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results are from [BDBC+23].
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Abstract

We study the problem of private distribution learning with access to public data. In
this setup, a learner is given both public and private samples drawn from an unknown
distribution p belonging to a class Q, and has the task of outputting an estimate of p while
adhering to privacy constraints (here, pure differential privacy) only with respect to the
private samples.

Our setting is motivated by the privacy-utility tradeoff: algorithms satisfying the
mathematical definition of differential privacy offer provable privacy guarantees for the
data they operate on, however, owing to such a constraint, exhibit degraded accuracy. In
particular, there are classes Q where learning is possible when privacy is not a concern, but
for which any algorithm satisfying the constraint of pure differential privacy will fail on.

We show that in several scenarios, we can use a small amount of public data to evade
such impossibility results. Additionally, we complement these positive results with an
analysis of how much public data is necessary to see such improvements. Our main result
is that to learn the class of all Gaussians in Rd under pure differential privacy, d+ 1 public
samples suffice while d public samples are necessary.
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Chapter 1

Introduction

INTERVIEWER: “Where do you go from here Mike?”

TYSON: “I don’t know man... I might just fade into Bolivian.”

– Mike Tyson, after Lewis vs. Tyson.

In the distribution learning problem, a learner is given a dataset of samples drawn
from an unknown distribution p, belonging to a known class of distributions Q (e.g. all
Gaussians over R), and is tasked with outputting an estimate of p.

In addition to outputting an accurate estimate, a key requirement for such a learner
may be to preserve the privacy of individuals contributing to the input dataset. Would you
allow such a learner access to your data, if you knew that its output may reveal sensitive
information about you?

Differential privacy (DP) [DMNS06] is a formal framework that can be used to quantify
the privacy risk of a learning algorithm. Roughly speaking, an algorithm satisfying the
mathematical definition of differential privacy is guaranteed to output a similar result
with or without any single individual’s data. Therefore, observing the output of such an
algorithm cannot reveal much information about any particular individual.

Differential privacy guarantees the privacy of every point in a dataset. This is a strong
requirement, and often gives rise to qualitatively new requirements in learning tasks. For
instance: for the problem of learning a d-dimensional, identity covariance Gaussian with
unknown mean, N (µ, I), under pure differential privacy, the analyst must specify a range
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for the unknown parameter µ, and needs more data to get an accurate estimate depending
on how large this range is. This cost may be prohibitive in cases where the data domain is
unfamiliar. In fact, for µ unbounded and arbitrary, the problem can be solved with O(d2)
samples when privacy is not a concern – yet under pure differential privacy, no finite sample
algorithm can exist.

Fortunately, in many cases, it is natural to assume that there exists an additional public
dataset. This public dataset may vary in both size and quality. For example, it is common
to pretrain models on large amounts of public data from the web, which may be orders of
magnitude larger than the private data but significantly out of distribution. On the other
hand, one can imagine that a fraction of users opt out of privacy considerations, giving a
small set of public in-distribution data.

In a variety of such settings, this public data can yield dramatic theoretical and empirical
improvements to utility in private data analysis (see discussion in §4). We seek to answer
the following question:

How can one take advantage of public data for private distribution learning?

We initiate the study of differentially private distribution learning with a supplementary
public dataset. In particular, our goal is to understand when a small amount of public data
can significantly reduce the cost of private distribution learning.

Reading guide for this thesis. In Chapter 2, we focus on a simple running example,
and use it to illustrate the main ideas of this thesis. We do not assume any background on
learning or privacy.

On the other hand, Chapter 3 offers the general view, giving the formal statements
of the results presented in this thesis, with all proofs and technical details delegated to
Chapters 5, 6, and 7.

Chapter 4 reviews related work on distribution learning, with or without privacy
requirements, as well as other learning problems considered under the public-private setting.

Finally, Chapter 8 states an open question.
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Chapter 2

Primer: A distilled example

In this chapter, we go through a minimal running example that illustrates the problem at
hand, as well as the core ideas of this thesis. No background regarding privacy or learning
are assumed.

Running example: unit variance Gaussians. Let Q = {N (µ, 1) : µ ∈ R} denote the
class of unit variance Gaussians over R.

Our task is to design an algorithm that, given i.i.d. samples X = (X1, ..., Xn) drawn
from any unknown N (µ, 1) ∈ Q, outputs an estimate of N (µ, 1) that is close in total
variation distance (denoted by TV(·, ·); see Section 3.1). We call this task learning Q. In
this case, it turns out that: (1) computing the empirical mean of the samples received; and
(2) outputting the unit variance Gaussian centered around it – satisfies such a guarantee.

Algorithm 1: Unit variance Gaussian learner; UnitVarLearn(x).

Input: Data x = (x1, ..., xn).
Output: q, a distribution over R.

µ̂← 1

n

n∑
j=1

xj

q ← N (µ̂, 1)

Return q.

3



Claim 2.0.1. For any unknown unit variance Gaussian, N (µ, 1) ∈ Q, if we draw n = O( 1
α2 )

samples X = (X1, ..., Xn) i.i.d. from N (µ, 1), with probability ≥ 9
10

over the sampling of
X, TV(N (µ, 1), UnitVarLearn(X)) ≤ α.

Crucially, a uniform number of samples, n, suffices for any choice of unknown N (µ, 1).
The proof of the claim comes from: (1) with enough samples, µ̂ gets close to µ; and (2)
when |µ̂− µ| is small, so is TV(N (µ, 1),N (µ̂, 1)).

Proof. Let µ ∈ R be arbitrary, and suppose X = (X1, ..., Xn) are drawn i.i.d. from N (µ, 1).
We compute the variance of µ̂:

Var(µ̂) = Var

(
1

n

n∑
j=1

Xj

)
=

1

n2

n∑
j=1

Var (Xj) =
1

n
.

We have that

P {|µ̂− µ| > 2α} = P {|µ̂− Eµ̂| > 2α} ≤ Var(µ̂)

4α2
=

1

4α2n

by Chebyshev’s inequality. Taking n ≥ 10
4α2 = O( 1

α2 ) yields that P {|µ̂− µ| ≤ 2α} ≥ 9
10
.

When this event occurs, we have

TV(N (µ, 1), UnitVarLearn(X)) := TV(N (µ, 1),N (µ̂, 1))

≤
√

1

2
KL (N (µ, 1)∥N (µ̂, 1)) (Pinsker’s; Fact A.4.2)

=

√
1

2
· (µ̂− µ)2

2
(Gaussian KL; Fact 2.0.2)

≤
√

1

2
· 4α

2

2
= α

as desired. The equality on the third line is from the following KL divergence identity for
Gaussians.

Fact 2.0.2 (KL divergence between 1-dimensional Gaussians [Gup20]). Let N (µ1, σ
2
1),

N (µ2, σ
2
2) be Gaussians over R. Then

KL
(
N
(
µ1, σ

2
1

)
∥N

(
µ2, σ

2
2

))
= log

(
σ2

σ1

)
+

σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2
.
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What does the situation look like under privacy? In the above, Q admits a learning
algorithm that is capable of achieving error ≤ α with high probability on any distribution
in Q, so long as we receive O( 1

α2 ) samples from it. For this problem, it is known that
this is the best possible: any algorithm that succeeds on all distributions in Q with high
probability requires Ω( 1

α2 ) samples on some distribution [SOAJ14].

Informally (we do not give the formal definition in this chapter; see Definition 3.2.1),
differential privacy is the property of an algorithm to output similar answers with or without
any single individual’s data; the degree of similarity is quantified by the privacy parameter
ε, where smaller ε implies more similar. Requiring such a property constrains the space of
permissible algorithms for a given task. Hence, under privacy, more samples are necessarily
required to accomplish the same task. As we see below, the requirement of pure differential
privacy introduces new dependencies in the number of samples required for learning.

Fact 2.0.3 (Packing lower bound for pure DP distribution learning (specialized; see Fact
A.3.2)). Let Q be a set of distributions over R, and let ε > 0. Suppose we have an ε-
differentially private algorithm that can take n i.i.d. samples from any unknown p ∈ Q, and
with probability ≥ 9

10
, output an estimate q with TV(p, q) ≤ α.

For any P ⊆ Q with the property that TV(u, v) > 2α for all u ̸= v ∈ Q, we have

n ≥ log (|P|)
2ε

.

Note that such a P is referred to as a 2α-packing of Q (Definition A.2.1).

What does this mean for our class of unit variance Gaussians Q? The above Fact 2.0.3
says that if we can find a set of distributions in Q that are pairwise separated in total
variation distance, then the number of samples needed learn Q under pure DP depends on
the size of such a set. In Q, there are infinite sets satisfying this criterion.

Fact 2.0.4 (TV distance between 1-dimensional unit variance Gaussians; (specialized; see
Fact 7.0.5)). Let N (µ1, 1), N (µ2, 1) be Gaussians over R. Then

1

200
·min {1, 40|µ1 − µ2|} ≤ TV(N (µ1, 1),N (µ2, 1)).

Claim 2.0.5. P = {N (k, 1) : k ∈ N} is a 1
400

-packing of Q. Therefore for any ε > 0, there
is no ε-differentially private algorithm that: takes a finite number of samples from any
N (µ, 1) ∈ Q, and with probability ≥ 9

10
, outputs an estimate q with TV(N (µ, 1), q) ≤ 1

800
.

To reiterate: while Θ( 1
α2 ) samples are necessary and sufficient to learn Q non-privately,

no finite sample size suffices under pure differential privacy when we target error α ≤ 1
800

.
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With a little help from public data. In the above, the impossibility lies in the fact
that there is an unbounded range of output distributions that our algorithm must succeed
on. It turns out a single public data point is enough to resolve this issue.

First, we consider the following pure differentially private learning algorithm, as described
and analyzed in [Kam20], that handles the class of R-bounded univariate Gaussians, QR :=
{N (µ, 1) : µ ∈ R and |µ| ≤ R} for R ≥ 0. The algorithm is an application of the Laplace
mechanism, which: (1) zeroes out data points outside of a specified bounded range; and (2)
adds Laplace-distributed noise calibrated to this range. These two steps respectively limit
and mask the contribution of a single input data point.

Algorithm 2: Private unit variance Gaussian learner. PrivUnitVarLearnR,ε(x)

Input: Bound on the unknown distribution mean R ≥ 0. Target privacy parameter
ε. Private data x = (x1, ..., xn).

Output: q, a distribution over R.

c← R + 10 + 2 log n

µ̂← 1

n

n∑
j=1

xj · 1{x ∈ R : −c ≤ x ≤ c}

Z ∼ Laplace

(
2c

εn

)
µ̃← µ̂+ Z

q ← N (µ̃, 1)

Return q.

Where in the above, Z ∼ Laplace(b) corresponds to sampling from the centered Laplace

distribution with density function p(z) = 1
2b
exp

(
− |z|

b

)
.

Claim 2.0.6. Let R ≥ 0. For any unknown unit variance Gaussian N (µ, 1) coming from
the R-bounded set of Gaussians QR, if we draw n = Õ( 1

α2 +
R
αε
) samples X = (X1, ..., Xn)

i.i.d. from N (µ, 1), with probability ≥ 95
100

over the sampling of X and the randomness of the
algorithm, TV(N (µ, 1), PrivUnitVarLearnR,ε(X)) ≤ α. Also, PrivUnitVarLearnR,ε(·) is
ε-differentially private.

The proof of Algorithm 2’s privacy follows from the privacy guarantee of the Laplace
mechanism; we defer it to Section B.1.
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Proof. We focus on the accuracy guarantee of PrivUnitVarLearnR,ε(·). First, we show that
when the X1, ..., Xn are sampled from N (µ, 1) with |µ| ≤ R, with high probability, all the
Xj fall within the interval [−c, c].

Fix any j. |Xj| ≤ |Xj − µ|+ |µ| ≤ |Xj − µ|+R. By a Gaussian tail bound (Fact 2.0.8),
|Xj − µ| ≤ 10 + 2 log n with probability at least

1− 2 exp

(
−(10 + 2 log n)2

2

)
≥ 1− 2 exp

(
−10 + 2 log n

2

)
= 1− 2

ne5
≥ 1− 1

50n
.

Hence, with probability ≥ 1− 1
50n

, |Xj| ≤ 10 + 2 log n+R = c. Applying the union bound
yields that this holds for all the Xj simultaneously with probability ≥ 98

100
.

When this is the case, µ̂ is precisely the sample mean of Gaussian random variables, so
Var(µ̂) = 1

n
, and we can bound its deviation from µ with Chebyshev’s inequality, exactly as

in Claim 2.0.1. Taking n ≥ 100
α2 = O( 1

α2 ), P {|µ̂− µ| > α} ≤ 1
α2n
≤ 1

100
.

Finally, we need to bound the gap between µ̃ and µ̂, which, by definition, is distributed
according to Laplace( 2c

εn
). Applying a Laplace tail bound (Fact 2.0.7), we obtain that, for

n ≥ 10c
αε

= 10R+100+20 logn
αε

P {|µ̃− µ̂| > α} = exp
(
−αεn

2c

)
≤ exp (−5) ≤ 1

100
.

Note that some n = O( R
αε
· log R

αε
) = Õ( R

αε
) indeed solves for the above requirement on n.

Therefore taking n = Õ( 1
α2 +

R
αε
) and applying the union bound on the above events

allows us to conclude that: with probability ≥ 95
100

, we have |µ̃− µ̂| ≤ α and |µ̂− µ| ≤ α, so
|µ− µ̃| ≤ 2α by the triangle inequality. Following the final steps in the proof of Claim 2.0.1,
we can conclude TV(N (µ, 1), PrivUnitVarLearnR,ε(X)) := TV(N (µ, 1),N (µ̃, 1)) ≤ α, as
desired.

Fact 2.0.7 (Laplace tail bound). Let Z ∼ Laplace(b), that is, Z is sampled from the

centered Laplace distribution with density function p(z) = 1
2b
exp

(
− |z|

b

)
. Then for t ≥ 0

P {|Z| > t} = exp

(
− t

b

)
.

Fact 2.0.8 (Gaussian tail bound). Let X ∼ N (µ, 1). Then for t ≥ 0

P {|X − µ| > t} ≤ 2 exp

(
−t2

2

)
.

7



With a single public point X̃ sampled from our unknown and unbounded mean N (µ, 1),
we can reduce the unbounded-mean learning problem to a bounded-mean learning problem.

We do this by recentering all our private samples X1, ..., Xn via subtraction of X̃. After
this transformation, our private samples can be thought of as coming from the distribution
N (µ − X̃, 1), which, by Gaussian concentration, is likely to be a R-bounded univariate
Gaussian for small R. The bounded case can be solved completely privately with Algorithm
2. Then adding back X̃ yields an answer for the original problem. The detailed steps are
given below in Algorithm 3.

Algorithm 3: Public-private unit variance Gaussian learner.
PubPrivUnitVarLearnε(x̃,x)

Input: Target privacy parameter ε. Public data point x̃. Private data
x = (x1, ..., xn).

Output: q, a distribution over R.
For j = 1 to n

yj ← xj − x̃

y = (y1, ..., yn)

N (µ̃Y , 1)← PrivUnitVarLearnR=3,ε(y)

µ̃← µ̃Y + x̃

q ← N (µ̃, 1)

Return q.

The key aspect to realize is that for arbitrary µ, the information given by the single
public sample X̃ reduces the problem to the 3-bounded case, which is solvable with private
data only.

Claim 2.0.9. For any unknown unit variance Gaussian N (µ, 1) ∈ Q, if we draw 1 public
sample X̃ and n = Õ( 1

α2 + 1
αε
) private samples X = (X1, ..., Xn) i.i.d. from N (µ, 1),

with probability ≥ 9
10

over the sampling of X̃,X, and the randomness of the algorithm,

TV(N (µ, 1), PubPrivUnitVarLearn(X̃,X)) ≤ α. Also, for any choice of public point x̃,
PubPrivUnitVarLearnε(x̃, ·) is ε-differentially private (with respect to the private data).

We defer the proof of Algorithm 3’s privacy guarantee to Section B.2. In this section,
we prove the accuracy guarantee.
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Proof. The inputs to the private subroutine PrivUnitVarLearnR=3,ε(·), Y1, ..., Yn, are ran-
dom variables defined as Yj := Xj − X̃. Hence, they are distributed N (µY , 1) with
µY := µ− X̃. By Fact 2.0.8

P {|µY | > 3} = P
{∣∣∣µ− X̃

∣∣∣ > 3
}
≤ 2 exp

(
−9

2

)
≤ 5

100
.

Next, conditioned on the event that |µY | ≤ 3, PrivUnitVarLearnR=3,ε(·) indeed succeeds
with probability ≥ 95

100
, outputting µ̃Y with |µ̃Y − µY | ≤ 2α for some n = Õ( 1

α2 +
1
αε
). Note

that |µ̃− µ| := |(µ̃Y + X̃)− (µY + X̃)| = |µ̃Y − µY | ≤ 2α. By the same steps as in Claim
2.0.1, we can conclude TV(N (µ, 1),N (µ̃, 1)) ≤ α. The statement of the claim follows by
the union bound.

Takeaway. As we’ve seen, a single point public data point suffices to get around bound-
edness constraints imposed by pure differential privacy.

The strategy we take here – using public data to reduce to the bounded case, applying
a known private algorithm, and then finally mapping the solution to the solution for the
original unbounded problem – is quite general. In the rest of this thesis, we apply this main
conceptual idea to take advantage of public data for private distribution learning of more
general and interesting distribution classes.
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Chapter 3

Overview

We give an overview of the results in this thesis, providing the required notation and
definitions along the way.

3.1 Notation

We denote by X the domain of examples. For a domain U , denote by ∆(U) the set of all
probability distributions over U .1 We refer to a set Q ⊆ ∆(X ) as a class of distributions
over X .

We equip ∆(X ) with the total variation metric, which is defined as follows: for p, q
∈ ∆(X ), TV(p, q) := supB∈B |p(B) − q(B)|, where B are the measurable sets of X . For
p ∈ ∆(X ) and a set of distributions L ⊆ ∆(X ), we denote their point-set distance by
dist(p, L) := infq∈L TV(p, q).

We will let x̃ = (x̃1, . . . , x̃m) ∈ Xm denote a public dataset and x = (x1, . . . , xn) ∈ X n

denote a private dataset. Their respective capital versions X̃,X denote random variables
for datasets realized by sampling from some underlying distribution. For p ∈ ∆(X ), we
denote by pm the distribution over Xm obtained by concatenating m i.i.d. samples from p.

For symmetric matrices A,B ∈ Rd×d, we write A ⪯ B if B −A is positive semi-definite,
and A ≺ B if B − A is positive definite.

1We will assume the domain U is a metric space with some metric, which determines B, the set of Borel
subsets of U , which determines the set of all probability distributions over (U ,B).
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3.2 Problem setup

We describe formally the notion of “public-private algorithms” – algorithms that take
as input a public dataset and a private dataset, and always provides differential privacy
guarantees with respect to the private dataset – as studied previously in the setting of
binary classification [BNS16a, ABM19].

Definition 3.2.1 (Differential privacy [DMNS06]). Fix an input space X and an output
space Y. Let ε, δ > 0. A randomized algorithm A : X n → ∆(Y) is (ε, δ)-differentially
private ((ε, δ)-DP), if for any private datasets x,x′ ∈ X n differing in one entry

P
Y∼A(x)

{Y ∈ B} ≤ exp(ε) · P
Y ′∼A(x′)

{Y ′ ∈ B}+ δ for all measurable B ⊆ Y .

In this work, we focus on pure differential privacy (where δ = 0), also referred to as
ε-DP.

Definition 3.2.2 (Public-private ε-DP). Fix an input space X and an output space Y.
Let ε > 0. A randomized algorithm A : Xm ×X n → ∆(Y) is public-private ε-DP if for any
public dataset x̃ ∈ Xm, the randomized algorithm A(x̃, ·) : X n → ∆(Y) is ε-DP.

Definition 3.2.3 (Public-private learner). Let Q ⊆ ∆(X ). For α, β ∈ (0, 1] and ε > 0,
an (α, β, ε)-public-private learner for Q is a public-private ε-DP algorithm A : Xm ×
X n → ∆(∆(X )), such that for any p ∈ Q, if we draw datasets X̃ = (X̃1, ..., X̃m) and
X = (X1, ..., Xn) i.i.d. from p and then Q ∼ A(X̃,X),

P
X̃∼pm

X∼pn

Q∼A(X̃,X)

{TV(Q, p) ≤ α} ≥ 1− β.

Crucially, the learner must (1) satisfy DP with respect to the private data, regardless
of the public data it receives as input; and (2) given a fixed amount of samples from any
p ∈ Q, output an accurate estimate with high probability.

Definition 3.2.4 (Public-privately learnable class). We say that a class of distributions
Q ⊆ ∆(X ) is public-privately learnable with m(α, β, ε) public and n(α, β, ε) private samples
if for any α, β ∈ (0, 1] and ε > 0, there exists an (α, β, ε)-public-private learner for Q that
takes m = m(α, β, ε) public samples and n = n(α, β, ε) private samples.

When Q satisfies the above, we may omit the private sample requirement, and say that
Q is public-privately learnable with m(α, β, ε) public samples.
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If a class Q is known to be pure privately learnable with PSCQ(α, β, ε) (Private Sample
Complexity) samples, then Q is public-privately learnable with m(α, β, ε) = 0 public
and n(α, β, ε) = PSCQ(α, β, ε) private samples. In this case, we also say that Q is public-
privately learnable with no public samples. If a classQ is known to be non-privately learnable
with SCQ(α, β) (Sample Complexity) samples, then Q is public-privately learnable with
m(α, β, ε) = SCQ(α, β) public and n(α, β, ε) = 0 private samples. In this case, we also say
that Q is public-privately learnable with SCQ(α, β) public samples.

Our primary interest lies in determining when non-privately learnable Q can be public-
privately learned with m(α, β, ε) = o(SCQ(α, β)) public samples, at a target ε.

3.3 Privately learning d-dimensional Gaussians with

d + 1 public samples

Learning Gaussians. In Chapter 5, we give public-private algorithms for learning
Gaussians over Rd. Note that under pure DP, we only have learners for the (R,K)-bounded
case

QR,K =
{
N (µ,Σ) : µ ∈ Rd with ∥µ∥ ≤ R,Σ ∈ Rd×d with I ⪯ Σ ⪯ KI

}
,

where the sample complexity n(α, β, ε) depends on R and K. The boundedness requirement
turns out to be necessary: the class of all Gaussians over Rd cannot be pure privately
learned with any finite sample complexity n(α, β, ε). However, a small amount of public
data can get around this impossibility result.

Theorem 3.3.1 (Public-privately learning Gaussians (Informal; see Theorem 5.1.6)). The
class of d-dimensional Gaussians is public-privately learnable with d+ 1 public and

n(α, β, ε) = Õ

(
d2 + log( 1

β
)

α2
+

d2 log( 1
β
)

αε

)
private samples.

Note that d + 1 public samples is fewer than the known Θ( d
2

α2 ) sample complexity
necessary and sufficient to solve the problem non-privately. Furthermore the number of

private samples used is only a mild increase over the known Õ(d
2+log(1/β)

α2 + d2+log(1/β)
αε

) upper
bound on learning the class of constant-bounded Gaussians (e.g. (2, 2)-bounded Gaussians)
under pure DP (see Fact 5.1.1).
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Handling public-private distribution shift. In practical settings, it is quite possibly
the case that public and private data do not come from exactly the same distribution. We
can relax this assumption, and show that a slight modification of the same algorithm as
above works under the assumption that the public and private data come from Gaussians
with bounded total variation distance.

Theorem 3.3.2 (Public-privately learning Gaussians under distribution-shift (Informal;
see Theorem 5.2.3)). The class of d-dimensional Gaussians is public-privately learnable
with d+ 1 public and

n(α, β, ε) = Õ

(
d2 + log( 1

β
)

α2
+

d2 log( 1
β(1−γ)

)

αε

)

private samples, in the case where the public and private data come from different Gaussians
with total variation distance γ < 1.

3.4 Connections to sample compression schemes

Sample compression, public-private learning, and list learning. Ashtiani, Ben-
David, Harvey, Liaw, Mehrabian, and Plan (JACM’20) introduced sample compression
schemes for distribution classes, which yield nearly tight sample complexity bounds for
learning mixtures of Gaussians [ABDH+20]. In Chapter 6, we adapt sample compression
schemes to the public-private setting.

Specifically, we establish a connection between learning (in the sense of distribution
learning or density estimation) with public and private data (Definition 3.2.4) and sample
compression schemes for distributions (Definition 3.4.1; [ABDH+20, Definition 4.2]), as
well as an intermediate notion we refer to as list learning (Definition 3.4.3). We find that
a key parameter of a class Q’s sample compression scheme, the compression sample size,
corresponds to the number of public samples required to render Q privately learnable, as
well as to the number of samples required for list learning.

We go over the definitions of sample compression schemes and list learning.

Definition 3.4.1 (Robust sample compression schemes [ABDH+20, Definition 4.2]). Let
r ≥ 0. We say Q ⊆ ∆(X ) admits (τ(α, β), t(α, β),m(α, β)) r-robust sample compression if
for any α, β ∈ (0, 1], letting τ = τ(α, β), t = t(α, β), m = m(α, β), there exists a decoder
g : X τ × {0, 1}t → ∆(X ), such that the following holds:
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For any q ∈ Q there exists an encoder fq : Xm → X τ×{0, 1}t satisfying “for all x ∈ Xm, for
all i ∈ [τ ], f(x)i = xj for some j ∈ [m]”, such that for every p ∈ ∆(X ) with TV(p, q) ≤ r,

if we draw a dataset X̃ = (X̃1, ..., X̃m) i.i.d. from p then

P
X̃∼pm

{
TV(g(fq(X̃)), q) ≤ α

}
≥ 1− β.

When Q satisfies the above, we may omit the compression size complexity τ(α, β) and
bit complexity t(α, β), and say that Q is r-robustly compressible with m(α, β) samples.
When r = 0, we say that Q admits (τ(α, β), t(α, β),m(α, β)) realizable sample compression
and is realizably compressible with m(α, β) samples.

Definition 3.4.2 (List learner). Let Q ⊆ ∆(X ). For α, β ∈ (0, 1] and ℓ ∈ N, an (α, β, ℓ)-list
learner for Q is an algorithm L : Xm → {L ⊆ ∆(X ) : |L| ≤ ℓ}, such that for any p ∈ Q, if
we draw a dataset X̃ = (X̃1, . . . , X̃m) i.i.d. from p then

P
X̃∼pm

{
dist(p,L(X̃)) ≤ α

}
≥ 1− β.

Definition 3.4.3 (List learnable class). A class of distributions Q ⊆ ∆(X ) is list learnable
to list size ℓ(α, β) with m(α, β) samples if for every α, β ∈ (0, 1], letting ℓ = ℓ(α, β) and
m = m(α, β), there is an (α, β, ℓ)-list-learner for Q that takes m samples.

If Q satisfies the above, irrespective of the list size complexity ℓ(α, β), we also say Q is
list learnable with m(α, β) samples.

The following sample complexity equivalence result summarizes the sample-efficient
reductions between sample compression, public-private learning, and list learning.

Theorem 3.4.4 (Sample complexity equivalence between sample compression, public-pri-
vate learning, and list learning (Informal; see Theorem 6.1.1)). Let Q ⊆ ∆(X ). Let
m : (0, 1]2 → N be a sample complexity function in terms of target error α and failure
probability β, with m(α, β) = poly( 1

α
, 1
β
). The following are equivalent.

1. Q is realizably compressible with O(m(α, β)) samples.

2. Q is public-privately learnable with O(m(α, β)) public samples.

3. Q is list learnable with O(m(α, β)) samples.

14



The full reductions Propositions 6.1.2, 6.1.3, and 6.1.4 also give the quantitative trans-
lations between compression size complexity and bit complexity, public sample complexity,
and list size complexity.

Despite its technical simplicity, this sample complexity equivalence turns out to be
quite useful, and allows us to derive new public-private learners for an array of key
distribution classes by leveraging known results on sample compression schemes. From
the connection to sample compression schemes we are able to obtain new public-private
learners for: (1) high-dimensional Gaussian distributions (Theorem 3.4.5); (2) arbitrary
mixtures of high-dimensional Gaussians (Theorem 3.4.7); (3) mixtures of public-privately
learnable distribution classes (Theorem 3.4.8); and (4) products of public-privately learnable
distribution classes (Theorem 3.4.10).

Learning Gaussians and mixtures of Gaussians, via compression. Via the above
connection, known sample compression schemes for a class Q translate to public-private
learners for Q. The sample compression scheme for Gaussians given in [ABDH+20] approx-
imately recovers the result of Theorem 3.3.1.

Theorem 3.4.5 (Public-privately learning Gaussians, via compression (Informal; see
Corollary 6.2.3)). The class of d-dimensional Gaussians is public-privately learnable with
m(α, β, ε) = O(d log( 1

β
)) public and

n(α, β, ε) = Õ

(
d2 + log( 1

β
)

α2
+

d2 + log( 1
β
)

αε

)
.

private samples.

Compared to Theorem 3.3.1, we pay an extra O(log( 1
β
) factor in the public sample

complexity, and save a log( 1
β
) factor in the private sample complexity.

Since there are known sample compression schemes for mixtures of Gaussians, we also
get public-private learners for them.

Definition 3.4.6 (Class of k-mixtures). Let Q ⊆ ∆(X ) and k ≥ 1. The class of k-mixtures
of Q, denoted by Q⊕k, is given by

Q⊕k :=

{
k∑

i=1

wiqi ∈ ∆(X ) : each qi ∈ Q, each wi ≥ 0 with
k∑

i=1

wi = 1

}
.
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Theorem 3.4.7 (Public-privately learning mixtures of Gaussians (Informal; see Corollary
6.2.4)). The class of k-mixtures of d-dimensional Gaussians is public-privately learnable
with

m(α, β, ε) = Õ

(
kd log2( 1

β
)

α

)
public and

n(α, β, ε) = Õ

(
kd2 + log( 1

β
)

α2
+

kd2 + log( 1
β
)

αε

)
private samples.

To learn mixtures of Gaussians non-privately, Θ̃(kd
2

α2 ) samples are necessary and sufficient.
Our public-private learner uses fewer public samples, and in the regime where ε ≥ α, uses
about as many total samples.

Closure of public-private learnability under mixtures and products. If a class Q
admits a realizable compression scheme, the class of mixtures of Q and the class of products
of Q also admit realizable compression schemes. Owing to Theorem 3.4.4, the same holds
for public-private learnability.

Theorem 3.4.8 (Public-privately learning mixtures (Informal; see Theorem 6.2.7)). Suppose
Q ⊆ ∆(X ) is public-privately learnable with m(α, β, ε) public samples. Then for any ε0 > 0,
Q⊕k, the class of k-mixtures of Q, is learnable with

mk(α, β, ε) = O

(
k log( k

β
)

α
·m
(

α

36
,
β

20
, ε0

))
public samples.

Definition 3.4.9 (Class of k-products). Let Q ⊆ ∆(X ) and k ≥ 1. The class of k-products
of Q, denoted by Q⊗k, is given by

Q⊗k :=
{
(q1, ..., qk) ∈ ∆(X k) : each qi ∈ Q and independent

}
.

Theorem 3.4.10 (Public-privately learning products (Informal; see Theorem 6.2.10)).
Suppose Q ⊆ ∆(X ) is public-privately learnable with m(α, β, ε) public samples. Then for
any ε0 > 0, Q⊗k, the class of k-products of Q, is learnable with

m(α, β, ε) = O

(
log

(
k

β

)
·m
(

α

12k
,
β

20
, ε0

))
public samples.
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Agnostic and distribution-shifted public-private learning. The setting we have
examined up to now has (mostly) relied on the following assumptions on the data generation
process.

1. (Same distribution). The public and private data are sampled from the same underly-
ing distribution.

2. (Realizability). The public and private data are sampled from members of the class
Q.

The exception is Theorem 5.2.3, which shows that for Gaussians over Rd, the first
condition can be relaxed (we can learn in the case where the public and the private data
are generated from different Gaussians with bounded TV distance).

We show that we can relax both of the above assumptions. For distribution classes that
admit robust compression schemes, we have public-private learners which: (1) can handle
public-private distribution shifts ; and (2) are agnostic, that is, they do not require samples
to come from a member of the reference class of distributions Q, and so instead promise
error close to the best approximation of the private data distribution by a member of Q.

We formally define the notion of agnostic and distribution-shifted public-private learning.

Definition 3.4.11 (Agnostic and distribution-shifted public-private learner). Let Q ⊆
∆(X ). For α, β ∈ (0, 1], ε > 0, γ ∈ [0, 1], and c ≥ 1 a γ-shifted c-agnostic (α, β, ε)-public-
private learner for Q is an ε-DP public-private algorithm A : Xm ×X n → ∆(∆(X )), such
that for any p̃, p ∈ ∆(X ) with TV(p̃, p) ≤ γ, if we draw a public dataset X̃ = (X̃1, . . . , X̃m)
i.i.d. from p̃, a private dataset X = (X1, . . . , Xn) i.i.d. from p, and then Q ∼ A(X̃,X)

P
X̃∼p̃m

X∼pn

Q∼A(X̃,X)

{TV(Q, p) ≤ c · dist(p,Q) + α} ≥ 1− β.

We have the following result for learning distributions that can be approximated by
Gaussians.

Theorem 3.4.12 (Agnostic and distribution-shifted public-private learner for Gaussians
(Informal; see Theorem 6.2.13)). For any α, β ∈ (0, 1] and ε > 0, there exists 1

3
-shifted

3-agnostic public-private learner for the class of Gaussians in Rd that uses m public samples
and n private samples, where

m(α, β, ε) = O

(
d log

(
1

β

))
and n(α, β, ε) = Õ

(
d2 + log( 1

β
)

α2
+

d2 + log( 1
β
)

αε

)
.
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3.5 A lower bound on how many public samples are

needed for Gaussians

Using the aforementioned connection to list learning, we are able to establish a fine-grained
lower bound on the number of public data points required to pure privately learn the class
of d-dimensional Gaussians.

Theorem 3.5.1 (Almost tight lower bound on the amount of public samples required
for public-privately learning Gaussians (Informal; see Theorem 7.0.1)). The class of d-
dimensional Gaussians is not public-privately learnable with fewer than d public samples,
regardless of the number of private samples.

Recall that Theorem 3.3.1 shows that d-dimensional Gaussians are public-privately
learnable with Õ( d

2

α2 +
d2

αε
) private samples, as soon as d+ 1 public samples are available.

Thus, our result shows a very sharp threshold for the number of public data points necessary
and sufficient to make private learning possible.

3.6 Limitations

This work investigates the sample complexity of public-private learning, and does not give
computationally efficient learners, or in some cases, algorithmic learners that run in finite
time. In particular, all public-private learners obtained through the sample compression
framework in Chapter 6, either directly by utilizing a sample compression scheme from
[ABDH+20] or via the non-constructive2 reduction of list learning to public-private learning,
have exponential or infinite running times respectively. The same is the case for the VC
dimension bound of Theorem 8.0.3. In there, we enumerate all labellings of the input
sample realizable by the relevant Yatracos class H, which is not a computable task for
general H [AABD+20].

Additionally, in Theorem 8.0.3, the dependence on VC∗(H) for a general class H in the
private sample complexity is not ideal, as VC∗(H) ≤ 2VC(H)+1− 1 is the best possible upper
bound in terms of VC(H) [Ass83].

2A comment of reviewer rJcv [rJc23, this https URL] points out an approach to address the non-
constructive nature of the reduction of list learning to public-private learning (Proposition 6.1.3). To
summarize: fixing the m public samples and running the public-private learner on n “null samples”
repeatedly (with different random coins) produces a cover containing the true distribution with high
probability. By giving up determinism in the list learner, we can get a finite time algorithm.
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Finally, our lower bound for public-privately learning Gaussians in Chapter 7 establishes
that at least d public samples are necessary for public-private learning to vanishingly small
error as d increases – phrased alternatively, the error threshold under which we show
learning is impossible decreases exponentially in d. One would hope for an error threshold
for impossibility that is independent of d.
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Chapter 4

Related work

The results of this thesis can be viewed in light of two main contexts: (1) the literature
on distribution learning and statistical estimation under privacy constraints, in which we
examine familiar problems under a modified privacy threat model; and (2) the literature on
augmenting private (learning) algorithms with access to public data, in which we examine
the power of the public-private model for distribution learning.

Private distribution learning. There is a long line of work on distribution learning
under privacy constraints [DHS15], especially with regards to Gaussians and Gaussian
mixtures. This thesis studies the task of learning arbitrary, unbounded Gaussians while
offering differential privacy guarantees. Basic private algorithms for the task (variants of
“clip-and-noise”) impose boundedness assumptions on the underlying parameters of the
unknown Gaussian, since their sample complexities grow to infinity as the bounds widen to
include more allowed distributions.

Understanding these dependencies in the fully private setting has been a topic of signifi-
cant study. [KV18] examined univariate Gaussians, showing that logarithmic dependencies
on parameter bounds are necessary and sufficient in the case of pure DP, but can be
removed under approximate DP using stability-based histograms [KKMN09, BNS16b]. The
same is true in the multivariate setting: [KLSU19, BKSW21] demonstrate the necessity
and sufficiency of parameter bounds under pure DP, while later works remove them under
approximate DP [AAAK21, KMS+22, TCK+22, AL22, KMV22, LKO22]. Our results
demonstrate that instead of relaxing the privacy definition for all the data, we can achieve
similar results by employing a small amount of public data. We supplement this result with
a lower bound that telling us almost exactly how much public data is needed.
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For mixtures of Gaussians, most studies focus on parameter estimation of mixture
components [NRS07, KSSU19, TCK+22, AAL23b], employing component separation and
mixing weight assumptions. For density estimation, the setting studied in this work,
[BKSW21, AAL21] give learnability results under various structural assumptions (e.g.,
one-dimensional, boundedness, axis-aligned). Concurrent to the publication of the results
in this thesis, the study of Azfali, Ashtiani, and Liaw [AAL23a] gives the first learnability
result for general, high-dimensional mixtures of Gaussians under approximate differential
privacy. Our results also give learnability results for this class, in the public-private setting.

Theory for private algorithms with public data. Beyond distribution learning, there
is a lot of work investigating how public data can be used improve private algorithms. Some
specific areas include private query release, synthetic data generation, and prediction [JE13,
BNS16a, ABM19, NB20, BCM+20, BMN20, LVS+21]. The definition of public-private
algorithms that we adopt is from [BNS16a], which studied classification in the PAC model.
The VC dimension bound in Chapter 8 for public-private distribution learning relies on
results from public-private classification [ABM19] and uniform convergence [BCM+20].

A concurrent and independent work [LLHR23] also studies learning with public and
private data, focusing on the problems of mean estimation, empirical risk minimization,
and stochastic convex optimization.

Private machine learning with public data. Within the context of private machine
learning, there has been significant interest in how to best employ public data. There are a
variety of ways of using this data, including pretraining [ACG+16, PCS+19, TB21, LWAF21,
YZCL21, LTLH22, YNB+22] (though some caution about this practice [TKC22]), computing
statistics about the private gradients [ZWB21, YZCL21, KDRT21, AGM+22, GKW23], or
using unlabelled public data to train a student model [PAE+17, PSM+18, BTT18]. For
more discussion of public data for private learning, see Section 3.1 of [CDE+23].

Sample compression schemes. The focus of Chapter 6 is on establishing connections
between public-private distribution learning and distribution sample compression schemes
as introduced by [ABDH+20], as well as directly applying their results to establish new
results for public-private learning. Related compression schemes for PAC learning for binary
classification have been shown to be necessary and sufficient for learnability [LW86, MY16].

We also use the notion of list learning in this thesis, which is a non-robust version of the
well known list-decodable learning [AAL21, RY20, BBV08, CSV17, DKS18, KS17], where
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the goal is still to output a list of distributions that contains one that is accurate with
respect to the true distribution, but the sampling may happen from a corrupted version
of the underlying distribution. List learning and list-decodable learning are respectively
strongly related to realizable and robust compression schemes [ABDM18, AAL21, AAL23a],
and are useful tools for designing learners for mixture distributions.

Hybrid model of differential privacy. A related setting is the hybrid model, in which
samples require either local or central differential privacy [AKZ+17]. Some learning tasks
studied in this model include mean estimation [ADK20] and transfer learning [KS22].
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Chapter 5

Privately learning Gaussians, with a
little help from public data

To learn d-dimensional Gaussians in total variation distance under the constraint of pure
differential privacy, d+ 1 public samples suffice. Moreover, the public samples can come
from a different Gaussian of bounded total variation distance away. In contrast, with only
private data, no finite sample complexity suffices.

5.1 d + 1 public samples suffice to privately learn d-

dimensional Gaussians

Assume we are given d + 1 public samples X̃ = (X̃1, ..., X̃d+1) and n private samples
X = (X1, ..., Xn), where X̃ and X are drawn i.i.d. from an unknown, d-dimensional
Gaussian N (µ,Σ). We use the public samples to do coarse estimation of the unknown mean
and covariance, and then use the coarse estimate to transform the private data, reducing
to the bounded case that can be solved using existing private algorithms (such as the one
given in the following Fact 5.1.1).

Fact 5.1.1 (Pure DP Gaussian estimator [BKSW21, Corollary 6.11]). Let R,K > 0, and
consider the class of (R,K)-bounded d-dimensional Gaussians

Q =
{
N (µ,Σ) : µ ∈ Rd with ∥µ∥ ≤ R,Σ ∈ Rd×d with I ⪯ Σ ⪯ KI

}
.
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Let α, β ∈ (0, 1], and ε > 0. There exists an ε-DP algorithm DPGEα,β,ε,R,K(x) that upon
receiving

n = O

(
d2 + log( 1

β
)

α2
+

d log(dR
α
) + d2 log(dK

α
) + log( 1

β
)

αε

)

i.i.d. samples X = (X1, ..., Xn) from any N (µ,Σ) ∈ Q, outputs µ∗ ∈ Rd and Σ∗ ∈ Rd×d

such that with probability ≥ 1− β, TV(N (µ∗,Σ∗),N (µ,Σ)) ≤ α.

Specifically, we use the d+ 1 public samples for a “public data preconditioning” step
(Algorithm 4).

Algorithm 4: Public data preconditioning; PubPrecondβ(x̃)

Input: Public data x̃ = (x̃1, ..., x̃d+1). Failure probability β ∈ (0, 1].

Output: µ̂ ∈ Rd, Σ̂ ∈ Rd×d. L,U > 0.

// Compute the empirical mean and covariance of x̃.

µ̂← 1

d+ 1

d+1∑
i=1

x̃i and Σ̂← 1

d

d+1∑
i=1

(x̃i − µ̂)(x̃i − µ̂)⊤

// Compute L and U.

L← d

4d+ 4
√

2d log( 3
β
) + 2 log( 3

β
)

and U ← 9d2

β2

Return (µ̂, Σ̂, L, U).

The preconditioning parameters output by Algorithm 4 are used to recenter, then rescale
our private samples X = (X1, ..., Xn). The transformed private samples, which we denote
by Y = (Y1, ..., Yn), are then fed as input to an existing DP Gaussian estimator (Fact 5.1.1),
which outputs estimates µ∗

Y and Σ∗
Y . We apply the inverse of the preconditioning transform

to µ∗
Y and Σ∗

Y to obtain our final estimates µ∗ and Σ∗. This process is summarised in
Algorithm 5.

The key step needed to establish the correctness of Algorithm 5 is to ensure that, with
high probability over the sampling of public data, the parameters of the true distribution

24



Algorithm 5: Public-private Gaussian estimator; PubPrivGEα,β,ε(x̃,x)

Input: Public data x̃ = (x̃1, ..., x̃d+1). Private data x = (x1, ..., xn). Desired error
and failure probability α, β ∈ (0, 1]. Privacy budget ε > 0.

Output: µ̂ ∈ Rd, Σ̂ ∈ Rd×d.

// Precondition the private data using the public data.

(µ̂, Σ̂, L, U)← PubPrecondβ/2(x̃)

For j ∈ [n]

yj ←
1√
L
Σ̂−1/2(xj − µ̂)

y = (y1, ..., yn)

// Set R,K parameters for the bounded DP Gaussian estimator.

R←
√

U

L
·

√
5 log

(
6

β

)
and K ← U

L

// Run the DP Gaussian estimator and invert the preconditioning.

(µ∗
Y ,Σ

∗
Y )← DPGEα,β/2,ε,R,K(y)

µ∗ ←
√
LΣ̂1/2µ∗

Y + µ̂ and Σ∗ ← LΣ̂1/2Σ∗
Y Σ̂

1/2

Return (µ∗,Σ∗).

underlying Y = (Y1, ..., Yn) indeed satisfy tight range bounds that enable an existing DP
Gaussian estimator to provide the desired success guarantee with private sample complexity
free of dependence on R and K. That is, we want the mean of the transformed Gaussian to
lie in a known poly(d, 1

β
) ball, and the condition number of its covariance to be poly(d, 1

β
).

Lemma 5.1.2 (Public data preconditioning). Let β ∈ (0, 1]. There exists an algorithm
that takes d+ 1 samples X̃ = (X̃1, . . . , X̃d+1) drawn i.i.d. from any Gaussian N (µ,Σ) over

Rd and outputs µ̂ ∈ Rd, Σ̂ ∈ Rd×d, and L,U > 0, such that letting ΣY := 1
L
Σ̂−1/2ΣΣ̂−1/2

and µY := 1√
L
Σ̂−1/2(µ− µ̂), with probability ≥ 1− β over the sampling of X̃,
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1. I ⪯ ΣY ⪯ U
L
I; and

2. ∥µY ∥ ≤
√

U
L

√
5 log( 3

β
),

where U
L
= O(d2 log( 1

β
)/β2).

Lemma 5.1.2 follows from bounds on the singular values of a random Gaussian matrix.
We employ the following bounds stated in [SST06].1

Fact 5.1.3 (Singular values of Gaussian matrices [SST06]). Let Z ∈ Rd×d be a matrix with
each Zij ∼ N(0, 1) independently. Denote by σd(Z) the smallest singular value of Z, and
by σ1(Z) its largest singular value. We have that

1. P
{
|σd(Z)| ≤ β√

d

}
≤ β; and

2. P
{
|σ1(Z)| ≥ 2

√
d+

√
2 log( 1

β
)
}
≤ β.

We also use a fact about the distribution of the empirical covariance of d-dimensional
standard Gaussian random variables.

Fact 5.1.4 (Properties of the Wishart Distribution).2 Let Z1, ..., Zm+1 be sampled i.i.d.
from N (0, I) over Rd. Let µ̂ = 1

m+1

∑m+1
i=1 Zi. Then

1

m

m+1∑
i=1

(Zi − µ̂)(Zi − µ̂)⊤ ∼ 1

m

m∑
i=1

ZiZ
⊤
i .

That is, the two random variables are identically distributed. The random variable on the
right can be recognized as a scaled d-dimensional Wishart distribution with m degrees of
freedom, 1

m
Wd(m, I).

We also use the Hanson-Wright inequality for quadratic forms of d-dimensional Gaussian
random variables.

Fact 5.1.5 (Hanson-Wright inequality [HW71]). Let Z ∼ N (0, I) and let A ∈ Rd×d. Then
for all t > 0, we have

1[SST06] attributes the bound on the smallest eigenvalue to Edelman [Ede88], and the bound on the
largest to Davidson and Szarek [DS01].

2See Theorem 6 from https://www.stat.pitt.edu/sungkyu/course/2221Fall13/lec2.pdf.
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1. P
{
Z⊤AZ − tr(A) ≥ 2∥A∥F

√
t+ 2∥A∥2t

}
≤ exp(−t); and

2. P
{
Z⊤AZ − tr(A) ≤ −2∥A∥F

√
t
}
≤ exp(−t).

Proof of Lemma 5.1.2. We prove the lemma by proving the utility of Algorithm 4. Note
that the quantities L,U as defined in Algorithm 4 satisfy U

L
= O(d2 log( 1

β
)/β2).

We start with part (1), where we wish to bound the eigenvalues of ΣY . Using the

properties of Loewner ordering (⪯) and the symmetric nature of Σ̂,Σ, we note that

I ⪯ 1

L
Σ̂−1/2ΣΣ̂−1/2 ⪯ U

L
I ⇐⇒ LΣ̂ ⪯ Σ ⪯ UΣ̂

⇐⇒ LΣ−1/2Σ̂Σ−1/2 ⪯ I ⪯ UΣ−1/2Σ̂Σ−1/2.

Therefore, it is sufficient to prove the final inequality. Denote Σ̂Z := Σ−1/2Σ̂Σ−1/2. Then

Σ̂Z =
1

d

d+1∑
i=1

(Σ−1/2(X̃i − µ̂))(Σ−1/2(X̃i − µ̂))⊤ =
1

d

d+1∑
i=1

(Zi − µ̂Z)(Zi − µ̂Z)
⊤

where for each i ∈ [d + 1], Zi := Σ−1/2(X̃i − µ) ∼ N(0, I) independently and µ̂Z :=
Σ−1/2(µ̂− µ) = 1

d+1

∑d+1
i=1 Zi.

We show LΣ̂Z ⪯ I and I ⪯ UΣ̂Z . For i ∈ [d], let Zi ∼ N (0, I) independently. Then

Fact 5.1.4 says that Σ̂Z is identically distributed to 1
d

∑d
i=1 ZiZ

⊤
i . From here, we can apply

the bounds from Fact 5.1.3 by noting that λd(Σ̂Z) ∼ 1
d
σd

([
Z1, ..., Zd

])2
and λ1(Σ̂Z) ∼

1
d
σ1

([
Z1, ..., Zd

])2
.

1. With probability ≥ 1 − β
3
, 1

d
σd

([
Z1, ..., Zd

])2
> (β/3)2

d2
=⇒ λd(Σ̂Z) > (β/3)2

d2
=⇒

UΣ̂Z ⪰ I.

2. With probability ≥ 1 − β
3
, 1

d
σ1

([
Z1, . . . , Zd

])2
<

(
2
√
d+
√

2 log(3/β)
)2

d
=⇒ λ1(Σ̂Z) <(

2
√
d+
√

2 log(3/β)
)2

d
=⇒ LΣ̂Z ⪯ I.

Taking the union bound, part (1) of Lemma 5.1.2 holds with probability ≥ 1− 2β
3
.

Next, we prove the bound on µY stated in part (2).

µY =
1√
L
Σ̂−1/2(µ− µ̂) =

1√
L
Σ̂−1/2

(
µ− 1

d+ 1

d+1∑
i=1

(Σ1/2Zi + µ)

)
= − 1√

L
Σ̂−1/2Σ1/2µ̂Z .
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Since µ̂Z is identically distributed to 1√
d+1

Z1, applying Lemma 5.1.5 with t = log( 3
β
) and

A = I implies that with probability ≥ 1− β
3
,

∥µ̂Z∥ ≤

√√√√d+ 2
√

d log( 3
β
) + 2 log( 3

β
)

d+ 1

From (1), we know that
∥∥∥ 1
L
Σ̂−1/2ΣΣ̂−1/2

∥∥∥
2
≤ U

L
. Hence,

∥∥∥− 1√
L
Σ̂−1/2Σ1/2

∥∥∥
2
≤
√

U
L
. This

implies that

∥µY ∥ ≤
∥∥∥∥− 1√

L
Σ̂−1/2Σ1/2

∥∥∥∥
2

· ∥µ̂Z∥ ≤
√

U

L
·

√√√√d+ 2
√
d log( 3

β
) + 2 log( 3

β
)

d+ 1

which implies part (2) of Lemma 5.1.2. Applying the union bound again completes the
proof.

Algorithm 5 indeed is a (α, β, ε)-public-private learner using d+ 1 public samples that
(a) satisfies privacy with respect to private data x = (x1, ..., xn); and (b) achieves the
desired accuracy and success probability. This follows from the guarantees of public data
preconditioning (Lemma 5.1.2) combined with the guarantees of existing DP Gaussian
estimators (Fact 5.1.1). We note that our sample complexity no longer depends on the a
priori bounds on the mean and the covariance of the unknown private data distribution.

Theorem 5.1.6 (Public-private Gaussian estimator using d + 1 public samples). Let
α, β ∈ (0, 1], and ε > 0. There exists a public-private ε-DP algorithm that takes d+1 public
samples X̃ = (X̃1, ..., X̃d+1) and

n = O

(
d2 + log( 1

β
)

α2
+

d2 log( d
αβ
)

αε

)

private samples X = (X1, ..., Xn) drawn i.i.d. from any unknown d-dimensional Gaus-
sian N (µ,Σ), and outputs µ∗ ∈ Rd and Σ∗ ∈ Rd×d such that with probability ≥ 1 − β,
TV(N (µ∗,Σ∗),N (µ,Σ)) ≤ α.

Proof. We prove the privacy and the utility guarantees for Algorithm 5.

We start with the utility guarantee. Using the public data preconditioning parameters
obtained from running Algorithm 4 on public samples X̃ = (X̃1, ...X̃d+1) and targeting
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failure probability β
2
, we apply a shift and scale on the private samples X = (X1, ..., Xn),

yielding Y = (Y1, ..., Yn). For each j ∈ [n], we have that Yj ∼ N (µY ,ΣY ), where µY and
ΣY are quantities as defined in Lemma 5.1.2. Then with probability ≥ 1 − β

2
over the

sampling of public data, we have I ⪯ ΣY ⪯ U
L
I and ∥µY ∥ ≤

√
U
L
·
√

5 log( 6
β
) (Lemma 5.1.2).

Hence, we can set K = U
L
= O(d2 log( 1

β
)/β2), and R =

√
U
L
·
√

5 log( 6
β
) = O(d log( 1

β
)/β),

and run the ε-DP Gaussian estimator (Fact 5.1.1) on Y with target accuracy α and failure
probability β

2
. We obtain our private sample complexity, which is now independent of mean

and covariance of the underlying distribution, by plugging in these values into the DP Gaus-
sian estimator’s sample complexity. Under these parameter settings and number of private
samples used, by Fact 5.1.1 and the union bound, we have that with probability ≥ 1−β, the
algorithm succeeds in outputting µ∗

Y and Σ∗
Y , such that TV(N (µ∗

Y ,Σ
∗
Y ),N (µY ,ΣY )) ≤ α.

We output the estimates Σ∗ := LΣ̂1/2Σ∗
Y Σ̂

1/2 and µ∗ :=
√
LΣ̂1/2µ∗

Y +µ̂. Denoting A := 1
L
Σ̂−1,

by the properties of the Mahalanobis norm ∥ · ∥Σ (see Section 3.1)

∥Σ∗ − Σ∥Σ = ∥A1/2Σ∗A1/2 − A1/2ΣA1/2∥A1/2ΣA1/2

= ∥Σ∗
Y − ΣY ∥ΣY

,

∥µ∗ − µ∥Σ = ∥A1/2µ∗ − A1/2µ∥A1/2ΣA1/2

= ∥(µ∗
Y + A1/2µ̂)− (µY + A1/2µ̂)∥ΣY

= ∥µ∗
Y − µY ∥ΣY

.

which implies that TV(N (µ∗,Σ∗),N (µ,Σ)) = TV(N (µ∗
Y ,Σ

∗
Y ),N (µY ,ΣY )) ≤ α.

To argue about privacy, note that releasing (µ∗,Σ∗) is ε-DP with respect to y =
(y1, ..., yn), since it is a post-processing (Fact A.3.1) of the output (µ∗

Y ,Σ
∗
Y ) of an ε-DP

algorithm. To argue about ε-DP with respect to the private dataset x = (x1, ..., xn), note
that for any fixed public dataset x̃, the ε-DP Gaussian estimator DPGEα,β/2,ε,R,K(·)’s privacy
guarantee holds for the arbitrary replacement of any single example yj . Since each xj maps
to exactly one xj, DPGEα,β/2,ε,R,K(·)’s privacy guarantee holds for the arbitrary replacement
of any single xj as well. This gives us the final privacy guarantee with respect to x.

5.2 Handling public-private distribution shift

A natural question to ask is: what if our public data does not come from the same
distribution as our private data? In practical settings, there may be distribution shift
between data that is publicly available and our private data.
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We relax the assumption that our public and private data are sampled from the same
underlying distribution, and show that it suffices that our d+ 1 public samples comes from
another Gaussian of bounded total variation distance from the private data distribution.

It turns out that the same Algorithm 5 works for this case, after slight modifications:
R and K must be set based on a known upper bound γ on the total variation distance
between the public and private data distributions. We employ the following Lemma 5.2.1
that translates a total variation bound into a bound on the difference between Gaussian
parameters.

Lemma 5.2.1 (Total variation to Gaussian parameters bound). Let γ > 0. Let N (µ,Σ)
and N (µ̃, Σ̃) be d-dimensional Gaussians over Rd such that TV(N (µ,Σ),N (µ̃, Σ̃)) ≤ γ.
We have

1.
(1− γ)4

4
Σ ⪯ Σ̃ ⪯ 4

(1− γ)4
Σ; and

2. (µ− µ̃)(µ− µ̃)⊤ ⪯ 8γ

1− γ
(Σ + Σ̃).

The proof of Lemma 5.2.1 can be found in Section B.3.

Now we discuss the modifications. Let L,U be quantities as defined in Algorithm 4.
Given a known upper bound 1 > γ ≥ TV(N (µ,Σ),N (µ̃, Σ̃)) between the private and public

data distributions, we let Lγ = (1−γ)4

4
L and Uγ = 4

(1−γ)4
U . The following is an analogue

of Lemma 5.1.2 when we run the modified Algorithm 4 on public data that comes from a
Gaussian of at most total variation distance γ < 1 from the private data distribution.

Lemma 5.2.2 (Distribution-shifted public data preconditioning). Let β ∈ (0, 1] and
γ ∈ [0, 1). There exists an algorithm that takes d + 1 samples X̃ = (X̃1, ..., X̃d+1) drawn

i.i.d. from any Gaussian N (µ̃, Σ̃) over Rd, and outputs µ̂ ∈ Rd, Σ̂ ∈ Rd×d, and Lγ, Uγ > 0,
such that for any Gaussian N (µ,Σ) over Rd with TV(N (µ,Σ),N (µ̃, Σ̃)) ≤ γ, letting

µY = 1√
Lγ
Σ̂−1/2(µ − µ̂) and ΣY = 1

Lγ
Σ̂−1/2ΣΣ̂−1/2, with probability ≥ 1 − β over the

sampling of X̃,

1. I ⪯ ΣY ⪯ Uγ

Lγ
I; and

2. ∥µY ∥ ≤
√

Uγ

Lγ

(√
10γ
1−γ

+
√

5 log( 3
β
)
)
,

where Uγ

Lγ
= O(d2 log( 1

β
)/β2(1− γ)8).
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Proof. We prove the lemma by proving the utility of a modified version of Algorithm 4,
which returns Lγ and Uγ instead of L and U . The result follows from tracing through the
proof of Lemma 5.1.2, and applying Lemma 5.2.1 as necessary. We highlight the differences.

We start with part (1). By the same chain of equivalences in the proof of Lemma 5.1.2,

it suffices to show that LγΣ
−1/2Σ̂Σ−1/2 ⪯ I ⪯ UγΣ

−1/2Σ̂Σ−1/2. We have the following

Σ−1/2Σ̂Σ−1/2 = Σ−1/2

(
1

d

d+1∑
i=1

((Σ̃1/2Zi + µ̃)− µ̂)((Σ̃1/2Zi + µ̃)− µ̂)⊤

)
Σ−1/2

= Σ−1/2

(
1

d

d+1∑
i=1

(Σ̃1/2(Zi − µ̂Z))(Σ̃
1/2(Zi − µ̂Z))

⊤

)
Σ−1/2

= Σ−1/2Σ̃1/2Σ̂ZΣ̃
1/2Σ−1/2.

In the above, Zi := Σ̃−1/2(X̃i − µ̃) ∼ N (0, I) independently, µ̂Z := Σ̃−1/2(µ̂ − µ̃) =
1

d+1

∑d+1
i=1 Zi, and Σ̂Z := 1

d

∑d+1
i=1 (Zi − µ̂Z)(Zi − µ̂Z)

⊤ as in the proof of Lemma 5.1.2. From

the same proof, we know that with probability ≥ 1− β
3
, we have UΣ̂Z ⪰ I, which implies

that

UΣ−1/2Σ̃1/2Σ̂ZΣ̃
1/2Σ−1/2 ⪰ Σ−1/2Σ̃Σ−1/2 ⪰ (1− γ)4

4
I,

where the last inequality follows from (1) in Lemma 5.2.1. Recalling that we set Uγ = 4
(1−γ)4

U ,

rearranging gives us that UγΣ
−1/2Σ̂Σ−1/2 ⪰ I, as desired.

Similarly, with probability ≥ 1− β
3
, LΣ̂Z ⪯ I, which implies that

LΣ−1/2Σ̃1/2Σ̂ZΣ̃
1/2Σ−1/2 ⪯ Σ−1/2Σ̃Σ−1/2 ⪯ 4

(1− γ)4
I,

where the last inequality follows from (1) in Lemma 5.2.1. Recalling that we set Lγ = (1−γ)4

4
L,

rearranging allows us to conclude LγΣ
−1/2Σ̂Σ−1/2 ⪯ I.

It remains to verify that part (2) holds. Write

µY :=
1√
Lγ

Σ̂−1/2(µ− µ̂) =
1√
Lγ

Σ̂−1/2(µ− µ̃− Σ̃1/2µ̂Z)

=
1√
Lγ

Σ̂−1/2(µ− µ̃)− 1√
Lγ

Σ̂−1/2Σ̃1/2µ̂Z
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We bound the two terms separately. Note that the second term appears in the proof of
Lemma 5.1.2. By the same argument as in that proof, we claim that with probability
≥ 1− β

3
,

∥µ̂Z∥ ≤

√√√√d+ 2
√
d log( 3

β
) + 2 log( 3

β
)

d+ 1
.

When we indeed have UΣ̂Z ⪰ I (that is, our events from (1) occur), we have
∥∥∥Σ̂−1/2Σ̃1/2

∥∥∥
2
≤

√
U . Taking the union bound, with probability ≥ 1− β,

∥∥∥∥∥− 1√
Lγ

Σ̂−1/2Σ̃1/2µ̂Z

∥∥∥∥∥ ≤
√

U

Lγ

·

√√√√d+ 2
√
d log( 3

β
) + 2 log( 3

β
)

d+ 1
.

Now, we argue that the first term is also bounded. First, we apply Lemma 5.2.1 to get

(µ− µ̃)(µ− µ̃)⊤ ⪯ 8γ

1− γ
(Σ + Σ̃) ⪯ 8γ

1− γ

(
4

(1− γ)4
Σ̃ + Σ̃

)
⪯ 40γ

(1− γ)5
Σ̃.

Note that UΣ̂Z ⪰ I =⇒ Σ̃ ⪯ UΣ̂. Plugging this in above and rearranging gives

Σ̂−1/2(µ− µ̃)(µ− µ̃)⊤Σ̂−1/2 ⪯ U
40γ

(1− γ)5
I = Uγ

10γ

1− γ
I.

Thus, we have∥∥∥∥∥ 1√
Lγ

Σ̂−1/2(µ− µ̃)

∥∥∥∥∥ ≤ 1√
Lγ

·
√∥∥∥Σ̂−1/2(µ− µ̃)(µ− µ̃)⊤Σ̂−1/2

∥∥∥
2

≤

√
Uγ

Lγ

·
√

10γ

1− γ
.

Combining the two terms gives us

∥µY ∥ ≤

√
Uγ

Lγ

·

√ 10γ

1− γ
+

√√√√d+ 2
√

d log( 3
β
) + 2 log( 3

β
)

d+ 1

 ,

which completes the proof.
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Lemma 5.2.2, combined with guarantees of DPGEα,β,ε,R,K(·) from Fact 5.1.1, gives us the
following analogue to Theorem 5.1.6 for the public-private distribution shift case.

Theorem 5.2.3 (Distribution-shifted public-private Gaussian estimator using d+ 1 public
samples). Let α, β ∈ (0, 1], γ ∈ [0, 1), and ε > 0. There exists a public-private ε-DP
algorithm that takes d+ 1 public samples X̃ = (X̃1, ..., X̃d+1) drawn i.i.d. from an unknown
d-dimensional Gaussian N (µ̃, Σ̃), along with

n = O

(
d2 + log( 1

β
)

α2
+

d2 log( d
αβ(1−γ)

)

αε

)

private samples X = (X1, ..., Xn) drawn i.i.d. from an unknown d-dimensional Gaussian
N (µ,Σ), such that TV(N (µ,Σ),N (µ̃, Σ̃)) ≤ γ, and outputs µ∗ ∈ Rd and Σ∗ ∈ Rd×d such
that with probability ≥ 1− β, TV(N (µ∗,Σ∗),N (µ,Σ)) ≤ α.

Theorem 5.2.3 follows from the privacy and the utility guarantees of a modified version
of Algorithm 5, which uses the modified version of Algorithm 4 as outlined in Lemma 5.2.2
(outputting Lγ and Uγ instead of L and U). The proof is the same as that of Theorem
5.1.6.
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Chapter 6

The connection to sample
compression schemes

When privacy is not a concern, sample compression schemes for distribution classes
[ABDH+20] yield nearly tight sample complexity bounds for learning mixtures of Gaussians.
We adapt them to the public-private setting, finding that a key parameter of sample
compression schemes, the compression sample size, is within a constant factor of the number
of public samples necessary and sufficient to render a class privately learnable.

Leveraging the connection (approximately) recovers the sample-efficient public-private
learner for Gaussians discussed in the previous chapter, and also yields sample-efficient
learners for arbitrary k-mixtures of Gaussians. It also gives us results on the closure
properties of public-private learnability, as well as the agnostic and distribution-shifted
case.

6.1 Reductions between sample compression, public-

private learning, and list learning

In this section, we give sample-efficient reductions between sample compression, public
private learning, and an intermediate notion we refer to as list learning.

Sample compression schemes. If each member q of a class of distributions Q admits a
way to encode enough information about itself in a small number of samples from q and
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extra bits (with high probability over sampling from q), such that it can be approximately
reconstructed by a fixed and deterministic decoder, then Q can be learned.

The formal definition of sample compression schemes for distribution classes is given in
Definition 3.4.1.

Both robust and realizable compression schemes satisfy certain useful properties that
we use to develop public-private distribution learners in different settings. For example, the
existence of a realizable compression scheme is closed under taking mixtures or products of
a distribution class.

List learning. A list learner for a class of distributions Q takes a fixed number of samples
from any p ∈ Q, and outputs a finite list of distributions L such that with high probability,
L contains at least one distribution q satisfying TV(p, q) ≤ α.

The formal definition of list learning is given in Definition 3.4.2 and Definition 3.4.3.

List learning can be viewed a a relaxation of the normal learning setting, where we only
require the algorithm output a finite list (who’s length can depend on the desired error α
and failure probability β), rather than a single distribution.

Sample complexity equivalence. The following result relates sample compression,
public-private learning, and list learning.

Theorem 6.1.1 (Sample complexity equivalence between sample compression, public-pri-
vate learning, and list learning). Let Q ⊆ ∆(X ). Let m : (0, 1]2 → N be a sample complexity
function such that m(α, β) = poly( 1

α
, 1
β
).1 Then the following are equivalent:

1. Q is realizably compressible with mC(α, β) = O(m(α, β)) samples.

2. Q is public-privately learnable with mP (α, β, ϵ) = O(m(α, β)) public samples.

3. Q is list learnable with mL(α, β) = O(m(α, β)) samples.

The functions mC , mP , and mL are related to one another as: mP (α, β, ε) = mC(
α
6
, β
2
);

mL(α, β) = mP (
α
2
, β
10
, ε0) for any ε0 > 0; and mC(α, β) = mL(α, β).

Hence, if there exists a polynomial m : (0, 1]2 → N, such that mC(α, β) = O(m(α, β)),
then mC(α, β),mP (α, β),mL(α, β) are all within constant factors of each other.

1The reductions between the learners do not need this assumption, it is only used to state the sample
complexity equivalence.
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The proof of Theorem 6.1.1 follows from the reductions in Propositions 6.1.2, 6.1.3, and
6.1.4. The propositions also state the quantitative translations between: the compression
size τ(α, β) and bit size t(α, β), the number of private samples n(α, β, ε), and the list size
ℓ(α, β).

Sample compression implies public-private learning. We start by establishing that
the existence of a sample compression scheme for Q implies the existence of a public-private
learner for Q.
Proposition 6.1.2 (Sample compression =⇒ public-private learning). Let Q ⊆ ∆(X ).
Suppose Q admits (τ(α, β), t(α, β),mC(α, β)) realizable sample compression. Then Q is
public-privately learnable with

m(α, β, ε) = mC

(
α

6
,
β

2

)
public and

n(α, β, ε) = O

((
1

α2
+

1

αϵ

)
·
(
t

(
α

6
,
β

2

)
+ τ

(
α

6
,
β

2

)
· log

(
mC

(
α

6
,
β

2

))
+ log

(
1

β

)))
private samples.

Proof. The proof of Proposition 6.1.2 closely mirrors that of Theorem 4.5 from [ABDH+20].
We adapt their result to the public-private setting.

Fix α, β ∈ (0, 1] and ε > 0. Let τ = τ(α
6
, β
2
), t = t(α

6
, β
2
), and m = mC(

α
6
, β
2
). We draw

a public dataset X̃ of size m i.i.d. from p. Consider

S :=
{
(S′, b) : S′ ⊆ X̃ where |S′| = τ, and b ∈ {0, 1}t

}
.

Note that the encoding fp(X̃) ∈ S, so forming Q̂ = {g(S ′, b) : (S ′, b) ∈ S} means that with

probability ≥ 1− β
2
over the sampling of X̃, q = g(fp(X̃)) ∈ Q̂ has TV(q, p) ≤ α

6
.

Now, we run the ε-DP 3-agnostic learner from Fact A.3.3 on Q̂, targeting error α
2
and

failure probability β
2
, which is achieved as long as we have n private samples (given in the

statement of Proposition 6.1.2), which is logarithmic in |S|. With probability ≥ 1− β, we
approximately recover p with the compression scheme and the DP learner succeeds, and so
the output Q satisfies

TV(Q, p) ≤ 3 ·min
q∈Q̂

TV(p, q) +
α

2

≤ 3 · α
6
+

α

2
= α.
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Public-private learning implies list learning. The key step of the reduction of list
learning to public-private learning is showing that, upon receiving samples x̃, outputting a
finite cover of the set of distributions that a public-private learner would succeed on, given
public data x̃, is a successful strategy for list learning.

Proposition 6.1.3 (Public-private learning =⇒ list learning). Suppose Q is public-privately
learnable with mP (α, β, ε) public and n(α, β, ε) private samples. Then for all ε0 > 0, Q is
list learnable to list size

ℓ(α, β) =
10

9
exp

((
ε0 · n

(
α

2
,
β

10
, ε0

)))
with m(α, β) = mP (

α
2
, β
10
, ε0) samples.

Proof. Let ε0 > 0 be arbitrary. Fix any α, β ∈ (0, 1]. By assumption, Q admits a (α
2
, β
10
, ε0)-

public-private learner A, which uses m := mP (
α
2
, β
10
, ε0) public and n := n(α

2
, β
10
, ε0) private

samples. We use A to construct a (α, β, 10
9
exp(ε0n))-list learner that uses m samples.

Consider any x̃ = (x̃1, . . . , x̃m) ∈ Xm and the class

Qx̃ =

q ∈ Q : P
X∼qn

Q∼A(x̃,X)

{
TV(Q, q) ≤ α

2

}
≥ 9

10

 .

Note that by definition Qx̃ has a (α
2
, 1
10
)-learner under ε0-DP that takes n samples. Hence,

by Fact A.3.2 it follows that any α-packing of Qx̃ must have size ≤ 10
9
exp(ε0n) := ℓ. Let

Q̂x̃ be such a maximal α-packing, hence it is also an α-cover of Qx̃ with |Q̂x̃| ≤ ℓ. We

define our list learner L(x̃) = Q̂x̃.

It remains to show that for any p ∈ Q, with probability ≥ 1− β over the sampling of
X̃ ∼ pm, dist(p,L(X̃)) ≤ α. Suppose otherwise, that is, there exists p0 ∈ Q, such that,

P
X̃∼pm0

{
dist(p0,L(X̃)) > α

}
> β.

Since L(X̃) is a α-cover of QX̃ , we have that with probability > β over the sampling of

X̃ ∼ pm0 , p0 ̸∈ QX̃ . This contradicts the success guarantee of A:

P
X̃∼pm0 ,
X∼pn0 ,

Q∼A(X̃,X)

{
TV(Q, p0) >

α
2

}
≥ P

{
TV(Q, p0) >

α
2
|p0 ̸∈ QX̃

}
· P {p0 ̸∈ QX̃}

>
1

10
· β =

β

10
.
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The second inequality follows by the definition of QX̃ : conditioned on the event p0 ̸∈ QX̃ ,

the probability, over the private samples X̃ ∼ pn0 and the randomness of the algorithm A,
that the output Q of our algorithm satisfies TV(Q, p0) ≤ α

2
is < 9

10
.

List learning implies sample compression. We state the final component of Theorem
6.1.1: the existence of a list learner for a classQ implies the existence of a sample compression
scheme for Q. This follows from the definitions. Given samples x̃, the encoder passes along
the entire x̃, and, with knowledge of the target distribution q, the index i of the distribution
in L(x̃) close to q. The decoder receives this information and outputs L(x̃)i.

Proposition 6.1.4 (List learning =⇒ sample compression). Suppose Q is list learnable to
list size ℓ(α, β) with mL(α, β) samples. Then Q admits

(mL(α, β), log2(ℓ(α, β)),mL(α, β))

realizable sample compression.

Proof. Fix any α, β ∈ (0, 1]. Let m = mL(α, β) and ℓ = ℓ(α, β). By assumption, Q admits
an (α, β, ℓ)-list learner L : Xm → {L ⊆ ∆(X ) : |L| ≤ ℓ} that takes m samples. Letting
τ = m and t = log2(ℓ), we define the compression scheme as follows.

• Encoder: for any q ∈ Q, the encoder fq : Xm → X τ × {0, 1}t produces the following,
given an input x̃ ∈ Xm. It first runs the list learner on x̃, obtaining L(x̃). Then, it
finds the smallest index i with TV(q,L(x̃)i) = dist(q,L(x̃)), where L(x̃)i denotes the
i-th element of the the list L(x̃). The output of the list learner is (x̃, i). Note that
x̃ ∈ X τ and that i can be represented with log2(ℓ) = t bits.

• Decoder: the fixed decoder g : X τ × {0, 1}t → ∆(X ) takes x̃ and i, runs the list
learner L on x̃, and produces L(x̃)i.

By the guarantee of the list learner, we indeed have for any q ∈ Q, with probability
≥ 1− β over the sampling of X̃ ∼ qm, TV(q, g(fq(S))) ≤ α.

6.2 Applications

Here, we state a few applications of the connections we determined via Theorem 6.1.1.
First, we recover and extend results on the public-private learnability of high-dimensional
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Gaussians and mixtures of Gaussians, using known results on sample compression schemes.
Second, we describe the closure properties of public-private learnability: if a class Q is
public-privately learnable, the class of mixtures of Q and the class of products of Q are
also public-privately learnable. Finally, we use robust compression schemes to give learners
for the agnostic and distribution-shifted case.

6.2.1 Gaussians and mixtures of Gaussians

There are known realizable sample compression schemes for the class of Gaussians in Rd, as
well as for the class of all k-mixtures of Gaussians in Rd [ABDH+20]. Hence, these classes
are public-privately learnable.

Fact 6.2.1 (Robust compression scheme for Gaussians [ABDH+20, Lemma 5.3]). The class
of Gaussians over Rd admits(

O(d), O

(
d2 log

(
d

α

))
, O

(
d log

(
1

β

)))
2
3
-robust sample compression.

Fact 6.2.2 (Realizable compression scheme for mixtures of Gaussians [ABDH+20, Lemma 4.8
applied to Lemma 5.3]). The class of k-mixtures of Gaussians over Rd admits(

O(kd), O

(
kd2 log

(
d

α

)
+ log2

(
k

α

))
, O

(
kd log( k

β
) log( 1

β
)

α

))
realizable sample compression.

We get a public-private learner for Gaussians over Rd directly as a result of Theorem 6.1.1
and Fact 6.2.1. This recovers the upper-bound on public-private learning of high-dimensional
Gaussians from Theorem 5.1.6 up to a factor of O(log( 1

β
)) in m, and improves the private

sample complexity by a polylog( 1
β
) factor.

Corollary 6.2.3 (Public-privately learning Gaussians, via compression). Let d ≥ 1. The
class of Gaussians over Rd is public-privately learnable with m(α, β, ε) public samples and
n(α, β, ε) private samples, where

m(α, β, ε) = O

(
d log

(
1

β

))
and

n(α, β, ε) = O

(
d2 log( d

α
) + log( 1

β
)

α2
+

d2 log( d
α
) + log( 1

β
)

αε

)
.
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As a result of combining Theorem 6.1.1 and Fact 6.2.2, we obtain public-private
learnability for the class of k-mixtures of Gaussians in Rd.

Corollary 6.2.4 (Public-privately learning mixtures of Gaussians). Let d, k ≥ 1. The class
of all k-mixtures of Gaussians over Rd is public-privately learnable with m(α, β, ε) public
samples and n(α, β, ε) private samples, where

m(α, β, ε) = O

(
kd log( k

β
) log( 1

β
)

α

)
and

n(α, β, ε) = O

((
1

α2
+

1

εα

)
·

(
kd2 log

(
d

α

)
+ kd log

(
kd log( k

β
)

α

)
+ log

(
1

β

)))
.

6.2.2 Closure properties of public-private learnability

If Q has a public-private learner, we have public-private learners for the class of k-mixtures
Q⊕k ⊆ ∆(X ) and the class of k-products Q⊗k ⊆ ∆(X k).

Mixture distributions. We first mention a fact from [ABDH+20], which says that if a
compression scheme exists for a class of distributions Q, then there exists a compression
scheme for the class of k-mixtures of Q.

Fact 6.2.5 (Compression for mixture distributions [ABDH+20, Lemma 4.8]). If a class
of distributions Q admits (τ(α, β), t(α, β),m(α, β)) realizable sample compression, then
for any k ≥ 1, the class of k-mixtures of Q admits (τk(α, β), tk(α, β),mk(α, β)) realizable
sample compression, where τk, tk,mk : (0, 1]

2 → N are as follows:

τk(α, β) = kτ
(α
3
, β
)
,

tk(α, β) = kt
(α
3
, β
)
+ log2

(
3k

α

)
, and

mk(α, β) =
48k log(6k

β
)

α
·m
(α
3
, β
)
.

Next, we state a corollary of Propositions 6.1.3 and 6.1.4, which describes the existence
of a compression scheme, given the existence of a public-private learner.
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Corollary 6.2.6 (Public-private learning =⇒ sample compression). Let Q ⊆ ∆(X ) be
a class of distributions. Suppose Q is public-privately learnable with mP (α, β, ε) public
samples and n(α, β, ε) private samples. Then for any ε0 > 0, Q admits

(τ(α, β), t(α, β),m(α, β)) =

(
mP

(
α

2
,
β

10
, ε0

)
,
log(10

9
) + ε0 · n(α2 ,

β
10
, ε0)

log(2)
,mP

(
α

2
,
β

10
, ε0

))
realizable sample compression.

Proof. Fix ε0 > 0. From Proposition 6.1.3, if Q is public-privately learnable, then it is list
learnable to list size ℓ(α, β) with mL(α, β) samples, where

ℓ(α, β) =
10

9
exp

(
ε0 · n

(
α

2
,
β

10
, ε0

))
and mL(α, β) = mP

(
α

2
,
β

10
, ε0

)
.

Proposition 6.1.4 implies Q admits (τ(α, β), t(α, β),mC(α, β)) sample compression, where

τ(α, β) = mL(α, β) = mP

(
α

2
,
β

10
, ε0

)
,

t(α, β) = log2(ℓ(α, β)) =
log(10

9
) + ε0 · n(α2 ,

β
10
, ε0)

log(2)
, and

mC(α, β) = mL(α, β) = mP

(
α

2
,
β

10
, ε0

)
.

Applying in sequence Corollary 6.2.6 (public-private learning =⇒ compression),
Fact 6.2.5 (compression =⇒ compression of mixtures), and Proposition 6.1.2 (compres-
sion =⇒ public-private learning), we have the following result about the public-private
learnability of mixture distributions.

Theorem 6.2.7 (Public-private learning mixtures). Suppose Q ⊆ ∆(X ) is public-privately
learnable with m(α, β, ε) public samples and n(α, β, ε) private samples. Then for any k ≥ 1,
Q⊕k, the class of k-mixtures of Q, is public-privately learnable with mk(α, β, ε) public
samples and nk(α, β, ε) private samples, where

mk(α, β, ε) = O

(
k log( k

β
)

α
·m
(

α

36
,
β

20
, ε0

))
and

nk(α, β, ε) = O

((
1

α2
+

1

εα

)
·
(
ε0k · n

(
α

36
,
β

20
, ε0

)
+

k log

(
k log( k

β
)

α
·m
(

α

36
,
β

20
, ε0

))
·m
(

α

36
,
β

20
, ε0

)
+ log

(
1

β

)))
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for any choice of ε0 > 0.

Example 6.2.8. We give an example of an application of Theorem 6.2.7. Consider the class
of Gaussians over Rd, for which there exists a public-private learner that uses m = O(d)
public samples and n = O( d

2

α2 +
d2

εα
) ·polylog(d, 1

α
, 1
β
) private samples (Theorem 5.1.6). Then

Theorem 6.2.7 implies that there exists a public-private learner for the class of k-mixtures
of Gaussians that uses

mk(α, β, ε) = O

(
kd log( k

β
)

α

)
public samples and

nk(α, β, ε) = O

((
1

α2
+

1

εα

)
·
(
ε0k

(
d2

α2
+

d2

ε0α

)
+ kd

))
· polylog

(
d, k,

1

α
,
1

β

)
private samples for any ε0 > 0.

With the choice of ε0 = α, we get a private sample complexity of nk(α, β, ε) = O(kd
2

α3 +
kd2

α2ε
) · polylog(d, k, 1

α
, 1
β
). Notably, this private sample complexity, obtained by specializing

the general result of Theorem 6.2.7, suffers an Õ( 1
α
) factor loss compared to our learner for

mixtures of Gaussians from Corollary 6.2.4.

Product distributions. We start by mentioning a fact from [ABDH+20], which says that
if a compression scheme exists for a class of distributions Q, then there exists a compression
scheme for the class of k-products of Q.

Fact 6.2.9 (Compression for product distributions [ABDH+20, Lemma 4.6]). If a class
of distributions Q admits (τ(α, β), t(α, β),m(α, β)) r-robust sample compression, then for
any k ≥ 1, the class of k-products of Q admits (τk(α, β), tk(α, β),mk(α, β)) r-robust sample
compression, where τk, tk,mk : (0, 1]

2 → N are as follows:

τk(α, β) = kτ
(α
k
, β
)
,

tk(α, β) = kt
(α
k
, β
)
, and

mk(α, β) = log3

(
3k

β

)
·m
(α
k
, β
)
.

Applying in sequence Corollary 6.2.6, Fact 6.2.9, and Proposition 6.1.2, we have the
following result about the public-private learnability of product distributions.
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Theorem 6.2.10 (Public-privately learning products). Suppose Q ⊆ ∆(X ) is public-
privately learnable with m(α, β, ε) public samples and n(α, β, ε) private samples. Then for
any k ≥ 1, Q⊗k, the class of k-products of Q over X k, is public-privately learnable with
mk(α, β, ε) public samples and nk(α, β, ε) private samples, where

mk(α, β, ε) = O

(
log

(
k

β

)
·m
(

α

12k
,
β

20
, ε0

))
,

nk(α, β, ε) = O

((
1

α2
+

1

εα

)
·
(
ε0k · n

(
α

12k
,
β

20
, ε0

)
+

k log

(
log

(
k

β

)
·m
(

α

12k
,
β

20
, ε0

))
·m
(

α

12k
,
β

20
, ε0

)
+ log

(
1

β

)))
for any choice of ε0 > 0.

Example 6.2.11. For the class of Gaussians over R, there exists a public-private learner
that requires m = O(1) public samples and n = O( 1

α2 +
1
εα
) · polylog( 1

α
, 1
β
) private samples

(Theorem 5.1.6). Then Theorem 6.2.10 implies that there exists a public-private learner for
the class of k-products of Gaussians that requires

mk(α, β, ε) = O

(
log

(
k

β

))
public samples and

nk(α, β, ε) = O

((
1

α2
+

1

εα

)
·
(
ε0k

(
1

α2
+

1

ε0α

)
+ k

))
· polylog

(
k,

1

α
,
1

β

)
private samples, for any choice of ε0 > 0. With the choice of ε0 = α, we get a private
sample complexity of O( k

α3 +
k

εα2 ) · polylog(k, 1
α
, 1
β
).

Again note that we can do better polynomially in the private sample complexity
than this generic approach. Starting directly from the compression scheme for Gaussians
(Fact 6.2.1) and setting d = 1, then applying Fact 6.2.9 to get a compression scheme for
k-products of Gaussians, and finally Proposition 6.1.2, we obtain a public-private learner
with a public sample complexity of O(log( k

β
) log( 1

β
)) and a private sample complexity of

Õ(k log(1/β)
α2 + k log(1/β)

αε
).

6.2.3 The agnostic and distribution-shifted case

Robust sample compression schemes yield public-private learners that make fewer assump-
tions about their input.
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Namely, the learners we have considered up until now have been for the realizable case
(all data is generated from a member of Q) and, outside of Section 5.2.3, have assumed
that the public and private data distributions are the same.

We relax these assumptions, and give an agnostic and distribution shifted public-private
learner (Definition 3.4.11) for Gaussians.

Theorem 6.2.12 (Robust compression scheme =⇒ agnostic and distribution-shifted
public-private learning). Let Q ⊆ ∆(X ) and r > 0. If Q admits (τ(α, β), t(α, β),mC(α, β))
r-robust compression, then for every α, β ∈ (0, 1] and ε > 0, there exists a r

2
-shifted

2
r
-agnostic (α, β, ε)-public-private learner for Q that uses

m(α, β, ε) = mC

(
α

12
,
β

2

)
public samples and

n(α, β, ε) = O
((

1
α2 +

1
αϵ

)
·
(
t
(

α
12
, β
2

)
+ τ

(
α
12
, β
2

)
· log

(
mC

(
α
12
, β
2

))
+ log

(
1
β

)))
private samples.

Proof. The proof again mirrors the proof of Theorem 4.5 in [ABDH+20]. The key observation
(and difference from the proof of Proposition 6.1.2) is the following: for the unknown
distribution p ∈ ∆(X ), consider dist(p,Q). If dist(p,Q) ≥ r

2
, the output Q of any algorithm

satisfies TV(p,Q) ≤ 1 ≤ 2
r
·dist(p,Q). Hence, we can assume dist(p,Q) < r

2
, and let q∗ ∈ Q

with TV(p, q∗) < min
{

r
2
, dist(p,Q) + α

12

}
as guaranteed by such.

By triangle inequality, TV(p̃, q∗) < r. This implies that when we generate hypotheses

Q̂ to choose from using the r-robust sample compression with samples from p̃, with high
probability there will be some q ∈ Q̂ with TV(q, q∗) ≤ α

12
. We have

TV(p, q) ≤ TV(p, q∗) + TV(q∗, q) ≤ dist(p,Q) + α

12
+

α

12
= dist(p,Q) + α

6
.

This gives us that with probability ≥ 1 − β
2
, dist(p, Q̂) ≤ dist(p,Q) + α

6
. Applying the

3-agnostic ε-DP learner for finite classes from [AAAK21] (Fact A.3.3) on Q̂ targeting error
α
2
and failure probability β

2
, and then applying the union bound gives us the result. It can

be verified that the above setting of n suffices.

Theorem 6.2.12 gives us an agnostic and a distribution-shifted learner for Gaussians
over Rd, as stated in the following corollary.
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Theorem 6.2.13 (Agnostic and distribution-shifted public-private learner for Gaussians).
Let d ≥ 1. For any α, β ∈ (0, 1] and ε > 0, there exists 1

3
-shifted 3-agnostic public-private

learner for the class of Gaussians in Rd that uses m public samples and n private samples,
where

m = O

(
d log

(
1

β

))
and

n = O

d2 log
(
d
α

)
+ log

(
1
β

)
α2

+
d2 log

(
d
α

)
+ log

(
1
β

)
αε

 .
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Chapter 7

d public samples are necessary to
privately learn d-dimensional
Gaussians

In this chapter we prove lower bounds on the number of public samples required for
public-privately learning Gaussians in Rd.

We know that Gaussians in Rd are privately learnable with d+ 1 public samples. We
show that this within 1 of the optimal: the class of Gaussians in Rd is not public-privately
learnable with d− 1 public samples.

Theorem 7.0.1. Let Q be the class of all Gaussians in Rd. Q is not public-private learnable
with m(α, β, ε) = d− 1 public samples. That is, there exists αd, βd > 0 such that for any
n ∈ N, Q does not admit a (αd, βd, 1)-public-private learner using d− 1 public and n private
samples.

Our result leverages the connection between public-private learning and list learning.
The existence of such a public-private learner described above would imply the existence of
a list learner for d-dimensional Gaussians taking d− 1 samples as input. We show, using a
“no-free-lunch”-style argument (in the sense of Theorem 5.1 from [SSBD14]) that such a list
learner cannot exist. The proof of Theorem 7.0.1 goes through the following steps.

1. We show that a public-private learner for the problem would imply a list learner for
the problem, via Proposition 6.1.3;
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2. We establish a technical lemma that relates the PAC guarantee of a list learner with
its average performance over a set of problem instances, via a “no-free-lunch”-style
argument (Lemma 7.0.2);

3. For every d ≥ 2, we find a sequence of hard subclasses of Gaussians over Rd, which
satisfy the conditions of Lemma 7.0.2. This forms the set of hard problem instances
that imply a lower bound on the error of any list learner for the class which does not
receive enough samples;

4. Since list learning to arbitrary error with few samples is impossible, public-private
learning to arbitrary error with few public samples must also be impossible.

Lemma 7.0.2. Let Q ⊆ ∆(X ) and m ∈ N. For a subclass C ⊆ Q, denote by U(C) the
uniform distribution over C. Suppose there exists a sequence of distribution classes (Qk)

∞
k=1,

with each Qk ⊆ Q, and a set B ⊆ Xm such that following holds:

1. There exists η ∈ (0, 1] and kη ∈ N with

P
Q∼U(Qk)
X∼Qm

{X ∈ B} ≥ η

for all k ≥ kη.

2. There exist c > 0 and α ∈ (0, 1] such that, defining (uk)
∞
k=1, (rk)

∞
k=1, and (sk)

∞
k=1 as

uk := sup
x∈B
q∈Qk

qm(x),

rk := sup
p∈Qk

P
Q∼U(Qk)

{TV(p,Q) ≤ 2α},

sk := inf
x∈B

P
Q∼U(Qk)

{Qm(x) ≥ c · uk},

we have that

lim
k→∞

rk
sk

= 0.

Then for any ℓ ∈ N, there does not exist any (αη
4
, αη

4
, ℓ)-list learner for Q that uses m

samples.

The above result is a technical lemma that gives a set of sufficient conditions which
rule out the list learnability of a class, to a particular accuracy and failure probability
requirement, given a specified number of samples.
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Proof. We provide a proof by contradiction. Suppose for some ℓ ∈ N, we have an (αη
4
, αη

4
, ℓ)-

list learner for Q using m samples, denoted by L : Xm → {L ⊆ ∆(X ) : |L| ≤ ℓ}. Then for
all k ∈ N, we have that

E
Q∼U(Qk)
X∼Qm

dist(Q,L(X)) ≤ (1− αη
4
) · αη

4
+ αη

4
· 1 ≤ αη

2
. (7.1)

Now, since limk→∞
rk
sk

= 0, there exists k0 ≥ kη ∈ N, such that

rk0 · uk0 · ℓ
sk0 · cuk0

≤ 1

11
, (7.2)

and

P
Q∼U(Qk0

)
X∼Qm

{X ∈ B} ≥ η. (7.3)

Fix any x ∈ B, and let R = {q ∈ Qk0 : dist(q,L(x)) ≤ α} and S = {q ∈ Qk0 : qm(x) ≥
cuk0} (note that both R and S depend on x).

For i ∈ [ℓ], further let Ri = {q ∈ Qk0 : TV(q,L(x)i) ≤ α}, so that R = ∪ℓi=1Ri.

Now, fix i ∈ [ℓ]. Assuming that Ri ̸= ∅, consider any p ∈ Ri. For any q ∈ Ri, we have
TV(p, q) ≤ 2α. Hence, Ri ⊆ {q ∈ Qk0 : TV(p, q) ≤ 2α}. Regardless of whether Ri is empty,

P
Q∼U(Qk0

)
{Q ∈ Ri} ≤ sup

p∈Qk0

P
Q∼U(Qk0

)
{TV(p,Q) ≤ 2α} = rk0 .

Moreover, we can conclude that

P
Q∼U(Qk0

)
{Q ∈ R} ≤

ℓ∑
i=1

P
Q∼U(Qk0

)
{Q ∈ Ri} ≤ rk0 · ℓ. (7.4)

Observe that this implies, since uk0 ≥ qm(x),∫
R

qm(x)fQ(q)dq ≤ uk0

∫
R

fQ(q)dq = uk0 P
Q∼U(Qk0

)
{Q ∈ R} ≤ uk0 · rk0 · ℓ (7.5)
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an inequality we will use momentarily. We can now write

E
Q∼U(Qk0

)
X∼Qm

dist(Q,L(X)) |X = x =

∫
Qk0

fQ|X(q | x) · dist(q,L(x))dq

≥
∫
S\R

fQ|X(q | x) · dist(q,L(x))dq

≥ α

∫
S\R

fQ|X(q | x)dq

≥ α

(∫
S

fQ|X(q | x)dq −
∫
R

fQ|X(q | x)dq
)

= α

(∫
S

qm(x)fQ(q)

fX(x)
dq −

∫
R

qm(x)fQ(q)

fX(x)
dq

)
= α

1

fX(x)

(∫
S

qm(x)fQ(q)dq −
∫
R

qm(x)fQ(q)dq

)
≥ α

1

fX(x)

(
cuk0

∫
S

fQ(q)dq − uk0 · ℓ · rk0
)

(By definition of S and Equation 7.5)

= α
1

fX(x)

(
cuk0 P

Q∼U(Qk0
)
{Q ∈ S} − uk0 · ℓ · rk0

)
.

Plugging Equation 7.4 in, along with the definition of sk0 , we have

E
Q∼U(Qk0

)
X∼Qm

dist(Q,L(X)) |X = x ≥ α
1

fX(x)
(cuk0 · sk0 − uk0 · ℓ · rk0)

≥ α
1

fX(x)
(10 · uk0 · ℓ · rk0) (k0 from Equation 7.2)

≥ 10α

∫
R

qm(x)fQ(q)

fX(x)
dq (by Equation 7.5)

= 10α · P
Q∼U(Qk0

)
X∼Qm

{Q ∈ R |X = x}.
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Integrating over all x ∈ B and using Inequality 7.3,

E
Q∼U(Qk0

)
X∼Qm

dist(Q,L(X)) ≥ P
Q∼U(Qk0

)
X∼Qm

{X ∈ B} · E
Q∼U(Qk0

)
X∼Qm

dist(Q,L(X))|X ∈ B

≥ η · E
Q∼U(Qk0

)
X∼Qm

dist(Q,L(X))|X ∈ B

≥ η · 10α · P
Q∼U(Qk0

)
X∼Qm

{dist(Q,L(X)) ≤ α |X ∈ B}.

If P {dist(Q,L(X)) ≤ α |X ∈ B} ≥ 1
10
, then E dist(Q,L(X)) ≥ αη, contradicting Equa-

tion 7.1. Otherwise,

E dist(Q,L(X)) ≥ η · E dist(Q,L(X)) |X ∈ B

≥ η · α · P {dist(Q,L(X)) > α |X ∈ B}
≥ η · (α · (1− 1

10
))

also contradicting Equation 7.1.

Proof of Theorem 7.0.1. To prove Theorem 7.0.1, it suffices to find, for every d ≥ 2, a
sequence of subclasses (Qk)

∞
k=1 and a set B ∈ (Rd)d−1 that indeed satisfy the conditions of

Lemma 7.0.2. In what follows, we fix an arbitrary d ≥ 2.

The construction of the sequence of hard subclasses. Let ed = [0, 0, . . . , 1]⊤ ∈ Rd.
We define the following sets:

T =

{[
t
0

]
∈ Rd : t ∈ Rd−1 with ∥t∥2 ≤

1

2

}
,

C =

{[
t
λ

]
∈ Rd : t ∈ Rd−1 with ∥t∥2 ≤

1

2
and λ ∈ [1, 2] ⊆ R

}
.

That is, T is a 1
2
-disk (a disk with radius 1

2
) in Rd−1 embedded onto the (d− 1)-dimensional

hyperplane in Rd spanning the first (d− 1) dimensions (axes), centered at the origin. C
is a cylinder of unit length and radius 1

2
placed unit distance away from T in the positive

ed-direction.

Let Sd−1 = {x ∈ Rd : ∥x∥2 = 1} be the unit-sphere, centered at the origin, in Rd, and
let

N =

{
u ∈ Sd−1 : |u · ed| ≤

√
3

2

}
.
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That is, N is the set of vectors u on the unit hypersphere with angle ≥ π
6
from ed. For

u ∈ N , define the “rotation” matrix

Ru =

 | | |
u v2 . . . vd
| | |

 ∈ Rd×d

where {v2, . . . , vd} is any orthonormal basis for {u}⊥ (where {u}⊥ denotes the subspace
orthogonal to the subspace spanned by the set of vectors {u}).1

Now, for σ > 0, t ∈ T , and u ∈ N , define the Gaussian

G(σ, t, u) = N

t, Ru


σ2

1 O

O
. . .

1

R⊤
u

 ∈ ∆(Rd).

For all k ≥ 1, let

Qk =

{
G

(
1

k
, t, u

)
: t ∈ T, u ∈ N

}
.

That is, each Qk is a class of “flat” (i.e., near (d − 1)-dimensional) Gaussians in Rd,
with σ2 = 1

k2
variance on a single thin direction u and unit variance in all other directions.

Their mean vectors come from a point on the hyperplanar disk T (which we recall is a
(d− 1)-dimensional disk orthogonal to ed), and the thin direction u comes from N (which is
Sd−1 excluding points that form angle < π

6
with ed). As k →∞, the Gaussians get flatter.

Lower bounding the weight of B. We start with the following claim, which shows the
probability that d− 1 samples drawn the uniform mixture of Qd−1

k all fall into the cylinder
C can be uniformly lower bounded by an absolute constant, independent of k.

Claim 7.0.3. Let B be the set of all possible vectors of d− 1 points in the cylinder C, i..e,
B = Cd−1 ∈ (Rd)d−1. There exists η > 0 such that for k ≥ 10,

P
Q∼U(Qk)

X∼Qd−1

{X ∈ B} ≥ η.

1Technically, Ru is an equivalence class of matrices since we do not specify which orthonormal basis of
{u}⊥. However, as it turns out, the choice of the orthonormal basis of {u}⊥ does not matter since they all
result in the same Gaussian densities in the proceeding definition of G(σ, t, u).
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Proof of Claim 7.0.3. Consider the inscribed cylinder C ′ ⊆ C

C ′ =

{[
t
λ

]
∈ Rd : t ∈ Rd−1 with ∥t∥2 ≤

1

3
and λ ∈

[
4

3
,
5

3

]
⊆ R

}
.

Also, consider T ′ ⊆ T and N ′ ⊆ N :

T ′ =

{[
t
0

]
∈ Rd : t ∈ Rd−1 with ∥t∥2 ≤

1

4

}
,

N ′ =

{
u ∈ Sd−1 : |u · ed| ≤

1

36

}
.

Now, fix u ∈ N ′ and t ∈ T ′. Define the plane going through t with normal vector u as,

P (u, t) =
{
t+ x : x ∈ Rd with x · u = 0

}
.

First, we show P (u, t) ∩ C ′ contains a (d− 1)-dimensional region. Consider,

y =

[
t
3
2

]
.

The projection onto P (u, t) of y is given by,

y′ = (y − t)− ((y − t) · u)u+ t =

[
t
3
2

]
− cu,

where |c| = |(y− t) ·u| ≤ 3
2
· 1
36

= 1
24
. Since ∥t∥2 ≤ 1

4
, the norm of the first (d−1) dimensions

of y′ is ≤ 1
4
+ 1

24
≤ 1

3
and y′d ∈ [3

2
− 1

24
, 3
2
+ 1

24
], and so y′ ∈ C ′. Moreover, adding any z with

z ·u = 0 and ∥z∥2 ≤ 1
24

results in y′ + z with the norm of the first d− 1 dimensions being at
most 1

4
+ 1

24
+ 1

24
≤ 1

3
and (y′ + z)d ∈ [3

2
− 1

12
, 3
2
+ 1

12
]. Hence, y′ + z ∈ C ′. This shows that

P (u, t)∩C ′ contains a (d− 1)-dimensional subspace, since it contains a (d− 1)-dimensional
disk of radius 1

24
.

Next, let

M =

{
p+ su : p ∈ C ′ ∩ P (u, t), s ∈

[
−1

6
,
1

6

]
⊆ R

}
.

That is, M is a rectangular “extrusion” of C ′∩P (u, t) along both its normal vectors. Indeed,
we have M ⊆ C, since adding a vector of length ≤ 1

6
cannot take a point in C ′ outside of

C. We also have that M is a d-dimensional region, so

P
X∼G(1/10,t,u)

{X ∈ C} ≥ P
X∼G(1/10,t,u)

{X ∈M} > 0.
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Note that for σ ≤ 1
10
, we have

P
X∼G(σ,t,u)

{X ∈M} ≥ P
X∼G(1/10,t,u)

{X ∈M}.

This is because any x ∈ M can be written as t + x + cu, where x is such that x · u = 0,
and |c| ≤ 1

6
. Plugging in this decomposition of x into the densities of G(1/10, u, t) and

G(σ, u, t), and simplifying yields the above.

To conclude, for k ≥ 10, we have

P
Q∼U(Qk)

X∼Qd−1

{
X ∈ Cd−1

}
= P

t∼U(T )
u∼U(N)

X∼G(1/k,t,u)d−1

{
X ∈ Cd−1

}

= c

∫
T

∫
N

P
X∼G(1/k,t,u)d−1

{
X ∈ Cd−1

}
du dt

≥ c

∫
T ′

∫
N ′

P
X∼G(1/k,t,u)d−1

{
X ∈ Cd−1

}
du dt

= c

∫
T ′

∫
N ′

(
P

X∼G(1/k,t,u)
{X ∈ C}

)d−1

du dt

≥ c

∫
T ′

∫
N ′

(
P

X∼G(1/k,t,u)
{X ∈M}

)d−1

du dt

≥ c

∫
T ′

∫
N ′

(
P

X∼G(1/10,t,u)
{X ∈M}

)d−1

du dt

=: η > 0, (7.6)

where c = fT (t) · fN (u) > 0 is the uniform density over T ×N . Note that the final integral
is non-zero since T ′ ×N ′ has non-zero measure in T ×N and that P

X∼G(1/10,t,u)
{X ∈M} is

indeed non-zero for all t ∈ T ′, u ∈ N ′.

Upper bounding rk, the weight of α-TV balls. We prove the following.

Claim 7.0.4. For k ≥ 1, let

rk := sup
p∈Qk

P
Q∼U(Qk)

{
TV(p,Q) ≤ 1

400

}
.

Then we have,

rk = O

(
1

kd

)
→ 0 as k →∞.
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We use the following facts regarding total variation distance between 1-dimensional
Gaussians, and the surface area of hyperspherical caps.

Fact 7.0.5 (TV distance between 1-dimensional Gaussians [DMR18, Theorem 1.3]). Let
N (µ1, σ

2
1) and N (µ2, σ

2
2) be Gaussians over R. Then

1

200
·min

{
1,max

{
|σ2

1 − σ2
2|

σ2
1

,
40|µ1 − µ2|

σ1

}}
≤ TV

(
N
(
µ1, σ

2
1

)
,N
(
µ2, σ

2
2

))
.

Fact 7.0.6 (Surface area of hyperspherical caps [Li10]). For u ∈ Sd−1 and θ ∈ [0, π
2
], define

C(u, θ) =
{
x ∈ Sd−1 : ∠(x, u) ≤ θ

}
where for u, v ∈ Sd−1, ∠(u, v) := cos−1(u · v). We have

Area(C(u, θ)) =
2π(d−1)/2

Γ(d−1
2
)
·
∫ θ

0

sind−2(x)dx.

Note that

Area(Sd−1) =
2πd/2

Γ(d
2
)
.

Proof of Claim 7.0.4. Let σ > 0. Let t1, t2 ∈ T and u1, u2,∈ N . We will compare the total
variation distance of the Gaussians defined by these parameters. Let

Dσ =


σ2

1 O

O
. . .

1

 .

By Fact A.4.1, taking f : Rd → R to be f(x) = u⊤
1 (x− t1),

TV(G(σ, t1, u2), G(σ, t2, u2)) ≥ TV(N (u⊤
1 (t1 − t1), u

⊤
1 Ru1DσR

⊤
u1
u1),N (u⊤

1 (t2 − t1), u
⊤
1 Ru2DσR

⊤
u2
u1))

= TV(N (0, σ2),N (u1 ·∆t, σ2 cos2(∠(u1, u2)) + sin2(∠(u1, u2)))),

where ∆t = t2− t1. For the last line above, we take Ru2 = [u2, v2, . . . , vd], where {v2, . . . , vd}
is an orthonormal basis for {u2}⊥. Then the equality in the last line for the variance of the
second Gaussian uses,

u⊤
1 Ru2DσR

⊤
u2
u1 = σ2(u1 · u2)

2 + (v2 · u2)
2 + · · ·+ (vd · u2)

2

= σ2(u1 · u2)
2 + (1− (u1 · u2)

2)

= σ2 cos2(∠(u1, u2)) + (1− cos2(∠(u1, u2)))

= σ2 cos2(∠(u1, u2)) + sin2(∠(u1, u2)),
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where Ru2 being unitary implies that (u1 · u2)
2 + (u1 · v2)2 + · · ·+ (u2 · vd)2 = 1, yielding

the second equality in the above.

We show that if ∠(u1, u2) ∈ [
√
2π
2
σ, π −

√
2π
2
σ], TV(G(σ, t1, u1), G(σ, t2, u2)) ≥ 1

200
. First,

we consider the case where ∠(u1, u2) ∈ [
√
2π
2
σ, π

2
]. Using that on [0, π

2
], we have sin(x) ≥ 2

π
x

and cos(x) ≥ 0, we get

σ2 cos2(∠(u1, u2)) + sin2(∠(u1, u2)) ≥
4

π2
∠(u1, u2)

2 ≥ 2σ2. (7.7)

Therefore,

σ2
1 − σ2

2

σ2
1

≤ σ2 − 2σ2

σ2
≤ −1,

and by Fact 7.0.5, we can conclude that TV(G(σ, t1, u1), G(σ, t2, u2)) ≥ 1
200

. Now, consider

the case where ∠(u1, u2) ∈ [π
2
, π −

√
2π
2
]. Note that in this case, there exists u′

2 = −u2 ∈
[
√
2π
2
, π
2
] with G(σ, t2, u2) = G(σ, t2, u

′
2), bringing us back to the previous case.

Next, note that since ∥u1∥2 = 1 and |u(d)
1 | = |u1 · ed| ≤

√
3
2

(by the definition of N),

letting r = [u
(1)
1 , . . . , u

(d−1)
1 ]⊤ ∈ Rd−1, we have ∥r∥2 ≥ 1

2
. Let r̂ = r

∥r∥2 . We have that if

[∆t1, . . . ,∆td−1]
⊤ · r̂ ≥ 1

20
σ, then,

u1 ·∆t = r · [∆t1, . . . ,∆td−1]
⊤

≥ r

2∥r∥2
· [∆t1, . . . ,∆td−1]

⊤

≥ 1
2
r̂ · [∆t1, . . . ,∆td−1]

⊤

≥ 1

40
σ.

This implies that

40(µ1 − µ2)

σ1

=
40(−u1 ·∆t)

σ
≤ −1,

and by Fact 7.0.5, we can conclude TV(G(σ, t1, u1), G(σ, t2, u2)) ≥ 1
200

. Therefore, for any
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u ∈ N , t ∈ T ,

P
Q∼U(Qk)

{
TV(G( 1

k
, t, u), Q) ≤ 1

400

}
= P

t′∼U(T )
u′∼U(N)

{
TV(G( 1

k
, t, u), G( 1

k
, t′, u′)) ≤ 1

400

}

≤ P
t′∼U(T )
u′∼U(N)

{
TV(G( 1

k
, t, u), G( 1

k
, t′, u′)) <

1

200

}
≤ P

t′∼U(T )

{
[∆t1, . . . ,∆td−1]

⊤ · r̂ < 1
20k

}
·

P
u′∼U(N)

{
(∠(u, u′) ∈ [0,

√
2π
2k

) ∪ (π −
√
2π
2k

, π])
}
.

For the first term, note that the event

{
[∆t1, . . . ,∆td−1] · r̂ < 1

20k

}
⊆
{
t′ ∈

{
t+

[
x
0

]
+ λ

[
r̂
0

]
: ∥x∥2 ≤ 1, x · r̂ = 0, λ ≤ 1

20k

}}
,

which under U(T ), for some cd > 0 depending only on d, has probability ≤ cd · 1
20k

.

For the second term, note that ∠(u, u′) ∈ [0,
√
2π
2k

)∪ (π−
√
2π
2k

, π] means u′ ∈ C(u,
√
2π
2k

)∪
C(−u,

√
2π
2k

). By Fact 7.0.6, we know that under U(N), for some cd depending only on d,

P
u′∼U(N)

{
u′ ∈ C(u,

√
2π
2k

)
}
= cd ·

∫ √
2π/2k

0

sind−2(x)dx

≤ cd ·
∫ √

2π/2k

0

xd−2dx

=
cd

d− 1

(√
2π

2

)d−1
1

kd−1
.

The bound is the same for C(−u,
√
2π
2k

). Plugging these into the above, we can conclude
that

rk = sup
p∈Qk

P
Q∼U(Qk)

{
TV(p,Q) ≤ 1

400

}
≤ O

(
1

kd

)
→ 0 as k →∞.

This proves the claim.
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Lower bounding sk, the weight of alternative hypotheses. First, we note that

uk = sup
x∈B
q∈Qk

qd−1(x) =

(
1

(2π)d/2
k exp(−1

2
)

)d−1

,

which is achieved by G( 1
k
,0, e1) (where 0 ∈ Rd is the origin) and x = (ed, . . . , ed). Let

c =
exp(−5)d−1

exp(−1
2
)d−1

= exp

(
9(d− 1)

2

)
.

Claim 7.0.7. For k ≥ 1, letting (uk)
∞
k=1 and c be defined as above, define

sk := inf
x∈B

P
Q∼U(Qk)

{
Qd−1(x) ≥ cuk

}
.

Then we have,

sk = Ω

(
1

kd−1

)
→ 0 as k →∞.

Proof of Claim 7.0.7. Let k ≥ 1. Fix any x = (x1, . . . , xd−1) ∈ B. For every t ∈ T , there
exists u ∈ {x1 − t, x2 − t, . . . , xd−1 − t}⊥. We show ∠(u, ed) ≥ π

4
. Suppose otherwise, that

is, ∠(u, ed) < π
4

=⇒ |u · ed| = |u(d)| >
√
2
2
. Then,

u · (x1 − t) = u(1)(x
(1)
1 − t(1)) + · · ·+ u(d−1)(x

(d−1)
1 − t(d−1)) + u(d)x

(d)
1 .

By our assumption on u(d), and by the fact that x1 ∈ C, we have that |u(d)x
(d)
1 | >

√
2
2
. By

Cauchy-Schwarz in Rd−1, we have that,

|u(1)(x
(1)
1 − t(1)) + . . .+ u(d−1)(x

(d−1)
1 − t(d−1))|

≤ ∥[u(1), . . . , u(d−1)]⊤∥2 · ∥[x(1)
1 , . . . , x

(d−1)
1 ]⊤ − [t(1),...,t

(d−1)

]⊤∥2

<

√
2

2
· 1.

The last inequality uses that ∥u∥2 = 1 and (u(d))2 > 1
2
, so the norm of the first (d − 1)

coordinates is <
√
2
2
, and also the fact that the first (d− 1) coordinates of x and t are in

the 1
2
-disk. This inequality, combined with the fact that |u(d)x

(d)
1 | >

√
2
2

contradicts that
that (x1 − t) · u = 0.
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Now, for the t and the u from above, consider an arbitrary u′ with ∠(u, u′) ≤ 1
k
, and

the Gaussian with mean t and normal vector u′, G( 1
k
, t, u′). We will show that any such

Gaussian assigns high mass to the point x, and furthermore that there is a high density
of such Gaussians. Note that for k ≥ 5, 1

k
≤ π

3
− π

4
=⇒ ∠(u′, ed) ≥ π

3
=⇒ u′ ∈ N . We

compute the minimum density this Gaussian assigns to x. Consider, for i ∈ [d− 1],

(xi − t)⊤(Ru′D1/kR
⊤
u′)−1(xi − t) = ∥D√

kR
⊤
u′(xi − t)∥2

= k2|u′ · (xi − t)|2 + |v2 · (xi − t)|2 + · · ·+ |vd · (xi − t)|2

≤ 5(k2|u′ · r̂|2 + 1),

where r̂ = (xi − t)/∥xi − t∥ and {v2, . . . , vd} is an orthonormal basis of {u′}⊥. We have
that,

|u′ · r̂|2 = |(u+ (u− u′)) · r̂|2

≤ ∥u− u′∥22 · ∥r̂∥22
= u · u− 2u · u′ + u′ · u′

= 2− 2 cos(∠(u′, u))

≤ 2− 2(1− ∠(u′,u)2

2
)

= ∠(u′, u)2 ≤ 1

k2
.

Hence, the density of G( 1
k
, t, u′) on x is lower bounded by,(

1

(2π)d/2
k exp(−5)

)d−1

= cuk.

For every t ∈ T , we found a set of u′ ∈ N such that the density G( 1
k
, t, u′) assigns to x is

greater than cuk. Since for some constant cd > 0 depending only on d,

P
u′∼U(N)

{
u′ ∈ C(u, 1

k
)
}
= cd

∫ 1/k

0

sind−2(x)dx

≥ cd

∫ 1/k

0

(
2

π
x

)d−2

dx

= cd

(
2

π

)d−2
1

d− 1
· 1

kd−1
,

and since x ∈ B was arbitrary, we indeed have,

sk = inf
x∈B

P
Q∼U(Qk)

{
Qd−1(x) ≥ cuk

}
= Ω

(
1

kd−1

)
.

This completes the proof of the claim.
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With the three claims, applying Lemma 7.0.2 allows us to conclude that the class of all
Gaussians in Rd is not list learnable with m(α, β) = d− 1 samples. This implies that the
class is also not public-privately learnable with m(α, β, ε) = d− 1 public samples.
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Chapter 8

Open question: Characterizing the
number of public samples needed for
pure private learnability

In our analysis of private distribution learning with public data, a quantity of interest
that emerges is the amount of public data necessary and sufficient to render a class of
distributions pure privately learnable.

As we’ve seen, this is also the amount of samples that renders a class list learnable
(Definition 3.4.3). Consider the following concrete example: for the class of unit variance
Gaussians over R, Q = {N (µ, 1) : µ ∈ R} (as analyzed in Chapter 2), this quantity is 1; 1
public sample suffices, and 0 is not enough.

In this section, we state several questions on this topic. The first of which asks for the
resolution of the gap between our upper bound (Theorem 3.3.1) and lower bound (Theorem
3.5.1) for Gaussians.

Question 8.0.1. Is d or d+ 1 the number of public samples necessary and sufficient for
pure privately learning Gaussians in Rd?

Our next question is on the topic of the problem parameters the number of public
samples required for privately learning a class depends on. We first state another result for
context.

60



A VC dimension upper bound for public-private learning. The following gives
a public-private learner for classes of distributions whose Yatracos classes have finite VC
dimension.

Definition 8.0.2 (Yatracos class). For Q ⊆ ∆(X ), the Yatracos class of Q is given by

H = {{x ∈ X : p(x) > q(x)} : p, q ∈ Q with p ̸= q}.1

Theorem 8.0.3. Let Q ⊆ ∆(X ). Let H be the Yatracos class of Q. Denote by VC(H)
the VC dimension of H, and VC∗(H) the dual VC dimension of H. Q is public-privately
learnable with m public and n private samples, where

m = O

VC(H) log
(
1
α

)
+ log

(
1
β

)
α

 and n = O

(
VC(H)2VC∗(H) + log( 1

β
)

εα3

)
.

For the proof of this result, see Section B.4.

The above result applies to general classes of distributions, but is not tight. Applying
this result to Gaussians in Rd (noting the VC dimension in this case is O(d2) [AM18]; [AB99,
Theorem 8.14]), Theorem 8.0.3 yields a public sample complexity of Õ(d

2

α
), compared to

the tight result of Θ(d) from earlier. In this example, the bound is loose qualitatively –
the VC dimension analysis fails to capture the α-independent nature of the public sample
complexity for pure private learning of Gaussians in Rd. One can ask why the VC bound
fails to capture this dependency, and more generally

Question 8.0.4. Is there a necessary and sufficient condition for a class of distributions Q
to be list learnable with an α-independent number of samples?

The dependence on α in the VC bound comes from Fact B.4.2, the “public data cover”
lemma from [ABM19]. In that work, which studies distribution-free binary classification,
it is shown that any class learnable with o( 1

α
) public samples is learnable with private

data only, which is not the case for density estimation. Note that this establishes that for
binary classification, the answer to Question 8.0.4 is affirmative: a necessary and sufficient
condition is pure private learnability.

For an example of a distribution class requiring Ω( 1
α
) public samples for pure private

learnability, consider the class of all distributions supported on 2 elements over N. For

1This is for when the distributions in Q are discrete. For classes of continuous distributions, we substitute
p and q for their respective density functions.
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some α > 0, suppose we receive samples from a member of {(1− α) · δ0 + α · δ1, (1− α) ·
δ0 + α · δ2, (1 − α) · δ0 + α · δ3, ...}. Without Ω( 1

α
) public samples, we are likely to only

receive the sample 0, which does not let us distinguish between an infinite list of plausible
and mutually exclusive candidates.

To offer some non-rigorous but potentially helpful intuitions: examples of α-independent
list learning complexity occur when Q is “finite-dimensional”. For Gaussians, we can get an
estimate within constant error with an α-independent amount of samples, then discretize
the volume around the estimate according to whatever target α that is desired; α only
affects the length of the list.

However, in the 2 element support example, there is no additional parameterization,
and the space is infinite dimensional. The volume around a constant error estimate cannot
be discretized into a finite list given a target granularity. Another thing to note is that
for Gaussians, the quantity of numbers in the necessary and sufficient public sample is
approximately equal to the number of parameters that define the Gaussian; this is the case
for both arbitrary and identity covariance cases.

List learning seems to also be related to the topological notion of total-boundedness.2

The previous questions are specific, and centre around the core curiosity of understanding
what properties of distribution classes affect their list learning complexity. We state the
general question, vaguely:

Question 8.0.5. Can we offer new, satisfying characterizations of the number of samples
that renders a class Q list learnable?

2See this Wikipedia link.
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Appendix A

Additional Background

For completeness, we compile some known results on learning, privacy, and probability used
throughout the thesis. We also include some notation trimmed from the main body.

A.1 Notation

For positive semi-definite Σ ∈ Rd×d, the Mahalanobis norm for v ∈ Rd is denoted by ∥v∥Σ :=
∥Σ−1/2v∥. The matrix version for M ∈ Rd×d is denoted by ∥M∥Σ := ∥Σ−1/2MΣ−1/2∥F .

For p, q ∈ ∆(X ), denote by KL (p∥q) the KL divergence of p with respect to q. Denote
by H2(p, q) the Hellinger distance between p and q.

A.2 Learning

Definition A.2.1 (Covers and packings). Let Q ⊆ ∆(X ) and α > 0. We say C ⊆ ∆(X ) is
an α-cover of Q if for every q ∈ Q, there exists p ∈ C with TV(p, q) ≤ α.

We say P ⊆ Q is an α-packing of Q if for every p, q ∈ P with p ̸= q, TV(p, q) > α.

Fact A.2.2. Let P an α-packing of Q. Suppose P is maximal, that is, there is no α-packing
P ′ with P ′ ⊋ P. Then P is a α-cover of Q.
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A.3 Privacy

The definition of differential privacy is given in Definition 3.2.1. DP is closed under
post-processing.

Fact A.3.1 (Post-processing [DR14, Proposition 2.1]). Fix an input space X and an output
space Y. Suppose the randomized algorithm A : X n → ∆(Y) is (ε, δ)-DP. Consider another
output space O, and let f : Y → O. Then the randomized algorithm f ◦ A : X n → ∆(O) is
also (ε, δ)-DP.

We have the following facts about learnability under pure DP.

Fact A.3.2 (Packing lower bound [BKSW21, Lemma 5.1]). Let Q ⊆ ∆(X ), α ∈ (0, 1], and

ε > 0. Let Q̂ be a α-packing of Q. Any ε-DP algorithm A : X n → ∆(∆(X )) that upon
receiving n samples X = (X1, ..., Xn) drawn i.i.d. from any p ∈ Q and then outputting
Q ∼ A(X) satisfying

P
X∼pn

Q∼A(X)

{
TV(Q, p) ≤ α

2

}
≥ 9

10

must have

n ≥
log(|Q̂|)− log(10

9
)

ε
.

Fact A.3.3 (Pure DP learner for finite classes [BKSW21], [AAAK21, Theorem 2.24]). Let
Q ⊆ ∆(X ) with |Q| <∞. For every α, β ∈ (0, 1] and ε > 0, there exists an ε-DP algorithm
A : X n → ∆(∆(X )), such that for any p ∈ ∆(X ), if we draw a dataset X = (X1, ..., Xn)
i.i.d. from p and then Q ∼ A(X),

P
X∼pn

Q∼A(X)

{TV(Q, p) ≤ 3 · dist(p,Q) + α} ≥ 1− β,

where

n = O

(
log(|Q|) + log( 1

β
)

α2
+

log(|Q|) + log( 1
β
)

αε

)
.
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A.4 Statistical distances

The following fact says that we cannot post-process distributions and make them more
distinguishable, in terms of total variation.

Fact A.4.1 (Data-processing inequality for total variation). Let p, q ∈ ∆(X ). For any
measurable f : X → Y,

TV(f(p), f(q)) ≤ TV(p, q),

where for p ∈ ∆(X ), f(p) denotes the push-forward distribution which assigns f(p)(A) =
p(f−1(A)) for all measurable A ⊆ Y.

The following two facts relate total variation distance to KL divergence and Hellinger
distance.

Fact A.4.2 (Pinsker’s inequalty). Let p, q ∈ ∆(X ). Then

TV(p, q) ≤
√

1

2
KL (p∥q).

Fact A.4.3 (Hellinger distance vs. total variation). Let p, q ∈ ∆(X ). Then

H2(p, q) ≤ TV(p, q).
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Appendix B

Deferred proofs

B.1 Proof of the privacy guarantee in Claim 2.0.6

(Pure DP unit variance Gaussian learner)

Proof. The privacy proof of Algorithm 2 follows by the Laplace mechanism [DMNS06],
[Vad17, Theorem 1.3]. We give a recap of the proof. Denote by M our algorithm that
outputs the noisy mean µ̃. Let x1 and x2 be datasets of size n varying in at most 1 entry.

The density function ofM(x1) is f1(z) =
εn
4c
exp

(
− εn|z−µ̂1|

2c

)
; f2(z) =

εn
4c
exp

(
− εn|z−µ̂2|

2c

)
forM(x2). We have that for all z ∈ R

f1(z)

f2(z)
= exp

(εn
2c
· (|z − µ̂2| − |z − µ̂1|)

)
≤ exp

(εn
2c
· |µ̂2 − µ̂1|

)
≤ exp(ε)

where the second inequality comes from the reverse triangle inequality, and the last comes
from |µ̂1 − µ̂2| ≤ 2c

n
by the design of the algorithm. Now for any measurable B ⊆ R

P
Z1∼M(x1)

{Z1 ∈ B} =
∫
B

f1(z)dz ≤
∫
B

exp(ε) · f2(z)dz = exp(ε) · P
Z2∼M(x2)

{Z2 ∈ B}

which is precisely Definition 3.2.1).
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B.2 Proof of the privacy guarantee in Claim 2.0.9

(Public-private unit variance Gaussian learner)

Proof. Let x̃ ∈ R be arbitrary. Let x,x′ be private datasets of size n that differ in at most
one entry. In Algorithm 3, we first perform element-wise subtraction by x̃ and then pass
the results y, y′ to PrivUnitVarLearnR=3,ε(·). Note that y, y′ differs in at most one entry,
and therefore the outputs necessarily satisfy DP guarantees, and we can conclude that

P
µ̃Y ∼M(x−x̃)

{µ̃Y ∈ B} ≤ exp(ε) · P
µ̃′
Y ∼M(x′−x̃)

{µ̃′
Y ∈ B} for all measurable B ⊆ R.

The final output of PubPrivUnitVarLearnε(·) is a post processing of µ̃Y , and satisfies the
same DP inequality.

B.3 Proof of Lemma 5.2.1 (Total variation to Gaussian

parameters bound)

Here we prove Lemma 5.2.1. We first establish the 1-dimensional case, which requires some
intermediate results. We start with the following fact relating Gaussian parameters and
squared Hellinger distance.

Fact B.3.1 (Hellinger distance between 1-dimensional Gaussians [Par05, Chapter 1, Exer-
cises 11 and 14]). Let N (µ, σ2), N (µ̃, σ̃2) be Gaussians over R. Then

H2(N (µ, σ2),N (µ̃, σ̃2)) = 1−
√

2σσ̃

σ2 + σ̃2
exp

(
− (µ− µ̃)2

4(σ2 + σ̃2)

)
.

As a consequence, we obtain the following lower bound.

Lemma B.3.2 (Lower bound on Hellinger distance between 1-dimensional Gaussians). Let
N (µ, σ2),N (µ̃, σ̃2) be Gaussians over R. Denote σmax := max{σ, σ̃}. Then

1. H2(N (µ, σ2),N (µ̃, σ̃2)) ≥ H2(N (0, σ2),N (0, σ̃2)); and

2. H2(N (µ, σ2),N (µ̃, σ̃2)) ≥ H2(N (µ, σ2
max),N (µ̃, σ2

max)).
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Proof. Using Fact B.3.1, we have

H2(N (µ, σ2),N (µ̃, σ̃2)) = 1−
√

2σσ̃

σ2 + σ̃2
exp

(
− (µ− µ̃)2

4(σ2 + σ̃2)

)
≥ 1−

√
2σσ̃

σ2 + σ̃2

= H2(N (0, σ2),N (0, σ̃2)).

In the above, the second line follows from the fact that exp(−x) ≤ 1 for x ≥ 0. This gives
part (1). For part (2), we have

H2(N (µ, σ2),N (µ̃, σ̃2)) = 1−
√

2σσ̃

σ2 + σ̃2
exp

(
− (µ− µ̃)2

4(σ2 + σ̃2)

)
≥ 1− exp

(
− (µ− µ̃)2

4(σ2 + σ̃2)

)
≥ 1− exp

(
−(µ− µ̃)2

8maxσ2

)
= H2(N (µ, σ2

max),N (µ̃, σ2
max)).

In the above, the second line follows from AM-GM inequality, that is, σ2+σ̃2

2
≥ σσ̃.

The following Lemma B.3.3 is the 1-dimensional analogue of Lemma B.3.3.

Lemma B.3.3 (Total variation to Gaussian parameters bound, 1-dimensional case). Let
N (µ, σ2),N (µ̃, σ̃2) be Gaussians over R. Denote σmax := max{σ, σ̃} and σmin := min{σ, σ̃}.
Suppose TV(N (µ, σ2),N (µ̃, σ̃2)) ≤ γ. Then

1.
σmax

σmin

≤ 2

(1− γ)2
; and

2.
(µ− µ̃)2

σ2
max

≤ 8γ

1− γ
.

Proof. By Fact A.4.3, Lemma B.3.2, and Fact B.3.1, we have

γ ≥ TV(N (µ, σ2),N (µ̃, σ̃2)) ≥ H2(N (µ, σ2),N (µ̃, σ̃2))

≥ H2(N (0, σ2),N (0, σ̃2))

= 1−

√
2σmaxσmin

σ2
max + σ2

min

.
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Rearranging gives

2

(1− γ)2
≥ σ2

max + σ2
min

σmaxσmin

≥ σmax

σmin

which is the desired inequality (1). For part (2), applying the same results, except using
part (2) of Lemma B.3.2 instead, gives

γ ≥ TV(N (µ, σ2), µ̃, σ̃2)) ≥ H2(N (µ, σ2),N (µ̃, σ̃2))

≥ H2(N (µ, σ2
max),N (µ̃, σ2

max))

= 1− exp

(
−(µ− µ̃)2

8σ2
max

)
Rearranging gives

1

1− γ
≥ exp

(
(µ− µ̃)2

8σ2
max

)
≥ 1 +

(µ− µ̃)2

8σ2
max

which is the desired inequality (2), after some further rearranging.

With Lemma B.3.3 in place, we can now give the proof of Lemma 5.2.1.

Proof of Lemma 5.2.1. Let g := N (µ,Σ), g̃ := N (µ̃, Σ̃) be Gaussians over Rd. For a
unit vector v ∈ Rd and p ∈ ∆(Rd), denote by v⊤p the distribution over R obtained by
sampling x ∼ p and outputting v⊤x. By a data-processing inequality for total variation
distance (Fact A.4.1), we have that for any unit vector v ∈ Rd,

TV(N (v⊤µ, v⊤Σv),N (v⊤µ̃, v⊤Σ̃v)) = TV(v⊤g, v⊤g̃) ≤ TV(g, g̃) ≤ γ.

The first equality comes from the fact that the projection of a Gaussian is also Gaussian,
with the above parameters. By (1) in the 1-dimensional bound (Lemma B.3.3), we have
that for every unit vector v ∈ Rd,

(1− γ)4

4
≤ v⊤Σ̃v

v⊤Σv
≤ 4

(1− γ)4
.

Rearranging the above gives us (1) in the statement of Lemma 5.2.1.

For (2), we have that for every unit vector v ∈ Rd,

v⊤(µ− µ̃)(µ− µ̃)⊤v

v⊤(Σ + Σ̃)v
=

(v⊤µ− v⊤µ̃)2

v⊤Σv + v⊤Σ̃v
≤ (v⊤µ− v⊤µ̃)2

max{v⊤Σv, v⊤Σ̃v}
≤ 8γ

1− γ

where the last inequality comes from applying the (2) in the 1-dimensional bound. Rear-
ranging the above gives us (2) in the statement of Lemma 5.2.1.
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B.4 Statements and proofs regarding Theorem 8.0.3

(VC dimension upper bound for public-private

learning)

Non-private Yatracos learner. When the VC dimension of the Yatracos class of Q is
finite, the following gives an upper bound on the number of samples required to non-privately
learn Q.
Fact B.4.1 ([Yat85], [DL01, Theorem 6.4]). Let Q ⊆ ∆(X ). Let H be the Yatracos class
of Q. Denote by VC(H) the VC dimension of H. Q is learnable with

m = O

(
VC(H) + log( 1

β
)

α2

)
samples.

For some classes of distributions, the above bound is tight. For example, it recovers the
Θ( d

2

α2 ) sample complexity for learning Gaussians in Rd [AM18].

Proof of Theorem 8.0.3. Theorem 8.0.3 is a consequence of a known public-private
uniform convergence result [BCM+20, Theorem 10]. To adapt it to our setting, we (1)
modify their result for pure DP (rather than approximate DP); and (2) conclude that
uniform convergence over the Yatracos sets of Q suffices to implement the learner from
Fact B.4.1.

We employ the following result on generating distribution-dependent covers for binary
hypothesis classes with public data.

Fact B.4.2 (Public data cover [ABM19, Lemma 3.3 restated]). Let H ⊆ 2X . There exists
A : X ∗ → {H ⊆ 2X : |H| <∞}× (H → H), such that for any α, β ∈ (0, 1] there exists

m = O

(
VC(H) log( 1

α
) + log( 1

β
)

α

)
such that for any p ∈ ∆(X ), if we draw X = (X1, . . . , Xm) i.i.d. from p, with probability

≥ 1− β, A(X) outputs Ĥ ⊆ 2X and a mapping f : H → Ĥ with

p(h△f(h)) ≤ α for all h ∈ H

(where for A,B ⊆ X , A△B denotes the symmetric set difference (A \ B) ∪ (B \ A)).
Furthermore, we have |Ĥ| ≤ ( em

d
)2d.
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Using samples from an unknown distribution p, the above Fact B.4.2 uses fewer than
the O(VC(H)

α2 ) samples for uniform convergence to construct a finite approximation of H, Ĥ.
That is, for every h ∈ H, we can find f(h) ∈ Ĥ which approximately agrees with h over
the probability mass of p.

We also use the following pure DP algorithm for answering counting queries on finite
domains.

Fact B.4.3 (SmallDB [BLR08], [DR14, Theorem 4.5]). Let X be a finite domain. Let
H ⊆ 2X . Let α, β ∈ (0, 1] and ε > 0, There is an ε-DP randomized algorithm, that on any
dataset x = (x1, . . . , xn) with

n = Ω

(
log(|X |) log(|H|) + log( 1

β
)

εα3

)

outputs estimates ĝ : H → R such that with probability ≥ 1− β,∣∣∣∣∣ĝ(h)− 1

n

n∑
i=1

1h(xi)

∣∣∣∣∣ ≤ α for all h ∈ H.

Proof of Theorem 8.0.3. We use our m public samples from the unknown p ∈ Q to generate
a public data cover Ĥ and mapping f : H → Ĥ courtesy of Fact B.4.2, selecting m to target
error α

6
and failure probability β

3
. Note that this implies that with probability ≥ 1− β

3
, for

every h ∈ H, |p(h)− p(f(h))| ≤ |p(h△f(h))| ≤ α
6
.

Next, we consider the representative domain of X with respect to Ĥ, denoted by XĤ. In

other words, for every unique behaviour (1ĥ(x))ĥ∈Ĥ ∈ {0, 1}|Ĥ| induced by a point x ∈ X
on Ĥ, we include exactly one representative [x] in XĤ. By Sauer’s lemma we can conclude
that

|XĤ| ≤

(
e|Ĥ|
d∗

)VC∗(H)

.

Then, we take our n private samples X = (X1, . . . , Xn) and map each point Xi to its
representative [Xi] ∈ XĤ, yielding a dataset of n examples [X] on the finite domain XĤ.

Note that for any ĥ ∈ Ĥ, 1
n

∑n
i=1 1ĥ(Xi) =

1
n

∑n
i=1 1ĥ([Xi]). Hence when we run SmallDB

(Fact B.4.3) on the input [X] over the finite domain XĤ with finite class Ĥ, choosing n large
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enough, we obtain ĝ : Ĥ → R such that with probability ≥ 1− β
3
, |ĝ(ĥ)− 1

n

∑n
i=1 1ĥ(Xi)| ≤ α

6

for all ĥ ∈ Ĥ.

We also ensure n is large enough so that we get the uniform convergence property on
Ĥ, which has VC dimension d, with the private samples. That is, for all ĥ ∈ Ĥ, with
probability ≥ 1− β

3
, |p(ĥ)− 1

n

∑n
i=1 1ĥ(Xi)| ≤ α

6
.

As a post-processing of ĝ, our learner outputs

q̂ := argmin
q∈Q

sup
h∈H
|q(h)− ĝ(f(h))|.

By the union bound, with probability ≥ 1− β, all of our good events occur. In this case,
we have for all h ∈ H,

|p(h)− p(f(h))| ≤ α
6∣∣∣∣∣p(f(h))− 1

n

n∑
i=1

1f(h)(Xi)

∣∣∣∣∣ ≤ α
6∣∣∣∣∣ 1n

n∑
i=1

1f(h)(Xi)− ĝ(f(h))

∣∣∣∣∣ ≤ α
6

which implies |p(h)− ĝ(f(h))| ≤ α
2
. So for any q ∈ Q,

|q(h)− p(h)| − α

2
≤ |q(h)− ĝ(f(h))| ≤ |q(h)− p(h)|+ α

2

=⇒ TV(q, p)− α

2
≤ sup

h∈H
|q(h)− ĝ(f(h))| ≤ TV(q, p) +

α

2
.

We have that

sup
h∈H
|q̂(h)− ĝ(f(h)| ≤ sup

h∈H
|p(h)− ĝ(f(h)| ≤ TV(p, p) +

α

2
≤ α

2
.

Therefore,

TV(q̂, p) ≤ sup
h∈H
|q̂(h)− ĝ(f(h)|+ α

2
≤ α.

It can be verified that the choices of m and n in the statement of Theorem 8.0.3 suffice.
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