
Multilingual Grammatical Error
Detection And Its Applications to

Prompt-Based Correction

by

Gustavo Sutter Pessurno de Carvalho

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2023

© Gustavo Sutter Pessurno de Carvalho 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Grammatical Error Correction (GEC) and Grammatical Error Correction (GED) are
two important tasks in the study of writing assistant technologies. Given an input sentence,
the former aims to output a corrected version of the sentence, while the latter’s goal is to
indicate in which words of the sentence errors occur. Both tasks are relevant for real-world
applications that help native speakers and language learners to write better. Naturally,
these two areas have attracted the attention of the research community and have been
studied in the context of modern neural networks. This work focuses on the study of
multilingual GED models and how they can be used to improve GEC performed by large
language models (LLMs).

We study the difference in performance between GED models trained in a single lan-
guage and models that undergo multilingual training. We expand the list of datasets used
for multilingual GED to further experiment with cross-dataset and cross-lingual gener-
alization of detection models. Our results go against previous findings and indicate that
multilingual GED models are as good as monolingual ones when evaluated in the in-domain
languages. Furthermore, multilingual models show better generalization to novel languages
seen only at test time.

Making use of the GED models we study, we propose two methods to improve correc-
tions of prompt-based GEC using LLMs. The first method aims to mitigate overcorrection
by using a detection model to determine if a sentence has any mistakes before feeding it
to the LLM. The second method uses the sequence of GED tags to select the in-context
examples provided in the prompt. We perform experiments in English, Czech, German
and Russian, using Llama2 and GPT3.5. The results show that both methods increase
the performance of prompt-based GEC and point to a promising direction of using GED
models as part of the correction pipeline performed by LLMs.

iii

Acknowledgements

First, I would like to thank my supervisor, Professor Pascal Poupart, for all the support
during my Master’s degree. His valuable guidance and vast knowledge were vital for me
throughout the degree.

I would like to thank my family, every single one of them always motivated me to pursue
my dreams and always believed in me. For my parents, Andre and Maria Isabel, I would
like to express how thankful I am for you always incentivizing me to learn and explore.
You are the best parents I could have ever wished for. I love you.

Moving to a different country without knowing anyone during the lockdown period was
the most challenging moment of my life. I would like to thank my friends Fernando, Luiz
Guilherme, Matheus Gomes, Matheus Tassi, Philippe, Victor and Vittorio, who kept me
company online during this hard transition period. I would also like to thank Carol, Julia,
Juliana and Vrech, for accepting me into their friend group and making me feel welcome
in Canada. Finally, I want to thank my roommates João Paulo and Matheus, who are an
important part of my daily life.

Last, but certainly not least, I would like to thank my girlfriend Shelby. I want to
thank you for always being there to listen and help, especially in moments when anxiety
has taken control over me. I also want to thank you for all the fun moments, every meal
we cooked and every show we watched were important and made me feel loved in this
once-unknown city. You make me the happiest person on earth.

iv

Dedication

This is dedicated to my parents and my brother.

v

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Dedication v

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Motivation . 1

1.2 Tasks . 3

1.3 Research Questions . 3

1.4 Contributions . 4

1.5 Thesis Outline . 5

2 Background 6

2.1 Neural Networks . 6

2.2 Sequential Data and Recurrent Neural Networks 7

vi

2.3 Transformers . 9

2.3.1 Decoder-Only Models . 13

2.3.2 BERT - Encoder-Only Models . 14

2.4 NLP Beyond English . 15

2.5 Grammatical Error Correction . 16

2.5.1 Datasets . 17

2.5.2 Evaluation Metrics . 20

2.6 Grammatical Error Detection . 22

2.6.1 Datasets . 23

3 Related Work 25

3.1 Grammatical Error Detection . 25

3.2 Grammatical Error Correction . 26

3.2.1 Supervised Methods . 26

3.2.2 Unsupervised Methods . 27

4 Multilingual Grammatical Error Detection 28

4.1 Methodology . 30

4.2 Experimental Setup . 31

4.3 Results and Analysis . 31

4.3.1 In-domain . 31

4.3.2 Cross-dataset . 32

4.3.3 Cross-Lingual . 32

5 Detection Assisted Prompt-Based Grammatical Error Correction 34

5.1 Methodology . 35

5.1.1 GED Filtering of Correct Senteces 35

5.1.2 GED for In-context Example Selection 36

vii

5.2 Experimental Setup . 37

5.3 Results and Analysis . 39

5.3.1 GED Filter . 39

5.3.2 TF-IDF GED . 42

5.3.3 Combining the Methods . 43

6 Conclusions 45

References 47

viii

List of Figures

1.1 Example of GEC and GED tasks. On the former, a corrected sentence is
returned as output. On the latter, a correct (C) or incorrect (I) label is
produced for each word. 1

2.1 Illustration of a feedforward neural network with a single hidden layer. . . 7

2.2 Visualization of the different types of sequential data tasks. 8

2.3 Schematic representation of an RNN unrolled over the input steps. 9

2.4 The Transformer architecture from Vaswani et al. [71] 12

4.1 Difference between a collection of models trained on monolingual data (left)
and a single model trained with multilingual data (right). 29

4.2 Results of cross-lingual transfer across all models. 33

5.1 Illustration of the TF-IDF GED framework proposed for in-context example
selection. First, the sentences are passed to a GED model to extract the
detection tags, and then TF-IDF is used on the tags to extract feature
vectors. Once with the feature vectors, we compute the similarity between
the test sentence and the training examples to obtain the in-context examples. 36

5.2 Effect of filtering out correct sentences on the W&I+LOCNESS development
set. 39

5.3 Comparison between the random selection, SBERT similarity, and TF-IDF
GED on the W&I+LOCNESS development set. 42

5.4 Comparison between the random selection, and TF-IDF GED with mul-
tiple levels of granularity and ground truth data on the W&I+LOCNESS
development set. 43

ix

List of Tables

2.1 Example of error types in GEC from [11] 16

2.2 Overall statistics of the different GEC datasets from [11]. A question mark
(?) indicates unknown or approximated information. Notice that the Arabic
dataset is split into documents instead of sentences. 18

2.3 Example of different levels of granularity in GED. 22

2.4 Statitics of the datasets from MultiGED-2023. Notice that English-REALEC
only has dev and test splits. 23

4.1 Statistic of the new GED datasets used for evaluation. Note that the Arabic
dataset is split into documents rather than sentences. 31

4.2 Results of monolingual and multilingual models on the in-domain datasets. 32

4.3 Results of monolingual and multilingual models on the cross-dataset evalu-
ation. 33

5.1 Results of the multilingual GED model when evaluated on a sentence level.
For this experiment, the sentence is considered incorrect if any of its words
are classified as incorrect. 36

5.2 Complete results on the W&I+LOCNESS development set. Checkmarks
(✓) indicated if the corresponding method was used. The reported scores are
the average between five random seeds, with indicated standard deviation.
Bold values indicate the highest score for each number of in-context examples. 40

5.3 Results of both methods on the non-English datasets. Checkmarks (✓)
indicated if the corresponding method was used. The reported scores are
the average between three random seeds, with indicated standard deviation.
Bold values indicate the highest score each number of in-context examples. 41

x

5.4 Results of the combination of filtering and TF-IDF GED in test sets in
English, Czech, German and Russian. Dashes (-) indicate that the method
was not available in the language. Models are divided into supervised and
unsupervised, the first being supervised and the last unsupervised. 44

xi

Chapter 1

Introduction

1.1 Motivation

The advances in machine learning driven by the deep learning revolution in the early 2010s
have drastically impacted natural language processing (NLP). From speech recognition,
machine translation, and natural language generation to many others, the use of neural
networks boosted the performance of ML systems by large margins. Not differently, areas
related to writing assistance have also been explored and greatly benefit from modern
approaches.

Mainly, two tasks have been studied in this context: Grammatical Error Detection
(GED) and Grammatical Error Correction (GEC). The former is interested in detecting
which words in a sentence are incorrect and the latter focuses on generating a correction.

Figure 1.1: Example of GEC and GED tasks. On the former, a corrected sentence is
returned as output. On the latter, a correct (C) or incorrect (I) label is produced for each
word.

1

An example of both tasks is provided in Figure 1.1. These systems are present in general
public applications, such as Microsoft Editor 1 and Grammarly 2, and as part of toolboxes
for proofreading professionals and language learning instructors. Detection can be used as
an explicit step toward correction but also developed as a final goal.

Analyzing the example provided in Figure 1.1 we can see some of the error types covered
in the tasks. More specifically the extra a is a determiner error, the wrong pluralization
gooses is a morphology error, was in place of were is a verb agreement error and towads is
a spelling error. From this example, it is also possible to notice that to perform detection
and correction both local and global sentence structures should be taken into consideration.

Although English is the language with the largest number of speakers in the world, more
than three-fourths of the world’s population does not speak English, most of which are in
developing countries. Therefore, to make NLP accessible we should go beyond English.
In addition, studying different languages gives rise to new challenges, such as lower data
availability and more complex syntax and morphology structures. This motivates the
development of more powerful and data-efficient algorithms. The study of multilingual
models that can improve the performance of low-resource languages by generalizing from
high-resource ones has been demonstrated to be an effective solution.

Most of the work in GED and GEC was developed in English, with some efforts being
developed in other languages. One instance is the MultiGED-2023 shared task [72], which
released new datasets to promote the development of multilingual GED. With the released
datasets and the submissions to the task, results indicated that monolingual models are
still better for detection than a multilingual solution that can be shared across languages.

Back to the general problem of GEC, recent works have investigated the use of Large
Language Models (LLMs) on the task. The idea is to prompt the model by describing the
task and providing some in-context examples. This approach allows very quick implemen-
tation of GEC systems, as a variety of LLMs are available through API calls and require
no training. However, the overall performance of prompt-based GEC is still far from the
results achieved by supervised methods. Among the reasons for this difference, is LLMs’
tendency to overcorrect and generate corrections that are not expected by the test dataset.
This gap motivates more work studying ways in which prompt-based GEC can get closer
to supervised models.

1https://www.microsoft.com/en-ca/microsoft-365/microsoft-editor
2https://app.grammarly.com/

2

https://www.microsoft.com/en-ca/microsoft-365/microsoft-editor
https://app.grammarly.com/

1.2 Tasks

Definition 1 Grammatical Error Correction (GEC) is a task in which an input sentence,
potentially containing grammatical errors, is presented, and the goal is to generate a cor-
rected version as the output. GEC involves grammar, misspellings, punctuation, word
choice and fluency. It often requires an understanding of the intended meaning of the
writer in order to perform the correction. The output should always preserve this meaning,
and no unnecessary changes should be made to the input.

In practice, GEC can be performed in both a supervised and unsupervised manner.
Supervised methods make use of a paired dataset to learn the mapping between input
sentences and their correction. On the other hand, unsupervised methods often rely on
language models, which can be done through prompting or methods that use the probability
of a sentence.

Definition 2 Grammatical Error Detection (GED) is a task focused on identifying the
errors within a given sentence. Typically framed as a word-level classification task, GED
aims to predict which words in a sentence are incorrect. GED can adopt binary or multiclass
approaches, the former indicating correctness and the latter dealing with specific error types.

1.3 Research Questions

In this thesis we seek answers to the following research questions:

Question 1 Grammatical rules are language-specific, however, language groups tend to
share different grammatical features. This leads to a natural trade-off between focusing on
a single language at a time and trying to exploit shared features between languages. Can
a single model learn to perform GED in multiple languages at the same level as models
trained on monolingual datasets?

Question 2 GED models are usually fine-tuned on top of massively multilingual founda-
tion models. Given the fact that languages share grammatical and structural similarities,
models should be able to perform zero-shot detection in languages not seen during GED
training. How well do monolingual and multilingual GED models perform in zero-shot
cross-lingual evaluation?

3

Question 3 A notable problem with prompt-based GEC with LLM is overcorrection. We
are interested in making use of a GED system to improve corrections by avoiding that
sentences without errors are changed by the LLM. What is the impact of using a GED
model to filter out correct sentences before performing prompt-based GEC?

Question 4 Semantical similarity is often used to determine relevant in-context examples
from the training set, however, providing sentences with similar meaning is not useful for
GEC. Instead, we hypothesize that computing the similarity based on GED tags may allow
more relevant examples to be retrieved. What method is better for GEC in-context example
selection: semantical similarity or detection tags similarity?

1.4 Contributions

On the GED side, we perform various experiments comparing monolingual and multilingual
models. Evaluation is performed with a focus on in-domain, cross-dataset and cross-lingual
generalization. We make sure to use reasonable choices of hyperparameters and multiple
random seeds to capture the variance in the results. We show that contrary to what was
stated in the MultiGED task report, models trained on a single language and models trained
on multilingual corpora obtain equivalent performance. Both in-domain and cross-dataset
evaluation results show that the strategies achieve very close results.

For cross-lingual generalization of GED models, we experiment with four extra new
languages covering more diverse grammatical rules. We show that the multilingual model
can generalize to novel languages and achieve reasonable results without ever being trained
to perform detection in the language. We also observe that transfer is not equal to all
languages and the model can struggle to generalize to certain languages.

Regarding prompt-based GEC, we demonstrate two ways in which GED can be used
to improve performance in English, Czech, German and Russian. First, we use the afore-
mentioned multilingual GED model to filter out sentences that are already correct. This
improves the scores of the GEC models and reduces the number of sentences fed to the
LLM, most likely the most costly component of the pipeline.

Secondly, we show that detection tags can be used for in-context example selection.
We demonstrate that features extracted from predicted GED tags improve the corrections.
Considering that GED systems can be trained with relatively small datasets and trans-
fer well between datasets and certain languages, it is an effective way to improve GEC
performed by LLM.

4

To the best of our knowledge, we are the first to benchmark Llama2 [69] on the GEC
task. For the other languages, we use GPT3.5, and we are the first work to explore Russian
and Czech GEC through prompting LLMs.

1.5 Thesis Outline

This thesis is organized as follows.

• In Chapter 2, we introduce fundamental topics in modern NLP, such as Feedfor-
ward Neural Networks, Recurrent Neural Networks and Transformers. As well as
background information on Multilingual NLP, Grammatical Error Correction and
Grammatical Error Detection.

• In Chapter 3, we describe related work in GED and GEC. This situates the methods
we study in the overall landscape of the fields.

• In Chapter 4, we study the differences between monolingual and multilingual models
under the lens of in-domain, cross-dataset and cross-lingual evaluation.

• In Chapter 5, we propose two methods that make use of GED models to improve
prompt-based GEC with LLMs.

• In Chapter 6, we summarize our work, discussing limitations and indicating future
directions.

5

Chapter 2

Background

In this chapter, we cover the background work that is used as a basis throughout the thesis.
First, we introduce neural networks and the foundation of deep learning models. Second,
we cover the paradigm of sequential data, exploring its formulation and recurrent neural
architectures. Next, we explore the Transformer, the prevalent model in modern natural
language processing, and its variations. Next, we discuss the importance of expanding
NLP research beyond English. Finally, we introduce Grammatical Error Correction and
Grammatical Error Detection, defining the problems, and going through popular datasets
and evaluation metrics.

2.1 Neural Networks

Artificial Neural Networks, or simply Neural Networks, are a type of machine learning
model loosely inspired by the brain. They consist of interconnected nodes, called artificial
neurons, that are organized in layers. Each neuron takes as input the signals from the
previous layer and weights them to compute its output, referred to as activation. The
number of layers between the input and output layers and the number of neurons in each
layer are both model hyperparameters.

A fundamental type of neural network is the feed-forward neural network, in which
all neurons in a layer have a weighted connection to all neurons in the previous layer.
Mathematically, a layer can be defined as a function f(x;W, b) = σ(xW + b), where x is
an input vector, W is a weight matrix, b is bias vector, and σ a non-linear function referred

6

Figure 2.1: Illustration of a feedforward neural network with a single hidden layer.

to as activation function. The activation is used so that neural networks can learn non-
linear functions and, at the same time, make neural networks a non-convex optimization
problem.

With the use of deeper models, we get powerful models that are able to learn complex
relationships between features and targets. To support bigger neural networks while keep-
ing training times within a reasonable length, heavy parallelism is exploited using GPUs
and TPUs.

To train the network the input is passed through all layers and the final output is
compared to the true values/labels using a loss function. Loss functions are differentiable
functions that measure how good/bad the neural network is, common loss functions used for
classification and regression tasks are Cross-Entropy and Mean Squared Error, respectively.
Using backpropagation to compute their derivatives, the parameters are updated using
Stochastic Gradient Descent or its variations.

2.2 Sequential Data and Recurrent Neural Networks

In a wide variety of applications, we are interested in data that is structured as sequences
of potentially varying lengths. As depicted in Figure 2.2, this includes sequential input
with single output (many-to-one), single input with sequential output (one-to-many), and
sequential input and sequential output (many-to-many). Some examples of each paradigm
are sentiment analysis, image captioning and machine translation, respectively.

Further exploring the many-to-many setting, it can be broken down into the case in
which input and output have the same length and the case in which they do not. The

7

case where the lengths differ the problem is usually referred to as sequence-to-sequence.
To illustrate the difference between the two, we can look into part-of-speech tagging and
machine translation. In the former, each word in the input sequence is mapped to one
tag, but in the latter, there’s no one-to-one mapping between words, which can result in
different lengths.

Figure 2.2: Visualization of the different types of sequential data tasks.

As simple feedforward neural networks are not ideal for dealing with sequential data,
specific architectures were developed to address this problem. More notably Recurrent
Neural Networks (RNNs) were the prevalent way to deal with sequential data for many
years and are still widely used. In their basic configuration, RNNs keep a hidden state
vector that is passed along as the sequence is being processed, capturing the dependency
on previous steps. As demonstrated in Figure 2.3, at each step the previous hidden state
ht−1 and the current input xt are used to compute the current hidden state ht and the
current output ŷt according to following equations:

ht = g(W hhht−1 + W hxxt)

ŷt = f(W yht)

where f ,g are activation functions, and W hh, W hx, W y are learnable weight matrices.

Due to its form, some optimization problems arise with long sequences, resulting in
exploding/vanishing gradients on the earlier steps. To address this problem, more complex
RNN architectures such as Long Short Term Memory (LSTM) [28] and Gated Recurrent
Unit (GRU) [12] use gating mechanisms when processing the hidden state at each step.

For sequence-to-sequence problems, it was proposed to use one RNN to read the input
sequence and another RNN to generate the output sequence. In this encoder-decoder

8

Figure 2.3: Schematic representation of an RNN unrolled over the input steps.

architecture, the input sequence is processed by the encoder network producing a fixed-
length context vector (often the last hidden state). The decoder generates each element of
the output sequence conditioned on the previous outputs and the context vector generated
by the encoder. The whole system, both encoder and decoder, is trained end-to-end using
backpropagation.

An extension to the architecture just described is to use a different context vector at
each step instead of the same context vector every time. This mechanism, called attention,
allows the decoder to select which parts of the input are more relevant at each decoding
step. Concretely, the context at a certain step is computed as a convex combination
of the hidden states of the encoder, where the coefficients are computed using a simple
feed-forward network that receives as input the current hidden state of the decoder and
the corresponding hidden state of the encoder. As all modules are still differentiable the
system is trained end-to-end using backpropagation.

2.3 Transformers

The main bottleneck in RNNs is their recurrent nature, as the sequence has to be processed
element by element there is a limit to the amount of parallelism that can be exploited.
Because of that, training time becomes prohibitive when dealing with longer sequences or
massive datasets. The Transformer architecture solves this problem by avoiding recurrence
and relying completely on the attention mechanism. The resulting architecture is extremely
parallelizable, allowing it to be used with massive datasets and obtain the state-of-the-art
in a wide variety of deep learning tasks.

Following the general framework for sequence-to-sequence learning, the Transformer

9

[71] is an encoder-decoder architecture. The encoder maps the sequence of input ele-
ments (x1, ...,xn) into a sequence of fixed-length representations (z1, ...,zn) that is given
to the decoder to generate the output sequence (y1, ...,ym). A complete picture of the
Transformer is provided in Figure 2.4. Before defining the architecture of the encoder and
decoder layers let us go through the relevant components.

Scaled Dot-Product Attention: The inputs to this module are queries and keys of
dimension dk and values of dimension dv. To compute the output, the dot product between
queries and keys is divided by

√
dk and passed through a softmax to get the weights used to

combine the values. Formally, considering the matrices of packed keys, queries and values
as K, V , and Q, respectively, the matrix of outputs is given by:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V

Multi-head Attention: The main idea of this module is to perform attention with
lower dimension projections of the queries, keys and values, and then concatenate the
outputs. The idea is that the independent attention outputs can capture different aspects
of the sequence. The Multi-head Attention can be computed as:

MultiHead(Q,K, V) = Concat(head1, ..., headh)WO

where headi = Attention(QWQ
i , KWK

i , V W V
i)

where WQ, WK , W V WO are learnable projection matrices. When the same set of
vectors is passed for keys, vectors and queries it is denominated self-attention.

Position-wise Feed-Forward Networks: This module receives a sequence of vectors
and processes each separately by the same feed-forward network. The network consists of a
single hidden layer with ReLU activation and higher dimensionality than the input vectors.
Considering each vector as x they are processed as follows:

FFN(x) = max(0, xW1 + b1)W2 + b2

With all the components defined, we can build the encoder and decoder layers.

Each encoder layer receives a set of vectors, each with dimension dmodel, and has two
sub-layers: multi-head self-attention followed by a position-wise feed-forward network. In
both sub-layers, there are residual connections followed by layer normalization modules.

10

The input and output of both sub-layers and by consequence of the whole layer, have the
same dimensionality dmodel.

The decoder layer has an extra sub-layer module, which performs multi-head attention
over the output of the encoder. This “encoder-decoder attention” is positioned in between
the two sub-layers described on the encoder and also has a residual connection and layer
normalization. Another difference is that the decoder’s self-attention is altered so that each
position cannot attend to subsequent positions. This is often referred to as masked self-
attention and allows the decoder to work in parallel while preserving the auto-regressive
property of the decoding process.

One important property of both multi-head attention and position-wise feed-forward
is permutation equivariance, that is, permuting the input vectors would simply permute
the output vector, without changing the actual values. This property is not interesting for
NLP, as the order in which tokens appear in a sentence is very relevant. To ensure that
the order in the sequence is captured by the model a positional encoding is added to each
input embedding.

Since their introduction, Transformers have been widely used in NLP and even in
other areas of machine learning. The highly parallelizable architecture allows training
with large datasets. Because of this capability, a new paradigm became the norm for NLP:
unsupervised pre-training with massive data and task-specific fine-tuning with smaller
supervised datasets. Among the most relevant encoder-decoder Transformer architectures
are BART [38] and T5 [54].

11

Figure 2.4: The Transformer architecture from Vaswani et al. [71]

12

2.3.1 Decoder-Only Models

The Generative Pre-trained Transformer [52] (GPT) family is a series of decoder-only
models that work as language models. Language models are probabilistic models that
model the distribution of a series of words based on some training corpus. More specifically,
GPTs are autoregressive language models, as they generate the next word given the words
seen up to that point in the sequence, that is Pr(yt|y1, ..., yt−1). Such models are trained
by maximizing the likelihood of the sequences of words in the training corpus.

Being a decoder-only model means that the layers in the GPT model have a masked
multi-head attention sub-layer and a position-wise feed-forward sub-layer, both wrapped
with residual connections and layer normalization. Notice that there is no cross-attention
module as there is no encoder output to attend to.

The first paper in the GPT series introduced the idea of pre-training Transformers
using massive quantities of unsupervised datasets. As it is an autoregressive language
model, GPT can be trained using next-word prediction, requiring no human-annotated
data. Therefore it can be pre-trained using large amounts of raw text that is widely
available on the internet. The main idea is that during unsupervised pre-training the
model can learn general language information that helps to solve the downstream tasks.
Starting from the pre-trained model fine-tuning on a specific task is performed by adding
a new layer on top of the final layer.

Later, GPT-2 [53] showed that by using a larger language model it is possible to obtain
great performance on multiple tasks in a zero-shot setting. In this model, the whole task
(description, input and output) is provided to the model using the natural language as the
interface, which is referred to as prompting. Because of that, fine-tuning does not require
new layers on top of the network, it is performed using the same objective function as
pre-training. The main reason the model is able to obtain this zero-shot performance is its
scale. GPT-2 is a 1.5 billion parameter model, making it more than 10 times bigger than
the original GPT. In addition to that, GPT-2 is pre-trained with 40GB of text data from
over 8 million documents.

The zero-shot capabilities of GPT-2 opened a new era in NLP in which by scaling the
model and the amount of data we can perform tasks with only unsupervised training. Its
successor, GPT-3 [7] shows that with a 175B model (100 times bigger than GPT-2) and an
even bigger dataset, it is possible to perform a wide variety of tasks using only unsupervised
pre-training. The large scale lead such model to be referred to as large language models
(LLMs). They demonstrate that by prompting the model with a task description and a very
small number of examples it is able to perform an enormous number of tasks successfully.

13

Following that, the FLAN [75] model shows that fine-tuning a collection of datasets via
instructions makes the model better on unseen tasks. This method, called instruction
tuning became very present as part of large language model training.

As of today, such models have been scaled even more. The latest model of the GPT
family, GPT-4 [51], has demonstrated human-level performance in various professional
and academic benchmarks. The model details however are not released to the public and
access to it is only available through an API. Alternatively, the Llama family [68] [69] are
open-source LLMs that were released with multiple model sizes and versions fine-tuned on
instruction following datasets. In addition to the Llama model other models were released
to the public, for example, Falcon [2] and GPT-J [74].

2.3.2 BERT - Encoder-Only Models

While decoder-only models focus on the generation task in an autoregressive way, encoder-
only models are used to perform sentence-level or token-level representation learning. Such
models can be used to perform classification or regression tasks by observing the whole
sentence, which is often referred to as bidirectional attention in contrast with the unidirec-
tional attention present in decoder-only models. Encoder-only models take a sequence of
tokens as input and in a single step return a sequence of the same size as output. In order
to perform different tasks, special tokens can be added to represent for example separators
or sequence-level classification tokens.

The first model following this scheme was the Bidirectional Encoder Representations
from Transformers (BERT) [21], which demonstrated excellent performance by using un-
supervised pre-training followed by task-specific supervised fine-tuning. The model is pre-
trained in two ways: masked language modelling (MLM) and next-sentence prediction
(NSP). In masked language modelling, tokens are substituted by a mask randomly, and
the model should predict the true value of the masked tokens. In next-sentence prediction,
that model is given two sentences and the model should predict if they follow each other
or if the second sentence was randomly selected from the corpus. Notice that both tasks
only require a corpus with raw text, without any annotations.

Starting from a pre-trained BERT it can be used to perform any sentence-level or
token-level tasks by adding a new layer on top of the model and fine-tuning the weights
using a supervised dataset. Because of its encoder-only structure, BERT is very efficient
for training and especially inference, as it does not perform autoregressive decoding. In
its original paper, BERT has been applied successfully to various tasks such as sentiment
analysis, semantic similarity, question answering, and many more. Originally BERT was

14

proposed with two configuration sizes, BERTBase with 110M parameters and BERTLarge

with 340M parameters.

Various works built on top of BERT to make it better or more efficient. RoBERTa [41]
is a variation of BERT that is pre-trained only using MLM and different hyperparameters
such as batch size and learning rate. ELECTRA changes the pre-training strategy by
having a generator that performs MLM and a discriminator that tries to identify which
tokens were replaced by the generator. From an efficiency perspective, DistillBERT [62]
makes use of knowledge distillation to create a model that is 60% faster than BERT while
preserving 95% of its performance.

2.4 NLP Beyond English

The vast majority of NLP research is done in English, according to recent estimates, almost
70% of the papers evaluate their method only in English [61]. Considering that around
400 languages have more than 1M speakers, it is clear that to make AI more accessible
the diversity of languages should be increased. In addition to the accessibility perspective,
going beyond English also allows us to evaluate how algorithms perform in more complex
situations such as richer morphology or more diverse scripts.

Being aware of this problem the research community has made some efforts to collect
datasets in different languages. This is a hard and costly task, as the collection of labelled
datasets for a variety of tasks requires qualified annotators. Because of that, even when
considering the existing multilingual tasks, there is still a very high bias towards languages
spoken in richer countries. Take as an example XTREME, the main multilingual bench-
mark, although it covers up to 40 languages in 9 different tasks, only 3 of the tasks are
available in more than 15 languages.

When it comes to modern language models, we have seen efforts to make multilingual
versions of the widely available pre-trained models, for example, mBERT [21], mT5[79]
and XLM-RoBERTa[16]. As pre-training data does not require annotations, the amount
of languages that can be covered is higher. Nevertheless, it is an active challenge to collect
corpora where more languages are well represented. From a performance point of view,
these models tend to perform as well as their monolingual counterparts when finetuned
on a specific task and often exhibit good zero-shot cross-lingual transferability. However,
as the number of languages increases the overall performance drops for all languages, a
phenomenon that is known as the curse of multilinguality.

15

Type Error Correction

Preposition I sat in the talk I sat in on the talk
Morphology dreamed dreamt
Determiner I like the ice cream I like ice cream
Tense/Aspect I like kiss you I like kissing you
Agreement She likes him and kiss him She likes him and kisses him
Syntax I have not the book I do not have the book
Punctuation We met they talked and left We met, they talked and left
Unidiomatic We had a big conversation We had a long conversation
Multiple I sea the see from the seasoar I saw the sea from the seesaw

Table 2.1: Example of error types in GEC from [11]

2.5 Grammatical Error Correction

Grammatical Error Correction (GEC) is an NLP task in which a potentially incorrect sen-
tence is given as input and its correction should be generated as output. It has applications
that benefit both native and non-native writers, and it is present in popular writing tools.

Even though this definition looks simple at first, it hides a series of nuances that make
this problem extremely tricky to solve. First, we are interested in more than only gram-
matical errors, as GEC commonly also covers misspelling, word choice and punctuation.
However, more complex text editing tasks such as factual corrections or writing style are
usually not considered part of GEC. A small sample of the types of errors that we are
interested in is provided in Table 2.1

Another aspect of the problem definition is that the same input sentence may have a
set of possible corrections. Therefore evaluating corrections, especially in an automated
fashion, is hard and requires a certain level of compromise. Some corpora provided multiple
annotation for the same sentence to account for alternative solutions. In practice, the field
tends to adopt as a guideline to have minimal modifications of the original text while
preserving its meaning. Different corpora may focus more on the principle of minimal
correction while others may focus on fluency.

Finally, GEC is often framed as a sentence-level task, which makes it sometimes im-
possible to capture the whole intent of the writer. Because of that, there is an unavoidable
noise that comes from the fact that a correct sentence in a broader context may look
incorrect when observed in isolation. This is amplified by the fact that corpora are usu-

16

ally annotated having the whole context available but GEC itself is performed in isolated
sentences in datasets and shared tasks.

2.5.1 Datasets

The construction of GEC datasets relies on paired data where each sentence is accom-
panied by its correction. Collecting such datasets is labour-intensive and ideally requires
annotators with higher education in the area, such as language instructors or teachers. In
general, the sentences can come from native speakers (L1) or second language learners (L2),
which changes the distribution of errors observed. More specifically, language learners are
usually broken on a six-level scale (A1, A2, B1, B2, C1, C2) 1 and can come from different
native languages, which also adds more diversity to the errors.

We will now introduce some of the most popular GEC datasets used by the research
community. This list does not intend to be exhaustive, as we focus on the datasets that
are more relevant to our work. A summary of all the datasets listed is provided on Table
2.2.

English Datasets

FCE: The First Certificate in English (FCE) corpus [81] is a subset of the Cambridge
Learner Corpus [48] that consists of 1244 scripts (∼ 531k words) written by international
language learners (B1-B2 level). Each script contains two answers to an exam question
and can be short essays, letters or descriptions. The dataset has 71 error types manually
annotated and is divided into train, development and test. FCE was part of the HOO-2012
[20] and BEA-2019 [9] shared tasks.

NUCLE: The National University of Singapore Corpus of Learner English (NUCLE)
[19] is comprised of argumentative essays written by undergraduate students from Sin-
gapore (approximately C1 level). It consists of 1397 essays (∼1.16M words), annotated
with 28 different error types. The dataset was used as the official training set for the
CoNLL-2013 and CoNLL2014 shared tasks [46] [47], and as one of the training sets on the
BEA-2019 shared task.

Lang-8: The Lang-8 Corpus of Learner English [67] was extracted from the Lang-8
2 online community for language learners. The dataset consists of 100,000 submissions

1https://www.coe.int/en/web/common-european-framework-reference-languages/

level-descriptions
2https://lang-8.com/

17

https://www.coe.int/en/web/common-european-framework-reference-languages/level-descriptions
https://www.coe.int/en/web/common-european-framework-reference-languages/level-descriptions
https://lang-8.com/

Corpus Language Use Nr. Senteces Nr. Tokens Nr. Refs Nr. Error Types Level Domain

FCE English
Train 28.3k 454k 1 71 B1-B2 Exams
Dev 2.2k 34.7k 1 71 B1-B2 Exams
Test 2.7k 41.9k 1 71 B1-B2 Exams

NUCLE English Train 57.1k 1.16M 1 28 C1 Essays

Lang-8 English Train 1.03M 11.8M 1-8 0 A1-C2? Web

W&I+LOCNESS English
Train 3k 628k 1 55 A1-C2 Exams
Dev 4.4k 87.0k 1 55 A1-Native Exams, Essays
Test 4.5k 85.7k 5 55 A1-Native Exams, Essays

QALB-2014 Arabic
Train 19.4k 1M 1 7 Native Web
Dev 1k 53.8k 1 7 Native Web
Test 948 51.3k 1 7 Native Web

QALB-2015 Arabic

Train 310 43.3k 1 7 A1-C2 Essays
Dev 154 24.7k 1 7 A1-C2 Essays
Test 158 22.8k 1 7 A1-C2 Essays
Test 920 48.5k 1 7 Native Web

NLPCC-2018
Chinese

Train 717k 14.1M 1-21 0 A1-C2? Web
Test 2k 61.3k 1-2 4 A1-C2? Essays

AKCES-GEC Czech
Train 42.2k 447k 1 25 A1-Native Essays, Exams
Dev 2.5k 28.0k 2 25 A1-Native Essays, Exams
Test 2.7k 30.4k 2 25 A1-Native Essays, Exams

GECCC Czech
Train 66.6k 750k 1 65 A1-Native Essays, Exams, Web
Dev 8.5k 101k 1-2 65 A1-Native Essays, Exams, Web
Test 7.9k 98.1k 2 65 A1-Native Essays, Exams, Web

Falko-MERLIN German
Train 19.2k 305k 1 56 A1-C2 Essays, Exams
Dev 2.5k 39.5k 1 56 A1-C2 Essays, Exams
Test 2.3k 36.6k 1 56 A1-C2 Essays, Exams

RULEC-GEC Russian
Train 5k 83.4k 1 23 C1-C2 Essays
Dev 2.5k 41.2k 1 23 C1-C2 Essays
Test 5k 81.7k 1 23 C1-C2 Essays

Uz & Eryiğit [70] Turkish Test 106 823 1 23 ? Papers

Table 2.2: Overall statistics of the different GEC datasets from [11]. A question mark (?)
indicates unknown or approximated information. Notice that the Arabic dataset is split
into documents instead of sentences.

18

(∼11.8M words) from all proficiency levels (A1-C2). Even though the dataset is one the
largest available, its corrections are considered noisy as they are not provided by profes-
sional annotators. The Lang-8 dataset is part of the training data of the BEA-2019 shared
task. Apart from English sentences, the Lang-8 dataset also released corrections in other
langua

W&I+LOCNESS: The Write & Improve (W&I) and LOCNESS corpus [9] contains
3600 essays (∼755k) from international language learners (A1-C2) and 100 essays (∼46k)
from native British/American English speakers. The data comes from the Write & Im-
prove online platform 3 [80] and the LOCNESS corpus [24], with 55 error types extracted
automatically. The dataset is divided into a training set that only contains sentences from
language learners and development and test sets that combine L1 and L2 speakers. The
W&I+LOCNESS corpus is one of the training sets in the BEA-2019 shared task, while its
development and test sets are the official ones for the task.

Non-English Datasets

Arabic: The Qatar Arabic Language Bank (QALB) [86] is the main effort to collect an-
notated corpora for Arabic GEC. Data coming from the project was used in two shared
tasks: QALB-2014 [43] and QALB-2015 [85]. The former corresponds to 21.3k documents
(∼1.1M words) obtained from comments on a news website, being split into train, develop-
ment and test sets. The latter corresponded to 920 documents (∼48.5k words) from news
comments and 633 essays (∼90.5k words) from L2 learners (A1-C2). Different from other
GEC datasets that tend to work at the sentence level, the QALB corpus is provided at
the document level. The edits are extracted by trained annotators, and classified into 7
categories automatically.

Chinese: For Chinese we bring attention to the NLPCC-2018 [88], the first shared
task on full error correction in Mandarin Chinese. The training data comes from Lang-8
user submissions and comes to a total of 717k sentences (∼14.1M characters). As was
mentioned for English data from Lang-8, the annotators are not professionals and the
corrections tend to be noisy. For the test split, 2000 sentences (∼61.3k characters) written
by international university students from the PKU Chinese Learner Corpus as used. The
errors were manually classified into 4 error types.

Czech: The AKCES-GEC corpus [49] has 47.3k sentences (∼505k words) by L2 learn-
ers and Romani children who speak a Czech ethnolect as their first language. The data

3https://writeandimprove.com/

19

https://writeandimprove.com/

comes from the Czech Language Acquisition Corpora (AKCES) which is comprised of es-
says and exam scripts. The sentences are manually annotated by specialists and classified
into 25 error types. The dataset has train, development and validation splits.

Follow-up work to AKCES-GEC, the Grammar Error Correction Corpus for Czech
(GECCC) [45] extends the dataset by including formal texts by L1 students, informal dis-
cussions from social media and news articles. The corpus has a total of 83k sentences
(∼949k words) that were manually annotated. Notice that the original data was re-
annotated to keep a consistent style. An automatic approach was used to classify the
errors into 65 categories. This is one the largest non-English datasets with manually anno-
tated sentences, being itself larger than most English datasets. Similarly to AKCES-GEC,
GECCC is also provided with official training, development and testing splits

German: The Falko-MERLIN corpus [5] consists of 24k sentences (∼381k words)
written by language learners from a wide range of levels (A1-C2). The two data sources for
the dataset are the Falko [59] and MERLIN [6] corpora, which consists of essays and exam
scripts, respectively. For both corpora, sentences were manually annotated by specialists
and 56 error types were extracted automatically. The dataset is split into train, test and
validation.

Russian: The Russian Learner Corpus of Academic Writing (RULEC) [36] is com-
prised of 12.5k essays (∼206k words) written by L2 university students and Russian speak-
ers in the United States of America. The dataset was manually annotated with 23 error
types and is divided into train, development and test.

Turkish: Recent work on developing automatic annotation techniques in Turkish [70]
collected a dataset with 106 sentences (∼800 words). The data comes from academic
studies on errors made by language learners when writing in Turkish. Due to its very small
size, the dataset is better suited for testing only.

2.5.2 Evaluation Metrics

In order to evaluate the performance of a model in a given annotated corpus the research
community relies on automatic evaluation metrics. Even though some nuances are lost
when not performing human evaluation, the automated metrics are able to reflect the
performance and capture if the correction follows the general guidelines of the corpora.
Now we will introduce the two main metrics used in GEC, Max Match (M2) and ERRANT.

20

Max Match (M2)

Max Match [18] is a reference-based metric, that is, it considers the original sentence, a
reference correction and a hypothesis sentence predicted by the model. It then extracts the
edits and counts them as True Positive (TP) if the edit is in both reference and hypothesis,
False Positive (FP) if the edit is only in the hypothesis, or False Negative (FN) if the edit
is in the reference but not in the hypothesis. Using these counts Precision (P), Recall (R)
and Fβ-score are computed as follows

P =
TP

TP + FP
R =

TP

TP + FN
Fβ = (1 + β2) · P × R

β2 · P + R

The usual choice is β = 0.5, which weighs precision twice as much as recall. This
reflects the fact that in GEC we are more interested in being precise than in correcting all
the errors in the sentence. When multiple references are provided the best scores for each
sentence is chosen to compute the overall metric.

The main challenge when computing the TP, FP, and FN is edit overlap. For example,
the edit [love plays → loves playing] could also be expressed as the two edits [love → loves]
and [plays → playing]. Because of that, if we naively compare reference and hypothesis ed-
its it may result in an incorrect attribution of FP and FN. To solve this issue, M2 computes
the Levenshtein alignment between the original sentence and the predicted hypothesis to
find the edits that maximize the match to the reference edits.

ERRANT

The main problem with the M2 is that the results do not provide a way to know which
types of errors the models are good/bad at correcting. To tackle this problem ERRANT
[10] computes precision, recall and F-score individually for each type of error. The errors
are categorized in two separate ways:

• Operation (3 labels): Missing, Replacement, and Unnecessary

• Error type (25 labels): Adjective, Orthography, Verb Form, Verb Tense, etc.

Thus, for example, ERRANT allows us to evaluate only replacement errors (R), only
adjective errors (ADJ), or replacement adjective errors (R:ADJ). Such categories are au-
tomatically generated for the edits given a paired dataset. In practice, ERRANT extracts

21

Original They love to playing footbal in backyard .

Binary C C I C I C I C
Operation C C U C R C M C
Type C C PREP C SPELL C DET C
Operation-Type C C U:PREP C R:SPELL C M:DET C

Table 2.3: Example of different levels of granularity in GED.

edits using a linguistically-enhanced version of the Damerau-Levenshtein algorithm and
classifies them into different types using a rule-based system. Such rules are hand-crafted
using linguistic knowledge of the language of interest. Although the original version of
ERRANT only supported English new versions have been proposed to support German,
Greek, Arabic, and Czech.

2.6 Grammatical Error Detection

Grammatical Error Detection (GED) is the task interested in detecting the location of
errors in a sentence. It can be seen as a classification counterpart of the GEC task, or
even as a step that correction systems have to undergo. Similarly to the case in GEC, the
definition of grammatical error in GED is open and subjective to corpus-based conventions.

Formally, GED is usually formulated as a word-level classification task. That is, for
every word in the input sentence we are interested in indicating which are the words that
make the sentence incorrect. Importantly, in the case of a missing word, the incorrect label
is attributed to the word to its right. Classification in GED can be performed in binary
or multiclass fashion, and the latter can be performed to different levels of granularity:
operation, edit and operation-edit (An example is provided in Table 2.3).

Evaluation of GED is performed using Precision, Recall and F0.5-score. When the
multiclass approach is performed the metrics are computed using macro averages of the
classes.

It is a mistake to believe that there is no need to research GED because it can be seen
as a simpler version of GEC. First of all, some applications are already more well-suited for
GED, for example, quality assurance in proofreading, where knowing about the existence
of errors (and potentially their type) is enough. Secondly, there are multiple ways in which
GED can be explicitly used to improve GEC, which means that improvements to detection
can directly impact advances in correction. Finally, because in general classification a

22

simpler than generation, studying GED can serve as an efficient way to explore ideas that
can also be applied to GEC.

2.6.1 Datasets

Language Source Corpus Nr. sentences Nr. tokens Nr. erros Error rate

Czech GECCC 35.4k 399.7k 84k 0.210
English FCE 33.2k 531.4k 50.8k 0.096
English REALEC 8.1k 177.8k 16.6k 0.093
German Falko-MERLIN 24k 381.1k 57.9k 0.152
Italian MERLIN 7.9k 99.7k 14.9k 0.149
Swedish SweLL-gold 8.5k 145.5k 27.3k 0.187

Table 2.4: Statitics of the datasets from MultiGED-2023. Notice that English-REALEC
only has dev and test splits.

Conceptually, building a dataset for GED does not require having a corrected version of the
sentence. An annotator could simply label each word according to the desired granularity
level. However, in practice, GED datasets are commonly extracted trivially from already-
existing GEC corpora. For this reason, there is a large overlap between GED and GEC
datasets.

The vast majority of methods developed for GED focused only on English. In those
works training and evaluation were always performed using the FCE dataset converted for
the detection task. More specifically, using the error span provided by the GEC annotations
we can mark exactly which words are incorrect or tag it with more specific error types. The
main focus is on binary GED, but some methods also experiment with finer granularity.
Some other GEC corpora, such as NUCLE, have also been explored as additional training
data.

Focusing on expanding GED beyond English, the MultiGED-2023 shared task [72]
released a collection of multilingual datasets for GED. Apart from English it also covers
Czech, German, Italian and Swedish. For every language, the shared task has a dataset
that is used for training, development and testing. The only exception is English, for
which a second dataset is provided for development and testing. The task standardized all
datasets as word-level binary classification providing the basis for a unified study of GED
systems in different languages.

23

For English, the MultiGED task uses FCE for training and evaluation and RULEC only
for evaluation. The latter was introduced with the shared task and is composed of essays
written by L1 Russian speakers with B1-B2 level. For German and Czech a processed
version of the GEC datasets Falko-MERLIN and GECCC were used, respectively. For
Italian, train, development and validation sets were created using data from the MERLIN
corpus. Similarly, MultiGED processed Swedish data from the Swell-gold corpus [73] to
make it suitable for the shared task. A summary of all the datasets is provided in Table
2.4

24

Chapter 3

Related Work

3.1 Grammatical Error Detection

Similar to other areas of NLP, early work on GED has been performed through classical
statistical methods [13] [23]. With the breakthrough in deep learning, LSTM started being
used to train detection systems [56]. Various approaches using RNNs have been developed,
exploring auxiliary loss functions [57] [55], learning to generate synthetic errors [34], and
using representations from pre-trained models as additional information [4]. Naturally,
with the increase in popularity of the Transformer architecture, it began to be used for
GED. [32] introduced an architecture in which the classification head is connected to all
layers of the Transformer to allow the model to focus on lower-level features. Later [84]
showed that fine-tuning a pre-trained ELECTRA exhibits better performance as its pre-
training objective is similar to GED.

On the multilingual side, the MultiGED-2023 shared task [72] was the first effort to
unify datasets in different languages for GED. There were two main submissions to shared
tasks that are relevant to our work. EliCoDe [15] was the winner in five out of six test
sets in the task, only losing in the out-of-domain English dataset (REALEC). Their best
models are XLM-RoBERTa Large trained in each of the languages. The work compared
the performance of mono and multilingual models, but only used a single random seed and
the models were trained using a batch size of 4. The second submission was DSL-MIM-
HUS [37], which used a model trained with multilingual data and achieved the best result
for the REALEC test set. However, it is important to point out that the model used the
validation data for REALEC as part of the training set. That is not against the rules of
the shared task but defeats the purpose of evaluating cross-dataset generalization.

25

3.2 Grammatical Error Correction

3.2.1 Supervised Methods

Supervised GEC can be broken into two types of methods. The first is treating correction as
neural machine translation (NMT), where we are interested in “translating” from incorrect
language to correct language. Within this framework, GEC is treated as a sequence-to-
sequence task. The other approach is thought tagging, where each word in the input
sentence is tagged with an edit operation that should be applied to generate the correction.
These methods treat GEC as a token-classification problem. Let us now cover the relevant
work in both areas.

Correction as Neural Machine Translation

After the success of RNNs with attention to machine translation, [83] proposed their usage
for GEC. In addition, RNN methods that operated on character-level [77] and with both
words and characters simultaneously were also developed [30].

Later, the first NMT method for GEC using the Transformer was introduced [31]. Vari-
ations with copy mechanism were also explored [88][29], as in correction most of the output
comes directly from the input. [33] was the first method to use representations extracted
with BERT to perform Transformer-based GEC. Pre-trained sequence-to-sequence Trans-
formers, such as BART [35] and T5 [60] were also used for correction in English, German,
Czech and Russian.

As GEC datasets are relatively small, efforts were made to obtain more data efficiently.
Such datasets are used to start training and later the model is fine-tuned with higher
quality data. One option is to use filtered Wikipedia edits to obtain more data [25] [5].
Alternatively, [27] proposed the use of a spell checker to introduce errors in news article
sentences, which [49] expanded to German, Czech and Russian. To avoid determining
language-specific parameters, gT5 [60] uses general character-level and token-level corrup-
tions to create a GEC version of the mC4 dataset [79] for multilingual pre-training.

Detection can be thought as an implicit part of correction, but some methods make
explicit use of GED as part of the GEC pipeline. [84] included a second encoder to
the Transformer that receives as input the GED tags predicted by a detection model.
TemplateGEC [39] uses GED tags to construct correction templates that resemble the
pre-training strategy of T5.

26

Correction as Edit Tagging

The tagging approach started with LaserTagger [42], which used a BERT encoder to predict
edits operations (keep, remove, and add) and a single-layer decoder that applies the edits.
Parallel Iterative Edit (PIE) [3] proposed a encoder-only method that predicts a larger
set of edit operations that are automatically applied. To allow multiple corrections in the
same location the sentence is passed through the model iteratively until no error is found.

GECToR [50], another encoder-only model, improved generalization by introducing
the concept of g-transformation tags, which perform task-specific operations (case change,
merge words, verb forms, noun count, etc). GECToR also trains a GED head that is used
during inference to decide if a correction should be applied. The g-transformations are
language-specific, to solve this problem [65] proposed a method for automatically extracting
transformations from paired data, which was used in German, Czech and Russian.

3.2.2 Unsupervised Methods

The study of unsupervised GEC studies how to perform correction without using models
trained on paired datasets. This is important because collecting datasets is an expensive
process, and various languages have large amounts of raw text available.

The first strategy relies on the assumption that an incorrect sentence probability is
lower than its corrected version. [8] used a 5-gram language model to assess sentence
probability and performed greedy search over candidates generated using a spell checker
and an inflectional morphology database. MAGEC [26] evaluated the same strategy but
using a Transformer language model and included experiments in German and Russian.
The approach was also investigated by [1] using pre-trained language models such as BERT,
GPT, and GPT-2.

Alternatively, a LLM can be used with a prompt to perform GEC. [76] showed that
ChatGPT’s performance is worse than supervised methods, however using a sample of only
300 examples. [22] arrive at the same conclusions exploring GPT-3.5 on complete datasets
in English, German, and Chinese. Interestingly, [17] shows that both GPT3.5 and GPT-4
achieve better result than supervised models when performing human evaluation studies.

27

Chapter 4

Multilingual Grammatical Error
Detection

Grammatical Error Detection’s goal is to identify which words are wrong in a sentence.
It is an important application for language learning assistive tools and can also be used
to improve Grammatical Error Correction systems. Given such benefits, exploring and
improving the performance of GED models in a wide variety of languages is of great
importance. To this end we study different approaches to multilingual GED, being the
first to evaluate a set of capabilities of these models.

The MultiGED-2023 shared task was the first effort toward multilingual GED, having
six datasets in five different languages. The task was open in terms of models allowed, en-
couraging the development of multilingual models but still allowing monolingual solutions
to be submitted. As a result of that, the top entry in the competition was a collection of
models trained on monolingual data, surpassing the multilingual model approach.

More specifically, we refer to models trained with a single language dataset as monolin-
gual but it is important to notice that the pre-trained architecture itself was a multilingual
XLM-RoBERTa. This happens because there are no monolingual pre-trained models for
some of the languages in MultiGED. In contrast, the models that we refer to in this work as
multilingual are trained on a multilingual collection of GED datasets. Figure 4.1 illustrates
the difference between the two approaches.

The top entry in the MultiGED task, EliCoDe, used one monolingual model per lan-
guage. In their paper, they explored several approaches to train the XLM-RoBERTa Large
model used. In addition to the monolingual model they also investigated a multilingual
solution, but it was not used in the competition as it showed worse overall results in their

28

Figure 4.1: Difference between a collection of models trained on monolingual data (left)
and a single model trained with multilingual data (right).

experiments. However, the difference between the monolingual and multilingual models
was very small and could have been in favour of any model when varying the random
factors involved in training. This is amplified by the fact that the models were trained
using very small batch sizes and the datasets are relatively small, increasing randomness.

Another important remark regarding the MultiGED shared task is regarding the REALEC
dataset, an English dataset comprised of sentences written by native Russian speakers.
This dataset has only validation and test splits, therefore the performance relied com-
pletely on the generalization from the other training sets. For this reason the results were
considerably lower than the other datasets. It raises more questions about how powerful
the GED models are in terms of generalizing to new datasets in the languages already seem
during training.

One aspect that is not covered by the MultiGED shared task is cross-lingual generaliza-
tion, more specifically in a zero-shot fashion. This corresponds to testing a model in new
languages that were not seen during training. As long as the models, including the ones
trained on monolingual data, are pre-trained and have embeddings for multiple languages
it is possible and reasonable to evaluate zero-shot cross-lingual capabilities. Having good
generalization in this sense allows applying GED techniques to languages that do not have
available training sets.

Our goal is to further investigate the difference between models trained with monolin-
gual and multilingual data. To this end, we conduct experiments along the same lines as
EliCoDe but following a more rigorous experimental setting. In addition, we explore the
performance of both approaches in terms of generalization to new datasets, both in the

29

same language as the training set and for new languages in a zero-shot setting.

4.1 Methodology

We are interested in studying the difference between monolingual and multilingual models
through three different perspectives: in-domain, cross-dataset, and cross-lingual general-
ization. To this end, we extended the MultiGED task by creating different GED datasets
using existing GEC corpora. Importantly, we focus on conclusions that take into con-
sideration the intrinsic randomness in training the models. Thus, we performed all the
experiments using multiple random seeds and more reasonable hyperparameters.

First, we evaluate the performance of the monolingual and multilingual models in a
hold-out split of the dataset in which they were trained. The idea is to replicate the
experiments performed by EliCoDe but with a more robust setup. For this experiment,
the main interest is to find out if there is any difference between the performance of
monolingual and multilingual models when the test data follows the same distribution
seen during training.

Secondly, we study how the same models perform when the test data is on a language
presented during training but comes from different datasets. This is relevant because differ-
ent datasets have different error distributions, not only in terms of frequency but also the
types of errors. Motivated by the results of the REALEC dataset in the MultiGED com-
petitions, we are interested in observing if multilingual models show better generalization
than their monolingual counterparts. We use the same models trained on the MultiGED
training sets. Unfortunately, there are no extra datasets available for all languages that
could be used for GED. Thus, this study is only performed in English and Czech.

Finally, we are interested in observing how well the GED models generalize for new
languages never seen during training. For this experiment, we processed datasets in four
new languages: Arabic, Chinese, Russian and Turkish. The set of languages chosen is
based on two things: data availability and language diversity. The former is necessary
because only a limited set of languages have a corpus with GED or GEC annotation. The
latter is relevant to see the impact of syntax and morphology diversity when transferring
to new languages. Hence, we selected languages from four different language families, three
of them not present in the MultiGED training set.

30

Language Language Family Source Corpus Nr. sentences Nr. tokens Nr. erros Error rate

Czech Indo-European AKCES-GEC 2.5k 28k 6.4k 0.228
English Indo-European W&I+LOCNESS 4.4k 87k 8.4k 0.096
Arabic Afro-Asiatic QALB-2014 1k 53.9k 16.7k 0.291
Chinese Sino-Tibetan NLPCC-2018 2k 40.2k 4.8k 0.120
Russian Indo-European RULEC-GEC 2.5k 41.2k 2.5k 0.060
Turkish Turkic Uz & Eryiğit 105 822 195 0.237

Table 4.1: Statistic of the new GED datasets used for evaluation. Note that the Arabic
dataset is split into documents rather than sentences.

4.2 Experimental Setup

Using the MultiGED training sets we train one monolingual model in each language and
a single multilingual model trained on the union of all training sets. We refer to the
monolingual models by the language of their training data. For all models, we use the
pre-trained XLM-Roberta Large model from HuggingFace, fine-tuning all weights and a
binary classification head. The networks are optimized using AdamW, learning rate 1e-5
with linear scheduling, and batch size of 32. The training is interrupted when the validation
performance stops increasing for 3 epochs.

We made use of existing GEC corpora to create new GED datasets for evaluation. For
cross-dataset generalization W&I+LOCNESS and AKCES-GEC datasets were used for
English and for Czech respectively. For cross-lingual evaluation, we used QALB-2014 for
Arabic, NLPCC-2018 for Chinese, RULEC for Russian, and Uz & Eryiğit for Turkish. The
statistics of all the datasets in the context of binary GED are presented in Table 4.1.

All the results indicated in this section come from the development sets of the datasets
unless stated otherwise. Naturally, evaluation was performed using Precision, Recall and
F0.5-score. We report the average across all five random seeds and the corresponding
standard deviation for all experiments.

4.3 Results and Analysis

4.3.1 In-domain

For the in-domain test sets, the results from Table 4.2 demonstrate that there is no dif-
ference in overall performance between the monolingual models and the multilingual one.

31

Monolingual Multilingual
Language Prec Rec F0.5 Prec Rec F0.5

English 73.89 ± 0.81 52.71 ± 1.23 68.38 ± 0.33 74.70 ± 1.18 52.03 ± 1.83 68.69 ± 0.25
Czech 83.79 ± 0.36 56.73 ± 0.57 76.49 ± 0.15 84.51 ± 0.35 55.32 ± 0.95 76.44 ± 0.24

German 85.40 ± 0.40 71.67 ± 0.97 82.24 ± 0.15 85.44 ± 0.47 72.05 ± 0.69 82.38 ± 0.28
Swedish 84.03 ± 0.44 60.82 ± 1.19 78.07 ± 0.27 83.58 ± 0.74 61.48 ± 1.34 77.97 ± 0.44
Italian 85.84 ± 0.94 62.76 ± 2.04 79.94 ± 0.34 85.51 ± 0.56 64.93 ± 1.63 80.40 ± 0.38

Table 4.2: Results of monolingual and multilingual models on the in-domain datasets.

The average F0.5-score is higher for the multilingual model in three out of five languages
(English, German and Swedish). However, the difference between the models is small and
falls within the standard deviation of the scores. Importantly, the same behaviour is ex-
hibited by Precision, Recall, and, F0.5-score. For those reasons, we can affirm that for the
in-domain evaluation, multilingual and monolingual models achieve the same performance.
This is interesting because it shows that the models are able to learn multiple sets of gram-
matical rules and automatically switch between them when a sentence is passed through
the model, even though the language of the input sentence is not given explicitly.

4.3.2 Cross-dataset

For these experiments, we are interested in observing the performance of GED models when
evaluated in languages seen during training but with data coming from a different dataset.
Observing the results from Table 4.3 it is possible to notice that the results are different
for different datasets. For the REALEC (English) and AKCES-GEC (Czech) datasets we
observe that the same phenomena observe the same as in the in-domain evaluation. The
multilingual model presents better results on average, but the difference is small and falls
within the standard deviation from both models. On the other hand, for W&I+LOCNESS
(English) we can see a clear advantage of the multilingual model. For this dataset, we can
see that the higher F0.5-score is mainly because of the higher precision achieved by the
model.

4.3.3 Cross-Lingual

Here we compare how well models perform in languages that were not seen during training.
Recall that even the models trained on monolingual models use a pre-trained multilingual

32

Monolingual Multilingual
Dataset Prec Rec F0.5 Prec Rec F0.5

REALEC 46.48 ± 0.59 40.36 ± 0.59 45.11 ± 0.32 47.17 ± 1.23 40.38 ± 1.29 45.61 ± 0.59
W&I+LOCNESS 65.61 ± 0.72 39.02 ± 0.79 57.73 ± 0.48 68.62 ± 1.49 38.88 ± 1.16 59.49 ± 0.46

AKCES-GEC 87.21 ± 0.17 61.88 ± 0.36 80.61 ± 0.12 87.95 ± 1.03 61.25 ± 1.04 80.88 ± 0.45

Table 4.3: Results of monolingual and multilingual models on the cross-dataset evaluation.

architecture, therefore they can be tested in different languages. As we can observe in
Figure 4.2, the model trained on multilingual data shows better generalization to novel
languages. The only language with different behaviour is Chinese, where all models seem
to struggle and exhibit poor performance. Overall, all models tend to have higher variance
results when compared to in-domain and cross-dataset evaluations.

Figure 4.2: Results of cross-lingual transfer across all models.

A relevant comment can be made regarding the influence of dataset size. For Arabic,
the best monolingual model is the one trained in Italian while the worst is the English
model. Interestingly those are respectively the smallest and second largest corpora in our
training sets. On the other hand, for Russians, the Italian model demonstrates the worst
performance, which indicates that other factors such as error distribution and language
similarity may also be a factor.

33

Chapter 5

Detection Assisted Prompt-Based
Grammatical Error Correction

With the recent advances in Large Language Models in zero-shot tasks the various fields
of NLP have put effort in making use of this technology. The main idea is to make use of
the incredible generalization and flexibility that arise from training billions of parameters
on trillions of tokens. By shifting the paradigm from finetuning with annotated datasets
to prompting an LLM with task instructions, the power of AI applications has become
accessible to a large number of people. Naturally, a relevant area such as Grammatical
Error Correction has begun to be explored in the context of LLMs.

Language models have already been explored for unsupervised GEC over the past
decade. The main focus of this line of work was on using the probability of a sentence
before and after edits to assess correctness. However, it is important to establish the dis-
tinction between those works and the use of LLM thought prompting. When referring to
LLM-GEC we are interested in performing GEC by prompting a LLM, most often through
the use of natural language instructions. In addition, in-context examples can be provided
to help the model perform the task.

Previous work has investigated the capabilities of the GPT-3.5 and GPT-4 in GEC
in different languages. In general, the results tend to indicate that such systems have
reasonable performance but are still far from supervised approaches when evaluated with
automated metrics. This comes from the fact that the model tends to exhibit large values
for False Positives, which is often a product of either overcorrection or alternative solutions.

A model overcorrects when it changes the sentence in a region that was not wrong to
start with. It can be due to addition, replacement or deletion of words. Notice also, that

34

overcorrections may change the meaning of the sentence, which goes against the principle
of GEC. But we also consider it to be overcorrection even if the meaning is preserved, as
GEC is usually defined in terms of minimal edits to make the sentence correct.

On the other side, an alternative solution happens when a correction is right but is not
the one expected by the annotated dataset. This is a direct consequence of GEC being an
ill-posed problem and is amplified because there is no training for the model to learn the
style of the corpus. One may argue that this is only a problem when we rely on automatic
metrics, as they only know the truth in the dataset. In fact, LLM tends to be competitive
with supervised systems under human evaluation. However, in various applications, we are
interested in controlling the universe of possible corrections. It can be viewed as following
a style guide that is determined by the annotated corpus.

Simple solutions to these problems include tweaking the instruction and increasing the
number of in-context examples provided in the prompt, but it has not been shown to reduce
or improve the results by a large margin. We hypothesize that by making use of a GED
system that can indicate if corrections need to be made the problem of overcorrection
can be mitigated. Similarly, we are interested in understanding if a better selection of
in-context examples can improve the model’s ability to follow the style of the dataset.

Concretely, we studied how GED models studied in Chapter 4 can be used to assist
LLM-based GEC and mitigate the overcorrection and alternative solutions problems. Two
different ways to improve correction with detection are studied: filtering and in-context
example selection. Similarly to [49] [60] [65] we investigate datasets in English, Czech,
German and Russian and compared them with supervised baselines. As part of the ex-
periments we are, to the best of our knowledge, the first to benchmark Llama2 on English
GEC and to evaluate GPT3.5 in Czech and Russian.

5.1 Methodology

5.1.1 GED Filtering of Correct Senteces

In order to mitigate the overcorrection problem we propose using a multi-stage pipeline
in which sentences are first passed through a GED model. The result of the detection
module determines if the sentence needs to be passed through the LLM for correction. If a
sentence is classified as correct by the GED model, it is simply copied as output, without
being fed to the LLM. This takes advantage of the fact that GED models can be trained
with way less data than supervised GEC systems.

35

Dataset Language Prec Rec F0.5

FCE English 92.84 ± 0.33 78.94 ± 1.91 89.67 ± 0.25
W&I+LOCNESS English 89.85 ± 0.85 69.78 ± 2.11 84.94 ± 0.08
Falko-MERLIN German 96.40 ± 0.27 91.68 ± 0.50 95.42 ± 0.18
AKCES-GEC Czech 97.00 ± 0.30 86.66 ± 01.00 94.73 ± 0.24

GECCC Czech 95.11 ± 0.16 85.69 ± 0.75 93.06 ± 0.19
RULEC Russian 75.70 ± 1.33 64.48 ± 1.02 73.14 ± 0.88

Table 5.1: Results of the multilingual GED model when evaluated on a sentence level. For
this experiment, the sentence is considered incorrect if any of its words are classified as
incorrect.

Notice that this framework only requires sentence-level detection, as we are interested
in filtering entire sentences out. Thus, one could train GED models that give a single label
to the whole sentence. An alternative approach is to perform word-level detection and
aggregate the results producing a sentence classification. As we can see in Table 5.1 the
multilingual model explored in Chapter 4 exhibits great sentence-level performance in our
languages of interest.

5.1.2 GED for In-context Example Selection

They said he also is going . C C C I I C C 0.69 0.42 0.20 0.39 0.2 0.33

Similarity Score

GED Model TF-IDF

I now am studying . C I I C C 0.65 0.33 0.23 0.46 0.23 0.38GED Model TF-IDF

She is great player . C C I C C 0.75 0.25 0.36 0.35 0.35 0.00GED Model TF-IDF

You are okay ? I I C C 0.44 0.22 0.00 0.62 0.31 0.52GED Model TF-IDF

The leafs are falling . C C C C C 0.78 0.63 0.00 0.00 0.00 0.00GED Model TF-IDF

...

1 I now am studying math .

2 You are okay ?

3 She is great player .

4 The leafs are falling

...

Test sentence:

Training examples:

Figure 5.1: Illustration of the TF-IDF GED framework proposed for in-context example
selection. First, the sentences are passed to a GED model to extract the detection tags,
and then TF-IDF is used on the tags to extract feature vectors. Once with the feature
vectors, we compute the similarity between the test sentence and the training examples to
obtain the in-context examples.

36

Previously work in NLP tasks using LLM demonstrated that the selection of in-context
examples can have a big impact on performance [40] [87] [66]. By having more informative
examples in the prompt, the model can better capture the essence of the task. Thus,
investigating these methods can improve LLM-based GEC by generating corrections that
are better at following the dataset style.

Different approaches use semantical similarity between the input and examples in the
training set to select the ones that are most helpful to perform a given task [40] [66].
However, in GEC we are more interested in structural similarities than higher-level features
such as semantics. Two sentences can have high semantical similarity but provide no help
to correct each other. To solve this problem we propose using information obtained from
a word-level GED system to compute similarities.

Given two input sentences xi = (xi
1, ..., x

i
N) and xj = (xj

1, ..., x
j
M) we extract their de-

tection labels using a GED model obtaining li = (li1, ..., l
i
N) and lj = (lj1, ..., l

j
M). Using the

label sequences, we use term frequency-inverse document frequency (TF-IDF) to compute
feature vectors. Notice that the terms in this case are n-grams of predicted detection la-
bels, not the words in the sentences. After applying TF-IDF to extract fixed-sized feature
vectors we compute the cosine similarity between the pairs. The framework which we refer
to as TF-IDF GED is illustrated in Figure 5.1.

In principle, there is no constraint to the granularity of the detection labels. Current
GED systems are better at binary detection but finer classification of the error types should
improve the example selection pipeline. Another relevant hyperparameter of the method
is the n-gram range of the TF-IDF, which controls how local are the error structures used
to represent the sentences.

5.2 Experimental Setup

We are interested in studying GED filtering and TF-IDF GED in English, Czech, German
and Russian using powerful LLMs. For English, we perform the experiments using Llama2.
For the other languages, we use GPT3.5, more specifically gpt-3.5-turbo, as it has been
used for non-English GEC with reasonable results. To investigate the effectiveness of our
methods, we first run baselines for all languages. We run the models using 0, 1, 2, 4 and 8
in-context examples in Enlgish and 0 and 8 for non-English datasets. The prompt used in
our experiment comes from [17] with minimal alterations to facilitate parsing the answers:

For the non-English experiments, we performed some early experiments and there was
no difference between prompting the model in the language of the sentence or simply

37

Reply with a corrected version of the input sentence delimited by <input> </input>

with all grammatical and spelling errors fixed. If there are no errors, reply with

a copy of the original sentence. Output the corrected version of the sentence

delimited by <output> </output> tags directly without any explanations. Please

start:

<input>She like to walks her dog</input>

<output>

specifying the language in the English prompt (“Reply with a corrected version of the
German input sentence...”, for example). Therefore, we chose to run the experiments
using the English prompts with specified languages.

Following the same approach as previous work [49] [60] [65], we used W&I+LOCNESS
for English, Falko-MERLIN for German, AKCES-GEC for Czech, and RULEC for Russian.
The training splits of all the datasets are used as in-context examples for prompting. For
the experiments, we use the development sets when exploring the different methods and
hyperparameters, and the test sets are used on the best model found on validation.

The core component of the methods is the GED model. Given all the results obtained in
Chapter 4 we use an XLM-RoBERTa Large trained with the multilingual dataset. Impor-
tantly, the multilingual GED model was trained on the same German dataset, on different
English and Czech corpora, and was not trained on Russian. The model was evaluated
on all datasets and exhibited good results in both sentence-level and work-level binary
classification.

In the experiments for the in-context example selection, we compare our proposed TF-
IDF GED against the semantical similarity approach. For our method, we use TF-IDF with
n-grams from 1 to 4 elements. For semantical similarity we use Sentence-BERT (SBERT)
[58], more specifically the all-MiniLM-L6-v2 model from HuggingFace 1, to extract feature
vectors.

38

0 1 2 3 4 5 6 7 8
Number of In-Context Examples

32

34

36

38

40

42

F 0
.5

No Filter
GED Filter

Figure 5.2: Effect of filtering out correct sentences on the W&I+LOCNESS development
set.

5.3 Results and Analysis

5.3.1 GED Filter

Compared to directly passing all sentences to the LLM, filtering out correct sentences shows
a positive effect on the results in English. As it is shown in Figure 5.2 the gains are noticed
regardless of the number of in-context examples. Table 5.2 show all possible variations
of the model, including the TF-IDF GED that will be discussed in the next subsection.
Observing the results in Table 5.2 that correspond to performing GED Filter, we can see
that the strategy increases the precision of the model, resulting in a better F0.5-score.

As we can see in Table 5.3 filtering also improves the results in the non-English datasets.
Interestingly, the largest gain was in Russian, a language that is not even present in the
training data of the GED model used for filtering. This is good because we are able to
improve unsupervised correction using only cross-lingual capabilities of the GED model.

Notice that by filtering out sentences predicted as correct we not only improve the score
of the model, but we also reduce the number of times that the LLM is prompted. In a
practical setting, where API calls to the LLM are often charged on a token basis, having
a lightweight GED perform filtering can increase both the performance and cost efficiency
of the pipeline. For this reason, it would be interesting to study ways to reduce the size of
the GED models, using distillation and quantization techniques.

1https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

39

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

#-Shots GED Filter TF-IDF GED Prec Rec F0.5

0
31.22 ± 0.11 38.71± 0.26 32.47 ± 0.14

✓ 35.53± 0.12 32.86 ± 0.16 34.96± 0.10

1

38.68 ± 0.27 36.42± 0.12 38.21 ± 0.20
✓ 42.78 ± 0.31 31.29 ± 0.08 39.85 ± 0.21

✓ 40.94 ± 0.17 34.51 ± 0.09 39.47 ± 0.14
✓ ✓ 44.74± 0.23 30.14 ± 0.08 40.79± 0.17

2

39.66 ± 0.28 34.78± 0.32 38.58 ± 0.28
✓ 43.90 ± 0.28 29.93 ± 0.23 40.15 ± 0.23

✓ 43.85 ± 0.15 33.69 ± 0.19 41.35 ± 0.16
✓ ✓ 46.24± 0.15 30.40 ± 0.22 41.88± 0.18

4

40.54 ± 0.40 35.11± 0.30 39.32 ± 0.37
✓ 45.25 ± 0.59 30.24 ± 0.26 41.17 ± 0.48

✓ 45.46 ± 0.17 32.19 ± 0.21 42.00 ± 0.14
✓ ✓ 47.54± 0.07 29.88 ± 0.19 42.51± 0.11

8

41.81 ± 0.35 35.52± 0.34 40.38 ± 0.32
✓ 46.02 ± 0.41 30.58 ± 0.23 41.80 ± 0.30

✓ 47.67 ± 0.24 31.82 ± 0.23 43.35± 0.24
✓ ✓ 49.44± 0.25 30.16 ± 0.23 43.83± 0.25

Table 5.2: Complete results on the W&I+LOCNESS development set. Checkmarks (✓)
indicated if the corresponding method was used. The reported scores are the average
between five random seeds, with indicated standard deviation. Bold values indicate the
highest score for each number of in-context examples.

40

Language #-Shots GED Filter TF-IDF GED Prec Rec F0.5

Czech

0
72.33 ± 0.14 64.56± 0.15 70.63 ± 0.13

✓ 75.55± 0.10 61.31 ± 0.15 72.20± 0.11

8
76.73 ± 0.18 65.18± 0.10 74.10 ± 0.13

✓ 79.08± 0.17 62.23 ± 0.12 75.02 ± 0.13
✓ 78.01 ± 0.34 64.65 ± 0.21 74.91 ± 0.24

✓ ✓ 79.46± 0.15 62.50 ± 0.16 75.37± 0.11

German

0
65.47 ± 0.18 63.73± 0.21 65.11 ± 0.14

✓ 68.53± 0.20 60.89 ± 0.10 66.86± 0.13

8
69.58 ± 0.12 63.73± 0.23 65.11 ± 0.12

✓ 71.63 ± 0.20 59.56 ± 0.18 68.84 ± 0.16
✓ 71.38 ± 0.30 63.23± 0.35 69.58± 0.21

✓ ✓ 72.52± 0.21 61.25 ± 0.27 69.95± 0.19

Russian

0
33.25 ± 0.18 46.88± 0.27 35.30 ± 0.12

✓ 43.68± 0.12 36.43 ± 0.24 42.01± 0.07

8
37.44 ± 0.15 40.79± 0.32 38.07 ± 0.18

✓ 46.19± 0.25 32.49 ± 0.32 42.60± 0.18
✓ 38.18 ± 0.25 38.50 ± 0.17 38.24 ± 0.20

✓ ✓ 45.38 ± 0.21 32.22 ± 0.05 41.96 ± 0.16

Table 5.3: Results of both methods on the non-English datasets. Checkmarks (✓) indicated
if the corresponding method was used. The reported scores are the average between three
random seeds, with indicated standard deviation. Bold values indicate the highest score
each number of in-context examples.

41

5.3.2 TF-IDF GED

As it can be observed in Figure 5.3, using the SBERT to retrieve in-context examples is
very close to randomly selecting them. This is expected, as semantical features are not
particularly informative for the correction task. On the other hand, it is noticeable that the
use of detection tags for example selection improves the results of the model. We observe
that for all numbers of shots, TF-IDF GED beats or ties with SBERT and the random
baseline. Observing the corresponding entries in Table 5.2 we observed that the the gains
in F0.5-score come from an increase in the precision of the model.

For the non-English dataset (Table 5.3) TF-IDF GED for example selection also im-
proves the result of the baseline model. The biggest gain is observed in German, which can
be explained by the GED model being trained in its equivalent training set. On the other
hand, for Czech, the gains are not so expressive and for Russian the results are equivalent
when considering the variance in the results.

It is interesting to notice that this experiment is performed using binary detection tags.
Therefore, the example selection algorithm does not make use of any explicit information
regarding the type of error in the sentence. In addition, when tags are predicted from a
model trained with a different dataset more noise is present in the selection. This is most
likely the reason why we do not observe substantial gains in Russian. Next, we show how
there is room for improving the method by tackling the two aforementioned points.

0 1 2 3 4 5 6 7 8
Number of In-Context Examples

32

34

36

38

40

42

44

F 0
.5

Random
SBERT
TF-IDF GED

Figure 5.3: Comparison between the random selection, SBERT similarity, and TF-IDF
GED on the W&I+LOCNESS development set.

42

Oracle Detection Tags

To demonstrate that this method can be more powerful with better GED systems we
make use of two elements: ground-truth labels and finer detection granularity. Using
ground-truth GED data we can get an upper bound of the proposed approach. Moreover,
by utilizing more specific detection tags we observe how the model behaves when shown
examples with even higher error similarity. For this experiment, we use detection labels
with 2, 4 and 55 classes which correspond to operation, type and operation-type.

As Figure 5.4 demonstrates, the use of the ground-truth detection tags improves the
scores across all numbers of in-context examples. This indicates that further developments
in GED systems would automatically increase the quality of the TF-IDF GED method.
Additionally, as we can see from the higher granularity methods, using GED tags that
indicate the error operation or the specific error type increases the scores drastically. Thus,
investigating ways to improve multiclass GED models would also benefit example selection.

0 1 2 3 4 5 6 7 8
Number of In-Context Examples

32.5

35.0

37.5

40.0

42.5

45.0

47.5

50.0

F 0
.5

Random
TF-IDF GED
TF-IDF Ground Truth GED-55
TF-IDF Ground Truth GED-4
TF-IDF Ground Truth GED

Figure 5.4: Comparison between the random selection, and TF-IDF GED with multiple
levels of granularity and ground truth data on the W&I+LOCNESS development set.

5.3.3 Combining the Methods

Finally, we show the results when combining the methods to produce a more robust alter-
native for prompt-based GEC. In Table 5.2 we can observe the scores on the development
set of W&I+LOCNESS. Importantly, the combination of the two methods improves the
performance of both in isolation and considerably advances the baseline scores. The same
result is observed for Czech, German and Russian in Table 5.3

43

Model English Czech German Russian

GECToR [50] 72.40 - - -
Náplava and Straka [49] 69.00 80.17 73.71 50.20
gT5 base [60] 60.20 71.88 69.21 26.24
gT5 xxl [60] 69.83 83.15 75.96 51.62

GPT3.5 [22] 47.00 - 63.50 -
Ours (GED Filter + TF-IDF GED) 55.1 75.95 70.91 42.11

Table 5.4: Results of the combination of filtering and TF-IDF GED in test sets in English,
Czech, German and Russian. Dashes (-) indicate that the method was not available in the
language. Models are divided into supervised and unsupervised, the first being supervised
and the last unsupervised.

Table 5.4 shows the performance of combining our two proposed methods in the test
sets of all languages. For this experiments we Llama2 7B for English and GPT3.5 for
the other languages. Our method reduces the difference to supervised models in all four
languages studied. For English, the results are still very far from supervised methods,
but we beat the results of GPT-3.5 using Llama2 7B with our methods, a model that
is considerably smaller. For Czech and Russian the results are better than gT5 base, a
supervised GEC model. For German the model does not match supervised approaches, but
gets a competitive score that is better than previous prompt-based works. This indicates
that GED is a useful tool to improve prompt-based GEC, and more exploration should be
done in this direction.

44

Chapter 6

Conclusions

In this work, we focused on better analyzing multilingual GED models and their appli-
cations for prompt-based GEC. On the evaluation of multilingual detection systems, we
demonstrate that using a single multilingual model is preferred over a collection of mono-
lingual models by analyzing in-domain, cross-dataset, and cross-lingual generalization. In
all cases, the multilingual model performs better or in the worst case as well as the mono-
lingual systems. By also taking into consideration the memory efficiency of only keeping
track of a single model, it is clear that multilingual GED models are the best choice.

Once the effectiveness of GED models is assessed, we study how they can improve
GEC performed through prompting LLMs. More specifically, we are interested in avoiding
overcorrection and increasing the models’ ability to generate corrections that better follow
the style of the in-context examples.

To mitigate overcorrection we demonstrate that scores are improved by using a GED
model to select which sentence should be passed to the LLM. By filtering out sentences
that are predicted as correct by the detection system, we increase the scores and reduce
LLM usage. The latter is very relevant as running the LLM is a computationally expensive
process, given its size and auto-regressive nature. Therefore, GED filtering results in better
performance in terms of evaluation metrics and faster inference.

For in-context example selection, we show that semantical similarity methods are as
good as random selection for GEC. We demonstrate that by choosing in-context examples
based on the error structure of the sentence better results are observed. The method,
called TF-IDF GED, computes the TF-IDF vector of the detection tags n-grams, therefore
it relies only on the error structure, ignoring the actual words of the sentence. Importantly,

45

GED filtering and TF-IDF GED can be combined and together exhibit state-of-the-art
performance in LLM-based GEC.

The advances proposed in this thesis point to a promising direction in combining GED
models with LLM to generate correction. This hybrid approach, which makes use of a
smaller specialized system, allows us to make use of the massive LLM only when necessary
and improves it by generating more useful prompts. Continue on this line of work, many
other solutions still need to be explored and evaluated. Now we show some interesting
aspects for further investigation:

• Study of parameter efficient GED models that could be incorporated as a lightweight
component of LLM prompt-based GEC

• Investigate multilingual GED models on finer levels of granularity that could be used
to improve correction

• Expand the analysis performed on Llama2 7B to other model sizes and different LLM
families

46

References

[1] Dimitris Alikaniotis and Vipul Raheja. The Unreasonable Effectiveness of Transformer
Language Models in Grammatical Error Correction. In Proceedings of the Fourteenth
Workshop on Innovative Use of NLP for Building Educational Applications, pages
127–133, Florence, Italy, August 2019. Association for Computational Linguistics.

[2] Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli,
Ruxandra Cojocaru, Maitha Alhammadi, Mazzotta Daniele, Daniel Heslow, Julien
Launay, Quentin Malartic, Badreddine Noune, Baptiste Pannier, and Guilherme
Penedo. The falcon series of language models: Towards open frontier models. 2023.

[3] Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal, Sabyasachi Ghosh, and Vihari Pi-
ratla. Parallel Iterative Edit Models for Local Sequence Transduction, May 2020.
arXiv:1910.02893 [cs].

[4] Samuel Bell, Helen Yannakoudakis, and Marek Rei. Context is Key: Grammati-
cal Error Detection with Contextual Word Representations. In Helen Yannakoudakis,
Ekaterina Kochmar, Claudia Leacock, Nitin Madnani, Ildikó Pilán, and Torsten Zesch,
editors, Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Build-
ing Educational Applications, pages 103–115, Florence, Italy, August 2019. Association
for Computational Linguistics.

[5] Adriane Boyd. Using Wikipedia Edits in Low Resource Grammatical Error Correction.
In Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th Workshop on Noisy
User-generated Text, pages 79–84, Brussels, Belgium, November 2018. Association for
Computational Linguistics.

[6] Adriane Boyd, Jirka Hana, Lionel Nicolas, Detmar Meurers, Katrin Wisniewski, An-
drea Abel, Karin Schöne, Barbora Štindlová, and Chiara Vettori. The MERLIN cor-
pus: Learner language and the CEFR. In Nicoletta Calzolari, Khalid Choukri, Thierry

47

Declerck, Hrafn Loftsson, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan
Odijk, and Stelios Piperidis, editors, Proceedings of the Ninth International Confer-
ence on Language Resources and Evaluation (LREC’14), pages 1281–1288, Reykjavik,
Iceland, May 2014. European Language Resources Association (ELRA).

[7] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, T. J. Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens Winter, Christopher
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners. ArXiv, abs/2005.14165, 2020.

[8] Christopher Bryant and Ted Briscoe. Language Model Based Grammatical Error Cor-
rection without Annotated Training Data. In Proceedings of the Thirteenth Workshop
on Innovative Use of NLP for Building Educational Applications, pages 247–253, New
Orleans, Louisiana, June 2018. Association for Computational Linguistics.

[9] Christopher Bryant, Mariano Felice, Øistein E. Andersen, and Ted Briscoe. The bea-
2019 shared task on grammatical error correction. In BEA@ACL, 2019.

[10] Christopher Bryant, Mariano Felice, and Ted Briscoe. Automatic annotation and
evaluation of error types for grammatical error correction. In Annual Meeting of the
Association for Computational Linguistics, 2017.

[11] Christopher Bryant, Zheng Yuan, Muhammad Reza Qorib, Hannan Cao, Hwee Tou
Ng, and Ted Briscoe. Grammatical error correction: A survey of the state of the art.
(arXiv:2211.05166), March 2023. arXiv:2211.05166 [cs].

[12] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
RNN encoder–decoder for statistical machine translation. In Alessandro Moschitti,
Bo Pang, and Walter Daelemans, editors, Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP), pages 1724–1734, Doha,
Qatar, October 2014. Association for Computational Linguistics.

[13] Martin Chodorow and Claudia Leacock. An Unsupervised Method for Detecting
Grammatical Errors. In 1st Meeting of the North American Chapter of the Asso-
ciation for Computational Linguistics, 2000.

48

[14] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELEC-
TRA: pre-training text encoders as discriminators rather than generators. CoRR,
abs/2003.10555, 2020.

[15] Davide Colla, Matteo Delsanto, and Elisa Di Nuovo. EliCoDe at MultiGED2023: fine-
tuning XLM-RoBERTa for multilingual grammatical error detection. In Proceedings
of the 12th Workshop on NLP for Computer Assisted Language Learning, pages 24–34,
Tórshavn, Faroe Islands, May 2023. LiU Electronic Press.

[16] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guil-
laume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and
Veselin Stoyanov. Unsupervised cross-lingual representation learning at scale. CoRR,
abs/1911.02116, 2019.

[17] Steven Coyne, Keisuke Sakaguchi, Diana Galvan-Sosa, Michael Zock, and Kentaro
Inui. Analyzing the Performance of GPT-3.5 and GPT-4 in Grammatical Error Cor-
rection, May 2023. arXiv:2303.14342 [cs].

[18] Daniel Dahlmeier and Hwee Tou Ng. Better evaluation for grammatical error cor-
rection. In Eric Fosler-Lussier, Ellen Riloff, and Srinivas Bangalore, editors, Proceed-
ings of the 2012 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 568–572, Montréal,
Canada, June 2012. Association for Computational Linguistics.

[19] Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu. Building a large annotated corpus
of learner english: The nus corpus of learner english. In BEA@NAACL-HLT, 2013.

[20] R. Dale, Ilya Anisimoff, and George Narroway. Hoo 2012: A report on the preposition
and determiner error correction shared task. In BEA@NAACL-HLT, 2012.

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. In North
American Chapter of the Association for Computational Linguistics, 2019.

[22] Tao Fang, Shu Yang, Kaixin Lan, Derek F. Wong, Jinpeng Hu, Lidia S. Chao, and
Yue Zhang. Is ChatGPT a Highly Fluent Grammatical Error Correction System? A
Comprehensive Evaluation, April 2023. arXiv:2304.01746 [cs].

[23] Michael Gamon. High-Order Sequence Modeling for Language Learner Error Detec-
tion. In Joel Tetreault, Jill Burstein, and Claudia Leacock, editors, Proceedings of
the Sixth Workshop on Innovative Use of NLP for Building Educational Applications,

49

pages 180–189, Portland, Oregon, June 2011. Association for Computational Linguis-
tics.

[24] Sylviane Granger. The computer learner corpus: a versatile new source of data for sla
research. 1998.

[25] Roman Grundkiewicz and Marcin Junczys-Dowmunt. The WikEd Error Corpus: A
Corpus of Corrective Wikipedia Edits and Its Application to Grammatical Error Cor-
rection, volume 8686 of Lecture Notes in Computer Science, page 478–490. Springer
International Publishing, Cham, 2014.

[26] Roman Grundkiewicz and Marcin Junczys-Dowmunt. Minimally-augmented gram-
matical error correction. In Wei Xu, Alan Ritter, Tim Baldwin, and Afshin Rahimi, ed-
itors, Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019),
page 357–363, Hong Kong, China, November 2019. Association for Computational
Linguistics.

[27] Roman Grundkiewicz, Marcin Junczys-Dowmunt, and Kenneth Heafield. Neural
Grammatical Error Correction Systems with Unsupervised Pre-training on Synthetic
Data. In Helen Yannakoudakis, Ekaterina Kochmar, Claudia Leacock, Nitin Madnani,
Ildikó Pilán, and Torsten Zesch, editors, Proceedings of the Fourteenth Workshop on
Innovative Use of NLP for Building Educational Applications, pages 252–263, Flo-
rence, Italy, August 2019. Association for Computational Linguistics.

[28] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Compu-
tation, 9(8):1735–1780, 1997.

[29] Kengo Hotate, Masahiro Kaneko, and Mamoru Komachi. Generating Diverse Cor-
rections with Local Beam Search for Grammatical Error Correction. In Donia Scott,
Nuria Bel, and Chengqing Zong, editors, Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 2132–2137, Barcelona, Spain (Online),
December 2020. International Committee on Computational Linguistics.

[30] Jianshu Ji, Qinlong Wang, Kristina Toutanova, Yongen Gong, Steven Truong, and
Jianfeng Gao. A Nested Attention Neural Hybrid Model for Grammatical Error Cor-
rection. In Regina Barzilay and Min-Yen Kan, editors, Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 753–762, Vancouver, Canada, July 2017. Association for Computational Lin-
guistics.

50

[31] Marcin Junczys-Dowmunt, Roman Grundkiewicz, Shubha Guha, and Kenneth
Heafield. Approaching Neural Grammatical Error Correction as a Low-Resource Ma-
chine Translation Task. In Marilyn Walker, Heng Ji, and Amanda Stent, editors,
Proceedings of the 2018 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), pages 595–606, New Orleans, Louisiana, June 2018. Association for Compu-
tational Linguistics.

[32] Masahiro Kaneko and Mamoru Komachi. Multi-Head Multi-Layer Attention to
Deep Language Representations for Grammatical Error Detection, April 2019.
arXiv:1904.07334 [cs].

[33] Masahiro Kaneko, Masato Mita, Shun Kiyono, Jun Suzuki, and Kentaro Inui.
Encoder-Decoder Models Can Benefit from Pre-trained Masked Language Models in
Grammatical Error Correction. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and
Joel Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4248–4254, Online, July 2020. Association for
Computational Linguistics.

[34] Sudhanshu Kasewa, Pontus Stenetorp, and Sebastian Riedel. Wronging a Right: Gen-
erating Better Errors to Improve Grammatical Error Detection. In Ellen Riloff, David
Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors, Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing, pages 4977–4983, Brus-
sels, Belgium, October 2018. Association for Computational Linguistics.

[35] Satoru Katsumata and Mamoru Komachi. Stronger Baselines for Grammatical Error
Correction Using a Pretrained Encoder-Decoder Model. In Kam-Fai Wong, Kevin
Knight, and Hua Wu, editors, Proceedings of the 1st Conference of the Asia-Pacific
Chapter of the Association for Computational Linguistics and the 10th International
Joint Conference on Natural Language Processing, pages 827–832, Suzhou, China,
December 2020. Association for Computational Linguistics.

[36] Olesya Kisselev, Anna Alsufieva, and Sandra Freels. Results 2012: Using flagship data
to develop a russian learner corpus of academic writing. 65:79–105, 11 2012.

[37] Phuong Le-Hong, The Quyen Ngo, and Thi Minh Huyen Nguyen. Two neural models
for multilingual grammatical error detection. In Proceedings of the 12th Workshop on
NLP for Computer Assisted Language Learning, page 40–44, Tórshavn, Faroe Islands,
May 2023. LiU Electronic Press.

51

[38] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdel rahman Mo-
hamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising
sequence-to-sequence pre-training for natural language generation, translation, and
comprehension. In Annual Meeting of the Association for Computational Linguistics,
2019.

[39] Yinghao Li, Xuebo Liu, Shuo Wang, Peiyuan Gong, Derek F. Wong, Yang Gao, Heyan
Huang, and Min Zhang. TemplateGEC: Improving grammatical error correction with
detection template. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, ed-
itors, Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 6878–6892, Toronto, Canada, July 2023.
Association for Computational Linguistics.

[40] Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and
Weizhu Chen. What makes good in-context examples for gpt-3? arXiv preprint
arXiv:2101.06804, 2021.

[41] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly
optimized bert pretraining approach. ArXiv, abs/1907.11692, 2019.

[42] Eric Malmi, Sebastian Krause, Sascha Rothe, Daniil Mirylenka, and Aliaksei Severyn.
Encode, Tag, Realize: High-Precision Text Editing, September 2019. arXiv:1909.01187
[cs].

[43] Behrang Mohit, Alla Rozovskaya, Nizar Habash, Wajdi Zaghouani, and Ossama
Obeid. The first qalb shared task on automatic text correction for arabic. In
ANLP@EMNLP, 2014.

[44] Jakub Náplava and Milan Straka. Grammatical error correction in low-resource sce-
narios. ArXiv, abs/1910.00353, 2019.

[45] Jakub Náplava, Milan Straka, Jana Straková, and Alexandr Rosen. Czech grammar
error correction with a large and diverse corpus. Transactions of the Association for
Computational Linguistics, 10:452–467, 2022.

[46] Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian Hadiwinoto, Raymond Hendy
Susanto, and Christopher Bryant. The conll-2013 shared task on grammatical error
correction. In CoNLL Shared Task, 2013.

52

[47] Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian Hadiwinoto, Raymond Hendy
Susanto, and Christopher Bryant. The conll-2014 shared task on grammatical error
correction. In CoNLL Shared Task, 2014.

[48] Diane Nicholls. The cambridge learner corpus-error coding and analysis. 1999.

[49] Jakub Náplava and Milan Straka. Grammatical Error Correction in Low-Resource Sce-
narios. In Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT
2019), pages 346–356, Hong Kong, China, November 2019. Association for Computa-
tional Linguistics.

[50] Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem Chernodub, and Oleksandr
Skurzhanskyi. GECToR – Grammatical Error Correction: Tag, Not Rewrite. In Pro-
ceedings of the Fifteenth Workshop on Innovative Use of NLP for Building Educational
Applications, pages 163–170, Seattle, WA, USA → Online, July 2020. Association for
Computational Linguistics.

[51] OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

[52] Alec Radford and Karthik Narasimhan. Improving language understanding by gener-
ative pre-training. 2018.

[53] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019.

[54] Colin Raffel, Noam M. Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of trans-
fer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21:140:1–
140:67, 2019.

[55] Marek Rei. Semi-supervised Multitask Learning for Sequence Labeling, April 2017.
arXiv:1704.07156 [cs].

[56] Marek Rei and Helen Yannakoudakis. Compositional Sequence Labeling Models for
Error Detection in Learner Writing. In Katrin Erk and Noah A. Smith, editors, Pro-
ceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1181–1191, Berlin, Germany, August 2016. Associa-
tion for Computational Linguistics.

[57] Marek Rei and Helen Yannakoudakis. Auxiliary Objectives for Neural Error Detection
Models. In Joel Tetreault, Jill Burstein, Claudia Leacock, and Helen Yannakoudakis,

53

editors, Proceedings of the 12th Workshop on Innovative Use of NLP for Building
Educational Applications, pages 33–43, Copenhagen, Denmark, September 2017. As-
sociation for Computational Linguistics.

[58] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese
bert-networks. In Conference on Empirical Methods in Natural Language Processing,
2019.

[59] Marc Reznicek, Anke Lüdeling, Cedric Krummes, Franziska Schwantuschke, Maik
Walter, Karin Schmidt, and Hagen Hirschmann. Das falko-handbuch. korpusaufbau
und annotationen. version 2.01, 09 2012.

[60] Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebastian Krause, and Aliaksei Sev-
eryn. A Simple Recipe for Multilingual Grammatical Error Correction. In Proceed-
ings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume 2:
Short Papers), pages 702–707, Online, August 2021. Association for Computational
Linguistics.

[61] Sebastian Ruder, Ivan Vulić, and Anders Søgaard. Square one bias in NLP: Towards a
multi-dimensional exploration of the research manifold. In Smaranda Muresan, Preslav
Nakov, and Aline Villavicencio, editors, Findings of the Association for Computational
Linguistics: ACL 2022, pages 2340–2354, Dublin, Ireland, May 2022. Association for
Computational Linguistics.

[62] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a
distilled version of bert: smaller, faster, cheaper and lighter. ArXiv, abs/1910.01108,
2019.

[63] Felix Stahlberg, Christopher Bryant, and Bill Byrne. Neural Grammatical Error Cor-
rection with Finite State Transducers. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4033–4039, Min-
neapolis, Minnesota, June 2019. Association for Computational Linguistics.

[64] Felix Stahlberg and Shankar Kumar. Seq2Edits: Sequence Transduction Using Span-
level Edit Operations, September 2020. arXiv:2009.11136 [cs].

[65] Milan Straka, Jakub Náplava, and Jana Straková. Character Transformations for
Non-Autoregressive GEC Tagging, November 2021. arXiv:2111.09280 [cs].

54

[66] Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi, Tianlu Wang, Jiayi Xin, Rui
Zhang, Mari Ostendorf, Luke Zettlemoyer, Noah A. Smith, and Tao Yu. Selective
annotation makes language models better few-shot learners, 2022.

[67] Toshikazu Tajiri, Mamoru Komachi, and Yuji Matsumoto. Tense and aspect error
correction for esl learners using global context. In Annual Meeting of the Association
for Computational Linguistics, 2012.

[68] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample.
Llama: Open and efficient foundation language models. ArXiv, abs/2302.13971, 2023.

[69] Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale,
Daniel M. Bikel, Lukas Blecher, Cristian Cantón Ferrer, Moya Chen, Guillem Cucurull,
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao,
Vedanuj Goswami, Naman Goyal, Anthony S. Hartshorn, Saghar Hosseini, Rui Hou,
Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel M. Kloumann,
A. V. Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar
Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, R. Subramanian, Xia
Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang,
Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2:
Open foundation and fine-tuned chat models. ArXiv, abs/2307.09288, 2023.

[70] Harun Uz and Gülşen Eryiğit. Towards automatic grammatical error type classifica-
tion for Turkish. In Elisa Bassignana, Matthias Lindemann, and Alban Petit, editors,
Proceedings of the 17th Conference of the European Chapter of the Association for
Computational Linguistics: Student Research Workshop, pages 134–142, Dubrovnik,
Croatia, May 2023. Association for Computational Linguistics.

[71] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

55

[72] Elena Volodina, Christopher Bryant, Andrew Caines, Orphée De Clercq, Jennifer-
Carmen Frey, Elizaveta Ershova, Alexandr Rosen, and Olga Vinogradova. MultiGED-
2023 shared task at NLP4CALL: Multilingual Grammatical Error Detection. In Pro-
ceedings of the 12th Workshop on NLP for Computer Assisted Language Learning,
pages 1–16, Tórshavn, Faroe Islands, May 2023. LiU Electronic Press.

[73] Elena Volodina, Lena Granstedt, Arild Matsson, Beáta Megyesi, Ildikó Pilán, Julia
Prentice [Grosse], Dan Rosén, Lisa Rudebeck, Carl-Johan Schenström, Gunlög Sund-
berg, and Mats Wirén. The swell language learner corpus: From design to annotation.
The Northern European Journal of Language Technology, 6:67–104, 12 2019.

[74] Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive
Language Model. https://github.com/kingoflolz/mesh-transformer-jax, May
2021.

[75] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester,
Nan Du, Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot
learners. ArXiv, abs/2109.01652, 2021.

[76] Haoran Wu, Wenxuan Wang, Yuxuan Wan, Wenxiang Jiao, and Michael Lyu. Chat-
GPT or Grammarly? Evaluating ChatGPT on Grammatical Error Correction Bench-
mark, March 2023. arXiv:2303.13648 [cs].

[77] Ziang Xie, Anand Avati, Naveen Arivazhagan, Dan Jurafsky, and Andrew Y.
Ng. Neural Language Correction with Character-Based Attention, March 2016.
arXiv:1603.09727 [cs].

[78] Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Sid-
dhant, Aditya Barua, and Colin Raffel. mt5: A massively multilingual pre-trained
text-to-text transformer. In North American Chapter of the Association for Compu-
tational Linguistics, 2020.

[79] Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Sid-
dhant, Aditya Barua, and Colin Raffel. mt5: A massively multilingual pre-trained
text-to-text transformer. (arXiv:2010.11934), March 2021. arXiv:2010.11934 [cs].

[80] Helen Yannakoudakis, Øistein E. Andersen, Ardeshir Geranpayeh, Ted Briscoe, and
Diane Nicholls. Developing an automated writing placement system for esl learners.
Applied Measurement in Education, 31:251 – 267, 2018.

56

https://github.com/kingoflolz/mesh-transformer-jax

[81] Helen Yannakoudakis, Ted Briscoe, and Ben Medlock. A new dataset and method for
automatically grading ESOL texts. In Dekang Lin, Yuji Matsumoto, and Rada Mihal-
cea, editors, Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies, pages 180–189, Portland, Oregon,
USA, June 2011. Association for Computational Linguistics.

[82] Michihiro Yasunaga, Jure Leskovec, and Percy Liang. LM-Critic: Language Models for
Unsupervised Grammatical Error Correction. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pages 7752–7763, Online and
Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics.

[83] Zheng Yuan and Ted Briscoe. Grammatical error correction using neural machine
translation. In Kevin Knight, Ani Nenkova, and Owen Rambow, editors, Proceedings
of the 2016 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pages 380–386, San Diego,
California, June 2016. Association for Computational Linguistics.

[84] Zheng Yuan, Shiva Taslimipoor, Christopher Davis, and Christopher Bryant. Multi-
Class Grammatical Error Detection for Correction: A Tale of Two Systems. In Pro-
ceedings of the 2021 Conference on Empirical Methods in Natural Language Process-
ing, pages 8722–8736, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics.

[85] Wajdi Zaghouani, Nizar Habash, Houda Bouamor, Alla Rozovskaya, Behrang Mohit,
Abeer Heider, and Kemal Oflazer. Correction annotation for non-native arabic texts:
Guidelines and corpus. In LAW@NAACL-HLT, 2015.

[86] Wajdi Zaghouani, Behrang Mohit, Nizar Habash, Ossama Obeid, Nadi Tomeh, Alla
Rozovskaya, Noura Farra, Sarah Alkuhlani, and Kemal Oflazer. Large scale arabic
error annotation: Guidelines and framework. In International Conference on Language
Resources and Evaluation, 2014.

[87] Yiming Zhang, Shi Feng, and Chenhao Tan. Active example selection for in-context
learning. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pages 9134–9148, Abu Dhabi, United Arab Emirates, December
2022. Association for Computational Linguistics.

[88] Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and Jingming Liu. Improving Gram-
matical Error Correction via Pre-Training a Copy-Augmented Architecture with Un-
labeled Data, June 2019. arXiv:1903.00138 [cs].

57

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Motivation
	Tasks
	Research Questions
	Contributions
	Thesis Outline

	Background
	Neural Networks
	Sequential Data and Recurrent Neural Networks
	Transformers
	Decoder-Only Models
	BERT - Encoder-Only Models

	NLP Beyond English
	Grammatical Error Correction
	Datasets
	Evaluation Metrics

	Grammatical Error Detection
	Datasets

	Related Work
	Grammatical Error Detection
	Grammatical Error Correction
	Supervised Methods
	Unsupervised Methods

	Multilingual Grammatical Error Detection
	Methodology
	Experimental Setup
	Results and Analysis
	In-domain
	Cross-dataset
	Cross-Lingual

	Detection Assisted Prompt-Based Grammatical Error Correction
	Methodology
	GED Filtering of Correct Senteces
	GED for In-context Example Selection

	Experimental Setup
	Results and Analysis
	GED Filter
	TF-IDF GED
	Combining the Methods

	Conclusions
	References

