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Abstract

Adversarial examples are malicious inputs to trained machine learning models supplied to
trigger a misclassification. This type of attack has been studied for close to a decade, and we
find that there is a lack of study and formalization of adversary knowledge when mounting
attacks. This has yielded a complex space of attack research with hard-to-compare threat
models and attacks. We solve this in the image classification domain by providing a
theoretical framework to study adversary knowledge inspired by work in order theory. We
present an adversarial example game, based on cryptographic games, to standardize attack
procedures. We survey recent attacks in the image classification domain that showcase the
current state of adversarial example research. Together with our formalization, we compile
results that both confirm existing beliefs about adversary knowledge, such as the potency
of information about the attacked model as well as allow us to derive new conclusions on
the difficulty associated with the white-box and transferable threat models, for example,
transferable attacks might not be as difficult as previously thought.
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Chapter 1

Introduction

Currently, an estimated 46% of companies worldwide have deployed customized ML ma-
chine learning (ML) models for business purposes [1]. Many are deployed in critical envi-
ronments like healthcare [2], self-driving cars [3][4], aerospace and aviation [5], and much
more. Model failures in these settings can directly incur grave consequences on human
life. While there exists a large body of literature on the safe and secure deployment of
these models, the proposed solutions remain mainly academic, difficult to implement and
replicate, and fall short of the security standards we would typically expect from critical
systems. Despite all of this, the deployment of ML models continues to grow. This surge
in deployment, while promising, introduces a pressing concern: the vulnerability of these
models to security flaws, both known and yet to be uncovered. The potential consequences
of such vulnerabilities extend far beyond the limits of academia, with implications economic
and societal implications.

Adversarial example attacks are one such attack, originally discovered by Szegedy et
al. ([6]) in 2014. They have shown the existence of easily craftable imperceptible vulner-
abilities in image classifiers. These vulnerabilities have taken the form of perturbations,
imperceptible to the human eye, that can significantly alter a model’s prediction on an oth-
erwise benign input. Additionally, the low requirements for mounting adversarial attacks
make it a prime vulnerability. Prior work in the domain of adversarial examples suggests
a notable advantage for attackers, with the majority of attacks capable of, to some degree,
impeding model performance. Among the existing defenses, few techniques have demon-
strated a degree of robustness when it comes to safeguarding machine learning models, for
example, adversarial training methods [7] and ensemble approaches [8] (and their combina-
tion). However, even in their strongest forms and under strict threat models that greatly
limit the attacker’s capabilities, current defenses still fail to provide adequate protection.
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To remedy this, a branch of research on provably robust defenses emerged [9]. However,
in practice, this is not yet a feasible approach since it increases the computational cost of
model inference by several orders of magnitude. Since provable defenses are impractical,
a majority of the field has focused on improving the quality of empirical defenses. Nev-
ertheless, the absence of a reliable evaluation standard or assessment method for overall
performance has resulted in an ongoing competitive cycle between attackers and defenders
based on empirical experiments. Similarly, the field of encryption went through the same
process last century. Establishing a systematic and well-defined theoretical framework was
essential in stabilizing the space and yielded security protocols that endured. In security,
information and knowledge are key. A complete theoretical framework is crucial to creating
this necessary evaluation standard and shifting this competitive cycle into a manageable
challenge for adversarial example research.

In our work, we concentrate on the image classification domain and aim to address
a significant challenge: the current lack of emphasis on rigorous assessment of adversary
knowledge in threat models. Adversary knowledge is one of the key components of a
well-defined threat model and has long been overlooked and neglected by both attack
and defense works. We study the current lack of formalization of adversary knowledge
in adversarial example research and how it affects attack comparability and performance.
Defending against attackers with ill-defined capabilities places an additional burden on
the defender. Whereas attacking with ill-defined knowledge hinders reproducibility and
comparability. We develop this formalization as a theoretical framework to model various
adversarial example attacks. We conduct a thorough review of recent attacks in the image
classification domain, offering an up-to-date overview of the current landscape of adver-
saries in this specific context. This formalization allows us to define and categorize attacks
and their associated threat models, in turn, laying a foundation for defenses. Additionally,
combined with our survey of attacks, we measure the effect of the information available to
an attacker on an attack’s performance. We compare various threat models and confirm,
with falsifiable results, the generally held belief that certain categories of information, like
information related to the attacked classification model, have a disproportionate effect on
attack performance. However, we also find that a lack of information in that category, in
the case of transferable attacks, can be compensated by the use of additional information
such as information related to the training data or the training process, to yield attacks
that are almost just as potent.
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Chapter 2

Background

2.1 Grammar

Our entire structure is based on the following primitives:

• Real numbers: R

• The ⊥ symbol.

and the following objects built on our primitives:

• Sets of primitives :{}, A,B

• Functions over primitives: f, g

2.2 Machine Learning

Using our primitives, we can define data and the rest of the machine learning pipeline:

Definition 1 (Data). We define data as the set of all possible inputs to a machine learning
model: I ⊂ R∗ and the set of all possible labels L ⊂ R∗ ∪ {⊥}.

Definition 2 (Ground-truth function). We define the ground-truth function gt : I → L
as the function that assigns its true label to an input sample. (In the case where the label
does not have a true label, it returns ⊥).
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Definition 3 (Machine Learning Model). We define a machine learning (ML) model as a
parametrized function M : I → L.

Definition 4 (ML Model Parameters). The parameters of an ML model (a parametrized
function as defined above) are θM ∈ R∗

Definition 5 (Set of all ML Models). The set of all ML models is M which is a set of
parametrized functions.

If further terms describing model processes are used and not defined in this work, one
can refer to the National Institute of Standards and Technology (NISTIR) [10] for their
definition.

2.3 Security

Definition 6 (Threat Model). NISTIR [10] defined a threat model as adversarial goals,
knowledge, and capabilities that a system is designed to defend against.

Definition 7 (White-box). We define white-box threat model as a threat model where the
attacker has access to the attacked (also called target) model’s parameters.

Definition 8 (Query-based). We define query-based threat model as a threat model where
the attacker can query the target model with samples.

2.4 Adversarial Examples

The National Institute of Standards and Technology (NISTIR) [10] defines adversarial
examples as:

Definition 9 (Adversarial Example). ML input sample formed by applying a small but
intentionally worst-case perturbation (see adversarial perturbation) to a clean (benign) ex-
ample, such that the perturbed input causes a learned model to output an incorrect answer.

Depending on the adversary’s goal, an incorrect answer will have a different meaning.
The two main attack goals that can be found in the field are untargeted and targeted
attacks.
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Definition 10 (Targeted Adversarial Example). An input sample i ∈ I and its associated
label gt(i) ∈ L is said to be a targeted adversarial example if for a fixed chosen label c ∈
L, c ̸= gt(i), it triggers a learned model to output label c.

Definition 11 (Untargeted Adversarial Example). An input sample i ∈ I and its associ-
ated label gt(i) ∈ L is said to be an untargeted adversarial example if it triggers a learned
model to output a label l ̸= gt(i), l ∈ L

Definition 12 (Grounded Adversarial Example). An input sample i ∈ I and its associated
label gt(i) ∈ L is said to be a grounded adversarial example if it was created using a benign
sample x ∈ I and its associated label gt(x) ∈ L.

Defining the adversarial nature of an input sample whose origin is unknown is difficult,
as it is context-dependent. When a model misclassifies an input sample, determining
whether it was due to the adversarial nature of said sample or whether it was a shortcoming
of the model itself on a benign sample is a complicated task. Adversarial examples exploit
a model’s shortcomings in modeling the ground-truth function gt. Such shortcomings can
be model-specific or sometimes shared amongst many if not most models. In this class, we
can see two kinds of adversarial examples arise: universal adversarial perturbations and
transferable adversarial examples.

Definition 13 (Universal Adversarial Perturbation). A universal adversarial perturbation
is an input perturbation vector p ∈ R∗ that when applied to any input sample i ∈ I, will
cause the input sample to become a (targeted or untargeted) adversarial example.

Definition 14 (Transferable Adversarial Example). A transferable adversarial example is
an adversarial example that is crafted to successfully trigger a learned model M1 to output
an incorrect answer and also successfully triggers a set of other learned models {M2,M3, ...}
to output an incorrect answer.

5



Chapter 3

Methodology

To survey the field of adversarial examples in the image classification domain, we first use
Google Scholar for the initial search and search ”machine learning adversarial examples.”
We focus on recent papers, papers published in 2022 or after to narrow the field of the
search and allow for an up-to-date perspective of the field of image classification adver-
sarial research. We limit the search to the first ten pages of results, considering that the
initial pages typically contain papers of greater significance and the field of adversarial ex-
ample research is quite vast. From there, we identify relevant adversarial example attack
papers/defenses from the discovered papers. This yields seventy-three papers. ([11–83])

We then used our expertise in the field to read the papers and identify the ones of
high quality. To narrow down our search, we select papers that provide us with a diverse
set of studied threat models, to better showcase our framework. This process provides us
with thirteen papers from 2022 and later ([11, 14, 15, 37–40, 45, 54, 65, 66, 82, 83]). To
avoid redundancy between papers whose objectives and methodology are similar, we pick
a representative paper from each such group of papers.

Furthermore, we identify attack papers presented at conferences with a distinguished
reputation within the machine learning community. The selection of conferences was based
on their standing and recognition, ensuring that the surveyed papers were from reputable
sources. To avoid redundancy, only papers that had not been previously surveyed are
considered. This yields two more papers that we included in our survey ([64, 84]). Fur-
thermore, we extend our search to include papers investigating the combination of adver-
sarial examples with stable diffusion. This is motivated by the contemporary nature of
stable diffusion-based attack papers, which represent a new approach to leveraging image
domain information for conducting attacks. The objective is to assess whether these newly
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developed attacks would provide valuable insights into the evolving field of adversarial ex-
ample research on image classification. We selected another two papers ([85, 86]) out of
seven ([85–90]). Three of them were not on classification tasks, one was a defense paper,
and one other was of lesser quality. Finally, we include three papers from 2020 ([91]) and
2021 ([92, 93]) that had not been surveyed by other work and that present an interesting
approach from our perspective, for a total of twenty papers.

For each paper we select, we gather the paper’s results. The focus was specifically on
the results presented by the authors themselves or results referenced from external sources,
such as RobustBench [94] or defense papers. This ensures the accuracy of the results we
report.

The inclusion and exclusion criteria are defined to ensure the relevance of the selected
papers to our research objectives. Papers were included if they provided insights into
novel adversarial attack techniques or presented unique perspectives on the vulnerabilities
of machine learning models.

For our formalization, we were inspired by cryptographic security games and their
associated proofs. For example, the game-based proofs of CPA and CCA security. We also
took inspiration from Hasse Diagrams, from order theory, to create, order and prove our
information categories.
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Chapter 4

Survey

4.1 Paper Summaries

4.1.1 Object-based Diverse Input Attack

The Object-based Diverse Input (ODI) Attack [45] is a transferable attack focused on input
transformation. It is an attack used to boost the transferability of targeted adversarial
examples generated using other attacks. They project the generated adversarial image
onto carefully crafted 3D-rendered objects. Taking both the selected 3D mesh and the
adversarial image, they use a differentiable renderer to project the image onto the 3D
mesh and apply a random viewpoint and lighting. Finally, they add a randomly generated
background to the image as the selected 3D mesh might not fill the entire image.

Since the rendered is differentiable, it can also be directly incorporated into the adver-
sarial generation process of iterative attacks by adding it to the gradient computation step
as follows:

ĝt+1 = ∇xadv
t
L(f(ODI(xadv

t )), yt) (4.1)

Where ĝt+1 is the gradient at step t+1, xadv
t is the crafted input at time step t (xadv

0 = x
where x is the original clean sample), L is the loss function used for optimization, yt is
the target class for the targeted attack and f is a classifier. In practice, since their attack
requires gradients, the classifier f that is used to compute the gradients is a source model
separate from the model they are attacking (as otherwise, their attack would be a white-box
attack).
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Their attack is tested using the following source models (that they also attack): ResNet-
50 [95], Inception-v3 [96], DenseNet-121 [97], and VGG-16 bn [98]. And the following
additional target models: ResNet-18 [95], Inception-v4 [99], MobileNet-v2 [100], Inception
ResNet-v2 [99], adversarially trained Inception-v3 [8] and ensemble adversarially trained
Inception ResNet-v2 [8].

4.1.2 Geometry-Aware Attack

The Geometry-Aware (GA) attack [40] is a transferable attack focused on minimizing the
necessary perturbation budget to achieve misclassification. It is a grounded and untar-
geted attack that uses a classification-validation split of pre-trained classifiers to generate
adversarial examples with the smallest adaptive budget possible while retaining a high like-
lihood of transferability to the target model. Their attack is an attack aimed at boosting
transferability (similar to ODI [45]) of existing attack methods. In particular, they explore
the effectiveness of their meta-attack in the content-preserving salient situation. To do
so, they use a set of pre-trained models (on ImageNet-1k’s training set [101]) that they
split into a training (f) and validation (h) set. They iteratively generate an adversarial
example by using an existing attack with a fraction of their maximum perturbation size
against the training set of models f . They then compute a confidence score that represents
the probability of the true class on the validation models:

conf =
exp(hy(xk, θ))∑
j exp(hj(xk, θ))

(4.2)

Where y is the original image x’s label, θ are the parameters of the models and k is the
current step in the iterative process. If the confidence score is lower than a threshold η,
they early-stop their algorithm to save budget (they save at least (K − k)kϵ

K
where ϵ is

their maximum perturbation budget and K is the number of iterations). If the confidence
score never reaches lower than the threshold η, they return the generated image xK after
the K steps occur.

To go with their meta-attack procedure, they combine the Feature Space Attack (FSA)
[102] with transfer-based l∞-norm attacks [103], [104] to create a content-preserving attack.
Using a pre-trained encoder ϕ, they compute the mean µ(ϕ(x)) and standard deviation
σ(ϕ(x)) of the output of the encoder on the original image x. They then adversarially
perturb µ(ϕ(x)) and σ(ϕ(x)) before projecting them back onto the input space using a
pre-trained decoder ϕ−1 to generate x′. These adversarial perturbations on µ(ϕ(x)) and
σ(ϕ(x)) can be enhanced using input diversity [104] and momentum-based methods [103]
to yield their full attack.
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Multiple variations of their attack are tested on various defended models like Inception-
ResNet-v2Ens-adv [8]. They also competed in the CVPR’21 Security AI Challenger: Un-
restricted Adversarial Attacks on ImageNet [105] where their entry ranked 1st out of the
1,559 teams competing.

4.1.3 Large Geometric Vicinity Attack

This is another attack to improve the transferability of adversarial examples [54]. They use
a pre-trained surrogate model and apply a two-phase algorithm. The first phase consists
of continuing the training of the pre-trained surrogate model for a few epochs with an
increased learning rate. During those epochs of training, they save the weight-state of
the surrogate model at regular intervals (4 times per epoch). This technique allows them
to sample a wide array of well-trained models with varying loss landscapes. They claim
it improves over simply adding random noise to the weights. Once all those models are
collected, they proceed with the second phase of the attack algorithm: they iteratively
attack the collected models. They use the I-FGSM [106] as a baseline attack where for an
input, at every step of the iterative process, they sample a different model from their set
of collected models (and cycle through if they run out of models) and optimize against it.
This is an untargeted and grounded attack.

They compare their augmentation method against four other test-time transformations
applied on top of I-FGSM. The surrogates they use for their attack are pre-trained ResNet-
50 [107]. They attack eight pre-trained models provided by PyTorch [108]: ResNet-50 [95],
ResNet-152 [95], ResNeXt-50 [109], WideResNet-50 [110], DenseNet-201 [97], VGG-19 [98],
Inception-v1 [111], and Inception-v3 [96]. Their experiments are performed using a random
subset of 2000 images from the test set of the ImageNet dataset [101] that all eight models
classify correctly.

4.1.4 Pixle Attack

This is a black-box query-based adversarial example attack [37] whose goal is to generate
potent adversarial examples by re-arranging a few pixels within the attacked image based
on random search. They claim they do so with few queries and negligible perturbations
between the original and adversarial images. This attack is therefore grounded. They
provide both a targeted and untargeted attack algorithm for their attack. They follow
the indistinguishable-perturbation salient situation under the l0-norm. To do so, they
select pixels from a randomly sampled small patch of neighboring pixels P in the image.
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These pixels are then mapped to other pixels in the image using a mapping function
m : (i, j) ∈ P → N2

+ ∈ [1, h] × [1, w] where h and w are height and width of the image
respectively. The adversarial image’s pixels can be defined as the following:

x̂i,j =

{
m(i, j) if (i, j) ∈ P

xi,j Otherwise
(4.3)

They use three different mapping functions: random mapping (map to a random pixel
that is not itself); mapping based on pixel similarity, either the most similar pixel (in pixel
value) that is not itself or the least similar. Using this mapping technique, they iteratively
sample patches of the image, apply the mapping transformation and then query the model
on the adversarial sample. If the score of the true label class is lower than the previously
measured, they save the patch as the current best patch. They repeat this procedure a
fixed number of times (hyperparameter) and then return the best adversarial example they
found.

They evaluate their attack on three datasets: CIFAR10 [112], TinyImageNet [113] and
ImageNet [101]. Furthermore, they train and evaluate ResNet-20 [95] and VGG-11 [98] on
CIFAR10; ResNet-50 [95] and VGG-16 [98] for Tiny ImageNet. However, for ImageNet,
they use pre-trained ResNet-50 and VGG-16 models without any fine-tuning. They sample
randomly for each dataset 1000 images from the test set (100, 5 and 1 image per-class
respectively for CIFAR10, TinyImageNet and ImageNet). They also evaluate the targeted
version of their attack on a 200-image subset of CIFAR10 (20 images per class).

4.1.5 MASSA Attack

MASSA [66] is also query-based black-box attack that adds noise to an initial benign im-
age in the frequency domain and optimizes that noise by a binary search through each of
the frequency components of the frequency domains to minimize the perturbation created
while maintaining the misclassification. This frequency domain representation of the image
is obtained using the Fast Fourier Transform (FFT). They rely on the observation that for
images, most of the information is contained in the low-frequency part of the frequency do-
main. They present their attack as a grounded, untargeted decision-based black-box attack
and operate under the indistinguishable perturbation salient situation with the l2-norm as
their metric. Furthermore, they summarize their attack methodology as follows: Firstly,
they sample an initial noise in the frequency domain. To do so, they first use statistical
analysis to separate the frequency domain into the low/mid/high-frequency bands. Once
this is done, they generate a histogram of the values in the frequency domain and associate
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a matching normal distribution N∗ to it with mean µ and standard deviation σ (they work
under the assumption that any image’s frequency domain histogram will follow some form
of normal distribution). They also define tl and tr as the left and right tail of the histogram
respectively:

tl = µ− αlσ and tr = µ+ αrσ (4.4)

for some scaling factors αl, αr. They use those tails to delimit the three low/mid/high-
frequency bands. Then for each band, they replace the values in the frequency domain
with values sampled from N∗ with a restricted range depending on the band: [Fmin, tl] for
the low band, [tl, tr] for the mid band and [tr, Fmax] for the high band, where Fmin and
Fmax are the lowest and largest value in the frequency spectrum respectively.

Once this is done, they query the model to ensure that the generated image is adversarial
(untargeted). However, this method of noise injection in the frequency domain ends up
generating quite a significant amount of noise when projected back into the image space.
Therefore, they employ a second step that reduces the perturbation magnitude in each
frequency band while preserving the adversarial nature of the image. They do so using a
method they call Frequency Spectrum Binary Search. They use this binary search method
to minimize the difference between the original image and the adversarial image band
by band (whilst querying the target model to make sure the image remains adversarial),
starting with the low-frequency band as it is the one carrying the most important features.
Finally, they perform a final step to remove redundant noise. This step is a method
that recursively divides the noise image (difference between adversarial image and original
image) into four patches and removes a patch before querying the model. If this removal
does not change the prediction (still adversarial), it permanently deletes it. Otherwise,
it keeps that patch. They repeat this step while progressively using finer and finer patch
sizes.

They evaluate their attack using a set of 500 correctly classified random images from the
validation set of the ImageNet [101] dataset. They attack both undefended and defended
ResNet-50 [95] (adversarially trained [? ]), VGG-16 [98] and VGG-19 [98] models. The
defenses they attack are JPEG compression [114] and adversarial training [8].

4.1.6 AI-FGTM Attack

In their paper [15], the authors propose a new gradient-based optimization technique to
generate adversarial examples. They integrate this new technique with existing transfer-
based attacks to deliver a transfer-based attack that achieves state-of-the-art performance
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for transfer-based attacks. It is a grounded and untargeted attack in the indistinguishable
perturbation salient situation with the l∞-norm metric. This attack claims to improve on
the shortcomings of gradient sign-based attacks by preserving more gradient information.
This can be summarized as the following improvements to different parts of the algorithm:

• Replacing the sign function with the tanh function to generate smaller perturbations

• Using Adam [115] instead of a momentum method and gradient normalization to get
larger model losses in fewer iterations

• Using smaller kernels in Gaussian blur to avoid the loss of gradient information

• Gradually increasing the step size

Adam [115] limits the updates’ reliance on only the past few gradients. They do so by
using a first moment vector mt, a second moment vector vt. However, in this paper, the
author modify how these vectors are computed a bit to tailor them to the dual optimization
problem of adversarial examples. They define them as follows:

mt+1 = mt + µ1 · ∇xadv
t

J(xadv
t , ytrue) (4.5)

vt+1 = vt + µ2 · (∇xadv
t

J(xadv
t , ytrue))2 (4.6)

Where xadv
0 = x (x is a starting benign sample and ytrue its label), m0 = 0, v0 = 0,

J is the loss function of a given classifier, µ1 and µ2 denote the first and second moment
factors, respectively.

They then update xadv
t+1 as follows:

αt =
ε∑T−1

t=0
1−βt+1

1√
(1−βt+1

2 )

1− βt+1
1√

(1− βt+1
2 )

(4.7)

xadv
t+1 = ClipX

ε

{
xadv
t + αt · tanh(λ

mt+1√
vt+1 + δ

)

}
(4.8)

Where β1 and β2 are exponential decay rates, λ denotes the scale factor, ε is the
parameter for the l∞-norm and αt is the increase step size with

∑T−1
t=0 αt = ε.
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They then combine this aforementioned adversarial example generation process with
the Nesterov Iterative Method (NIM [116]), the Translation-Invariant Method (TIM [117])
and the Diverse Input Method (DIM [104]) to yield their complete transfer-based attack.

They evaluate their attack on an ImageNet-compatible dataset (1000 images from the
NIPS 2017 adversarial competition [118]) using four non-defended pre-trained models(on
ImageNet [101]) as source models: Inception-v3 [96], Inception-v4 [99], Inception-ResNet-
v2 [99], and ResNet-101-v2 [119]. They also use the ensemble of these four models to
generate adversarial examples. They attack a total of nine defended pre-trained models (on
ImageNet [101]): Inception-v3Ens3, Inception-v3Ens4, Inception-ResNet-v2ens [8], high-level
representation guided denoiser (HGD) [120], input transformation through random resizing
and padding (R&P) [121], rank-3 submission 2 in the NIPS 2017 adversarial competition
(NIPS-r3) [118]. Out of those nine models, they also attack three models with what
they consider ”advanced” defenses. The first one: Feature Distillation (FD) [122] uses
the ImageNet-trained [101] MobileNet architecture [123] from its original paper [124]. The
second: Comdefend [125] trains their own ResNet-50 [95]. They evaluate against more than
just this model but since it’s the only model they train specifically, we have to assume this
is the one they mean as the authors do not specify it in their paper. Finally, the last model:
Randomized Smoothing (RS) [9] also uses a ResNet-50 [95] as a base.

4.1.7 SSAH Attack

In this paper [65], the authors present an attack that addresses two existing problems with
other approaches: inherent limitation in cross-dataset generalization and poor impercepti-
bility to the human visual system (HVS). To tackle these problems, they offer a grounded
attack with both a targeted and untargeted variant. They also work in the indistinguish-
able perturbation setting but instead of working with lp-norms, they instead use semantic
similarity metrics. However, instead of using existing metrics such as SSIM [126] or LPIPS
[127], they provide a frequency-domain-based metric. Their attack works as follows: Given
a batch X = [x1, . . . , xN ], they optimize (untargeted):

xadv
i = argx′

i
min[s′i,i −min

{
s′i,j|j ̸= i

}
]+ (4.9)

Where [·]+ denotes max(·, 0), x′i is the optimization variable initialized as xi and s′i,j =
sim(f(x′i), f(xj)) is a similarity score. They define s′i,j as:

s′i,j =
f(x′i)

Tf(xj)

∥f(x′i)∥2∥f(xj)∥2
(4.10)
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In the targeted attack setting, they instead optimize:

xadv
i = argx′

i
min[s′i,i − s′i, t]+ (4.11)

Where t is the index of the target image in the batch. Since they attack semantic
similarity, their target is a particular image of the target class rather than the target class
as a whole. Now that they have the function they want to optimize, they design a self-
paced weighting mechanism to avoid redundant perturbations. It modifies the function to
optimize by adding two parameters αi and βi:

xadv
i = argx′

i
min[αis

′
i,i − βimin

{
s′i,j|j ̸= i

}
]+ (4.12)

that self-adjust based on the similarity of the generated adversarial example to its original
benign image and the other images in the batch. This completes the first part of their
algorithm that they call LSSA. The second part is called the low-frequency constraint.
Using the observation that HVS is (according to them) more sensitive to changes in the
low-frequency components than the high-frequency components, they employ the Discrete
Wavelet Transform (DWT) and its inverse (IDWT) to deconstruct and then reconstruct
the image without its high-frequency components as:

ϕ(x) = LT (LxLT )L (4.13)

where L are the low-pass filters of an orthogonal wavelet. Using ϕ(x) they define a new
perceptual similarity constraint:

Dlf (x, x
′) = ∥ϕ(x)− ϕ(x′)∥1 (4.14)

This yields the final attack:

xadv
i = λDlf (xi, x

′
i) + LSSA(xi, x

′
i) (4.15)

They evaluate their attack in both the whitebox and transferable settings on the CI-
FAR10 [112], CIFAR100 [112] and ImageNet [101] datasets. For CIFAR10/100, they use
a ResNet-20 [95] that they train themselves (92.6% and 69.6% accuracy on CIFAR10/100
respectively) and a ResNet-50 [95] for ImageNet that they also train themselves (76.15%
accuracy). They evaluate their performance against defended models by attacking models
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(WideResNet-34-10 [110]) defended by FSAT [128] and TRADES [129]. In the transferable
setting, they attack the online models from Microsoft Azure [130], Tencent Cloud [131],
and Baidu AI Cloud [132]. They evaluate the quality of their attack using four different
perception metrics: l2-norm, l∞-norm, the Fréchet Inception Distance (FID) [133] and their
own metric they call the average distortion of low-frequency components (LF) that can be
computed as such:

LF =
1

N

N∑
i=1

∥ϕ(xi)− ϕ(xadv
i )∥2 (4.16)

4.1.8 F-Attack

This attack [38] is a decision-based grounded adversarial attack that similarly to MASSA
[66] or SSAh [65] utilizes the frequency domain to mount its attack. Their attack is built
upon an algorithm they build called f-mixup that can also be used to improve the query
efficiency of other decision-based attacks when combined with a frequency binary search
algorithm. They heavily focus on query efficiency. They do not specify the salient situation
they are in but since they do not use distance metrics or image quality/perceptional metrics,
we have to assume they are within the content-preserving setting.

f-mixup starts with a set of benign images and crafts adversarial examples by replacing
the mid-high frequency components of the original benign sample with the corresponding
part of a reference image (another benign image in the set). This is again based on the
observation that most of the information in the frequency domain is carried by the low
frequencies and the human visual system (HVS) is less sensitive to changes in the high
frequencies. They use the Discrete Fourier Transform (DFT) to compute the frequency
domain of the input samples and its inverse (IDFT) to recover the image from the frequency
domain. Their algorithm f −mixup can be summarized as follows:

1. Given two benign samples x0 and xi, compute f0 and fi using the DFT.

2. Using the band thresholds, rl and rh (low and high respectively). They apply a
band-stop filter (bs) to f0 to remove all the frequencies within the band (rh, rl) and
a band-pass filter (bp) to fi to get only the frequencies within the band (rh, rl).
f bs
0 = bs(f0, rh, rl), f

bp
i = bp(fi, rh, rl).

3. Then, they add the extracted bands together to get the adversarial examples’ fre-
quency domain representation: f̂0i = f bs

o + f bp
i .
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4. Finally, they recover the adversarial example x̂oi using the IDFT.

Using f −mixup, they build their attack f − attack as follows:

1. Given a set of n benign images X = {x1, . . . , xn}, they first compute rl and rh. They
set the upper cut-off rh arbitrarily and use it to compute rl. Using the clean example
x0 and a distortion threshold ρ, they get rl by performing a binary search on [0, rh]
until ∥xbp

0 ∥ ∼ 0.7ρ.

2. Use f-mixup on x0 for each xi ∈ X. This yields n candidates.

3. Sequentially query the target model with the generated candidates until it misclas-
sifies, or the attacker uses up the query budget.

One of their core idea to bypass detection is that since f-attack discards model feedback
that is normally used in conventional decision-based attacks, it is not as detectable. They
emphasize that their attack is tailored to small query budgets as according to them its
performance does not scale well when the query budget is increased. In this other setting,
they offer a Frequency Binary Search algorithm to improve the query efficiency of other
existing decision-based algorithms. Given an adversarial example and its clean counterpart,
using f-mixup they iteratively update the adversarial sample while performing a binary
search for the optimal frequency band (rh, rl).

They test their attack on two datasets:

• CIFAR10 [112], where they attack the following models (that they train themselves):
VGG-16 [98] and ResNet-32 [95].

• ImageNet [101], where they attack the following models pre-trained by Pytorch [108]:
ResNet-50 [95] and MobileNet-v2 [100].

For ImageNet, they attack 500 randomly sampled correctly classified examples. They
additionally take another 500 examples to construct their reference set that all clean exam-
ples will share. They only perform an untargeted attack on ImageNet. As for CIFAR10,
they perform both a targeted and untargeted attack using a reference set of 100 clean
samples.
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4.1.9 BIA Attack

This paper [11] is one of the first papers to consider untargeted attacks where the task
of the target model is partially unknown (they call it black-box domain). While they
remain within the image domain, their attack (BIA) explores the threat model where the
adversary has neither knowledge of the training data nor the target model’s specific goal.
They operate under the indistinguishable perturbation salient situation with the l∞-norm
metric and train a generative model Gθ to destroy the low-level features (features that can
be found within the last few layers of the feature extractor component of a model) of the
surrogate models they attack. This in turn would allow the attack to be domain-agnostic to
the extent that most image classification tasks will require a similar set of baseline features
to be extracted.

Therefore, they teach their generator Gθ to minimize the cosine similarity [134] between
a benign image and a different (adversarial) example to make the features featureless:

θ∗ = argθminLcos(f
L
s (x

′
s), f

L
s (xs)) (4.17)

where θ∗ are the learned generator’s parameters, Lcos is the cosine similarity loss, xs is a
benign image sampled from the surrogate domain XS, and L is the specific layer of the
surrogate model they are trying to attack. This allows their generator in the inference
phase to directly craft adversarial examples from given input images xt from the target
domain:

x′t = min(xt + ϵ,max(Gθ∗(xt), xt − ϵ)) (4.18)

where ϵ is the l∞-norm parameter (for the indistinguishable perturbation salient situation).

Additionally, to enhance the transferability of their attack, they perform a random
normalization-based input transformation (RN) to simulate having access to different data
distributions in the training phase. This is furthermore combined with a domain-agnostic
attention module AL by applying a cross-channel average pooling to the feature maps at
layer L. This is done to narrow the domain gap from the model’s perspective between the
source and target domain.

This yields the optimization function to generate the learned parameters for Gθ∗ :

θ∗ = argθminLcos(A
L ⊙ fL

s (RN(x′s)), A
L ⊙ fL

s (RN(xs))) (4.19)

where ⊙ is the Hadamard product.

They work with the ImageNet dataset [101] and attack seven other datasets: CIFAR10,
CIFAR100 [112], STL-10 [135], SVHN [136], CUB-200-2011 [137], Stanford Cars [138], and
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FGVC Aircraft [139]. They use four ImageNet [101] pre-trained models to train their
attack generators: VGG-16, VGG-19 [98], ResNet-152 [95], and DenseNet-169 [97]. They
then attack each of the target datasets (other than ImageNet):

• CIFAR10, CIFAR100, STL-10, and SVHN: custom models.

• CUB-200-2011, Stanford Cars, and FGVC Aircraft: DCL framework [140] with
ResNet-50 [95], SENet-154 and SE-ResNet-101 [141] backbones.

Additionally, they study the transferability of their attack against other models trained
on ImageNet in two other settings: white-box and transferable. For the whitebox setting
evaluation, they evaluate pre-trained VGG-16 [98] and DenseNet-169 [97] models. Whereas
for the transferable setting evaluation, they use the pre-trained VGG-16 and DenseNet-
169 as source models (they also use one to attack the other and vice-versa) to attack
the following models: VGG-19 [98], ResNet-50, ResNet-121 [95], DenseNet-121 [97], and
Inception-v3 [96].

4.1.10 ACG Attack

In their paper [83], the authors present a whitebox untargeted and grounded attack based
on the conjugate gradient (CG) method that they call the Auto Conjugate Method (ACG).
The motivation behind using the conjugate method is that the commonly used steepest
descent method used by most attacks can suffer against ill-conditioned problems. Addi-
tionally, they also define a measure of diversity called the Diversity Index (DI) and argue
that the more diverse the search employed by an attack, the higher its success rate. They
operate under the indistinguishable perturbation salient situation with an l∞-norm metric.

Similarly to PGD [7], ACG is an iterative algorithm that repeatedly iterates over a sam-
ple within an lp-norm restriction (in this case l∞). The ACG step can be mathematically
summarized as follows:

xk+1 = PS(x
k + ηk · (sk)) (4.20)

Where PS is the projection onto the feasible region S, ηk = (argmin
{
f(xk + ηsk)|η ≥ 0

}
)

is the step size, and σ is a type of normalization. sk is iteratively computed as follows

sk = ∇f(xk) + βk
HSs

k−1 (4.21)
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βk
HS =

⟨−∇f(xk),∇f(xk−1)−∇f(xk)⟩
⟨sk−1,∇f(xk−1)−∇f(xk)⟩

(4.22)

They use the same method as Auto PGD [142] to select the step size. They summarized the
process as follows: The initial step size η0 is set to 2ϵ, and when the number of iterations
reaches the precomputed checkpoint wj, the step size η is halved if either of the following
two conditions are satisfied:

• Ninc < ρ · (wj − wj−1),

• ηwj−1 = ηwj and f
wj−1
max = f

wj
max,

where Ninc := # {i = wj−1, . . . , wj − 1|f(xi+1) > f(xi)} and
fk
max := max {f(xi)|i = 1, . . . , k}.
They evaluate their attack on CIFAR10, CIFAR100 [112] and ImageNet [101] against

42, 17 and 5 models, respectively. They use all 10000 images of the validation set for
CIFAR10/100 and 5000 images of the validation set for ImageNet. For CIFAR10 and
CIFAR100, they use an epsilon of ϵ = 8/255 for the l∞-norm, and they use ϵ = 4/255 for
ImageNet. The models they use are models listed in RobustBench [94]. These are defended
models collected from various previous papers that use the following network architectures
for each dataset:

• CIFAR10: PreActResNet-18 [119], ResNet-18, ResNet-50 [95], WideResNet-106-16,
WideResNet-28-10, WideResNet-28-4, WideResNet-34-10, WideResNet-34-15,
WideResNet-34-20, WideResNet-34-R, WideResNet-70-16 [110].

• CIFAR100: PreActResNet-18 [119], WideResNet-28-10, WideResNet-34-10,
WideResNet-34-20, WideResNet-70-16 [110].

• ImageNet: ResNet-18, ResNet-50, [95], WideResNet-50-2 [110].

4.1.11 Admix Attack

Admix [92] is a transferable attack that is similar to SSAH [65] and F-Attack [38] in using
additional data from the same distribution as the given image (and the training data) to
generate transferable adversarial examples using surrogate models. To use these additional
images, they employ a modified version of the mixup operation that has been previously
used to improve the generalization of standard training [143]. Mixup interpolates two
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randomly sampled examples and their labels. Admix, however, unlike mixup, does treat
the images being interpolated equally and does not interpolate the labels (keeps the original
image’s label). Instead, they bias the interpolation towards the original image rather than
the additional image to preserve as much information about the original image as possible.

x̂ = γ · x+ η′ · x′ = γ · (x+ η · x′) (4.23)

where x is the original image, x′ is the additional image, η = η′/γ, γ ∈ [0, 1] and η′ ∈
[0, γ) control the proportion of the original image and the additional image are admixed
respectively. Then, taking a set of admixed images, they can compute the average gradient
w.r.t to the original image across the admixed images against a surrogate model and use
this gradient for any traditional gradient-based attack. Therefore, their attack can be used
for both targeted and untargeted attacks.

ḡt+1 =
1

m1 ·m2

∑
x′∈X′

m1−1∑
i=0

∇xadv
t

J(γi · (xadv
t + η · x′), y; θ) (4.24)

where m1 is the number of admixed images for each x′ and X ′ denotes the set of m2

randomly sampled images from other classes. J is the model’s loss function and θ are the
surrogate model’s parameters.

They evaluate their attack using 1000 images from the 1000 different classes that are
randomly sampled from the ILSVRC 2012 ImageNet-Compatible validation set [144] pro-
vided by another paper [116].

They use four models as source models: Inception-v3 [96], Inception-v4 [99], Inception-
ResNet-v2 [99], ResNet-101 [95]. They also attack those four models (they treat the sce-
nario where source and target models are the same as white-box, meaning they share
their parameters) as well as three ensemble adversarially trained models: Inception-v3Ens3,
Inception-v3Ens4, Inception-ResNet-v2ens [8]. They also attack nine additional defended
models: HGD [120], R&P [121], NIPS-r3 [118], Bit-Red [145], MobileNetFD [122], JPEG
[146], ResNet-50RS [9], ARS [147] and NRP [148].

4.1.12 ATA Attack

In their paper [82], the authors present a grounded and untargeted transferable adversarial
attack tailored to Vision Transformer models (ViTs). This is motivated by the unique
architectural challenges that ViTs pose to transferable adversarial examples due to their
use of self-attention and image-embedding layers. Feature extraction in ViTs is done
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through these image embedding and self-attention layers, hence the authors posit that
confusing these layers could result in effective and transferable adversarial examples. They
do so in two steps:

Uncertain Attention Activation: Self-attention is a key component of the transformer
architecture and allows a model to identify and focus on the critical tokens within the input.
They first obtain the class activated matrix C of the b-th block of a ViT F following [149]
where Cq,p represents the contribution of token p to token q. They then calculate the
uncertainty weight wp of each xp

pt (from the sequence of flattened patches returned by the
image embedding layer with indices p = 1, . . . , N) using entropy:

wp =

∑
q Cq,p · logCq,p∑

p

∑
q Cq,p · logCq,p

(4.25)

Which they recombine into W = w1, . . . , wN . Using those weights, they can find the
patch-wise regions to activate the uncertain attention within the pixel number (l0-norm
ϵ) constraint by calculating the patch-wise region map Mc = floor(m ·W ) where m is the
pixel number.

Sensitive Embedding Perturbation: Given the patch-wise attentional regions, they
leverage the shared use of image embedding layers amongst ViTs to find the sensitive pixels
that most influence the image embedding layers. Concisely, given the patch-wise region
map Mc, the first find the non-zero element Mp

c and its corresponding flattened patch xp
pt

and then search the most sensitive pixels with full consideration of the embedding strategy.

They evaluate their attack on the ImageNet [101] dataset, taking 2000 images from the
validation set. They attack Pytorch [108] pre-trained CNNs and ViTs:

• For CNNs: ResNet-50 [95], DenseNet-121 [97], AlexNet [150], and VGG-16 [98].

• For transformers (come in tiny ”-T”, small ”-S” and base ”-B”): ViT family [151],
DeiT family [152], and ConViT family [153].

4.1.13 Shadow Attack

The authors of the paper [14] propose a black-box score query-based attack using natu-
ral phenomenons, in particular shadows, to generate content-constrained, grounded and
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untargeted adversarial examples. They argue that using shadows rather than artificial
adversarial patterns can lead to less detectable and more practical (both digitally and
physically) adversarial examples. Their algorithm works as follows: Given a mask M to
locate a target object in an image, they attempt to optimize the location of a set of vertices
V = {(m1, n1), . . . , (ms, ns)} that represents a polygon where the shadow will be drawn. In
practice, they find that a triangle works best. Whereas, for the magnitude of the shadow,
they use Expectation Over Transformation (EOT) [154] and convert the input images from
RGB space to LAB space to use the L channel which corresponds to lightness. So, they
first convert the clean input image x in RGB color space to LAB color space:

LAB(x) = LAB([Rx, Gx, Bx]) = [Lx, Ax, Bx] (4.26)

Then, given a Polygon PV and a mask M , they compute the value of each pixel (i, j) in
the adversarial image xadv as follows:

LABi,j(xadv) =
[
Li,j
xadv

, Ai,j
xadv

, Bxadv

]
(4.27)

=

{
LABi,j(x) · [k, 1, 1]T (i, j) ∈ PV ∩M

LABi,j(x) · [1, 1, 1]T (i, j) /∈ PV ∩M
(4.28)

where k is the shadow coefficient. This coefficient can be computed from a reference benign
dataset or modified arbitrarily. Then they convert it back to the RGB color space to yield
xadv and their complete attack:

xadv = S(x, PV ,M, k) (4.29)

Since M is given, they offer two possible optimization strategies to optimize M : the
first is a particle swarm optimization (PSO) strategy [155] and the other is EOT [154].

They evaluate their attack on the LISA [156] dataset, which consists of 47 different
US road sign classes and the GTSRB [157] dataset, which consists of 43 different Ger-
man road sign classes. They attack the following models: LISA-CNN [158] and GTSRB-
CNN [158]. They also adversarially train robust versions of these models (LISA-CNNrob,
GTSRB-CNNrob) against adversarial examples crafted with their attack and evaluate their
performance. They use the SBU Shadow dataset [159] to set their shadow parameter k
(setting it to the mean of the dataset).

4.1.14 DAPatch Attack

This paper [84] presents a white-box, grounded and untargeted patch attack that focuses
on optimizing the shape of the patch on top of the content of the patch itself. This yields
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an attack that operates under the content-preserving salient situation (since the patch
is visible to the human eye). They do so by iteratively and differentiably deforming the
patch shape. Representing their patch as a composition of triangles, they can differentiably
verify if a point is inside or outside the contour and the shape model can be mapped into a
binary mask. This allows them to jointly optimize the shape and the texture of adversarial
patches. This triangle composition is represented as one center point O and a set of R rays
of various lengths r = r1, r2, . . . , rR. Then the entire patch can be represented as triangles
crafted from pairs of rays and the center point O. Then given O and r, they describe a
Deformable Patch Representation (DPR) algorithm to differentiably obtain the mask M .
This algorithm works as follows:

Given a triangle AOB and any pixel C ∈ x where x is an input image, they compute
|CO|
|DO| where D is the intersection point of AB and CO (or its extended line). If |CO|

|DO| < 1

then C is in AOB and vice versa. They then use a function ϕ(x) to map it to the binary
space differentiably to get the final mask computation:

M(C, r) = ϕ(
|CO|
|DO|

) ∈ {0, 1} (4.30)

To allow for more complex contour modeling, they introduce a multi-anchor mechanism:

r0 = {r01, r02, . . . , r0R}, (4.31)

ei = {ei1, . . . , eiR}, i = 0, 1, . . . , R− 1, (4.32)

ri+1 = ri + ei, i = 0, 1, . . . , R− 1 (4.33)

where ri is the length of the ray in the i-th anchor and ei denotes the margin between ri

and ri+1.

Using this process, representation, they construct their Deformable Adversarial Patch
(DAPatch) attack. This attack jointly optimizes the shape and texture of the patch repre-
sented by DPR. Given a maximum area ps that the patch can take up on the image, they
define the loss function as follows to control the area of the patch:

L =

{
Ladv area ≤ ps

Ladv + β · Lshape area > ps
(4.34)

where area is the area covered by the patch and β is a hyper-parameter. They define Lshape

as follows:

Lshape = mean(Mk) (4.35)
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Then the adversarial example at step k xk
adv can be expressed as:

xk
adv = θk−1 ⊙Mk−1 + xk−1

adv ⊙ (I −Mk−1) (4.36)

where θ represents the texture. The texture and shape update process can be computed
as follows:

θk = θk−1 + α · sign(∇xk
adv

L) (4.37)

rk = rk−1 + γ · sign(∇rk−1L) (4.38)

They evaluate their attack on the GTSRB [157] dataset (500 images from the validation
set) and the ImageNet-Compatible ILSVRC2012 dataset [144] (1000 images from the val-
idation set). They attack the following models: VGG-19 [98], ResNet-152 [95], DenseNet-
161 [97], MobileNet-v2 [100], ViT-B [151], Swin-B [160], and EfficientNet-b7 [161]. They
also attack defended models: ResNet-50SIN, ResNet-50SIN+IN, ResNet-50SIN+IN-IN [162],
ResNet-50Debiased, ResNet-152Debiased [163], FastAT [164], ResNet-152Denoise, ResNeXt-101Denoise,
and ResNet-152adv [165].

4.1.15 S2I Attack

In their paper [64], the authors propose a transferable grounded adversarial example at-
tack combining diversity and the frequency domain. However, unlike the ACG attack [83]
(summary 4.1.10) that looks into the diversity of the search algorithm used by an attack,
the S2I attack looks into the diversity of the surrogate models used to improve the trans-
ferability of existing white-box adversarial example attacks. To enhance the model output
diversity, they decided to transform the inputs given to each of the surrogate models in
the ensemble used to generate the transferable example. However, as they state, exist-
ing transformations for the spatial domain do not translate to significant diversification of
model outputs. Hence, they apply a spectrum transformation based on the discrete co-
sine transform (DCT) and its inverse to perform the model augmentation in the frequency
domain instead. Additionally, to measure diversity, they use the spectrum saliency map:

Sϕ =
∂J(DI(D(x)), y;ϕ)

∂D(x)
(4.39)

Where D is the DCT, DI is the inverse DCT (IDCT), J is the loss function, x is the input
image, y is its class label, and ϕ are the model parameters.
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Their attack can be described as a random spectrum transformation τ(·):

τ(x) = DI((D(x) +D(ξ))⊙M) (4.40)

= DI(D(x+ ξ)⊙M) (4.41)

where ⊙ denotes the Hadamard product, ξ ∼ N (0, σ2, I) and each element of M ∼
U(1 − ρ, 1 + ρ) are random variants sampled from a Gaussian Distribution and a Uni-
form distribution, respectively. Then their algorithm can be summed up as follows:

• transform x into τ(x)

• compute the gradient g = ∇xJ(τ(x), y;ϕ) on the surrogate model(s)

• use the gradient for any gradient-based white-box attack. In their paper, they use
FGSM

They evaluate their attack on the ImageNet-Compatible dataset (NIPS 2017 adversarial
competition [118]) of 1000 images. They also happen to compare against one of the papers
we also include in our survey (Admix [92], summary ??). They use 4 models as surrogate
source models: Inception-v3 [96], Inception-v4 [99], Inception-ResNet-v2 [99], ResNet-
152 [95] that they also attack in the white-box setting. In the transferable setting, they
attack undefended ResNet-50 and ResNet-101 [95] models. They also attack some defended
models: Inception-v3Ens3, Inception-v3Ens4, Inception-ResNet-v2ens [8], HGD [120], R&P
[121], NIPS-r3 [118], JPEG [146], ResNet-50RS [9], NRP [148].

4.1.16 AI-GAN Attack

AI-GAN [93] is an attack that is similar to the BIA attack [11] (summary 4.1.9) trains and
uses a generator to generate adversarial examples. AI-GAN is a work that follows from
and improves on AdvGAN [166]. The generators for both of these works are based on the
Generative Adversarial Network architecture [167] that they adapt to generate adversarial
noise that is then added to the original image. AI-GAN is grounded and targeted. It can
be summarized as follows:

Given the target (or surrogate) model, the authors train a noise generator that takes
an input sample x and a target t to generate noise that is added to x to generate x′. x′

is then given to the local classification model. This allows them to compute a loss on the
performance of the generator at fooling the local model Ltargetpert :

LGpert = E[logP (c = t|x′)] (4.42)
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where c is the predicted class by the local model. x′ is also given to the discriminator
D (part of the GAN architecture) that they enhance to make it predict both whether the
image is the original (x) or the perturbed (x′) image (LS) and to make it predict the actual
class of the image (LDpert). The total loss for the generator can be then described as:

LG = LGpert + LDpert − LS (4.43)

LGDpert = E[logP (cd = t|x′)] (4.44)

where cd is the prediction of the class of x′ by the discriminator.

LS = E[logP (S = real|x)] + E[log(S = pert|x′)] (4.45)

where S is whether the image is real or perturbed. The discriminator also needs its own
loss to be trained alongside the generator. An improvement they bring over AdvGAN is an
additional loss-term to help stabilize the learning of the discriminator as GANs are well-
known for their unstable training ([168]). Following previous work on using robustness to
stabilize GAN training [168], they incorporate an attacker into their framework (separate
from the generator). Using another attack like Fast-Gradient-Sign-Method [169], they
attack the classification part of the discriminator with an adversarial example x′′. The loss
of the discriminator can be written as follows:

LD = LS + LDadv
+ LDGpert (4.46)

LDadv
= E[logP (cd = y|x′′)] (4.47)

LDGpert = E[logP (cd = y|x′)] (4.48)

They train and attack models on the MNIST [170], CIFAR10 and CIFAR100 [112]
datasets. They attack custom models on MNIST and ResNet-32 [95], WideResNet-34
[110] on CIFAR10/100.

4.1.17 AEG Attack

This paper [91] proposes a grounded transferable attack that uses a min-max game of
adversarial example generation to generate adversarial examples given what they call a
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hypothesis class (e.g. architecture). This paper is a precursor to this work as it introduces
and takes some steps toward formalizing adversary knowledge. Using this, they argue that
the Nash equilibrium reached by their attack in their min-max game yields a distribution
of adversarial examples that are the most effective against any classifier. To train this
generator, they are similar to the existing GAN [167] approach in using the divergence
minimization approach [171]. However, where GANs look at the divergence between two
distributions, they instead look at a notion of entropy: the F − entropy of a distribution
pg given a hypothesis class F (the class of models with a specific architecture) is defined
as:

HF(pg) := minfc∈FE(x,y)∼pg [l(fc(x), y)] (4.49)

where l is the cross-entropy loss. It aims to quantify the amount of ”classification informa-
tion” available in the given distribution pg using the class of classifiers F . fc is a classifier
sampled from F using the reference dataset Dref . Therefore, they aim to train a generator
g (that takes in both a benign input x and its label y and outputs adversarial noise) that
finds a regularized adversarial distribution of maximal F -entropy:

maxg∈Gϵminfc∈Fφλ(fc, g) = (1 + λ)maxg∈GϵHF(
1

1 + λ
pg +

λ

1 + λ
Dref ) (4.50)

where the distribution 1
1+λ

pg +
λ

1+λ
Dref is the mixture of the generated distribution pg and

the empirical distribution over a reference dataset Dref .
φλ(f, g) is the regularized version of the AEG game. By regularized, they mean regularized
w.r.t. to the empirical distribution of the reference dataset Dref .

They evaluate their attack on the MNIST [170] and CIFAR10 [112] datasets. They
train their reference (surrogate) model using a different optimizer than the target model
they are using (both are based on SGD and cross-entropy loss). The way they do so is
that for a given dataset, they split the dataset into 5 distinct subsets (10000 images each)
and use one subset as the reference set to attack four models each trained on one of the
other subsets. This makes direct comparison against other works that train on the whole
training set tricky. Then in another part of the evaluation, they relax their assumption
and assume access to the whole training set. They use the following architectures:

• CIFAFR10: ResNet-18 [95], Wide-ResNet-34-10 [110], DenseNet-121 [97], VGG-16
[98], Inception-v3 [96]. They also attack the ens3 [8] defended versions of all of those
models as well as Madry-Adv [7].

• MNIST: AlexNet [150], Aens4, Bens4, Cens4, Dens4 [8], Madry-Adv [7].
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4.1.18 ACA Attack

This paper [86] presents a grounded and untargeted, content-preserving attack using the
latent space of pre-trained stable diffusion models. Their algorithm operates in two steps:
first, it uses Image Latent Mapping to map images into the latent space. Then, it uses
Adversarial Latent Optimization to generate adversarial examples. Specifically, they work
with text prompted Stable Diffusion models.

The Image Latent Mapping process can be summarized as follows: they use the inverse
process of DDIM sampling [172] with an associated condition embedding C = ϕ(P ) from
prompts P to map the images to the latent space. For an input image z0, the image at
step t zt of the denoising process, we get the image at time step t+ 1 as follows:

zt+1 =

√
αt+1

αt

zt + (

√
1

αt+1

− 1−
√

1

αt

− 1) · ϵθ(zt, t, C) (4.51)

where αt = Πt
i(1 − βi) for a schedule {β0, . . . , βT} ∈ (0, 1) and ϵθ is the noise prediction

model from the DDIM sampling. They encode the image prompt using an image caption
model (BLIP-v2 [173]). They then get the classifier-free guidance prediction using ϵθ.
However, this process can create noise that accumulates and disrupts the reconstruction
process. To mitigate this, they optimize a null text embedding ∅t for each time step t
[174] such that:

min∅t∥z∗t−1 − zt−1(z̄t, t, C,∅t)∥22 (4.52)

where z∗t are the latents output by DDIM sampling, z̄T = zt during N iterations for the
time steps t = {T, . . . , 1}. They update ¯zt−1 to zt−1(z̄t, t, C,∅t) at the end of each step
and zt−1(z̄t, t, C,∅t) is the output of equation 4.51 conditioned on ∅t.

This process yields them the latent of the given image, consisting of the noise z̄T , the
null text embedding ∅T (to ensure the quality of the reconstructed image) and the text
embedding C (to ensure the preservation of the semantic information of the image). Then
given the latent, they perform Adversarial Latent Optimization as follows:

Ω(zT , T, C, {∅t}Tt=1) = z0(z1(. . . , (zT−1, T − 1, C,∅T−1), . . . , 1, C,∅1), 0, C,∅0) (4.53)

Ω is the denoising process. Then, they define their optimization objective to generate the
adversarial example as follows:

maxθL(Fθ(z̄o), y), s.t.∥δ∥∞ ≤ κ, z̄0 = Ω(zT + δ, T, C, {∅t}) (4.54)

29



where L is the loss function composed of cross-entropy loss and mean-squared error loss
added together, the model Fθ with parameters θ.

They add differentiable boundary processing to ensure the value range of z̄0 is bounded
between [0, 1] to make it a valid input. Additionally, they use momentum in their gradient
optimization to improve convergence.

They evaluate their attack on the ImageNet-Compatible dataset (1000 images from
ImageNet’s [101] validation set). They attack the following models: MobileNet-v2 [100],
Inception-v3 [96], ResNet-50 [95], ResNet-152 [95], DenseNet-161 [97], EfficienNet-b7 [161],
MobileViT [175], ViT-B [151], Swin-B [160], PVT-v2 [176]. They also attack defended
models: HDG [120], R&P [121], NIPS-r3 [118], JPEG [146], Bit-Red [145], DiffPure [90],
Inception-v3Ens3, Inception-v3Ens4, and Inception-ResNet-v2ens [8], ResNet-50Debiased [163],
and Shape-ResNet [177].

4.1.19 DiffAttack

This paper[85] proposes another attack (DiffAttack) that similarly to ACA [86] (summary
4.1.18) uses the latent space of a diffusion model to generate potent and transferable ad-
versarial examples. They also leverage the discriminative capabilities of diffusion models
trained on large-scale datasets to use them as surrogate models for their attack. However,
they take a different approach in their attack compared to ACA [86] by focusing on the
cross-attention maps between the text and image pixels while implementing control mea-
sures to limit the distortion from the initial semantics by constraining the self-attention
and controlling the inversion strength (when inverting images to noise). The particular
diffusion model that they use is Stable Diffusion [178], and they use DDIM Inversion [179]
to convert the original input image into the latent space. This process can be described
as:

xt = Inverse(xt−1) ◦ · · · ◦ Inverse(x0) (4.55)

where Inverse is the DDIM Inversion operation where xt is the latent at time step t and
x0 is the original clean image. Then, they directly perturb the latent xt:

argxt
minLattack = −J(x′, y;Gϕ), where x′ = x′0 = Denoise ◦ · · · ◦Denoise(xt) (4.56)

where J is the cross-entropy loss, Denoise is the diffusion denoising process, and Gϕ is a
surrogate model. They introduce a second loss component to enhance the transferability
of the attack:

argxt
minLtransfer = VarAverageCross(xt, t, C; SDM) (4.57)
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where Var calculates the input’s variance, Cross denotes the accumulation of all the cross-
attention maps in the denoising process and SDM is the Stable Diffusion model. They do
this to distract the diffusion model’s attention from the labeled objects. To control the
distortion from the initial semantics, they use an additional (and final) loss component to
control the self-attention and ensure structure retention. They take a clean copy of the
original inversed latent xt(fix) as a reference point for the attacked latent xt. They then
calculate the self attention-maps St(fix) and St of xt(fix) and xt respectively and incentivize
them to remain close by minimizing their l2-distance:

argxt
minLstructure = ∥St − St(fix)∥22 (4.58)

This yields a final objective function for their attack as follows:

argxt
minL = αLattack + βLtransfer + γLstructure (4.59)

where α, β, and γ are hyperparameters.

They evaluate their attack on the development (DEV) set of the ImageNet-Compatible
dataset (same as the one from the NIPS 2017 adversarial competition [118]). They at-
tack the following models: ConvNeXt [180], ResNet-50 [95], VGG-19 [98], Inception-v3
[96], MobileNet-v2 [100], Vit-B [151], Swin-B [160], DeiT-B and DeiT-S [152], Mixer-B
and Mixer-L [181]. They also attack defended models: DiffPure [90], ResNet-50RS [9],
R&P [121], HGD [120], NIPS-r3 [118], NRP [148], Inception-v3adv [106], Inception-v3Ens3,
Inception-v3Ens4, and Inception-ResNet-v2ens [8].

4.1.20 A3 Attack

This paper [39] proposes a parameter-free, efficient, adaptive white-box attack to be used
as a robustness test for defenses. This white-box attack is grounded, and untargeted.
The authors argue it should be used to evaluate the lower bound of performance for a
defense. They developed this adaptive attack by combining two strategies: Adaptive
Direction Initialization (ADI) and Online Statistics-based Discarding (OSD). ADI studies
the first restart in the restart-iterative attack algorithm and based on the directions of
diversification of adversarial examples, it improves the sampling of starting points for
future restarts. OSD discarding improves on naively treating all images equally regarding
the number of iterations to be allocated. It avoids making unnecessary efforts to perturb
hard-to-attack images.

ADI works as follows:
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• First randomly sample directions of diversification.

• It then uses ODI [182] (not the same ODI as the one we review in this survey) to get
starting points, initialize PGD attacks from them and obtain the crafted adversarial
examples (set W = wd of all found adversarial examples).

• It then adopts the sign of the summed wd as prior knowledge to generate the adaptive
direction wa.

• Using this prior knowledge, it generates each component of wa by biasing the random
sampling depending on the sign of the same component of the prior (uniform in
(−0.5, 0.1) if the prior is negative and (−0.1, 0.5) if it is positive).

• Finally, it generates a label following the sign of the prior on the label. (-0.8 if
negative, 0.8 if positive).

• It uniformly samples the labels for the other classes at uniformly random between -1
and 1. This helps improve the diversity of starting points.

OSD works as follows:

• Using the loss values of each image in the test set to attack, it sorts them in descending
order by corresponding loss value at each restart and then discards the hard-to-attack
images (ones with small loss values).

• They define the discarding rate at the r-th restart as follows:

ςr = ϕ+ r × ι (4.60)

where ϕ is the initial discarding rate, and ι is the discarding increment.

• It then computes how many iterations should be allocated to images that were not
discarded as follows:

N r
atk = γ + r × ν (4.61)

where γ is the number of iterations for attacks and ν is an iteration increment.

With their attack, they won the CPR 2021 White-box Adversarial Attacks on Defense
Models competition. In their paper, they evaluate their attack against almost 50 defended
models using a limited per-image number of iterations (100) on CIFAR10 and CIFAR100
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[112] (entire validation set). They also participated in the CVPR 2021 White-box Ad-
versarial Attacks on Defense Models competition (ImageNet [101], 1000 images from the
validation set) and finished first. The model architectures (with the associated defenses)
that were evaluated can be found in Tables 4.1 and 4.2, most if not all of these models can
be found on RobustBench [94]:

Table 4.1: List of attacked models by A3 on CIFAR10

Model Defense

WideResNet-70-16 [110] ULAT [183], Fixing Data [184]

WideResNet-28-10 [110]
ULAT [183], Fixing Data [184], AWP [185], RLPE [186],
Geometry [187], RST [188], HYDRA [189], MART [190],

FS [128], Interpolation [191]

WideResNet-34-15 [110] RLPE [186]

WideResNet-34-10 [110]
Proxy [192], OOAT [193], Pre-training [194], SAT [195], YOPO [196],

Sensible [197], FAT [198], Self-adaptive [199],
TRADES [129], LBGAT [200]

WideResNet-34-20 [110] ULAT [183], AT HE [201], LBGAT [200], Overfitting [202]

ResNet-18 [95] OOAT [193], DNR [203], CNL [204], Regularization [205], Proxy [192]

ResNet-50 [95] Robustness [206]

WideResNet-28-4 [110] MMA [207]

Table 4.2: List of attacked models by A3 on CIFAR100

Model Defense

WideResNet-70-16 [110] ULAT [183], Fixing Data [184]

WideResNet-28-10 [110] Fixing Data [184], Pre-training [194]

WideResNet-34-10 [110] OOAT [193], LBGAT [200], AWP [185], SAT [195]

WideResNet-34-20 [110] LBGAT [200]

ResNet-18 [95] OOAT [193]

PreActResNet-18 [119] Overfitting [202]
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Chapter 5

Formalization

5.1 Introduction

In this chapter, we formalize adversarial example attacks with an emphasis on the infor-
mation and the capabilities the adversary has access to to perform their attack. Another
concern we tackle later in this chapter is how the problem of adversarial examples is treated.
This machine learning security problem is mostly studied as a machine learning problem
rather than a security problem. This is a problem that has led to a lack of a proper theoret-
ical framework that is based on proper security principles. In turn, this has been reflected
in work whose impact is limited due to the inherent flaws in their security assumptions.

Previous systematization of knowledge works ([208] or [209]) have looked at the ad-
versarial example problem from various angles. Papernot et al. ([208]) took a holistic
approach and proposed a thorough overview of the possible threat models as well as the
training and inference process in an adversarial setting. They emphasized a clear distinc-
tion between the different domains (physical vs. digital) while describing the overall ML
attack surface. This was reiterated more recently by Lin et al. ([62]) where the authors
present an attack on the physical domain specifically. In contrast, Byun et al. ([45]) took
advantage of the properties of the physical domain by projecting adversarial examples onto
virtually 3D-rendered physical objects (like a mug) to improve the transferability of their
attack.

Another approach was the one by Carlini & Wagner ([209]). In their paper, they
present generating adversarial examples as a constrained optimization problem. They first
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cover a set of existing attacks at the time and from their formalization, they introduced
three new attacks adapted each for a specific norm distance metric (L0-norm, L1-norm,
and L2-norm). However, we found that these works fail to properly cover adversarial in-
formation and capabilities. This was not a significant problem back in 2017 and 2018
when most of the literature focused on white-box attacks, attacks where the adversary has
immense knowledge and capabilities and therefore covering the minutia is not as important.

Recently, however, the field has experienced a shift toward more practical, realistic and
usable attacks. This is reflected in the emergence of unrestricted adversarial examples
([86], [105], [85]) as well as threat models like the black-box and no-box (transferable)
threat models ([11], [45], [54], [64], [92], [82]). A work that took the first step toward ra-
tionalizing this shift is the work of Gilmer et al. ([210]). One of the core messages of their
work is that, at the time, research on adversarial examples was predominantly focused on
abstract, hypothetical scenarios that lacked direct relevance to any specific security issues.
This still partially holds up to this day. They did mention the question of the attacker’s
knowledge but did not go into depth beyond the already common concepts of white-box and
black-box. Papers on defense techniques have also not provided a comprehensive account
of attackers’ capabilities and constraints that would be applicable in real-world security
scenarios. However, they presented a wide-reaching list of salient situations that represent
at their core the action space of the attacker. The action space of an attacker can be
defined as the set of potential actions or strategies at the disposal of an adversary. This
encompasses the various methods and choices available to the attacker when attempting
to compromise a system, exploit vulnerabilities, or achieve their malicious goals during an
attack.

In this work, we propose to delve deeper into the knowledge that an attacker has when
performing an attack. This goes beyond just the knowledge of the machine learning system
that it is trying to attack but also includes access to data and computing resources, as well
as knowledge of the code and hyperparameters used to set up and train said machine
learning system. To this end, we categorize adversary knowledge into four orthogonal
information categories. They are the following: model information (white-box, black-
box...), training information, data information, and defense information.

Gilmer et al. ([210]) were also among the first to present the problem of adversarial
examples as a security game. This contrasts with Carlini & Wagner ([209]) and their
optimization-based representation. This brought it more in line with other security issues
and away from a pure machine learning problem. To emphasize this, they also address
in their paper the notion of game sequence. This is the player order and whether the
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game is repeated. This was not particularly addressed by [209] but is key to a practical
understanding of the problem. This relates the problem of adversarial examples to those of
standard cryptographic security games. Later, Bose et al. ([91]) expanded upon the game
nature of adversarial examples while tying it in with its underlying min-max optimization
nature. They use this expansion to develop an attack in what they call the NoBox (also
called transferable) setting and to bridge the gap between the theory and the practice in
more demanding and realistic threat models.

Previous work has taken valuable steps toward bridging the gap between theory and
experimental, but we believe that much remains to be done. To that effect, we present an
updated, concise and comprehensive security game for adversarial examples that conforms
with the security and machine learning communities. It draws heavy inspiration from
cryptographic security games. Therefore, we propose a novel theoretical framework to
study adversarial examples. It contains:

• A formal approach to understanding and modeling adversary action space and revised
definitions to adjust for it;

• A categorization of adversary knowledge into four information categories;

• An updated, concise and comprehensive security game for adversarial examples that
conforms with the security and machine learning communities.

5.2 A formal approach to understanding and model-

ing adversary action space

We introduce the building blocks for a new theoretical framework to study adversarial
examples. This is why in the next sections we:

• Review and expand on previous work.

• Revise the definitions and theoretical elements that prevent the construction of a
unified theoretical framework.

• Introduce a new theoretical object: the detector, which fully captures realistic re-
strictions to the action space of the attacker into our adversarial example security
game.
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5.2.1 Adversary action space

A key element to differentiate between inference time attacks is the action space that is
available to the attacker. Real-world practical restrictions are translated into mathematical
constraints on the generated adversarial examples. [210] first attempted to properly define
the action space of the adversary for adversarial example attacks. In their paper, they
identify five salient situations that we will re-iterate and connect to other work in the
context of the image classification domain. Researchers usually represent the restriction
to the action space of the attacker under the form of a distance function between a benign
input (or distribution of inputs) and an adversarial input |x, x′|c. These distance functions
are also usually accompanied by an associated per-input ϵ(x, x′) budget that describes
the maximum distance allowed under the constraint. These functions have become core
components of current threat models, but they are not always built on a solid foundation
reflecting reality. Threat models and the implied restrictions on the action space of the
attacker need to be directly built from (potentially yet to be deployed) usable machine
learning systems. Threat models not built on such foundations can yield meaningless
attacks in terms of actual security. To that purpose, we complement previous work ([91])
by linking existing work in the image classification domain to each of the different salient
situations when applicable.

• Indistinguishable perturbation: The distance metric here is not optional. This set-
ting is where most of the research efforts have been focused since the discovery of
adversarial examples by [6]. Most of the literature uses either the l2 or l∞ norm with
a set maximum epsilon ϵ budget per image. Some works have argued for the use of
the l0 norm ([37], [211], [212]). As the dimensionality of the inputs increases, so does
the indistinguishability of l0-perturbed inputs, as each pixel occupies a smaller and
smaller fraction of the overall image.

• Content-preserving perturbation: Here, the distance metric can be optional depending
on the process used to create the adversarial examples. For example, in [45], the
process takes in an input and modifies it in a way that is known and sure to produce
a new input that will preserve the content of the original input They do so by first
applying an indistinguishable perturbation (which is inherently content preserving for
meaningful ϵ values) and then applying it as the texture to a 3D rendered mesh. They
finally apply transformations when rendering the image (changing the orientation,
the lighting etc.) but none of these significantly alter the content of the input.
Other methods for content-preserving (mistakenly sometimes called unrestricted in
the literature) include methods based on empirical assumptions. [213] attempt to
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discover stylized content-preserving adversarial examples by assuming that images
belonging to the same class exhibit consistent content while primarily varying in their
styles. Likewise, [62] use the CycleGAN framework to generate adversarial makeup
that is constrained such that it applies to a person’s face. Other such attacks would
be color-based attacks ([214], [215], [216], [217], [218], [219]) which aim to conserve
content, granted the content is not inherently dependent on its color (coloring the
ocean red vs. changing the color of a piece of clothing).

• Non-suspicious input : The notion of distance here is changed from a notion of dis-
tance between pairs of inputs (a benign and an adversarial input) to a distance
between an (adversarial) input and the distribution of benign inputs of a class. To
paraphrase [210], the attacker has the freedom to create any input example they
desire, with the condition that it must convincingly pass as a genuine input to a
human. Attacks that fit such a description would be generative methods [220], such
as Generative Adversarial Network (GAN) based examples [221]. These generative
methods do not necessarily need to use an existing benign sample as input to gener-
ate adversarial examples. However, some ([166], [93]) can instead be used to generate
an indistinguishable noise perturbation that is added to a benign image.

• Content-constrained input : In this case, the restriction is around the content (simi-
larly to a content-preserving perturbation). The input is required to contain certain
content but human perception might not be a limiting factor. In most cases, it has
limited relevance or suitability for the image classification domain beyond maybe
fooling detection frameworks (object detection for example).

• Unconstrained input : by definition, there is no distance metric since the attacker
is allowed to submit anything. It is not very applicable to the image classification
domain beyond maybe attacking visual biometrics locks.

Only three out of the five salient situations currently have a significant amount of re-
lated work while one is still in its infancy (content-constrained inputs). However, even
when ruling out the two irrelevant salient situations, there is a lack of a unified theoretical
framework that can fit all the situations simultaneously. The indistinguishable perturba-
tion situation relies on lp-norm-based restrictions while the content-preserving perturbation
situation relies more on image similarity metrics and non-suspicious situations on image
quality metrics. Each of these metrics has inherent differences that make it hard to unify
them under a singular theoretical framework. For example, an indistinguishable pertur-
bation implies the existence of an originally unperturbed image that is used to craft said
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perturbation. A non-suspicious or content-constrained input does not have such an inher-
ent requirement.

5.2.2 Bounding the adversary action space: the distinguisher

To propose a unified theoretical framework that can accommodate every salient situation in
5.2.1, we introduce an object that is already well-defined in the field of cryptography: the
distinguisher. In the realm of cryptography, a distinguishing attack encompasses various
cryptanalysis techniques applied to data encrypted using a cipher, to enable an attacker
to differentiate the encrypted data from randomly generated data. In essence, we have the
same situation appearing in adversarial examples, where the salient situation can be seen
as trying to differentiate between benign data and malicious data within setting-related
restrictions. The attacker in this setting is called a distinguisher and in cryptography,
they can be used in three distinct classes of settings: the information-theoretically secure
setting, the statistically secure setting, and the computationally secure setting. We re-use
the definitions from [222] to describe all three settings as follows:

In the information theoretic setting, the adversary is computationally unbounded.
Therefore, security in this scenario doesn’t depend on unverified complexity assumptions.
It is directly associated with the notion of perfect security. Perfect security, in more
straightforward terms, entails that the result of a real protocol execution with a legiti-
mate adversary should be indistinguishable from the result of an ideal execution involving
a trusted party and an ideal adversary/simulator.
The statistical setting also assumes that the adversary is computationally unbounded,
however, the outcome of the actual protocol execution should be statistically similar to the
outcome of an ideal execution, with no requirement for an exact match.
Finally, the computational setting does not assume a computationally unbounded adver-
sary. Instead, it is assumed that the adversary operates within a probabilistic polynomial-
time framework, and the security of protocols usually depends on the presumed difficulty of
solving certain problems, such as factoring a large composite number into its prime factors
(RSA).

In the context of adversarial machine learning and even more so inference time attacks,
these settings are incongruent. The computationally unbounded settings conflict with our
aim to impose practical limitations on both attackers and defenders. In the context of ad-
versarial examples, it would overly constrain the attacker, potentially making more realistic
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attacks more effective than reported within practical threat models. Lastly, our scenario
closely resembles the computational setting. Nevertheless, our fundamental challenge is
rooted in simulating human-like image perception, a problem lacking a well-established
mathematical framework. Consequently, we must define our own setting, complete with
its corresponding distinguisher. The context we are operating within assumes human-like
capabilities for the distinguisher, for example, for indistinguishable perturbations, it is so
human reviewers would not be able to distinguish that the image is adversarial. Therefore,
we need to introduce a new class of distinguishers, the human-like distinguisher that we
define as a distinguisher whose capabilities match that of a human or any human-made
real-world system. Current existing metrics (lp-norm, similarity, quality...) all fall under
this category and are used as an approximation of human-like capabilities for their salient
situation.

By combining the goal of the adversary, the level of involvement of the human-like
distinguisher, and the information accessible to the adversary, we can represent any existing
real-world threat model. When we refer to ”the level of involvement,” we are alluding to the
extent of human engagement in the validation process of input images as they transition
from the physical realm to the digital domain before being input into the machine learning
model. For example, in the case where every input is individually vetted by a human
directly, then an indistinguishable perturbation is necessary. Whereas, in scenarios such as
copyright detection algorithms, a perturbation that preserves the content is satisfactory.
In this case, the primary objective of the adversary is to maintain the quality of the
copyrighted content while avoiding detection by the copyright algorithm. However, it
becomes clear that once a human is introduced into the process, the content is likely to be
identified, given the nature of human discernment. Nonetheless, this is not a hindrance,
as we can create a distinguisher with human-like capabilities to emulate the detection
system’s capabilities and develop our attack while adhering to such constraints. This
example showcases that the distinguisher, like the adversary in a cryptographic game,
is limited to the underlying capacity assumptions laid out by the salient situation. Our
definition places an upper bound on the capabilities of the distinguisher (only as good as a
human or a human-made real world system). Informally, it encompasses the least amount
of work necessary to avoid detection before considering whether the attack is successful
or not. As detection capabilities evolve, these underlying assumptions can be revised,
much like in the computational setting when the hardness of a problem is disproven (like
factoring a large composite number into its prime factors after the invention of quantum
computers).

40



5.2.3 Definitions

We can represent a salient situation as a distinguisher D : I → {0, 1} who attempts
to output 0 on benign samples and 1 on adversarial samples, it is meant to capture the
detection capabilities in place in the system under attack. We can use this formalization
of salient situations and provide a proper formalization of the notion of indistinguishability
for any setting, not just the indistinguishable perturbation setting.

Definition 15 (Indistinguishability). Assuming a salient situation with distinguisher D :
I → {0, 1}, let A,B ⊂ I where A is the set of all adversarial examples and B is the set of
all benign samples we say an input x ∈ I is indistinguishable if we have:

ζ(n) = | Pr
x←A

[D(x) = 1]− Pr
x←B

[D(x) = 1]| (5.1)

where ζ(n) is negligible in terms of |A ∪B| = n.

However, this definition is too restrictive as in practice n is too large to obtain ζ(n) =
negl(n) and should therefore serve as a target for the community to strive for rather than a
strict requirement. Instead, for practical purposes, we can use a loosened notion of stealth
to bind adversarial examples.

Definition 16 (Stealth). Assuming a salient situation with distinguisher D : I → {0, 1},
let A,B ⊂ I where A is the set of all adversarial examples and B is the set of all benign
samples we say an input x ∈ I is indistinguishable if we have:

ζ(n) = | Pr
x←A

[D(x) = 1]− Pr
x←B

[D(x) = 1]| (5.2)

where ζ(n) ∈ O(log(n)), |A ∪B| = n.

Even then, stealth is still very hard to achieve. If we discretize the space of images,
assuming image height h, image width w and RGB coloring (256 values per color, 3 colors),
we get (h ∗ w ∗ 3)256 possible images.

With our new definitions of indistinguishability and stealth, we converted an optimiza-
tion constraint into a security game constraint.

Recall [10]’s definition of adversarial examples, definition 9. While this is a strong
definition, it misses a key element of adversarial examples, namely input-free generative
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methods. These methods do not actually need an input sample to construct another input
that itself is adversarial. ”It is unclear how such (malicious perturbations on correctly
handled examples) misclassifications represent a different kind of security problem than
other errors, or even other attacker-produced examples that have no specific relationship
to an uncorrupted input.” ([210]). We therefore extend the definition to the following (a
similar definition to [223]):

Definition 17 (Adversarial Example). An input sample i ∈ I and its associated label
gt(i) ∈ L is said to be adversarial if it was specifically crafted to successfully trigger a
learned model to output an incorrect answer.

This new definition can now seamlessly accommodate all the relevant salient situations
that an attacker might use to construct a threat model. Additionally, we now call ad-
versarial examples crafted according to the previous definition (9) grounded adversarial
examples (as they require an existing benign image to craft).

5.3 Categorization of threat models

Using section 5.2, we can decompose a threat model into three crucial components:

• A distinguisher (salient situation)

• The information the adversary has access to

• An adversary goal

We have formalized the initial component and will proceed to formalize the second
component.

5.3.1 Information Extraction Oracles

To formalize the information an adversary has access to when mounting and performing
an attack, we need a generic theoretical representation of information. Since precisely
quantifying and defining information is quite difficult, we avoid it altogether and instead
present a generic method for representing information given/acquired by the adversary.
To that effect, we introduce Information Extraction Oracles (IEOs). IEOs serve as a
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translation tool that allows an attacker to transform a threat model into actionable and
properly defined information. They can be used to represent the real-world access to
information available to the attacker (through any of its real-world attack capabilities). The
threat model usually describes the attacker’s capabilities. We now introduce an improved
method for presenting threat models in a standardized and formalized fashion.

Definition 18 (Information Extraction Oracle). An Information Extraction Oracle O :
{0, 1}∗ → {0, 1}∗ is a stateful oracle machine that can take in a query and outputs infor-
mation in a binary format.

For convenience, we define the set of all information extraction oracles as O. Instead
of describing attacker capabilities with vague terminology, we can now use information
extraction oracles to precisely and accurately capture the attacker’s knowledge and capa-
bilities. As mentioned in definition 18, information extraction oracles are stateful. The
adversary can extract the oracle’s state using the State function.

Definition 19. We define the function State : O→ R∗ that takes in as input an Informa-
tion Extraction Oracle and outputs its current state as a set of real numbers. If the input
oracle does not have a state, it returns ∅.

To accurately represent relationships between various threat models (white-box vs.
black-box for example), we need to introduce a relational structure to information extrac-
tion oracles. To do so, we define the domination ⊏ operator on IEOs.

But first, we need to define the different symbols we will use:

• {} represents an unordered set (nothing crazy)

• [] represents an ordered set

• · represents what we call an element, which we define as anything that is not a set.

Definition 20 (Information Extraction Oracle domination operator). We define the op-
erator ⊏ for information extraction oracles over their outputs in the following way:

Let O1(a) = x and O2(a) = y. We have three base cases:

1. (a) x and y are both sets. Then O2 ⊏ O1 if ∀a ∈ I, x ⊂ y.

(b) x is an element and y is an unordered set. Then O2 ⊏ O1 if ∀a ∈ I, x ∈ y.
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(c) x is either an unordered set or an element and y is an element. Then O2 ⊏ O1

if there exists a probabilistic polynomial-time (PPT) function f s.t. ∀a ∈ I,
f(x) = y.

Using these base cases, we can expand to the three ordered set cases.

2. (a) x = [x1, . . . , xn] is an ordered set and y is either an unordered set or an element
(n is a positive integer). Then O2 ⊏ O1 if (y ⊏ x1) ∨ · · · ∨ (y ⊏ xn).

(b) x is an unordered set or an element and y = [y1, . . . , yk] is an ordered set (k is
a positive integer). Then O2 ⊏ O1 if (y1 ⊏ x) ∧ · · · ∧ (yk ⊏ x).

(c) x = [x1, . . . , xn] is an ordered set and y = [y1, . . . , yk] is an ordered set (n and
k are positive integers). Then O2 ⊏ O1 if ∀i ∈ {1, . . . , k},∃j ∈ {1, . . . , n} s.t.
yi ⊏ xj.

We let ̸⊏ be the not operator for ⊏. Meaning when not A ⊏ B, then A ̸⊏ B.

When an attacker has access to multiple oracles OA,OB where a domination relation
cannot be established, we describe the resulting combined oracle as follows: OA&B(x) =
[OA(x),OB(x)].

Definition 21 (Information Extraction Oracle Combination). Given two IEOs OA,OB

for which neither OA ⊏ OB nor OB ⊏ OA is true. Then we define the combined oracle
OA&B as follows: OA&B(x) = [OA(x),OB(x)]

5.3.2 Information Categories

An IEO provides an interface for the attacker to both the knowledge of the defender
(for example, information about the target model) and any additional external knowledge
possessed by the attacker (for example, an additional dataset that is disjoint from the
defender’s training set but is drawn from the same distribution). We can then categorize
the different aspects of a threat model into different IEOs that allow the attacker access to
the associated information and nothing more. We used all the distinct threat models we
observed in the literature to build this categorization to have a complete representation of
the threat models in the field and a meaningful categorization.

We can classify the information involved in an adversarial example attack into three
distinct types:

• Information used by the defender.
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• Information generated by the defender (for example model parameters θM).

• Additional public information (data, pre-trained models . . . ).

Within those classes, we identified the salient categories that combined can be used to
reconstruct any threat model:

• Model information.

• Data information.

• Training information.

• Defense information.

We informally introduce those categories, note that this is a non-exhaustive list and
that if any additional information were to be used by attacks in the future, they should be
added to this list.

Model information: Model information encompasses all model-related information once
it has been trained and all the information that can be gained by the attacker from query-
ing said model. It represents what people usually describe as a ”white-box”, ”gray-box”,
”black-box” and ”no-box” (or ”transferable”) setting.

Data information: Data information can be described as all the information relating
to model inputs I and their labels L. This can be the training data D ⊂ I × L used
to train the model under attack, any additional data D′ ⊂ I × L drawn from the same
distribution as D, and any other data that is not from the same distribution as the training
data E ⊂ I × L.

Training information: Training information includes any information describing the
training process that was used to obtain the model parameters θM . We may divide it into
algorithmic information and the associated hyperparameters. Algorithmic information
represents the properties of the training algorithm, such as the loss function used to train
the model, the optimization algorithm (SGD, Adam), the learning rate scheduler, any data
pre-processing, . . .
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Defense information Defense information pertains to defense mechanisms employed
by the defender on top of the distinguisher D. This information can range from being
fully aware of any defensive precautions to not being aware of any. We can also include
knowledge and implementation of current existing state-of-the-art defenses as proxies for
the unknown actual defense as possible knowledge at the hands of the adversary.

5.3.3 Information Hasse Diagram

Now that we have defined broad information categories for attackers, we can introduce a
structure that will allow for meaningful comparisons between sets of assumptions within
each category.

Unfortunately, direct comparisons within each category are not always possible because
there is currently no theoretical method to compute the relative capabilities provided by
each information extraction oracle. As a result, it is not feasible to define a meaningful ”<”
operator within this context. To emphasize my point, how could one provably demonstrate
that having access to D is necessarily better (or worse) than having access to D′ ∪ E for
every possible D,D′ and E?

Therefore, we instead make use of the ⊏ operator that we defined in definition 20 to
build Hasse diagrams. These diagrams are usually used to visually represent sets ordered
by inclusion. However, it is not restricted to just that. We design our Hasse Diagrams to
visually represent our oracles ordered by ⊏. For each category, we provide the associated
Hasse diagram. In order theory, a Hasse diagram is supposed to represent finite partially
ordered sets, however, we extend it to infinite partially ordered sets by allowing formulaic
set descriptions (which can expand to generate infinite but partially ordered sets). For
simplicity’s sake, when we describe information extraction oracles, we assume that the
inputs they are queried with are in I, otherwise, they return [].

Model information Hasse diagram:
For model-related information, it can either be static or query-based. For static infor-

mation, we have:

• Model parameters θM (white-box). Let OM be its information extraction oracle. We
define OM as OM(x) = [θM , x] and State(OM) = [].

• Model architecture: either the exact model architecture or a set of possible architec-
tures.
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– Exact model architecture ϕM . Let OA be its information extraction oracle. We
define OA as OA(x) = [ϕM , x] and State(OA) = [].

– Set of possible architectures: Let OSPA be its information extraction oracle. We
define OSPA as OSPA(x) = [{ϕ0, ϕ1, . . . , ϕk}, x] for some positive integer k and
where for a uniformly randomly sampled i ∈ [0, 1, . . . , k], ϕi = ϕM . We have
State(OSPA) = [].

For query-based information, we have:

• Query-access to model scores (model logit probabilities or values on queried inputs).
Let OS be its information extraction oracle. We define OS as OS(x) = [M(x), x]

• Query-access to model labels (predicted class on queried inputs). Let OL be its
information extraction oracle. We define OL as OL(x) = [argmax(M(x)), x]. We let
argmax be the function that returns the label from the model predictions by using
the highest score value as an indicator.

For both, in the case where the attacker has a limited query budget, we let State(O) = [k]
where k ∈ Z+ is the number of queries left for the attacker for this attack (0 when he
runs out). Otherwise, it returns []. Finally, there is the case where no information model
information is available, the no-box setting. We can then order their associated information
extraction oracles in the following way:

Theorem 1. Figure 5.1 holds under the ⊏ ordering.

We can prove the ordering of this Hasse diagram using definition 20. We will first state
the following lemmas and use them to prove Theorem 1. We will prove them afterwards.

Lemma 1. OS&A ⊏ OM and OM ̸⊏ OS&A

Lemma 2. OL ⊏ OS and OS ̸⊏ OL

Lemma 3. OSPA ⊏ OA and OA ̸⊏ OSPA

Proof: Theorem: 1. First, OSPA ⊏ OL&SPA, OS ⊏ OS&SPA, OS ⊏ OS&A, OA ⊏ OL&A,
and OL ⊏ OL&A follow directly from definition 21 and part 2(a) of definition 20.
Likewise, OL&SPA ̸⊏ OSPA, OS&SPA ̸⊏ OS, OS&A ̸⊏ OS, OL&A ̸⊏ OA, and OL&A ̸⊏ OL

follow directly from definition 21 and part 2(b) of definition 20.
Using Lemma 2 and part 2(c) of definition 20, we yield that OL&A ⊏ OS&A, OS&A ̸⊏ OL&A,
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Figure 5.1: Model Oracle Hasse Diagram

OL&SPA ⊏ OS&SPAA, and OS&SPA ̸⊏ OL&SPA.
Using Lemma 3 and part 2(c) of definition 20, we get that OS&SPA ⊏ OS&A and OS&A ̸⊏
OS&SPA.
Using all of this in addition to Lemma 1, we get that Theorem 1 holds under the ⊏
ordering.

We now move on to proving the various Lemmas we used to prove Theorem 1.

Proof: Lemma 1. To show OS&A ⊏ OM , we need to find PPT f such that, ∀a ∈ {0, 1}∗,
OS&A(a) = f(OM(a)). Incidentally, we also need that State(OS&A) = f(OM(a)) when
both oracles are queried the same number of times. We will have two cases, Case 1 where
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the attacker has unlimited queries, and Case 2 where the attacker is limited.
For the sake of simplicity, we assume that a ∈ I (as otherwise they both return [], and we
can set f to return [] when it receives [] anyway and OS&A(a) = f(OM(a))).

Case 1: Let f be the following:

• On input x ∈ I, f receives [θM , x] = OM(x). From θM , we can construct M and ϕM

(by definition of θM).

• We can then compute and return [M(x), ϕM , x] = OS&A(x).

Case 2: Let f be the following and k the current allowed number of queries left:

• On input x ∈ I, f receives [θM , x] = OM(x). From θM , we can construct M and ϕM

(by definition of θM).

• If k = 0, return [[], ϕM , x] = OS&A(x).

• Else, update State(OM(x)) to be the function that returns [k − 1], return
[M(x), ϕM , x] = OS&A(x).

So we have that ∀a ∈ {0, 1}∗, OS&A(a) = f(OM(a)). Hence, OS&A ⊏ OM .

Now for the opposite, OM ̸⊏ OS&A. For simplicity’s sake, we’ll cover only the first
case, but the proof also applies to the second case by performing the update to the State
function as we did above. We’ll prove this by contradiction. Given OS&A, an attacker
can receive ϕM and M(x) for any x ∈ I. We are trying to reconstruct θM . In the case
where M is linear, with enough queries, we can solve the system of linear equations and
reconstruct θM . However, in the case where M is non-linear, there can be an infinite
number of possible viable solutions for any given finite amount of queries, therefore it is
impossible to always determine with certainty the exact θM (although it is possible to
approximate it, as model stealing attacks demonstrate). Hence, it is not always possible
to reconstruct θM from ϕM and score query-access, meaning that there is no PPT f s.t.
∀a ∈ {0, 1}∗, f(OS&A(a)) = OM(a).

Proof: Lemma 2. We will prove Lemma 2 in the same way we proved Lemma 1, i.e. ∃f
such that ∀a ∈ I, f(OS) = OL.
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Case 1. Unlimited queries: Let f be the following:

• On input x ∈ {0, 1}∗, if x /∈ I, then f receives [] and return [].

• Else, on input x ∈ I, f receives [M(x), x] and returns [argmax(M(x)), x] = OL.

Case 2. Limited queries: Let f be the following and k the current allowed number of
queries left:

• On input x ∈ {0, 1}∗, if x /∈ I, then f receives [] and return [].

• Else, on input x ∈ I, f receives [M(x), x] if k > 0 else it receives [[], x].

• If k = 0, return [[], x] = OL.

• Else, return [argmax(M(x)), x] = OL.

For the other direction, similarly to Lemma 1, we will prove only the first case as the
proof can trivially be extended to the second case. Given OL, we want to find a PPT
function f s.t. ∀a ∈ I, f(OL(a)) = OS(a). We will show that such a function cannot
exist. For f(OL(a)) = OS(a) to happen, it means that f needs to always be able to
at least compute the score value of the label itself. It is given no information beyond
the label itself for any input x ∈ I. Assume the following setup. One party holds two
models M1 and M2 that make identical score predictions except for one specific input x∗

where M1(x
∗) = u and M2(x

∗) = v and u ̸= v, we will also assume that while the score
changes when inferring on x∗, the predicted label remains the same for both. We argue
that it would be impossible for the other party that receives only the predicted label to
distinguish between both models. This means that there exists at least one instance where
there is no PPT function f s.t. ∀a ∈ I, f(OL(a)) = OS(a). Therefore, we showed the
other direction also holds.
Hence, Lemma 2 holds.

In this case, we do not need to modify State(OS) as we query OS exactly once whenever
we query OL.

Proof: Lemma 3. OSPA ⊏ OA follows from part 1(b) of definition 20 andOSPA’s definition.
For the other direction, since OSPA(x) = [{ϕ0, ϕ1, . . . , ϕk}, x] for some positive integer k
and where for a uniformly randomly sampled i ∈ [0, 1, . . . , k], ϕi = ϕM , a PPT function
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f would be able to always determine which of the k elements in the unordered set is the
correct architecture. Given that the function is only given the unordered set, it would
be akin to being able to always correctly guess a random number, which is not possible.
Therefore, OA ̸⊏ OSPA and Lemma 3 holds.

Data Information Hasse Diagram Regarding data-related information, we are con-
cerned with three sets of data. The training data D ⊂ I × L that was used to train the
target model M and its information extraction oracle OD. We define OD as OD(x) = [D, x]
for any x ∈ {0, 1}∗ and OD(x) = [] otherwise. We have State(OD) = []. Any other data
samples D′ ⊂ I × L that were drawn from the same distribution as D but were not in
the training data. Likewise, we define its information extraction oracle OD′ as follows:
OD′(x) = [D′, x] for any x ∈ {0, 1}∗ and OD′(x) = [] otherwise. We have State(OD′) = [].
Finally, any other data samples E ⊂ I×L that were not drawn from the same distribution
as D and D′. We define its information extraction oracle OE as follows: OE(x) = [E , x] for
any x ∈ {0, 1}∗ and OE(x) = [] otherwise. We have State(OE) = []. In this case, creating
the Hasse diagram is relatively straightforward because we only need to contemplate all
feasible combinations of oracles using definition 21.

Theorem 2. Figure 5.2 holds under the ⊏ ordering.

Proof: Theorem 2. Theorem 2 follows directly from definitions 20 and 21.

Training Information Hasse Diagram We obviously cannot explicitly list every pos-
sible property that may describe a training algorithm, but we can describe a systemized
method for identifying its known elements. First, we must define exactly what we mean
by training algorithm or function.

Definition 22 (Train function). We define a training function Train : {0, 1}∗ → M as
the function representing the algorithm used by the defender to generate the target model
M .

The Train function can take in the algorithm’s hyperparameters as well as any training
data or environment (optional) needed to train the model. We can articulate known
information about the training algorithm as one of the following training information sets:
T = {Train′|gTrain(Train

′) = True} where gTrain is a function that returns True if a
particular condition in the training algorithm with respect to the original Train function
is satisfied (e.g. the training algorithm uses cross-entropy loss) and False otherwise. We
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Figure 5.2: Data Oracle Hasse Diagram

can then create two kinds of information extraction oracles. The first one is OTrain which
is associated with the original Train function itself. It can be understood as the oracle
representing having access to the actual complete training algorithm used by the defender
(stolen or public). We define OTrain as OTrain(x) = [Train, x] for any x ∈ {0, 1}∗. This
is the information that can be used (combined with data) to train/assume access to pre-
trained models. The other kind is when the attacker has access to one of the sets T .
There are infinitely many of them therefore we will just define a generic oracle for them
OTi

for any integer i where is any one of the sets Ti = {Train′|giT rain(Train
′) = True}

we previously described. We then have OTi
(x) = [Ti, x] for any x ∈ {0, 1}∗. The oracles

generated from this generic oracle can then be ordered using ⊏ following the usual rules
defined in definition 20.

Theorem 3. Figure 5.3 holds under the ⊏ ordering.

Proof: Theorem 3. By definition, we have the oracles defined by OT that are properly
defined and ordered under ⊏. It remains to show that OTrain dominates any one of them
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Figure 5.3: Train Oracle Hasse Diagram

and none of them dominates OTrain. By how any Ti is defined, we have that Train ∈ Ti

for any integer i. Since Ti is an unordered set, we can apply part 1(b) of definition 20 to
yield that ∀i ∈ Z, OTi

⊏ OTrain. We’ll show that ∀i ∈ Z, OTrain ̸⊏ OTi
by contradiction.

By part 1(c) of definition 20, for any integer i, there needs to be a PPT function f such
that f([Ti, x]) = [Train, x] for any x ∈ {0, 1}. Hence, we need some PPT function that
can extract Train from Ti (as we know it is in Ti by definition of Ti). However, Ti is
an unordered set and f only has access to Ti (and the query itself x but in this case it
should not provide additional information about the ordering of Ti). So, for f to be able to
distinguish Train from any other of the other Train′ functions in Ti would be equivalent
to being able to perfectly guess truly random numbers, which is impossible. Therefore, we
have a contradiction and so ∀i ∈ Z, OTrain ̸⊏ OTi

.

Defense Information Hasse Diagram As mentioned in section 5.3.2, defense infor-
mation relates to any defense mechanisms put in place by the defender on top of the
distinguisher D. We can partition it as follows:

• Full awareness of the defense and its parameters (similar to white-box for model
information). We represent this as an algorithm ρ and its parameters ϱ. Let OFA
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be its information extraction oracle. We define OFA as OFA(x) = [ρ, ϱ, x] for any
x ∈ {0, 1}∗.

• Partial awareness of the defense and its parameters: knowledge of the defense but
not the specific parameters of the instance. Let OPA be its information extraction
oracle. We define OPA as OPA(x) = [ρ, {ϱ1, . . . , ϱk}, x] for any x ∈ {0, 1}∗, where
k is a positive integer. We also have that for some uniformly randomly sampled
i ∈ {1, . . . , k}, ϱi = ϱ.

• A set of potential defenses that can be obtained by having partial insider informa-
tion. Let OSPD be its information extraction oracle. We define OSPD as OSPD(x) =
[{ρ0, . . . , ρk}, {ϱ1, . . . , ϱk}, x] for any x ∈ {0, 1}∗, where k is a positive integer. We
also have that for some uniformly randomly sampled i ∈ {1, . . . , k}, ρi = ρ and
ϱi = ρ.

All of the defense information extraction oracles do not have any state and therefore the
State function returns [] for all of them. This partition was identified from a combination
of threat models used in current literature and filling the logical gaps that have not yet
been explored. As the field transitions toward real-world attack scenarios, we suggest that
the inclusion of partial awareness and domain knowledge introduces unexplored aspects
in the domain of adaptive attack threat models. The majority, if not all, of the attacks
described in attack papers, as well as the adaptive attacks discussed in defense papers,
either presume complete awareness or a complete lack of awareness regarding defensive
capabilities. However, in practice, actual adversaries would most likely have at least some
domain knowledge and insider information when performing an attack. Assuming that
an attacker does not know defensive capabilities allows for a lower-bound on the attack’s
performance, it might, however, unnecessarily reduce attack performance and provide a
false sense of security for the defender.

Theorem 4. Figure 5.4 holds under the ⊏ ordering.

Proof: Theorem 4. OPA ⊏ OFA follows directly from part 2(c) and 1(b) of definition 20 as
well as OFA’s definition since ϱ ∈ {ϱ1, . . . , ϱk}. OFA ̸⊏ OPA follows from the impossibility
of perfectly guessing truly random numbers (since i s.t. ϱi = ϱ is uniformly randomly
sampled) and part 1(c) of definition 20. OSPD ⊏ OPA also follows directly from part 2(c)
and 1(b) of definition 20 as well as OSPD’s definition since ρ ∈ {ρ1, . . . , ρk}. OPA ̸⊏ OSPD

also follows from the impossibility of perfectly guessing truly random numbers and part
1(c) of definition 20.
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Figure 5.4: Defense Hasse Diagram

5.4 Game

Ultimately, we can reduce any adversarial attack to a very simple adversarial machine
learning game. This game, involving the defender and the attacker, can be used to theo-
retically reason about both attacks and defenses in the field and provides a solid foundation
upon which we can base our evaluations. A game can also allow us to reduce the attack
process to the essence of what it is attempting to do and therefore improve knowledge
transfer in the field by having a consistent theoretical frame across multiple works. How-
ever, to be able to define such a game, we are missing a couple of essential components.
Therefore, in the following section, we will define those missing components. Afterwards,
we will describe the game itself and finally, since games have victors and losers, we will
establish and solidify the notions of success for this game.

5.4.1 Definitions

Before being able to properly define the remaining necessary functions for our game, I need
to introduce a symbol and some new information extraction oracles that will appear when
defining them. They are the following:
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• ∅ is the termination symbol. This will typically be used by the defender when
a distinguisher succeeds on an input provided by the attacker and represents the
defender refusing to answer the attacker’s query as it detected that it is adversarial.

• Oa,b
X is an input information extraction oracle about the data granted to the adversary

for an attack. To be more precise, for example, it is the oracle that one would query
to get the starting input sample when performing an attack in an indistinguishable
perturbation salient situation. The construction of the attack is dependent on the
attacker’s goal, hence, we superscript Oa,b

X with a bit a that represents whether the
attack is grounded 5.2.3 or not (0 for grounded and 1 for not-grounded). We also
superscript it with a bit b ∈ {0, 1} where if the attack is untargeted then b = 0 and
if it is targeted then b = 1. We enumerate below the different things it can return:

– The start input sample x ∈ I and its associated ground-truth label y ∈ L if the
attack is grounded.

– In the case of a targeted attack, the target label yt ∈ L.

• ODist is an information extraction oracle that returns a distinguisher D′ that the
attacker can utilize to verify that the generated adversarial examples are within the
restrictions of the salient situation. By default, D′ = D where D is the actual distin-
guisher used by the defender. However, in situations where only partial information
is known about the distinguisher D or the associated salient situation, D′ can be
used to capture the attacker’s knowledge of D.

We can now define the key functions that we will use in our security game:

Definition 23 (AdvGen). AdvGen : O→ I × L.
AdvGen(O) on input set of information oracles O ⊂ O (including the input information
oracle Oa,b

X ), outputs the following:

AdvGen(O) = [x′, y′] (5.3)

where x′ ∈ I is the adversarial example and y′ ∈ L is its ground-truth label.

Additionally, we also define two other functions that are vital to our security game:
Evaluate and Classify. As mentioned in Gilmer et al.’s work ([210]), an attacker can have
different goals, therefore we use the Evaluate function to represent an attack’s success with
respect to the attacker’s goal. (Either a targeted (definition 12) or an untargeted (definition
11) attack or any other goal an attacker might have).
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Definition 24 (Classify). Classify(M,x) on input model M and input sample x ∈ I
returns the predicted label of x using the classifier M while executing any inference-time
pre-processing or defense mechanisms the defender has in place.

Definition 25 (Evaluate). We have two evaluation functions, one for untargeted attacks
Evaluate0 and one for targeted attacks Evaluate1 (same as Oa,0

X and Oa,1
X ). They are

defined as the following:

Evaluate0(y, r) = I[r ̸= y] (5.4)

and

Evaluate1(yt, r) = I[r = yt] (5.5)

Where y is the ground-truth label, r is the predicted label and yt is the target label for a
targeted attack.

5.4.2 Game Diagram

Now that we have all the components of the game ready, we can define it. We take strong
inspiration from cryptographic games that are used to prove the security of protocols and
schemes (such as encryption/decryption schemes). This game has two participants, the
attacker and the defender. We assume that the attacker has access to its own distinguisher
D′ that would represent the attacker’s assumed knowledge of the defender’s distinguisher
D. In theory, D = D′, however, in practice, a mismatch between D and D′ can occur when
the attacker improperly evaluates the threat model. For that reason, D′ is also provided
with y′ and Oa,b

X on top of x′ unlike D.
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1 : Attacker Defender

2 : (O,AdvGen,Evaluateb) (D,Train, Classify)

3 : M ← Train(·)
4 : l← {}
5 : i← 0

6 : ODist ← O[·]
7 : D′ ← ODist

8 : x′, d← ∅, 1
9 : x′i ← x′

10 : While (d = 1) ∧ (x′i /∈ l)

11 : Do

12 : x′i, y
′
i ← AdvGen(O)

13 : l← l ∪ {x′i}

14 : d← D′(x′i, y
′
i,O

a,b
X )

15 : i← i+ 1

16 : Done

17 : x′ ← x′i

18 : If d = 1 Then Return 0

19 : Else x′

20 : d′ ← D(x′)

21 : If d′ = 1 Then r ← ∅
22 : Else r ← Classify(M,x′)

23 : r

24 : If r = ∅ Then Return 0

25 : If b = 0 Then Return Evaluate0(y, r)

26 : Else

27 : ·, ·, yt ← Oa,1
X

28 : Return Evaluate1(yt, r)
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← is the assignment operator, it assigns a value to a variable

= is the equality comparison operator, it compares two objects and evaluates their equality

· is used to represent whichever argument or index required to get what is provided by the

associated ←

5.4.3 Measuring Success

First, we have to define success before being able to measure it.

Definition 26 (Success). We say an attacker is successful at our adversarial example
security game if the game returns 1. The attacker is unsuccessful if the game returns 0.

This definition guarantees that the attacker succeeds if and only if he manages to
remain undetected by the defender while completing his objective (usually misclassifica-
tion). Let G(O,D′, Evaluateb, D, Train, Classify) → {0, 1} be an instance of the game.
A straightforward option to define a proper measure of success is the following:

Definition 27 (Expected success rate). We define the expected success rate (ESR) as:

ξG = E[G(O,D′, Evaluateb, D, Train, Classify)] (5.6)

While in theory, this simple metric should encompass well the performance of an at-
tacker, since it is also dependent on the specific defender. Hence, it is in practice hard to use
as a comparison tool to compare different attacks’ performance. This problem also exists in
defense literature where defense performance metrics are dependent on the specific attacks
they are evaluated against. Other possible metrics we present to attempt to bridge that
gap are the following, but we are aware that they are not perfect. The expected success
rate metric can fail to properly evaluate the attack’s quality when the defender’s model’s
performance against benign samples is already poor (which can imply that it was improp-
erly trained and therefore easier to attack). Let Gb(OX , Evaluateb, D, Train, Classify)
be the version of our game where instead of being given adversarial examples, the defender
is provided with benign samples. We use the expected success rate on this game ΥGb

as
a lower-bound for attack performance (meaning that by definition no attack can perform
worse than this).

Another score that can temper this failure to properly evaluate an attack’s quality is
one that instead looks at the relative performance of the attack compared to how the attack
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performs on the benign data. For simplicity’s sake, we write
G(O,D′, Evaluateb, D, Train, Classify) as G and Gb(OX , Evaluateb, D, Train, Classify)
as Gb.

Definition 28 (Relative performance score). We define the relative performance score as:

ΥG,Gb
= ξ2G − ξ2Gb

(5.7)

This score is contained between −1 and 1 (since G and Gb are real numbers between
0 and 1). This relative score alleviates the aforementioned problem, and it can also be
used to measure defense effectiveness. The score is negative when the attack performs
worse than just using benign samples and is positive otherwise. We believe it captures
the various trade-offs when mounting attacks and defenses more fairly than just looking
at the expected success rate or even a shifted expected success rate by the lower-bound
(Gb). Benign performance is an important metric when looking at overall model perfor-
mance as benign users will represent most of the users (raises whether it makes sense to
provide a service if all the users are malicious and aren’t trying to utilize said service but
instead are only trying to attack your model). We want to reward defenders for training
models that have both good benign and adversarial performance. Additionally, we want
to capture the relative performance change when attacking a model rather than the abso-
lute change. When comparing attacks/defenses across various research works, the authors
might be using models with the same/similar architectures, data and training, but due to
the nature of gradient descent-based optimization, they might end up with models with
varying performance. Hence, to alleviate this, a relative score is more appropriate and can
offer a stronger basis for comparison. Figure 5.5 provides a visual understanding of the
behavior of this score when varying both ξG and ξGb

.

5.4.4 Showcase

We will now showcase an application of our formalization to an existing well-known and
well-performing attack: Projected Gradient Descent (PGD) from [7]. This should function
as a template for the practical application of our formalization and the associated game. In
their paper, they showcase multiple kinds of attacks, for each, we provide a table describing
the utilized information. We will first identify, for each of our information categories, which
of the oracle is the most appropriate to represent the knowledge used by the attacker. Then,
we will proceed with defining an example initialization of our game with one of the attacks.
As a reminder, the multistep PGD attack can be defined as the following:

xt+1 = Πx+S(x
t + α sgn(∇xL(θ, x, y))) (5.8)
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Figure 5.5: Relative Performance Score for various benign and adversary ESRs
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where x is the original benign sample with its label y, xt is the input at step t of the
attack, S ⊆ Rd is the set of allowed perturbations (d is the input dimension), θ are the
model parameters, L is a loss function, sgn is the sign function (-1 if input is negative, 1
otherwise) and α is the step size.

In their paper, they consider the following adversaries:

1. ”White-box attacks with PGD for a different number of iterations and restarts, de-
noted by source A”.

2. ”White-box attacks with PGD using the Carlini-Wagner (CW) loss function (directly
optimizing the difference between correct and incorrect logits)”.

3. ”Black-box attacks from an independently trained copy of the network, denoted A′”.

4. ”Black-box attacks from a version of the same network trained only on natural ex-
amples, denoted Anat”.

5. ”Black-box attacks from a different convolution architecture, denoted B”.

For each, we construct the following knowledge table:
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Attack Model Data Train Defense

1 Parameters ∅
Training

Information
(loss function)

∅

2 Parameters ∅ ∅ Full
Awareness

3
Scores &

Architecture
Training
Data

Original
Function

Full
Awareness

4
Scores &

Architecture
Training
Data

Original
Function

∅

5
Possible

Architectures
Training
Data

Original
Function

Full
Awareness

Table 5.1: PGD attacks knowledge table

Our knowledge tables allow for a clear and concise representation of the adversary’s
knowledge of the defender’s information. We will then describe the components of the
game for the first adversary (Attack #1). This is meant as a template to showcase how
one would describe their attack using our game. To do this, we need to define the following
components: O, D, D′, Evaluateb, Classify, Train, and AdvGen.

As shown in Table 5.1, we have the associated oracles used by the attacker in Attack
#1 that are the following: O = {OM ,OT1 ,OFA,O0,0

X ,ODist}. For the training information
(loss function) of Attack # 1, we construct OT1 , we let
T1 = {Train′|g1Train(Train

′) = True} where g1Train is the function that returns True when
Train′ uses the same loss function as Train.

D varies depending on the dataset used, for example, on MNIST [170], they use an
indistinguishable-perturbation distinguisher with the l∞-norm metric and a maximum al-
lowed perturbation of ϵ = 0.3 (for pixel values between 0 and 1). However, for CIFAR10
[112], they also use an indistinguishable-perturbation distinguisher with the l∞-norm met-
ric, but they use a maximum allowed perturbation of ϵ = 8 (where this time pixel values are
RGB values between 0 and 255). They also explore a variant of their attack in the case of
an l2-bounded adversary but to keep this concise we do not analyze it. ODisc(x) = D′ = D
for any x ∈ {0, 1} as it is assumed that the attacker knows exactly the setting it is in (like
in most other research works).

Their defense is part of the training process (adversarial training), therefore
Classify(M,x) = M(x). The adversary’s goal is to modify the attacked model’s accuracy,
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meaning it is an untargeted attack (definition 11). Hence, b = 0 and Evaluate0(y, r) =
I[(r ̸= y)] (definition 25). Train (as defined) is the algorithm/code used to train the
attacked model, due to the sheer complexity of describing the entire algorithm, we will
instead point out that they link their code in their paper ([7]). We can summarize it as a
standard Stochastic Gradient Descent (SGD) based model training algorithm that incor-
porates adversarial training as a defense. Finally, for the adversarial example generation,
they use a grounded process, hence a = 0 and AdvGen can be defined as the following
(they have three Hyperparameters t, α, ϵ):

1 : AdvGen(O) Hyperparameters: t, α, ϵ

2 : OM ,OTrain,OFA,O0,0
X ,ODist ← O

3 : i← 0

4 : x, y ← O0,0
X (0)

5 : θM ← OM (0)

6 : · · · , L, · · · ← OTrain(0)

7 : xi ← x

8 : While i < t

9 : Do

10 : xi+1 ← Πx+S(x
i + α sgn(∇xL(θM , x, y)))

11 : xi+1 ← clip(xi+1, x− ϵ, x+ ϵ)

12 : xi+1 ← clip(xi+1, 0, 1)

13 : i← i+ 1

14 : Done

15 : Return xi

Where the clip function is the vectorized version of the following function (b and c can
either be vectors or real numbers but are usually real numbers):

clip(a, b, c) =


b, if a < b

c, if a > c

a, otherwise
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Chapter 6

Conversion

In this chapter, we go over the papers we surveyed in section 4.1 and apply our formalization
to extract the information used by each attack for each of the information categories
we identified. We also identify the salient situation, whether the attack is targeted and
grounded and the metrics used to limit the generated perturbations. Tables 6.3 and 6.4
condense those results. Whereas, Tables 6.1 and 6.2 condense the results from applying
our formalization to each of the surveyed papers.

6.1 Papers

6.1.1 Object-based Diverse Input Attack

In their paper [45] (summary 4.1.1), the authors do not specify how the models they use as
both source and target models are trained. They use the models as if they are pre-trained.
This is confirmed by the code implementation that they make public in their paper. They
use pre-trained models made available by either PyTorch [108] or Huggingface [224]. They
avoid attacking a target model that shares the same architecture as the source model,
leading to their model knowledge being akin to a set of potential architectures (OSPA).
These models are all trained on the ImageNet-1k dataset [101]. This means that the
attacker using the source model has access to the same training data as the data used by the
defender to train its model (OD). Their AdvGen (grounded and targeted) uses both the loss
function that was used to optimize the target model to compute gradients and pre-trained
models that were all trained with the same training algorithm (pre-trained by PyTorch).
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Therefore, the information they used to construct their attacks in their evaluation section
is that of the actual training function Train (OTrain). As for the salient situation they
are placing themselves in, the authors opted for an indistinguishable-perturbation salient
situation with the l∞-norm as their metric an epsilon ϵ = 16/255.

6.1.2 Geometry-Aware Attack

We summarize the paper [40] in summary 4.1.2. The authors use pre-trained models on
the ImageNet dataset [101] to attack models that were also trained on ImageNet. Hence,
it is straightforward that they have access to the training data (OD). As mentioned in the
summary, their technique is based on using these ensembles of pre-trained models (that
are not necessarily the same as the attacked model) to generate the adversarial examples
without ever querying the attacked model directly. Therefore, they have access to at least a
set of possible model architectures (OSPA). While sometimes, the model architecture they
attack is also in the set of surrogate models they use to construct the attack, since they
use the set as a whole indiscriminately, OSPA still applies. Their AdvGen (grounded and
untargeted) uses the loss function that was used to optimize the model, meaning that they
have access to at least the training function (OT1 , T1 = {Train′|g1Train(Train

′) = True}
where g1Train is the function that returns True when Train′ uses the same loss function as
Train). Additionally, it is not specified whether all those models were trained using the
same training function. However, since the models are pre-trained models that sometimes
come from the same source, we cannot discard that it is highly likely that at least some
of those models have been trained using the same training algorithm (OTrain). Finally,
while some of the models they use for their training f and validation h have been trained
using defenses, for the results we will use to compare against other papers (Table 3 of their
paper), they do not use those models and instead only use undefended models (models
1,2,3,4,5,6 from their paper’s Table 1). However, nothing prevents the addition of defense
information to their attack by including models trained using said defense information.

Additionally, while their attack combines an l∞-norm attack with an unrestricted style
transfer attack, and it requires a maximum allowed perturbation parameter ϵ, they never
specify what values are used for ϵ when evaluating their attack.

6.1.3 Large Geometric Vicinity Attack

We summarize the paper [54] in summary 4.1.3. Their attack uses information very sim-
ilarly to 6.1.2. Through their evaluation, they have two variants of their attack (when
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looking at information categories). Again, the authors use pre-trained models on the Ima-
geNet dataset [101] by PyTorch [108] to attack models that were also trained on ImageNet.
Hence, it is straightforward that they have access to the training data (OD). As for the sur-
rogate model they use for their attack (ResNet-50 [107]), in their work ([107]), the authors
of the architecture specify that they used the same architecture as PyTorch’s, as well as the
same training function and hyperparameters and their model achieves similar performance
to PyTorch’s model (23.81 ± 0.15 top-1 error for their model, 23.85 for PyTorch’s). Hence,
in variant A, we can assume that they have access to at least a set of possible architectures
(OSPA) and the training function (OTrain). Unlike 6.1.2, in the case (variant B) where
they attack ResNet-50 with ResNet-50 in which case they have access to the parameters
(OM) since they use the same models. Finally, they do not consider defenses for either the
attacker or the defender, so there is no defense-related information in this paper.

6.1.4 Pixle Attack

As was discussed in the summary (4.1.4) of the paper [37], this is a black-box query-based
attack that uses a random search heuristic to find adversarial examples that lower the true
class’ score (untargeted attack) or increase the target class’ score (targeted attack). Their
attack needs no additional information beyond query access to the scores (OS), therefore
for all the other information categories, they use nothing (∅).

6.1.5 MASSA Attack

Similarly to Pixle (conversion 6.1.4), MASSA [66] (summary 4.1.5) is a query-based black-
box attack that uses no additional information about the defender beyond query-access to
the model. However, in their case, they only need the label (OL), not the scores for the
model information. Therefore, for all the other information categories, they use nothing
(∅).

6.1.6 AI-FGTM Attack

Similarly to the other transferable attacks we summarized, this attack [15] (summary
4.1.6) uses pre-trained models that were trained on the same dataset (ImageNet [101])
as the models that they attack (OD). They use a set of architectures that sometimes
contain the attacked model architecture (OSPA). However, their attack algorithm makes
no distinction between each model in the set and uses them indiscriminately to generate
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adversarial examples. Their AdvGen (grounded and untargeted) uses the loss function that
was used to optimize the model and pre-trained models, meaning the information they used
to construct their attacks in their evaluation section is that of the actual training function
(OTrain). Additionally, it is not specified whether all those models were trained using the
same training function. Finally, while they attack defended models, none of the pre-trained
source models they use contain any defended models.

6.1.7 SSAH Attack

In their paper [65] (summary 4.1.7), the authors present the SSAH attack, a grounded
attack with both a targeted and untargeted variant. They evaluate their attack in two
different settings, the whitebox and the transferable setting. For ease of comprehension, we
will separate them as SSAH (A) for the whitebox variant and SSAH (B) for the transferable
variant.

For the whitebox variant, SSAH (A), they, as the name suggests, use the model param-
eters in their adversarial generation process (OM). They, however, do not use any training
information or defense-related information. Furthermore, their AdvGen process requires
additional data from the same distribution beyond the single sample it is provided by OX

(for equation 4.9). Hence, they require additional data from the same distribution as the
training data (OD′).

For the transferable variant, SSAH (B), they train surrogate models with similar but
different architecture (ResNet-20 surrogate for ResNet-18 [95] and VGG-11 surrogate for
VGG-16 [98]), this is akin to sampling from a set of possible architecture (OSPA). Those
models are trained on different datasets from the same distribution (CIFAR10/100 [112] for
the surrogates, ImageNet [101] for the target, OD′) with the same training functions (they
train them themselves, hence OTrain). Finally, they again do not use any defense-related
information in this variant.

6.1.8 F-Attack

As specified in summary 4.1.8, this paper [38] proposes a query-access decision-based (La-
bels OL) grounded attack with both targeted and untargeted variants. For their attack
to function, they need access to additional data from the same distribution as the train-
ing data (OD′) to construct their reference set. They do not train nor use any training
information (∅) and likewise, they do not use any defense-related information (∅).
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6.1.9 BIA Attack

As mentioned in the summary (summary 4.1.9), this paper [11] proposes three variants
of its attack. While the attack algorithm remains the same across all three variants, they
evaluate it in three different scenarios where the information available to the attacker varies
greatly. Therefore, we split it into three different variants:

• Variant A: BIA (A) is the original attack that attacks models trained on another
dataset than the one they have access to (OE). They also use a set of possible
architectures to attack the other models (OSPA).

• Variant B: BIA (B) is the version that transfers between models trained on ImageNet.
They use the same training data as the attacked model (OD). Otherwise, it uses the
same information as BIA (A).

• Variant C: BIA (C) is the whitebox variant where they train their generator directly
on the target model. Therefore, they use the model parameters (OM) while keeping
everything else the same.

Variants A and B use the training function (OTrain) since all the pre-trained models come
from the same source (Pytorch [108] and their GitHub repository). Additionally, all vari-
ants do not use any defense information (∅).

6.1.10 ACG Attack

Their paper [83] (summary 4.1.10) presents a whitebox attack that uses the model pa-
rameters (OM) and gradients with the conjugate gradient method to generate adversarial
examples. To compute the gradients, they require a function to compute them over. The
authors do not specify what function they use and since the most common method (and
weakest assumption) is to use the training loss function, we have to assume that they could
have used it (OT1 same as the one from conversion 6.1.6). They do not use any data (∅)
or defense (∅) information.

6.1.11 Admix Attack

Admix [92] (summary 4.1.11) indirectly presents three underlying variants of its attack
(when looking at information categories) in its evaluation section. The first one is the
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one originally presented in the paper and the others are the additional variants that were
introduced in the evaluation. However, all variants share the following common require-
ments for information: All source and target models used are trained on ImageNet [101],
therefore they use the same training data (OD). Additionally, they also use data from
the same distribution in their attack (as mentioned in the summary 4.1.11). Their attack
uses the model’s loss function J as shown in equation 4.24 on top of pre-trained models,
hence the information used is that of the training function (OTrain). Finally, they use no
defense-related information (∅).

• Variant A: Admix (A) is the original attack. In this variant, they have only access
to a set of possible model architectures through pre-trained models (OSPA).

• Variant B: Admix (B) is the case where they attack a defended version of the source
model. While the model parameters are different, it is akin to training a surrogate
undefended model with the same architecture (OA) using the same training data.

• Variant C: Admix (C) is the case where the model they attack is the source model.
They assume access to the model parameters (OM) and treat this case as a white-box
attack.

6.1.12 ATA Attack

Like many of the other papers we’ve summarized, this paper uses pre-trained source models
to attack other models trained on the same dataset. Having access to these pre-trained
models is therefore equivalent to having access to the training data (OD) and the training
function (OTrain). They do not consider defense-related information when attacking the
models (∅).

In their evaluation, they consider two scenarios, a transferable scenario (variant A)
where they do not have access to the models parameters nor the exact architecture (OSPA)
and a white-box setting where they have direct access to the model parameters (variant
B, OM).

6.1.13 Shadow Attack

As mentioned in the summary (4.1.13), this is a score query-based adversarial attack (OS).
Additionally, the only other information they use is an additional dataset from another
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distribution (SBU Shadow dataset [159], OE) to tune the shadow parameter k of their
attack. They do not use any training nor defense-related information even though they
also attack adversarially-trained versions of their models.

6.1.14 DAPatch Attack

The conversion for this paper [84] is very straightforward. As mentioned in the summary
(4.1.14), this attack is a white-box attack that uses nothing more than the model param-
eters.

6.1.15 S2I Attack

This is a transferable attack [64] (summary 4.1.15) that uses pre-trained surrogate models
trained on ImageNet [101] and the model loss function to optimize the adversarial examples.
Similarly to other transferable attacks using surrogate models all pre-trained on the same
dataset, the authors evaluate two variants for their attack. One is the original intended
variant (A) with the surrogate pre-trained models requiring: training function OTrain,
training data OD, and set of possible architectures OSPA in order to train the surrogates.
The other variant (B), is the white-box scenario when the surrogate model is the same
as the attacked model, and they assume having access to the model parameters (rather
than training second different model with the same architecture). This requires the model
parameters OM and for this particular attack at least the loss function used for training as
their attack requires it (OT ∞). Neither of the variants takes into consideration the defense
information.

6.1.16 AI-GAN Attack

This attack [93] (summary 4.1.16) assumes white-box access to the target model parameters
(OM) and needs the target model’s training data to train the generator (OD). It, however,
needs no training or defense-related information.

6.1.17 AEG Attack

As stated in the paper [91] (summary 4.1.17), they present two variants of their attack,
both transferable. Variant A is the variant that assumes knowledge of the architecture
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of the target model (OA) as well as data from the same distribution as the training data
(OD′).
For both variants, they describe the way they train their surrogate models, which conveys
that they have access to the loss function and some information about the optimizer.
Additionally, they do not use defense-related information (∅).
Variant B differs from variant A in that it uses a set of possible architectures (OSPA) and
the actual training data (OD).

6.1.18 ACA Attack

Similarly to many of the other transferable attacks we’ve surveyed, this attack uses stan-
dard transferable adversarial attack information to mount their attack (they use pre-trained
surrogates). In their evaluation, they also consider the case where the surrogate is the same
as the target model in which case they assume the standard white-box scenario. This yields
two variants:

• Variant A: the transferable case, uses a set of possible architecture (OSPA), the
training data (OD), and the training function.

• Variant B: the white-box case, uses the model parameters (OM) and the loss function
(OT1) as it is required for their optimization.

Both variants also indirectly use other additional data (OE) as they require a pre-
trained Stable Diffusion model [178] (they use version 1.4). They also do not use any
defense-related information (∅).

6.1.19 DiffAttack

Similarly to the other Stable Diffusion-based attack [86] (summary 4.1.18), this attack [85]
(summary 4.1.19) has two variants. Their transferable attack uses pre-trained surrogates
and in their evaluation, they consider the case where the surrogate model is the same as
the target model (white-box).

• Variant A: the transferable case, they use a set of possible architectures (OSPA), the
training data (OD) and the training function (for training the surrogates).

• Variant B: the white-box case, they use the model parameters (OM) and the loss
function (OT1) as they require it for their optimization (Lattack).
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Additionally, since both variants assume access to a pre-trained Stable Diffusion model
[178], they indirectly require additional other data (OE). They also do not use any defense-
related information (∅).

6.1.20 A3 Attack

In their paper [39] (summary 4.1.20), the authors follow a slightly different game definition
compared to the base game we propose in our formalization. Instead of being given the
images to attack one at a time, they assume access to the entire set of test images to attack
at once. This is a valid assumption to make (as we can just redefine OX to do just that).
However, since the other papers do not do so, w.r.t. them, in the original base game, it
would be equivalent to having access to data from the same distribution (OD′). While the
attack is an adaptive white-box attack, it requires access to the model parameters OM

but it does not use any information about the defense algorithm used. Finally, it uses the
model’s loss function to evaluate the hardness-to-attack of a given input image in its OSD
step, therefore it requires at least knowledge of the model’s loss function (OT∞).

6.2 Compiled tables

We also include tables compiling the datasets and target model used in the evaluations
of each of the attacks in their original papers. This can also serve as a general guideline
future work on the datasets and target models to use to improve the comparability of their
work to the rest of the work in the field.
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Table 6.1: Attack Information Table part 1

Attack Model Data Train Defense

ODI [45]
Possible

Architectures
Training Data

Training
Function

∅

GA [40]
Possible

Architectures
Training Data

Training
Function

∅

LGV (A) [54]
Possible

Architectures
Training Data

Training
Function

∅

LGV (B) [54] Parameters ∅ ∅ ∅

Pixle [37] Scores ∅ ∅ ∅

MASSA [66] Labels ∅ ∅ ∅

AI-FGTM (A)[15]
Possible

Architectures
Training
Data

Training
Function

∅

SSAH (A) [65] Parameters Same Distribution ∅ ∅

SSAH (B) [65]
Possible

Architectures
Other Data

Training
Function

∅

BIA (A) [11]
Possible

Architectures
Other Data

Training
Function

∅

BIA (B) [11]
Possible

Architectures
Training Data

Training
Function

∅

BIA (C) [11] Parameters Training Data ∅ ∅

F-Attack [38] Labels Same Distribution ∅ ∅

ACG [83] Parameters ∅ Loss Function ∅
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Table 6.2: Attack Information Table part 2

Attack Model Data Train Defense

Admix (A) [92]
Possible

Architectures
Training Data &
Same Distribution

Training
Function

∅

Admix (B) [92] Architecture
Training Data &
Same Distribution

Training
Function

∅

Admix (C) [92] Parameters Same Distribution Loss Function ∅

ATA (A) [82]
Possible

Architectures
Training Data

Training
Function

∅

ATA (B) [82] Parameters ∅ ∅ ∅

Shadow [14] Scores Other Data ∅ ∅

DAPatch [84] Parameters ∅ ∅ ∅

S2I (A) [64]
Possible

Architectures
Training Data

Training
Function

∅

S2I (B) [64] Parameters ∅ Loss Function ∅

AI-GAN [93] Parameters Training Data ∅ ∅

AEG (A) [91] Architecture Same Distribution
Loss Function
& Optimizer

∅

AEG (B) [91]
Possible

Architectures
Training Data

Loss Function
& Optimizer

∅

ACA (A) [86]
Possible

Architectures
Training Data &

Other Data
Training Function ∅

ACA (B) [86] Parameters Other Data Loss Function ∅

DiffAttack (A) [85]
Possible

Architectures
Training Data &

Other Data
Training Function ∅

DiffAttack (B) [85] Parameters Other Data Loss Function ∅

A3 [39] Parameters Same Distribution Loss Function ∅
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Table 6.3: Attack properties part 1

Attack Targeted Grounded
Salient

Situation
Metric Parameter

ODI [45] ✓ ✓
Indistin-
guishable

l∞ ϵ = 16/256

GA [40] ✗ ✓
Content-
preserving

l∞ adaptive

LGV [54] ✗ ✓
Indistin-
guishable

l∞ not specified

Pixle [37] Both ✓
Indistin-
guishable

l0 variable

MASSA [66] ✗ ✓
Indistin-
guishable

l2 variable

AI-FGTM [15] ✗ ✓
Indistin-
guishable

l∞ ϵ = 16/256

SSAH [65] Both ✓
Indistin-
guishable

l∞ ϵ = 8/256

BIA [11] ✗ ✓
Indistin-
guishable

l∞ ϵ = 10/256

F-Attack [38] Both ✓
Content-
preserving

None None

ACG [83] ✗ ✓
Indistin-
guishable

l∞
CIFAR ϵ = 8/256

ImageNet ϵ = 4/256

Admix [92] Both ✓

Any
(Indistin-
guishable)

None None

ATA [82] ✗ ✓
Indistin-
guishable

l0-norm ϵ = 1024/(224× 224)

Shadow [14] ✗ ✓
Content-
preserving

None None

DAPatch [84] ✗ ✓
Content-
preserving

l0-norm 0.5%− 3% (pixels)
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Table 6.4: Attack properties part 2

Attack Targeted Grounded
Salient

Situation
Metric Parameter

S2I [64] Both ✓

Any
(Indistin-
guishable)

l∞ ϵ = 16/256

AI-GAN [93] ✓ ✓
Indistin-
guishable

l∞-norm
CIFAR ϵ = 8/256
MNIST ϵ = 0.3

AEG [91] ✗ ✓
Indistin-
guishable

l∞-norm
CIFAR ϵ = 8/256
MNIST ϵ = 0.3

ACA [86] ✗ ✓
Content-
preserving

None None

DiffAttack [85] ✗ ✓
Content-
preserving

FID [133] variable

A3 [39] ✗ ✓
Indistin-
guishable

l∞-norm
CIFAR ϵ = 8/255

ImageNet ϵ = 4/256
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Table 6.5: List of Datasets used to evaluate attacks part 1

Attack Datasets

ODI [45]
ImageNet-Compatible dataset

(1000 images from the NIPS 2017 adversarial competition [118])

GA [40]
ILSVRC 2012 ImageNet-Compatible [144], [116]

(1000 images from validation set)

LGV [54]
ImageNet [101]

(2000 images from validation set)

Pixle [37]
CIFAR10 [112], ImageNet [101], TinyImageNet [113]

(1000 images from validation set each)

MASSA [66]
ImageNet [101]

(500 images from validation set)

AI-FGTM [15]
ImageNet-Compatible dataset

(1000 images from the NIPS 2017 adversarial competition [118])

SSAH [65] CIFAR10 [112], CIFAR100 [112], ImageNet [101]

BIA [11]

CIFAR10 [112], CIFAR100 [112], ImageNet [101],
STL-10 [135], SVHN [136], CUB-200-2011 [137],

Stanford Cars [138], FGVC Aircraft [139]
(whole validation sets)

F-Attack [38]
CIFAR10 [112], ImageNet [101]
(500 images from validation set)

ACG [83]

CIFAR10 [112], CIFAR100 [112]
(entire validation set),

ImageNet [101]
(5000 images from validation set)

Admix [92]
ILSVRC 2012 ImageNet-Compatible [144], [116]

(1000 images from validation set)
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Table 6.6: List of Datasets used to evaluate attacks part 2

Attack Datasets

ATA [82]
ImageNet [101]

(2000 images from validation set)

Shadow [14]
LISA [156], GTSRB [157]
(entire validation set)

DAPatch [84]
GTSRB [157] (500 images from validation set)
ILSVRC 2012 ImageNet-Compatible [144]

(1000 images from validation set)

S2I [64]
ImageNet-Compatible dataset

(1000 images from the NIPS 2017 adversarial competition [118])

AI-GAN [93]
CIFAR10 [112], CIFAR100 [112],

MNIST [170]

AEG [91] MNIST [170], CIFAR10 [112]

ACA [86]
ImageNet-Compatible dataset

(1000 images from the NIPS 2017 adversarial competition [118])

DiffAttack [85]
ImageNet-Compatible dataset

(1000 images from the NIPS 2017 adversarial competition [118])

A3 [39]

CIFAR10 [112], CIFAR100[112]
(entire validation set),

ImageNet [101]
(1000 images from validation set, CVPR 2021 competition)
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Table 6.7: List of attacked models by more than two papers

Model Attack

ResNet-50 [95]
ODI [45], LGV [54], Pixle [37], MASSA [66], AI-FGTM [15],

SSAH [65], BIA [11], F-Attack [38], ACG [83], S2I [64], A3 [39]
Admix [92], DiffAttack [85], ATA [82], DAPatch [84], ACA [86]

Inception-v3 [96]
ODI [45], GA [40], LGV [54], AI-FGTM [15], BIA [11], S2I [64],

Admix [92], AEG [91], ACA [86], DiffAttack [85]

Inception-ResNet-v2 [99]
ODI [45], GA [40], AI-FGTM [15],

Admix [92], S2I [64], ACA [86], DiffAttack [85]

VGG-16 [98]
Pixle [37], MASSA [66], BIA [11],
F-Attack [38], ATA [82], AEG [91]

VGG-19 [98] LGV [54], MASSA [66], BIA [11], DAPatch [84], DiffAttack [85]

DenseNet-121 [97] ODI [45], BIA [11], ATA [82], AEG [91]

ResNet-152 [95] GA [40], BIA [11], DAPatch [84], S2I [64], ACA [86]

MobileNet-v2 [100] ODI [45], F-Attack [38], DAPatch [84], ACA [86], DiffAttack [85]

ResNet-18 [95] ODI [45], ACG [83], AEG [91], A3 [39]

WideResNet-34-10 [110] SSAH [65], ACG [83], AI-GAN [93], AEG [91], A3 [39]

Inception-v4 [99] ODI [45], Admix [92], S2I [64]

ViT-B [151] ATA [82], DAPatch [84], ACA [86], DiffAttack [85]

Swin-B [160] DAPatch [84], ACA [86], DiffAttack [85]
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Table 6.8: List of attacked models by two papers

Model Attack

ResNet-20 [95] Pixle [37], SSAH [65]

MobileNet [123] AI-FGTM [15], Admix [92]

DenseNet-161 [97] DAPatch [84], ACA [86]

EfficientNet-b7 [161] DAPatch [84], ACA [86]

ResNeXt-101 [109] GA [40], DAPatch [84]

DeiT-B [152] ATA [82], DiffAttack [85]

DeiT-S [152] ATA [82], DiffAttack [85]

ResNet-101 [95] Admix [92], S2I [64]

ResNet-32 [95] F-Attack [38], AI-GAN [93]

A [8] AI-GAN [93], AEG [91]

AlexNet [150] ATA [82], AEG [91]

PreActResNet-18 [119] ACG [83], A3 [39]

WideResNet-28-4 [110] ACG [83], A3 [39]

WideResNet-28-10 [110] ACG [83], A3 [39]

WideResNet-34-15 [110] ACG [83], A3 [39]

WideResNet-34-20 [110] ACG [83], A3 [39]

WideResNet-70-16 [110] ACG [83], A3 [39]
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Table 6.9: List of attacked defended models by more than one paper

Model Attack

Inception-ResNet-v2ens [8]
ODI [45], GA [40], AI-FGTM [15], Admix [92], S2I [64],

ACA [86], DiffAttack [85]

Inception-v3Ens3 [8]
AI-FGTM [15], Admix [92], S2I [64],
AEG [91], ACA [86], DiffAttack [85]

Inception-v3Ens4 [8]
AI-FGTM [15], Admix [92], S2I [64],

ACA [86], DiffAttack [85]

HGD [120]
AI-FGTM [15], Admix [92], S2I [64],

ACA [86], DiffAttack [85]

R&P [121]
AI-FGTM [15], Admix [92], S2I [64],

ACA [86], DiffAttack [85]

NIPS-r3 [118]
AI-FGTM [15], Admix [92], S2I [64],

ACA [86], DiffAttack [85]

ResNet-50RS [9], [95] AI-FGTM [15], Admix [92], S2I [64], DiffAttack [85]

MobileNetFD [122], [124] AI-FGTM [15], Admix [92]

ResNeXt-101Denoise [165] GA [40], DAPatch [84]

ResNet-152adv [165] GA [40], DAPatch [84]

ResNet-152Denoise [165] GA [40], DAPatch [84]

FastAT [164] GA [40], DAPatch [84]

AEns4 [8] AEG [91], AI-GAN [93]

Bit-Red [145] Admix [92], ACA [86]

JPEG [146] Admix [92], S2I [64], ACA [86]

DiffPure [90] ACA [86], DiffAttack [85]

WideResNet-34-10TRADES [129] SSAH [65], ACG [83]

NRP [148] Admix [92], S2I [64]

ResNet-50Debiased [163] DAPatch [84], ACA [86]
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Table 6.10: List of attacked models by only a single paper part 1

Model Attack

ResNeXt-50 [109] LGV [54]

WideResNet-34-R [110] ACG [83]

WideResNet-50 [110] LGV [54]

WideResNet-106-16 [110] ACG [83]

Inception-v1 [111] LGV [54]

DenseNet-169 [97] BIA [11]

DenseNet-201 [97] LGV [54]

VGG-11 [98] Pixle [37]

VGG-16 bn [98] ODI [45]

ViT-T [151] ATA [82]

ViT-S [151] ATA [82]

DeiT-T [152] ATA [82]

Mixer-B [181] DiffAttack [85]

Mixer-L [181] DiffAttack [85]

ConViT (T, S, & B) [153] ATA [82]

Swin-L [160] GA [40]

MobileViT [175] ACA [86]

PVT-v2 [176] ACA [86]
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Table 6.11: List of attacked models by only a single paper part 2

Model Attack

SENet-154 [141] BIA [11]

SE-ResNet-101 [141] BIA [11]

LISA-CNN [158] Shadow [14]

GTSRB-CNN [158] Shadow [14]

B [8] AEG [91]

C [8] AEG [91]

D [8] AEG [91]

Microsoft Azure [130] SSAH [65]

Tencent Cloud [131] SSAH [65]

Baidu AI Cloud [132] SSAH [65]

RVT-Tiny [225] GA [40]

DeepAugment AugMix [226] GA [40]

EfficientNet-l2-ns [227] [161] GA [40]
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Table 6.12: List of attacked defended models by one paper

Model Attack

RobustBench models [94] ACG [83] A3 [39]

ResNet-50Comdefend [125], [95] AI-FGTM [15]

WideResNet-34-10FSAT [128] SSAH [65]

Inception-ResNet-v2adv [8] ODI [45]

Inception-v3adv [106] DiffAttack [85]

FreeAT [228] GA [40]

Shape-ResNet [177] ACA [86]

ARS [147] Admix [92]

LISA-CNNrob [14] Shadow [14]

GTSRB-CNNrob [14] Shadow [14]

ResNet-50SIN [162] DAPatch [84]

ResNet-50SIN+IN [162] DAPatch [84]

ResNet-50SIN+IN-IN [162] DAPatch [84]

ResNet-152Debiased [163] DAPatch [84]

ResNet-18Ens3 [8] AEG [91]

WideResNet-34-10Ens3 [8] AEG [91]

DenseNet-121Ens3 [8] AEG [91]

VGG-16Ens3 [8] AEG [91]

Madry-CIFAR10adv [7] AEG [91]

Madry-MNISTadv [7] AEG [91]

BEns4 [8] AEG [91]

CEns4 [8] AEG [91]

DEns4 [8] AEG [91]
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Chapter 7

Results

In this chapter, we will use the information compiled in Chapter 6 to perform a comparative
analysis of the attacks we surveyed with respect to the information they use to mount their
attack. To get meaningful comparisons, we will first separate the attacks by the salient
situation they adopt, whether they are targeted or untargeted, and then the datasets they
attack. We then prune all the situation/dataset pairs that have only one attack or less so
we can compare within each pair. This yields Table 7.1.

Table 7.1: Salient situation-dataset pairs with more than one attack

Salient Situation Targeted Datasets

Content-Preserving ✗ NIPS 2017 [118], ILSVRC 2012 [144], GTSRB [157]

Indistinguishable ✗ NIPS 2017 [118], CIFAR10, CIFAR100 [112], ImageNet [101]

We only include untargeted content-preserving and indistinguishable attacks. We, un-
fortunately, do not have enough targeted content-preserving attacks and targeted indistin-
guishable attacks that share evaluation datasets to allow for comparative analysis for each.
The only possible comparative analysis we could have conducted would have been on the
CIFAR10/100 [112] datasets between the SSAH [65] and AI-GAN [93] attacks. However,
those two papers do not have any target model architectures in common and AI-GAN
does not provide benign accuracies for its models. This means we would not have been
able to provide any kind of meaningful attack success rate or relative performance score
comparison.
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For each dataset and salient situation pair, we provide a visual tree-based representation
of the information oracles used by each attack and how they differ from one another. We
also color-code the different kinds of nodes as follows:

• Green: Dataset.

• Blue: Model Information.

• Yellow: Data Information.

• Pink: Training Information.

• Grey: Defense Information.

• Orange (triangle-shaped): leaf node that represents the attack.

We also showcase the comparisons that we will make by using colored rectangular borders
around the attacks that will be compared. When comparing, ’score’ will stand for the
relative performance score (Definition 28). Additionally, if result numbers are presented
in italics, it means that they were computed using an additional assumption (commonly,
it is when the benign accuracy of the model is taken from another paper and therefore is
not guaranteed to be that value).

7.1 Content-Preserving untargeted attacks

7.1.1 Attacks on the ILSVRC2012 Dataset

Figure 7.1: ILSVRC 2012 dataset content-preserving attacks
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For the ILSVRC 2012 dataset [144], we compare the GA attack [40] (summary 4.1.2)
with the DAPatch attack [84] (summary 4.1.14). DAPatch follows the traditional white-box
threat model with access to the model parameters while GA follows a transferable threat
model where they can train surrogates using possible architectures, the original training
data and the training function. In their evaluation, they attack three of the same defended
models. While only GA provides clean accuracies for these defended target models, we
assume that DAPatch trained their target model in good faith, or they used the trained
models provided by the original defense papers. If we do not make this assumption we
cannot establish any comparative results. We provide in Table 7.2 the overview of the
results. ASR stands for attack success rate (the ratio of misclassified samples to correctly
classified samples).

Table 7.2: ILSVRC2012 dataset content-preserving results

Model
Benign
ASR

GA
ASR

DAPatch
ASR

GA
Score

DAPatch
Score

FastAT [164] 33.1 (GA) 71.5 51.3 0.402 0.154

ResNeXt-101Denoise [165] 19.7 (GA) 52.2 52.9 0.234 0.241

ResNet-151Denoise [165] 27.8 (GA) 59.7 62.3 0.279 0.311

Average 26.9 61.1 55.5 0.305 0.235

Surprisingly, the transferable attack (GA) seems to perform slightly better on average.
This, however, can be explained by the inherent nature of the DAPatch attack. It is a
patch attack, therefore they heavily restrict the kind of attacks they can perform compared
to the GA attack. We provide a summary of the results within the tree structure in Figure
7.2.
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Figure 7.2: ILSVRC2012 dataset content-preserving results. The first row of numbers is the
average ASR while the second is the average relative performance score. The first column of
numbers is the performance on undefended models whereas the second is the performance
on defended models (we write missing results as \). We bold the best performer for each
row.

7.1.2 Attacks on the GTSRB dataset

Figure 7.3: GTSRB dataset content-preserving attacks

For the GTSRB dataset [157], we compare the Shadow attack [14] (summary 4.1.13)
with the DAPatch attack [84] ((summary 4.1.14)). The Shadow attack employs a score
query-based threat model while GA uses a transferable threat model. Comparing these
attacks in a fair setting is difficult as Shadow attacks custom models with custom archi-
tectures whereas DAPatch attacks existing architectures. Both papers attack undefended
and defended models. We first look at the results for the undefended models in Table 7.3.

When looking at the averages, we can see that while DAPatch performs better, they
both perform very well and render the models they attack practically unusable. Again,
it is difficult to identify whether one is better as they are compared against different
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Table 7.3: GTSRB dataset content-preserving undefended results

Model
Benign
ASR

Shadow
ASR

DAPatch
ASR

Shadow
Score

DAPatch
Score

GTSRB-CNN [14]
1.0

(Shadow)
90.47 N/A 0.818 N/A

ResNet-152 [95]
0.

(DAPatch)
N/A 93.1 N/A 0.867

ViT-B [151]
0.

(DAPatch)
N/A 95.0 N/A 0.903

Average
1. (Shadow)
0. (DAPatch)

90.47 94.05 0.818 0.885

architectures. We refine our comparison by looking at their performance on defended
models. On one hand, in their paper, Shadow develops an adaptive defense against their
attack GTSRB-CNNrob. On the other hand, DAPatch attacks models defended by existing
anti-patch attack defenses.

Both attacks observe a loss in performance when attacking defended models, as ex-
pected. It is difficult to say if one is better than the other as we only have a singular
result for Shadow, and it’s from their adaptive defense. However, if we take the results as
they are, Shadow does outperform DAPatch slightly. We provide a summary of the results
within the tree structure in Figure 7.4.
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Table 7.4: GTSRB dataset content-preserving defended results

Model
Benign
ASR

Shadow
ASR

DAPatch
ASR

Shadow
Score

DAPatch
Score

GTSRB-CNNrob [14]
1.09

(Shadow)
74.43 N/A 0.554 N/A

ResNet-152LGS [95] [229]
3.7

(DAPatch)
N/A 53.9 N/A 0.289

ResNet-152DW [95] [230]
10.2

(DAPatch)
N/A 69.5 N/A 0.473

ViT-BLGS [151] [229]
3.0

(DAPatch)
N/A 58.1 N/A 0.337

ViT-BDW [151] [230]
10.3

(DAPatch)
N/A 69.8 N/A 0.477

Average
1.09 (Shadow)
6.8 (DAPatch)

74.43 62.83 0.554 0.394

7.1.3 Attacks on the NIPS 2017 dataset

For the NIPS 2017 dataset [118], we compare the ACA attack [86] (summary 4.1.18) and
DiffAttack [85] (summary 4.1.19). They are both attacks that use the latent space of
diffusion models to craft their attack. As for threat models, they both evaluate the same
variants of the white-box and transferable threat models. We first compare them within
each of the threat models and then compare them across threat models.

We first look at the transferable case. They both assume access to possible architec-
tures, the original training data, additional data samples (from another distribution), and
the training function. They evaluate their performance against both undefended and de-
fended models. We first examine the undefended results, where both papers provide model
performance on benign samples. The results are presented in Table 7.5.

For most of the undefended models, ACA and DiffAttack have similar benign accuracies
except for Inception-v3 where we can see significant discrepancy. In general, DiffAttack
seems to significantly outperform ACA in the transferable undefended scenario with an
average ASR that is 18.9% higher and an average relative performance score that is 0.25
higher. We examine the defended model results to see if this trend is consolidated, the
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Figure 7.4: GTSRB dataset content-preserving results. The first row of numbers is the
average ASR while the second is the average relative performance score. The first column of
numbers is the performance on undefended models whereas the second is the performance
on defended models (we write missing results as \). We bold the best performer for each
row.

results are presented in Table 7.6. For defended models, DiffAttack does not provide
clean accuracies therefore, similar to what we did with subsection 7.1.1, we use the clean
accuracies from ACA for the defended models under the assumption that DiffAttack trained
their defended models.

It appears that on defended models, unlike undefended models, ACA outperforms Dif-
fAttack in the average and for every defended model except DiffPure.

We can compare these attacks in the traditional white-box setting. They only attack
undefended models in the white-box setting. The results are presented in Table 7.7.

DiffAttack is also better than ACA against undefended models in the white-box setting,
although not by much and both attacks are extremely potent.

Finally, we perform a comparison between the best results in the transferable threat
model compared to the white-box threat model. We look at both the ASR differences
(Table 7.8) and the relative performance score (Table 7.9).

We notice an average increase of 12.5% ASR, or 0.21 score when going from non-
white-box to white-box. While this is a significant increase, it shows that the attacks in the
transferable setting can efficiently make use of the model, data and training information
at hand to deliver potent attacks. We provide a summary of the results within the tree
structure in Figure 7.6.
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Figure 7.5: NIPS 2017 dataset content-preserving attacks

7.2 Indistinguishable untargeted attacks

7.2.1 Attacks on the NIPS 2017 dataset

For the NIPS 2017 dataset [118], we compare the AI-FGTM attack [15] (summary 4.1.6)
with both variants from the S2I attack [64] (summary 4.1.15). AI-FGTM and variant S2I
(A) are transferable attacks both using possible architectures, the original training data and
the training function to mount their attack. While S2I (B) uses the model parameters and
the training loss in a white-box setting to mount their attack. Both attacks use the l∞-norm
to bind their adversarial perturbations. AI-FGTM uses an epsilon of ϵ = 16/256 whereas
S2I estimates an empirical upper bound on their epsilon to be ϵ = 8/256. Therefore, AI-
FGTM has a significant advantage, however, we still perform a comparison as we are able
to extract meaningful results.

We first look at the results in the transferable case by comparing AI-FGTM to S2I
(A). Then, we compare the best-performing transferable results to the best-performing
white-box results (S2I (B)) to derive a numerical difference between both threat models.
Both papers’ evaluations overlap only against defended models, so we only investigate
defended models. Neither of the papers provides benign accuracies but since they cite the
same defense papers and those defense papers provide their trained models we assume they
attack the same models. Therefore, we also use the benign accuracies from subsection 7.1.3
as they also attack the same defended models. The results are compiled in Table 7.10.

So despite AI-FGTM’s epsilon advantage, it still underperforms compared to S2I (A)
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Table 7.5: NIPS 2017 dataset content-preserving transferable undefended results

Model
Benign
ASR

ACA
(A) ASR

DiffAttack
(A) ASR

ACA
(A) Score

DiffAttack
(A) Score

MobileNet-v2[100]
12.1 (ACA)

13.1 (DiffAttack)
69.3 80.6 0.466 0.632

Inception-v3[96]
4.8 (ACA)

19.5 (DiffAttack)
61.6 74.2 0.377 0.513

ResNet-50 [95]
7.0 (ACA)

7.3 (DiffAttack)
62.6 79.1 0.387 0.620

ViT-B [151]
8.9 (ACA)

6.3 (DiffAttack)
52.9 73.3 0.272 0.533

Swin-B [160]
3.5 (ACA)

4.1 (DiffAttack)
55.5 88.6 0.307 0.783

Average
7.26 (ACA)

10.06 (DiffAttack)
60.4 79.2 0.362 0.616

against all the models evaluated with an average performance discrepancy of 9.5% ASR
( 0.127 score). However, both attacks are quite potent and practically render the attacked
models unusable.

We now compare the best performances of the non-white-box and white-box settings
(S2I (A) and S2I (B)). Unfortunately, this is only possible on undefended models as this
is the only models that have an overlap in their paper. The results are compiled in Table
7.11.

Unsurprisingly, the white-box version of the attack outperforms the transferable version
for every undefended model with an average 11.7% ASR increase. However, the surprising
result is the fact that S2I (A) attacking undefended models significantly underperforms S2I
(A) attacking defended models. This is not something that usually happens in adversarial
example research. While they use a slightly different version of their algorithm when
performing the white-box evaluation compared to the transferable evaluation, it still is a
surprising result. For an attack that has such strong performance against defended models
in the transferable setting, this is an empirical oddity. We provide a summary of the results
within the tree structure in Figure 7.6.
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Table 7.6: NIPS 2017 dataset transferable defended results

Model
Benign
ASR

ACA
(A) ASR

DiffAttack
(A) ASR

ACA
(A) Score

DiffAttack
(A) Score

Inception-
ResNet-v2ens

[8] 2.6 (ACA) 43.6 41.7 0.189 0.173

Inception-v3ens3 [8] 6.8 (ACA) 59.8 56.2 0.353 0.311

Inception-v3ens4 [8] 8.9 (ACA) 62.2 56.9 0.379 0.316

HGD [120] 1.2 (ACA) 52.2 38.0 0.272 0.144

R&P [121] 1.8 (ACA) 53.6 34.5 0.287 0.119

NIPS-r3 [118] 3.2 (ACA) 53.9 30.0 0.289 0.089

DiffPure [90] 15.4 (ACA) 63.7 72.2 0.382 0.498

Average 5.7 (ACA) 55.6 47.1 0.307 0.236

7.2.2 Attacks on the CIFAR10 dataset

The CIFAR10 dataset [112] is a very popular dataset to train and evaluate image classifi-
cation models and therefore attack them. In our case, we can perform four comparisons of
a total of seven attacks or variants of attacks on the CIFAR10 dataset. We hope that we
be able some relative performance indicators for the different information categories that
appear.

We first start with the comparison we label as green that compares BIA (A) with AEG
(B).

Green: BIA (A) & AEG (B) BIA (A) [11] (summary 4.1.9) is a transferable attack
we’ve already encountered in subsection 7.2.3. Similarly to CIFAR100, the authors only
attack a custom model, and therefore we again treat their results as unreliable. AEG (B)
[91] (summary 4.1.17) on the other hand is also a transferable attack whose data informa-
tion requirements (training data) dominates (⊏) BIA (A)’s data information requirement
(other data), but its training information requirement (training loss function and some in-
formation about the optimizer) is dominated by BIA (A)’s training requirement (training
function).

We first summarize BIA (A)’s best performance against said custom model in Table
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Table 7.7: NIPS 2017 dataset content-preserving white-box undefended results

Model
Benign
ASR

ACA
(B) ASR

DiffAttack
(B) ASR

ACA
(B) Score

DiffAttack
(B) Score

MobileNet-v2[100]
12.1 (ACA)

13.1 (DiffAttack)
93.1 98.2 0.852 0.947

Inception-v3[96] 19.5 (DiffAttack) N/A 86.1 N/A 0.703

ResNet-50 [95]
7.0 (ACA)

7.3 (DiffAttack)
88.3 96.3 0.775 0.922

ViT-B [151] 8.9 (ACA) 87.7 N/A 0.761 N/A

Swin-B [160] 4.1 (DiffAttack) N/A 90.1 N/A 0.810

Average
9.33 (ACA)

11 (DiffAttack)
89.7 92.7 0.761 0.846

7.12.

Since BIA (A) attacks a custom model, we have to perform an aggregate analysis of
AEG (B)’s performance on both undefended and defended models to be able to compare.
We first report the performance on undefended models in Table 7.13.

If we treat BIA (A)’s model as undefended, then AEG (B) significantly outperforms
BIA (A). This could either be due to the difference in the information required by both
attacks or that BIA (A) does not extract attack performance as well out of the information
it uses as AEG (B). In the transferable setting, not having access to the training access
(BIA (A)’s case) can be a huge disadvantage compared to having access to it (AEG (B)’s
case), this is reflected in the empirical results. To complete this comparison, we look at
the performance of AEG (B) against defended models in Table 7.14.

Unsurprisingly, attacking well-defended models in the transferable setting is quite a
difficult task. The results in Table 7.14 strongly imply that BIA (A)’s model is indeed
undefended as it achieves benign accuracies (1-ASR) much closer to the undefended models
of Table 7.13. Additionally, if BIA (A)’s model was indeed strongly defended, it would then
imply that it would be as beneficial for an attacker to use data from another distribution
with the training function rather than the actual training data and slightly less training
information as BIA (A) obtains similar results. While this is not an impossibility, we posit
it to be quite unlikely, especially due to the unreliability of BIA (A)’s results. We move on
to the second comparison which we label as purple.
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Table 7.8: NIPS 2017 dataset content-preserving transferable and white-box ASR compar-
ison

Model Best (A) ASR Best (B) ASR Diff

MobileNet-v2[100] 80.6 98.2 17.6

Inception-v3[96] 74.2 86.1 11.9

ResNet-50 [95] 79.1 96.3 17.2

ViT-B [151] 73.3 87.7 14.4

Swin-B [160] 88.6 90.1 1.5

Average 79.2 91.7 12.5

Purple: A3 & SSAH (A) This is a comparison we already performed for CIFAR100
(subsection 7.2.3), however this time, we can directly compare them as they both attack
a WideResNet-34-10TRADES [128]. We can confidently confirm that these are likely to be
the same models as both papers report the same benign accuracy. We present the results
in Table 7.15.

We can see that although, as stated by the authors, A3 is an attack that focuses both
on ASR and runtime, it still significantly outperforms SSAH (A) when attacking a well-
defended model. It is doubtful that having access to the training loss function is a strong
enough difference between the two attacks to justify the performance gap. It is more likely
that SSAH (A) is inefficient at extracting the information it has access to to mount a
potent attack against defended models. We move on to the next comparison (blue) where
we compare the attacks in purple to ACG as we have done for CIFAR100 in subsection
7.2.3. In our final tree, we also include SSAH (A)’s performance on undefended models
(they attack a ResNet-20 [95]).

Blue: ACG & A3 & SSAH (A) We again compare ACG [83] (summary 4.1.10)
and A3 on defended models. They both attack the WideResNet-34-10TRADES [128] from
the previous comparison, so we also compare how ACG performs against SSAH (A). On
CIFAR10, ACG and A3 attack 11 models in common from RobustBench [94]. The results
are summarized in Table 7.16.

ACG outperforms both A3 and SSAH (A) on WideResNet-34-10TRADES but otherwise
loses to A3 on the other models and overall. We observe again a similar, small, discrepancy
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Table 7.9: NIPS 2017 dataset content-preserving transferable and white-box score com-
parison

Model Best (A) Score Best (B) Score Diff

MobileNet-v2[100] 0.632 0.947 0.315

Inception-v3[96] 0.513 0.703 0.190

ResNet-50 [95] 0.620 0.922 0.302

ViT-B [151] 0.533 0.761 0.228

Swin-B [160] 0.783 0.810 0.027

Average 0.616 0.829 0.213

between ACG and A3 in terms of performance which reinforces our previous conclusion
that it could either be due to the information used or the inherent algorithmic differences.
Finally, we are left with comparing all seven attacks against one another for our final
comparison (red).

Red: AEG (A) & Pixle & Blue & Green Unfortunately, due to the amount of
papers to compare, we reach the limits of what we can do while keeping the comparisons
fair. We go through each of the members of the comparison to see if we have any ground
for a comparison. On one hand, the attacks in Blue only attack defended models. On the
other hand, for Green, BIA (A) only attacks a custom architecture and AEG (B)’s defended
models do not overlap with the defended models in Blue. AEG (A) can be compared with
AEG (B), however, due to the nature of their attack where they train their surrogate on
a subset of the dataset and train the target models on the other subsets, a direct benign
accuracy/ASR comparison would be unfair. Finally, Pixle uses the l0-norm to bind its
attack, unlike the other papers. Getting meaningful results in this case is difficult.

We first look into the straightforward comparison: AEG (A) and AEG (B). They only
evaluate AEG (A) against a ResNet-18 [95]. They do not provide benign accuracies for
AEG (A) which is problematic due to our previous description of how their attack is
evaluated. We therefore cannot compute a relative score to attempt a comparison. We
still report the ASR they report in our final tree, however, we italicize the result to indicate
that it is unreliable.

Our other option would be to compare AEG (B) with Pixle, as AEG (B) provides benign
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Figure 7.6: NIPS 2017 dataset content-preserving results. The first row of numbers is the
average ASR while the second is the average relative performance score. The first column of
numbers is the performance on undefended models whereas the second is the performance
on defended models (we write missing results as \). We bold the best performer for each
row.

accuracies, and they share a target model architecture (ResNet-18). Unfortunately, Pixle
does not share its benign accuracy, but we can assume the benign accuracy obtained to
AEG (B) would be similar to what Pixle obtained and give them the benefit of the doubt,
for the sake of being able to establish some form of comparison. We get the following
results in Table 7.17.

We summarize our results in Figure 7.10. While some entries are missing, we can still
draw some interesting conclusions. Unsurprisingly, it requires very little model information
to get effective attacks if the attacker has access to additional information like data and
training information. Additionally, while it could be argued that the models attacked by
A3 and ACG might be of higher defensive quality, we still observe a strong transferable
performance against defended models by AEG (B) where they obtain a score (0.167) very
similar to white-box attacks (0.163 and 0.160). While this is still much worse than against
undefended models, it would still in practice severely decrease the usability of the target
model.
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Figure 7.7: NIPS 2017 dataset indistinguishable attacks

7.2.3 Attacks on the CIFAR100 dataset

For the CIFAR100 dataset [112], as can be seen in Figure 7.11, we now have three different
comparisons across 4 attacks that we need to perform to complete the tree. We colored
them purple, blue and red to reference them more easily. The first comparison, purple: A3

[39] (summary 4.1.20) and SSAH (A) [65] (summary 4.1.7).

Purple: A3 & SSHA (A) Both these attacks are attacks that use the model parameters
and data drawn from the same distribution as the training data. The only difference is that
A3 uses the training loss whereas SSAH (A) uses no training information. Unfortunately,
neither of those attacks have target models in common. A3 attacks only defended models
(12 to be exact), while SSAH (A) attacks two defended models (WideResNet-34-10TRADES

[129] andWideResNet-34-10FSAT [128]). Therefore, the best we can hope to do is to perform
an aggregate analysis of the models and see if we can extract any meaningful results. First,
we will examine SSAH (A), and we summarize the results in Table 7.18.

SSAH (A) performs well against one defense (FSAT) and very poorly against another
(TRADES). This yields a very high standard deviation for both the ASR and the score,
meaning that either the attack does not necessarily have a generalizable performance or
the FSAT defense severely underperforms TRADES on this dataset and architecture pair.
We unfortunately do not have enough data to be able to conclusively decide. Now, we
look at the results from the A3 paper. They are summarized in Table 7.19. To simplify
the presentation our the results, we numbered the defended models in the order that they
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Table 7.10: NIPS 2017 dataset indistinguishable transferable defended results

Model
Benign
ASR

AI-FGTM
ASR

S2I (A)
ASR

AI-FGTM
Score

S2I (A)
Score

Inception-v3ens3 [8] 6.8 91.8 96.7 0.838 0.930

Inception-v3ens4 [8] 8.9 90.3 96.7 0.807 0.927

Inception-
ResNet-v2ens

[8] 2.6 85.8 95.2 0.735 0.906

HGD [120] 1.2 89.4 96.3 0.799 0.927

R&P [121] 1.8 88.6 95.7 0.785 0.916

NIPS-r3 [118] 3.2 90.1 96.5 0.811 0.930

RS [9] N/A 66.4 92.2 N/A N/A

Average 4.083 86.1 95.6 0.796 0.923

appear in the table where the authors of A3 report their results.

A3 shows some success against all models. Its average ASR and score are fairly close
to SSAH (A)’s, however, the standard deviations are much smaller (and computed from
many more models). So while A3’s results are more reliable than SSAH (A), it does not
necessarily mean that SSAH (A) is worse. However, it does show that A3 is more likely to
be a more reliable attack against a wide array of defenses.

The second comparison we will look at is the comparison of the models above (A3

and SSAH (A)) with ACG [83] (summary 4.1.10), which is also a model parameter-based
attack that uses the same information as A3 except that it does not use any data-related
information. We will label this comparison as the color blue.

Blue: ACG & A3 & SSHA (A) Similarly to the previous comparison, SSAH (A) does
not attack any of the models that either ACG or A3 attacks. However, ACG and A3 attack
a swath of defended models in common. These models were retrieved from RobustBench
[94] which allows us to extract the benign accuracies (which allows us to confirm that
they are indeed the same models). In total, nine models are attacked by both papers.
Since SSAH (A) shares no models with the other papers, we will only focus on comparing
ACG and A3 as we can always retrieve SSAH (A)’s performance from Table 7.18. The
comparison between A3 and ACG is summarized in Table 7.20.
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Table 7.11: NIPS 2017 dataset indistinguishable transferable and white-box undefended
comparison

Model
S2I (A)
ASR

S2I (B)
ASR

Diff

Inception-v3 [96] 90.3 99.7 9.4

Inception-v4 [99] 89 96.6 7.6

Inception-
ResNet-v2

[99] 86.5 98.4 11.9

ResNet-152 [95] 84.9 99.7 14.8

Average 87.7 99.4 11.7

Table 7.12: CIFAR10 dataset indistinguishable BIA (A) undefended results

Model
Benign
ASR

BIA (A)
ASR

BIA (A)
Score

Custom model [11] 6.22 47.19 0.219

A3 appears to be getting better results than ACG across all models. However, the
difference is very small every time, therefore we can argue that when attackers already
have access to the target model parameters and the training loss, having access to data
from the same distribution could maybe help, but only provides very little improvement.
This difference could also be attributed to the inherent algorithmic differences between A3

and ACG rather than the information they use.

ACG also seems to be quite a consistent attack when it comes to attacking defended
models which reinforces the unsuitability of SSAH (A)’s high-variance results. Finally, we
can move to the last comparison with the only attack that does not use model parameters on
CIFAR100: BIA (A) [11] (summary 4.1.9). We color the overall comparison on CIFAR100
red.

Red: BIA (A) & ACG & A3 & SSHA (A) Unfortunately, BIA (A) attacks only a
single custom model (it is not specified whether it is defended or not). This greatly limits
the comparisons that can be made. The results gathered from this model can be found in
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Figure 7.8: NIPS 2017 dataset indistinguishable results. The first number is the average
ASR on undefended models whereas the second is the average ASR on defended models
(we write missing results as \). We bold the best performer.

Table 7.21.

While this table showcases a pretty strong ASR (and associated score), for fairness
purposes, we have to assume the worst case for the performance of the attack and assume
that the model they are undefended as they have not stated otherwise. This results in
a pretty significant drop in attack performance when going from using model parameters
to a transferable attack setting as usually, most attacks achieve very high ASRs against
undefended models. We present a summary of the results within the tree structure in
Figure 7.12.
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Figure 7.9: CIFAR10 dataset indistinguishable attacks

7.2.4 Attacks on the ImageNet dataset

Finally, we tackle the last dataset where comparisons are possible, ImageNet [101]. It
is by far the most evaluated dataset that we study in our work, with eleven variants of
attacks evaluated against it. As such, we perform four comparisons, starting by comparing
the different transferable attacks: LGV (A) [54] (summary 4.1.3), BIA (B) [11] (summary
4.1.9), ATA (A) [82] (summary 4.1.12), SSAH (B) [65] (summary 4.1.7).

Blue: LGV (A) & BIA (B) & ATA (A) & SSAH (B) On one hand, LGV (A),
BIA (B) and ATA (A) all use the same information: possible architectures, the training
data and the training function. On the other hand, SSAH (B) uses the same information
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Table 7.13: CIFAR10 dataset indistinguishable AEG (B) undefended results

Model
Benign
ASR

AEG (B)
ASR

AEG (B)
Score

VGG-16 [98] 11.2 93.8 0.867

ResNet-18 [95] 13.1 97.3 0.930

WideResNet [110] 6.8 85.2 0.721

DenseNet-121 [97] 11.2 94.1 0.873

Inception-v3 [96] 9.9 92.7 0.850

Average 10.44 92.62 0.848

Standard deviation 2.33 4.49 0.077

except for the data information where it uses data from the same distribution on top of
the rest. All these attacks attack undefended papers. Some share architectures, however,
not all of them provide benign accuracies for the models they evaluate. When possible, we
use the provided accuracies or extrapolate from the accuracies provided in other papers
under the assumption that well-trained undefended models on the same dataset with the
same architectures tend to have similar benign accuracies. In the case where papers do
not share benign accuracies, and we compare them against another that does, we italicize
the unreliable results. We compile the results in Tables 7.22 and 7.23. BIA (B), LGV(A),
and SSAH (B) both use the l∞-norm but BIA (B) uses a perturbation budget of 10/256
whereas SSAH (B) uses one of 8/256, LGV (A) does not specify the budget used. On
the other hand, ATA (A) uses the l0-norm with a perturbation budget of 1024/(224*224),
meaning they are allowed to fully modify 1024 pixels. Unfortunately, this means that the
following comparison is disparate.

BIA (B) outperforms the other attacks. Due to the lack of results for SSAH (B) and
the fact that the few results are worse than the other attacks even though SSAH (B) has
more information, we ignore it in what follows. All the other three attacks use the same
information, there are three possible reasons for this disparity in results:

1. BIA (B) is a better algorithm for extracting information and building a potent attack
from it.

2. LGV (A) and ATA (A) attacked undefended models that were somehow inherently
more robust (unlikely).
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Table 7.14: CIFAR10 dataset indistinguishable AEG (B) defended results

Model
Benign
ASR

AEG (B)
ASR

AEG (B)
Score

ResNet-18ens3 [8] 16.8 52.2 0.244

WideResNetens3 [8] 12.8 49.9 0.232

DenseNet-121ens3 [8] 21.5 41.4 0.125

Inception-v3ens3 [8] 14.8 47.5 0.204

Madry-Adv [7] 12.9 21.6 0.030

Average 15.76 47.52 0.167

Standard deviation 3.60 12.37 0.090

Table 7.15: CIFAR10 dataset indistinguishable SSAH (A) and A3 comparison defended

Model
Benign
ASR

SSAH (A)
ASR

A3

ASR
SSAH (A)

Score
A3

Score

WideResNet-34-10TRADES [128] 15.08 21.32 46.99 0.023 0.198

3. The disparity of results is caused by the different perturbation budgets/lp-norms
used.

We suspect a combination of 1. and 3. to be the reason explaining the discrepancy in
the results. Additionally, ATA’s attack is originally meant to attack vision transformer
models, hence that could partially explain a slightly worse performance in an equitable
evaluation setting.

Green: LGV (B) & ATA (B) & ACG LGV (B) and ATA (B) are the white-box
versions of the attacks. All three of the attacks use the model parameters and no data
information. LGV (B) and ATA (B) both also do not use any training information while
ACG uses the loss function. This comparison is difficult to perform, as LGV (B) and ATA
(B) both attack different undefended models while not providing any benign accuracies.
While we can replicate what we did for the previous comparison of LGV (A) with LGV
(B) and use the benign accuracy of the BIA paper, we, unfortunately, cannot do that for
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Table 7.16: CIFAR10 dataset indistinguishable A3 and ACG defended comparison. *
WideResNet-28-10pretraining misreported as WideResNet-34-10pretraining in the A3 paper.

Model
Benign
ASR

A3

ASR
ACG
ASR

A3

Score
ACG
Score

WideResNet-34-10TRADES [128] 15.08 46.99 47.18 0.198 0.200

WideResNet-34-20LBGAT [200] 11.3 46.54 46.23 0.204 0.201

WideResNet-34-10LBGAT [200] 11.78 47.24 46.9 0.209 0.206

WideResNet-34-20Overfitting [202] 14.66 46.67 45.69 0.196 0.187

WideResNet-70-16Fixing [184] 11.46 35.81 35.27 0.115 0.111

WideResNet-28-10Fixing [184] 12.67 39.34 38.8 0.139 0.134

WideResNet-28-10AWP [185] 11.75 40.02 39.7 0.146 0.144

WideResNet-70-16ULAT [183] 8.9 34.22 33.7 0.109 0.106

WideResNet-70-16ULAT [183] 14.71 42.92 42.45 0.163 0.159

WideResNet-34-20ULAT [183] 14.36 43.24 42.86 0.166 0.163

WideResNet-28-10ULAT [183] 10.52 37.3 36.9 0.128 0.125

WideResNet-28-10pretraining* [194] 12.89 45.24 44.75 0.188 0.184

Average 12.51 42.13 41.70 0.163 0.160

ATA (B) as the only architectures they attack (DeiT’s [152]) in the white-box scenario are
ones that no other papers attack (DiffAttack [85] attacks them but for a different dataset).
On the other hand, ACG [83] (summary 4.1.10) attacks only defended models. Therefore,
we report the results that we include in the final tree. We compile them in Tables 7.24,
7.25 and 7.26.

Purple: Green & BIA (C) & SSAH (A) Both BIA (C) and SSAH (A) are the white-
box variants of the original attacks. BIA (C) uses the training data on top of the model
parameters while SSAH (A) uses data from the same distribution. Neither of them uses
any training information. Both of these variants evaluate only against undefended models,
therefore comparing against ACG is not possible. We can, however, compare SSAH (A) and
LGV (B) as they both evaluate against a ResNet-50 [95]. Since SSAH (A) publishes their
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Table 7.17: CIFAR10 dataset indistinguishable AEG (B) & Pixle comparison defended

Model
Benign
ASR

AEG (B)
ASR

Pixle
ASR

AEG (B)
Score

Pixle
Score

ResNet-18 [95] 13.1 97.3 100.0 0.930 0.983

Table 7.18: CIFAR100 dataset indistinguishable SSAH (A) defended results

Model
Benign
ASR

SSAH (A)
ASR

SSAH (A)
Score

WideResNet-34-10TRADES [129] 43.06 50.77 0.0723

WideResNet-34-10FSAT [128] 25.89 95.15 0.838

Average 34.48 72.96 0.455

Standard deviation 12.14 31.38 0.542

ResNet-50’s benign accuracy and LGV (B) does not, but we use BIA’s benign accuracy
in the previous evaluation (Green), we compute LGV (B)’s score using the mean of both
benign accuracy to get closer to LGV (B)’s ResNet-50’s expected benign accuracy and get
a more reliable result. We compile the results in Table 7.27. On the other hand, BIA
(C) only evaluates their white-box scenario against a VGG-16 and a DenseNet-169 in the
undefended setting so we report their results separately in Table 7.28.

Red: Blue & Purple & MASSA & Pixle This is the final comparison. We include
the results from MASSA [66] (summary 4.1.5) and Pixle [37] (summary 4.1.4) to complete
our tree. We do so on architectures that most of the other papers in Blue and Purple
attack: ResNet-50 and VGG-16. MASSA is a label query-based attack while Pixle is
a score query-based attack. Neither of them uses any other information. Since neither
paper provides clean accuracy, we replicate our procedure from LGV (B)’s evaluation
in the Purple comparison where we use the average of the benign accuracies from BIA
and SSAH to compute the score. This yields the compiled results in Table 7.29. While
MASSA evaluates its performance against defended models, it does not fix a specific l2-
norm perturbation value and instead looks at how the attack performs when increasing
the l2-norm until the defense is completely broken or the l2-norm reaches 30. This makes
it hard for us to compare against other papers as they are the sole paper to use the l2-
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Table 7.19: CIFAR100 dataset indistinguishable A3 defended results

Model
Benign
ASR

A3

ASR
A3

Score

1 30.85 63.14 0.303

2 36.44 65.45 0.296

3 37.59 68.0 0.321

4 34.27 69.69 0.368

5 37.45 69.88 0.348

6 39.14 70.01 0.337

7 39.36 70.82 0.347

8 39.62 71.22 0.350

9 40.77 71.69 0.348

10 37.98 72.91 0.387

11 17.18 75.49 0.540

12 46.17 81.1 0.445

Average 36.40 70.78 0.366

Standard deviation 7.08 4.59 0.067

norm. Additionally, they do not provide clean accuracies for any of their models. Pixle on
the other hand does not attack any defended models. MASSA seems to outperform Pixle
slightly, although, again, due to the unreliable nature of the results, it’s hard to say if this
would entirely hold in practice. However, it shows that query-based access to a model is
sufficient to render it useless if the model is undefended.

We report the final result in a tree in Figure 7.14. The takeaways for ImageNet are the
following:

• Only query-based access to the model and no other information is sufficient to reduce
an undefended model’s accuracy to almost 0%.

• Transferable settings can achieve extremely high ASRs (93.48% for BIA (B)), which
shows that, at least in the undefended case, transferable attacks that use additional
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Table 7.20: CIFAR100 dataset indistinguishable A3 and ACG defended comparison

Model
Benign
ASR

A3

ASR
ACG
ASR

A3

Score
ACG
Score

WideResNet-70-16Fixing [184] 36.44 64.45 64.77 0.296 0.287

WideResNet-28-10Fixing [184] 37.59 68.0 67.27 0.321 0.311

ResNet-18-v2Overfitting [202] [119] 46.17 81.1 80.63 0.445 0.437

WideResNet-28-10pre-training [194] 40.77 71.69 70.51 0.348 0.331

WideResNet-34-10LGBAT [200] 39.36 70.82 70.33 0.347 0.340

WideResNet-34-10AWP [185] 39.62 71.22 70.11 0.350 0.335

WideResNet-34-20LBGAT [200] 37.45 69.88 69.13 0.348 0.338

WideResNet-70-16ULAT [183] 30.85 63.14 62.19 0.303 0.292

WideResNet-70-16ULAT [183] 39.14 70.01 69.43 0.337 0.329

Average 38.60 70.15 69.37 0.344 0.333

Table 7.21: CIFAR100 dataset indistinguishable BIA (A) undefended results

Model
Benign
ASR

BIA (A)
ASR

BIA (A)
Score

Custom model [11] 25.73 79.18 0.561

data and training information (usually to train surrogates) can achieve ASRs close
to query-based and white-box attacks. Unfortunately, since none of the transfer-
able attacks we studied evaluated defended models, we cannot say if this extends to
defended models.

• ImageNet-defended models are mostly broken by white-box attacks. ACG obtains
an average ASR of 68.5% and an average score 0.314. While, defended models do
perform better than undefended ones, the accuracy loss is still quite large.
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Table 7.22: ImageNet dataset indistinguishable Blue ASR comparison undefended

Model
Benign

ASR (BIA)
LGV (A)

ASR
BIA (B)
ASR

ATA (A)
ASR

SSAH (B)
ASR

ResNet-50 [95] 24.39 N/A 95.56 87.31 N/A

VGG-16 [98] N/A N/A N/A 87.46 19.14

DenseNet-121 [97] 25.78 N/A 96.02 64.17 N/A

ResNet-152 [95] 22.66 89.6 94.15 N/A N/A

VGG-19 [98] 29.05 82.2 95.91 N/A N/A

Inception-v3 [96] 23.81 45.4 85.76 N/A N/A

Average 25.14 72.4 93.48 79.65 19.14
Standard deviation 2.46 23.67 4.38 13.4 N/A

7.3 Takeaways

In this chapter, we presented a lot of results from various datasets, attacks and settings.
In this section, we want to identify the core takeaways from our findings. They are the
following:

Undefended models are broken. This is not a particularly new finding, but we confirm
and reinforce it. We show that across all datasets and threat models studied, not once
are undefended models robust to attackers. This anchors the previously held belief that
defenses are not only beneficial, they are required for any model to be deployed in practice.

The transferable setting might not be as difficult as previously thought. For
most of the datasets and salient situations studied, we noticed that transferable attacks,
when given additional information like access to the training data and training information
such as the training function, can perform very well, almost on par with white-box attacks.
This reinforces the notion that any information given to the attacker is crucial, especially
when that information can allow attackers to train surrogate models on the same data dis-
tribution. This is observed best when looking at BIA (A) on the CIFAR10 and CIFAR100
dataset. They severely underperform other transferable attacks. Therefore, we posit that
data information is a crucial component for transferable attacks.
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Table 7.23: ImageNet dataset indistinguishable Blue score comparison undefended

Model
Benign

ASR (BIA)
LGV (A)
Score

BIA (B)
Score

ATA (A)
Score

SSAH (B)
Score

ResNet-50 [95] 24.39 N/A 0.854 0.703 N/A

DenseNet-121 [97] 25.78 N/A 0.856 0.345 N/A

ResNet-152 [95] 22.66 0.751 0.835 N/A N/A

VGG-19 [98] 29.05 0.591 0.835 N/A N/A

Inception-v3 [96] 23.81 0.149 0.679 N/A N/A

Average 25.14 0.497 0.811 0.524 N/A
Standard deviation 2.46 0.312 0.075 0.253 N/A

Table 7.24: ImageNet dataset indistinguishable LGV (B) results undefended

Model
Benign

ASR (BIA)
LGV (B)

ASR
LGV (B)
Score

ResNet-50 [95] 24.39 97.1 0.883

Information categories matter, but their effect on performance is not straight-
forward. As mentioned in the previous takeaway, transferable attacks with access to the
training data perform almost on par with white-box attacks. However, losing access to
that original training data causes a sharp drop in attack performance. On the other hand,
we find that data or training information plays a very minor role in white-box settings.
This reinforces the belief that model information trumps other information categories as it
alone can allow for very potent attacks, whereas other information categories seem to fill
more of a supportive role that helps bridge the gap when model information is sparse.

Training information is understated but essential to transferable attacks. All
the transferable attacks whose results we have studied use the training function (except
for AEG which only uses the loss function and optimizer, which is most of the training
function). This is done to train surrogate models that can then be attacked by modified
white-box attacks that are adapted to be ’more transferable’. However, this assumption
is not directly stated in the papers we survey and is instead taken for granted. This goes
against proper security practices as it omits, what our results clearly show to be critical
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Table 7.25: ImageNet dataset indistinguishable ATA (B) results undefended

Model
Benign
ASR

ATA (B)
ASR

DeiT-T [152] N/A 100.0

DeiT-S [152] N/A 100.0

DeiT-B [152] N/A 100.0

Table 7.26: ImageNet dataset indistinguishable ACG results defended

Model
Benign
ASR

ACG
ASR

ACG
Score

ResNet-50robustness [206] 37.44 69.58 0.344

ResNet-50salman [231] 35.98 64.7 0.289

ResNet-18salman [231] 47.08 74.34 0.331

WideResNet-50-2salman [231] 31.54 60.9 0.271

ResNet-50FAST AT [164] 44.38 73.0 0.336

Average 39.28 68.50 0.314
Standard deviation 6.34 5.65 0.032

information, in the threat model description.

Need for better standard evaluation frameworks. While there now exists frame-
works like RobustBench [94] or Robustness [206] that hold many pre-trained defended
models with available metrics that can be re-used and attacked by papers. They are
poorly adapted in the broader community (only four of the twenty attacks we studied
evaluated against them). In general, there is a surprising lack of standards to evaluate
adversarial example attacks. This unnecessarily complicates comparisons between existing
works that are not directly related (when one work inspires another and compares against
it) and yields the unwieldy results’ section that we have.
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Table 7.27: ImageNet dataset indistinguishable LGV (B) & SSAH (A) comparison unde-
fended

Model
Benign
ASR

LGV (B)
ASR

SSAH (A)
ASR

LGV (B)
Score

SSAH (A)
Score

ResNet-50 [95]
24.39 (BIA)
23.85 (SSAH)

97.1 98.56 0.885 0.915

Table 7.28: ImageNet dataset indistinguishable BIA (C) results undefended

Model
Benign
ASR

BIA (C)
ASR

BIA (C)
Score

VGG-16 [98] 29.86 98.96 0.890

DenseNet-169 [97] 24.25 96.68 0.876

Average 27.06 97.82 0.883
Standard deviation 3.97 1.61 0.010

Evaluation against defended models. Too few papers evaluate their attack against
defended models (and they usually evaluate too few defended models as well when they do
evaluate against defended models). As mentioned in our first takeaway, it is a well-known
fact that undefended models are broken. Therefore, papers that only evaluate undefended
models bring very little to the field as a whole beyond showing that something that was
already broken can be broken again in a slightly different way. Papers evaluating against
easily accessible, well-known defended models would allow for a much easier comparison of
attacks in both the same and different settings. For example, comparing ACG to A3 was
remarkably easy due to them both attacking numerous models from the RobustBench [94]
framework.
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Table 7.29: ImageNet dataset indistinguishable MASSA & Pixle comparison undefended

Model
Benign
ASR

MASSA
ASR

Pixle
ASR

MASSA
Score

Pixle
Score

ResNet-50 [95]
24.39 (BIA)
23.85 (SSAH)

99.4 98.0 0.930 0.902

VGG-16 [98] 29.86 (BIA) 99.58 99.0 0.902 0.891

Average 26.99 99.49 98.5 0.916 0.897
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Figure 7.10: CIFAR10 dataset indistinguishable attack results. The first row of numbers
is the average ASR while the second is the average relative performance score. The first
column of numbers is the performance on undefended models whereas the second is the
performance on defended models (we write missing results as \). We italicize unreliable
results.

116



Figure 7.11: CIFAR100 dataset indistinguishable attacks

Figure 7.12: CIFAR100 dataset indistinguishable attack results. The first row of numbers
is the average ASR while the second is the average relative performance score. The first
column of numbers is the performance on undefended models whereas the second is the
performance on defended models (we write missing results as \). We bold the best per-
former for each row. We italicize unreliable results.
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Figure 7.13: ImageNet dataset indistinguishable attacks
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Figure 7.14: ImageNet dataset indistinguishable attack results. The first row of numbers
is the average ASR while the second is the average relative performance score. The first
column of numbers is the performance on undefended models whereas the second is the
performance on defended models (we write missing results as \). We italicize unreliable
results.
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Chapter 8

Conclusion

In this thesis, we presented a formalization to study adversary knowledge in the context of
adversarial example attacks on image classification models. This formalization is composed
of a theoretical framework to model, understand and relate information composing an
adversary’s knowledge to mount an attack. It includes a security game that models the
adversarial example attack scenario. To complement it, we provide a survey of recent
attacks in the image classification domain, to which we apply our formalization to yield
an in-depth empirical, falsifiable study of adversary knowledge and attack performance.
We succeeded in laying a strong theoretical foundation for future work, both attack and
defenses, to use and apply. We hope this elevates the standard in adversarial example
research to that of proper security research, and in turn encourages future work to more
carefully weigh assumptions and consider the threat models that follow, as we have shown
they can drastically change an attack’s outcome. Our work can be used to enhance the
reproducibility, comparability and fairness of future work as it allows a precise description
of one’s threat model and evaluations.
Unfortunately, due to the lack of aforementioned comparability in most of the existing
work, we are more limited in the conclusions we can derive from our results than we would
like. Given a threat model, it is possible that not all attacks that have been studied,
if any, optimally use the information they have access to. This means that some of the
results we observe could be due to algorithmic inefficiencies rather than a difference in
the underlying information used by the attack. We address this when presenting our
results. Additionally, for future work, we emphasize making results more comparable. It
is currently extremely hard to identify top performers within each threat model due to
this lack of comparability of results. A wider adoption of benchmarking frameworks like
RobustBench [94] as well as a standardization of evaluation practices are key to establishing
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tangible, lasting and comparable results. Following in the footsteps of other fields of
adversarial machine learning, like backdoor research, towards more theoretically-backed
and provable methods, rather than purely heuristical and empirical methods is another key
evolution that adversarial example research needs to follow. As for future work following
this systematization of knowledge, a similar exploration of knowledge used by defenders
could provide additional valuable insights in the search for both accurate and robust image
classification models. This systematization of knowledge could also be extended to other
data domains, as has adversarial example research.
Finally, we hope our research can help inspire present and future researchers to improve the
overall quality of the research output in the adversarial example research field. Adversarial
example research has existed for close to a decade now, and we hope that our work will
orient future research toward long-term solutions.
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