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Abstract

In this thesis, we propose a neural network methodology for solving the multi-period
portfolio optimization problem. Our approach formulates the problem as a stochastic op-
timal control problem and uses a single neural network model to approximate the optimal
control function so that the optimal control can be obtained via solving a single standard
optimization problem. Unlike traditional dynamic programming methods, our methodology
eliminates the need for high-dimensional expectation evaluations, making it computationally
efficient. Moreover, our framework is flexible and not restricted to specific objective func-
tions or data models, allowing it to handle a wide range of portfolio optimization problems.
In addition, by designing novel neural network models with suitable activation layers, we
ensure that the neural network representation is always a feasible solution to the original
optimal control problem so that the complex constrained portfolio optimization problems
are converted into computationally feasible unconstrained ones. Furthermore, we provide
mathematical proofs that our proposed neural network models are capable of approximating
the constrained optimal control arbitrarily well, illustrating the validity and effectiveness of
our approach. Finally, through extensive numerical experiments, we demonstrate the empir-
ical performance of our methodology, validating its practical relevance and effectiveness in
real-world investment decision-making.
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Chapter 1

Introduction

1.1 Motivation

“With great risk comes great reward.”

Thomas Jefferson

Investing is a balancing act between risk and reward.

A fundamental concept in investing is diversification, which involves spreading invest-
ments across various asset classes, industries, and geographic regions to reduce overall port-
folio risk. In practice, one simple example of diversification is the constant weight stock-bond
portfolio, which allocates a fixed proportion of capital to stocks and bonds. Popular exam-
ples include the 50/50 (Graham, 2003; Qian, 2011) and 60/40 portfolios (Ambachtsheer,
1987; Bernstein, 2002).

A constant weight strategy is fundamentally contrarian. When stocks go up in price,
they are sold and the proceeds are shifted to the bond portfolio. When stocks decrease in
value, bonds are sold, and cash is invested in stocks. This strategy is consequently a “buy
low, sell high” policy, which takes advantage of the volatility of stocks.

The allocation between stocks and bonds in a constant-weight portfolio carries significant
implications. Stocks, with their potential for growth and capital appreciation, can offer
higher returns over the long term but also come with increased volatility and market risk.
On the other hand, bonds, with their fixed income structure and relatively lower volatility,
provide a lower return but offer greater capital preservation and income stability. The
decision regarding the stock-bond split in a constant weight portfolio is crucial in determining
the desired overall risk and return profile of the portfolio. Typically, as the allocation to
stocks increases, the portfolio achieves higher returns but also possesses greater volatility
(Vanguard, 2019).

1



Constant weight portfolios provide a straightforward method for diversifying risks, mak-
ing them a popular choice in various applications such as defined contribution (DC) pension
plans like 401(k) and RRSP. Additionally, their simplicity and popularity have led many
active funds, including some of the largest sovereign wealth funds, to use passive constant
weight portfolios as a benchmark for assessing the effectiveness of their active strategies.

For example, the Canada Pension Plan (CPP) uses a base reference portfolio of 85% global
equity and 15% Canadian government bonds (CPP Investments, 2022). Another example is
the Government Pension Fund Global of Norway (also known as the “Oil Fund”) managed
by Norges Bank Investment Management (NBIM), which uses a benchmark index consisting
of 70% equity index and 30% bond index.1 The benchmark equity index is constructed
based on the market capitalization for equities in the countries included in the benchmark.
The benchmark index for bonds specifies a defined allocation between government bonds
and corporate bonds, with a weight of 70 percent to government bonds and 30 percent to
corporate bonds (Norges Bank, 2022).

However, the excess return that these well-known sovereign wealth funds have achieved
over their respective passive benchmark portfolios cannot be described as impressive. In
the 2022 fiscal year report, CPP claims to have beaten the base reference portfolio by an
annualized 80 bps after fees over the past 5 years (CPP Investments, 2022). On the other
hand, NBIM reports a mere average of 34 bps of annual excess return over the benchmark
over the last decade (see Table 1.1). It is worth noting that these behemoth funds achieve
seemingly meager results by hiring thousands of highly paid investment professionals and
spending billions of dollars on day-to-day operations. For example, the CPP 2021 annual
report (CPP Investments, 2021) lists personnel costs as CAD 938 million, for 1,936 employees,
which translates to average costs of about CAD 500,000 per employee-year.

Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Average
Excess return (%) 0.99 -0.77 0.45 0.15 0.70 -0.30 0.23 0.27 0.74 0.87 0.34

Table 1.1: Norges Bank Investment Management, excess return to benchmark portfolio

The stark contrast between the enormous spending of sovereign wealth funds and the
meager outperformance of the funds relative to the passive benchmark portfolios is proba-
bly provocative to taxpayers and pensioners who entrust their hard-earned money to these
funds. It is indeed difficult for us to comprehend how professional fund managers, given the
substantial compensation they receive, are only marginally outperforming a simple constant
weight benchmark. After all, considering the active nature of these funds, which allows for
a much broader selection of strategies beyond simple constant weight strategies, one would
expect more significant outperformance over such benchmarks.

This prompts us to ask the following question: how can we systematically solve the port-
folio optimization problem so that an investor can employ a simple asset allocation strategy

1The Ministry of Finance of Norway sets the allocation fraction between the equity index and the bond
index. It gradually raised the weight for equities from 60% to 70% from 2015-2018.
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that consistently beats the benchmark passive portfolios (preferably without spending bil-
lions of dollars in personnel costs)?

1.2 Multi-period portfolio optimization

Portfolio optimization problems involve finding the optimal allocation of assets in order to
maximize a chosen investment target function. The fundamental work by Markowitz (1952)
on optimal single-period mean-variance portfolios establishes the groundwork for modern
portfolio optimization.

In practical scenarios, portfolio optimization often takes place over multiple periods,
where investors make sequential investment decisions throughout an investment horizon.
Consequently, the portfolio optimization framework is extended to accommodate this multi-
period setting. In traditional multi-period portfolio optimization literature, a common mod-
eling approach is to assume continuous rebalancing. For instance, Merton (1969) considers
a continuous-time asset allocation setting and utilizes stochastic control techniques to derive
an optimal portfolio that maximizes a constant relative risk aversion (CRRA) utility func-
tion of terminal wealth. Since then, extensive research has been conducted on multi-period
portfolio optimization under the continuous rebalancing assumption (Merton, 1971; Browne,
1997; Blanchet-Scalliet et al., 2008; Ang et al., 2014).

However, there are several limitations in these studies. Firstly, while continuous re-
balancing assumptions often admit closed-form solutions, the methodologies are typically
limited to specific choices of objective functions and require assumptions about the stochas-
tic process models that describe the asset prices. Furthermore, the assumption of continuous
rebalancing is not practical.

This thesis focuses on discrete multi-period portfolio optimization problems. Let [t0, T ]
denote the investment horizon, and define T ⊆ [t0, T ] as the rebalancing schedule. Specifi-
cally, we consider a discrete schedule with N rebalancing events, i.e.

T =
{
t0 < t1 < · · · < tN = T

}
. (1.1)

The multi-period portfolio optimization problem is then formulated as a stochastic op-
timal control problem, assuming that the control (allocation decision) p is a function of
the state variables. The state variable vector at time ti, denoted by X(ti) ∈ X (the state
space), encompasses all relevant information at that time to describe the system. For exam-
ple, we consider outperforming a benchmark in this thesis, thus the wealth of the actively
managed portfolio and the benchmark portfolio serves as state variables. The values of the
state variables evolve according to a specific evolution function that depends on the control
function, random returns for Na assets, and investment specifications such as transaction
cost, shorting, and cash injections. Mathematically,

X(ti) = fevo

(
X(ti−1),p(X(ti−1)), r(ti−1)

)
, ∀i = 1, · · · , N. (1.2)
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Here r(ti−1) ∈ RNa is the vector of (random) asset returns from ti−1 to ti. The detailed
form of the evolution function fevo relies on the specific investment cases, which will be
discussed in detail in later chapters. For now, we assume that all state variables X(ti) can
be computed using (1.2).

Then, the stochastic optimal control problem aims to find the feasible optimal control
p∗ : X 7→ RNa , under the following optimization problem:

p∗ = inf
p∈A

Et0
p

[
F
(
X(t0), · · · ,X(tN)

)]
, (1.3)

where A represents the set of feasible controls, and F (·) is an investment performance metric.
Notably, the objective function is expressed as an expectation since the state variables are
subject to randomness due to the presence of stochastic asset returns. Et0

p [·] denotes the
expectation at time t0, assuming that the system evolves based on a feasible control p.

The literature on solving discrete-time multi-period problems often employs dynamic
programming methods, which involve converting the multi-period problem into multiple
single-period optimization problems (Mulvey and Vladimirou, 1989; Dantzig and Infanger,
1993; Cariño and Turner, 1998; Cheung and Yang, 2004; Wang and Forsyth, 2010; Dang
and Forsyth, 2014). However, for these dynamic programming methods, the computational
complexity increases exponentially with the number of state variables and is only tractable
when the number of stochastic factors is relatively small.

1.3 The neural network approach

In this thesis, we propose to use a single neural network, denoted as fθ parameterized by
parameter θ, to approximate the control function, i.e. fθ(·) ≃ p(·). Consequently, we solve
a single optimization problem without using dynamic programming.

An important challenge faced by existing literature in multi-period portfolio optimization
is the difficulty in handling complex portfolio constraints. The set of feasible controls A can
be intricate, making the optimization problem (1.3) challenging to solve (as we will discuss
in detail in later chapters).

A key aspect of our proposed approach is the design of specific neural network models
that automatically satisfy the constraints described by A. Instead of tackling the complex
constrained problem (1.3), we solve the following parameterized unconstrained optimization
problem:

inf
θ∈RNθ

Et0
fθ

[
F
(
X(t0), · · · ,X(tN)

)]
. (1.4)

The solution to the unconstrained problem (1.4) can be easily computed using standard
optimization methods such as the stochastic gradient method (SGD) or ADAM (Kingma
and Ba, 2014).
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It is important to note that, we include time as an input feature to the model, thus making
the neural network recurrent. This is different from the stacked neural network approach
proposed in Han et al. (2016); Tsang and Wong (2020), which requires a new sub-network at
each rebalancing time despite also adopting the idea of approximating the control with neural
networks. In comparison, our methodology is more intuitive and computationally efficient.
In addition, by including time as an input to the neural network (“global-in-time”), our
methodology is suitable for approximating the control functions that are smooth in time.

Recently, researchers have also explored the application of reinforcement learning (RL)
methods in multi-period portfolio optimization. For example, Dixon et al. (2020); Park et al.
(2020); Lucarelli and Borrotti (2020); Gao et al. (2020) use Q-learning algorithms in which
neural networks are used to approximate the action-value function (“Q-function”). However,
such methods may be unnecessarily high-dimensional when the state space is relatively low-
dimensional (van Staden et al., 2023b).

It is worthwhile emphasizing that much previous work on machine learning (Yang et al.,
2018; Lucarelli and Borrotti, 2019; Zhang et al., 2020; Cao et al., 2020; Zhang et al., 2021)
for portfolio allocation is based on maximizing common metrics such as the Sharpe ratio. A
Sharpe ratio maximizing strategy is the optimal control for a single period mean-variance
objective function (Haugh, 2016), but by no means optimal in the multi-period context,
where the optimal allocation is dynamic. The approach in this thesis is to specify an objective
function, and then determine the optimal control that maximizes this objective function
directly.

It is also worth noting that for certain objectives (e.g. the cumulative quadratic difference
(CD) objective and the cumulative quadratic shortfall (CS) objective discussed in Chapter
6), our methodology may be formulated to appear similar to policy gradient methods in
RL literature (Silver et al., 2014) on a high level. Examples of policy gradient methods in
financial problems include Coache and Jaimungal (2021), in which the authors develop an
actor-critic algorithm for portfolio optimization problems with convex risk measures. How-
ever, there are two main differences between our proposed methodology and policy gradient
algorithms. Firstly, we assume that a model (parametric or non-parametric) for the ran-
domness of the environment (i.e., asset returns) over the entire investment horizon is readily
available upfront (e.g., through calibration of parametric models or resampling of historical
data, which is a common assumption adopted by practitioners when backtesting investment
strategies). On the other hand, RL literature often considers an unknown environment, and
the algorithms focus on the exploration of the agent to learn from the unknown environment.
Such an approach may be unnecessary and complicated for our use case since we do not con-
sider the market impact of rebalancing actions. Secondly, our proposed methodology is not
limited to the cumulative reward framework in RL and thus is more general and suitable
for problems in which the investment objective cannot be easily expressed in the form of a
cumulative reward.

The closest work to this thesis is Li and Forsyth (2019); van Staden et al. (2023b,a). Li
and Forsyth (2019) propose a shallow neural network model for representing the allocation
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in a long-only DC portfolio but focus on fixed wealth targets. van Staden et al. (2023b)
consider a long-only portfolio with the goal of outperforming an elevated target, a concept
proposed in Chapter 2 of this thesis. van Staden et al. (2023a) extend the results from van
Staden et al. (2023b) by considering the path-dependent outperformance over the elevated
target but are still restricted to a long-only setting.

An important advantage of our neural network approach is its flexibility in terms of
objective function choices, investment specifications, and data models. Unlike most modeling
approaches that are tailored to specific objective functions, investment specifications (e.g.
transaction costs, shorting costs, cash injection), or stochastic process data models, our
methodology provides a general modeling framework that can adapt to a wide range of
investment problems.

Furthermore, we establish mathematical proofs that, under reasonable assumptions about
the optimal control which is subject to complex constraints such as bounded leverage, the
proposed neural network models are capable of approximating the optimal control arbitrarily
well. This provides a theoretical assurance of the validity and effectiveness of the proposed
methodology.

Finally, through extensive numerical experiments, we show that the neural network ap-
proach produces dynamic strategies that consistently outperform passive benchmarks by
specified margins, which showcases the capability of the neural network methodology to
achieve desired investment goals and illustrates the immense practical value of the frame-
work.

1.4 Outline

In Chapter 2, we delve into the problem of outperforming a passive benchmark for a long-only
defined contribution (DC) pension portfolio. We propose the concept of an elevated target
that incorporates both the wealth of the benchmark portfolio and a target outperformance
spread and design a novel asymmetric objective function based on this elevated target. We
discuss bootstrap resampling as a method of generating data samples and demonstrate its
validity by proving the exceedingly low probability of observing repeating sample paths in the
data sets. In numerical experiments, we show that the optimal strategy following the learned
neural network model achieves desired outperformance over the constant weight benchmark
with high probability at the end of the accumulation phase of a pension plan.

In Chapter 3, we provide additional numerical results to examine the robustness of the
neural network strategy studied in Chapter 2 from two perspectives. First, we examine the
robustness of the neural network methodology with respect to the assumptions and settings
of the problem. Particularly, we study the effects of using a different benchmark portfolio
(i.e. a target date fund) and an alternative underlying data set, and find that the neural
network strategies still achieve the desired outperformance despite the different settings and
assumptions. Then, we examine the robustness of the neural network strategy by studying
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the performance of the strategy on testing data sets generated from a different distribution
from the training data sets. We find that the neural network strategy achieves consistent
outperformance over the benchmark portfolio in all scenarios tested.

In Chapter 4, we derive a closed-form solution under certain assumptions to gain insights
into the optimal control and find that the closed-form optimal control is contrarian, consistent
with observations from numerical results from Chapter 3.

Moving on to Chapter 5, we shift the focus to a multi-period portfolio optimization
problem with bounded leverage. Specifically, we aim to replicate the investment behavior of
large sovereign wealth funds by allowing the portfolio to have short positions in a selected
set of assets, thus enabling leverage in the portfolio. Subsequently, we propose a leverage-
feasible neural network (LFNN) model to tackle the optimization problem under leverage
constraints. In Chapter 6, we consider a case study that applies the LFNN model to portfolio
optimization problems during high inflation regimes and demonstrate that the LFNN model
achieves the desired performance outcomes.

In Chapter 7, drawing inspiration from 130/30 portfolios, we consider the portfolio op-
timization problem with a more relaxed constraint that allows the investment manager to
take long or short positions on all assets, as long as the total long position within the
portfolio is bounded. To handle the complex constraints involved, we introduce a novel
relaxed-constraint neural network (RCNN) model that transforms the constrained optimiza-
tion problem into an unconstrained one. Moreover, we provide mathematical proof estab-
lishing that the RCNN model can effectively approximate the optimal control arbitrarily
well. Finally, through numerical experiments, we showcase the advantages of 130/30 portfo-
lios over long-only portfolios, dispelling the misconception that 130/30 portfolios offer little
value.

In Chapter 8, we present the concluding remarks for this thesis.

1.5 Contributions

To summarize, this thesis makes the following key contributions:

• We propose a neural network methodology for solving the stochastic optimal control
problem in multi-period portfolio optimization. This methodology offers a scalable and
efficient alternative to traditional dynamic programming methods, which are compu-
tationally intensive.

• The proposed neural network framework is versatile and flexible, as it can be applied to
a wide range of investment problems. It is not limited to specific choices of objective
functions, investment specifications, or data-generating models, making it a general
methodology.
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• We develop novel neural network models that convert complex constrained optimiza-
tion problems into computationally feasible unconstrained standard optimization prob-
lems, which enables us to effectively solve traditionally challenging constrained portfolio
optimization problems.

• The proposed methodology can be applied to obtain the optimal leveraged portfolios
under the multi-period setting, which existing literature is ill-equipped to compute.

• We provide mathematical proofs demonstrating that the proposed neural network mod-
els are capable of approximating optimal controls with arbitrary precision. These the-
oretical validations establish the validity and effectiveness of the proposed approach.

• We propose the concept of the elevated target which leads to the creation of novel
objective functions that guide the neural network model to achieve empirically desired
relative performance compared to the benchmark portfolio.

• We demonstrate the validity of using bootstrap resampling as a data-generating method
by proving the exceedingly low probability of having repeating sample paths in the
training and testing data sets.

• Through extensive numerical experiments, we showcase the efficiency and effectiveness
of neural network-based strategies in various realistic investment scenarios. These em-
pirical results validate the practical importance and relevance of the proposed method-
ology in real-world investment decision-making.
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Chapter 2

Optimal asset allocation for
outperforming a stochastic
benchmark target

2.1 Introduction

In this chapter, we introduce a neural network methodology for solving the problem of
outperforming a stochastic target.

We begin by introducing the outperformance problem and discussing the current liter-
ature on this topic. We then focus on outperformance in the context of outperforming a
passive benchmark at the end of the accumulation phase of a defined contribution (DC)
pension plan and formally define the outperformance problem.

We propose an objective function for this problem based on the concept of an elevated
target. In order to penalize risky strategies, we use an asymmetric weighting objective
function.

Since we consider a long-only portfolio, the portfolio optimization problem is essentially
an asset allocation problem, in which we need to find the optimal allocation strategy that
optimizes the objective function.

We formulate this optimal asset allocation problem as a stochastic optimal control prob-
lem where the control represents the allocation strategy. We then propose to use a neural
network to approximate the control so that we can obtain the optimal control via solving a
standard optimization problem without dynamic programming.

Since we can observe only a single historical path of the capital markets (i.e. the realized
historical asset price path), it is necessary to augment this data for the training and testing
of the neural network model. We discuss the use of stationary block bootstrap resampling
(Politis and Romano, 1994) for generating the training and testing data sets. We then prove
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that, for a reasonable choice of bootstrap blocksizes, the probability of observing repeating
paths is extremely low. This means that overfitting (i.e. strategies based on “memorizing”
specific historical asset price paths in the training set) is extremely unlikely.

In numerical experiments, we consider a 30-year investment horizon with a benchmark
portfolio consisting of 50% stocks (a broad stock market index) and 50% bonds (based on
a short-term U.S. treasury index) rebalanced annually. We show that the learned adap-
tive (dynamic) neural network strategy yields significant outperformance compared to the
benchmark.

We remark that this chapter is based on the published work of Ni et al. (2022). In
summary, in this chapter, we make the following contributions:

• We propose a neural network methodology for solving the outperformance problem un-
der a multi-period setting. This methodology offers a scalable and efficient alternative
to traditional dynamic programming methods, which are computationally intensive.

• We propose the concept of an elevated target which leads to the creation of novel
objective functions that guide the neural network model to achieve empirically desired
relative performance compared to the benchmark portfolio.

• We demonstrate the validity of using bootstrap resampling as a data-generating method
by proving the exceedingly low probability of having repeating sample paths in the
training and testing data sets.

• In numerical experiments, we demonstrate the efficiency of the proposed neural network
by showing that the learned adaptive strategy outperforms the stochastic benchmark
target by the specified margin at the end of the accumulation phase of a pension plan.
Furthermore, by following the adaptive strategy, an investor can expect to achieve a
sufficient replacement rate for retirement.

2.1.1 The outperformance problem

While most existing work on multi-period asset allocations has focused on achieving optimal
absolute performance, the allocation problem with the goal of achieving relative outperfor-
mance has significant practical importance. This is because, in practice, the performance
of a portfolio is often evaluated not only by its absolute performance but also against other
benchmark portfolios. Multi-period asset allocation with the goal of optimizing relative per-
formance was first studied by Browne (1999, 2000), in which it is assumed that asset prices
follow geometric Brownian motions. Under these assumptions, Browne (1999, 2000) derive
closed-form optimal portfolios so that the performance relative to a stochastic benchmark is
maximized. The author also considers different investment objectives, such as minimizing
the expected time to reach a performance goal and maximizing the utility of relative wealth.
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Subsequently, the benchmarked asset allocation problem has been further studied from
various perspectives, see, e.g., (Tepla, 2001; Basak et al., 2006; Davis and Lleo, 2008; Lim and
Wong, 2010; Bajeux-Besnainou et al., 2013). Tepla (2001) studies the problem of an expected
utility maximizing investor with the goal of performing at least as well as a stochastic bench-
mark. Basak et al. (2006) relax the minimum performance constraints used in Tepla (2001)
and a certain shortfall probability is allowed in return for some upside potential. Bajeux-
Besnainou et al. (2013) introduce a downside hedging constraint and includes the benchmark
in the objective function in a mean-variance framework while avoiding unrestricted losses.

Instead of the classical stochastic control approach, Davis and Lleo (2008) use a risk-
sensitive control approach to study the benchmarked asset allocation problem, in which
the benchmark follows a variant of the geometric Brownian motion. Lim and Wong (2010)
consider more generic price dynamics and general increasing concave objective functions.

More recent studies include Oderda (2015), Al-Aradi and Jaimungal (2018) and Al-Aradi
and Jaimungal (2021). In Oderda (2015), under the assumption that stocks follow a geo-
metric Brownian motion and no investing constraints (i.e. infinite leverage and shorting
are allowed), the author shows that a portfolio that outperforms the benchmark market
capitalization index (under certain criteria) can be constructed by a combination of (i) the
benchmark portfolio and (ii) rule-based portfolios, e.g., equal weight and minimum variance
portfolios. The determination of the optimal weights for these portfolios is independent of
estimates of the expected returns of individual stocks. Hence this outperformance portfo-
lio is robust to uncertainty in the expected return parameters. In Al-Aradi and Jaimungal
(2018), optimal stochastic control techniques are also used in this context. Based on several
assumptions on the asset return process, Al-Aradi and Jaimungal (2018) formulate the con-
trol problem as a Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE) and
are able to obtain a closed-form solution. In Al-Aradi and Jaimungal (2021), the authors
assume that the growth rate is stochastic and driven by latent factors, which addresses the
shortcoming of assuming a deterministic market return in Al-Aradi and Jaimungal (2018).
We remark that all this work is in a continuous-time setting with unconstrained controls. To
the best of our knowledge, little work is done on discrete-time rebalancing multi-period asset
allocation (with constraints) that focuses on relative performance compared to a benchmark.

A common limitation of the previous work which focuses on outperforming a stochastic
benchmark is the lack of consideration of realistic constraints such as no-leverage and no-
shorting. Such constraints make finding closed-form solutions difficult, if not impossible. One
possible solution is to numerically solve the problem by following the methodology proposed
in Dang and Forsyth (2014), in which constraints such as no-shorting, no-leverage, and
discrete rebalancing are considered. Dang and Forsyth (2014) propose a method that uses
dynamic programming to establish an associated Hamilton-Jacobi-Bellman (HJB) equation
that generates the optimal portfolio. However, a numerical HJB equation solution is only
practical if there are a small (three or fewer) number of state variables (≤3). In Dang
and Forsyth (2014), under discrete rebalancing with two assets and no benchmark strategy,
the HJB equation is of dimension two. Note that if discrete rebalancing is assumed, it is
not possible to reduce this to a one-dimensional PDE. However, under discrete rebalancing
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with two assets and a two-asset benchmark strategy, the PDE problem has four dimensions,
as four state variables are needed to represent the amount in each asset for each strategy,
between rebalancing times. Similarly, under discrete rebalancing with n assets and a n asset
benchmark setting, the problem has 2n dimensions. Existing methods (Wang and Forsyth,
2010; Dang and Forsyth, 2014) that convert the problem into an HJB equation are not
practical in these cases.

Another common issue with existing approaches is the assumption of parametric stochas-
tic models for asset returns. This, of course, adds challenges, as the parameters can be
difficult to estimate accurately (Black, 1993).

2.1.2 Defined contribution (DC) investment plan

In this chapter, we consider a practically relevant and important problem: optimal multi-
period asset allocation during the accumulation phase of a DC pension plan. A defined
contribution (DC) plan is a retirement plan in which the employer, employee, or both make
contributions at regular intervals (e.g. annually). There is no guarantee on the accumulated
amount in the plan at the retirement date. In contrast, another type of retirement plan
is the defined benefit (DB) plan, which promises to pay a set income when the employee
retires. There has been a paradigm shift from DB plans to DC plans in the United States,
Canada, the United Kingdom, and Australia, as both the public and private sectors are no
longer willing to take on the risks of DB plans. By 2027, all DB plans in the Netherlands
will be shifting to DC plans (Pielichata, 2023).

We note that the employee is the investor in the DC plan since she is exposed to the
risks of the chosen investment portfolio. In a DC plan, the employee (investor) is often
presented with a list of eligible stock and bond funds and then needs to specify how the DC
account is to be allocated to each fund. Typically the employee has the opportunity to make
contributions to the DC plan (usually a certain percentage of the salary) and change the
asset allocation at least yearly. Normally, the DC plan is tax-advantaged, so that there are
no tax consequences triggered by the rebalancing action.

In this chapter, we assume the investment horizon for the DC plan is 30 years. Studies
have shown that income for a typical employee increases rapidly until the age of 35, then
remains mostly unchanged (in real terms) until a few years before retirement, and then
decreases due to fewer working hours during the transition to retirement (Cocco et al., 2005;
Rupert and Zanella, 2015).

Since total (employee-employer) DC plan contribution is often proportionally tied to
overall income, we believe a 30-year investment horizon is reasonable and captures the most
stable period in terms of income for a typical employee, during which she can save for
retirement most consistently. We remark that the 30-year time horizon is also commonly
used in literature in the field of pension studies (O’Donoghue and Rabin, 1998; Booth, 2004;
Malliaris and Malliaris, 2008; Looney and Hardin, 2009; Levy, 2016; Blanchett et al., 2017;
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Basu and Wiafe, 2017; Brown et al., 2017; Blanchett et al., 2018; Estrada and Kritzman,
2019; Wiafe et al., 2020).

Recently, a popular choice for DC pension investment has been target date funds, in
which the investor sets a retirement date and the fund aims to meet certain financial return
objectives at the given retirement date. Usually, target date funds take a glide path approach
that “glides down” towards a more conservative combination of assets towards the target
date (Balduzzi and Reuter, 2012). In a two-asset case of a stock index and a bond index,
the glide path strategy often decreases the stock holding over time. Another popular asset
allocation strategy for DC plans is the constant proportion strategy, in which the employee
invests fixed proportions of the wealth into several assets. This idea can be traced back to
Graham (2003). It is shown in (Graf, 2017; Forsyth and Vetzal, 2019) that the final wealth
distributions of a constant weight allocation, and any glide path strategy having the same
average allocation as the constant weight strategy, are essentially the same. Hence there
is little to be gained by using a (deterministic) glide path compared to a constant weight
strategy. This theoretical analysis is backed by empirical studies (Basu et al., 2011; Arnott
et al., 2013; Esch and Michaud, 2014). We also provide empirical evidence in Section 3.1 to
support this argument. Therefore, in this chapter, we set the benchmark target to be the
constant proportion strategy as it is easy to understand and implement.

Among the constant proportion strategies, a very popular one is the 50/50 strategy, in
which 50% of the wealth is allocated to stocks and 50% of the wealth is allocated to bonds.
It is conventional wisdom that a 50/50 portfolio is an appropriate tradeoff between risk and
reward for those saving for retirement. Although there has been a popular shift to a 60/40
portfolio (60% in stocks) in recent years, for illustration, we will focus on the 50/50 portfolio
in this chapter. In fact, the 50/50 portfolio is recommended by Benjamin Graham in his
famous book “The Intelligent Investor” (Graham, 2003) for investors who cannot spare time
for deeper investigation into tactical asset allocation. It is also worth noting of the practical
applicability of considering a more aggressive benchmark choice, which may result in a riskier
allocation strategy with worse tail risk (van Staden et al., 2023a).

We remark that the reason why we only consider two assets is two-fold. Firstly, in
practice, retail investors are often choosing between a stock fund and a bond fund. Secondly,
the popular constant proportion strategies often only involve two assets. However, we note
that the proposed framework is readily applicable to more assets.

Finally, we remark that the stylized DC plan accumulation problem in this chapter is
a simplified version of the real-world investment scenario. When making an investment
decision in practice, an individual investor will inevitably need to consider some important
factors, e.g., medical expenditures, taxes, housing expenses and labor income, and other
financial assets, see Duarte et al. (2021).
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2.1.3 Optimization with an elevated target

Let the initial time t0 = 0 and consider the rebalancing schedule T :

T = {t0 = 0 < t1 < . . . < tN = T}. (2.1)

The fraction of total wealth allocated to each asset is adjusted at times tn, n = 0, . . . , N − 1,
with the investment horizon tN = T . We consider an investment problem in Na assets, an
active portfolio, and a benchmark portfolio.

Let W (tn) and Ŵ (tn) denote the wealth of the active portfolio and the benchmark port-
folio after cash injections at time tn. To mimic the typical DC plan account, we assume that
W (t0) = Ŵ (t0) = c(t0), where

{
c(tn), n = 0, · · · , N

}
represent an a priori specified cash

injection schedule which mimics the periodic DC plan contributions.

We denote the allocation at tn by an allocation vector p(tn), n = 0, . . . , N−1. Given the
allocation control vectors p(t0), p(t1), . . . , p(tN−1), the statistical properties of the terminal
wealth of the adaptive portfolio W (T ) can be determined. Similarly, given a benchmark
allocation vectors p̂(t0), p̂(t1), . . . , p̂(tN−1), the terminal wealth of the benchmark portfolio
Ŵ (T ) can also be determined. The time evolution of W (t) and Ŵ (t) is given by

W (tn+1) =
( Na∑

i=1

pi(tn) ·Ri(tn)
)
W (tn) + c(tn+1),

Ŵ (tn+1) =
( Na∑

i=1

p̂i(tn) ·Ri(tn)
)
Ŵ (tn) + c(tn+1),

n = 0, · · · , N − 1, (2.2)

where Ri(tn) is the return on asset i from tn to tn+1, and pi(tn), p̂i(tn) represent the allocation
fraction to asset i for the active portfolio and the benchmark portfolio.

Our goal is to design an objective function that produces an adaptive allocation strategy
(which dynamically allocates wealth over time) with a superior terminal wealth distribution
than the benchmark strategy. The first idea is to minimize some measure of underperfor-
mance against the benchmark. A natural choice is to quadratically penalize the underper-
formance of the terminal wealth of the adaptive strategy compared to a benchmark of a
fixed terminal wealth, as in Li and Forsyth (2019). Note, however, that in our case, the
benchmark target (i.e. the terminal wealth of the benchmark portfolio) is stochastic. This
leads to the following optimization problem (E[·] is the expectation operator):

min
p(t0),p(t1),...,p(tN−1)

E
[
min

(
W (T )− Ŵ (T ), 0

)2]
. (2.3)

Note that underperformance is quadratically penalized, which will discourage alloca-
tion to extremely risky assets. Unfortunately, an optimal solution to (2.3) is trivially the
benchmark strategy, i.e. p(tn) = p̂(tn),∀n, which indicates the formulation (2.3) does not
sufficiently capture the properties of the desired solution.

14



We propose to generate a more ambitious strategy by including an elevated target, esT ·
Ŵ (T ), in the objective function, i.e.,

min
p(t0),p(t1),...,p(tN−1)

E
[
min

(
W (T )− esT · Ŵ (T ), 0

)2]
. (2.4)

Here s is the yearly pre-determined target outperformance spread. Consequently, in an ideal
case, the adaptive strategy will have a terminal wealth of esT · Ŵ (T ) which indicates that
the adaptive strategy achieves an annual outperformance spread of return s compared to the
benchmark strategy.

However, due to the lack of penalty on the outperformance over the elevated target,
(2.4) still tends to yield fairly extreme risk-taking strategies, which results in large excessive
terminal wealth as well as large left tails of the terminal wealth distribution. To address this
undesirable situation, we introduce penalties for the outperformance of the elevated target.

One natural choice of including penalties on the outperformance part would be a sym-
metric quadratic penalty objective, i.e.

min
p(t0),p(t1),...,p(tN−1)

E
[(
W (T )− esT · Ŵ (T )

)2]
. (2.5)

However, (2.5) penalizes both the outperformance and the underperformance relative to the
elevated target equally. In practice, outperformance is preferred over underperformance.
Therefore, we introduce the following asymmetric objective, with a linear penalty on out-
performance, and a quadratic penalty on underperformance.

min
p(t0),p(t1),...,p(tN−1)

E
[(

min
(
W (T )− esT · Ŵ (T ), 0

))2
+max

(
W (T )− esT · Ŵ (T ), 0

)]
.

(2.6)

Figure 2.1 illustrates this asymmetric distribution shaping objective function.

By designing this asymmetric objective function, we not only avoid the extreme risk-
taking behavior of the strategies but also incentivize a more right-skewed terminal wealth
distribution compared to symmetric quadratic penalties as in (2.5), due to the more lenient
penalty on outperformance than underperformance. This will be empirically verified by nu-
merical experiments. In numerical tests (details in Appendix A.1), we find that the seemingly
minor difference in the asymmetric penalties indeed yields more favorable terminal wealth
distributions than the symmetric quadratic penalty objective function (2.5), suggesting that
(2.6) is the more suitable objective function to use.

While we choose the objective function (2.6) for outperforming a stochastic target in
this chapter, we note that distribution shaping objectives can be problem-dependent. If
an investor is concerned with left tail risk, then it may be appropriate to use an objective
function that minimizes Conditional Value at Risk (CVaR), for example, see Forsyth and
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Figure 2.1: Asymmetric distribution shaping objective function with elevated target esT ·
Ŵ (T ).

Vetzal (2019); Forsyth (2022). If an investor is concerned with path-dependent performance
measures such as draw-down and variation over time, then such measures should be incor-
porated into the objective function. For example, the quadratic variation penalty used in
Al-Aradi and Jaimungal (2018), which is the time-averaged instantaneous volatility relative
to a benchmark, can be introduced to penalize the deviation from the benchmark portfolio
on a running basis. In fact, in later chapters of this thesis, we will discuss examples with
path-dependent objective functions.

The above discussions mainly illustrate the challenges in specifying the appropriate objec-
tive functions for obtaining a desirable investment outcome, which is of practical importance
to investors. One attractive property of the proposed neural network approach is that it
can accommodate any continuously differentiable objective function. In practice, this al-
lows freedom in designing proper objective functions to shape the wealth distribution of the
strategies.

2.2 Neural network approach for solving the optimiza-

tion problem

If we postulate parametric stochastic processes for prices of the traded assets, mathemat-
ically, the controls p(t0), · · · p(tN−1) can be determined using dynamic programming via
solving a non-linear HJB PDE (e.g. Al-Aradi and Jaimungal (2018)). In the absence of any
closed-form solution, computing a solution to this problem numerically would be costly, par-
ticularly when the problem has a high dimension. Consider the simplest allocation problem,
for which the portfolio consists of a stock index and a bond index. In the case of discrete
rebalancing, the state variables would be the dollar amounts in the bond and stock indices,
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for both the adaptive and benchmark portfolios (Dang and Forsyth, 2014). Consequently,
even for this comparatively simple case, this would result in a four-dimensional HJB PDE.

Alternatively, recent advancement in reinforcement learning (RL) algorithms provides
another direction for numerically solving the controls using dynamic programming. For ex-
ample, Dixon et al. (2020); Park et al. (2020); Lucarelli and Borrotti (2020); Gao et al. (2020)
use Q-learning algorithms to solve the discrete-time multi-period optimal allocation problem.
In general, if there are Na assets to invest in, then the use of Q-learning involves approxima-
tion of an action-value function (“Q” function) which is a (2Na + 1)-dimensional function
(van Staden et al., 2023b) which represents the conditional expectation of the cumulative re-
wards at an intermediate state.1 Meanwhile, the optimal control is a mapping from the state
space to the allocation fractions to the assets. If the state space is relatively low-dimensional,
then the DP-based approaches are potentially unnecessarily high-dimensional.

Assume that samples of asset returns are available. These samples can come directly
from market observations or from simulations of postulated parametric models. Instead of
solving p(t0), . . . , p(tN−1) using dynamic programming, we propose a data-driven approach
as follows. We represent the optimal control as a function of feature vector X(t) (of state
variables), i.e., at tn,

p(tn) = p(X(tn))

Example 2.2.1 (Two asset problem with 50/50 benchmark). In the numerical examples,
we will focus on portfolios consisting of two assets: a stock index and a bond index. The
benchmark portfolio in this case will be a constant proportion strategy, with 50% stocks and
50% bonds. We will denote the wealth of the benchmark strategy in this case as W50/50(t).
For this example, for the stochastic target pension allocation problem, we use three features:

(i) W (t), the wealth of the adaptive portfolio at t.

(ii) W50/50(t), the wealth of the constant proportion portfolio at t.

(iii) T − t, time remaining in the investment period.

Therefore, the feature vector X(t) =
(
W (t),W50/50(t), t

)
. In the cases that stochastic pro-

cesses such as multi-dimensional jump-diffusion processes are assumed, then it can be shown
(in the absence of transaction costs) that the controls are only a function of these features
(Dang and Forsyth, 2014), i.e. X(t) represent the state variables.

We remark that the feature vector X(t) for Example 2.2.1 is different from the features
in Samo and Vervuurt (2016) which explicitly include security prices. Instead, at time t, the
feature set consists of the accumulated wealth at t from allocation strategy and benchmark
strategy, which depends on the returns of traded assets from prior periods. Traded asset

1Intuitively, the dimensionality comes from tracking the allocation in the Na assets for both the active
portfolio and benchmark portfolio when evaluating the changes in wealth of both portfolios over one period
in the action-value function.
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prices are not directly used as features for the neural network model. This is essentially
because the stochastic model for asset prices is assumed to be available upfront, and that the
market impact from rebalancing of the portfolio is negligible. In addition, since we evaluate
the performance of a trading strategy based on the terminal wealth W (T ), the trading
decision at time t only depends on the current accumulated wealth and return distribution of
future trading periods. Unless the asset price has predictability in its future return, including
the prices as features is redundant in this context and will likely lead to overfitting of the
model. However, in such scenarios, additional investment signals such as price momentum
can be incorporated as additional features to our neural network model without technical
challenge.

It is worth noting some recent literature also proposes to approximate the optimal con-
trol function by neural network functions directly (Han et al., 2016; Tsang and Wong, 2020).
However, they propose a stacked neural network approach that essentially uses a sub-network
to approximate the control at every rebalancing step. Therefore, the number of neural net-
works required grows linearly with the number of rebalancing periods, which is computa-
tionally inefficient compared to our method which only involves training one single neural
network. In addition, the stacked neural network method may not be suitable for approxi-
mating control functions that are smooth in time.

In this chapter, we use a two-layer neural network as the functional form to approximate
the optimal control. As a result, the goal of the optimization problem is to find the optimal
parameters of this shallow neural network.

F1

F2

F3

h1

h2

h3

p1

p2

Hidden
layer

Input
layer

Output
layer

Figure 2.2: A 2-Layer NN representing the control functions

Assume that h ∈ RH is the output of the hidden layer. Let the matrix z ∈ RDH be the
weights from the input features X(tn) ∈ RD to the hidden nodes h. We use the sigmoid
activation function,

σ(u) =
1

1 + e−u
,

and have
hj(X(tn)) = σ(Xi(tn)zij) .

18



Here we use the double summation convention for simplicity, i.e.

Xi(tn)zij ≡
D∑
i=1

Xi(tn)zij, j = 1, ..., H .

At the output layer, we use the softmax function as the activation function. Let the
matrix x ∈ RHNa be the weights for the output layer. For asset m, the asset allocation on
this asset is given by:

pm(X(tn)) =
exkmhk(X(tn))∑
i e

xkihk(X(tn))
, 1 ≤ m ≤ Na .

Note that with the softmax activation function, the following constraint is automatically
satisfied

0 ≤ p(X(tn)) ≤ 1, 1⊤p(X(tn)) = 1 .

This enforces the constraints of no shorting and no leverage. In addition, insolvency cannot
occur.

The dynamics of the terminal wealth of the adaptive portfolio then becomes
W (tn+1) =

( Na∑
i=1

pi(X(tn)) ·Ri(tn)
)
W (tn) + c(tn+1),

Ŵ (tn+1) =
( Na∑

i=1

p̂i(tn) ·Ri(tn)
)
Ŵ (tn) + c(tn+1),

n = 0, · · · , N − 1. (2.7)

We approximate the expectation in equation (2.6) by a finite number of wealth samples of
W (T ), computed from return samples of R(tn) obtained by bootstrapping the historical data.
Let W ℓ(T ), Ŵ ℓ(T ) be the final wealth samples for the adaptive and benchmark strategies,
obtained using equation (2.7), along the ℓth return sample path Rℓ(tn), n = 0, 1, . . . , N − 1 .

Denote

g(x) ≡ min
(
x, 0
)2

+max
(
x, 0
)
. (2.8)

The expectation in equation (2.6) is approximated by

E
[
g(W (T )− esT · Ŵ (T ))

]
≃ 1

L

ℓ=L∑
ℓ=1

g(W ℓ(T )− esT · Ŵ ℓ(T )) (2.9)

Since the approximate function on the right-hand side of (2.9) is a nonconvex, continuous
but piecewise differentiable function of the NN weights, solving the optimization problem is
challenging.

We recognize however that E
[
g(W (T ) − esT · Ŵ (T ))

]
is a continuously differentiable

function of the NN weights assuming that the return distribution is continuous. This mo-
tivates us to use the smoothing technique from Alexander et al. (2006). Instead of using
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the non-smooth objective function (2.6), in equation (2.9), we replace g(x) by the smoothed
approximation ḡ(x), to obtain a continuously differentiable approximation,

ḡ(x) =


x, if x > ϵ ,
x2

4ϵ
+ 1

2
x+ 1

4
ϵ, if −ϵ ≤ x ≤ ϵ ,

(x+ ϵ)2, if x < −ϵ ,
(2.10)

where ϵ is a predetermined small number. Since we are essentially optimizing the parameters
x and z, we write the final problem as

min
x,z

1

L

ℓ=L∑
ℓ=1

ḡ(W ℓ(T )− esT · Ŵ ℓ(T )) . (2.11)

Similar to Li and Forsyth (2019), we use the trust region optimization method (Coleman
and Li, 1996) to solve the resulting optimization problem.

We note that problem (2.11) is an unconstrained optimization problem with H(D +
Na) variables, i.e., the entries of the parameter matrices x and z. More specifically, the
optimization method requires the evaluation of the objective function, its derivative with
respect to the weight parameters x and z, and the Hessian matrix. Each objective function
evaluation costs O(H(D+Na)NL), or O(L) assuming a fixed NN model structure and fixed
rebalancing schedule.

For the gradient evaluation, we note that

∇x,z

(
1

L

ℓ=L∑
ℓ=1

ḡ(W ℓ(T )− esT · Ŵ ℓ(T )

)
(2.12)

=
1

L

ℓ=L∑
ℓ=1

∇W ℓ(T )ḡ · ∇x,zW
ℓ(T ). (2.13)

Since ∇W ℓ(T )ḡ is a fixed number and only requires constant effort, when calculating
the computational cost, we only care about ∇x,zW

ℓ(T ). We note the following induction
relationship:

∇x,zW
ℓ(tn+1) (2.14)

=∇x,z

(
p(tn)

⊤Rℓ(tn)
(
W ℓ(tn) + q(tn)

))
(2.15)

=
(
∇x,zp(tn)

)⊤ ·Rℓ(tn)W
ℓ(tn) + p(tn)

⊤Rℓ(tn) ·
(
∇x,zW

ℓ(tn)
)
. (2.16)

Since the computational cost of evaluating ∇x,zp(tn) is O(H(D+Na)), we know from (2.14)
that the computational cost of evaluating ∇x,zW

ℓ(T ) is O(H(D + Na)N). Therefore, the
total computational cost for evaluating all gradients over L paths is O(H(D +Na)NL).
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Thus the cost of evaluating the gradient is O(H(D+Na)NL). The Hessian matrix used in
the optimization is evaluated numerically using the finite difference method and thus has the
computational cost of O(H2(D +Na)

2NL). Given the objective function/gradient/Hessian
matrix, solving the trust region sub-problem requires O(H3(D+Na)

3). Since we are propos-
ing a shallow network approach, H(D + Na) is often small. For example, in the two-
asset example presented in this chapter, H(D + Na) = 15, and thus the objective func-
tion/gradient/Hessian evaluations become the dominant cost and the trust region method
optimization evaluation cost is negligible.

2.3 Non-parametric data bootstrap resampling

Success in data-driven learning critically depends on the efficient use of data. Standard
machine learning measures success based on testing the model performance on unseen data
which are assumed to have the same distribution as the training data. In other words, test
results are typically computed based on test samples from the same distributions as training
samples.

Unfortunately, for the training of the optimization problem (2.11), we only have access
to a single path of historical returns. This lack of data presents a unique challenge in data-
driven financial model learning.

For financial model learning and testing, it is a common practice to train and test strategy
performance by splitting the historical market data path into two segments - one for training
and the other for testing. A critical problem in this approach is insufficient data for robust
learning and testing. This is especially problematic in the context of pension planning due
to the long-term investment horizon.

Li and Forsyth (2019) use block bootstrap resampling to generate training and testing
data in data-driven financial decision learning. Standard block bootstrap resampling is
done by dividing the historical market sequential data into blocks with fixed blocksizes and
randomly choosing blocks to construct the bootstrap resampled data series. To reduce the
impact of a fixed blocksize and to mitigate the edge effects at each block end, the stationary
block bootstrap (Patton et al., 2009; Politis and White, 2004) can be used. A single bootstrap
resampled path is constructed as follows.

• First, randomly select a block of the historical market data time series with replace-
ment. The blocksize is randomly sampled from a shifted geometric distribution with
an expected blocksize b̂. The optimal choice for b̂ is determined using the algorithm
described in (Patton et al., 2009).

• Repeat the previous step and concatenate the new block after the existing data series
until the new resampled path has reached the desired length.
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• If the selected block exceeds the range of historical data, wrap around the historical
data as in the circular bootstrap method (Politis and White, 2004; Patton et al., 2009).

Algorithm 2.3.1 presents the pseudocode for the stationary block bootstrap method.

Algorithm 2.3.1: Pseudocode for stationary block bootstrap

/* initialization */

bootstrap samples = [ ];
/* loop until the total number of required samples are reached */

while True do
/* choose random starting index in [1,...,N], N is the index of the

last historical sample */

index = UniformRandom( 1, N );
/* actual blocksize follows a shifted geometric distribution with

an expected value of exp block size */

blocksize = GeometricRandom( 1
exp block size

);

for i = 0; i < blocksize; i = i+ 1 do
/* if the chosen block exceeds the range of the historical data

array, do a circular bootstrap */

if index + i > N then
bootstrap samples.append( historical data[ index + i - N ] );

else
bootstrap samples.append( historical data[ index + i ] );

end
if bootstrap samples.len() == number required then

return bootstrap samples;
end

end

end

In Li and Forsyth (2019), the training data set is generated using stationary block re-
sampling with one expected blocksize, and the testing data set is generated with a different
expected blocksize. As Politis and Romano (1994) point out, changing the expected block-
sizes for block bootstrap resampling essentially changes the distribution of the bootstrap
resampled data paths. Consequently, such training and testing assessments actually perform
out-of-distribution tests.

Intuitively, using the block bootstrap resampling time-series financial market data also
seems natural. We have trained a model, considering all permutations of the financial mar-
ket data with respect to different and random concatenations of time horizons. In addition,
testing has been performed on a different sampling distribution of the financial market ran-
dom horizon concatenations, since the testing data uses a different expected blocksize from
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that of the training data. Indeed, evaluating testing performance in this fashion seems to
uphold a more stringent standard in comparison to the standard machine learning approach
which evaluates testing performance assuming (unseen) testing samples are from the same
distribution of the training data.

2.3.1 Probability of repeating paths

Still, one may have concerns that when the training data and testing data are block bootstrap
resampled from the same underlying historical market data sequence, one path may appear
in both training and testing data sets so that the model may benefit from such an unfair
advantage. To address such concerns, we establish a theoretical bound on the probability of
training and testing sample sequences being exactly the same and show that the empirical
probability is exceedingly low in the experiments.

For a path P , we use the following notations:

b̂ = expected blocksize in stationary block bootstrap

N = number of total datapoints in the path

Ntot = number of total datapoints to bootstrap from

P [i] = the ith data point in path P
(2.17)

We also introduce the following definitions.

Definition 2.3.1. Assume that a path P of length N , which contains blocks [B1, . . . Bk], is
resampled from the original data path of length Ntot. The decision index list [I1, . . . , Ik] of
the path P is defined as the list of starting indices of every block in the resampled path with
I1 = 1, Ii = 1 +

∑i−1
j=1 |Bj|, i = 2, . . . k, where |Bj| denotes the number of points in the block

Bj. If Ik is the starting index of the last block in the path, then, for index completeness, we
define Ik+1 ≡ N + 1.

Remark 2.3.1 (Decision index list example). Given a decision index list [I1, . . . , Ik], asso-
ciated with a path P , then the data point of the path, which starts at decision index Ii, is
P [Ii].

Definition 2.3.2. For any two paths P1 and P2 of length N , the combined decision
index list of P1 and P2 is the merged index list (with only a single copy of each index) of
the decision index lists of P1 and P2. The merged list [I1, . . . , Ip] retains the order properties
of the original lists, i.e. Ii+1 > Ii and Ip+1 = N + 1.

Definition 2.3.3. For any two paths P1 and P2, we define Ncdi(P1,P2) as the length of the
combined decision index list of P1 and P2.
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Lemma 2.3.1. Consider either the fixed block resampling or stationary resampling from
a sequence of Ntot distinct observations. Two paths P1 and P2 with [I1, I2, . . . , Icdi] as the
combined decision index list are identical if and only P1[Ij] = P2[Ij] at any Ij, j = 1, . . . , Ncdi.

Proof. First, P1 equals to P2 clearly implies that P1[Ij] = P2[Ij] at any Ij, j = 1, . . . , Ncdi.
Conversely, assume that P1[Ij] = P2[Ij], j = 1, . . . , Ncdi. For any j, j = 1, . . . , Ncdi, the entire
segment P1[Ij], . . . ,P1[Ij+1 − 1] is from the same resampled subblock of the original data.
Similarly, the entire segment P2[Ij], . . . ,P2[Ij+1 − 1] is from the same resampled subblock of
the original data. Since P1[Ij] = P2[Ij], then P1[Ij], . . . ,P1[Ij+1−1] and P2[Ij], . . . ,P2[Ij+1−
1] are identical. Thus, the entire paths P1 and P2 are identical.

Theorem 2.3.1. Consider generating a sequence of N data points using fixed block resam-
pling from a sequence of Ntot distinct observations. Let path P1 be a bootstrap resampled path
with a fixed blocksize of b1 and path P2 be a bootstrap resampled path with a fixed blocksize

of b2. Then the probability of P1 and P2 being identical is ( 1
Ntot

)
lcm(N

b1
,N
b2

)
, where lcm(a, b) is

the least common multiple of integer a, b.

Proof. Let I denote the combined decision index list of P1 and P2, with Ncdi denoting the
total number of combined decision points and Ij denoting the jth index within I.

From Lemma 2.3.1, two paths are identical if and only if P1[Ij] = P2[Ij] at any Ij,
j = 1, . . . , Ncdi.

For any j = 1, . . . , Ncdi, since each starting point of either P1 or P2 is chosen indepen-
dently with equal probability P(P1[Ij] = P2[Ij]) =

1
Ntot

. Then,

P(P1[Ij] = P2[Ij], j = 1, . . . , Ncdi(P1,P2)) =

Ncdi(P1,P2)∏
j=1

P(P1[Ij] = P2[Ij])

=
( 1

Ntot

)Ncdi(P1,P2)

.

SinceNcdi(P1,P2) = lcm(N
b1
, N
b2
), the probability of P1 and P2 being identical is (

1
Ntot

)
lcm(N

b1
,N
b2

)
.

Example 2.3.1. To put Theorem 2.3.1 into perspective, assume a fixed blocksize for the
training paths of 6 months, and a fixed blocksize for the testing path of 24 months (or 2
years). Consider a 30-year investment horizon of monthly return paths randomly generated
from historical monthly data over 90 years, i.e. N = 30 × 12 = 360 and Ntot = 90 ×
12 = 1080. Then the probability of a training path being identical to a testing path is
( 1
1080

)lcm( 360
6

, 360
24

) = ( 1
1080

)60 < 10−180. Assume that we use a total of 100,000 training paths
in the training data and 10,000 testing paths in the testing data. By the union bound, the
probability of the existence of a pair of identical training and testing paths is bounded by
100, 000× 10, 000× 10−180 = 10−171.
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Next, we consider the stationary block bootstrap resampling, in which the blocksizes are
randomly generated from a shifted geometric distribution. We first establish a few properties
and lemmas to set up the proof for the main theorem.

Properties 2.3.1 (Properties of a Geometric Distribution). Suppose the integer m > 0 is
drawn from a shifted geometric distribution, with E[m] = 1/p, then

P[m = k] = (1− p)k−1p

P[m ≥ k] = (1− p)k−1 . (2.18)

We rewrite equation (2.18) in a form amenable to manipulation. Let

(1− p) = e−λ , (2.19)

so that equation (2.18) becomes

P[m = k] = e−λk(eλ − 1)

P[m ≥ k] = e−λ(k−1)

λ = − log[1− p] . (2.20)

Denote the expected blocksize by b̂, then in our case, p = 1/b̂, and consequently

λ = − log

[
1− 1

b̂

]
. (2.21)

Lemma 2.3.2. Suppose [I1, . . . , Ik] is the decision index list of a block resampled path of
length N with the expected blocksize of b̂. Then the probability of the decision index list
[I1, . . . , Ik] occurring is e−λ(N−1)(eλ − 1)k−1, with λ = − log[1− 1

b̂
].

Proof. By definition, Ij+1 > Ij for any j = 1, . . . , k − 1, and Ik+1 = N + 1. The probability
of path P having [I1, . . . , Ik] as the decision index list is equal to the probability of path P
having the first block with blocksize of I2− I1, . . ., the kth block with blocksize of Ik+1− Ik.
Denote the blocks of path P as B1, . . . , Bk. According to Properties 2.3.1,

P(blocksize(Bj) = Ij+1 − Ij) =

{
e−λ(Ij+1−Ij)(eλ − 1), if j < k

e−λ(Ik+1−Ik−1), if j = k

The probability of path P having [I1, . . . , Ik] as the decision index list is

k∏
j=1

P(blocksize(Bj) = Ij+1 − Ij) = e−λ(Ik+1−I1−1)(eλ − 1)k−1 = e−λ(N−1)(eλ − 1)k−1.
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Lemma 2.3.2 shows that the probability of a stationary block resampled path P with an
expected blocksize of b̂ having a decision index list is uniquely determined by the expected
blocksize b̂, the path length N , and the length of the decision index list k.

Lemma 2.3.3. Suppose two paths P1 and P2 of the length N are generated by stationary
block bootstrap resampling with the expected blocksizes of b̂1 and b̂2 respectively. Then

P(Ncdi(P1,P2) = k) =

(
N − 1

k − 1

)
e−(λ1+λ2)(N−1)(eλ1+λ2 − 1)k−1

λ1 = − log

[
1− 1

b̂1

]
; λ2 = − log

[
1− 1

b̂2

]
. (2.22)

Proof. Let f(b̂, n) denote the occurrence probability of a stationary block resampled path of
length N with the expected blocksize of b̂ and a decision index list of length n (this is given
by Lemma 2.3.2).

Suppose [I1, . . . , Ik] is a combined index list of any two paths P1 and P2. Let v be
the number of overlapped indices and i be the number of non-overlapped indices for P1

respectively, corresponding to [I1, . . . , Ik].

Enumerating the possible values for v, the number of overlapped indices and values for
i, the number of non-overlapped indices in P1, the probability of a combined decision index
list [I1, . . . , Ik] occurring equals

k∑
v=1

((k − 1

v − 1

) k−v∑
i=0

(
k − v

i

)
f(b̂1, v + i)f(b̂2, k − i)

)
. (2.23)

Note that

k∑
v=1

((k − 1

v − 1

) k−v∑
i=0

(
k − v

i

)
f(b̂1, v + i)f(b̂2, k − i)

)
=

k∑
v=1

((k − 1

v − 1

) k−v∑
i=0

(
k − v

i

)
e−λ1(N−1)(eλ1 − 1)v+i−1e−λ2(N−1)(eλ2 − 1)k−i−1

)
=e−(λ1+λ2)(N−1)

k∑
v=1

((k − 1

v − 1

)(
eλ1+λ2 − eλ1 − eλ2 + 1

)v−1
( k−v∑

i=0

(
k − v

i

)
(eλ1 − 1)i(eλ2 − 1)k−v−i

))
=e−(λ1+λ2)(N−1)

k∑
v=1

((k − 1

v − 1

)(
eλ1+λ2 − eλ1 − eλ2 + 1

)v−1
(
eλ1 + eλ2 − 2

)k−v)
=e−(λ1+λ2)(N−1)(eλ1+λ2 − 1)k−1.

Since there are
(
N−1
k−1

)
combinations of the decision index list of length k, we conclude

P(Ncdi(P1,P2) = k) =

(
N − 1

k − 1

)
e−(λ1+λ2)(N−1)(eλ1+λ2 − 1)k−1.
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Using Lemma 2.3.1 and Lemma 2.3.3, we establish the probability of two paths generated
with stationary block bootstrap resampling being identical.

Theorem 2.3.2. Consider generating a sequence of N data points using stationary block
resampling from a sequence of Ntot distinct observations. Let P1 and P2 be two paths gener-
ated from the stationary block bootstrap resampling from this observation sequence with the
expected blocksizes of b̂1 and b̂2 respectively, and both have a length of N . The probability of
P1 and P2 being identical is

1

Ntot

((
1− 1

b̂1

)(
1− 1

b̂2

)
+

1

b̂1
+ 1

b̂1
− 1

b̂1b̂2

Ntot

)N−1

.

Proof. Using Lemma 2.3.1, P1 = P2 if and only if the observations from P1 and P2 are equal
at each of the indexes in the combined decision index list. Thus,

P
(
P1 = P2|Ncdi(P1,P2) = k

)
=

(
1

Ntot

)k

.

Additionally, following Lemma 2.3.3, we have

P(P1 = P2) =
N∑
k=1

P
(
Ncdi(P1,P2) = k

)
· P
(
P1 = P2|Ncdi(P1,P2) = k

)
=

N∑
k=1

(
N − 1

k − 1

)
e−(λ1+λ2)(N−1)(eλ1+λ2 − 1)k−1(

1

Ntot

)k

=
e−(λ1+λ2)(N−1)

Ntot

N∑
k=1

(
N − 1

k − 1

)(eλ1+λ2 − 1

Ntot

)k−1

=
e−(λ1+λ2)(N−1)

Ntot

(
1 +

eλ1+λ2 − 1

Ntot

)N−1

=
1

Ntot

(
e−(λ1+λ2) +

1− e−(λ1+λ2)

Ntot

)N−1

=
1

Ntot

((
1− 1

b̂1

)(
1− 1

b̂2

)
+

1

b̂1
+ 1

b̂1
− 1

b̂1b̂2

Ntot

)N−1

.

Example 2.3.2. Consider the following example. If the training paths are bootstrap
resampled with an expected blocksize of 6 months (0.5 years) and the testing paths with an
expected blocksize of 24 months (2 years), and N = 30 × 12 = 360 (30-year horizon) and
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Ntot = 90 × 12 = 1080 (90 years of historical monthly return data). If the training data
set consists of a total of 100,000 training paths and the testing data set consists of 10,000
testing paths, by union bound, the probability of observing a pair of training and testing
paths being identical is bounded by 100, 000× 10, 000× 8.737× 10−39 < 10−29.

Therefore, even when the training set and testing set are generated from the same data
sequence, the probability of observing the same path in the training and testing data set is
near zero. This suggests that using the block bootstrap resampling to generate training and
testing data sets is a robust method for enhancing data for the learning framework.

Remark 2.3.2. Under stationary block bootstrap, a path is likely to have large actual
blocksizes even if the expected blocksize is relatively small, which can result in a higher
probability of observing two identical paths than under fixed block bootstrap. For example,
a path with an expected blocksize of 10 years has a 5% probability of only containing one
block of 30 years, which increases the probability of one path being identical to another path,
according to Theorem 2.3.2.

2.4 Numerical experiments

In this section, we evaluate the performance of the proposed data-driven approach for out-
performing a stochastic target in the context of the accumulation phase of a 30-year DC
pension plan. In the numerical experiments, we focus on portfolios with only two assets: a
stock index and a bond index, as described in Example 2.2.1. The benchmark portfolio is a
constant weight strategy, which is rebalanced to 50% bonds and 50% stocks annually. We
denote the wealth of the benchmark strategy at time t by W50/50(t).

Before we discuss the numerical results, we first recall the concept of partial stochastic
dominance, which is useful for the evaluation of the relative performance of investment
strategies.

Suppose two investment strategies A and B are evaluated on a set of data samples under
the same investment scenario. We consider the cumulative distribution functions (CDF)
of terminal wealth W associated with both strategies. Specifically, we denote the CDF of
strategy A by CDFA(W ) and that of strategy B by CDFB(W ). Let WT be the random
wealth at time T and W be a possible wealth realization, then we can interpret CDFA(W )
as

CDFA(W ) = Prob(WT ≤ W ) . (2.24)

Following Atkinson (1987); van Staden et al. (2021), we define partial first-order stochas-
tic dominance.

Definition 2.4.1 (Partial first-order stochastic dominance). Given an investment strategy
A which generates a CDF of terminal wealth W given by CDFA(W ), and a strategy B with
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CDFB(W ), then strategy A partially stochastically dominates strategy B (to first order) in
the interval (Wlo,Whi) if

CDFA(W ) ≤ CDFB(W ), ∀W ∈ (Wlo,Whi) (2.25)

with strict inequality for at least one point in (Wlo,Whi).

The arguments for relaxing the usual definition of stochastic dominance are given in
(Atkinson, 1987; van Staden et al., 2021). Given some initial wealth W0, if Whi ≫ W0, then
an investor may not be concerned that strategy A underperforms strategy B at these very
high wealth values. In this case, the investor is already fabulously wealthy. Suppose that
Wlo ≪ W0, and assume CDFA(Wlo) = CDFB(Wlo). As an extreme example, suppose Wlo =
two cents. The fact that strategy B has a higher probability of ending up with one cent
compared with strategy A is cold comfort, and not particularly interesting. On the other
hand, suppose CDF(Wlo) ≪ 1. Again, an investor may not be interested in these events
with exceptionally low probabilities.

Remark 2.4.1. (Intuition behind partial stochastic dominance). Strategy A stochastically
dominates Strategy B if Definition 2.4.1 holds with (Wlo, Whi) = (-∞, +∞). In this case,
any investor who prefers more wealth rather than less wealth will prefer strategy A.
Partial stochastic dominance generalizes this so that Strategy A will be preferred over Strat-
egy B, except for cases which the investor does not think are relevant. This is a practically
useful definition since pure first-order stochastic dominance is rare.

2.4.1 Original data and augmentation

Our main objective here is to consider the core allocation problem between a risky asset (i.e.
stocks) and a defensive asset (i.e. bonds).

To that end, we use monthly historical data from the Center for Research in Security
Prices (CRSP) from January 1, 1926, to December 31, 2015.2. Specifically, we use the CRSP
3-month Treasury bill (T-bill) index and the CRSP cap-weighted total return index. The
latter index includes all distributions for all domestic stocks trading on major U.S. exchanges.
Since both indexes are in nominal terms, we adjust them for inflation using the U.S. CPI
index, also supplied by CRSP. We use real indexes since investors saving for retirement
should be focused on real (not nominal) wealth goals. Note that Li and Forsyth (2019),
in the context of a fixed (non-stochastic) target-based objective function, have also tested
the use of the CRSP capitalization-weighted index (as the risky asset) and the ten-year
treasury bond index (as the defensive asset). The control strategies are qualitatively similar

2More specifically, results presented here were calculated based on data from Historical Indexes, ©2015
Center for Research in Security Prices (CRSP), The University of Chicago Booth School of Business. Whar-
ton Research Data Services was used in preparing this chapter. This service and the data available thereon
constitute valuable intellectual property and trade secrets of WRDS and/or its third-party suppliers.
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for either choice of the risky and the defensive asset. We have also carried out similar tests
for the stochastic benchmark objective function. The results, using a ten-year treasury as
the defensive asset, can be found in Section 3.2. For simplicity here, we will focus on the
CRSP index and the 3-month T-bill case.

For the stock index and bond index, Table 2.1 shows the optimal expected blocksize for
each index estimated from the historical data. When using the resampling method in the
proposed data-driven NN approach, we simultaneously sample the same time block across all
asset data sets (i.e. the stock index and bond index). Since the optimal blocksize varies with
the index, it is not clear which blocksize to use since we need to simultaneously resample
both indices. Consequently, we will carry out tests with a variety of blocksizes, in the ranges
reported in Table 2.1.

Data Series
Optimal expected

block size b̂ (months)
Real 3-month T-bill index 50.1
Real CRSP cap-weighted index 1.8

Table 2.1: Optimal expected blocksize b̂ = 1/v when the blocksize follows a geometric
distribution Pr(b = k) = (1 − v)k−1v. The algorithm in Patton et al. (2009) is used to
determine b̂.

2.4.2 Experiment setting

As discussed in Section 2.1.2, we use an example of an investor in a DC plan to illustrate
the application of the data-driven methodology. In the numerical experiment, we assume an
investor starts with zero wealth (balance) in the DC plan and makes a real cash injection
of 10 per year3 for 30 years. At the beginning of every year, the investor has the choice to
rebalance the DC portfolio and change the allocation weights to a stock index fund and a
bond index fund. The market data is generated following the methodology in Section 2.4.1.

Here we list the parameters used in training and testing the proposed data-driven ap-
proach:

• L: a total of L = 100, 000 bootstrap paths are used for training;

• Ltest: a total of Ltest = 10, 000 paths are bootstrap resampled from a different expected
blocksize than the training data for testing the strategy performance;

• W (0): initial wealth is W (0) = 0;

• T : the entire investment period is T = 30 years;

3We will use thousands of dollars as the unit of wealth
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• N : the entire period is divided into N = 30 periods. At the beginning of each period
rebalancing occurs, i.e., annual rebalancing;

• q: annual cash injection is q = 10;

• s: the annual target outperformance rate s = 1% for calculating the elevated target
esT · W50/50(T ), where W50/50(T ) is the terminal wealth of the constant proportion
portfolio;

• 3 features:

– T − t: time remaining in the investment period,

– W (t): wealth of the adaptive portfolio at time t,

– W50/50(t): wealth of the constant proportion portfolio at time t.

We remark that in this numerical example, we are assuming annual contributions of a
fixed dollar amount, in real terms (inflation-adjusted). We are aware that many pensioners
care about the replacement rate (percentage of annual employment income replaced by re-
tirement income) which measures how well retirees can maintain their lifestyles in retirement.
In fact, depending on specific assumptions about the salary, we can scale up the cash con-
tribution number to estimate whether a good replacement rate can be achieved. We present
a realistic example at the end of Section 2.4.6 which shows that an investor can expect to
achieve a reasonable level of replacement income in 30 years following the DC plan strategy.

It is also worth noting that we do not consider transaction costs in the experiment. The
reasoning for this assumption is two-fold. Firstly, we consider index funds as investment
assets, which usually enjoy low transaction fees. Secondly, the portfolio does not have
frequent rebalancing. Particularly, in the DC plan example, we consider yearly rebalancing,
and the transaction cost associated with the rebalancing is unlikely to cause any meaningful
impact on the strategy.

2.4.3 Strategy performance and characteristics

We now evaluate the performance of the optimal adaptive strategy trained on bootstrap
resampled data. First, we show the performance of the optimal adaptive strategy trained
on the bootstrap resampled data with the expected blocksize b̂ = 0.5 years, and tested on
bootstrap resampled data with expected blocksize of b̂ = 2 years, which is the average optimal
blocksize.4

4In fact, the strategy performance using alternative training-testing expected blocksize pairs is qualita-
tively similar (see Section 3.4).
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Training Results on Bootstrap Data: Expected Blocksize b̂ = 0.5 years

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))
constant proportion(p = 0.5) 678 276 624 0.50 0.84
adaptive 963 474 913 0.27 0.50

Testing Results on Bootstrap Data: Expected Blocksize b̂ = 2 years

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))
constant proportion(p = 0.5) 679 267 629 0.50 0.84
adaptive 962 449 921 0.26 0.50

Table 2.2: Terminal wealth statistics of the optimal adaptive strategy, trained on bootstrap
resampled data with blocksize b̂ = 0.5 years and tested on bootstrap resampled data with
blocksize b̂ = 2 years.

Table 2.2 reports performance statistics and the probability of the terminal wealth being
less than the median of the terminal wealth of both strategies. From Table 2.2 , we observe
that

• The median and mean terminal wealth of the optimal adaptive strategy are significantly
higher than the constant proportion strategy.

• The optimal adaptive strategy has only 26% probability of achieving a lower ter-
minal wealth than the median terminal wealth of the constant proportion strategy
(median(WCP

T )), while the constant proportion strategy has an 84% probability of
achieving a lower terminal wealth than the median terminal wealth of the NN adaptive
strategy (median(WNN

T )).

It is also worth noting that the standard deviation of the terminal wealth of the optimal
adaptive strategy is higher than the standard deviation of the terminal wealth of the constant
proportion strategy. In the context of dynamic trading, a higher standard deviation does not
imply that the performance of the strategy is poor. In fact, we can observe from Figure 2.3a
that the distribution of the terminal wealth of the optimal adaptive strategy is significantly
more right-skewed. A higher standard deviation of terminal wealth is desirable in the right-
skewed situation (van Staden et al., 2021). This illustrates why standard deviation and
Sharpe Ratio are poor measures of risk for inherently non-linear strategies (Lhabitant, 2000).
In fact, the optimal adaptive dynamic strategy has properties in common with option-based
strategies.

In addition, Figure 2.3a shows that the adaptive strategy achieves partial stochastic
dominance over the constant proportion strategy, which indicates that the adaptive strategy
has a more favorable terminal wealth distribution.

We note that the terminal wealth distribution of the optimal adaptive strategy has a
slightly worse left tail than the constant proportion strategy. The 5% VaR of terminal
wealth (i.e. the 5th percentile of terminal wealth distribution) is 326 for the optimal adaptive
strategy and 338 for the constant proportion strategy.5 In fact, from Table 2.3 we can observe

5We measure quantiles of the terminal wealth, not losses. Hence a larger value of VaR is more desirable,
i.e. has less risk.
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data with b̂=2 years)

that the adaptive strategy has worse 5% and 1% VaR and CVaR (Conditional Value at Risk,
i.e. the average terminal wealth value in the tail percentiles) than the constant proportion
strategy.

VaR and CVaR on Testing Data
Strategy 5% VaR 5% CVaR 1% VaR 1% CVaR
constant proportion(p = 0.5) 338 294 265 238
adaptive 326 253 201 169

Table 2.3: VaR and CVaR of the terminal wealth of the adaptive strategy and constant
proportion strategy.

These tail events occur when the bootstrapped paths correspond to consistently bearish
market periods when stocks underperform bonds for a long period of time. Recall that the
objective function in (2.6) is to determine a strategy with the terminal wealth achieving a
certain premium over the benchmark strategy, rather than to optimize the tail risk metrics
of the adaptive strategy such as VaR and CVaR.

In other words, the objective function is designed to optimize the pathwise terminal
wealth difference between the adaptive strategy and the constant proportion strategy, hence
the idea of “beating the stochastic benchmark target”. Figure 2.3b shows the cumulative
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distribution function (CDF) of the wealth difference W (T ) − W50/50(T ) that provides a
more direct comparison between the optimal adaptive strategy and the constant proportion
strategy along the same paths. From Figure 2.3b, we can observe that the probability of the
optimal adaptive strategy underperforming the constant proportion strategy is less than 10%.
When underperformance occurs, the magnitude of underperformance is small compared to
the magnitude of outperformance.

If reducing the tail risk has a higher priority in the investment plan, a tail-risk measure
such as CVaR can be included in the objective function accordingly. This, of course, will
produce a lower probability of pathwise outperformance over the benchmark strategy. How-
ever, the proposed framework can be similarly adopted by including suitable optimization
methods for CVaR optimization, see, e.g., Alexander et al. (2006); van Staden et al. (2021);
Forsyth (2022).

So far, we have analyzed and compared the overall performance based on terminal wealth.
Next, we provide more detailed comparisons of the various characteristics of the strategies.

Since the objective function for the optimal control (2.6) is defined in terms of the terminal
wealth, we examine how the optimal adaptive strategy performs over the entire investment
period.
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Figure 2.4: Wealth difference and relative wealth difference over time: W (t) denotes the
optimal adaptive is wealth and W50/50(t) denotes the benchmark

Figure 2.4 graphs the average and various percentiles of the wealth difference W (t) −
W50/50(t) and the relative wealth difference

W (t)−W50/50(t)

W50/50(t)
over the investment horizon. From

Figure 2.4, we observe that
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• With a high probability, the optimal adaptive strategy achieves higher wealth than the
constant proportion strategy over time.

• The outperformance of the optimal adaptive strategy in terms of the relative wealth
difference is not as significant as the wealth difference in dollar values.

The observations indicate that a larger outperformance of the optimal adaptive strategy
often occurs when the constant proportion strategy performs well. Nevertheless, the out-
performance of the optimal adaptive strategy in terms of the relative wealth difference is
still very impressive with a median value of almost 40% at the terminal stage. Of course,
if we are primarily interested in relative outperformance, it is a simple matter to alter the
objective function to focus on achieving this goal.

Figure 2.4 shows that, even though the objective function only targets the wealth dif-
ference of the portfolios at the terminal time, without having any direct restrictions on the
wealth of the optimal adaptive strategy in the interim period, the adaptive strategy still
manages to have a statistically higher wealth throughout the entire investment period.

Remark 2.4.2. (Probability of underperformance). Note that any attempt to beat a bench-
mark has some positive probability of underperformance. To assert otherwise is to postulate
an arbitrage opportunity, i.e. go long the active portfolio and short the benchmark. If such
a possibility existed, the author of this thesis would be extremely rich. The readers may
draw their own conclusions.

We further examine the characteristics of the optimal adaptive strategy. Figure 2.5a
shows different percentiles of the stock allocation of the optimal adaptive strategy over time.
We observe that

• In general, the stock allocation (fraction of wealth invested in stocks) decreases when
approaching the end of the investment horizon.

• The stock allocation almost always stays above the benchmark allocation of 50%.

With a red-blue color scheme, Figure 2.5b shows the heatmap of the stock allocation
with respect to time t and the wealth difference W (t)−W50/50(t). Darker shades of the red
color indicate more allocation in stocks and darker shades of the blue color indicate more
allocation in bonds.

From Figure 2.5b, we observe that when W (t) − W50/50(t) is positive and large (opti-
mal adaptive strategy outperforming), the allocation of wealth to the stock becomes small.
The intuitive explanation is that the optimal adaptive strategy tends to decrease the wealth
allocation to stocks once it has established an advantage over the benchmark constant pro-
portion strategy. This also explains why the stock allocation almost always stays above
50%. In most cases where the optimal adaptive strategy has established an advantage over
the constant proportion strategy (as we have observed in Figure 2.4), decreasing the stock
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allocation to 50% to maintain the same allocation strategy as the 50/50 constant proportion
strategy locks in the outperformance.

On the other hand, when W (t) −W50/50(t) is negative (i.e. the adaptive strategy un-
derperforms), the optimal policy allocates more wealth to stocks. This is because the stock
index has a higher expected return than the bond index. To eventually outperform the con-
stant proportion strategy, the adaptive strategy invests more wealth in stocks, in an attempt
to make up for the lost ground.

In fact, the optimal adaptive strategy appears to be a contrarian strategy, following which
an investor buys and sells in opposition to the prevailing sentiment at the time.

2.4.4 The three-asset case

While we only discuss the investment scenario with two assets in Section 2.4.2, the proposed
framework can be easily extended to more assets. Here, we present results from an example
with three assets - the capitalization-weighted CRSP stock index, the 3-month T-bill index,
and the 10-year T-bond index. We choose the benchmark to be a 40/30/30 split constant
proportion strategy, where 40% of the wealth is allocated to the cap-weighted stock index,
30% to the 3-month T-bill index, and 30% to the 10-year T-bond index.

We train the neural network model on bootstrap resampled data with an expected block-
size of 0.5 years, with the proposed asymmetric objective function (2.6). We then test the
learned adaptive strategy on bootstrap resampled data with an expected blocksize of 2 years.
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Figure 2.6: CDF of terminal wealth for the 3 asset case
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Figure 2.7: CDF of terminal wealth difference for the 3 asset case, where Wb(T ) indicate the
terminal wealth of the constant proportion benchmark strategy
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We can observe from Figure 2.6 that the adaptive strategy produces a consistently more
right-skewed distribution of the terminal wealth compared with the constant proportion
benchmark strategy. The path-wise comparison of terminal wealth difference also shows
consistent outperformance compared to the adaptive strategy in both training and testing.

The framework can easily include more assets. However, the choice of which assets to
use, especially considering the recent interest in factor indexes, is beyond the scope of this
thesis.

2.4.5 Forward-looking bias in bootstrap resampling?

In Section 2.4.2, both training and testing data sets are generated from bootstrap resampled
data from a single historical return path from 1926-2015. A possible criticism of such an
approach is that both the training data and testing data share the same information source.
In particular, is it possible for the training data to have a forward-looking bias?

We argue that there is no forward-looking bias in the described training and testing data
generation process. Recall that in the experiments, training data and testing data have
different expected blocksizes and thus different distributions. Specifically, when bootstrap
resampling randomly with different expected blocksizes, the ordering of blocks of data points
is randomly shuffled and sequential ordering information is destroyed. Further, Theorem
2.3.1 and 2.3.2 show that the probability of an entire path in the training data set reappearing
in the testing data set is vanishingly small. This is due to the random block resampling nature
of the bootstrap algorithm.

Nonetheless, to provide additional evidence of robustness, we compare the following two
different cases:

Case #1: (Overlap case). We train the adaptive strategy on bootstrap resampled data
from the entire historical path from 1926 to 2015. We test the strategy on bootstrap
resampled data from the last 30 years of the historical path from 1986-2015. There is
an overlap between the underlying historical path for training and testing (1986-2015).
We show that such overlap does not introduce an advantage in terms of the strategy
performance by comparing it with case #2 - the non-overlap case.

Case #2: (Non-overlap case). We train the adaptive strategy on bootstrap resampled
data from the first 60 years of the historical path from 1926 to 1985. We test the
strategy on the same bootstrap resampled data generated from the last 30 years of
the historical path from 1986-2015 as in case #1. Consequently, there is no overlap
between the underlying historical paths we use for generating training data and testing
data at all.

Figure 2.8 and Figure 2.9 show these two cases schematically. Case #2 is the more
stringent test case as there are zero overlaps between the underlying historical data for the
generation of the training set and the testing set.
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Figure 2.8: Case #1: use historical data from 1926-2015 for generating training data, and
1986-2015 for testing. There is an overlap between the underlying historical paths for training
and testing.
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Figure 2.9: Case #2: “non-overlap” case where underlying market data for training and
testing data has no overlaps. Case #2 uses the same testing data set as case #1.

Note that, for Case #1 and #2, the underlying historical data for testing data only
covers a 30-year window. Recall that our investment horizon in our previous experiments
was T = 30 years. In order to obtain more meaningful block bootstrap resampling results,
we reduce the investment horizon to T = 15 years for both cases in this section.

We first compare the CDF of the terminal wealth difference for the two cases. From
Figure 2.10, we can observe that Case #1 (the overlap case) and Case #2 (the non-overlap
case) produce almost identical CDF curves, which validates the argument that forward-
looking bias is not a concern in our approach. Despite using the entire historical period as
the underlying data for training, case #1 does not yield a superior CDF than Case #2, in
which the underlying market data for training data and testing data have no overlaps.

We further examine the percentiles of the terminal wealth difference. From Figure 2.11,
we can observe that both cases have almost identical wealth differences in different per-
centiles, except that Case #2 has slightly better tail risk control (fifth percentile) than Case
#1. This actually further proves that the overlap does not introduce performance advantage
as the non-overlap case actually has less tail risk.

In Figure 2.12, we compare the actual strategies, i.e., stock allocations of both cases. This
time we can observe some differences between Case #1 and Case #2. From the median and
mean plot, we can observe that Case #2 tends to de-risk (decrease allocation in the stocks)
more aggressively over time than Case #1. However, the difference between allocation
strategies is not significant. In fact, the average stock holding over time is quite similar for
both cases. In addition, we have already observed similar strategy performances in terms of
terminal wealth distributions from Figure 2.10 and Figure 2.11.
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Figure 2.11: Percentiles of wealth difference W (T ) − W50/50(T ) for the two cases, testing
results
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Figure 2.12: Stock allocation for the two cases, testing results

In conclusion, the results shown in this section further illustrate that forward-looking
bias is not a concern in the bootstrap resampling method.

2.4.6 Replacement rate example

One common measure to determine the effectiveness of a pension plan is the replacement
rate, which is defined as the percentage of annual employment income replaced by retirement
income. Often, the retirement income consists of two parts: the social benefits and retirement
saving accounts (DC plans and tax-free investment accounts). Typically, 70% is accepted as
an adequate level of replacement rate (Booth, 2004; Biggs and Springstead, 2008)

In Canada, the social benefits include the Canada Pension Plan (CPP) and Old Age
Security (OAS), and in the U.S. it would be Social Security. In fact, the social benefit is a
significant part of the income of retirees. In Canada, the average CPP and OAS payment
amount to $20,000 per year (MacColl, 2023), which translates to 40% of the replacement rate
based on the average income of $49,000 in Canada (Statistics Canada, 2022). In the United
States, an earlier study (Biggs and Springstead, 2008) shows that Social Security benefits
provide about 40% of replacement income. However, a more recent study by Ghilarducci
et al. (2017) shows that the replacement rate from Social Security for middle-income em-
ployees (annual income of $40,000 - $115,000) is only 29%. Nevertheless, Social Security is
still a significant source of retirement income in the United States.

Consider the example of an employee making $75,000 per year in Canada (which is well
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above the national average of $49,000) and contributing $10,000 per year (total employee and
employer contribution) to the savings plan. According to the numerical results in Table 2.2,
the employee can expect a median terminal wealth of over $900,000 following the adaptive
strategy in the DC plan. A 4% annual withdrawal (Bengen, 1994) out of the terminal balance
of $900,000 gives $36,000, which accounts for 48% replacement income. If we assume this
employee receives the average CPP and OAS of $20,000, i.e. a replacement rate of 26%
(note that this is a very conservative assumption, since $75,000 annual income is well above
the national average, the actual government benefits this employee receives will be higher
than average), the total retirement income of this employee will be $56,000, which is a 75%
replacement rate. Similarly, a U.S. employee earning $75,000 annually will also be able
to achieve more than 70% replacement income under the assumption that Social Security
provides 29% of replacement rate. In fact, average American employees aged between 55-64
have an average balance of $100,000 in all retirement saving accounts combined, and having
$900,000 balance in the DC account is enough to provide adequate replacement income,
according to the analysis in Ghilarducci et al. (2017).

2.4.7 Historical backtest performance

As a special out-of-sample test that might be of interest to some investors, we consider the
actual realized historical path from 1985 to 2015 to backtest the performance of the optimal
adaptive strategy. We note that the historical path is not a path in the training data set.

From Figure 2.13, we observe that the optimal adaptive portfolio always maintains a
higher wealth than the constant proportion strategy over the entire investment period. While
optimizing the performance of the adaptive strategy on a specific path is not the goal of our
study, it is still quite interesting to observe that the optimal adaptive strategy does better
than the constant proportion strategy in real history.

Note that the adaptive strategy does show a large drawdown in 2002 and 2008. However,
our objective function is posed in terms of the outperformance of the terminal wealth. We
observe that the adaptive strategy outperforms, in the sense that its wealth is always above
the benchmark wealth, even in 2002 and 2008. It is, of course, possible to add penalties on
drawdowns in the objective function. However, this would result in less favorable terminal
statistics.

The solid line without markers in Figure 2.13 illustrates the time evolution of the stock
allocation on the historical path, which shows a clear contrarian pattern. When the adaptive
strategy performs poorly, such as in 2002 and 2008, the strategy allocates more wealth to
stocks. When the adaptive strategy performs well, the strategy decreases allocation to stocks
and invests more in bonds.
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Figure 2.13: Backtest of strategy performance over the historical period from 1985-2015
(single path)

2.4.8 Comparison with the 80/20 constant proportion strategy

In Section 2.4.3, we have observed that while the stock allocation from the optimal adaptive
strategy varies over time, its average over time is about 80%. Naturally, one may question
how the optimal adaptive strategy compares with the 80/20 constant proportion strategy
which invests a constant 80% of the wealth in the stocks and 20% in the bonds.

To answer this question, we compare the optimal adaptive strategy with the 80/20 con-
stant proportion strategy. Recall that in Section 2.4.3, the optimal adaptive strategy is
trained on bootstrap resampled data with the expected blocksize of 0.5 years and the test
data set is bootstrap resampled data with the expected blocksize of 2 years. We compare
the optimal adaptive strategy and 80/20 strategy on the same test data set.

In Figure 2.14, we plot CDFs of WNN(T ) −W50/50(T ) and W80/20(T ) −W50/50(T ), i.e.,
the wealth difference of the optimal neural network adaptive strategy and the 80/20 strategy
from the 50/50 strategy respectively.

We observe that the optimal adaptive strategy controls tail risk better than the 80/20
strategy. Specifically, the probability of the optimal adaptive strategy underperforming the
50/50 strategy is lower than that of the 80/20 strategy. When underperformance against the
50/50 strategy occurs, the magnitude of underperformance for the optimal adaptive strategy
is slightly smaller than the magnitude of underperformance for the 80/20 strategy, as shown
in Figure 2.14b.

It is worth noting that the 80/20 strategy has more upside than the optimal adaptive
strategy. However, less upside is a natural result of our choice of the double-sided penalty
objective function. As reflected in the asymmetric objective function (2.6), our goal is not
to achieve extremely large outperformance over the 50/50 strategy, but to reach the elevated
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Figure 2.14: CDF of wealth difference of both strategies (optimal adaptive and 80/20 con-
stant proportion) over the 50/50 strategy

target with high probability and to control the downside risk. The optimal adaptive strategy
achieves those goals better than the 80/20 strategy. To better demonstrate this, we plot the
following CDF of outperformance of both strategies over the elevated target esT ·W50/50(T ),
in Figure 2.15a.

We can observe that the optimal adaptive strategy has a lower probability of under-
performing the elevated target (37.3%) than the 80/20 strategy (46.8%). This means the
optimal adaptive strategy is more likely to reach the elevated target and thus achieve the
pre-determined annual outperformance spread.

Moreover, we observe from the enlarged CDF plot in Figure 2.15b that the optimal
adaptive strategy controls underperformance better than the 80/20 strategy, in the sense
that the optimal adaptive strategy underperforms less than the 80/20 strategy when the
elevated target is not met.

In summary, the optimal adaptive strategy is better at tracking the elevated target as
desired than the 80/20 strategy, despite that both strategies have a similar average stock
allocation over time.

2.5 Conclusions

In this chapter, we proposed a data-driven framework for computing the optimal asset al-
location for outperforming a stochastic benchmark target based on market asset return
observations. The dynamic asset allocation problem is solved directly assuming a neural
network representation for the optimal control, without using dynamic programming.
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Figure 2.15: CDF of wealth difference of both strategies (optimal adaptive and 80/20 con-
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In addition, we designed an asymmetric distribution shaping objective function which is
capable of producing an optimal strategy that can yield significantly larger median terminal
wealth than the target, with only a small probability (and magnitude) of underperformance.
We emphasize that the methodology can encompass a wide class of objective functions, which
can be tailored to the risk preferences of individual investors.

We used block bootstrap resampling to augment historical financial market data. The
training data and testing data are generated by block bootstrap resampling from market
asset returns. This leads to a data-driven approach for determining the optimal dynamic
asset allocation, avoiding the need to postulate a parametric asset price model as well as
model parameter estimations. We further provided mathematical justifications for using
block bootstrap resampling to generate both training and testing data sets.

The proposed method was illustrated in the DC pension allocation problem, which is
a practically relevant and important problem on its own. We evaluated and analyzed the
performance of the optimal neural network adaptive strategy based on the CRSP 3-month
Treasury bill (T-bill) index for the defensive asset and the CRSP cap-weighted total return
index for the risky asset from 1926:1-2015:12. We showed that the adaptive strategy fol-
lowing the neural network model achieves the desired outperformance over the stochastic
benchmark target, and is financially intuitive and easily implementable, thus demonstrating
the empirical importance of the proposed methodology.
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Chapter 3

Robustness of the neural network
methodology

In this chapter, we discuss the robustness associated with the proposed neural network
methodology for solving the portfolio optimization problem for outperforming a stochastic
benchmark. While robustness can be discussed from various perspectives, we focus on the
following two angles.

(i) The robustness of the neural network methodology - whether the neural network
methodology produces a strategy that outperforms the benchmark strategy when cer-
tain settings and assumptions of the investment problem are modified.

(ii) The robustness of the neural network strategy - whether the neural network strategy
displays consistent outperformance over the benchmark strategy on different testing
data sets.

We first discuss the robustness of the neural network methodology.

In Chapter 2, we demonstrated the performance of the neural network model under a
DC pension plan example where the objective is to outperform a 50/50 constant weight
benchmark portfolio. While the 50/50 benchmark portfolio is a common choice of a DC
plan portfolio, the target date fund concept has gained much popularity in recent years. As
of 2021, the target date fund size has reached $3.27 trillion in assets (Correia, 2022). A
target date fund typically sets a fixed target date for retirement, and the fund reduces stock
allocation following a deterministic schedule as the date approaches the target date. For
example, a common glide-path strategy allocates a stock allocation fraction of 110−age

100
%.

Due to the recent popularity of target date funds, we choose target date funds as the
benchmark and show that the neural network strategy still outperforms the benchmark. This
demonstrates the robustness of the neural network method with respect to the choice of the
benchmark strategy, i.e., the neural network methodology is capable of producing strategies
that consistently outperform the benchmark for various choices of the benchmark strategy.
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In the numerical experiments in Chapter 2, we used the historical returns of the cap-
weighted U.S. stock index and 3-month U.S. T-bill as the underlying source of data. To
assess how the proposed neural network methodology generalizes on other data sources, we
consider the alternative data set that uses the equal-weighted U.S. stock index and 10-year
U.S. T-bond index. By training and testing the neural network model on an alternative set of
asset returns, we show that the neural network strategy outperforms the benchmark portfolio
under this alternative data set with different choices of underlying assets, demonstrating that
the methodology is robust to the choices of underlying data sources.

We then discuss the robustness of the neural network strategies. While typical machine
learning applications are built upon the assumption that the testing data set shares the
same distribution as the training data set, it is of practical interest to practitioners to have
some out-of-distribution guarantee since this assumption is sometimes too good to be true.
Therefore, we conduct experiments to train and test the neural network model on data
sets from different distributions, hoping to provide some assurance of the robustness of the
relative performance of the strategy for practitioners.

In the first experiment, we train the neural network model on a synthetic data set gen-
erated from a parametric model and test the learned strategy on bootstrap resampled data.
Even though the data-generating process (i.e. data distribution) varies greatly, we show that
the learned neural network strategy still manages to outperform the benchmark portfolio on
testing data.

As Politis and Romano (1994) point out, changing the blocksize of the stationary block
bootstrap resampling algorithm changes the distribution of the generated data samples. In
the second experiment, we train the neural network on bootstrap resampled data with a
certain blocksize and test the learned strategy on bootstrap resampled data with different
blocksizes. We show that the neural network strategy trained on a certain blocksize performs
consistently well on testing data generated from different blocksizes.

In the final experiment, we train the neural network model on bootstrap resampled data
from the historical returns but test on bootstrap resampled data assuming future stock re-
turns are reduced by 300 bps relative to historical returns. This test is to address some
concerns practitioners have regarding the potential long-term effect of COVID-19 on the
global economy. Surprisingly, under such adverse assumptions, we show that the neural net-
work strategy still achieves a more desirable terminal wealth distribution than the benchmark
on the testing data set.

In summary, in this chapter, we make the following contributions.

• We demonstrate the robustness of the neural network approach, by showing that with
different choices of the benchmark portfolio (i.e. target date funds) or underlying data
sources, the neural network model achieves desirable outperformance.

• We demonstrate the robustness of the neural network strategies by showing that the
learned strategy achieves consistent outperformance on testing data sets from different
distributions than the training data sets.
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3.1 Alternative benchmark: target date funds

In recent years, target date funds (also known as life-cycle funds) have gained much popular-
ity among investors. Target date funds operate with the premise that the investor retires at
a certain target date. For target date funds, the asset allocation is adjusted as the calendar
time gets closer to the target date. Often, the fund allocates between a stock fund and a
bond fund. As reported in Correia (2022), the size of the target date funds in the U.S. has
reached $3.27 trillion in total assets, as of the end of 2021.

Typically, target date funds employ a deterministic glide-path style of asset allocation,
in which the fund maintains a high percentage of stock allocation in the earlier phase of
the investment. As time goes by, the stock allocation decreases and the bond allocation
increases. For example, the 40-year Vanguard target date fund (Donaldson et al., 2015)
starts with a 90% stock allocation for the first 15 years, and gradually decreases the stock
allocation to 50% at year 40 (the decrease is almost linear as observed from Figure 3.1).1 A
major part of target date funds’ popularity comes from this glide-path design, as it fits well
with the common belief that younger investors can better withstand market risk than older
investors.

Figure 3.1: Target date fund stock allocation from Vanguard (Donaldson et al., 2015)

3.1.1 Target date fund and constant weight portfolios

However, recent research, based on empirical (Arnott et al., 2013; Esch and Michaud, 2014)
and theoretical work (Graf, 2017; Forsyth and Vetzal, 2019) suggests that the purported

1For simplicity, we have lumped together U.S. and International stocks as an allocation to stocks, and
the total allocation to U.S. bonds, international bonds and TIPS as an allocation to bonds
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advantages of target date funds may have been oversold. Particularly, this research indicates
that the terminal wealth distributions of a deterministic glide path and a constant proportion
strategy with the same expected terminal wealth are virtually indistinguishable.

In order to confirm this analysis, we have determined that a constant weight strategy
with 73% in stocks and 27% in bonds has approximately the same expected terminal wealth
as the Vanguard glide path in Figure 3.1 (evaluated on bootstrap resampled data).

We then empirically compute the terminal wealth cumulative distribution function of the
Vanguard target date fund and 73/27 constant proportion strategy using historical boot-
strapped resampled data. From Figure 3.2, we can observe that the terminal wealth distri-
butions of the two strategies are almost identical. Therefore, outperforming a target date
fund in terms of terminal wealth distribution is essentially the same problem as outper-
forming a constant proportion strategy, if the evaluation is based on the terminal wealth
distribution. However, the observation of identical CDFs of wealth is not expected to hold
at intermediate times.
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Figure 3.2: CDF of terminal wealth of Vanguard TDF and 73/27 strategy

3.1.2 Outperforming the Vanguard target date fund

Nevertheless, outperforming the Vanguard target date fund or the 73/27 constant proportion
strategy appears to be very challenging if we retain the constraint that use of leverage is
not permitted. This is simply because such strategies are already heavy in stocks, and thus
inevitably the learned strategy needs to be heavier in stocks in order to achieve a higher
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expected terminal wealth, but the no-leverage constraint imposes an upper bound on the
stock holdings.

As an experiment, we train the model on bootstrap resampled data with the Vanguard
target date fund as the benchmark and set the outperformance spread in the elevated target
to be 50 basis points. The learned adaptive strategy does show a more attractive terminal
wealth distribution compared to the Vanguard target date fund, as the CDF of the adaptive
strategy shown in Figure 3.3a demonstrates partial stochastic dominance over the target date
fund, with a more right-skewed CDF and a slightly worse left tail. However, we can also
observe from Figure 3.3b that the learned strategy has a median stock allocation of almost
100%, and a mean allocation above 90%. In other words, half of the time the strategy
simply allocates all wealth to the stock, which makes the learned adaptive strategy seem
quite trivial and not as adaptive as we expect.2 This happens simply because stock-heavy
allocation nature of the Vanguard target date fund leaves little room for improvement and
thus forces the adaptive strategy to go all stock so that the outperformance spread of 50 bps
can be achieved.

We remark that, in terms of terminal wealth distribution, we could expect more inter-
esting results if we allowed the use of leverage. However, this is usually not advisable in a
retirement savings account. We will consider leveraged portfolios in later chapters.
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Figure 3.3: Testing results on bootstrap resampled data with b̂ = 2 years. The neural
network is trained on bootstrap resampled data with b̂ = 0.5 years.

2We remark that such a strategy is still better than a strategy that is always 100% stock allocation, when
evaluated under the two-sided objective function (2.6) and in terms of tail risk.

50



3.1.3 Outperforming a conservative target date fund

In order to illustrate the capability of our proposed framework in a more meaningful way,
we choose a more conservative target date fund as the benchmark since it provides more
room for improvement. The target date of the benchmark strategy is set to be 40 years from
initiation. In the first 15 years, the fund allocates 80% in stocks and 20% in bonds. After
the first 15 years, the stock allocation linearly decreases to 40% at the target date, while
the bond allocation increases accordingly. In other words, this benchmark strategy shifts
the stock allocation of the Vanguard 40-year target date fund down by 10%. We remark
that this conservative benchmark strategy is used in the Vanguard report (Donaldson et al.,
2015) and described as the more conservative target date fund. We also note that even for
this so-called conservative target date fund, the time-average stock allocation over 40 years
is still about 68% and thus has a substantial amount of market exposure.

In the next experiment, we set the outperformance target spread s in the objective
function (2.6) to be 50 basis points. As in Section 2.4.3, the parameters of the neural
network are trained on bootstrap resampled data with the expected blocksize of 0.5 years,
and tested on bootstrap resampled data with an expected blocksize of 2 years. The only
difference here is that the benchmark strategy is a target date fund, instead of a constant
proportion strategy.
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Figure 3.4: Testing results on bootstrap resampled data with b̂ = 2 years. The neural
network is trained on bootstrap resampled data with b̂ = 0.5 years. The benchmark is the
conservative Vanguard strategy.

First and foremost, we can observe from Figure 3.4a that the learned adaptive strategy
achieves partial stochastic dominance over the conservative target date fund in terms of
the terminal wealth distribution. When we examine the actual allocation of the adaptive
strategy in Figure 3.4b, we can see that the adaptive strategy tends to hold more stocks
in the earlier periods. This establishes an early advantage over the benchmark conservative
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target date fund. Once the advantage is established, the adaptive strategy de-risks (shifts to
bonds) more aggressively compared to the linear decrease in stock allocation in the target
date fund.

Such asset allocation behavior also explains why it was difficult for the framework to learn
an interesting strategy when benchmarking with the more aggressive Vanguard target date
fund. The default Vanguard target date fund starts with 90% stock allocation and forces
the adaptive strategy to full stock allocation so that the adaptive strategy can establish an
early advantage.

In conclusion, we have shown that:

• Outperforming the Vanguard target date fund will lead to an almost all stock strategy,
as the Vanguard target date fund is stock-heavy and leaves little room for learning a
non-trivial adaptive strategy (assuming that a no-leverage constraint is imposed).

• When choosing a more conservative target date fund as the benchmark strategy, we are
able to learn a non-trivial adaptive strategy that outperforms the benchmark target
date fund with high probability and has a better terminal wealth distribution. Note
that the more conservative glide path still has a time-averaged allocation fraction in
stocks of about 68%. Overall, this illustrates the robustness of the neural network
approach with respect to a different benchmark portfolio for achieving the desired
outperformance over the benchmark.

3.2 Results from alternative data sets

In this section, we show the results based on alternative historical data sets - the equal-
weighted CRSP stock index and the 10-year treasury bond index, instead of using a mix of
the cap-weighted CRSP stock index and 3-month T-bill index as in Chapter 2. Historically,
the equal-weighted stock index has shown higher average return and volatility than the cap-
weighted stock index, which has been attributed to equal-weighted portfolios having higher
exposure to value, size, and market factors (Plyakha et al., 2021). Similarly, the 10-year
T-bond has not always had the same behavior as the 3-month T-bill. Therefore, it will
be interesting to see if the neural network methodology yields similar performances on this
alternative data set. Same as in numerical experiments in Chapter 2, we revert back to using
the 50/50 strategy as the benchmark.

We train the neural network model on bootstrap resampled data from the alternative
data sets with an expected blocksize of 0.5 years, with the proposed asymmetric objective
function (2.6). We then test the learned adaptive strategy on bootstrap resampled data from
the alternative data sets with an expected blocksize of 2 years.

From Figure 3.5, we can clearly see that the learned adaptive strategy achieves partial
stochastic dominance over the benchmark in both training and testing. From Figure 3.6, we
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Figure 3.5: CDF of terminal wealth - equal-weighted stock index and 10-year T-bond index
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Figure 3.6: CDF of terminal wealth difference - equal-weighted stock index and 10-year T-
bond index, whereWb(T ) indicate the terminal wealth of the constant proportion benchmark
strategy
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can see that the adaptive strategy outperforms the benchmark strategy with more than 90%
probability in both training and testing. Such results demonstrate that the framework is
capable of learning a good adaptive strategy that outperforms the benchmark strategy with
different underlying historical data sets.

3.3 Strategy trained on synthetic data

In this section, we generate synthetic data from a parametric model calibrated to historical
data. We then test the strategy on bootstrap resampled data. Clearly, the synthetic data
from the parametric model will have a different distribution compared to the resampled data.

The synthetic data is generated based on a jump-diffusion stochastic process. Let S(t)
and B(t) respectively denote the wealth invested in the stocks and bonds at time t, t ∈ [0, T ].
Specifically, we will assume that S(t) represents the unit amount invested in a broad stock
market index (CRSP cap-weighted index), while B(t) is the unit amount invested in short-
term default-free government bonds (in our case, the 3-month T-bill).

Recall that t− = t − ϵ, ϵ → 0+, i.e. t− is the instant of time before t, and let ψ be
a random number representing a jump multiplier. When a jump occurs, S(t) = ξS(t−).
Allowing discontinuous jumps lets us explore the effects of severe market crashes on stock
holding and nonnormal returns. We assume that ξ follows a double exponential distribution
(Kou, 2002; Kou and Wang, 2004). If a jump occurs, pup is the probability of an upward
jump, while 1− pup is the chance of a downward jump. The density function for y = log ξ is

f(y) = pupη1e
−η1y1y≥0 + (1− pup)η2e

η2y1y≤0. (3.1)

For future reference, note that

E[y = log ξ] =
pup
η1

− (1− pup)

η2
, E[y = ξ] =

pupη1
η1 − 1

+
(1− pup)η2
η2 − 1

. (3.2)

We assume that S(t) evolves according to

dS(t)

S(t−)
= (µ− λE[ξ − 1])dt+ σdZ + d

( πt∑
i=1

(ξi − 1)
)
, (3.3)

where µ is the (uncompensated) drift rate, σ is the volatility, dZ is the increment of a Wiener
process, πt is a Poisson process with positive intensity parameter λ, and ξi are i.i.d. positive
random variables having distribution (3.1). Moreover, ξi, πt, and dZ are assumed to all be
mutually independent.

We assume that the dynamics of the amount B(t) invested in the defensive asset are

dB(t) = rB(t)dt, (3.4)
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where r is the (constant) rate. This is obviously a simplification of the real bond market.
We remind the reader that, ultimately, our neural network method is entirely data-driven
and is agnostic to the data-generating model.

Based on (3.3) and (3.4), we use the methods in (Dang and Forsyth, 2016) to calibrate
the process parameters. We use a threshold technique (Cont et al., 2011) to identify jump
frequency and distribution, and the methods in (Dang and Forsyth, 2016) to determine the
remaining parameters. Annualized estimated parameters for the cap-weighted stock index
are provided in Table 3.1.

µ σ λ pup η1 η2 r
Real CRSP Cap-Weighted Stock Index and 3-month T-bill Index
.08889 .14771 .32222 0.27586 4.4273 5.2613 0.00827

Table 3.1: Estimated annualized parameters for double exponential jump-diffusion model.
Cap-weighted index, deflated by the CPI. Sample period 1926:1 to 2015:12.

We then generate the synthetic data based on the parametric model with the calibrated
parameters through Monte Carlo simulations.

We test the performance of the strategy trained on synthetic data on historical bootstrap
data with expected blocksize b̂ = 2 years, against the benchmark constant proportion 50/50
strategy. Note that the testing performance with other expected blocksizes is very similar
to each other so we only show results for b̂ = 2 years.

Training Results on Synthetic Data : Market Cap Weighted

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))
constant proportion(p = 0.5) 714 383 630 0.50 0.82
adaptive 1019 651 930 0.29 0.50

Testing Results on Bootstrap Data with Expected Blocksize = 2 years

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))
constant proportion(p = 0.5) 679 267 630 0.50 0.84
adaptive 944 431 912 0.26 0.50

Table 3.2: Terminal wealth statistics of the adaptive strategy trained on synthetic data and
tested on bootstrap resampled data with expected blocksize b̂ = 2 years

Table 3.2 shows that the adaptive strategy learned from synthetic data performs well
on the test set of bootstrap resampled data. The adaptive strategy has significantly higher
median and mean terminal wealth than the constant proportion strategy in both training
and testing.

We do notice that in the testing results, the adaptive strategy has slightly lower mean and
median terminal wealth, as well as a lower standard deviation than in training results. This
is hardly surprising since the training and test data have different distributions. However,
the adaptive strategy robustly outperforms the benchmark.

We observe from Figure 3.7 that the terminal wealth distributions of the adaptive strategy
are consistently right-skewed and have similar shapes in training and testing, which indicates
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that the NN strategy similarly outperforms the constant proportion strategy in both training
and testing.

(a) Training on synthetics data (b) Testing on bootstrap data with b̂=0.5

Figure 3.7: Histogram of terminal wealth. Model trained on synthetic data and tested on
bootstrap resampled data with expected blocksize of 2 years

We also plot the CDF of the wealth difference between the adaptive strategy and the
50/50 strategy, W (T ) −W50/50(T ), to give a more direct comparison between the adaptive
strategy and constant proportion strategy on the same paths.

From Figure 3.8 we can see that the probability of the adaptive strategy underperforming
the constant proportion strategy is less than 10% for both training and testing. When
underperformance occurs, the scale of underperformance is small compared to the scale
of potential outperformance. Therefore, we conclude that the adaptive strategy controls
tail risks better in both training and testing, despite the fact that the training data set is
synthetically generated and the testing data set is bootstrap resampled data.

In terms of the allocation strategy, we can see from 3.9 that this policy is consistent with
the results in Figure 2.5b (bootstrap resampling case) in the sense that the learned strategy
is a contrarian strategy that takes more risk when behind, and de-risks when ahead. We do
want to point out that the heatmap in Figure 3.9b is not as smooth as the heatmap in the
training case in Figure 3.9a.

We believe that this is due to the fact that, in the testing case, the strategy itself is
learned from synthetic data, which has a different distribution compared with the bootstrap
resampled data used in testing.
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Figure 3.8: CDF of terminal wealth difference W (T )−W50/50(T )
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3.4 Strategy performance with different blocksizes

In this section, we test the adaptive strategy learned on bootstrap resampled data with a
given blocksize on bootstrap resampled data with different blocksizes.

For illustration, we only show the testing results of the strategy learned on bootstrap
resampled data with an expected blocksize of 0.5 years, where test data sets are bootstrap
resampled data with blocksizes ranging from 1-10 years.

Training Results on Bootstrap Data with Expected Blocksize = 0.5 : Market Cap Weighted

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))
constant proportion(p = 0.5) 678 276 624 0.50 0.86
adaptive 963 474 913 0.26 0.50

Testing Results on Bootstrap Data: Market Cap Weighted

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))

Expected Blocksize b̂ = 1 years
constant proportion(p = .5) 674 273 624 0.50 0.84
NN adaptive 955 466 909 0.27 0.50

Expected Blocksize b̂ = 2 years
constant proportion(p = .5) 676 263 631 0.50 0.84
NN adaptive 958 445 917 0.26 0.50

Expected Blocksize b̂ = 5 years
constant proportion(p = .5) 669 244 626 0.50 0.85
NN adaptive 953 409 915 0.24 0.50

Expected Blocksize b̂ = 8 years
constant proportion(p = .5) 669 233 632 0.50 0.87
NN adaptive 960 393 928 0.23 0.50

Expected Blocksize b̂ = 10 years
constant proportion(p = .5) 667 223 635 0.50 0.88
NN adaptive 961 383 928 0.22 0.50

Table 3.3: Terminal wealth statistics of the adaptive strategy trained on bootstrap resam-
pled data with expected blocksize b̂ = 0.5 years. Tested on bootstrap resampled data with
blocksizes from 1 to 10 years.

We can observe from Table 3.3 that

• The mean and the median terminal wealth of the adaptive strategy remain similar
across different blocksizes.

• The adaptive strategy has a more favorable terminal wealth distribution as it is more
likely to achieve a terminal wealth higher than the median terminal wealth of the
constant proportion strategy.

We note that training and testing on data sets using different blocksize combinations
produces qualitatively similar results. Specifically, we have also trained the neural network
strategy with other blocksizes from 1-10 years, and have tested the strategy with blocksizes
ranging from 0.5-10 years. Across all the tests, we observe consistent testing performance on
out-of-distribution data sets (i.e. different blocksizes). The tables for additional numerical
results are included in Appendix A.2.
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3.5 Strategy performance under reduced stock market

returns

The outbreak of the global COVID-19 pandemic has led to some concerns about the recovery
of the global economy and expectations of lower future returns, especially in the stock mar-
kets. Historically, the real (geometric) returns from the U.S. equities have been around 6.6%
(Dimson et al., 2020). Recent industry reports, however, estimate the future real (geometric)
returns from the U.S. stock market to drop to as low as 3.8%(AQR, 2021), which is almost
300 basis points less than the average historical returns.

We remark that a lower level of stock returns does not change the main observations in
Chapter 2. Specifically, in the context of outperforming a stochastic benchmark strategy,
lower stock market returns adversely affect the performance of the benchmark strategy as
well as the learned adaptive strategy.

We proceed to test for robustness as follows. We train the neural network using block
bootstrap resampling of the historical data. However, for testing data, we artificially reduce
all historical returns by 300 bps and then use bootstrap resampled returns from this artificial
data set.

Testing Results on Bootstrap Data with Original Historical Data

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))
constant proportion(p = 0.5) 679 267 629 0.50 0.84
adaptive 962 449 921 0.26 0.50

Testing Results on Bootstrap Data with Historical Stock Returns Reduced by 300 bps

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))
constant proportion(p = 0.5) 520 213 480 0.50 0.73
adaptive 648 344 599 0.36 0.50

Table 3.4: Terminal wealth statistics of the optimal adaptive strategy. Table shows a com-
parison between testing results on bootstrap data of original historical data and historical
data with stock returns adjusted by -300 bps.

In Table 3.4, we have included typical statistics on the terminal wealth in the case of
reduced stock returns. We also include the original results from Section 2.4.3 for comparison.
As can be seen from Table 3.4, while the terminal wealth levels of the adaptive strategy drop,
the terminal wealth of the benchmark constant proportion strategy also drops significantly.

From Figure 3.10, we observe that the learned adaptive strategy has a more right-skewed
terminal wealth distribution compared to the benchmark constant proportion strategy. In
addition, we observe from Figure 3.11 that the adaptive strategy has a high chance of beating
the benchmark strategy in pathwise comparisons. We note that, when the stock returns are
adjusted for -300 bps, the advantage of the adaptive strategy decreases slightly. As can be
observed from Figure 3.11, the adaptive strategy has only less than 10% of the probability
of underperforming the benchmark constant proportion strategy with the original historical
data, but this probability of underperforming the benchmark strategy increases to around
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Figure 3.10: CDF of Terminal Wealth
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Figure 3.11: CDF of Terminal Wealth Difference
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20% in the case of reduced stock returns. We believe that this is due to the narrower gap
between stock returns and bond returns, which adversely affects the adaptive strategy since
it usually starts off with a higher allocation in stocks.

However, even in such an adverse scenario, we still see the clear outperformance of the
adaptive strategy as it has a more favorable terminal wealth distribution and a high chance of
beating the benchmark. This alleviates the potential concern of the proposed methodology
in an environment of lower stock market returns, and also shows the robustness of the neural
network strategy with respect to out-of-sample data sets.

3.6 Conclusions

In this section, we discussed the robustness of the proposed neural network method from
two perspectives.

We first illustrated the robustness of the neural network methodology by showing that
the methodology can produce strategies that outperform benchmarks when settings and
assumptions in the numerical experiments (e.g. choice of benchmark portfolio and underlying
data source) are modified.

We then demonstrated the robustness of the neural network strategy by conducting sev-
eral experiments and showing that the learned strategy achieves consistent outperformance
over the benchmark on out-of-sample testing data sets, addressing the concerns of practi-
tioners.
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Chapter 4

Closed-form solution for
outperforming a stochastic target
under path-dependent objectives

4.1 Introduction

In previous chapters, we obtained numerical solutions for the problem of outperforming a
benchmark, in terms of the terminal (i.e. at the end of the investment horizon) wealth. We
did note that, even though the objective function was based only on terminal wealth, the
strategy seemed to perform reasonably well during the entire investment period.

This leads us naturally to ask the following questions. If we can change the objective
function to encourage outperformance at all times (i.e. not just at the terminal date), would
it be possible to achieve even better outperformance over time? How would this affect the
performance of the strategy at terminal time?

To enhance our understanding of this new objective function, we will develop closed-
form solutions to a simplified problem. Usually, closed-form solutions require unrealistic
assumptions, e.g. infinite leverage is allowed, and trading continues even if insolvent (i.e.
negative portfolio wealth).

Nevertheless, the closed-form solutions are a useful guide to developing an understanding
of numerically computed optimal controls. In later chapters, we will focus on numerical
solutions for realistically constrained controls. We will see that the intuition obtained from
the closed-form solution holds for the more realistic solutions.

The derivation of closed-form solutions for multi-period portfolio optimization problems,
specifically for outperforming a benchmark target, typically relies on specific choices of asset
price models and objective functions. For instance, Browne (1999, 2000) assume geometric
Brownian motion (GBM) for asset prices and derive closed-form optimal portfolios under
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various investment objectives, such as minimizing the expected time to reach a performance
goal and maximizing relative wealth utility. Subsequently, the benchmarked asset alloca-
tion problem has been explored from different perspectives such as different market model
assumptions and objective functions, see, e.g., Tepla (2001); Basak et al. (2006); Yao et al.
(2006); Zhao (2007); Davis and Lleo (2008); Lim and Wong (2010); Bajeux-Besnainou et al.
(2013); Oderda (2015); Zhang and Gao (2017); Al-Aradi and Jaimungal (2018); Nicolosi
et al. (2018); Bo et al. (2021).

However, most existing literature lacks the ability to handle cash injections, a common
feature in investment funds. van Staden et al. (2023b) address this limitation by employ-
ing the Hamilton-Jacobi-Bellman (HJB) technique to solve the optimal control problem.
Nonetheless, they assume an asset price model where one of the assets is riskless. In this
chapter, we extend the findings of van Staden et al. (2023b) by considering the assump-
tion that all asset prices follow double-exponential jump-diffusion models, which are more
appropriate for volatile economic situations with substantial uncertainty, such as the cur-
rent post-COVID environment. We consider all asset returns (e.g. stock and bond) to be
inflation-adjusted. Sudden changes in inflation can have a large effect on bond values, as we
have seen recently.

In Chapter 2 and Chapter 3, we focused solely on the problem of outperforming a stochas-
tic target based on terminal wealth. Specifically, we examined a DC plan setting, making
the focus on terminal wealth (at retirement) suitable. However, many investors have psycho-
logical difficulty following a strategy that may be optimal in the long run but has temporary
underperformance. Consequently, an objective function based solely on the terminal wealth
of the portfolio becomes inappropriate in such cases.

Starting from this chapter, our focus shifts to outperforming a stochastic target with path-
dependent investment objectives. Intuitively, we seek investment strategies that outperform
the benchmark portfolio throughout the investment horizon.

We begin by formalizing the outperformance problem, with a specific emphasis on the
intermediate performance of portfolios. We then explore several options for path-dependent
objectives and discuss the cumulative difference (CD) objective function, which measures the
deviation from the elevated target throughout the entire investment phase. Subsequently, we
derive the closed-form solution under the CD objective function and examine the properties
of this solution. Finally, we discuss the clipped-form, an approximate solution based on the
closed-form solution which satisfies the realistic constraints. This is a feasible, but almost
surely, sub-optimal approximation.

To summarize, our contributions in this chapter can be outlined as follows:

(i) We derive the closed-form solution to the problem of outperforming a passive bench-
mark portfolio under the CD objective function.

(ii) We show that the optimal strategy is contrarian in nature. In addition, it utilizes a
target wealth level higher than the elevated benchmark as the decision variable for
asset allocation.
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(iii) We propose an approximate form of the closed-form solution that satisfies realistic
constraints.

4.2 Mathematical formulation

In this section, we mathematically formulate the problem of outperforming a benchmark
throughout the investment horizon. Let [t0(= 0), T ] denote the investment horizon, and let
W (t) denote the wealth (value) of the portfolio actively managed by the manager at time
t ∈ [t0, T ]. We refer to the actively managed portfolio as the active portfolio. Furthermore,
let Ŵ (t) denote the wealth of the benchmark portfolio at time t ∈ [t0, T ]. To ensure a fair
assessment of the relative performance of the two portfolios, we assume both portfolios start
with an equal initial wealth amount w0 > 0, i.e., W (t0) = Ŵ (t0) = w0 > 0.

For simplicity, we assume that both the active portfolio and the benchmark portfolio can
allocate among the same set of Na assets. Let vector S(t) = (Si(t) : i = 1, · · · , Na)

⊤ ∈ RNa

denote the asset prices of the Na underlying assets at time t ∈ [t0, T ]. In addition, let vectors

p(t) = (p
(t)
i : i = 1, · · · , Na)

⊤ ∈ RNa and p̂(t) = (p̂
(t)
i : i = 1, · · · , Na)

⊤ ∈ RNa denote the
allocation fractions to the Na underlying assets at time t ∈ [t0, T ], respectively, for the active
portfolio and the benchmark portfolio. In the remainder of this thesis, we consider a passive
benchmark portfolio, i.e. p̂(t) is a pre-defined constant vector independent of time such that
p̂(t) ≡ p̂. It is possible to let p̂(t) ≡ p̂(t), i.e., a glide path type benchmark strategy. However,
this results in complex solutions which are not amenable to building intuition. In any case,
constant weight benchmarks are very common in practice.

From an optimal control perspective, the allocation vector p(t) is regarded as the value of
the feedback control of the system (which affects the outcome of the system, i.e. the value
evolution of the portfolio), and that p is assumed to be a function of the state variables
which are the portfolio values and time. Mathematically, p(t) = p(X(t)) = (pi(X(t)) : i =
1, · · · , Na)

⊤ ∈ RNa , where X(t) ∈ X ⊆ RNx is the vector representing the state variables
at time t. In this thesis, we consider the particular problem of outperforming a passive

portfolio, in which X(t) =
(
t,W (t), Ŵ (t)

)⊤
, i.e., the state variables are the wealth of both

portfolios and time. Our goal is to find the optimal control function (i.e. allocation strategy)
p : X 7→ RNa so that the relative performance of the active portfolio over the benchmark
portfolio is maximized.

We assume that the active portfolio and the benchmark portfolio follow the same rebal-
ancing schedule denoted by T ⊆ [t0, T ]. In the case of discrete rebalancing, T ⊂ [t0, T ] is
a discrete set. In the case of continuous rebalancing, T = [t0, T ], i.e., rebalancing occurs
continuously throughout the entire investment horizon.

Additionally, we assume both portfolios follow the same deterministic sequence of cash
injections, defined by the set C = {c(t), t ∈ Tc}, where Tc ⊆ [t0, T ] is the schedule of the cash
injections. When Tc is a discrete injection schedule, c(t) is the amount of cash injection at t.
In the case of continuous cash injections, i.e., T = [t0, T ], c(t) is the rate of cash injection at
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t, i.e., the total cash injection amount during [t, t+ dt] is c(t)dt, where dt is an infinitesimal
time interval. For simplicity, we assume that Tc = T , so that the cash injections schedule is
aligned with the rebalancing schedule. At t ∈ T , W (t) and Ŵ (t) always denote the wealth
after the cash injection (assuming there is a cash injection event happening at t).

Denote A as the set of admissible strategies, which reflects the investment constraints on
the controls. We assume that admissibility can vary with state and let {Xi: i = 1, · · · , k}
be a partition of X (the state variable space), i.e.,{⋃k

i=1 Xi = X ,
Xi

⋂
Xj = ∅,∀1 ≤ i < j ≤ k,

(4.1)

and {Zi ⊆ RNa : i = 1, · · · , k} be the pre-determined corresponding value sets of feasible
controls.

We say that a control p : X 7→ RNa is an admissible strategy, i.e., p ∈ A, if and only if

(Feasibility of control): p(x) ∈ Zi,∀x ∈ Xi, ∀i ∈ {1, · · · , k}. (4.2)

Consider a discrete rebalancing schedule T = {tj, j = 0, · · · , N} with N rebalancing
events, where t0 < t1 < · · · < tN = T .1 Then, the wealth evolution of the active portfolio
and the benchmark portfolio can be described by the equations

W (tj+1) =
( Na∑

i=1

pi(X(tj)) · Si(tj+1)−Si(tj)

Si(tj)

)
W (tj) + c(tj+1), j = 0, · · · , N − 1,

Ŵ (tj+1) =
( Na∑

i=1

p̂i · Si(tj+1)−Si(tj)

Si(tj)

)
Ŵ (tj) + c(tj+1), j = 0, · · · , N − 1.

(4.3)

In the continuous rebalancing case, T = [t0, T ]. Let dSi(t) denote the instantaneous
change in price for asset i, i ∈ [1, · · · , Na].

2 Then, at t ∈ T = [t0, T ], the wealth dynamics of
the active portfolio and the benchmark portfolio, following their respective strategies p and
p̂, can be described by the equations

dW (t) =
( Na∑

i=1

pi(X(t)) · dSi(t)
Si(t)

)
W (tj) + c(t)dt,

dŴ (t) =
( Na∑

i=1

p̂i · dSi(t)
Si(t)

)
Ŵ (tj) + c(t)dt.

(4.4)

Let sets Wp = {W (t), t ∈ T } and Ŵp̂ = {Ŵ (t), t ∈ T } represent the trajectories
of the portfolio values for the active portfolio and the benchmark portfolio, respectively,

1Technically, at t = t0, the manager makes the initial asset allocation, rather than a “rebalancing” of the
portfolio. However, despite the different purposes, a rebalancing of the portfolio is simply a new allocation
of the portfolio wealth. Therefore, for notational simplicity, we include t0 in the rebalancing schedule.

2For illustration purposes, here we assume Si(t), i ∈ [1, · · · , Na] follow standard diffusion processes, i.e.,
no jumps. We will discuss the case with jumps in detail in Section 4.3.
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following the dynamics specified in equation (4.3) or (4.4). We introduce an investment
metric denoted by F (Wp, Ŵp̂) ∈ R, which quantifies the relative performance of the active
portfolio in relation to the benchmark portfolio based on their respective value trajectories.

In this article, we assume the asset prices S(t) ∈ RNa are stochastic. Consequently,
the value trajectories Wp, Ŵp̂, and the performance metric F (Wp, Ŵp̂) are also stochastic.
Therefore, when investment managers aim to optimize an investment metric, the evaluation
commonly involves calculating the expectation of the random metric.

Let E(t0,w0)
p [F (Wp, Ŵp̂)] denote the expectation of the performance metric F , given a

specific initial wealth value w0 = W (0) = Ŵ (0) at time t0 = 0, and evaluated on the
wealth trajectories following the admissible investment strategies p ∈ A and the benchmark
investment strategy p̂. As we assume the benchmark strategy to be predetermined, we keep
the benchmark strategy p̂ implicit in this notation for simplicity. Subsequently, we try to
solve the following stochastic optimization (SO) problem:

(Stochastic optimization problem): inf
p∈A

E(t0,w0)
p

[
F (Wp, Ŵp̂)

]
. (4.5)

In previous chapters, we have focused on measuring the performance of the portfolio
at the terminal time of the investment horizon. As discussed in the introduction to this
chapter, it is often desirable to have smooth outperformance during the entire investment
horizon. Therefore, starting from this chapter, we evaluate the performance of portfolios
from a path-dependent perspective.

We consider the following cumulative quadratic tracking difference (CD) objectives pro-
posed in van Staden et al. (2023a):

(CD(β)) :


inf
p∈A

E(t0,w0)
p

[∫ T

t0

(
W (t)− eβtŴ (t)

)2
dt

]
, if T = [t0, T ], (4.6)

inf
p∈A

E(t0,w0)
p

[ ∑
t∈T ∪{T}

(
W (t)− eβtŴ (t)

)2
∆t

]
, if T ⊆ [t0, T ], T discrete. (4.7)

Here, β is the annualized performance premium rate, and eβtŴ (t) is the elevated target used
in the asymmetric objective function (2.6) proposed in Chapter 2. Note that objective (4.6)
is for the continuous rebalancing case, and (4.7) for discrete rebalancing. Both (4.6) and
(4.7) measure the cumulative deviation of the wealth of the active portfolio relative to the
elevated target, along the rebalancing schedule throughout the entire investment horizon.
(4.7) is clearly a discrete approximation of (4.6).

4.3 Closed-form solution for CD problem

In this section, we present the closed-form solution to the CD problem (4.6) under the
following assumptions.
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Assumption 4.3.1. (Two assets, no friction, unlimited leverage, trading continues in in-
solvency, constant rate of cash injection). The active portfolio and the benchmark portfolio
have access to two underlying assets, a stock index, and a constant-maturity bond index.
Both portfolios are rebalanced continuously, i.e., T = [t0, T ]. There are no transaction costs
and no leverage limit. Furthermore, we assume that trading continues in the event of insol-
vency, i.e., when W (t) < 0 for some t ∈ [t0, T ]. Finally, we assume both portfolios receive
constant cash injections with an injection rate of c, which means during any time interval
[t, t+∆t] ⊆ [t0, T ],∀∆t > 0, both portfolios receive cash injection amount of c∆t.

Remark 4.3.1. (Remark on Assumption 4.3.1) For illustration purposes, we assume only
two underlying assets. However, the technique for deriving the closed-form solution can be
extended to multiple assets. We remark that unlimited leverage is unrealistic, and is only
assumed for deriving the closed-form solution. We also acknowledge that it is not realistic to
assume that the manager can continue to trade and borrow when insolvent. However, this
assumption is typically required for obtaining closed-form solutions, see Zhou and Li (2000);
Li and Ng (2000) for similar assumptions in the case of a multi-period mean-variance asset
allocation problem.

Assumption 4.3.2. (Fixed-mix benchmark strategy). We assume that the benchmark strat-
egy is a fixed-mix strategy (also known as the constant weight or constant proportion strat-
egy). We assume the benchmark always allocates a constant fraction of ϱ̂ (∈ R) of the
portfolio wealth to the stock index, and a constant fraction of 1 − ϱ̂ to the bond index. Let
ϱ̂ = (ϱ̂, 1− ϱ̂)⊤ ∈ R2 denote the vector of allocation fractions to the stock index and the bond
index.

Finally, we assume the stock index price and bond index price follow the jump-diffusion
processes described below.

Assumption 4.3.3. (Jump-diffusion processes). Let S1(t) and S2(t) denote the deflated
(adjusted by inflation) price of the stock index and the bond index at time t ∈ [t0, T ]. We
assume Si(t), i ∈ {1, 2} follow the jump-diffusion processes

dSi(t)

Si(t−)
= (µi − λiκi + ri · 1Si(t−)<0)dt+ σidZi(t) + d

( πi(t)∑
k=1

(ξ
(k)
i − 1)

)
, i = 1, 2. (4.8)

Here µi is the (uncompensated) drift rate, σi is the diffusive volatility, Z1(t), Z2(t) are cor-
related Brownian motions, where E[dZ1(t) · dZ2(t)] = ρdt. Constant ri is the borrowing
premiums when Si(t

−) is negative.3 πi(t) is a Poisson process with positive intensity pa-

rameter λi. {ξ(k)i , k = 1, · · · , πi(t)} are i.i.d. positive random variables that describe jump
multipliers associated with the assets. If a jump occurs for asset i at time t ∈ (t0, T ], its

3Intuitively, there is a premium for shorting an asset. In the closed-form solution derivation, we assume
ri = 0. Normally, this is relevant for the case of borrowing cash (i.e. shorting the bond) to buy stocks.
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underlying price jumps from Si(t
−) to Si(t) = ξi · Si(t

−).4 κi = E[ξi − 1]. ξi and πi(t) are
independent of each other. Moreover, π1(t) and π2(t) are assumed to be independent.5

Remark 4.3.2. (Motivation for jump-diffusion model). The assumption of stock index
price following a jump-diffusion model is common in the financial mathematics literature
(Merton, 1976; Kou, 2002). In addition, we follow the practitioner approach and directly
model the returns of the constant maturity bond index as a stochastic process (Lin et al.,
2015; MacMinn et al., 2014). As in MacMinn et al. (2014), we also assume that the constant
maturity bond index follows a jump-diffusion process. During uncertain market schemes,
such as the current high inflation regime in the market (as of the writing of this thesis),
central banks often make rate hikes to curb inflation, which causes sudden jumps in bond
prices (Lahaye et al., 2011). For an empirical discussion of the appropriateness of a jump-
diffusion model for inflation-adjusted bond returns, see Forsyth et al. (2020).

Under the jump-diffusion model (4.8), the wealth processes for the active portfolio and
benchmark portfolio are

dW (t) =
( 2∑

i=1

pi(X(t−)) · dSi(t)
Si(t−)

)
W (t−j ) + cdt,

dŴ (t) =
( 2∑

i=1

p̂i · dSi(t)
Si(t−)

)
Ŵ (t−j ) + cdt,

(4.9)

where t ∈ (t0, T ], W (t0) = Ŵ (t0) = w0 and X(t−) = (t,W (t−), Ŵ (t−))⊤ ∈ R3 is the state
variable vector.

We now derive the closed-form solution of the CD problem (4.6) under Assumption 4.3.1,
4.3.2 and 4.3.3. We first present the verification theorem for the HJB integro-differential
equation (PIDE) satisfied by the value function and the optimal control of the CD problem
(4.6).

Theorem 4.3.1. (Verification theorem for CD problem (4.6). For a fixed β > 0, assume
that for all (t, w, ŵ, ϱ̂) ∈ [t0, T ]× R3, there exists a function V (t, w, ŵ, ϱ̂) : [t0, T ]× R3 7→ R
and p∗(t, w, ŵ, ϱ̂) : [t0, T ]× R3 7→ R2 that satisfy the following two properties. (i) V and p∗

are sufficiently smooth and solve the HJB PIDE (4.10), and (ii) the function p∗(t, w, ŵ, ϱ̂)
attains the pointwise infimum in (4.10) below

∂V
∂t

+ (w − eβtŵ)2 + inf
p∈R2

H(p; t, w, ŵ, ϱ̂) = 0,

V (T,w, ŵ, ϱ̂) = 0,
(4.10)

4For any functional ψ(t), we use the notation ψ(t−) as shorthand for the left-sided limit ψ(t−) =
lim∆t↓0 ψ(t−∆t).

5See Forsyth (2020) for the discussion on the empirical evidence for stock-bond jump independence. Also
note that the assumption of independent jumps can be relaxed without technical difficulty if needed (Kou,
2002), but will significantly increase the complexity of notations.
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where

H(p; t, w, ŵ, ϱ̂) =
(
w ·α⊤p+ c

)
· ∂V
∂w

+
(
ŵ ·α⊤ϱ̂+ c

)
· ∂V
∂ŵ

−
(∑

i

λi

)
· V (t, w, ŵ, ϱ̂)

+
w2

2
·
(
p⊤Σp

)
· ∂

2V

∂w2
+
ŵ2

2
·
(
ϱ̂⊤Σϱ̂

)
· ∂

2V

∂ŵ2
+ wŵ ·

(
p⊤Σϱ̂

)
· ∂2V

∂w∂ŵ

+
∑
i

λi

∫ ∞

0

V (w + piw(ξ − 1), ŵ + p̂iŵ(ξ − 1), t, ϱ̂)fξi(ξ)dξ. (4.11)

Here α = (µ1−λ1κ1, µ2−λ2κ2)⊤ is the vector of (compensated) drift rates, Σ =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
is the covariance matrix, and fξi is the density function for ξi.

Then, under Assumption 4.3.1, 4.3.2 and 4.3.3, V is the value function and p∗ is the
optimal control for the CD problem (4.6).

Sketch of proof. At any state (t, w, ŵ) ∈ [t0, T ]× R2, define the value function V (t, w, ŵ, ϱ̂)
to the CD problem (4.6) as

V (t, w, ŵ, ϱ̂) = inf
p

{
Ep

[∫ T

t

(
W (s)− eβsŴ (s)

)2
ds
∣∣∣W (t) = w, Ŵ (t) = ŵ

]}
. (4.12)

By the dynamic programming principle, we have

V (t, w, ŵ, ϱ̂) = inf
p

{
Ep

[(
V (t+∆t,W (t+∆t), Ŵ (t+∆t), ϱ̂) (4.13)

+

∫ t+∆t

t

(
W (s)− eβsŴ (s)

)2
ds
)∣∣∣W (t) = w, Ŵ (t) = ŵ

]}
Rearrange equation (4.13) to obtain

inf
p

{
Ep

[(
dV (t, w, ŵ, ϱ̂) +

∫ t+∆t

t

(
W (s)− eβsŴ (s)

)2
ds
)∣∣∣W (t) = w, Ŵ (t) = ŵ

]}
= 0

(4.14)

Then, apply Itô’s lemma with jumps (Cont et al., 2011), substitute dW and dŴ terms with
(4.9), and take limits as ∆t ↓ 0, we obtain (4.10).

Note that the above results merely serve as an intuitive guide to obtain (4.10). A formal
proof proceeds by using a suitably smooth test function (Øksendal and Sulem, 2007).

Define several auxiliary variables
κ
(2)
i = E

[
(ξi − 1)2

]
, (σ

(2)
i )2 = (σi)

2 + λiκ
(2)
i , i ∈ {1, 2},

ϑ = σ1σ2ρ− (σ
(2)
2 )2, γ = (σ

(2)
1 )2 + (σ

(2)
2 )2 − 2σ1σ2ρ,

ϕ = (µ1−µ2)(µ1−µ2+ϑ)
γ

, η = (µ1−µ2+θ)2

γ
− (σ

(2)
2 )2,

(4.15)

then we have the following proposition regarding the optimal control of problem (4.6).
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Proposition 4.3.1. (CD-optimal control). Suppose Assumption 4.3.1, 4.3.2 and 4.3.3 are
applicable, then the optimal control fraction of the wealth of the active portfolio to be invested
in the stock index for the CD(β) problem (4.6) is given by p∗(t, w, ŵ, ϱ̂) ∈ R, where

p∗(t, w, ŵ, ϱ̂) =
1

W ∗(t)

[
(µ1 − µ2)

γ
h(t; β, c)+

(µ1 − µ2 + ϑ)

γ

(
g(t; β)Ŵ (t)−W ∗(t)

)
+g(t; β)Ŵ (t)·ϱ̂

]
.

(4.16)
Here W ∗(t) denotes the wealth process of the active portfolio from (4.4) following control

p∗(t,W ∗(t), Ŵ (t), ϱ̂) =
(
p∗(t,W ∗(t), Ŵ (t), ϱ̂), 1 − p∗(t,W ∗(t), Ŵ (t), ϱ̂)

)⊤
, where p∗ is the

optimal stock allocation described in (4.16), and Ŵ (t) is the wealth process of the benchmark
portfolio following the fixed-mixed strategy described in Assumption 4.3.2. Here, h and g are
deterministic functions of time,

g(t; β) = −D(t; β)

2A(t)
, h(t; β, c) = −B(t; β, c)

2A(t)
, (4.17)

where A,D and B are deterministic functions defined as

A(t) =
e(2µ2−η)(T−t) − 1

(2µ2 − η)
, D(t; β) = 2eβT

(e−β(T−t) − e(2µ2−η)(T−t)

2µ2 − η + β

)
, (4.18)

and

B(t; β, c) =
2c

2µ2 − η

(e(2µ2−η)(T−t) − e(µ2−ϕ)(T−t)

µ2 + ϕ− η
− e(µ2−ϕ)(T−t) − 1

µ2 − ϕ

)
+

2ceβT

2µ2 − η + β

(e(µ2−ϕ)(T−t) − e−β(T−t)

µ2 − ϕ+ β
− e(2µ2−η)(T−t) − e(µ2−ϕ)(T−t)

µ2 + ϕ− η

)
. (4.19)

Proof. As β and c are fixed parameters, in this proof, we omit the dependence of B and D
on them for notational simplicity.

The quadratic source term
(
w − eβtŵ

)2
in Theorem (4.10) suggests the following ansatz

for the value function V in Theorem 4.10 of the form

V (t, w, ŵ) = A(t)w2 +B(t)w + C(t) + Â(t)ŵ2 + B̂(t)ŵ +D(t)wŵ, (4.20)

where A,B,C, Â, B̂,D are unknown deterministic functions of time t. If (4.20) is correct,
then the pointwise infimum in (4.10) is attained by p∗ satisfying the relationship(

w · ∂
2V

∂w2

)
· p∗ = −1

γ

((
µ1 − µ2

)
· ∂V
∂w

+
(
ϱ̂γ + θ

)
· ŵ · ∂

2V

∂wŵ
+ θ · w · ∂

2V

∂w2

)
, (4.21)

assuming A(t) > 0. Here γ and θ are defined in (4.15). (4.20) implies that the relevant
partial derivatives of V are of the form

∂2V

∂w2
= 2A(t),

∂V

∂w
= 2A(t)w +B(t) +D(t)ŵ,

∂2V

∂wŵ
= D(t). (4.22)
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Substituting (4.22) into (4.21), the optimal control p∗ obtained is in the form of (4.16), where
h and g are given by (4.17). Then, it only remains to determine the functions A,B,D. Sub-
stituting (4.21) into PIDE (4.10), we can obtain the following ordinary differential equations
(ODE) for A,B,D,

dA(t)
dt

= −
(
2µ2 − η

)
A(t)− 1, A(T ) = 0,

dD(t)
dt

= −
(
2µ2 − η

)
D(t) + 2eβt, D(T ) = 0,

dB(t)
dt

= −(µ2 − ϕ)B(t)− 2cA(t)− cD(t), B(T ) = 0,

(4.23)

Solving the ODE system gives us the A,B,D defined in (4.18) and (4.19). We also note that
A(t) > 0, thus completing the proof.6

4.3.1 Insights from CD-optimal control

The CD-optimal control (4.16) provides insights into the behavior of the optimal allocation
policy. For ease of exposition, we first establish the following properties of g(t; β) and
h(t; β, c), defined in (4.17).

Corollary 4.3.1. (Properties of g(t; β)). The function g(t; β) defined in (4.17) has the
following properties for t ∈ [t0, T ] and β > 0:

(i) For fixed t ∈ [t0, T ], g(t; β) is strictly increasing on β ∈ (0,∞).

(ii) For fixed β > 0, g(t; β) is strictly increasing on t ∈ [t0, T ].

(iii) g(t; β) admits the following bounds:

eβt ≤ g(t; β) ≤ eβT . (4.24)

Corollary 4.3.2. (Properties of h(t; β, c)). The function h(t; β, c) defined in (4.17) has the
following properties for t ∈ [t0, T ], β > 0 and c ≥ 0:

(i) For fixed t ∈ [t0, T ] and c > 0, h(t; β, c) is strictly increasing on β ∈ (0,∞).

(ii) h(t; β, c) ≥ 0, ∀(t, β, c) ∈ [t0, T ]× (0,∞)× [0,∞).

(iii) For fixed t ∈ [t0, T ] and β > 0, h(t; β, c) is strictly increasing on c ∈ [0,∞). h(t; β, 0) ≡
0. Moreover, h(t; β, c) ∝ c, i.e. h(t; β, c) is proportional to c.

6The closed-form solution was verified using Maple software.
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Proof. van Staden et al. (2023a) derive the CD-optimal control under the assumption that
the stock price follows the double-exponential jump-diffusion model and the bond is risk-free
with the bond price B(t) following

dB(t)

B(t)
= r. (4.25)

Under such assumptions, van Staden et al. (2023a) shows that the CD-optimal control can
be expressed in a similar form as in (4.16) with g and h functions. The g and h functions
satisfy the same properties as in Corollary (4.3.1) and (4.3.2). Despite we assume the bond
price follows a jump-diffusion model, the proof of Corollary (4.3.1) and (4.3.2) follows similar
steps as the proof in van Staden et al. (2023a).

In order to analyze the closed-form solution, we make the following assumptions.

Assumption 4.3.4. (Drift rates of the two assets). We assume that the drift rates of the
stock and the bond index µ1 and µ2 satisfy the following properties,

µ1 − µ2 > 0, µ1 − µ2 + ϑ > 0, (4.26)

where ϑ is defined in (4.15).

Remark 4.3.3. (Remark on drift rate assumptions). The first inequality µ1 − µ2 > 0
indicates that the stock index has a higher drift rate than the bond index, which is a standard
assumption. The second inequality µ1 − µ2 + ϑ > 0 is also practically reasonable since ϑ is
a variance term that is usually on a smaller scale compared to the drift rates. In reality, it
is unlikely that µ1 − µ2 > 0 but µ1 − µ2 + ϑ ≤ 0.

We now proceed to summarize the insights from the CD-optimal control (4.16). The
first obvious observation is that the CD-optimal control is a contrarian strategy. This can
be seen from the fact that fixing time and the wealth of the benchmark portfolio Ŵ (t), the
allocation to the more risky stock index decreases when the wealth of the active portfolio
W ∗(t) increases.

If we take a deeper look at (4.16), we can see that the CD-optimal control consists of two
components: a cash injection component p∗cash and a tracking component p∗track. Mathemat-
ically,

p∗(t, w, ŵ, ϱ̂) = p∗cash(t, w, ŵ) + p∗track(t, w, ŵ, ϱ̂), (4.27)

where
p∗cash(t, w, ŵ) =

1
W ∗(t)

[
(µ1−µ2)

γ
h(t; β, c)

]
,

p∗track(t, w, ŵ, ϱ̂) =
1

W ∗(t)

[
(µ1−µ2+ϑ)

γ

(
g(t; β)Ŵ (t)−W ∗(t)

)
+ g(t; β)Ŵ (t) · ϱ̂

]
.

(4.28)
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Based on Assumption 4.3.4 and Corollary 4.3.2, the cash injection component p∗cash is
always non-negative. Furthermore, from Corollary 4.3.2, we know that the stock allocation
from the cash injection component is proportional to the cash injection rate c. In addition,
as t ↑ T , h(t; β, c) increases, and thus the stock allocation from the cash injection component
also increases with time.

On the other hand, the tracking component ptrack does not depend on the cash injection
rate c, but only concerns the tracking performance of the active portfolio. One key finding
is that {

p∗track(t, w, ŵ, ϱ̂) ≥ ϱ̂, if W ∗(t) ≤ g(t; β)Ŵ (t),

p∗track(t, w, ŵ, ϱ̂) < ϱ̂, if W ∗(t) > g(t; β)Ŵ (t).
(4.29)

This means that the CD-optimal control uses g(t; β)Ŵ (t) as the true target for the active
portfolio to decide if it should take more or less risk than the benchmark portfolio. This
is a key observation, since the CD objective function (4.6) measures the difference between
W (t) and eβtŴ (t). One would naively think that the optimal strategy would be based
on the deviation from eβtŴ (t). In contrast, from Corollary 4.3.1, we know that the true
target g(t; β)Ŵ (t) used for decision making is greater than eβtŴ (t). The insight from this
observation is that if the manager wants to track an elevated target eβtŴ (t), she should aim
higher than the target itself.

4.4 Approximate form under realistic constraints

The closed-form solution p∗ in (4.16) is obtained under several unrealistic assumptions,
namely continuous rebalancing, unlimited leverage, and continuing trading in insolvency.7 In
practice, investors are subject to constraints such as discrete rebalancing, limited leverage,
and no trading when insolvent. Therefore, obtaining an approximation of the closed-form
solution that satisfies realistic constraints is of practical importance.

In particular, we consider an equally-spaced discrete rebalancing schedule T∆t defined as

T∆t =
{
ti : i = 0, · · · , N

}
, (4.30)

where ti = i∆t, and ∆t = T/N . Then, the (discrete) clipped form p̄∆t : T∆t × R3 7→ R is
defined as

p̄∆t(ti, W̄∆t(ti), Ŵ∆t(ti), ϱ̂) = min

(
max

(
p∗(ti, W̄∆t(ti), Ŵ∆t(ti), ϱ̂), pmin

)
, pmax

)
. (4.31)

Here [pmin, pmax], where pmin = 0 and pmax ≥ 1, is the allowed range of stock allocation
fraction, W̄∆t(ti) is the wealth of the active portfolio at ti following p̄∆t from t0 to ti, Ŵ∆t(ti)

7Note that we consider a two-asset scenario here, thus the scalar p∗ ∈ R (allocation fraction for the stock
index) fully describes the allocation strategy p∗, since p∗ = (p∗, 1− p∗)⊤.
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is the wealth of the benchmark portfolio at ti following the fixed-mix strategy described by
constant allocation fraction ϱ̂, but only rebalanced discretely according to T∆t. Clearly, the
allocation strategy from p̄∆t follows the discrete schedule of T∆t, and satisfies the leverage
constraint that p̄∆t ∈ [pmin, pmax]. p∆t approaches the closed-form solution p∗ as ∆t ↓
0, pmin ↓ −∞ and pmax ↑ ∞. We note that a similar clipping idea is explored in Vigna
(2014) in the context of closed-form solutions for multi-period mean-variance asset allocation.
However, it should be emphasized that the clipped form p̄∆t with finite (pmin, pmax) is a
feasible, but in general sub-optimal, control of the leverage-constrained CD problem (4.7).

We then address the assumption that trading continues when insolvent, i.e., when the
wealth of the portfolio reaches zero. While necessary for the mathematical derivation of the
closed-form solution, we acknowledge that this is by no means reasonable for practitioners.
Under the continuous rebalancing case (assuming no jumps), if the control (allocation) is
bounded, it can be shown that the wealth of the portfolio can never be negative (Wang and
Forsyth, 2012). However, with discrete rebalancing, even with a bounded control, as long
as the upper bound pmax > 1, it is theoretically possible that the portfolio value becomes
negative. We address this assumption by applying an overlay on strategies so that in the case
of insolvency, we assume the manager liquidates the long-only positions and allocates the
debt (negative wealth) to a shortable asset (bond) to allow outstanding debt to accumulate
until the end of the investment horizon.

In summary, the clipped form satisfies the realistic constraints and serves as a constraint-
compliant alternative solution for practitioners.

4.5 Conclusions

In conclusion, in this chapter, we have discussed the following.

(i) We derived the closed-form solution to the problem of outperforming a passive bench-
mark portfolio under the CD objective function, under double-exponential jump-diffusion
asset price models, and assumptions of continuous rebalancing, unlimited leverage, and
continuation of trading when insolvent.

(ii) We showed that the optimal strategy is a contrarian strategy, which takes more risk
when the strategy is underperforming the benchmark. In addition, the optimal strategy
aims for a target higher than the elevated target used in the objective function.

(iii) We proposed an approximate form of the closed-form solution that satisfies realistic
constraints and can be used as an alternative solution for practitioners.
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Chapter 5

Neural network for portfolio
optimization with leverage constraints

5.1 Introduction

In Chapter 4, we derived the closed-form solution to the multi-period portfolio optimiza-
tion problem for outperforming a benchmark portfolio throughout the investment horizon.
While the closed-form solution provides valuable intuition into understanding the behavior
of the optimal control, it requires unrealistic assumptions such as unlimited leverage and
continuation of trading when insolvent.

However, in practical investment portfolios, it is common to allow some leverage to
increase exposure to specific risk factors in the financial market. Consequently, the multi-
period portfolio optimization problem is subject to a bounded leverage constraint (due to
risk mandates), introducing additional complexity that existing methods for multi-period
portfolio optimization struggle to handle.

In this chapter, we extend the approach of approximating the optimal control with a
neural network model and propose a novel methodology for solving multi-period portfolio
optimization problems with bounded leverage constraints.

We begin by discussing the practical significance and motivation for considering leverage
constraints in investment portfolios. Subsequently, we mathematically formulate the leverage
constraints.

To tackle these complex leverage constraints and make the constrained optimization
problem computationally feasible, we propose a leverage-feasible neural network (LFNN)
model. The LFNN model converts the original constrained optimization problem into an
unconstrained one, enabling effective calculation of the optimal controls through standard
optimization methods.

Furthermore, we provide mathematical analysis demonstrating the LFNN’s capability
to approximate the optimal control with arbitrary precision, guaranteeing that solving the
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parameterized unconstrained optimization problem can yield accurate approximations to the
solution of the original complex optimization problem with leverage constraints.

Finally, to validate the LFNN model’s performance, we present a numerical experiment
comparing the learned neural network strategy with the clipped form of the closed-form
solution. The results demonstrate that the LFNN model is capable of learning a comparable
solution to the clipped form, further affirming its effectiveness in handling the leverage
constraints in the portfolio optimization problem.

In summary, we make the following contributions in this chapter.

(i) We propose a novel approach to tackle the stochastic optimal control problem under
realistic constraints, such as discrete rebalancing and limited leverage, by directly
representing the control using a neural network. Specifically, we introduce the leverage-
feasible neural network (LFNN) model, which effectively converts the original complex
leverage-constrained optimization problem into an unconstrained one, allowing for a
straightforward solution using standard optimization methods.

(ii) We prove that, with a suitable choice of the hyperparameter of the LFNN model, the
solution of the parameterized unconstrained optimization problem can approximate
the optimal control arbitrarily well. This provides a mathematical justification for the
validity of the LFNN approach.

(iii) Through numerical experiments, we demonstrate that the learned neural network strat-
egy achieves comparable performance relative to the clipped form of the closed-form
solution on synthetic data. This demonstrates the LFNN model’s capability to find
optimal solutions efficiently and provides empirical support for the mathematical ap-
proximation theorem.

5.2 Portfolio optimization with leverage constraints

Large pension funds such as the Canada Pension Plan often have exposures to alternative
assets, such as private equity (CPP Investments, 2022). Literature suggests that returns on
private equity can be replicated using a leveraged small-cap stock index (Phalippou, 2014;
L’Her et al., 2016). Following this line of argument, we allow managers to take leverage to
invest in public stock index funds to roughly mimic the pension fund portfolios with some
exposure to private equity. Typically, due to risk mandates, the total leverage in the portfolio
is subject to an upper bound.

Essentially, taking leverage to invest in stocks requires borrowing additional capital.
For simplicity, we consider a self-financing portfolio and assume the borrowing activity is
represented by shorting some bond assets within the portfolio.

In this section, we mathematically formulate the leverage constraints. Following the
notations from Section 4.2, we assume that the total Na underlying assets are divided into
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two groups. The first group of NL assets are long-only assets, which we index by the set
{1, · · · , NL}. The second group of Na−NL assets are shortable assets that can be shorted to
create leverage and are indexed by the set {NL+1, · · · , Na}. Recall the notation of pi(X(t))
for the allocation fraction for asset i at time t, as a function of the state variable vector
X(t).

For long-only assets, the wealth fraction needs to be non-negative, hence we have

(Long-only constraint): pi(X(t)) ≥ 0, i ∈ {1, · · · , NL}, t ∈ T . (5.1)

Furthermore, the total allocation fraction for all assets should be one. Therefore, the
following summation constraint needs to be satisfied

(Summation constraint):
Na∑
i=1

pi(X(t)) = 1, t ∈ T . (5.2)

In practice, due to borrowing costs (from taking leverage) and risk management man-
dates, the level of leverage is often constrained. For this reason, we cap the maximum
leverage by introducing a constant pmax, which represents the total allocation fraction for
long-only assets. Therefore,

(Maximum leverage constraint):

NL∑
i=1

pi(X(t)) ≤ pmax, t ∈ T . (5.3)

Note that no leverage is permitted if pmax = 1.

Finally, we make the following assumption on the scenario of shorting multiple shortable
assets.

Assumption 5.2.1. (Simultaneous shorting). If one shortable asset has a negative weight,
other shortable assets must have nonpositive weights. Mathematically, this assumption can
be expressed as

(Simultaneous shorting):

{
pi(X(t)) ≤ 0, ∀i ∈ {NL + 1, · · · , Na}, if

∑NL

i=1 pi(X(t)) > 1, t ∈ T
pi(X(t)) ≥ 0, ∀i ∈ {NL + 1, · · · , Na}, if

∑NL

i=1 pi(X(t)) ≤ 1, t ∈ T
.

(5.4)

Remark 5.2.1. (Remark on Assumption 5.2.1). This assumption avoids the ambiguity
between long-only assets and shortable assets in scenarios that involve leverage. When
leveraging occurs, all shortable assets are treated as one group to provide the needed liquidity
to achieve the desired leverage level. A typical scenario would involve long-only equities and
long term bonds, while allowing shorting of short term T-bills, i.e. effectively borrowing
cash. This scenario falls under Assumption 5.2.1. We will discuss alternative assumptions
concerning leverage and shorting in Chapter 7.
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The above constraints permit scenarios with non-negative portfolio wealth. Before we
proceed to the handling of the negative portfolio wealth scenarios, we first define the following
partition of the state space X ,

Definition 5.2.1. (Partition of state space). We define
{
X1,X2

}
to be a partition of the

state space X , such that X1 =
{
x = (t,W, Ŵ )⊤ ∈ X

∣∣∣W ≥ 0
}
,

X2 =
{
x = (t,W, Ŵ )⊤ ∈ X

∣∣∣W < 0
}
.

(5.5)

Intuitively, we separate the state space X into two regions by the wealth of the active
portfolio, one with non-negative wealth and the other with negative wealth. Since we allow
shorting, and the portfolio is discretely rebalanced, it is possible for the investor to be-
come insolvent. Then, we present the following assumption concerning the negative wealth
(insolvency) scenarios.

Assumption 5.2.2. (No trading in insolvency). If the wealth of the active portfolio is
negative, then all long-only asset positions should be liquidated, and all the debt (i.e. the
negative wealth) should be allocated to the least-risky shortable asset (in terms of volatility).
In particular, without loss of generality, we assume all debt is allocated to the shortable
asset indexed with NL + 1. Let ei ∈ RNa = (0, · · · , 0, 1, 0, · · · , 0)⊤ denote the standard basis
vector of which the i-th entry is 1 and all other entries are 0. Then, we can formulate this
assumption as follows.

(No trading in insolvency): p(X(t)) = eNL+1, if X(t) ∈ X2. (5.6)

Remark 5.2.2. (Remark on Assumption 5.2.2). Essentially, when the portfolio wealth is
negative, we assume the debt is allocated to a short-term bond asset and accumulates over
time.

Summarizing the constraints, we can define two sets Z1,Z2:
Z1 =

z ∈ RNa

∣∣∣∣∣


zi ≥ 0,∀i ∈ {1, · · · , NL},∑Na

i=1 zi = 1,∑NL

i=1 zi ≤ pmax,

zi ≤ 0, ∀i ∈ {NL + 1, · · · , Na}, if
∑NL

i=1 zi > 1,

zi ≥ 0, ∀i ∈ {NL + 1, · · · , Na}, if
∑NL

i=1 zi ≤ 1

, (5.7)

Z2 =
{
eNL+1

}
, (5.8)

Then, the corresponding space of feasible control vector values Z and the admissible
strategy set A can be expressed as follows.
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(Admissible set) :


Z = Z1 ∪ Z2, (5.9)

A =

{
p

∣∣∣∣∣
{
p(X(t)) ∈ Z1, if X(t) ∈ X1,

p(X(t)) ∈ Z2, if X(t) ∈ X2,
∀t ∈ T

}
. (5.10)

Consequently, we need to solve the following challenging constrained optimization prob-
lem.

(Constrained optimization problem): inf
p∈A

E(t0,w0)
p

[
F (Wp, Ŵp̂)

]
. (5.11)

5.3 Leverage-feasible neural network

In Section 4.3, we derived the closed-form solution under the jump-diffusion model, which
requires several unrealistic assumptions such as continuous rebalancing, unlimited leverage,
and trading in insolvency. Furthermore, the closed-form solution is specific to the invest-
ment objective defined in the CD problem (4.6). It is thus critically beneficial to develop a
technique to discover optimal solutions to the constrained investment problem (5.11) for dif-
ferent objectives and under realistic constraints, such as discrete rebalancing and the leverage
constraints discussed in Section 5.2.

Specifically, the numerical solution to the general problem (5.11) requires solving for the
feedback control p. In this chapter, we follow the high-level idea discussed in Chapter 2, and
approximate the control function p(·) with a neural network function fθ : X 7→ RNa , where
θ ∈ RNθ represents the parameters of the neural network (i.e., weights and biases). In other
words,

p(X(t)) ≃ fθ(X(t)). (5.12)

Then, the optimization problem (5.11) can be converted to solving the following parameter-
ized optimization problem.

(Parameterized optimization problem): inf
θ∈Zθ

E(t0,w0)
fθ

[
F (Wθ, Ŵp̂)

]
. (5.13)

Here Wθ is the wealth trajectory of the active portfolio with control following the neural
network approximation function parameterized by θ. Zθ ⊆ RNθ is the feasibility domain of
the parameter θ, which is translated from the constraints of the original problem, i.e., (5.9)
and (5.10). Mathematically,

Zθ =

{
θ :

{
fθ(X) ∈ Z1, if X ∈ X1,

fθ(X) ∈ Z2, if X ∈ X2.

}
. (5.14)

Here Z1,Z2 are defined in (5.7), (5.8) and X1,X2 are partitions of the state space X defined
in Definition 5.2.1.
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Note here that Zθ depends on the structure of the neural network function fθ. Intuitively,
Zθ can be thought of the preimage of Z under the neural network function. We are inter-
ested in the neural network model design that results in Zθ = RNθ , which means problem
(5.13) becomes an unconstrained optimization problem. For long-only investment problems,
the only constraints are the long-only constraint (5.1) and the summation constraint (5.2).
Previous work has proposed a neural network architecture with a softmax activation function
at the last layer so that the output (vector of allocation fractions) automatically satisfies the
two constraints, and thus Zθ = RNθ and problem (5.13) becomes an unconstrained optimiza-
tion problem (see, e.g., Li and Forsyth (2019); Ni et al. (2022)). However, as discussed in
Section 5.2, we consider the more complicated case where leverage and shorting are allowed.
The problem thus involves more constraints than the long-only case and therefore requires
us to design a new model architecture to convert the constrained optimization problem to
an unconstrained problem. We will discuss the design of the leverage-feasible neural network
(LFNN) model in the next section, and how the LFNN model achieves this goal.

5.3.1 LFNN model

In this section, we propose the leverage-feasible neural network (LFNN) model, which yields
Zθ = RNθ for leverage constraints defined in equation (5.9), and therefore converts a con-
strained optimization problem (5.13) to an unconstrained problem.

We first define the commonly used fully connected feedforward neural network (Lu and
Lu, 2020) as follows.

Definition 5.3.1. (Fully connected feedforward neural network f̃θ). A fully connected feed-
forward neural network (FNN) maps an input vector x ∈ Rd0 to an output vector h ∈ RdK+1,
and contains K hidden layers of sizes d1, · · · , dK. The neural network is parameterized by
the weight matrices θ(k) ∈ Rdk−1×dk and bias vectors θ

(k)
b ∈ Rdk , for k = 1, · · · , K+1. Then,

the output h is derived from the input x iteratively as follows.
x(0) = x,

x(k) = σ
((

θ(k)
)⊤ · x(k−1) + θ

(k)
b

)
, 1 ≤ k ≤ K,

h =
(
θ(K+1)

)⊤ · x(K) + θ
(K+1)
b .

(5.15)

Here σ is the pointwise sigmoid activation function, i.e. for any vector z, [σ(z)]i = σ(zi).
For notational simplicity, we flatten and assembly all weight matrices and bias vectors into a
single parameter vector θ = (θ(1),θ

(1)
b , · · · ,θ(K+1),θ

(K+1)
b )⊤ ∈ RNθ , where Nθ =

∑K+1
k=1 (dk−1 ·

dk+dk). Furthermore, we use the 2-tuple
(
K, (d1, · · · , dK)⊤

)
to denote the hyperparameters,

i.e. the number of hidden layers and the sizes of each hidden layer.

The function defined by the above fully connected feedforward neural network parameter-
ized by θ is denoted by f̃θ.
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Note that the size of θ depends on hyperparameters
(
K, (d1, · · · , dK)⊤

)
. However, for

notational simplicity, we omit the 2-tuple in f̃θ.

Building on f̃θ, we propose the following leverage-feasible neural network (LFNN) model
fθ : X 7→ Z:

(LFNN) : fθ(x) := ψ
(
f̃θ(x),x

)
∈ Z. (5.16)

Here, ψ(·) is the leverage-feasible activation function. For x ∈ X and o = (o1, · · · , oNa+1)
⊤ ∈

RNa+1, let p = (p1, · · · , pNa) = ψ(o,x), where ψ(·) : RNa+1 ×X 7→ Z is defined as follows.

p = ψ(o,x) =




l = pmax · σ(oNa+1),

pi = l · eoi∑NL
k=1 e

ok
, i ∈ {1, · · · , NL}, if x ∈ X1,

pi = (1− l) · eoi∑Na
k=NL+1 e

ok
, i ∈ {NL + 1, · · · , Na},

eNL+1, if x ∈ X2.

(5.17)

Here σ is the sigmoid function, NL is the number of long-only assets, eNL+1 is the standard
basis vector with the (NL + 1)-th entry being 1 and other entries being 0, and pmax is the
maximum leverage allowed. We show that the leverage-feasible activation function ψ has
the following property.

Lemma 5.3.1. (Decomposition of ψ). The leverage-feasible function ψ defined in (5.17) has
the function decomposition that

ψ(o,x) = φ(ζ(o),x), (5.18)

where
ζ : RNa+1 7→ Z̃, ζ(o) =

(
Softmax

(
(o1, · · · , oNL

)
)
, Softmax

(
(oNL+1, · · · , oNa)

)
, pmax · σ(oNa+1)

)⊤

,

φ : Z̃ × X 7→ Z, φ(z,x) =
(
zNa+1 · (z1, · · · , zNL

), (1− zNa+1) · (zNL+1, · · · , zNa)
)⊤

· 1x∈X1

+eNL+1 · 1x∈X2 ,

(5.19)
and

Z̃ =

{
z = (z1, · · · , zNa+1)

⊤ ∈ RNa+1,

NL∑
i=1

zi = 1,
Na∑

i=NL+1

zi = 1, zNa+1 ≤ pmax, zi ≥ 0,∀i

}
.

(5.20)

Proof. This is easily verifiable by the definition of ψ in (5.17).
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Remark 5.3.1. (Remark on Lemma 5.3.1). The leverage-feasible activation function ψ cor-
responds to a two-step decision process described by ζ and φ. Intuitively, ζ first determines
the internal allocations within long-only assets and shortable assets, as well as the total
leverage. Then, φ converts the internal allocations and total leverage into final allocation
fractions, which depend on the wealth of the active portfolio.

With the LFNN model outlined above, we can show that the parameterized optimization
problem (5.13) becomes an unconstrained optimization problem. Specifically, we present
the following theorem regarding the feasibility domain Zθ associated with the LFNN model
(5.16).

Theorem 5.3.1. (Unconstrained feasibility domain). The feasibility domain Zθ defined in
(5.14) associated with the LFNN model (5.16) is RNθ .

Proof. First, it is obvious that Zθ ⊆ RNθ by definition of (5.14). Next, we show that
RNθ ⊆ Zθ. To prove this, we need to show that for any θ ∈ RNθ ,

fθ(x) = p ∈

{
Z1, if x ∈ X1,

Z2, if x ∈ X2,
∀x ∈ X . (5.21)

Here, fθ is the LFNN function defined in (5.16), p = (p1, · · · , pNa)
⊤ ∈ RNa is the output

of the LFNN model that represents the wealth allocation to the assets, Z1 and Z2 are the
feasibility sets defined in (5.7) and (5.8), and x ∈ X is a feature vector. To prove (5.21), we
verify the two scenarios for x ∈ X1 and x ∈ X2 respectively.

When x ∈ X2, it is easily verifiable that p = eNL+1 via the definition of the leverage-
feasible activation function (5.17).

Next, we verify that when x ∈ X1, p ∈ Z1. To prove this, we need to show that
constraints of (5.1)-(5.4) are satisfied when x ∈ X1.

We borrow the variables l and oNa+1 in equation (5.17).

By definition of (5.17), it is obvious that the long-only constraint (5.1) holds for long-only
assets.

It is also easy to verify that the summation constraint (5.2) is satisfied. This can be
observed after the fact that

NL∑
i=1

pi = l, and
Na∑

i=NL+1

pi = 1− l. (5.22)

The maximum leverage constraint (5.3) is also satisfied, as

NL∑
i=1

pi = l = pmax · σ(−oNa+1) ≤ pmax. (5.23)
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Finally, the simultaneous shorting constraint (5.2.1) is satisfied. To see this, we examine
the scenario when leverage occurs, i.e.,

∑NL

i=1 pi = l > 1. Then, by definition from (5.17), we
know

pi = (1− l) · eoi∑Na

k=N+1 e
ok

≤ 0, ∀i ∈ {NL + 1, · · · , Na} (5.24)

From (5.24) it is clear that if l ≤ 1, then pi ≥ 0,∀i.

Therefore, for any θ ∈ RNθ , (5.21) is satisfied. This implies RNθ ⊆ Zθ.

Following Theorem 5.3.1, the constrained optimization problem (5.11) can be transformed
into the following unconstrained optimization problem

(Unconstrained parameterized problem): inf
θ∈RNθ

E(t0,w0)
fθ

[
F (Wθ, Ŵp̂)

]
. (5.25)

5.3.2 Mathematical justification for LFNN approach

By approximating the feasible control with a parameterized LFNN model, we have shown
that the original constrained optimization problem is transformed into an unconstrained
optimization problem, which is computationally more feasible.

However, an important question remains: is the solution to the parameterized uncon-
strained optimization problem (5.25) capable of yielding the optimal control of the original
problem (5.11)? In other words, suppose θ∗ is the solution to (5.25), can fθ∗ approximate
solution to the original problem (5.11) with high accuracy?

In this section, we prove that under benign assumptions about the optimal control and
appropriate choices of the hyperparameters of the LFNN model (5.16), solving the uncon-
strained problem (5.25) provides an arbitrarily close approximation to solving the original
problem (5.11). We start by establishing the following lemma.

Lemma 5.3.2. (Structure of feasible control). Any feasible control function p : X 7→ Z ,
where Z is defined in (5.10), has the following function decomposition

p(x) = φ(ω(x),x),∀x ∈ X , (5.26)

where φ : Z̃ × X 7→ Z is defined in (5.19) and ω : X 7→ Z̃.

Proof. We prove the lemma by existence.

Define ω as

ω(x) =

{
ϕ
(
p(x)

)
, if x ∈ X1,(

1
NL
, · · · , 1

NL
, 1
Na−NL

, · · · , 1
Na−NL

, 0
)⊤
, if x ∈ X2,

(5.27)
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where for any z = (z1, · · · , zNa)
⊤ ∈ Z1 (defined in 5.7), y = (y1, · · · , yNa+1)

⊤ =
ϕ(z)∈ RNa+1 is defined as

ϕ(z) ≡ y =




yi =

zi∑NL
j=1 zj

, i ∈ {1, · · · , NL},

yi =
zi

1−
∑NL

j=1 zj
, i ∈ {NL, · · · , Na},

yNa+1 =
∑NL

j=1 zj,

if
∑NL

i=1 zi ∈ (0, 1) ∪ (1, pmax],


yi = zi, i ∈ {1, · · · , NL},
yi = 1/(Na −NL), i ∈ {NL, · · · , Na},
yNa+1 = 1,

if
∑NL

i=1 zi = 1,


yi = 0, i ∈ {1, · · · , NL},
yi = zi, i ∈ {NL, · · · , Na},
yNa+1 = 0,

if
∑NL

i=1 zi = 0,

(5.28)
It can then be easily verified that ω : X 7→ Z̃, and that p(x) = φ(ω(x),x).

Next, we propose the following benign assumptions on the state space and the optimal
control.

Assumption 5.3.1. (Assumption on state space and optimal control).

(i) The space X of state variables is a compact set.

(ii) Following Lemma 5.3.2, for any x ∈ X , the optimal control p∗ : X 7→ Z has the
decomposition p∗(x) = φ(ω∗(x),x) for some ω∗ : X 7→ Z̃. We assume ω∗ ∈ C(X , Z̃),
where C(X , Z̃) denotes the set of continuous mappings from X to Z̃.

Remark 5.3.2. (Remark on Assumption 5.3.1). In our particular problem of outperforming
a benchmark portfolio, the state variable vector is (t,W (t), Ŵ (t))⊤ ∈ X where t ∈ [0, T ]. In
this case, assumption (i) is equivalent to the assumption that the wealth of the active portfo-
lio and benchmark portfolio is bounded, i.e. X = [0, T ]× [wmin, wmax]× [wmin, ŵmax], where
wmin, wmax and ŵmin, ŵmax are the respective wealth bounds for the portfolios. Intuitively,
assumption (ii) states that the decision process for the optimal control to obtain the alloca-
tion fractions within the long-only assets and the shortable assets, and the total leverage, is
a continuous function of state variables. This is a natural extension of the long-only case,
in which it is commonly assumed that the allocation within long-only assets is a continuous
function of state variables.

Before presenting the approximation theorem, we first briefly review the results of Krat-
sios and Bilokopytov (2020).
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Lemma 5.3.3. Let X ⊂ Rl be a compact set, and Y ⊂ Rm. Let ρ : Rn 7→ Y satisfy the
following:

(i) ρ is continuous and has a right inverse on Im(ρ), i.e. ∃−→ρ : Im(ρ) 7→ Rn, s.t.
ρ(−→ρ (z)) = z, ∀z ∈ Im(ρ).

(ii) Im(ρ) is dense in Y.

Then, for any continuous g : X 7→ Y, and any ϵ > 0, there exists a choice of hyperparam-
eters

(
K, (d1, · · · , dK)⊤

)
and parameter θ, such that the corresponding FNN f̃θ : X 7→ Rn

described in Definition 5.3.1 satisfies

sup
x∈X

∥ρ(f̃θ(x))− g(x)∥ < ϵ,∀x ∈ X . (5.29)

Here ∥ · ∥ denotes the vector norm.

Proof. This is a direct application of Theorem 3.3 of Kratsios and Bilokopytov (2020) (for
general topological spaces) in the metric space.

Intuitively, the second assumption of Lemma 5.3.3 allows the use of an activation function
(such as the softmax function) which output an open set, as long as this open set is dense in
Y (which can be a closed set). The two assumptions ensures the existence of a continuous
mapping of which the image almost covers Y .

We then propose the following lemma, which is a generalization of the main theorem in
this chapter.

Lemma 5.3.4. (Approximation of controls with a specific structure). Assume a control
function p : X 7→ Z has the structure

p(x) = Φ(Ω(x),x),∀x ∈ X , (5.30)

where X is compact, Ω ∈ C(X ,Y), i.e. Ω is a continuous mapping from X to Y, and
Φ : Y × X 7→ Z is Lipschitz continuous on Y × Xi, ∀i = 1, · · · , n, where {Xi, i = 1, · · · , n}
is a partition of X , i.e. {⋃n

i=1Xi = X ,
Xi

⋂
Xj = ∅,∀1 ≤ i, j ≤ n.

(5.31)

If there exists m ∈ N and Υ : Rm 7→ Y such that

(i) Υ is continuous and has a right inverse on Im(Υ).

(ii) Im(Υ) is dense in Y.
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Then for any ϵ > 0, there exists a choice of hyperparameters
(
K, (d1, · · · , dK)⊤

)
and model

parameters θ such that the fully connected feedforward neural network function f̃θ defined in
Definition 5.3.1 satisfies

sup
x∈X

∥Φ
(
Υ
(
f̃θ(x)

)
,x
)
− p(x)∥ < ϵ. (5.32)

Proof. Let
LΦ = max

1≤i≤n
Li, (5.33)

where Li is the Lipschitz constant for Φ on Y × Xi.

Since Ω ∈ C(X ) for compact X , following Lemma 5.3.3, we know that ∀ϵ > 0, there

exist
(
K, (d1, · · · , dK)⊤

)
(the number of hidden layers and hidden nodes for each layer)

and θ ∈ RNθ such that the corresponding FNN f̃θ : X 7→ Rm described in Definition 5.3.1
satisfies

sup
x∈X

∥Υ
(
f̃θ(x)

)
− Ω(x)∥ < ϵ/LΦ, (5.34)

Then

sup
x∈X

∥Φ
(
Υ
(
f̃θ(x)

)
,x
)
− p(x)∥ = sup

1≤i≤n
sup
x∈Xi

∥Φ
(
Υ
(
f̃θ(x)

)
,x
)
− Φ

(
Ω(x),x

)
∥ (5.35)

≤ sup
1≤i≤n

sup
x∈Xi

Li ·
(
∥Υ
(
f̃θ(x)

)
− Ω(x)∥

)
(5.36)

< sup
1≤i≤n

Li

LΦ

ϵ (5.37)

≤ ϵ. (5.38)

Remark 5.3.3. (Application of Lemma 5.3.4 to portfolios with stochastic allocation con-
straints). Normally, the universal approximation theorem only applies to the approximation
of continuous functions defined on a compact set (Hornik, 1991). Lemma 5.3.4 extends
the universal approximation theorem to a broader class of functions that have the struc-
ture of (5.30). Furthermore, Lemma 5.3.4 provides guidance on constructing neural network
functions that handle stochastic constraints on controls which are usually difficult to ad-
dress in stochastic optimal control problems. Consider the following example: the control
p : X 7→ RNa has stochastic constraints such that p(x) ∈ [a(x), b(x)] where a, b : X 7→ RNa

are deterministic functions. This is a common setting in portfolio optimization problems in
which allocation fractions to specific assets are subject to thresholds tied to the performance
of the portfolio (which is stochastic). With Lemma 5.3.4, by parameterizing the control
p(x) ≈ fθ(x) = a(x) + σ

(
f̃θ(x)

)
· (b(x) − a(x)), where σ(·) is the sigmoid function and f̃

is a standard FNN defined in Definition 5.3.1, one can easily construct the corresponding
neural network that satisfies the constraints naturally and be guaranteed that such a neural
network can approximate the control well.
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Finally, we present the following approximation theorem for the LFNN.

Theorem 5.3.2. (Approximation of optimal control). Given the optimal control p∗ of prob-

lem (5.11) and Assumption 5.3.1, ∀ϵ > 0, there exist hyperparameters
(
K, (d1, · · · , dK)⊤

)
,

and θ ∈ RNθ such that the corresponding LFNN model fθ described in (5.16) satisfies the
following:

sup
x∈X

∥fθ(x)− p∗(x)∥ < ϵ. (5.39)

Proof. From (5.16) and Lemma 5.3.1, we know that

fθ(x) = ψ
(
f̃θ(x),x

)
= φ

(
ζ
(
f̃θ(x)

)
,x
)
, (5.40)

where f̃ is the FNN defined in Definition 5.3.1 and φ : Z̃ × X 7→ RNa , ζ : RNa+1 7→ Z̃ are
defined in (5.19).

It can be easily verified that ζ satisfies the following:

(i) ζ is continuous and has a right inverse, e.g.

ζ−1(z) : Im(ζ) 7→ RNa+1, ζ−1(z) =

(
log(z1), · · · , log(zNa), σ

−1(zNa+1/pmax)

)⊤

,

(5.41)
where σ−1 is the inverse function of the sigmoid function.

(ii) Im(ζ) is dense in Z̃. This is because Im(ζ), the closure of Im(ζ), is Z̃.

Furthermore, consider the partition of X ,
{
X1,X2

}
, which is defined in Definition 5.2.1.

It is easily verifiable that φ is Lipschitz continuous on Z̃ × X1 and Z̃ × X2 respectively.

Finally, according to Assumption 5.3.1, p∗(x) = φ
(
ω∗(x),x

)
, where ω∗ ∈ C(X , Z̃).

Applying Lemma 5.3.4 with Y = Z̃,Ω(·) = ω∗(·), Υ(·) = ζ(·), and Φ(·, ·) = φ(·, ·), we
know that there exist hyperparameters

(
K, (d1, · · · , dK)⊤

)
, and model parameters θ ∈ RNθ

such that the corresponding LFNN model fθ(x) = φ
(
ζ
(
f̃θ(x)

)
,x
)
satisfies the following:

sup
x∈X

∥fθ(x)− p∗(x)∥ < ϵ. (5.42)

Theorem 5.3.2 shows that given any arbitrarily small tolerance ϵ > 0, there exists a
suitable choice of the hyperparameter of the LFNN model (e.g. the number of hidden layers
and nodes) and a parameter vector θ, such that the corresponding parameterized LFNN
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function is within this tolerance of the optimal control function.1 In other words, with a large
enough LFNN model (in terms of the number of hidden nodes), solving the unconstrained
parameterized problem (5.25) approximately solves the original optimization problem (5.11)
with any required precision.

5.3.3 Training LFNN

Since the numerical experiments involve the solution and evaluation of the optimal parame-
ters θ∗ of the LFNN model (5.16) in problem (5.25), we briefly review how the parameters
are computed in experiments.

In numerical experiments, the expectation in (5.25) is approximated by using a finite set
of samples of the set Y = {Y (j) : j = 1, · · · , Nd}, where Nd is the number of samples, and
Y (j) represents a time series sample of joint asset return observations Ri(t), i ∈ {1, · · · , Na},
observed at t ∈ T , where T is the rebalancing schedule.2 Mathematically, problem (5.25) is
approximated by

inf
θ∈RNθ

{
1

Nd

Nd∑
j=1

F
(
W(j)

θ , Ŵ(j)
p̂

)}
. (5.43)

Here W(j)
θ is the wealth trajectory of the active portfolio following the LFNN parameterized

by θ, and Ŵ(j)
p̂ is the wealth trajectory of the benchmark portfolio following the benchmark

strategy p̂, both evaluated on Y (j), the j-th time series sample.

We use a shallow neural network model, specifically, an LFNN model with one single
hidden layer with 10 hidden nodes, i.e., K = 1 and d1 = 10. We use the 3-tuple vector
(t,Wθ(t), Ŵ (t))⊤ as the input (feature) to the LFNN network. At t ∈ [t0, T ], Wθ(t) is the
wealth of the active portfolio of the strategy that follows the LFNN model parameterized by
θ, and Ŵ (t) is the wealth of the benchmark portfolio.

Then, the optimal parameter θ∗ can be numerically obtained by numerically solving
problem (5.43) using standard optimization algorithms such as ADAM (Kingma and Ba,
2014). This process is commonly referred to as “training” of the neural network model, and
Y is often referred to as the training data set (Goodfellow et al., 2016).

Note that the definition of φ in Equation (5.19) depends on non-differentiable step func-
tions 1x∈X1 and 1x∈X2 . It can be easily verified that φ is piecewise analytic under analytic
partition (in short, PAP), which has the property of being differentiable almost everywhere
(Lee et al., 2020), i.e. the set of inputs making the function non-differentiable is contained
in a measure-zero set. Due to the recurrent nature of the neural network model, the ob-
jective function is essentially a chaining composition of φ and smooth functions (i.e. the

1The distance is defined in (5.39), i.e. the supremum of the pointwise distance over the extended state
space X .

2Note that the corresponding set of asset prices can be easily inferred from the set of asset returns, or
vice versa.

88



wealth evolution function, sigmoid function, and affine function). According to Lee et al.
(2020), the objective function is also PAP, thus is differentiable almost everywhere. In rare
cases when the function is not differentiable, PyTorch computes the gradient either by using
sub-gradients or continuity to allow optimization to proceed.3

In our specific case of portfolio optimization with leverage constraints, the objective
function is only non-differentiable when the wealth of the portfolio reaches zero at any
time during the investment horizon. However, in numerical experiments, the wealth has
not reached zero in any of the paths, most likely due to the mildly capped total leverage.
Therefore, concerns about the non-differentiability of the objective function should be further
alleviated.

Once θ∗ is numerically obtained, the resulting optimal strategy fθ∗ is evaluated on a
separate “testing” data set Y test, which contains a different set of samples generated from
either the same distribution of the training process or a different process (depending on
experiment purposes) so that the “out-of-sample” performance of fθ∗ is assessed.

5.4 LFNN model vs clipped-form solution

In this section, we compare the performance of the strategy following the learned shallow
LFNN model (which we refer to as the “neural network strategy”) with the clipped form
(4.31) of the closed-form solution, and provide empirical validation of the LFNN approach.
In particular, we assess and compare the performance of the neural network strategy and
the clipped form, under the following investment scenario described in Table 5.1.

Investment horizon T (years) 10
Assets CRSP cap-weighted index (real)

30-day T-bill (U.S.) (real)
Data Double-exponential jump-diffusion model calibrated

to concatenated 1940:8-1951:7 & 1968:9-1985:10
Initial portfolio wealth/annual cash injection 100/10
Rebalancing frequency Monthly, quarterly, semi-annually, annually
Maximum leverage 1.3
Benchmark equity percentage 0.7
Outperformance target rate β 1% (100 bps)

Table 5.1: Investment scenario.

Note that the asset price model is calibrated to the concatenated returns of 1940:8-1951:7
& 1968:9-1985:10, the historical high inflation periods. Since investing in high inflation

3See Pytorch Documentation.
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periods is currently of much interest, we use this data as an interesting example. Further
discussion of high inflation regimes is delayed to Chapter 6. However, it is also worth noting
that the exact historical period for model calibration does not matter for this experiment,
and only serves the purpose of obtaining some model parameters.

We assume the stock index and the bond index prices follow a double exponential jump
model (4.8), see e.g., (Kou, 2002; Kou and Wang, 2004), i.e., for the jump variable ξi,
yi = log(ξi) follows the double exponential distribution with density functions gi(yi) defined
as follows

gi(yi) = νiιie
−ιiyi1yi≥0 + (1− νi)ςie

−ςiyi1yi<0, i = 1, 2. (5.44)

where νi is the probability for an upward jump, and ιi and ςi are parameters that describe
the upward jump and downward jump respectively. The double exponential jump-diffusion
model allows the flexibility of modeling asymmetric upward and downward jumps in asset
prices, which are suitable for market conditions such as the current high inflation scenario.4

Using the threshold technique (Mancini, 2009; Cont et al., 2011; Dang and Forsyth,
2016), we calibrate the double exponential jump-diffusion models to historical returns. The
calibrated parameters can be found in Table 5.2. Then, we construct a training data set
Y and a testing data set Y test by sampling from the calibrated model, each with 10,000
samples.

µ1 σ1 λ1 ν1 ι1 ς1 µ2 σ2 λ2 ν2 ι2 ς2 ρ
0.051 0.146 0.178 0.2 7.13 7.33 -0.014 0.017 0.321 0 N/A 44.48 0.14

Table 5.2: Estimated annualized parameters for double exponential jump-diffusion model
(5.44) based on scenario described in Table 5.1.

We consider a shallow LFNN model which contains 1 hidden layer with 10 hidden nodes.
The neural network strategy follows the LFNN model learned from Y . We then evaluate the
performance of the neural network strategy and the approximate form (4.31) on the testing
data set Y test. Specifically, we compare the value of the CD objective function (4.7) for the
neural network strategy and the clipped form on Y test. In particular, this training/testing
process is repeated for various rebalancing frequencies from monthly to annually, as described
in Table 5.1.

In Table 5.3, we can see that the neural network strategy consistently outperforms the
clipped form in terms of the objective function value for all rebalancing frequencies. From
Table 4.2 we can see that the objective function values of both the neural network strategy
and the clipped form converge at roughly a first-order rate as ∆t ↓ 0. Assuming this to
be true, we extrapolate the solution to ∆t = 0 using Richardson extrapolation. These
extrapolated values are estimates of the exact value of the continuous-time CD objective
function (4.6) for the clipped form and the neural network strategy. We can see that the

4We remind the reader that the closed-form solution is derived under the jump-diffusion model.
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Closed-form solution objective function value: 418
Strategy ∆t = 1 ∆t = 1/2 ∆t = 1/4 ∆t = 1/12 ∆t = 0
Clipped form 545 504 479 467 461 (extrapolated)
Neural network 537 498 476 464 458 (extrapolated)

Table 5.3: CD objective function values. Results shown are evaluated on Y test, the lower
the better.

neural network strategy still outperforms the clipped form in terms of the extrapolated
objective function value. We can also see that the extrapolated neural network objective
function value is lower than the (suboptimal) clipped form extrapolated value. Observe from
Table 5.3 that the clipped control and the NN control (in the extrapolated limit as ∆t→ 0)
result in objective function values larger than the unconstrained (closed form) control, which
is to be expected.

It is also worth noting that, with monthly rebalancing, the numerical results for both the
clipped form and the neural network solution are very close to the extrapolated value. In
fact, Forsyth and Vetzal (2022) point out that the empirical performance of strategies only
has marginal gains with a higher rebalancing frequency than monthly rebalancing.

(a) Clipped form (b) Neural network strategy

Figure 5.1: Stock allocation fraction w.r.t. tracking ratio W (t)/
(
eβtŴ (t)

)
and time t.

Results are based on the evaluation on the testing data set Y test, and monthly rebalancing
(i.e. ∆t = 1/12).

Finally, we compare the neural network allocation strategy with the clipped form strategy.
Specifically, in Figure 5.1, we consider the case of monthly rebalancing and present the scatter
plots of the allocation fraction in the stock index with respect to time t and the ratio between
the wealth of the active portfolio W (t) and the elevated target eβtŴ (t). For simplicity,
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we call this ratio the “tracking ratio”. We plot the 3-tuple
(

W (t)

eβtŴ (t)
, t, p1

(
W (t), Ŵ (t), t

))
(obtained from the evaluation of the strategies on samples from Y test) by using time t as

the horizontal axis, the tracking ratio W (t)

eβtŴ (t)
as the vertical axis, and the values of the

corresponding allocation fraction to the cap-weighted index p1(W (t), Ŵ (t), t) to color the
scattered dots on the plot. A darker shade of the color indicates a higher allocation fraction.

As we can see from Figure 5.1, the stock allocation fraction of the neural network strategy
behaves similarly to the stock allocation fraction from the clipped form. Both strategies
invest more wealth in the stock when the tracking ratio is lower, which is consistent with the
insights we obtained in Section 4.3.1. In addition, the transition patterns of the allocation
fraction of the two strategies are also highly similar. One can almost draw an imaginary
horizontal dividing line around W (t)

eβtŴ (t)
= 0.9 that separates high stock allocation and low

stock allocation for both strategies.

We remark that a common criticism towards the use of neural networks is about the lack of
interpretability compared to more interpretable counterparts such as the regression models
(Rudin, 2019). In this section, we see that the neural network strategy closely resembles
(an approximate form of) the closed-form solution for the CD objective. The closed-form
solution, in turn, complements the neural network model and offers an alternative way of
interpreting results obtained from the neural network.

In summary, we find that a small neural network structure with one single hidden layer
and only 10 hidden nodes achieves good performance compared to the approximate form
of the closed-form solution, which provides further empirical evidence to support Theorem
5.3.2.

5.5 Conclusions

In this chapter, we discussed the multi-period portfolio optimization problem with bounded
leverage constraints. The leverage constraints introduce additional complexity to the multi-
period portfolio optimization problem, resulting in a challenging constrained optimization
problem.

By proposing a novel leverage-feasible neural network (LFNN), we transformed the orig-
inal constrained optimization problem into an unconstrained optimization problem that is
computationally feasible.

Furthermore, we mathematically proved that the solution to the parameterized uncon-
strained optimization problem can approximate the optimal control of the original con-
strained optimization problem arbitrarily well when appropriate hyperparameters are cho-
sen.

Finally, through numerical experiments, we showed that the neural network strategy
attains comparable performances relative to the clipped form of the closed-form solution on
synthetic data sets, providing empirical evidence of the efficiency of the proposed model.
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Chapter 6

Case study: optimal leverage portfolio
in high inflation

6.1 Introduction

Since the global outbreak of COVID-19 in March 2020, we have observed significant world-
wide inflation. Before the pandemic, the U.S. economy had seen almost four decades of low
inflation. The sudden shift from a long-term low-inflation environment to a high-inflation
environment causes large uncertainty and volatility in the financial market. In 2022, the
technology-heavy NASDAQ stock index recorded a yearly return of −33.10% (NASDAQ,
2023).

Equally concerning is the uncertainty around the duration of this round of high inflation.
Some believe that the geopolitical tensions and the COVID-19 pandemic will overturn the
trend of globalization and lead to global supply chain restructuring (Javorcik, 2020) which
may cause a higher cost of production in the foreseeable future. Moreover, Ball et al. (2022)
suggests that the future inflation rate may remain high if the unemployment rate remains
higher than expected.

Going forward, investors have to be cognizant of the risk of inflation. If we enter into
a long period of even moderate inflation, will the traditional passive approach using a mix
of stock indexes and moderate-term bonds still work? Furthermore, how should an active
manager invest in order to achieve consistent outperformance over the passive benchmark?
In this chapter, we aim to answer these questions.

To gain some initial insights into investing during high inflation regimes, we first study
the performances of fixed-mix constant weight strategies on bootstrap resampled data from
filtered historical high inflation periods. Fixed-mix strategies allocate a fixed fraction of the
portfolio wealth to the underlying assets and are common choices of benchmark strategies for
large sovereign wealth funds (CPP Investments, 2022; Norges Bank, 2022). Our preliminary
findings show that the fixed-mix strategies with the equal-weighted stock index achieves
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partial first-order stochastic dominance over fixed-mix strategies that use the cap-weighted
stock index during high inflation regimes.

We then consider an active portfolio with leverage constraints and apply the LFNN model
proposed in Chapter 5 to an investment case with four underlying assets, which include the
U.S. equal-weighted stock index, the U.S. cap-weighted stock index, the 30-day U.S. treasury
bill index, and the 10-year U.S. treasury bond index. We conduct numerical experiments on
bootstrap resampled data under the cumulative quadratic tracking shortfall (CS) objective
and obtain a leverage-constrained strategy that outperforms the benchmark with more than
2% higher median (annualized) internal rate of return (IRR), and more than 90% probability
of achieving a higher terminal wealth.

Furthermore, we evaluate the strategy learned from high-inflation periods in low-inflation
environments and show that the optimal high-inflation strategy still outperforms the bench-
mark.

In summary, we make the following contributions in this chapter.

(i) We assess the performance of the passive investment strategies on resampled data from
filtered historical high inflation periods. We find that the fixed-mix strategy with the
equal-weighted stock index partially stochastically dominates the fixed-mix strategy
which uses the cap-weighted stock index in resampled high inflation regimes. This
suggests that the equal-weighted stock index is preferred over the cap-weighted stock
index during high inflation.

(ii) We apply the neural network method to bootstrap resampled asset returns with four
underlying assets, including the equal-weighted and cap-weighted stock index, and the
30-day/10-year treasury bond indexes. The dynamic strategy that follows the learned
LFNN model outperforms the fixed-mix benchmark strategy with a high probability
throughout the investment horizon, with a 2% higher median (annualized) internal
rate of return (IRR), and more than 90% probability of achieving a higher terminal
wealth. Furthermore, the learned allocation strategy suggests that the equal-weighted
stock index and short-term bonds are preferable investment assets during high inflation
regimes.

(iii) We show that the neural network strategy learned on high inflation periods still out-
performs the benchmark when tested in a low-inflation environment, demonstrating
the robustness of the strategy’s outperformance with respect to changes in market
conditions.
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6.2 Passive investing in historical high inflation peri-

ods

6.2.1 Filtering historical high inflation regimes

To understand the performance of passive strategies in high inflation periods, we should first
isolate the historical high inflation periods. In particular, we deploy a filtering algorithm
to uncover historical periods of high, sustained inflation from the historical time series data
(1926-2022). We use monthly data from the Center for Research in Security Prices (CRSP)
over the 1926:1-2022:1 period12 , which also includes the U.S. CPI index.

Our objective is to select high inflation periods as determined by the CPI index. Monthly
data is quite volatile, so we use the following filtering procedure. We use a moving window
of k months, and we determine the cumulative CPI index log return (annualized) in this
window. If the cumulative annualized CPI index log return is greater than a cutoff, then all
the months in the window are flagged as part of a high inflation regime. Note that some
months may appear in more than one moving window. Any months which do not meet this
criterion are considered to be in low-inflation regimes. The pseudo-code can be found in
Algorithm 6.2.1.

Algorithm 6.2.1: Pseudocode window inflation filter

Data:
CPI[i]; i = 1, . . . , N /* CPI Index */

Cutoff /* High inflation cutoff: annualized */

∆t /* CPI index time interval */

K /* smoothing window size */

Result: Flag[i]; i = 1, . . . , N /* = 1 high inflation month; = 0 otherwise */

/* initialization */

Flag[i] =0; i = 1, . . . , N ;
for i = 1, . . . , N −K do

if log(CPI[i+K]/CPI[i])/(K ∗∆t) >Cutoff then
for j = 0, . . . , K do

Flag[i+j] = 1 ;
end

end

end

1The date convention is that, for example, 1926:1 refers to January 1, 1926.
2More specifically, results presented here were calculated based on data from Historical Indexes, ©2022

Center for Research in Security Prices (CRSP), The University of Chicago Booth School of Business. Whar-
ton Research Data Services (WRDS) was used in preparing this article. This service and the data available
thereon constitute valuable intellectual property and trade secrets of WRDS and/or its third-party suppliers.
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This approach requires the specification of the cutoff and the window size. The average
annual inflation over the period 1926:1-2022:1 was 2.9%. In other words, inflation of about 3%
was normal in the past century. In fact, Federal Reserve policymakers have been targeting the
inflation rate of 2% over the long run to achieve maximum employment and price stability
(The Federal Reserve, 2011). After some experimentation, we use a cutoff of 5% as the
threshold for high inflation, which is more than double the Fed’s target inflation rate. Figure
6.1 shows the filtering results for windows of size 12, 60, and 120 months. We can see that the
five-year window produces two obvious inflation regimes: 1940:8-1951:7 and 1968:9-1985:10,
which correspond to well-known market shocks (i.e. the second world war, and price controls;
the oil price shocks and stagflation of the seventies). Increasing the window size to 10 years
results in similar-looking plots as the five-year window size, but the number of months in
each window increases, and the average inflation rate is lower. Since our objective is to
determine the effect of high inflation periods on allocation strategies, we choose the five-year
window size.
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Figure 6.1: High inflation regimes, using the moving-window method, with the window size
shown. The cutoff for high inflation regimes was 0.05. High-inflation months have a label
value of one, and low-inflation months have a label value of zero. CPI data identified from
the historical period 1926:1-2022:1.

Table 6.1 shows the average annual inflation over the two regimes identified from the
moving-window filter.

Time Period Average Annualized Inflation
1940:8-1951:7 .0564
1968:9-1985:10 .0661

Table 6.1: Inflation regimes determined using a five-year moving window with a cutoff infla-
tion rate of 0.05.

For possible investment assets, we consider the 30-day U.S. T-bill index (CRSP designa-
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tion “t30ind”). In addition, we construct a constant maturity 10-year U.S. treasury index.3

We also study the cap-weighted stock index (CapWt) and the equal-weighted stock index
(EqWt), also from CRSP.4 The CRSP indexes are total return indexes, which include all
distributions for all domestic stocks trading on major U.S. exchanges. All of these various
indexes are in nominal terms, so we adjust them for inflation by using the CPI index.

To gain some intuition on the behavior of asset returns during the inflation periods, we
assume that each real (adjusted by CPI) index follows geometric Brownian motion (GBM).
For example, given an index with value S, then

dS = µS dt+ σS dZ (6.1)

where dZ is the increment of a Wiener process. We use maximum likelihood estimation
to fit the drift rate µ (expected arithmetic return) and volatility σ in each regime, for
each index, as shown in Table 6.2. We also show a series constructed by: converting the
indexes in each regime to returns, concatenating the two return series, and converting the
concatenated return series back to an index. This concatenated index does not correspond
to an actual historical index but is a pseudo-index constructed from high inflation regimes.
This amounts to a worst-case sequence of returns in terms of the duration of historical high
inflation periods, that could plausibly be expected during a long period of high inflation.

It is striking that in each historical high inflation regime (i.e., 1940:8-1951:7 and 1968:9-
1985:10) in Table 6.2, the drift rate µ for the equal-weighted index is much larger than
the drift rate for the cap-weighted index. We can observe that the mean geometric return
(which is the median return) for the cap-weighted index, in the period 1968:9-1985:10, was
only about one percent per year.

It is also noticeable that bonds performed very poorly in the period 1940:8-1951:7. As
well, during the period 1968:9-1985:10, there was essentially no term premium for 10-year
treasuries, compared with 30-day T-bills. In addition, the 10-year treasury index had much
higher volatility compared to the 30-day T-bill index. Looking at the concatenated series, it
appears that 30-day T-bills are arguably the better defensive asset here since the volatility
of this index is quite low (but with a negative (real) drift rate).

Consequently, in the following, we will focus attention on 30-day T-bills, the cap-weighted
index, and the equal-weighted index.

3The 10-year treasury index was generated from monthly returns from CRSP back to 1941 (CRSP desig-
nation “b10ind”). The data for 1926-1941 are interpolated from annual returns in Homer and Sylla (1996).
The 10-year treasury index is constructed by (a) buying a 10-year treasury at the start of each month, (b)
collecting interest during the month, and then (c) selling the treasury at the end of the month. We repeat
the process at the start of the next month. The gains in the index then reflect both interest and capital
gains and losses.

4The capitalization-weighted total returns have the CRSP designation “vwretd”, and the equal-weighted
total returns have the CRSP designation “ewretd”.
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Index µ σ µ− σ2/2
1940:8-1951:7

CapWt 0.079 0.140 .069
EqWt 0.145 0.190 .127
10 Year Treasury -0.035 0.036 -.036
30-day T-bill -0.050 0.029 -.050

1968:9-1985:10
CapWt 0.026 0.164 .013
EqWt 0.065 0.220 .041
10 Year Treasury 0.011 0.093 .007
30-day T-bill 0.009 0.012 .009

Concatenated: 1940:8-1951:7 and 1968:9 - 1985:10
CapWt 0.049 0.156 .038
EqWt 0.098 0.209 .076
10 Year Treasury -0.008 0.076 -.011
30-day T-bill -0.014 0.022 -.014

Table 6.2: GBM parameters for the indexes shown. All indexes are real (deflated). µ is
the expected annualized arithmetic return. σ is the annualized volatility. (µ − σ2/2) is the
annualized mean geometric return, which is the median return.

6.2.2 Non-contiguous bootstrap resampling

Once we have obtained the filtered historical high inflation data series from Section 6.2.1,
it becomes necessary to generate training and testing data sets from the original time series
data. Same as in Section 2.3, we use stationary block bootstrap resampling method (Politis
and Romano, 1994) to generate the datasets.

Recall that the stationary block bootstrap uses random blocksizes which preserves the
stationarity of the original time series data. Briefly, each bootstrap resample consists of
(i) selecting a random starting date in the historical return series, (ii) selecting a block (of
random size) of consecutive returns from this start date, and (iii) repeating this process until
a sample of the total desired length is obtained. The pseudo-code can be found in Algorithm
2.3.1.

Typically, the bootstrap technique resamples from data sourced from one contiguous
segment of historical periods. However, the moving-window filtering algorithm has identified
two non-contiguous historical high inflation regimes. To apply the bootstrap method, there
are two intuitive methods: 1) concatenate the two historical high inflation regimes first,
then bootstrap from the concatenated combined series following the steps in the previous
paragraph, or 2) bootstrap within each regime (i.e., using circular block bootstrap resampling
within each regime), then combine the bootstrapped resampled data points.
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More specifically, the second bootstrap method comprises the following steps. Each
bootstrap resample consists of (i) selecting a random segment (probability proportional to
the length of the segment), (ii) selecting a random starting date in the selected segment, (iii)
then selecting a block (of random size) of consecutive returns from this start date, (iv) in
the event that the end of the data set in a segment is reached, use circular block bootstrap
resampling within that segment, and (v) repeating this process until a sample of the total
desired length is obtained.

We compare the bootstrapped data from concatenated segments and separate segments,
by evaluating the performance of the 70%/30% equal-weighted index/T-bill fixed-mix port-
folio, using the investment scenario described in Table 6.3.

Investment horizon T (years) 10
Equity market indexes CRSP equal-weighted index (real)
Bond index 30-day T-bill (U.S.) (real)
Index Samples Concatenated 1940:8-1951:7, 1968:9-1985:10
Initial portfolio wealth 100
Rebalancing frequency Monthly
Cash injection 0

Table 6.3: Investment scenario.

We can observe from Table 6.4 that the strategy performance on bootstrap resampled
data using two methods only varies slightly. This indicates that the two methods do not
yield much difference for practical purposes. This is indeed expected - after all, the difference
between the two methods only occurs when a random block crosses the edge of each of the
segments. However, such a situation only occurs with a very low probability. Except for this
low-probability situation, the two bootstrap methods are identical.

Median[WT ] E[WT ] std[WT ] 5th Percentile
Bootstrap from concatenated segments 174.2 204.2 125.9 66.8
Bootstrap from separate segments 176.9 208.0 132.4 65.4

Table 6.4: Effect of bootstrap method - bootstrap from concatenated segments vs bootstrap
from separate segments, on the statistics of the final wealthW (T ) at T = 10 years. Constant
weight, scenario in Table 6.3. Equity weight: 0.7, rebalanced monthly. Bond index: 30-day
T-bill. Equity index: equal-weighted. Concatenated series: 1940:8-1951:7, 1968:9-1985:10
(high inflation regimes). All quantities are real (inflation-adjusted). Initial wealth 100.
Bootstrap resampling, 10, 000 resamples).

In this article, we adopt the first method, i.e., we concatenate the historical regimes first,
then bootstrap from the combined series. This method is also adopted by Anarkulova et al.
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(2022), where stock returns from different countries are concatenated and the bootstrap is
applied to the combined data.

6.2.3 Passive strategies in high inflation

In this section, we compare the performances of two fixed-mix strategies. The first strategy,
the “EqWt” strategy, maintains a 70% allocation to the equal-weighted index, and 30%
allocation to the 30-day T-bill index. The second strategy, the “CapWt” strategy, maintains
a 70% allocation to the cap-weighted index, and a 30% allocation to the 30-day T-bill index.

In our numerical experiment, we consider the investment scenario described in Table
6.3. Briefly, we begin with an initial wealth of 100 for both strategies, with no further cash
injections and withdrawals. The investment horizon is 10 years, with monthly rebalanc-
ing to maintain the constant weights in the portfolio. We evaluate the investment results
by examining the distribution of the final wealth W (T ) at T = 10 years. Using 10, 000
block bootstrap resampled data samples (Politis and Romano, 1991; Dichtl et al., 2016;
Anarkulova et al., 2022) from the concatenated CRSP combined time series from 1940:8-
1951:7 and 1968:9-1985:10, with an expected blocksize of six months. We then compare the
CDF (cumulative distribution functions) of the terminal wealth of the EqWt strategy and
the CapWt strategy.

In Figure 6.2, we compare the CDFs of the terminal wealth of the EqWt strategy and the
CapWt strategy. Recall the concept of partial stochastic dominance in Definition (2.4.1).
Remarkably, the EqWt strategy appears to partially stochastically dominate the CapWt
strategy, as the CDF curve of the EqWt strategy appears to be entirely on the right side of
the CDF curve of the CapWt strategy, except at very low probability values. In fact, close
examination shows that the curves cross at the point CDFEqWt(Wlo) = CDFCapWt(Wlo) ≃
.02, with a slight underperformance of the EqWt strategy compared to the CapWt strategy
in this extreme left tail.

Note that both strategies perform very poorly in this extreme left tail and the fact that
the CapWt strategy is marginally better here but is probably not practically meaningful.

It is in fact rare to find two strategies such that one strategy stochastically dominates
another strategy, with the usual definition of the first order stochastic dominance where
(Wlo,Whi) = (−∞,+∞) in Definition 2.4.1. as this would mean that one strategy is strictly
better than another strategy in terms of the distribution of terminal wealth. In other words,
any investor who prefers more rather than less would choose the dominating strategy. The
fact that the EqWt strategy partially dominates the CapWt strategy seems to suggest that
the equal-weighted stock index is almost definitely a better choice for the stock index than
the cap-weight stock index during high inflation times.

However, if we examine more recent data5 the situation is not so clear (Taljaard and

5Since about 2010. Of course, this is outside a period of sustained high inflation.
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Figure 6.2: Cumulative distribution function of final real wealth W at T = 10 years, boot-
strap resampling expected blocksize one year, 10, 000 resamples (Appendix 6.2.1). T = 10
years. Data: concatenated returns, 1940:8-1951:7, 1968:9-1985:10. Scenario described in
Table 6.3.

Mare, 2021), since the equal-weighted index appears to underperform. However, Taljaard
and Mare (2021) suggest that this is due to the recent market concentration in tech stocks.6

In fact, a plausible explanation for the historical outperformance of an equal-weighted
index is that it is simply due to the small-cap effect, which was not widely known until
about 1981 (Banz, 1981). Plyakha et al. (2021) acknowledge that the equal-weighted index
has significant exposure to the size factor. However, Plyakha et al. (2021) argue that the
equal-weighted index also has a larger exposure to the value factor. In addition, there is
a significant alpha effect due to the contrarian strategy of frequent rebalancing to equal
weights. It would appear to be simplistic to dismiss an equal weight strategy on the grounds
that this is simply a small cap effect that has become less effective.

6As of February 2023, Apple, Microsoft, Amazon and Alphabet (A and C) in total comprised 17% of the
market capitalization of the S&P 500.

101



6.3 Portfolio optimization for outperforming the bench-

mark

As discussed in Chapter 1, large sovereign wealth funds such as the CPP or the Oil Fund
were founded a decade after the last inflation period ended in the 1980s. Considering their
recent meager outperformance over passive benchmarks and the lack of track record in in-
flation regimes, how can such funds outperform the benchmarks with a high probability in
a potential persistent inflation environment?

In this section, we attempt to suggest a solution to this question based on the LFNN
technique discussed in Chapter 5. We conduct a case study of a multi-period portfolio
optimization problem, with the goal of outperforming a passive fixed-mix 70/30 benchmark
in high inflation regimes. We allow the active portfolio to take a bounded amount of leverage,
to mimic alternative asset holdings of the sovereign wealth funds. We then apply the LFNN
model to find the optimal portfolio under the cumulative quadratic tracking shortfall (CS)
objective function.

6.3.1 Choice of objective function

When studying a portfolio optimization problem, the choice of the objective function is
critical, since it determines the desired characteristics of the optimal portfolio.

As discussed in Chapter 4, the CD objective function (4.7) allows tracking of an elevated
target throughout the investment horizon. However, one caveat of the CD objective function
is that it not only penalizes the underperformance relative to the elevated target but also
penalizes the outperformance over the elevated target. In practice, the outperformance of
the elevated target is favorable, and managers may not want to penalize the strategy when
it occurs. Therefore, in such cases, it may be more appropriate to consider a one-sided
objective function, such as the following cumulative quadratic shortfall (CS) objective.

(CS(β)) : inf
θ∈RNθ

E(t0,w0)
θ

[∑
t∈T

(
min

(
Wθ(t)− eβtŴ (t), 0

))2
+ ϵWθ(T )

]
, (6.2)

The CS objective function in (6.2) only penalizes the underperformance against the ele-
vated target. Here ϵW (T ) is a regularization term. We remark that problem (6.2) without
the regularization term can be ill-posed. To see this, consider a case whereWθ(t) ≫ eβtŴ (t),
for some t ∈ [t0, T ]. In this case, the future cumulative quadratic shortfall (on [t, T ]) will
almost surely be zero without the regularization term, so the control from thereon has no
effect on the objective function under that scenario. We choose ϵ to be a small positive
scalar. As William Bernstein once said, “if you have won the game, stop playing.” If one
has accumulated as much wealth as Warren Buffet, then it does not matter what assets she
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invests in. The positive regularization factor of ϵ forces the strategy to put all wealth into
less risky assets when the portfolio has already performed extremely well.

To illustrate the superiority of the CS objective in practice, we design a numerical ex-
periment to compare the CS objective with the symmetric CD objective in the following
problem (6.3) with the same LFNN parameterization.

(Parameterized CD(β)) : inf
θ∈RNθ

E(t0,w0)
θ

[∑
t∈T

(
Wθ(t)− eβtŴ (t)

)2]
. (6.3)

Specifically, we adopt the investment scenario in Table 5.1 with β = 0.02 and reuse
the training and testing data sets simulated from the calibrated double exponential jump-
diffusion model, as discussed in Section 5.4.7 The neural network strategies follow the trained
LFNN models on the training data set Y for both the CS and CD objectives. We then
evaluated both strategies on the same testing data set Y test.

We compare the wealth ratio, i.e., the wealth of the managed active portfolio divided
by the wealth of the benchmark portfolio, over time, for both strategies. The wealth ratio
metric reflects how well the active strategy performs against the benchmark strategy along
the investment horizon; a higher wealth ratio metric is better. Below we show the percentiles
of the wealth ratio for both strategies evaluated on Y test.

We can see from Figure 6.3 that the CS strategy (neural network strategy trained under
the CS objective) yields a more favorable wealth ratio than the CD strategy (neural network
strategy trained under the CD objective). On average, the CS strategy achieves a higher
terminal wealth ratio than the CD strategy. Even in the 20th percentile case, the CS strategy
lags initially but recovers over time.8 The result indicates that the CS objective might be a
wiser choice for managers in practice. In the following numerical experiments with bootstrap
resampled data, we use the CS objective (6.2) instead of the CD objective (6.3). Therefore,
we choose the CS objective function in the following numerical experiments in this chapter.

7We choose the synthetic data set because we know the neural network strategy under the CD objective
shows comparable performance to the clipped form of the closed-form solution, as discussed in Section 5.4,
hence it should be near optimal.

8The CS strategy starts with a higher allocation to the stock, and thus encounters more volatility early
on.
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Figure 6.3: Percentiles of wealth ratio of the neural network strategy (i.e., the neural network
model) learned under the cumulative quadratic tracking difference (CD) objective and the
neural network strategy learned under the cumulative quadratic shortfall (CS) objective.
The results shown are based on evaluations on the testing data set Y test.

6.3.2 High-inflation case study

The details of the investment specification are given in Table 6.5. Briefly, the active portfolio
and benchmark portfolio begin with the same initial wealth of 100 at t0 = 0. Both portfolios
are rebalanced monthly. The investment horizon is 10 years, and there is an annual cash
injection of 10 for both portfolios, evenly divided over 12 months.

We consider an empirical case in which we allow the manager to allocate between four
investment assets: the equal-weighted stock index, the cap-weighted stock index, the 30-day
U.S. T-bill index, and the 10-year U.S. T-bond index. We assume that the stock indexes and
the 10-year T-bond index are long-only assets. The manager can short the T-bill index to
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take leverage and invest in the long-only assets (with a maximum total leverage of 1.3, i.e.
pmax = 1.3). The annual outperformance target β is set to be 2% (i.e. 200 bps per year).
In this experiment, we assume the borrowing premium rate is zero. Essentially, we assume
that the manager can borrow short-term funding to take leverage at the same cost as the
treasury bill. This may be a reasonable assumption for sovereign wealth funds, as they are
state-owned and enjoy a high credit rating.

It is worth noting that we choose the benchmark portfolio to be a fixed-mix portfolio that
maintains a 70% weight in the equal-weighted stock index and 30% in the 30-day U.S. T-bill
index. We select this fixed-mix portfolio as the benchmark based on our observation that the
equal-weighted stock index shows superior performance compared to the cap-weighted stock
index during high inflation environments. As discussed in Section 6.2.3, when analyzing
bootstrap resampled data from the historical high inflation regimes, we find that the fixed-
mix portfolio consisting of 70% equal-weighted stock index and 30% 30-day U.S. T-bill index
partially stochastically dominates the fixed-mix portfolio consisting of 70% cap-weighted
stock index and 30% 30-day U.S. T-bill index.

Investment horizon T (years) 10
Equity market indexes CRSP cap-weighted/equal-weighted index (real)
Bond index CRSP 30-day/10-year U.S. treasury index (real)
Index samples for bootstrap Concatenated 1940:8-1951:7, 1968:9-1985:10
Initial portfolio wealth/annual cash injection 100/10
Rebalancing frequency Monthly
Maximum leverage 1.3
Outperformance target rate β 2%

Table 6.5: Investment scenario.

As discussed in Section 6.2.2, we use the stationary bootstrap resampling algorithm
to generate a training data set Y and a testing data set Y test (both with 10,000 resam-
pled paths) from the concatenated index samples from two historical high inflation regimes:
1940:8-1951:7 and 1968:9-1985:10, using an expected blocksize of 6 months. The testing data
set Y test is generated using a different random seed as the training data set Y , and thus
the probability of seeing the same sample in Y and Y test is near zero (the proof has been
discussed in Section 2.3). In this chapter, unless stated otherwise, all the results presented
are testing results.
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Figure 6.4: Percentiles of wealth ratio W (t)

Ŵ (t)
and CDF of terminal wealth ratio W (T )

Ŵ (T )
and

internal rate of return (IRR). Results are based on the evaluation of the learned neural
network model on Y test.

Strategy Median[WT ] E[WT ] std[WT ] 5th Percentile Median IRR (annual)
Neural network 364.2 403.4 211.8 136.3 0.078
Benchmark 308.5 342.9 165.0 149.0 0.056

Table 6.6: Statistics of strategies. Results are based on the evaluation results on the testing
data set.

The analysis of Figure 6.4a reveals that the neural network strategy (the strategy follow-
ing the training LFNN model) outperforms the benchmark strategy in terms of the wealth
ratio W (t)/Ŵ (t) with a high probability. Over time, both the mean and median wealth ra-
tios demonstrate a smooth increase. Regarding tail performance (20th percentile), the neural
network strategy initially falls behind the benchmark but gradually recovers and ultimately
achieves 10% greater wealth at the terminal time. This observation indicates that the neural
network strategy effectively manages tail risk.

An additional metric that holds significant interest for managers is the distribution of the
terminal wealth ratio W (T )

Ŵ (T )
. This metric examines the relative performance of the strategies

at the end of the investment period. Figure 6.4b illustrates that there is a greater than 90%
chance that the neural network strategy outperforms the benchmark strategy in terms of
terminal wealth. This outcome is particularly noteworthy as the objective function (6.2)
does not directly target the terminal wealth ratio.

Given the constant cash injections in the portfolios, it is appropriate to employ the
internal rate of return (IRR) as a measure of the portfolio’s annualized performance. Figure
6.4c demonstrates that the neural network strategy has a more than 90% chance of producing
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a higher IRR. Furthermore, the median IRR of the neural network strategy exceeds that of
the benchmark strategy by slightly over 2%, aligning with the chosen target outperformance
rate of β = 0.02. This indicates that the neural network model achieves the desired target
performance across most outcomes. To put this in perspective, Table 6.6 shows a median
annual outperformance of 200 bps.

The results from Table 6.6 indicate that the 5th percentile of the terminal wealth for the
neural network strategy is lower than that of the benchmark strategy. This suggests that in
some scenarios, particularly during persistent bear markets when stocks perform poorly, the
neural network strategy may experience lower terminal wealth compared to the benchmark
strategy. The neural network strategy takes on more risk by allocating a higher fraction of
wealth to the equal-weighted stock index, which is considered a riskier asset, in comparison
to the benchmark portfolio.

It is important to note, however, that these scenarios occur with low probability. As
depicted in Figure 6.4b, the neural network strategy exhibits a significantly high probability
of outperforming the benchmark in terms of terminal wealth, exceeding 90%. This implies
that while there might be instances where the neural network strategy suffers relative to the
benchmark, the overall performance is consistently strong, resulting in a high likelihood of
achieving superior terminal value.

To gain insight into the strong performance of the neural network strategy, we further
examine its allocation profile.
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Figure 6.5: Mean allocation fraction over time, evaluated on Y test

We begin by examining the mean allocation fraction for the four assets over time, as de-
picted in Figure 6.5. The first noteworthy observation from Figure 6.5 is that, on average, the
neural network strategy does not allocate wealth to the cap-weighted stock index. Initially,
this might appear surprising; however, it aligns with historical data indicating significantly
higher real returns for the equal-weighted stock index during periods of high inflation. Given
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that the objective is to outperform a benchmark heavily invested in the equal-weighted index
(70%), it is logical to avoid allocating wealth to a comparatively weaker index in the active
portfolio.

The second observation derived from Figure 6.5 pertains to the evolution of mean bond
allocation fractions. Initially, the neural network strategy shorts the 30-day T-bill index and
assumes some leverage while heavily investing in the equal-weighted stock index and also a
small fraction to the T-bond during the first two years. This indicates a deliberate risk-taking
approach early on to establish an advantage over the benchmark strategy. Subsequently, the
allocation to the 10-year T-bond decreases, coinciding with the reduction in the allocation
to the equal-weighted index. This suggests that the initial allocation to the T-bond was
primarily for leveraging purposes, with the 10-year bond being the only defensive asset
available. As leverage is no longer used in later years, the neural network strategy favors the
T-bill over the 10-year bond.

Overall, despite the gradual decrease in stock allocation over time, the neural network
strategy maintains an average allocation of more than 80% to the equal-weighted stock index.
This is expected, as outperforming an aggressive benchmark with a 70% allocation to the
equal-weighted stock index necessitates assuming higher levels of risk. Despite the higher
allocation to riskier assets, the neural network strategy delivers better investment results
compared to the benchmark strategy with a high probability, as illustrated in Figure 6.4.

6.3.3 Strategy performance in low inflation regimes

Until now, the discussion has been centered around the imaginary scenario of a long, persis-
tent inflation environment. We have shown that the neural network strategy outperforms the
benchmark strategy with a high probability under a high inflation regime. However, what
if we are wrong? More dramatically, if the high-inflation situation ends immediately and
we enter a low-inflation environment, how will the neural network strategy learned under
high-inflation regimes perform?

To answer these questions, we evaluate the neural network strategy learned under high-
inflation regimes on a testing data set bootstrapped from low-inflation historical regimes.
Specifically, we exclude the two inflation regimes (1940:8-1951:7 and 1968:9-1985:10) from
the full historical data of 1926:1-2022:1 and obtain several low-inflation data segments. We
concatenate the low-inflation data segments and use the stationary bootstrap resampling
method to generate a testing data set. We adopt the investment scenario described in Table
6.5 and evaluate the performance of the neural network strategy obtained in Section 6.3.2
on this low-inflation data set.

Note that we continue to use the equal-weighted stock index/30-day T-bill fixed-mix
portfolio as the benchmark. This is validated by Figure 6.6, which plots the CDF of the
terminal wealth of the fixed-mix portfolios using 70% equal-weighted stock index vs 70%
cap-weighted stock index (both with 30% 30-day U.S. T-bill as the bond component). As we
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Figure 6.6: Cumulative distribution functions (CDFs) for cap-weighted and equal-weighted
indexes, as a function of final real wealth W at T = 10 years. Initial stake W0 = 100, no
cash injections or withdrawals. Block bootstrap resampling, expected blocksize 6 months.
70% stocks, 30% bonds, rebalanced monthly. Bond index: 30-day U.S. T-bills. Stock index:
CRSP capitalization-weighted or CRSP equal-weighted index. Underlying data excludes
high inflation regimes. All indexes are deflated by the CPI. 10, 000 resamples. Data set
1926:1-2022:1, excluding high inflation regimes (1940:8-1951:7 and 1968:9-1985:10).

can see from Figure 6.6, the fixed-mix portfolio with an equal-weighted stock index clearly
has a more right-skewed distribution than the portfolio with a cap-weighted stock index.
This seems to suggest that the equal-weighted index is the superior choice to use in the
benchmark portfolio, even in low inflation regimes.
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Figure 6.7: Percentiles of wealth ratio over the investment horizon, and CDF of terminal
wealth ratio. Results are based on the evaluation of the learned neural network model (from
high-inflation data) on the low-inflation testing data set).

Strategy Median[WT ] E[WT ] std[WT ] 5th Percentile Median IRR (annual)
Neural network 429.7 489.6 301.9 151.6 0.100
Benchmark 368.3 420.8 238.2 175.7 0.079

Table 6.7: Statistic of strategies. Results are based on the evaluation of the learned neural
network model (from high-inflation data) on the low-inflation testing data set.

We then present the performance of the neural network strategy learned on high inflation
data on the testing data set bootstrapped from low-inflation historical returns. Surprisingly,
as we can see from Figure 6.7a, the performance of the neural network strategy learned under
high-inflation regimes performs quite well in low-inflation environments. Compared to the
testing results on the high inflation data set, there is a noticeable performance degradation;
for example, the probability of outperforming the benchmark strategy in terminal wealth is
now slightly less than 90%. However, the degradation is quite minimal. The neural network
strategy still has more than an 85% chance of outperforming the benchmark strategy at
the end of the investment horizon. As shown in Table 6.7, the median IRR of the neural
network strategy is still 2% higher than the median IRR of the benchmark strategy, meeting
the investment target.

The above results indicate that the neural network strategy is surprisingly robust. Despite
being specifically trained under a high-inflation scenario, the strategy performs admirably
well in a low-inflation environment.
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6.3.4 Experiments with non-zero borrowing premium

In Section 6.3.2, we conducted the numerical experiments, assuming the borrowing premium
is zero. This assumption is based on the fact that large sovereign wealth funds are often
considered to have almost risk-free credit ratings, due to their state-backed nature. In other
words, we assume that sovereign wealth funds can borrow funding at the same rate as risk-
free treasury bills.

This assumption may be too benign for general public funds. In general, it is unlikely that
a non-sovereign wealth fund can borrow at a risk-free rate. However, the actual borrowing
cost within large public funds is often unavailable to the general public. For this reason,
we use the corporate bond yields issued by corporations with similar credit ratings as these
large public funds as an approximation to the borrowing cost. Currently, large public funds
such as the Blackstone Group or Apollo Global Management are rated between Aaa and
Baa rating by Moody’s. We obtain the nominal corporate bond yields with Moody’s Aaa
(Moody’s, 2023a) and Baa (Moody’s, 2023b) ratings and adjust them with CPI returns.
During the two high inflation regimes we have identified, Aaa-rated corporate bonds have an
average real yield of 0.7%, while Baa-rated bonds have 1.8%. Taking an average of the two,
we use 1.25% as an estimate for the real yield of corporate bonds as well as the borrowing
cost of large public funds.9 As shown in Table 6.2, the average real return for T-bill index
is -1.4% during high inflation regimes. This gives us an average borrowing premium rate of
2.65%. In this section, as a stress test, we conduct the same experiment as in Section 6.3.2,
except that we use a fixed borrowing premium of 3% (we round 2.65% up) instead of zero.
We note that the historical corporate bond yields are based on bonds with a long maturity.
Typically, long-term yields are higher than short-term yields, which accounts for the term
risk. Therefore, the assumption of a 3% borrowing premium should be a fairly aggressive
stress test. We then train and test the neural network strategy with the 3% borrowing
premium.

In Figure 6.8, We plot the percentiles of the wealth ratio and the CDF of the terminal
wealth ratio. From the percentiles of the wealth ratio, we can observe that the neural
network strategy still comfortably outperforms the benchmark strategy throughout the entire
investment horizon. At the terminal date, the neural network strategy has a higher than
90% probability of achieving a higher terminal wealth than the benchmark.

In Table 6.8, we list some statistics for the neural network strategy and the benchmark
strategy. We can see that the neural network strategy still maintains more than a 200 bps
advantage in terms of median IRR compared to the benchmark. In fact, when we compare
the results with the neural network strategy obtained under zero borrowing premium (and
evaluated without borrowing premium) on the same testing data set, there is little difference
in terms of the terminal wealth statistics. The impact of the borrowing premium is so
marginal that the median IRR does not change.

9Note that the corporate bonds from Moody’s yield data have maturities of more than 20 years. Usually,
long-term bonds have higher yields than short-term bonds. Thus, using corporate yields likely overestimates
the borrowing cost, since we assume the manager is only borrowing short-term funding.
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Ŵ (t)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
R

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

(W
(T

)/W
(T

)<
R)

(b) Terminal wealth ratio W (T )
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Figure 6.8: Percentiles of wealth ratio over the investment horizon, and CDF of terminal
wealth ratio. Annualized borrowing premium is 3%. Results are based on the evaluation of
the learned neural network model on the testing data set.

Strategy Median[WT ] E[WT ] std[WT ] 5th Percentile Annual Median IRR
Neural network 362.7 401.3 212.6 133.9 0.078
Benchmark 308.5 342.9 165.0 149.0 0.056
Neural network (0 premium) 364.2 403.4 211.8 136.3 0.078

Table 6.8: Statistic of strategies. Annualized borrowing premium is 3%. Results are based
on the evaluation of the learned neural network model on the testing data set.

The most noticeable impact of the borrowing premium is on the allocation fraction, as
shown in Figure 6.9. With a significantly higher borrowing cost, the neural network strategy
does not leverage as much in the first two years, resulting in a less negative allocation to the
T-bill and a lower allocation to the equal-weighted stock index. However, as we have seen
in Figure 6.8 and Table 6.8, this only results in minimal impact on the performance of the
strategy.
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Figure 6.9: Mean of allocation fraction of the learned neural network strategy over time,
evaluated on the testing data set. Annualized borrowing premium is 3%. The neural network
strategy is learned from bootstrap resampled data based on concatenated series: 1940:8-
1951:7, 1968:9-1985:10 (high inflation regimes). The investment scenario is described in
Table 6.5.

6.4 Conclusions

In this chapter, our primary objective is to apply the LFNN model to a high-inflation setting
and study the optimal portfolio in such scenarios.

We first used a filtering algorithm to discover the two high-inflation segments from the
historical data. Furthermore, we compare the passive strategies on bootstrap resampled data
from the filtered high inflation segments and find that the equal-weighted stock index is the
more favorable stock index in high inflation scenarios.

We then applied the LFNN model to a case study that includes four assets. We find
that the cumulative quadratic tracking shortfall (CS) objective function yields more favor-
able portfolio performance than the cumulative quadratic tracking difference (CD) objective
function. Under the CD objective, the neural network strategy achieves the desired out-
performance target and outperforms the benchmark portfolio throughout the investment
period.

Furthermore, we evaluated the optimal high-inflation strategy in low-inflation environ-
ments and found that it still robustly outperforms the benchmark.

Finally, we showed that the borrowing premium only has a minimal impact on strategy
performances, validating the assumption of zero borrowing premium in the main case study.
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Chapter 7

A neural network model for solving
optimal 130/30 portfolios

7.1 Introduction

In Chapter 5, we studied the multi-period portfolio optimization problem with leverage
constraints. Specifically, we worked with the assumption that in order to take leverage, the
investment manager is only allowed to short within a designated subset of funding securities.

In this chapter, our focus shifts to studying the portfolio optimization problem with
a more general constraint. Particularly, we examine long/short strategies that allow the
investment manager the flexibility to either long or short any securities across the entire
spectrum of underlying securities, with the constraint that the total long position of the
portfolio does not exceed a certain limit. Specifically, a strategy that limits its total long
position by 130% of the portfolio value, known as the 130/30 strategy, belongs to a class of
strategies commonly referred to as 1X0/X0 strategies (X is a digit), where “1X0” means the
maximum allowed total long position is 1X0% of the portfolio value.

7.1.1 Rise and fall of 130/30 strategy

1X0/X0 strategies, also known as relaxed constraint (RC) or active extension strategies
(Ang et al., 2017), constitute a class of investment strategies that allow portfolio managers
to simultaneously hold long and short positions in a diverse universe of securities. Among
these strategies, the 130/30 strategy has gained significant popularity and recognition. In the
case of the 130/30 strategy, the portfolio exhibits an aggregate long position of up to 130%
and a total short position of up to 30%. Notably, alternative variants of 1X0/X0 strategies
encompass distinct structures spanning from 120/20 to 150/50.1 Although the primary focus

1The structure is capped at 150/50 due to Federal Reserve Board Regulation T (Federal Reserve Board,
1974).
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of this chapter revolves around the 130/30 strategy, the methodological framework proposed
herein can readily be applied to other variants within the 1X0/X0 framework.

The 130/30 investment strategy represents a substantial advancement over traditional
long-only portfolios by permitting short positions, enabling a more dynamic and sophisti-
cated approach to portfolio management. This strategy is particularly appealing to investors
amidst the current environment of global economic uncertainties and a potential regime
switch in the financial market. By embracing short positions, the 130/30 strategy offers
investors the flexibility to adapt their investment approach and capitalize on both positive
and negative market trends, enhancing their ability to navigate uncertainties and potentially
enhance investment outcomes.

Shortly before the financial crisis of 2007-2009, the 130/30 strategy gained much attention
from the investment community. Numerous studies surrounding the 130/30 idea emerged
amidst the increasing popularity (e.g. Johnson et al. (2007); Gastineau (2008); Lo and Patel
(2008); Krusen et al. (2008)). In 2007, Tabb Group, a consultancy firm, projected that the
size of 130/30 funds would reach $2 trillion by 2010 (Tabb and Johnson, 2007). However, the
actual performance of 130/30 funds since their inception was disappointing (Gay, 2012). By
the end of 2012, the total identifiable assets of 130/30 funds across Europe and the United
States amounted to a mere $9 billion, significantly below the optimistic expectations set in
2007 (Johnson, 2013). Since then, the hype in 130/30 funds has never regained the level
of popularity witnessed in 2007. In a recent report by Morningstar, the concept of 130/30
funds is regarded as a “flopped” invention (Rekenthaler, 2022).

Some people argue that the underperformance of 130/30 funds can be attributed to
poor timing, as many of these funds were launched just before the onset of the financial
crisis of 2007-2009. Consequently, they suffered alongside other active funds that had a
net positive exposure to the market. However, reports indicate that even when compared
to long-only funds, which the 130/30 funds were designed to replace, the 130/30 funds
did not demonstrate superior returns (Johnson, 2013). This is perplexing since 130/30
portfolios theoretically offer a larger solution space than long-only portfolios due to the
relaxed constraint. However, empirical evidence fails to support the anticipated performance
advantage. Practitioners attribute the poor performance of 130/30 funds to the managers’
inability to effectively apply their knowledge of long-only strategies to shorting stocks.

Upon closer examination, it becomes evident that many 130/30 funds, particularly those
managed quantitatively, adopted a heuristic stock ranking system as a means to manage their
130/30 portfolios. This ranking system involved assessing all stocks within the investment
universe and constructing the 130/30 portfolio by taking long positions in the highest-ranked
stocks and short positions in the lowest-ranked stocks (Leibowitz et al., 2009; Korhonen and
Kunz, 2010). In comparison to the implementation of a rigorous portfolio optimization
framework aimed at maximizing specific utility functions, the use of a stock ranking system
appears simplistic and lacking in rigor. Fundamentally, this crude approach may be the
underlying cause of the poor performance observed in 130/30 funds.

However, it is important to acknowledge that criticizing 130/30 funds for not adopting
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a portfolio optimization approach may be overly harsh. The portfolio optimization problem
associated with 130/30 portfolios is inherently more complex than that of long-only port-
folios. This complexity arises from the fact that the 130/30 portfolio constraint offers the
flexibility to short any asset while also imposing a limit on the total long position. In fact,
the literature on the topic of 130/30 portfolio optimization, particularly in the context of
multi-period settings, remains scarce even to this day. Consequently, many 130/30 funds had
to rely on less rigorous approaches, such as ranking systems, to construct their portfolios.
Given the limited knowledge and tools available at the time, it is not surprising that these
crude approaches failed to deliver satisfactory results.

7.1.2 Portfolio optimization with 130/30 constraints

In this chapter, we provide a portfolio optimization framework to address the problem of
constructing an optimal 130/30 portfolio. Particularly, we formulate a multi-period stochas-
tic optimal control problem with 130/30 portfolio constraints, in which security prices are
assumed to be stochastic.

Existing literature related to 130/30 strategies primarily focuses on empirical studies
and is not concerned with portfolio optimization. On the other hand, literature in the
domain of multi-period portfolio optimization either disregards allocation constraints at all
(Zhou and Li, 2000; Li and Ng, 2000) or considers simple constraints such as long-only stock
positions with unbounded leverage (Li et al., 2002), with minimal attention given to the
unique characteristics of 130/30 strategies. This limited research can be attributed to the
non-conventional nature of the total long position constraint imposed by the 130/30 rule,
which existing methodologies are ill-equipped to handle.

Given the scarcity of literature on the optimization of 130/30 portfolios, we aim to bridge
this gap by providing a novel portfolio optimization framework that addresses the specific
challenges posed by the 130/30 constraints. Particularly, following the lines of our work in
previous chapters, we propose to use a neural network model to approximate the optimal
130/30 strategy. On a high level, the idea of approximating the optimal control (allocation
strategy) in a multi-period portfolio optimization problem is also considered in Han et al.
(2016); Tsang and Wong (2020); Reppen et al. (2023); Li and Forsyth (2019); van Staden
et al. (2023b); Ni et al. (2022, 2023). However, Han et al. (2016); Tsang and Wong (2020)
consider a stacked neural network approach which uses a different subnetwork at every
rebalancing time, which is computationally inefficient. On the other hand, Li and Forsyth
(2019); Reppen et al. (2023); van Staden et al. (2023b) use a single recurrent neural network
for all timesteps, in which time is considered a feature for the network model.

In neural network models for portfolio optimization, it is common to incorporate con-
straints by designing the model in a way that satisfies the constraints automatically. One
common approach is to use the softmax activation function in the last layer of the network,
ensuring that the output allocation fractions are non-negative and sum up to one. This
technique is widely used in both portfolio optimization with long-only constraints and other
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fields such as classification and probabilistic modeling. By formulating the problem as an un-
constrained optimization with appropriate activation functions, gradient-based optimization
algorithms like SGD can be applied effectively (Buehler et al., 2019).

However, for the 130/30 constraints, which limit the total long position of the portfolio
to 130%, designing such a neural network model is more challenging. The closest work is
the proposed methodology in Chapter 5, in which we consider the multi-period portfolio
optimization problem where the portfolio allows bounded leverage. However, In Chapter 5,
we assume that the manager can only short a specific pre-determined subset of the universe
of securities, which does not pertain to the 130/30 portfolio setting.

To address this, we propose a novel relaxed-constraint neural network (RCNN) model
that specifically satisfies the 130/30 constraints. By formulating the problem as an uncon-
strained optimization with appropriate activation functions, we convert the complex con-
strained stochastic optimization problem into a more computationally feasible unconstrained
problem. Furthermore, we mathematically prove that the RCNN can approximate any op-
timal 130/30 strategy arbitrarily well, implying that solving the unconstrained optimization
problem almost yields the optimal 130/30 strategy.

In practice, 130/30 funds are considered part of the long-only fund family and are eval-
uated based on their relative performance to a passive benchmark portfolio. We employ a
cumulative quadratic shortfall (CS) objective function that measures the tracking perfor-
mance of the active portfolio against the benchmark. However, the RCNN is flexible and
can accommodate various investment objective functions. As long as standard optimization
methods can backpropagate through the chosen objective function, our methodology can be
applied to a wide range of investment problems with ease.

In our numerical experiments, we utilize the RCNN to investigate the performance of the
130/30 strategy compared to long-only strategies in a four-asset scenario. Our results demon-
strate clear advantages of the 130/30 strategy, showcasing superior returns and improved risk
management outcomes. This empirical evidence not only validates the effectiveness of our
proposed RCNN approach but also highlights the untapped potential of 130/30 portfolios
that is yet to be fully realized.

7.1.3 Contributions

In this chapter, we make the following contributions:

(i) We propose a novel relaxed-constraint neural network (RCNN) model for solving the
otherwise difficult constrained portfolio optimization problem with 130/30 constraints
in an unconstrained optimization fashion, which further illustrates the computational
advantage of the neural network methodology proposed in this thesis and its ability to
solve complicated practical investment problems.
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(ii) We mathematically prove that the RCNN is capable of approximating an optimal
130/30 strategy arbitrarily well. This proof serves as a theoretical foundation, validat-
ing the efficacy of our proposed methodology.

(iii) Through numerical experiments, we provide evidence of the advantages of 130/30 port-
folios over traditional long-only portfolios. Our findings debunk the misconception
prevalent among practitioners that 130/30 portfolios yield few benefits for investors
over long-only portfolios.

7.2 Mathematical formulation

In this section, we mathematically formalize the multi-period portfolio optimization problem
with 130/30 constraints.

As mentioned in Section 7.1.1, 130/30 funds are considered part of the extended family
of long-only funds due to the net long exposure to the market, and are thus assessed against
a passive benchmark. Therefore, we consider two portfolios: an active portfolio and a
benchmark portfolio. We consider a fixed-horizon investment period of [t0, T ]. At time t ∈
[t0, T ], let W (t), Ŵ (t) denote the values of the active portfolio and the benchmark portfolio
respectively. To ensure a fair assessment of the relative performance of the two portfolios, we
assume both portfolios start with an equal initial value w0 > 0, i.e. W (t0) = Ŵ (t0) = w0 > 0.

For simplicity, we assume that both the active portfolio and the benchmark portfolio can
allocate among the same set of Na assets. Let vector S(t) = (Si(t) : i = 1, · · · , Na)

⊤ ∈ RNa

denote the asset prices of the Na underlying assets at time t ∈ [t0, T ]. In addition, let

vectors p(t) = (p
(t)
i : i = 1, · · · , Na)

⊤ ∈ RNa and p̂(t) = (p̂
(t)
i : i = 1, · · · , Na)

⊤ ∈ RNa

denote the allocation fractions to the Na underlying assets at time t ∈ [t0, T ], respectively,
for the active portfolio and the benchmark portfolio. In this chapter, we consider a passive
benchmark portfolio, i.e. p̂(t) ≡ p̂, ∀t ∈ [0, T ], where p̂ is a constant vector that represents
the pre-defined allocation fractions to each asset.

Under an optimal control perspective, the allocation vector p(t) is regarded as the stochas-
tic process denoting the control value at time t (which affects the outcome of the system,
i.e. the value evolution of the portfolio), and that p is assumed to be a function of the
state variables which are the portfolio values and time. Mathematically, p(t) = p(X(t)) =

(pi(X(t)) : i = 1, · · · , Na)
⊤ ∈ RNa , where X(t) =

(
t,W (t), Ŵ (t)

)⊤ ∈ X ⊆ R3. Our goal is
to find the optimal control function p so that the relative performance of the active portfolio
over the benchmark portfolio is maximized.

We assume that the active portfolio and the benchmark portfolio follow the same discrete
rebalancing schedule denoted by T ⊆ [t0, T ]. Specifically, we consider an equally spaced
discrete schedule with N rebalancing events, i.e.

T =
{
ti : i = 0, · · · , N − 1

}
, (7.1)
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where ti = i∆t, and ∆t = T/N .

7.2.1 Feasible strategies under 130/30 constraints

Here we define the feasible strategies under the 130/30 constraints.

Definition 7.2.1. (Feasible strategies under 130/30 constraints). A strategy p : X 7→ RNa

is a feasible strategy under the 130/30 constraints if and only if

Im(p) ⊆ Z, (7.2)

where Z ⊂ RNa encodes the 130/30 constraints, i.e. the summation to one constraint and
the maximum total long position constraint, as follows.

Z =

{
z ∈ RNa

∣∣∣∣∣
Na∑
i=1

zi = 1,
Na∑
i=1

(zi)
+ ≤ pmax,

}
, (7.3)

where (zi)
+ = max(zi, 0) is the positive part of zi, and pmax = 1.3 is a constant.

Furthermore, the set of all feasible strategies is denoted by A.

Remark 7.2.1. (Choice of pmax). As we focus on the 130/30 strategies in this chapter,
we choose pmax = 1.3 as the maximum total long position of the portfolio. However, the
methodology can be readily extended to other 1X0/X0 strategies to accommodate different
values of pmax. For example, for portfolios with the 150/50 constraints, pmax will be 1.5.

7.2.2 Stochastic optimal control problem

In this chapter, we focus on a registered investment fund operating as a limited-liability
legal entity (Carney, 1998). This structure is commonly found among investment funds
in the United States (Fung and Hsieh, 1999; McCrary, 2004). Limited liability is a crucial
characteristic of these funds that restricts investors’ liability to the amount they have invested
in the fund (Easterbrook and Fischel, 1985). Consequently, investors are protected from
personal liability for the fund’s debts or obligations beyond their initial investment.

Due to the nature of an active portfolio, which allows for both long and short positions,
there is a theoretical possibility for the value of the portfolio to become negative. In such
circumstances, the fund would initiate a bankruptcy process, resulting in the settlement of
outstanding liabilities and the cessation of future trading activities. From a mathematical
perspective, the portfolio value remains at zero throughout the remainder of the investment
horizon. Note that this is a different assumption from that used in Chapter 5, where we
assumed unlimited liability and debt accumulation. In addition, for simplicity, we do not
consider subsequent cash injections after the initial investment. Consequently, the evolution
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of the portfolio values can be described as follows from the perspective of an investor in the
limited-liability fund:
W (tj+1) =


( Na∑

i=1

pi(X(tj)) · Si(tj+1)−Si(tj)

Si(tj)

)
W (tj), if W (tj) ≥ 0,

0, if W (tj) < 0,

Ŵ (tj+1) =
( Na∑

i=1

p̂i · Si(tj+1)−Si(tj)

Si(tj)

)
Ŵ (tj),

∀j ∈ {0, · · · , N−1},

(7.4)

Let sets Wp = {W (t), t ∈ T } and Ŵp̂ = {Ŵ (t), t ∈ T } represent the trajectories of the
portfolio values for the active portfolio and the benchmark portfolio, respectively, following
the dynamics specified in equation (7.4). We introduce an investment metric denoted by
F (Wp, Ŵp̂) ∈ R, which quantifies the relative performance of the active portfolio in relation
to the benchmark portfolio based on their respective value trajectories.

In this chapter, we assume the asset prices S(t) ∈ RNa are stochastic. Consequently,
the value trajectories Wp, Ŵp̂, and the performance metric F (Wp, Ŵp̂) are also stochastic.
Therefore, when investment managers aim to optimize an investment metric, the evaluation
commonly involves evaluating the expectation of the random metric.

Let E(t0,w0)
p [F (Wp, Ŵp̂)] denote the expectation of the performance metric F , given a

specific initial value w0 = W (0) = Ŵ (0) at time t0 = 0. The expectation is evaluated
on the wealth trajectories following the admissible investment strategies p ∈ A and the
benchmark investment strategy p̂. As we assume the benchmark strategy to be predeter-
mined and known, we keep the benchmark strategy p̂ implicit in this notation for simplicity.
Subsequently, we try to solve the following stochastic optimization (SO) problem:

(Stochastic optimization problem): inf
p∈A

E(t0,w0)
p

[
F (Wp, Ŵp̂)

]
. (7.5)

Solving the constrained stochastic optimal control problem (7.5) is challenging due to the
presence of the intricate feasibility constraint (7.2) represented by the set A. In the subse-
quent section, we propose a neural network methodology that circumvents the complexity of
handling this constraint through the introduction of a specially designed relaxed-constraint
neural network (RCNN) model.

7.3 Relaxed-constraint neural network (RCNN)

In this section, we propose a neural network methodology for solving the stochastic optimiza-
tion problem (7.5) with 130/30 constraints. Given the unconventional and complex nature
of these constraints, the key concept is to approximate the optimal control function p∗ using
a neural network function that automatically satisfies the feasibility constraint (7.2).

We first define the following relaxed-constraint activation function.
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Definition 7.3.1. (Relaxed-constraint activation function). Given a constant α ∈ R, α ̸= 1
2
,

for any h = (h1, · · · , hNa−1)
⊤ ∈ RNa−1, define the “bounded mapping”, ϕ1 : RNa−1 7→ RNa−1,

as
ϕ1(h) = (1− α) + (2α− 1) · σ(h). (7.6)

Here σ : RNa−1 7→ RNa−1 is the pointwise sigmoid function, i.e. [σ(h)]i = σ(hi). ϕ1 maps
the unbounded real vector space RNa−1 into the bounded open set of (1−α, α)Na−1 (if α > 1

2
)

or (α, 1− α)Na−1 (if α < 1
2
).2

Next, for any u = (u1, · · · , uNa−1)
⊤ ∈ RNa−1, define the “extension mapping”, ϕ2 :

RNa−1 7→ RNa, as

ϕ2(u) =
(
u, 1−

Na−1∑
i=1

ui
)⊤
. (7.7)

ϕ2 extends a vector from RNa−1 into a vector in RNa, which has the property that all entries
of this vector sum up to one.

Furthermore, for any v = (v1, · · · , vNa)
⊤ ∈ RNa, and a constant pmax > 1, define the

“scaling mapping”, ϕ3 : RNa 7→ RNa, as

ϕ3(v) =

{
v, if

∑Na

i=1(vi)
+ ≤ pmax,

v+ · pmax∑Na
i=1(vi)

+
+ v− · 1−pmax

1−
∑Na

i=1(vi)
+
, if

∑Na

i=1(vi)
+ > pmax.

(7.8)

Here (vi)
+ = max(vi, 0),∀i ∈ {1, · · · , Na}. v+ =

(
max(v1, 0), · · · ,max(vNa , 0)

)⊤ ∈ RNa and

v− =
(
min(v1, 0), · · · ,min(vNa , 0)

)⊤ ∈ RNa are the positive and negative parts of vector v.
ϕ3 scales any vector in RNa so that the sum of all positive entries of the scaled vector is less
than or equal to the constant pmax.

Finally, define the “relaxed-constraint activation function”, ϕ : RNa−1 7→ RNa, as

ϕ = ϕ3 ◦ ϕ2 ◦ ϕ1. (7.9)

In other words, the relaxed-constraint activation function ϕ is a composition of ϕ3, ϕ2 and
ϕ1.

Then, we define the relaxed-constraint neural network (RCNN) function as follows.

Definition 7.3.2. (Relaxed-constraint neural network). Let X ⊂ R3 be the state space.
Given hyperparameters

(
K, (d1, · · · , dK)⊤

)
(i.e. number of hidden layers and their sizes),

and parameter θ, let f̃θ : X 7→ RNa−1 be the fully connected feedforward neural network
(FNN) function parameterized by θ as defined in Definition 5.3.1. Let ϕ : RNa−1 7→ RNa be
the relaxed-constraint activation function defined in Definition 7.3.1. Then, we define the
relaxed-constraint neural network (RCNN) function, fθ : X 7→ RNa, as

fθ = ϕ ◦ f̃θ. (7.10)

2Obviously, if α = 1
2 , then ϕ1 becomes a trivial constant mapping.
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We first establish the following lemma to show that the RCNN function defined in Defi-
nition 7.3.2 is a feasible strategy that satisfies the 130/30 constraints.

Lemma 7.3.1. (Feasibility of RCNN function). For any hyperparameters
(
K, (d1, · · · , dK)⊤

)
(i.e. number of hidden layers and their sizes), and parameter θ, let fθ be the corresponding
RCNN function defined in Definition 7.3.2. Then, fθ is a feasible strategy under the 130/30
constraints, as described in Definition 7.2.1.

Proof. According to the 130/30 constraints in Definition 7.2.1, it is sufficient to show that

Im(fθ) ⊆ Z, (7.11)

where Z is the feasibility region defined in (7.3).

Let h = f̃θ(x) and y = (y1, · · · , yNa)
⊤ = fθ(x), ∀x ∈ X ⊂ R3, where f̃θ is the FNN in

Definition 5.3.1. To show (7.11), it is sufficient to show that

y ∈ Z, (7.12)

which is equivalent to {∑Na

i=1 yi = 1,∑Na

i=1(yi)
+ ≤ pmax.

(7.13)

Let ϕ1, ϕ2 and ϕ3 be the bounded mapping, extension mapping, and scaling mapping
in Definition 7.3.1. Let v = ϕ2(ϕ1(h)) ∈ RNa . Note that

∑Na

i=1 vi = 1 (due to ϕ2), and
y = ϕ3(v).

If
∑Na

i=1(vi)
+ ≤ pmax, then y = ϕ3(v) = v ∈ Z.

On the other hand, if
∑Na

i=1(vi)
+ > pmax, then

y = ϕ3(v) = (v)+ · pmax∑Na

i=1(vi)
+
+ (v)− · 1− pmax

1−
∑Na

i=1(vi)
+
. (7.14)

Note that pmax∑Na
i=1(vi)

+
> 0, 1−pmax

1−
∑Na

i=1(vi)
+
> 0. Thus, (y)+ = (v)+ · pmax∑Na

i=1(vi)
+
,

(y)− = (v)− · 1−pmax

1−
∑Na

i=1(vi)
+
.

(7.15)

Then, we have
∑Na

i=1(yi)
+ = pmax∑Na

i=1(vi)
+
·
(∑Na

i=1(vi)
+
)
= pmax ≤ pmax,∑Na

i=1(yi)
− = 1−pmax

1−
∑Na

i=1(vi)
+
·
(∑Na

i=1(vi)
−) = 1−pmax∑Na

i=1(vi)
− · (

∑Na

i=1(vi)
−) = 1− pmax,

(7.16)

and
Na∑
i=1

yi =
Na∑
i=1

(yi)
+ +

Na∑
i=1

(yi)
− = 1. (7.17)

Therefore, both conditions in (7.13) are satisfied, thus concluding the proof.
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Remark 7.3.1. (Intuition behind the RCNN design). As shown in Definition 7.3.2, the
RCNN function is constructed by applying the relaxed-constraint activation function ϕ (Def-
inition 7.3.1) on top of a FNN (Definition 5.3.1). The FNN provides the approximation
power by connecting several hidden layers via the sigmoid activation functions. The relaxed-
constraint activation function ϕ, on the other hand, guarantees that the RCNN function
satisfies the 130/30 constraints. Particularly, recall the three mappings ϕ1, ϕ2 and ϕ3 in
Definition 7.3.1. ϕ1 converts the output of the FNN (which is scattered all over RNa−1) into
a bounded region of (1 − α, α)Na−1 (if α > 1

2
) or (α, 1 − α)Na−1 (if α < 1

2
). Intuitively,

the output of ϕ1 represents an initial estimate of the allocation fraction for the first Na − 1
assets. Due to the maximum total long position of pmax > 1, the allocation fraction for each
asset falls into [1 − pmax, pmax]. Therefore, we choose α to be slightly larger than pmax (in
numerical experiments, we use α = pmax + ϵ where ϵ = 10−6 is a small constant), so that
(1 − α, α)Na−1 tightly covers [1 − pmax, pmax]

Na−1. As we will show in the following lemma,
choosing α > pmax guarantees the existence of a right inverse of ϕ, which is critical to ensuring
the RCNN function can approximate the optimal 130/30 strategy accurately. Subsequently,
ϕ2 guarantees that the summation to one constraint is satisfied, and ϕ3 guarantees that the
maximum total long position constraint is satisfied while preserving the summation to one
property obtained from ϕ2. It is worth noting that without ϕ1, the RCNN function is still a
feasible 130/30 strategy. However, we find that applying ϕ1 allows faster convergence in the
training of the neural network.

As discussed in Remark 7.3.1, we show that ϕ has a right inverse if α > pmax.

Lemma 7.3.2. (Existence of right-inverse of ϕ). Given a relaxed constraint activation
function ϕ : RNa−1 7→ RNa as defined in Definition 7.3.1. Let pmax be the maximum total

long position defined in (7.3). If α > pmax, then there exists a function
−→
ϕ : Im(ϕ) 7→ RNa−1,

such that
−→
ϕ is the right-inverse of ϕ, i.e. ϕ(

−→
ϕ (y)) = y,∀y ∈ Im(ϕ).

Proof. Let y = (y1, · · · , yNa)
⊤ ∈ Im(ϕ) ⊂ RNa . According to Lemma 7.3.1,

Im(ϕ) ⊆ Z. (7.18)

Therefore, yi ∈ [1− pmax, pmax],∀i ∈ {1, · · · , Na}. Then,

yi − 1 + α

2α− 1
∈
[α− pmax

2α− 1
,
α + pmax − 1

2α− 1

]
⊂
( 0

2α− 1
,
2α− 1

2α− 1

)
= (0, 1). (7.19)

We can then define
−→
ϕ : Im(ϕ) 7→ RNa−1 as

−→
ϕ (y) =

(
σ−1
(y1 − 1 + α

2α− 1

)
, · · · , σ−1

(yNa−1 − 1 + α

2α− 1

))⊤
, (7.20)

where σ−1(·) is the inverse function of the sigmoid function.
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Then, it can be easily verified that
−→
ϕ is a right-inverse of ϕ, i.e. for all y ∈ Im(ϕ)

ϕ
(−→
ϕ (y)

)
= y. (7.21)

Denote the wealth trajectory following fθ by Wθ. Then, the original optimization prob-
lem (7.5) constrained by the 130/30 rule is converted into the following unconstrained opti-
mization problem:

(Unconstrained parameterized problem): inf
θ∈RNθ

E(t0,w0)
fθ

[
F (Wθ, Ŵp̂)

]
. (7.22)

However, an essential question remains unanswered: for the optimal 130/30 strategy p∗,

can we find a selection of the hyperparameters
(
K, (d1, · · · , dK)⊤

)
and parameter θ so that

the corresponding RCNN function fθ can be arbitrarily close to p∗? If the answer is affirma-
tive, it assures that solving the unconstrained problem (7.22) yields a good approximation
of the optimal 130/30 strategy. To address this crucial question, we establish an approxi-
mation theorem in the following section, providing a formal proof of the existence of such
approximations. This theorem will justify the theoretical effectiveness of the neural network
methodology for approximating the optimal 130/30 strategy.

7.4 Universal approximation theorem for RCNN

Before we prove the approximation theorem for the RCNN, we first present some reasonable
assumptions necessary for the proceeding of the proof.

Assumption 7.4.1. (Assumption on state space and optimal control).

(i) The state space X is a compact set.

(ii) The optimal control p∗ : X 7→ Z is continuous.

Remark 7.4.1. (Remark on Assumption 7.4.1). In our particular problem of outperforming
a benchmark portfolio, the state variable vector is X(t) = (t,W (t), Ŵ (t))⊤ ∈ X where
t ∈ [0, T ]. In this case, assumption (i) is equivalent to the assumption that the wealth of the
active portfolio and benchmark portfolio is bounded, i.e. X = [0, T ]× [0, wmax]× [0, ŵmax],
where wmax and ŵmax are the respective upper bounds for the portfolio values. Assumption
(ii) assumes that the optimal control is a continuous function, which is common and intuitive.

We then proceed to present the approximation theorem for the RCNN.
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Theorem 7.4.1. (Approximation of optimal 130/30 strategy). Assume the constant α in
Definition 7.3.1 satisfies α > pmax. Given the optimal control p∗ and following Assumption

7.4.1, ∀ϵ > 0, there exists
(
K, (d1, · · · , dK)⊤

)
, and θ ∈ RNθ such that the corresponding

RCNN fθ described in Definition (7.3.2) satisfies the following:

sup
x∈X

∥fθ(x)− p∗(x)∥ < ϵ. (7.23)

Proof. Let ϕ be the relaxed constraint activation function in Definition 7.3.1. According to
Lemma 7.3.1,

Im(ϕ) ⊆ Z. (7.24)

Furthermore, ∀z = (z1, · · · , zNa)
⊤ ∈ Z, we know that zi ∈ [1 − pmax, pmax], ∀i ∈

{1, · · · , Na}. For the same reason as (7.19),
−→
ϕ (z) is well-defined and ϕ(

−→
ϕ (z)) = z. There-

fore,
Z ⊆ Im(ϕ). (7.25)

Combine (7.25) with (7.24), we know that Im(ϕ) = Z, and thus Im(ϕ) is dense in Z.

In addition, ϕ is continuous and has a right-inverse, according to Lemma 7.3.2.

Then, following Lemma 5.3.3, we know that there exists
(
K, (d1, · · · , dK)⊤

)
, and θ ∈

RNθ , such that the corresponding FNN f̃θ (Definition 5.3.1) and RCNN fθ = ϕ ◦ f̃θ satisfy

sup
x∈X

∥fθ(x)− p∗(x)∥ = sup
x∈X

∥ϕ
(
f̃θ(x)

)
− p∗(x)∥ < ϵ. (7.26)

Remark 7.4.2. (Implication of Theorem 7.4.1). Theorem 7.4.1 provides valuable insight
that, for any feasible control that satisfies the 130/30 constraints, there exists a selection of
hyperparameters and parameter values that enables the corresponding RCNN to approximate
the control arbitrarily well. Intuitively, when the RCNN is sufficiently large in terms of the
number of hidden nodes, solving the unconstrained optimization problem (7.22) results in
an approximate solution that closely approximates the optimal control p∗.

7.5 Numerical experiments

In this section, we perform numerical experiments based on the RCNN method. We adopt
a shallow neural network structure with a single hidden layer consisting of 10 hidden nodes
(K = 1 and d1 = 10). As input (feature) to the RCNN network, we utilize a 3-tuple
vector (t,Wθ(t), Ŵ (t))⊤. Here, at time t ∈ [t0, T ], Wθ(t) represents the wealth of the active
portfolio governed by the RCNN parameterized by θ, while Ŵ (t) represents the wealth of
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the benchmark portfolio. The procedure for training the neural network model is described
in Chapter 5.3.3.

We use the U.S. monthly data from the Center for Research in Security Prices (CRSP)3

from January 1926 to January 2023 as the original dataset for experiments. Particularly, we
obtain the real historical returns of the equal-weighted/cap-weighted U.S. stock indexes and
10-year/30-day treasury indexes by adjusting for the CPI index.

Similar to the numerical experiments in the previous chapters, we use the stationary
block bootstrap resampling method (Politis and Romano, 1994) to generate the training
data set Y and testing data set Y test. Both data sets consist of 20,000 resampled paths.
The pseudo-code for the bootstrap algorithm can be found in Algorithm 2.3.1.

Same as in Chapter 6, in the objective function, we use the cumulative quadratic shortfall
(CS) metric:

F (Wp, Ŵp̂) =
∑
t∈T

(
min

(
Wθ(t)− eβtŴ (t), 0

))2
+ ϵWθ(T ). (7.27)

In the CS metric, the parameter β represents a predefined outperformance target, and
the regularization term ϵ is a small positive constant.4 The CS metric quantifies the under-
performance of the active portfolio relative to an elevated target eβtŴ (t). Notably, the CS
objective captures the intermediate tracking performance of the portfolio, and the parame-
ter β provides a clear performance goal. For a more detailed discussion on comparisons of
objective functions, see Section 6.3.1.

inf
θ∈RNθ

E(t0,w0)
fθ

[∑
t∈T

(
min

(
Wθ(t)− eβtŴ (t), 0

))2
+ ϵWθ(T )

]
. (7.28)

Finally, it is worth mentioning that the proposed neural network methodology is agnostic
to the choice of the objective function and can be applied to a broad range of performance
metrics.

7.5.1 Experiment results

In this section, we present a case study focusing on optimal asset allocation with 130/30
constraints. The objective of the study is to assess the potential advantages offered by a
130/30 portfolio compared to long-only portfolios. Specifically, we analyze and compare the

3©2023 Center for Research in Security Prices (CRSP), The University of Chicago Booth School of
Business. Wharton Research Data Services (WRDS) was used in preparing this chapter. This service and
the data available thereon constitute valuable intellectual property and trade secrets of WRDS and/or its
third-party suppliers.

4Same as in Chapter 6, we use ϵ = 10−6 in experiments.
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performance of the optimal 130/30 portfolio, as determined by the RCNN, with the optimal
long-only portfolio generated by the state-of-the-art model for long-only constraints (Li and
Forsyth, 2019; Ni et al., 2022), using the same investment scenario.

The investment scenario is outlined in Table 7.1. In summary, both the active portfolio
and the benchmark portfolio commence with an initial wealth of 100 at time t0 = 0. Monthly
rebalancing is implemented for both portfolios over a 10-year investment horizon. Our em-
pirical case allows the investment manager to allocate among four distinct investment assets:
the equal-weighted stock index, the cap-weighted stock index, the 30-day U.S. T-bill index,
and the 10-year U.S. T-bond index.

Same as in Chapter 6, we choose the benchmark portfolio to be a constant weight portfolio
with 70% in the equal-weighted stock and 30% in the 30-day T-bill index. By varying the
outperformance target rates (β) across the range of 0.5% to 5% (incremental with a 0.5%
step size), we obtain the corresponding optimal portfolios through the cumulative quadratic
shortfall (CS) objective.

Investment horizon T (years) 10
Underlying assets CRSP cap-weighted/equal-weighted index (real)

CRSP 30-day/10-year U.S. treasury index (real)
Index samples for bootstrap 1926/01 to 2023/01
Initial portfolio wealth 100
Rebalancing frequency Monthly
Cash injections 0
Benchmark portfolio 70% equal-weighted index/30% 30-day T-bill
Performance metric Cumulative quadratic shortfall (CS)
Outperformance target rate β 0.5% - 5%, incremental by 0.5%

Table 7.1: Investment scenario.

In Table 7.2, we present the capabilities of the 130/30 portfolio and the long-only portfolio
for tracking elevated targets. Particularly, the tracking performance is reflected in the value
of the CS objective, which measures the cumulative quadratic shortfall with respect to
elevated targets defined by the target rate β.

β 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%
130/30 275 402 622 985 1491 2434 3427 4782 6518 8709

Long-only 280 432 708 1150 1841 2855 4547 6430 9041 12594

Table 7.2: CS objective function values for various β, lower is better. The results are based
on the performance of trained models evaluated on Ytest.

As we can see from Table 7.2, even though the optimal long-only portfolio is obtained
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under the same investment scenario and optimized under the same objective function, it
achieves significantly worse tracking performance than the optimal 130/30 portfolio.

Particularly, the gap between the CS objective function values widens as the target
outperformance rate β increases, indicating that the long-only portfolio is further restricted
by the long-only constraints as the outperformance target becomes more ambitious. This
phenomenon is further demonstrated in Table 7.3, in which we list the median annual return
of both portfolios.

β 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%
130/30 7.2% 7.6% 8.1% 8.5% 8.9% 9.4% 9.7% 10.0% 10.2% 10.5%

Long-only 7.2% 7.6% 8.1% 8.5% 8.8% 8.9% 8.9% 8.9% 8.9% 8.9%

Table 7.3: Median annualized returns. The benchmark portfolio has a median annualized
return of 6.7%. The results are based on the performance of trained models evaluated on
Ytest.

As we can see from Table 7.3, when β is modest (< 3%), the long-only portfolio shows
similar median returns as the 130/30 portfolio (despite that the objective function value
is slightly worse). However, as β becomes more ambitious (≥ 3%), the long-only portfolio
has a harder time keeping up with the 130/30 portfolio. Specifically, we can see that the
median return of the long-only portfolio stagnates for β ≥ 3%. As we will discuss shortly,
at β = 3%, the optimal long-only portfolio is already allocating almost 100% allocation to
the equal-weighted stock index, the riskiest asset with the highest expected return. There is
little room for the long-only portfolio to take more risks due to the long-only constraint to
meet the more aggressive β values. On the other hand, we can see that the median return
of the optimal 130/30 portfolio increases alongside β.

In the following, for β = 3%, we plot the quantiles of the wealth ratio W (t)

Ŵ (t)
, which

measures the relative performance of the active portfolio with respect to the benchmark
portfolio throughout the investment horizon.
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(a) 130/30 portfolio
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Figure 7.1: Quantiles of wealth ratio over the investment horizon [0, T ]. β = 3%. The
130/30 portfolio follows the RCNN trained on Y . The long-only portfolio follows the neural
network model from (Li and Forsyth, 2019; Ni et al., 2022) trained on Y . Results in the
plots are testing results evaluated on Ytest.

Based on the results and analysis presented in Figure 7.1, it is evident that the 130/30
portfolio outperforms the long-only portfolio across various quantiles. The wealth ratios of
the 130/30 portfolio consistently exceed those of the long-only portfolio, indicating superior
performance.

Unsurprisingly, the superior performance of the 130/30 portfolio can be attributed to
its relaxed portfolio constraints. We plot the median allocation fractions of the 130/30
portfolio and long-only portfolio in Figure 7.2. We can see from Figure 7.2a that the optimal
130/30 portfolio strategically leverages its position by exceeding 100% exposure to the equal-
weighted stock index in the first half of the investment period. Interestingly, the 130/30
portfolio longs the equal-weighted stock and the long-term bond, and shorts the cap-weighted
stock and the short-term bond, creating long/short patterns within both asset classes (i.e.
stock and bond). On the other hand, as observed from Figure 7.2b, the long-only portfolio
is obviously restricted by the long-only constraint. It yields an almost trivial strategy that
has a close to 100% allocation to the equal-weighted stock index throughout the investment
horizon.

Of course, we remark that there is no free lunch, and the 130/30 strategy achieves superior
results with some compromises. Particularly, if we examine the extreme tail statistics such
as the 1% CVaR of the terminal wealth (i.e. the average of the lowest 1% of the terminal
wealth), we can see that the 130/30 portfolios have slightly worse results than the long-only
portfolios, as shown in Table 7.4. This is because the 130/30 portfolios are leveraged and
exposed to greater market risk and thus perform worse in consistent bear market scenarios.
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Figure 7.2: Median allocation fractions over the investment horizon [0, T ]. β = 3%. The
130/30 portfolio follows the RCNN trained on Y . The long-only portfolio follows the neural
network model from (Li and Forsyth, 2019; Ni et al., 2022) trained on Y . Results in the
plots are testing results evaluated on Ytest.

β 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%
130/30 44 38 32 29 27 25 24 23 22 22

Long-only 44 39 36 35 34 33 32 32 32 32

Table 7.4: 1% CVaR of terminal wealth, higher is better. The results are based on the
performance of trained models evaluated on Ytest.

However, one cannot simply conclude that 130/30 portfolios are riskier than long-only
portfolios. If we look at the 20th quantile of the wealth ratio in Figure 7.1, we can observe
that the optimal 130/30 portfolio exhibits better wealth ratios compared to the optimal long-
only portfolio. This suggests that the 130/30 portfolio is capable of mitigating downside risks
well in most scenarios.

Overall, the numerical experiments illustrate the superiority of the 130/30 portfolio under
the tracking performance-based investment objective. The 130/30 portfolio not only achieves
more ambitious returns but also demonstrates good risk management. This can be attributed
to the broader range of portfolio strategies available within the 130/30 structure, which allows
for more flexibility and potential for generating excess return.

In summary, this example also illustrates the effectiveness of the RCNN methodology. It
is not necessary to determine a priori of which assets can be shorted. The optimal control
solution will find the most effective strategy.

130



7.6 Conclusions

In this chapter, we introduced a neural network-based solution for the portfolio optimization
problem with 130/30 constraints. By formulating the problem as a multi-period stochastic
optimal control problem, we proposed a novel relaxed-constraint neural network (RCNN)
model to approximate the optimal control.

The RCNN addresses the complexity of the original constrained optimization problem
by converting it into an unconstrained problem that can be solved efficiently. We provided
mathematical proof demonstrating that the RCNN can accurately approximate any leverage-
constrained strategy. In particular, in contrast to the method in Chapter 5, we do not need
to specify a subset of assets that can be shorted.

In numerical experiments, we compared the optimal 130/30 portfolio following the RCNN
with the optimal long-only portfolio under the same investment scenarios and the investment
objective. The results consistently indicate that the optimal 130/30 portfolio outperforms
the long-only portfolio in terms of optimizing the investment objective.

We believe the methodology developed in this chapter can be applied to investment
problems of widespread interest, such as finding optimal portfolios of factor ETFs (Glushkov,
2015). In addition, it is worth considering other types of securities such as options in the
portfolio (Andersson and Oosterlee, 2023), which may yield better practical results.
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Chapter 8

Conclusions

This thesis introduced a neural network-based approach for solving multi-period portfolio
optimization problems with diverse constraints. By formulating the portfolio optimization
problem as a stochastic optimal control problem, the proposed method utilizes neural net-
work models to approximate optimal control. This enables efficient computation of optimal
portfolios under realistic constraints such as discrete rebalancing and no shorting, accommo-
dating various objective functions that existing methods often struggle to handle.

In Chapters 2 and 3, we applied the methodology to obtain the optimal portfolios that
outperform stochastic benchmark targets. Specifically, we proposed a novel asymmetric ob-
jective function based on the concept of the elevated target, guiding the neural network
model to achieve the desired relative performance over the benchmark. In numerical ex-
periments, we adopted the stationary block bootstrap resampling algorithm to generate the
training and testing data sets from the underlying historical data path. To justify the va-
lidity of using bootstrap resampling for generating the data sets, we established theorems
demonstrating that the probability of observing identical paths in the training and testing
data sets is exceedingly low. In numerical experiments, we showed that the adaptive strategy
following a single shallow neural network model achieves desirable outperformance over the
benchmark target, illustrating the effectiveness and efficiency of the proposed methodology.

In Chapter 4, we derived the closed-form solution for the multi-period portfolio optimiza-
tion problem under the cumulative quadratic tracking difference (CD) objective function.
While the solution relies on certain assumptions, such as continuous rebalancing, infinite
leverage, and continuation of trading in bankruptcy, it yields key insights into optimal con-
trol behavior. In particular, we found that the optimal control is contrarian, and aims higher
than the elevated target in allocation decision-making. To accommodate realistic constraints,
we proposed an approximate form of the closed-form solutions.

In Chapter 5 and 6, we studied the multi-period portfolio optimization problem in which
the portfolio is subject to a capped-leverage constraint, which is complex and unorthodox.
We proposed a novel leverage-feasible neural network (LFNN) that converts the otherwise
complex optimization problem into an unconstrained optimization problem. Furthermore,
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we established an approximation theorem to ensure that the proposed neural network model
is capable of approximating the optimal control arbitrarily well. In numerical experiments,
we considered a case study of high-inflation investment and demonstrated that the LFNN
model can yield a strategy that achieves the desired outperformance over the benchmark
throughout the entire investment horizon.

In Chapter 7, we extended the methodology to multi-period portfolio optimization prob-
lems with more general constraints. In particular, we considered a leveraged portfolio that
is not restricted to specific subsets of securities for shorting. There is little literature on
this topic, despite its empirical importance. By proposing a novel relaxed-constraint neural
network (RCNN) model, we showed that the complex portfolio optimization problem can be
transformed into a computationally feasible unconstrained optimization problem. Further-
more, we mathematically proved that the RCNN model can approximate the optimal control
arbitrarily well. Finally, in numerical experiments, we compared the relative performance
over the market portfolio for the optimal 130/30 strategy and the optimal long-only strategy
obtained under the same investment objective function and found that the optimal 130/30
strategy yields superior investment outcomes. This result challenges the misconception that
130/30 portfolios offer little advantage over long-only portfolios.

In terms of future work, there are two immediate trajectories we can explore.

Firstly, the application of the RCNN model could be extended to construct optimal
long/short portfolios of factor-based ETFs, an area of significant interest for investors seeking
enhanced returns through more sophisticated strategies.

Additionally, the methodology could be extended to address complex allocation con-
straints in portfolios. For instance, portfolios with dynamic risk limits on exposure to specific
market factors or underlying assets pose otherwise difficult challenges that our methodol-
ogy could adeptly tackle, as elaborated in Remark 5.3.3. These avenues hold promise for
demonstrating the applicability and effectiveness of our proposed approach.
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Appendix A

Supplementary materials for Chapter
2

A.1 Minimizing symmetric quadratic penalty objec-

tive function

In this section, we show that the asymmetric penalties give a more favorable terminal wealth

distribution compared to a symmetric quadratic penalty objective function E
[(
W (T )− esT ·

Wb(T )
)2]

.

We train two adaptive strategies under our proposed asymmetric objective function (2.6)
and the quadratic symmetric objective function separately with the same bootstrap resam-
pled dataset (expected blocksize of 0.5 years), and test the two strategies on the same
bootstrap resampled dataset with expected blocksize of 2 years. We present the following
testing results.

We can see from Table A.1 that the terminal wealth of the adaptive strategy trained with
the asymmetric objective function achieves a higher expected and median terminal wealth.
We can also observe that the terminal wealth distribution from the asymmetric objective
function is more right-skewed than the distribution from the quadratic symmetric objective
function from Figure A.1a. If we compare the path-wise terminal wealth, as shown in Figure
A.1b, we can see that the asymmetric objective function leads to higher terminal wealth
most of the time.

We believe the superior performance from the asymmetric objective function is because
the linear penalty on outperformance incentivizes a more right-skewed distribution for the
optimizer than the symmetric quadratic penalties, in terms of both underperformance and
outperformance.
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Testing Results on Bootstrap Data with Expected Blocksize = 2 years
Strategy E(WT ) std(WT ) median(WT ) Pr(WT < 500) Pr(WT < 600)
asymmetric objective 940 430 885 0.15 0.23
symmetric objective 864 387 811 0.18 0.28

Table A.1: Terminal wealth statistics of adaptive strategies trained on bootstrap resampled
data with expected blocksize b̂ = 0.5 years and tested on bootstrap resampled data with
expected blocksize b̂ = 2 years
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Figure A.1: Terminal wealth and terminal wealth difference, comparing symmetric and
asymmetric objective functions.
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A.2 Additional tables for robustness test with different

blocksizes

Test Results: Market Cap Weighted

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))

Expected Blocksize b̂ = 0.5 years
constant proportion(p = .5) 678 286 623.07 0.50 0.81
NN adaptive 949 478 874.84 0.27 0.50

Expected Blocksize b̂ = 1 years
constant proportion(p = .5) 674 273 623.99 0.50 0.81
NN adaptive 942 459 878.60 0.27 0.50

Expected Blocksize b̂ = 2 years
constant proportion(p = .5) 676 263 631.06 0.50 0.81
NN adaptive 945 438 882.74 0.26 0.50

Expected Blocksize b̂ = 5 years
constant proportion(p = .5) 669 244 626.11 0.50 0.83
NN adaptive 940 404 881.87 0.23 0.50

Expected Blocksize b̂ = 8 years
constant proportion(p = .5) 669 233 632.24 0.50 0.84
NN adaptive 945 388 892.84 0.22 0.50

Expected Blocksize b̂ = 10 years
constant proportion(p = .5) 667 223 635.29 0.50 0.85
NN adaptive 942 373 895.88 0.22 0.50

Table A.2: Trained on bootstrap resampled data with b̂ = 1 years
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Test Results: Market Cap Weighted

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))

Expected Blocksize b̂ = 0.5 years
constant proportion(p = .5) 678 286 623.07 0.50 0.83
NN adaptive 962 491 903.07 0.27 0.50

Expected Blocksize b̂ = 1 years
constant proportion(p = .5) 674 273 623.99 0.50 0.83
NN adaptive 954 470 905.02 0.27 0.50

Expected Blocksize b̂ = 2 years
constant proportion(p = .5) 676 263 631.06 0.50 0.84
NN adaptive 958 446 912.31 0.26 0.50

Expected Blocksize b̂ = 5 years
constant proportion(p = .5) 669 244 626.11 0.50 0.85
NN adaptive 954 409 914.34 0.23 0.50

Expected Blocksize b̂ = 8 years
constant proportion(p = .5) 669 233 632.24 0.50 0.87
NN adaptive 961 392 928.89 0.22 0.50

Expected Blocksize b̂ = 10 years
constant proportion(p = .5) 667 223 635.29 0.50 0.88
NN adaptive 961 380 930.15 0.21 0.50

Table A.3: Trained on bootstrap resampled data with b̂ = 2 years

Test Results: Market Cap Weighted

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))

Expected Blocksize b̂ = 0.5 years
constant proportion(p = .5) 678 286 623.07 0.50 0.86
NN adaptive 995 495 963.03 0.26 0.50

Expected Blocksize b̂ = 1 years
constant proportion(p = .5) 674 273 623.99 0.50 0.87
NN adaptive 988 478 963.28 0.25 0.50

Expected Blocksize b̂ = 2 years
constant proportion(p = .5) 676 263 631.06 0.50 0.88
NN adaptive 994 458 973.65 0.25 0.50

Expected Blocksize b̂ = 5 years
constant proportion(p = .5) 669 244 626.11 0.50 0.89
NN adaptive 997 427 976.51 0.22 0.50

Expected Blocksize b̂ = 8 years
constant proportion(p = .5) 669 233 632.24 0.50 0.90
NN adaptive 1011 415 993.88 0.21 0.50

Expected Blocksize b̂ = 10 years
constant proportion(p = .5) 667 223 635.29 0.50 0.92
NN adaptive 1015 409 996.57 0.20 0.50

Table A.4: Trained on bootstrap resampled data with b̂ = 5 years
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Test Results: Market Cap Weighted

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))

Expected Blocksize b̂ = 0.5 years
constant proportion(p = .5) 678 286 623.07 0.50 0.86
NN adaptive 980 480 945.12 0.25 0.50

Expected Blocksize b̂ = 1 years
constant proportion(p = .5) 674 273 623.99 0.50 0.86
NN adaptive 973 464 947.99 0.25 0.50

Expected Blocksize b̂ = 2 years
constant proportion(p = .5) 676 263 631.06 0.50 0.87
NN adaptive 979 443 957.32 0.25 0.50

Expected Blocksize b̂ = 5 years
constant proportion(p = .5) 669 244 626.11 0.50 0.88
NN adaptive 981 412 959.86 0.21 0.50

Expected Blocksize b̂ = 8 years
constant proportion(p = .5) 669 233 632.24 0.50 0.90
NN adaptive 994 399 976.44 0.21 0.50

Expected Blocksize b̂ = 10 years
constant proportion(p = .5) 667 223 635.29 0.50 0.91
NN adaptive 996 390 980.07 0.20 0.50

Table A.5: Trained on bootstrap resampled data with b̂ = 8 years

Test Results: Market Cap Weighted

Strategy E(WT ) std(WT ) median(WT ) Pr(WT < median(WCP
T )) Pr(WT < median(WNN

T ))

Expected Blocksize b̂ = 0.5 years
constant proportion(p = .5) 678 286 623.07 0.50 0.84
NN adaptive 963 468 920.86 0.25 0.50

Expected Blocksize b̂ = 1 years
constant proportion(p = .5) 674 273 623.99 0.50 0.84
NN adaptive 957 451 923.63 0.25 0.50

Expected Blocksize b̂ = 2 years
constant proportion(p = .5) 676 263 631.06 0.50 0.85
NN adaptive 962 431 932.13 0.25 0.50

Expected Blocksize b̂ = 5 years
constant proportion(p = .5) 669 244 626.11 0.50 0.87
NN adaptive 962 399 937.08 0.22 0.50

Expected Blocksize b̂ = 8 years
constant proportion(p = .5) 669 233 632.24 0.50 0.88
NN adaptive 973 384 951.40 0.21 0.50

Expected Blocksize b̂ = 10 years
constant proportion(p = .5) 667 223 635.29 0.50 0.90
NN adaptive 973 373 954.63 0.20 0.50

Table A.6: Trained on bootstrap resampled data with b̂ = 10 years
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