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Abstract

General game playing (GGP) is a �eld of reinforcement learning (RL) in which the
rules of a game (i.e. the state and dynamics of an RL domain) are not speci�ed until
runtime. A GGP agent must therefore be able to play any possible game at an acceptable
level given an initialization time on the order of seconds. This time restriction promotes
generality, precludes the use of the deep learning methods that are popular in the RL
literature, and has led to the widespread use of Monte Carlo Tree Search (MCTS) as a
planning strategy. A typical MCTS planner builds a search tree from scratch for every
new game, but this leaves usable information on the table. Over its full history of play, an
agent may have previously encountered a similar game from which it could draw insights
into its current challenge. However, recognizing similarity between games and e�ectively
transferring knowledge from past experience is a non-trivial task.

In this thesis, we develop methods for automatically identifying similar features in two
related games by �nding an approximated edit distance between the graphs generated from
their rules. We use that information to guide MCTS in one game with general heuristics
initialized via transfer from a previously played game. Despite the computational cost
of doing so, we show that the more e�cient search granted by this approach can lead
to better performance than either UCT (a standard method of MCTS) or a non-transfer
MCTS agent with access to the same general heuristics. We examine the circumstances
under which transfer is most e�ective, and also identify and create solutions for the cases
where it is not.
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Chapter 1

Introduction

Games have long been an important test bed and source of grand challenges for Arti�cial
Intelligence (AI) research. For machines, their strict rules and well-de�ned state transi-
tions provide predictable conditions for evaluating new methods. For humans, games are
challenging, thought-provoking, and of course, fun. Today, AIs like Deep Blue, Watson,
and AlphaGo remain household names, owing to the spectacle of their mastery over games
that everyday people play, enjoy, and know to be di�cult.

Progress in this �eld may be marked by the complexity of the games being examined
and the level of dominance achieved by the arti�cial agents (sometimes called AIs or bots)
that play them. Simpler games, like Connect Four [5] and Checkers [65], have been solved
such that no other player can possibly win. More complex games, such as Chess [15] and
Go [70] are not fully solved, but can be played by an AI to a level that far surpasses the
best human players. Each of these milestones represent a triumph of engineering that
captures the imagination and demonstrates how far AI research has come, but in it, they
also expose a fault. These champion agents are highly specialized. AlphaGo is a master
of Go, but can not play Go Fish. Its successor, AlphaZero, can learn to play a variety
of games at a world-class level, but requires hours to weeks of training on powerful banks
of machines for each one. This kind of resource expenditure is simply not appropriate for
many of the `games' that make up the world around us. Here, a `game' does not necessarily
refer to a recreational activity, but rather, a problem in which one must navigate from some
initial state to a terminal state via a set of well-de�ned rules. This de�nition encompasses
a broad variety of tasks, and an agent that could be presented with any such task and
very quickly perform at an acceptable level would be an extremely useful multi-purpose
assistant. It would come closer to achieving arti�cial general intelligence than any bot
trained exclusively for a single game, like Chess.
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General Game Playing (GGP) is a �eld of study whose researchers endeavour toward
this goal. In GGP, an agent must be able to play any game presented to it, without ever
having seen it before. It has a short window for initialization (up to a few minutes) and
thereafter must submit moves every few seconds until the game terminates1. These strict
time restrictions are intended to force a more general approach to game playing (hence the
name). There simply isn't time to train large deep neural networks for every problem, and
as a result, state-searching algorithms still �ourish in this domain.

Monte Carlo Tree Search (MCTS), in particular, has proven to be very e�ective in
GGP. Its greatest asset is its ability to see terminal states very quickly, which allow it
to detect promising strategies even in domains with very sparse reward structures. As a
result, MCTS agents perform relatively well learning every game from scratch, without
carrying knowledge gained in one game to the next. However, this leaves potentially
useful information on the table that could be used to push them even farther. Experience
as a human player tells us that analogy is a powerful tool for learning. If one already
understands the game of Checkers, it should be relatively simple to transition to Checkers
on a larger board. In a realm where time is so limited, a better understanding of the game
means more e�cient search and better performance. When knowledge gained in one game
is applied to another in this way, we say that the knowledge has been transferred, and refer
to the AI as a transfer agent. Over a lifetime of service, a GGP agent should accumulate
a wealth of knowledge and leverage it to become more adept at quickly adapting to new
challenges via transfer. This is important because it is what humans do, and because it is
wasteful not to do so.

In this thesis, we develop methods for automatically identifying similar features between
two related games, and using that information to guide MCTS via general heuristics.
Despite the computational cost of doing so, we show that the more e�cient search granted
by this approach can lead to better performance than either UCT (a standard method of
MCTS) or a non-transfer agent with access to the same general heuristics. We examine the
circumstances under which transfer is most e�ective, and also identify and create solutions
for the cases where it is not.

1.1 Contributions

The contributions made by this thesis may be summarized as follows:

1The exact periods of time given for initialization and turn-taking are variable, and may be chosen by
the organizer of a GGP event. 60 seconds for initialization, and 15 seconds for every subsequent turn are
reasonable default values, taken from Stanford's ongoing online tournament.
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� A method for approximating an edit distance between nodes in the graphs generated
from the rules of two di�erent games.

� Two algorithms, LMap and MMap, that use this edit distance to �nd a mapping
between the most similar symbols in those games.

� A system for organizing and storing data needed for transfer.

� A modular system for calculating general heuristics, and a modi�ed version of UCB1
that is in�uenced by those heuristics, weighted by the strength of their correlation
with reward.

� TI-GMCTS, a GGP agent that uses transferred knowledge to guide MCTS, using all
of the contributions above.

� Ancillary systems for TI-GMCTS, including source game selection and negative trans-
fer protection.

The �rst two of these contributions were published at the 2021 Conference on Games [36]
with co-author Jesse Hoey, who provided supervisory assistance and proofreading.

In sum, these contributions allow us to achieve autonomous transfer within the time
scales permitted by GGP. On its own, we believe this to be a novel result within the
research area. In incorporating these methods with MCTS, we are certainly the �rst,
which is important for the reasons discussed in Section 1.2.

This thesis makes use of the original Game Description Language [52] (described in de-
tail in Section 2.2.2), which limits our focus to deterministic games (although the methods
we describe are agnostic to non-determinism). Additionally, we consider only single-player
games and two-player games in which players alternate turns (which need not be zero-sum).
Application to other languages is considered in Section 6.1.

A repository of the code associated with this thesis can be found at https://github.
com/jdajung/ggp-transfer.

1.2 Motivation

GGP: We begin by addressing a question that is unavoidable given the state of modern
AI: GGP is a �eld of research that was created before the rise in popularity of deep learning.
Does it still have a place in a world with AlphaZero and large language models? We believe

3
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the answer to be yes, unambiguously. It is di�cult to apply deep reinforcement learning
methods to GGP because of the extremely limited time and computational power that such
an agent would have to train. For this reason, GGP lends itself well to problems that are on
a smaller scale than grand challenges in AI, problems for which it would be inappropriate
to undertake the cost of training a model like AlphaZero, or even the �ne-tuning of such
an agent.

We refer to `problems' and `games' interchangeably in this context, because games in
GGP need not be fun. Due in part to its history of tournament-style competitions, the
GGP literature heavily features two-player board games, but we are not limited to them.
A GGP agent is, at its heart, a general-purpose problem-solver.

For example, consider a personal assistant application. ChatGPT has shown that there
is a market for an agent capable of answering any question, including performing small
problem-solving tasks. However, this is a task for which large language models are not well
suited, since their responses are not beholden to the rules of the problem, and they have a
propensity to o�er nonsense solutions or lies. It is a niche that requires a quick response
at low computational cost, within a well-de�ned set of rules, which is exactly the domain
of GGP.

Games for Fun: Having just described GGP as a good �t for serious tasks, we now
make the case that there is real value in playing games for fun, as well, and discuss the
reasons that we are (mostly) concerned with two-player board games in this work. Part of
this value is in communication. For the same reasons that board games attracted public
notoriety as grand challenges, they are useful in demonstrating ideas, even to people with
no prior knowledge of GGP. These games are familiar and easy to visualize. We can
quickly develop our own heuristics for playing them that give insight into which general
heuristics are likely to be most e�ective. We will discuss several ways in which board games
can by transformed to produce variant games, and these transformations, as well as their
implications on state space and strategy, are easiest to intuit and understand when they
are applied to a well-known base game. Games also make progress easy to measure, since
new techniques can be tested against other bots, as well as human players.

There is also economic value in purely recreational games. Video games frequently
feature AIs at various levels of di�culty for human opponents to play. Having stock GGP
agents available for this purpose would save the cost of having a developer code these bots
from scratch. Although a GGP agent would not be likely to play the game as well as, for
example, a well trained AlphaZero bot, it is not normally desirable for video game AIs
to be unbeatable. Rather, they are meant to impose a variable level of challenge to the

4



player, which, for a GGP agent, can reasonably be tuned by adjusting the amount of search
permitted.

Finally, there is value in pursuing fun for its own sake. Passion for a topic is an excellent
motivator for pushing it forward, and, to set aside formality for a moment, it has been my
privilege to work on one for which I am genuinely excited. I hope that, in reading this
research, you are also able to experience some of that enjoyment.

MCTS: If deep learning is currently limited in its applicability to GGP, then GGP
remains a relevant research area for other methods to �ourish. As previously alluded,
MCTS was a dominant method in the annual GGP competitions [79], and is deeply rooted
in the GGP literature. There is therefore good reason to build our new methods on it (as
opposed to another search or reinforcement learning algorithm), since doing so allows our
work to be applied more easily to existing projects, and integrated with methods that we
have not used. It also allows us to use UCT (described in Section 2.1.2) to be used as a
strong, well-understood baseline for comparison that shares all of the same basic code as
our experimental agents. This prevents di�erences in coding e�ciency from impacting our
�ndings.

Transfer: We discuss some related works applying transfer to GGP or related problem
areas in Section 2.3, but overall, it remains an underdeveloped area of research, and we
are not aware of any GGP agents using transfer in competition, or an environment that
mimics one. Instead, transfer has typically either been unconstrained by time, or not fully
autonomous (e.g. by requiring a hand-made mapping of similar symbols, or a hand-made
set of rule graph templates for comparison).

Additionally, none of these methods show a successful applications of transfer to MCTS.
Kuhlmann's work [46] includes an attempt to transfer knowledge to or from UCT, but was
not successful in doing so. This makes our work uniquely useful as the �rst application of
transfer to GGP's most dominant method. An agent's previous knowledge is an untapped
resource, and we are providing a way to exploit it.

1.3 Thesis Summary

Chapter 2 introduces necessary background and discusses related work, with a focus on
the GGP literature.
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In Chapter 3, we present novel algorithms, LMap and MMap, for autonomously �nding
a mapping for the symbols of the current game (the target game) to those that are most
similar in a previously played game (the source game), where `symbols' include features like
state variables and possible actions. This is necessary not only because there is a chance
that similar features might not share names across two di�erent games, but because GGP
enforces obfuscation of the game rules to ensure that they do not. (Obfuscation is de-
scribed in greater detail in Section 2.2.2.) Obtaining a mapping is a necessary prerequisite
for transfer because many (all but one) of the general heuristics that we apply require
knowledge of like symbols. For example, a reasonable heuristic in Checkers might be to
reduce the number of pieces of your opponent's colour, but to make use of this information,
you have to know which symbols correspond to those pieces.

After describing LMap and MMap, we evaluate the e�ectiveness of these methods across
a variety of transfer scenarios, and �nd that both methods are far more accurate than a
simpler baseline mapper. MMap is found to be more robust than LMap, but LMap is much
faster, and so more suitable for general use in GGP.

Using LMap to obtain a symbol mapping, Chapter 4 presents a technique for automat-
ically transferring general heuristic knowledge between distinct, but related, games. We
describe in detail how to calculate each of the general heuristics used, and provide a method
for combining them into one evaluation function, weighted by their relative strength. We
show how these heuristics are initialized, either through transfer or simulation, and we
compare the performance of the corresponding agents (TI-GMCTS and SI-GMCTS) in six
variants of Checkers and variants of Breakthrough with varying state/action spaces. We
�nd that transfer can improve the quality of game-independent heuristics to produce better
performance in games within the GGP framework, especially when initialization time is
short.

Chapter 5 pushes TI-GMCTS toward greater generality by tackling previously deferred
or entirely new problem areas. First, we address the problem of source game selection. By
using LMap at a low search depth, we show that it is possible to determine a most similar
source game to the current target game on a time scale that is compatible with GGP. We
then demonstrate modularity in our handling of general heuristics by dropping in a new
family of board heuristics, and using them to outperform SI-GMCTS and UCT in Connect
Four, a game that our original heuristics were not well suited for. Next, we present a method
for mitigating the e�ects of negative transfer, and use it to obtain better performance on
inverted goal game variants, previously a worst-case scenario for TI-GMCTS. We conclude
the chapter by addressing single-player games, and show that it is possible for transfer to
be e�ective from a two-player game to a single-player game when the factors that make a
position good are well aligned.
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Finally, Chapter 6 concludes, and discusses possible directions for future work.
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Chapter 2

Background and Related Work

In this chapter, we broadly discuss relevant methods and reference related works. When
more speci�c detail of a method is required, it is provided in the chapter where it is needed.

2.1 Reinforcement Learning

GGP can viewed as a restricted form of reinforcement learning (RL). In this section, we
introduce useful vocabulary and concepts from standard RL. We will also discuss some of
the idiosyncrasies of GGP as they are relevant, and the rest in Section 2.2.

Under the RL paradigm, an agent is placed into an environment and given a reward
signal for every interaction with that environment. This is less instructive than the feedback
received in supervised learning tasks (since the agent is not told the `correct' action), but
more instructive than in unsupervised tasks, where no feedback is given. For the remainder
of this thesis, we will assume that all problem environments may be represented as �nite
state Markov decision processes (MDPs), which is a reasonable assumption within the
GGP framework. Consequently, every possible game state may be described completely
and uniquely by the values of a �nite set of state variables.

In general, the values of state variables may be continuous, though they are most often
either discrete (e.g. position of a piece on a board, value of a pixel), or may be treated as
discrete by discretization of the variable's range. The set of all unique states made by com-
bining di�erent values of state variables is called the state space, and intelligently searching
this potentially enormous set is a principal challenge in GGP and much of reinforcement

8



learning. For reasons described in Section 2.2.2, we will assume that all state variables
take discrete values.

The MDP transitions between states when an agent takes some action, where the set
of allowable actions may be determined by the current state. Upon taking an action and
transitioning to some new state, the agent receives a reward. For many games that humans
play, this reward signal is sparse, with 0 reward received at all state transitions but the
�nal one. In GGP, this is always the case. Formally, we de�ne an MDP as follows, making
use of standard notation.

An MDP M = (S,A, T,R, γ) is a tuple, where S is a �nite set of states, A is a �nite
set of actions, T (s, a, s′) is the probability of transitioning from state s ∈ S to state s′ ∈ S
when action a ∈ A is taken, R(s, a, s′) is the reward received for transitioning from s to s′

with action a, and γ ∈ (0, 1] is a discount factor reducing the value of future rewards. S
must contain an initial state s0 and at least one terminal state that ends the instance. An
agent chooses actions according to a policy π : S × A→ R, which gives the probability of
taking an action a in a given state s. Often, π will be deterministic, in which case a single
action will have 100% probability for every state.

An optimal policy π∗ is one that achieves the maximum possible cumulative reward
when a terminal state is reached. Finding or approximating such a policy is the general
goal of a reinforcement learner. A naïve (brute force) agent with knowledge of the MDP's
dynamics might simply simulate taking all possible actions at the initial state, all possible
actions at each of the resulting states, and carry on until only terminal states remain. This
method of searching forms a tree that grows exponentially with the number of actions
available at a state. For this reason, the size of the action set may be referred to as the
branching factor. Exponential growth of the search space (i.e. the set of states simulated
by an agent) causes brute force searching methods to become computationally intractable
for problems of even modest complexity. Chess, for example, has an estimated 1050 possible
states [5], which makes it infeasible to search all of them with current technology. Yet,
computers can play chess well enough to defeat even the best human players [15] and have
achieved similar results in games with even larger state spaces, such as Go [70]. This level
of performance may be achieved by selectively expanding the search space in only the most
promising directions. Some such methods are described in the following sections.

Depending on the nature of the agent, V or Q values may be computed, where V π(s)
gives the value obtained by an agent at state s when following policy π and Qπ(s, a) gives
the value obtained by an agent that takes action a at state s and follows policy π thereafter.
Formally, these values are given by the Bellman Equations:

V π(s) =
∑

a π(s, a)
∑

s′ T (s, a, s
′)[R(s, a, s′) + γV π(s′)]
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Qπ(s, a) =
∑

s′ T (s, a, s
′)[R(s, a, s′) + γV π(s′)]

Extending this notation, V ∗(s) and Q∗(s, a) refer to the optimal values for a given
MDP, which are equal to V π∗

(s) and Qπ∗
(s, a), respectively.

Gradient descent methods such as value or policy iteration may be used to �nd these
tables, and through them, an optimal policy for an MDP. However, these are inappropriate
for many RL tasks (including GGP), as they require knowledge of the dynamics of the
MDP and are intractable in large state spaces. Instead, we focus on temporal di�erence
and Monte Carlo methods.

2.1.1 Temporal Di�erence Learning

Unlike value and policy iteration, Q-learning and SARSA do not require the MDP's dy-
namics, nor do they need to update values for all possible states (including those that a
reasonable policy might never reach). Instead, they learn from each action taken by taking
the di�erence in Q-value of a future state and their current state. This quality is why they
are called temporal di�erence (TD) methods. The key distinction between Q-learning and
SARSA is in which future state is taken. Q-learning, which is o�-policy, greedily takes the
highest Q-value according to the following update rule.

Q(s, a)← Q(s, a) + α[R(s, a, s′) + γmax
a

Q(s′, a)−Q(s, a)]

where α is a tunable learning rate. SARSA chooses the Q-value that corresponds to its
current policy, according to:

Q(s, a)← Q(s, a) + α[R(s, a, s′) + γQ(s′, a′)−Q(s, a)]

Both methods are commonly used o�-the-shelf RL techniques. However, they struggle
in MDPs with extremely sparse reward functions. In GGP, rewards are only given in
terminal states. For some games (e.g. Chess), this could be after tens or hundreds of
moves with no reward signal at all. Monte Carlo Tree Search is better suited to these
domains.

2.1.2 MCTS

Monte Carlo Tree Search (MCTS) is a lookahead method in which reachable states are
represented as nodes in a tree. The current state forms the tree's root, states that are
reachable with one action are its children, states that are reachable within two actions are
their children, and so on. In addition to state information, each node contains two values.
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The �rst counts the number of times that the node has been visited, and the second keeps
track of the reward received on those visits. MCTS can be broken down into processes
that are repeated, in order, until the state space is fully searched or a time/memory limit
is reached.

1. Selection: Starting from the root, select a path of child nodes until a leaf node
is reached. A measure of the `goodness' of each child node can be obtained by
looking at the average reward received when it was visited, which can be used to
selectively exploit good nodes. However, exploration of nodes with relatively few
visits is also necessary, which casts the selection process as a multi-armed bandit
problem. UCB1 [7] is a commonly used solution, in which we select the node that
has the highest value:

UCB1 =
r

n
+ c

√
lnN

n
(2.1)

where r is the total reward received from all visits to the node1, n is the number of
visits to the node, N is the number of visits to the parent node, and c is a tunable
exploration parameter. When UCB1 is used with MCTS, the resulting algorithm is
called the Upper Con�dence Bound for Trees (UCT) method [41], and it is a common
baseline in GGP.

2. Expansion: Unless the selected leaf node represents a terminal state, generate new
child nodes for each state that can be reached from it. Choose one of them at random
to simulate.

3. Simulation/Rollout: Produce a path from the selected child node to a terminal
state by choosing actions randomly, or using some heuristic. Rollouts are frequent,
and can be very long compared to the established Monte Carlo Tree (MCT), so it is
important for them to be as lightweight as possible.

4. Backpropagation: Update r and n for every node on the path from the root to the
terminal state reached.

Rollouts are the feature that gives MCTS an advantage in MDPs with sparse rewards.
They allow an agent to see many terminal states without the investment of carefully

1For games in which two players take turns playing moves, we use the reward received by the agent
currently acting.
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analysing every turn along the path. As a result, MCTS is popular for use in GGP agents,
as discussed in Section 2.2.1.

When an agent has run out of time for search, it must select an action to play. Typically,
this is whichever action was the most visited during simulations, although it is possible to
choose based on other criteria, like the greatest average reward. Unless otherwise stated,
we will assume that the most visited action is selected. This decision is not a named part
of MCTS, but we will refer to it as Playing a move or Taking an action.

It is possible to guide the search of MCTS by altering any of the enumerated steps above.
We will discuss those related to the use of general heuristics in Section 2.2.4. Another
relevant method for guiding MCTS is Memory-augmented Monte Carlo Tree Search (M-
MCTS), which uses knowledge from similar states within the same game [95] to direct
search. In it, a heuristic value is calculated and combined with the typical reward value
during the selection phase. This heuristic value is calculated from similar game states that
have already been encountered. While M-MCTS was originally limited to playing Go due
to the use of a hand-crafted neural network architecture, it was later expanded to work
with arbitrary games so that it could be applied to GGP [50]. Where these works address
the problem of leveraging previously seen state information in the current game, we will
seek to use information from states in a related, but di�erent game.

2.1.3 State Abstraction

Although the methods described above aim to search the state space as e�ciently as pos-
sible, it may still be bene�cial to reduce its size by aggregating similar states and treating
them as a single unit. This process is called state abstraction. A particular abstraction
may be de�ned as ϕ : S → S ′, where S is the original state space and S ′ is the reduced
state space. In some cases, this may be done without any loss of information. For example,
if the MDP is known to be a board game, or if a board can be identi�ed at runtime [8, 44],
symmetry may be exploited to group states that are e�ectively identical [70]. Other times,
potentially useful information may be lost, but this is seen as a worthwhile trade-o� for
reduced complexity, even if it results in suboptimal choices some of the time. This is often
seen for video games, where the value of a single pixel may be the di�erence between two
states. It may therefore be desirable to aggregate closely related states by reducing pixel
resolution [91] or by factoring the screen into regions [10].

Classes of abstraction scheme may be de�ned according to which properties of the MDP
those abstractions preserve. In particular, classes ϕQπ (preserves Q-values for
⟨policy, action, state⟩ tuples), ϕQ∗ (preserves Q-values for optimal policies with ⟨action, state⟩
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pairs), and ϕa∗ (preserves Q-values for optimal policies and optimal actions at any state)
all implicitly guarantee that an optimal policy in the reduced MDP is also an optimal
policy in the original [49].

Unfortunately, such abstractions may still be costly to compute. In general, �nding an
optimal, smallest possible, abstract state space for a given problem is known to be NP-
Hard [19]. Abel et al. [3, 2] developed algorithms for �nding ϕQ∗ abstractions in O(|S|2)
time, which is a great improvement, but still untenable for su�ciently large state spaces.
To generate an abstraction scheme on the �y, we would like there to be no dependence on
|S| at all, which could mean that a guarantee of policy preservation is not possible. This
leaves the door open for heuristics, such as the resolution reduction described above, to
bridge the gap. For example, if ϕQ∗ abstractions can be pre-computed for source games,
then they may be applied to the target at runtime [93]. Lazaric [48] proposes a notion
of relevance for determining sources from which to transfer, which may be estimated by
taking a constant number of sample states from the target, and could therefore be relevant
to GGP. Finding good state abstractions remains an active area of research in RL.

2.1.4 Reward Shaping

Reward shaping is a technique for guiding search within an MDP that has application to
transfer learning in RL problems. The agent's perceived reward is modi�ed to R′(s, a, s′) =
R(s, a, s′) + F (s, a, s′), where R is the actual reward received and F is some shaping func-
tion. While any heuristic can be made into a shaping function, care must be taken to
ensure that a policy found in the modi�ed MDP remains useful in the original MDP of
interest. In particular, Ng et al. [58] discovered potential-based shaping functions, which
have the form F (s, s′) = γ ∗ Φ(s′)− Φ(s), where γ is the MDP's discount factor and Φ is
a potential function depending only on the agent's state. In an analogy to the potential
energies of the physical sciences, the value of F has no dependence on the path taken to get
from s to s′. Since an agent must always begin in an initial state and �nish in a terminal
state (both of which may be assumed to be unique without loss of generality), the net e�ect
of F on the cumulative reward received is the same for all policies. Ng et al. formalized
this idea and proved that the use of a potential-based shaping function is a necessary and
su�cient condition to guarantee that the optimal policy of the original MDP is preserved
after reward shaping.

Other researchers generalized this result. Wiewiora et al. [94] showed that potential-
based functions of the form F (s, a, s′, a′) = γ ∗Φ(s′, a′)−Φ(s, a) also preserve the optimal
policy, and Harutyunyan et al. [31] developed a method for learning a potential-based
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approximation for any shaping function. This learning occurs in parallel with the main
RL task.

The freedom to use any heuristic as a shaping function has allowed recent work to
employ reward shaping as a mechanism for transfer learning between di�erent RL tasks.
Data from a source task (e.g. optimal policy, Q-values, etc.) may be used to shape
the reward function of the target. Brys et al. [14] performed �policy transfer using reward
shaping� (PTS) by treating the probability of an action being taken in the optimal policy of
a source game (i.e. π(s, a)) as a shaping function using the conversion method established
by Harutyunyan et al.2 Experiments performed in a few sample RL tasks showed the
performance of this method to be comparable to direct policy reuse (discussed further in
Section 2.3.1). Although it did not always provide as much of an improvement in initial
learning, it tended to be more robust to di�erences between the source and target tasks.
Later methods augment this robustness through the use of ensembles of di�erent shaping
functions [13].

Reward shaping is an active area of research and an attractive option for RL domains
that have otherwise sparse reward functions.

2.1.5 Lifelong Learning

Lifelong learning is an RL paradigm that is similar in purpose to GGP. An agent strives
for the best performance in a series of MDPs drawn from a set, M. Typically, MDPs
in M share an action and state space, but di�er in reward and transition probabilities.
Although it is possible for an agent to face each new task with a blank slate, there is bene�t
in transferring knowledge from task to task over the �lifetime� of the agent.

Research in this area tends to focus on guarantees. In particular, a probably approxi-
mately correct (PAC) guarantee for MDPs (PAC-MDP) speci�es that a policy's values are
optimal within some error, ϵ, with high probability, (1− δ) [75]. In GGP, where a shared
state and action space are unlikely, a PAC-MDP guarantee is impossible, but this does not
mean that lifelong learning research is useless for our purposes. Many concepts and tools
are shared, such as state abstraction [3, 2, 93], policy transfer [12, 4], and value transfer [4].
These topics are each discussed in their own sections.

2Curiously, even though π(s, a) could have been used directly as a potential-based shaping function,
the approximated shaping function performed better empirically. The authors suggest that this may have
been due to the magnitude of the shaping values, but do not perform a thorough investigation.
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2.1.6 Deep Reinforcement Learning

Although it is not a focus of this work, deep reinforcement learning must be acknowledged
as a driving force in the domain of game playing. Convolutional neural networks, in
particular, have seen great success in board games and video games due to the importance
of spatial information in these settings. Google's DeepMind team incorporated them into
AlphaGo (and later, AlphaZero), a world-class Go bot, where they are used to guide MCTS,
and may be trained with [70] or without [71] expert human knowledge. DeepMind have
also used convolutional nets in combination with deep long short-term memory (LSTM)
networks to achieve near world-class performance in StarCraft II [90], a video game with
action and state spaces many orders of magnitude larger than those of Go [91]. State-of-
the-art results have also been achieved for Atari games [57] and Dota 2 [16].

A key di�erence between learning single, ambitious games (i.e. `grand challenges') and
GGP is the time permitted for training. In the sphere of grand challenges, raw performance
has historically been prioritized over training e�ciency. For example, AlphaGo Zero was
trained for 3 days and played through 4.9 million training games to achieve super-human
performance at Go [71].

However, some more recent research has sought to maximize performance while sam-
pling the environment a limited number of times, and by extension, limiting the amount
of computation required for training. Kaiser et al. [38] set the Atari 100k benchmark,
which limits training to 100,000 samples, approximately as many as a human would see
in 2 hours of play. Schwarzer et al. [69] achieved super-human performance for 26 Atari
games under these conditions, training for 10 hours on a single CPU and GPU. This state-
of-the-art result shows that good learning can be achieved without requiring thousands of
machine-hours of training. However, it is still too slow to be used in GGP at this time.

In other recent research, some success has been shown for zero-shot learning with
AlphaZero-like architectures [72], which can be performed on time scales more appro-
priate to GGP. Although this work made use of Ludii, a di�erent GGP framework than
the one that we use, its goals of achieving transfer between similar games are very similar
to our own.

2.2 General Game Playing

General Game Playing (GGP) emerged as a �eld of study in 1992, with Barney Pell's
description of a �Metagame� [59]. Under this system, an agent was required to play any
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game belonging to a class of two-player, zero-sum, perfect information, deterministic games
played on a grid. This included games such as Chess, Checkers, and Tic-tac-toe.

Beginning in 2005, much of GGP research coalesced around Stanford's GGP framework
and its associated annual GGP competition [28]. This research tended toward even more
generality, with support for games that were single or multi-player, simultaneous or turn-
taking, non zero-sum, and not con�ned to a grid. Although less commonly used, Stanford's
framework has also been expanded to accommodate games that are non-deterministic or
that give players imperfect information [62, 86].

Stanford's GGP environment provides a server (called the Gamemaster) that adminis-
ters games for one or more GGP agents [52]. It is responsible for maintaining the game
state and handling all communication. To begin a game, the Gamemaster provides all
players with a speci�cation of the game and a �xed period of time for initialization (typ-
ically on the order of tens of seconds, and up to a few minutes). During play, it requests
moves from the agent(s) (which must be given in a few seconds), veri�es that they are
legal, updates the game state, and noti�es the agent(s) of the changes. When a game ends,
the Gamemaster terminates it and records the reward received by each player.

In GGP, reward can only be assigned when a game is �nished. Under the framework
we will be using, it must be an integer value in the range [0, 100]. For a two-player game
with one winner and one loser, it is typical for the winner to receive a score of 100, for
the loser to receive 0, and for both agents to receive 50 in the event of a draw. However,
this does not have to be the case. A game could, for example, assign points based on the
number of moves taken to win, or on the amount of material remaining to each player.

For compatibility with Stanford's framework, games must be encoded using the Game
Description Language (GDL) [52]. There are now o�shoots of GGP that use their own
languages, such as VGDL for video games [66], or Ludii for ludeme-based game descrip-
tions [61]. However, we will be primarily concerned with the original GDL.

2.2.1 General Game Playing Competitions

From 2005 to 2016, annual GGP competitions were held and co-located with either AAAI
or IJCAI [27]. Like their own miniature conferences, they served as a hub for collaboration
and dissemination of research for the GGP community, as well as a source of friendly
competition. The main event focusses on two-player games so that competing agents could
play against each other, one at a time, in a bracket structure similar to a professional sports
tournament [28]. Over years of competition, no single team emerged as clearly dominant,
though some won more than once. The most successful agent, CadiaPlayer (developed at
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1: (role xplayer) (role oplayer)
2:

3: (<= (base (control ?p)) (role ?p))
4:

5: (<= (next (control xplayer))
6: (true (control oplayer)))
7:

8: (<= (next (control oplayer))
9: (true (control xplayer)))
10:

11:

1: (<= (next (pedagogies gooseberries))
2: (true (pedagogies entrepreneurial)))
3:

4: (role gooseberries)
5:

6: (<= (next (pedagogies entrepreneurial))
7: (true (pedagogies gooseberries)))
8:

9: (role entrepreneurial)
10:

11: (<= (base (pedagogies ?p)) (role ?p))

Figure 2.1: Example lines of GDL code from the game description of tic-tac-toe [29]. The
original GDL code is shown on the left, and an obfuscated version is on the right. For
the non-obfuscated code, line 1 designates xplayer and oplayer as valid player roles, line
3 de�nes control to be a base proposition that may be true when its parameter is a valid
role, and lines 5-9 are rules that enforce alternating turns for the two players.

the CADIA research lab of Reykjavik University) won four times during this period. Each
competition also hosted a human vs. machine exhibition event, in which a lone human
representative played against the best arti�cial agent. From 2007 onward, humans lost
consistently to the bots, as 2008 was the year that MCTS made its �rst appearance in
competition [27].

More recently, (beginning around 2014 [79]), General Video Game Playing (GVGP)
emerged as a �eld of study, and has held its own associated competitions. These com-
petitions are divided into two tracks: one for planning agents that receive a coded game
description in Video Game Description Language (VGDL) and low initialization time, and
one for agents that receive raw pixel values and a much longer initialization time (on the
order of hours) [88, 60]. The latter track is intended to allow deep learning methods to
participate in GVGP, even though they cannot handle the short initialization characteristic
of GGP. As a relatively new �eld of study, GVGP has many open problems, such as how to
best parse visual input, and how to balance computation time with the need to act many
times a second.
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1: (succ 1 2)
2: (succ 2 3)
3: (succ 3 4)
4: (succ 4 5)

Figure 2.2: An example of a short numeric chain encoded in GDL. This pattern appears
frequently to establish an ordinal set of symbols, such as the rows and columns of a board.

2.2.2 Game Description Language

Games played in the Stanford GGP system (and by extension, this thesis) are speci�ed
in Game Description Language (GDL), a variant of Datalog, which is itself a subset of
Prolog [26]. A game state is determined by the set of facts that are true at a given time,
and game dynamics are given by a set of rules [52]. GDL provides a set of built-in keywords
that are common to all games. They are role, base, init, true, does, next, legal, goal, and
terminal [29]. Together, they specify what constitutes the game state, what is true initially,
which actions may be taken at which times, when the game ends, and what rewards are
received by each agent when it does.

GDL also allows the user to de�ne rules and relations that make use of game-speci�c
constants, variables, functions, and predicates. Unlike the built-ins, these keywords will be
subject to obfuscation (i.e. scrambling their names) at runtime. This grants agents insights
into the structure of a game while denying semantic information through the particular
vocabulary used. In addition, obfuscation randomizes the order of independent blocks of
GDL code in order to confound simple attempts to recognize a familiar game. Figure 2.1
gives examples of non-obfuscated and matching obfuscated GDL code from the description
of tic-tac-toe [29].

In general, GDL is very Spartan. There is no arithmetic; numbers are not di�erentiated
from other symbols. Games that require functions like basic addition must de�ne them.
In practice, this means that game descriptions often include long sequences of numbers
linked by a successor function, as in Figure 2.2. We call these patterns numeric chains. In
GDL, they are necessary for imposing relationships like the order of rows and columns of
a board, or the maximum number of possible turns before a game is ended. Especially in
the latter case, it is not uncommon for these chains to link over 100 numeric symbols.
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1: (<= (goal black 100)
2: (true (piece_count red ?rc))
3: (true (piece_count black ?bc))
4: (greater ?bc ?rc))

Figure 2.3: An example GDL statement from Checkers, in the GGP base game repository,
and the rule graph generated from it. This code speci�es that a reward of 100 is assigned
to black when it has more pieces than red at the end of the game. Di�erent colours indicate
di�erent types of nodes according to Genesereth's method [29]. A dashed line around a
white background indicates a symbol node, which is important for mapping entities between
two games.
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# Time to Build
Game Nodes Graph (ms)

8 Queens, Gd. 464 1.81 ±1.64
Tic-tac-toe 469 1.75 ±1.83

Connect Four 553 1.86 ±1.90
Rubik's Cube 1521 2.85 ±5.64
Checkers 3990 4.73 ±7.42
Chess 5668 7.88 ±13.30

Table 2.1: Rule graph sizes for games of varying complexity.

2.2.3 Rule Graphs

Stanford's GGP framework [64] includes code for parsing each GDL statement into a
directed tree. This tree may be further re�ned into a rule graph using a method like those
described by Genesereth [29] or Kuhlmann [46]. A rule graph is an unweighted directed
graph where each node is assigned one of twenty-one colours. Each colour represents a
logical connective (e.g. AND, OR), a GDL built-in (e.g. next, terminal), or a type of
user-de�ned entity (e.g. predicate, variable). The original (obfuscated) names of user-
de�ned entities are discarded. For each user-de�ned entity, there is an occurrence node
for each time that entity appears in the GDL code, and a single symbol node that links
all occurrences together. If the entity takes N arguments, there will also be N argument
nodes connected to the symbol node3. Edges (with few exceptions) represent parent-child
relationships in the GDL (e.g. the children of an AND node are its arguments). Figure
2.3 gives an example of the rule graph produced from a short segment of GDL code.

The size of a rule graph varies with the complexity of the game's description. This is
distinct from the actual di�culty of a game (i.e. the size of its state space), though the two
tend to be correlated. Table 2.1 gives the number of nodes generated for an assortment of
games familiar to humans. The largest of these (Chess) contains over 5,000 nodes.

Although a rule graph may not be a minimal representation of a game, Kuhlmann and
Stone [45] proved that if two rule graphs are isomorphic, then the games that they represent
are equivalent. Jiang et al. [35] also developed methods for proving game equivalence. If a
bot has previously played a game that is equivalent to its current task, then it is extremely
desirable to identify that game, because all previous knowledge can be immediately trans-
ferred. However, this approach is limited to games that are exactly the same. Kuhlmann
and Stone [45] extended it by looking for isomorphisms within a set of predetermined vari-

3This applies only to Genesereth's version.
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ations, using an o�-the-shelf isomorphism solver. For example, they were able to identify
games that were identical, but for di�erent board sizes, numbers of pieces, or turn limits.

Of course, it is unreasonable to suppose that we could have a library of all possible rule
graph variations from which to �nd isomorphisms. It would therefore be useful to have a
criterion less strict than isomorphism. Soni and Singh [73] showed that it is possible to
perform transfer using a homomorphism to map target to source task, but �nding such a
homomorphism is known to be an NP-complete problem [30]. Likewise, �nding the largest
isomorphic subgraph between two rule graphs could be viewed as a measure of similarity,
but the subgraph isomorphism problem is also NP-complete [18]. In Chapter 3, we discuss
a greedy method for measuring graph similarity in polynomial time.

2.2.4 General Heuristics

When it is too costly to fully explore the state space of a game (which we can assume to be
true for all games complex enough to be interesting), a portion of the space may be searched
more e�ectively by the application of heuristics. These heuristics hone in on features of a
game state that are likely to contain useful information, like the state abstractions described
in Section 2.1.3. A combination of heuristic values may be combined into a single number
re�ecting the perceived value of a state, in place of knowing its true value. When the
game is known in advance, heuristics present an opportunity to incorporate prior game
knowledge. In Chess, for example, human players commonly use the heuristic that one
knight is worth about the same as one bishop or three pawns. However, the restrictions of
GGP prevent the use of this kind of knowledge, as we do not know what a game's state
will contain before playing it.

General heuristics are those that can be calculated for any game (or in our case,
any game speci�ed by GDL). Although they may not be as informative as hand-crafted,
game-speci�c heuristics, general heuristics have been used successfully in numerous GGP
agents [79]. At their most general, heuristics may be completely agnostic to the state of
the game, because they are instead derived from the shape and features of the search tree,
as in [25]. One such heuristic is mobility, which compares the number of moves available
to an agent with the number of moves available to other players in the game. Mobility was
used in Cluneplayer [17], the winner of the �rst International GGP Competition.

Some other heuristics require an initialization period during the game's start clock
to extract information from the rule description, or from a number of (usually random)
game simulations. These heuristics are general in the sense that they can produce an
evaluation function for any game, even though the nature of that evaluation function will
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vary from game to game. A relevant example is symbol counting [78]. In many games, it is
advantageous to have more pieces than the opponent, which is likely to be re�ected in the
number of occurrences of some set of symbols in the game's state. However, a state will also
typically contain symbols that o�er no useful information when counted. A determination
of the relative usefulness of the various symbols can be made during the start clock, and
in [78], used 95% of that time.

Another relevant general heuristic requiring initialization is the history heuristic, which
evaluates a possible move based on the reward that was received when playing that move
in previous simulations [78, 80, 24].

If an agent can a�ord the cost of querying the state machine, approximate goal evalu-
ation [32, 78] can be a viable heuristic. This method examines how close a state comes to
satisfying a goal requirement (which would terminate the game with some known reward).
In combination with methods for �nding the number of steps needed to change the state
in a particular way [55, 56], an agent may actively seek out a particular goal. Goal con-
ditions may also be used to construct heuristics based on properties like their cardinality
and domain [54].

In GGP, it is also possible to use a less general class of heuristics that must make
assumptions about the nature of a game in order to function. Since board games are
encountered frequently in GGP, there are methods for �nding sequences of numbers, board
coordinates [43, 68], and movable pieces [37], which can then be combined to produce
heuristics, such as the distance on a board between two pieces. Although these heuristics
may be very useful when they are applicable, their use does sacri�ce some generality.

Once a set of general heuristics has been decided upon, further decisions must be made
about how to weight and combine those heuristics, as well as how they will be leveraged
to guide search. It is possible to hard-code a set of weights for heuristics in advance, but
it is not generally true that the same heuristics will be equally useful across all games. For
example, heuristics like mobility and symbol counting may be useful in Checkers, but are
useless in Tic-Tac-Toe, where the players' decisions have no e�ect on either. Instead, we
can try to determine appropriate weights during initialization, or while actively playing
the game [67]. By performing an analysis of many games described in Ludii, [74] showed
that it is possible to make reasonable guesses about the e�ectiveness of various heuristics
based on the ludemes used in the description of the current game. This work is close in
purpose to our own, as it allows an agent to shortcut the process of weighting di�erent
heuristics. However, it does not allow initialization to be skipped for those heuristics that
require it.

A set of heuristics combined into one evaluation function can be used to e�ectively
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guide search. Although we will be concerned with guiding MCTS, other forms of search
may be used. In [53], general heuristics (including symbol counting) are used successfully
as an evaluation function for minimax search. Wal¦dzik and Ma«dziuk [92] suggest several
methods for guiding MCTS using a heuristic evaluation function, including modifying
the UCB1 function, using it to guide rollouts instead of making a random selection, and
terminating rollouts early by using the heuristic value instead of a true terminal reward
value.

2.3 Transfer Learning

Although we may assume that it is not possible to comprehensively search the state space
of a game at runtime, we may perform any amount of pre-computation that can be saved
to disk. In particular, an agent may play other games (which are unlikely to exactly match
our game of interest) for many iterations each. Knowledge gained from these games may be
stored in the long term as a value table, Monte Carlo tree, or another structure appropriate
to the agent's RL method. This knowledge forms a database of the agent's past experience,
and may be drawn upon if the agent can identify analogous features of the game of interest
at runtime. Doing so creates a matching of a source (archived) game to a target (new)
game.

We may broadly classify transfer methods according to the kind of information that
is transferred, which is often tied to the ways in which the source and target games are
allowed to di�er. When they are very similar (e.g. share a state and action space), it
may be possible to use policy transfer methods. For games of a more distant or unknown
relationship, it is necessary to �nd a mapping among states and actions from the source
game to the target. Having such a mapping opens up new possibilities, as it enables the
transfer of information like value functions and heuristics in cases where it would otherwise
not be possible. These methods may be able to facilitate transfer between games that are
less similar (e.g. di�erent state/action spaces), but generally still require that at least the
goal of the source and target games are closely related.

The success of a transfer learning method may be measured by comparing the per-
formance of a transfer agent to an agent learning tabula rasa (i.e. from nothing). This
comparison may be expressed through one of numerous evaluation metrics, including the
jumpstart (initial performance gain), the eventual asymptotic performance, and the time
taken to reach a particular performance threshold [85]. GGP also o�ers the opportunity
to compare against agents using completely di�erent strategies in a competition setting,
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though this is more sport than evaluation, as there are many variables besides transfer
learning to consider.

In the sections that follow, we �rst address policy transfer, then examine value and
heuristic based methods that are more amenable to GGP. Although transfer learning is
a prominent technique in deep learning [81], we omit a a discussion of its vast literature
here. Instead, we focus on the methods most applicable to GGP.

2.3.1 Policy Transfer

Policy transfer is the process of reusing policies found in the source game directly in the
target game. For example, Fernández and Veloso [23] balanced the exploitation of a library
of past policies with random exploration of new ones in a maze navigation problem. This
was possible because di�erent tasks used the same maze and game dynamics, changing
only the location of the goal. Even such an extreme similarity between source task and
target is considered to be transfer learning, but is very unlikely to occur in a GGP setting.
In a follow-up paper [22], this method was used to transfer knowledge from the domain of
3v2 robot keepaway to 4v3 robot keepaway4. Although these are still very closely related
domains, the action space of the 4v3 game is larger, so a mapping between action spaces is
required. For this work, the mapping was hand-coded and supplied to the agent at no cost.
This approach was previously taken by Taylor and Stone [84], who applied policy transfer
to SARSA in the same problem domain using a hand-coded action mapping. Both papers
show a jumpstart in learning, but could not be applied directly to GGP, where the action
mapping would have to be found autonomously.

In another example of policy transfer, Konidaris and Barto [42] relaxed source-target
similarity restrictions by introducing the notion of `agent-space', the space of sensory in-
formation received by the agent, which does not include all aspects of the full state space.
Under their model, policies5 may be transferred between agents occupying the same agent-
space. In particular, policies for maze navigation may be transferred from one agent to
another, provided that they are able to sense the distance to objects in the maze (in this
case, doors and the keys that open them) in the same way. Notably, it was not required
that the maze itself be the same.

4Robot keepaway, which appears as an experimental testbed frequently in the literature, is a game
where simulated robot `keepers' must keep a soccer ball away from `takers'. In a 4v3 setting, there are 4
keepers and 3 takers.

5Strictly speaking, this work deals with option policies, which are constructed from macro-actions called
options. An option is a short block of actions performed in sequence that may be discovered automatically.
This builds on a substantial body of work (e.g. [76, 77, 89]) that is outside of our present scope.
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Although this work is more amenable to the GGP setting than previous methods, the
requirement that agent-space remain constant still poses a fundamental problem. Firstly,
it cannot generally be assumed that it holds, but even if it does hold, the obfuscation of the
target game's entity names makes that fact di�cult to detect. It then becomes necessary
to create a mapping for the entities of the source to those of the target, which leaves us
with a method that requires a comparable amount of work to the heuristic/value transfer
methods below, but may only be used on a much narrower set of source-target pairs. This
brittleness also applies to the policy transfer methods discussed previously, and is a logical
consequence of the kind of information being transferred. A policy is a prescription: a
mapping S → A. When the target game is di�erent enough from the source that taking
exactly the same action in all states is not very useful, there is no other information to fall
back on.

2.3.2 Value Function/Heuristic Transfer

Unlike policy transfer, methods that transfer state values or other heuristics provide a
notion of the `goodness' of a state. They implicitly de�ne a `best' policy that the agent
may choose to use as a starting point for learning in the target game, while also providing
information about the quality of other policies. In the simplest case, it may be possible to
directly copy Q-values [4], or learn a model from sample (s, a, s′) tuples in the source and
target games (e.g. [6, 11, 20]). However, both of these methods require the source and
target domains to have very similar or shared state variables.

In order to handle less similar state spaces (or even identical state spaces that have
had their variables renamed and reordered), it is necessary to represent the relationships
between entities as a graph structure. Heuristics based on this structure commonly involve
some method for �nding a state/action mapping, although it is possible to do without.
One example is given by Banerjee and Stone [9], who assigned heuristic values based on
the shapes of 2-ply look-ahead trees, where nodes could be assigned values of `win', `loss',
`draw', or `non-terminal'. Although successful for very short games, this approach does
not scale to longer, more complex games, where a 2-ply look-ahead would be overwhelmed
by non-terminal states, and the search cannot be made deeper without exponentially in-
creasing the computation required.

The remainder of the methods we examine in this section all make use of at least a
partial mapping between source and target games. Early works often relied on �nding
speci�c, hard-coded structures in the rules of a game. For example, Kuhlmann and Stone
[43] found structures consistent with a board and pieces, and generated heuristics such
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as the distance between pieces. Banerjee et al. [8] coded common concepts like `making
a line of pieces', and `blocking the opponent' to transfer knowledge between tic-tac-toe,
Connect-3, and a miniature version of Go. Taylor et al. [82] employed heuristics based
on the con�guration of nearby walls for maze tasks. While these approaches are useful
for transfer between certain types of games, their scope is quite narrow because they take
advantage of particular game tropes. For example, many of the games that humans have
invented employ pieces and boards, but there is no reason that an arbitrary MDP should
do so.

For small enough state spaces, it is possible to try all combinations of state/action
mappings and take the best of them (as in the MASTER method[83]), but this approach is
computationally untenable, in general. The amount of work can be reduced somewhat by
starting from individual state/action pairings and merging only those that are consistent
into larger sets. Liu and Stone [51] took this approach by building on the Structure-
Mapping Engine (SME), which is an implementation of the structure-mapping theory of
analogical processing [21]. SME builds matchings from pairs of concepts that are seman-
tically analogous (e.g. water �ows downhill as heat �ows to lower temperature). Liu and
Stone adapted this method to the RL setting by assuming that a qualitative dynamic
Bayes network (QDBN) existed for both the source and target game (where `qualitative'
refers to node and edge labels like `discrete variable'), and forming matchings between
their entities. This process was successful in producing good mappings for di�erent num-
bers of players in the domain of robot keepaway. However, depth-�rst searching to merge
consistent matchings is still quite computationally expensive, and the QDBNs had to be
supplied by hand.
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Chapter 3

Mapping

As described in Section 2.2.2, obfuscation of the GDL description of a game poses a signif-
icant barrier to transfer, since we cannot simply identify important features (like pieces, a
board, scores, or actions) by name. Such features are likely to be shared by similar games,
and we depend on this fact to transfer knowledge from the source game (which we will call
G1) to the target game (G2). For example, we might know that taking a particular action
in a particular state of G1 leads to good outcomes, but even if we were to encounter exactly
the same situation in G2, we would not recognize it without �rst decoding the obfuscation.
This begs a question: If game obfuscation is an arti�cial problem whose e�ects we intend
to nullify, why insist on using it at all?

In describing a game for human players, it is useful to use common language that allow
those players to draw analogy with other games. For example, telling a player that, `These
are your pieces,' conveys many ideas in few words. `You will move these.' `Their positions
are important.' `Losing them reduces your set of available moves.' However, none of this
guaranteed by use of the word `piece', nor prohibited if some other word were used instead.
These real characteristics of the game are determined by its dynamics, as codi�ed by its
full set of rules, not the particular names that we assign to its entities. Checkers is still
Checkers when the rulebook is written in another language.

Complete obfuscation of a game description takes this idea to its logical extreme, re-
placing the name of every entity with a new, random one. It forces us to disregard the
semantic information associated with named entities in the game description to focus solely
on the dynamics. This is the standard for GGP, and will be assumed for the entirety of
this thesis. Of course, there would not necessarily be anything wrong with research that
did make use of semantic information, since the rules for games that humans care about
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(outside of GGP) are generally written in a way that are meant to be understandable.
However, even if we were willing to make this assumption, it would still be necessary to
verify the similarity among entities between two games. For example, both Checkers and
Poker have `kings', but those do not actually represent similar things.

In this chapter, we discuss the algorithms that form a mapping from the elements of
a source game to those of a target game, which is a prerequisite for conducting transfer
in later chapters. This work was published at the 2021 Conference on Games [36]. Our
method is the �rst to approximate an edit distance between nodes in two di�erent rule
graphs. This not only allows symbols to be mapped from G1 to G2, but also produces an
overall distance that can be used to judge the quality of a mapping, and choose the best
game from which to transfer. In general, �nding the edit distance between two graphs is
a well-known NP-Hard problem, so it is necessary to employ novel heuristics and greedy
strategies to remain as lightweight as possible. The faster a mapping algorithm can be
made, the more time a bot will have for self-play during its short initialization period.

The main contributions of this chapter are:

1. A heuristic rule graph search that approximates the similarity of nodes, while limiting
the number of other nodes expanded;

2. Two greedy methods (called MMap and LMap) for producing a symbol mapping
from G1 to G2 by approximating their edit distance;

3. An evaluation of the e�ectiveness of these methods across a variety of transfer sce-
narios, which show MMap to be more robust, LMap to be faster, and both to be
much more accurate than a simpler baseline mapper.

3.1 Background

3.1.1 Rule Graphs

As previously described in Section 2.2.3, a rule graph is a structure that captures all of
the information present in the GDL description of a game's rules. Its nodes represent
predicates, symbols, or built-in functions needed by the Game Master, and its directed
edges (generally) indicate that one node is an argument to the other. While there are rare
exceptions to this meaning of an edge, there is no ambiguity when the colour of both the
parent and child node are known. For our purposes, this is what matters, since we will be
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interested in the number of edges from one node to its neighbours of a particular colour.
We will never be counting neighbours of all colours and treating those connections as equal.

In the work that follows, we will make use of the fact that if two rule graphs are iso-
morphic, then the games that they represent are equivalent [45], as well as the assumption
that if two rule graphs are similar, then the games that they represent are likely to be
similar. (We will also see examples where this assumption may be broken, in later chap-
ters.) As such, we will need to quickly construct a rule graph for both the source and
target game, and use the method described by Genesereth [29], which deterministically
produces a unique graph, G, for each GDL description. For convenience, we now list the
(paraphrased) steps of this method, with a small modi�cation in bold.

1. Add a node toG for each occurrence (i.e. each individual appearance in the GDL) of a
logical connective, predicate symbol, function symbol, and variable. If one occurrence
is an argument to another, draw an edge from the latter to the former.

2. For each variable or symbol that occurs in the GDL description, but is not a GDL
keyword add one node to G and draw an edge from it to all of its corresponding
occurrence nodes constructed in step 1. (We will later refer to these new additions
as symbol nodes.)

3. For each node, v, created in step 2 that corresponds to a symbol that takes arguments,
create one node representing the position of each argument, and draw an edge from
the symbol node to its argument nodes. (E.g. A predicate that takes two arguments
would generate two argument nodes, one corresponding to its �rst argument, and
one to its second.) Add an edge from each argument node to the corresponding
occurrence nodes created in step 1. If v represents entailment or a binary GDL
keyword, draw an edge from its �rst argument node to it second.

4. Assign a colour to each node to indicate its type, where each logical connective and
GDL keyword have a unique colour, and all user-de�ned symbols are labelled as either
a predicate occurrence, function occurrence, variable occurrence, argument, variable
symbol, or non-variable symbol. At any later time, a subtype may be assigned
to non-variable symbols. When a subtype is known, it functions as the
node's colour. (Subtypes are not used in this chapter, but will be important to the
handling of number chains in the next.)

For an example of a GDL code excerpt converted to a rule graph, see Figure 2.3, and
for examples of rule graph sizes resulting from games of varying complexity, see Table 2.1.
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3.1.2 Related Work in Mapping and Transfer

Although we are not aware of any other works that have performed symbol mapping for
the purpose of transfer in GGP, there has been some research in mapping speci�c kinds of
games. Falkenhainer et al. performed transfer between non-identical games by extending
the Structure Mapping Engine [21]. Klenk and Forbus [40], were able to establish mappings
between kinematics problems, while Hinrichs and Forbus [33] mapped between games where
a character moves on a 2D grid. Both showed positive transfer in their respective domains.
These works are similar in purpose to our own, though execution times do not seem to
have been a major concern, as they were not reported.

Although not strictly a kind of mapping, feature extraction is a common practice in
GGP that allows a bot to �nd information known to be useful in a variety of games.
Since board games are encountered frequently, there are methods for �nding sequences of
numbers, board coordinates [43, 68], and moveable pieces [37], which can then be combined
to produce heuristics. We will examine and make use of some of these features in later
chapters. Game-independent features may also be discovered autonomously [39], and whole
games may be decomposed if they are made up of smaller sub-games [34].

Section 2.3 gives several examples successful transfer in games, when a mapping has
been given in advance. Methods like these may be used for transfer after running our
mapping algorithm.

3.2 Method

3.2.1 Rule Graph Generation

We begin with a rule graph for a known game that will act as G2 (or potentially, many
stored rule graphs, from which we will choose the best), and we must process a new GDL
description into a rule graph to act as G1. We do so using the method described by
Genesereth [29] (outlined in Section 3.1.1) because, unlike Kuhlmann's method [46], it
does not require coloured edges, which makes processing the graph somewhat simpler. Not
including subtypes, there are 24 possible node colours, among which a few are particularly
important for our purposes. We now draw attention to them, their meanings, and the
structure of their graph neighbourhoods.

In Figure 3.3, symbol nodes are given a dashed border. There is one symbol node
for each unique user-de�ned symbol in a GDL description, positioned such that all of the
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relationships of that symbol can be discovered by searching from its symbol node. Of
these nodes, some represent variables (purple), and others represent non-variables (white).
Variables are important to the logic of a game, but cannot appear in the game state,
which must be fully instantiated. It is therefore the non-variable symbol nodes that we are
interested in mapping.

Each symbol will have an outgoing directed edge to some number of occurrence nodes,
its children. An occurrence node (blue for non-variables, dark green for variables) repre-
sents one place that the corresponding symbol appears in the GDL game description. If
it is passed arguments, then it will have their occurrence nodes as its children, and if it
is itself an argument to some other occurrence, that occurrence node will be its parent.
If a symbol takes N arguments, then its node will additionally have N argument nodes
(orange) as children. These nodes are connected to every occurrence that appears in a
particular argument position.

Importantly, the only nodes that are able to form connections from one GDL statement
to another are symbol and argument nodes. All other types of nodes form connections that
are local within the original GDL. In order to keep the execution time of our graph searches
manageable, it is therefore necessary to be careful in the handling of symbol and argument
nodes. Hereafter, if we do not specify the type of a symbol node, we are referring to a
non-variable.

3.2.2 Approximate Edit Distance

In order to �nd a mapping from the symbols of G1 to those of G2, we need a way to
measure the similarity of nodes (n1 and n2) in di�erent graphs, using only colour and
graph structure. To that end, we approximate a kind of edit distance, which requires
counting the number of changes needed to change the part of G1 reachable from n1 into
the part of G2 reachable from n2 (or vice versa, as the process is symmetric). We are
allowed to add a node, delete a node, or change the colour of a node, at a cost of 1 unit
distance per operation. Our notion of edit distance di�ers from common usage in two
important ways. First, if the colour of two nodes is di�erent, we immediately truncate the
search and assign a distance of 1. Second, if their colours match, then distance is given by:∑

neighbours distance

(# of neighbours) + 1
(3.1)

where neighbours are child, parent, and sibling nodes, and distance is (an approximation
of) the minimum distance from pairing all neighbours of n1 to neighbours of n2. So, if n1
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1: function Distance(n1, n2, depth)
2: if n1.colour = n2.colour then
3: dist← 0
4: count← 1
5: if depth < MAX_DEPTH then

6: if n1.colour is VAR_OCC OR

↪→ (n1.colour is SYMBOL AND depth > 0) then
7: pass

8: else if n1.colour is ARG AND depth > 1 then
9: p1 ← SYMBOL parent of n1

10: p2 ← SYMBOL parent of n2

11: if p1.colour ̸= p2.colour then
12: dist← dist+ 1

13: count← 2
14: else

15: cDist, cCount← ListDistance(n1.children,
↪→ n2.children, depth+ 1)

16: pDist, pCount← ListDistance(n1.parents,
↪→ n2.parents, depth+ 1)

17: sDist, sCount← ListDistance(n1.siblings,
↪→ n2.siblings, depth+ 1)

18: dist← cDist+ pDist+ sDist
19: count← cCount+ pCount+ sCount+ 1

20: return dist/count
21: else

22: return 1

Figure 3.1: Algorithm for �nding the distance of two rule graph nodes (Part 1).

and n2 are of di�erent colours, then their distance is 1, which is the highest possible value.
If they are the same colour, and their children (and all of their successors) have matching
colours, then the distance is 0, its minimum value. If n1 and n2 are the same colour, but
none of their N children can be matched to a same-coloured node (or alternatively, if one
of n1 or n2 has N children, and the other has none), then the distance between n1 and
n2 will be N/(N + 1). This property ensures that matching nodes of the same colour can
never be worse than matching nodes of di�erent colours, and that all incorrectly matched
nodes will be on the outer fringe of the graph. This is desirable because we do not wish
to continue matching nodes `through a mistake'. To see this, consider a case where we can
match a node in G1 that has two children to a node in G2 with two children. If the node
in G1 represents the `plus' operation, and the node in G2 is the `distinct' operation (i.e.
̸=), then it does not matter how well the child nodes can be matched. Context dictates
that these two portions of graph serve di�erent purposes.
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1: function ListDistance(nList1, nList2, depth)
2: for each node ∈ nList1 or nList2 do
3: if node if it would form a cycle then
4: remove node from its list
5: else if node.colour is NON_VAR_OCC AND depth > 1 then
6: replace node with its parent SYMBOL node

7: assigned, tuples← ∅
8: totalDist, count← 0
9: for each n1 ∈ nList1 do
10: for each n2 ∈ nList2 do
11: dist← Distance(n1, n2, depth)
12: if dist = 0 then
13: add n1 and n2 to assigned
14: remove n1 from nList1 and n2 from nList2
15: count← count+ 1
16: else

17: add (dist, n1, n2) to tuples

18: sort tuples in increasing order by dist values
19: while not all nodes ∈ assigned AND tuples is not empty do
20: (dist, n1, n2)← �rst element popped from tuples
21: if n1 ̸∈ assigned & n2 ̸∈ assigned then
22: add n1 and n2 to assigned
23: remove n1 from nList1 and n2 from nList2
24: totalDist← totalDist+ dist
25: count← count+ 1

26: for each remaining node ∈ nList1 or nList2 do
27: totalDist← totalDist+ 1
28: count← count+ 1

29: return totalDist, count

Figure 3.2: Algorithm for �nding the distance of two rule graph nodes (Part 2).

Our method of averaging the edit distance is also desirable because it does not penalize
nodes that have many children. If we dealt in total edit distance, then a pair of nodes with
8/10 successfully matched neighbours would have a higher distance than a pair of nodes
with 1/2 matches.

The details of our distance algorithm are given by Figures 3.1 and 3.2. It can be
summarized as a depth-�rst search that tries to �nd user-de�ned symbols, and stops when
it reaches them. Two examples of this search are given by Figure 3.3. The Distance
function should initially be called with two symbol nodes and a depth of 0. To prevent
out-of-control graph expansion, the depths at which symbol, argument, and occurrence
nodes can be expanded are tightly controlled. Line 6 (Figure 3.1) ensures that symbol
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Figure 3.3: (Top Left) The rule graph generated from the GDL code in Figure 2.1. Names
are overlaid for clarity, although they are not normally visible. Symbol nodes have dashed
edges (variable symbols are purple, non-variables are white). Non-variable occurrence
nodes are blue. Variable occurrences are dark green. Argument nodes are orange. Each
built-in GDL keyword has a unique colour. (Top Right) Coloured, barbed arrows indicate
the edges that can be discovered by our distance algorithm, starting from the `red' symbol
node. Dark red edges are part of the initial expansion, lighter red arrows are part of
subsequent expansions, and yellow double-headed arrows are sibling relationships that are
not true edges in the graph. (Bottom) Edges discovered, starting from `piece_count' (p_c).
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nodes can only be expanded at depth = 0 (i.e. initially). Argument nodes may only be
fully expanded at depth <= 1 (Figure 3.1, line 8); otherwise, we only check which symbol is
its parent. Occurrence nodes are replaced by their corresponding symbol node if depth > 1
(Figure 3.2, line 5), which e�ectively halts expansion. Combined, these depth limits have
the e�ect of allowing full expansion for the initial symbol nodes and their child occurrence
and argument nodes, but thereafter shutting down any expansion that could cross into
separate GDL statements.

Brie�y, we list some other notable features of the algorithm. Line 5 (Figure 3.1) enforces
a maximum search depth. From line 6 (Figure 3.1), variable occurrence nodes are never
expanded. Line 3 (Figure 3.2) prevents cycles. From lines 9 to 25 (Figure 3.2), we are
�nding the distances of all pairs of nodes in two lists, and then greedily drawing pairs
for nodes that have not yet been matched (like Kruskal's algorithm). Lines 12-15 (Figure
3.2) represent an optimization that allows a pair to be assigned early, if it is a perfect
match. Lines 26-28 (Figure 3.2) assign a maximum distance of 1 to any nodes that were
not matched.

3.2.3 Desirability Score

Using distance alone, it is sometimes possible for several pairs of symbol nodes to appear
equally viable, which can be a problem when those pairs are incompatible with each other
(i.e. want to map one node to di�erent things). Since our mapping procedures are greedy,
we provide additional information in the form of a desirability score (DS), to boost choices
that are more likely to be correct. While searching graphs to �nd distance, we also track the
total number of individual nodes successfully matched, and the number of those nodes that
were previously mapped symbol nodes. Given two possible pairings with the same distance,
we prefer the pair that successfully matched more nodes, because a larger graph expansion
means that the pair is more likely to be mapped uniquely well. We also favour pairs
with more previously-mapped neighbours. When a pair is added to the overall mapping,
it is assigned a unique colour that is di�erent from the generic colour for symbol nodes.
Finding a match of these uniquely coloured nodes during a later graph search is rarer, and
therefore more desirable, than a match among other colours. This feature is particularly
useful for breaking ties among long chains of nodes that otherwise appear identical, like
board coordinates.

The desirability score, DS, of matching nodes n1 and n2, is given by:
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DS(n1, n2) = αD(
Dist(n1, n2)

Dmax

) + αN(1−
Num(n1, n2)

Nmax

)

+ αA(1−
Assign(n1, n2)

Amax

) (3.2)

where Dist is the distance function, Dmax is the maximum distance among all pairs, Num
is the total number of nodes successfully matched in the graph search for n1 and n2, Nmax

is the maximum number among all pairs, Assign is the number of previously mapped (i.e.
assigned) nodes matched during the distance search, Amax is its maximum among all pairs,
and the α values are tunable weights. Generally, we want αD > αN > αA, but this isn't
strictly necessary.

Finally, if we �nd more than one pair of nodes that score equally well and are incom-
patible with each other, we apply a �at penalty to the score of all such pairs. The intuition
for this is that we would prefer to select a pair that is slightly more distant over one where
we know that we are guessing. Later score updates may break the tie and lift the penalty.

3.2.4 Mapping Algorithms

After generating the rule graph for G1, we have two methods for comparing and greedily
selecting symbol pairs to add to the mapping, called MMap (Matrix Mapper) and LMap
(Line Mapper).

Of the two, MMap is more thorough, but slower. After every assignment is made, it
recalculates the desirability score for every pair of symbol nodes (which form a matrix), and
selects the one with the lowest score to map next1. LMap employs the heuristic of Riesen
et al.'s Greedy-GED algorithm [63], which requires calculating the distances for only two
lines in the matrix that MMap generates. To do this, we must �rst select a node, n1, from
G1. We make this selection using the Num and Assign portion of the desirability score.
The distance and DS are then calculated for n1 and every symbol node in G2. Among
these, the node that produces the lowest DS is selected as n2, and a distance and DS are
found for every node in G1 paired with n2. From these pairs, the one with the lowest DS
is added to the mapping. This second line of scores provides a second chance, in case the
initial node selected from G1 was a poor choice. However, LMap is still far more aggressive
in its greed than MMap.

1There is room for optimization here, since only the nodes neighbouring the most recently assigned pair
actually need to be recalculated.
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Whichever method is used, once a pair has been selected for mapping, the colour of
both nodes is changed to a shared unique colour, and the process is repeated. Mapping
stops when one or both graphs have run out of symbol nodes, or the best raw distance
scores have exceeded a tunable threshold value. At this point, any remaining nodes are
left unmatched, and assigned a distance of 1.

If we have multiple candidates for G2, then this procedure can be repeated for each of
them, and the one with the lowest overall distance should be considered the best mapping,
and therefore the best option for transfer.

3.3 Experimental Evaluation

The experiments reported in this section were designed to test the robustness of our MMap
and LMap algorithms to unpredictable changes in the mapped game's rule graph. Each
of them involve mapping some experimental game (G1) onto a standard game that has
previously been encountered and stored to disk (G2). This recreates the experience of
a transfer-bot, which would need to perform such a mapping before transfer learning.
The majority of our experiments involve mapping onto either �8 Queens Puzzle - Legal
Guided2�(which requires 8 chess queens to be placed on an 8× 8 board without being able
to attack each other) or standard Checkers, which can both be found in Stanford's base
game repository [64]. These two games were chosen because they produce very di�erently
sized rule graphs (given in Table 3.1), and each has a number of useful variants that can
also be found in Stanford's repository.

For each trial, we randomized the order of the nodes in G1's rule graph. This does not
change the structure of the graph, but ensures that the order in which GDL statements
are presented in the rule set cannot factor into the mapping process. A mapping algorithm
that relied on this ordering could easily be defeated, since the order of statements can be
changed without a�ecting the underlying game.

Numeric symbols have been omitted from correctness percentages, where a numeric
symbol is one that represents a number, or part of a number-like sequences (like `m1',
`m2', `m3', etc.). We have made this choice because numbers are de�ned in a structured,
repetitive way that allows them to be discovered by simpler methods [43, 68], and they
often signi�cantly outnumber all other nodes. Checkers, for instance, de�nes 202 numeric

2�Legal Guided� refers to extra rules that prevent a bot from making illegal moves. In �Unguided�
versions of the game, illegal moves are allowed, but will result in a score of 0 upon termination.

37



symbols, compared to only 50 other non-variable symbols, which we are more interested
in mapping.

Cross-domain mapping is a relatively underdeveloped area of research for GGP, so we
do not have an established baseline to compare against. We will, however, include results
for a �Myopic� mapping algorithm that functions identically to LMap, but has a maximum
search depth of 1. This limits its view to the immediate neighbourhood around each symbol
node, and makes it essentially equivalent to the original Greedy-GED algorithm [63].

Mean values reported have been averaged over 20 trials run with di�erent random seeds.
We used a maximum search depth of 5, a penalty for incompatible pairs of 0.1, a distance
threshold of 0.5, and parameter values αD = 0.8, αN = 0.18, and αA = 0.02. All code was
written in Java, and all experiments were run as single-threaded processes on a Windows
10 machine with a 2.8 GHz i7 processor.

In this section, we detail the methodology for three di�erent kinds of quantitative eval-
uation. Section 3.4 discusses results, and additionally notes several informal experiments
that cannot be readily evaluated.

Self-Mapping

As a baseline, we begin by mapping the rule graphs of various games onto themselves,
unaltered. (I.e. If G1 is Checkers, then G2 is also Checkers.) Although we know that
a perfect matching must exist, this process of self-mapping is not guaranteed to succeed
�awlessly, as some symbol nodes may appear to be identical when considering only a �nite
neighbourhood around them. Since we know which symbols ought to be matched together,
the correctness of a mapping is simply given by the percentage of these matches that were
actually made.

Adding or Removing Nodes

We continue self-mapping, but introduce unpredictable changes to G1 by either deleting
or duplicating nodes chosen randomly. Deletion has the e�ect of reducing the information
present in G1, while duplication adds noise that can be misleading. To delete a node, we
remove all of its in- and out-edges, making it completely inaccessible from elsewhere in
the graph. To duplicate a node, we create a second instance of it and duplicate all in-
and out-edges. In both cases, we target occurrence nodes3 because they provide essential

3We also tested duplicating/deleting any nodes that were not symbol nodes. Results followed the same
general patterns observed when altering only occurrence nodes.
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information to our mapping algorithms, and because a change to one occurrence node is
directly comparable to one change in the GDL code. In particular, removing an occurrence
node is akin to crossing out a single symbol in GDL. (Duplicating a node does not have a
similarly intuitive analogy, but is essentially the inverse operation.)

In general, this may leave functions without arguments or arguments without parents,
so the resulting graph no longer represents a syntactically correct game that can actually
be played. We are therefore only approximating the actual GDL changes that a GGP bot
might encounter. However, this approach is useful for its ability to alter a rule graph by
any amount in a way that cannot be predicted by a bot's creator in advance. Since we are
ultimately still self-mapping, correctness can be evaluated in the same way as previously.

Mapping to Game Variants

To ensure that mapping can be performed between functional games that are di�erent in
meaningful ways, we examine the families of games that include 8 Queens and Checkers.
Within a family, symbol names and much of the game logic are shared, but games are
di�erent by some combination of altered board size, board topology, or rule set. For
example, a game within the Checkers family is Checkers, played on a Torus, where pieces
must jump if they are able. We assign either 8 Queens (Guided) or Checkers to G2, and
their respective variants to G1.

Although our mapping algorithms cannot make use of the shared symbol names due
to obfuscation, these names are useful for evaluation. We calculate the correctness of
a mapping by �rst �nding the set of symbols whose names appear in both G1 and G2,
and then �nding the fraction of those symbols that are matched correctly. This approach
would not work if our games were not explicitly part of a family, as two symbols could
share a name without actually representing the same concept. The problem of evaluating
mappings between more distantly related games is discussed further in Section 3.4.1.

3.4 Results and Discussion

3.4.1 Main Results

Self-Mapping

Table 3.1 gives results for the self-mapping of various games. In addition to 8 Queens
and Checkers, a few other well-known games were chosen at varying levels of complexity.
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# Time to Build Myopic Self-Mapping
Game Nodes Graph (ms) % Correct Time (ms)

8 Queens, Gd. 464 1.81 ±1.64 80.63 ±9.25 5 ±7
Tic-tac-toe 469 1.75 ±1.83 85.33 ±10.24 3 ±3

Connect Four 553 1.86 ±1.90 96.79 ±3.55 2 ±3
Rubik's Cube 1521 2.85 ±5.64 50.31 ±5.29 11 ±9
Checkers 3990 4.73 ±7.42 67.10 ±5.92 49 ±27
Chess 5668 7.88 ±13.30 65.71 ±4.20 57 ±26

MMap Self-Mapping LMap Self-Mapping
Game % Correct Time (ms) % Correct Time (ms)

8 Queens, Gd. 100.00 ±0.00 224 ±140 100.00 ±0.00 59 ±28
Tic-tac-toe 88.00 ±10.24 133 ±70 85.33 ±10.24 46 ±24

Connect Four 100.00 ±0.00 125 ±60 100.00 ±0.00 54 ±27
Rubik's Cube 100.00 ±0.00 8612 ±451 100.00 ±0.00 535 ±238
Checkers 100.00 ±0.00 43680 ±4166 100.00 ±0.00 1371 ±316
Chess 97.14 ±1.21 86964 ±4400 95.18 ±2.34 3612 ±323

Table 3.1: Self-mapping results for games of varying complexity. The highest mapping
accuracy for each game is in bold.

Although the time taken to build a rule graph does scale with the complexity of that
graph, this time was less than 10 milliseconds for all games tested. Since it is insigni�cant
compared to the time taken for mapping, we will ignore graph generation time, moving
forward.

The Myopic mapper is (naturally) very fast, and performs fairly well for simple games,
but correctness drops sharply for games that are more complex. This is sensible, as larger
rule graphs provide more opportunity for nodes to be similar in their immediate neighbour-
hoods. MMap and LMap compare well to each other with regard to mapping accuracy.
They score less than 100% in the same places, and for the same reasons. In Tic-tac-toe,
they sometimes map `X' to `O' and/or `row' to `column'. This is understandable, as these
symbols serve very similar purposes and appear identical within the bounds of our search,
even though they would be di�erentiable if that search were extended to the entire graph.
We observe a similar phenomenon for Chess, where symbols representing the two direc-
tions for diagonal checking, as well as rook/queen or bishop/queen attack symbols may be
confused.

Run time clearly favours LMap over MMap. While LMap runs in less than 4 seconds
for all games tested, MMap takes ∼44 seconds for Checkers and ∼87 seconds for Chess.
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This is problematic for GGP, where a bot can expect to have no more than 30 seconds to
1 minute for initialization. This limits the application of MMap to relatively simple games
only, barring further optimization.

Adding or Removing Nodes

From Figure 3.4, it is immediately clear that both MMap and LMap (with a maximum
search depth of 5) outclass a Myopic mapper (with a maximum depth of 1) in terms of
mapping accuracy. This was true when 0 nodes were removed/duplicated, and remained
true for all values that we tested.

In the node removal experiment, we varied the number of deletions from 0 up to the
total number of occurrence nodes in the rule graph. Neither MMap nor LMap dropped
to 0% accuracy, even when all occurence nodes were removed because they were able
to glean some information using argument nodes, exclusively. The Myopic mapper was
rendered completely ine�ective at this stage. For both games, MMap and LMap retained
an accuracy of more than 70% until over 50% of occurrence nodes had been removed.

Our node duplication experiment similarly shows that both MMap and LMap produce
far better accuracy that a Myopic mapper for any number of occurrence nodes duplicated.
Here, we also see a gap between MMap and LMap that is present in both games, but
most pronounced for Checkers. It indicates that MMap is more robust than LMap to the
addition of random misleading information, though this comes at the cost of a much higher
execution time.

Mapping to Game Variants

Table 3.2 gives results for mapping 8 Queen variants onto `8 Queens, Legal Guided' (here-
after, just `8 Queens'), and Checkers variants onto Checkers. The percentage of non-
numeric symbols shared serves as a rough, but incomplete measure of similarity between
games. Although a symbol may be shared, its usage can be di�erent. We see this in
the results for `31 Queens, Guided'. Despite all non-numeric symbols being shared with
8 Queens, it was the only 8 Queens variant that caused both MMap and LMap to score
less than 100% in mapping accuracy. This occurred because 31 Queens features many
more numeric symbols. Though they are not directly included in accuracy calculations,
the existence of these symbols caused mis-mappings among other symbols that consume
them as arguments.
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Figure 3.4: Mapping accuracy for alterations of 8 Queens (top) and Checkers (bottom).
MMap in red, LMap in blue, Myopic in black.
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% Sym. Myopic
Game Variant Shared % Correct Time (ms)

6 Queens, Unguided 93.33 89.29 ±8.60 5 ±8
8 Queens, Unguided 93.33 89.29 ±8.60 3 ±4
12 Queens, Unguided 93.33 75.71 ±6.55 4 ±5
16 Queens, Unguided 93.33 75.71 ±6.55 4 ±5
31 Queens, Guided 100.00 67.50 ±8.05 6 ±8

Checkers, Small (6X8) 97.96 61.15 ±4.38 45 ±28
Checkers, Tiny (4X8) 95.83 69.67 ±5.43 36 ±14
Checkers, Must-Jump 84.62 41.25 ±4.15 22 ±14

Checkers, Cylinder, Must-Jump 84.62 40.00 ±3.25 24 ±14
Checkers, Torus, Must-Jump 84.62 40.00 ±3.25 24 ±14

MMap LMap
Game Variant % Correct Time (ms) % Correct Time (ms)

6 Queens, Unguided 100.00 ±0.00 166 ±95 100.00 ±0.00 54 ±24
8 Queens, Unguided 100.00 ±0.00 203 ±110 100.00 ±0.00 41 ±17
12 Queens, Unguided 100.00 ±0.00 256 ±142 100.00 ±0.00 62 ±34
16 Queens, Unguided 100.00 ±0.00 300 ±96 100.00 ±0.00 56 ±30
31 Queens, Guided 87.50 ±0.00 584 ±197 68.50 ±0.00 123 ±80

Checkers, Small (6X8) 97.92 ±0.00 36586 ±674 97.92 ±0.00 1279 ±231
Checkers, Tiny (4X8) 97.83 ±0.00 35996 ±640 97.83 ±0.00 1214 ±210
Checkers, Must-Jump 100.00 ±0.00 36446 ±280 86.02 ±4.84 2251 ±211

Checkers, Cylinder, Must-Jump 100.00 ±0.00 34373 ±525 81.82 ±7.91 2351 ±172
Checkers, Torus, Must-Jump 100.00 ±0.00 34618 ±557 80.80 ±6.95 2334 ±221

Table 3.2: Mapping results for the 8 Queens and Checkers families. The highest mapping
accuracy for each game is in bold.

In general, we see the same patterns from this experiment as have been previously
established. The Myopic mapper crumbles quickly as complexity is increased, and as
symbol matches become less clear-cut. LMap is considerably faster than MMap, but also
more prone to errors. This is particularly evident when looking at the Checkers variants,
where MMap scores 100% accuracy across the worst cases for LMap. On the other hand,
MMap takes more than 30 seconds for every Checkers variant, which is likely too slow for
use in GGP. In the next chapter, we examine if LMap's mapping accuracy is su�cient to
allow good transfer in a GGP bot.
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Game MMap Distance LMap Distance

Checkers 0.0000 ±0.0000 0.0000 ±0.0000
Checkers, Must-Jump 0.0929 ±0.0000 0.1135 ±0.0011
Checkers, Torus, M-J 0.0940 ±0.0000 0.1134 ±0.0007

Chess 0.4270 ±0.0043 0.4172 ±0.0034
8 Queens, Guided 0.7520 ±0.0000 0.7394 ±0.0001
Connect Four 0.7567 ±0.0037 0.7482 ±0.0003

Table 3.3: Mean distances from standard checkers.

A Note on Distant Mappings

We have not done a comprehensive analysis of mappings between more distantly related
games, but this is an interesting direction for future work. For example, we know that
Checkers and Chess are both games played on a board, where players alternate turns,
moving one piece at a time. If we try mapping Chess to Checkers (with LMap, in this
case), some of these intuitive connections are borne out (e.g. board properties, like rank
and �le, or capturing in Chess being mapped to jumping in Checkers). On the other hand,
some are dubiously useful (e.g. knight movement mapped to king movement), or obviously
wrong (e.g. the en passant capturing rule mapped to the `greater than' operation). For
this to be a useful mapping overall, it must not only produce positive transfer, but also
provide a larger bene�t than spending the same amount of time on self-play.

Distance as Game Similarity

Before conducting transfer, a bot must �rst decide which game to transfer onto, given
the choice of every game that it has previously encountered. Here, mapping (LMap, in
particular), serves another important function. Because we are keeping track of the edit
distance for every pair in the mapping, it is straightforward to produce an overall distance
for two games that serves as a measure of similarity. Some examples of similarity between
standard Checkers and various other games are given by Table 3.3. Intuitively, it seems
sensible that Checkers is closest to its own variants, farther from Chess, and farther still
from games like Connect Four, although we cannot give an objective evaluation of these
distance values. This idea is explored further in Section 5.1.
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3.5 Conclusion

We have developed a method for approximating an edit distance between nodes in two
di�erent rule graphs, and have applied it in two methods for mapping symbols from a source
game to a target game of di�ering domain. Our evaluation shows that, while both methods
achieve a high mapping accuracy for games that have been altered in unpredictable ways,
MMap is somewhat more robust, but LMap is signi�cantly faster. In the GGP setting,
where time is at a premium, LMap is generally viable as a starting point for transfer. With
further optimization, MMap may become generally viable as well, but for now, remains
useful for low-complexity games.
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Chapter 4

Transfer via General Heuristics

With the methods developed in the last chapter, we are able to identify similar symbols
between di�erent, but related games. These symbols include important features like actions
and state variables. When combined with information like which states and actions resulted
in good outcomes in a previously played game (the source game), this, in principle, allows
us to identify states and actions in a new game (the target game) that are also likely to
be good. However, our mapping algorithms o�er no guidance on how best to go about
this, as their output can as easily be used to guide search algorithms as they can temporal
di�erence methods, or perform machine learning.

The short time limitations imposed by GGP constrain our choice, so for direction,
we look to the GGP literature, where many papers and competitions have shown Monte
Carlo Tree Search (MCTS) to be an e�ective method for achieving good play on short
notice [79]. In standard MCTS, an agent begins as a tabula rasa, but through many fast
simulations of a game, is able to estimate the quality of game states to guide its play. This
approach, however, fails to capitalize on an agent's previous experience. Where a human
might recognize, for example, that a game is just Checkers on a larger board, an MCTS
agent must treat it as an entirely new game, even if it has previously played a regular
game of Checkers. MCTS cannot normally analogize, so using it as a basis for our transfer
agents is desirable for its novelty, as well as MCTS' well established position in the existing
literature.

We augment MCTS with knowledge transfer via the use of general heuristics (heuristics
that can be applied to any game in GGP). Although the use of such heuristics is not new,
our method of initializing them is. In particular, we initialize a set of general heuristics
by transferring data from the source game, enabled by the mapping algorithms of the last
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chapter. These heuristics are then used to guide MCTS, resulting in a Transfer-Initialized
Guided MCTS (TI-GMCTS) agent.

We compare the performance of this agent to one using the same heuristics, but initial-
ized ordinarily via unguided simulations during the game's start clock. We refer to this as
a Simulation-Initialized Guided MCTS (SI-GMCTS) agent. Our experiments show that
TI-GMCTS is able to e�ectively transfer information across domains, where rule changes
have modi�ed the state and/or action space of a game. We show that TI-GMCTS compares
particularly favourably to SI-GMCTS when initialization time is short.

In the following section of this chapter, we give additional necessary background. We
then describe in detail how to calculate each of the general heuristics we have used, and
describe a method for combining them into one evaluation function, weighted by their
relative strength. We show how these heuristics are initialized, either through transfer or
simulation, and we compare the performance of TI-GMCTS and SI-GMCTS agents in six
variants of Checkers and �ve variants of Breakthrough with varying state/action spaces.
We conclude by analyzing the strengths and weaknesses of a Transfer-Initialized agent,
and suggest methods for expanding its capabilities in the future.

4.1 Background

This chapter requires background in MCTS and general heuristics, discussed in Sections
2.1.2 and 2.2.4, respectively.

Additionally, in order to choose a set of game variants from the in�nitely many that are
possible, we will refer to those variations described by Kuhlmann and Stone [45], which were
identi�ed by checking the rule graph for isomorphism with a pre-de�ned set of templates,
in that work. For convenience, we list the possible variations here:

� Number of pieces: Pieces are added or removed from the initial state.

� Con�guration of pieces: The position of pieces in the initial state is altered.

� Board size: One or both dimensions of a two-dimensional board are made larger or
smaller.

� Board topography: The playing surface is swapped from a �at plane to a cylinder
or torus.

� Step limit: The maximum number of turns before a game terminates is changed.
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� Inverted goal: Rewards are swapped so that a winning position becomes losing,
and vice versa.

� Switched role: In a game with two players, those players change roles. For example,
Red to Black in Checkers.1

� Missing feature: A rule or other feature of the game is removed completely.

4.2 Method

4.2.1 General Heuristic Calculation

The three general heuristics described below and used in our experiments are not novel,
and this chapter is not meant to be an examination of their e�ectiveness across a suite of
games. Rather, we wish to show that when an agent has access to general heuristics that
are e�ective, it can bene�t more from them when they are weighted and initialized via
transfer from another game. We have therefore chosen three heuristics from the literature
(which are summarized in more detail in Section 2.2.4) that can be reasonably e�ective on
Checkers and Breakthrough, our experimental test beds. There exist numerous variations
on each of them in the literature, but we have based the versions below on [78] (although
they are ultimately applied to MCTS in a way that is di�erent from that work).

When transfer is not used, we initialize these heuristics with data gathered from regular
UCT simulations for SI-GMCTS. These are performed for as much of the start clock as
possible, and afterwards, they form the initial Monte Carlo Tree. In the descriptions below,
we assume that transfer is not being used. Initialization with transfer will be discussed
separately after all of our heuristics have been de�ned.

Mobility Heuristic For a two-player game, we de�ne an agent's mobility in a given
state to be the di�erence between the number of di�erent possible moves that it can make,
and the number of di�erent possible moves that its opponent can make. (i.e. A positive
mobility means that an agent has more available moves than its opponent.)

For each simulation run during initialization, we �nd the average mobility score across
all states visited, and note the �nal reward value obtained. At the end of the start clock, we

1We do not actually consider this to be a variant, since we always alternate between roles in a two-player
game. However, it is included for completeness with regard to Kuhlmann's work.
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do linear regression on average mobility vs. reward, and also �nd the Pearson correlation
coe�cient (the r-value). Thereafter, we can �nd an expected reward for any given mobility
value, Vmob, and weight it against other heuristics using the r-value (Wmob = |r|).

Symbol Counting Heuristic The Symbol Counting heuristic is one heuristic composed
of many smaller heuristics that must be discovered during initialization. A game state is
composed of some number of facts that are true. For example, a state in checkers might
contain (cell c 2 bp), indicating that there is a black piece in the second rank of the C
�le. If we were to count the total number of facts that contain bp as the third argument to
cell, we would know the number of black pieces remaining, which is an intuitive heuristic
for Checkers. However, an agent does not know which symbols are important when �rst
given the game description.

To discover them, it tracks the number of all symbols in each position at which they
appear as arguments in each type of fact (e.g. cell). In other words, there is a count
associated with each (symbol, fact, position) triple. Generally, this produces many triples
which provide no meaningful insights into the quality of a game state. Some of these may
be �ltered out by observing which symbols are una�ected by player actions. If there is no
variance in the count of a triple across all simulations, then it is discarded as a heuristic.
For example, every game state in checkers contains a fact like (cell c 2 X), where X may
indicate a black piece, red piece, or empty space. Triples involving the c or 2 symbols will
be discarded.

For the remaining triples, we must determine how well each one indicates the value of
a game state2. As with the mobility heuristic, we do linear regression for each triple at the
end of the start clock, comparing its average count to the �nal reward received for each
simulation. Then, a combined heuristic value for all symbol counts of a game state, Vsc, is
given by the weighted average:

Vsc =
∑
t∈T

Vt ∗ |rt|∑
|rt|

(4.1)

where Vt is the predicted reward for triple t, rt is the Pearson correlation coe�cient for t,
and T is the set of all triples that appear in the game state, and were not discarded. We
take the weight of this combined heuristic to be Wsc = maxt∈T |rt|.

History Heuristic Given a complete action, like (move bp g 6 h 5) (which speci�es
moving a black piece from G6 to H5 on the board), the history heuristic provides an

2Up to this point, we have employed the method for symbol counting described by [78]. Our method
for combining the various symbol counts into one heuristic value di�ers.
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estimate of its value by referring to previous simulations in which that action was taken.
During initialization, every move played during a simulation is added to a set, and at the
end of the simulation, the average reward of each of those moves is updated by the �nal
reward received. Using the version of this heuristic speci�ed by [78], it does not matter
how many times a move was played during a simulation, only that it was played at least
once. Since the presence or absence of each move is then a binary feature, it does not
make sense to perform linear regression, as we have done for the other heuristics. Instead,
the heuristic value, Vhist, is just the stored average reward. To assign a weight, Whist, we
assume that a value is more informative the further it is from the reward received for a
draw 3:

Whist =
2 ∗ |Vhist −Rdraw|
Rmax −Rmin

(4.2)

where Rdraw is the reward received for a draw, Rmax is the maximum possible reward
received, and Rmin is the minimum possible reward received.

In addition to this history heuristic dealing with very speci�c actions (e.g. moving
a piece between two speci�c board coordinates), we introduce a general history heuristic
that considers all actions of a type to be the same (e.g. all actions called move). This
heuristic is only useful for games in which there are at least two di�erent types of actions,
and it is possible to run a complete simulation without including all of them. In the GGP
base repository, Checkers is an example of such a game, since double- and triple-jumps are
considered a separate action from other moves. A value (Vgen_hist) and weight (Wgen_hist)
for each action type are calculated during initialization in the same way they are calculated
for complete actions using the standard history heuristic.

Evaluation Function With all of our heuristic values and weights de�ned, we take their
weighted average to get a complete heuristic evaluation function, V :

V =
∑
h∈H

Vh ∗Wh∑
Wh

, H = {mob, sc, hist, gen_hist} (4.3)

This function is scaled to the range [Rmin, Rmax], and may be used to estimate a state's
value in order to guide search.

3We use language associated with two-player games here, but this de�nition may be expanded to include
one- or more-player games replacing Rdraw with another appropriate value, like the overall average reward
across all simulations.
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4.2.2 Guided Monte Carlo Tree Search

There are several possible options for using a heuristic function to guide MCTS [92], includ-
ing biasing the selection phase, performing non-random rollouts, and terminating rollouts
early with reward equal to the function value. Although our combined heuristic evaluation
function is compatible with any of these methods, we have opted to focus on only the �rst.
It is much less computationally expensive than heuristically guiding rollouts, since rollouts
encounter many new nodes each simulation, and it is a much smaller commitment than
early rollout termination, since reward is still based on true terminal states.

Figure 4.1 shows the number of rollouts completed over time in a game of Checkers
by a predecessor of the transfer agents presented in this thesis. (It is discussed in more
detail in Section 4.2.6.) We can observe from the �gure that when rollout guidance is used
(which is the case for the SR-agent), the number of rollouts completed is reduced to about
half the number that may be completed when it is not used (the S-agent). On the other
hand, using only selection guidance slows the agent only a little compared to UCT.

Compared to these older agents, it is even more untenable to perform rollout guidance
in TI-GMCTS, because the mobility heuristic (which was not present in the older agents)
requires querying the state machine for the possible moves in a state. This is much too
computationally expensive to be worthwhile for nodes encountered during a rollout that
will probably never be visited again. As a result, we made the decision to proceed with
selection guidance only, moving forward.4

In order to in�uence the selection phase, we modify the UCB1 score that will be max-
imized:

UCB1Heur = αnV + (1− αn)
r

n
+ c

√
lnN

n
(4.4)

where α ∈ [0, 1] is a decay parameter , V is our heuristic evaluation function, and the
remaining parameters are the same as in Equation 2.1. The use of a decay parameter on
our heuristic value allows the accumulated reward to grow in importance as more visits
are logged and it becomes a better approximation of the true value of the state.

4.2.3 Archived Information

Up to this point, we have have been concerned with an SI-GMCTS agent that is initial-
ized by simulations performed during the start clock. We will now shift our focus to the

4We also did some experimentation with early rollout termination using the heuristic evaluation func-
tion, but were not able to produce performance comparable to the other agents.
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Figure 4.1: Number of rollouts completed over time by UCT, a selection-only transfer agent
(S-agent), and a selection-and-rollout transfer agent (SR-agent). Values are averaged over
20 games.
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additional infrastructure needed to support transfer for a TI-GMCTS agent.

Before we play a target game, it is necessary to construct an archive of source game
data and pre-compute heuristic data from it. We begin by assigning two UCT agents to
play a number of iterations of the source game against each other, while logging all of the
data that an SI-GMCTS agent would log during its initialization period. We use UCT
rather than heuristic-guided agents for this purpose to avoid biasing the path that a game
takes. When referring to a UCT agent, we will assume an MCTS agent guided by UCB1 [7]
with an exploration parameter of

√
2 and a discounting factor of 0.98.

These agents continue logging even after they have begun playing moves, and will not
stop until the game ends. Compared to SI-GMCTS, this results in a signi�cantly larger
number of simulations to draw upon after a single game, and the states discovered in those
simulations are more closely grouped around the path through the state tree that the game
actually took. Any number of games may be archived in this way. In this work, we have
used 100. For a full, actively competing TI-GMCTS agent, this archive would be expanded
with every game that the agent plays.

We do not want to process all of this raw data during the start clock, so relevant heuristic
parameters are pre-computed o�ine. For the mobility and symbol counting heuristics, this
means doing linear regression across the data stored for all games, and writing the resulting
slopes, intercepts, and r-values to �le. For the simpler history heuristics, we keep a running
total of reward received to produce a �nal average across all games. The �nal result is a
short �le that can be read in < 30 ms to initialize all of our heuristic parameters. More
detail is given in Section 4.2.5.

Along with the heuristic data, we store a �le detailing the rule graph structure of the
source game to be used for symbol mapping. Since this structure is the same every time
the source game is played, we need only store one copy of it.

4.2.4 Rule Graphs and Symbol Mapping

We begin the initialization period by generating a rule graph for the target game using
the method described by Genesereth [29] and summarized in Section 3.1.1. We then �nd
a mapping from the symbols of the target game to those of a source game by using the
LMap algorithm. We have modi�ed LMap by completely ignoring mapping for symbols
belonging to long numeric chains. In GDL, consecutive numbers must be de�ned one at
a time by the application of a successor function (e.g. (succ 1 2), (succ 2 3), and so
on). This creates a long chain of connected symbols that is easy to recognize without the
need for costly mapping. If the successor function that de�nes a chain in the target game
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has been mapped to the successor function for a chain in the source game, we can then
proceed up each chain, mapping the elements of one to the other.

Obtaining a symbol mapping is necessary for the initialization of the symbol counting
and history heuristics, since each of these assign value to particular combinations of symbols
encountered in the game. For example, we may have assigned a high weight to counting
the number of black pieces in the source game, but after obfuscation, this may correspond
to counting the number of occurrences of `�retruck' in the target game. Without a way to
map from `bp' to `�retruck', we would not be able to transfer heuristic values, even if the
target game was actually the same as the source before obfuscation. After performing the
mapping and loading heuristic values from �le, the TI-GMCTS agent is initialized, and
may use the rest of the start clock to perform Guided MCTS.

In this chapter, we assume that an appropriate source game is known in advance for
the given target game. For use in competition, a TI-GMCTS agent would need some
method for selecting a source game from its inventory of previously played games, which
is a problem addressed in the next chapter.

4.2.5 Data Storage

In this section, we detail the speci�cs of storing rule graphs, raw heuristic data, and �nal
linear regression values to disk.

Rule Graphs: Most of the information saved for a rule graph is an adjacency list spec-
ifying the edges of the graph. This is done by assigning a unique ID to each node in the
graph. Although the IDs count upward from 0, the ordering of nodes is not inherently
important. It is simply the order that the nodes were originally generated.

The structure of the �le is as follows:

� Line 1: Symbol IDs corresponding to the players' roles.

� Line 2: IDs for symbols that are part of a numeric chain.

� Line 3: Number chain IDs in order, where the �rst element is the ID of the successor
function, the second element is the ID of the �rst symbol in the chain, and so on.
Di�erent chains are separated by `*'.
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� Lines 4-end: One line for each node in the rule graph. Each line contains the ID of
the node, a number representing its colour, a String containing its name, the number
of arguments it accepts (or -1 if it does not accept arguments), and then the IDs of
each of its child nodes.

Figure 4.2 shows the topmost part of the �le that contains the rule graph for Base
Checkers.

Raw Heuristic Data: For each game played, heuristic data is saved in the form that is
needed for simulation initialization. For most heuristics, that means saving the data from
each rollout that was conducted over the course of play for use as a single data point in
linear regression. (The history heuristics are the exception, for which only averages across
all rollouts are saved.)

The structure of the resulting �le is as follows:

� Line 1: The number of players

� Line 2: Maximum and minimum numbers of occurrences for each (symbol, fact,
position) triple. Data is given in the order: symbol ID, parent ID, position, maximum,
minimum. Di�erent triples are separated by `*'.

� Line 3: Symbol count data for every rollout made in the game. Di�erent rollouts
are separated by `*'. For each rollout, the �rst two values are the reward received
by each player. Then data is given for every triple in the form: symbol, parent fact,
position, total number of occurrences across all states in the rollout, number of states
in the rollout. Di�erent triples are separated by `#'.

� Line 4: Mobility data for every rollout made. Di�erent rollouts are separated by
`*'. Data consists of three values pertaining to each player, one after another. These
values are the reward received, mobility score totalled across all states in the rollout,
then the number of states in the rollout.

� Lines 5-6: One line per player assigning an ID to each unique move played. These
are used reduce the size of later lines. For each move, the ID is listed, followed by
the symbol IDs that make up the move in parentheses.

� Lines 7-8: One line per player giving general history heuristic data. Data for separate
moves is separated by `*', and is of the form: move ID, total reward, number of wins,
number of losses, number of draws, total number of occurrences.
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1: 2 5
2: 3585 3075 3589 3079 3593 3083 12 3597 3087 3601 3091 3605 22 3095 3609 ...
3: 939 2356 12 46 22 28 34 62 40 68 2730 2737 2733 363 2880 2884 2888 2892 ...
4: 0 5 role -1 1
5: 1 16 red -1
6: 2 22 red -1 1 1281 1026 2114 1987 2371 1156 1349 1161 1225 2443 1294 ...
7: 3 5 role -1 4
8: 4 16 black -1
9: 5 22 black -1 1344 2563 4 2438 967 2567 1992 2376 1995 1166 2448 916 ...
10: 6 8 init -1 7
11: 7 16 cell -1 8 11 14
12: 8 16 a -1
13: 9 22 a -1 32 289 20 228 2612 38 8 26 330 2570
14: 10 18 cell 1 259 1796 1541 8 264 269 782 274 1811 20 279 1047 26 284 ...
15: 11 16 1 -1
16: 12 24 1 -1 963 2756 582 265 2825 74 11 2827 975 2646 1049 539 2843 2845 ...
17: 13 18 cell 2 260 1797 1542 265 11 270 784 275 1812 21 280 1049 27 285 ...
18: 14 16 b -1
19: 15 22 b -1 1922 132 1543 137 2571 269 1933 2573 14 142 786 147 403 1813 ...
20: 16 18 cell 3 256 1024 261 1798 1543 266 14 271 786 276 1813 23 281 1050 ...
21: 17 23 cell -1 258 1795 1540 7 263 10 268 13 781 16 273 1810 19 278 1046 ...
22: 18 8 init -1 19
23: 19 16 cell -1 20 21 23
24: 20 16 a -1
25: 21 16 3 -1
26: 22 24 3 -1 2849 131 2595 2819 2851 2788 2597 2821 2758 270 79 275 21 183 ...
27: 23 16 b -1
28: 24 8 init -1 25
29: 25 16 cell -1 26 27 29
30: 26 16 a -1
31: 27 16 4 -1
32: 28 24 4 -1 2656 2816 2785 2818 2755 2852 2598 2854 136 2600 105 209 51 84 ...
33: 29 16 b -1
34: 30 8 init -1 31

Figure 4.2: The �rst 34 lines of the (non-obfuscated) rule graph for Base Checkers, saved
to disk. Ellipses indicate that a line continues, but was truncated for space.
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1: 2
2: 15 17 3 40 8 * 12 365 2 2 1 * 46 365 2 2 1 * 2733 365 2 2 1 * ...
3: 0 100 15 17 3 1807 102 # 46 365 2 8 8 # 2733 365 2 26 22 # ...
4: 0 -50.0 50 100 148.0 50 * 0 104.0 50 100 0.0 50 * 0 88.0 50 ...
5: 0 ( 395 231 73 62 15 40 ) 1 ( 395 947 203 34 177 62 ) 2 ( 395 ...
6: 0 ( 427 965 99 22 15 34 99 40 ) 1 ( 427 965 125 28 73 46 9 28 ) ...
7: 465 17250 162 30 21 213 * 1989 1276250 11748 1428 2029 15205 * ...
8: 465 13850 114 147 49 310 * 1989 244250 1428 11748 2029 15205 * ...
9: 0 157800 1457 253 242 1952 * 1 89850 822 136 153 1111 * 2 119750 ...
10: 0 700 5 16 4 25 * 1 300 1 4 4 9 * 2 50 0 1 1 2 * 3 2150 19 2 5 ...
11: 7 7 2 5
12: 0 100 947 48 516.0 193.5 216.0 409.5 0 0 0 0 * 292 102 844.0382 ...

Figure 4.3: All necessary lines of raw heuristic data collected from a single game of Base
Checkers, saved to disk. Ellipses indicate that a line continues, but was truncated for
space.

� Lines 9-10: One line per player giving speci�c history heuristic data. Data is of the
same form as for the general history heuristic, except that the move IDs refer to those
de�ned on lines 5-6.

� Line 11: Board information. In order, the values are the length in the X dimension,
the length in the Y dimension, the minimum length of lines for which data was
recorded, and the maximum length of lines for which data was recorded.

� Line 12: Board data for each symbol appearing on the board in each rollout. Rollouts
are separated by `#', and within them, data for each symbol is separated by `*'. At
the beginning of each rollout, the reward received by each player is recorded. After
that, data is of the form: symbol ID, number of states that the symbol appears,
average centre distance, average X-side distance, average Y-side distance, average
corner distance, and then the average number of lines of each length between the
limits speci�ed on Line 11.

Figure 4.3 gives this �le for one game of Base Checkers.

Linear Regression Values: Using the raw heuristic data �les, we pre-compute one �le
of heuristic values. This is done in the same way as in simulation initialization (i.e. mostly
via linear regression), by treating the rollouts across all raw data �les as if they came from
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1: 2 2 5
2: 0.0045704463482828285 15 17 3 1.6529764520938957 ...
3: -0.004570446348282809 15 17 3 -1.652976452093895 ...
4: 13.827304758835215 38.51210814119355 855895 0.6895509808559308
5: 13.88670588082707 36.20608913241265 855895 0.6892079200568458
6: 465 2807400 26528 6020 3092 35640 * 1989 42186400 363357 ...
7: 465 5185300 42673 16755 18360 77788 * 1989 43403100 375524 ...
8: 6 395 231 73 62 15 40 10140300 89670 85523 23466 198659 * 6 ...
9: 8 427 965 99 22 15 34 99 40 667700 6453 527 448 7428 * 8 427 ...
10: 947 0.07442320737710584 -9.000040990356409 854449.0 ...
11: 947 -0.07442320737710588 109.00004099035644 854449.0 ...
12: 947 0.06574846012120263 30.94656356362593 854449.0 ...
13: 947 -0.06574846012120267 69.05343643637408 854449.0 ...
14: 947 -0.056093772235874015 61.91209395319058 854449.0 ...
15: 947 0.056093772235873994 38.08790604680943 854449.0 ...
16: 947 0.019781667674842032 39.37526926069999 854449.0 ...
17: 947 -0.019781667674842025 60.624730739300006 854449.0 ...
18: 947 1.145002153149548 36.836893472840565 854449.0 ...
19: 947 -1.1450021531495485 63.163106527159435 854449.0 ...
20: 947 4.839487608901394 47.8267373560199 854449.0 ...
21: 947 -4.839487608901394 52.1732626439801 854449.0 ...
22: 947 11.521198616018491 49.3193130052279 854449.0 ...
23: 947 -11.521198616018497 50.6806869947721 854449.0 ...
24: 947 20.394402369157586 49.34266271807081 854449.0 ...
25: 947 -20.39440236915759 50.65733728192919 854449.0 ...

Figure 4.4: All necessary lines of linear regression values, saved to disk. Ellipses indicate
that a line continues, but was truncated for space.
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the same game. The resulting heuristic values are then written to one �nal �le, which can
be loaded by a TI-GMCTS agent during initialization.

The form of this �le is as follows:

� Line 1: The number of players, the minimum length for lines of pieces, then the
maximum length for lines of pieces.

� Lines 2-3: One line per player giving symbol counting heuristic values. The �rst value
on a line is the average Pearson correlation coe�cient (r-value) across all (symbol,
fact, position) triples. After that, data is given for each triple separated by `*', in
the form: symbol ID, parent ID, position, slope, intercept, number of data points,
r-value.

� Lines 4-5: One line per player for mobility heuristic values, in the form: slope,
intercept, number of data points, r-value.

� Lines 6-7: One line per player for general history heuristic values. Di�erent moves
are separated by `*', and values are given as: move ID, total reward, number of wins,
number of losses, number of draws, total number of data points.

� Lines 8-9: One line per player for speci�c history heuristic values. Di�erent moves
are separated by `*'. The �rst value gives the arity of the move tuple, n, and the
next n values are the symbols making up the tuple. After that, values are given as:
total reward, number of wins, number of losses, number of draws, total number of
data points.

� Lines 10-11: One line per player for the centre distance board heuristic. Values for
each symbol are separated by `*', and given as: symbol ID, slope, intercept, number
of data points, r-value.

� Lines 12-end: One line per player for each of the X-side distance, Y-side distance,
corner distance, and each possible length for lines of pieces. All of these are speci�ed
in the same form as the centre distance.

Figure 4.4 shows the heuristic data �le that is loaded by TI-GMCTS when it plays Base
Checkers, or any of its variants.
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4.2.6 A Note on Direct State Comparison

Rather than using an assortment of general heuristics, an earlier version of this work
attempted to compare states and actions directly to those seen in a previous game. For
actions, this e�ectively amounted to use of the speci�c and general history heuristics, but
state information was utilized very di�erently from the methods we have described in this
chapter. For each source game, we kept data for the 10,000 nodes most frequently visited
by MCTS. During search in the target game, a most similar source state was identi�ed
as the one with the largest number of shared facts, and its average reward was used as a
measure of goodness. (In games with a board, it is typical to have one fact for the state of
each playable square.)

It was hoped that even though 10,000 is many orders of magnitude smaller than the
size of the state space for games of interest (Checkers, with 32 squares each containing one
of �ve possible symbols, has an upper bound of 2.3 ∗ 1022 possible states), selecting those
most visited would provide useful guidance, especially in the early parts of a game where
the number of reachable states is much smaller.

While we did �nd that this transfer agent was able to outperform UCT with statistical
signi�cance on Checkers and some of its variants, we found the contribution from direct
state comparison to be negligible. In the �rst few moves, where matches were good, the
transferred reward information was not very informative due to the large number of moves
left to be played. Afterwards, the quality of state matches degraded too rapidly for them
to be useful.

Intuitively, part of the reason for this is a misalignment between what was considered
to be a similar state, and what actually makes a state good or bad. For example, take
any state and swap one of the red pieces for a black piece. Humans would identify this as
a two-piece swing, a relatively important change, while our direct state comparison could
only see that 1/32 facts representing squares had changed. On the other hand, each piece
translated by one space, would be seen as a di�erence in 2/32 facts (since one square's
occupancy would change from a piece to empty, and another's would change from empty
to a piece).

Recognizing this misalignment, we abandoned direct state comparison in favour of the
general heuristics described in Section 4.2.1, which capture more focused characteristics of
a game state that are more likely to be relevant in state evaluation.
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4.3 Experimental Evaluation

The following experiments compare the performance of TI-GMCTS against SI-GMCTS
and a UCT baseline in variants of Checkers and Breakthrough. To avoid introducing bias,
these agents share code for interacting with GDL and implementing MCTS. TI- and SI-
GMCTS agents also share code for the implementation of heuristics. All code was written
in Java, and is built o� of the GGP Base Package [64]. Each agent ran as a single-threaded
process on a Ubuntu 22.04 machine with a 12th Gen Intel i7-12700 processor.

For a competitive GGP agent using TI-GMCTS, it would be desirable to swap to
SI-GMCTS (or even UCT) if negative transfer were discovered during initialization (by
comparing the expected reward to the actual reward seen in rollouts, for example). For
these experiments, however, we are interested in testing TI-GMCTS on its own merit,
and not a larger system that incorporates it. Our TI-GMCTS agent therefore proceeds as
normal when negative transfer occurs, and we have included the Reversed Checkers variant
speci�cally to highlight this case.

We will refer to (X-Y) time controls, where X indicates the start clock, and Y indicates
the time per move afterward. For our main experiments, we have used (10-10) or (5-5) time
controls, which are very short, even by the standards of GGP. This is because we want to
examine the regime in which the initialization of an SI-GMCTS begins to experience enough
variance to impact its performance. Although time controls this short would probably not
have been run in past GGP competitions, we believe that it is within the spirit of GGP
research to push for ever faster agents, particularly as computers become more powerful
over time.

4.3.1 Checkers Variants

For each experiment involving Checkers, we have used the base version of checkers available
in the GGP repository [1] as our source game, and when variants of Checkers are referenced,
it is this base version from which they are modi�ed. Although checkers is far from the most
di�cult game that AI researchers have developed agents to play, this version makes for
an interesting test bed for a few reasons. First, jumping is not mandatory, as it is in the
version of the game most often played by humans. This keeps the branching factor large,
and avoids bogging down the state machine with additional rules. Second, a reward is
not assigned until the end of the game, and that reward is all-or-nothing (except in the
case of a draw, where reward equal to half of a win is given). This makes the problem
di�cult through a very sparse reward signal. A game ends when one player has no pieces
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remaining, when the player to move cannot do so, or when 102 turns have passed. In all
cases, the winner is the player with the most pieces remaining. If pieces are equal, it is a
draw.

To produce games that are similar to Checkers, but have altered state/action spaces,
we have used game modi�cations described in [45] (and summarized in Section 4.1, wherein
each of these variants would have required its own pre-de�ned detector. They are as follows:

� Base: The unmodi�ed base game.

� Torus: The board topology is that of a torus (i.e. pieces can move from the left edge
of the board wraps around to the right edge, and the top edge wraps to the bottom).

� Big Board: The size of the board has been increased to 10X10. Pieces have been
added to �ll 3 rows for each player.

� Small Board: The size of the board has been decreased from 8X8 to 6X6. The
number of pieces for each player has been reduced to �t in 3 rows on the smaller
board.

� No Middle: The middle row of pieces has been removed for each player.

� Reversed: Reward values have been swapped. A win in standard checkers is now a
loss, and vice versa.

TI-GMCTS and SI-GMCTS agents were run with a heuristic decay of α = 0.9, a reward
discount factor of 0.999, and an exploration parameter of c = 0.4.

4.3.2 Breakthrough Variants

Breakthrough is a board game based loosely on the movement of pawns in Chess. Each
turn, a player moves one pawn one square, either directly forward or forward diagonally.
An opponent's piece may be captured if and only if a diagonal move is made, as in Chess.
Unlike Chess, a capture is not required to move diagonally. The game is won by the �rst
player to move one of their pawns all the way across the board. Draws are not possible.
Compared to Checkers, Breakthrough features a larger average branching factor, but allows
rollouts to terminate much more quickly.

We test the following variants of Breakthrough:
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TI-GMCTS vs. UCT
(5-5) time control

Game Wins Losses p-value

Base 79 17 < 0.00001∗∗∗

Torus 91 3 < 0.00001∗∗∗

Big Board 91 3 < 0.00001∗∗∗

Small Board 66 27 0.00003∗∗∗

No Middle 78 16 < 0.00001∗∗∗

Reversed 5 89 1.0

TI- vs. SI-GMCTS TI- vs. SI-GMCTS
(10-10) time control (5-5) time control

Game Wins Losses p-value Wins Losses p-value

Base 46 44 0.46 60 28 0.0004∗∗∗

Torus 61 34 0.004∗∗∗ 68 27 0.00002∗∗∗

Big Board 53 42 0.15 54 40 0.09∗

Small Board 46 39 0.26 51 31 0.02∗∗

No Middle 43 48 0.89 63 31 0.0006∗∗∗

Reversed 11 76 1.0 4 88 1.0

Table 4.1: Results for TI-GMCTS vs. UCT and SI-GMCTS on variants of Checkers, with
Base Checkers as the source game, for 100 trials each.

� Small: Each player has 2 rows of pawns on a 6X6 board.

� Standard: Each player has 2 rows of pawns on an 8X8 board.

� Holes: The game is Standard, but some squares are �holes� that pawns cannot enter.

� 1.5 Line: The game is Standard, but half of the pawns in the forward-most row
have been removed for each player.

� 2.5 Line: The game is Standard, but an extra half row of pawns have been added
for each player.

For experiments involving variants of Breakthrough, we have used Small Breakthrough
as the source game. This simulates cases where our agent has not seen the standard
version of a game, and must instead transfer directly between variants. TI-GMCTS and
SI-GMCTS agents were run with a heuristic decay of α = 0.99, a reward discount factor
of 0.999, and an exploration parameter of c = 0.4.
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TI-GMCTS vs. UCT
(5-5) time control

Game Wins Losses p-value

Small 67 33 0.0004∗∗∗

Standard 83 17 < 0.00001∗∗∗

Holes 73 27 < 0.00001∗∗∗

1.5 Line 73 27 < 0.00001∗∗∗

2.5 Line 77 23 < 0.00001∗∗∗

TI- vs. SI-GMCTS TI- vs. SI-GMCTS
(10-10) time control (5-5) time control

Game Wins Losses p-value Wins Losses p-value

Small 56 44 0.14 67 33 0.0004∗∗∗

Standard 87 13 < 0.00001∗∗∗ 83 17 < 0.00001∗∗∗

Holes 76 24 < 0.00001∗∗∗ 73 27 < 0.00001∗∗∗

1.5 Line 72 28 < 0.00001∗∗∗ 82 18 < 0.00001∗∗∗

2.5 Line 82 18 < 0.00001∗∗∗ 75 25 < 0.00001∗∗∗

Table 4.2: Results for TI-GMCTS vs. UCT and SI-GMCTS on variants of Breakthrough,
with Small Breakthrough as the source game, for 100 trials each.

4.3.3 Results

Before comparing TI-GMCTS to SI-GMCTS, we �rst establish that our set of general
heuristics and the resulting combined evaluation function are e�ective versus a UCT base-
line. TI-GMCTS was played against UCT on (5-5) time controls for 100 iterations on
each of the six Checkers variants and �ve Breakthrough variants. Results are given by the
top portion of Tables 4.1 and 4.2. `Wins' refers to wins for the TI-GMCTS agent, and
`p-value' is the result of a binomial test whose null hypothesis is that the likelihood of the
TI-GMCTS winning is 50%. In tables, we mark p-values with asterisks to denote the level
of statistical signi�cance. If p < 0.1, we use one asterisk (`*'), if p < 0.05, we use two (`**'),
and if p < 0.01, we use three (`***'). Draws were omitted from this test. We found that
TI-GMCTS performs consistently better than UCT across all games, except for Checkers
Reversed.

We ran TI-GMCTS against SI-GMCTS for a series of 100 games on each of the six
Checkers variants and �ve Breakthrough variants, under both (10-10) and (5-5) time con-
trols. Results of these runs are given by the bottom portion of Tables 4.1 and 4.2, re-
spectively. For Checkers, we observe that TI-GMCTS only outperforms SI-GMCTS in one
Checkers variant with statistical signi�cance at (10-10) time controls, but does so in �ve
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Archive Base Torus Big
Heuristic value avg std avg std avg std

Mobility (10-10) 0.69 0.63 0.08 0.64 0.09 0.64 0.11
Mobility (5-5) 0.69 0.64 0.13 0.62 0.15 0.63 0.15
Red Pcs. (10-10) 0.25 0.22 0.13 0.0 0.17 0.45 0.17
Red Pcs. (5-5) 0.25 0.19 0.21 -0.01 0.28 0.43 0.21
Red Kings (10-10) 0.39 0.35 0.15 0.32 0.15 0.29 0.22
Red Kings (5-5) 0.39 0.37 0.18 0.29 0.26 0.32 0.23
Dbl. Jump (10-10) 62.0 56.87 9.44 51.89 9.55 57.05 11.6
Dbl. Jump (5-5) 62.0 54.38 12.48 52.5 12.79 56.84 15.29

Small No Mid Reversed
Heuristic avg std avg std avg std

Mobility (10-10) 0.67 0.07 0.69 0.08 -0.66 0.07
Mobility (5-5) 0.66 0.11 0.67 0.14 -0.63 0.12
Red Pcs. (10-10) -0.05 0.13 0.02 0.14 -0.23 0.15
Red Pcs. (5-5) -0.06 0.16 0.0 0.22 -0.23 0.22
Red Kings (10-10) 0.44 0.1 0.45 0.11 -0.38 0.12
Red Kings (5-5) 0.44 0.17 0.43 0.18 -0.39 0.19
Dbl. Jump (10-10) 58.83 7.75 62.12 9.13 41.9 8.29
Dbl. Jump (5-5) 61.1 10.93 62.12 15.59 43.95 13.36

Table 4.3: Selected heuristic values for SI-GMCTS from the perspective of the red player.
For the mobility and symbol counting (red pieces, red kings) heuristics, r-values are re-
ported. For double jumps, the average reward is reported. Archive value refers to the
values loaded by TI-GMCTS.

Checkers variants at (5-5) time controls with a signi�cance of at least p < 0.1. As expected,
TI-GMCTS signi�cantly underperforms relative to SI-GMCTS on Reversed Checkers at all
time controls. For Breakthrough, we �nd that TI-GMCTS outperforms SI-GMCTS with
statistical signi�cance in four variants at (10-10) time controls, and in all �ve variants at
(5-5) time controls. These results are discussed further in Section 4.4.

4.4 Discussion

From the results of testing TI-GMCTS against SI-GMCTS, we observe that TI-GMCTS
generally has an advantage in short time controls and games with a large branching factor.
The former is most evident in Checkers (and also in Small Breakthrough), where moving
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Figure 4.5: Distribution of the mobility heuristic r-value for SI-GMCTS

from (10-10) to (5-5) time controls creates a statistically signi�cant di�erence in four of
the �ve variants where there previously was not. The latter can be observed by comparing
performance in the source game (Base Checkers, Small Breakthrough) to those with a
larger branching factor (Torus Checkers, Big Checkers, all Breakthrough variants). In
all of these cases, TI-GMCTS outperforms SI-GMCTS at both time controls, and this
di�erence is statistically signi�cant for every game, though the result for Big Checkers was
less signi�cant at p = 0.09. Suspecting that this exception was an outlier, we ran 100
more games of Big Checkers on (5-5) time controls with a result of 63W/30L, which gives
a combined record of 117W/70L, and a p-value of 0.0001. This second result should not
supplant the original; it merely helps to explain the exception to our observations in this
discussion. In contrast, TI-GMCTS does not get as large an advantage in games with a
smaller branching factor than the source game (Small Checkers, No Middle Checkers).
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We can explain these observations by noting that TI-GMCTS loads its heuristic pa-
rameters from �le, which ensures that they are the same every time. SI-GMCTS, on the
other hand, relies on its initial simulations to be representative of the game it is playing.
When the start clock is short, and the number of those simulations is diminished, more
luck is required to achieve good heuristic parameter values. Similarly, games with a larger
branching factor do not allow rollouts to cover as much of the search space. To support
this hypothesis, we tracked the standard deviation for a selection of important heuristic
values in Checkers variants played by SI-GMCTS, including mobility, piece counts, and
the history heuristic for double-jumping.

Table 4.3 gives the standard deviation for a selection of important heuristic values, and
Figure 4.5 shows the distribution of the mobility heuristic r-value for �ve of the games.
(Reversed Checkers follows the same pattern, but its values are negative.) We observe
from these data that the standard deviation of each of these values increases consistently,
and often substantially, when time controls are decreased from (10-10) to (5-5). This is
consistent with the hypothesis that heuristic parameters become increasingly unreliable for
SI-GMCTS when time is short.

We have so far largely ignored the poor performance of TI-GMCTS on Reversed Check-
ers. As noted in Section 4.3.1, this variant was included to highlight the worst case scenario
for TI-GMCTS, in which its heuristics actively guide it toward bad moves. It was therefore
expected that TI-GMCTS would underperform compared to SI-GMCTS and UCT, and
the extent of that underperformance serves to showcase that this set of general heuristics
can sabotage an agent when they are not attuned to the game being played. A compet-
itive GGP agent that utilizes TI-GMCTS needs to have a back-up system to avoid this
outcome. For example, cases of extreme heuristic misalignment can be identi�ed during
the start clock, and SI-GMCTS can be used instead. This solution is explored in greater
detail in Section 5.3.

We ran a few experiments attempting transfer from Checkers to Breakthrough, and vice
versa, for TI- vs. SI-GMCTS using (5-5) time controls. From Table 5.1, we observe that
the distance between the GDL descriptions of these games is quite high, which resulted in a
poor quality mapping. There is, for instance, no counterpart in Breakthrough for a double-
jump in Checkers, which is an important heuristic feature. Transferring from Breakthrough
to Checkers produced a record of 51W/41L (p-value = 0.17), while the reverse direction
resulted in a record of 79W/21L (p-value < 0.00001). We speculate that it may be more
advantageous to transfer from a game with complex rules to one with simpler rules than
the reverse, but more investigation is required to support this hypothesis.
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4.5 Conclusion

We have presented a method for transferring heuristic knowledge between similar, but dis-
tinct games within the GGP framework. For any set of general heuristics that would nor-
mally require costly initialization during a game's start clock, this method allows heuristic
parameters to instead be loaded from a pre-computed archive. Through experimentation
on variants of Checkers and Breakthrough, we have shown that the resulting heuristics
are robust to small changes in the state/action space, and that transfer provides the most
bene�t when short time controls or a large branching factor make initial simulations unre-
liable.
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Chapter 5

Greater Generality

The previous two chapters of this thesis developed the pieces necessary to show that graph-
based mapping between two similar games is possible on the short time scales of GGP, and
that it can be used to pro�tably transfer knowledge from one to the other. To do so,
we worked within a manageable scope with regard to games played, heuristics used, and
assumptions made. In this chapter, we will push at the edges of that scope, showing that
new methods can be e�ectively slotted into the old, and revisiting previously deferred
problems.

To that end, this chapter will examine four topics. First, we revisit the problem of
source game selection. By its nature, solutions are troublesome to evaluate because it is a
problem that is as large as one makes it, as will be discussed in Section 5.1. However, to
prove that the methods we have discussed in the preceding chapters may realistically be
used in a GGP setting, it is necessary to show that there exists at least one fast solution
to this problem.

Second, we integrate a new group of heuristics into our methods to demonstrate the
modularity of our approach. In general, this work is not about advocating for any particular
set of general heuristics. Rather, we show that our methods may accommodate whatever
heuristics are desired.

To observe the e�ect of the new heuristics, we �rst return our attention to variants of
Checkers and Breakthrough, and then introduce variants of Connect Four as a new test
bed. Connect Four is far from the most di�cult game in the GGP base repository with
respect to its branching factor and the size of its state space, but this is part of what
makes it an interesting game to test. A game that is easy, is easy for both players, and it
is di�cult for one agent to distinguish itself from another in that setting. To show that
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TI-GMCTS is generally e�ective on a variety of games, it behooves us to examine not just
those games that are large enough to cause UCT to struggle, but also to show that we can
improve on its performance even in games that it already plays well. Besides this, Connect
Four is a worthy subject for other reasons, to be discussed in Section 5.2.2.

As our third topic, we return to another previously deferred problem: that of negative
transfer. In particular, we have seen that an easy way to confound TI-GMCTS into play-
ing (much) worse than UCT is to simply swap the reward values for a win and a loss, but
otherwise leave the game unchanged. In this worst case scenario for TI-GMCTS, its trans-
ferred heuristics become actively detrimental, prioritizing the exploration of bad states.
Although it would be possible to detect and counteract this one trick directly, doing so
would not address any other possible cases of negative transfer. Instead, we demonstrate a
method for abandoning transfer when it is su�ciently negative, whatever the cause, which
is a necessity in expanding the generality of our previous work.

Finally, our fourth topic is an examination of a class of game that we have previously
ignored: single-player games, or puzzles. In the last section of this chapter, we discuss
their particular foibles, as well as our motivation for studying them. We introduce a new
path-�nding puzzle based on Checkers and show that transfer can be e�ective from a two-
player source game to one that is single-player, as long as similar notions of a `good' move
may be applied.

The subject of this chapter is achieving greater generality, and that is a goal that
can never be considered complete. We have addressed what we consider to be the most
prominent outstanding shortcomings and unanswered questions of the preceding work.
Further improvements and new ideas are deferred to future work in Section 6.1.

5.1 Source Game Selection

In previous chapters, we have assumed that an appropriate source game is known in advance
for the given target game. To be a full GGP agent, capable of performing tasks on demand
or taking part in competition, a TI-GMCTS agent needs some method for selecting a
source game from its inventory of previously played games. However, as was alluded in
the introduction to this chapter, the nature and di�culty of this problem are not easily
de�ned. For a given target game, selecting the closest game from the library of those that
it has previously encountered is easiest and least expensive when the library is small. On
the other hand, a larger library means a greater likelihood of �nding a better source game
from which to transfer, leading to higher performance. There are trade-o�s that must be
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Distance to
Target Game Checkers Break- 8 Queens Chess Tic- Connect Time

through LG Tac-Toe Four (ms)

Checkers, Torus 0.003 0.663 0.737 0.517 0.672 0.632 38
Checkers, Big 0.052 0.676 0.747 0.501 0.682 0.642 38
Checkers, Small 0.050 0.646 0.733 0.539 0.656 0.625 40
Checkers, No Mid 0.005 0.660 0.742 0.518 0.671 0.636 38
Checkers, Reversed 0.000 0.662 0.742 0.517 0.671 0.631 38
Breakthrough, Small 0.710 0.142 0.590 0.801 0.383 0.495 40
Breakthrough w/ Holes 0.594 0.196 0.512 0.738 0.293 0.386 33
Breakthrough, 1.5 Rows 0.661 0.028 0.591 0.773 0.346 0.431 34
Breakthrough, 2.5 Rows 0.659 0.034 0.593 0.765 0.357 0.467 34
16 Queens, UG 0.772 0.641 0.158 0.845 0.539 0.600 37
31 Queens, LG 0.738 0.588 0.129 0.825 0.516 0.523 40

Table 5.1: Distances between game variants and various games in the GGP base repository,
produced by LMap with depth = 1, averaged over 10 trials. LG (legal-guided) refers to a
rules variant with a much smaller branching factor than UG (unguided).

made, both in what is reasonable and what is fair, and so we must leave a full treatment
of how to build a library to future work.

We will, however, examine a method for selecting an appropriate source game, assuming
that a library already exists. When LMap is run on the rule graphs of two games, it
provides not just a mapping between their symbols, but also an estimated distance score
representing the similarity of the games overall. For �nding a useful mapping, we have
run LMap at a search depth of �ve, which can take on the order of one second to run
for two games of complexity similar to Checkers. Even for a small library, it would be
prohibitively expensive to use LMap in this way to �nd the closest possible source game
to a given target game. However, LMap's runtime decreases if we reduce the search depth,
and the resulting reduction in accuracy may be acceptable since we need only a rough
distance value to narrow our choices.

Table 5.1 gives the distances produced by using LMap at depth one to compare game
variants to a selection of other games in the GGP base repository. In each row, the lowest
distance (corresponding to the source game that would be selected) is in bold. Total time
refers to the time taken to make all six necessary comparisons per row. From this table, we
observe that each of the target game variants is correctly matched to the most appropriate
source game in ≤ 40 ms, given this small catalogue of known games. This represents
a negligible portion of the start clock, but will grow linearly with the number of games
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catalogued.

For a larger library, where there is less likely to be one stand-out candidate, we rec-
ommend an iterated approach, in which LMap is run again for the best candidates at
higher depth (and greater cost). Since experimental evaluation of this approach requires
a canonical library, we also defer this to later work. For the remainder of this chapter, we
will return to our assumption that an appropriate source game is known in advance, and
the initialization time associated with LMap will be for a single game comparison at depth
�ve.

5.2 Board Heuristics

Although we have previously avoided making assumptions about a game, like the presence
of pieces and a board, such assumptions must be made in order to apply some of the
general heuristics in the GGP literature. As a result, the heuristics that we will introduce
and integrate into our existing work in this section will not be universally applicable to all
games that may be described in GDL. They will, however, be applicable to both Checkers
and Breakthrough, as well as Connect Four, which will be an important test bed in this
section for reasons described in Section 5.2.2.

We assume the presence of a two-dimensional rectangular board with some number of
rows and columns, whose squares can be occupied by any symbol. We do not assume any
further common properties of board games, such as ownership of various symbols (pieces)
by a player. From the board heuristics listed by Stephenson et al. [74], this narrows our
selection to �ve:

� Centre distance: The average distance for symbols of one type to the centre of
the board. Since there may be more than one type of symbol (e.g. Checkers uses
separate symbols to represent red pieces, black pieces, red kings, and black kings), a
value is separately assigned to each type. The following board heuristics are similarly
applied to each di�erent symbol.

� Corner distance: The average distance from a symbol to the closest corner of the
board.

� Vertical edge distance: The average distance from a symbol to either the top or
bottom of the board, whichever is closer.
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� Horizontal edge distance: The average distance from a symbol to either the left
or right side of the board, whichever is closer. (The axes representing vertical and
horizontal may be chosen arbitrarily. It is only important that each represent one
dimension of the board.)

� Lines of like symbols: On a two-dimensional board, symbols may be adjacent in
any of the four cardinal directions, or the four diagonals. For this heuristic, we count
the number of di�erent lines of lengths two through �ve formed by symbols of the
same type.

The �rst four of these heuristics are all variations on measuring distances between the
locations of symbols and various features of the board. As a result, these heuristics are all
handled very similarly, and will be treated as a group, going forward.

5.2.1 Method

Board Identi�cation Before we can make use of any board heuristics, we must �rst
identify which predicate describes the board (if indeed, there is a board), and the meanings
of each of its arguments. Here we make the same assumptions as Banerjee et al. [8] and
Kuhlmann and Stone [44]: that the board must be represented as a ternary predicate with
two arguments representing rank and �le, and the third, occupancy (although we make no
assumptions on the ordering of these arguments). Further, the arguments corresponding
to rank and �le must always belong to a sequential set, like the number chains described
in Section 2.2.2. These assumptions are crude, but e�ective for the games in which we
are interested. (Once a board has been identi�ed, we no longer care about how that
identi�cation was made, so a more sophisticated method may be dropped in, if desired.)

Unlike Banerjee and Kuhlmann, we would like to avoid the cost associated with search-
ing the GDL code directly for such a predicate and determining the domain of its argu-
ments. Instead, we observe the game states that appear over the natural course of MCT
expansion and use them to update our notions of the board and, in particular, its length
and width.

For some games, the whole board is immediately apparent from the initial state, which
is the case for the versions of Checkers and Breakthrough found in the base GGP games
repository. In Checkers, for example, every state contains a fact for every accessible square
on the board, of the form (cell c 2 bp), which, in this case, indicates that the square in
the second rank of the C �le contains a black piece. If the square were empty, bp would be
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replaced by b, and there would still be a fact declaring the existence of square C2. Since
we are able to identify that both c and 2 belong to number chains, and can see that eight
adjacent elements of these chains are used in similar facts, we are able to determine the
size of the board and how it is indexed from the initial state of the game.

However, making this determination is not always so easy, because we could instead
have assumed a default state for each square. Squares that are in the default state (say,
empty) need not be represented explicitly by facts, so the dimensions of the board may not
be discoverable by checking the initial state alone. This is the case for the implementation
of Connect Four in the GGP base repository, which is particularly troublesome because a
game of Connect Four begins with no pieces in play. As a result, its initial state contains
no information about the board.

To circumvent this issue, we look for a board at di�erent points of a game. We examine
one state that is a successor of the initial state and one terminal state produced by a
rollout. If neither of these states contain any facts that match our criteria of a board, then
we determine that there must not be a board, and make no further attempts to calculate
board heuristics. If we do �nd a board, it is possible that its full length and width have
not been revealed. In Connect Four, this occurs when no pieces occupy either the top row,
or the left- or rightmost columns when the rollout terminates. We do, however, obtain
minimum values for the dimensions of the board. As search progresses, we might discover
a state that reveals the board to be larger than previously known. In that case, we record
the new, larger dimensions.

Since board states are frequently encountered more than once during search, we keep
caches for the heuristic values we calculate. For those heuristics that depend on the board
dimensions (e.g. centre distance), we also note the known dimensions of the board at
time each entry is made. Later, if we attempt to retrieve a value from the cache that
was calculated with out of date board dimensions, we recalculate the heuristic value and
update the cache.

There is some potential for a large number of cached values to be invalidated if the
known board dimensions expand late into a search, but this does not seem to be likely, in
practice. The boundaries of the Connect Four board were consistently discovered during
the initialization period (and generally, within only a few rollouts), and even if empty
squares were not explicitly represented in Checkers and Breakthrough, their initial states
would give away their board dimensions due to piece placement.

Board Heuristic Calculation Like the symbol counting heuristic described in Section
4.2.1, the family of board heuristics all depend on the correlation of some property of a
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type of symbol to the eventual reward received. So, these heuristics are each an ensemble
of values, some of which are associated with each symbol that can appear on a board. At
the end of a rollout, the board associated with each node on the path from root to terminal
state is evaluated. For every symbol on the board, the Euclidean distance to the centre,
nearest corner, nearest vertical edge, and nearest horizontal edge are calculated. These
distances are then averaged across every matching symbol (e.g. all black kings).

Lines of pieces are counted such that one continuous line will not be counted more than
once per possible length. For example, if we are looking for lines of length two and encounter
a line of length four, we will still count it as one, even though it is composed of multiple
unique lines of length two, in both the forward and backward directions. Practically, this
means that we sweep over the board from the bottom left to the top right corner. Every
time we encounter an unvisited symbol, we recursively search to the right, up, diagonally up
and right, and diagonally up and left. When a line terminates, we increment the counters
for all lengths less than or equal to its length, and mark all relevant board positions as
visited.

Once heuristic values have been determined for every board in the playout, we average
each across all boards, and associate those values with the �nal reward received. These form
the (x,y) pairs for linear regression in the same manner as the symbol counting heuristic.
By the time we need to make a heuristic evaluation of a board state, linear regression values
will be known, either via simulation initialization or transfer. An overall heuristic value
and weight may be calculated for each of the board distance heuristics and each line length
identically to the process for the symbol counting heuristic described in Section 4.2.1.

Updated Selection Guidance In order to reduce noise in the heuristic evaluation func-
tion, we have made adjustments to the method for calculating it described in Section 4.2.1.
During search, we do not calculate heuristic scores for single nodes in a vacuum. Rather,
when a heuristic evaluation is made, it is for the purpose of comparing one action to each
of the other possible actions. The states that result from these actions are siblings, each
the child of some shared parent state. So, before passing a heuristic value to UCB1Heur,
we modify it in comparison with its siblings.

If some contribution to the heuristic score is the same across all siblings, we set the
weight of that contribution to zero. For example, it may be the case that no possible
action can change the player's mobility in a way that is di�erent from any other action. In
that case, the mobility heuristic is not providing useful information, so its contribution is
zeroed. In this way, heuristics that are never meaningful (e.g. symbol counting in Connect
Four) are permanently ignored.
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After this step, we compute a single combined heuristic value, as before, and then
perform one further action. We �nd the maximum heuristic value among all siblings and
use it to normalize them so that the new maximum is equivalent to the maximum possible
reward received (usually 100 points). This helps to better scale the heuristic portion of
UCB1Heur to its other terms.

5.2.2 Evaluation

Connect Four In addition to those reasons previously discussed, Connect Four is an
interesting game to test because the full set of previous heuristics were not able to produce
performance signi�cantly better than UCT. Upon inspection, we can immediately see that
the symbol counting heuristic carries no useful information, since each player adds exactly
one piece of their colour every turn, and this never changes. Likewise, the mobility heuristic
is unlikely to be helpful because as columns �ll up, they become unavailable to both players.
The only potentially useful heuristic was the history heuristic for speci�c moves (in this
case, corresponding to columns), since the central columns are generally more valuable,
in a vacuum. However, this has not previously been enough information for either TI- or
SI-GMCTS to distinguish themselves from UCT.

Intuitively, the board heuristics were expected to be more useful. In particular, forming
a line of pieces is the goal of Connect Four, so the heuristics corresponding to lines of
length two and three seemed promising. (Lines of length four and longer can only occur
in terminal states, in which heuristics are not needed because any agent can see their true
reward value.) This means that Connect Four presents an opportunity to study the e�ect
of a mixed group of heuristics on performance, where some are useful, and others are simply
noisy.

Our variants of Connect Four are as follows:

� Base: The standard version of Connect Four in the GGP base repository. There are
eight columns into which pieces can be dropped, each of length six.

� Tall: As in Base Connect Four, there are eight columns, but each can hold twice as
many pieces (twelve).

� Large: A larger board than Base Connect Four on both axes. There are twelve
columns of length nine.
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Figure 5.1: The initial state of Edge Connect Four.

� Edge: A standard Connect Four board, but each player begins with six pieces in
play, occupying the outermost columns of the board. The pattern of these pieces is
given by Figure 5.1.

� 36 Turn: Base Connect Four, but the game is terminated after 36 turns have been
played. If no player has made a line of four pieces, then the game is declared a draw,
and both agents receive a reward of 50 points.

As for Checkers and Breakthrough, these variants of Connect Four are in line with
modi�cations described by Kuhlmann and Stone [45], and each warps the game in a unique
way. In Tall Connect Four, it takes much longer to �ll up a column. This has a signi�cant
impact on search, since the branching factor diminishes more slowly than in Base Connect
Four. Additionally, games (and by extension, rollouts) can be up to twice as long as the
longest in Base Connect Four.

Large Connect Four imposes similar challenges, and additionally changes the action
space. This increases the branching factor, and also misleads the history heuristic. In Base
Connect Four, dropping a piece in the eighth column was not particularly desirable because
of the limited number of lines in which a piece on the edge of the board can participate. In
Large Connect Four, taking this action is considerably better because the eighth column
is toward the centre of the board.

Edge Connect Four increases the value of playing near the edge of the board because
there are already neighbouring pieces with which to start lines. This poses a challenge
to the various distance-based board heuristics. In addition, the playable area is smaller,
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which means that there is a reduced branching factor and smaller maximum game length,
compared to Base Connect Four.

36 Turn Connect Four also has a decreased maximum game length, and in a way that
has a signi�cant impact on strategy. Frequently, a game of Base Connect Four is won when
a player is forced to take a losing action (i.e. enable the opponent to immediately make a
line of four) because there are no other actions left to take. In 36 Turn Connect Four, this
is signi�cantly less likely to occur because there are guaranteed to be at least three possible
columns un�lled. Instead, games are most likely to be won by a player who exposes two
threats at once, which cannot both be stopped in one turn.

Experimental Conditions The following experiments compare the performance of TI-
GMCTS, SI-GMCTS, and UCT on Connect Four at particularly short time controls (5-
5), (2-2), and (1-1)1. Since Connect Four is a simpler game than either Checkers or
Breakthrough, this was the regime in which we see observed the most di�erence in agent
performance. We also revisit Checkers and Breakthrough, using the same (5-5) and (10-10)
time controls as previous sections, to see the e�ect of board heuristics on performance in
those games. In all tests, both TI- and SI-GMCTS have access to all of their previous
general heuristics, as well as the new board heuristics.

Each agent ran as a single-threaded process on a Ubuntu 22.04 machine with a 12th
Gen Intel i7-12700 processor. For Checkers and Connect Four, heuristic decay for both
TI- and SI-GMCTS agents was set to 0.9, and to 0.99 for Breakthrough. For every test
condition, we ran 100 trials, except in the case of game variants that are especially prone
to draws. For those (36 Turn Connect Four and Small Checkers), we ran 200 trials. (This
will also be the case for the experiments of Section 5.3.)

5.2.3 Results

In this section and those that follow, we use the same conventions for tables as we have
in previous chapters. `Wins' refers to wins for the �rst agent listed, and `p-value' is the
result of a binomial test whose null hypothesis is that the likelihood of the �rst agent
winning is 50%. In tables, we mark p-values with asterisks to denote the level of statistical
signi�cance. If p < 0.1, we use one asterisk (`*'), if p < 0.05, we use two (`**'), and if
p < 0.01, we use three (`***'). Draws are omitted from signi�cance tests.

1As in previous chapters, we use (X-Y) notation for time controls, where X indicates the start clock,
and Y indicates the time per move afterward.
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SI-GMCTS vs. UCT SI-GMCTS vs. UCT SI-GMCTS vs. UCT
(1-1) time control (2-2) time control (5-5) time control

Game Wins Losses p-value Wins Losses p-value Wins Losses p-value

Base 52 45 0.27 51 48 0.42 49 49 0.54
Tall 53 47 0.31 50 100 0.54 52 48 0.38
Large 41 59 0.972 30 100 1.0 49 51 0.62
Edge 44 54 0.87 45 50 0.73 51 46 0.34
36 Turn 57 61 0.68 37 65 0.998 44 47 0.66

TI-GMCTS vs. UCT TI-GMCTS vs. UCT TI-GMCTS vs. UCT
(1-1) time control (2-2) time control (5-5) time control

Game Wins Losses p-value Wins Losses p-value Wins Losses p-value

Base 60 38 0.017∗∗ 58 38 0.026∗∗ 48 50 0.62
Tall 67 32 0.0003∗∗∗ 60 40 0.028∗∗ 48 52 0.69
Large 49 51 0.62 45 55 0.86 42 58 0.96
Edge 58 39 0.034∗∗ 56 41 0.077∗ 49 46 0.42
36 Turn 102 39 < 0.00001∗∗∗ 74 43 0.0027∗∗∗ 64 40 0.012∗∗

TI- vs. SI-GMCTS TI- vs. SI-GMCTS TI- vs. SI-GMCTS
(1-1) time control (2-2) time control (5-5) time control

Game Wins (W) Losses (L) p-value W L p-value W L p-value

Base 61 36 0.0072∗∗∗ 63 34 0.0021∗∗∗ 57 42 0.080∗

Tall 67 33 0.0004∗∗∗ 69 31 0.00009∗∗∗ 55 45 0.18
Large 72 28 < 0.00001∗∗∗ 57 43 0.097∗ 50 50 0.54
Edge 56 43 0.114 47 48 0.58 51 49 0.46
36 Turn 73 64 0.25 83 40 0.00007∗∗∗ 60 31 0.0016∗∗∗

Table 5.2: Results for games between TI-GMCTS, SI-GMCTS and UCT on variants
of Connect Four, with Base Connect Four as the source game (for TI-GMCTS). Each
condition was run for 100 trials, except for 36 Turn Connect Four, which was run for 200
trials.

79



Table 5.2 gives the results for TI-GMCTS, SI-GMCTS, and UCT playing against each
other on the variants of Connect Four with all heuristics (including board heuristics) en-
abled. Looking �rst at the topmost table, which contains results for SI-GMCTS versus
UCT, we draw the conclusion that SI-GMCTS generally performs no better than UCT at
the time scales tested, and in a few cases, performs signi�cantly worse. In particular, UCT
wins Large Connect Four with p < 0.05 at both the (1-1) and (2-2) time controls, though
not at (5-5). Given that Large Connect Four is the variant with the largest state space,
this result is in keeping with our previous observation that SI-GMCTS su�ers from high
variance in its heuristics when it is short on initialization time. The only other statistically
signi�cant result in this table is another loss for SI-GMCTS at 36 Turn Connect four at
a (2-2) time control. However, this may be a statistical anomaly, since neither the results
for the (1-1) or (5-5) time controls are remarkable.

The middle portion of Table 5.2 gives results for TI-GMCTS against UCT. With a
threshold for statistical signi�cance of 0.05, we observe signi�cant victories for TI-GMCTS
in four out of �ve games at a (1-1) time control, three (nearly four) games at a (2-2) time
control, and one game at a (5-5) time control. As we have previously seen, transfer confers
the most bene�t when time is too short for an agent to properly evaluate its possible moves
via search. Conversely, there are no conditions under which UCT beats TI-GMCTS with
p < 0.05, although Large Connect Four at (5-5) does breach the p < 0.1 threshold, with
p = 0.067. In general, TI-GMCTS performs worse on Large Connect Four at every control
than it does any other variant. Rather than variance in heuristic values (because there
is no variance in values loaded from �le), this may be attributable to a misalignment in
them. For example, the history heuristic is actively misleading, as previously discussed.

From the bottom portion of Table 5.2, we �nd that TI-GMCTS has statistically sig-
ni�cant (p < 0.05) victories over SI-GMCTS in three, three, and one game at (1-1), (2-2),
and (5-5) time controls. SI-GMCTS answers with no signi�cant victories of its own, even
at a (5-5) control, where it is expected to be at its best, relative to TI-GMCTS. In fact,
TI-GMCTS only has one losing record: a 47 to 48 loss in Edge Connect Four at a (2-2)
time control.

Taking these results as a whole, we conclude that SI-GMCTS performs similarly to
UCT on Connect Four and its variants, but if anything, is slightly worse. TI-GMCTS, on
the other hand, clearly performs better overall than the other two, though this is not the
case for every individual condition.

Table 5.3 gives results for TI-GMCTS versus UCT and SI-GMCTS on Checkers. These
experiments are a repeat of those in Section 4.3, but with the addition of board heuristics.
To see their e�ect, we may compare Table 5.3 to Table 4.1. Against UCT, we observe
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TI-GMCTS vs. UCT TI-GMCTS vs. UCT
(5-5) time control (10-10) time control

Game Wins Losses p-value Wins Losses p-value

Base 76 15 < 0.00001∗∗∗ 69 26 < 0.00001∗∗∗

Torus 94 1 < 0.00001∗∗∗ 97 1 < 0.00001∗∗∗

Big Board 83 11 < 0.00001∗∗∗ 78 18 < 0.00001∗∗∗

Small Board 130 33 < 0.00001∗∗∗ 103 54 0.00006∗∗∗

No Middle 77 7 < 0.00001∗∗∗ 68 23 < 0.00001∗∗∗

TI-GMCTS vs. SI-GMCTS TI-GMCTS vs. SI-GMCTS
(5-5) time control (10-10) time control

Game Wins Losses p-value Wins Losses p-value

Base 57 15 < 0.00001∗∗∗ 47 25 0.0064∗∗∗

Torus 55 20 0.00003∗∗∗ 58 22 0.00004∗∗∗

Big Board 51 28 0.0064∗∗∗ 47 31 0.044∗∗

Small Board 79 35 0.00002∗∗∗ 71 42 0.0041∗∗∗

No Middle 57 23 0.00009∗∗∗ 47 35 0.11

Table 5.3: Results for TI-GMCTS vs. UCT and SI-GMCTS on variants of Checkers after
the addition of board heuristics. For each condition, Base Checkers was used as the source
game. For the Small Board condition, 200 trials were run. For every other condition, 100
trials were run.
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TI-GMCTS vs. UCT TI-GMCTS vs. UCT
(5-5) time control (10-10) time control

Game Wins Losses p-value Wins Losses p-value

Small 77 23 < 0.00001∗∗∗ 73 27 < 0.00001∗∗∗

Standard 92 8 < 0.00001∗∗∗ 85 15 < 0.00001∗∗∗

Holes 79 21 < 0.00001∗∗∗ 65 35 0.0018∗∗∗

1.5 Line 67 33 0.0004∗∗∗ 63 37 0.0060∗∗∗

2.5 Line 100 0 < 0.00001∗∗∗ 98 2 < 0.00001∗∗∗

TI-GMCTS vs. SI-GMCTS TI-GMCTS vs. SI-GMCTS
(5-5) time control (10-10) time control

Game Wins Losses p-value Wins Losses p-value

Small 76 24 < 0.00001∗∗∗ 70 30 0.00004∗∗∗

Standard 83 17 < 0.00001∗∗∗ 78 22 < 0.00001∗∗∗

Holes 87 13 < 0.00001∗∗∗ 82 18 < 0.00001∗∗∗

1.5 Line 75 25 < 0.00001∗∗∗ 69 31 0.00009∗∗∗

2.5 Line 89 11 < 0.00001∗∗∗ 93 7 < 0.00001∗∗∗

Table 5.4: Results for TI-GMCTS vs. UCT and SI-GMCTS on variants of Breakthrough
after the addition of board heuristics. Small Breakthroughwas used as the source game,
and 100 trials were run for each condition.
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that TI-GMCTS remains dominant, with records that are extremely signi�cant in every
Checkers variant, although this was already the case without board heuristics. Against
SI-GMCTS, we do see some notable improvements. TI-GMCTS now has statistically
signi�cant victories over SI-GMCTS on the Big Board and Small Board variants at both
(5-5) and (10-10) time controls, which was not previously the case. It also improved its
(formerly losing) record on the No Middle variant at a (10-10) time control to one that is
winning, though not quite to the level of statistical signi�cance.

We can similarly compare the results of Table 5.4 to Table 4.2. Here, all conditions
resulted in very statistically signi�cant victories, with some variance in the absolute num-
ber of wins compared to Section 4.3.3. Of note, TI-GMCTS previously had a winning
record against SI-GMCTS on Small Breakthrough, (10-10) condition, but not by margin
of signi�cance that it has in this more recent set of tests.

In summary, we �nd that the addition of board heuristics has enabled TI-GMCTS to
outperform UCT overall on the family of Connect Four variants, and has done so without
hampering performance on our previous test games. They too, see improvement.

5.3 Negative Transfer Protection

In Section 4.3.3, we found that reversing the goal values of a game so that winning states
become losing, and vice-versa, was an extremely e�ective counter to TI-GMCTS. Were we
to speci�cally detect this trick, it would be a simple matter to reinterpret our transferred
linear regression values, and then continue as usual. However, the reversal of reward values
is just the most extreme example of a larger problem, one with many possible causes that
may not be so easily detected by examining the GDL code. Negative transfer can occur
any time there is a problematic misalignment between our transferred heuristic values and
those that would be naturally generated from the target game.

In this section, we describe and evaluate a method for detecting negative transfer, and
subsequently bailing out of transfer altogether. When this occurs, TI-GMCTS is still at a
disadvantage compared to an SI-GMCTS agent (for reasons to be discussed shortly), but
is able to cut its losses and avoid the disastrously losing records of Section 4.3.3.

5.3.1 Method

For TI-GMCTS, negative transfer detection may be performed at the end of the initial-
ization phase. Up to that point, initialization proceeds as usual: heuristic parameters are
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initialized via transfer and the MCT is expanded for whatever time remains. During its
search, the agent records heuristic and reward data in the same manner that an SI-GMCTS
agent would. At the end of the start clock, this data is used to calculate a separate set
of simulation-initialized (SI) heuristic parameters, as described for an SI-GMCTS agent in
Section 4.2.1.

Unlike the transfer-initialized (TI) parameters, the SI parameters are guaranteed to
correspond to real rewards seen in the current game, and are not negatively impacted
by tricks like reward reversal. However, as seen in Section 4.3.3, they can also be noisy
enough to degrade overall performance, which is a problem that worsens as time controls
are shortened. With that in mind, we would prefer to use the TI values, as long as they
appear to be reasonably applicable to the target game. We use the SI values to verify
them.

For each individual general heuristic, there is an associated weight value that captures
the predictive strength of that heuristic for eventual reward, as described in Sections 4.2.1
and 5.2.1. For most of the heuristics that we have used, this is a Pearson correlation
coe�cient (r-value). (The history heuristics are an exception, and we will revisit them
later.) At the time that negative transfer detection is to occur, we use the symbol mapping
method described in Section 4.2.1 to �nd pairs of matching TI and SI values, where needed.
(Mobility does not require mapping, but all of the other heuristics we have described do.)
These values of these pairs are expected to di�er somewhat, even when the transferred
value is a perfect �t. We will therefore only consider a TI value to be `bad' when the
following two conditions are met:

� The sign of the correlation is opposite that of the corresponding SI value, and

� The magnitude of the corresponding SI weight exceeds a minimum threshold (which
is a tuning parameter).

On the other hand, we consider a TI value to be `good' when:

� The sign of the correlation is the same as that of the corresponding SI value, and

� The magnitude of the TI weight exceeds a minimum threshold (which is a tuning
parameter)2.

2In principle, this threshold could be di�erent from the previous one, but we have always used one value
for both.
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Heuristics that have weights of low magnitude are considered neither `good' nor `bad',
but merely unimportant, as they will not contribute much to the heuristic evaluation
function, even if their sign is incorrect.

For heuristics composed of smaller heuristics (e.g. the symbol counting heuristic has
correlation coe�cients associated with each di�erent symbol), each of the lower level heuris-
tics is deemed `good', `bad', or unimportant. A vote is then taken. If the number of `bad'
heuristics exceed the `good', then the overarching parent heuristic is considered to be `bad',
and vice-versa for `good'. Unimportant heuristics do not vote. (Although we have required
a simple majority, the threshold for `badness' need not be set at 50%.)

Once all high-level heuristics have been evaluated, each casts one �nal vote to determine
the overall value of transfer. If `bad' heuristics are in the majority, we determine that
transfer is not worthwhile, and initiate a full swap of all TI heuristic parameters to the SI
parameters that were found during initialization. Additionally, caches of heuristic values
are purged, and the MCT is pruned back to its root node. From that point, the agent
e�ectively becomes an SI-GMCTS agent that must start its search from scratch at the
beginning of the �rst turn's clock. Additionally, it will have had less time to determine its
SI values due to the initialization time required for transfer (running LMap, in particular).
This clearly puts TI-GMCTS at a disadvantage compared to SI-GMCTS when a full swap
occurs, but this is much preferred to working with actively misleading heuristics for the
rest of the game.

If the �nal vote shows a `good' majority, then a choice must be made. We can either
elect to retain all TI values and proceed with TI-GMCTS as normal, or we can swap out
only the `bad' values for their SI counterparts, which we refer to as a partial swap. We
examine both of these options experimentally.

5.3.2 Evaluation

Since we are interested in the e�ects of negative transfer protection on both games with
and without inverted goals, we tested on all of the usual variants of Checkers and Connect
Four, as well as Reversed Checkers and Reversed Connect Four (which is just Base Connect
Four with inverted goals). Partial swaps were allowed for the �rst set of trials, but were
disabled for all those that followed, for reasons to be discussed shortly.

In the tables that follow, `# swaps' refers to the number of trials in which a full heuristic
swap occurred. This can only happen in TI-GMCTS.

Each agent ran as a single-threaded process on a Ubuntu 22.04 machine with a 12th
Gen Intel i7-12700 processor.
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TI- vs. SI-GMCTS TI- vs. SI-GMCTS
(1-1) time control (2-2) time control

Game Wins Losses p-value # swaps Wins Losses p-value # swaps

Base 47 51 0.69 2 59 47 0.016∗∗ 3
Tall 56 44 0.14 6 52 48 0.38 2
Large 53 47 0.31 23 39 61 0.99 17
Edge 55 41 0.092∗ 8 48 51 0.66 2
36 Turn 59 66 0.76 4 65 52 0.13 0

TI- vs. SI-GMCTS
(5-5) time control

Game Wins Losses p-value # swaps

Base 48 51 0.66 0
Tall 49 51 0.62 0
Large 50 50 0.54 5
Edge 54 41 0.11 0
36 Turn 52 37 0.069∗ 0

Table 5.5: Results for TI-GMCTS vs. SI-GMCTS on variants of Connect Four, with
Base Connect Four as the source game. Partial swapping of TI values was allowed. Each
condition was run for 100 trials, except for 36 Turn Connect Four, which was run for 200
trials.

5.3.3 Results

We begin by comparing the results of TI-GMCTS versus SI-GMCTS on Connect Four with
partial swaps allowed (given by Table 5.5) to those of the same match-up with no partial
swaps allowed (given by Table 5.6). We observe that allowing partial swaps results in fewer
statistically signi�cant victories over SI-GMCTS, even in Large Connect Four, where they
had the highest likelihood of making a positive impact. Since allowing partial swaps is
both the more complex and less performant option, we do not use them in the experiments
that follow.

We may also compare the results of Table 5.6 to those of Table 5.2 to observe the
performance cost associated with running negative transfer protection in this form. Al-
though TI-GMCTS is still mostly winning under the (1-1) and (2-2) time controls that it
was previously winning, it has lost some ground to SI-GMCTS. Since Table 5.2 showed
transfer to be of bene�t in all variants, we can view any full swaps to be false positives,
even if there is some amount of heuristic misalignment. This has the most impact on the
results for Large Connect Four, which sees the most false positives, and also the largest
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TI- vs. SI-GMCTS TI- vs. SI-GMCTS
(1-1) time control (2-2) time control

Game Wins Losses p-value # swaps Wins Losses p-value # swaps

Base 61 35 0.0052∗∗∗ 4 51 48 0.42 2
Tall 61 40 0.018∗∗ 8 59 41 0.044∗∗ 3
Large 49 51 0.62 22 52 48 0.38 11
Edge 55 40 0.075∗ 3 58 42 0.067∗ 1
36 Turn 80 49 0.0040∗∗∗ 4 78 48 0.0048∗∗∗ 0

TI- vs. SI-GMCTS
(5-5) time control

Game Wins Losses p-value # swaps

Base 55 43 0.13 0
Tall 53 47 0.31 1
Large 44 56 0.90 3
Edge 54 41 0.11 0
36 Turn 47 34 0.091∗ 0

Table 5.6: Results for TI-GMCTS vs. SI-GMCTS on variants of Connect Four, with Base
Connect Four as the source game. Partial swapping of TI values was not allowed. Each
condition was run for 100 trials, except for 36 Turn Connect Four, which was run for 200
trials.

degradation in performance.

We note a trend that a shorter initialization period results in more erroneous full swaps.
This is an expected result, since we have previously found that there is more variance in
simulation initialization on short time scales, which naturally leads to more false positives.
The loss in performance that should result from being handicapped in a larger proportion
of games is o�set by the typically better performance of TI-GMCTS under short time
controls.

Table 5.7 gives the results for TI-GMCTS versus UCT and SI-GMCTS on Checkers
variants with full swapping enabled. Again, we may consider any full swaps to be false
positives. Compared to Table 5.3, which did not allow any swapping of TI values, we
see only minor losses in performance, with the largest representing a loss of statistical
signi�cance for Base Checkers at (10-10) time controls. Interestingly, even though Big
Board Checkers resulted in a similar number of full swaps as Large Connect Four, we do
not see the same corresponding drop in performance. Since Checkers is a longer game being
run at longer time controls, it may be the case that the setback caused by an erroneous
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TI-GMCTS vs. UCT
(5-5) time control

Game Wins Losses p-value # swaps

Base 52 22 0.0003∗∗∗ 3
Torus 89 5 < 0.00001∗∗∗ 6
Big Board 81 11 < 0.00001∗∗∗ 27
Small Board 116 48 0.0007∗∗∗ 5
No Middle 79 12 < 0.00001∗∗∗ 4

TI-GMCTS vs. SI-GMCTS TI-GMCTS vs. SI-GMCTS
(5-5) time control (10-10) time control

Game Wins Losses p-value # swaps Wins Losses p-value # swaps

Base 54 20 < 0.00001∗∗∗ 9 39 34 0.32 0
Torus 55 26 0.0008∗∗∗ 12 51 20 0.0002∗∗∗ 3
Big Board 52 30 0.0099∗∗∗ 23 52 32 0.019∗∗ 14
Small Board 79 43 0.0007∗∗∗ 2 82 54 0.010∗∗ 0
No Middle 53 31 0.011∗∗ 4 43 37 0.29 0

Table 5.7: Results for TI-GMCTS vs. UCT and SI-GMCTS on variants of Checkers,
with negative transfer protection enabled. For each condition, Base Checkers was used
as the source game. For the Small Board condition, 200 trials were run. For every other
condition, 100 trials were run. `# swaps' refers to the number of trials for which heuristic
TI parameters were fully swapped for SI values.

swap is less detrimental than it is in Connect Four. Additionally, a game of Connect Four
can end much earlier than a game of Checkers, which places greater importance on the
early portion of the game, where the setback is most felt.

Having considered the cases where negative transfer protection can only hurt TI-
GMCTS, we now look at those that it is meant to help. Table 5.8 gives results for match-ups
between TI-GMCTS, SI-GMCTS, and UCT on Reversed Connect Four (Base Connect Four
with its reward values swapped). First, we note that the full swap rate for TI-GMCTS is
very high (≥ 95/100), which is a desirable outcome. This, combined with the false positive
rate for games like Large Connect Four, suggests that the threshold for full swaps could
reasonably be increased to preserve performance in the latter.

We next observe that performance is mixed across all match-ups. To highlight this,
Table 5.8 always gives p-values from the perspective of the winning agent, and there is
only one match-up that shows even weak signi�cance (SI-GMCTS versus UCT at a (5-
5) time control, in which SI-GMCTS loses). For the SI-GMCTS versus UCT match-up,
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Reversed Connect Four
Agent Opponent Time Control Wins Losses Better? p-value # swaps

SI-GMCTS UCT (1-1) 53 47 Yes 0.31 -
SI-GMCTS UCT (2-2) 53 46 Yes 0.27 -
SI-GMCTS UCT (5-5) 40 54 No 0.090∗ -
TI-GMCTS UCT (1-1) 56 44 Yes 0.14 95
TI-GMCTS UCT (2-2) 45 53 No 0.24 95
TI-GMCTS UCT (5-5) 45 52 No 0.27 96
TI-GMCTS SI-GMCTS (1-1) 44 56 No 0.14 98
TI-GMCTS SI-GMCTS (2-2) 55 45 Yes 0.18 96
TI-GMCTS SI-GMCTS (5-5) 45 53 No 0.24 99

Table 5.8: Results for Reversed Connect Four with negative transfer detection enabled
for TI-GMCTS. For each condition, Base Connect Four was used as the source game (if
TI-GMCTS was present) and 100 trials were run. `Better?' asks whether the �rst agent
won more games than its opponent, and `p-value' gives the statistical signi�cance of that
result. `# swaps' refers to the number of trials for which heuristic TI parameters were fully
swapped for SI values.

this continues the trend of SI-GMCTS struggling in Connect Four, reversed goals or not.
In cases where a full swap occurs, TI-GMCTS acts as an SI-GMCTS agent with a time
penalty, so the performance of SI-GMCTS sets a soft upper bound on the performance of
TI-GMCTS. In fact, they appear to perform indistinguishably.

Table 5.9 gives results for TI-GMCTS, SI-GMCTS, and UCT on Reversed Checkers.
Here, there is a much clearer hierarchy, in which SI-GMCTS outperforms TI-GMCTS,
which outperforms UCT, although the only results of statistical signi�cance are in the
SI-GMCTS versus UCT match-up. In Section 4.3.3, when TI-GMCTS had no negative
transfer detection, it lost badly to both SI-GMCTS and UCT, with its best record being
11 wins to 76 losses. In comparison, Table 5.9 shows an enormous improvement, and also
shows detection to be extremely reliable in Checkers, with a full swap occurring in every
trial.

Overall, we �nd that negative transfer protection performed to the best of our expec-
tations for games with inverted goals. This comes at some cost to other game variants,
though the swapping threshold can be adjusted to make this fail-safe less obtrusive.
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Reversed Checkers
Agent Opponent Time Control Wins Losses Better? p-value # swaps

SI-GMCTS UCT (5-5) 46 29 Yes 0.032∗∗ -
SI-GMCTS UCT (10-10) 49 23 Yes 0.0023∗∗∗ -
TI-GMCTS UCT (5-5) 41 32 Yes 0.18 100
TI-GMCTS UCT (10-10) 43 33 Yes 0.15 100
TI-GMCTS SI-GMCTS (5-5) 36 45 No 0.19 100
TI-GMCTS SI-GMCTS (10-10) 33 45 No 0.11 100

Table 5.9: Results for Reversed Checkers with negative transfer detection enabled for TI-
GMCTS. For each condition, Base Checkers was used as the source game (if TI-GMCTS
was present) and 100 trials were run. `Better?' asks whether the �rst agent won more
games than its opponent, and `p-value' gives the statistical signi�cance of that result. `#
swaps' refers to the number of trials for which heuristic TI parameters were fully swapped
for SI values.

5.4 Single-Player Games

To this point, we have been concerned solely with two-player, adversarial games, as is the
fashion in GGP. Certainly, single-player games for GGP exist (several of which can be
found in the base game repository [1]), but their use is not as well represented in the GGP
literature. Shortly, we will discuss some of the properties that can make them undesirable
from a research perspective, and may be the reason for this disparity. Even so, we have
dedicated this section to single-player games and believe that it is a worthwhile exercise to
apply our methods (speci�cally, TI-GMCTS) to them. This belief is rooted in the ambition
for GGP to be useful for more than play.

GGP was established to promote competition, and at the annual GGP tournaments,
that competition became a spectacle in which conference-goers watched agents play against
each other in real time. Sometimes, competition even extended to human vs. machine show
matches, before the machines' victory became a foregone conclusion. In that context, it
made sense to evaluate agents on games that a typical person might know well and be able
to appreciate as a spectator. Common board games (or variants of them) were well-suited
to that purpose, and became staple benchmarks in the GGP literature.

However, GGP has never been limited to the study of `fun' games. At a high level,
a GGP agent is a general-purpose problem solver that can begin taking action almost
immediately. That sounds like the description of a revolutionary technology, a robot or
personal assistant from science �ction. It sounds very close to arti�cial general intelligence.
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Of course, in focusing from a high level down to the nuts and bolts of implementation,
it becomes clear that there remains much work to be done before anything like general
intelligence can be claimed. Nevertheless, we should not forget such goals as we take small
steps toward them. If we imagine that a GGP agent might one day assist in various ordinary
tasks, then we should acknowledge that such tasks are often non-adversarial. According to
Kuhn [47], even scienti�c discovery may be viewed as a sort of puzzle.

This is our motivation for examining single-player games. In the remainder of this
section, we will discuss their unique properties, introduce a game for case study, and show
that TI-GMCTS can pro�t from transfer from a two-player source game to single-player
target.

5.4.1 Properties of Single-Player Games

Single-player, deterministic games are often referred to as `puzzles'. Without an opponent
to a�ect the outcome, a sequence of moves made from the initial state will always produce
the same result for a puzzle. For example, given the initial grid of a Sudoku, a correct
solution will always be correct, no matter how many times the game is repeated. A di�erent
initial grid could accommodate a distinct set of solutions, but this would be considered a
di�erent game with its own GDL description.

This property is consequential to the way in which we approach single-player games in
GGP. In some ways, they are simpler. Without an adversary or non-determinism, solving
a puzzle becomes a problem of pure search. If ever a positive reward is found at some
terminal node, we know that reward, at minimum, is guaranteed. However, it would be
incorrect to say that solving a puzzle is necessarily easier for a GGP agent than playing a
two-player game, since we can design puzzles with state spaces that are arbitrarily large.
For example, it is much easier to play Tic-tac-toe optimally than it is to `play a Sudoku'
optimally, because a Sudoku's state space is many times larger, and may contain just one
correct solution that must be discovered amidst all of that space.

It is also the case that the nature of evaluation changes for single-player games. In two-
player games (and, in particular, the zero-sum games that are most common in GGP), an
agent must be evaluated relative to its opponent. Even for a game with a vast state space,
of which each agent can hope to see no more than a tiny fraction, it is still possible for one
agent to distinguish itself from the other by making better use of that fraction. Winning
a game does not require optimal play, only play that is better than the opponent's.

On the other hand, we must be more careful in the selection of a single-player game
for evaluation. As in two-player games, we must ensure a minimum level of complexity
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that prevents agents from fully searching the state space (which would guarantee optimal
play and make two agents impossible to di�erentiate). Additionally, we must ensure that
a solution is not so di�cult to �nd that no agent can do so, even after many trials. For the
games described in the following section, we have chosen board layouts and time controls
such that a UCT agent gives a perfect solution some of the time, but not all of the time.

We must also be careful to ensure that transfer does not trivialize the games. We want
a family of games in which the same general strategies can be applied, but not games
that actually share solutions. If the source and target game did share solutions (which is
guaranteed in the case of self-mapping), it would be trivial to solve the target game by
simply trying the solution that worked in the source game at the cost of one rollout. This
is only an issue for single-player games because there is no opponent to prevent a game
from taking exactly our desired path.

Even if we simply elect not to try source solutions directly, general heuristics cannot be
trusted to su�ciently abstract away those solutions on their own. In particular, the speci�c
history heuristic can tell us all of the moves that are part of a solution (because they are
associated with non-zero reward) and all of the ones that are not (because they can only
lead to zero reward). We observed this to be the case for two variants of the Eight Queens
puzzle in the base GGP games repository. In one variant, only legal moves are allowed,
which very quickly reduces the game's branching factor and makes the task of �nding a
solution manageable in a reasonable time frame. In the other variant, all possible moves
are allowed, including those that violate the rules and therefore make a solution impossible.
After making such a move, an agent simply continues to play, and only receives a score of
zero once all queens have been placed. Taken on its own, UCT was not able to solve this
variant. However, we found that it could be solved trivially with knowledge transferred
from the legal-moves-only variant, for which solutions were known.

Although this behaviour is to the bene�t of a transfer agent, it does not make for
compelling experimentation. In the sections that follow, we avoid any possibility of it by
transferring not between two single-player games, but from a two-player game to one that
is single-player.

5.4.2 Vacuum Checkers

Vacuum Checkers is a single-player variant of Checkers that we designed to test transfer
from a two-player game (in this case, Base Checkers) to a single-player puzzle. In particular,
we wanted to be able to create a collection of games with the same dynamics (with one
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exception, to be described shortly), but di�erent initial board layouts that make transfer
more or less e�ective. The rules of Vacuum Checkers are as follows:

The player begins with a single red king somewhere on the board. This piece
moves identically to a king in Base Checkers (diagonally, in any direction).
There is also some number of black pieces on the board. These pieces do not
move because Red is the only player.

The red king may capture black pieces as it would in Base Checkers. (That is,
when it is diagonally adjacent to a black piece and there is an open space on
the other side, it may jump the piece, removing that piece from the board and
moving itself to the aforementioned empty space.) Double and triple jumps
are permitted when captures can be chained consecutively. These are still
considered one move.

The objective of the game is for the red king to capture all of the black pieces
in the minimum number of moves possible.

Vacuum Checkers is a path-�nding puzzle on a Checkers board. It is named for its
similarity to the mundane task of vacuum cleaning. The red king is the vacuum cleaner,
and it must run over piles of dirt to remove them. Although double and triple jumps
stretch this analogy, we have preserved them in the rules in order to observe the e�ect of
transfer when they are prominent features of the optimal path.

We consider three board layouts of Vacuum Checkers:

� Layout A: Seven black pieces are positioned to force alternating captures and single-
square movement. One double jump must be made toward the end of the optimal
path, which is 11 moves long.

� Layout B: Eight black pieces are placed such that all may be captured via double
jumps, alternating with single-square movement. The optimal path is 7 moves long.

� Layout C: Three pieces are positioned near the corners of the board that are farthest
from the red king. Many single-square movements are necessary between captures.
An optimal path is 12 moves long.

Figure 5.2 depicts these layouts, as well as their optimal solutions.

In general, we expected that some, but not all of the general heuristics imported from
Base Checkers would be useful. In both games, capturing pieces is key to winning, so
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heuristics like the history heuristic for double jumping and the number of black piece
symbols were identi�ed as likely to be useful. On the other hand, the mobility heuristic
(the di�erence between the number of moves available to each player), which produced
strong correlation values for Base Checkers, becomes meaningless in Vacuum Checkers.
Other heuristics, such as the number of red pieces, also become unhelpful because they do
not change between states. Additionally, TI-GMCTS must always begin at a search de�cit
because of its relatively lengthy initialization process.

Our three board layouts were designed to see if the transferred knowledge could over-
come these drawbacks when di�erent types of moves (and by extension, general heuristics)
were emphasized. Layout A consists of many individual captures, creating opportunity for
the black piece count to be useful. Layout B emphasizes the importance of double jumps,
which supports the history and symbol count heuristics. Layout C o�ers very few captures
and no double jumps. This was the hardest case for useful transfer, and gave the largest
advantage to pure, cheap search. Note that jumps are not obligatory, as they would be in
some Checkers rule sets.

For each board layout, we created two separate games whose rules di�ered only in their
reward structure. In the base version (which we refer to with no a�xes), �nding a path
of minimum length rewards 100 points, but 20 points are lost for each additional move
used beyond that minimum. In the `sparse' variants, 100 points are awarded for a path of
minimum length, and no points are awarded for longer paths. In all cases, games terminate
when all black pieces have been captured, or when 20 moves have been made.

5.4.3 Evaluation

For this set of experiments, we ran only TI-GMCTS and UCT because simulation initial-
ization does not make sense in the context of single-player puzzles. In order to get any
positive reward during initial simulations (which is necessary for weighting the heuristics),
a solution would have to be found, thereby negating the need for the use of heuristics. Sim-
ilarly, negative transfer protection for TI-GMCTS cannot be applied, and was disabled.
All experiments involving TI-GMCTS use two-player Base Checkers as the source game
for transfer.

Each trial was performed as a single-threaded Java process on a Windows 10 machine
with an Intel i7-7700HQ processor. This processor, which is weaker than was used for pre-
vious experiments, enables us to observe meaningful di�erences in performance at di�erent
time controls without needing to use increments of less than one second.
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Figure 5.2: Vacuum Checkers starting positions on the left, with their corresponding
optimal solutions on the right. Top: Layout A, which emphasizes single-piece captures.
Middle: Layout B, which emphasizes double jumps. Bottom: Layout C, which has few
captures and an optimal solution that keeps near the edges of the board.
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TI-GMCTS UCT
(2-2) time control (2-2) time control

Game Avg. Score Perfect Wins Avg. Score Perfect Wins

Layout A 100.0 100 39.8 28
Layout B 100.0 100 41.0 17
Layout C 77.6 0 86.2 58
Layout A - Sparse 100.0 100 9.0 9
Layout B - Sparse 100.0 100 24.0 24
Layout C - Sparse 0 0 24.0 24

TI-GMCTS UCT
(3-3) time control (3-3) time control

Game Avg. Score Perfect Wins Avg. Score Perfect Wins

Layout A 100.0 100 69.8 51
Layout B 100.0 100 67.6 40
Layout C 69.8 4 92.0 67
Layout A - Sparse 100.0 100 17.0 17
Layout B - Sparse 100.0 100 10.0 10
Layout C - Sparse 0.0 0 31.0 31

Table 5.10: Results for TI-GMCTS and UCT on variants of Vacuum Checkers at (2-2)
and (3-3) time controls, with Base Checkers as the source game, for 100 trials each. The
best average score for each variant is in bold.

5.4.4 Results

Table 5.10 gives results for TI-GMCTS and UCT on our six variants of Vacuum Checkers.
The performance of UCT gives us some insight into the di�culties of these various condi-
tions from the perspective of pure search. Layouts A and B are similar in that they have
unique optimal paths. Although Layout A's path is a little longer, Layout B compensates
with the extra branching factor caused by the availability of double jumps. As a result,
UCT achieves a similar level of performance on each. Even though Layout C has the
longest optimal path, that path is not unique, which provides more opportunities to �nd
a solution, even when searching blindly. UCT performs its best on this layout.

As expected, we also see a decrease in the performance of UCT when less time is given,
and when partial rewards are withheld. Notably, the latter is not due only to the lack of
the rewards themselves, but also to the information that they provide. In all cases but
one, the number of perfect wins also decreases sharply for the sparse variants.

TI-GMCTS excelled in the conditions that catered to its general heuristics (Layouts
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A and B), and struggled in the one that did not. This was particularly evident in the
sparse version of Layout C, which TI-GMCTS was not able to solve a single time. When
we examine the cost of initializing transfer, we see why this is the case. TI-GMCTS took
an average of 1025 ms to initialize, while UCT took an average of only 22 ms. At time
controls this short, that represents a signi�cant di�erence in the amount of search that can
be done before the �rst move must be played. This is an issue that compounds with the
work required to calculate heuristics, as well as the fact that later rollouts are faster than
earlier ones, because more of the MCT is already constructed for them. At a (3-3) time
control, TI-GMCTS had completed an average of 1692 rollouts by the time it had to play
its �rst move, while UCT had completed an average of 6678 rollouts.

On the other hand, we observe from the performance of TI-GMCTS on Layouts A and
B that when guidance is e�ective, it can lead to a solution very consistently (in this case,
every time). If not for the single-square moves in between jumps, a solution would have
been found on the �rst rollout. Solutions were found so quickly that there was no gap in
performance made by withholding partial rewards or using a shorter time control (which
cannot be reduced further while still allowing TI-GMCTS to complete inialization).

We conclude that transfer from a two-player game to a single-player game is possible
and useful when the means of reaching their objectives are su�ciently aligned. In both
Base and Vacuum Checkers, the game is won by reducing the number of opposing pieces,
and utilizing this information led to a more well-directed use of resources for the layouts
of Vacuum Checkers in which many captures were available.

This has useful implications for transfer to single-player games in general. Finding
useful heuristics can be di�cult in single-player games with sparse rewards because failure
means no positive reward was ever discovered. Heuristics cannot be meaningfully initialized
if every move and every board position led to zero reward. On the other hand, in two-
player (zero sum) games, someone has to win. An agent can learn without �rst needing to
�nd a needle in a haystack. If that knowledge can be transferred to a hard single-player
game, it could represent a better investment of time than simply searching the game itself.
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Chapter 6

Conclusion

General Game Playing is a �eld of research in which one agent must play many games.
All GGP research recognizes this as a challenge, but relatively little also sees it as an
opportunity. In this thesis, we have developed methods that enable an agent to pro�t from
past experience in games that it has seen before, with the potential to grow in knowledge
as its library expands. In summary, our contributions are as follows.

We developed two algorithms, LMap and MMap, for �nding a mapping between the
most similar symbols in two di�erent, but related games. We showed their accuracy to be
better than a baseline mapper, and further demonstrated their usefulness as an integral
part of our agents in all of the work that followed.

We created a full system for guiding MCTS with transferred knowledge (TI-GMCTS).
This system includes methods for storing and organizing data, a modular system for cal-
culating general heuristics, and an updated version of UCB1 that weights the importance
of heuristics based on the strength of their correlation with reward. We showed that,
when time for initialization is short, TI-GMCTS performs better than both its simulation-
initialized counterpart (SI-GMCTS), and a UCT baseline on two families of game variants.

Finally, we addressed source game selection, the last missing piece of a full GGP agent,
and showed various ways that TI-GMCTS can be made to apply more generally, through
the addition of new kinds of heuristics (board heuristics), new kinds of games (single-
player), and a fail-safe for negative transfer detection.
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6.1 Future Work

Source Game Selection: Each of the topics discussed in Chapter 5 represents the tip of
an iceberg for possible future research. This is most explicit in Section 5.1, which discusses
the selection of a source game, and acknowledges that a full treatment should address the
question of how large a library of known games is reasonable to keep. This requires striking
a balance between the di�culty in �nding the best source game from among many in a
large library, and having that source game be a good match for the current target game.
It is a di�cult question to answer because there is not one distribution of possible target
games that we can query. In principle, it is always possible to create a totally new game
that is not similar to any seen before, but practically, there are a �nite number of game
archetypes that are varied and recycled in GGP. Ultimately, it is likely that an arbitrary
set needs to be designated, and the collection of standard (i.e. non-variant) games in the
GGP base repository seems a reasonable choice.

There are also possibilities for technical improvements in source game selection. For
one, LMap may be modi�ed speci�cally for the task of �nding distances e�ciently. Since
LMap is greedy, and the distance for a mapped pair is �xed once that pair has been selected,
we can terminate LMap early when it becomes mathematically impossible for the current
mapping to produce a lower average distance than the previously seen best. We could also
consider varying the maximum search depth, balancing the competing interests of speed
and accuracy, particularly if it were necessary to adopt multiple elimination rounds.

As the library of known games for transfer grows, it may be useful to cluster them
hierarchically. For example, all of the Checkers variants might belong to one cluster, and
that cluster might be grouped with others at the next level. If a given game matches
poorly with a representative from a cluster, time could be saved by declining to check the
cluster's other members. This system would also provide some relief to the problem of
games that are the same, but are described di�erently enough to inhibit a good mapping.
We would not be able to recognize the similarity of the descriptions, but could store all of
them within the hierarchy without signi�cantly hampering execution time.

Negative Transfer Protection: In Section 5.3, we developed a method for detect-
ing negative transfer in individual heuristic values, and swapping them for simulation-
initialized (SI) values. However, we ultimately found that the noisiness of the SI values
resulted in errors that hurt performance compared to the more conservative approach of
allowing only full swaps of all heuristic values. This is an idea that warrants more research,
as the ability to speci�cally �lter out a few bad heuristics from an otherwise useful source
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game (like the history heuristic in Large Connect Four) is an attractive prospect.

Modularity: Section 5.2 demonstrates the modularity of the set of heuristics, and shows
how loosening our restrictions on their generality can open the door to incorporating new
sets of them. In future work, it would be interesting accept even more speci�c heuristics to
observe their e�ect on performance. For example, incorporating notions of piece ownership
permits heuristics like the distance between opposing pieces, or the area of the board
controlled.

Dealing with modularity more broadly, linear regression was a simple, lightweight choice
for �nding a correlation between heuristic values and expected reward. It would be possible
to drop in other methods of calculating a heuristic evaluation function, under the constraint
that they must not use up too much of the start clock (if we still want to allow simulation
initialization, or features like negative transfer detection). For example, it could be possible
to take simple machine learning approaches, like a support vector machine, random forest,
or even a basic neural network.

Even Greater Generality: As mentioned in the introduction to Chapter 5, the pursuit
of generality is a perpetual challenge, and there are natural extensions of this work in
furtherance of that goal. A simple avenue is expansion into other games, as was done
in Section 5.4. In this thesis, we have kept our selection limited to three to maintain
a manageable scope, since each game has at least four variants (plus the original). We
selected games from the base repository that already had at least a few variants available,
indicating some level of interest within the broader GGP community. We would want
any additional games to also be amenable to several variations, and to explore some new
aspect of the space of possible games. A non-board game, like Nim, could be an interesting
test bed, although some care would need to be taken in ensuring a high enough level of
complexity to be interesting.

Branching out a little further, our methods are agnostic to non-determinism, although
the version of the GGP library that we have used does not support it. Incorporating
Thielscher's GDL extension [86] would permit non-deterministic games (and indeed, any
extensive-form game [87]). With it, dice games like Backgammon, and card games like
Poker become accessible for testing.

Further still, we are interested in adapting our mapping methods to languages other
than GDL. In particular, game speci�cations in Ludii [61] are also naturally represented
as graphs, albeit with many more colours than the rule graphs of GDL. There is already
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interest in general heuristics [74] and conducting transfer [72] under the Ludii framework,
which provides a natural place for our work to �t in.

6.2 Closing Thoughts

With the last Annual GGP Competition being held in 2016, it now falls to individual
researchers to carry the torch. Without an incentive to pursue those methods that provide
the most competitive advantage, there is opportunity to explore the ideas that lie on the
periphery of GGP. Transfer is one such idea. Though we (and others) have contributed
tools and ideas, transfer is still in its infancy in this research area. There is still great
untapped potential. There is still so much work left to do.

If the GGP community is to remain fractured going forward, then it is our prerogative
and responsibility to choose which aspects of it to keep, and which to push in new directions.
For some, that means developing new, expressive game languages. For others, it means
relaxing time restrictions to allow for methods like deep learning. We hope that some, like
us, will see the value in pushing in the opposite direction toward ever shorter time scales.
Doing more with less is well in keeping with the spirit of GGP. It is a torch worth carrying.
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