
Optimal trajectory calculation using
neural networks

by

Sounak Majumder

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Applied Mathematics

Waterloo, Ontario, Canada, 2023

© Sounak Majumder, 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Optimal control methods for linear systems have reached a substantial level of maturity,
both in terms of conceptual understanding and scalable computational implementation.
For non-linear systems, an open-loop feedback control may be calculated using Pontrya-
gin’s Maximum Principle. Alternatively, the Hamilton-Jacobi-Bellman (HJB) equation
may be used to calculate the optimal control in a state-feedback form. However, it is an
established fact that this equation becomes progressively harder to solve as the number of
state variables increases. In this thesis, we discuss a Neural Network (NN)-based method
[37] to approximate the solution to the HJB equation arising from high-dimensional ODE
systems. We leverage the equivalency between the HJB equation and Pontryagin’s Princi-
ple to generate the training and test datasets and define a physics-based loss function. The
NN is then trained using a supervised optimization approach. We also examine an existing
toolkit [29] to approximate the optimal control based on a power series expansion of the
system around an equilibrium point in an infinite time horizon setting. We examine the
possibility of incorporating this toolkit in the NN training procedure at different stages.
The proposed methods are applied to three problems: optimal control of a 6 degree-of-
freedom rigid body and the stabilization of ODE systems arising from the discretization
of a Burgers’-like non-linear PDE and the damped wave equation.

iii

Acknowledgements

Firstly, I would like to express my deepest appreciation to my supervisors, professors
Kirsten Morris and Roberto Guglielmi. Their invaluable guidance and insightful discus-
sions on the problems presented in this thesis were instrumental throughout my master’s
research. Certainly, this thesis would not have reached its final form without their valuable
input.

I extend my heartfelt thanks to my undergraduate classmate, Mr. Rajdeep Sardar
(Eco-friendly Smart Ship Parts Technology Innovation Center, Pusan National University,
Busan, South Korea). I am equally grateful to Mr. Sankar Chakraborty and Mrs. Suman
Chakraborty, who are (to date) the only persons I know personally in Canada. We hail from
the same locality in India, and I am thankful for the homely refuge that they occasionally
gave me thousands of miles away from my original home. During my master’s degree,
I pursued some extra professional ventures outside of University, such as completing the
confirmatory examination program in mechanical engineering required for licensure as a
professional engineer with Professional Engineers Ontario. Balancing graduate studies,
teaching assignments, and exam preparation was exceptionally challenging, and I am truly
thankful for the mental support that Mr. Sardar and Mr. and Mrs. Chakraborty gave me
during those tough times. I would also like to thank Mr. Arnab Joardar (University of
Waterloo), my flatmate, for his useful advice in those difficult times.

Finally, I am immensely thankful to Mr. Brian Mao, who was of significant help in
navigating the co-op process of my master’s program. With his support, I was able to get
an engineering co-op job, which also happens to be the first industry job that I held. The
experience I acquired proved invaluable to me in the early stages of my career.

iv

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

List of Figures vii

List of Tables x

1 Introduction to Optimal Control 1

1.1 Introduction . 1

1.2 Basic Terminologies in Optimal Control Studies 3

1.3 Pontryagin’s Maximum Principle (PMP) 5

1.4 Dynamic Programming for discrete cases 7

1.5 The value function . 9

1.6 Hamilton-Jacobi-Bellman (HJB) Equation 11

1.7 Relationship between HJB and PMP . 13

2 Computational Approaches 16

2.1 General Overview . 16

2.2 Boundary Value Problem solution . 17

v

2.3 Physics-informed Neural Networks: An overview 19

2.4 Neural Network formulation methodology 21

2.5 Toolkit of Krener et. al. 26

3 Aircraft-orientation control: A 6-dof system 29

3.1 Basic Neural-Network formulation . 31

3.2 Application of Krener’s Toolkit . 36

4 Optimal control of the Burgers’ Equation 44

4.1 Preliminary optimality conditions from PMP 44

4.2 Application of Krener’s toolkit . 48

4.3 Neural Network Formulation . 50

5 Optimal Control of the damped wave equation 53

5.1 A preliminary discussion . 53

5.2 Optimality conditions from PMP . 54

5.3 Neural Network Implementation and Performance 56

6 Conclusions and Future Work 64

References 66

vi

List of Figures

1.1 Possible paths from state A to M. The numbers are costs to travel between
available states. 8

3.1 Optimal trajectories and controls for the initial state calculated from PMP:
The initial state v(0) = (ϕ(0), θ(0), ψ(0)) = (−1/4,−π/3, π/3) and ω(0) =
(ω1(0), ω2(0), ω3(0)) = (−1/4,−π/4, 0.56). The optimal control vector u∗(t) =
(u∗1(t), u

∗
2(t), u

∗
3(t)). Solid blue line: ϕ, ω1, u

∗
1(t); Dashed red line: θ, ω2, u

∗
2(t);

Dotted purple line: ψ, ω3, u
∗
3(t). Dashed black line: Optimal Hamiltonian.

From theorem 1.2, it is known that such trajectories have a constant Hamil-
tonian, and since this particular system is stable, the states and the control
tend to zero due to the large time horizon. Consequently, the Hamiltonian
obtained is nearly zero. 32

3.2 A visual representation of our problem-specific NN 33

3.3 NN performance metrics at the conclusion of 500 training iterations for
the optimal aircraft attitude control problem. The performances obtained
are similar to that of [37], and serves to validate our implementation of the
basic NN method. For consistency reasons, all the NNs have the same initial
parameter initialization. 34

3.4 Performance of the NN in the presence of noise. The NN applied was trained
with µ = 10 and involved 8192 sample points. The default initial condition
is the same as that of fig. 3.1: v(0) = (ϕ(0), θ(0), ψ(0)) = (−1/4,−π/3, π/3)
and ω(0) = (ω1(0), ω2(0), ω3(0)) = (−1/4,−π/4, 0.56). Sampling was done
at a frequency of 10 Hz and corrupted with white Gaussian noise of standard
deviation 0.01π. Solid blue line: ϕ, ω1, u

∗
1(t); Dashed red line: θ, ω2, u

∗
2(t);

Dotted purple line: ψ, ω3, u
∗
3(t). 35

vii

3.5 Performance of the approximated controller generated from Krener’s Toolkit.
The initial condition is the same as fig. 3.1: v(0) = (ϕ(0), θ(0), ψ(0)) =
(−1/4,−π/3, π/3) and ω(0) = (ω1(0), ω2(0), ω3(0)) = (−1/4,−π/4, 0.56).
Solid blue line: ϕ, ω1, u

∗
1(t); Dashed red line: θ, ω2, u

∗
2(t); Dotted pur-

ple line: ψ, ω3, u
∗
3(t). The relevant quantities, as evaluated using Krener’s

toolkit, are indicated with square markers. 36

3.6 % difference in performance metrics for NNs with and without pre-training
at the conclusion of 500 training iterations, with initial conditions sampled
from eq. (3.5). If Xp and X are a metric with and without pre-training,
respectively, then the % error=(X −Xp)/X × 100%. Top: µ = 0; Bottom:
µ = 10 at the pre-training step. 38

3.7 % difference in performance metrics for NNs with and without pre-training
at the conclusion of 500 training iterations, with initial conditions sampled
from the restricted eq. (3.8). If Xp and X are a metric with and without
pre-training, respectively, then the % error=(X−Xp)/X×100%. The color
code is the same as fig. 3.6, with blue: µ = 0, red: µ = 0.01, yellow: µ = 0.1,
purple: µ = 10. 39

3.8 NN performance with a selectively chosen dataset consisting of 128 datapoints 40

3.9 NN performance with a selectively chosen dataset consisting of 256 datapoints 41

3.10 NN performance with a selectively chosen dataset consisting of 512 datapoints 41

3.11 NN performance with selectively chosen dataset consisting of 1024 datapoints 42

3.12 NN performance with selectively chosen dataset consisting of 2048 datapoints 43

4.1 Simulations of (4.1) in n = 20 dimensions. Left Column: Simulations for ini-
tial conditionX0 = 2 sin(πξ) and right Column: X0 = −2 sin(πξ). Top Row:
Uncontrolled dynamics; Middle: Controlled optimal dynamics; Bottom: Re-
spective optimal controls (solid blue) and Hamiltonian (dashed black) from
PMP. 47

4.2 Comparison of the controls obtained from PMP (Blue) and Krener’s toolkit
(Red) for an initial condition X0 = 2 sin(πξ). Left: degree of optimal feed-
back=2, Right: degree of optimal feedback=1. 48

4.3 Comparison of the controls obtained from the neural networks (with and
without the Vt-based losses, for an n = 20 grid discretization. Left: X0 =
−2 sin(πξ), Right: X0 = 2 sin(πξ). 51

viii

5.1 Numerical and spectral aspects of eq. (5.9). Right fig, black line: cn(0);
blue line: nπcn(0). Blue square markers indicate indices where |cn(0)| >
0.05, while black ones indicate indices where |nπcn(0)| > 0.05. While
|cn(0)| < 0.05∀n > 4, this is not true for |nπcn(0)|. Left fig: fk(ξ) =∑k

n=1

√
2cn sin(nπξ). If Ek =

√∫ 1

0
(X(0)− fk)2dξ and X(0) is given by

eq. (5.9), E5 = 0.0817, E10 = 0.022, E15 = 0.0099, E20 = 0.0086, E25 =
0.0068, E30 = 0.0049 . 57

5.2 Left: Simulated trajectory involving k = 30 spectral coefficients for the
initial state eq. (5.9) with no acting control. Right: Simulated trajectory
for the same initial state when subject to optimal control with cost functional
eq. (5.6). 58

5.3 Top: Optimal control u(t) obtained for the Cost functional eq. (5.6) with k =
30 spectral coefficients, and Bottom: The Optimal Hamiltonian obtained on
solving the boundary value problem. It is seen to be numerically constant,
as expected from theory, but its value is not zero. 59

5.4 Comparison of control obtained from PMP and the NN trained on datasets
having k non-zero spectral coefficients, in which no higher-order spectral
coefficient was truncated to zero. The results are presented for the initial
condition eq. (5.9). Blue lines: controls from PMP, Black lines: controls
from NN. 61

5.5 Comparison of control obtained from PMP and the NN trained on the modi-
fied datasets having k time-varying spectral coefficients, with all initial spec-
tral coefficients cn(0) : n > 5 in the dataset truncated to zero. The initial
condition eq. (5.9) used in this validation step is, however, still expanded to
k non-zero spectral coefficients. Blue lines: controls from PMP, Black lines:
controls from NN. 62

ix

List of Tables

1.1 Optimal paths from M to {J,K, L} . 8

1.2 Optimal paths from M to {E,F,G,H, I} 9

1.3 Optimal paths from M to {B,C,D} . 9

3.1 Deviation of Krener’s toolkit from PMP, based on 2000 datapoints. R1 =
[−π/3, π/3], R2 = [−π/4, π/4]. 37

4.1 Relevant metrics at the end of 500 training iterations when the term involv-
ing Vt is included in the loss function for problem 2. The metrics used are
defined in eq. (2.7). Note: The time readings have a strong tendency to
be altered from background tasks running in the machine, nevertheless, the
training times obtained are comparable. 51

x

Chapter 1

Introduction to Optimal Control

1.1 Introduction

Optimal Control problems involve the calculation of the admissible control to move a
system at a given state to a final target set (an acceptable combination of the final time
and system state) while minimizing a cost function along the trajectory. Its study has
its roots in the field of Calculus of Variations, which, in turn, started development in the
1600s. Calculus of Variations deals with infinite-dimensional path optimization, but it is
primarily concerned with problems in non-dynamic settings. It is generally agreed that the
development of the Maximum Principle [40] and that of Dynamic Programming [4] were
the most important milestones in the extension of the Calculus of Variations to a control-
focused, dynamic setting. A summary of the development of Optimal Control theory and
its application to aerospace problems may be found in [8].

In the context of linear systems, Linear Control theory has reached a substantial level
of maturity. In the context of Optimal Control, for a quadratic optimization functional in
terms of the states and control effort, the optimal controller may be obtained in a state-
feedback form. This involves solving either the Differential or Algebraic Riccati Equation,
depending on whether the problem is framed in a finite-time or infinite-horizon scenario
[32][33]. While an analytical solution is often not possible as these equations are non-linear,
the existence and properties of the solution may be guaranteed through relatively simple
numerical tests; in fact, the application of concepts like the Maximum Principle is not
required in this context. Scalable algorithms and computational routines exist to solve
these equations even when the number of state variables is very large [5]. Consequently,
methods based on linear control enjoy high confidence, especially in industrial settings [23].

1

Nonlinear systems may be linearized about an operating point to get an approximate
linear system [23]. The nonlinear behavior will, however, become apparent if it oper-
ates over a wide range. Through better compensation of these nonlinearities, nonlinear
controllers have an expanded range of operability as well as the potential to deliver bet-
ter performance. Also, it has been shown that certain nonlinearities such as dead zones,
hysteresis, coulomb friction, stiction, backlash, and saturation do not present good linear
approximations [3]. [23] presents an example of disturbance rejection in a 6-dof manipu-
lator tracking problem. The nonlinear sliding mode controller developed therein is seen
to be significantly better and more robust than PID-based control. However, modeling
nonlinear systems is mathematically more cumbersome, and its application to real-time
systems requires significant computing power. The cost of nonlinear control prototyping
hardware is high, and nonlinear control schemes potentially require more expensive and
reliable actuators [23]. These limitations have led to their reduced adoption in industrial
settings.

Pontryagin’s Maximum Principle may be used to determine the optimal control for
non-linear systems in an open-loop fashion. The optimal solution is then obtained in the
form of a nonlinear boundary-value problem. Consequently, no feedback is solicited at any
point in the trajectory to adjust the control effort. If a control adjustment is needed, fresh
calculations need to be performed, rendering it unsuitable for real-time control applications.
Alternatively, the optimal feedback can be obtained in a state-feedback form through the
Hamilton-Jacobi-Bellman (HJB) equation [31]. It is known that these equations become
progressively harder to solve as the number of state variables increases, a phenomenon
dubbed the “curse of dimensionality”. Existing strategies for high dimensional problems
often rely on specific, restrictive problem structures or are valid only locally around some
nominal trajectory [37].

This thesis aims to discuss the application of Neural Networks (NNs) to approximate
the solution to HJB equations arising for general high-dimensional non-linear systems, as
originally described in [37]. The training is performed using optimal trajectories calculated
from Pontryagin’s Maximum Principle. The interrelationships between PMP and HJB
equations, as discussed in section 1.7, are used to improve the effectiveness of the training
procedure. The trained NN is then used in the feedback control of the non-linear system.
An approximate controller to predict the optimal control based on a power-series expansion
[29], developed by Krener et al., is studied as well. Its potential application at different
stages of the NN training procedure to potentially speed up or improve its convergence is
examined subsequently.

This thesis is organized as follows: section 1.2 defines some basic terminologies com-
monly used in Optimal Control literature. The Pontryagin Maximum Principle (PMP)

2

is introduced in the context of fixed time-free state problems in section 1.3. A derivation
of the HJB equation from the principle of optimality is presented in section 1.6. The
interrelationship between the two, which forms the basis of the physics-based loss in the
NN training process, is described in section 1.7. Chapter 2 describes the computational
aspects of the problems discussed in this thesis. Section 2.2 discusses the arising boundary
value problem and process-based concurrency techniques in Python, which were used in the
data generation process. Sections 2.3 and 2.4 discuss the development of physics-informed
neural networks and present an example of their application to solve a parabolic diffusion
equation. The application of such concepts to our NN training procedure is discussed as
well. Section 2.5 discusses the working of the toolkit developed by Krener et al. [29] in
detail. The NN approximation method is applied to the optimal control of a 6-dof rigid
body in chapter 3. A potential application of Krener’s toolkit in the context of neural
network pre-training and selectively choosing the training datapoints is discussed in the
same chapter. Chapter 4 presents the application of the NN-based approximation method
to the optimal stabilization of a dense ODE system of up to 30 dimensions arising from
the discretization of a Burgers’-like PDE using a spectral method. Chapter 5 presents an
optimal stabilization problem for an ODE system of up to 60 dimensions arising from the
damped wave equation.

1.2 Basic Terminologies in Optimal Control Studies

This section introduces some terms commonly used in optimal control literature and dis-
cusses some central assumptions on the class of problems investigated in this thesis. In the
most general sense, the dynamical systems examined are of the form ẋ = f(t, x, u), x(t0) =
x0, where x ∈ Rn is the state, u ∈ U ⊆ Rm is the control set, t ∈ R is the time and x0, t0 is
the initial state and time, respectively. Both x = x(t) and u = u(t) are functions of time;
the control set U is a closed, time-invariant subset of Rm. A set of constraints on f and
admissible controls u must be specified so that for every possible initial condition (t0, x0)
and every permissible control u(t), the system has a unique solution x(t) on a given time
interval [t0, t1]. One such acceptable set of constraints as per [31, Chapter 3] requires that
f is continuous in t and u and at least C1 in x; furthermore, fx must be continuous in t
and u, and u(.) must be a piecewise continuous function of t. In this thesis, it is assumed
that the control systems satisfy this set of requirements. Additionally, the systems studied
are time-invariant, such that the governing system f does not depend explicitly on time.
One can treat time as an additional independent variable xn+1 := t such that ẋn+1 = 1,
although doing so requires additional continuity restrictions on time.

3

Cost functionals describe the cost associated with the state transition, and these func-
tionals are minimized in optimal control problems. Such functionals can be expressed in
three forms, with the most general one being the Bolza form:

J(u) =

∫ tf

t0

L(t, x(t), u(t))dt+K(tf , xf) (1.1)

where tf and xf := x(tf) are the final time and state, L : R×Rn × U → R is the running
cost (or Lagrangian), and K : R×Rn → R is the terminal cost. The second form, called
Lagrangian form involves no terminal cost, so that K ≡ 0, and the third form is called
the Mayer form, in which the running cost L ≡ 0. It is possible to transform the cost
functional from one form to another. Since

K(tf , xf) = K(t0, x0) +

∫ tf

t0

d

dt
(K(t, x(t))dt

= K(t0, x0) +

∫ tf

t0

(Kt(t, x(t)) +Kx(t, x(t)))dt

and as K(t0, x0) is a constant, the Bolza functional is equivalent to the Lagrangian cost
function with L̂ = L(t, x(t), u(t))+Kt(t, x(t))+Kx(t, x(t)). On the other hand, if L satisfies
the same continuity properties as f discussed previously, one can introduce an extra state
x0 : ẋ0 = L(t, x, u), x0(t0) = 0. Thus

∫ tf
t0
L(t, x(t), u(t))dt = x0(tf), implying a conversion

to the Mayer form with terminal cost K̂ = x0(tf) +K(tf , xf).

In order to define acceptable combinations of the final time tf and the corresponding
state xf , the concept of target sets: S ⊂ [t0,∞) × Rn are used. Let tf be the smallest
time such that (tf , xf) ∈ S. The set S is assumed to be closed so that if (t, x(t)) ever
enters S, the time tf is well defined, and an acceptable final state is reached. For example,
the target set S = [t0,∞) × {x1} where x1 is a free point in Rn describes a fixed-point,
free-time problem. One can have target sets such as S = T ×S1, where T is some subset of
[0,∞) and S1 is some surface in Rn. For example, S = {f(t, g(t)) : t ∈ [t0,∞)} for some
continuous function g : R→ Rn corresponds to hitting a moving target.

This concludes a preliminary description of the problems discussed in optimal control:
given a system f which meets the criteria described in the first paragraph and the target
set S described before, to obtain the optimal control u(.) that minimizes the cost functional
eq. (1.1). In this thesis, fixed-time, free-endpoint problems are studied. Such problems are
defined by the target set S = {tf}×Rn. Additional constraints, based on a computational
perspective, are described in chapter 2.

4

1.3 Pontryagin’s Maximum Principle (PMP)

We first present the Basic Variable-Endpoint Control Problem as outlined in [31, Chapter 4]
where the target set is S = [t0,∞)×S1 where S1 is a k-dimensional surface in Rn for some
non-negative constant k ≤ n. Such a surface may be defined using equality constraints:

S1 = {x ∈ Rn : h1(x) = h2(x) = h3(x) = = hn−k(x) = 0}

where the hi are C
1 functions from Rn to R. The terminal cost K is assumed to be zero,

and the system f(x, u) and Lagrangian L(x, u) are assumed to be time-independent. The
optimality conditions are outlined by the following theorem:

Theorem 1.1. Let u∗ : [t0, tf] → U be an optimal control and let x∗ : [t0, tf] → Rn be
the corresponding optimal state trajectory. Then there exists a function p∗ : [t0, tf] → Rn

and a constant p∗0 ≤ 0 satisfying (p∗0, p
∗(t)) ̸= (0, 0) for all t ∈ [t0, tf] that has the following

properties:

1. x∗ and p∗ satisfy the canonical equations:

ẋ = Hp(x
∗, u∗, p∗, p∗0) ,and ṗ = −Hx(x

∗, u∗, p∗, p∗0)

with the boundary conditions x∗(t0) = x0 and x∗(tf) ∈ S1, where the Hamiltonian
H : Rn × U ×Rn ×R→ R is defined as

H(x, u, p, p0) = ⟨p, f(x, u)⟩+ p0L(x, u)

2. H(x∗, u∗, p∗, p∗0) ≥ H(x∗, u, p∗, p∗0) for all t ∈ [t0, tf] and u ∈ U

3. H(x∗, u∗, p∗, p∗0) = 0 for all t ∈ [t0, tf]

4. (Transversality condition): p∗(tf) is orthogonal to the tangent space to S1 at x∗(tf):

⟨p∗(tf), d⟩ = 0∀d ∈ Tx∗(tf)S1 ;Tx∗(tf)S1 = {d ∈ Rn : ⟨∇hi(x), d⟩ = 0, i = 1, 2, ..., n−k}

Here p0 is called an abnormal multiplier; it accounts for degenerate cases wherein
it is zero, else p0 is a negative scalar that can be used to normalize the costate vector
(p0, pi(t)), such that p0 = −1. This gives the standard definition of the Hamiltonian as
H = ⟨p, f⟩ − L. Such degenerate cases do not occur in the problems discussed in this
thesis, so this normalization is assumed to be valid and p0 = −1. The claim H(x, u, p) = 0
for all t is a special consequence of time-invariant problems when tf is free.

5

The last condition implies that at tf , the costate vector p(tf) can be written as a linear
combination of the gradients ∇hi(x∗(tf)), i = 1, 2, ..., n − k. Consequently if S1 = Rn, so
that the tangent space is all Rn, p(tf) = 0. If, however, S1 = {x1}, it implies that the
tangent space is zero, but then x∗(tf) = x1. Consequently, if f is a system of n ODEs, this
basic problem is equivalent to a boundary value problem involving 2n equations: n for the
state dynamics and n for the costate dynamics. If there are k surfaces in S1, it implies k
degrees-of-freedom for x∗(tf) and (n − k) degrees of freedom for p∗(tf). The controls are
obtained in an open-loop fashion; the solution to the BVP yields the optimal trajectory
for a specific initial condition. At no point are errors or feedback metrics evaluated; and if
there is a deviation from the initial conditions, fresh computations must be performed.

According to [31, Chapter 4], any other situation involving optimal control can be
derived from this case, with appropriate modifications to the conditions. Since the objective
of this thesis is to discuss a computational approach to approximate the HJB equation,
a formal proof of the above theorem (which can be found in the same chapter) is not
discussed. We just state the modified conditions for our fixed-time, free endpoint problems
with some explanation of the modifications. The target set for such problems is given by
S = {tf} × Rn and it has a non-zero terminal cost. Taking these facts into account, the
following modified theorem is obtained:

Theorem 1.2. Let u∗ : [t0, tf] → U be an optimal control and let x∗ : [t0, tf] → Rn be the
corresponding optimal state trajectory. Then there exists a function (called the co-state)
p∗ : [t0, tf] → Rn and a constant p∗0 ≤ 0 satisfying (p∗0, p

∗(t)) ̸= (0, 0) for all t ∈ [t0, tf] that
has the following properties:

1. x∗ and p∗ satisfy the canonical equations:

ẋ = Hp(x
∗, u∗, p∗, p∗0) ,and ṗ = −Hx(x

∗, u∗, p∗, p∗0)

with the boundary conditions x∗(t0) = x0 and x∗(tf) ∈ S1. The second equation gov-
erning the evolution of the co-state is termed the adjoint equation. The Hamiltonian
H : Rn × U ×Rn ×R→ R is defined as

H(x, u, p, p0) = ⟨p, f(x, u)⟩+ p0L(x, u)

2. H(x∗, u∗, p∗, p∗0) ≥ H(x∗, u, p∗, p∗0) for all t ∈ [t0, tf] and u ∈ U

3. H(x∗, u∗, p∗, p∗0) is constant for all t ∈ [t0, tf].

4. For xf ∈ Rn, p∗(tf) = −Kx(tf , xf).

6

Remark. Statement 3 of theorem 1.2 differs from theorem 1.1 as even though H(x∗, u∗, p∗, p∗0)
is constant, it cannot be guaranteed to be equal to zero. In [31, Chapter 4], d

dt
H∗(t) was

shown to be equal to zero using topological arguments based on the cone generated from con-
trol perturbations along the optimal trajectory, which proves the constancy of H∗. H∗(tf)
is shown to be equal to zero for free-time problems through perturbations of the optimal
time at which the target set is reached; this is not permissible if tf is fixed.

Remark. The statement for theorem 1.2 is obtained by converting the functional from the
Bolza form to the Lagrangian form, which effectively adds a term ⟨Kx, f⟩ to the running
cost. The modified Hamiltonian may be written as −L+⟨p̄−Kx, f⟩, where p̄ is the modified
costate. One can consider p ≡ p̄−Kx, but for this free endpoint problem, p̄(tf) = 0, by the
transversality condition (theorem 1.1), which still holds from topological considerations in
the terminal state. Thus p∗(tf) = −Kx(tf). A more rigorous justification may be obtained
in [31, Section 4.3.1].

1.4 Dynamic Programming for discrete cases

The maximum principle, as outlined previously, provides the necessary conditions to deter-
mine the optimal trajectories to move from a given system state to another, assuming that
the initial conditions and the target set are known and fixed. Dynamic programming, on
the other hand, attempts to determine the optimal decision to be made at any possible state
of the system by decomposing the problem into a sequence of relatively small problems
and sequentially solving them, using relationships between the larger and smaller problems
[4]. This information can be used to obtain the optimal control in a state-feedback form:
an improvement over the maximum principle, as in the event of an incorrect decision, the
altered control can be easily re-calculated. Sufficient conditions for optimal control can be
obtained through this principle as well.

This concept may be illustrated using the following example from [9, Chapter 4] in-
volving discrete possible states and available controls/paths. It is pictorially represented
in fig. 1.1. The objective is to identify the optimal path to traverse from A to M.

The analysis is started from state M rather than A. Denote the optimal cost to move
from a state S to M as V (S). The obvious minimal costs are given in table 1.1: Subse-
quently, the minimum cost required to move from M to {E,F,G,H, I} is identified. Since
a particular state is connected directly to some state ∈ {J,K,M}, the cost equals the
least possible sum of the cost of all paths available from the selected state to J/K/L and
the corresponding V . They are calculated in table 1.2: One can thus observe that V is

7

Figure 1.1: Possible paths from state A to M. The numbers are costs to travel between
available states.

State Cost Path
J V (J) = 106 {J,M}
K V (K) = 105 {K,M}
L V (L) = 104 {L,M}

Table 1.1: Optimal paths from M to {J,K, L}

a unique function between two points, and no other path connecting two states can have
a lower cost of traversal between them. Thus, by the principle of optimality, for a given
state like B, V (B) = min{V (X) + Cost to go from B to X,X ∈ {E,F,G,H, I}}. The
optimal route from B to M is therefore B to X and the subsequent optimal route from X
to M . However, the latter has already been calculated previously by sequentially solving a
class of relatively smaller problems. This illustrates the concept of dynamic programming.
Continuing this procedure, the net resultant optimal path from A to M may be identified.
This is completed in table 1.3: The optimal path from A to M is thus, {A,C,H,L,M}
with a total cost of 98 + 308 = 406 units.

Note that in the process, the optimal path from every state to state M was identified,
along with the associated costs. One can interpret this to be a form of state-dependent
feedback since, given any possible state, the optimal path towards the target can be iden-
tified. For example, if there is an initial wrong decision and one moves from A to D rather

8

State Cost Path
E V (E) = 209 {E, J,M}
F V (F) = 208 {F,K,M}
G V (G) = 206 {G,L,M}
H V (H) = 205 {H,L,M}
I V (I) = 208 {I, L,M}

Table 1.2: Optimal paths from M to {E,F,G,H, I}

State Cost Path
B V (B) = 309 {B,G,K,M}
C V (C) = 308 {C,H,L,M}
D V (D) = 307 {D,H,L,M}

Table 1.3: Optimal paths from M to {B,C,D}

than C, the subsequent optimal path is {D,H,L,M}. No further calculations are needed.

1.5 The value function

The idea illustrated above can now be extended to continuous systems, using the concept
of a value function. Let us consider a fixed time, free-endpoint problem with a target set
S = {t1} ×Rn. Consider the following Bolza cost functional, with an explicit reference to
the initial state and time:

J(t0, x0, u) =

∫ t1

t0

L(t, x(t), u(t))dt+K(x(t1)). (1.2)

Instead of just analyzing the specific functional J(u, t0, x0), dynamic programming consid-
ers the family of functionals :

J(t, x, u) =

∫ t1

t

L(s, x(s), u(s))ds+K(x(t1)) (1.3)

where, t ranges in [t0, t1) and x ranges in Rn, such that x(t) = x. By deriving a dynamic
relationship in this family, one attempts to solve all of them. In this context the value
function is defined as:

V (t, x) := inf
u[t,t1]

J(t, x, u) (1.4)

9

such that V satisfies the boundary condition: V (t1, x) = K(x) for all x ∈ Rn. This
boundary condition arises due to our particular choice of the target set S. Had S ⊂
[t0,∞)×Rn, the boundary conditions would have been V (t, x) = K(x) for all (t, x) ∈ S.

We propose that the value function necessarily satisfies the following relation for every
(t, x) ∈ [t0, t1) × Rn and for every ∆t ∈ (0, t1 − t], where u[t,t+∆t] is the corresponding
control, and the state x(.) is the state trajectory that satisfies x(t) = x:

V (t, x) = inf
u∈[t,t+∆t]

{∫ t+∆t

t

L(s, x(s), u(s))ds+ V (t+∆t, x+∆x)
}
. (1.5)

This claim can be understood from the principle of optimality : given an optimal path
corresponding to (x+∆x), if the state x corresponding to the infimum as expressed above
for all permissible controls and small time interval ∆t is found, then the augmented path
connecting x to the target set will be optimal, with the resultant cost expressed as above.
This approach is in alignment with the concept of dynamic programming, i.e., the value
function corresponding to all x ∈ Rn at time t is identified from that of V (t+∆t, x+∆x)
(already known) and the controls corresponding to the associated transition. Recall that,
in the discrete case, we moved from M to {J,K, L} then, to {E,F,G,H, I} and finally
towards A using a similar approach for calculating V : by calculating the V -s for the earlier
states in its path. A proof of this relation is presented in the next sections, along with the
derivation of a PDE for its calculation.

Consider the following numerical example governed by the dynamics: ẋ = xu with
x ∈ R, t ∈ [t0, t1], u ∈ U = [−1, 1] and the functional to minimize: J(u) = x(t1). For this
case, the optimal control is found from simple inspection: u = −1 if x0 > 0, u = 1 if x0 < 0.
Thus, the final state will be x(t1) = x0e

−(t1−t0) if x0 > 0, and, x(t1) = x0e
(t1−t0) if x0 < 0,

and x(t1) = 0 if x0 = 0 (Regardless of control applied). The value function, from definition
(1.3) is:

V (t, x) =

xe−(t1−t) if x > 0

xe(t1−t) if x < 0

0 if x = 0.

Indeed, let us consider a time t0 at which the state x0 > 0. Suppose that it is subject to

a control u = u(t) ∈ U for t ∈ [t0, t0 + ∆], so that x(t0 + ∆) = x0e
∫ t0+∆
t0

u(t)dt. The value

function for x(t0+∆) is then x(t0+∆)e−
∫ t1
t0+∆ dt = x0e

∫ t0+∆
t0

u(t)dt−
∫ t1
t0+∆ dt as the exponential

is always positive. Since L = 0, the infinimum for this quantity is possible only when
u(t) = −1, for which we recover V (t0, x0) = x0e

−(t1−t0) for x0 > 0, as per our expectations
from (1.5). Similar arguments may be used for x0 < 0 as well.

10

1.6 Hamilton-Jacobi-Bellman (HJB) Equation

A rigorous justification of (1.5) is first presented. Let V̄ (t, x) denote the RHS, so that:

V̄ (t, x) := inf
u∈[t,t+∆t]

{∫ t+∆t

t

L(s, x(s), u(s))ds+ V (t+∆t, x+∆x)
}
.

We first prove that V (t, x) ≥ V̄ (t, x). By the definition of the infimum and (1.3), it is
known that for every ε > 0,∃uε on [t, t1], such that:

V (t, x) + ε ≥ J(t, x, uε)

or, V (t, x) + ε ≥
∫ t+∆t

t

L(s, xε(s), uε(s))ds+ J(t+∆t, xε(t+∆t), uε)

=⇒ V (t, x) + ε ≥
∫ t+∆t

t

L(s, xε(s), uε(s))ds+ V (t+∆t, xε(t+∆t)) ≥ V̄ (t, x).

Since this inequality holds for all ε > 0, V (t, x) ≥ V̄ (t, x). To complete this proof, it must
be additionally proved that V (t, x) ≤ V̄ (t, x). From the definition of (1.3), for any u(t)
not corresponding to the optimal cost function J as defined in (1.4):

V (t, x) ≤ J(t, x, u) =

∫ t+∆t

t

L(t, x, u)dt+ J(t+∆t, x+∆x, u).

Let us now consider u(t) from the state x + ∆x (possibly deviated from the optimal
trajectory) to be the optimal control corresponding to the infimum transition cost from
x+∆x to the target set. Then we have:

V (t, x) ≤
∫ t+∆t

t

L(t, x, u)dt+ V (t+∆t, x+∆x).

This inequality must hold for any ∆t > 0. Also, the RHS is dependent only on the control
acting between [t, t + ∆t] since it will affect ∆x, and the control for the remaining time
interval is de-facto assumed to be equal to the control associated with the optimal transition
from x + ∆x to the target set. Therefore, the infimum of the RHS must be greater than
the LHS as well:

V (t, x) ≤ inf
u[t,t+∆t]

{∫ t+∆t

t

L(t, x, u)dt+ V (t+∆t, x+∆x, u)
}
= V̄ (t, x).

11

Thus, relation (1.5), which is a necessary condition, is proved. This relation can now be
reformulated in terms of a PDE. Consider the first order Taylor expansion for V (t, x),
assuming that the dynamics are governed by the usual expression ẋ = f(t, x, u):

V (t+∆t, x+∆x) = V (t, x) + Vt(t, x)∆t+ ⟨Vx(t, x), f(t, x, u)∆t⟩+ o(∆t).

Furthermore, one also has:∫ t+∆t

t

L(s, x(s), u(s))ds = L(t, x(t), u(t))∆t+ o(∆t).

Upon making the relevant substitutions to eq. (1.5), the following relation is obtained:

V (t, x) = inf
u[t,t+∆t]

{
L(t, x(t), u(t))∆t+ V (t, x) + Vt(t, x)∆t+ ⟨Vx(t, x), f(t, x, u)∆t⟩+ o(∆t)

}
=⇒ 0 = inf

u[t,t+∆t]

{
L(t, x(t), u(t))∆t+ Vt(t, x)∆t+ ⟨Vx(t, x), f(t, x, u)∆t⟩+ o(∆t)

}
.

In this case, as the infimum is taken over the instantaneous value of u at a specific t, Vt(t, x)
can be pulled outside the infimum brackets since it does not depend on u. Since this result
holds for any ∆t > 0, if ∆t→ 0 so that o(∆t)/∆t→ 0, we have the following result in the
differential limit:

−Vt(t, x) = inf
u∈U

{
L(t, x, u) + ⟨Vx(t, x), f(t, x, u)⟩

}
. (1.6)

This PDE is the Hamilton-Jacobi-Bellman (HJB) Equation. Its boundary con-
ditions need to be formulated according to a known target set. With respect to the
fixed-time, free-endpoint problems discussed in this thesis, the boundary conditions are
V (t1, x) = K(x) for all x ∈ Rn. For the general target set, the condition will be
V (t, x) = K(x) for all (t, x) ∈ S.

Consider the standard example of a free-time fixed endpoint problem of bringing a
body to rest at the minimum possible time, subject to the dynamics ẍ = u. The functional
J(u) =

∫ t
0
dt, and the state is denoted as (x1, x2) ≡ (x, ẋ). The target set is [0,∞)× (0, 0),

and the control set U = [−1, 1]. The value function satisfies:

−Vt(t, x1, x2) = inf
u∈[−1,1]

{
1 + Vx1(t, x1, x2)x2 + Vx2(t, x1, x2)u

}
.

The boundary conditions must be V (t, 0, 0) = 0 for all t ≥ 0. Evidently, this implies that
the optimal control is of a bang-bang type, as expected from Pontryagin’s Principle:

u = −sgn(Vx2(t, x1, x2)) =

1 if Vx2 < 0

−1 if Vx2 > 0

? if Vx2 = 0.

12

We can simplify the HJB equation obtained to:

−Vt(t, x1, x2) = 1 + Vx1(t, x1, x2)x2 − |Vx2(t, x1, x2)|. (1.7)

Section 1.7 discusses the interrelationship between the HJB equation and Pontryagin’s
Principle, under somewhat strong requirements on V . It also illustrates how the value
function may be applied to establish sufficiency requirements and explains why the controls
synthesized are in a state-feedback form.

1.7 Relationship between HJB and PMP

Equation 1.6 can be reformulated in the following way:

Vt(t, x) = sup
u∈U

{
− L(t, x, u)− ⟨Vx(t, x), f(t, x, u)⟩

}
(1.8)

This suggests that if the optimal control u∗ exists and if all continuity assumptions are
valid, we can take the costate p∗ = −V ∗

x (t, x
∗), where the optimal state trajectory is

denoted as x∗. The reformulated equation is equivalent to the Hamiltonian Maximization
Condition:

V ∗
t = sup

u∈U

{
H(t, x,−Vx(t, x), u)

}
or,

{
H(t, x,−Vx(t, x), u)

}
≤

{
H(t, x∗,−V ∗

x (t, x
∗), u∗)

}
.

(1.9)

This Hamiltonian H(.) is equivalent to the Hamiltonian function defined in statement 1 of
theorem 1.1 and theorem 1.2; the maximization condition is equivalent to statement 2 of
the same theorems. It is trivial to obtain the governing equation for the optimal trajectory
by simply differentiating the optimal Hamiltonian w.r.t. p (equiv. to −Vx(t, x) in our
case). The adjoint equation for the co-state is easily verified as well:

− p∗t = Vtx(t, x
∗) = Vxt(t, x

∗)

or,− p∗t =
∂

∂x
H(t, x∗, p∗, u∗) = Hx(t, x

∗, p∗, u∗)

With respect to the boundary conditions as well p∗ = −Vx(tf , x) = −Kx(tf , x) for all
(t, x) ∈ S. In other words, the conditions of the PMP for the fixed-time free-endpoint
problem can be derived from the HJB equation [31, Chapter 4]. For the basic variable
endpoint problem with a transversality condition (theorem 1.1), one would expect the

13

optimal V to be a local minimum at tf , so that the component of Vx in the tangent
space of the spatial surfaces in the target set is zero. Thus ⟨Vx(tf), d⟩ = 0 for all d ∈
Tx∗(tf)S1 ;Tx∗(tf)S1 = {d ∈ Rn : ⟨∇hi(x), d⟩ = 0, i = 1, 2, ..., n−k}. Using p∗(tf) = −Vx(tf),
the transversality condition is recovered.

In section 1.3, it was mentioned that the maximization principle provides an open-loop
control specification: u∗(t) = argmax

u∈U
H(t, x∗, p∗, u). The optimal control is dependent on

the costate p∗, and this needs to be calculated from the adjoint equation. On the other
hand, the optimal control from the HJB equation is u = argmax

u∈U
H(t, x∗,−V ∗

x (t, x
∗), u).

This is a closed-loop control synthesis in a feedback form since this decision depends only
on the current state x∗(t).

The sufficiency conditions are now established. Let us assume that the optimal control
u∗ : [t0, t1] → U exists and let x∗ : [t0, t1] → Rn denote the optimal trajectory. Suppose
that V̂ : [t0, t1] × Rn → R satisfies the Hamiltonian maximization requirement (1.9) with
the boundary condition V̂ (t1, x) = K(x). Then, this value function satisfies:

− V̂t(t, x
∗(t)) = L(t, x∗(t), u∗(t)) + ⟨V̂x(t, x∗(t), u∗(t)), f(t, x∗(t), u∗(t))⟩

=⇒ 0 = L(t, x∗(t), u∗(t)) +
d

dt
V̂ (t, x∗(t))

=⇒ 0 =

∫ t1

t0

L(t, x∗(t), u∗(t))dt− V̂ (t0, x
∗(t0)) + V̂ (t1, x

∗(t1))

=⇒ V̂ (t0, x
∗(t0)) =

∫ t1

t0

L(t, x∗(t), u∗(t))dt+K(x∗(t1)) ≡ J(t0, x
∗(t0), u

∗).

On the other hand, for any other control u, with the corresponding state trajectory x, it
is known that:

− V̂t(t, x(t)) ≤ L(t, x(t), u(t)) + ⟨V̂x(t, x(t), u(t)), f(t, x(t), u(t))⟩

=⇒ 0 ≤ L(t, x(t), u(t)) +
d

dt
V̂ (t, x(t))

=⇒ V̂ (t0, x(t0)) ≤
∫ t1

t0

L(t, x(t), u(t))dt+K(x(t1)) ≡ J(t0, x(t0), u).

Thus only u∗ that corresponds to the Hamiltonian maximization requirement gives the
optimal value of V̂ (t0, x0) and this corresponds to the optimal cost J(t0, x

∗(t0), u
∗); no

other control can yield a lower value. Thus, the sufficiency conditions are proved. Also,
observe that at since (t0, x0) was an arbitrary initial condition, V̂ (t, x) would be the globally
optimal cost of transition (upto a time t1) for any arbitrary (t, x).

14

The above analysis showed that the maximum principle may be “derived” from the
HJB equations, provided certain continuity assumptions are valid. The derivation of the
maximum principle discussed above appears to be much simpler compared to that of [31,
Chapter 4]. It should be noted that we at least needed V ∈ C1 to derive the differential
form of the HJB equation. Furthermore, in the derivation of the adjoint equation, Vx was
required to be differentiable w.r.t time. From a theoretical perspective, these are rather
strong assumptions. This is apparent from the numerical example discussed at the end
of section 1.6 where the value function is Lipschitz but not necessarily C1. The original
derivation of the maximum principle, however, uses substantially weaker assumptions and,
therefore, can be applied to much more general scenarios. The solution to the HJB equation
(1.6) must be interpreted in a weaker sense; a systematic procedure in this context is given
by viscosity solutions. Since we are mostly interested in a computational approach, we do
not discuss them further. Some suitable references for viscosity solutions are [17] and [31,
Chapter 5].

15

Chapter 2

Computational Approaches

2.1 General Overview

From a computational perspective, it is non-trivial to numerically solve the HJB equation,
as eq. (1.6) is a first-order non-linear, non-conservative PDE with a non-smooth solution
in t and the degrees of freedom of the system x. A grid-based method based on the
ENO/WENO scheme (a generalized method to solve PDEs) has been developed in [41]. For
grid-based methods, the storage requirements and computational costs increase intractably
when the number of system variables increases, and the degree of accuracy of the numerical
solution is tried to be kept constant. This was recognized when the HJB equation was first
formulated and has become notorious as the “Curse of Dimensionality”[4]. This motivated
the development of approximation methods and alternatives to grid-based methods to
numerically solve the HJB equation.

A sparse grid-based method, in which the initial state variables are based on the
Chebychev-Gauss-Lobatto grid was developed in [26]. The PMP-based BVPs are solved
for these initial conditions, and the final solution is evaluated through high-dimensional
interpolation. Semi-Lagrangian approaches based on this sparse grid method have been
developed as well [6][18]. Power series-based controller synthesis methods, which are based
on a power-series expansion of the state-dynamic equations have been discussed in [2][25].
[34] examined the convergence of such methods to the true optimal solution. This thesis
computationally examines one such toolkit developed by Krener. et al. in MATLAB based
on [2]. Patchy methods for solving the HJB PDE are discussed in [1][10][39]. These patchy
methods first construct a sufficiently accurate approximation of the HJB equation around
the equilibrium location (the first patch). The solution is then extended to new patches

16

around the first one by picking some boundary points based on the characteristics of the
HJB equation. These points define the centers of new neighborhoods that can be used to
recalculate the power-series expansion. The solution is then obtained iteratively by fitting
together the approximations in all the patches [10]. The fact that the HJB equation has
characteristics [31, Chapter 7] has been used with the Hopf-Lax formula [17] to alleviate
the curse of dimensionality [12][16][49]. Using the Hopf-Lax formula, the HJB-PDE be-
comes decoupled, and the solution at each point can be effectively calculated through a
minimization problem. Similar to the sparse-grid method, the sub-problems generated in
the solution procedure are independent and, therefore, are easily parallelizable [12].

2.2 Boundary Value Problem solution

For generating the training and test data for our neural networks (and general grid-free
methods), the two-point boundary value problem (BVP) arising from Pontryagin’s Princi-
ple must be solved for a number of admissible initial system states. The data is recorded
in the form (t, V (t, x), x(t), p(t)). We use the standard SciPy BVP solver for this purpose
[13]. This solver, based on a fourth-order collocation algorithm, requires an initial guess
for the 2n system of ODEs in theorem 1.2 (Assuming that there are n state variables).
However, the solution to such a nonlinear BVP may be very sensitive to the initial guess
supplied. The solver may not potentially converge or can converge to different solutions
depending on the guess, as, unlike IVPs, unique solutions to BVPs are not guaranteed.
These issues become particularly apparent as the number of system variables increases. [37]
suggests a time-marching method to alleviate this issue. In particular, problems such as
the optimal stabilization of the ODE system arising from the discretization of a Burgers’-
like equation, which involves systems of 20-30 dimensions and calculations involving dense
matrices, require such an approach to ensure smooth solver convergence. Suppose that
our time domain is [0, tf]. Subsequently, the interval is split into relatively smaller ones
0 < t1 < t2 < t3 < ... < tf . Then, we solve the BVP with the same boundary conditions
at 0 and t1 using a basic initial guess (such as x = p = 0, x(0) = x0), as it is expected that
solver convergence is better when the time interval is shorter. Once it is solved, we extrap-
olate it to the next time t2 and use it as the initial guess, e.g.: x(t) = x(t1), p(t) = p(t1)
for t ∈ [t1, t2). In [37], this method is shown to lead to improved convergence rates. After
solving the BVP over the whole time interval, the value function is calculated by eval-
uating the running cost along the optimal trajectory and integrating it with the SciPy
quadrature-based function integration method [14].

17

Process-based concurrency in Python

We now digress a little to discuss concurrency and parallelism in Python. Concurrency is
the ability of the program to execute instructions out of order, while parallelism is its ability
to execute multiple tasks simultaneously. While generating the training/test datasets, the
initial conditions (ICs) are sampled independently from a pre-established allowable domain.
An individual BVP must be solved for every IC, but it is not necessary to perform these
calculations in order. Consequently, we can deploy thread or process-based concurrency
in our programs to efficiently increase the speed of data generation. This subsection is
primarily based on the reference [7].

Python provides APIs for both thread and process-based concurrency. The former is
a lightweight programming construct, which is fast to start and create. Threads share
memory within the same process (an instance of a computer program), so it is easier to
share data between them. Processes are a more heavy programming construct, as each
process represents a separate instance of the Python interpreter running on an individual
CPU core. They are slower to start and allocate, and as they do not share the same
memory footprint, data sharing between processes requires explicit mechanisms. However,
thread-based concurrency is limited by the Global Interpreter Lock (GIL), which enforces
that any given Python process can run only a single thread at a time. Therefore, pro-
grams using threading-based concurrency have limited parallelism, and are best suited for
IO-bound tasks in which the operation of the program is limited by external devices (such
as communication with external hardware, which is much slower than the operation of a
CPU core). Process-based concurrency, however, is not restricted by the GIL and executes
full parallelism, which makes it suitable for CPU-bound tasks (such as intensive numerical
operations). Consequently, we decided to apply process-based concurrency using the mul-
tiprocessing class to better utilize our hardware resources (20 CPU cores). It should be
noted that this class must be deployed to use resources like multiple CPU cores, as Python
programs do not use such resources by default.

Whenever a Python script is executed, it starts a process that is an instance of the
Python interpreter. This process is termed the Main Process. The Main Process can
create child processes through instances of the Process class. The basic API to run a func-
tion task with arguments arg1, arg2 in a separate process is process=Process(target=task,
args=(arg1, arg2)). This child process may then be started in the Main Process using the
process.start() command (Note, the underlying operating system is responsible for starting
a new process; we cannot precisely control its starting). The Main Process can then be
blocked until the child process completes using the process.join() command.

The above method may be used to execute one-off ad-hoc tasks in a separate process.

18

Each process created requires computational resources, which can become expensive if
they are created and destroyed over and over for individual tasks; for example, in our
first problem, which involves the solution of more than 8192 BVPs, each of which is a
single task. Process pools are a programming construct that can manage a pool of child
worker processes and permit their reuse for multiple tasks. Python process pools can be
configured using the Pool class, which has an API pool=Pool(processes=num processes,
maxtasksperchild=tasks), where num processes is the number of workers to create and
manage within the pool. By default, it is the number of logical CPUs in the system.
maxtasksperchild is the number of tasks executed by each child process before it is replaced
by a new worker. By default, it is none, which implies that a child process will be alive
as long as the pool executes, but it is a recommended practice to reduce it to avoid the
accumulation of resources in case programming bugs occur [7].

Tasks may be submitted to the pool using the pool.apply(task) or pool.apply async(task)
method. The former will block the main thread until the task is executed while the latter
is of a non-blocking kind. Another way of submitting tasks for execution is through the
map() method: it takes the name of the target function and an iterable. The input iterable
is traversed and a task is created in the pool to call the target function. It then returns
an iterable over the return values from each call to the target function. However, as all
the tasks are issued simultaneously to the pool, it might result in computational issues if
the iterable contains several hundreds/thousands of items. Consequently, for our intents
and purposes, we decided to apply the imap() method to our pool, which is a lazy version
of the map() method: It applies a target function to each item in the input iterable every
time one of the workers become available. Additionally the returned iterable contains the
output of the task function in the order in which they are issued to the process pool.

To summarize, our data generation programs use process-based concurrency through a
process-pool imap. The input iterable is a list of numbers up to the number of trajectories
that we want to evaluate. For each such item, a task function is called which generates
a permissible initial state and applies the BVP solver to it. Subsequently, any necessary
post-processing is performed in the same function, and the output is returned in the form
of a numpy vector. After executing all the tasks in the pool, we use the returned iterable
to record the output for subsequent applications in the neural network.

2.3 Physics-informed Neural Networks: An overview

Physics-Informed Neural Networks (PINNs) are a scientific machine learning technique
used to solve problems involving PDEs [15]. The neural network minimizes a loss function,

19

which includes terms reflecting the initial and boundary conditions along the space-time
domain boundary and the PDE residual at selected points in the domain (called collocation
points). After training, given an input point in the integration domain, an estimated
solution of the PDE at that point is produced. Consequently, this approach is equivalent to
a mesh-free method that finds PDE solutions by converting the problem of directly solving
the governing equations into a loss function optimization problem [15]. An overview of
the various architectures, loss functions, and optimization methods used for PINNs may
be found in [15, Section 2.1], although a simple feedforward NN with 64 neurons in 3
hidden layers was numerically found to be satisfactory for our primary reference [37].
Some of the earliest applications of PINNs involved an NN with a few hidden layers to
solve differential equations [30]. [43] presents examples of PINNs to solve commonly solved
PDEs such as the Allen-Cahn, Schröedinger and Burgers’ equation, as well as examples of
parameter estimation problems. Some of the areas where PINNs have found applications
are in fluid mechanics [44], turbulence research [35], hematology [27], and electromagnetism
[19][28]. [19] is also a work that uses a convolutional neural network as an alternative to
the commonly used feedforward networks.

[11] and [46] are early examples of the application of custom NNs to solve the HJB
equation for optimal control purposes. [11] used a single layer of neurons with polynomial
activation functions and time-varying weights to solve a system of up to 3 state variables.
[46] also used a custom NN architecture and presented numerical strategies to improve the
convergence of the optimization algorithm, using a Levenburg-Marquardt method. Such
an approach requires an explicit implementation of the optimization algorithm, especially
if the suggested modifications are considered. It is difficult, if not impossible, to imple-
ment such networks using established packages such as TensorFlow and PyTorch, as they
effectively encapsulate commonly used NN architectures and optimization algorithms. [24]
presented an application of a recurrent NN architecture to compute the HJB equation for a
3-dof nonlinear system. [45] presents examples of solving high-dimensional PDEs, includ-
ing an example of an HJB equation corresponding to the optimal control of a stochastic
heat equation using multilayered neural networks. [37], our primary reference, presented
a supervised PINN-based approach using a feedforward architecture to approximate the
HJB equation, in which trajectories computed using PMP were used to train the NN. In
this thesis, we have computationally examined the methodology proposed in [37] to study
optimal control problems for high-dimensional systems.

20

2.4 Neural Network formulation methodology

We now describe the formulation of one such physics-informed neural network using a fully
connected feedforward architecture through the example presented in [47]. Let F () be
the function we wish to approximate and FNN() be its NN representation. Feedforward
NNs approximate complicated nonlinear functions by a composition of simpler functions
[15][37], namely,

F (t,x) ≈ FNN(t,x) = gL # gL−1 # ...gl...# g1(t,x), (2.1)

where each layer gl(.) is defined as:

gl(y) = σ(Wly + bl). (2.2)

Here Wl and bl are the weight matrices and bias vectors, respectively. σl() represents
a nonlinear activation function applied component-wise to its argument. The final layer
is typically linear, so σL() is the identity function. If θ denotes the collection of the
parameters of the NN, i.e.,

θ := {Wl, bl}Ll=1 (2.3)

the NN is trained by optimizing over the parameters θ to best approximate F (t,x) by
FNN(t,x;θ).

Consider the following PDE:

∂y

∂t
=
∂2y

∂x2
− e−t(sin(πx)− π2 sin(πx))

x ∈ [−1, 1], t ∈ [0, 1]

y(x, 0) = sin(πx), y(−1, t) = y(1, t) = 0.

(2.4)

This parabolic PDE has the analytic solution y(t, x) = e−t sin(πx). Let the neural network
FNN(t, x) ≈ y(t, x) approximate the solution to this PDE. It is apparent from [47] that
the mean-squared loss function has two components:

MSEf =
1

Nf

Nf∑
i

|f(xif , tif)|2

f =
∂FNN(t, x)

∂t
− ∂2FNN(t, x)

∂x2
+ e−t(sin(πx)− π2 sin(πx))

MSEu =
1

Nu

Nu∑
i

|y(xiu, tiu)− FNN(xiu, t
i
u)|2.

(2.5)

21

Here, there are Nf collocation points inside the domain D : (xif , t
i
f) ∈ (−1, 1)× (0, 1) and

Nu collocation points based on the boundary conditions C : (xiu, t
i
u) ∈ {−1, 1} × [0, 1] ∪

(−1, 1) × {0} at which y(t, x) is known from the boundary conditions. In summary, the
procedure involves creating a vector (xNu, tNu, yNu)Nu×3, where the (xNu, tNu) are randomly
sampled from C and consequently, MSEu = MSE(FNN(xNu, tNu), yNu). Another vector
comprising of the training points (xf , tf)Nf×2 is used, where the elements are randomly
sampled from D. Some more details about the physics-based loss calculation (MSEf),
along with some computational aspects of PyTorch, are presented below:

1. The forward pass is performed as FNN = NN(xf , tf), where (xf , tf) is a PyTorch ten-
sor located in the appropriate device (CUDA or CPU) with a gradient attribute=True
to enable gradient-tracking. For PyTorch-based applications, the number of rows of
the input equals the number of datapoints, and the number of columns equals the
number of features, with the output being a matrix having the number of rows equal
to the number of datapoints, and the number of columns equal to the number of
output features.

2. Let FNN = f⃗ and (xf , tf) = g⃗ for coding purposes. F x t is then calculated using
the autograd.grad command:

F x t = autograd.grad(f,g,torch.ones([g.shape[0], 1]).to(device), retain graph=True,
create graph=True)[0]

As explained in [20], if y⃗ = F (x⃗), then the autograd.grad command first internally
calculates the Jacobian Matrix J : Jij = ∂yi

∂xj
. A gradient argument=v⃗ must be

supplied, and the output is JT v⃗. This is equal to the vector generated from torch.ones
statement.

For our example, for each input (xif , t
i
f), J would be a Nf × 2 matrix. However, as

calculations for each element (xif , t
i
f) =∈ g⃗ ∈ D, is done independently in the back

end, the only non-zero entries possible in the Jacobian are (Ji1, Ji2). Consequently,
when our gradient argument v⃗Nf×2 : vij = 1, the output vector F x t is such that

the i − th row is
(∂FNN (xif ,t

f
i)

∂xif
,
∂FNN (xif ,t

f
i)

∂tif

)
. Thus, Ft(x

i
f , t

f
i) equals the 2-nd column

of the resulting vector.

3. As explained in [20], autograd keeps a record of data (tensors) and all executed op-
erations (along with the resulting new tensors) in a directed acyclic graph (DAG)
consisting of Function objects. In this DAG, leaves are the input tensors, roots are
the output tensors. By tracing this graph from roots to leaves, one can automatically
compute the gradients using the chain rule. However, during a backward pass, this

22

graph gets deleted. Consequently, one must set the create graph and retain graph
argument in the autograd.grad command to true in order to create a computational
graph of the derivatives [21]: this is essential in order to calculate higher-order deriva-
tives, as well as allow the PyTorch backend to appropriately evaluate the gradients
with respect to the neural network parameters when the .backward() method is called
on the loss-function in the optimization step.

With the above two explanations, one can see how F xx tt was calculated:

F xx tt = autograd.grad(F x t,g,torch.ones(g.shape).to(device), create graph=True)[0]

F x t is automatically differentiated using the internally calculated computational
graph from the previous step. Fxx now equals the first column of this vector.

4. One can now evaluate the tensor, F i
t −F i

xx =
∂FNN (xif ,t

i
f)

∂tif
− ∂2FNN (xif ,t

i
f)

∂(xif)
2 . Subsequently,

the source term e−t
i
f (sin(πxif)− π2 sin(πxif)) can be added, and the resulting tensor

used in the physics-based loss function MSEf .

We recommend the above approach for calculating the loss function for optimization.
The torch.autograd package encapsulates algorithms for the auto-differentiation as a batch
process in the back-end, enabling faster computations and more efficient use of resources,
compared to an approach using explicit loops. This is especially true if a GPU is used in
the calculations, as the clock for GPU processors is slower than that of a CPU.

From this example, it is seen that PINNs incorporate losses based on physics-expected
constraints, which potentially involve derivatives calculated from back-propagation. In an
analogous fashion, our loss function for the Hamilton-Jacobi-Bellman equation is based
on the physics-based constraints described in section 1.7, where the fact that p = −Vx
(assuming that the derivatives exist pointwise) is used. Thus, our loss function is:

loss(θ;D) = loss
V

(θ;D) + µ.loss
p
(θ;D)

loss
V

(θ;D) =
1

Nd

Nd∑
i=1

[
V (i) − V NN(t(i), x(i);θ)

]2
loss
p
(θ;D) =

1

Nd

Nd∑
i=1

||p(i) + V NN
x (t(i), x(i);θ)||22

(2.6)

where θ,D denotes the weights of the neural network and the training dataset, respec-
tively. µ here acts as a hyper-parameter; its influence on the performance of the neural

23

network is examined in the first problem in chapter 3. The principal difference between
[47] and our approach to solving the HJB equation is that the costates (and the optimal
Hamiltonian, if needed) are evaluated at the data-generation phase instead of the loss-
calculation stage. From the viewpoint of [15], this is a supervised learning paradigm, while
the example presented for the diffusion equation is an example of unsupervised learning.

It will be subsequently mentioned that the first problem involves the design of an
infinite-horizon controller, such that the control depends only on the current state and not
on the time. Consequently, the neural network does not take time as an input. The other
problems involve moving horizon controllers that do take time into account. An additional
term based on eq. (1.6) based on the fact that Vt = H∗(t, x, u) can be proposed for the
loss function. Note: The optimal Hamiltonian for a fixed-time optimal control problem
involving time-invariant dynamics, is known to be a constant, and it can be calculated
during the data-generation phase without a significant time overhead. We examine the
effect of including this term for the second problem in chapter 4.

In summary, the basic training pipeline for the neural network would be:

1. A number of initial conditions (ICs) {X(i)}i=Nd
i=1 are sampled from a known domain

for which the controller is to be designed. The BVP is formulated from the PMP.

2. For every IC, the BVP must be solved to generate the training dataset D. The data
is recorded in the form {t(i), x(i)(t(i)), V (i)(t(i), tf), p

(i)(t(i))} by solving the BVP from
step 1. Note: for time-dependent controllers, the solver will have a series of default
time instants for each IC. The value function V (i)(t(i), tf) is evaluated by integrating
the running cost from t(i) to tf and adding the terminal cost.

3. Define the NN Architecture. In this thesis, we have used a simple feedforward NN
having three internal layers of 64 neurons each with tanh activation functions to fit
the value function, unless mentioned otherwise. PyTorch was used to develop the
NN framework as well as perform the optimization for NN training.

4. Train the network with the selected PINN-based cost function, using the training
dataset D generated from PMP. Since our datasets are relatively small (This is even
more true if adaptive data-collection is used), the second-order optimizer L-BFGS
is used as it is a quasi-newton method that uses data from the entire dataset. For
the small NNs and relatively small datasets used, L-BFGS is expected to give better
error metrics [15][37] compared to first-order optimizers such as Adam or SGD.

5. Use the trained NN in conjunction with the Hamiltonian maximization condition to
calculate the optimal control.

24

In general, a given dataset is randomly split into a training set and a test set. During
training, the loss function is calculated with respect to the training dataset, and the NN
performance is measured against the test dataset, which was not applied in the training
process. In this thesis, the validation test is made more stringent by generating the test
and training data from independently drawn initial conditions so that the two datasets
do not share any part of the same trajectories when time instants are considered in the
data generation process. We use the following metrics based on [37] to examine the NN
performance. The RMAE is termed the relative mean absolute error, while RML2 is the
relative mean L2 error in gradient prediction. According to [37], these metrics are a better
representation of the NN approximation in regions where a lot of control effort is needed,
instead of pointwise errors.

RMAE(θ,D) =

∑Nd

i=1 |V (i) − V NN(xi;θ)|∑Nd

i=1 |V (i)|

RML2(θ,D) =

∑Nd

i=1 ||p(i) + V NN
x (xi;θ)||2∑Nd

i=1 ||p(i)||2
.

(2.7)

Finally, the application of our trained NN in the context of the optimal controller is
discussed. It is very easy to calculate Vx(t, x(t)) from the network using backpropagation.
Since we know that p = −Vx; we can use it in the Hamiltonian maximization equation Hu =
0. While the NN-based approach is theoretically applicable to any general dynamic system
described by the first paragraph of section 1.2, all our systems are effectively described
through the relations:

ẋ = f(t,x) + g(t,x)u

L(t,x,u) = h(t,x) + uTWu

H(t,p,x,u) = −(h(t,x) + uTWu) + pT (f(t,x) + g(t,x)u).

(2.8)

This implies though, that for a symmetric W , the control u can be explicitly calculated
as u = 1

2
W−1g(t,x)Tp ≈ −1

2
W−1g(t,x)TV NN

x . From a theoretical perspective, it allows
the explicit calculation of the control corresponding to the infimum in eq. (1.6) in terms of
Vx(t, x) to get an explicit PDE involving V (t, x), similar to eq. (1.7). No iterative method
is needed to calculate the control from an implicit equation. The optimal control can thus
be better predicted since derivative calculations using backpropagation are much more
efficient and accurate than numerical approximations which would have been necessary
had grid-based methods been applied to the HJB equation.

25

2.5 Toolkit of Krener et. al.

Krener et al. developed a MATLAB toolkit based on [2] for approximating the optimal
controller for time-invariant non-linear infinite-horizon problems [29]. This method involves
expanding the system dynamics and running cost about its equilibrium operating point
as a (convergent) power series and using this to systematically obtain the value function
and optimal control as a power series expansion as well. This toolkit may be used to
approximate the optimal control to stabilize a smooth non-linear system at its stable
equilibrium point.

We investigated this toolkit in detail computationally to examine its behavior. As
expected from theory, this toolkit was found to approximate the value function using a
multivariate polynomial function of the deviation of the state variables from the system
equilibrium. As an infinite-horizon problem is considered, time is not taken into account. If
the control is to be approximated using a polynomial of order d, the value function contains
multivariate monomials of the order 2 to d + 1. The optimal feedback is approximated
using polynomials of order 1 to d. The meaning and arrangement of these monomials are
explained in detail below.

If there are n state variables and ∆xj denotes the deviation of the j-th state from its
equilibrium value, we can have a monomial expression M(∆xj, αj) =

∏n
i=1 ∆x

αj

j . The
sum of the powers

∑n
j=1 αj is termed the order of the monomial. Let us denote the set

of all combinations M(∆xj, αj) such that the order of the combination is constant by
C(k) : M(∆xj, αj) ∈ C(k) ⇐⇒

∑n
j=1 αj = k. This set will contain

(
k+n−1

k

)
elements.

These may be sorted in a lexicographic fashion similar to words in a dictionary: compare
the coefficients of ∆x1, and if they match, compare that of ∆x2, and so forth. For a given
set of deviations ∆xj the expressions M(∆xj, αj) ∈ C(k) may be numerically evaluated
and arranged in this fashion. If 2 ≤ k ≤ d + 1, the toolkit calculates the weightage of
each expressionM(∆xj, αj) in the approximate value function in this order. For a range of
C(k), the monomial coefficients are evaluated in order of increasing k. The optimal value
of each control is approximated in a similar fashion, with the exception that the weights of
an expression M(∆xj, αj) ∈ C(k) is determined if 1 ≤ k ≤ d. If the system has multiple
independent controls, the weights for a given M(∆xj, αj) are determined independently.

A numerical example is now presented as a further illustration. Consider the following
system based on the MATLAB documentation for the Algebraic Riccati Equation [22]:

26

ẋ1ẋ2
ẋ3

 =

−1 2 3
4 5 −6
7 −8 9

x1x2
x3

+

 5
6
−7

u
L(x1, x2, x3, u) =

x1x2
x3

T Q
x1x2
x3

+Ru2

Q = CTC; C =
[
7 −8 9

]
; R = 1

(2.9)

The pair of matrices (A,B) is controllable, and (A,C) is observable. It is known from the
linear control theory [33] that the infinite horizon controller for such systems is governed
by the unique solution P to the Algebraic Riccati Equation (ARE):

ATP + PA+Q− PBR−1BTP = 0

with the optimal control given by the function u = −(R−1BTP)x. The optimal cost
incurred for an initial state X0 is XT

0 PX0. Consequently, the optimal cost is a quadratic
function of these state variables. One can further see that for this system with a single
control input, the control is expected to be a linear function of the state variables (these
are equivalent to the deviations used in the earlier paragraphs, as the equilibrium point
for a linear system is zero).

We implemented the toolkit of Krener et al. for this system for a degree of approx-
imation = 3 and compared the output with the MATLAB solver for the ARE (icare,
[22]). The value function polynomial has

(
3+2−1

2

)
+
(
3+3−1

3

)
+
(
3+4−1

4

)
= 6 + 10 + 15 = 31

entries, as expected from the preceding paragraphs. Also, only the first 6 entries, corre-
sponding to the quadratic cost are non-zero. The output cost, interpreted in the lexico-
graphic sense, is 15.32x21 +8.474x1x2 +34.018x1x3 +2.625x22 +8.825x2x3 +19.038x23. This

can be rearranged in terms of a symmetric matrix P =

 15.32 4.237 17.009
4.237 2.625 4.413
17.009 4.413 19.038

, such
that the cost = [x1 x2 x3]

TP [x1 x2 x3] The feedback control is a matrix with 1 row and(
3+1−1

1

)
+

(
3+2−1

2

)
+

(
3+3−1

3

)
= 3 + 6 + 10 = 19 columns, with only the first three-entries

non-zero, as expected from theory. The entries match the MATLAB results for both K
and P , with the exception of the sign as MATLAB just calculates K = R−1BTP , such that
u = −Kx, while this toolkit directly returns −K, so that an extra change of sign is not
needed. From this example, we can claim the validity of our statements on the working of
Krener’s toolkit at the beginning of this section.

27

It is apparent that solving a full two-point boundary value problem as described in
section 2.2 is a computationally expensive procedure. If the terminal time tf is very large
compared to the state dynamics, then one can claim that the optimal trajectory for this
finite-horizon problem approaches that of its infinite-horizon counterpart, analogous to how
the time-varying solution to the Differential Riccati Equation approaches the Algebraic
Riccati Equation (a constant) in the infinite-time limit for optimal control calculations
for LTI systems [31, Chapter 6]. Consequently, we examined whether we could use the
approximate results from this toolkit to our advantage when training the neural network
or calculating the optimal trajectory of the actual non-linear system, as the application
of this toolkit simply involves polynomial calculations. We discuss these experiments in
detail in section 3.2 and section 4.2.

28

Chapter 3

Aircraft-orientation control: A 6-dof
system

We independently reconstruct the first numerical example discussed in [37]. It pertains
to the control of the attitude/orientation of a spacecraft using three momentum wheels.
Momentum wheels constitute a set of rotating wheels aligned in at least three different
directions. In flight, by changing the rotation rate, the angular orientation of the object
can be changed (by the principle of conservation of Angular Momentum).

The system is governed by the following non-linear equations consisting of six state
variables x = {vT ,ωT}T ; v = (ϕ, θ, ψ)T , ω = (ω1, ω2, ω3)

T :[
v̇
ω̇

]
=

[
E(v)ω

J−1S(ω)R(v)h+ J−1B(u)

]
(3.1)

where, the functions E(v), S(ω), R(v) : R3×3 → R3 are:

E(v) =

1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ/ cos θ cosϕ/ cos θ

 S(ω) =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

R(v) =

 cos θ cosψ cos θ sinψ − sin θ
sinϕ sin θ cosψ − cosϕ sinψ sinϕ sin θ sinψ + cosϕ cosψ cos θ sinϕ
cosϕ sin θ cosψ + sinϕ sinψ cosϕ sin θ sinψ − sinϕ cosψ cos θ cosϕ

 .
(3.2)

Matrix B is a 3 ×m constant matrix, where m is the number of momentum wheels. For
the nonlinear control problem posed, m = 3. Matrix J is a 3× 3 constant matrix, and h

29

is a 3× 1 vector. Their values are as follows:

J =

2 0 0
0 3 0
0 0 4

 B =

 1 1/20 1/10
1/15 1 1/10
1/10 1/15 1

 h =

11
1

 . (3.3)

The control objective optimized is:

minimize
u(.)

J [u(.)] =

∫ tf

t

L(v,ω,u)dτ + W4

2
||v(tf)||2 +

W5

2
||ω(tf)||2

L(v,ω,u) = W1

2
||v||2 + W2

2
||ω||2 + W3

2
||u||2

W1 = 1, W2 = 10 W3 = 1/2 W4 = 1 W5 = 1 tf = 20.

(3.4)

It is also assumed that at t = 0, the state x belongs to the following set:

X0 =

{
v,ω ∈ R3

∣∣∣∣− π

3
≤ ϕ, θ, ψ ≤ π

3
and − π

4
≤ ω1, ω2, ω3 ≤

π

4

}
. (3.5)

As per PMP, the costates and optimal control are governed by the following BVP:

ṗϕ = W1ϕ− [pϕ, pθ, pψ]
∂E(v)

∂ϕ
ω − [pω1 , pω2 , pω3]J

−1S(ω)
∂R(v)

∂ϕ
h

ṗθ = W1θ − [pϕ, pθ, pψ]
∂E(v)

∂θ
ω − [pω1 , pω2 , pω3]J

−1S(ω)
∂R(v)

∂θ
h

ṗψ = W1ψ − [pω1 , pω2 , pω3]J
−1S(ω)

∂R(v)

∂ψ
h

ṗω1 = W2ω1 − [pϕ, pθ, pψ]col1(E(v))− [pω1 , pω2 , pω3]J
−1∂S(ω)

∂ω1

h

ṗω2 = W2ω3 − [pϕ, pθ, pψ]col2(E(v))− [pω1 , pω2 , pω3]J
−1∂S(ω)

∂ω2

h

ṗω3 = W2ω3 − [pϕ, pθ, pψ]col3(E(v))− [pω1 , pω2 , pω3]J
−1∂S(ω)

∂ω3

h

u∗(t) =
1

W3

([pω1 , pω2 , pω3]J
−1B)T

pv(tf) = −W4v(tf), v ∈ (ϕ, θ, ψ)

pω(tf) = −W5ω(tf), ω ∈ (ω1, ω2, ω3).

(3.6)

30

The matrices used in the above equations are given as follows:

∂R(v)

∂ϕ
=

 0 0 0
cosϕ sin θ cosψ + sinϕ sinψ cosϕ sin θ sinψ − sinϕ cosψ cos θ cosϕ
− sinϕ sin θ cosψ + cosϕ sinψ − sinϕ sin θ sinψ − cosϕ cosψ − cos θ sinϕ

∂R(v)

∂θ
=

 − sin θ cosψ − sin θ sinψ − cos θ
sinϕ cos θ cosψ sinϕ cos θ sinψ − sin θ sinϕ
cosϕ cos θ cosψ cosϕ cos θ sinψ − sin θ cosϕ

∂R(v)

∂ψ
=

 − cos θ sinψ cos θ cosψ 0
− sinϕ sin θ sinψ − cosϕ cosψ sinϕ sin θ cosψ − cosϕ sinψ 0
− cosϕ sin θ sinψ + sinϕ cosψ cosϕ sin θ cosψ + sinϕ sinψ 0

∂E(v)

∂ϕ
=

0 cosϕ tan θ − sinϕ tan θ
0 − sinϕ − cosϕ
0 cosϕ/ cos θ − sinϕ/ cos θ

 ∂E(v)

∂θ
=

0 sinϕ sec2 θ cosϕ sec2 θ
0 0 0
0 sinϕ sec θ tan θ cosϕ sec θ tan θ

∂S(ω)

∂ω1

=

0 0 0
0 0 1
0 −1 0

 ∂S(ω)

∂ω2

=

0 0 −1
0 0 0
1 0 0

 ∂S(ω)

∂ω3

=

 0 1 0
−1 0 0
0 0 0

 .
(3.7)

3.1 Basic Neural-Network formulation

In our problem, the Hamiltonian is time-invariant, and the time horizon is rather large.
Consequently, the controller may be approximated with a time-independent moving horizon
controller rather than a time-dependent controller. This turns out to be analogous to an
infinite time-horizon controller. Consequently, the neural network only approximates the
value function at t = 0, i.e., V (0,v(0),ω(0)) and does not take time as an input variable. At
each time t when the control is evaluated, we assume the current system state (v(t),ω(t))
is the initial condition and evaluate the value function as V (t) = V NN(v(t),ω(t)) for
calculating the optimal control. One can consider an analogous case for linear systems:
the Differential Riccati Equation for the finite-time horizon, which governs optimal control
for such systems, reduces to the Algebraic Riccati Equation in which feedback gain is
independent of time, as the time horizon becomes very large [31, Chapter 6].

As time is not considered as an input to the neural network, the training pipeline
changes slightly from the one discussed in section 2.4. The problem-specific training
pipeline is:

31

Figure 3.1: Optimal trajectories and controls for the initial state calculated from
PMP: The initial state v(0) = (ϕ(0), θ(0), ψ(0)) = (−1/4,−π/3, π/3) and ω(0) =
(ω1(0), ω2(0), ω3(0)) = (−1/4,−π/4, 0.56). The optimal control vector u∗(t) =
(u∗1(t), u

∗
2(t), u

∗
3(t)). Solid blue line: ϕ, ω1, u

∗
1(t); Dashed red line: θ, ω2, u

∗
2(t); Dotted

purple line: ψ, ω3, u
∗
3(t). Dashed black line: Optimal Hamiltonian. From theorem 1.2,

it is known that such trajectories have a constant Hamiltonian, and since this particular
system is stable, the states and the control tend to zero due to the large time horizon.
Consequently, the Hamiltonian obtained is nearly zero.

1. Generate a set of data points {x(i)}Nd
i=1 such that x(i) ∈ X0 and are independent and

identically distributed.

2. Define the BVP from Pontryagin’s Principle. Solve the BVP for the relevant x(i)

using the SciPy BVP solver (optionally using process-based concurrency) to generate
training dataset D = {(x(i)), (V (i),p(i))}Nd

i=1. The value function V (i) = V (0, tf) and
the initial costate p(i) = p∗(0) is recorded as (V (i),p(i)).

3. Define the Neural Network. As mentioned before in section 2.4, a standard feed-
forward architecture using 3 Hidden Layers of 64 Neurons each was used with tanh
activation functions. The entire framework was constructed and optimized in Py-
Torch ([37] used a TensorFlow framework with a scikit-learn-based optimizer). Some
recommended practices in this aspect were discussed in section 2.4.

32

Figure 3.2: A visual representation of our problem-specific NN

4. Train the network with the physics-based loss function eq. (2.6). As mentioned in
section 2.4, we have used a Pytorch-based L-BFGS optimization method.

At this point, some important differences between the computational approach developed
in this thesis and that of our primary reference [37] should be mentioned. As explained
in section 2.2, solving BVPs generally involves high computational costs. Consequently, it
could be time-consuming to generate large causality-free datasets (where the trajectories
are generated from independently sampled initial conditions). As an attempt to mitigate
this issue, [37] recommended a number of strategies that involve NN training and data
generation in a closed loop. This involves training a low-fidelity network with a small
dataset and gradually increasing the dataset size based on the losses calculated during the
training. In [37, section 4], a statistical method is described to examine the overall method
convergence and the extent to which the training dataset must be expanded. The lower
fidelity neural network is used in two ways: firstly, to identify regions in the state-variable
space in which a larger control effort is needed, as estimated by ||Vx(0)||2 evaluated from
the NN. When the dataset is expanded, one initially considers a large number of candidate
points selected from the state-variable domain using Monte Carlo sampling. An estimate of
||Vx(0)||2 is quickly evaluated from the NN, and as p(0) = −Vx(0), a larger value implies
a larger initial control effort. Consequently, these points can be selectively included in
the expanded dataset and their optimal trajectories used in the NN training, potentially
increasing its robustness. Secondly, this low-fidelity NN may be used to generate a guess for
the BVP solver, and it is expected that this initial guess would allow the solver to converge
faster and in a more stable way. This serves as an alternative to the time-marching trick

33

Figure 3.3: NN performance metrics at the conclusion of 500 training iterations for the
optimal aircraft attitude control problem. The performances obtained are similar to that
of [37], and serves to validate our implementation of the basic NN method. For consistency
reasons, all the NNs have the same initial parameter initialization.

described in section 2.2, in which the time domain was split into smaller intervals with
an extrapolation to later times. The NN is then re-trained using the expanded dataset,
closing the loop. Thus, this procedure is expected to yield a high-fidelity NN as well as an
optimal training dataset.

In this thesis, we have not implemented such a closed-loop approach. Our approach
is “open-loop”, in the sense that the training dataset is generated independent of the
intermediate performance of the NN and that it is not expanded further. However, for
this problem, we examine the effect of pre-training the NN using Krener’s toolkit. We
also examine the effect of selectively choosing points based on control effort estimated
from Krener’s toolkit on the overall performance of the NN in the same context. We
examine the effect of using this toolkit to generate an initial guess for the second problem
in section 4.2. Nevertheless, even if a closed-loop approach, as discussed in [37, section 4] is
used, including a penalty based on Vt in the loss function (for time-dependent controllers)
is still expected to result in improved NN convergence metrics.

We present numerical examples of the basic NN performance in fig. 3.3 and fig. 3.4.
From fig. 3.3, it is apparent that the inclusion of the costate-based term with the hyper-

34

Figure 3.4: Performance of the NN in the presence of noise. The NN applied was
trained with µ = 10 and involved 8192 sample points. The default initial condition
is the same as that of fig. 3.1: v(0) = (ϕ(0), θ(0), ψ(0)) = (−1/4,−π/3, π/3) and
ω(0) = (ω1(0), ω2(0), ω3(0)) = (−1/4,−π/4, 0.56). Sampling was done at a frequency
of 10 Hz and corrupted with white Gaussian noise of standard deviation 0.01π. Solid blue
line: ϕ, ω1, u

∗
1(t); Dashed red line: θ, ω2, u

∗
2(t); Dotted purple line: ψ, ω3, u

∗
3(t).

parameter µ in the loss function eq. (2.6) always improves the NN performance. It was
observed in [37] that the accuracy improved as µ was increased, with diminishing returns
from µ = 10. Figure 3.4 shows an application of a trained neural network to predict
the optimal control when the readings are corrupted with noise. This simulation entailed
an RK-4 integration scheme with a constant step size of 0.01s. The state variables were
sampled at a frequency of 10 Hz, but the input to the NN-based controller was corrupted
with white Gaussian noise of standard deviation 0.01π. Such problems cannot be handled
directly with PMP because the control is obtained in an open-loop fashion as discussed
in section 1.7. No feedback is solicited at any point in the trajectory, and any control
adjustment due to noise will need a re-evaluation of the BVP.

35

Figure 3.5: Performance of the approximated controller generated from Krener’s Toolkit.
The initial condition is the same as fig. 3.1: v(0) = (ϕ(0), θ(0), ψ(0)) = (−1/4,−π/3, π/3)
and ω(0) = (ω1(0), ω2(0), ω3(0)) = (−1/4,−π/4, 0.56). Solid blue line: ϕ, ω1, u

∗
1(t);

Dashed red line: θ, ω2, u
∗
2(t); Dotted purple line: ψ, ω3, u

∗
3(t). The relevant quantities,

as evaluated using Krener’s toolkit, are indicated with square markers.

3.2 Application of Krener’s Toolkit

As explained in the preceding section, we were interested in examining the feasibility
of applying Krener’s toolkit to the NN training process. The toolkit approximated the
control with a polynomial of degree 3. Figure 3.5 compares the control response from this
approximated controller with that of the PMP for a sample initial condition.

We first examined if pre-training the neural network would lead to improved simulation ac-
curacy. Towards this end, we first compared trajectories generated from the approximated
controller and the corresponding one from PMP and attempted to measure the average
deviation between them. We reiterate that Krener’s toolkit only approximates infinite-
horizon optimal controllers so that the approximated value function (denoted by VK) is
only a function of the initial condition x. Also, for infinite-horizon control design, the value
function from PMP, denoted by VP is calculated only at t = 0. Likewise, the constant p
is only recorded at t = 0. The results are discussed in table 3.1. In table 3.1, the Mean

% error for V =
√

1
N

∑(
VK−VP
VP

)2
and the MSE for V =

√
1
N

∑
(VK − VP)2. The Mean %

36

error for Vx =
√

1
N

∑(||∇(VK)−p)||2
||p||2

)2
and the MSE for Vx =

√
1
N

∑
(||∇(VK)− p||2)2.

We believe that the MSE errors are the most significant metric for comparing the
approximate controller with actual PMP results due to the form of the NN loss function
eq. (2.6). It is apparent from table 3.1 that the simulation accuracy increases as the domain
of the permissible state-space variables is constrained. This is expected as Krener’s toolkit
is based on a local power-series expansion of the system dynamics and running cost about
the equilibrium point and is therefore, expected to be more accurate within a restricted
range of perturbation about the equilibrium point.

Ranges (tf = 20) MSE-error
(V)

Mean % sq.
error (V) ×10−2

MSE-error
(Vx)

Mean % sq. er-
ror (Vx) ×10−2

{ϕ, θ, ψ} ∈ R1

{ω1, ω2, ω3} ∈ R2

0.18234 4.3619× 10−4 1.1828 0.0059063

{ϕ, θ, ψ} ∈ R1/1.5
{ω1, ω2, ω3} ∈ R2/1.5

0.021374 3.4919× 10−4 0.39130 0.0035072

{ϕ, θ, ψ} ∈ R1/2
{ω1, ω2, ω3} ∈ R2/2

0.0059298 4.93357× 10−5 0.21211 6.9851× 10−4

{ϕ, θ, ψ} ∈ R1/5
{ω1, ω2, ω3} ∈ R2/5

8.6378× 10−5 9.0489× 10−7 0.031175 1.3868× 10−4

{ϕ, θ, ψ} ∈ R1/10
{ω1, ω2, ω3} ∈ R2/10

4.7624× 10−6 7.2955× 10−7 7.917× 10−3 2.9484× 10−4

Table 3.1: Deviation of Krener’s toolkit from PMP, based on 2000 datapoints. R1 =
[−π/3, π/3], R2 = [−π/4, π/4].

The pre-training step involves training the NN using a relatively large amount of data
evaluated using Krener’s toolkit and then retraining it using numerically correct data from
PMP. The hyperparameter µ in the loss function eq. (2.6) is an tunable quantity that must
be fixed when the NN is optimized in the pre-training step. We investigated cases for µ = 0
and µ = 10. The dataset for the pre-training involved 8192 trajectories, and to maintain
fairness, each NN had the same initialization as the basic NNs, which did not have the
pre-training step. This seems to be important to ensure consistency in the observations.
The results are discussed in fig. 3.6. For µ = 0 in the pre-training step, improvements
in the final performance were observed only for relatively large-sized datasets. A possible
reason behind this is that µ = 0, and it is known from fig. 3.3 that neural networks trained
this way tend to perform relatively poorly. Substantially better results are obtained when
µ = 10 in the pre-training step.

37

Figure 3.6: % difference in performance metrics for NNs with and without pre-training at
the conclusion of 500 training iterations, with initial conditions sampled from eq. (3.5). If
Xp and X are a metric with and without pre-training, respectively, then the % error=(X−
Xp)/X × 100%. Top: µ = 0; Bottom: µ = 10 at the pre-training step.

38

From table 3.1, it is expected that if a more limited range for the initial states is
considered, the effect of the pre-training would be much better. To justify this statement
further, we repeated this experiment for the following restricted range of permissible values,
same as the fourth row of table 3.1:

X0 =

{
v,ω ∈ R3

∣∣∣∣− π

15
≤ ϕ, θ, ψ ≤ π

15
and − π

20
≤ ω1, ω2, ω3 ≤

π

20

}
. (3.8)

Fresh datasets were generated using Pontryagin’s Principle for this restricted range, follow-
ing the procedure outlined in the previous section. A dataset containing 8192 trajectories
based on this range was generated using Krener’s toolkit and used for pre-training pur-
poses. For this step, however, we just used µ = 10 in the pre-training step. Fresh NNs were
trained for these datasets (both with and without pre-training). The results are presented
in fig. 3.7. Clearly, pre-training has a significant advantage in this case, especially for the
hyper-parameters µ = 0.1, 10.

Figure 3.7: % difference in performance metrics for NNs with and without pre-training at
the conclusion of 500 training iterations, with initial conditions sampled from the restricted
eq. (3.8). If Xp and X are a metric with and without pre-training, respectively, then the
% error=(X − Xp)/X × 100%. The color code is the same as fig. 3.6, with blue: µ = 0,
red: µ = 0.01, yellow: µ = 0.1, purple: µ = 10.

39

Figure 3.8: NN performance with a selectively chosen dataset consisting of 128 datapoints

We subsequently examined the effect of selectively choosing datapoints based on the
estimated magnitudes of ||∇V ||2, as obtained from Krener’s toolkit, on the NN perfor-
mance. In this series of experiments, we generated a fixed set of 8192 datapoints through
random sampling from eq. (3.5), evaluated the requisite V and ||∇V ||2 through Krener’s
toolkit. The datapoints were then sorted as per the magnitudes of ||∇V ||2. Subsequently,
for generating a dataset of k datapoints, of which say n% are to be selected randomly,
the first ⌈nk/100⌉ datapoints are taken from the fixed sorted dataset, while the remaining
points are randomly sampled again from eq. (3.5). For the datapoints thus obtained, the
BVP is solved to generate the final dataset on which the NN can be subsequently trained.
The hyperparameter µ was equal to 10 in the loss function eq. (2.6) throughout the course
of this series of experiments. For fairness, all the NNs were subject to the same model
parameter initialization as the NNs in fig. 3.3. The performance metrics were measured
through an independently generated dataset randomly sampled from eq. (3.5). The results
for different percentages n of selectively chosen points with varying dataset sizes are pre-
sented in figures 3.8 to 3.12. We observed, however, that such a selective choice actually
tended to degrade the final performance of the NN, particularly for very high percentages
of the selective choosing and when the number of trajectories is less. In fact, we observed
significant convergence issues for n = 60%, 80% for the datasets containing 128 and 256
trajectories. Comparable performances are obtained only for relatively large-sized datasets,
and for relatively lower selection percentages. This observation is probably from the fact
that if the percentage of selectively chosen datapoints is high, the NN tends to better ap-
proximate those regions of the admissible set of initial states for which the optimal control
requirement is high rather than the entire design domain. When tested on a dataset that

40

has been uniformly sampled from eq. (3.5), the performance is degraded. The performance
improves as the dataset cardinality increases because the region covered by the selectively
chosen data points effectively increases.

Figure 3.9: NN performance with a selectively chosen dataset consisting of 256 datapoints

Figure 3.10: NN performance with a selectively chosen dataset consisting of 512 datapoints

Summary: In this chapter, we have examined the optimal control of a 6-dof rigid body.
We discussed the application of Krener’s toolkit in two stages of the NN training pipeline.
Its application to pre-training the NN, in which a large number of datapoints generated
from the toolkit is used to train it before retraining using PMP-based data, was found
to have promising directions in terms of improved convergence metrics. This is especially

41

Figure 3.11: NN performance with selectively chosen dataset consisting of 1024 datapoints

true if the admissible range of the initial states is restricted to a small range around its
equilibrium location. Its application to selectively identify training datapoints, however,
led to less promising results as comparable performance (with little to no improvement)
with the base case was noticed only for larger-sized datasets.

42

Figure 3.12: NN performance with selectively chosen dataset consisting of 2048 datapoints

43

Chapter 4

Optimal control of the Burgers’
Equation

4.1 Preliminary optimality conditions from PMP

This section is concerned with the optimal control of a Burgers’-like partial differential
equation, based on [37, Section 6]. Let X(t, ξ) : [0, tf]× [−1, 1] satisfy the following PDE:

Xt = XXξ + νXξξ + αXeβX + I(ξ)u (4.1)

subject to the boundary conditions and numerical parameters:

X(t,−1) = X(t, 1) = 0 tf = 8, ν = 0.2, α = 1.5, β = −0.1 (4.2)

with a scalar control u(t) acting on the support Ω of the indicator function IΩ(ξ) = 1 if
−0.5 ≤ ξ ≤ −0.2 and 0 otherwise. Consider the optimization of the following quadratic
functional:

minimize
u(.)

J [u(.)] =

∫ tf

t

L(X, u)dτ + W2

2
||X(tf , ξ))||2L2

(−1,1)

L(X, u) = 1

2
||X(τ, ξ)||2L2

(−1,1)
+
W1

2
u(τ)2

W1 = 0.1, W2 = 1 tf = 8.

(4.3)

Equation 4.1 is discretized using the Chebyshev pseudospectral collocation method [48]
in order to obtain a high-dimensional ODE system. This discrete system is then used to

44

optimize the cost functional eq. (4.3) using PMP. If there are Nc + 1 collocation points,
the set of Chebyshev points on [−1, 1] is given by [48, Chapter 5]:

ξj = cos(jπ/Nc), j = 0, 1, 2, ..., Nc. (4.4)

Since ξ0 = cos(0) = 1, ξNc = cos(π) = −1, we get X(t, ξ0) = X(t, ξNc) = 0 from the
boundary conditions.

Consequently, our discretized state effectively used in our simulations is given by:

x(t) := [X(t, ξ1), X(t, ξ2), X(t, ξ3), ..., X(t, ξn)]
T : [0, tf] → Rn, n = Nc − 1. (4.5)

Let ⊙ represent element-wise multiplication (Hadamard product) and IΩ be the dis-
cretized indicator function from eq. (4.1). For a Chebyshev grid containing Nc + 1 points,
Theorem 7 of [48, Chapter 6] describes a matrix D̃ ∈ RNc+1 ×RNc+1 which approximates
the differentiation operator. Thus, if v represents a function discretized on an Nc + 1
Chebyshev grid, its discrete first derivative is given by D̃v, and the discrete second deriva-
tive is given by D̃2v. Taking into account the singular Dirichlet boundary conditions,
the first spatial differentiation operator for our discretized domain, D1, is obtained from
the interior of D̃ by removing its first and last rows along with its first and last column.
Likewise, the second spatial differentiation operator, D2, is obtained from the interior of
D̃2 by removing its first and last rows along with its first and last column. Note that
as per [48, Chapter 13], if the boundary conditions were non-singular, additional source
terms would be present in the discretized equation. Neumann boundary conditions will
require additional modifications to the operators D1 and D2. In summary, eq. (4.1) may
be discretized into the following system of ODEs:

ẋ = 0.5D1(x⊙ x) + νD2x+ αx⊙ eβx + IΩu(t). (4.6)

[48, Chapter 12] describes the Clenshaw-Curtiss quadrature formula to integrate a
function discretized on a Chebyshev grid on the standard domain [−1, 1]. The nodes in
this context correspond to the Chebyshev gridpoints, and like any quadrature formula,
weights are assigned such that the integral may be approximated as

∑Nc+1
1 wiX(ξi), where

Nc + 1 refers to the number nodes, equivalent to the collocation points here. Since we
deal with Dirichlet boundary conditions, the weight vector w ∈ Rn is simply obtained by
neglecting the first and last weight. Thus, the following approximation for ||X(τ, ξ)||2

L2
(−1,1)

is obtained:
||X(τ, ξ)||2L2

(−1,1)
≈ wT (x(τ)⊙ x(τ)). (4.7)

45

Consequently, the discretized cost functional is:

minimize
u(.)

J [u(.)] =
1

2

∫ tf

t

(
wT (x(τ)⊙ x(τ)) +

W1

2
u(τ)2

)
dτ +

W2

2
wT (x(tf)⊙ x(tf)).

(4.8)
From PMP, the equations for the co-state dynamics are defined by:

ṗ = w ⊙ x− x⊙DT
1 p− νDT

2 p− (αeβx + αβx⊙ eβx)⊙ p

u∗(t) =
1

W1

pT IΩ

p(tf) = −W2w
T ⊙ x(tf).

(4.9)

This completes the details of the problem studied in this chapter. We do not address
the impact of the discretization scheme on the optimal control. However, problems based
on discretized PDEs provide an opportunity to examine the scalability of the algorithms
discussed in this thesis. We consider discretizations in n = 20 and n = 30 dimensions.
One should note that since we apply a spectral method, the matrices used in eq. (4.6)
and eq. (4.9) are full, dense matrices, as compared to the sparse matrices obtained from
standard discretization schemes such as forward Euler/Backward Euler. Consequently, this
problem is the most computationally intensive problem examined in this thesis.

46

Figure 4.1: Simulations of (4.1) in n = 20 dimensions. Left Column: Simulations for initial
condition X0 = 2 sin(πξ) and right Column: X0 = −2 sin(πξ). Top Row: Uncontrolled
dynamics; Middle: Controlled optimal dynamics; Bottom: Respective optimal controls
(solid blue) and Hamiltonian (dashed black) from PMP.

47

4.2 Application of Krener’s toolkit

We implemented Krener’s toolkit for eq. (4.1) for n = 30 dimensions (having 29 state
variables), with degree of optimal feedback= 1 and 2. Figure 4.2 compares the controls
obtained from PMP and Krener’s toolkit for a sample initial condition:

Figure 4.2: Comparison of the controls obtained from PMP (Blue) and Krener’s toolkit
(Red) for an initial condition X0 = 2 sin(πξ). Left: degree of optimal feedback=2, Right:
degree of optimal feedback=1.

From fig. 4.2, it is apparent that a significant difference exists between the actual con-
trols from PMP and the approximation from Krener’s toolkit. Indirectly this implies that
a substantial difference exists between the costate indices corresponding to the non-zero
values of the discretized indicator function, as evident from (4.9). Furthermore, the loss
function described in eq. (2.6) penalizes the entire costate vector. Owing to a potentially
large difference in the predicted costates, and based on our observations from section 3.2,
we believe that it is infeasible to apply pre-training as performed in chapter 3 to this
problem.

From fig. 4.2, one can see that there is only a slight change in the controls obtained as
the degree of the optimal control is increased from 1 to 2. On the other hand, as expected
from section 2.5, the approximated value function for a degree of optimal control=2 will
have

(
30
2

)
+

(
31
3

)
= 435 + 4495 = 4930 monomial terms, while the approximated control

will
(
29
1

)
+

(
30
2

)
= 29 + 435 = 464 monomial terms. Consequently, the number of terms

in the expression increases exponentially for high-dimensional systems, and in our compu-
tational experiments, we do not go beyond a degree of approximation 2. Implicitly, this
is a reflection of the curse of dimensionality. As mentioned earlier, it seems infeasible to
apply pre-training to the neural network. However, it is natural that solving the BVP
for this high-dimensional coupled system is substantially more expensive computationally

48

compared to the 6-dof system discussed in chapter 3. Consequently, as an alternative to the
neural network warm-start approach discussed in [37], in which a neural network trained
on a relatively fewer number of optimal trajectories is used to generate an initial guess for
the BVP solver, one can use this toolkit to potentially reduce the data generation time.

While investigating this direction, a number of subtle problems arose. The initial guess
for the BVP solver requires both the states and the costates. As explained in section 2.5,
the value function and the optimal control are approximated as a polynomial expression:
not the costates. As a result, a method to appropriately differentiate the polynomial ex-
pression for the value function in order to evaluate the costates as per p = −Vx had to
be devised. Recall that the set of monomials of degree=k having n system variables has(
k+n−1

k

)
terms. Our Python code is able to evaluate these terms sequentially using a for-

loop-based method that involves a number of condition checks. While it is difficult to
vectorize this operation, it is still cheaper to evaluate the value function in this way com-
pared to solving the BVP. The partial differentiation needed for the costate calculations,
however, will involve n.

(
k+n−1

k

)
additional calculations, and this was found experimentally

to be computationally prohibitive. If a neural network is used, however, these calculations
can be performed far more efficiently using backpropagation.

Owing to an exponential increase in the number of terms and unsatisfactory improve-
ment in the approximation of the costates (as well as difficulties in their calculations), in
our opinion, it is infeasible to use Krener’s toolkit beyond a degree of optimal control=1 for
such high dimensional systems. We modified Krener’s toolkit to return the approximate
(quadratic) optimal cost in the standard form, xTPx, where P is a symmetric matrix
so that the approximated costates are given by −2Px. This was used to calculate the
co-states along the approximated trajectory calculated from Krener’s toolkit in the initial
guess. Subsequently, we examined the performance of the BVP solver when this approxi-
mated trajectory was used as the initial guess for approximately 100 random initial states.
Compared to the basic guess (only the initial state at t = 0 is non-zero), this method
resulted in an average calculation time reduction of 18 seconds. However, we were not able
to guarantee that this led to a uniform reduction in computational time, as in some cases,
this initial guess performed poorer than the basic guess. Additionally, one must note that
CPU times measured in this way have the potential to be corrupted due to the presence
of background tasks.

49

4.3 Neural Network Formulation

For the data generation process, the initial conditions (ICs) are sampled from the following
set:

X0 = {x ∈ Rn| − 2 ≤ xj ≤ 2, j = 1, 2, 3, ..., n} (4.10)

For each of the discretized problems involving n = 20 and n = 30 states, training datasets
are generated from 128, 145, 163 initial conditions, while the test dataset is generated from
100 initial conditions, each sampled independently of one another. As the controller de-
signed for this problem is a moving horizon controller, time is taken as an input into the
neural network. For each IC, a BVP is solved (optionally using process-based concur-
rency techniques), and the solution obtained from the Python solver generally contains
more than 1000 default time instants. These default time instants and the correspond-
ing solutions are used in the generated dataset; the solutions are not interpolated onto a
uniform time grid. For each time instant, the value function is evaluated as described in
section 2.2. For sanity purposes, the optimal Hamiltonian is evaluated along the trajectory,
even though it is known to be a constant from theory. The data format is, therefore, of
type (t,x∗(t),p∗(t), H∗(t), V (t, tf)). Due to the large number of time instants returned by
default, it is sufficient to solve a fewer number of trajectories, even though these BVPs
are the most computationally intensive problems considered in this thesis. The NN ar-
chitecture is the same as problem 1 (a standard feedforward network of 3 hidden layers,
each having 64 neurons with tanh activation functions). Similar to problem 1, we have not
implemented adaptive data generation into the NN training process. Our implementation
is based on an open-loop approach in which the trajectories are generated from the initial
conditions prior to starting the training; it is not expanded subsequently based on the NN
performance. Likewise, we do not consider a training termination criteria and allow the
training to continue for 500 epochs.

In section 2.4, the rationale behind the loss function for PINNs was discussed. In
[37], the principal reference on which this thesis is based, the loss function is given by
eq. (2.6). However, for moving-horizon controllers, one can think of an additional constraint
relationship between the gradient of the value function with respect to time, Vt, and the
optimal Hamiltonian, based on eq. (1.9). Consequently, we investigated the inclusion of
this loss through a term µ× (Vt−H∗(t,x∗,p∗,u∗))2, where µ is the same hyper-parameter
used in the standard loss function. For fairness, all NNs having the same n have the same
initialization. Table 4.1 and fig. 4.3 compare the NN performance when this additional
term is taken into account. Overall, an improvement in the NN performance was observed:
in particular, the response is seen to be much more stable.

50

Metric
Trajectories=128 Trajectories=145 Trajectories=163

No Vt With Vt No Vt With Vt No Vt With Vt

n=20

RMAE × 103 9.37 7.98 8.77 7.13 8.1 6.39

RML2 × 102 2.43 2.39 2.52 2.50 2.32 2.18

Time(s) 1245.22 1284.57 1622.55 1382.29 1798 1509.53

n=30

RMAE × 103 12.5 11.9 10.865 9.72 9.26 9.19

RML2 × 102 3.44 3.44 3.4 3.06 3.07 2.93

Time(s) 1549.51 1281.44 1453 1448 1881 1622

Table 4.1: Relevant metrics at the end of 500 training iterations when the term involving
Vt is included in the loss function for problem 2. The metrics used are defined in eq. (2.7).
Note: The time readings have a strong tendency to be altered from background tasks
running in the machine, nevertheless, the training times obtained are comparable.

Figure 4.3: Comparison of the controls obtained from the neural networks (with and
without the Vt-based losses, for an n = 20 grid discretization. Left: X0 = −2 sin(πξ),
Right: X0 = 2 sin(πξ).

51

Summary: In this chapter, we have examined the optimal stabilization of a high-dimensional
dense ODE system arising from the discretization of a Burgers’-like PDE. The application
of Krener’s toolkit to generate a guess for the BVP solver was found to result in improve-
ments in the average time of solver convergence. We examined the effect of the addition of
a loss based on Vt and the optimal Hamiltonian to the usual loss function eq. (2.6). This
was found to result in small improvements in the NN convergence and a relatively more
stable controller output.

52

Chapter 5

Optimal Control of the damped wave
equation

5.1 A preliminary discussion

We first discuss the motivation behind the study of this problem. Let us first consider the
1-D uncontrolled heat equation with homogeneous Dirichlet boundary conditions, satisfied
by X(t, ξ) : [0, tf]× [0, 1] → R:

Xt = Xξξ, X(t, 0) = X(t, 1) = 0.

On performing a separation of variables and solving the PDE, the solution obtained of
the form: X(t, ξ) =

∑∞
n=1 cn(0)ϕn(ξ)e

−λ2nt, where the eigenfunctions are given by ϕn(ξ) =√
2 sin (nπξ) and the eigenvalues are λn = nπ. Clearly, all the eigenvalues are real and

exhibit a rapid decay. Their contribution to the state as time progresses becomes negligible.

The viscous Burgers’ equation with homogeneous boundary conditions is similar to the
problem addressed in chapter 4. Let X(t, ξ) : [0, tf]× [0, 1] → R satisfy the PDE:

Xt +XXξ = νXξξ, X(t, 0) = X(t, 1) = 0.

This equation is non-linear, and eigenfunctions or eigenvalues cannot be directly calculated.
The Cole-Hopf transformation can, however, be used to obtain an analytic solution. Its
study in the context of Koopman Theory and data-driven methods like Dynamic Mode
Decomposition [38][42] indicates that it is possible to represent the system state with a
small number of transient dynamic structures.

53

Let us now consider the uncontrolled damped wave equation with homogeneous Dirich-
let conditions, satisfied by X(t, ξ) : [0, tf]× [0, 1] → R:

Xtt + γXt = Xξξ X(t, 0) = X(t, 1) = 0.

The eigenfunctions of ∂2/∂ξ2 in this context are still given by ϕn(ξ) =
√
2 sin (nπξ), but

the eigenvalues are now −γ/2+ i
√
(nπ)2 − (γ/2)2 ≈ −γ/2+ inπ. The damping coefficient

≈ γ/(2nπ) actually decreases for higher spectral modes. Thus, while the wave equation
is stable, the higher spectral modes do not exhibit a similar rapid decay as the heat
equation. Neither can it be assumed that the state evolution is governed by a small
number of underlying dynamic structures, similar to the Burgers’ equation. Consequently,
we examine the application of the method discussed thus far to the optimal control of the
1-D damped wave equation.

5.2 Optimality conditions from PMP

We first develop the optimal control for this equation with uniformly distributed viscous
damping. Let X(t, ξ) : [0, tf]× [0, 1] → R satisfy the following PDE:

Xtt + γXt = Xξξ + IΩ(ξ)u(t) (5.1)

subject to the conditions:

X(t, 0) = X(t, 1) = 0, tf = 10, γ = 0.1 (5.2)

and subject to a scalar control u(t) on the support Ω of indicator function IΩ(ξ) = 1 if
0.35 ≤ ξ ≤ 0.55 and 0 otherwise.

To develop a discrete version of eq. (5.1), we employ a Galerkin method with the or-
thonormal set of eigenfunctions {ϕn(ξ)}n=kn=1 = {

√
2 sin(nπξ)}n=kn=1 as the Galerkin basis.

Consequently, we claim that X(t, ξ) ≈
∑k

n=1 cn(t)ϕn(ξ), where for a given n, cn is termed
the n− th spectral coefficient. The approximation on substitution into the PDE yields the
following:

k∑
n=1

c̈n(t)ϕn(ξ) + γ
k∑

n=1

ċn(t)ϕn(ξ) = −
k∑

n=1

n2π2cn(t)ϕn(ξ) (5.3)

where we use the fact that ϕ′′
n(ξ) = −n2π2ϕn(ξ). Using the orthonormality conditions, we

get an uncoupled system of ODEs for the spectral coefficients cn(t):

c̈n(t) + γċn(t) = −n2π2cn(t) (5.4)

54

We henceforth consider systems of k = {5, 10, 15, 20, 25, 30} spectral coefficients. In state-
space representations of linear systems, the matrix relating the uncontrolled system dy-
namics A : ẋ = Ax is called the state matrix. If we take the system variables to be
(x1,x2) such that their n-th elements are cn and ċn, then the uncontrolled dynamics are:

d

dt

(
x1

x2

)
=

(
0n×n In×n
−M −γIn×n

)(
x1

x2

)
.

Here M is a diagonal matrix defined as Mii = n2π2;Mij = 0. The state matrix obtained,
however, has high condition numbers of order ∼ O(n2π2). Consequently, for numerical sta-
bility purposes, it is recommended to represent this system with the independent variables
(x1,x2), such that their n − th elements are nπcn and ċn respectively. The (controlled)
dynamics are then given by:

d

dt

(
x1

x2

)
=

(
0k×k M
−M −γIk×k

)(
x1

x2

)
+

(
0k×1

B

)
u(t) (5.5)

where, Bn =
∫ 1

0
IΩ(ξ)ϕn(ξ)dξ =

∫ 1

0

√
2IΩ(ξ) sin(nπξ)dξ =

√
2

nπ
(cos(0.35nπ) − cos(0.55nπ)).

M is a diagonal matrix defined as Mii = iπ; Mij = 0. The state matrix in this form has
condition numbers of order ∼ O(n), which are much lower than the earlier representation.
As a (successful) validation step, the eigenvalues of the state matrix were calculated using
SciPy and compared to the analytical ones from the characteristic equations of eq. (5.4);
their approximate value for small γ is −γ/2± i(nπ), as expected from section 5.1.

It is assumed that the initial condition X(0, ξ) = f(ξ) is a continuous function, rather
than a discrete one specified only at certain points. This enables the evaluation of the
n− th initial spectral coefficient cn(0) =

∫ 1

0
f(ξ)ϕn(ξ)dξ using standard SciPy quadrature-

based integration routines. As a computational simplification, only cases where the initial
perturbed state is at rest are considered. Consequently, the initial velocity X ′(0, ξ) = 0.

The following quadratic cost functional is optimized:

minimize
u(.)

J [u(.)] =

∫ tf

t

L(X,X ′, u)dτ +
W4

2
||X(tf , ξ)||2L2

(−1,1)
+
W4

2
||X ′(tf , ξ)||2L2

(−1,1)

L(X,X ′, u) =
W1

2
||X(τ, ξ)||2L2

(−1,1)
+
W2

2
||X ′(τ, ξ)||2L2

(−1,1)
+
W3

2
u(τ)2

W1 = 1, W2 = 1 W3 = 0.01 W4 = 1 tf = 10.

(5.6)

We note that as an orthonormal basis for this set of equations, they satisfy the property
⟨x, x⟩ = ⟨

∑
n cnϕn,

∑
j cjϕj⟩ =

∑
n c

2
n. Since we consider a Galerkin basis of k eigenfunc-

tions, we need to provide a discrete version of this cost functional in terms of x1 and x2.

55

As x1n = nπcn, c
2
n = x21n/(n

2π2), so that ||X||2 ≈
∑k

1 x
2
1n/(n

2π2). As x2n = ċi is an inde-

pendent vector, ||X ′||2 ≈
∑k

1 x
2
2n. Consequently, the approximated running and terminal

costs are:

L(x1,x2, u) =
W1

2

k∑
n=1

x21n
n2π2

+W2

k∑
n=1

x22n
2

+
W3

2
||u||2

K(x1,x2) =
W4

2

k∑
n=1

x21n
n2π2

+W4

k∑
n=1

x22n
2
.

(5.7)

The equations for the co-state, along with the boundary conditions at tf , thus become:

ṗx1i =
W1x1i
n2π2

+ iπpx2i

ṗx2i = W2x2i + γpx2i − iπpx1i

px1i(tf) = −W4
x1i
i2π2

px2i(tf) = −W4x2i.

(5.8)

We numerically examine the controls obtained for the initial condition (fig. 5.1):

X(0) =

4ξ − 1 ∀ 0.25 ≤ ξ ≤ 0.50

3− 4ξ ∀ 0.50 ≤ ξ ≤ 0.75

0 ∀ ξ ∈ [0, 0.25] ∪ [0.75, 1].

(5.9)

The results obtained from PMP for this initial condition when k = 30 spectral coefficients
are considered are shown in fig. 5.2 and fig. 5.3.

5.3 Neural Network Implementation and Performance

As explained in section 5.1, the most interesting feature of the wave equation is that the
higher system modes do not display a rapid time decay similar to the heat or Burgers’
equation. The system eigenvalues (for our boundary conditions) for small γ are given by
≈ −γ/2± i(nπ). The damping coefficient ≈ γ/(2nπ) decreases for higher spectral modes.
Another interesting feature is that while the PDE 5.1 is originally described in the physical
space, all the relevant calculations are performed in an orthonormal Galerkin basis obtained
from the system eigenfunctions.

56

Figure 5.1: Numerical and spectral aspects of eq. (5.9). Right fig, black line: cn(0); blue
line: nπcn(0). Blue square markers indicate indices where |cn(0)| > 0.05, while black ones
indicate indices where |nπcn(0)| > 0.05. While |cn(0)| < 0.05∀n > 4, this is not true

for |nπcn(0)|. Left fig: fk(ξ) =
∑k

n=1

√
2cn sin(nπξ). If Ek =

√∫ 1

0
(X(0)− fk)2dξ and

X(0) is given by eq. (5.9), E5 = 0.0817, E10 = 0.022, E15 = 0.0099, E20 = 0.0086, E25 =
0.0068, E30 = 0.0049

,

Owing to our use of the Galerkin approximation, changes must be made in the data
generation process. The first problem we discussed involved an ODE, and no transforma-
tion was applied to the initial conditions for which the optimal trajectories were calculated
using PMP. Even for the second problem involving a Burgers’-like PDE, the initial states
used in the data generation process were obtained in a discrete form directly from a known
domain. However, for the wave equation, the initial spectral coefficients must be eval-
uated through an integration with the appropriate eigenfunction. To use more accurate
quadrature-based integration routines, the initial condition f(ξ) must be provided as a
continuous, rather than a discrete function. Consequently, points are sampled from the
following set:

X0 = {x ∈ R21| − 1 ≤ xj ≤ 1, j = 1, 2, 3, ..., 19, x0 = x20 = 0} (5.10)

and the spatial domain [0, 1] is partitioned into an equispaced grid of 20 elements, com-
prising of 21 gridpoints ξi = i/20, i = 0, 1, 2, ..., 20. We make f(ξi) = xi and de-
fine it for intermediate ξ : ξi ≤ ξ ≤ ξi+1 using the simple piecewise linear scheme:
f(ξ) = ξ−ξi

ξi+1−ξi (f(ξi+1)− f(ξi)) + f(ξi).

The continuous function f(ξ) is now used in the data-generation process, as the spec-

57

Figure 5.2: Left: Simulated trajectory involving k = 30 spectral coefficients for the initial
state eq. (5.9) with no acting control. Right: Simulated trajectory for the same initial
state when subject to optimal control with cost functional eq. (5.6).

tral coefficients cn(0) = ⟨f(ξ), ϕn(ξ)⟩ may now be calculated. The Pontryagin BVP, as
described in section 5.2, is subsequently solved to generate datasets for training the NN.
We generate individual training (128 trajectories) and test (100 trajectories) datasets for
initial conditions having k = {5, 10, 15, 20, 25, 30} non-zero spectral coefficients. We re-
iterate that our training procedure is open-loop and that the training dataset is generated
independent of the intermediate performance of the neural network. It is also important
to note that although −1 ≤ f(ξ) ≤ 1 for all ξ ∈ [0, 1], such a bound cannot be obtained
for the spectral coefficients.

The BVP described in section 5.2 is dependent on the number of non-zero spectral
coefficients. If we consider problems involving k such coefficients, it implies that the system
is governed by 4k equations. Consequently, the NN architecture must change as the number
of coefficients changes. Thus, while working with a dataset having simulations involving k
spectral coefficients, the NN has 4 hidden layers of 64 Neurons each, with Tanh activation
functions, with the first layer having 2k inputs.

In order to examine the performance of the NN-based optimal control scheme, we
trained separate NNs using individually generated datasets consisting of simulations having
different numbers of spectral coefficients, as discussed earlier. The loss function has the
hyperparameter µ = 10. The Vt based loss as described in section 4.3 is excluded, as
this was found to cause numerical convergence issues, especially for higher values of k. A

58

Figure 5.3: Top: Optimal control u(t) obtained for the Cost functional eq. (5.6) with
k = 30 spectral coefficients, and Bottom: The Optimal Hamiltonian obtained on solving
the boundary value problem. It is seen to be numerically constant, as expected from theory,
but its value is not zero.

potential reason behind this is that the NN is unable to satisfactorily approximate the
controls required by the higher system modes; and the presence of such modes tends to
adversely affect the NN training, as will be explained below. We then considered the
expansion of eq. (5.9) in terms of the eigenfunctions and truncated it at k terms. The
NN trained on the dataset involving simulations with k spectral coefficients was applied
to this modified initial condition. For fairness, the PMP-based BVP was solved for this
modified initial condition as well and compared to the NN-based control. The results are
shown in fig. 5.4. Satisfactory controls were obtained for the NNs trained on simulations
involving low k = 5, 10, 15 spectral coefficients. However, for higher k = 20, 25, 30, the
controls obtained were unsatisfactory.

59

Taking advantage of the fact that the ODE system eq. (5.4) is decoupled, we examined
the performance of the NN relative to the PMP for the set of ICs based on the eigenfunc-
tions, X(0) = ϕn(ξ) =

√
2 sin(nπξ). Through this examination, we attempted to identify

the cause behind the unsatisfactory performance of the NNs involving larger numbers of
spectral coefficients. We first considered the case for k = 5, for which the best performance
was observed. For this case, we observed significant divergence for n = 4, 5. For larger
k > 15, we observed that the NNs performed significantly poorer compared to PMP, even
for the lower eigenfunctions. Consequently, we believe that the NN-based methods, as
examined in this thesis, are best applicable to systems that can be approximated with a
small number of decaying system modes. If higher system modes that do not decay faster
than the lower ones are present (similar to the wave equation examined here), they can
potentially corrupt the NN training.

To justify our claim further, we generated new datasets involving k = 15, 20, 25, 30
spectral coefficients such that any initial coefficient corresponding to n ≥ 5 is truncated to
zero. This does not imply that these datasets are equivalent to the earlier dataset based on 5
non-zero spectral coefficients: the higher order coefficients are altered during the simulation
through the control term B as the scalar control u(t) acts on all the non-zero entries. On
retraining the NN based on this dataset, the convergence of the initial conditions given
by the lower eigenfunctions was observed to be much better. However, such a controller
designed primarily using a number of lower system eigenmodes is susceptible to spillover
[36], as the control still affects the higher system modes, potentially leading to system
instabilities.

Consequently, in the validation step, eq. (5.9) was expanded in terms of the eigen-
functions and truncated at k terms, not 5. Thus, all the initial spectral coefficients
cn(0) : 5 ≤ n ≤ k are non-zero. The corresponding NN was then applied to predict
the optimal control for this modified initial condition. The numerical results are presented
in fig. 5.5. Clearly, substantially better results are obtained fig. 5.4 without spillover ef-
fects. A potential reason behind this observation is that the initial condition eq. (5.9)
does not have a substantial contribution from higher-order spectral components (evident
from fig. 5.1, |cn(0)| < 0.05 for n > 5). Also, while the higher spectral coefficients for
n > 5 are initially zero, they are modified in the simulations as the corresponding control
term B is non-zero. This potentially improves the robustness of the controller. However,
a similarly good performance cannot still be assured for initial conditions that have a sub-
stantial amount of high-order spectral components (physically, this would correspond to
non-smooth/irregular initial conditions), as a good controller could only be designed using
datasets in which their initial value was zero.

60

(a) k=5 (b) k=10

(c) k=15 (d) k=20

(e) k=25 (f) k=30

Figure 5.4: Comparison of control obtained from PMP and the NN trained on datasets
having k non-zero spectral coefficients, in which no higher-order spectral coefficient was
truncated to zero. The results are presented for the initial condition eq. (5.9). Blue lines:
controls from PMP, Black lines: controls from NN.

61

(a) k=15 (b) k=20

(c) k=25 (d) k=30

Figure 5.5: Comparison of control obtained from PMP and the NN trained on the modified
datasets having k time-varying spectral coefficients, with all initial spectral coefficients
cn(0) : n > 5 in the dataset truncated to zero. The initial condition eq. (5.9) used in this
validation step is, however, still expanded to k non-zero spectral coefficients. Blue lines:
controls from PMP, Black lines: controls from NN.

62

Summary: In this chapter, we examined the optimal stabilization of an ODE system
arising from the damped wave equation. As described in section 5.1, the higher system
modes of this system do not display an exponential decay, and is therefore challenging to
control. A Galerkin method based on the system eigenfunctions was used to optimize and
solve the BVP. We observed that a non-zero initial value for these system modes has the
potential to corrupt the NN-training. A good approximation for the optimal control could
only be obtained for the lower system modes.

63

Chapter 6

Conclusions and Future Work

In this thesis, we have examined a data-driven approach for approximating the HJB equa-
tion arising from general high-dimensional optimal control problems. Feedforward neural
networks were used to fit the value function and calculate the optimal control in a feed-
back form for generally stabilizable systems. The training datasets were generated based
on initial conditions sampled from a restricted set of admissible initial conditions. Optimal
trajectories were calculated using Pontryagin’s Maximum Principle and various intermedi-
ate quantities such as the costates and optimal Hamiltonian tracked for training purposes.
These intermediate quantities were subsequently applied to a physics-based loss function
with a supervised optimization approach to greatly improve the neural network perfor-
mance. These trained neural networks were utilized to evaluate the optimal control for the
system in a closed-loop fashion. We also discussed in detail a toolkit for approximating
the infinite-horizon optimal controller based on a power-series expansion of the system
dynamics about the equilibrium point.

We numerically examined this method using three problems. The first involved the
optimal control of the orientation of a six-degree of freedom rigid body. In the context
of this problem, we also examined the feasibility of pre-training the neural network and
selectively choosing training datapoints based on calculations from an approximated op-
timal controller. We confirmed that the approximate controller is most accurate around
the stable equilibrium point, due to which pre-training was most effective when the con-
troller was designed for a limited range of the initial states around the equilibrium point.
Selective choice of initial conditions, however, did not lead to satisfactory results. The NN
performance was seen to be comparable to the basic neural network only for the larger
datasets, and with no significant performance improvements.

64

The second problem involved an optimal control of a high-dimensional non-linear sys-
tem arising from the discretization of a Burgers’-like PDE. The problem was made com-
putationally intensive by using spectral methods in the spatial discretization step: though
spectral methods lead to improved simulation accuracy, they comprise operations involving
dense matrix operators. The approximate optimal controller developed from the power-
series expansion was used as an initial guess for the SciPy boundary value solver, and
improvements in the convergence time were observed. We also examined the effect of an
additional physics-based loss, based on the optimal Hamiltonian, on the performance of
the neural network. The controller thus designed was found to have slightly improved
convergence metrics and a more stable controller response.

The third problem concerned the optimal control of the damped wave equation, for
which the higher system modes do not decay exponentially compared to the lower modes.
For such systems, we found that the performance of the neural network degrades if a higher
number of non-zero initial system modes are considered in the training dataset. Only the
controls for the lower system modes could be properly approximated by the neural net-
work. This potentially suggests that the supervised neural network-based approximation
approach as examined in this thesis is well suited mostly for systems whose dynamics can
be well represented by a smaller number of slowly decaying transient structures, such as
the heat or Burgers’ equation.

In the context of these neural network-based approaches to the HJB equation, current
literature has primarily focused on fixed-time free-endpoint problems. An extension for
different target sets, such as free-time problems with final-state constraints would be an
important development. Such problems present computational difficulties at the data-
generation step as unlike fixed-time problems, the time-instant at which the boundary
conditions need to be imposed by the BVP solver is not known a-priori. Iterative methods
such as the shooting method must be employed in conjunction with the BVP solver to
solve them. Additionally, such problems can potentially give rise to non-unique solutions to
Pontryagin’s equations and non-smooth value functions, which present further challenges
in the neural network optimization stage [37]. A further problem was discovered while
applying this method to the wave equation, in which the higher system modes do not
decay exponentially compared to the lower modes. Such components have the potential to
corrupt or degrade the neural network performance. For the wave equation, we were able
to take advantage of a Galerkin method based on the system eigenfunctions to obtain a
set of ODEs that effectively filtered out the higher modes; this is not possible for general
non-linear systems. A different method, potentially employing different neural network
architectures, may be required to approximate the HJB equation in such cases, and is a
subject of future research.

65

References

[1] Cesar O Aguilar and Arthur J Krener. Numerical solutions to the Bellman equation of
optimal control. Journal of optimization theory and applications, 160:527–552, 2014.

[2] EG Al’Brekht. On the optimal stabilization of nonlinear systems. Journal of Applied
Mathematics and Mechanics, 25(5):1254–1266, 1961.

[3] Alfonso Baños, Françoise Lamnabhi-Lagarrigue, and Francisco J Montoya. Advances
in the control of nonlinear systems, volume 264. Springer Science & Business Media,
2001.

[4] Richard Bellman. Dynamic Programming. Princeton university press, Princeton, N.J.,
1957.

[5] Peter Benner and Jens Saak. Numerical solution of large and sparse continuous time
algebraic matrix Riccati and Lyapunov equations: a state of the art survey. GAMM-
Mitteilungen, 36(1):32–52, 2013.

[6] Olivier Bokanowski, Jochen Garcke, Michael Griebel, and Irene Klompmaker. An
adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi-Bellman
equations. Journal of Scientific Computing, 55:575–605, 2013.

[7] Jason Brownlee. Python Multiprocessing Jump-Start. 2022.

[8] Arthur E Bryson. Optimal control-1950 to 1985. IEEE Control Systems Magazine,
16(3):26–33, 1996.

[9] Arthur E Bryson and Yu-Chi Ho. Applied optimal control: optimization, estimation,
and control. Washington: Hemisphere Pub. Corp, 1975.

66

[10] Simone Cacace, Emiliano Cristiani, Maurizio Falcone, and Athena Picarelli. A patchy
dynamic programming scheme for a class of Hamilton-Jacobi-Bellman equations.
SIAM Journal on Scientific Computing, 34(5):A2625–A2649, 2012.

[11] Tao Cheng, Frank L. Lewis, and Murad Abu-Khalaf. Fixed-final-time-constrained
optimal control of nonlinear systems using neural network HJB approach. IEEE
Transactions on Neural Networks, 18(6):1725–1737, 2007.

[12] Yat Tin Chow, Jérôme Darbon, Stanley Osher, and Wotao Yin. Algorithm for over-
coming the curse of dimensionality for state-dependent Hamilton-Jacobi equations.
Journal of Computational Physics, 387:376–409, 2019.

[13] The Scipy Community. Scipy.integrate.solve bvp. Accessed: 2023-09-30.

[14] The Scipy Community. Scipy.integrate.quad. Accessed: 2023-10-10.

[15] Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza,
Maziar Raissi, and Francesco Piccialli. Scientific machine learning through physics-
informed neural networks: Where we are and what’s next. Journal of Scientific Com-
puting, 92(3):88, 2022.

[16] Jérôme Darbon and Stanley Osher. Algorithms for overcoming the curse of dimension-
ality for certain Hamilton-Jacobi equations arising in control theory and elsewhere.
Research in the Mathematical Sciences, 3(1):19, 2016.

[17] Lawrence C. Evans. Partial differential equations. American Mathematical Society,
Providence, R.I., 2010.

[18] Maurizio Falcone and Roberto Ferretti. Semi-Lagrangian approximation schemes for
linear and Hamilton-Jacobi equations. SIAM, 2013.

[19] Zhiwei Fang. A high-efficient hybrid physics-informed neural networks based on con-
volutional neural network. IEEE Transactions on Neural Networks and Learning Sys-
tems, 33(10):5514–5526, 2021.

[20] The PyTorch Foundation. A Gentle Introduction to Autograd - PyTorch Tutorials.
Accessed: 2023-09-30.

[21] The PyTorch Foundation. torch.autograd.grad-PyTorch 2.0 documentation. Accessed:
2023-09-30.

67

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_bvp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html
https://pytorch.org/docs/stable/generated/torch.autograd.grad.html

[22] MathWorks Inc. Implicit solver for continuous-time algebraic Riccati equations. Ac-
cessed 2023-10-01.

[23] Jamshed Iqbal, Mukhtar Ullah, Said Ghani Khan, Baizid Khelifa, and Saša Ćuković.
Nonlinear control systems-a brief overview of historical and recent advances. Nonlinear
Engineering, 6(4):301–312, 2017.

[24] Frank Jiang, Glen Chou, Mo Chen, and Claire J. Tomlin. Using neural networks to
compute approximate and guaranteed feasible Hamilton-Jacobi-Bellman PDE solu-
tions. https://doi.org/10.48550/arXiv.1611.03158.

[25] Wei Kang, PK De, and A Isidori. Flight control in a windshear via nonlinear H∞
methods. In [1992] Proceedings of the 31st IEEE Conference on Decision and Control,
pages 1135–1142. IEEE, 1992.

[26] Wei Kang and Lucas Wilcox. A causality free computational method for HJB equa-
tions with application to rigid body satellites. In AIAA Guidance, Navigation, and
Control Conference, page 2009, 2015.

[27] Georgios Kissas, Yibo Yang, Eileen Hwuang, Walter R Witschey, John A Detre, and
Paris Perdikaris. Machine learning in cardiovascular flows modeling: Predicting arte-
rial blood pressure from non-invasive 4D flow MRI data using physics-informed neu-
ral networks. Computer Methods in Applied Mechanics and Engineering, 358:112623,
2020.

[28] Alexander Kovacs, Lukas Exl, Alexander Kornell, Johann Fischbacher, Markus Hov-
orka, Markus Gusenbauer, Leoni Breth, Harald Oezelt, Masao Yano, Noritsugu
Sakuma, et al. Conditional physics informed neural networks. Communications in
Nonlinear Science and Numerical Simulation, 104:106041, 2022.

[29] Arthur J. Krener. Nonlinear Systems Toolbox v.1.0, 1997. MATLAB based toolbox
available by request from ajkrener@ucdavis.edu.

[30] Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks
for solving ordinary and partial differential equations. IEEE transactions on neural
networks, 9(5):987–1000, 1998.

[31] Daniel Liberzon. Calculus of variations and optimal control theory. Princeton univer-
sity press, Princeton, N.J., 2011.

[32] Jun Liu. AMATH 456/656: Calculus of Variations Lecture Notes. 2021.

68

https://www.mathworks.com/help/control/ref/icare.html
https://doi.org/10.48550/arXiv.1611.03158

[33] Jun Liu. AMATH 455/655: Control Theory Lecture Notes. 2022.

[34] Dahlard L Lukes. Optimal regulation of nonlinear dynamical systems. SIAM Journal
on Control, 7(1):75–100, 1969.

[35] Abhilash Mathews, Manaure Francisquez, Jerry W Hughes, David R Hatch, Ben Zhu,
and Barrett N Rogers. Uncovering turbulent plasma dynamics via deep learning from
partial observations. Physical Review E, 104(2):025205, 2021.

[36] Kirsten A Morris. Controller design for distributed parameter systems. Springer, 2020.

[37] Tenavi Nakamura-Zimmerer, Qi Gong, and Wei Kang. Adaptive deep learning for
high-dimensional Hamilton-Jacobi-Bellman Equations. SIAM Journal of Scientific
Computing, 43(2):A1221–A1247, 2021.

[38] J Nathan Kutz, Joshua L Proctor, and Steven L Brunton. Applied Koopman theory
for partial differential equations and data-driven modeling of spatio-temporal systems.
Complexity, 2018:1–16, 2018.

[39] Carmeliza Navasca and Arthur J Krener. Patchy solutions of Hamilton-Jacobi-
Bellman partial differential equations. In Modeling, Estimation and Control:
Festschrift in Honor of Giorgio Picci on the Occasion of his Sixty-Fifth Birthday,
pages 251–270. Springer, 2007.

[40] Lucien W Neustadt, Lev Semenovic Pontryagin, and KN Trirogoff. The mathematical
theory of optimal processes. Interscience, 1962.

[41] Stanley Osher and Chi-Wang Shu. High-order essentially nonoscillatory schemes for
Hamilton-Jacobi equations. SIAM Journal on numerical analysis, 28(4):907–922,
1991.

[42] Jacob Page and Rich R Kerswell. Koopman analysis of Burgers equation. Physical
Review Fluids, 3(7):071901, 2018.

[43] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neu-
ral networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations. Journal of Computational physics,
378:686–707, 2019.

[44] Maziar Raissi, Alireza Yazdani, and George E Karniadakis. Hidden fluid mechanics:
Learning velocity and pressure fields from flow visualizations. Science, 367(6481):1026–
1030, 2020.

69

[45] Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm
for solving partial differential equations. Journal of computational physics, 375:1339–
1364, 2018.

[46] Yuval Tassa and Tom Erez. Least squares solutions of the HJB equation with neu-
ral network value-function approximators. IEEE Transactions on Neural Networks,
18(4):1031–1041, 2007.

[47] Juan Diego Toscano. Learning-PIML-in-Python. Accessed: 2023-09-30.

[48] Lloyd N Trefethen. Spectral methods in MATLAB. SIAM, 2000.

[49] Ivan Yegorov and Peter M Dower. Perspectives on characteristics based curse-of-
dimensionality-free numerical approaches for solving Hamilton-Jacobi equations. Ap-
plied Mathematics & Optimization, 83:1–49, 2021.

70

https://github.com/jdtoscano94/Learning-Python-Physics-Informed-Machine-Learning-PINNs-DeepONets/blob/main/PINNs/4_DiffusionEquation.ipynb

	Author's Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction to Optimal Control
	Introduction
	Basic Terminologies in Optimal Control Studies
	Pontryagin's Maximum Principle (PMP)
	Dynamic Programming for discrete cases
	The value function
	Hamilton-Jacobi-Bellman (HJB) Equation
	Relationship between HJB and PMP

	Computational Approaches
	General Overview
	Boundary Value Problem solution
	Physics-informed Neural Networks: An overview
	Neural Network formulation methodology
	Toolkit of Krener et. al.

	Aircraft-orientation control: A 6-dof system
	Basic Neural-Network formulation
	Application of Krener's Toolkit

	Optimal control of the Burgers' Equation
	Preliminary optimality conditions from PMP
	Application of Krener's toolkit
	Neural Network Formulation

	Optimal Control of the damped wave equation
	A preliminary discussion
	Optimality conditions from PMP
	Neural Network Implementation and Performance

	Conclusions and Future Work
	References

