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Abstract 

Proper decision-making in design, and adaptation management of 

infrastructure is essential, in the face of environmental uncertainties. As and example, 

current climate change models yield a range of widely diverging projections, 

rendering the allocation of climate change readiness investments increasingly 

complicated. While a severe climate change scenario may necessitate extensive 

adaptation investments, realization of a mild or moderate environment after costly 

system modifications or early adoption of costly adaptation measures would also 

result in a sense of loss. An alternative approach is resorting to adaptive solutions that 

commence with reduced costs until the environmental circumstances become more 

evident. 

With the goal of minimizing the sense of loss associated with decision-making, 

this research integrates the concept of regret into a decision-making framework. 

Regret serves as a quantifiable metric, capturing decision-makers' desire to mitigate 

the sense of loss resulting from making incorrect choices. Additionally, the framework 

incorporates the potential of gaining information over time about climate as it occurs 

through a dynamic programming scheme. 

The research encompasses three studies. Firstly, common design and decision-

making approaches are evaluated within the context of climate change. Specifically, 

an investigation into the nonstationary effects of wind load on structural reliability 

under the impact of climate change was conducted using several methods. The 

findings reveal that, under the worst scenario, the lifetime probability of failure can 
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be around twice as high as the baseline without climate change. However, such a 

scenario-based analysis is not conclusive in decision-making. 

To facilitate decision-making in the face of deep climate uncertainty, an 

innovative methodology is developed and then tested in a second study on bridge 

corrosion management. In this study, the methodology offers a straightforward 

decision-making approach when considering the implementation of costly corrosion 

protection measures in an unknown environment. Additionally, a sensitivity analysis 

aids in discerning project types and determining the optimal course of action, whether 

it involves waiting or investing in field testing.  

Finally, the third study is an application of the methodology in the context of 

climate change by addressing the design and managed adaptation of a river-crossing 

bridge exposed to climate change-induced scour. The study showcases how the 

methodology can assess trade-offs among different design options and determine the 

optimal course of action, given the uncertainties surrounding future climate scenarios. 

By evaluating the trade-offs between inaction and costly adaptations, the research 

identifies conditions under which a wait-and-see approach is effective and when 

incorporating design flexibilities for future adaptations is warranted. Furthermore, 

the method's performance is evaluated, and a comparison of various decision-making 

methods for adaptation is presented. The analysis demonstrates that in the case study, 

incorporating the potential for information arrival can yield up to $3.5 million in 

benefits, where an indirect cost of failure amounts to $10 million. Consequently, this 

framework empowers designers and asset managers to navigate the uncertainties of 

climate change in their decision-making processes effectively. 
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The outcomes of this research contribute to the advancement of decision-

making approaches for infrastructure design and adaptation in the face of climate 

uncertainties. By integrating deep uncertainties into decision-making processes and 

proposing an innovative methodology, this research assists infrastructure owners, 

managers, and policymakers in enhancing the resilience and long-term sustainability 

of infrastructure systems in an uncertain future climate. 
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 1 

Chapter 1. Introduction 

1.1 Extent of Impact 

Different climate systems regulate the natural environment of our planet. Any 

disturbance to the harmony of these systems, natural or human-made, is a threat not 

only to natural ecosystems but also socio-economic ecosystems through complex 

cascading effects. In recent years, changes in the average temperature compared to 

historical data have provided strong evidence of climate change, attributed to the 

increase of greenhouse gas (GHG) emissions. The Intergovernmental Panel on 

Climate Change (IPCC) predicts a temperature rise of 1.5°C to 4°C above the 1850-

1900 average, by the end of the 21st century (Stocker et al., 2014). While global climate 

models predict a temperature rise of almost two times the global average for Canada, 

the changes in northern regions can be more intense, affecting the coverage of 

permafrost in those regions and imposing severe risk to many infrastructure systems 

such as foundations of buildings, roads, and bridges. Temperature changes can also 

influence deterioration and degradation rates of infrastructure. Additionally, due to 

expected changes in climate systems, precipitation patterns/frequency and tornado 

and high-wind events severity are expected to change. In general, it is predicted that 

dry lands around the equator will become drier, and wet areas will become wetter. In 

Canada, with high confidence, the annual precipitation and rainfall are predicted to 

increase with global warming over the 21st century (Cannon et al., 2020). Accordingly, 

changes in precipitation and wind speed may result in an increase in driving rain 

wind pressures (DRWP) by ~5 to 22% over the six Canadian regions with a larger 

effect in British Columbia and the North at the +3°C global warming level. With the 

increase of surface temperature in the future and poleward shift of the 0° isotherm, 
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the frequency and amount of ice accretion will change particularly in winter, with a 

decrease in southern North America and an increase in northern North America. The 

magnitude of this increase could be considerable and risky for buildings and 

infrastructure in latitudes higher than 50° North (see (Cannon et al., 2020)).  

 

Figure 1-1. Examples of climate change effects on built environment. (a): melting ground 

and sea ice destroying a village in Alaska, U.S. (Issues - Global Warming | Impact Zones - 

U.S. Alaska, n.d.), and (b): damage to the Coquihalla Highway in BC, Canada (Judd, 2021). 

These changes in climatic variables may have a significant effect on the 

reliability, performance, and life cycle cost of infrastructure systems (see Figure 1-1). 

For instance, changes in precipitation patterns can cause flooding events and failures 

of bridges. An analysis of previous data on the failure of 500 bridges in the U.S. 

between 1989 and 2000 has shown that above 50% of failures are related to scour and 

foundation instabilities (Wang et al., 2017; Wardhana & Hadipriono, 2003). Another 

study on the failure of bridges in the U.K. estimates that depending on the location of 

the bridges, the risk of failure due to scour will increase 3 to 50% compared to the 
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current risk level by the 2080s (Bastidas-Arteaga & Stewart, 2019). The occurrence of 

tornadoes and high-wind events accompanied by rain or ice accretion threatens 

buildings and infrastructure systems such as bridges and power transmission and 

distribution lines. While climatic conditions can impact the lifespan and capacity of 

power lines, power losses related to weather conditions can be highly costly. A 

historical analysis of disasters in the United States has shown that storm and weather-

related events like ice, high winds, flooding, and lightning strikes have been the cause 

of 78% of major power outages (based on 1333 events from 1992 to 2010 (Mills, 2012)) 

with an equivalent repair cost of $270 million per year (Johnson, 2005). Moreover, 

wind-driven rain events could threaten existing buildings and their contents. 

Therefore, consideration of climate change in the design and adaptation of 

infrastructure systems will be critical for addressing these concerns. 

1.2 Research Gaps 

Infrastructure systems, including transportation networks, bridges, buildings, 

and utilities, play a critical role in supporting economic activities and ensuring the 

well-being of communities. However, these systems are designed based on historical 

climate data and assumptions of stationarity, or in other words assumption that future 

climate conditions will be similar to the past. The uncertainties associated with climate 

change challenge this traditional approach and require a re-evaluation of 

infrastructure design, construction, and management practices. 

The conventional approach to managing infrastructure risks relies on a 

combination of deterministic models and probabilistic assessments that use historical 

data. However, these approaches become less reliable in the face of climate change, 
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where future climate projections are uncertain and may deviate significantly from 

historical patterns. The inherent deep uncertainties associated with climate change 

make it challenging to accurately predict future climate scenarios, which are crucial 

for making informed decisions regarding infrastructure design, adaptation, and 

maintenance. 

Addressing the impacts of climate change on infrastructure safety requires new 

decision-making frameworks that can account for these so-called deep uncertainties 

in developing the adaptive design and management strategies. These frameworks 

should allow decision-makers to evaluate alternative design options, assess trade-

offs, and prioritize investments to minimize risks and possible future regrets.  

Another aspect of climate change uncertainty is that it will likely decrease over 

time as a result of scientific advancements, statistical data, and monitoring weather 

patterns (van der Pol, van Ierland, et al., 2017). For example, some studies suggest 

meaningful learning about some important aspects of climate change will take 20–50 

years to occur (Lee et al., 2017; Urban et al., 2014). This possibility leads to some 

questions. One question is whether inaction and waiting for such information is worth 

the risk of adverse climate change driven events. Another important question is 

around the value of implementation of costly design flexibilities. 

1.3 Motivation 

The impacts of climate change pose significant challenges for infrastructure 

planning and decision-making. As uncertainties surrounding future climate scenarios 

persist, there is a growing need for effective strategies to address these uncertainties 

and make informed decisions regarding the design and adaptation of infrastructure 
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systems. Traditional approaches to decision-making may be inadequate in dealing 

with deep uncertainties and the evolving risks associated with climate change. 

Therefore, there is a pressing motivation to explore new decision-making tools and 

methodologies that can better capture the complexities of climate change 

uncertainties and support more robust and adaptive infrastructure design and 

management. With this motivation, this research investigates decision-making 

approaches that can guide the design and adaptation of infrastructure systems. By 

exploring the advantages and limitations of different methods, this research 

contributes to the development of a design and planning framework leading to more 

resilient and sustainable infrastructure systems that can withstand the challenges of a 

changing climate. 

1.4 Objectives 

The thesis aims to investigate and address several key research objectives that 

are central to the topic of design and adaptation in the context of climate change. 

These research objectives include: 

• Develop a design and adaptation framework using a regret-based decision-making 

approach: Traditional optimization-based approaches are inadequate in 

dealing with uncertainties in climate change scenarios where the likelihood 

of various possible outcomes is unknown. By employing a non-probabilistic 

decision-making tool, the thesis seeks to overcome this limitation and 

provide more robust design and adaptation strategies that are better suited 

for the uncertainties of climate change. 
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• Exploring the wait-and-see design and adaptation management paradigm: 

Recognizing the evolving nature of climate change information, a new design 

paradigm based on the wait-and-see concept can be beneficial. In traditional 

approaches, infrastructure is designed and built based on assumptions of 

stationery or known trends in demand. However, in the face of climate 

change uncertainty, adopting a wait-and-see approach allows for the 

consideration of delaying extensive safety investments and incorporating 

future adaptation flexibility into the initial design. 

• Minimizing hindsight regret: Given the inherent uncertainties of climate 

change, decisions and planning must be made with imperfect information. 

To mitigate the potential regret associated with these decisions, the thesis 

focuses on defining objective functions that minimize the regret as 

knowledge on climate change evolves. This approach aims to improve 

decision-making under uncertain conditions. 

• Assessing the trade-offs and implications of a wait-and-see approach: One 

important aspect is determining the value of inaction and waiting for 

additional information versus implementing early and potentially costly 

adaptation measures. The thesis aims to analyze the conditions under which 

employing a wait-and-see approach is effective and when it is reasonable to 

implement design flexibilities to accommodate possible future adaptations. 

By addressing these research questions, the thesis seeks to advance our 

understanding of decision-making in the face of climate change uncertainties. The 

findings will contribute to the development of more effective design and adaptation 
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strategies that can enhance the resilience of infrastructure systems and minimize the 

potential negative consequences of climate change. 

1.5 Overview 

Chapter 1: Introduction 

This chapter introduces the research problem, its significance, and the 

objectives of the study. It sets the stage for the subsequent chapters by highlighting 

the need to address uncertainties related to climate change and the importance of 

decision-making tools in this context. 

Chapter 2: Literature Review 

The second chapter offers a comprehensive examination of the sources of 

uncertainty associated with climate change. It categorizes these uncertainties into 

distinct elements and assesses their relative significance. Moreover, this chapter 

explores the decision-making tools available within the context of climate change and 

presents contemporary approaches to design and management. 

Chapter 3: Methodology 

Chapter three begins by providing a detailed explanation of the methodology, 

illustrated through straightforward examples. It subsequently formulates the 

methodology and delves into its essential properties, laying the groundwork for its 

application in later chapters. 

Chapter 4: Assessment of Climate Change Effects 

The fourth chapter aims to demonstrate several possible approaches for 

considering non-stationary (e.g., increasing) load effects in the reliability analysis of 
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structures. the study focuses on assessing the impact of nonstationary wind loading, 

a key climatic stressor, on the performance of a structural element situated in London, 

Ontario, Canada. The presented approaches may serve as useful practical tools for 

aiding code-writers and decision-makers to assess the effects of changes in climatic 

stressors on the failure risk and life cycle cost associated with new and existing civil 

infrastructure. 

Chapter 5: Application - Steel Bridge Corrosion Protection 

Chapter five utilizes the developed framework in chapter three to evaluate 

various strategies for safeguarding steel bridges against unexpected corrosion 

degradation in weathering steel highway structures. It demonstrates the practical 

application of the methodology in addressing a critical issue in infrastructure 

resilience. Given the high variability in microclimate conditions around a bridge, this 

chapter delves into the complexities of preserving weathering steel under deep 

uncertainty, exacerbated by climate change effects on road salt usage. The chapter 

explores strategies for choosing optimal corrosion management options and action 

times using the developed methodology, with an emphasis on adapting to various 

possible futures rather than relying on singular expectations. 

Chapter 6: Application - Bridge Scour Safety Investments 

Chapter six explores the challenges posed by uncertainties associated with 

climate change for bridge managers, particularly concerning flood protection 

measures for vulnerable bridges. It delves into the issue of scour, the erosion of 

riverbed material around bridge foundations, and its expected exacerbation due to 

climate change impacts on local climate patterns and river flow regimes. This chapter 
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investigates whether inaction and waiting for more information is justifiable when 

facing climate-driven risks and the value of implementing costly design flexibilities. 

To address these questions, the proposed framework is employed to design a bridge 

in British Columbia, Canada. The methodology models the arrival of new information 

as a stochastic event with a predefined probability distribution, allowing for the 

evaluation of trade-offs between different design options in the presence of deep 

uncertainties associated with climate change. 

Chapter 7: Conclusions and Future Research Directions 

The final chapter, chapter seven, synthesizes the key findings of the study and 

draws conclusions based on the research outcomes. It also offers insights into 

potential avenues for future research, emphasizing the continued relevance and 

significance of the research in the broader context of climate change and related 

challenges. 
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Chapter 2. Literature Review 

2.1 Introduction 

Climate change presents significant challenges to common decision-making 

tools in civil infrastructure design and management. The complexities of the climate 

problem introduce uncertainties that are only partially addressed by current 

analytical tools. While it is acknowledged that the climate is changing, the precise 

extent, rate, and implications of these changes remain unclear. Uncertainties in this 

context stem from both scientific gaps and our limited comprehension of how the 

socio-economic system will evolve in response to climate changes over the next few 

centuries. These uncertainties cannot be easily quantified or expressed 

probabilistically, falling into the realm of deep uncertainty rather than simple "risk," 

as described by (Knight, 1921). 

Consequently, the conventional expected utility framework offers limited 

usefulness. This chapter aims to comprehensively examine the sources of uncertainty 

related to climate change. It separates these uncertainties into different elements and 

comments on their relative importance. Additionally, it discusses the available 

decision-making tools in this context and presents current methods for design and 

management. By addressing the uncertainties surrounding climate change, this 

chapter enhances understanding of their implications for decision-making in civil 

infrastructure asset design and management. With this background, robust and 

adaptive strategies can then be developed to mitigate the risks and impacts of climate 

change on infrastructure systems. 
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2.2 Sources of Uncertainty 

Human emissions of greenhouse gases are the primary cause of the observed 

global temperature changes throughout the 20th century. Recent advancements in 

climate change detection and attribution science have established this fact 

unequivocally (IPCC, 2007). The continued release of greenhouse gases such as CO2 

into the atmosphere will bring about further alterations to the climate. However, the 

magnitude and speed of the global climate's response to atmospheric composition 

changes are still unknown. This quantitative information is fundamental in shaping 

policy responses to the climate crisis.  

Climate science provides insight on this regard; however, not as much as to 

comprehend when, where, and how much the climate will change. To better 

understand this, consider the case of estimates of climate sensitivity, perhaps the most 

studied among the climate science community. Climate sensitivity is a measure of the 

long-term average surface warming as a result of doubling of the atmospheric 

concentration of CO2, in equilibrium. Estimates of the probability distribution for 

climate sensitivity for various research studies are presented in Figure 2-1 (Heal & 

Millner, 2014). The figure presents a lot of discrepancies among the studies. To 

comprehend the source of the variabilities, it would be helpful to know how these 

estimates are produced. Climate sensitivity is derived by running climate models. 

These models can be complex, with a lot of uncertainty about their parameters and 

initial conditions. Therefore, the scientists run the models under various configuration 

of the parameters and initial conditions. Subsequently, they weigh the output for each 

of these configurations according to the likelihood of the considered value of 

parameters. There is not a single method of assigning these likelihoods nor does there 
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exist a single best climate model that anyone agrees upon. One more important point 

is that the predictions of the models are not independent, as they are based on related 

data. As a result, it is not possible to assume they are equally likely. On the other hand, 

it is impossible to determine their dependency on each other (Heal & Millner, 2014). 

Therefore, it would be very difficult to interpret such variation between predictions 

in a probabilistic framework without imposing strong subjective judgments on the 

combination of various estimates (Knutti, 2010; Knutti et al., 2010). In conclusion, 

although climate models provide predictions about the future, the information they 

provide is ambiguous with no gold standard that everyone agrees upon. The climate 

sensitivity problem discussed here is on the top of the hierarchy of uncertainties and 

provides a rough image of the scale of the climate change problem. 

Climate change projections are not exact predictions of what will happen. They 

are subject to various sources of uncertainty that affect their accuracy and reliability. 

The main contributors to the total uncertainty can be decomposed into the following 

categories: 

• Scenario uncertainty: The future emissions of greenhouse gases and other 

human activities that affect the climate system are unknown and depend on 

social, economic, technological, and political factors that are hard to predict 

(Hawkins & Sutton, 2011; Katz et al., 2013). 

• Model uncertainty: Different climate models may have different assumptions, 

simplifications, parameterizations, and resolutions that affect how they 

represent the physical processes and feedbacks in the climate system (Katz et 

al., 2013; Knutti & Sedláček, 2012) (Knutti & Sedláček, 2012). 
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• Internal variability: The natural fluctuations of the climate system due to 

chaotic dynamics and nonlinear interactions between its components can cause 

deviations from the long-term trends (Katz et al., 2013). 

• Observational uncertainty: The historical data used to calibrate and evaluate 

the climate models may have errors or gaps due to measurement limitations or 

quality control issues (Katz et al., 2013). 

 

Figure 2-1: Estimates of the probability distribution for climate sensitivity (Heal & Millner, 

2014).  

(Hawkins & Sutton, 2011) have done a study on the contribution of emissions 
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uncertainty based on the lead time of projection. Figure 2-2 shows how this 

decomposition for temperature change (ignoring observational uncertainty). When 

dealing with short lead times – less than 20 years, internal variability and model 

uncertainty are the primary sources of unpredictability. This observation is not 

surprising given that the climate system is inherently chaotic, thus rendering it 

sensitive to initial conditions. Furthermore, regional predictions are particularly 

sensitive to internal variability, which contributes significantly to total uncertainty for 

lead times of 60 years or more. At the global level, model uncertainty is the dominant 

source of unpredictability for projections spanning 20 to 50 years. This is reflective of 

the diversity of predictions generated across various climate models. However, 

beyond the 50-year mark, the uncertainty in emissions scenarios becomes the primary 

driver of long-term unpredictability. This is because it is shaped by the policies that 

are ultimately adopted, which have significant implications for the rate of greenhouse 

gas emissions. 

In summary, the interplay of internal variability, model uncertainty, and 

emissions scenario uncertainty all contribute to the overall uncertainty of climate 

projections, and their relative importance varies with lead time. These findings are 

critical for decisionmakers, who must balance the desire for long-term predictability 

against the need to make decisions in the face of significant uncertainty. 
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Figure 2-2. Sources of uncertainty in temperature predictions as a function of lead time, from 

(Hawkins & Sutton, 2011). 
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monitor outcomes. For instance, one of the primary reasons for bridge failure globally 
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elusive. Deterministic approaches are appropriate for defining optimum management 

plans for a clear and relatively certain future, which is not the case in this problem 

with very different and uncertain projections of river flow processes. Future climate 

projection is a complex task due to the interplay of various factors, including solar 

radiation, greenhouse gas emissions, and natural variability. Additionally, there is a 

limited amount of historical data available, making it challenging to understand past 

climate responses and make accurate predictions about future changes. 

Despite these challenges, scientists have made significant progress in 

developing models to predict the impacts of climate change by using data from 

various sources, including satellites, weather stations, and ocean buoys. However, the 

models are limited by the quality of data and the accuracy of assumptions used in the 

simulations, leading to high levels of uncertainty referred to as deep uncertainty, or 

ambiguity, mostly in economics literature (Etner et al., 2012).  

Deep uncertainty is a term that describes a situation where decision makers 

and stakeholders face multiple plausible future scenarios that are influenced by 

complex and interrelated factors, such as natural variability, human behavior, 

technological innovation, and policy choices. In such a situation, decision makers and 

stakeholders do not know or cannot agree on how likely these scenarios are to occur, 

what consequences they would have for natural and human systems, or what values 

should guide their decisions. A formal probabilistic representation of deep 

uncertainty is a challenging task. Figure 2-3 provides a summary of four uncertainty 

levels between determinism and total ignorance as distinguished by (Walker et al., 

2010). This summary highlights the distinction between deep uncertainties (Levels 3 

and 4, depicted in the right two columns) and the more manageable uncertainties 
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encountered in statistics and scenario analysis with known probabilities (Levels 1 and 

2, shown in the left two columns). 

 Deep uncertainty challenges the traditional expected utility theory for decision 

making, a gold standard for normative models in decision analysis field. Traditional 

decision and risk analyses make extensive use of models to predict the probable 

consequences of alternative decisions, but this approach faces four major obstacles 

when dealing with model uncertainty: poor knowledge of underlying state or 

scenario probabilities, conflicting beliefs about the probabilities among stakeholders, 

and uncertainties or conflicts about values and preferences to be encoded in the utility 

function used to evaluate different consequences (Cox, 2012). 

 

Figure 2-3. A suggested taxonomy of four levels of uncertainty between determinism to total 

ignorance (Walker et al., 2010) 
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2.4 Decision Theory and Deep Uncertainty 

In engineering design, decision theory provides a framework for analyzing 

alternatives and selecting between choices. Therefore, to assess and improve 

engineering design and management frameworks, it would be worthwhile to begin 

exploring the realm of decision theory. 

2.4.1 Expected Utility Framework 

The dominant model for economists who deal with uncertainties is the 

expected utility framework of von Neuman and Morgenstern (vNM). It presupposes 

a well-defined set of outcomes, an exogenous probability distribution over them, and 

preferences over lotteries that can be represented by expected utilities. Nevertheless, 

this model does not adequately capture the uncertainties pertaining to climate change. 

One challenge is a lack of a well-defined set of potential states of the world. 

Even today there may be implications of climate change that we are not considering. 

A simple example is reducing or stopping of the Gulf Stream – considered as a severe 

but improbable outcome of climate change, which was not even identified as a 

possibility until late 20th century (Broecker, 1997). 

Another issue with the von Neumann-Morgenstern (vNM) framework is the 

lack of access to objective probabilities. To address this issue, the theory of Subjective 

Expected Utilities (SEU) proposed by (Savage, 1972) offers a traditional solution. This 

theory posits that rational decisions can be made under ambiguity or even absence of 

information by assuming subjective probabilities and selecting actions that maximize 

the expectation of a utility function. In essence, SEU provides a universal solution for 

all uncertain situations, regardless of the source of the probabilities. 
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However, empirical investigations, primarily by (Allais, 1953) and (Ellsberg, 

1961), have revealed that human behavior violates a critical axiom of SEU known as 

the "Sure Thing Principle" (Gilboa, 2009). Ellsberg's research (Ellsberg, 1961) 

demonstrated that people treat objective unknown risks (e.g., the probability of 

flipping a fair coin and obtaining heads) differently from ambiguity or unknown 

uncertainties (e.g., the probability of flipping an unknown biased coin and obtaining 

heads). Therefore, while SEU offers a straightforward solution, its assumptions are 

not always consistent with human decision-making behavior (Heal & Millner, 2014; 

Malik et al., 2010). 

Of course, the views on this topic have been widely debated. There are 

arguments that the fact that people are ambiguity averse should not be a part of the 

decision policy. On the contrary, some decision theorists believe that: SEU is not 

universally applicable (Binmore, 2008), subjective probabilities cannot always 

represent the state of knowledge (Gilboa et al., 2008), and ambiguity aversion is 

rational when dealing with low-quality information (Gilboa et al., 2009). Ultimately, 

there is no definitive answer regarding the applicability of SEU and the impact of 

ambiguity aversion on decision-making. With this background, it would be 

worthwhile to explore methods other than SEU for decision making under deep 

uncertainty. 

2.4.2 Alternatives to Utility Framework 

Over the past few decades, following the work of (Schmeidler, 1989) and 

(Gilboa & Schmeidler, 1989), there has been a significant expansion in the literature 

regarding decision-making under deep uncertainty. These methods are derived 
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through satisfying primitive choice axioms. Some scholars argue that the diversity of 

these approaches may lead to a fallback to the traditional SEU method, as it may not 

be clear how one of them should be selected. However, it is crucial not to be 

overwhelmed by the variety of methods and instead explore different avenues to 

address deep uncertainties (Heal & Millner, 2014). A thorough review of these 

methods is provided in (Etner et al., 2012). A short list of the most promising ones is 

provided in Table 2-1, which is adopted from (Heal & Millner, 2014). These methods 

can best be discussed with the aid of Figure 2-4. The 𝐴𝑖 is a collection of alternatives 

one of which must be selected by the decision maker. The set 𝑆 = {𝑠1, … , 𝑠𝑛} contains 

the possible scenarios. Here 𝑢𝑖𝑗 is the utility of selecting alternative 𝐴𝑖 when the actual 

scenario is 𝑠𝑗. An uncertainty is introduced since the decision maker is unaware of the 

actual scenario prior to choosing a preferred alternative. 

 

Figure 2-4. Basic utility matrix 

Table 2-1. Alternatives to Expected Utility Theory 
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Name Reference Rule 

Non-probabilistic Approaches 

Maxmin (Wald, 1949) max
𝑖

[min
𝑗

𝑢𝑖𝑗] 

𝛼-Maxmin 
(Arrow & Hurwicz, 

1972) 

max
𝑖

[𝛼 min
𝑗

𝑢𝑖𝑗 + (1 − 𝛼) max
𝑗

𝑢𝑖𝑗] 

Minmax Regret (Savage, 1972) min
𝑖

[max
𝑗

{(max
𝑖′

𝑢𝑖′𝑗) − 𝑢𝑖𝑗}] 

Multiple Prior Approaches 

Maxmin EU (Gilboa & 

Schmeidler, 1989) 

max
𝑖

[min
𝑝

Ε𝑝(𝑢𝑖𝑗)] 

Smooth 

Ambiguity 

(Klibanoff et al., 

2005) 

max
𝑖

[Ε𝑝ϕ(Ε𝑝(𝑢𝑖𝑗))] 

Variational 

Preference 

(Maccheroni et al., 

2006) 

max
𝑖

[min
𝑝

{Ε𝑝(𝑢𝑖𝑗) + 𝐶(𝑝)}] 

Note: In this table, 𝑝 is the set of the probability of distributions in the superset 

(𝒫), and 𝛦 denotes the expectation operator. In the smooth ambiguity approach, 

ϕ is a second order utility function (Heal & Millner, 2014). 

The methods can be categorized into non-probabilistic and multiple prior 

approaches. For more details on the multiple prior approaches the reader is referred 

to (Heal & Millner, 2014). Non-probabilistic decision-making approaches include 

Maximin, a pessimistic approach that selects an action that maximizes a minimum 

utility. This method assigns to each alternative its worst payoff and then selects the 

alternative with the best of these worst payoffs. The 𝛼-Maxmin approach introduces 

an 𝛼 factor to give the decision-maker leverage for their pessimism level. The Minimax 

Regret (MR) approach is like the other two approaches, but the decision-maker seeks 

to minimize the emotion of regret when realizing they made a wrong decision as the 

future unfolds. 
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2.4.3 Regret Derivation and Advantages 

To drive the regret values for the MR approach, the following procedure is 

taken: 

1. For each scenario, 𝑠𝑗, calculate the utility of the best possible action as 𝑈𝑗 =

max
𝑖

[𝑢𝑖𝑗] 

2. For each alternative/scenario pair 𝐴𝑖 and 𝑠𝑗 calculate regret 𝑟𝑖𝑗 = 𝑈𝑗 − 𝑢𝑖𝑗 

3. For each alternative 𝐴𝑖 calculate 𝑅𝑖 = max
𝑗

[𝑟𝑖𝑗] 

4. Select alternative 𝐴𝑖∗ such that 𝑅𝑖∗ = min
𝑖

[𝑅𝑖] 

Note that in this procedure, 𝑟𝑖𝑗 are the components of the regret matrix, and 𝑈𝑗 is 

referred to as the “horizon” under 𝑠𝑗.   

According to (Heal & Millner, 2014), the MR approach aligns more closely with 

human behaviour under deep uncertainty. Additionally, Minimax Regret is 

advantageous over the other two methods in capturing the benefits of a wait-and-see 

approach. In this regard, an illustrative example is provided in the following. 

Consider the following example adopted from (Savage, 1951) with some 

modifications. Consider a situation where you must decide whether to carry an 

umbrella or wait for some time and watch the weather report on TV. For simplicity, 

let's assume there are only two possible outcomes: future rain or future shine. To 

analyze the potential consequences of each decision, the following table can be 

considered: 
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Table 2-2. Consequences of actions for different states 

 State 

Act Rain Shine 

Carry Inconvenience and 

wet feet 

Inconvenience and slight embarrassment 

Don’t carry Miserable drenching Convenience 

Wait Inconvenience, wet 

feet, and late 

Convenience, but late 

 

For the sake of comparison, it might be reasonable to express the consequence 

in terms of utility values such as presented in Table 2-3. In this table the horizon (i.e., 

the best action given the scenario) under each scenario is indicated with a star. Based 

on the utility values, regret of taking each action is determined based on this 

procedure and presented in Table 2-4. For better understanding, consider the case of 

waiting when the Rain is in the future state. In this situation, waiting results in a regret 

of 1, which is the difference of 3 as the utility of waiting and 4 as the horizon of the 

Rain Scenario. Subsequently, taking the MR approach would result in waiting, while 

considering the utility values given here, employing the Maximin approach results in 

carrying the umbrella. The reason is that waiting comes at a price, and paying this 

price reduces the minimum possible utility of waiting below all the other options. This 

issue in nature is similar to the issue of adaptation of infrastructure under deep 

uncertainties of climate change.  
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The issue of adaptation of infrastructure under deep uncertainties of climate 

change has the same nature. The uncertainty, however, will eventually decrease as a 

result of scientific advancements, statistical data, and monitoring weather patterns 

(van der Pol, van Ierland, et al., 2017). For example, some studies suggest meaningful 

learning about some important aspects of climate change will take 20–50 years to 

occur (Lee et al., 2017; Urban et al., 2014). This possibility leads to some questions. 

One question is whether inaction and waiting for such information is worth the risk 

of adverse climate change driven events. Another important question is around the 

value of implementation of costly design flexibilities. 

Table 2-3. Utility of actions for different states 

 State 

Act Rain Shine 

Carry 4* 5 

Don’t carry -10 10* 

Wait 3 9 
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Table 2-4. Regret of actions for different states 

 State 

Act Rain Shine 

Carry 0 5 

Don’t carry 14 0 

Wait 1 1 

 

2.5 Methods of Design, Management, and Policies 

Departing from the decision theory, this section first discusses the traditional 

design methods in stationary climate, then it explores the alternative design and 

planning methods that can be applied in a non-stationary climate. 

2.5.1 Traditional Design Methods in Stationary Climate 

Structural design generally involves making decisions about variables 

including dimensions and other specifications related to the structure. The 

approaches for the determination of these decision variables are versatile. In what 

follows, the design methods included in the international standard ISO 2394 (ISO, 

2015) are provided with some detail. 

2.5.1.1.1 Risk-informed Approach (Level 4) 

In the Risk-informed (Level 4) approach, the principle of decision theory is 

directly applied for optimization and design of individual structures. In this regard, 

considering a simplified example of a component based on LCO, the total expected 
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costs 𝐸[𝐶𝑡𝑜𝑡(θ)] = 𝐶𝑐(θ) + 𝐸[𝐶𝑓] ∙ 𝑃𝑓(θ) represents the societal preference. Here, Cc(θ) 

is the added cost of safety as a function of the vector of design parameters, (e.g., height 

of cross-section), while the product of the expected consequence of failure E[𝐶𝑓] and 

the probability of failure Pf (θ), represent the risk of failure in monetary units. As the 

costs of the added safety increase, while the risk of failure decreases with the design 

parameter, their summation generally forms a convex function whose minimum 

corresponds to the optimal solution maximizing the utility. It is noteworthy that while 

this approach provides the most optimal solution for an individual structure, it is 

rarely used for multiple reasons. Usually, there is a lack of information in design codes 

about hazards, their consequences, and probabilities of failures. Moreover, simpler 

methods (as provided in the following sections) are available that produce reasonably 

optimal results with much less computational effort (Baravalle & Köhler, 2019). 

2.5.1.1.2 Reliability-Based Approaches (Levels 3 and 2) 

In Levels 3 and 2 approaches, the design parameters are determined to satisfy 

requirements provided in design codes in the form of the reliability index 𝛽𝑠𝑦𝑠, which 

has a one-to-one relation to the probability of failure 𝑃𝑓, where 𝑃𝑓 = 𝛷(𝛽𝑠𝑦𝑠) and 𝛷() 

is the standard normal cumulative density function. The design solution is 

determined by applying reliability methods to find the vector of design parameters, 

θ, that yields the required 𝑃𝑓. 

Here, the reliability index is calibrated by code writers to provide an optimal 

level of safety for a class of structures. The structures included in a class are not 

identical but similar in terms of characteristics that affect their optimum design point 

(i.e. 𝐶𝑐(𝜃), 𝐸[𝐶𝑓], and 𝑃𝑓(𝜃)). Although the individual structures designed with this 
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approach are not optimal, the method simplifies the design process by providing a 𝛽, 

which aims to optimally regulate the design approach (Baravalle & Köhler, 2019). 

2.5.1.1.3 Semi-Probabilistic Approach (Level 1) 

In the Level 1 approach, the decision problem is further simplified by avoiding 

the reliability analysis. Instead, the appropriate safety level is ensured by calibrating 

safety factors that consider the probability and consequences of failure. These safety 

factors include partial safety factors, load combination factors and modification 

factors, such as those that can be found in modern LRFD based codes. The calibration 

of the safety factors is usually divided into two tasks for simplicity. In the first task, 

the optimum component reliability index, 𝛽𝑐𝑜𝑚𝑝, is determined through a procedure 

similar to the one described for level 2 and 3 codes. In the second task, the safety 

factors are calibrated based on 𝛽𝑐𝑜𝑚𝑝 through reliability-based code calibration.  In 

this regard, an appropriate design should satisfy 𝑓(𝜃, 𝑆𝑓)  ≥  0, where 𝑆𝑓 is the vector 

of safety factors (Baravalle & Köhler, 2019). 

2.5.2 Design and Adaptation in the Face of Climate Change 

This section is an overview of the assessment of the most common, design and 

adaptation approaches in the face of a changing climate. Currently, despite an 

abundance of guidance on how to tackle risks associated with deep uncertainties, the 

literature on adaptation of infrastructure to climate change is limited. In this respect, 

the current recommendations include creating organizations, systems, and 

infrastructure that are robust, flexible, and able to recover quickly; conducting trials 

to test potential enhancements and learning from any setbacks or experiences; and 

proactively gathering feedback and local insights to modify plans as circumstances 
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change. However, the practical challenge lies in determining the most effective means 

of executing these suggestions in practice. Those who advocate for increased learning, 

adaptability, and resilience in risk analysis may struggle to implement these changes 

or to gauge their success (Cox, 2012). 

2.5.2.1 High-level Qualitative Method 

For high level screening or where in-depth analysis incurs substantial costs and 

data availability is constrained, the utilization of qualitative methodologies can offer 

a justifiable approach. Within this context, the inception of the PIEVC Protocol was 

initiated by Engineers Canada in 2005, in collaboration with co-funding from NRCan 

(Natural Resources Canada). Over an extended period, the protocol underwent 

rigorous validation and refinement, a process facilitated through the execution of 

comprehensive case studies. This "learn by doing" approach spanned an extensive 

array of infrastructure categories and ownership entities, ranging from expansive 

urban centers to smaller local communities. The developmental phase culminated in 

2012 with the release of Version 9, coinciding with the cessation of co-funding 

assistance from NRCan (Sandink & Lapp, 2021). 

The PIEVC Protocol stands as a qualitative framework for identifying and 

evaluating potential risks within a screening-level climate assessment context. Its 

origins can be traced back to the CAN/CSA Standard Q850-97 (R2009) Risk 

Management: Guideline for Decision-Makers (Canadian Standards Association, 

2009). Unlike quantitative risk assessment tools, the protocol doesn't demand 

exhaustive or comprehensive data for conducting an assessment. However, this 

approach involves a trade-off, as it doesn't yield quantitative risk estimations but 
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instead offers "risk scores" that can be categorized into different levels, characterized 

qualitatively using designations like high, medium, and low risk. 

The protocol furnishes a broad comprehension of climate-related risks, often 

sufficient to facilitate informed decision-making concerning adaptation and resilience 

strategies, particularly applicable to smaller-scale infrastructure and communities. 

Additionally, it serves as a valuable precursor to more intricate quantitative risk 

evaluations, channeling attention towards pivotal areas necessitating deeper, data-

intensive analysis before informed actions and budgetary allocations can be 

determined. 

2.5.2.2 Time-Dependent Reliability Method 

The current design practices for engineered components and systems typically 

assume that loads and resistance remain stationary throughout their lifespan. 

However, with the anticipated changes in weather stressors over the lifespan of 

infrastructure systems, it is necessary to develop methods that capture the non-

stationary nature of loading to accurately assess future reliability and service life. 

In the field of analyzing historical environmental data, the annual maxima 

(AM) and peaks over threshold (POT) methods are widely employed. The AM 

method utilizes the Gumbel and generalized extreme value (GEV) distributions, while 

the POT method employs the generalized Pareto distribution. To address non-

stationarity, where data characteristics change over time, (Coles, 2001) introduced 

modified versions of these distributions by incorporating time-dependent 

parameters. This approach has gained significant popularity as the preferred method 

for modeling non-stationary data in the existing literature. 
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However, the existing literature on this topic is limited, and new approaches 

are emerging. For instance, (Pandey & Lounis, 2023) proposed a stochastic load 

process model that explicitly models the frequency and intensity of the load and 

analyzes their effects on the extreme value distribution. This approach provides an 

accurate solution for the maximum load distribution within a finite time frame, 

leveraging the advancements in modern digital instrumentation that provide high-

resolution meteorological data. Importantly, it does not rely on asymptotic arguments 

as used in the annual maxima and POT methods. However, despite the advancement 

of reliability-based methods, these methods does not offer conclusive results when 

faced with various possible climate change scenarios, as the presence of large 

uncertainties complicates decision-making regarding proactive reinforcement of 

systems (Pandey & Lounis, 2023).  

2.5.2.3 Optimization Based Methods 

In the face of deep uncertainties, to identify investment options with good 

performance, the applications of new decision-making tools rather than designing 

against a single projection have been gaining wider acceptance in engineering. 

Currently, there is a heated discourse on the methods of tackling the evolving risks 

and uncertainties in large infrastructure projects in a changing climate (Hallegatte, 

2009; Hallegatte et al., 2012; Marchau et al., 2019), including robust decision making 

(RDM) (Kwakkel et al., 2016), real options analysis (RO) (Morel, 2020), and dynamic 

adaptive pathways planning (DAPP) (Haasnoot et al., 2013, 2020). RDM provides a 

measure for selecting between different concrete actions, designs, or plans, while RO 

and DAPP fall under the category of policy-making. In policy-making, a decision-
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maker (so called agent) crafts a forward-looking strategic perspective, undertakes 

some near-term actions, and establishes a framework to guide future actions. As such 

a policy allows for dynamic adaptation of a system over time in response to shifting 

conditions. 

2.5.2.3.1 Robust Decision Making 

With the presence of multiple scenarios, a shift from usual cost benefit analysis 

toward robust decision-making tools is observed and recommended (Dittrich et al., 

2016). In this context, Minimax and Maximax are among the most widely used non-

probabilistic, robust optimization formulations (Cox, 2012). These methods are mostly 

helpful in local scale studies such as those in the context of climate change adaptation, 

as they do not require likelihood information (Cox, 2012). For example, Mondoro et.al 

(Mondoro et al., 2018) used RDM to combine the performance under scenarios in a so 

called gain-loss framework for quantifying the advantages of postponing adaptation 

investments. 

2.5.2.3.2 Real Option 

Real Option (RO) and Flexibility in Design are two related methods that can be 

used to plan for adaptation to climate change. RO is a decision-making tool that 

involves evaluating the value of maintaining the flexibility to change a design or plan 

in response to changing conditions. Flexibility in Design is a design approach that 

emphasizes the importance of creating designs that can be easily modified or adapted 

over time. RO analysis is suitable where adaptive management strategies are available 

to cope with the evolving demand. RO analysis originated from financial options 

analysis (Kwakkel et al., 2016), and received a Nobel Prize in Economic Science in 



 

 32 

1997. On the contrary to decision-making based on LCC, which suggests investing 

when the total profit, 𝑊, is greater than the investment cost, 𝐼, in the context of RO, 

an investment is recommended if 𝑊 is greater than 𝐼 plus a hidden cost of 𝑉 for losing 

the option to invest later. The value of delaying an uncertain investment is then 

referred to as the option value. 

Since the 1990s, RO has found its way into design and management of 

infrastructure systems in the presence of uncertainty due to analogies of infrastructure 

management decisions and financial market interventions (Dittrich et al., 2016; 

Haasnoot et al., 2013, 2020; Morel, 2020). This new perspective of RO in (re)design of 

infrastructure systems is known as “Real ‘in’ Options (RIO) analysis” (Mondoro et al., 

2018), which is slightly different from its traditional application.  

The traditional perspective of RO in finance treats the system configuration as 

a black box. For instance, it can help decide on investing in a stock now or in the 

future. Whereas the new perspective of RO in (re)design of infrastructure systems, 

manipulates technical characteristics of system in response to reduction of uncertainty 

through future learning. Therefore, for RIO, the availability of technical characteristics 

of system including technical details of options and their interdependencies is 

necessary. RIO provides the rational means of quantifying the value of flexibility built 

into infrastructure systems, helping with identifying worthwhile flexibilities, and 

expanding the horizon for considering flexible designs (Guthrie, 2019). In the context 

of climate change, RIO and Flexibility in Design can help planners assess the potential 

risks and uncertainties associated with climate change impacts and develop designs 

that are resilient and adaptable. For example, a building that is designed with flexible 

walls or modular components can be easily modified in response to changing weather 
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patterns or rising sea levels. This approach can help reduce the costs and risks 

associated with adapting to climate change.  

In the context of climate change, RO can help identifying and evaluating real 

options that can be exercised to adjust a plan or investment in response to changing 

conditions. In this way, RO can aid planners assess the potential risks and 

uncertainties associated with climate change impacts and develop adaptive strategies 

that can be adjusted over time. For example, a real option for adapting to climate 

change might include the ability to switch to drought-resistant crops or to build 

infrastructure that can withstand extreme weather events. 

Despite these benefits and the expectation that some forms of climate change 

uncertainty will decrease over time (Lee et al., 2017; Urban et al., 2014), the literature 

on the integration of adaptation planning and learning remains limited in the face of 

an evolving climate (Guthrie, 2019). Specifically, illustration on application of RO as 

a supplementary method for risk management decision making in the context of 

climate change has been mostly missing, likely due to criticisms on its reliance on 

traditional probability calculations (de Neufville, 2019). However, in recent years, 

endeavours on exploiting RO benefits in the context of climate change adaptation 

have been revived (Stroombergen & Lawrence, 2022). For example, Stromberg and 

Lawrence (Stroombergen & Lawrence, 2022) suggest a cut-off probability method for 

using RO in DAPP and RDM frameworks. 

Guthrie (Guthrie, 2019) provides a simplified approach to incorporating RO in 

assessing investment in climate change adaptation. In his research, he employs a 

binomial tree model to climate-change adaptation problems and gradually updated 
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the likelihood of the true climate regime using a Bayesian updating scheme driven by 

observations of extreme events. van der Pol et al. (van der Pol et al., 2014) analyses the 

flood protection investments assuming an initial distribution for the likelihood of 

various scenarios and assumes the information of the true scenario arrives in two 

settings: in a certain time or in an stochastic event. In both of these methods, however, 

employing subjective probabilities at least in the initial stage of decision-making is 

inevitable before more knowledge on the likelihood of adverse events is evident. This 

can pose problems where the likelihood of these subjective probabilities is 

controversial between different stakeholders, and where an immediate decision at the 

time being is required, such as designing and managing bridges at a time being.  In 

this research, to avoid the issue of subjective probabilities, dynamic programming is 

used, which is the essence of Real Option formulations. 

2.5.2.3.3 Dynamic Programming 

The dynamic programming technique rests on The Bellman’s Principle of 

Optimality (Bellman, 1952; Dreyfus, 2002): “An optimal policy has the property that 

whatever the initial state and initial decision are, the remaining decisions must 

constitute an optimal policy with regard to the state resulting from the first decision”. 

In this context, van der Pol et al. (van der Pol, Gabbert, et al., 2017) introduced a 

method for avoiding subjective probabilities by combining Bellman’s Principle of 

Optimality with MR in a decision tree, where the uncertainty is allowed to be reduced 

in an event of arrival of information in a single date. However, expectation of 

occurrence of information arrival in a predetermined date does not seem realistic in 

the context of climate change.   
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The current study contributes to the literature on adaptive design and 

management by applying dynamic programming and MR decision criterion to 

adaptation strategies under emerging information on climate change. In the provided 

framework, the information arrival is modelled as a stochastic event with a predefined 

probability distribution. Furthermore, it provides a framework for determining the 

situations where the developed method is effective in either postponing the 

adaptation projects, or implementation of flexibility in the initial design.  
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Chapter 3. Methodology 

3.1 Introduction 

In this chapter a methodology for determining adaptation strategies under 

emerging information on climate change is first explained in detail with simple 

illustrative examples. A formulation of the methodology is then provided, and lastly, 

its properties are discussed. The methodology employed herein considers deep 

uncertainty in choosing the optimum management strategy subject to the possibility 

of emerging information.  

3.2 Methodology Steps 

Using established theories in decision making, this research provides a 

framework for investigating low regret and flexible decision making in the design and 

management of a system. The framework involves a three-stage procedure as follows: 

• Identification: 

The first stage identifies the potential strategies, or in-service flexibility, in the 

considered system and identifies their cost components and possible benefits. In-

service flexibility is achieved by employing system configurations that allow system 

modifications after establishment of an initial configuration. As such, three steps are 

completed, including:  

1) identifying possible scenarios,  

2) identifies actions for mitigating vulnerabilities from possible future scenarios, 

and  

3) determining the costs and benefits of the actions for each scenario. 
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• Economic Analysis of Adaptation Options: 

In the second stage, economic indicators are evaluated for each of the scenarios. 

As such, the climate change scenario uncertainty is detached, and the evaluation can 

be performed through common tools such as probabilistic analysis tools and Monte 

Carlo simulation (MCS). The evaluation results in different failure cost values under 

each scenario, as each scenario produces different levels of risk. Having the risk and 

cost of adaptation determined in the previous stage, the lifecycle cost of each strategy 

will be identified in terms of the expected Life Cycle Cost (LCC), which is the 

summation of discounted adaptation and failure costs accruing over a planning 

horizon. 

• Comparison Across All Future Scenarios and Policies: 

Once the LCCs of various strategies under all possible scenarios are determined, a 

comparison should be performed to identify the most appropriate strategy across all 

future scenarios. In so doing, MR across all possible scenarios is chosen as the 

performance measure of the various strategies. In this approach we first obtain a 

regret matrix R. Here, the purpose is to reduce the hindsight regret with respect to 

what could have been done in the first place. This is an important consideration as 

regret criteria is context dependent (Yager, 2004) as explained in Section 3.3.   

3.3 Context-Dependency of Regret 

This feature implies that the MR approach is not indifferent to irrelevant 

alternatives. As the following example (adopted from (Yager, 2004)) illustrates, the 

removal of a non optimal alternative can change the choice of best alternative. In this 
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figure, with the presence of option 𝐴3, the low regret choice is 𝐴2, while in absence of 

𝐴3, the optimal choice is 𝐴1. 

  

Figure 3-1. Example of choice based on the context in regret-based decision-making (Adopted 

from (Yager, 2004)) 

Conceptually what seems to happen here is that the removal of 𝐴3 changes the 

perspective (context) of the decision maker. With this removal, there would be smaller 

possibilities associated with the Scenario 𝑠1. This led to realizing that regret associated 

with the selection of 𝐴1 in the case of 𝑠1 is smaller than the first case. This in turn 

resulted in 𝐴1 becoming more appealing. Therefore, here considering this property of 

regret, the objective is defined such that the decision-maker does not change his 
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decision as some irrelevant options, such as implementing a safety measure during 

construction, expire as time passes by. 

For better understanding of this concept in the context of adaptation of 

infrastructure, consider the following example. Assume a bridge adaptation problem 

in which the owner choses to the option of modifying the bridge in 30 years for 

reducing regret. When the time of modification comes after 30 years, the options of 

modifying the bridge earlier (e.g. in year 20) are expired. However, the decision of the 

bridge owner should not be changed with this understanding. To achieve this, the 

bridge owner is reminded of all the options they had available in year zero of decision-

making. 

3.4 Regret Matrix 

The analysis begins with the LCC matrix with elements 𝑐𝑠𝑎𝜏, representing the 

life cycle cost associated with taking action 𝑎 ∈ A at time 𝜏 ∈ [0, 𝑇]  (in the interval 

between construction and end of the planning horizon) under scenario 𝑠 ∈ S. As 

mentioned earlier, regret is context dependent. This property of regret means that the 

regret can change with the change of context and such a change may result in 

inconsistency of the decision-making if the context is not defined properly (please 

refer to  (Yager, 2004) for more detail). Here the context is defined as the realm of 

possible actions that the decision-maker could have chosen at time zero, i.e., the 

construction/design time. This consideration ensures that the context remains 

constant as time passes by, and the decision-maker feels regret by comparing what 

they have done with what could have been done at time zero. Accordingly, the 

decision-maker’s regret takes the form of Equation (3-1): 
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where ℎ𝑠0, the horizon at the initial time under scenario 𝑠, represents the cost 

associated with the best action possible at time zero and is determined according to 

the following minimization equation: 

Note here that as the costs are inversely related to utility, the maximization in the MR 

formulation is changed to minimization. 

For each strategy, regret may significantly vary across various future scenarios. 

Furthermore, assumptions about the possibility of new information affect the 

decision-making among the adaptive strategies. Here, with regards to the possibility 

of information update, three different assumptions are evaluated and compared: 

classical MR, deterministic information arrival, and stochastic information arrival. In 

the following, these three methods are distinguished with superscripts of c, d, and s. 

3.5 Classical MR  

Assuming that at time 𝑡 the objective is the minimization of regret by choosing 

between the action set 𝐴(𝑡) available at time interval [𝑡, 𝑇] (i.e., the time interval 

between 𝑡 and the end of the planning horizon 𝑇), the classical application of MR takes 

the form of Equation (3-3). The findings of realizing this objective are denoted with 

superscript “c” and are: the optimum action 𝑎c(𝑡) at time 𝜏c(𝑡) resulting a minimax 

regret (i.e., minimization of maximum possible regret) of  𝑅c(𝑡) with scenario-based 

utility of 𝑐𝑠
c(𝑡) = 𝑐𝑠𝑎c𝜏c. 

𝑅𝑠𝑎𝜏 = 𝑐𝑠𝑎𝜏 − ℎ𝑠0 (3-1) 

ℎ𝑠0 = min
𝑎,𝜏

(𝑐𝑠𝑎𝜏) (3-2) 
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3.6 Deterministic Information Arrival 

Now, assume that the information on the actual scenario is expected to arrive 

at future time 𝐼, and the objective is postponing the decision-making until 𝐼 for regret 

minimization. With this assumption, the objective function takes the form of 

Equation (3-4). Solving the optimization function delivers the optimum scenario-

based course of action 𝑎𝑠
d(𝐼), which should be taken at time 𝜏𝑠

d(𝐼).  

Objective:  𝑅𝑆
d(𝐼) = min

𝜏
(min

𝑎 
𝑅𝑠𝑎𝜏)  

Find: 𝑎𝑠
d(𝐼), 𝜏𝑠

d(𝐼), 𝑅𝑠
d(𝐼),𝑐𝑠

d(𝐼),𝑅d(𝐼) 

(3-4)  

where 𝜏 ∈ [𝐼, 𝑇] (meaning that the action can be taken at or after time 𝐼), and 

𝑐𝑠
d(𝐼) = 𝑐𝑠𝑎𝑠

d𝜏𝑠
d = 𝑅𝑠

d(𝐼) + ℎ𝑠0 (3-5)  

Solving the optimization function delivers the optimum scenario-based course 

of action 𝑎𝑠
d(𝑡), which should be taken at time 𝜏𝑠

d(𝑡). Accordingly, the scenario based 

LCC and regret are determined as 𝑐𝑠
d(𝐼) and 𝑅𝑠

d(𝐼), leading to a minimax regret of 

𝑅d(𝐼) according to the following equation: 

𝑅d(𝐼) = max
𝑠

(𝑅𝑠
d(𝐼))  (3-6)  

At a given time 𝑡, the monetary waiting value (WV) for a deterministic 

information arrival by a future time 𝐼 can be captured by subtracting 𝑅c(𝑡) and 𝑅d(𝐼) 

as presented in the following equation: 

Objective:   𝑅c(𝑡) = min
𝜏

(min
𝑎

(max
𝑠

𝑅𝑠𝑎𝜏))  

Find: 𝑎c(𝑡), 𝜏c(𝑡), 𝑅c(𝑡), c𝑠
c(𝑡) 

(3-3)  
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 𝑉d(𝑡, 𝐼) = max (𝑅c(𝑡) − 𝑅d(𝐼),0) (3-7)  

The following values can be determined from this equation: 

• 𝑉d(0, 𝐼): The value of information update at 𝐼 based on available action choices 

at time 0 (i.e., the construction phase) 

• 𝑉d(𝑡, 𝑡): The value of information update at a time 𝐼 = 𝑡 based on available 

action choices at decision-making time, 𝑡. 

The former is important for a new construction, whereas the latter shows the value of 

instantaneous information update at 𝑡 for an existing structure. As the WV declines 

over time, there would be break even times 𝐼0 and 𝑡0, when 𝑉d(0, 𝐼0) =  𝑉d(𝑡0, 𝑡0) = 0. 

3.7 Stochastic Information Arrival 

3.7.1 Overview 

In practice, the exact time of information arrival may not be clear. Here, to 

improve the method in this regard a distribution for time of information arrival is 

considered. Here, an example of such a distribution with mean of 𝑰 = 5 years and 

COV of 0.5 is presented in Figure 3-2. The dash line indicates the PDF on the right-

hand side axis, while the solid line represents the CDF of the distribution on the left-

hand-side axis. In this figure, the CDF curve depicts the probability of having an 

information updating event by a determined time.  

To consider the effect of the possibility of information arrival, the classical 

regret concept is implemented in a dynamic programming scheme. To understand the 

implication of doing this, a two-period adaptation problem can be considered 

according to Figure 3-3. For illustration, it is assumed there is a 60% probability of 
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information on the true scenario arriving before the beginning of the second period. 

In the beginning of the first period, 𝑡0, the decision-maker has the following options: 

• 𝐴: adapt, or 

• 𝑊: wait for the information arrival. 

Whereas in the beginning of the second period, 𝑡1, the decision-maker has the 

following options: 

• 𝐴: adapt, or 

• 𝐴′: do not adapt. 

 

Figure 3-2. Lognormal probability distribution of stochastic event of information arrival with 

mean of 𝑰 = 5 years and COV of 0.5.  

With two possible scenarios, 𝑠1 (adverse) and 𝑠2 (favourable), the lifetime cost 

expectation of each option (C) and their relevant regret (R) is presented in Table 3-1. 

The procedure of deploying dynamic programming on the regret parameter is 

presented in Figure 3-3. Here the cases of having and not having information on the 

actual scenario at 𝑡1 are distinguished with 𝑃𝐼(𝑡1) and 𝑃𝐼
′(𝑡1) respectively. For each of 
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these cases, the regret of taking each action at 𝑡1 under all scenarios is provided in the 

far-right boxes. Beginning from these boxes, the solution is derived in a backward 

process. Under the no information case, 𝑃𝐼
′(𝑡1), employing the classical MR results in 

adaptation (Option 𝐴) with regret values of 9 and 12 under Scenarios 𝑠1 and 𝑠2 

respectively. However, under the case of information arrival (𝑃𝐼(𝑡1) path) the 

decision-maker chooses the optimal action according to the revealed true scenario. As 

such, under Scenario 𝑠1, the decision-maker takes Option 𝐴 with regret of 9, whereas 

under the other scenario, they take Option 𝐴′ with regret of 0. Determination of these 

values is essential in finding the regret of waiting in the first period.  

The regret of waiting is the expectation of the outcome under the cases of 𝑃𝐼(𝑡1) 

and 𝑃𝐼
′(𝑡1) with 60 and 40% probabilities. For example, under scenario 𝑠2, 𝑅 =

0 × (0.6) + 12 × (0.4) = 4.8. Also, in this situation the course of action is 

undetermined, which is shown as �̃�. Having these values, empowers the decision-

maker to compare between waiting and immediate adaptation at 𝑡0 with regret values 

of 0 and 11 under Scenarios 𝑠1 and 𝑠2 respectively. Subsequently, employing the MR 

approach results in choosing the waiting option over the immediate adaptation. It 

would be straightforward to find that classical MR results in immediate adaptation 

with maximum regret of 11. This indicates that the decision-maker should be willing 

to pay some amount to be flexible according to the Dynamic MR approach. 

Accordingly, the upper bound of willingness to pay for flexibility can be found as the 

difference in the maximum regret for the dynamic MR and classical MR approaches. 

Here, this difference is referred to as the Waiting Value (WV).  
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Table 3-1. Lifetime cost and regret of various options under two scenarios for 

the dynamic programming illustrative example. 

 
Cost Regret 

Adapt at 𝑆1 𝑆2 𝑆1 𝑆2 

𝑇0 184 26 0 11 

𝑇1 193 27 9 12 

Never 230 15 46 0 

 

  

Figure 3-3. Illustration of dynamic programming of regret for two-period example.  

It is noteworthy that employing Maximin in the dynamic programming 

framework results in immediate adaptation instead of waiting. For the sake of 

completeness, Figure 3-4 is presented, in which MR is substituted with Maximin 

approach. The reader is encouraged to follow the same steps to confirm that 
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employing Maximin in the Dynamic programming framework results in immediate 

adaptation instead of waiting. 

 

Figure 3-4. Illustration of Dynamic programming of Maximin cost on the two-period 

example. 

Following the same procedure, the developed methodology is formulated as a 

multi-period decision-making procedure as illustrated in Figure 3-5. The probability 

of information arrival between 𝑡𝑖−1 and 𝑡𝑖, can be formulated according to the 

following equation through the conditional probability rule: 

where 𝐹() denotes the unconditional CDF of the information arrival time (see 

Figure 3-2). The reason for this equation is that the probability of information arrival 

is updated with no occurrence of information arrival until the beginning of each step. 

Accordingly, an expectation of the waiting value for information arrival can be 

determined through the following equation: 

𝑃𝐼(𝑡𝑖) = [
𝐹(𝑡𝑖) − 𝐹(𝑡𝑖−1)

1 − 𝐹(𝑡𝑖−1)
] 

(3-8) 
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𝑉s(𝑡) = 𝑅c(𝑡) − 𝑅s(𝑡) (3-9) 

In what follows, these procedures are formulated, and specifically, the 

formulations for continuous possibility of information arrival and adaptation are 

derived. 

 

Figure 3-5. Illustration of dynamic programming of regret for a multi-period problem. 

3.7.2 Equations 

For driving the general equations consider a multi-period problem. For a 

decision-making time step 𝑡𝑖, if the actual scenario is already recognized (i.e., 𝐼 ≤ 𝑡𝑖) 

the manager can act according to Equation (3-4). Otherwise, if no information update 

happens at time step 𝑡𝑖, then the objective is to minimize the regret by deciding 

between: 

a) waiting for the possibility of receiving the information in the future step, 𝑡𝑖+1,  

with the regret and scenario-based LCC of 𝑅s(𝑡𝑖+1) and 𝑐𝑠
s(𝑡𝑖+1) respectively, 

or 

…
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b) planning blindly based on Equation (3-3) with 𝑅c(𝑡𝑖). 

As such, as the values corresponding to 𝑡𝑖 are used in decision-making at 𝑡𝑖−1, 

a recursive approach is taken. The idea behind this dynamic programming approach 

is stated in Bellman’s Principle of Optimality (Bellman, 1952; Dreyfus, 2002). 

Therefore, in this situation the optimal choice is: 

�̃�(𝑡𝑖) = {
 𝑊𝑎𝑖𝑡, for  𝑅c(𝑡𝑖) > 𝑅s(𝑡𝑖+1)

𝑎𝑐(𝑡𝑖), for 𝑅c(𝑡𝑖) ≤ 𝑅s(𝑡𝑖+1)
 (3-10) 

With this basis, the maximum possible regret with no information at time 𝑡𝑖 can be 

expressed as: 

�̃�(𝑡𝑖) = min [𝑅c(𝑡𝑖), 𝑅s(𝑡𝑖+1)] (3-11) 

and the net present value of the decision-making at 𝑡𝑖 can be expressed as: 

�̃�𝑠(𝑡𝑖) = {
𝑐𝑠

s(𝑡𝑖+1) for  𝑅c(𝑡𝑖) > 𝑅s(𝑡𝑖+1)

c𝑠
𝑐(𝑡𝑖) for 𝑅c(𝑡𝑖) ≤ 𝑅s(𝑡𝑖+1)

 (3-12) 

where 𝑐𝑠
s(𝑡𝑖+1) , the expectation of LCC of waiting longer than 𝑡𝑖 for info update takes 

the following forms: 

𝑐𝑠
s(𝑡𝑖+1) = 𝑐𝑠

d(𝑡𝑖+1) 𝑃𝐼(𝑡𝑖+1) + �̃�𝑠(𝑡𝑖+1)[1 − 𝑃𝐼(𝑡𝑖+1)] (3-13) 

In this equation, 𝑃𝐼(𝑡𝑖+1) is the probability of information update between 𝑡𝑖 and 𝑡𝑖+1 

(i.e., 𝑡𝑖 < 𝐼 ≤ 𝑡𝑖+1) and can be determined by applying the rule in Equation (3-8).  

Consequently, the relevant regret of the waiting longer is determined according to the 

following equation: 

𝑅s(𝑡𝑖+1) = max
𝑠

(𝑅𝑠
s(𝑡𝑖+1))  (3-14) 

where 𝑅𝑠
s(𝑡𝑖+1) = 𝑐𝑠

s(𝑡𝑖+1) − ℎ𝑠0, in which ℎ𝑠0 is the horizon, as given in Equation (3-2).  
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As the time step size approaches zero, the following equations for 

differentiable segments of 𝑐𝑠
s(𝑡) are determined: 

For 𝑅c(𝑡) ≤ 𝑅s(𝑡): 

𝑐𝑠
s(𝑡) = 𝑐𝑠

d(𝑡) 𝑃𝐼(𝑡) + 𝑐𝑠
c(𝑡)(1 − 𝑃𝐼(𝑡)) (3-15) 

and 

𝑅𝑠
s(𝑡) = 𝑅𝑠

d(𝑡) 𝑃𝐼(𝑡) + 𝑅𝑠
c(𝑡)(1 − 𝑃𝐼(𝑡)) (3-16) 

As 𝑐𝑠
d(𝑡) ≤ 𝑐𝑠

c(𝑡), it can be found that 𝑐𝑠
s(𝑡) ≤ 𝑐𝑠

c(𝑡), and therefore, 𝑅𝑠
s(𝑡) ≤

𝑅𝑠
c(𝑡). With consideration of the given condition, 𝑅c(𝑡) ≤ 𝑅s(𝑡), it can be concluded 

that 𝑅s(𝑡) is always bounded with 𝑅c(𝑡). Further, it can be concluded that 𝑅c(𝑡)  =

𝑅s(𝑡) = 𝑅d(𝑡). With this conclusion, the given condition, 𝑅c(𝑡) ≤ 𝑅s(𝑡) can also be 

expressed as 𝑡 ≥ 𝑡0. 

On the other hand, for  𝑅c(𝑡) > 𝑅s(𝑡) > 𝑅d(𝑡)  (i.e., 𝑡 < 𝑡0), Equation (3-13) can 

be expanded as follows: 

𝑐𝑠
s(𝑡𝑖)[1 − 𝐹(𝑡𝑖)] − 𝑐𝑠

s(𝑡𝑖+1)[1 − 𝐹(𝑡𝑖−1)] + 𝑐𝑠
s(𝑡𝑖+1)[1 − 𝐹(𝑡𝑖−1)]

− 𝑐𝑠
s(𝑡𝑖+1)[1 − 𝐹(𝑡𝑖)] = 𝑐𝑠

d(𝑡𝑖)[𝐹(𝑡𝑖) − 𝐹(𝑡𝑖−1)] 

(3-17) 

Therefore, as the time step size approaches zero: 

[𝐹(𝑡) − 1]𝑑(𝑐𝑠
s(𝑡)) + 𝑐𝑠

s(𝑡)𝑑(𝐹(𝑡)) = 𝑐𝑠
d(𝑡)𝑑(𝐹(𝑡)) (3-18)  

Subsequently, Equation (3-19) gives the differential equation of value of waiting 

longer than 𝑡 if no information arrives by this time, 

𝑑(𝑐𝑠
s(𝑡))

𝑑𝑡
=

[𝑐𝑠
s(𝑡) − 𝑐𝑠

d(𝑡)]𝑓(𝑡)

[1 − 𝐹(𝑡)]
 

(3-19)  
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in which, 𝑓( ) is the PDF of time of arrival of the information. An expectation 

of the waiting value for information arrival can be determined according to Equation 

(3-9). 

3.8 Adaptive Decision-Making Policy Categories 

For the developed methodology, adaptation policy can be categorized. 

Depending on the various costs, an adaptation policy can fall under one of the 

following seven types:  

• Category 1: 

This case involves projects with very cheap adaptation procedures. In such 

cases, in a new construction project, adapting during construction is recommended to 

avoid accessibility costs (costs of field application, such as permits, scaffolding, sand 

blasting and transportation of the equipment). For an existing structure (𝑡 > 0), 

however, when the opportunity of so doing is missed, investment on finding 

information on the actual scenario is reasonable. If information update happens 

before 𝑡0, adaptation can occur according to the revealed scenario. Otherwise, 

adapting immediately at 𝑡0 is suggested. 

• Category 2: 

Similar to Category 1, this case involves projects with very cheap adaptation 

procedures. The difference, however, is that here the accessibility cost is so high that 

for an existing structure, adaptation is not suggested. 

• Category 3: 



 

 51 

This category involves inexpensive adaptation projects where avoiding 

immediate adaptation during construction is suggested against the recommendation 

of classical implementation of MR, when an information update is expected before 𝐼0. 

Otherwise, if no information is received before 𝑡0, adaptation is suggested. 

• Category 4: 

In this situation, the adaptation cost is such that lingering adaptation until 

𝑎c(0) is cost effective due to discounting effect. However, an information arrival 

indicating adversary scenario may result in adaptation earlier than planned. 

• Category 5: 

In this case adaptation is so costly that is not recommended when ignoring the 

possibility of receiving information. Otherwise investing in finding information on 

the actual scenario and building flexibility into the design may be reasonable. If 

information indicating the occurrence of an adversary scenario is received before 𝑡0, 

adapt under the worst scenario. If no information is received, adaptation is not 

suggested. In this situation specifically, the waiting value counts as the summation of 

the value of investment on finding information as well as the value of building 

flexibilities into the design that otherwise would not have been reasonable when the 

WV is omitted. 
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• Category 6: 

In this case adaptation is so costly that is not recommended unless further 

information suggesting the realization of an adversary scenario is provided before 

construction. 

• Category 7: 

Adaptation is too expensive to be considered. 

A flowchart for finding the decision category and subsequent procedures is 

provided in Figure 3-6 and Figure 3-7. In the flowchart, the variable Ω is referred to as 

the phase change time, a time after construction beyond which adaptation would not 

be reasonable even with having the information that the worst scenario is occurring. 
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Figure 3-6. (Part 1) Flowchart of determining the decision category and subsequent 

procedures. 
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Figure 3-7. (Part 2) Flowchart of determining the decision category and subsequent 

procedures. 
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Chapter 4. Reliability Based Design under Non-Stationary Climate 

Change 

4.1 Introduction 

In this chapter, the effects of nonstationary wind loading, as one of the climatic 

stressors on the performance of a structural element located in London, Ontario, 

Canada is investigated. It is assumed that the element is a flexural member on a 

bridge. Nevertheless, the employed method is general and applicable to other 

structural elements and load types. In this example, wind pressure and dead load 

effects are the only stressors, and strength deterioration is negligible during the 

service life. The element is designed based on the Load and Resistance Factor Design 

(LRFD) approach and fails when the stochastic values of wind and dead load surpass 

the randomly distributed resistance.  

4.2 Reliability Analysis in a Changing Climate 

4.2.1 Failure Probability and Design Load Factors 

To appropriately design engineered components and systems, it is crucial to 

account for the uncertainties associated with the demands placed on these 

components or systems and their capacity to tolerate these demands. Reliability 

methods can be employed to address this need as discussed in Section 2.5.1.1.2. In this 

context, defining the limit state function as the subtract of demand, 𝐿, and capacity, 

R, (i.e., 𝐺 =  𝑅 –  𝐿) failure occurs when 𝐺 ≤  0 (Shayanfar et al., 2018). Various 

reliability methods, such as Monte Carlo Simulation (MCS) and first and second-order 

reliability methods, exist for assessing the probability of structural failure. 
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Nevertheless, due to the complexity of applying these methods in general engineering 

practice, alternative approaches like LRFD (Load and Resistance Factor Design) are 

developed and incorporated into design codes to ensure safety.  

4.2.2 Load Factors and Reliability Index 

This section reviews the mathematical relation of load factor and reliability 

index (𝛽), which is related to the probability of failure as illustrated in Figure 4-1 

through the following equation:  

𝑝𝑓 = 𝛷(−𝛽)  (4-1) 

  

Figure 4-1. Illustration of the relationship between 𝑝𝑓 and 𝛽 

In general design problems, the demand on the engineered component or 

system usually involves a combination of different loads, each of which is given its 

load factor in modern design codes. The simultaneous presence of dead and wind 

load effects on a structure is a simple example of such a condition. In this regard, the 

limit sate function can be redefined as 𝐺 =  𝑅 – (𝐷 +  𝑊) where 𝐷 and 𝑊 are random 

G = R - L

f(G)

G

pf

β∙σG
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variables representing dead and wind load effects. Accordingly, given the nominal 

design values (denoted with the ‘n’ subscript) and load and resistance factors, the 

reliability index can be mathematically computed through the following equation: 

𝛽 = 𝐿𝑁 (𝜔√
1+COV𝑧𝑊

2

1+COV𝑧𝑈
2 ) /√𝐿𝑁[(1 + COV𝑧𝑊

2 )(1 + COV𝑧𝑈
2 )]  

(4-2) 

Here, 𝑈 = 𝑅 − 𝐷, and 𝜔 is given in Equation (4-3), in which 𝛼𝑊 , 𝛼𝐷  and 𝜙𝑅 

denote wind load factor, dead load factor and resistance factor, respectively. The 

procedure for derivation of these equations is provided in Appendix A.1. 

𝜔 =
�̅�𝑅

�̅�𝑊𝜙𝑅
[𝛼𝑊 −

𝐷𝑛

𝑤𝑛
(

𝜙𝑅�̅�𝐷

�̅�𝑅
− 𝛼𝐷)]  (4-3) 

Please note that in this analysis, the lognormally distributed random variables 

for load and resistance are replaced by normalized variables for simplification: 

zR =
R

Rn
, zW =

W

Wn
,  zD =

D

Dn
, zU =

U

Un
  (4-4) 

Also, the mean value of each variable is denoted by a bar (e.g. �̅�𝐷) while their 

coefficient of variation is denoted with a COV (e.g. COVzD
), and their standard 

deviation is shown by 𝜎 (e.g. 𝜎zD
).  

4.2.3 Time-Dependent Reliability Analysis 

As discussed in Chapters 1 and 2 of this thesis, the design of engineered 

components and systems is generally based on an assumption of stationarity of loads 

and resistance over their lifetime. However, the anticipated alterations in weather 

stressors throughout the lifespan of infrastructure systems necessitate an approach 

that can effectively capture the pertinent non-stationary characteristics of loading 
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when calculating future reliability and service life. In this regard, Equation (4-5) 

provides the time-dependent reliability (i.e., the probability of survival) of ageing 

structures in the presence of non-stationary loads and degradation during a time 

interval of (0,t) (Li et al., 2015): 

ℒ(𝑡) = 𝐸𝑋𝑃 {− ∫ 𝜆(𝜏)[1 − 𝐹𝐿(𝑅(𝜏))]𝑑𝜏
𝑡

0
}  (4-5) 

where 𝐹𝐿() represents the cumulative distribution function (CDF) of demand. While 

𝜆(𝜏) and 𝑅(𝜏) respectively denote the time-varying occurrence rate of the loading and 

resistance functions. depending on the considered hazard type, parameters of 𝐹𝐿() can 

be redefined so that the occurrence of loading forms a Homogenous Poisson Process 

with the time-independent occurrence rate, 𝜆. In such a case, by discretizing time to 

years, the Equation (4-5) can be simplified as follows: 

ℒ(𝑡) = 𝐸𝑋𝑃(− ∑ 𝜆𝑃𝑖
𝑁
𝑖=1 )  (4-6) 

in which 𝑁 is the number of years in a time interval of (0, 𝑡), and 𝑃𝑖 = 𝑃(𝐺 < 0) denotes 

the probability failure during the 𝑖th year or the probability that limit state, 𝐺, is 

crossed in that year. Here, 𝑃𝑖 is computed through a mathematical approach using 

Equations (4-1) and (4-2). With the help of the models and formulations provided 

here, the following sections endeavor to illustrate the climate change effects on safety 

of the built environment through several examples.  
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4.3 Limit state, Load, and Resistance Models 

4.3.1 Limit State Function and Design Load Combination 

According to the Canadian highway bridge design code (CSA Group, 2019) a 

bridge component with nominal flexural resistance 𝑀𝑅 can be designed according to 

the following condition: 

𝜙𝑀𝑅 > 𝛼𝑊𝑀𝑊 + 𝛼𝐷𝑀𝐷   (4-7) 

where 𝑀𝑊 and 𝑀𝐷 are nominal values for the wind and dead load flexural effects on 

the component, and 𝛼𝑊, 𝛼𝐷, and 𝜙 represent the wind load, dead load, and resistance 

factor, respectively. Considering the load effect and factor values in Table 4-1, a 

component with the nominal resistance of 𝑀𝑅 = 505 kN·m is satisfactory according to 

Equation (4-7). 

Table 4-1. Load and Load factors 

𝛼𝑊 𝛼𝐷 𝜙 𝑀𝑊 𝑀𝐷 

1.4 1.1 0.95 200 kN·m 200 kN·m 

 

The component fails when the stochastic values of wind and dead load surpass 

the randomly distributed component resistance. The limit state function can be 

defined as: 

𝐺 = 𝑚𝑅 − (𝑚𝐷 + 𝑚𝑊) =  𝑧𝑚𝑅
𝑀

𝑅
− (𝑧𝑚𝐷

𝑀
𝐷

+ 𝑧𝑚𝑊
𝑀𝑊)  (4-8) 

where, bias coefficients 𝑧𝑚𝑅
, 𝑧𝑚𝐷, and 𝑧𝑚𝑊 are the normalized random variables for 

defining the variability of the loads and resistance. In the next section, the procedure 

for calculating the mean and standard deviation of these parameters is presented. 
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4.3.2 Load and Resistance Models 

4.3.2.1 Resistance Model 

The flexural resistance of the component is assumed to be a linear function of 

𝐹𝑦 · 𝒮, where 𝐹𝑦 and 𝒮 are the yielding strength of the used material and section 

modulus with related bias coefficients of 𝑧𝐹𝑦 and 𝑧𝒮 , respectively. The component 

resistance model exhibits error in the prediction of the exact value of resistance, which 

can be represented with the random variable 𝑧𝑀𝑜𝑑. Therefore, the combined bias 

coefficient for resistance can be calculated as follows: 

𝑧𝑚𝑅
= 𝑧𝑀𝑜𝑑𝑧𝐹𝑦𝑧𝒮   (4-9) 

Assuming independence of variables in Equation (4-9), the mean of 𝑧𝑚𝑅
 can be 

computed, using the following equation: 

𝑧�̅�𝑅 = 𝑧�̅�𝑜𝑑𝑧�̅�𝑦𝑧�̅�    (4-10) 

Also, the variance and COV of 𝑧𝑚𝑅
 can be calculated using Equations (4-11) and (4-12) 

respectively: 

𝑣𝑎𝑟𝑚𝑅
= ∏ (𝑣𝑎𝑟𝑍𝑖

+ 𝑧�̅�
23

𝑖=1 ) − ∏ 𝑧�̅�
23

𝑖=1   (4-11) 

where 𝑣𝑎𝑟𝑍𝑖
 and 𝑧�̅�

2 represent variance and mean of variables 𝑧𝑀𝑜𝑑, 𝑧𝐹𝑦, and 𝑧𝑆 and: 

COV𝑚𝑅
=

√𝑣𝑎𝑟𝑚𝑅

�̅�𝑚𝑅

  
(4-12) 

Table 4-2 presents the values of mean and COV of the variables used to define the 

resistance model (CSA, 2007). 

  



 

 61 

Table 4-2. Resistance model Parameters. 

Variable Mean COV 

𝑧𝐹𝑦 1.06 0.051 

𝑧𝒮 0.99 0.021 

𝑧𝑀𝑜𝑑 1.09 0.045 

𝑧𝑚𝑅
 1.14 0.071 

4.3.2.2 Dead Load Model 

The bias factor of the dead load is assumed to have a mean of 1.03 and COV of 

0.08, based on (CSA, 2007; Nowak & Grouni, 1994). 

4.3.2.3 Wind Load Model 

According to (CSA, 2007), the design horizontal wind load pressure can be 

calculated as: 

𝑝 = 𝐶𝑒𝐶𝑔𝐶ℎ𝑞  (4-13) 

where 𝐶𝑒, 𝐶𝑔, and 𝐶ℎ are exposure, gust effect, and horizontal effect coefficients and 𝑞 

is the air pressure, which is related to the wind velocity (𝑉) through the following 

equation: 

𝑞 =
1

2
𝜌𝑉2 = 𝐶𝑉2  (4-14) 

in which 𝜌 is the density of air. If the 𝑉 is in km/h, the constant 𝐶 =  0.05 can be used 

to compute the 𝑞 in Pa. Defining 𝑎𝑐 as the analysis coefficient for the conversion of the 

wind load into a load effect and 𝐴 as the exposure area, the general equation for the 

wind load effect is: 
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𝑚𝑊 = 𝑎𝐶𝐶𝑒𝐶𝑔𝐶ℎ𝐶𝑉2𝐴  (4-15) 

According to (CSA, 2007), the mean and COV  of the wind bias coefficient can 

be computed using the following equations: 

𝑧�̅�𝑊 = 𝑧�̅�𝐶
𝑧�̅�𝑒

𝑧�̅�𝑔
𝑧�̅�ℎ

𝑧�̅�𝑧�̅�2𝑧�̅�   (4-16) 

COV𝑧𝑚𝑊
= √COV𝑧𝑎𝐶

2 + COV𝑧𝐶𝑒

2 + COV𝑧𝐶𝑔

2 + COV𝑧𝐶ℎ

2 + COV𝑧𝐶
2 + COV𝑧𝑉2

2 + COV𝑧𝐴
2   

(4-17) 

The statistical values of the parameters used in this study to define wind 

loading are adopted from (CSA, 2007) and presented in Table 4-3. It is noteworthy 

that the values for 𝑧𝑉2  in this table represent climate conditions in the Year 2000.  

Table 4-3. Statistical parameters used in defining wind load. 

Variable Mean COV 

𝑧𝐶 1.00 0.025 

𝑧𝐶𝑒
 1.00 0.080 

𝑧𝑎𝐶
 1.00 0.050 

𝑧𝐴 1.00 0.000 

𝑧𝑉2 0.332 0.587 

𝑧𝐶ℎ
 0.71 0.140 

𝑧𝐶𝑔
 1.02 0.075 

𝑧𝑚𝑊
 0.24 0.616 

The values defining the distribution of wind velocity during extreme events 

mostly rely on statistical analyses of historical weather data. However, new studies 

predict the deviation of these values from historical data in future decades. The 
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following section discusses the procedure used for the computation of the parameters 

of the wind velocity distribution. 

4.3.2.3.1 Wind Velocity 

According to (Kupper, 1971) the probability distribution of maximum hourly 

wind speeds can be modelled with an Extreme Value Type I (or Gumbel) distribution, 

as follows: 

𝐹𝑉(𝑣) = 𝑃(𝑉 ≤ 𝑣) = 𝐸𝑋𝑃 {−𝐸𝑋𝑃[−𝑎(𝑣 − 𝜇)]}  (4-18) 

where 𝑎 and 𝜇 are the scatter and central tendency of the distribution. The mean �̅� 

and standard deviation 𝜎
𝑉

 of the distribution can be computed using Equations (4-19) 

and (4-20). 

𝜎𝑉 = 1.282/𝑎 (4-19) 

�̅� = 𝜇 + 0.577/𝑎 (4-20) 

Indicating the return period of the extreme wind event in the subscript (e.g., 

𝑎1, 𝜇100), the statistical parameters of the annual maximum hourly wind speed (i.e., 

𝑎1, 𝜇1) can be calculated through (CSA, 2007):   

𝑎1 =
𝐿𝑁(

100

10
)

�̅�100−�̅�10
 ,  𝜇1 = �̅�10 −

𝐿𝑁(10)+0.577

𝑎1
 

(4-21) 

where values of �̅�10 and �̅�100 are available in the design codes (e.g. the Canadian highway 

bridge design code (CSA Group, 2019)). 
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4.3.2.3.2 Square of Wind Velocity 

The preceding section establishes the distribution for the 75-year wind velocity. 

However, Equation (4-14) indicates that the reference wind pressure is dependent on 

the square of the wind velocity, necessitating a transformation from the distribution 

of wind velocity to the distribution of the square of wind velocity. Given that load and 

resistance typically follow lognormal distributions, it is reasonable to fit a lognormal 

distribution to the square of the velocity. This procedure initiates with determining 

the parameters of the maximum hourly wind speed, denoted as 𝑎𝑁 and 𝜇𝑁, and 

generating data for the wind speed and then its square based on the cumulative 

distribution function (CDF) of maximum hourly wind speed as specified in Equation 

(4-18). Subsequently, a lognormal distribution can be fitted to the upper tail (right-

hand side) of the generated data using the probability paper plotting method.  

4.3.3 Non-stationary wind speed model 

Environment and Climate Change Canada (ECCC) has recently researched the 

regional projections of changes in climate design values for a range of future Canadian 

climate states to facilitate the development of climate-resilient codes and standards 

for Canada’s Buildings and Core Public Infrastructure (B&CPI) (Cannon et al., 2020). 

From this project, changes in climate design variables are provided for certain levels 

of changes in global temperature. For instance, Figure 4-2 shows the projected changes 

of 10-year hourly wind pressures for different Canadian regions as a function of 

changes in average global temperature (𝛥𝑇) relative to 1986-2016. In this figure, lines 

denote the median of the predicted percent change for each region of the country, 
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while areas represent the 25th and 75th percentiles of the distributions for each region 

(Cannon et al., 2020).  

 

Figure 4-2. Projected changes in 10-year level hourly wind pressures for different Canadian 

regions (Cannon et al., 2020). 

4.3.4 Timing of Global Warming 

This method of presenting future projections provides a simple way of 

decoupling uncertainties about regional projections (or internal variability) from 

forcing scenarios and the timing of global warming. The regional projections are 

based on CanRCM4 LE, a regional climate model, while global scale analysis for 

calculating the timing of global warming is estimated based on CMIP5, a multi-model, 
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multi-scenario ensemble of GCMs. Table 4-4 provides the mean times at which a 

certain level of global warming is irreversibly exceeded (Cannon et al., 2020). Figure 

4-3 shows the spline curves fitted to this data. As can be seen, for the RCP2.6 curve 

the temperature increases 0.5°C by 2023 and then remains almost constant through 

2100. On the other hand, the RCP4.5 and RCP6.0 projections are almost linear and the 

same through 2070, after which the RCP6.0 projection separates with a more intense 

slope. The RCP8.5 predicts the most intense temperature change. According to this 

scenario, the temperature change will reach around 4°C in 2100. Changes of common 

design parameters used for building and bridges in Canada are provided in (Cannon 

et al., 2020) for different global warming levels. Figure 4-4 shows spline curves fitted 

to this data for London, Ontario for changes in the 10- and 100-year wind pressures 

as a function of the global warming level. In the following section, this data is used to 

predict changes in structural reliability. 

Table 4-4. Mean time of irreversibly exceeding a certain level of global warming (Cannon et 

al., 2020). 
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Figure 4-3. Global temperature changes for various RCPs. 

 

Figure 4-4. Changes in wind pressures for London, Ontario as a function of global 

temperature change. 
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4.3.5  Changes in hourly wind pressure 

In this section, probabilities of failure of the case study structure are calculated 

with various climate change scenarios considered. To calculate the changes in wind 

pressure during the 21st century, the RCP curves of global temperature changes 

(Figure 4-3) are combined with curves of wind pressure change (Figure 4-4) resulting 

in Figure 4-5. This figure shows the changes in the 10-year and 100-year wind 

pressures for London, Ontario. The inverse of Equation (27) is used to translate 10-

year and 100-year level wind pressures to wind velocities (i.e. �̅�10 and �̅�100). These 

values are then substituted in Equation (4-21) to determine the probabilistic 

distributions of the annual maximum wind speeds. To compute the parameters of 

wind load effect distribution, the procedure explained in Section 4.3.2.3 is applied. 

Finally, Equation (4-2) is used to calculate the time-varying annual reliability indices 

and probabilities of failure, according to the changes in annual wind load statistical 

parameters for each climate change scenario. 
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Figure 4-5. Changes in wind pressures for London, Ontario in the 21st century. (a), 10-year 

wind pressures, and (b), 100-year wind pressures. 

4.4 Results 

4.4.1 Annual Probability of Failure 

Figure 4-6 illustrates the annual failure probability of the structure under 

nonstationary increasing wind loads associated with various RCP scenarios 

throughout the service life of a structure built in the Year 2000. It is noteworthy that 

the curve for RCP4.5 is omitted as it closely aligns with the RCP6.0 curve. As 

anticipated, RCP2.6 and RCP8.5 result in the least and greatest changes in reliability, 

respectively. Across all scenarios, the probability of failure initiates at 4.6·10-5 in the 

initial year of service in the Year 2000 and consistently rises through 2023 to 5.6·10-5. 

Subsequently, while the RCP2.6 curve remains constant until the end of this century, 

the RCP6.0 and RCP8.5 curves continue to ascend, reaching 1.6·10-4 and 4.7·10-4, 
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corresponding to a growth of 248% and 921%, respectively, compared to the 

beginning of the service life. 

 

Figure 4-6. Annual probability of failure for the case study flexural member in London, 

Ontario. 

4.4.2 Cumulative Probability of Failure 

The lifetime reliability of the structure, ℒ(𝑇), is calculated using Equation (4-6). 

As reliability is defined as the probability of survival, the cumulative probability of 

failure through the 𝑗th year of service (𝑃𝑇𝑗
) can be easily computed using the following 

equation: 

𝑃𝑇𝑗
= 1 − ℒ(𝑇) = 1 − 𝐸𝑋𝑃(− ∑ 𝜆𝑃𝑖

𝑗
𝑖=1 )  (4-22) 

Figure 4-7 depicts the cumulative probability of the structure experiencing 

failure versus time. In these illustrations, solid green lines serve as a benchmark, 

representing a scenario where wind loading remains stationary and unchanged for 

100 years. The additional lines correspond to various RCP scenarios. It is evident that 

the cumulative probability of failure, under all global warming scenarios, surpasses 
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that assumed under the stationary wind loading scenario throughout the analysis 

period. For instance, considering a structure established in the Year 2000 with a design 

service life of 75 years, the total probability of failure for RCP8.5 is 6.48·10-3, which is 

1.89 times greater than the probability under the stationary scenario (3.43·10-3). 

 

Figure 4-7. Cumulative probability of failure for different RCPs. 

To assess the impact of the nonstationary (wind) to stationary (dead) load ratio 

on the probability of failure, a sensitivity analysis was conducted, and the findings 

are illustrated in Figure 4-8. In this figure, two sets of curves in green and black 

respectively depict the cumulative probability of failure under the stationary and 

RCP8.5 scenarios. Within each set, four curves correspond to different values of the 

wind-to-dead load ratios (WDR), ranging from 0.5 to 5, with the upper limit reflecting 

realistic values for aluminum structures designed for lightweight purposes. It is 

evident that for both groups, structures with larger WDRs (indicated by thicker 

curves) exhibit higher probabilities of failure, suggesting a relatively greater 

susceptibility to failure despite having the same design basis across all WDRs. 
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However, structures with lower WDRs demonstrate slightly greater sensitivity to 

future climate changes. For instance, at the 75th year of service, the probability of 

failure for a structure with WDR = 5 increases by 80% (from 6.93·10-3 to 1.25·10-2) under 

the RCP8.5 scenario compared to the stationary climate. Meanwhile, for a structure 

with WDR = 0.5 under the same conditions otherwise, the change is 98% (from   

1.67·10-3 to 3.30·10-3). 

 

Figure 4-8. Comparison of cumulative probability of failure of various structures with 

different wind/dead load ratios under stationary load conditions and RCP8.5 scenario. 

Figure 4-9 illustrates the sensitivity of the probability of failure to variations in 

the mean and standard deviation of the annual maximum wind speed. In this 

sensitivity analysis, a wind-to-dead load ratio of 1:1 is assumed. The solid green line 

represents the probability of failure under a stationary climate. The other lines 

consider a linear annual increase to reach a change in the parameter of interest in 

Year 100 (i.e. a 10 or 20% increase). As observed in this figure, the curve for a 10% 
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increase in the standard deviation is positioned above the curve for a 10% increase in 

the mean. The same holds true for the 20% increase curves. This implies that the 

probability of failure is more responsive to changes in the standard deviation of the 

wind speed than to changes in its mean. 

 

Figure 4-9. Sensitivity to the increase in annual maximum wind speed parameters. 

All the preceding analyses were conducted using the mathematical approach 

outlined earlier, which employs closed-form expressions. This method, however, 

disregards the correlation between the load and resistance parameters from one year 

to the next. To assess the impact of this correlation across successive years of service, 

a Monte Carlo simulation (MCS)-based approach was employed, and the outcomes 

are presented in Figure 4-10, specifically for the RCP8.5 climate change scenario. 

The applied MCS involves numerous trials, with each trial assessing the limit 

state function for every single year of service. The correlation of variables in different 

years is modeled by a correlation matrix, ℛ(𝑋), where 𝑋 =  [𝑥1, 𝑥2,, … , 𝑥𝑛] represents 
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the vector of random variables in different years (e.g., wind load effect in successive 

years of service), and the element 𝑟𝑥𝑖𝑥𝑗
 defines the correlation between variables in the 

ith and jth year. Treating the structure as a non-repairable system, the first service year 

in which the loads exceed the resistance is recorded as the failure year for that trial. 

Subsequently, the generated data for the failure year is used to capture the cumulative 

distribution function of failure time. 

In Figure 4-10, the black dot and black dash lines respectively represent the 

cumulative and annual probabilities of failure predicted by the mathematical 

approach. The other four curves depict the cumulative probabilities of failure 

generated by MCS under various assumptions about the correlation of random 

variables (i.e., resistance, wind load effect, and dead load effect) across successive 

years of service.  

 

Figure 4-10. Effect of correlation of random variables between adjacent years (RCP8.5). 
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Generated under the assumption of complete independence between loads and 

resistance in different years, the "Fully Uncorrelated" curve aligns precisely with the 

outcome derived from the mathematical approach. This alignment serves as a 

validation of both the mathematical and simulation-based methodologies. The "Only 

Wind Uncorrelated" curve closely resembles the mathematically generated curve 

assuming no correlation. In this scenario, the assumption is that the dead load and 

resistances in different years of service are fully correlated, while the maximum 

annual wind loads are independent. This is a reasonable assumption in cases where 

values for resistance and dead loads remain constant throughout the service life of the 

structure. 

The "Fully Correlated" and "50% Correlation " curves assume 100% and 50% 

correlation between random variables in successive years of service (i.e., non-diagonal 

elements of the correlation matrix are 1 and 0.5, respectively, for 100% and 50% 

correlations). As observed, an increase in correlation leads to a decrease in the 

cumulative probability of failure, eventually nearing the annual probability of failure 

curve obtained through the mathematical approach. 

4.5 Concluding Remarks 

In summary, this example presents various approaches to evaluate the 

influence of climate change on the reliability of structures during their service life. The 

study focuses on the nonstationary impact of wind load on a basic structural element 

situated in London, Ontario. The outcomes over a 100-year assessment period reveal 

that considering climate change effects can result in a lifetime probability of failure 

up to 1.9 times higher than the baseline analysis that assumes stationarity. Moreover, 
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the annual probability of failure in the final year of service is nearly four times greater 

than that in the initial year (Year 2000). 

The example demonstrates that as the WDR (wind design ratio) increases, the 

structure becomes relatively more susceptible to failure, despite maintaining the same 

design basis. A sensitivity analysis highlights that the overall probability of failure is 

more sensitive to the coefficient of variation (COV) of annual maximum wind speed 

than its mean. This underscores the importance of incorporating variability of 

projected climatic design values in future research.  

Lastly, Monte Carlo simulation (MCS) is employed to investigate the effects of 

the correlation of random variables across different years of service. The results 

indicate that as correlation increases, the probability of failure curve shifts downward, 

suggesting a lower probability of failure for a given year. For some scenarios, the 

difference is minimal, suggesting that fully correlated analysis may be adequate in 

practical situations. 
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Chapter 5. Evaluating the Methodology: Corrosion Management 

5.1 Introduction 

Composite concrete and steel slab-on-girder systems are commonly used in 

bridges throughout North America. In recent years, some bridge owners have become 

aware of an unexpectedly large amount of corrosion degradation of some of their 

weathering steel highway structures. Weathering steel contains small amounts of 

nickel, chromium, and copper; it is available as Type A or Type AT, as designated in 

CAN/CSA G40.21 (Commentary on CAN/CSA-S6-00, Canadian Highway Bridge Design 

Code, 2000). Under repeated cycles of wetting and drying, weathering steel forms a 

thin, adherent oxide patina in 18 to 36 months (Commentary on CAN/CSA-S6-00, 

Canadian Highway Bridge Design Code, 2000), which afterwards protects it from further 

penetration of oxygen and moisture that leads to corrosion. However, it appears that 

under certain conditions this patina does not form as previously supposed. In these 

cases, the patina tends to flake off, sometimes in large pieces, exposing a new steel 

surface to corrosion (Damgaard, 2009; Damgaard & Walbridge, 2009).  

This extensive corrosion is believed to be due to microclimate conditions which 

result in extensive exposure of the steel element to a combination of moisture from 

melting snow, road salt, and sulfur dioxide. Factors that can affect microclimate 

conditions are the amount of de-icing salt usage, the number of wetting-drying cycles, 

the effectiveness of the drainage system, the design of structures (for example, the 

exposure to water splash from traffic), etc. Therefore, considerable variability can be 

seen in the condition of the environment surrounding different bridges in a city and 

even different locations on a single bridge. Typically, the corrosion degradation in 
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weathering steel structures is concentrated at the piers and abutments, where leaky 

joints permit water contaminated with salt to run onto the weathering steel girders, 

or at the midspan, where the draft of traffic passing underneath the overpass splashes 

the girders with salt-contaminated water. Both cases can be troubling, especially for 

simply supported girder bridges. For these types of bridges, the highest shear and 

moments forces occur at the supports and midspan respectively  (Damgaard, 2009; 

Damgaard & Walbridge, 2009). Moreover, due to climate change effects, anticipating 

the amount of salt usage for employing a static corrosion protection measure can be 

difficult. 

Climate change, as evidenced by various studies (Arvidsson et al., 2012), 

results in temperature fluctuations that affect the quantity of road salt used. Regions 

with harsh winters, like Alberta or Manitoba, currently use less salt due to its limited 

effectiveness in extremely low temperatures (Evans & Frick, 2001). In contrast, milder 

regions like Ontario or New York use more road salt. However, with rising 

temperatures due to climate change, provinces with severe winters may see an 

increase in salt usage as road salt becomes more effective. Conversely, regions with 

mild climates may reduce salt usage due to the temperature rise. 

This high level of uncertainty, where the probability of future projections is 

undetermined, is referred to as deep uncertainty, or ambiguity, mostly in economics 

literature (Etner et al., 2012). Deep uncertainty can be treated as a non-probabilistic 

quantity, as opposed to traditional probabilistic random variables. Deep uncertainty 

challenges the traditional expected utility decision theory, the gold standard for 

normative models in rational decision making. Traditional decision and risk analyses 

make extensive use of models to predict the probable consequences of alternative risk 
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management decisions, but this approach faces four major obstacles when dealing 

with deep uncertainty of underlying state or scenario probabilities (Cox, 2012). 

 Considering the deep uncertainties of predicting the conditions of the 

environment, it would be very difficult to make decisions about employing typical 

corrosion protection measures. However, over time, one can observe the corrosion 

performance of the bridge and speculate on the actual degradation process. In this 

situation, resorting to fixed strategies with no consideration of information update 

may not be the best choice. In these “predict and then design” approaches, while the 

costs of a rust protection measure are clear and immediate, the benefits are uncertain 

and less obvious. 

The focus of the study is on investigating the developed framework in 

determination of the optimum strategy for preservation of weathering steel highway 

structures when the possibility of formation of adverse microclimates is 

undetermined. Here a strategy is comprised of choosing among a set of engineering 

options (e.g., Whether Adaptation or not) and determining an action time for 

exercising that choice. The developed framework is a combination of RM, and 

dynamic programing, allowing for providing a solution that works on a wide range 

of possible futures instead of preparing for an expectation point. 

In what follows, first, an analysis is performed for finding the optimal 

corrosion management strategy for a typical weathering steel highway structure. 

Then, a sensitivity study is performed, and the results are interpreted. Finally, a 

conclusion is provided, based on the presented work. 
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5.2 Problem Description 

To illustrate the framework, an analysis is performed for finding the optimal 

corrosion management strategy for a typical weathering steel highway structure in 

the province of Ontario, Canada. The properties of the bridge are briefly described 

here. For a more detailed description of the loads, resistance, and reliability 

calculations the reader is referred to (Damgaard, 2009; Damgaard & Walbridge, 2009). 

5.2.1 Bridge Model 

The considered bridge is a typical single-span simply supported box girder 

overpass. A typical section of bridge girder is shown in Figure 5-1. Using a macro-

based Excel program, the bridge was designed in a previous research study on the 

reliability of corroding roadway bridges (Damgaard, 2009; Damgaard & Walbridge, 

2009).  

 

Figure 5-1. Cross section of a typical box girder 

In the program, at predetermined time intervals, corrosion penetration is 

calculated, and the geometrical, and structural properties of the bridge are modified 

accordingly. Here, it is assumed that corrosion occurs on the web and flange together, 
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and the general corrosion model is intended to replicate the thickness loss across the 

whole surface of a structural plate. In so doing, over time, when the resistance falls 

below the load effect, the program stops and records the time of failure. A total of four 

failure modes are considered here; each of these failure modes or “limit states” are 

identified and quantified by the Canadian Highway Bridge Design Code (CAN/CSA-

S6-06: Canadian Highway Bridge Design Code, 2006): 

1) Shear ( 𝑉𝑓/𝑉𝑟 ≤  1; Clause 10.10.5.2 (a) in (CAN/CSA-S6-06: Canadian Highway Bridge Design 

Code, 2006)) 

2) Moment ( 𝑀𝑓/𝑀𝑟 ≤  1; Clause 10.10.5.2 (b) in (CAN/CSA-S6-06: Canadian Highway Bridge Design 

Code, 2006)) 

3) Shear + moment (727𝑀𝑓/𝑀𝑟 + 0.455𝑉𝑓/𝑉𝑟 ≤ 1; Clause 10.10.5.2 (c) in (CAN/CSA-S6-06: 

Canadian Highway Bridge Design Code, 2006)) 

4) Bearing ( 𝐵𝑓/𝐵𝑟  ≤  1; Clause 10.10.8.1 in (CAN/CSA-S6-06: Canadian Highway Bridge Design 

Code, 2006)) 

These limit states are checked at eleven equidistant points along the length of 

the bridge (except for bearing, which is only checked at the supports). Typically, dead, 

and live (i.e., traffic-induced) loads dominate the design of short- and medium-span 

bridges. Therefore, only these load types are considered in the current study. Two 

kinds of dead load are distinguished:  dead load and superimposed dead. The former 

refers to the slab and steel girder self-weight while the latter refers to the sidewalk 

and wearing surface. The live load is the greater of a five-axle truck load and a truck-

plus-lane load. 
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5.2.2 Corrosion Models 

The corrosion rate of weathering steel is mainly affected by three factors: the 

presence of 

chloride pollution, the presence of sulfur dioxide pollution, and the time of wetness 

of the steel. Based on measurements on field specimens Albrecht and Naeemi 

(Albrecht & Naeemi, 1984) categorized corrosion rates into three main regimes: rural, 

urban/industrial (henceforth referred to as urban), and marine. In this study, these 

three categories are considered as the potential corrosion rates due to microclimates 

undetermined during the design phase, and it is assumed the probability of each 

scenario is unassigned. 

As described in (Albrecht & Naeemi, 1984), for modeling corrosion 

penetration, thickness loss over time, t, (in years) is assumed to follow the power 

function: 

where C is the thickness loss in mm × 10−3, A and B are constants. The values used 

for these constants in this study are given in Table 5-1, and are based on corrosion 

penetration tests performed in England, Germany, and the United States (Albrecht & 

Naeemi, 1984; Kayser, 1988). Using these values, a projection of thickness loss 

according to the three scenarios is presented in Figure 5-2.  

  

𝐶 = 𝐴 ∙ 𝑡𝐵 (5-1) 
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Table 5-1. Corrosion Rates (Kayser, 1988) 

Environment Parameter Distribution 

Type 

Mean Coefficient of 

Variation 

Rural A Lognormal 33.3 0.34 

 B Lognormal 0.498 0.09 

Urban A Lognormal 50.7 0.30 

 B Lognormal 0.567 0.37 

Marine A Lognormal 40.2 0.22 

 B Lognormal 0.557 0.10 

 

 

 

Figure 5-2. Mean corrosion penetration over time for different environments. 
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5.2.3 Identification of Potential Strategies and Flexibilities 

In this example, metalizing and its time of application are considered as the 

potential protection strategies. When a protective cover is applied, it is assumed that 

it will prevent further progress of the corrosion until the end of the cover life. Here 

With the above-mentioned considerations, the probability of failure of the bridge is 

calculated for cover lives of 40 and 70 years. The former is reasonable for Metalizing, 

and the latter is considered only for sensitivity studies.  

The probability of failure under each action and adaptation/application timing 

is performed using Monte Carlo simulation (MCS). A 100-year bridge planning 

horizon period is simulated. For each 100-year trial or “episode”, failure can occur 

once, assuming no repairs. In this analysis, one million trials were performed for each 

strategy. To reduce computational costs and memory usage, adaptation strategies at 

10-year intervals were simulated. Then linear interpolation is used to capture the 

lifetime cost of adaptation inside those intervals. For illustration, the annual 

probability of failures under the urban scenario are computed and depicted in Figure 

5-3. 
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Figure 5-3. Annual probability of failure due to corrosion under the urban scenario for 

Protection lives of 40 and 70 years. 
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5.2.4 Economic Analysis of Adaptation Options 

After probability of failure analysis, the life cost of failure is calculated. The life 

costs were then used in the developed frameworks to draw conclusions regarding 

appropriate management strategies. Based on the perspective of the decision-maker, 

different failure costs could be considered. In this sense, only the failure costs accruing 

after the bridge failure are considered and other costs, for example due to the bridge 

closure for maintenance are ignored. In order to illustrate the methodology, the 

expected lifetime failure cost under the worst scenario is defined as “disaster cost”, 

and all the monetary values are presented as its portions.  

For a point analysis, the elements of failure cost calculation are presented in 

Table 5-2. It is assumed that the corrosion protection measure involves a metallizing 

process with a relative cost of 0.2, which hinders further corrosion of the steel 

components up to the end of life of the cover layer. The accessibility cost involves field 

application costs such as permits, scaffolding, sand blasting and transportation of the 

equipment, which is mostly avoided for a construction phase application. In the next 

section, the framework is illustrated and interpreted. 
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Table 5-2. Assumed values for cost and life of a corrosion protection measure as well as the 

information update probability distribution. 

Parameters 
Disaster 

cost 

Metallizing 

cost 

Accessibility 

cost 

Discount 

rate 

Protection 

Life years 

 𝐼  

Mean 

(years) 
COV Dist. 

Values 1 0.2 0.15 0.02 40 5 0.5 LN 

5.3 Results and Discussion 

Based on the probability of failure of the bridge and values of Table 5-2, the 

LCC matrix is evaluated in the second step of the methodology and is presented in 

the form of Figure 5-4. Here, 𝑐𝑠𝑖𝑎𝑗
 curves represent the LCC of acting on either 𝑎1 =

𝑀𝑒𝑡𝑎𝑙𝑙𝑖𝑧𝑖𝑛𝑔 or 𝑎2 = 𝑁𝑜𝑡 𝑀𝑒𝑡𝑎𝑙𝑙𝑖𝑧𝑖𝑛𝑔 at  a given time under scenarios 𝑠1 = 𝑈𝑟𝑏𝑎𝑛 and 

𝑠2 = 𝑅𝑢𝑟𝑎𝑙/𝑀𝑎𝑟𝑖𝑛𝑒 (Note that Rural and Marine are put under the same scenario as 

they generate almost similar outcomes); The first jumps is due to the accessibility cost 

for in-service application of the protection measure. Over time, LCC of metallizing is 

declining for 𝑠2 = 𝑅𝑢𝑟𝑎𝑙/𝑀𝑎𝑟𝑖𝑛𝑒 due to the discounting effect, while under 𝑠1 =

𝑈𝑟𝑏𝑎𝑛, it is increasing due to the increased risk. 

Subsequently, in the third step of the methodology, the regret matrix and then 

the regret values of employing the various methods are computed. The regret of 

various methods is compared in Figure 5-5. Furthermore, the values of the regret 

matrix (𝑅𝑠𝑖𝑎𝑗
 curves) are provided for context. As can be seen, the regret of the classical 

MR, 𝑅c(𝑡), is increasing except over an initial period as well as beyond 𝑡 = 72 years. 

Here, 𝑅d shows the regret of delaying decision-making until a given time on the 

horizontal axis when the information update is assumed to occur, whereas 𝑅s denoted 
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the regret of employing the stochastic method. It can be proved that 𝑅c and 𝑅d are the 

upper and lower bounds of 𝑅s until a time 𝑡0 after which the outcome the methods 

become similar. As can be seen, 𝑡0 occurs at intersection the curves of regret of 

metallizing under scenarios 1 and 2. 

The added value of the deterministic, 𝑉d, and stochastic, 𝑉s, methods is 

presented in Figure 5-6. 𝑉d show the value of waiting until a given time when exact 

information will be available. The high initial value of 𝑉d is since exact information 

can prevent unnecessary investment on metallizing. 𝑉s at a given time is the value of 

waiting longer for possible information arrival in the future instead of acting 

according to classic MR in that considered time. 𝑉s can also be interpreted as the 

maximum reasonable value of the fund that can be assigned at 𝑡 to field-testing that 

may results in information update sometime in the future, instead of acting blindly 

according to 𝑅c(𝑡). As can be seen, 𝑉s begins with a relative value of 9% with having 

the option of metalizing during the construction. However, immediately after 

construction, this option is removed and the incentive of investing on testing and 

waiting info update increases. 

For the various approaches, the design and management plan is presented in 

the form of Figure 5-7. The plan is comprised of two sections: Before and after 

information arrival. The horizontal axis is the time since construction (with the 

consideration of 𝑡 = 0 as the construction phase), and vertical axis represents the set 

of possible actions. On the before information section on the top, the recommendation 

of the classical MR is plotted for comparison. Here, the curves represent the 

appropriate action for management of an unmetallized bridge at a certain age on the 

horizontal axis. As can be seen, in case of no information, during the construction 
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phase, 𝑡 = 0, the classical MR suggests instantaneous metallizing, while the stochastic 

method suggests waiting. However, for an existing bridge (when 𝑡 > 0), the 

recommendations of the two methods are similar until an information on the validity 

of either of the scenarios is arrived. For example, at 𝑡 = 15, information arrival on 

validity of 𝑠1 = 𝑈𝑟𝑏𝑎𝑛 would result in immediate metallization. 

In general, here, the plan based on the stochastic information arrival suggests 

metallizing after waiting for information update for 𝑡0 = 23 years. Otherwise, 

indicating the time of information arrival with 𝐼, in the case of realization of 𝑠1 =

𝑈𝑟𝑏𝑎𝑛 at time 𝐼 < 𝑡0, the method suggests acting according to the 𝑠1 case in Figure 

5-7: 

• when 0 < 𝐼 ≤ 10 years, adapt at action time 𝜏 = 10 years. 

• when 𝐼 = 0  or 𝐼 > 10  years, adapt instantaneously at 𝜏 = 𝐼. 

However, in the case of realization of 𝑠2 = 𝑅𝑢𝑟𝑎𝑙/𝑀𝑎𝑟𝑖𝑛𝑒, not metallizing is 

suggested. In summary, the conditions of the example problem imply Category 3 

according to the flowchart in the appendix. To cover all the categories a sensitivity 

study is performed in what follows. 
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Figure 5-4.  LCC of taking various actions at a considered time under different scenarios. 

 

Figure 5-5. Regret values for various strategies and plans associated with accessibility cost of 

0.15, metalizing cost of 0.2, and discount rate of 0.02. 

: Regret of taking action at a 
given time under scenario 

: Time after which all methods 
have similar outcomes

, : Regret of Classical MR, 
Deterministic and Stochastic methods
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Figure 5-6. Deterministic and probabilistic value of waiting associated with accessibility cost 

of 0.15, metalizing cost of 0.2, and discount rate of 0.02. 

 

Figure 5-7. Summary of the policy to whether adapt, not adapt, or wait at time t after 

construction under no and full information of occurrence of each scenario. 

Break even times

: Waiting value of the 
stochastic method
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5.4 Sensitivity Studies 

In this section the sensitivity of the policies and plans to the variation of the 

following parameters is evaluated: 

• Life of protective layer 

• Discount rate 

• Accessibility cost 

• Metalizing cost 

5.4.1 Map of Policy Categories 

To interpret the value of waiting, adaptation policies are categorized into 7 

types. For protection life of 40 and 70 years and discount rate of zero and two percents 

maps of region of these categories is presented in Figure 5-8. For clarification, an 

explanation is provided in the following for the case of metalizing with protection life 

of 40 and zero discount. 

The bottom region of the figure begins with category 3 in the left due to low 

accessibility costs. With the increase in the accessibility cost, it becomes more 

reasonable to avoid accessibility cost by metalizing during construction. Therefore, 

the decision type changes to category 1, crossing a 45-degree straight border. At the 

45-degree border, regret of decision making before construction without information 

(i.e., 𝑅c(𝑡)) is equal to the regret of decision-making based on full scenario information 

immedietly after construction (i.e., 𝑅d(0+)). In the category 1 region, when the 

opportunity of metalizing is missed, e.g., in the case of an existing structure, it is still 

reasonable to metalize with a total cost of metalizing plus the accessibility cost. The 

maximum total cost of metalizing in this case is equal to the accessibility cost in the 

bottom right corner of the triangle. Finally, with the increase in the accessibility cost, 
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the decision transform to category 2 by crossing a 135-degree border. Along the 135 

degrees border the total cost of metalizing is constant. 

Entering the mid horizontal region with the increase in the metalizing cost 

along the vertical axis, the decision type transforms from categories 2 and 3, to 

Categories 5 and 6 respectively. In category 5 region, the decision-maker is willing to 

invest on testing, and metalizing only if the test shows an adversary scenario. Whereas 

in category 3 the purpose of testing is avoiding unnecessary early investment on 

metalizing. As can be seen, category 3 is the smallest for discount rate of 2%. In 

Category 6 region, metalizing is reasonable only when information on the realization 

of the extreme scenario arrives during construction. Finally, in the category 7 at the 

top region, metalizing is too expensive to be considered as a reasonable protection 

measure. 

Consideration of discounting affects decision category map. A major change is 

the addition of the Category 4 region between Category 3 and 5. In Category 4, the 

decision-maker is willing to invest on testing to support metalizing as early as 

possible. Also, it can be seen that increasing the life of the protective layer will scale 

up the extent of the regions. In the following sections, the category map is overlaid 

the figures to help interpreting the results.  
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Figure 5-8. Map of Policy Categories 

5.4.2 Classical MR 

When employing the classical MR approach, the decision outcome falls in one 

of the three categories: Immediate metallization over construction, in-service 

metallization, or no metallization. An assessment on the category of these outcomes 

is presented in Figure 5-9. It can be seen that When discounting is ignored, classical 

application of regret suggests either immediate metalizing in regions 1-3 or not 

metalizing over regions 5-7. However, with the consideration of the discounting, 
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some portion of regions 3 and 5 transforms to region 4, in which metalizing is planned 

between 1 to 6 decades after construction. 

 

Figure 5-9. Optimal action time – Classical MR. 
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5.4.3 Deterministic Information Arrival 

At time 0 (i.e., construction phase), the value of waiting until information 

arrival at 𝐼 is depicted in Figure 5-10. Here, the subfigure with 𝐼 = 0 represents the 

value of information update before/during the construction. Having information at 

this time point is valuable over regions 1 to 6, and the location of maximum values 

occurs at the horizontal border between 2 and 6 regions, which is between metalizing 

and not metalizing for classical MR. This seems reasonable as in practice in this region, 

decision-making should be more difficult for a manager. In this sense, this sub figure 

acts as a measure of the difficulty of decision-making. After construction, the waiting 

value over regions 1, 2, and 6 vanishes. Therefore, this subfigure confirms that in a 

new construction project, receiving information during construction (or earlier) is 

helpful for categories 1 to 6, and information received after construction is useful only 

for categories 3 to 5. Furthermore, the figure shows an increase in sensitivity of 

waiting value for 𝐼 > 30 years. 
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Figure 5-10. The value of waiting until information arrival at 𝑰 based on available action 

choices at time 0 (i.e., construction phase) 
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5.4.4 Stochastic Information Arrival 

For evaluating the value of the probabilistic option plan, Figure 5-11 to Figure 

5-12 are provided. Figure 5-11 presents the added value of taking the stochastic 

information arrival method when considering a lognormal probability distribution 

for arrival time of information with mean of 𝐼 ̅ = 5 years and COV of 0.5. As can be 

seen, the maximum expected value is increased (from 0.28 to 0.45 for discount rate of 

0, and from 0.20 to 0.30 for discount rate of 2%) with increase in protection life and 

decrease in the discount rate. However, the extent of region with positive expected 

waiting value is increased with the discount rate. The sensitivity of the results to the 

mean time of information arrival is present in Figure 5-12 for protection life of 40 years 

and discount rate of 2%. The sensitivity of the results to the COV of the arrival time 

can be inferred by comparing Figure 5-10 and Figure 5-12. From this comparison it is 

obvious that the waiting value shows little sensitivity to COV for the first 3 decades 

after construction. This comparison indicates that in this study waiting value is more 

sensitive to the discount rate than the supposed time of information arrival. 
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Figure 5-11. Expected waiting value when considering a lognormal probability distribution 

for arrival time of information with mean of 5 years and COV of 0.5 
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Figure 5-12. Expected information value for different lognormally distributed arrival time of 

information with COV of 0.5 for discounting of 2% 
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5.5 Concluding Remarks 

This study employes the proposed framework for evaluation of various 

strategies for protection of steel bridges against corrosion. Composite concrete and 

steel slab-on-girder bridges are commonly used throughout North America. In recent 

years, some bridge owners have become aware of an unexpectedly large amount of 

corrosion degradation occurring to a number of their weathering steel highway 

structures. While in a mild environment weathering steel might show little 

degradation, in case of realization of a severe environment, for example, due to 

extensive use of de-icing salt during winter, using this material without protection 

can be found problematic as doing so might result in higher management costs or 

even catastrophic failures. On the contrary, the realization of a mild or moderate 

environment after utilization of the expensive preventive measures would also be 

suboptimal.  

On this basis, the proposed method is used based on an assumption that the 

information on the state of the microclimate somehow becomes available over time, 

which makes delaying application of a protection measure valuable. The framework 

resorts to an adaptive solution, beginning with a less expensive option until the actual 

condition of the environment is more evident. Willing to minimize the maximum 

sense of loss, regret is combined with dynamic programming and implemented in the 

decision-making framework. The monetary added value of waiting for information is 

determined by comparing the outcomes for two cases of having and not having an 

expectation of a future information of microclimates is provided. As the optimal plan 

and efficacy of the method depend on the cost parameters, a procedure for classifying 
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the optimal plans into 7 categories is introduced. The method is illustrated using a 

problem of a single-span simply-supported box girder bridge.  

Following the illustration, sensitivity studies are performed. Sensitivity studies 

show that the added value of the waiting for information is more sensitive to the 

discount rate than the expected time of information update. Furthermore, it was 

shown that the maximum expected value is increased (from 0.28 to 0.45 ($/$) for a 

discount rate of 0%, and from 0.20 to 0.30 ($/$) for a discount rate of 2%) with increase 

in protection life and decrease in the discount rate. However, the extent of region 

shrinks as the maximum value increases with the change in these variables. As such, 

the provided framework can help bridge owners more effectively target their 

resources on safety investments. Here the methodology was applied to corrosion 

management of steel bridges without explicitly considering the effect of climate 

change projections on the de-icing salt usage. However, the importance of climate 

change warrants such considerations in future studies. 
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Chapter 6. Bridge Scour Design and Adaptation to Climate Change  

6.1 Introduction 

The uncertainties associated with climate change pose challenges to bridge 

managers in investing in flood protection measures for safeguarding vulnerable 

bridges. One of the primary reasons for bridge failure globally is scour, or the removal 

of riverbed material from the bridge foundations caused by water flow. This issue is 

expected to be exacerbated by the impacts of climate change, which will affect local 

climate patterns and river flow regimes. So far, accurate prediction of these climate 

change effects has been elusive. Deterministic approaches are appropriate for defining 

optimum management plans for a clear and relatively certain future, which is not the 

case in this context, with very different and uncertain projections of river flow 

processes. Future climate projection is a complex task due to the interplay of various 

factors, including solar radiation, greenhouse gas emissions, and natural variability. 

However, In the context of climate change, the uncertainty around climate change will 

eventually decrease as a result of scientific advancements, statistical data, and 

monitoring weather patterns (van der Pol, van Ierland, et al., 2017). For example, some 

studies suggest meaningful learning about some important aspects of climate change 

will take 20–50 years to occur (Lee et al., 2017; Urban et al., 2014).  

This possibility leads to some questions. One question is whether inaction and 

waiting for such information is worth the risk of adverse climate change driven 

events. Another important question is around the value of implementation of costly 

design flexibilities. To answer these questions around the bridge scour safety 

investments, the proposed framework is employed for designing a bridge in BC, 
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Canada. In the provided framework, the information arrival is modelled as a 

stochastic event with a predefined probability distribution. This chapter demonstrates 

how the methodology can be used to evaluate the trade-offs between different design 

options and to determine the optimal course of action, given the deep uncertainties 

associated with climate change. 

6.2 Problem Statement 

A multi-span bridge is planned for a railway crossing of Thompson River, BC 

Canada. Some of the details of the problem are adopted from (Neill, 1980) and 

inspired by the bridge wash out of events in BC. The problem involves decision-

making about the length of a bridge on the river subject to climate change. 

6.3 Identification Of Potential Strategies and Flexibilities 

Three main options for bridge construction are: 

• Long Bridge: Full length 230 m bridge over the entire width of the river. 

• Extensible Short Bridge: Building an extendable shorter 150 m bridge over the 

main channel and filled overbanks and increasing the length if needed in the 

future. 

• Short Bridge: Building a less expensive short bridge, which is not economically 

extendible. 

The bridge cross-sections are depicted in Figure 6-1. For hydraulic modelling 

of the flow the Hec-Ras software is used (U.S. Army Corps of Engineers, 2022). More 

details on bridge dimensions for hydraulic analysis is provided in the next section. 
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Figure 6-1. Bridge cross sections. 
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6.4 Bridge Modelling Details 

The abutment is spill-through with an embankment having 2:1 side slope and 

a top width of 12 m. The bridge is supposed to be broad crusted with weir coefficient 

of 2.6. The elevation of the top of the bridge deck is 10 m, and the low chord elevation 

of the bridge is 9 m. The bed sediment is a relatively uniform medium sand having a 

median sieve diameter of 2.0 mm. For hydraulic modelling of the flow the Hec-Ras 

software is used (U.S. Army Corps of Engineers, 2022).  

The bridge centreline is located at a river station (RS) equal to 1150 m. 

Ineffective flow areas in the left and right floodplains are located to the left and right, 

respectively, of the two vertical lines connecting the triangular symbols. The 

ineffective areas are valid for free flow and submerged orifice flow, but they become 

active or effective for overtopping flow. Lateral streambank stations for the main 

channel are shown at 60 m and 210 m stations, and the stream has a constant bed slope 

of 0.0014 m/m. Manning’s n values are 0.035 for the entire cross section. The piers are 

dual square columns each with a width of 0.90 m. Piers are numbered from left to 

right beginning with #1. The pier positions are located at lateral stations of 60, 90, 120, 

150, 180, and 210 m. The in-service design flexibility for an adaptable short bridge 

includes designing columns at stations of 60 and 210 m station such that they can 

sustain the increase load of adding the new spans.  

Furthermore, preinstalling load bearing elements at the location of long bridge 

abutments would insure faster adaptation and less service interruption. The toe of the 

left abutment is at a lateral station of 20, and the toe of the right abutment is at a station 

of 250 m. The bridge routines in HEC-RAS allow the modeler to analyse the bridge 
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flows by using different methods with the same geometry. The different methods are: 

low flow, high flow, and combination flow. Low flow occurs when the water flows 

only through the bridge opening and is considered as open channel flow (i.e., the 

water surface does not exceed the highest point of the low cord of the bridge). High 

flow occurs when the water surface encounters the highest point of the low cord of 

the bridge. Finally, combination flow occurs when both low flow or pressure flow 

occur simultaneously with flow over the bridge. Here, For the low flow the “WSPRO” 

method used with the assumption of no wing walls, and for the high flow the 

“Pressure and/or Weir Flow” method with a coefficient of 0.8 for the “Submerged inlet 

+ Outlet Cd”. 

HEC-RAS cross sections are shown in Figure 6-2, in which the differences 

between river stations represent the actual flow lengths, although it is only necessary 

to order the stations in ascending numerical value in the upstream direction. Actual 

flow lengths are entered elsewhere in the input data table. Station 1300 is the approach 

flow section (APPR) and Station 100 is the bridge exit section (EXIT). These stations 

are approximately one bridge length upstream and downstream of the bridge using 

the WSPRO methodology (Shearman et al. 1986, Sturm 2009). Bridge bounding 

sections are Station 1162 at the upstream toe of the embankment and Station 1138 at 

the downstream toe.  
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Figure 6-2. Cross-section layout along main stem for HEC-RAS analysis. 
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6.5 Breakdown of Costs 

Table 6-1 provides a breakdown of construction and adaptation costs to 

components and their types for all bridge construction options. In this table “*” 

indicates that the cost occurs at the time of initial construction, whereas “+” indicates 

that cost occurs at the time of adaptation. The following cost types can be considered: 

• Essential: costs that are present in all construction options, which includes: 

o Short Bridge Superstructure 

o Short Bridge Substructure 

• Adaptation: is the cost of construction and installation of components for 

extending the bridge at the time of adaptation. 

• Accessibility: is a cost that occurs only for in-service adaptation, and it includes:  

o Clearing of overbanks for extra waterflow  

o Transportation of equipment, permit applications and similar reworks 

• Adaptation Capacity: is the cost of adjustments and installation of components 

that allow extension of the bridge.  

o In this example, to establish a short extendible bridge, with extra cost, 

the abutments of the short bridge should be built such that they can 

carry the load from installation of extension decks.  

o To reduce railway service interruptions, the abutment of the long bridge 

can be installed during the initial construction. 

• Temporary: is the cost of installation of a system that will be removed in the 

case of adaptation. Here it includes: 

o Filling the river overbanks to create support for the road. 
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Table 6-1. Breakdown of construction and adaptation costs to components and their types for 

all bridge construction options. 

   Bridge Options 

Cost Type Cost Components Short Extensible Long 

Essential Short Bridge Superstructure * * * 

 Short Bridge Substructure * * * 

Adaptation Extension of Bridge 

Superstructure 
 + * 

Accessibility Clear Overbanks  +  

 Rework and Permits  +  

Adaptation 

Capacity 

Build Extra Capacity in Short 

Bridge Abutments 
 * * 

 
Long Bridge Abutments 

Installation 
 * * 

Temporary Fill Overbanks * *  

Note: In this table “*” indicates that the cost occurs at the time of initial construction, whereas “+” indicates 

that cost occurs at the time of adaptation. 

Although investigation of the value of incorporating adaptation capacity is 

essential in discussion of the advantages of the proposed methodology, as a 

simplification in this illustrative example the adaptation capacity costs are ignored 

alongside the cost of employing temporary measures that would allow the 

adaptation. 
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6.6 Economic Analysis of Adaptation Strategies 

The economic analysis of each action and adaptation timing is performed using 

Monte Carlo simulation (MCS). A 100-year bridge planning horizon period is 

simulated beginning year 2020. For each 100-year trial or “episode”, failure can occur 

each year, assuming instant repairs. In this analysis, 10,000 trials were performed for 

each strategy. To reduce computational costs and memory usage, adaptation 

strategies at 10-year intervals were simulated. Then linear interpolation is used to 

capture the lifetime cost of adaptation inside those intervals. 

6.7 Hydroclimate Projections and Expectations of Future Streamflow 

The Pacific Climate Impacts Consortium (PCIC) (Consortium, 2020) provides 

access to simulated streamflow data for locations throughout British Columbia, 

Canada. The streamflow data were simulated using runoff and baseflow generated 

with an upgraded version of the Variable Infiltration Capacity (VIC-GL) model 

coupled with a glacier model (Schnorbus, in prep) and routed with RVIC (Hamman 

et al., 2016; Lohmann et al., 1996, 1998). For illustration purposes, in this example, the 

simulated streamflow of the Thompson River station near Spences Bridge is used 

without any further processing. A list of the twelve stream projection models is 

provided in Table 6-2 (Consortium, 2020). Similar to (Sims & Null, 2019) the historical 

period is selected as 1950-2000 and the calibration period is 2000-2100. 

These simulations should not be treated as if they exactly represent the 

sequence of future events. Instead, their characteristic is extracted here to stress test 

the designs under some variations in the MCS trials. To do so, similar to (Sims & Null, 

2019), a mean reverting stochastic process is calibrated with each of the annual 
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maximum of simulated stream flow time series. The stochastic differential equation 

has the following form: 

𝑑(𝑋 − 𝜇𝑡) = 𝛼(�̅� + 𝜇𝑡 − 𝑋)𝑑𝑡 + 𝜎𝑑𝑧 (6-1)  

where, 𝑑𝑧 is the increment of a standard Winner Process: 

𝑑𝑧 = 𝜀√𝑑𝑡 (6-2)  

Here, 𝜀 is a random variable following the normal distribution: 

𝜀~𝑁(0,1) (6-3)  

𝛼 is the instantaneous drift rate of the stochastic streamflow process, and 𝜎 is the 

instantaneous variance. This process is designed so that the random stream flow 

process revolves around a non-stationary trend, �̅� + 𝜇𝑡. To illustrate the difference of 

the projections and importance of the methodology, extreme cases among the 12 

projections (i.e., Scenarios 2 and 6) are presented in Figure 6-3 alongside their 

corresponding mean-reversion levels. 

To calibrate the model to the data, the equation is rearranged according to 

Equation (6-4): 

𝑑(𝑋) = 𝛼(𝐿(𝑡) − 𝑋)𝑑𝑡 + 𝜎𝑑𝑧 (6-4)  

in which L is the mean reversion level of the process. 

𝐿(𝑡) =
𝜇

𝛼
+ �̅� + 𝜇𝑡 (6-5)  

For calibration, it was assumed that the process begins at year 2000 with 𝐿(𝑡 = 0) =

2643 m3/s, which is equal to the stationary mean reversion level of the 1950-2000 

period. The calibrated value of the �̅� is approximately 2.64 × 103 m3/s for the 12 
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simulated streamflow time series parameters while the other parameters are 

calibrated according to Figure 6-4. Mean-reversion levers are presented in Figure 6-5. 

To generate new samples of stream flow time series, SDEMRD objects(SDE with Mean-

Reverting Drift (SDEMRD) Model - MATLAB, n.d.) are created based on the calibrated 

parameters. For illustration of the generated simulations, a sample simulation of 120 

years (2000-2120) based on the parameters calibrated to Scenario 2 is presented in 

Figure 6-6 alongside their mean-reversion level. 

Table 6-2. List of Stream Projection Models 

Scenario Base Model Name 

1 ACCESS1_0_rcp45_r1i1p1 

2 CanESM2_rcp45_r1i1p1 

3 CCSM4_rcp45_r2i1p1 

4 CNRM_CM5_rcp45_r1i1p1 

5 HadGEM2_ES_rcp45_r1i1p1 

6 MPI_ESM_LR_rcp45_r3i1p1 

7 ACCESS1_0_rcp85_r1i1p1 

8 CanESM2_rcp85_r1i1p1 

9 CCSM4_rcp85_r2i1p1 

10 CNRM_CM5_rcp85_r1i1p1 

11 HadGEM2_ES_rcp85_r1i1p1 

12 MPI_ESM_LR_rcp85_r3i1p1 
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Figure 6-3. Comparison of Model 2 and Model 6 projections  

  

Figure 6-4. Streamflow Parameter Values for various Climate-Driven Streamflow 

Projections (2001–2100) Created by 6 GCMs Each Run under Two Different RCPs. 
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Figure 6-5. Mean-reversion levels of annual maximum discharge. 

 

Figure 6-6. Mean-reversion level fitted to one of the GCMs hydrologic responses (Scenario 2 

base model) and a sample time Serie based on the calibrated parameters. 

6.8 Scour Analysis 

Given the hydraulic properties of the stream determined by HEC-RAS, and the 

dimensions of the bridge components, scour depth is determined at the location of 

Piers 3 and 4 as they are more susceptible to scouring. In the damage cost analysis, it 

is assumed that undermining these piers incurs a damage cost equivalent to 

rebuilding the 150 m bridge. In the next section, an overview of the procedure used 

to calculate the scour depth is provided. 
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6.8.1 Scour and Foundation Failure 

Total scour is comprised of a combination of various processes, which can 

happen simultaneously i.e.: channel degradation and instability, contraction scour, 

and local scour at piers and abutments. The sum and interaction of all these river 

processes create a very complex phenomenon that has, so far, eluded definitive 

mathematical modelling. Thus, a conservative approach is summing the different 

factors  (Lagasse P.F. et al., 2013). Most of the dominant frameworks are based on two 

strong assumptions. The first assumption is that the scour depth resulting from 

exposure to a single flood event is independent of past events. Although the scour 

accumulation associated with multiple floods has been documented as a compelling 

cause of multiple bridge failures, very few studies (e.g. (Khandel & Soliman, 2019; 

Pizarro & Tubaldi, 2019)) have relaxed the assumption of independence of scouring 

events.  

The other simplifying assumption is the consideration of a stationary 

hydrograph of infinite duration in the calculation of bridge scour depth during flood 

events. This assumption allows for the use of equilibrium scour depth, which is the 

stable scour depth around a bridge pier or abutment when the erosive forces of the 

flowing water and the resistive forces of the sediment are in balance. By assuming a 

stationary hydrograph of infinite duration, the dynamic changes in flow rate and 

scour depth over time can be ignored, making calculations simpler and more 

straightforward. However, it is important to note that this assumption may not 

accurately represent actual flood events, which can have rapidly changing flow rates 

and scour depths over time. In this study, a simplified version of the approach used 

in (Sturm et al., 2018) for combining pier scour and vertical contraction scour was 
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considered, in which these components are calculated separately and summed 

together. An overview of the methods for calculating the local and contraction scour 

components is provided herein while channel degradation is ignored. 

6.8.2 Local Scour: 

Local scour is caused by the reduction of flow around piers or abutments. 

Estimating pier local scour is commonly done using the Hydraulic Engineering 

Circular HEC-18 pier scour equation (Arneson et al., 2012), which considers factors 

such as the shape of the pier nose, the angle of flow attack, bed condition, and Froude 

number. According to HEC-18, scour due to an exposed pier stem in flow is 

determined as:  

𝑦𝑠,𝑝𝑖𝑒𝑟 = 2.0𝑘1𝑘2𝑘3(
𝑎𝑝𝑖𝑒𝑟

ℎ𝑢
)0.65𝐹𝑟0.43ℎ𝑢 (6-6) 

where K1, K2, and K3 are the correction factors for pier nose shape, the flow angle of 

attack, and bed condition respectively, ℎ𝑢 is the upstream channel flow depth, and Fr 

is the Froude number: 

𝐹𝑟 =
𝜈

√𝑔ℎ𝑢

 (6-7) 

where 𝑔 is the gravitational constant. In more complex pile foundations, local scour 

depth is estimated by superimposing various scour components, including those from 

the pier, 𝑦𝑠,𝑝𝑖𝑒𝑟, pile cap, 𝑦𝑠,𝑝𝑐, and pile group, 𝑦𝑠,𝑝𝑔. These individual scour 

components are calculated based on the methods described by Arneson et al. 

(Arneson et al., 2012) and then summed according to Equation (6-8) to obtain the total 

local scour depth as demonstrated in Figure 6-7-a. 
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6.8.3 Contraction Scour 

The phenomenon known as contraction scour refers to the erosion of material 

across the width of a stream that occurs due to flow constriction. Typically, the 

constriction of channel width at a bridge is considered as the primary cause of this 

scour. However, submerged flow also induces scour by forcing flowing water under 

the bridge deck, as illustrated in Figure 6-7-b. Submerged flow contraction scour, 

𝑦𝑠,𝑆𝐹𝐶𝑆 , is estimated through the following equation, which is the product of several 

variables, including the effective average approach velocity under the bridge (𝑉𝑢𝑒), the 

effective approach flow depth under the bridge (ℎ𝑢𝑒), a constant factor (𝐾𝑢 = 11.17 

ft2/s), the median grain size (𝐷50), the flow depth above the bottom of the bridge 

superstructure (ℎ𝑡), Vertical bridge opening height before scour (ℎ𝑏), and the height 

of the weir flow overtopping the bridge (ℎ𝑤) (Shan et al., 2012): 

𝑦𝑠,𝑆𝐹𝐶𝑆 = (
𝑉𝑢𝑒ℎ𝑢𝑒

𝐾𝑢𝐷50
1/3

)6/7 + [0.2 (
ℎ𝑏ℎ𝑡

ℎ𝑢
2

)
0.2

(1 −
ℎ𝑤

ℎ𝑡
)

−0.1

− 1] ℎ𝑏 
(6-9) 

When assessing the capacity of a pier, the total scour depth must consider both 

submerged flow contraction scours and local scour as the primary sources of sediment 

removal: 

𝑦𝑠,𝑡𝑜𝑡𝑎𝑙 = 𝑦𝑠,𝑆𝐹𝐶𝑆 + 𝑦𝑠,𝑙𝑜𝑐𝑎𝑙 (6-10) 

In the present example, for simplicity, it is assumed that the foundation fails 

when 𝑦𝑠,𝑡𝑜𝑡𝑎𝑙 is larger than foundation depth. For the considered case study, the 

relevant scour analysis parameters are provided in Table 6-3. 

𝑦𝑠,𝑙𝑜𝑐𝑎𝑙 = 𝑦𝑠,𝑝𝑖𝑒𝑟 + 𝑦𝑠,𝑝𝑐 + 𝑦𝑠,𝑝𝑔 (6-8) 
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Figure 6-7. Contributions to the total scour depth include (a) local scour due to local 

obstructions in flow and (b) contraction scour due to submerged flow conditions. 

Table 6-3. Scour analysis parameters. 

Parameter Value Parameter Value 

Pier length along river 10 m Angle of attack 

correction factor, 𝑘2 

1 

Pile cap width 4 m Correction factor for bed 1.3 

Length of pile cap 12 m Effective unit weight of 

soil 

15000 N/m3 

Thickness of pile cap or 

footing 

3 m 𝐷50 2 mm 

Hight of bottom of pile cap 

above bed 

-3 m Effective width of the 

pile group 

4 m 

Pile cap nose coefficient, 𝑘1 0.9   

  

(a) (b)
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6.9 Results 

An analysis is performed for a case where accessibility = $4M, marginal 

construction cost = 9000 $/m2, indirect cost of failure = $100M, discount rate = 1%, and 

𝐼 ̅ = 20 years. The marginal construction cost is also used to determine the cost of 

elongation, minus the accessibility and design flexibility costs. An illustration of the 

second step, economic analysis of adaptation options, for determining the LCC matrix 

is presented in Table 6-4 for only Scenarios 2 and 6 as the extreme cases.  According 

to the third step of the methodology, the regret matrix is computed. The element of 

the regret matrix, 𝑅𝑠𝑖𝑎𝑗𝜏, denotes the regret value of choosing action 𝑎𝑗 ∈ {𝑎1 =

𝐴𝑑𝑎𝑝𝑡, 𝑎2 = 𝑁𝑜𝑡 𝐴𝑑𝑎𝑝𝑡} at time 𝜏 under the realization of Scenario 𝑠𝑖. The variation of 

𝑅𝑠𝑖𝑎𝑗𝜏 over 𝜏 is depicted Figure 6-8 for the two actions, 𝑎1 and 𝑎2, and two extreme 

scenarios, 2 and 6. As can be seen, 𝑎2 = 𝑁𝑜𝑡 𝐴𝑑𝑎𝑝𝑡 would result the largest regret 

value of around $47M under the realization of the worst scenario. 

The rest three curves in Figure 6-8 depict 𝑅c(𝑡), 𝑅d(𝑡), and 𝑅s(𝑡) as the regret 

of employing the classic MR, deterministic method, and stochastic methods. Note that 

here 𝑅s(𝑡)  is computed with an assumption of information arrival at lognormal 

distributed time 𝑡 with mean of 𝐼 ̅ = 20 years and COV = 0.5. It can be seen that 𝑅s(𝑡) 

falls between 𝑅c(𝑡) and 𝑅d(𝑡) for decision-making times before 𝑡0. Beyond this time, 

the value of these three approaches coincides, indicating that information arrival no 

longer can help improving the decision making.  

The added value of the deterministic, 𝑉d, and stochastic, 𝑉s, methods is 

presented in Figure 6-9. 𝑉d show the value of waiting until a given time when exact 

information will be available. The high initial value of 𝑉d ($8M) is since exact 
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information can prevent unnecessary investment building the long bridge. 𝑉s at a 

given time is the value of waiting longer for possible information arrival in the future 

instead of acting according to classic MR. Note that the Adaptation Capacity cost for 

building design flexibilities is not explicitly accounted in the analysis (see Section 6.5). 

Therefore, 𝑉s can also be interpreted as the upper bound of the Adaptation Capacity 

costs. As can be seen, 𝑉s begins with a value of $2.4M with having the option of 

building the long bridge initially. However, immediately after construction, this 

option is removed and hope of gaining value through information arrival increases. 

Subsequently, 𝑉s decreases overtime in case of no information arrival. 

For classical MR and the stochastic methods, the design and adaptation police 

is presented in the form of Figure 6-10. For the stochastic methods the policy is 

comprised of two sections: Before and after information arrival. The horizontal axis is the 

time since construction (with the consideration of 𝑡 = 0 as the construction phase), 

and vertical axis represents the set of possible actions. On the before information section 

on the top, the recommendation of the classical MR is plotted for comparison. Here, 

the curves represent the appropriate action for management of a bridge at a certain 

age on the horizontal axis. As can be seen, in case of no information, during the 

construction phase, 𝑡 = 0, the classical MR suggests instantaneous adaptation 

(meaning to build the long bridge initially), while the stochastic method suggests 

waiting. However, for an existing extensible bridge (when 𝑡 > 0), the 

recommendations of the two methods are similar until an information on the validity 

of either of the scenarios is arrived. For example, at 𝑡 = 15, information arrival on 

validity of Scenario 5 would result in immediate adaptation of the extensible bridge. 
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Here, for instance during construction, the classical MR results in immediate 

adaptation according to 𝑎c(𝑡), while the stochastic method results in waiting for 

information arrival according to �̃�(𝑡). If the information of the occurrence of a scenario 

has arrived, Figure 6-10 is used, which provides a summary of the policy of whether 

to adapt, not adapt, or wait at time 𝑡 after construction under the revealed scenario. 

 

Figure 6-8. Regret values for various strategies and plans associated with Accessibility = $4 

M, Construction cost = $9000 /m2, Indirect cost of failure = $100 M, Discount rate = 1%, 

and 𝑰 = 20 years. 

: Regret of taking action at a given 
time under scenario 

: Time after which all 
methods have similar 
outcomes

, : Regret of Classical MR, 
Deterministic and Stochastic methods
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Table 6-4. Lifetime cost and regret of various options under two extreme scenarios for the 

bridge adaptation example. 

 
Cost ($M) Classical Regret ($M) 

Adapt at (year) 𝑆2 𝑆6 𝑆2 𝑆6 

0 186.3 26.0 0.0 7.8 

0+ 190.2 29.9 3.9 11.7 

10 191.0 28.9 4.7 10.7 

20 192.3 28.0 6.0 9.7 

30 194.1 27.1 7.8 8.9 

40 196.6 26.4 10.3 8.1 

50 200.3 25.6 13.9 7.3 

60 205.0 25.0 18.6 6.7 

70 210.5 24.4 24.2 6.1 

80 217.8 23.8 31.5 5.6 

90 227.4 23.3 41.1 5.1 

100 236.7 22.9 50.4 4.6 

Never 233.4 18.2 47.0 0.0 

Note: The 0+case represents adaptation right after construction, 

which results in inclusion of accessibility costs. 
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Figure 6-9. The deterministic and stochastic value of waiting associated with Accessibility = 

$4 M, Construction cost = $9000 /m2, Discount rate = 1%, and 𝑰 = 20 years 

 

Figure 6-10. Summary of the adaptation policy to whether adapt, not adapt, or wait at time 𝑡 

after construction when no learning has happened yet, as well as under full knowledge of 

occurrence of each scenario in this time for Scenarios 2, 5, and 6. 

Break even times

: Waiting value of the 
stochastic method

: Waiting value of the 
deterministic method

Before 
Information 
Arrival

Assuming No 
Information Arrival

Assuming Information Arrival in 
About 20 Years

After 
Information 
Arrival

: Time after which all methods have 
similar outcomes

15
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6.9.1 Comparison of Methods 

A comparison of the regret of employing different methods is provided in 

Figure 6-11. In generating the results of this figure, a discount rate of 1% and indirect 

cost of failure of 10 M$ are considered.  

Robust method refers to lifetime cost minimization based on the worst possible 

scenario. The method suggest adaptation immediately at the construction stage for 

almost all the values of accessibility and construction costs except for projects with 

high construction (> ~$5000/𝑚2) and low accessibility costs (< ~$1𝑀), in which case, 

delaying adaptation is recommended due to the discounting effect. As can be seen, 

the robust method results in the highest values of regret, especially for large 

construction costs. 

SEU method is employed assuming equal probabilities for all possible 

scenarios. For low construction costs (< ~$1000/𝑚2), it suggests immediate 

adaptation and for higher values it suggests doing nothing. As can be seen, in 

comparison with the Robust method, taking this approach results in lower regret 

values for mid to high range of construction cost. 

Finally, in the bottom two rows, the Classic MR and stochastic methods are 

evaluated. Here, under the stochastic method case a mean time of information arrival 

of 30 years with COV of 0.5 is considered, and the decision categories are provided 

instead of the adaptation decision. The regret of employing these last two methods is 

drastically less than SUE and Robust methods. Also, the regret values of the Stochastic 

method are less than those of the Classical MR over the regions of decision categories 

of 3, 4 and 5. The Classical MR suggests immediate adaptation during construction 
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over regions 1, 2, and 3, delaying adaptation for some time over region 4 and doing 

nothing for the remaining regions. For the Stochastic method, however, as the time of 

adaptation depends on the information arrival, it is not possible to provide a 

predetermined adaptation date. 

The difference between Stochastic and Classical MR is captured in terms of the 

Waiting Value. A more detailed assessment of the Waiting Value and planning under 

the Stochastic method is provided in the following section. 

 

Figure 6-11. Comparison of various design and management methods in terms of adaptation 

decision, timing, and regret. In generating the results of this figure, a Discount rate is 1% 

and Indirect cost of failure of 10 M$ is considered. 



 

 127 

6.10 Categories and Waiting Value Sensitivity Study 

For the developed methodology, adaptation planning can be categorized into 

7 types, depending on the various cost values of the project. More detail of the 

definition of these categories is provided in section 3.8. Accordingly, A sensitivity 

study is performed, and the coverage of the 7 categories coverage is depicted in Figure 

6-12 for a range of construction and accessibility costs, various discount rates, and 

indirect failure costs under three assumptions on the mean time of information 

arrival. Each point in this figure identifies the planning category of a project with a 

certain discount rate, construction and accessibility costs. Knowing the category helps 

identifying the reason behind benefits of waiting values for a project. 

The shades in this figure represent the waiting values. This figure shows that 

the waiting values can be more than $5 M in some cases, assuming 𝑰 = 10 years for 

the expectation of time of information arrival. However, the values decrease as, 𝑰 

grows. Region 3 represents the cases where adaptation during construction is 

recommended. Region 4 includes cases where adaptation is planned for some time in 

the future to benefit from discounting, but an arrival of information indicating an 

adverse scenario may result in earlier adaptation. Region 5 includes cases where 

adaptation is not recommended unless arrival of information indicates an adverse 

scenario. The values in this region can also be interpreted as the value of 

implementing flexibility in design for future adaptation. 

Waiting values are the largest at the border of 4-5 regions and increase with the 

construction cost and a decrease in the accessibility cost. The reason is that this border 

is the line between doing the adaptation or not in case of no information arrival. 
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However, at the region 3-4 border, the question is to whether do adaptation earlier 

during construction or wait for a predetermined period for information arrival. 

Therefore, it should be obvious that the implications of making a poor decision are 

more intense in the former case. Furthermore, based on this observation, it can be 

concluded that the provided method is more beneficial in decisions whether to invest 

on design flexibilities rather than adaptation postponing decisions. 

Consideration of discount rate in the face of climate change can be 

controversies (Goulder & Williams, 2012). In one hand, most investments for damage 

prevention due to climate change would be beneficial many years in the future, while 

discounting the future values can aggressively shrinks those benefits. Here, three 

values for the discount rate have been considered – 0%, 1% and 2%. As obvious, 

category 4 is absent for the case of 0% discount rate and the size of category 3 is at its 

maxima. With the increase in discount rate, the size of category 4 and 5 regions 

increase, whereas the size of category 3 region decreases. For a discount rate of 0%, 

and an expectation time of learning of 30 and 50 years, (which would be more likely 

than the case of 𝑰 = 10 years), there are points in category 3 region that suggest 

waiting for information would result in up to $3 M of benefit in the case of an indirect 

cost of failure of $10 M. 

The change in the indirect cost of failure drastically changes the borders of the 

regions. Especially, it increases the size of region 3 inside the limits of the figure. The 

figure shows that for a discount rate of 1 % and high construction and accessibility 

costs, the benefits of waiting can be around $4 M for indirect cost of failure of $100 M 

when early information arrival is expected (i.e., 𝑰 = 10). 
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Figure 6-12. Waiting value for a range of construction and accessibility costs, various 

discount rates, and indirect failure costs under three assumptions on the mean time of 

information arrival. The numbers on each subfigure identify the planning category of the 

regions separated by gray lines. 
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6.11 Concluding Remarks 

This study analyses bridge scour design and climate-change adaptation 

investment using a new theoretical framework incorporating climatic volatility. The 

provided framework is a contribution to the literature on adaptive management of 

infrastructure by applying dynamic programming and the minimum regret decision 

criterion to adaptation strategies under emerging information on climate change. The 

central feature of the analysis is the way it models the change in uncertainty about 

future climate change through information arrival. The framework does not require 

the likelihood of the possibility of the climate change scenarios and values the timing 

of information arrival in postponing adaptation projects or implementation of 

flexibility in the initial design. 

 Additionally, the approach is intuitively more inline with the nature of human 

behaviour in the face of uncertainties through minimizing regret instead of utility 

maximization. This framework contributes to the implementation of a new design 

paradigm considering the evolving information around climate change. In a 

traditional design paradigm, the infrastructure is designed and built once and 

expected to serve society for the next many decades under supposedly stationary or 

known trends of demand. In the context of climate change, where the future trend is 

uncertain, this design paradigm can be improved through the consideration of future 

adaptation flexibility in the initial design.  

In the case study considered in this paper, optimal design and adaptation 

management of a multi-span river-crossing bridge were analysed, and benefits the 

developed method were illustrated. In the case study, the decision was between 
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constructing a safer, longer span bridge or an adaptable shorter span bridge. It was 

shown that a traditional application of minimum regret approach results in 

immediate construction of the longer bridge. However, the application of the 

development method revealed that building the shorter bridge and waiting for 

information arrival can yield a value of $2.5M in terms of reducing regret from poor 

decision-making under uncertainty. 

A comparison of different decision-making methods for adaptation showed 

that the robust maximin utility method resulted in the highest regret values, especially 

for large construction costs. The subjective expected utility method suggested 

immediate adaptation for low construction costs and doing nothing for higher values, 

resulting in lower regret values for mid to high range of construction cost. Implying 

the classical Minimax Regret can result in up to millions of dollars of saving in terms 

of regret depending on project costs, discount rate and the prospect of time of 

information arrival. 

A comprehensive sensitivity study was performed with various outcomes. 

This study showed that the discount rate has a drastic effect on the waiting value. On 

one hand, most investments for damage prevention due to climate change would be 

beneficial many years into the future, while discounting the future values can 

aggressively shrink these benefits. For a discount rate of 0%, waiting for information 

can result in up to 3 M$ of benefit for an indirect cost of failure of 10 M$. However, 

with an increase of the discount rate to 2% the benefits would shrink to zero. A study 

on the effect of indirect cost of failure revealed that increasing the indirect cost by one 

order of magnitude will not yield a change in the magnitude of the value of waiting 

for information. Furthermore, it was shown that the provided method is more 
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beneficial in decisions whether to invest on design flexibilities rather than adaptation 

postponing decisions. 
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Chapter 7. Conclusion and Recommendation for Future studies 

7.1 Conclusions 

Based on the research presented in the previous chapters of this thesis, the 

following conclusions are drawn: 

Chapter 4: 

To evaluate the potential danger of climate change to infrastructure, a 

structural reliability assessment was conducted using several methods under the 

impact of climate change. The analysis included a case study of nonstationary effects 

of wind load on a simple structural element located in London, Ontario. Based on this 

analysis the following conclusions are drawn: 

• Results from the 100-year analysis period indicate that the lifetime probability of 

failure can be as much as 1.9 times greater than the baseline (stationary) analysis 

if the worst climate change scenario effects are considered. Furthermore, the 

annual probability of failure in the final year of service is almost four times that of 

those in the beginning year (Year 2000).  

• While the reliability methods demonstrate the potential threat of climate change 

to infrastructure, they do not provide means of appropriate decision-making 

among alternative design and adaptation options, which is crucial given the 

uncertainties surrounding climate change.  

 Chapters 5 and 6: 

Traditional optimization-based probabilistic approaches fall short in the face 

of climate change uncertainties, where no likelihood of the various possible scenarios 
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is available. Employing subjective probabilities leads to subjective design suggestions 

with unknow performance and a potential of being regretful in the future. Therefore, 

based on Minimax Regret, a non-probabilistic decision-making approach, a 

framework was developed in this thesis. The framework requires no likelihood of 

climate change scenarios. Additionally, the approach is robust and captures the 

nature of human behavior better than the traditional expected utility approach in the 

face of uncertainties through regret minimization. 

As the information around climate change is evolving over time, a new design 

paradigm was considered in the developed framework. In a traditional design 

paradigm, the infrastructure is designed and built once and is supposed to serve 

society for the next many decades under supposedly stationary conditions or known 

trends of demand evolvement. In the context of climate change, where the future 

trend is uncertain, this design paradigm can be improved through the consideration 

of future adaptation flexibility in the initial design. On this basis, the proposed 

method is founded on an assumption that the information on the environment 

forcings somehow becomes available over time, which might make delaying 

expensive safety investments valuable. The framework resorts to adaptive solutions 

and dynamic programming, beginning with a less expensive option until the actual 

condition of the environment is more evident. In this regard, the monetary added 

value of waiting for information is determined by comparing the outcomes for two 

cases of having and not having an expectation of a future information.  

As opposed to the classical minimax regret, the developed method does not 

provide a predetermined adaptation procedure or plan. Instead, it provides design 

and adaptation policies or strategies on choosing the most appropriate set of action as 
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time passes and more information on the environmental conditions is revealed. As 

the optimal design and adaptation policy and efficacy of the method depend on the 

cost properties of projects. In this regard the possible design and management 

behaviour can be classified into seven distinct categories. An algorithm was 

introduced that classifies the projects into those seven categories. Based on the case 

studies in chapter 5 and 6, the following conclusions are drawn: 

• It was shown that the classical minimax regret suggests immediate adaptation 

during construction if a project falls under Categories 1, 2, and 3; in-service 

adaptation for projects under Category 4; and doing nothing if a project falls under 

the remaining categories.  

• It was shown that consideration of information arrival through applying the 

developed methodology is beneficial only for projects falling in Categories 3, 4, 

and 5. For a new construction project, consideration of the information arrival is 

the most critical if the project falls under categories 3 and 5. For a Category 3 

project, the developed method may suggest avoiding immediate safety 

investments on the contrary to the recommendation of the classical minimax 

regret. If a project falls under Category 5, consideration of future flexibilities in the 

initial design can be beneficial, which is against the recommendation of the 

classical minimax regret. However, for a Category 4 project, arrival of information 

may only expedite adaptation investments, which happens automatically even 

without consideration of information arrival in the initial design. Therefore, in the 

case of climate change, where information arrival is not at the control of the 

decision-maker, the developed method has no edge over the classical minimax 

regret. However, when information arrival is at the control of the decision-maker, 
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(like in the case of bridge corrosion management), waiting value for information 

can also be interpreted as the value of testing for information gathering, making 

the developed method valuable even for category 4 projects. 

• Sensitivity studies for the case study of corrosion management (Chapter 5) also 

show that the added waiting value for information is more sensitive to the 

discount rate than the expected time of information arrival. Furthermore, it was 

shown that the maximum expected waiting value is increased with increase in 

protection life and decrease in the discount rate (from 24% to 44% of disaster cost 

for discount rate of 0%, and from 19% to 29% for discount rate of 2%, where 

disaster cost is defined as the lifetime cost of no system modification under the 

worst scenario). However, the extent of region shrinks as the maximum value 

increases with the change in these variables. 

• It was shown that in the absence of information, the implications of making poor 

decision of not implementing flexibility in design (around the border of Categories 

4 and 5) can be more than early adaptation investments during construction for 

Category 3 projects. 

• In the case study of bridge scour adaptation, a comparison of different decision-

making methods for adaptation showed that the robust maximin utility method 

resulted in the highest regret values, especially for large construction costs. The 

subjective expected utility method suggested immediate adaptation for low 

construction costs and doing nothing for higher values, resulting in lower regret 

values for mid to high range of construction cost. Implying the classical minimax 
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regret can result in up to millions of dollars of saving in terms of regret depending 

on project costs, discount rate, and the prospect of time of information arrival. 

• It was shown that the discount rate has a drastic effect on the waiting value. On 

one hand, most investments for damage prevention due to climate change would 

be beneficial for many years into the future, while discounting the future values 

can aggressively shrink these benefits. For a discount rate of 0%, waiting for 

information can result in up to 3.5 M$ of benefit for an indirect cost of failure of 10 

M$. However, with an increase in the discount rate to 2% the benefits would shrink 

to zero. 

• A study on the effect of indirect cost of failure revealed that increasing the indirect 

cost by one order of magnitude will not yield a change in the magnitude of the 

value of waiting for information. 

7.2 Future Studies 

The following is a list of possible areas of future work stemming from the presented 

research: 

• Considering multiple adaptation steps and magnitudes: The current study considers 

only one adaptation step with a predetermined magnitude. Although 

considering multiple adaptation steps and magnitudes would result in more 

complicated approaches, it would better indicate the value of waiting for 

information and design flexibility and perhaps more accurately reflect the full 

range of possibilities actually available to infrastructure managers. 
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• Optimizing initial design based on possible adaptations in the future: This study only 

considers the value of modification of an existing design. In practice, the 

designer would be faced with various design options, and the waiting value 

and design flexibility should be assessed considering all these options. 

• Investigate a method that adjusts prior initial belief for least regret and allows for 

smooth learning: This study assumes that information emerges in a sudden 

event, which can be improved for more compliance with reality. To achieve 

this, a probabilistic method can be used to represent the state of belief in the 

possible scenarios and update the probabilities using a Bayesian updating 

scheme based on observations. To avoid the issue of imposing subjective 

probabilities in the initial design phase, where there is no information on the 

probability of the scenarios is available, the initial probabilities can be adjusted 

so that they lead to the minimum possible regret. In this way, the advantages 

of both non-probabilistic and multiple-prior methods could be captured in one 

framework. 

• Employ the method on case studies to better investigate the value of flexibility in design: 

In the case studies used for this work, although the value of design flexibility 

was inferred from the waiting value, it was not directly considered in the 

design. For example, in the case of bridge corrosion management through 

metalizing, no initial investment was necessary to allow metalizing in the 

future. Instead, it was assumed that later metalizing is always possible without 

prior considerations. Therefore, to better reflect on the value of design 

flexibility, more relevant case studies should be investigated. 
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• Perform studies for simplifying the adaptive design and adaptation management 

process for general applications and code development: The approaches proposed in 

this study are not easily applicable in day-to-day engineering practice. 

Therefore, to capture the benefits of design flexibility and waiting value in 

common engineering practice, more research studies and tool developments 

are needed. 

• Develop frameworks for considering the budget and monetary limitation along with 

waiting value and design flexibility in the design and adaptation management process: 

After many decades of improper management, many civil infrastructure 

managers are now facing budget shortages, making it challenging to maintain 

an inventory of already degraded assets. Therefore, any adaptation measure 

and implementation of design flexibility is in direct competition with 

maintaining the crumbling assets over a limited budget. To effectively manage 

this issue, frameworks need to be developed that consider both the budget and 

monetary limitations, as well as the waiting value and design flexibility 

necessary for the adaptation of infrastructure to climate change. By adopting 

such an approach, infrastructure managers can allocate limited resources more 

efficiently, ensuring that existing assets are maintained while also allowing for 

the development of new infrastructure that meets the changing demands and 

the challenges posed by climate change. 

• Investigate and implement emission reduction along with monetary values in the 

design and adaptation management process: Governments and agencies are 

pushing toward measuring and controlling GHG emission especially in the 
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construction industry. Therefore, it is important to consider GHG emission 

alongside monetary values in a comprehensive framework for design and 

adaptation management of infrastructure. 

• Investigate the application of reinforcement learning: Investigate the application of 

reinforcement learning in the design and adaptation management of 

infrastructure for solving complicated planning problems with various options 

and criteria mentioned in the previous recommendation. 
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Appendix A.  

A.1. Load Factors and Reliability Index 

This section aims to calculate the proper value for the load factor, which yields 

a desired reliability index (𝛽). For simplification, the lognormally distributed random 

variables for the resistance, 𝑅, and load, 𝐿, can be replaced by normalized variables: 

𝑧𝑅 =
𝑅

𝑅𝑛
 ,  𝑧𝐿 =

𝐿

𝐿𝑛
 (0-1) 

In Equation (0-1), the ‘𝑛’ subscript denotes a nominal or design value, 𝑆 and 𝑅 are the 

actual load and resistance, and 𝑧𝐿 and 𝑧𝑅 are the normalized load and resistance. 

Therefore, the limit state function 𝐺 can be written as: 

𝐺 = 𝑧𝑅 ∙ 𝑅𝑛 − 𝑧𝐿 ∙ 𝐿𝑛  or 𝐺 = 𝑧𝑅 ∙ 𝐿𝑛 ∙ 𝛼𝐿 − 𝑧𝐿 ∙ 𝐿𝑛  (0-2) 

Failure happens when 𝐺 <  0 or 𝑧𝑅 ∙ 𝛼𝐿 < 𝑧𝐿 . Taking the natural log of both 

sides: 

𝐿𝑁(𝛼𝐿) + 𝐿𝑁(𝑧𝑅) < 𝐿𝑁(𝑧𝐿)  

𝐿𝑁(𝑧
𝐿
) − 𝐿𝑁(𝑧𝑅) > 𝐿𝑁(𝛼𝐿) 

(0-3) 

As 𝑧𝐿 and 𝑧𝑅 are lognormally distributed, LN(𝑧𝐿) and LN(𝑧𝑅), and a new variable 

defined as LN(𝑧𝐿) − LN(𝑧𝑅) = 𝑋, would have normal distributions. Therefore, the 

limit state function can be redefined as: 

𝑋 > 𝐿𝑁(𝛼𝐿)  (0-4) 

Consequently, the probability of failure can be calculated using the following 

formulas: 

𝑝(𝑋 > 𝐿𝑁(𝛼𝐿)) = 𝛷(−𝛽)  (0-5) 
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From this equation one can conclude 𝑝(𝑋 < 𝐿𝑁(𝛼𝐿)) = 𝛷(𝛽), and further 

expand the equation to: 

𝑝 (
𝑋 − �̅�

𝜎𝑋
<

𝐿𝑁(𝛼𝐿) − �̅�

𝜎𝑋
) = 𝛷(𝛽) 

(0-6) 

Please note that the mean value of each variable is denoted by a bar (e.g. �̅�) while their 

COV is denoted with a COV (e.g. COV𝐿), and their standard deviation is shown by 𝜎 

(e.g. 𝜎𝑋). In Equation (0-5), as  (𝑋 − �̅�) 𝜎𝑋⁄  follows the standard normal distribution, 

one can conclude that 
𝐿𝑁(𝛼𝐿)−�̅�

𝜎𝑋
= 𝛽. Therefore, the load factor can be calculated by the 

following formula as a function of the reliability index (𝛽):  

𝛼𝐿 = 𝐸𝑋𝑃(𝛽 ∙ 𝜎𝑋 + �̅�) (0-7) 

where: 

𝜎𝑋 = √𝐿𝑁[(1 + COV𝑧𝐿
2 )(1 + COV𝑧𝑅

2 )] 
(0-8) 

and  

�̅� = 𝐿𝑁 (
𝑧�̅�

𝑧�̅�
√

1 + COV𝑧𝑅
2

1 + COV𝑧𝐿
2

) 

(0-9) 

However, it is worth noting that in general design problems, the demand on 

the engineered component or system usually involves a combination of different 

loads, each of which is given its load factor in modern design codes. The simultaneous 

presence of dead and wind load effects on a structure is a simple example of such a 

condition. In this regard, the limit state function can be redefined as 𝐺 =  𝑅 – (𝐷 +

 𝑊) where 𝐷 and 𝑊 are random variables representing dead and wind load effects. 

Accordingly, a minimum resistance (𝑅𝑛) is required: 
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𝜙𝑅𝑅𝑛 = 𝛼𝐷𝐷𝑛 + 𝛼𝑊𝑊𝑛  (0-10) 

Here, 𝜙𝑅, 𝛼𝐷, and 𝐷𝑛, are the resistance factor, dead load factor, and nominal dead 

load effect, while αw and Wn represent the wind load factor and nominal wind load 

effect. Given the resistance and dead load factors and parameters of the load and 

resistance random variables, the wind load factor can be calculated by replacing the 

statistical parameters of 𝑅 (resistance) in Equation (0-11)) with 𝑈 =  𝑅 –  𝐷 and 𝐿 with 

𝑊. As a result, with the assumption of a lognormal distribution for 𝑈: 

𝛼𝑊 =
�̅�𝑊

�̅�𝑈
𝛺  

𝛺 = (√
1 + COV𝑧𝑈

2

1 + COV𝑧𝑊
2

) EXP (𝛽√LN[(1 + COV𝑧𝑊
2 )(1 + COV𝑧𝑈

2 )]) 

(0-11) 

in which the normalized lognormally distributed random variable 𝑧𝑈, is defined 

according to the following formula: 

𝑧𝑈 =
𝑅−𝐷

𝜙𝑅𝑅𝑛−𝛼𝐷𝐷𝑛
=

𝑅𝑛

𝑈𝑛
𝑧𝑅 −

𝐷𝑛

𝑈𝑛
𝑧𝐷  (0-12) 

where 𝑈𝑛 = 𝜙𝑅𝑅𝑛 − 𝛼𝑑𝐷𝑛. As a result, 𝑧�̅� and 𝜎𝑧𝑈
, the mean and standard deviation of 

𝑧𝑈 can be computed using Equations (0-13) and (0-14) respectively: 

𝑧�̅� =
𝑅𝑛�̅�𝑅−𝐷𝑛�̅�𝐷

𝑈𝑛
  (0-13) 

𝜎𝑧𝑈
= √(

𝑅𝑛

𝑈𝑛
)

2
𝜎𝑧𝑅

2 + (
𝐷𝑛

𝑈𝑛
)

2
𝜎𝑧𝐷

2  
(0-14) 

Therefore, the COV of 𝑧𝑈 is: 

COV𝑧𝑈
=

√(
𝑅𝑛
𝑈𝑛

)
2

𝜎𝑧𝑅
2+(

𝐷𝑛
𝑈𝑛

)
2

𝜎𝑧𝐷
2

𝑅𝑛
𝑈𝑛

�̅�𝑅−
𝐷𝑛
𝑈𝑛

�̅�𝐷
  

(0-15) 



 

 153 

The other important outcome is that the reliability index can be computed through 

the following equation: 

𝛽 = 𝐿𝑁 (𝛺√
1+COV𝑧𝑊

2

1+COV𝑧𝑈
2 ) /√𝐿𝑁[(1 + COV𝑧𝑊

2 )(1 + COV𝑧𝑈
2 )]  

(0-16) 

𝛺 =
𝑧�̅�

𝑧�̅�𝜙𝑅
[𝛼𝑊 −

𝐷𝑛

𝑤𝑛
(

𝜙𝑅𝑧�̅�

𝑧�̅�
− 𝛼𝐷)] 

(0-17) 

A.2. Category Sample Analysis 

Following the analysis in Section 5.4.1, to interpret the value of waiting, 

adaptation plans are categorized into 7 types. For protection life of 40 and 70 years 

and discount rate of zero and two percents maps of region of these categories are 

presented in Figure 0-1. For better understanding, for the sample points 𝑎 trough i in 

this figure, the regrets and adaptation policy summaries are presented in Figure 0-2 

to Figure 0-4. Further explanation is avoided as these figures can be interpreted in a 

way similar to what was provided in Section 5.3. In these figures, curves associated 

with the stochastic method are drawn for lognormally distributed information update 

with mean of 𝐼 ̅ = 10 years and COV of 0.5. To assess the effect of info update 

distribution, Figure 0-5 is provided for 𝐼 ̅ = 40 instead but with the same discount rate 

of 2%. As can be seen, with the increase in 𝐼 ̅the stochastic value of waiting is decreased 

and for Category 3, the initial waiting decision is changed to metalizing. 
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Figure 0-1. Decision category for different values of the considered parameters. 
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Figure 0-2. Regret values of various strategies for the sample points a trough i with discount 

rate of 0% in Figure 0-1. 
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Figure 0-3. Regret values of various strategies for the sample points a trough i with discount 

rate of 2% in Figure 0-1. 
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Figure 0-4. Summary of the plan to whether metalize, not metalize, or wait during 

construction and later over time, as well as the deterministic and stochastic value of waiting 

($/$) for the sample points a to i with Discount rate 0%, 𝑰 = 𝟏𝟎 years and COV of 0.5. 
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Figure 0-5. Summary of the plan to whether metalize, not metalize, or wait during 

construction and later over time, as well as the deterministic and probabilistic value of 

waiting ($/$) for the sample points a to i with Discount rate 2%, 𝑰 = 𝟒𝟎 years and COV of 

0.5. 
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