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Abstract

Accurately identifying peptides in proteomics is central to understanding the complexi-
ties of biological systems. Despite the advancements in proteomics data analysis, challenges
related to False Discovery Rate (FDR) estimation and peptide identification persist. This
thesis offers two novel contributions that address these pressing issues.

The first part of the thesis focuses on a critical issue plaguing traditional target-decoy
approaches—the inability to preserve repeated peptide structures in decoy databases. Ad-
dressing this, we introduce a novel algorithm for decoy database generation that utilizes
the de Bruijn graph model. This innovative method effectively conserves the structural
repeats found in target protein databases, thereby significantly enhancing the precision of
FDR estimations. Comparative evaluations reveal that our de Bruijn graph-based model
excels in FDR accuracy and increases the rate of peptide identifications, outperforming
existing algorithms.

The second part introduces a machine learning-based retraining strategy for refining
Peptide-Spectrum Matches (PSMs). Unlike traditional methods that draw from target
and decoy databases for positive and negative training examples, our research presents
a novel strategy for calculating next-best PSMs. Specifically, our approach employs the
best and the next-best peptides from the same spectrum as the respective positive and
negative examples for training. We introduce a tailored solution involving a split database
search to address the critical requirement for a sufficient quantity of next-best PSMs to
estimate the accurate separation between true and false distribution. This innovative
decoy-free training paradigm yields notable improvements in peptide identification rates
while preserving the integrity of FDR estimations. The effectiveness of this approach
has been corroborated through empirical testing, including integration with well-known
algorithms like Mokapot and the application of various machine-learning algorithms such
as logistic regression, XGBoost, and neural networks.

The thesis also explores the broader implications and possible extensions of the proposed
decoy-free re-training method to complement these core contributions. It speculates how
the concept of next-best PSMs could be adapted for other proteomics applications like FDR
estimation on spectral library search. This line of inquiry opens new avenues for future
research.

In summary, the research encapsulated in this thesis advances the field of bottom-up
proteomics by offering solutions for more accurate FDR estimation and enhanced peptide
identification. As such, it serves as a foundational framework for future research and
presents immediate applications for more reliable and robust proteomics data analysis.
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Chapter 1

Introduction

Proteomics, as a scientific discipline, constitutes a comprehensive exploration of proteins,
the fundamental structural elements of all living organisms. To unravel the intricate work-
ings of the proteins and rectify potential functional anomalies, the determination of their
precise sequence is imperative. This parallels our need to discern individual letters within
a sentence to grasp its meaning. Yet, proteins, given their substantial size and intricacy,
elude full-scale decoding of the sequence with current technological constraints. In re-
sponse to this challenge, scientists employ a strategy similar to that of disassembling a
complex puzzle; they fragment proteins into smaller units called peptides. Due to their
reduced size, these fragmented peptides become amenable to sequencing. In the realm of
bottom-up proteomics, these identified peptides serve as foundational elements from which
the structure and composition of proteins are subsequently inferred and computationally
derived. This meticulous cataloging and quantification of proteins within a given biological
sample provides profound insight into various biological processes. Consequently, identi-
fying protein and peptide sequences emerges as an indisputable cornerstone in proteomics
research.

In recent years, high-throughput tandem mass spectrometry (MS/MS) has become a
pivotal element in the field of proteomics. The rapid advancement in commercial mass
spectrometry technology has led to a substantial amount of high-quality proteomic data at
our disposal for analysis. In a bottom-up proteomics study based on mass spectrometry,
a proteolytic enzyme first digests the constituent proteins into short peptide fragments.
The resulting peptide fragments are then subjected to mass spectrometry analysis, which
produces corresponding spectra. Consequently, these spectra are annotated with the amino
acids they represent, allowing us to deduce the sequence of the peptides. This process



of identifying peptide sequences serves as a foundational step in studying the biological
functions encoded within proteins.

Accurately assigning spectra to their originating peptides is critical in ensuring precise
protein identification. When a protein sequence database is available, database searching is
the most widely recognized method for peptide identification. To identify the peptides, we
search experimentally observed MS/MS spectra against a sequence database to find the best
matching database peptide. The observed spectra are then evaluated against the theoretical
spectra of candidate peptides, resulting in the determination of peptide spectrum matches
(PSMs). In a manner akin to how constituent puzzle pieces seamlessly integrate to unveil a
holistic perspective, the identification of the original proteins within the sample is deduced
from the identified fragmented peptides. This approach is termed “bottom-up” because it
involves reconstructing proteins from individually identified peptide fragments.

Traditionally in bottom-up proteomics, peptide identification involves solving two sub-
problems: 1) defining a peptide spectrum match (PSM) scoring function and 2) selecting
a subset of top-scoring PSMs that are statistically significant [127].

In this chapter, we start by describing the challenges in the field of peptide identifica-
tion in Section 1.1. Following that, Section 1.2 presents our thesis objectives, which are
formulated to address some of these challenges. For those interested in our code and data,
Section 1.3 provides relevant links. Lastly, Section 1.4 offers an overview of the organization
of the remaining chapters in the thesis.

1.1 Challenges in Peptide Identification

Due to noise and instrumentation errors, some spectra exhibit low quality, making it chal-
lenging for the search software to accurately identify the correct peptide. Instead, a high-
scoring PSM may be reported due to random matches. Consequently, these low-quality
spectra lead to random PSMs, ultimately resulting in false identifications. Thus, the pep-
tide identification search results consist of an aggregation of two trends: true positives
and false positives. The PSMs where the spectra matched to their source peptides are
correct, whereas those matched with peptides they did not originate from are incorrect.
The next step is to separate these trends to distinguish true PSMs from false ones. These
incorrect PSMs appear due to poor spectra quality, background noises, or missing peptides
in the search database. Nonetheless, we only want to report the highly confident peptides.
Therefore, the primary challenge lies in distinguishing between true and random matches
to ensure the generation of the most confident PSMs.



Although the ground truth is unknown, controlling the false discovery rate (FDR),
the proportion of mismatches among the reported PSMs, warrants our confidence in the
output PSMs. The target-decoy search [39] is the widely established strategy to regulate
FDR. In this method, a decoy database is incorporated with the original target database
to approximate the FDR of the database search results. Nevertheless, existing decoy
generation methods often fall short of meeting the criteria of an ideal decoy, presenting
a significant challenge in accurately estimating FDR through the target-decoy database
search strategy.

1.2 Thesis Objectives

Understanding the functions of peptides and proteins is essential for understanding bio-
logical systems and addressing potential malfunctions within them. In this context, our
research unfolds in two distinct but interconnected directions.

First, we address the critical aspect of generating decoys that closely approximate the
ideal. We have introduced a novel repeat-preserving decoy generation algorithm employing
the de Bruijn graph, which addresses the limitations of traditional methods [90]. By
ensuring that shared regions in the target database are mirrored in the decoy database, we
tackle a key issue: the potential discrepancy between target and decoy databases that can
compromise FDR estimation accuracy.

Target-decoy database search has dominated bottom-up proteomics because of its sim-
plicity, yet this widely used method comes with many inherent limitations. It can sys-
tematically mislead the scoring functions, leading to underestimated FDRs by increasing
target peptide match scores [30]. Some spectra may receive higher scores due to contain-
ing more peaks or having precursor masses that result in more candidate peptides [57].
Consequently, target PSMs may be favored in such cases, disrupting the equivalence of
random matches in the target and decoy databases. Additionally, generating a perfect
decoy database poses a significant challenge.

Therefore, we investigated whether a decoy-free approach could yield results compara-
ble to those of the traditional target-decoy method. Our second objective revolves around
harnessing the potential of multiple Peptide Spectrum Matches (PSMs) per spectrum, with
a particular emphasis on the lower-ranked PSMs, to enhance the accuracy of identifica-
tions. Consequently, within the scope of this research direction, our ultimate objective
encompasses two primary aspects: first, to estimate the false discovery rate, and second,
to investigate an alternative approach for re-scoring the PSMs by harnessing the additional
matches associated with each spectrum.



To achieve the first objective, we seek to establish an alternative method for comput-
ing FDR without the reliance on decoys. Instead, we employ additional PSMs for each
spectrum to estimate the FDR. This research focuses on estimating the false distribution
with the help of the next-best peptide for each spectrum, in addition to the best peptide,
typically reported by search engines as the identified peptide and used for FDR calculation.
The novel next-best peptide is derived from additional PSMs associated with a given spec-
trum. We have additionally developed a modified database search method to strengthen
the distribution of these next-best peptides. Importantly, all the necessary elements for
FDR calculation are already present in the search results, adding to the appeal of this
approach.

In the second objective, we explore the integration of a decoy-free approach into the
post-processing of database search results. Rather than modifying the search steps to re-
move decoys, we leverage the nert-best peptides in post-processing. One straightforward
strategy for enhancing peptide identification without altering previous steps involves re-
scoring and re-ranking the PSMs to provide a more accurate ordering, thus increasing the
expected number of correct PSMs. Machine learning post-processing algorithms like Pep-
tideProphet [74, 18] and Percolator [70, 119] can be employed for this purpose. Typically,
these algorithms use decoys as negative examples. However, revealing decoy labels before
score function learning poses a risk of biased estimates. By doing so, the probabilities of
target-false and decoy identifications may no longer remain equal.

In conclusion, our research encompasses two primary objectives: to improve decoy gen-
eration by preserving repeats [90] and to leverage additional PSMs for more accurate FDR
estimation and improved identification through re-scoring [91]. This research aims to ad-
vance the identification of peptides, addressing critical challenges in bottom-up proteomics
research.

1.2.1 Ideal Decoy Generation

The target protein sequence database can contain a large number of repeated peptides.
Existing decoy generation algorithms do not preserve the structures of these repeats. As a
result, the same peptides in the target represent different peptides in the decoys. Previous
studies suggest that such discrepancy between the target and decoy databases may lead
to an inaccurate estimation of FDR [120]. An ideal decoy method should generate similar
numbers of total and unique decoy peptides to the target database.

To accomplish this, we propose a novel method using the de Bruijn graph to generate a
randomized decoy database that preserves the repeats [90]. We have mathematically proved
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that the method preserves the structure of the repeats in the target database to a great
extent, regardless of the enzyme digestion specificity (Section 3.3.4). Therefore, it avoids
the FDR overestimation problem that exists in the random decoy method. Meanwhile,
the generation of the decoy sequences is considerably random, thus avoiding the problems
in the sequence reversal method. The method is also straightforward to implement in a
computer program. An example implementation of the algorithm in Java can be found at
https://github.com/johramoosa/deBruijn.

1.2.2 Improvement of Peptide Identification Rate by Re-scoring
the PSMs

The potential for improvement in peptide identification rate by re-scoring PSMs is a critical
aspect that justifies further investigation. The conventional approaches for re-scoring, such
as PeptideProphet [71, 13], iProphet [113], and Percolator [70, 119], utilize machine learning
methods trained on both target and decoy peptides as positive and negative examples,
respectively. While these methods have shown efficacy in enhancing the identification rate,
they inadvertently expose the target-decoy information to the scoring function, thereby
potentially compromising the integrity of the downstream FDR estimation, which also
relies on the target and decoy information for estimating the FDR. While two separate
decoy databases can be generated for the re-scoring and FDR, respectively, the target
database is always shared between the two steps. In addition, because of the inherent
homologies between many proteins in the target database, a cross-validation method such
as the one used in Mokapot [15] does not avoid the leak of the target information completely.

To address this limitation, we introduce a novel method for re-scoring PSMs without
exposing the target-decoy information. Our approach leverages the top-ranked PSMs as
positive examples and the next-ranked PSMs as negative examples for each spectrum dur-
ing machine learning-based retraining. We refer to the top-ranked PSMs as best PSMs and
the subsequent ranked PSMs as next-best PSMs, as elaborated in Sections 5.2.2 and 4.4.2.
This strategy evades the need for utilizing decoy databases for identifying negative exam-
ples, thus preserving the integrity of FDR estimations.

Critically, our method not only avoids the introduction of bias into the FDR but also
enhances the peptide identification rate. The utilization of best PSMs and next-best PSMs
from the same spectrum for training ensures that the newly trained scoring function re-
mains unbiased with respect to target-decoy information. Consequently, our method offers
a robust mechanism for improving peptide identification rates without compromising the
FDR estimation.


https://github.com/johramoosa/deBruijn

Our empirical validation through integration with established methods like Mokapot
and the application of diverse machine learning techniques, ranging from logistic regression
to XGBoost and neural network models, affirms the efficacy and robustness of our approach.

While related work such as Nokoi [52] has touched upon similar concepts, it falls short
in several key areas. Unlike Nokoi, which does not consider peptide similarity for selecting
negative samples and relies on a pre-trained classification model, our method offers the flex-
ibility of training a new scoring function tailored to each dataset. This adaptability ensures
that our method remains applicable across diverse datasets, species, and instrumentation
setups.

This work aims to underscore the novel aspects and advantages of our re-scoring
method, thereby establishing its utility in improving peptide identification rates while
maintaining accurate FDR estimations.

1.2.3 Estimation of False Distribution Without The Decoys

Several methods have been proposed in the literature that use decoys differently than the
target-decoy database search approach or even without using any decoys. Apart from the
inherent challenges of the target-decoy method, we also need to provision for an ideal decoy.
Constructing an ideal decoy is highly challenging, including some paradoxical conundrums
(Section 4.1.4). The complex nature of generating ideal decoys inspired us to devise a
method without the decoys.

Our aim is to construct the false distribution based on the distribution of second-
ranked (referred to as “next-best”) peptides (Section 4.4). Initial analysis of the proposed
algorithm yielded promising outcomes. Nonetheless, further refinements are imperative to
enhance its efficacy.

1.3 Data and Code Availability

All the datasets utilized in this study are accessible through their respective ProteomeX-

change partner repositories [124], which can be found at https://www.ebi.ac.uk/pride/archive/
or https://massive.ucsd.edu. Target databases were obtained from the Uniprot protein
database [22], accessible at https://www.uniprot.org/.

We have deposited our in-house Human HeLa mass spectrometry proteomics data to
ProteomeXchange via MassIVE (ProteomeXchange project ID: PXD015028). This dataset
can also be accessed via FTP at ftp://MSV000084207Qmassive.ucsd.edu.
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In our experiments, we have additionally utilized several publicly available datasets
to assess and compare the performance, generalizability, and robustness of our proposed
method. The additional data and the database employed in Chapter 3 to validate the
algorithm are described below.

e The Yeast dataset was obtained from a Yeast cell lysate, accessible via ProteomeX-
change project ID PXD009740 [7].

e The human and yeast proteome sequence databases were procured from UniProt,
with proteome IDs UP000005640 and UP000002311, respectively. Additionally, the
cRAP (common Repository of Adventitious Proteins) sequence database was sourced
from https://www.thegpm.org/crap/, representing a compilation of common protein
contaminants frequently encountered in proteomics laboratories.

In Chapters 4, 5, and 6, we employed multiple datasets from various species and cell
lines to assess generalizability and guard against overfitting. Throughout our experiments,
we utilized four distinct datasets, including the HeLa dataset (ProteomeXchange project
ID: PXD015028) discussed in Chapter 3. The three additional datasets are as follows.

e Mouse Muscle Spindle dataset (ProteomeXchange project ID: PXD035552) [10].

e Human Pulmonary Microvascular Endothelial Cell dataset (ProteomeXchange project
ID: PXD036260) [75].

e Human HeLa dataset (ProteomeXchange project ID: PXD005280) [9].

In all our experiments, the decoy databases for target-decoy database searches were
created using the repeat-preserving decoy algorithm [90] presented in Chapter 3, unless
specifically stated otherwise.

Finally, an example implementation of the de Bruijn decoy generation algorithm, as
detailed in Chapter 3, written in Java, is available at https://github.com/johramoosa/
deBruijn.

1.4 Thesis Organization

The remainder of the thesis is structured into several chapters, each dedicated to a specific
aspect of our research. Chapter 2, titled “Peptide Identification & Validation”, establishes
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the fundamental concepts of peptide identification and validation in proteomics research.
In Chapter 3, “Repeat-Preserving Decoy Database for False Discovery Rate Estimation
in Peptide Identification”, we dive into the development and assessment of a novel decoy
generation method. This chapter is derived from the published manuscript [90]. Chap-
ter 4, “FDR Estimation: Training with Next-Best PSMs”, explores false discovery rate
estimation techniques using machine learning, with a focus on leveraging the next-best pep-
tide spectrum matches and the concept of utilizing multiple PSMs from a single spectrum.
Moving on to Chapter 5, “Improving Peptide Identification Rate by Machine Learning with
Next-Ranked Peptide Spectrum Matches”, we discuss the application of machine learning
to enhance peptide identification rates, emphasizing the use of nezrt-best PSMs as nega-
tive examples and best PSMs as positive examples for training. This chapter is derived
from the published manuscript [91]. Chapter 6, “Advanced Machine Learning to Retrain
and Re-score the PSMs”, proposes advanced machine learning methods for retraining and
re-scoring peptide spectrum matches, utilizing best and next-best PSMs. Finally, Chap-
ter 7, “Conclusion”, provides a summary of our findings, discusses their implications, and
outlines potential avenues for future research. Collectively, these chapters form a compre-
hensive exploration of our research aimed at advancing the field of proteomics, particularly
in the context of peptide identification and validation.



Chapter 2

Peptide Identification & Validation

Scientific inquiry, driven by the quest to understand biological functions and address disrup-
tions within natural systems, hinges on the identification of proteins. These biomolecules,
with their multifaceted roles, are central to the intricate workings of life. Peptide sequenc-
ing, a fundamental step in protein identification, involves the analysis of peptides derived
from protein digestion. Tandem mass spectrometry analysis, followed by a database search,
is the predominant technique for peptide sequencing. This method compares experimen-
tally observed spectra with theoretical spectra derived from sequences in a reference pro-
tein database. However, this approach produces a mixture of true and false PSMs, which
presents the challenge of reporting PSMs with statistical significance. Therefore, control
of false discovery rates becomes paramount in the absence of ground truth to ensure con-
fidence in the results.

Peptide and protein identification form the foundational pillars of proteomics research.
High-throughput mass spectrometry, a powerful tool, generates sets of MS/MS spectra,
facilitating the identification of peptides and, eventually, proteins within a given sample.
The primary approach involves searching these spectra against sequence databases.

Yet, the path to precise identification is not without its challenges. The presence of
noise and the potential for instrumentation errors during mass spectrometry analysis can
lead to the generation of poor-quality spectra. In light of this, the validation of identified
peptides is crucial for establishing confidence in reported results. Rigorous and meticulous
validation procedures are indispensable prerequisites for deriving meaningful conclusions
in proteomics research.

Throughout this chapter, we lay the fundamental groundwork for peptide identifica-
tion and validation, encompassing peptide spectrum matches (PSMs), Post-translational
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Modifications (PTMs), database search engines, and false discovery rate (FDR) estima-
tion. We will then delve into state-of-the-art methodologies that underpin the validation of
the identified peptides, facilitating a seamless exploration of our research in the upcoming
chapters.

2.1 Peptide Identification in Bottom-up Proteomics

Although mass spectrometers can measure the mass of intact proteins, peptides are se-
quenced in bottom-up proteomics studies [117]. The fundamental reason is that it is much
less complex to determine the smaller peptide sequence from the fragment ion peaks than
to determine a larger protein sequence of an intact protein. As a result, proteins are frag-
mented into smaller peptides using a proteolytic enzyme (typically trypsin) for ease of
analysis. Two other frequently employed proteolytic enzymes in proteomics studies are
pepsin and chymotrypsin.

Although under-reported, the occurrence of missed cleavages in tryptic peptide bonds
is a common phenomenon, as noted in a study by Siepen et al. [115]. The task of pro-
tein identification becomes more complicated when enzymes partially break down proteins,
leading to peptides that have missed cleavage sites within them. Missed cleavage in pro-
teomics refers to the situation where a protease enzyme, typically employed for protein
digestion, fails to cleave a peptide bond within a protein sequence as anticipated. These
missed cleavages can lead to the generation of longer-than-expected peptide sequences,
subsequently impacting the precision of peptide identification and the characterization of
proteins in mass spectrometry-based proteomics investigations.

To identify the proteins, we first need to sequence the fragmented peptides. First,
MS/MS spectra containing the peaks list are generated with a mass spectrometer to identify
the peptides contained in the sample. When a reference protein sequence database is
available, database searching is the most widely used method for peptide identification.
Many sequence database search software tools have been developed [99, 85, 29, 19, 12, 34,

|. A reference peptide sequence database is constructed from reference protein sequences
by in-silico digesting them into theoretical peptides following protease specificity rules
as the sample preparation. The experimentally observed spectra are matched with the
theoretical spectra of peptides in the reference database to identify the peptides. Finally,
from these identified peptides, the original proteins present in the sample are deduced [71].

Although advances in tandem mass spectrometry technology have significantly in-
creased the number of acquired spectra, the confidence in the identification of peptides and
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proteins remains at approximately 60% [34, 35]. In particular, instrumental advances in
resolution and detection have outpaced complementary improvements in database search.
Consequently, the efficacy of protein identification is heavily dependent on the choice of
the peptide identification algorithm.

2.2 Peptide Spectrum Match (PSM)

In bottom-up proteomics, database search engines play a pivotal role by aligning the the-
oretical spectra of individual peptides with their corresponding experimental spectra, ul-
timately yielding a list of potential peptides. These identified assignments are formally
referred to as peptide spectrum matches (PSMs). Typically, the quality of these PSMs is
evaluated using a designated scoring function. This scoring function assigns a numerical
value to each peptide-spectrum pairing (P, S), indicating the probability that the frag-
mentation of a peptide (P) is reflected in the experimental mass spectrum (S) [16, 75].
In an ideal scenario, this scoring function should attribute higher scores to all correct
PSMs as opposed to their incorrect counterparts [16], thus allowing accurate distinction
between true and false identifications. Traditionally, for each spectrum, the PSM with the
highest-scoring peptide is reported for further investigation.

2.3 Post-translational Modification (PTM)

Biochemical modifications of proteins known as post-translational modifications (PTMs)
play a crucial role in functional proteomics. PTMs can occur to one or more amino acids
on the protein at any stage of the protein’s existence as well as during the analysis in the
mass spectrometer. Compared to the unmodified primary sequence, it appears either as a
mass increase or a mass loss. When searching for peptides in the database, we also need
to consider these modified peptides. A variable modification search technique is applied
during the database search to find the PTMs. In this method, the particular PTM (e.g.,
phosphorylation) is allowed to occur on any instances of selected amino acid residues (e.g.,
threonine, serine, or tyrosine) for all of the theoretical peptides digested in-silico from the
entire search database. As a result, it significantly increases the search space. Some PTMs
may result in a similar mass as other amino acid residues. For example, the following
PTMs and the amino acid residues result in almost identical masses:

1. Deamidation of Asparagine: N + 0.984 and D
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2. Deamidation of Glutamine: () + 0.984 and F
3. Oxidation of Methionine: M + 15.995 and F

In such circumstances, if everything else is similar, m/z (mass-to-charge ratio) will be
the same or approximately the same for both candidate peptides. We consider such two
peptides interchangeable in our next-best calculation (to be discussed in Section 4.4.2 and
5.2.2), i.e., considered the same rank.

2.4 Database Search Engines

Database search engines identify proteins and peptides via mass spectrometry data from
primary sequence databases. Bottom-up proteomics entails the enzymatic digestion of
proteins prior to their mass spectrometry analysis. The terminology “bottom-up” signifies
that the identification of constituent proteins is achieved by reconstructing the proteins
from individually identified fragment peptides.

In bottom-up proteomics, a variety of database search engines are available, each with
its own unique strengths. In our research, we primarily utilized the search results obtained
from MS-GF+ [75], Comet [12], and MS Amanda [31].

2.4.1 MSGFPlus: Database Search Engine

MSGFPlus, also known as MS-GF+, identifies peptides by scoring MS/MS spectra against
the in-silico peptides derived from a reference protein sequence database. An MS/MS
spectrum-based database search approach generally compares each spectrum against all
theoretical peptides. On the other hand, MS-GF+ first computes a suffix array to compare
each peptide against all spectra containing the same precursor mass, allowing it to compute

rigorous E-values [75]. The program is freely available at http://proteomics.ucsd.edu. MS-
GF+ is also incorporated into many other proteomics software or pipelines such as Trans-
Proteomics Pipeline [32], SearchGUI [1], Skyline [36], Percolator [119], PeptideShaker [122],
ete.

2.4.2 Comet

Comet [12] represents a database search engine dedicated to peptide sequencing through
analysis of tandem mass spectrometry data. Originally emerging as an open-source initia-
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tive in late 2012, the search engine had its roots in the academic version of the SEQUEST
database search tool at the University of Washington [11]. Written in C+4, Comet’s de-
velopment extends across both Linux and Windows operating systems. Researchers can
readily access Comet by visiting http://comet-ms.sourceforge.net, or alternatively, it is
seamlessly integrated into numerous broader software projects.

2.4.3 MS Amanda

MS Amanda represents a specialized peptide identification algorithm meticulously tailored
to excel with high-accuracy and high-resolution mass spectrometry data. This software
stands out for its exceptional accuracy, as evidenced by the substantial concordance in
identified spectra compared to gold-standard algorithms like SEQUEST [13] and Mas-
cot [99]. MS Amanda has also undergone significant enhancements with the introduction
of MS Amanda 2.0 [35], notably in terms of its remarkable speed in peptide identification.
MS Amanda is available as a freely accessible and stand-alone tool. The software can be
downloaded from https://ms.imp.ac.at/?goto=msamanda.

MS Amanda demonstrates remarkable versatility, now extending to enable a secondary
search, facilitating the identification of peptides within chimeric tandem mass spectra.
Moreover, it possesses several other vital features, including enhancing score readability
(where higher scores indicate better matches) and calculating the likelihood of a match
occurring coincidentally.

2.5 Validation of Identified Peptides

The database searching method is widely used in proteomics for peptide sequencing. In
this method, the experimental spectra are annotated with the best-scoring peptides from
a list of peptides generated by digesting the database. Two types of errors can occur in
peptide identification, (1) the spectra itself can be an ‘unmatchable’ [39] spectra, i.e., not
resulted from a peptide present in the sample, but occurred because of some random noises,
(2) the spectra is generated because of an existing peptide in the sample, but an incorrect
peptide is assigned.

Given the presence of noise and potential instrumentation errors, certain spectra may
exhibit low quality, leading to the generation of random peptide spectrum matches. Con-
sequently, the PSMs obtained from a database search encompass a blend of true and
random peptides. To extract the most reliable PSMs, we need to distinguish between true
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and false matches. Despite the unknown ground truth, regulating the false discovery rate
substantiates our confidence in the resulting PSMs.

2.5.1 False Discovery Rate (FDR) in Proteomics

In proteomics, the false discovery rate (FDR) is an interpretation of the number of random
matches present in the output of a database search. In other words, FDR provides the
expected proportion of false PSMs. Therefore, controlling FDR allows us to determine our
confidence in the search result. In bottom-up proteomics, the target-decoy search strategy
is the most adopted method to regulate FDR. This method integrates a decoy database
with the original target database to approximate the FDR of the database search results.
Following the FDR computation, we can then infer the anticipated distribution of the
expected correct PSMs.

2.5.2 Estimation of False Distribution

Estimation of FDR is a crucial aspect of shotgun proteomics. Output PSMs from a
database search consist of true and false matches. We need to distinguish between true
and random matches up to a remarkable degree to make use of the results confidently.
Estimation of the false distribution allows us to decide on a cutoff score, which allows us
to only report the peptides above the score threshold with a specific significance. Incorpo-
rating a decoy database during the database search is one of the most common methods to
estimate the false distribution. In bottom-up proteomics, it is standard to compute FDR
with the following equation:

#False Positve

FDR =
#True Positive + # False Positive

(2.1)

2.5.3 Target-decoy Database Search [90]

A robust method is essential to evaluate the false discovery rate during identification. The
most commonly adopted method for estimating FDR in database search is the target-
decoy approach (TDA), as established by Elias et al. and Kislinger et al. [39, 77]. In
this approach, MS/MS spectra are matched against a combined sequence database that
includes actual target protein sequences and synthetic decoy (incorrect) sequences. The
decoy sequence database consists of non-existent biological sequences designed to mimic
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the typical statistical characteristics of the real target sequences. Ideally, the assumption
is that the random peptide spectrum matches will match both the decoy and the target
sequences with the same frequency. Therefore, the number of decoy matches becomes
an estimation of the number of false matches in the target database. Among the set of
reported target matches above a score threshold, the ratio between the number of decoy
matches and the number of reported target matches above the same score threshold delivers
an estimate of the FDR [90]. Eventually, the FDR provides us with an estimate of the
number of validated random targets, also referred to as false positives.

2.5.4 Decoy Generation Methods

Various techniques for decoy preparation have emerged since the inception of the target-
decoy validation method [89, 10]. Typically, a decoy sequence database is generated by
either reversing or shuffling the sequences of target proteins. During the shuffling process,
the enzymatic cleavage sites may be optionally preserved. Alternatively, decoy sequences
can be created by complete randomization of each protein sequence. An ensemble of decoy
strategies is also feasible. However, the optimal way of decoy construction and utilization
still remains an open problem [(0].

Several studies have observed that the choice of the decoy generation method may affect
the FDR estimation [120, , 66]. In addition to the repeat-preserving decoy method
discussed in Chapter 3, we explored five additional decoy-generation methods from the
existing literature. These methods are detailed below:

Random Shuffling: Random shuffling stands as the most prevalent random decoy gener-
ation method, characterized by the random reordering of amino acids in each protein
sequence within the database. These decoys do not preserve repeats, resulting in an
increase in the number of unique decoy peptides. Consequently, the search space of
the decoy is widened compared to that of the target.

Normalized Shuffling: After performing random shuffling, the count of unique pep-
tides in both the target and decoy databases, denoted as N; and N, respectively,
is recorded. The False Discovery Rate (FDR) is then conventionally calculated (as
the ratio between the decoy and the target hits) and further normalized by multiply-
ing it by a factor of % Due to the expanded set of unique decoy peptides, numerous
genuine target PSMs may be discarded during the search due to competition from
the decoy set. While coefficients may help correct FDR overestimation, the target
PSMs lost in this process remain unrecoverable.
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Reversal: Reversal represents one of the most commonly employed decoy generation
methods. In this approach, each target protein sequence is reversed to produce
the decoy. The sequence reversal method preserves target database repeats, but in-
troduces additional issues as decoy sequences lack randomness. This can lead to
matching ion series as complements in both target and reversed sequences, and even
identical matches between reverse and true peptide sequences.

Shifted Reversal: After the reversal, each amino acid K (lysine) or R (arginine) is
swapped with its preceding amino acid in the sequence. This operation usually
alters the amino acid composition and total amino acid mass of each peptide, thus
addressing the main limitations associated with reversal decoys. In our experiments
(see Section 3.3.3), we observed that the shifted reversal method retains noticeable
sequence similarities between the target and decoy databases. This similarity can
lead to high-scoring matches between decoy peptides and MS/MS spectra, suggest-
ing that significant decoy matches arise systematically rather than randomly.

Trans-Proteomic Pipeline (TPP): TPP’s default decoy generation program (decoy-
FastaGenerator.pl) assumes that enzyme specificity is unknown while generating de-
coys [32, ]. Specifically, the decoy generation program uses its built-in default
enzyme specificity, which involves digesting after G or F but not before N. This
approach retains a substantial portion, though not all, of the repeating peptides re-
sulting from nonspecific enzyme digestion. We also assess the effectiveness of this
method in Section 3.3.3.

2.6 Application of Decoy-Free Re-Training Approach

On the one hand, the concept of decoy is incorporated in different fields of proteomics.
While there is a well-established utility for decoys in addressing specific challenges, it
is equally fascinating to explore the potential benefits these fields may derive from the
innovative decoy-free training approach proposed in this thesis.

2.6.1 Improvement of Peptide Identification Rate
In recent research, post-processing algorithms aimed at re-scoring and re-ranking PSMs

to enhance sensitivity have gained significant popularity. Our hypothesis centers on the
potential utilization of additional PSMs per spectrum to facilitate the learning of a novel
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scoring function, all without the reliance on target-decoy labeling. Notably, this approach
does not eliminate the presence of decoys; rather, it refrains from utilizing any information
that distinguishes between target and decoy PSMs.

2.6.2 Decoy-Free Estimation of FDR

Although the performance of our decoy-free training-based FDR estimation is significantly
dependent on dataset-specific optimization, this avenue of research remains promising. Our
proposed method involves estimating the likelihood of correctness for each spectrum, which
in turn enables the estimation of true and false distributions. We leverage this probability-
based approach to estimate the FDR, employing a model trained through a decoy-free
methodology.

2.6.3 Spectral Library Search

In certain proteomics studies, such as proteogenomics [52], spectral library search, and
DIA workflows, the implementation of decoy-based false discovery rate estimation can be
complex. While techniques like reverse and random decoy spectra construction exist in the
literature [132], accurately determining spectral attributes, such as retention time, remains
a challenge [33]. Therefore, the feasibility of employing decoy-free FDR estimation in
spectral library search and DIA identification methods arises primarily from the absence of
widely accepted and clearly defined decoy methods for FDR computation in these domains.

2.7 Conclusion

In this chapter, we embarked on a concise exploration of the essential components of peptide
identification and validation, particularly within the context of bottom-up proteomics. This
foundational exploration sets the stage for the fundamental concepts that will guide our
research journey in the chapters to come.

We began by introducing the peptide identification process in bottom-up proteomics.
Within this framework, we examine crucial elements such as peptide spectrum matches and
the significance of post-translational modifications. Additionally, we introduced several
notable database search engines, which were integrated into our study.
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Recognizing the inherent challenges of noise and potential instrumentation errors in
mass spectrometry, we underscored the importance of validating identified peptides. Rig-
orous and accurate validation procedures are vital to establish the credibility of biological
research findings, a prerequisite for drawing meaningful conclusions in the field of pro-
teomics. We navigated through the technique of false discovery rate and FDR estimation,
employing target-decoy database search strategies to ensure the reliability of the identifi-
cations.

With a solid foundation established, we ventured into the heart of our research journey.
In this thesis, we introduced the concept of decoy generation methods, exploring their
properties and the compelling need for preserving repeatability in decoys for proteomic
analyses. Furthermore, we unveiled the innovative approach of decoy-free re-training, a
novel strategy harnessing the potential of multiple PSMs per spectrum. This novel decoy-
free retraining method holds promise and has the potential to catalyze advancements across
diverse domains within the proteomics field.
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Chapter 3

Repeat-Preserving Decoy Database
for False Discovery Rate Estimation
in Peptide Identification [90]

The sequence database searching method is widely used in proteomics for peptide identi-
fication. To control the false discovery rate (FDR) of the search results, the target-decoy
method generates and searches a decoy database together with the target database. A
known problem is that the target protein sequence database may contain numerous re-
peated peptides. The structures of these repeats are not preserved by most existing decoy
generation algorithms. Previous studies suggest that such discrepancy between the target
and decoy databases may lead to an inaccurate FDR estimation. Based on the de Bruijn
graph model, we propose a new repeat-preserving algorithm to generate decoy databases.
We prove that this algorithm preserves the structures of the repeats in the target database
to a great extent. The de Bruijn method has been compared with a few other commonly
used methods and demonstrated superior FDR estimation accuracy and improved number
of peptide identification.

3.1 Introduction

Identifying protein and peptide sequences is fundamentally important in proteomics re-
search. When a protein sequence database is available, database searching is the most
widely used method for peptide identification. In the sequence database searching method,
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a reference peptide sequence database is constructed from protein sequences by in-silico
digesting them into peptides following protease specificity rules. Peptide identification is
realized by matching the experimental spectra with the theoretical fragmentation patterns
of peptides in the reference database. Many sequence database search software tools have
been developed [99, 85, 29, 49, 42].

The database search strategy requires a robust method to assess false discovery rate
(FDR) in identification. For FDR estimation, the target-decoy method is the most adopted
method. [39, 77] In this strategy, MS/MS spectra are searched against a concatenated se-
quence database comprising of target protein sequences and artificially generated decoy
sequences. The decoy sequence database contains biologically nonexistent sequences that
share some statistical attributes with the target sequences. Ideally, random peptide spec-
trum matches (PSMs) are expected to hit both the decoy and the target sequences with
the same probabilistic distributions. Therefore, the number of decoy matches becomes an
estimation of the number of false matches in the target database. When the set of target
matches above a score threshold are reported, the FDR is estimated by the ratio between
the number of decoy matches and the number of reported target matches above the same
score threshold.

A number of decoy generation methods have been proposed since introduction of this
validation method. [89, 10] A decoy sequence database is normally constructed by reversing
or shuffling the target protein sequences. During the shuffling, the enzymatic cleavage
sites may be optionally preserved. Decoy sequences can also be produced by complete
randomization of each protein sequence. Combination of multiple decoy strategies is also
possible. However, the optimal way of decoy generation and utilization still remains an
open problem. [(6] Several studies observed that the choice of the decoy generation method
may affect the FDR estimation. [126, 123, 60]

The characteristics of an ideal decoy sequence database are compiled by Elias and
Gygi. [10] While creating a decoy, preservation of the target amino acid residue composition
is a desired feature. [39] Decoy database should also statistically mimic the target database,
except for the sequence itself [132]. Therefore, the principle is to find decoys with similar
peptide mass [120], peptide length, and protein length [10] distributions. The shared
peptides among different proteins in the target database should be preserved in the decoy
database. [06] Otherwise, multiple occurrences of the same peptide in the target database
may produce different sequences in the decoy database. Consequently, the search space
in the decoy database will become larger than that of the target database. This causes
the random PSMs to appear more frequently in the decoy database, and leads to FDR
overestimation.
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Sequence reversal and random sequences (including sequence shuffling) are two popular
methods for the generation of decoy databases. One advantage of the sequence reversal
method is that the repeats in the target database is preserved. However, a major problem
of the sequence reversal method is that the decoy sequences are not random. Taking into
account of the neutral loss ions, internal fragment ions, and possible post-translational
modifications, it becomes very easy for the search algorithm to match an ion series as its
complementary one in the target and reversed sequences, respectively. It is also possible
for a peptide sequence in a reverse database to match identically against a true peptide
sequence (i.e., palindromic peptide sequence) in the original target database. [2] Both these
increase the false hit rate in the decoy database and cause FDR overestimation. The data
in this paper also suggest even the approximate but not identical matches can cause FDR
estimation errors. It was showed that FDR estimated by sequence reversal was inaccu-
rate. [11] A comparison of three different decoy database construction strategies, random
sequences, sequences from unrelated species, and sequence reversal also showed that the
reversal method had the worst performance. [123] To reduce the problem caused by the
reversal decoy method, the MaxQuant software proposed the following modification. [27]
After sequence reversal, all amino acids K and R are swapped with their previous amino
acid in the sequence. This operation usually alters the amino acid composition and the to-
tal amino acid mass of each peptide, and therefore reduces the aforementioned adversarial
effects. Throughout this paper, we refer to this decoy method by shifted reversal. As to
be shown in this paper, shifted reversal still does not completely remove the adversarial
effects of the reversal method.

The random sequence method is also problematic because it does not preserve the
repeats. The repeated occurrences of the same peptide in the target database may cause the
appearances of different decoy sequences in database. [10), | An earlier study showed that
the decoy database may contain as many as double number of unique peptides than that
of the target database. [39, , 38] As a result, this method overestimates the FDR. [120]

Two methods were proposed in Wang et al. [126] to minimize the FDR estimation error
caused by the different numbers of unique peptides in target and decoy. The first method
is to normalize the FDR by the ratio between the unique and total peptides. In particular,
when the random sequences are produced by shuffling the amino acids within each target
sequence, we refer to this normalization method as normalized shuffling. Although the
normalization can correct the FDR overestimation, we demonstrate in this paper that it
causes the reduction of number of peptides identified by database searching. The second
method generates decoys after removing the redundant tryptic peptides from the target
sequence database. This only works if the enzyme digestion rule is known and strict. In
addition, the target and decoy databases become statistically very different (e.g. their
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lengths are different) after the redundancy removal and the effect of this discrepancy is
unknown.

An alternative to Wang’s proposal is to memorize the corresponding decoy sequence
for each peptide during the decoy generation, and reuse the same decoy sequence when the
peptide appears again later in the database. This should both solve the problem caused
by repeating peptides and avoid the changes to the protein sequence length. In fact,
the method has been successfully used in the Trans-Proteomic Pipeline (TPP) [32, 113].
However, in all of these three approaches reviewed above, the programs require a strict
enzyme digestion rule to compute and memorize the unique peptides in memory. Since
missed and nonspecific cleavages are usual in proteomics sample preparation, it would be
ideal if a method does not rely on the enzyme digestion specificity and completeness. This
is the primary goal of this paper. When the digestion rule is unknown or nonspecific, TPP
uses a default digestion rule (cut after G or F but not before N). This should preserve
many but not all of the repeating peptides obtained with a nonspecific enzyme digestion.
The effectiveness of this method is also studied in this paper.

In this paper, we propose a novel method, called de Bruijn decoy, to generate a
randomized decoy database. The method is based on the de Bruijn graph model. De

Bruijn graph [31] is a graph that can be used to efficiently capture the repeated sub-
strings in a sequence. Previously, de Bruijn graph has been used in genome assem-
bly [131, 20, 81, 14, 3, 21, 65], protein sequence assembly [55, 5], and in compression

of protein sequence databases. [30]

The new method is proved mathematically to preserve the structure of the repeats
in the target database to a great extent, regardless of the enzyme digestion specificity.
Therefore, it avoids the FDR overestimation problem in the random sequence method.
Meanwhile, the generation of the decoy sequences are considerably random, thus avoiding
the problems in the sequence reversal method. The method is also remarkably easy to
implement in a computer program. The method is compared with five other commonly
used decoy methods, random shuffling, normalized shuffling, reversal, shifted reversal, and
TPP. Our data demonstrated excellent FDR estimation accuracy, and an improved number
of peptide identifications by using the new de Bruijn decoy method.
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3.2 Methods

3.2.1 de Bruijn Decoy

A k-mer is a continuous stretch of k letters. For a protein sequence database and a given
positive integer k, the corresponding de Bruijn graph is constructed as follows. Each protein
sequence is attached with a special leading sequence consisting of k dash symbols (The
leading sequence is added for the convenience of our algorithm, but is not in the standard
de Bruijn graph construction). Then, each distinct k-mer in the sequences contributes a
vertex. Each distinct (k + 1)-mer ajas - - - agyq contributes a directed edge connecting the
two vertices corresponding to the two k-mers, ajas---ap and asas---agpy1. The edge is
labeled with ag41. Figure 3.1 shows an example.

Each target sequence corresponds to a directed path in the de Bruijn graph. To gen-
erate the decoy database, the edge labels are replaced by random amino acids. For each
target sequence, the algorithm follows the corresponding path in the graph, and concate-
nates the new edge labels together to produce a decoy sequence. Therefore, if a sequence
is repeated multiple times in the target database (such as the sequence “REPEAT” in
Figure 3.1(a)), their corresponding paths in the de Bruijn graph will overlap and produce
multiple decoy sequences that share a repeat that is only slightly shorter than the orig-
inal repeat (such as the sequence “YLPQ” in Figure 3.1(d)). The parameter k controls
the degree of randomness and the length of the preserved repeats. The precise behaviour
on this repeat-preserving property and the effect of parameter k will be discussed in the
discussion section.

The random labeling of edges can be a simple shuffling of all edge labels, or is controlled
as follows to ensure that the resulting amino acid frequencies are approximately the same
in the target and decoy databases, respectively. For each amino acid a, let n(a) be the
number of a’s occurrences in the target database. Let N be the total number of amino
acids in the target database. The algorithm relabels the edges one by one. For each edge
e, let k(e) be the number of paths using e. The algorithm chooses a random amino acid
a as the edge’s new label following the probability distribution p(z) = n(z)/N for each
amino acid x; then it reduces n(a) by k(e).

The above method does not need to know the digestion enzyme. However, if the
digestion enzyme is known and it is desired to preserve the digestion sites, only very minor
modification to the procedure is needed. For example, if trypsin is used and the amino
acids K and R need to be preserved, the algorithm will only randomly replace edge labels
that are not equal to K and R, while keeping K and R unchanged.
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Figure 3.1: An illustration of the de Bruijn graph method. (a) An example target protein
database containing two sequences. (b) The corresponding de Bruijn graph with & =
2. FEach target sequence corresponds to a path in the graph. The edges from the first
sequence, the second sequence, and shared by both sequences are in blue, orange, and
black, respectively. (c¢) The edge labels are randomly replaced with other amino acids. (d)
The decoy protein sequences are obtained by following the paths of the two target proteins
in the re-labeled graph.

To implement this method in a computer program, a hash map data structure is used to
keep all the (k+ 1)-mers in the database sequences. Then, each (k+ 1)-mer is mapped to a
random amino acid. Lastly, for each target sequence, each of its (k+1)-mers is sequentially
used to query the hash map. The obtained amino acids of such queries are concatenated
together to produce a decoy sequence.

3.2.2 Other Decoy Methods

Five additional decoy generation methods existing in the literature were compared with de
Bruijn decoy method. They are outlined in the following;:

1. random shuffling. The amino acids in each protein sequence in the database are
randomly shuffied.

24



2. normalized shuffling. After random shuffling, the number of unique peptides in the
target and decoy databases are counted and recorded by N; and Ny, respectively.
After the FDR is calculated in the usual way (the ratio between decoy and target
hits), it is further normalized by multiplying a factor %—;

3. reversal. Each target protein sequence is reversed to produce the decoy.

4. shifted reversal. After reversal, each amino acid K or R is swapped with its previous
amino acid in the sequence.

5. TPP. TPP’s default decoy generation program (decoyFastaGenerator.pl) pretends
that the enzyme specificity is unknown. More specifically, the decoy generation
program uses its built-in default enzyme specificity - digesting after G or F but not
before N.

3.2.3 MS Data and Sequence Database Search

Two LC-MS/MS datasets were used in the experiments. The first dataset was from a HeLa
lysate sample, acquired on an Orbitrap QEHF instrument with 2-hour LC gradient and
a top-30 DDA method. Identifications from three technical replicates were used together
for analysis. The raw files are converted to mzML files using MSConvert. [15] The mass
spectrometry proteomics data have been deposited to ProteomeXchange via MassIVE (ID:
PXD015028). Link to the dataset is ftp://MSV000084207Qmassive.ucsd.edu.

The second dataset was from a Yeast cell lysate (downloaded from ProetomeXchange
project ID PXD009740. [7]

The human and yeast proteome sequence databases were downloaded from UniProt with
proteome ids UP000005640 and UP000002311, respectively. The cRAP (common Reposi-
tory of Adventitious Proteins) sequence database, which represents a list of common protein
contaminants found in proteomics labs, was downloaded from https://www.thegpm.org/crap/.

The MS-GF+ search engine [75] was used to perform database searches. The following
search parameters were used: Precursor mass tolerance was 10 ppm. Precursor isotope
errors of -1, 0, 1, 2 were allowed. Both termini of the peptides were required to be tryptic
sites unless stated otherwise. Maximum allowed missed cleavage was set to 5. Constant
modification of carbamidomethylation on cysteine (C) and variable modifications of me-
thionine oxidation, pyro-glu formation from peptide n-terminal glutamine, deamidation
of asparagine and glutamine, initial protein methionine loss with or without N-terminal
acetylation were employed.
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3.3 Results

3.3.1 Numbers of Unique Peptides in Decoy

An ideal decoy method should generate similar numbers of total and unique decoy peptides
as there are in the target database. Table 3.1 summarizes the numbers of the total and
unique peptides in different decoy databases derived from the same target database. The
human proteome database was used as the target database, which contains 71,785 protein
sequences. Each protein in the target and decoy databases is in-silico digested to count
the number of peptides. We have ignored the peptide sequences that contain ‘X’ in the
calculation. The in-silico digest conditions were (1) both termini of the peptides are tryptic
sites, (2) the mass range of peptides is between 350 and 4000 Da, and (3) the maximal
number of allowed missed cleavages is 5.

#Peptides Target | Random | Normalized | Reversal | Shifted | TPP | de
(thousands) Shuffling | Shuffling Reversal Bruijn
Total 9109 8944 8944 9165 9106 9025 | 9155
Unique 4276 8239 8239 4309 4334 5843 | 4306

Table 3.1: Number of peptides in a target and the decoy databases generated with different
methods: random shuffling, normalized shuffling, reversal, shifted reversal, TPP, and de
Bruijn. Normalized shuffling and random shuffling have the same numbers because they
use the same decoy sequences. Target database contains many repeats. The number of
unique peptides in the de Bruijn decoy is similar to that of the number of unique peptides
target database.

Table 3.1 shows the number of peptides and unique peptides in the target and the
decoy databases generated by different methods. It clearly shows that the target database
contain many repeats. In fact, about half of the total peptides in target database are
due to repeats. This causes the decoy database generated by the random shuffling and
normalized shuffling to contain more unique peptides than the target. This problem is
avoided or reduced by the other four methods, which utilize certain rules to generate the
decoy sequences. The same phenomenon is observed when semi-tryptic rule is used for
digestion, where only one of the two termini is required to satisfy the trypsin digestion
rule. The semi-tryptic results are provided in Table 3.2. The in-silico digest conditions for
these results were the same, except both termini of the peptides are semi-tryptic sites.

We note that the difference between the numbers of target and reversal decoy peptides
in Table 3.1 is not a counting error. It is only because a non-tryptic digestion site between
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#Peptides Target | Random | Normalized | Reversal | Shifted TPP de
(thousands) Shuffling | Shuffling Reversal Bruijn

Total 145522 | 149,431 | 149,431 | 147,226 | 146,595 | 145,320 | 146,686

Unique 63,426 | 125,369 125,369 63,695 63,942 | 85,971 | 64,195

Table 3.2: The numbers of semi-tryptic peptides in a target and the decoy databases
generated with different methods: random shuffling, normalized shuffling, reversal, shifted
reversal, TPP | and de Bruijn. Normalized shuffling and random shuffling have the same
numbers because they use the same decoy sequences. The number of unique semi-tryptic
peptides in the de Bruijn decoy is similar to that of the number of unique peptides target
database.

K/R and P may become a digestion site after reversal. It is also noteworthy that in order
to test its performance when enzyme specificity is unknown or nonspecific, the TPP decoy
method used its default parameter setting without specifying the enzyme.

The de Bruijn decoy also has an additional advantage as it produces fewer peptides
shared by the target and decoy databases in comparison to other decoy methods. As
to be shown later, identical or similar peptides between target and decoy databases may
cause additional challenges in accurate FDR estimation. Table 3.3 summarizes the number
of unique peptides shared in target and different decoy databases with different peptide
lengths > 5. De Bruijn decoy shares a fewer number of overlapping peptides (unique) with
the target database. TPP method produced a significant number of shared long peptides
because certain areas in the sequence database are enriched with letter G. For example, the
longest peptide “GGFGGGRGRGGGFRGRGRGGGGGGGGGGGGGR” has a length of
32, and belongs to the protein “FBRL_HUMAN”. TPP’s default partition rule (after G
and F but not before N) is therefore unable to produce enough randomness in these areas.

3.3.2 Statistical Behaviors of de Bruijn Decoy

In addition to the number of unique peptides, more statistical behaviors of the de Bruijn
decoy database were compared with the target database. It was found that the length and
mass distributions of the unique decoy peptides were nearly identical to the ones of unique
target peptides (Figure 3.2 and Figure 3.3).

Another key requirement for the target-decoy method to work is that the false tar-
get hits and the decoy hits should have similar score distributions. This requirement is
examined in the following experiments.
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Decoy
Length | Random Shuffling/ Reversal | Shifted Reversal | TPP | de Bruijn
Normalized Shuffling

5 62,321 43,191 43,911 53,711 | 39,684
6 16,363 11,955 11,640 14,505 8,930

7 1,348 1,704 1,604 1,683 964

8 109 482 385 224 109

9 5 89 107 60 14

10 1 116 101 30 2

11 0 14 20 21 1

12 0 65 69 23 0

13 0 6 8 15 0

14 0 7 1 17 0

15 0 4 5 9 0

16 0 2 0 8 0

17 0 0 0 8 0

18 0 1 4 6 0

19 0 0 0 5 0

20 0 1 0 3 0

| >20 | 0 0] 0 | 3% [ 0 |

Table 3.3: Numbers of unique tryptic peptides at different lengths shared between the
target and each decoy database. Normalized shuffling and random shuffling have the same

numbers because they use the same decoy sequences.
number of overlapping peptides (unique) with the target database.
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Figure 3.2: Overlap of unique peptide length distributions in de Bruijn decoy and target
databases.
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Figure 3.3: Overlap of mass distributions in de Bruijn decoy and target databases.
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Figure 3.4: E-Value Distributions of PSMs found by matching yeast dataset with human
and corresponding de Bruijn decoy databases. The distribution of the target and decoy
overlap as the sample and the search database correspond to different species.

In the first experiment, the yeast dataset was searched against the human sequence
database plus the corresponding de Bruijn decoy with MS-GF+. The obtained target hits
were filtered by removing peptides that appear either in the yeast or the cRAP database.
The use of an irrelevant database and the filtration ensure that almost all the target hits are
false hits. The score distributions of the remaining PSMs from the human and the decoy
databases were plotted in Figure 3.4. As expected, the distributions of the target and decoy
hits overlap very well. The minor deviation near the peaks of distributions (— log,, x ~ —1)
would not have a significant effect on the FDR estimate since the E-Value cutoff threshold
is generally much larger.

In the second experiment, the HeLa dataset was searched against the human sequence
database plus the de Bruijn decoy. This represents the practical scenario where both
the MS data and sequence database are from the same species. Figure 3.5 illustrates
the three E-Value distributions: (1) “PSMs to target”, which contains both true matches
and false matches from the target database, (2) “PSMs to decoy”, which is considered as
random match distribution, and (3) “true matches”, which is obtained by subtracting the
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Figure 3.5: Sensible E-Value Distribution estimated with de Bruijn Decoy (HeLA Sample)

distribution of “PSMs to decoy” from “PSMs to target”. The figure shows that the de
Bruijn decoy can be used to produce a sensible estimation of the false and true target hits.

In contrast to Figure 3.4, there are more PSMs to target than to decoy at the score
around 0 in Figure 3.5. This suggests that when the right target database is used, MS-
GF+ search engine’s results nearby score of 0 (or E-value of 1) still contain many correct
PSMs. However, since the search engine did not score it high enough, they would have to
be filtered out in order to achieve the desired FDR cutoff.

3.3.3 Database Search Performance Comparison among Differ-
ent Decoy Methods

In this section, we compare the performance of the database search using different decoy
methods for result validation. The HelLa dataset was searched against the human database
plus the decoy database generated with each decoy generation method.

Table 3.4 summarizes the numbers of peptide-spectrum matches with different decoy
methods at 1% FDR. Notice that when the FDR of the normalized shuffling is calculated,
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Random | Normalized | Reversal | Shifted TPP de
Shuffling | Shuffling Reversal Bruijn
E-value cutoff 0.1122 0.2599 | 0.14094 | 0.14646 | 0.12984 |  0.2039
Target 94,198 100,255 | 98,573 | 98,922 | 96,847 | 101,801
Decoy 951 (1,968 995 999 978 1,028
Expected Correct 93247 | 99234 | 97578 | 97,923 | 95,869 | 100,773

Table 3.4: Numbers of PSMs at 1% FDR with different decoy methods. The de Bruijn
decoy method outperformed all other decoy methods by achieving the highest number of
expected correct PSMs. YA normalization factor of 0.519 is multiplied to calculate the
FDR for normalized shuffling method.

Random | Normalized | Reversal | Shifted TPP de
Shuffling | Shuffling Reversal Bruijn
E-value cutoff 0.09319 0.20526 0.1128 | 0.12013 | 0.1036 | 0.16367
Target 96,392 102,323 | 100,773 | 101,253 | 98,833 | 104,105
Decoy 973 (2061 1,017 1,022 998 1,051
Expected Correct 95,419 | 101,280 99,756 | 100,231 | 97,835 | 103,054

Table 3.5: Numbers of PSMs at 1% FDR with different decoy methods when semi-tryptic
rule is used. *) A normalization factor of 0.506 is multiplied to calculate the FDR for the
normalized shuffling method. The de Bruijn decoy method that we proposed surpasses
other decoys in reporting a higher number of expected correct PSMs.

the number of decoy hits was discounted by multiplying a normalization factor of 0.519.

Table 3.4 and Table 3.5 shows that use of de Bruijn decoy leads to an increased number
of identified peptides in comparison to other decoy methods. For Table 3.5, the search
conditions were same except both the termini were considered semi-tryptic. In addition,
de Bruijn achieved the highest number of correct (expected) PSMs for a wide range of
FDR thresholds (Table 3.6, Table 3.7, and Table 3.8, *)A normalization factor of 0.519 is
multiplied to calculate the FDR for the normalized shuffling method.).

Table 3.8, 3.7, 3.6 outline the number of PSMs, decoy identifications, target identifi-
cations, and expected correct identifications with different decoy methods for five distinct
% FDR values ranging from 0.1% to 10%. For all the cases de Bruijn achieved the high-
est number of correct (expected) PSMs. The results corroborate that de Bruijn behaves
consistently across various %FDR levels.

The reasons for the lower database search performances in Table 3.4 for random shuffling
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Random | Normalized | Reversal | Shifted TPP | de
Shuffling | Shuffling Reversal Bruijn
Total PSM | 287,913 287,913 | 287,841 | 287,871 | 287,875 | 287,860
Total FP 104,141 10,4141 80,070 79,854 | 91,301 | 70,221
% FDR Expected correct
0.1 76,564 80,576 79,060 79,279 | 80,286 | 83,383
0.5 87,889 93,457 92285 93,116 | 91,458 | 95,118
1 93,247 99,234 97578 97,923 | 95,869 | 100,773
5) 104,217 113,014 111251 | 111,354 | 107,446 | 115,388
10 106,977 120,575 | 117897 | 117,672 | 111,607 | 124,472

Table 3.6: Numbers of expected correct at five different % FDR thresholds with different
decoy methods. The de Bruijn decoy method we proposed surpasses other decoys in re-
porting higher number of expected correct PSMs across different FDR thresholds.

Random | Normalized | Reversal | Shifted TPP | de
Shuffling | Shuffling Reversal Bruijn
Total PSM | 287,913 287,913 | 287,841 | 287,871 | 287,875 | 287,860
Total FP 104,141 10,4141 80,070 79,854 | 91,301 | 70,221
% FDR Target
0.1 76,640 80,656 79,139 79,358 | 80,366 | 83,466
0.5 88,332 93,931 92,751 93,586 | 91,919 | 95,598
1 94,198 100,255 98,573 98,922 | 96,847 | 101,801
5 110,006 119,632 | 117,431 | 117,540 | 113,415 | 121,798
10 120,349 137,619 | 132,634 | 132,381 | 125,557 | 140,031

Table 3.7: Numbers of target identifications at five different % FDR thresholds with dif-
ferent decoy methods.
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Random | Normalized | Reversal | Shifted TPP | de
Shuffling | Shuffling Reversal Bruijn
Total PSM | 287,913 287,913 | 287,841 | 287,871 | 287,875 | 287,860
Total FP 104,141 10,4141 80,070 79,854 | 91,301 | 70,221
% FDR Decoy
0.1 76 155 79 79 80 83
0.5 443 913 466 470 461 480
1 951 1,968 995 999 978 1,028
5 5,789 12,747 6,180 6,186 5,969 6,410
10 13,372 32,824 14,737 14,709 | 13,950 | 15,559

Table 3.8: Numbers of decoy identifications at five different % FDR thresholds with dif-
ferent decoy methods.

and TPP methods were because of the larger numbers of unique peptides in the decoy
databases than in the target. Since the enzyme information was not provided to TPP, it
could not correctly preserve all repeating peptides. The reasons for reduced performance
of the normalized shuffling and shifted reversal are less obvious, and are rationalized in the
following.

For the random shuffling method, the reason is the unbalanced numbers of unique
peptides in the target and decoy databases. [39] The normalized shuffling method attempts
to fix the random shuffling method’s problem by discounting the decoy matches. At least
in theory, this should estimate the FDR correctly. However, there is a subtler problem
that cannot be fixed by the normalization. Due to an enlarged number of unique decoy
peptides, an average spectrum is evaluated against more decoy peptides than target ones.
Consequently, some borderline quality but true target PSMs may be outcompeted by a
decoy sequence that happens randomly, merely due to a larger number of decoy sequences.
This causes an unbalanced loss of many borderline quality but true target PSMs. As a
result, the number of identified target peptides is adversely affected. This may be one
of the reasons for the drop of the identified target peptides for the normalized shuffling
method in Table 3.4.

For the reversal method, the performance drop may come from the high correlation
between the target and decoy peptides and the fragment ions in their spectra, respectively.
The adverse effect of such a correlation to the FDR estimation was also reported in earlier
literature. [123]
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The shifted reversal method attempts to fix the reversal method’s problem by shifting
the K and R amino acids by one position. This should have solved the problem as the
precursor masses of the reversed peptides were randomly changed during this process.
However, Table 3.4 shows that the shifted reversal method still has a lower number of
PSMs. To understand the true reason, additional experiments were carried out to study
the differences between the results of the shifted reversal method and the de Bruijn method.

By using the same searching method as described before, the first replicate of the HeLLA
sample is analyzed with the shifted reversal decoy and de Bruijn decoy, respectively. At
1% FDR, MS-GF+ reported 34,177 and 35, 129 target PSMs, by using the shifted reversal
decoy and de Bruijn decoy, respectively. The E-value thresholds were 0.15603 and 0.21643
while using shifted reversal and de Bruijn as decoys, respectively. Figure 3.6 shows the
numbers of decoy PSMs below a given E-value for both methods.

Figure 3.6 indicates that the shifted reversal method resulted in an increased number
of decoy matches at the same E-value, which is consistent with its reduced database search
performance. The decoy matches with E-value below 0.01 were specifically examined. As
shown in Figure 3.7(A), the shifted reversal resulted in 30 decoy matches with E-value at
most 0.01. Seven (23.33%) of the 30 spectra have their corresponding significant target
matches if the de Bruijn decoy was used instead. The target and decoy sequence pairs of
these 7 spectra were examined manually. For 2 of them, the target and decoy sequences
are identical. For 4 others, the target and decoy sequences share significant similarity. The
comparisons of these five pairs of peptides are shown in Figure 3.8. The other one pair
does not share any apparent similarity:.

Figure 3.8 suggests that the shifted reversal method still yields non-negligible sequence
similarities between the target and decoy databases. The decoy peptides that are similar
to the target ones may match the MS/MS spectra with high scores. Therefore, significant
decoy matches are produced not randomly but rather systematically. This may explain
why the database search performance with shifted decoy method is dropped.

In contrast, this phenomenon is insignificant for the de Bruijn decoy. In fact, as shown
in Figure 3.7(B), only 4 significant de Bruijn decoy matches have corresponding target
matches found by Andromeda’s reversal [28] (shifted reversal) method. None of them has
significant similarity between the target and decoy sequences.

A common practice in the target-decoy method is to remove the decoy matches if
the decoy peptides also appear in the target database. Such practice cannot completely
resolve the problem where many target and decoy peptide pairs are similar (isobaric) but
not identical, as shown in Figure 3.8. To confirm this, the statistics for Table 3.4 were
repeated after removing the PSMs that MS-GF+ reported an equal score for the best
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EValue cutoff vs. Accumulated Number of Decoy PSMs for EValue < the cutoff
(HelA-1 Sample, tryptic, MC=5)
35

30

25

20

—t—de Bruijn Decoy

15 —O—Shifted Reversal

Accumulated Number of PSMs

10

o] 0.002 0.004 0.006 0.008 0.01 0.012
—
Evalue

Figure 3.6: Number of decoy PSMs below a given E-value for the shifted reversal and de
Bruijn decoy methods, respectively. Our proposed de Bruijn decoy reports fewer decoys at
the same E-value compared to the shifted reversal method.
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Andromeda's Reversal De Bruijn

O no corresponding target

B with corresponding target

15

Figure 3.7:  (A) Significant (E-value < 0.01) decoy matches produced by shifted reversal
(Andromeda’s reversal) that have (and have no) corresponding target matches found by
de Bruijn decoy at 1% FDR. (B) Significant (E-value < 0.01) decoy matches produced by
de Bruijn decoy that have (and have no) corresponding target matches found by shifted
reversal at 1% FDR.

DRYDSDRYR EA[L]A[Q(+0.98) ]LQO(+0.98) [ RE 1K
DRYDSDRYR EA[I]A[ E 1LQ(+0.98) [Q(+0.98)R]K
LKEELEEAR [DI][ D 1 [I]HEVR [LY]DAY [EL]K
LKEELEEAR [ID] [N(+0.98) ] [L]HEVR [YL]DAY[IE]K

RI RE ]1EEMMIR
R[Q(+0.98)R]EEMMIR

Figure 3.8: Alignments between six significant decoy peptides found by shifted reversal and
their corresponding target sequences found by de Bruijn decoy. For each alignment, the
top and bottom sequences are the target and decoy sequences, respectively. The numbers
in the brackets indicate PTMs. The square brackets indicate the top and bottom sequences
in the same alignment block are isobaric.
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Random | Normalized | Reversal | Shifted TPP | de
Shuffling | Shuffling Reversal Bruijn
E-Value Cutoff 0.11782 0.27158 | 0.14796 | 0.15224 | 0.13013 | 0.21122
Target 94,519 100,579 98,932 99,208 | 96,838 | 102,080
Decoy 954 1,975 999 1,002 978 1,031
Expected Correct 93,565 (999,554 | 97,933 | 98,206 | 95,860 | 101,049

Table 3.9: Numbers of PSMs at 1% FDR with different decoy methods (decoy matches
removed if the decoy peptides also appear in the target database). () A normalization
factor of 0.519 is multiplied to calculate the FDR for the normalized shuffling method.

target and best decoy peptides, respectively. The results are shown in Table 3.9. The
number of identified peptides at 1% FDR for each decoy method only increased marginally
in Table 3.9 when compared with that of Table 3.4. However, the relative performance of
different decoy methods did not change.

3.3.4 Discussion
Problems Caused by Not Preserving the Repeats

When generating the decoy database, the simple random shuffling method does not preserve
repeats in the target database. For the human proteome database, it is shown in Table 3.1
that the number of unique peptides in the decoy database is almost twice as many as
the number of unique peptides in the target database. This is consistent with the results
previously reported [39, , 38]. The excessive number of unique decoy peptides will cause
the following adversary effects to the target-decoy method:

1. It reduces the probability that a spectrum matches the correct target peptide.

2. It inflates the estimated false discovery rate due to a higher chance of generating a
high-scoring decoy peptide-spectrum match.

The adversary effects are demonstrated in Table 3.4. The random shuffling method
seriously overestimates FDR and causes a reduced number of PSMs reported at 1% FDR.
The normalized shuffling method (unique peptide coefficient) proposed in the literature
[120] attempts to correct this overestimation through multiplying the number of decoy hits
by the unique peptide ratio. Our data showed that this simple fix leads to another problem
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that reduces the number of identified target peptides. Because of the enlarged set of unique
decoy peptides, many true target PSMs are lost during the search due to the competition
from the decoy. Although the coefficient may correct the FDR over-estimation, the lost
target PSMs are lost forever.

Repeat-Preserving Property of de Bruijn Decoy

Our proposed de Bruijn decoy method preserves the structures of the repeats in the target
database to a great extent. More precisely, the de Bruijn decoy method using k-mer vertex
labels ensures the following repeat-preserving property:

If two proteins contain a common peptide sequence of length L, their corresponding de
Bruijn decoy proteins will contain a common peptide sequence with length at least L — k.

To prove this repeat-preserving property, suppose two proteins share a length-L peptide
sequence ajas - --ar. In the de Bruijn graph, the two proteins’ corresponding paths will
start overlapping at vertex ajas - - - ai. In fact, all the vertices a;a;y1 - - - a;1 s are shared for
i =1,2,---,L — k+ 1. Thus, the two paths share a sub-path of length at least L — k
edges. The shared sub-path will produce a shared peptide sequence of length at least L —k
during the generation of the decoy sequences.

Balance between Randomness and Repeat Preservation

Any repeat-preserving decoy generation method needs to maintain a certain level of corre-
lation between different parts of the target database, and therefore cannot be completely
random. However, a significant level of randomness is useful. In fact, when the decoy
database is generated with a deterministic rule (such as the reversal and shifted reversal
methods), our data showed that the false positive matches in the decoy database may be
systematically increased. A detailed examination of the high-scoring false decoy matches
suggested that this is a result of the subtle similarities between the generated decoy pep-
tides and the target peptides (and the peptide-spectrum-match scoring method used by
the search engine). Conversely, it is entirely possible that another deterministic generation
method may systematically decrease the decoy hits. In either case, the FDR estimation is
systematically biased. Randomness will help mitigate the systematic bias.

In our de Bruijn decoy method, the parameter £ can provide fine control to trade be-
tween the level of randomness and the repeat-preserving capability. Since each edge is
produced by a (k + 1)-mer in the database sequences, the number of edges in the graph is
upper bounded by 20%*!. Here 20 is the number of different amino acids. Therefore, the
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k=2 k=3] k=4
E-Value cutoff | 0.2039 | 0.20361 | 0.19795 | 0.2006 | 0.20069
Target 101,801 | 101,526 | 101,092 | 101,257 | 101,201
Decoy 1,028 | 1,025 | 1,021 | 1,022 1,022
Expected correct | 100,773 | 100,501 | 100,071 | 100,235 | 100,179

Table 3.10: Numbers of PSMs at 1% FDR with de Bruijn decoys produced by applying
different k values. k = 2 is repeated three times. Consistent results in multiple de Bruijn
decoy generation runs demonstrate its robustness and reliability, unaffected by k value
variations or iteration changes.

decoy generation is completely determined by up to 20! random parameters (replace-
ments of edge labels). Increasing k will increase the number of random parameters and
therefore the randomness level. However, at the same time, the preserved length (L — k)
of a length-L repeat is also reduced.

Our experiments (Table 3.10) show that k = 2 can provide satisfactory results as
compared to k = 3 or 4. Also, the number of identifications at 1% FDR is fairly stable when
the decoy generation is repeated with a different random seed. Additionally, Table 3.11
represents the number of semi-tryptic peptides for three different de Bruijn decoys. Despite
the incorporation of the randomization process in decoy generation, the numbers do not
vary significantly. Results from three different de Bruijn decoys constructed for k£ = 2
confirm that the results do not vary through different runs of de Beuijn decoy generation.
Furthermore, the number of identifications for different k values underlines that k-mer
length does not have a substantial impact on the results.

#Peptides Target de Bruijn
(thousands)
Total 145,522 | 146,686 | 146,954 | 146,545
Unique 63,426 | 64,195 | 64,156 | 63,970

Table 3.11: The numbers of semi-tryptic peptides in a target and three different decoy
databases generated with the de Bruijn method (k = 2) in three repeats. The number of
unique peptides remains consistent with the target across all three instances.

40



Programming Simplicity and Efficiency

Although de Bruijn decoy method is based on a rigorous mathematical model, the software
implementation is surprisingly simple. It only requires sequentially scanning through the
target protein database twice. The first time builds the hash map for all the occurring
(k+1)-mers. The second time translates each protein sequence into a decoy sequence. Most
programming languages have the built-in support to the hash map data structure. This
makes the programming fairly straightforward. The memory footprint is also extremely
small. The protein sequences can be sequentially read from files, and the decoy sequences
can be written to files on the fly while they are generated. The hash map is the only
large object to be kept in the main memory, which contains no more than 20**! entries.
When k£ = 2, there are only 8000 entries. This makes it consume less than 1M bytes of
memory. An example implementation of the algorithm in Java can be found at https:
//github.com/johramoosa/deBruijn.

3.3.5 Conclusion

We present a new repeat-preserving strategy for decoy sequence generation for improved
FDR estimation. A mathematically rigorous and easy-to-implement method, de Bruijn
decoy, is proposed to generate decoy sequences that preserve the repeat structures in
the protein sequences. Experimental results demonstrated the importance of the repeat-
preservation property and the good performance of the de Bruijn decoy method.

3.4 Supporting Information

This section includes supplementary files related to the chapter.

3.4.1 Supporting xlsx Files

The following xlsx files are provided as supporting information. Truncated tables are
provided here, showing PSMs where at least one method achieved an EValue < 0.01. The
complete files are available to download free of charge at https://pubs.acs.org/doi/10.
1021/acs. jproteome.9b00555.

e Supportinglnformationl: Top ranked decoy PSMs found by de Bruijn and shifted
reversal decoy method for tryptic search
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e Supportinglnformation2: PSMs matched as target by de Bruijn, and decoy by shifted
reversal for tryptic search

e SupportingInformation3: PSMs matched as target by shifted reversal, and decoy by
de Bruijn for tryptic search
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Chapter 4

FDR Estimation: Training with
Next-Best PSMs

In proteomics, the control of the false discovery rate is a critical aspect that boosts our
confidence in the reported Peptide-Spectrum Matches (PSMs). However, this field faces
the significant challenge of lacking ground truth data. Decoy databases have traditionally
played a pivotal role in addressing this challenge, ensuring the reliability of results. Intrigu-
ingly, in cases where target peptides are absent in a sample, they functionally resemble
decoy peptides for that specific sample. Leveraging this insight, our approach seeks to
harness additional PSMs per spectrum during training, independent of the conventional
target-decoy labels.

This chapter provides an in-depth exploration of false discovery rate estimation us-
ing machine learning-based methodologies, mainly focusing on the utilization of multiple
peptide spectrum matches per spectrum. Our primary aim is to harness this innovative
approach to estimate FDR that is on par with traditional target-decoy FDR estimation
without necessitating the reliance on target-decoy labeling.

In this chapter, we provide a brief overview of FDR estimation methods, recognizing
both the value and limitations of the target-decoy method. In Section 4.1, we delve into
some inherent constraints of the target-decoy approach, shedding light on scenarios where
alternative FDR estimation methods may offer valuable insights without undermining the
efficacy of the powerful target-decoy strategy. Subsequently, in Section 4.2, we review
alternative FDR estimation methodologies documented in the literature. In Section 4.3, we
explore the opportunities presented by the existence of multiple PSMs per spectrum. This
section introduces the concept of best and next-best PSMs, accompanied by a discussion
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on the split database search method, which plays a pivotal role in generating a substantial
pool of next-best PSMs (Section 4.4).

The chapter further delves into the introduction of our proposed machine learning-
based methods for FDR estimation (Section 4.5). Within Section 4.6, we propose various
strategies to enhance the accuracy of our estimation techniques. Finally, in Section 4.7, we
present and comprehensively discuss the results obtained from our research in this domain.

4.1 Challenges of Target-Decoy Approach

Target-decoy database search has dominated bottom-up proteomics due to its simplicity.
However, this widely used method can be susceptible to many inherent limitations.

4.1.1 Fairness in FDR Estimation: The Problem of Decoy Dis-
crimination

The target-decoy approach (TDA) to estimate the FDR fails when the underlying theo-
retical assumptions are not fulfilled in practice. The performance of TDA depends on the
decoy’s ability to trick the database search engine [20]. An ideal decoy should be statisti-
cally similar to the target. However, the difference between the distribution of theoretical
target and decoy spectra introduces bias [30]. Danilova et al. [30] showed that it is possible
to systematically mislead the scoring function to underestimate the FDR by boosting the
target peptide match scores.

Ideally, a scoring function will score all the true PSMs with high scores and the false
PSMs with low scores regardless of the peptide or the spectrum in consideration. However,
some spectra may receive higher scores in practice due to containing more peaks or their
precursor mass, resulting in more candidate peptides [57]. Additionally, skewed scoring
functions with the capacity to distinguish a decoy either favor target peptides or discrim-
inate against decoy peptides [70, 59, 30]. In such cases, the target decoy method already
encounters a bias. As the target PSMs are favored, the probability of random matches
in the target and the decoy are no longer the same. Besides, a machine-learning-based
algorithm that involves target and decoy peptides in training can become inclined toward
target peptides.
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4.1.2 Conflicts of TDA with The High Resolution Data

Because of high resolution and high mass accuracy mass spectrometer data, narrow parent
ion mass tolerance is in practice, which results in a lower number of candidate peptides per
spectra. FDR estimation using TDA can decrease inaccurately as the numbers of peptide
candidates shrink [21]. Consequently, there will be an insufficient number of instances to
estimate the false distribution. Therefore, researchers argue that the target-decoy method
became less reliable as the mass spectrometers’ accuracy improved [20].

4.1.3 Decoy Induced Variability

Randomly generated decoys can cause different expected correct PSMs each time the decoy
is generated [72]. To ensure minimum variance, we need a good decoy generation algorithm.
Because random decoys are different in each run, the corresponding PSMs also differ. As
a result, the FDR estimation can become susceptible to high variability [73]. Intuitively,
the use of a reversal decoy should be a simple solution to this problem. Apart from the
fact that reversal decoy poses the risk of systematic target matches [90], Keich et al. [73]
argue that reversal decoys only mask the problem rather than solving it. Reversal decoy
generation can be considered a conservative version of shuffled decoy generation, where the
shuffle pattern is fixed and predetermined rather than random. Hence, a reversed decoy is
merely one of the instances among all the possible random shuffled decoys.

4.1.4 Difficulties of Ideal Decoy Generation: Why Ideal Decoy
Generation is Hard?

Optimal decoy generation still remains an open problem [66]. Our effort to address this
issue by preserving the repeats is not flawless either. The de Bruijn decoy generation al-
gorithm requires the knowledge of the cleavage rules to maintain a balanced number of
digested unique peptides in the target and the decoy. Additionally, the tradeoff between
repeat-preservation and randomness, as detailed in Section 3.3.4, remains an ongoing con-
cern.

An ideal decoy database needs to be similar to the target so that the database search
engine fails to distinguish between a target and a decoy. However, they can not be the
same either. A decoy peptide should contain all the underlying properties (observed or un-
observed) of an original peptide, e.g., mass, length, composition, amino acid dependencies,
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etc. However, a clear guideline is lacking in the literature as to which decoy generation
method is the best [71].

The generation of an ideal decoy is significant to ensure accurate FDR estimation in the
target-decoy database search. However, limitations regarding the target-decoy database
search approach and the difficulties of an ideal decoy generation method demand alternative
FDR estimation methods.

4.2 Alternative FDR Estimation Methods

In this research, we emphasize that decoy databases play a crucial role in proteomics,
addressing key challenges and ensuring the reliability of results. Decoys are invaluable for
validating the quality of peptide-spectrum matches and estimating the false discovery rate
accurately. It is important to note that, while we explore alternative methods, we fully
acknowledge and appreciate the significance of the target-decoy database search method
in proteomics research. Our goal is to complement, not replace, their use by proposing an
alternate approach that can estimate the FDR without relying solely on decoy labeling.

Keller et al. [71] proposed a statistical model, known as PeptideProphet, to distinguish
between the correct and incorrect peptides using the search score and the number of tryptic
termini. The model estimates the probability of PSMs by establishing a Bayes classifier
from two-component (correct and incorrect) probability mixture distributions. The algo-
rithm is optimized to incorporate decoy database search results for a better estimation of
the negative distribution, but does not require them. However, the model requires training
data with peptide assignments of known validity. Coute et al. [26] proposed a frame-
work that uses Benjamini-Hochberg (BH) method to transform the target PSM scores to
produce adjusted p-values. The adaptive multiple-component Gaussian mixture modeling
suggested by Renard et al. [102] to compute the confidence of PSMs without the need for
decoys. The authors also proposed the incorporation of an additional model to account for
the low-quality spectra that are unfit to match any peptide sequence reliably.

4.3 Exploring Database Search Results: Multiple Pep-
tide Spectrum Matches Per Spectrum

Database search engines assign scores depending on the similarity between the observed
fragmentation spectrum and the theoretical spectra of the peptides of a reference database.
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No. of PSMs | No. of PSMS at 1% FDR | No. of dissimilar PSMs at 1% (possibly co-eluting)

97,284 36,440 1,820

Table 4.1: Numbers of PSMs at 1% FDR reported by default target-decoy method with
original database search and modified spectra database search. The count of dissimilar
PSMs obtained from these two approaches is minimal, suggesting a low occurrence of
potential co-eluting peptides.

A higher degree of similarity leads to a higher matching score. During a database search,
all potential candidate peptides are examined for each experimental spectrum, and the
top-scoring peptide is chosen. Consequently, it is common for the search engine to report
multiple PSMs for a single spectrum. In some instances, these PSMs arise from simi-
lar peptides. However, when the peptides differ significantly, two intriguing possibilities
emerge: they may represent co-eluting peptides, or they could be random matches.

4.3.1 Mixture Spectra and Co-eluting Peptides

Multiple peptide precursors often co-elute simultaneously in the same tandem mass (MS/MS)
spectrum [127]. For example, two dissimilar and different peptides with the same m/z co-
eluting in the same RT window. In this case, both peptides should be reported as true
PSMs.

To accomplish this, we modify the spectra by eliminating the ions associated with
the top-ranked PSM, which is the initially reported match. Subsequently, we search the
database again with the modified spectra. This approach enables us to uncover additional
peptides associated with the chimeric spectra. Analyzing our baseline HeLa dataset [90],
during a fully tryptic database search, we identify additional peptides at 1% FDR that
are dissimilar to the best-ranked peptide in approximately 1.87% of the spectra. These
are most likely mixture spectra containing co-eluting peptides. It is worth noting that, for
more accurate results, while calculating the next-best peptides (refer to Section 4.4.2), we
can disregard these co-eluting peptides from the list of candidates. However, in our case,
none of the next-best peptides from the split database search were similar to the co-eluting
peptides found from spectra edit. The results are presented in Table 4.1.

23



4.3.2 Random Peptide Matches

If not co-eluting, theoretically, one spectrum can match only with one single peptide.
Because of noises and noise-related uncertainties, the search engine might report some
close variations of the peptide. Nevertheless, those variations result from a single peptide.
However, when the peptides are dissimilar but matched to one spectrum, the highest-
ranked one is most likely the correct match; the rest are highly probable random matches.
So, if we can generate a list of high-probability random PSMs, we already have enough
information to estimate the false distribution.

4.4 Estimation of False Distribution: Training with
Next-Best Peptides

Usually, a spectrum has only one correct peptide assignment (except for the rare case of a
spectrum produced by a mixture of two or more peptides). Thus, although many peptides
are scored against each spectrum, most search engines will only keep one top-scoring or
the best peptide for each spectrum. Usually, only these top-scoring PSMs from all spectra
are used for FDR control. The remaining peptides for each spectrum are seldom correct
and were traditionally discarded. However, we realize that these discarded peptides create
an excellent opportunity to estimate the score distribution of the top-scoring false PSMs.

We have proposed a method for identifying the false distribution using the discarded
peptide assignment data. Analysis of the retained information can provide a distribution
of the next-best peptides (formally introduced in Section 4.4.2). As a result, theoretically,
we should be able to obtain four distributions to explore. (1) Score distribution of the best
peptides for true spectra (A;), (2) Score distribution of the next-best for true spectra (As),
(3) Score distribution of best peptides for false spectra (Bj), and (4) Score distribution of
next-best peptides for false spectra (Bs). Among these, only the first one is the correct one.
So, our goal is to produce an estimation of the first distribution Ay, i.e., top-ranked score
distribution of the true spectra A, as accurately as possible. We will consider As and B
to fit the top-ranked false spectra distribution. The rest of the distributions are updated
according to this estimation. We will repeat this process until convergence. However,
to achieve a satisfactory approximation of the false distribution, we need to ensure that
we have next-best peptides for the majority of the spectra, as discussed in Section 4.4.5.
We employ machine learning-based methods to identify a well-distinguished separation
between the true and false distributions. We aim to closely replicate the separation achieved
by the target and decoy distributions. This approach enhances our ability to accurately
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discriminate between correct identifications and false positives, even in the absence of
decoy labels. Consequently, we hypothesize that the next-best PSMs serve as a suitable
approximation for false positives.

4.4.1 True and False Spectra

Due to instrumental errors and noise, some of the MS/MS spectra are merely random
signals, and others are generated from actual peptides belonging to the sample. The
spectra containing the random signals are the false spectra, B, while the spectra resulting
from the actual peptides are true spectra, A. Our main goal is to identify the true spectra,
A. However, distinguishing A from B is not trivial in reality. In other words, we do not
have a straightforward method to separate the spectra into A and B. Our intention is to
assign each spectrum with score z, a probability denoted as f(x), indicating its likelihood
of being correct or belonging to group A. Consequently, the complementary probability,
1 — f(x), represents the probability that the spectrum is incorrect or belongs to group B.
We can derive an estimate of the FDR from the prediction provided by f(z).

4.4.2 Definition: Next-Best Peptides

Among the list of peptides for one spectrum, the best or the rank-one peptide is the
highest-ranked (scored) peptide. Peptides that do not resemble the best peptide become
candidates for the next-best peptide. The next-best or the rank-two peptide is the highest-
ranked peptide from the candidates of next-best peptide. We define these peptides as
next-best, regardless of their position in the initial list of candidates.

Initially, we assessed the dissimilarity between the best peptide and candidate peptides
using several distance metrics. Naturally, the first distance metric is the primary sequence
similarity. Furthermore, we have computed theoretical ion matches and considered factors
such as isobaric peptides (I, L) and post-translational modifications (PTMs) that lead to
similar mass values.

Our preliminary studies show a clear distinction in the distribution of the best and
the next-best peptides as presented in Figure 4.1. The overlapping shape matches the
distribution of target and decoy peptides. In order to gain a deeper understanding of the
correlation, we have presented the distribution of various features associated with both
the best and next-best in the Figure 4.2, 4.3, 4.4, and 4.5. Due to space constraints,
the features are divided into two figures, namely, Figures 4.2 and 4.3. The three plots
for each feature depict scatter plots focusing primarily on the correlation of their scores
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Figure 4.1: Score distribution of best (Blue) and next-best (Orange) peptides.

versus the feature for different PSM categories. Upon observing the feature distributions
for best target and next-best target PSMs in part (a), as well as target-decoy distributions
in part (b) of Figure 4.2 and 4.3, it becomes evident that they exhibit a similar separation
pattern. Furthermore, in part (c) of the figures, it is notable that the decoy distribution of
best PSMs and the target distribution of next-best PSMs almost overlap, suggesting that
the next-best PSMs can serve as a reliable approximation of the false distribution. The
results mentioned here are computed using the HeLa dataset, as detailed in Section 4.7.1.
Figure 4.4 displays the distribution of ‘decoy’ for best and next-best for different features.
On the other hand, Figure 4.5 displays the distribution of ‘decoy’ for best and all PSMs for
next-best for different features. Further statistical analysis, including the use of correlation
coefficients, may be necessary for a more precise quantification of these relationships. The
details of these features can be found at [75].

Assuming that each spectrum matches only one peptide, we can establish that the
remaining peptides for each spectrum are most likely false matches. As a result, the next-
best peptides can provide us with the A, and B distribution. Thus, the next-best peptides
allow us to estimate the top-scoring false distribution without the use of decoys. A slim
chance remains that some of the next-best peptides are co-eluting peptides. Based on the
results obtained from our experiments, as detailed in Section 4.3.1, it is evident that the
number of co-eluting peptides remains remarkably low even after the implementation of
the spectral editing process. Additionally, the probability of finding a co-eluting peptide
decreases when we perform the split database search.
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Figure 4.2: Distribution of (a) best target RAd next-best target, (b) best target and best
decoy, and (c) next-best target and best decoy for score vs. features: (i) DeNovoScore,
(ii) enzC (boolean, is C terminal tryptic), (iii) isotopeError, (iv) MSGFScore, and (v)
Precursor. The distributions of next-best targets and best decoys exhibit a significant
overlap.
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Figure 4.3: Distribution of (a) best target RRd newt-best target, (b) best target and best
decoy, and (c) next-best target and best decoy for score vs. features: (i) enzN (boolean, is
N terminal tryptic), (ii) PrecursoError (ppm), (iii) ScanTime (Min), (iv) SpecEValue, and
(v) PepQValue. The distributions of next-best targets and best decoys exhibit a significant
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Figure 4.4: Score distribution of only ‘decoy’ PSMs for both best and next-best across
various features.
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Figure 4.5: Score distribution of best (top-scoring) decoy PSMs and all next-best PSMs for
different features.
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4.4.3 Definition: Third-Best Peptides

Similar to the calculation of next-best peptides, we can further calculate third-best peptides.
The third-best peptide (also referred to as rank-three peptide) for a spectrum is defined
as the highest-scoring peptide that differs from the next-best peptides and, consequently,
from the best peptide as well. The score distribution of third-best PSMs compared to the
best and next-best PSMs is presented in Figure 4.6. As expected, we can observe a shift
between the best and next-best, and next-best and third-best, particularly when the score is
higher. This observed shift aligns with our expectations and underscores the significance
of these score differentials in our analysis. We can compute the shift between the next-best
and third-best scores, allowing us to adjust the next-best scores to align more effectively
with the false best PSMs. This compensation for the observed shift by augmenting the
next-best distribution will be discussed in detail in Section 4.6.2.

Score Distribution of BEST, NEXT-BEST, and NEXT-NEXT-BEST

2500 [ BEST
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Figure 4.6: Score distribution of best (Blue), next-best (Orange), and third-best (Green)
peptides.

4.4.4 Quantifying Peptide Similarity: Determining the ‘Best’
and ‘Next-Best’ for Each Spectrum

The first crucial step in generating the next-best candidate peptides involves assessing the

degree of similarity between peptides. In our study, this assessment is based on two key

aspects: (1) their sequence similarity and (2) their fragment ion similarity. To evaluate
sequence similarity, we employ the computation of the edit distance, also known as the
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Levenshtein distance [95], between the primary sequences of each peptide. It is important
to note that when considering sequence similarity, we treat isobaric peptides (I, L) and post-
translational modifications (PTMs) resulting in similar masses (as discussed in Section 2.3)
as interchangeable, enhancing our ability to capture nuanced similarities.

In addition to sequence similarity, we also measure fragment-ion similarity by comparing
the theoretical spectra of the peptides rather than their sequences. This approach provides
a more comprehensive assessment of the similarity between the peptides. Further details
on this peptide similarity measure can be found in Section 5.2.2. It is worth noting that
this multifaceted approach enables us to determine and select next-best candidate peptides
properly based on their resemblance to the best peptides, thereby enhancing the accuracy
of our FDR estimation. By following this procedure to calculate the next-best, we ensure
the faithful application of our hypothesis, as the reported best and next-best PSMs are
maximally dissimilar.

After calculating the similarity between the best peptide and the candidate peptides,
we retain only one best and one next-best (one third-best when applicable, see Section 4.4.3)
for each spectrum, eliminating any duplicates for each rank.

However, it is imperative to note that by excluding similar PSMs, there is a possibility
that if no dissimilar PSMs are available for a specific spectrum, this process may result in
an empty candidate list for the next-best, leading to the absence of next-best (or third-best)
PSMs for that particular spectrum.

4.4.5 Split Database Search

Ensuring an adequate number of next-best peptides is essential to obtain a reliable estima-
tion of the false distribution. However, it is worth noting that database search methods
may not consistently provide multiple PSMs for all spectra. Some search engines solely
report the top-ranked peptide identification. Indeed, even when multiple PSMs for a spec-
trum are reported, they often exhibit similarities in their characteristics and properties.
This similarity in nature can be attributed to various factors, including shared sequences,
post-translational modifications, or spectral features. For instance, when analyzing MS-
GF+ database search results, we initially identified next-best peptides for less than 5% of
the spectra. Furthermore, due to the similarity of the peptides, there may be instances
where an empty candidate list is generated for the next-best peptides, as discussed in
Section 4.4.4. Consequently, this leads to an imbalance in the training dataset.

To address this challenge and ensure an adequate supply of next-best peptides, we need
to implement a strategic approach. We split the database into three parts and utilized
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them to perform three separate database searches. Therefore, we have at least one PSM
from each database for each spectrum in the combined search result. The merged result
is then sorted according to score to report the best and the next-best (third-best) peptides
for each spectrum. Furthermore, if we split the database so that the number of shared
peptides among the splits is the lowest, we can ensure the highest number of spectra with
at least two dissimilar PSMs. This alternative search technique, accomplished through
database pre-processing, enables us to identify the next-best peptides for the vast majority
(over 85%) of the spectra [91]. Figure 4.7 illustrates the process for computing the best
and next-best PSMs for each spectrum in the context of (i) a 2-way-split (k = 2) database
search and (ii) a 3-way-split (k = 3) database search. It is worth noting that in our
experiments, we specifically use the scenario where k = 3.

When splitting a target database, the process involves randomly dividing the original
target database into & mutually exclusive subsets of proteins. However, the procedure for
splitting a concatenated target-decoy database differs slightly. Initially, the target database
is divided in the conventional manner. Subsequently, when splitting the decoy database,
the original decoy database is divided in such a way that each split contains the same set
of proteins as the target database.

4.5 FDR Estimation through Machine Learning Meth-
ods

In this section, we propose machine learning techniques to estimate the FDR of the identi-
fied peptides. Our objective is to achieve a separation comparable to that provided by the
established target-decoy method. We leverage the scores from both the best and next-best
peptide identifications as our positive and negative distributions, respectively, to derive a
confidence score denoted as f(x). This confidence score serves as a central component in
our FDR estimation process.

4.5.1 Estimation of f(x)

We employ a machine learning approach to estimate the probability f(x) for a spectrum
with a score x. This probability indicates the likelihood that the spectrum is correct or
belongs to the group A. We compute f(z) as follows:

e Input: X = xy,29,--- ,2, for i = 1,2,--- ,n, where z; is the score of a spectra 5;,
and n is the total number of spectra.
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e Output: f(z), the probability that a spectra S with score x is correct.

A Cutoff

\

Score, X

Figure 4.8: Expected f(z)

Subsequently, with the current estimate of f(z), we can iteratively refine the sets A and
B, continuously updating the calculation of f(x) until convergence is reached. Figure 4.8
portrays our anticipated result, where the function displays a sharp incline with the score,
eventually approaching a value close to 1 beyond the cutoff. This phenomenon means that
any PSM with a score exceeding the cutoff is highly likely to be correct, approaching a
probability close to 1. To compute f(z), we have employed various methods including
Kernel Density Estimation (KDE) and logistic regression. We will explore these methods
in more detail in the following discussion.

4.5.2 Kernel Density Estimation (KDE) Based Estimation

Kernel density estimation is a non-parametric method that employs a kernel function to
estimate the unknown probability density function of a given finite set of observations.
Non-parametric methods are utilized when it is challenging to make specific assumptions
about the data distribution. Unlike parametric density estimation, where parameters are
assumed to fit a standard probability distribution, non-parametric methods do not rely on
such assumptions.

In cases where it is not feasible to make explicit assumptions about the data, non-
parametric algorithms come into play. These algorithms are applied to approximate the
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probability distribution of the data without assuming a predefined distribution shape or
parameters. Essentially, non-parametric algorithms work without requiring prior knowl-
edge of the data characteristics and aim to deduce distribution based on the available finite
dataset.

To find the KDE, the kernel function is first generated at every data point. The
distribution is then estimated using the sum of the value derived from the kernel function
at each data point u. Kernel, K (u) is a function that satisfies the following three properties.

1. The function must be symmetrical, i.e., K(—u) = K(+u).
2. The area under the curve of the function must be equal to one. ffooo K(u)du = 1.

3. The value of the kernel function can not be negative. K (u) > 0, for all —oco < u < 0.
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Figure 4.9: Score distribution of best PSMS (rank-one) using both KDE and Histogram

The bandwidth parameter, a crucial aspect of kernel density estimation, significantly
influences the accuracy of fitting the data. Regulating the bandwidth alters the shape of the
kernel, and choosing an appropriate bandwidth is essential for obtaining accurate results.
A smaller bandwidth leads to a narrow kernel function that captures many details in the
density estimation, potentially including high variances. Conversely, a larger bandwidth
introduces bias and smoothes out fine details in the estimation.

To visualize the distribution of a data sample, a simple method is to use a histogram.
In Figure 4.9, we provide a combined representation of the histogram and kernel den-
sity estimation (KDE) for rank-one (best) peptides. This visual representation illustrates
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the effectiveness of kernel distribution estimation as a robust approach for modeling the
underlying distribution in our analysis.

In our approach, we employ two distinct models, namely model4 and modelg, to per-
form kernel distribution estimation for two critical components: true spectra A, denoted
as P(A), and false spectra B, denoted as P(B). Subsequently, we calculate the confidence
score f(x) by averaging the probabilities obtained from these models, which translates to
averaging P(A) and 1 — P(B). This process allows us to assess the likelihood of correctness
for each spectrum, thereby facilitating the estimation of the FDR.

4.5.3 Logistic Regression Based Estimation

Logistic regression is a supervised learning algorithm, i.e., the training data is labeled.
The algorithm models the relationship between the dependent variable and one or more
independent variables by estimating the probabilities using a logistic regression equation.
This type of analysis helps us predict the likelihood of an event. The sigmoid function
is used in order to map predicted values to probabilities. Therefore, it assigns a value
between 0 to 1 to any real value.

In our research, we aim to predict whether a spectrum is true, or if it belongs to the set
A as defined in Section 4.4.1. We estimate f(x), which represents the probability that a
spectrum with a score x is correct, specifically, the probability that a spectrum containing
a best (rank-one) peptide with a score x belongs to the set of true spectra. Upon examining
Figure 4.8, it becomes evident that we require f(x) to approach 1 when the score is higher
than the cutoff score (to be determined from the FDR of the search results) and closer to
0 when the score is lower. Therefore, logistic regression is a good fit for our problem.

In the logistic regression step, we label A; as 1, and the combined set of (As + By) as
0. For each spectrum with the best score x, we calculate the probability of it belonging to
class 1. This process yields an estimation of A, and subsequently, we can derive the values
of Ay, Ay, By, and Bs. In the subsequent iteration, we utilize this updated information to
recalculate the confidence score f(x), and this iterative process continues until convergence
is achieved.

Furthermore, adding polynomial-order terms increases the capacity of the logistic re-
gression model, which allows the model to learn complex decision boundaries that are
otherwise impossible using linear regression. We have integrated various combinations of

) ) ) 1 1, .. ..
olynomial terms, including 222, 2, and z3, in addition to the original score x.
b ) ) ) b
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4.5.4 FDR Estimation from f(z)

Initially, we calculate the probability f(x) for a spectrum with a score x, which represents
the likelihood of the spectrum being correct. Subsequently, we use f(x) to derive the FDR
estimation through the following computational steps.

1. The spectra are sorted according to the Search Score, x, where higher values of x
indicate better scores.

2. Estimated FDR from f(z),

#peptide with score > x

3. 1% FDR approximate from f(z): all results where V' < 0.01.

To assess the performance of our proposed method, we must benchmark it against the
standard target-decoy approach. To facilitate this comparison, we computed the default
FDR using the following steps for this part of our study in order to compare it with our
estimated FDR derived from f(x):

1. When F'P represents the number of false positives and T'P represents the number of
true positives, the default false discover rate is calculated as:

FP

FDR=——"
R=7pirp)

2. F'P is calculated using the following equation:

FP =2 x #decoy (4.2)

3. Therefore, the default false discovery rate is given by:

2 X #decoy

FDR =
i (#target + #decoy)

(4.3)
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The reason this default FDR calculation differs from the standard calculation presented
in Equation 2.1 is that the estimated FDR calculation (using f(x)) in Equation 4.1 includes
the total false distribution, encompassing both false positives and false negatives, in con-
trast to the default FDR calculation paradigm. In the standard target-decoy approach, the
total false PSMs are calculated using Equation 4.2, and we utilize this approach to ensure
a fair comparison between the performance of the estimated FDR using our algorithm and
the default target-decoy method.

4.5.5 Validation of Hypotheses Using Synthetic In-Silico PSMs

In this section, we conducted preliminary testing using synthetic PSMs to validate our
method’s potential. The lack of ground truth in proteomics presents a significant validation
challenge. Nevertheless, synthetic sets of true and false PSMs can serve as proxy ground
truth for initial hypothesis validation in our method.

We explore a hypothetical scenario where two sets of synthetic spectra are generated,
each associated with two scores: a rank-one and a rank-two score. One set has a higher
mean score, designating it as the true spectra, while the other serves as a collection of ran-
dom spectra. Combining these sets, we create rank-one and rank-two score distributions
for all spectra, both true and random. Our method aims to differentiate between hypo-
thetical true and false spectra using only the distributions of rank-one and rank-two scores,
without prior knowledge of the spectra labels. Demonstrating this separation in a theoret-
ical scenario would serve as validation for our hypothesis, showcasing the effectiveness of
our method under ideal conditions.

4.6 Improvement of Logistic Regression Approach

When our FDR estimation performs as anticipated, and our method can achieve the same
level of separation as the target-decoy method, we expect the estimated A; and the ex-
pected correct (calculated using the traditional target-decoy method) distributions to over-
lap to the greatest extent possible.

Our algorithm exhibits superior performance with logistic regression compared to KDE,
as demonstrated in the results presented in Section 4.7. However, there remains a gap in
the alignment between the expected correct values and the estimated A;, particularly for
lower scores. To address this by introducing a non-linear component to logistic regression
for increased complexity, we propose the incorporation of non-linear features that are
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polynomials of the score x. Additionally, to compensate for the underestimated false
distribution in comparison to decoys, we suggest augmenting the nezt-best data, which
serves as our false samples for estimating the separation. The details of these proposed
enhancements will be discussed in the following sections.

4.6.1 Integration of Non-linear Polynomial Features

The motivation for adding polynomial features and their interactions into the mix is to
increase the model’s capacity. Including polynomial terms allows us to learn decision
boundaries that we would otherwise be unable to learn simply using the original features.
This is because a linear decision boundary (which is what logistic regression fits) learned on
nonlinear transformations of features will ultimately be nonlinear in terms of the original
features. Even if the polynomial terms prove to be of limited value, the model still possesses
the ability to learn a decision boundary that remains linear in the original features by
simply disregarding the polynomial terms. This flexibility allows the model to adapt and
find the most suitable representation for the data, ensuring robustness in its decision-
making process. We have incorporated different combinations of x2,23, x%, and 3 along
with z. The results are presented in Figures 4.13, 4.14, and 4.15.

4.6.2 Augmentation

In practice, the set of best PSMs can also contain random matches, complicating our goal
of estimating the truly random PSMs, i.e., the spectra that belong to B. To approximate
this, first, we will introduce the concept of first-order incorrect PSMs, denoted as A, and
B;. These are considered first-order incorrect PSMs because, for each spectrum, they are
the highest scoring among the incorrect PSMs. Similarly, we define By as second-order
incorrect PSMs, as these are the second-highest scoring incorrect PSMs for each spectrum
belonging to B.

Initially, we do not have knowledge about the separation between A and B. Therefore,
we model A using the best PSMs, which includes some random matches, and we model B
using the next-best PSMs, which incorporates corresponding second-order incorrect PSMs.
Consequently, we observe a shift between our estimated B; and decoy (known false).

However, it is worth noting that for higher scores, the B; decoy-only distribution tends
to be underestimated, as illustrated in Figure 4.10. This implies that some decoys are
erroneously considered highly likely to be targets or included in A;. This underscores the
importance of refining our methods to achieve more accurate estimates.
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In this plot (Figure 4.10), we exclusively display the decoys from B to facilitate a com-
parison with the decoys obtained through the default target-decoy method. It is important
to note that B; represents the distribution of random false matches, and when applied to
target-decoy data, it encompasses both the random matches from the target and the true
decoys. An alternative visualization approach would involve doubling the distribution of
decoys obtained from the regular target-decoy method while retaining both the target and
decoys from Bj.

B1 decoy only w - decoy 20

decoy (targetidecoy) distribution
600 n B1 decoy only distribution

a

200

300 1

100

Figure 4.10: Underestimation of decoy only B; distribution for higher score compared to
decoy distribution.

To further refine this approximation, we examine the differences between the third-best
(or rank-three) and next-best PSMs, , aiming to account for shifts caused by the omission
of first-order incorrect PSMs in the heuristics. We utilize this information to transform the
next-best PSMs, enabling them to provide a more accurate representation of the random
spectra. The next-best data undergoes augmentation with the inclusion of Rj. This set
denoted as R), comprises ¢ samples that are randomly selected from the original next-best
set. The scores assigned to these samples in R/, are determined as 2’ = az + b, where
x represents the score for the next-best PSM, and a and b are parameters used for score
transformation.

Optimization

Indeed, a critical consideration in our augmentation approach is the selection of optimal
values for the augmentation parameters a, b, and c¢. The effectiveness of the augmentation
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approach significantly relies on these parameter values. To identify the optimal values for
the parameters a, b, and ¢, we employ the basin-hopping optimization technique [125].
This optimization methodology enables us to fine-tune these parameters to achieve the
best possible representation of the next-best PSMs in our FDR estimation process. The
proposed method involves the following approach:

Parameter Ranges: Initially, specific ranges are defined for each of the parameters. The
ranges for a and b are determined by analyzing the score distribution of both the best
and next-best sets. The range for ¢ is derived from the sizes of the sets best, next-best,
and third-best.

Basin-Hopping Optimization: Basin-hopping optimization is applied to search for the
optimal values of a, b, and c¢. This optimization method aims to minimize the mean-
square-error (mse) between the transformed data (i.e., augmented third-best) and the
target data (next-best).

Cost Function: A cost function is defined based on the binned difference between the
transformed augmented third-best data (using the current a, b, and ¢) and the next-
best data. The goal is to find parameter values that minimize this cost function,
ensuring a close alignment between the augmented data and the target data.

Parameter Optimization: The basin-hopping optimization iteratively explores param-
eter combinations within their defined ranges to minimize the cost function. This
process continues until an optimal (to some degree) set of values for a, b, and ¢ is
discovered. The “temperature” parameter is adjusted through intuition and manual
tuning.

Utilization of Optimized Parameters: After identifying the optimal values for a, b,
and ¢, these parameters transform the augmented next-best data, as outlined above.
This optimized augmentation procedure enhances the ability of the next-best data to
closely approximate the false distribution, aligning it more effectively with the decoy
distribution from the target-decoy database search.

The process of augmenting the data is indeed intriguing. When the parameters are
optimized, this method enables us to achieve a substantial overlap between the ‘expected
correct’ distribution from the target-decoy database search and our estimated true dis-
tribution (as presented in Section 4.7.2). However, it is crucial to acknowledge that the
optimization process is time-intensive, rendering it impractical for every new dataset. Con-
sequently, there is a pressing need to explore and develop a more generalized approach that
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can be readily applied across diverse datasets without extensive parameter optimization.
This pursuit of a more universal solution holds the potential to streamline and enhance
the applicability of our methodology.

4.7 Results and Discussion

In this section we will first introduce the dataset and experimental setup for the results
presented next. Then we will present the results of KDE, logistic regression, non-linear
feature addition, and augmentation one by one. Additionally, we will present the results
from synthetic data signifying our method’s effectiveness in theory or ideal data.

4.7.1 Dataset

In our experimental setup, we exclusively utilized the initial replicate of the Human HeLa
dataset (ProteomeXchange project ID: PXD015028) as detailed in the study by Moosa
et al.[90], unless specified otherwise. Particularly, we made adjustments during the split
database search phase, primarily to accommodate changes in the database, where different
searches were performed with different splits. Additionally, to validate our initial hypoth-
esis, we conducted experiments using synthetic data.

It is important to note that our algorithm is ideally designed for target-only search
results. To generate an adequate number of next-best PSMs, we perform a 3-way split
database search using only the target database, excluding the decoys. However, for the
purpose of comparing our results with traditional target-decoy methods and validating the
effectiveness of our approach, we employed a target-decoy 3-way split database strategy.
Therefore, for our experimental results, we conducted a 3-way split target-decoy database
search, as detailed in Section 4.4.5, using the HeLa replicate one dataset while maintaining
the same search parameters as specified in Moosa et al.’s manuscript [90].

4.7.2 Experimental Results

In this section, we delve into the results, exploring the outcomes of our extensive efforts
in FDR estimation for peptide identification. We have explored various methodologies,
including Kernel Density Estimation (KDE), logistic regression, the incorporation of poly-
nomial terms in logistic regression, and the augmentation of next-best samples. Through
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Figure 4.11: Distribution of estimated A;, including (i) the distribution involving esti-
mated By, targets and decoys and (ii) the Expected Correct distribution (target — decoy)
estimated with KDE. Significant overlap is observed for higher scores in expected correct
distributions.

a rigorous analysis of these techniques, our objective is to shed light on their effectiveness
and uncover any improvements achieved.

In our approach, we designate A; as the positive distribution and (B; + As) as the
negative distribution. Using these distributions, we assign a probability of correctness to
each spectrum. With this probability information, we iteratively calculate the distribution
for Ay, By, Ag, and B,. This process is repeated until convergence is achieved. Ultimately,
from the probabilities assigned to each spectrum that indicates the correctness, we derive
the final distribution of A;, which represents the distribution of correctly identified spectra.
Ultimately, this allows us to estimate the FDR.

When applying KDE, the expected false distribution estimation diverges from our ex-
pectations, as illustrated in Figure 4.11. This discrepancy becomes apparent when compar-
ing the expected correct values derived from the target-decoy method with the estimation
of Ay, as demonstrated in Figure 4.11 (ii). Note that the expected correct distribution is
obtained by subtracting the decoy distribution from the target distribution.

Despite logistic regression outperforming KDE, it still falls short of our expectations.
The differences between A; and the expected correct distribution are still evident, as
observed in Figure 4.12. To further improve the performance, we propose two strategies.
Firstly, the integration of non-linear polynomial features, and secondly, augmenting the
next-best distribution to achieve a more accurate representation of the false distribution as
discussed in Section 4.6. It is worth mentioning that we have used the “liblinear” solver
for logistic regression.
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Figure 4.12: Distribution of estimated A; and By, including (i) the distribution involving
targets and decoys and (ii) the Expected Correct distribution (target — decoy) estimated
with logistic regression with feature z, augmentation not applied. Significant overlap is

observed for higher scores in expected correct distributions.

Polynomial features in logistic regression

As observed in Figure 4.14, the inclusion of polynomial terms helps mitigate the disparity
between the expected correct values and the estimated A; more effectively. However, it
remains short of our desired accuracy. While the addition of 22 or T3 or 2 (4.13,4.16, 4.15)
does not exhibit any noticeable differences compared to only z (Figures 4.12), further
comparison between Figure 4.13 (ii) and Figure 4.14 (ii) sheds light on the significance
of the additional term z3. The latter figure demonstrates that the inclusion of this term
contributes to a more pronounced reduction in the observed discrepancy. Consequently, we
showcase the results obtained when only the 2® term is added as a polynomial component,
as illustrated in Figure 4.17. In particular, this configuration exhibits a slight improvement
compared to Figure 4.14, where both 2? and 23 are incorporated as polynomial terms.
However, this nuanced performance comparison does not yield specific insights or reasons
for the observed differences. Further investigation is needed to elucidate the underlying
factors that contribute to the varying performance between the inclusion of different non-
linear terms in our logistic regression based FDR estimation approach.

Augmentation results including optimization

Our additional effort to improve the performance of logistic regression involves augmenting
the next-best data, addressing the discrepancy arising from second-order incorrect PSMs,
as elaborated in Section 4.6.2. In this section, we present the corresponding results of
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Figure 4.13: Distribution of estimated A; and By, including (i) the distribution involving
targets and decoys and (ii) the Expected Correct distribution (target — decoy) estimated
with logistic regression with features x and z2. Significant overlap is observed for higher
scores in expected correct distributions.
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Figure 4.14: Distribution of estimated Ay, including (i) the distribution involving estimated
By, targets and decoys and (ii) the Expected Correct distribution (target — decoy) esti-
mated with logistic regression with features z, z2, and 3. Significant overlap is observed
for higher scores in expected correct distributions.
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Figure 4.15: Distribution of estimated A;, including (i) the distribution involving esti-
mated By, targets and decoys and (ii) the Expected Correct distribution (target — decoy)
estimated with logistic regression with features x and 3. Significant overlap is observed
for higher scores in expected correct distributions.
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Figure 4.16: Distribution of estimated A, including (i) the distribution involving estimated
By, targets and decoys and (ii) the Expected Correct distribution (target — decoy) esti-
mated with logistic regression with features =, x%7 and 3. Significant overlap is observed
for higher scores in expected correct distributions.
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Figure 4.17: Distribution of estimated A;, including (i) the distribution involving esti-
mated Bj, targets and decoys and (ii) the Expected Correct distribution (target — decoy)
estimated with logistic regression with features x, 3. Significant overlap is observed in
expected correct distributions.

this augmentation process. Through basin-hopping optimization, we have determined the
values of 1.0506, 1.7971, and 0.18085 for the parameters a, b, and ¢, respectively. Although
the distribution of A; and the expected correct values do not achieve complete overlap, we
are able to achieve a highly accurate approximation following augmentation as exhibited
in Figure 4.18. It is worth mentioning that during the augmentation process, no other
modifications are made to the regular logistic regression method.

Hypothesis Validation Results Using Synthetic Data

To evaluate the effectiveness of our method under ideal conditions, we have generated four
sets of synthetic data representing Ay, Bi, As, and By. The distribution of this synthetic
data is visually depicted in Figure 4.19. It is important to note that our algorithm can
easily calculate the rank-one and rank-two for each hypothetical spectrum by simply com-
paring the designated scores, which is similar to the best and next-best in an experimental
spectrum. However, the labels A and B remain concealed from the algorithm. Our ob-
jective is to assess whether our algorithm can generate a distribution of A and B from
the rank-one and rank-two information that closely aligns with the ground truth of the
synthetic data. Achieving this alignment in a theoretical scenario would demonstrate the
efficacy of our method under ideal conditions, thus validating our hypothesis.

The results obtained using synthetic data, when applying our regular logistic regression
without any augmentation or non-linear features are displayed in Figure 4.20. In the case
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Figure 4.18: Distribution of estimated A;, including (i) the distribution involving esti-
mated By, targets and decoys and (ii) the Expected Correct distribution (target — decoy)
estimated with logistic regression with augmentation of next-best. Significant overlap is
observed in expected correct distributions.
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Figure 4.19: In-sillico synthetic distribution of (i) spectra A, and B with rank-one (A,
By), and rank two (Ag, Bs) scores and (ii) combined rank-one, and rank-two scores.
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Figure 4.20: (i) Estimated A;, By, A2, By from the synthetic distribution (ii) Actual
distribution of A and Estimated A; without the knowledge of A, and B labels. Significant
overlap is observed between the estimated correct distribution and the true distribution,
especially for higher scores.

of theoretical data, our method clearly distinguishes between A and B. The estimation of
true and false distributions was carried out without prior knowledge of the actual A and
B distributions. Furthermore, as illustrated in Figure 4.20 (ii), it is evident that for higher
scores, the estimated A; distribution aligns almost perfectly with the actual distribution of
A. While these results form the basis of our hypothesis, it is important to note that they
do not guarantee that the method will perform similarly in real proteomics analysis data.
Indeed, to comprehensively assess the method’s effectiveness in practical applications, we
have conducted further investigation and validation using a real-world proteomics dataset.
When applied to experimental proteomics data, the method demonstrated promising re-
sults. Nevertheless, as discussed earlier, there is room for further improvement.

4.7.3 Performance Across Different Search Engines

Building upon the promising results obtained for MS-GF+ [75] search results, we en-
deavored to assess the applicability of our approach to other search engines, namely MS
Amanda [31] and Comet [12]. However, a noteworthy observation is that optimized aug-
mentation is highly dataset-specific, and augmentation tailored for one dataset does not
readily generalize to a different dataset. As demonstrated in Figure 4.21, this dataset-
specific optimization challenge has resulted in suboptimal performance, with a noticeable
gap in the results. Moreover, it is worth highlighting that the optimization process is
time-consuming, making it impractical to perform for every dataset, especially when the
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Figure 4.21: (i) Estimated A; vs. Expected Correct distribution for different search engines
using optimized a, b, and c as obtained in Section 4.7.2 for augmentation. Estimated correct
differs from the expected correct distribution.

improvements in results are marginal.

4.8 Conclusion

In conclusion, this chapter has presented an initial exploration of alternative false discovery
rate estimation in the field of proteomics. We utilize machine learning-based algorithms
trained on the best and next-best PSMs, with the goal of closely mimicking the separation
observed in target and decoy distributions. Our results, particularly when applied to
synthetic data and experimental datasets, have unveiled exciting and promising insights
into the potential of our FDR estimation methodology. Notably, our best-performing
algorithm, which involves logistic regression and data augmentation, has demonstrated the
capacity to distinguish between true and false identifications. Furthermore, the inclusion
of polynomial term features has shown promising results.

Nevertheless, it is essential to recognize that although these results are promising, there
is still a requirement for further enhancements and comprehensive analysis to achieve the
desired outcome that can be applied universally across various types of datasets. The com-
plexities and nuances of experimental proteomics data call for refinement of our methodol-
ogy. Possible avenues for improvement include refining the augmentation process to bridge
any remaining gaps, improving the estimation of f,, use of different machine learning
methods to estimate f,, and exploring alternative equations or methods to estimate FDR
using f,. In essence, this chapter sets the stage for ongoing research and development in the
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pursuit of more accurate and reliable FDR estimation techniques in peptide identification.
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Chapter 5

Improving Peptide Identification
Rate by Machine Learning with
Next-Ranked Peptide Spectrum
Matches [91]

To improve the peptide identification rates in the database search analysis of bottom-up
proteomics data, many proposed implementation of machine learning algorithms. These
machine learning-based methods train a new scoring function after the initial search to
re-score and re-rank the peptide spectrum matches (PSMs). Generally, the retraining
uses selected peptide-spectrum matches from the target and decoy databases as positive
and negative training examples, respectively. However, this exposes the target-decoy in-
formation to the scoring function, potentially invalidating the false discovery rate (FDR)
estimation. We propose a novel method for retraining without revealing the target-decoy
information. Our approach considers the top-ranked and the next-ranked peptides for the
same spectrum as positive and negative examples, respectively. We demonstrate that this
leads to a much-improved identification rate while maintaining an accurate FDR estima-
tion.

5.1 Introduction

Traditionally in bottom-up proteomics, peptide identification involves solving two sub-
problems: 1) defining a peptide spectrum match (PSM) scoring function; and 2) selecting
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a subset of top-scoring PSMs that are statistically significant. [127] We aim to define a
re-scoring function that will rank the PSMs more accurately to achieve a better set of
top-scoring PSMs. Because of noises and instrumentation errors, some spectra are random
rather than originating from the proteins in the sample. These random spectra result in
random PSMs. Thus, peptide identification search results contain an aggregation of two
trends, the true and the false positives. The PSMs where the spectra matched to their
source peptides are correct, whereas those matched with peptides they did not originate
from are incorrect. The next step is to separate these trends to distinguish true PSMs
from false ones. Although the ground truth is unknown, controlling the false discovery rate
warrants our confidence in the output PSMs. The target-decoy search [39] is a mainstream
strategy to regulate the false discovery rate (FDR). In this method, a decoy database is
incorporated with the original target database to approximate the FDR.

One way to improve the peptide identification rate without modifying any current steps
is to re-score and re-order the PSMs, [25] which can be applied as a post-processor to the
database search results. PeptideProphet, [74, 18] a semi-supervised learning approach
for peptide identification, distinguishes between the correct and incorrect peptides based
on various parameters such as search score, spectra quality, number of missed cleavages,
and peptide sequence length. The algorithm optimizes negative distribution estimation
using decoys but does not require them. However, training data with known peptide
assignments is required. Shteynberg et al. [113] developed iProphet, which integrates out-
comes derived from multiple database search engines applied to the same data to improve
identification rates and error estimation. Another commonly used post-processor, Percola-
tor, [70), | assigns statistical confidence measures to the PSMs using a semi-supervised
machine learning algorithm. However, it uses decoy PSMs as negative samples during
training. MSBooster [130] incorporates features additional to Percolator to re-score the
PSMs. These additional features are derived from deep learning-based predictions. Simi-
larly, inSPIRE [25] utilizes spectral prediction and retention time derived from Prosit [1]
to re-score the PSMs. Additionally, Halloran et al. [60] introduced a deep semi-supervised
learning method that significantly improves peptide identification accuracy by harnessing
the powerful learning capabilities of deep neural network models.

These methods that learn a new scoring function by using the target and decoy PSMs as
positive and negative examples may compromise the FDR calculation. This is because the
learning algorithm may learn to treat the decoy sequences and the false target sequences
differently by sequence patterns specific to the target sequence database or the decoy
generation algorithm. As a result, the new score distributions of the decoy and false target
PSMs may become different, creating bias in the FDR estimation.

Here, we aim to develop a new way to train the new scoring function without exposing

84



the target-decoy information to the learning algorithm. During the database search for
peptide identification, a spectrum is compared with many peptides in the database. Typ-
ically, only the top-ranked peptide is reported for each spectrum. The other peptides that
are dissimilar to the top-ranked peptide and have lower scores at the same time are most
likely false matches. This is intriguing, as it generates a catalog of nearly confirmed neg-
ative examples without needing to disclose the decoy information. Therefore, we propose
to train the new scoring function by using the top-ranked PSMs as positive examples and
the next-ranked PSMs (refer to Section 5.2.2 for details) as negative examples. Since the
learning algorithm has no access to the target/decoy information, and therefore will not
create the bias in the FDR estimation.

After the manuscript’s submission, we were made aware a related method called Nokoi [52],
which also explores the concept of using lower-ranked PSMs as negative samples for train-
ing a classification model. However, there are significant differences between Nokoi and
our method. Nokoi does not consider peptide similarity when selecting negative samples,
and it uses a classification model pre-trained on a previously generated fixed set of in-
house data. In contrast, our approach trains a new scoring function specifically tailored
to each dataset, allowing for customization and adaptability to different datasets, species,
and instruments.

5.2 Data and Methods

While database search engines can report multiple PSMs for one spectrum, these PSMs
generally appear from similar peptides. However, there are two exciting possibilities when
the peptides are dissimilar. First, the peptides are potentially co-eluting. Multiple pep-
tide precursors are often co-eluted simultaneously in the same tandem mass (MS/MS)
spectrum. [127] For example, two different and dissimilar peptides with the same m/z
co-eluting in the same RT window. In this case, both peptides are true PSMs. If not co-
eluting, one spectrum can only match with one single peptide. So the additional PSMs are
just random matches. In conventional practice, only the top-ranked PSMs are reported and
analyzed for further investigations and utilized for FDR control. The remaining peptides
for each spectrum are seldom correct and are disregarded by search engines. Nevertheless,
we acknowledge that these additional peptides present a valuable opportunity to learn a
new score function for the PSMs.

We propose a method to train a new scoring function using machine learning algo-
rithms to leverage the retained information from the discarded peptide assignments. This
enables us to obtain sufficient negative samples to train the scoring function and improve
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performance. We first sort the PSMs according to their scores, with the top-ranked PSM
being the highest-scoring PSM for each spectrum. Among the remaining PSMs of that
spectrum, we identify the highest-scoring PSM with a dissimilar peptide sequence to that
of the top-ranked PSM as the next-ranked PSM (details in Section 5.2.2). While top-
ranked PSMs can include both true and false positives, all next-ranked PSMs are almost
always false, which is particularly evident for high-quality spectra. We hypothesize that
integrating the next-ranked PSMs to re-score the PSMs can improve peptide identification
rates. To train our new scoring function, we consider top-ranked PSMs as positive samples
and next-ranked PSMs as negative examples. It is worth noting that this selection does
not differentiate between target and decoy peptides. Machine learning techniques based
on logistic regression are employed to learn the updated scoring function, which is then
utilized to re-score the peptides. Only the top-scoring peptide is reported for each spec-
trum, and the target-decoy information is checked at the end to estimate FDR, following
standard practice.

5.2.1 Split Database Search

To train our scoring function, we need a sufficient number of next-ranked peptides as
negative samples. However, search engines usually only report the top-ranked peptide. In
our initial analysis, we were able to identify the next-ranked peptides for less than five
percent of the spectra. As such, it is imperative to devise a strategy to obtain the next-
ranked peptides reliably. To address this challenge, we slightly modify the search process to
generate multiple peptide candidates for each spectrum and rank them according to their
initial scores. We divide the database into k£ parts and utilize them to conduct k separate
database searches. This ensures that we obtain at least one PSM from each database for
each spectrum in the combined search result. Subsequently, we sort the merged result by
the initial score to identify the top-ranked and next-ranked peptides for each spectrum.
By employing this technique with £ = 3, we are able to identify the next-ranked peptides
in a significant majority (over 86%) of the spectra, whereas in a complete database search,
this percentage is less than 5%.

5.2.2 Next-ranked Peptides

Among the list of peptides for one spectrum, the peptide that receives the highest score or
rank is referred to as the best or top-ranked peptide. Peptides that do not closely resemble
the top-ranked peptide are considered as candidates for the next-ranked peptide. The
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next-ranked peptide is the highest-ranked peptide from the list of candidates, regardless
of its original position in the initial list of candidates. To identify the differences between
the top-ranked and the candidate peptides, various similarity measures were employed.

Peptide Similarity Measure.

The computation of peptide resemblance is a crucial step in generating the next-ranked
candidate peptides. Two key factors considered for peptide resemblance are: 1) sequence
similarity and 2) fragment ion similarity. Naturally, the similarity of the peptide sequence
was assessed as the first distance metric, where sequence similarity was determined us-
ing the Levenshtein distance [95], which measures the edit distance between the primary
sequence of each peptide. A distance threshold of 0.3 has been established to define pep-
tide sequence similarity, where a lower edit distance indicates a higher level of similarity
between two peptides. In calculating peptide sequence similarity, isobaric peptides (I, L)
and post-translational modifications (PTMs) that result in a similar mass are treated as
interchangeable (to be discussed shortly).

In addition, theoretical ion matches were computed to further evaluate peptide sim-
ilarity. To evaluate fragment ion similarity, the theoretical spectra of the peptides were
compared instead of their sequences. A similarity percentage was determined by compar-
ing the matching ions between the theoretical spectra of the peptides. To assess fragment
ion similarity, a threshold of 0.5 has been established. We considered both b- and y-ions
in generating the similarity percentage. PSMs that meet the threshold criteria for both
metrics within a given spectrum are considered as potential candidates for the next-ranked
peptide. Therefore, a peptide is considered a candidate when it has more than 30% se-
quence difference from the top-ranked peptide and no more than 50% of the fragment ions
from the theoretical spectra of both peptides coincide. These percentages have been chosen
on the basis of intuitive reasoning.

Post Translational Modifications.

In functional proteomics, PTMs are critical biochemical modifications of proteins. PTMs
can occur at any stage of a protein’s existence, including during mass spectrometry analysis.
Some PTMs may result in similar masses as other amino acid residues, posing challenges in
distinguishing them based solely on mass spectrometry data. For instance, deamidation of
asparagine (N +0.984) can result in mass nearly identical to aspartic acid (D), deamidation
of glutamine (@ + 0.984) can result in mass similar to glutamic acid (E), and oxidation of
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methionine (M 4 15.995) can result in mass almost same as phenylalanine (F). As a result,
if all other factors are identical, the m/z values will be the same for both peptides. To
address this issue, we considered such pairs of peptides with similar masses due to PTMs as
interchangeable in our next-ranked peptide calculation, treating them as having the same
rank. As a result, if one such peptide is the top-ranked peptide, the other one will not be
placed on the candidate list of next-ranked peptides.

5.3 Results

Based on our hypothesis, we consider top-ranked PSMs as positive samples and next-ranked
PSMs as negative samples for training our scoring function with additional features. We
then re-score the PSMs, rearrange the PSMs based on the new scores, and calculate the
FDR from the target and decoy PSMs. Importantly, our algorithm does not require iden-
tifying the decoy PSMs to re-score or re-rank the PSMs. The decoy database is incorpo-
rated only for performance comparison with existing methods, and our algorithm remains
blind to the target-decoy labelling until evaluation. In our experiments, we utilized four
datasets: 1. Human HeLa (ProteomeXchange project ID: PXD015028) dataset, [90] 2.
Mouse muscle spindle (ProteomeXchange project ID: PXD035552) dataset, [10] 3. Human
pulmonary microvascular endothelial cells (ProteomeXchange project ID: PXD036260)
dataset, [78] and 4. Human HeLa (ProteomeXchange project ID: PXD005280) dataset. [9]
Uniprot databases were used as the target database in our experiments. We gener-
ated the decoy databases for target-decoy database search using a repeat-preserving de-
coy algorithm. [90] For our initial experiment, we utilized the first human HelLa dataset
(ProteomeXchange project ID: PXD015028), the UniProt human database as the target
database, and Comet [12] as the database search engine. We primarily sorted and ranked
the PSMs using the ‘expect’ score (—log Fv). This dataset contains approximately 97k
top-ranked PSMs and 82k next-ranked PSMs. Since traditional database search engines
typically only report top-ranked PSMs and dismiss the rest, to ensure sufficient next-
ranked PSMs for our analysis, we employed a three-way split database search where we
divide the database into three parts and conducted individual searches on each split. The
HeLa dataset has around 72k top-ranked target PSMs, 25k top-ranked decoy PSMs, 44k
next-ranked target PSMs, and 38k next-ranked decoy PSMs. Notably, the number of de-
coys in next-ranked PSMs is much higher than in top-ranked PSMs. We then used three
additional features, namely ‘enzC’ (C-terminal tryptic), ‘enzN’ (N-terminal tryptic), and
number of missed cleavages to train our scoring function. The default traditional database
search algorithm using Comet search engine and the ‘expect’ score (—log Fv) identified
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ProteomeXchange Sample Instrument # Taregt at 1%FDR | Improvement
ID type type Default | Re-scored
PXDO015028 HeLa Q Exactive 31,931 34,512 8.1%
PXD035552 Mouse Q Exactive HF | 2,115 2,294 8.5%
PXD036260 Human Q Exactive 7,967 8,229 3.3%
pulmonary
PXD005280 HelLa Q Exactive 11,289 12,408 9.9%

Table 5.1: Numbers of target PSMs at 1% FDR reported by default method and our
method using Comet as the database search engine for different datasets. The final column
indicates the percentage of improvement achieved after re-scoring.

31,931 PSMs at 1% FDR. In contrast, our algorithm identified 34,512 PSMs at 1% FDR

after re-scoring, reporting 8.1% additional PSMs compared to the initial scoring method.

To ensure generalizability, we performed supplementary experiments using various
species and samples. Specifically, we conducted experiments on human pulmonary mi-
crovascular endothelial cells and a distinct HeLa dataset, which yielded improvements of
3.3% and 9.9%, respectively. Additionally, our algorithm demonstrated uniform perfor-
mance across diverse species, as evidenced by the noteworthy 8.5% improvement observed
in the mouse dataset. Overall, our results, as presented in Table 5.1, suggest that our
approach can consistently improve performance for both different samples within a given
species and across different species.

We carried out another experiment to test whether overfitting plays a role in the im-
provement above. We divided the data into training and testing spectra with a 3 : 1 ratio
and trained the new scoring function only on the top and next-ranked peptides of the train-
ing spectra. We then tested the performance on the testing spectra. The retrained scoring
function identified 7.9% additional PSMs at 1% FDR compared to the default scoring
method. This improvement is very similar to the 8.1% improvement ratio obtained when
the training and re-scoring were both on the whole dataset. This suggests that by hiding
the target/decoy information from the training, we successfully avoided any significant
overfit.

5.4 Conclusion

The presence of random spectra and incorrect PSMs due to poor spectra quality or back-
ground noises can affect the accuracy of peptide identification. Methods that use decoys
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as training data introduce potential bias in FDR calculation. In this study, we propose
a novel post-processing algorithm to improve peptide identification without using target-
decoy labeling. We suggest using the next-ranked PSMs, which are typically discarded in
traditional methods, as negative samples to bypass the problem of decoy unmasking. The
proposed method aims to retrain the scoring function after the initial database search to
achieve a more accurate ranking of PSMs. Our study provides compelling evidence support-
ing the use of a curated machine learning algorithm to significantly enhance performance.
By employing three meticulously selected features in our analysis, we achieved promising
results. Nonetheless, our findings suggest that the integration of additional features has
the potential to further augment our algorithm’s efficacy.
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Chapter 6

Advanced Machine Learning to
Retrain and Re-score the PSMs

As indicated in Section 5.4, it has been proposed that the retraining method can benefit
from the integration of advanced machine learning algorithms. In this chapter, we scruti-
nize the performance of our proposed re-scoring method when applied to datasets (PSMs)
generated by different search engines (Section 6.1). Furthermore, we delve into the appli-
cation of two advanced machine learning techniques to further substantiate the efficacy of
utilizing next-best PSMs as suitable negative samples.

Our primary objective for this chapter is to enhance the performance of the re-scoring
function by leveraging various well-established machine learning algorithms. Addition-
ally, we offer a detailed comparison and discussion surrounding the utilization of best
and nezxt-best as positive and negative samples, respectively, within the framework of the
Mokapot [15] algorithm.

6.1 Re-scoring PSMs: Results from Different Search
Engines

To ensure the generalizability of our findings, we conducted a series of supplementary
experiments that employed varying species, datasets, and database search engines. We
have utilized search results from two distinct search engines, namely MS Amanda [31] and
MS-GF+ [75], alongside Comet, to ensure that the effectiveness of our proposed method
does not depend on the specific search engine.
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MS Amanda is a specialized peptide identification algorithm tailored for high-accuracy
and high-resolution mass spectrometry data. Notably, MS Amanda boasts remarkable
accuracy, demonstrated by the substantial overlap in identified spectra compared to gold
standard algorithms such as SEQUEST [13] and Mascot [99]. A notable benefit of MS
Amanda, particularly with the introduction of MS Amanda 2.0 [35], is its exceptional
speed in identification. Additionally, the algorithm has been expanded to facilitate a second
search, enabling the identification of peptides within chimeric tandem mass spectra.

In contrast, MS-GF+ is optimized for a multitude of spectral types, which encompass
diverse combinations of fragmentation methods, instruments, enzymes, and experimental
protocols. It stands out as an MS/MS database search tool known for its sensitivity,
capable of identifying more peptides compared to other database search tools and on par
with spectral library search tools [75]. Notably, our results align with this claim, despite
our original research goals being distinct from this specific evaluation.

6.2 Enhancing Re-scoring Function Performance: Ad-
vanced Machine Learning Models

In our pursuit of establishing the suitability of next-best peptide-spectrum matches as
a representative approximation of the false distribution, we initially employed a logistic
regression-based re-scoring function, as outlined in [91]. However, recognizing the potential
for enhancing the efficacy of our re-scoring function, we sought to explore the application
of advanced machine learning models.

To explore this avenue, we performed experiments with re-scoring functions imple-
mented using XGBoost [17] as well as a straightforward neural network algorithm. These
investigations were carried out within the framework of our baseline HeLa dataset, as de-
tailed in Section 5.3. The objective of these experiments is twofold: firstly, to assess how
these advanced machine learning models compare to the logistic regression approach for
our study, and secondly, to strengthen the empirical evidence supporting the viability of
employing next-best PSMs as negative examples to train our re-scoring function.

6.2.1 XGBoost

We utilize XGBoost [17], an ensemble machine learning algorithm based on decision trees,
to implement our re-scoring function. The algorithm works by combining the predictions
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of multiple weak learners (typically decision trees) to create a strong predictive model.
XGBoost, which stands for Extreme Gradient Boosting, is a renowned and versatile ma-
chine learning algorithm recognized for its exceptional performance across diverse domains,
including bioinformatics. Its reputation for both speed and efficiency makes it a highly suit-
able choice for a wide range of applications, including the enhancement of PSM re-scoring
in proteomics research.

6.2.2 Neural-network (NN) Model

Furthermore, we utilize a sequential neural network model to improve the performance
of the PSM re-scoring function. This neural network architecture has been deliberately
designed with a concise layer configuration, keeping it simple. The rationale behind this
choice is to investigate the potential benefits that advanced machine learning models may
bring to the performance of the re-scoring function. While this avenue holds great promise
and is indeed exciting, we have decided to set it aside temporarily. Our rationale for this
decision is twofold. Firstly, our foremost objective centers on establishing the adequacy of
next-best as a proxy for the false distribution within the context of our proteomic research.
By concentrating our efforts on this critical aspect, we ensure that the foundation of our
methodology is solid and thoroughly validated.

Secondly, we lay the groundwork for a promising future direction. Specifically, we
envision the development of a dedicated neural network model tailored explicitly to the
task of re-scoring PSMs while using the next-best PSMs as negative samples.

6.3 Re-scoring PSMs: A Comparative Analysis of Mokapot
with Proposed Positive and Negative Samples

In our ongoing efforts, we leverage Mokapot [15], a Python implementation of the well-
established PSM post-processing method Percolator [70, |, which is based on a semi-
supervised learning algorithm. Mokapot is an open-source Python package, that can be
found at https://github.com/wfondrie/mokapot.

In this phase of our study, we fine-tune Mokapot by training it with our proposed best
and next-best PSMs, designated as positive and negative samples, respectively. We then
proceed to compare its performance against the default approach, where targets and decoys
are used as the positive and negative samples for PSM re-scoring. We maintain all other
parameters at their default settings for Mokapot.
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The only deviation from these default settings involves the modification of a specific
parameter to additionally output the decoy confidence values. This adaptation is essential
as it enables us to calculate the 1% FDR from the re-scored PSMs, utilizing the established
method of false discovery rate calculation that considers both target and decoy counts.
Subsequently, we analyze the resulting PSMs reported by Mokapot with the original target-
decoy labeling. Importantly, it should be emphasized that our reporting of results does not
factor in ranking information, specifically whether a PSM is classified as best or next-best.
Similarly, we do not provide Mokapot with the target-decoy labels.

6.4 Results and Discussion

In our experimental setup, we worked with two distinct datasets derived from different
species: 1. Human HeLa (ProteomeXchange project ID: PXD015028) dataset [90], and 2.
Mouse muscle spindle (ProteomeXchange project ID: PXD035552) dataset [10]. Uniprot
databases were used as the target database in our experiments. We generated the decoy
databases for target-decoy database search using a repeat-preserving decoy algorithm [90].
Our baseline analysis was conducted on the initial Human HeLa dataset (ProteomeXchange
project ID: PXD015028), using the UniProt human database as the target reference, as
described in Chapter 5. During the database search process, we implemented the 3-way
split database search method as outlined in [91].

In this chapter, we initiate our analysis by evaluating the effectiveness of our re-scoring
approach when applied to PSMs obtained from two different search engines, MS Amanda
and MS-GF+. In this assessment, we incorporate two boolean features, namely ‘enzC’
and ‘enzN’, which signify whether the C-terminal and N-terminal are tryptic, respectively.
Additionally, the number of missed cleavages is utilized as a feature in some of our ex-
periments, as mentioned in the respective results. These features serve as inputs for our
machine learning-based re-scoring function. Subsequently, we provide a comprehensive
performance comparison of various implementations of the re-scoring function as applied
to Comet-generated PSMs. These results offer valuable insights into the effectiveness of
advanced machine learning methods in contrast to the logistic regression-based approach
discussed in Chapter 5.

In determining the number of training spectra, we also consider that the training data
contains both top-ranked and next-ranked PSMs, while the testing dataset only contains
the top-ranked PSMs. So, if we want 75% training data and 25% testing data, our number
of training spectra will be 60% of the total spectra. A similar strategy was applied while
testing for overfitting in the previous chapter (Chapter 5).
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Additional

Data Search Engine # Target at 1%FDR Improvement Features
Target-Decoy | Re-scored
PXESTISO% MS-GF+ 35,145 35,244 0.28% ‘erfzfél\?fl d

Table 6.1: Numbers of Target PSMs at 1% FDR with different search engines and datasets.

The second-to-last column represents the percentage of improvement achieved after the re

scoring.
Data P};ii:iig # Target at 19%FDR Improvement Al*?e (:tt ;(316151
Target-Decoy | Re-scored
‘enzC’,
HeLa Logistic enzN’, and
PXD015098 Regression 31,931 34,512 8.1% number of
missed
cleavages
‘enzC’,
HeLa Neural- enzlN', and
PXD015028 network 31,931 34,415 7.78% nungber of
missed
cleavages
‘enzC’,
‘enzN’, and
Hela XGBoost 31,931 33,226 4.06% number of
PXD015028 ’ ’ ’ .
missed
cleavages

Table 6.2: Number of target PSMs at 1% FDR with different re-scoring functions for Comet
PSMs. The second-to-last column represents the percentage of improvement achieved after

the re-scoring.
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We integrated MS Amanda [31] and MS-GF+[75] as additional database search engines
in our analysis. Despite using only two features, ‘enzC’ and ‘enzN,” the MS Amanda [3/]
experiment resulted in a 2.39% improvement in PSM scoring accuracy (Table 6.1). Sim-
ilarly, in the case of MS-GF+[75], where we also employed only ‘enzC’ and ‘enzN,’ the
outcomes varied across different datasets. For instance, in the HeLa replicate one dataset
(PXDO015028), we observed a modest improvement of 0.28%, as shown in Table 6.1. How-
ever, it is noteworthy that in the Mouse dataset (PXD035552), a substantial improvement
of 7.9% is observed.

Furthermore, we present a Venn diagram (Figure 6.1) illustrating the number of PSMs
that overlap and those that remain exclusive among the 1% FDR results reported by the
default scoring and re-scoring methods. For this diagram, we utilized the Comet-generated
PSMs from our baseline Hela dataset, as detailed in Section 4.7. Following the re-scoring
process, we observed an increase of 4,376 new PSMs; however, we also experienced the loss
of 1,711 PSMs at the 1% FDR threshold. To assess the quality of the gained and discarded
PSMs, a closer examination of the results is necessary. Specifically, we identified that the
number of decoys gained through re-scoring was 309, while the number of decoys removed
amounted to 297. Figure 6.2 illustrates the score distribution of newly acquired PSMs
and eliminated PSMs obtained at the 1% FDR threshold after re-scoring. The plot clearly
indicates that post-re-scoring, we acquire a higher number of PSMs with higher scores and
simultaneously exclude PSMs with lower scores.

As an additional experiment, we exclusively examine the baseline HeL.a dataset, retain-
ing all Mokapot parameters in their default settings. Nevertheless, we deviate from the
default configuration by adjusting a specific parameter to generate confidence values for
decoy PSMs. By default, Mokapot outputs confidence values only for target PSMs. This
adaptation is pivotal in enabling the calculation of the 1% FDR from the re-scored PSMs
when employing target-decoy labeling.

As part of our control results, we perform an experiment in which Mokapot is trained
with the traditional approach: target PSMs are labeled as positive (label=1), and de-
coy PSMs are labeled as negative (label=-1). This approach represents the conventional
standard.

Our primary objective is to assess how our proposed method integrates with Mokapot.
To achieve this, we train Mokapot using our best and next-best PSMs as positive and
negative samples, respectively. We accomplish this by assigning the label ‘1’ to best and
-1’ to mext-best. Subsequently, we identified the results reported by Mokapot with our
customized training data, and we analyzed these results using the available target-decoy
labeling. It is important to note that our results reporting does not consider ranking
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Re — scored Default

¢ Defanlli 2516 ¢ Re — scored 1711

*Hela PXD005280 dataset

Figure 6.1: Overlap and discrepancy in PSMs between default scoring and re-scoring meth-
ods at 1% FDR using Comet-generated PSMs, using baseline HeLa data. The Venn dia-
gram illustrates the number of PSMs reported in both the default and re-scored approaches,
the number of PSMs that only appear after re-scoring (¢ default), and the number of PSMs
that are removed after re-scoring (¢ re-scored).

information, specifically whether a PSM is categorized as best or next-best. Essentially,
during training, we manipulate Mokapot into treating best and next-best as targets and
decoys, respectively.

Following this, we proceed to compare the performance of this modified approach with
the default method, where targets and decoys are employed as the positive and negative
samples for PSM re-scoring. The results of this comparative analysis are presented in
Table 6.3. We present results while training with different subsets of features that Comet
reports. The feature descriptions listed in Table 6.4 are primarily sourced from [70]. For
more comprehensive details on these features, refer to [11]. Interestingly, as shown in
Table 6.3, Mokapot’s performance improves significantly when trained with best and next-
best PSMs after removing certain features. However, its performance remains relatively
stable when trained with target and decoy PSMs.
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Figure 6.2: Distribution of the PSMs gained vs. lost after re-scoring.

6.5 Conclusion

In summary, this chapter explored the re-scoring of PSMs obtained from MS Amanda
and MS-GF+ database search engines, revealing varying improvements in accuracy across
diverse datasets. Our analysis of the score distribution among the gained and discarded
PSMs provided valuable insights into the enhanced quality achieved through re-scoring,
particularly in the identification of higher-scoring PSMs. These findings underscore the
potential of advanced re-scoring methods in proteomics research, highlighting the signifi-
cance of careful analysis and evaluation to optimize their effectiveness.

In addition, this chapter introduced the results of an enhanced re-scoring function
implemented with advanced machine learning techniques such as XGBoost and neural
networks. These findings enrich our understanding of the potential enhancements achiev-
able within the re-scoring function through the application of advanced computational
approaches, emphasizing the significance of optimizing re-scoring methodologies for accu-
rate PSM identification.

Furthermore, the findings presented in this chapter indicate that the presence of in-
herent similarities among numerous proteins in the target database poses a challenge for
cross-validation methods similar to the one used in Mokapot, as they may not entirely
prevent the inadvertent leakage of target information.
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best /next-best | target/decoy Training Features

‘ExpMass’, ‘CalcMass’, ‘InrSp’, ‘deltLCn’,

‘deltCn’, ‘InExpect’, ‘Xcorr’, ‘Sp’, ‘lonFrac’,

32,186 35,822 ‘Mass’, ‘PepLen’, ‘Charge’, ‘Chargel’, ‘Charge3’,

‘Charge4’, ‘Chargeb’, ‘Charge6’, ‘enzN’, ‘enzC’,
‘enzInt’, ‘InNumSP’, ‘dM’, ‘absdM’

35,739 35,759 ‘enzN’, ‘enz(C’, ‘enzlnt’, ‘Charge’

35,855 35,745 ‘enzN’, ‘enzC’, ‘enzlnt’

Table 6.3: Number of target PSMs at 1% FDR reported by Mokapot when trained with
various features and different sets of positive and negative samples (best/next-best in the
first column, target/decoy in the second column). Improved performance after re-scoring
with Mokapot when proposed best /next-best used as positive and negative samples.
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Feature Name

Description

ExpMass Experimental Mass
XCorr Cross-correlation between theoretical and experimental spectra.
Sp Initial score comparing the peptide to the predicted fragment ion
values.
IM The difference between the theoretical and experimental peptide
mass in Daltons (Da).
absdM The absolute value of the difference in theoretical and
experimental mass.

ionFrac The ratio of matched b- and y- ions

The natural logarithm of the number of in-sillico database peptides
In(NumSp) - .

present within the specified m/z range.
enzN Boolean: Is the N terminal an enzymatic (tryptic) site?
enzC Boolean: Is the C terminal an enzymatic (tryptic) site?
enzlnt Number of missed internal enzymatic (tryptic) sites or the number
of missed cleavages.
Charge The charge state.
Chargel-6 Six Boolean features indicating the charge state.
PepLen Lenght of the peptide
deltaCn The normalized difference in XCorr for this PSM compared to the
subsequent ranked PSM for the same spectrum and charge.

Similar to delta_cn, except the difference is calculated in relation to

delta_Icn the lowest reported XCorr score for a specific spectrum and charge

state.

Table 6.4: List of features for Mokapot including a brief description
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Chapter 7

Conclusion

Our research, which aimed to improve peptide identification rates, was driven by two core,
interconnected strategies. The first focused on enhancing decoy generation methods to
address inherent biases and limitations, delving into the complexities of creating effective
decoys. The second strategy diverged from traditional target-decoy paradigms, introduc-
ing a methodology based on the premise that an absent target peptide in a sample is
functionally akin to a decoy peptide. This led to a novel approach to use search results
beyond conventional labels, notably generating and utilizing additional PSMs for each spec-
trum. This approach not only aimed to refine peptide identification processes, but also
ventured into new areas of false distribution modeling and FDR estimation. Collectively,
these strategies signify a comprehensive effort to advance proteomics research in peptide
identification and validation.

7.1 Summary of Contributions

Two scholarly articles have been published from this research: the first centers on devel-
oping a repeat-preserving decoy technique [90], while the second addresses the re-scoring
of peptide spectrum matches through the use of nezt-best PSMs [91].

7.1.1 Repeat-Preseving Decoy

Current decoy generation methods lack one or more properties of an ideal decoy. This
encouraged the use of de Bruijn graphs to generate repeat-preserving decoys. A repeat-
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preserving decoy is a type of decoy sequence generated for proteomic studies in such a
way that it maintains the same repetitive patterns and sequences as the target protein
but with differences that make it a decoy. This preservation of repeats ensures that the
number and distribution of repeated elements in the decoy remain similar to those in the
target sequence. The goal is to create a decoy that closely mimics the target’s repetitive
structure while still being distinct, allowing it to be used effectively in false discovery rate
estimation during proteomics experiments.

The proposed method is not dependent on the specificity and completeness of enzyme
digestion, which signifies a novel advancement in improving the quality of decoy database
generation. This technique not only maintains a balance between the quantities of unique
target and decoy peptides, but also preserves the statistical properties, thereby contributing
to a more accurate and reliable false discovery rate estimation. An example implementa-
tion of the algorithm in Java can be found at https://github.com/johramoosa/deBruijn.
Furthermore, the Human Hela dataset used in this project can be downloaded from Pro-
teomeXchange (ProteomeXchange project ID: PXD015028).

7.1.2 Retraining with next-best PSMs

We introduce the concept of next-best peptide-spectrum matches, derived from data typ-
ically disregarded in conventional practice. While we continue to employ target-decoy
labels for validation purposes, our hypothesis suggests avoiding their use during the learn-
ing phase. This aims to ensure an unbiased target-decoy false discovery rate validation
process. Our approach not only provides the opportunity to utilize next-best PSMs for
FDR estimation but also broadens its applicability to other domains within the field of
proteomics, such as spectral library searches.

7.2 Limitations and Challenges

Although the repeat-preserving de Bruijn decoy effectively addresses the imbalance between
the counts of unique targets and decoys, it does not fully resolve the inherent trade-off be-
tween repeat-preservation and randomness. As detailed in Section 3.3.4, any method for
generating repeat-preserving decoys must maintain a certain degree of correlation between
different segments of the target database, precluding total randomness. Nevertheless, an
appreciable degree of randomness is desirable. For instance, our empirical data reveal that
employing deterministic rules for decoy generation, such as reversal or shifted reversal tech-
niques, can lead to a systematic increase in false positive matches. This increase is largely
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attributed to nuanced similarities between target peptides and their decoy counterparts as
well as to the scoring algorithms employed by the search engine. Alternatively, the employ-
ment of a different deterministic generation method could conceivably lead to a systematic
reduction in decoy hits. The inclusion of randomness serves to temper this systematic bias.
Within the framework of our de Bruijn decoy methodology, the tunable parameter k allows
subtle control over the trade-off between randomness and repeat preservation. Increasing
k enhances the randomness by increasing the number of random parameters, albeit at the
cost of decreasing the length of preserved repeats.

Although the conceptual utility of best and next-best categories is compelling, and our
preliminary findings are promising, the generalizability of the method across various search
engines and datasets is limited for FDR estimation. The optimization procedures are not
only time-consuming but also dataset-specific, making the approach impractical for broader
applications, especially when the gains are marginal.

Our experiments using best and next-best PSMs for re-scoring have yielded encouraging
outcomes. However, the intricate relationship between the features and next-best peptide
spectrum warrants further investigation. Our preliminary analyses indicate that the in-
corporation of certain features adversely impacts performance during retraining with best
and next-best PSMs as presented in Table 6.3. Sophisticated deep-learning methodologies
may be essential for deciphering these complex correlations.

7.3 Future Research Directions

We recognize the allure and potential of advanced machine learning models, which have
demonstrated remarkable capabilities in various domains. However, our commitment to
the current research objective of validating next-best PSMs as suitable negative samples
has required us to temporarily delay the exploration of more complex neural network
architectures.

It is important to note that the scope of our research is not limited to the current study.
Beyond our existing research, we present a future avenue of research specifically dedicated
to crafting a deep neural network model that is optimized for re-scoring PSMs, with an
emphasis on deciphering the intricate relationships between features and next-best PSMs.
In particular, the utilization of explainable Al could prove advantageous for elucidating
the impact of various features.

Another interesting research direction can be to investigate methods to integrate pro-
teomic data with other omics data, such as transcriptomics, to gain a more comprehensive
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understanding of the efficacy of the proposed re-scoring method. The exploration of ad-
vanced and more comprehensive methods to calculate PSM similarity, such as the incorpo-
ration of other omics data, holds significant potential benefits. For example, by combining
proteomic and transcriptomic information, researchers can gain a deeper understanding
of the relationships between gene expression and protein abundance. It is improbable
that a peptide originating from an abundant protein is incorrect, rendering it an unlikely
candidate to be classified as the next-best PSM.

Furthermore, the development of more efficient and universally applicable augmentation
methods for FDR estimation using nezt-best PSMs could mitigate the need for dataset-
specific optimization, thus making them applicable to a wider range of search engines.

7.4 Conclusion

In summation, this research has made noteworthy strides in the domain of proteomics,
specifically addressing the complexities involved in peptide identification and validation.
We have successfully implemented repeat-preserving de Bruijn decoys to tackle the issue
of imbalance between the number of unique targets and decoys. Despite the trade-off of
repeat preservation and randomness, our methods signify an important advancement in
decoy database generation.

Our exploration of retraining techniques using best and next-best PSMs as positive and
negative samples has shown promise. This method effectively curtails the leakage of target-
decoy information, as manifested by the enhanced identification rates recorded in various
experiments. Moreover, we recognize that machine learning models serve as a rich domain
for subsequent research endeavors aimed at elucidating the intricate relationship between
features and PSMs. While the technique has not yet achieved universal applicability for
FDR across diverse search engines and datasets, the initial findings affirm its promise.

Beyond the current investigation, we introduce a series of subsequent studies focused on
applying advanced machine learning techniques. This agenda includes the use of explain-
able Al to understand feature effects, the formulation of sophisticated re-scoring functions,
and the development of more efficient FDR estimation techniques that are applicable to a
wider range of search engines.

This research made novel contributions to the rapidly progressing field of proteomics.
We are confident that the methodologies and findings of this work will catalyze ongoing
advancements in peptide identification and validation techniques. Addressing existing lim-
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itations and providing innovative solutions, this work sets the stage for additional research
in this essential domain.
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