and Binish Tanveer. What is DevOps?
In Proceedings of the Scientific Workshop Proceedings of XP2016, pages 1–11, New
York, NY, USA, 5 2016. ACM.

[40] Ramtin Jabbari, Nauman bin Ali, Kai Petersen, and Binish Tanveer. What is DevOps?
A Systematic Mapping Study on Definitions and Practices. In Proceedings of the
Scientific Workshop Proceedings of XP2016, XP ’16 Workshops, New York, NY, USA,
2016. Association for Computing Machinery.

[41] Amitkumar V. Jha, Riya Teri, Subra Verma, Susmita Tarafder, Wriddhi Bhowmik,
Sunil Kumar Mishra, Bhargav Appasani, Avireni Srinivasulu, and Nsengiyumva
Philibert. From theory to practice: Understanding DevOps culture and mindset.
Cogent Engineering, 10(1), 12 2023.

[42] Xianhao Jin and Francisco Servant. What Helped, and what did not? An Evalua-
tion of the Strategies to Improve Continuous Integration. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), pages 213–225. IEEE, 5
2021.

[43] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. German,
and Daniela Damian. The promises and perils of mining GitHub. In Proceedings of
the 11th Working Conference on Mining Software Repositories, pages 92–101, New
York, NY, USA, 5 2014. ACM.

[44] Noureddine Kerzazi and Bram Adams. Who needs release and devops engineers, and
why? In Proceedings of the international workshop on continuous software evolution
and delivery, pages 77–83, 2016.

[45] Noureddine Kerzazi, Foutse Khomh, and Bram Adams. Why do automated builds
break? an empirical study. In 2014 IEEE International Conference on Software
Maintenance and Evolution, pages 41–50. IEEE, 2014.

[46] Yang Luo, Yangyang Zhao, Wanwangying Ma, and Lin Chen. What are the Factors
Impacting Build Breakage? In 2017 14th Web Information Systems and Applications
Conference (WISA), pages 139–142. IEEE, 11 2017.

[47] Yang Luo, Yangyang Zhao, Wanwangying Ma, and Lin Chen. What are the Factors
Impacting Build Breakage? In 2017 14th Web Information Systems and Applications
Conference (WISA), pages 139–142. IEEE, 11 2017.

36
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