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Abstract

High-intensity focused ultrasound is a promising non-invasive medical technology that has
been successfully used to ablate tumors, as well as in the treatment of other conditions.
Researchers believe high-intensity focused ultrasound could see clinical application in other
areas such as disruption of the blood brain barrier and sonoporation. However, such ad-
vances in medical technology requires fundamental insight into the physics associated with
high-intensity focused ultrasound, such as the phenomena known as acoustic cavitation and
the collapse of the ensuing bubble cavity. The multiphase description of flow phenomena is
an attractive option for modelling such problems as all fluids in the domain are modelled
using a single set of governing equations, as opposed to separate systems of equations for
each phase and therefore, separate meshes for each fluid. In this thesis, we are interested
in studying the bubble collapse problem numerically, to elucidate the physics behind the
collapse of acoustically driven bubbles.

We seek to develop high-order numerical methods to solve this problem, due to their
potential to increase computational efficiency. However, high-order methods typically have
stability issues, especially when considering complex physics. For this reason, high-order
entropy-stable summation-by-parts schemes are a popular method used to simulate com-
pressible flow equations. These methods offer provable stability through satisfying a dis-
crete entropy inequality, which is used to prove discrete L2 stability. Such stability proofs
rely on the fundamental assumption that the densities and volume (or void) fractions of
both phases remain positive. However, we seek numerical schemes that can simulate flows
where the densities and volume fractions get arbitrarily close to zero and, as such, could
become negative as the simulation progresses. To address this problem, we present a novel
high-order entropy-stable positivity-preserving scheme to solve the 1-D isentropic Baer-
Nunziato model. The key to our proposed scheme is a novel artificial dissipation operator,
which has tuneable dissipation coefficients that allow the scheme to have provable nodewise
positivity of the densities and volume fractions. This new scheme is constructed by mix-
ing a high-order entropy-conservative scheme with a first-order entropy-stable positivity-
preserving scheme to create a high-order entropy-stable positivity-preserving scheme. Nu-
merical results which demonstrate the convergence, positivity, and shock capturing capa-
bilities of the scheme are presented.
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Chapter 1

Introduction

1.1 High-Intensity Focused Ultrasound

High-intensity focused ultrasound (HIFU) is a noninvasive medical technology that uses
specific transducer geometry to focus the ultrasound beam and its associated energy onto
millimeter-sized targets [36]. Ultrasound waves provide several benefits, such as, precise
control over the location that energy is deposited into the medium, enabling deep tissue
treatment, and improved focus onto the target due to its small wavelengths [39]. During
World War Two, submarines observed that high intensity ultrasound waves resulted in
the death of nearby fish through heating [36], thus, using focused ultrasound for locally
heating tissues was one of its early clinical applications. Today, HIFU is used clinically
as a non-invasive treatment to ablate solid malignant tumors, including those in the liver,
pancreas, kidney, bone, breast, and prostate [36]. Furthermore, clinicians can use imaging
techniques such as magnetic resonance imaging as well ultrasound imaging to monitor the
HIFU treatment process in real time [36]. HIFU has seen clinical success in treating other
conditions such as brain disorders, essential tremors, Parkinson’s disease, chronic pain, and
non-malignant pain [36].

There are several new areas that researchers believe HIFU could see clinical application
in [36], such as vessel blockage, disruption of the blood brain barrier, and sonoporation
[36, 69]. However, such advances require fundamental insight into the physics associated
with HIFU. The two main mechanisms associated with HIFU are local tissue heating, which
has been put into clinical practice for ablating tumors, and acoustic cavitation [15]. The
ultrasound field that is generated by the HIFU transducer causes a drop in fluid pressure
in localised regions, resulting in a phase change, causing cavitation [7]. This cavity appears
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as a bubble in the fluid, and will expand in time as more air from the surrounding fluid
diffuses into the bubble [7]. When the bubble is large enough and the amplitude of the
acoustic field is sufficient in magnitude, the bubble will grow to at least twice the initial
size [68]. As the bubble grows in size, the fluid pressure increases, which slows the rate of
growth until the bubble reaches a maximum radius, at which point, the bubble collapses
[68]. When this collapse occurs near a wall, a fluid jet will develop through the center of
the bubble, towards the wall [7]. This fluid jet can lead to large pressures on the surface
of the wall and even cause damage such as cell pitting [7]. The collapse of the bubble
is something that, if controlled, has many practical applications since the collapse can
puncture soft tissue, and the bubbles can be used to disrupt flow through blood vessels
[69, 65]. However, such control requires a detailed understanding of the underlying physics,
which is currently poorly understood [44].

In this thesis, we are interested in studying the bubble collapse problem as many of the
new areas of HIFU research involve the process of acoustic cavitation and either utilizing
or mitigating the bubble collapse [36, 69]. We wish to study this problem numerically
to elucidate the physics behind the collapse of an acoustically driven bubble. In this
thesis, we will develop numerical schemes which solve a set of one-dimensional multiphase
flow equations. This work can be extended to multiple dimensions and will be applicable
to simulating a bubble collapse problem. In the literature, there are two main numerical
approaches that are taken to study the dynamics of a bubble; a sharp interface approach [67]
and a multiphase approach[4, 11, 50]. In the sharp interface approach, the two phases, being
liquid and gas, are meshed separately, leading to a very well defined interface. However,
since we are looking to study the collapse of the bubble, we will not be using the sharp
interface approach because the collapse is such a violent process that meshing is difficult,
if not impossible in this scenario. Instead, we will use the multiphase approach, which
represents an attractive alternative for simulating the bubble collapse problem as both
phases are modelled using the same set of governing equations, thus, there is no need
for separate meshing. In the next section, we review the current literature for simulating
multiphase flows.

1.2 The Numerical Simulation of Multiphase Flows

Computational fluid dynamics (CFD) is used in many applications such as within the
aerospace, automotive, and maritime industries [66]. In the last 50 years, CFD has evolved
into an essential tool for both fundamental science as well as for engineering analysis, de-
sign, and optimization. CFD is attractive because it enables recovering the full solution
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and can be used in scenarios where experiments are too costly or impossible. High-order
numerical methods have the potential to improve the efficiency of numerical simulations
given their faster error convergence. For sufficiently fine error tolerances, high-order meth-
ods require significantly coarser meshes, as compared to first-order methods [28]. This
has the potential to drastically speed up simulation times, since fewer computational re-
sources are needed to run simulations on a coarse mesh. While high-order methods have
the potential to improve computational efficiency, they are also prone to Gibbs oscillations
around large-magnitude features such as shocks, which can destroy the accuracy of the
numerical solution [23]. Furthermore, even for smooth solutions, high-order methods can
have stability problems for non-linear problems, and therefore, provable stability is key to
maturing these methods to production level capable of routinely solving practical problems
in industry.

There is an extensive body of research that focuses on stabilizing high-order methods
in the presence of large magnitude features. A common approach taken to stabilize high-
order schemes is called shock capturing [64]. There are several methods which are used
to determine regions containing sharp features that include inspecting the smoothness of
the numerical solution [63, 62, 25, 54], developing a physics-based sensor that searches for
strong compression (such as shock waves) or other features that produce a large gradient,
such as shear layers [47, 45, 5]. Then, once a region with a sharp feature has been detected,
schemes will use one or more of the following techniques to stabilize around the feature:
limiters [51, 55], filtering [31], and artificial viscosity [63, 62, 50, 13]. A method constructed
to stabilize the numerical scheme should have provable mathematical properties that are
consistent with the properties of the continuous problem.

In this thesis, we will use the isentropic Baer-Nunziato equations to study the bub-
ble collapse problem (more details on the isentropic Baer-Nunziato model is provided in
section 2.2). Numerical schemes have been developed to simulate multiphase flows that
discretely mimic the non-linear entropy stability property, (2.7), (i.e., the second law of
thermodynamics) of the continuous equation [50, 11, 13, 12, 14]. Such a scheme that,
at least semi-discretely, satisfies this entropy inequality is called entropy-stable. It can
be shown that, by satisfying the non-linear entropy inequality, one can find a bound on
the L2 norm of the solution itself (see section 2.2 for the continuous case and section 5.1
for the discrete analog). In addition to entropy stability, one must guarantee that the
thermodynamic variables, such as density, remain positive even when arbitrarily close to
zero. In fact, a fundamental assumption used in the entropy stability proofs is that the
thermodynamic variables are positive over the entire domain. There are several approaches
that have been pursued to preserve positivity for multiphase flows including: Coquel et al.
[13], who use an HLL approximate Riemann solver, Trojak and Dzanic [61] developed a

3



positivity-preserving parameter-free numerical stabilization approach, which uses adaptive
entropy filtering, and Renac [50] has developed a scheme which preserves the positivity of
the cell averages and then uses a limiting approach to ensure positivity at the node level.

1.3 Thesis Organization and Summary of Results

In this thesis, we develop a new, high-order entropy-stable scheme for the isentropic Baer-
Nunziato equations, (2.3), which preserves the node-wise positivity of the densities of
the two phases as well as the positivity and boundedness of the void fractions. We take
inspiration from the work of Upperman and Yamaleev [63], who developed an entropy-
stable node-wise positivity-preserving scheme for the Navier-Stokes equations. In their
work, they utilize the Brenner regularization of the Navier-Stokes equations to add artificial
viscosity to their scheme and through the use of tuneable dissipation coefficients and time
step restriction, they are able to maintain positivity of density and temperature. To the
best of this author’s knowledge, the Baer-Nunziato equations have no viscous regularization
that would lead to the creation of an appropriate dissipation operator that would allow for
positivity to be maintained. A major contribution of this thesis, is the development of a
novel artificial dissipation operator that ensures both entropy-stability as well as preserving
the positivity of the densities and void fractions, importantly, node-wise.

The key idea of the methodology applied in this thesis is to construct a first-order
entropy-stable positivity-preserving scheme using the novel artificial dissipation operator.
The artificial dissipation operator has tuneable dissipation coefficients that can be used,
along with suitable time step restriction, to preserve the node-wise positivity of the void
fractions and densities as well as the boundedness of the void fractions. Then, this scheme
can be mixed with a high-order scheme, which has no positivity preserving properties, to
create a scheme that is high-order, entropy-stable, and positivity-preserving.

In chapter 2, we will review what it means for a partial differential equation (PDE) to be
well-posed. In this discussion, we detail an energy expression which is a necessary condition
for a non-linear PDE to be considered well-posed. Then, we introduce the isentropic Baer-
Nunziato equations and detail the entropy stability, as well as L2 stability, of the equations
at the continuous level. In particular, we detail how the entropy inequality leads to a
bound on the L2 norm of the solution itself.

In chapter 3, we introduce high-order diagonal-norm summation-by-parts (SBP) oper-
ators as well as their key properties that allow them to discretely mimic integration by
parts (IBP). Furthermore, we showcase the simultaneous approximation term (SAT) tech-
nique in relation to the toy problem of the linear advection equation to demonstrate how
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SAT terms weakly impose boundary conditions and inter-element coupling. We also show
how the SBP-SAT technique can be used to develop stability statements for an equation
by performing an example on the linear advection equation. We then show numerical re-
sults that demonstrate the convergence properties of SBP operators as well as the stability
properties. Finally, we demonstrate a special first-order derivative operator that will be
used in the first-order entropy-stable positivity-preserving scheme. We demonstrate how
schemes that are discretized with this operator have a truncation error that is first-order
theoretically, and present numerical results that confirm schemes constructed with this
operator converge at first-order.

In chapter 4, we develop a high-order entropy-conservative scheme for the isentropic
Baer-Nunziato equations. This scheme can handle smooth, periodic solutions to the isen-
tropic Baer-Nunziato equations, but has no positivity-preserving properties. Furthermore,
the scheme developed in chapter 4 has no entropy-dissipative terms, and as such, cannot
handle problems with shocks. Since we are looking to study the bubble collapse prob-
lem, which introduces a shock into the system, we use this scheme as a base to which
we add entropy-dissipative terms to render the resulting scheme both entropy-stable and
positivity-preserving.

We begin chapter 5 by developing a first-order entropy-stable positivity-preserving
scheme for the isentropic Baer-Nunziato model; this scheme is a major contribution
of this work. We add element interface dissipation as well as the novel artificial dissipation
operator to the entropy-conservative scheme developed in chapter 4, except, here we use
the special first derivative operator detailed in chapter 3, instead of a high-order derivative
operator. Then, we take inspiration from the work of Upperman [62] to mix the first-
order entropy-stable positivity-preserving scheme and the high-order entropy-conservative
scheme detailed in chapter 4, to create a high-order entropy-stable positivity-preserving
scheme; this mixed scheme is another major contribution of this work.

In chapter 6, we present numerical results obtained from simulations using the schemes
developed in the previous chapters. We show results for the entropy-conservative scheme
detailed in chapter (4) and the first- and high-order entropy-stable positivity-preserving
schemes detailed in chapter 5. Specifically for the high-order entropy-stable positivity-
preserving scheme, we show the numerical results obtained for two different Riemann
problems to demonstrate both the positivity-preserving qualities and the shock capturing
capabilities of the numerical scheme. Finally, in chapter 7, we summarize the contributions
of this thesis as well as present future research directions.

5



Chapter 2

Isentropic Baer-Nunziato Model

In this chapter, we briefly review the concept of well-posedness and demonstrate a method
to construct stability statements. In the remainder of the thesis, the objective will be to
construct numerical methods that are provably stable, mimicking the continuous stability
proofs step by step. Finally, we introduce the isentropic Baer-Nunziato equations; the
multiphase equations that will be considered in this thesis and can be used to model the
bubble collapse problem. We demonstrate how to construct an L2 bound on the continuous
form of the equations, starting from an entropy inequality that the Baer-Nunziato equations
must satisfy.

2.1 Well-Posedness of a Continuous Problem

In mathematics, for a problem to be considered well-posed, it must satisfy 3 properties
[29]:

1. A solution exists.

2. The solution is unique.

3. The solution depends continuously on the data.

Requirements 1) and 2) are self-explanatory, however, we require a mathematical means
of determining 3). In this thesis, we look to construct L2 bounds on the solution, which,
for linear problems, is sufficient to demonstrate continuous dependence on the data. For
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non-linear problems, such a bound is a necessary condition. To expand further, consider
the following initial-boundary-value problem (IBVP) in one spatial dimension:

∂u

∂t
+R(u) = S(x, t), x ∈ [xL, xR], t > 0,

BC(u) = G(t),

u(x, 0) = F (x),

(2.1)

where u is a function of space and time, R(u) is a differential operator, S is a source term,
BC(u) is a boundary operator that encodes the boundary conditions, G(t), of the problem,
and F (x) denotes the initial conditions. For this IBVP to be considered well-posed, one of
the conditions that must be met, is that the norm of the solution is bounded by the data
of the problem, which includes S(x, t), G(t), and F (x) [29]. Generically, this bound has
the following form:

∥u∥2u ≤ γ(∥S∥2S + ∥G∥2G + ∥F∥2F ), (2.2)

where γ is a positive quantity that can depend on time, but, is independent of the data.
Notice that each norm has a different subscript; this is to indicate that the same norm
does not need to be used for each term. Note that (2.2) bounds the norm of the solution
by the data of the problem, and for nonlinear equations, such as the Baer-Nunizato model,
this is a necessary condition for well-posedness. Furthermore, for linear problems, it can
be shown that the stability statement (2.2), leads to a statement that the solution depends
continuously on the data of the problem and further, can lead to a statement on uniqueness.

Throughout this thesis, for any problem that is studied, we will develop a stability
statement in the form of (2.2) at the continuous level, to ensure that this necessary con-
dition for well-posedness is met. Then, we will construct numerical schemes which mimic
the stability statement at the discrete level. This means that our schemes will have stabil-
ity, which is of practical importance in the simulation of PDEs, as we want to ensure the
solution remains bounded as the scheme is marched in time.

2.2 Isentropic Baer-Nunziato Model

Compressible two-phase flow models find extensive applications throughout physics and
engineering. For example, in aerospace propulsion systems, kerosene is stored in a com-
pressed form and is injected into the combustion chamber via small droplets [46]. A model
that is commonly used to study such two-phase flow systems is the Baer-Nunziato model
[4, 3]. This model was originally developed by Baer and Nunziato to describe the behaviour
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of a reacting two-phase mixture of solid grains and a gaseous combustion product. The
model was later adapted to study the mixture of liquid and gas phases in [52, 11, 21, 27].
This makes the Baer-Nunziato model appealing for studying acoustic cavitation in relation
to HIFU, since the bubble collapse problem is composed of a gaseous bubble surrounded
by liquid. The equations describes a two-temperature, two-velocity, two-pressure system.
It is a seven equation model with two momentum, continuity, and energy equations along
with one equation which describes the evolution of the void fractions, also known as volume
fractions. However, in this thesis, we will study the isentropic Baer-Nunziato model, which
is a five equation system and does not contain energy equations for each phase.

The isentropic Baer-Nunziato model is a system of first-order, nonlinear PDEs, which
contain a nonconservative term. The Baer-Nunziato equations are strictly hyperbolic under
certain restrictions on the solution, that will be defined later in this chapter. We assume
that our solution lies within the set of admissible states such that the system of equations
is hyperbolic. Hyperbolic PDEs can generate discontinuous solutions as they evolve in time
even for smooth initial data. Furthermore, the evolution of the two phases are coupled
through the use of a nonconservative term in the form c(u)∂u

∂x
, which is dependent upon

the gradient of the phase fractions. This nonconservative product is not unique at discon-
tinuities and this leads to uncertainty in the value of the nonconservative term, which must
then be defined at the discontinuity. Possible choices for this definition can either be based
on the choice of Lipschitz paths which connect different states around discontinuities [17],
or the kinetic relations derived from the physical entropy [6]. Furthermore, since we are
interested in studying the bubble collapse problem, we are interested in studying discon-
tinuous solutions to the Baer-Nunziato model, as the collapse of the bubble introduces a
shock into the system. To study discontinuous solutions, we need to study the weak form
of the PDE. This means that the solution will not be unique, thus, we need a way to en-
sure that the scheme will converge to a reasonable solution. To this end, we seek solutions
that satisfy a nonlinear stability condition, called the entropy condition [40]. This entropy
condition is based off of a given convex entropy function for the system of equations. By
satisfying this entropy condition, we are ensuring that if the scheme converges, then it will
converge to a physically relevant solution. In the case of a system of PDEs, satisfying this
entropy condition is a necessary, but not sufficient condition for well-posedness. Schemes
which satisfy this entropy condition are known as entropy-conservative or entropy-stable
depending on whether the scheme is designed to conserve entropy, or dissipate it. Thus,
in later chapters, to solve the isentropic Baer-Nunziato model numerically, we will create
entropy-conservative schemes to solve problems in which entropy is conserved, e.g., smooth
solutions with periodic boundary conditions. Furthermore, we will create entropy-stable
schemes to handle problems that produce entropy. For example, the mathematical entropy
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of a system must decrease across a shock according to the second law of thermodynam-
ics. Tadmor, [60] developed a framework to create entropy-conservative and entropy-stable
numerical fluxes in the context of hyperbolic conservation laws. These fluxes will either
conserve or dissipate the mathematical entropy of the system. This work has since been
extended to nonconservative systems through the use of fluctuation fluxes [48]. In this the-
sis, we will use the fluctuation fluxes of Renac [50] to solve the isentropic Baer-Nunziato
model.

Here, we consider the two-velocity two-pressure isentropic Baer-Nunziato model [4, 3]
with void fractions αi, densities ρi, and velocities vi for phases i = 1, 2. Associated with
each phase are the pressure pi = pi(ρi), specific internal energy, ei, and enthalpy, hi, which
are governed by the equations dei

dρi
= pi

ρ2i
and hi = ei +

pi
ρi
, respectively. Moreover, the speed

of sound is defined as ci =
√

dpi/dρi. Here, we will be considering polytropic ideal gas
with equations of state pi(ρi) = kργii , for k > 0 and γi > 1. The governing equations for
the Cauchy problem have the form,

∂u

∂t
+

∂f(u)

∂x
+ c(u)

∂u

∂x
= 0, x ∈ R, t > 0, (2.3a)

u (x, 0) = u0, x ∈ R, (2.3b)

where u0(x) is a known initial condition and

u=


α1

α1ρ1
α1ρ1v1
α2ρ2
α2ρ2v2

 ,f(u)=


0

α1ρ1v1
α1(ρ1v

2
1+p1)

α2ρ2v2
α2(ρ2v

2
2+p2)

 , c(u)
∂u

∂x
=


vI
0

−pI
0
pI

 ∂α1

∂x
.

The terms vI and pI denote the interface velocity and pressure, where, in this thesis vI = v2
and pI = p1 have been chosen as closure laws for the interface velocity and pressure as
used in [50]. Note that a large body of work is focused on deriving different closures for the
interface velocity and pressure, aimed at various applications. For example, in the original
paper of Baer and Nunizato [4], the closures vI = v1 and pI = p2 were proposed for the
case where one of the phases is nearly incompressible. Furthermore, the void fractions, αi,
must satisfy the saturation condition

α1 + α2 = 1. (2.4)
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The Baer-Nunziato model is only weakly hyperbolic since the system has the following real
eigenvalues Γi, i = 1, 2, . . . , 5 [13]:

Γ1 = v2, Γ2 = v1 − c1, Γ3 = u1 + c1, Γ4 = v2 − c2, Γ5 = u2 + c2,

where, the right eigenvectors are linearly independent if, and only if [13],

α1 ̸= 0, α2 ̸= 0, |v1 − v2| ≠ c1. (2.5)

Thus, the system is strictly hyperbolic if the conditions in (2.5) are satisfied. Furthermore,
define the set of admissible states as

Ω = {u ∈ R5 | 0 < αi < 1, ρi > 0, i = 1, 2}. (2.6)

The conservative portion of (2.3a), ∂f(u)
∂x

, describes the variations in the physical quan-
tities and the nonconservative term, c(u)∂u

∂x
, couples the phases. Furthermore, if the void

fractions, αi’s, are constant in space, the two phases decouple into two systems of com-
pressible Euler equations [14]. Additionally, smooth solutions to the system (2.3) satisfy
the following equation [13],

∂η(u)

∂t
+

∂q(u)

∂x
= 0.

Furthermore, for non-smooth, weak solutions to (2.3), one adds the entropy criterion in or-
der to select a physically relevant solution. Therefore, a weak solution to the Baer-Nunziato
equations is one that satisfies the following nonlinear stability (or entropy) condition

∂η(u)

∂t
+

∂q(u)

∂x
≤ 0, (2.7)

in a weak sense [30]. Equation (2.7) holds for the (mathematical) entropy-entropy flux
pair, η and q, respectively

η(u) =
2∑

i=1

αiρi

(
v2i
2

+ ei(ρi)

)
, q(u) =

2∑
i=1

αiρi

(
v2i
2

+ hi(ρi)

)
vi, (2.8)

where η is a strictly convex function when u ∈ Ω [50]. Then, define the entropy variables
as wT = ∂η

∂u
. Then, for u ∈ Ω, the entropy pair satisfies

dη

du

(
∂f(u)

∂x
+ c(u)

∂u

∂x

)
= wT

(
∂f(u)

∂x
+ c(u)

∂u

∂x

)
=

∂q(u)

∂x
. (2.9)
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When the solution contains a discontinuity, the inequality in (2.7) becomes a strict in-
equality to account for the decreasing entropy across a shock. The system (2.3) can also
be written in quasi-linear form

∂u

∂t
+ A (u)

∂u

∂x
= 0, x ∈ R, t > 0, (2.10)

where A : Ω ∋ u 7→ A (u) = ∂f
∂u

+ c (u) ∈ R5×5 is a matrix-valued function for smooth
solutions of (2.3).

As stated previously, our solution must satisfy the entropy condition (2.7). We will
now show how to construct this entropy inequality at the continuous level. Furthermore,
when developing numerical schemes to solve the Baer-Nunziato equations, we will construct
schemes that mimic this analysis step-by-step at the discrete level. Another motivation to
constructing schemes which satisfy the entropy inequality, (2.7), is based on the work of
Dafermos [16], who proved that this inequality leads to an L2 bound on the solution.

Remark 2.2.1. Next, we will show the continuous entropy-stability analysis and the how
this results in an L2 bound on the solution. In this thesis, our aim is to develop schemes
that enable stability proofs that follow the continuous stability proofs in a one-to-one
fashion and this will be the focus of later chapters.

To derive the bound on the entropy of the solution, we multiply the PDE (2.3) by the
entropy variables and integrate over the spatial domain, x ∈ [xL, xR]. First, we will show
this in the case of a smooth, periodic problem,∫ xR

xL

wT∂u

∂t
dx+

∫ xR

xL

wT

(
∂f(u)

∂x
+ c(u)

∂u

∂x

)
dx = 0.

Then, use (2.9) on the second term on the left hand side and rewrite the entropy variables
in the first term on the left hand side as wT = ∂η

∂u
to find that∫ xR

xL

∂η

∂u

∂u

∂t
dx+

∫ xR

xL

∂q(u)

∂x
dx = 0.

Next, the first term on the left hand side can be simplified using chain rule to obtain∫ xR

xL

∂η

∂t
dx+

∫ xR

xL

∂q(u)

∂x
dx = 0.
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We have the same form as (2.7), but, in the case of smooth, periodic solutions, we keep
the equality, i.e., ∫ xR

xL

∂η

∂t
dx+

∫ xR

xL

∂q(u)

∂x
dx = 0.

Using the Leibniz integration rule on the first term on the left hand side and evaluating
the second integral on the left hand side results in

d

dt

∫ xR

xL

ηdx = q(xL)− q(xR),

where, since we are considering a periodic problem, q(xL) = q(xR), thus,

d

dt

∫ xR

xL

ηdx = 0.

Therefore, in the case of smooth, periodic solutions to (2.3), the integral of the entropy of
the solution over the domain is constant. Now, consider non-smooth, periodic solutions to
(2.3). In this case, to account for the entropy loss across a shock, we use a strict inequality
[13], to find that

d

dt

∫ xR

xL

ηdx < 0.

Therefore, in general, periodic solutions to (2.3) satisfy the following bound on the entropy
of the solution

d

dt

∫ xR

xL

ηdx ≤ 0. (2.11)

Now, we will show that the entropy inequality of the system implies a bound on the
norm of the solution. We follow the derivation of Svärd [57], who has proved this result
for the Navier-Stokes equations, but, adapt the proof to the Baer-Nunziato equations. We
will study a periodic problem. To begin, we define a new entropy

η = η − η(u0)− η′(u0)
T(u− u0),

where η′ = ∂η
∂u

and u0 is a constant, non-zero state. For the state u0 we choose αi =

(αi)0 > 0 and ρi = (ρi)0 > 0, i = 1, 2. Similarly define ∂q
∂x

= ∂η
∂u

(∂f
∂x

+ c∂u
∂x
). This new

entropy η, satisfies an entropy inequality as long as the original entropy function, η, does.
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We also define the new entropy variables as wT = ∂η
∂u

= η′−η′(u0), where,
∂w
∂x

= ∂w
∂x

. Now,
left multiply (2.3a) by wT and integrate over the spatial domain to find that∫ xR

xL

wT∂u

∂t
dx+

∫ xR

xL

wT

(
∂f

∂x
+ c

∂u

∂x

)
dx = 0.

Note that wTut =
∂η
∂u

∂u
∂t

= ∂η
∂t

and w
(
∂f
∂x

+ c∂u
∂x

)
= ∂q

∂x
. Thus,∫ xR

xL

∂η

∂t
dx+

∫ xR

xL

∂q

∂x
dx = 0.

We are now in the form of the entropy inequality (2.7), thus, since we are considering both
smooth and discontinuous solutions, we replace the equality with an inequality as follows∫ xR

xL

∂η

∂t
dx+

∫ xR

xL

∂q

∂x
dx ≤ 0.

The second term on the left hand side vanishes since we are considering periodic problems,
therefore, ∫ xR

xL

∂η

∂t
dx ≤ 0. (2.12)

Then, we Taylor expand η around u0 to find that

η(u) = η(u0) + η′(u0)
T(u− u0) +

1

2
(u− u0)

Tη′′(u(θ))(u− u0), (2.13)

where η′′ = ∂2η
∂u2 . By Taylor’s Formula, there exists some θ ∈ [0, 1] such that u(θ) =

u0(1− θ) +uθ and (2.13) holds. By assumption, the solution u ∈ Ω, where Ω is the space
of admissible states as defined in (2.6). Thus, we have that αi > 0 and ρi > 0 for i = 1, 2.
Furthermore, we have picked our constant state, u0 such that (αi)0 > 0 and (ρi)0 > 0 for
i = 1, 2. Thus, we have that αi(θ) > 0 and ρi(θ) > 0. Therefore, u(θ) ∈ Ω and η(u(θ)) is
a strictly convex function. Then, since η(u(θ)) is strictly convex, its Hessian, η′′(u(θ)), is
positive definite, which means its eigenvalues are all real and positive. Thus, η′′min(t) > 0,
where η′′min(t) is the minimum eigenvalue of η′′(u(θ), t) in space and time. Notice that η
has been defined such that

η = η − η(u0)− η′(u0)
T(u− u0) =

1

2
(u− u0)

Tη′′(u(θ))(u− u0). (2.14)

Integrate equation (2.12) in time from t = 0 to t = T to find that∫ xR

xL

η(u(x, T ))dx ≤
∫ xR

xL

η(u(x, 0))dx,
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where, substituting (2.14) into the left hand side of the above equation results in

1

2

∫ xR

xL

(u− u0)
Tη′′(u(θ(T )))(u− u0)dx ≤

∫ xR

xL

η(u(x, 0))dx.

Therefore, we can say that
∫ xR

xL
(u − u0)

Tη′′(u(θ(T )))(u − u0)dx ≤ C. From this, we can
deduce that∫ xR

xL

(u− u0)
Tη′′min(u− u0)dx = η′′min

∫ xR

xL

(u− u0)
T(u− u0)dx ≤ C. (2.15)

Now, rewrite the integrand (u− u0)
T(u− u0) as follows

uTu = (u− u0 + u0)
T(u− u0 + u0),

= (u− u0)
T(u− u0) + 2(u− u0)

Tu0 + uT
0u0,

≤ 2(u− u0)
T(u− u0) + 2uT

0u0.

(2.16)

To see why the inequality in the last line holds, first, change the notation so that it is
easier to read. Let x = (u− u0) and y = u0. Then, start from

0 ≤ (x− y)2,

0 ≤ x2 − 2xy + y2.

Adding x2 + 2xy + y2 to both sides of the above equation gives

x2 + 2xy + y2 ≤ 2x2 + 2y2,

which is the exact inequality obtained in (2.16). Now, integrate (2.16) over the spatial
domain to find that∫ xR

xL

uTudx ≤ 2

∫ xR

xL

(u− u0)
T(u− u0)dx+ 2

∫ xR

xL

uT
0u0dx.

Then, from (2.15) we have that
∫ xR

xL
(u− u0)

T(u− u0)dx ≤ C
η′′min

. Thus, we find that∫ xR

xL

uTudx ≤ 2
C

η′′min

+ 2

∫ xR

xL

uT
0u0dx.

Defining ∥u∥2 =
∫ xR

xL
uTudx results in

∥u∥2 ≤ 2
C

η′′min

+ 2∥u0∥2.

Therefore, by bounding the entropy of the solution, it is possible to obtain a bound on the
norm of the solution itself. Thus, entropy stability implies that the problem is stable.
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Remark 2.2.2. Here, we have used the entropy analysis to prove stability. In chapter 3,
we will use an energy method; there exist many other methods to prove stability, and more
broadly, well-posedness such as the compactness method and the theory of semigroups [22].

In this thesis, we will be creating numerical schemes to solve the isentropic Baer-
Nunizato model that have provable properties such as entropy stability, i.e., a numerical
scheme which satisfies the entropy condition (2.7). To discretize the spacial derivatives
in the isentropic Baer-Nunziato equations, (2.3), we will use SBP operators [56, 43, 20],
combined with the SAT technique [18], to weakly enforce the boundary conditions. The
SBP-SAT technique is detailed in the next chapter.
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Chapter 3

Summation By Parts Operators

3.1 Motivation

In the numerical simulation of PDEs, the potential enhancements in efficiency offered by
higher-order methods has been known for some time [38, 59]. As the computational error
tolerance of the numerical solution becomes more stringent, the benefit that high-order
methods can provide becomes more pronounced. In CFD, higher-order methods can be
advantageous when applied to time-dependent problems that require high-resolution. De-
veloping high-order numerical schemes for the solution of non-linear PDEs that are efficient
and stable is a particular challenge even for smooth problems. One approach to address
this challenge is through the use of SBP operators (matrix difference operators for ap-
proximating derivatives at nodes in a mesh) [56, 43, 20], with boundary conditions and
inter-element coupling weakly enforced by SATs [26, 9, 18]. Another difficulty in the use
of high-order methods is that practical problems can contain singularities and discontinu-
ities such as shock waves. The theory behind high-order methods assumes a sufficiently
smooth solution and as such, high-order methods are prone to spurious oscillations around
discontinuities. Thus, significant research effort has been spent on developing schemes that
damp these spurious oscillations [53].

The SBP-SAT technique is desirable because, as we will show in this chapter and
throughout the remainder of this thesis, it can be used to create discretizations with prov-
able properties. For example, given a PDE, we can generate a stability statement at the
continuous level as part of the process of proving a problem is well-posed. We can then
mimic this statement at the semi-discrete level using the SBP-SAT technique, to prove
that our scheme will be stable at the semi-discrete level. Thus, throughout this thesis, we
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will create discretizations using the SBP-SAT technique that have provable properties such
as stability.

3.2 High-Order Summation By Parts Operators

In one dimension and in this thesis, the physical domain, x ∈ [xL, xR], is discretized into
n equally sized elements, with N uniformly distributed points per element such that, on
some element, k, we have the set of nodes

[xk,1, xk,2, . . . , xk,N ],

where, x(k−1),N = xk,1. Here, we have introduced the notation that will be used for the
remainder of the thesis: to describe a quantity “b” located on element j, and node i, we
use the notation bj,i. These points are referred to as solution points as they are where the
value of the solution is approximated, i.e., the solution on the kth element is approximated
as uk(t) = [u(xk,1, t), . . . ,u(xk,N , t)]

T = [uk,1, . . . ,uk,N ]
T.

The spatial derivatives in (2.3) are discretized using finite-difference operators that
satisfy the SBP property [58, 8]. SBP operators are mimetic of IBP (3.1) at the discrete
level, ∫ xR

xL

v
∂u

∂x
dx = vu

∣∣∣xR

xL

−
∫ xR

xL

u
∂v

∂x
dx, (3.1)

and are defined as [18, 58]

Definition 3.2.1 (Summation-by-parts operator). A degree p matrix difference operator,
D ∈ RN×N , is an approximation to the first derivative

(
∂
∂x

)
on the domain x ∈ [xL, xR], at

the nodes [x1, x2, . . . , xN ], where x1 = xL and xN = xR, with the SBP property if

1. Dxk = P−1Qxk = kxk−1, k = 0, 1, . . . , p,

2. P = PT, xTPx > 0, ∀x ̸= 0,

3. Q+ QT = E, E = diag(−1, 0, . . . , 0, 1).
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With p = 2, the following matrices satisfy the SBP conditions

D =
1

h



−24/17 59/34 −4/17 −3/34
−1/2 0 1/2 0 0
4/43 −59/86 0 59/86 −4/43 0
3/98 0 −59/98 0 32/49 −4/49
0 0 1/12 −8/12 0 8/12 −1/12

. . .
. . .

. . .
. . .

. . .

1/12 −8/12 0 8/12 −1/12 0 0
4/49 −32/49 0 59/98 0 −3/98

4/43 −59/86 0 59/86 −4/43
0 −1/2 0 1/2
3/4 4/17 −59/34 24/17



,

P = hdiag(17/48, 59/48, 43/48, 49/48, 1, . . . , 1, 49/48, 43/48, 59/48, 17/48),

Q =



−1/2 59/96 −1/12 −1/32
−59/96 0 59/96 0
1/12 −59/96 0 59/96 −1/12
1/32 0 −59/96 0 8/12 −1/12
0 0 1/12 −8/12 0 8/12 −1/12

. . .
. . .

. . .
. . .

. . .

1/12 −8/12 0 8/12 −1/12 0 0
1/12 −8/12 0 59/96 0 −1/32

1/12 −59/96 0 59/96 −1/12
0 −59/96 0 59/96

1/32 1/12 −59/96 1/2



,

where h denotes the mesh spacing. From Definition (3.2.1), the derivative operator ap-
proximates a first derivative with a truncation error of order p, i.e.,

∂g

∂x
(x, t) = Dg + Tp, (3.2)

where ∂g
∂x
(x, t) is a vector of the derivative of g evaluated at the solution points x, at time

t, and max (|Tp|) = O(hp). Furthermore, P defines an inner product and norm as follows

(u,v)P = uTPv,

∥u∥2P = uTPu,∫ xR

xL

uvdx ≈ uTPv,
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where u and v are vectors constructed by evaluating the functions u and v, respectively, at
x. In this thesis, we use diagonal-norm finite difference SBP operators and will alternatively
write E = tRt

T
R − tLt

T
L where

tL = [1, 0, . . . , 0]T,

tR = [0, . . . , 0, 1]T.
(3.3)

Using Definition (3.2.1) the SBP property can be demonstrated as follows,

vTPDu = vTP
(
P−1Q

)
u,

= vTQu,

= vT
(
E− QT

)
u,

= vTEu− vTQTu,

= vTEu− vTQTP−1Pu,

vTPDu︸ ︷︷ ︸
≈
∫ xR

xL

vux dx

= vNuN − v1u1︸ ︷︷ ︸
= vu

∣∣∣xR

xL

− vTDTPu︸ ︷︷ ︸
≈
∫ xR

xL

uvx dx

,

which demonstrates that SBP operators are mimetic of IBP.

3.3 Simultaneous Approximation Terms

In this thesis, enforcing boundary conditions as well as inter-element coupling is accom-
plished using the SAT technique [18]. SATs are penalty terms which enforce boundary
conditions in a weak sense. Meaning that, instead of setting the solution at boundary
nodes to exactly equal the boundary conditions, we penalize deviations from the boundary
conditions.

3.3.1 Linear Advection Equation

To motivate the use of SBP operators and SATs, consider the linear advection equation
with a positive unit wave speed:

∂u

∂t
+

∂u

∂x
= 0, x ∈ [xL, xR], t > 0,

u(xL, t) = G(t),

u(x, 0) = F (x).

(3.4)
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We can demonstrate the stability of the equation at the continuous level by using the
energy method [18]. We multiply (3.4) by u and integrate over the spatial domain to find
that ∫ xR

xL

u
∂u

∂t
dx+

∫ xR

xL

u
∂u

∂x
dx = 0.

The term u∂u
∂t

can be rewritten using chain rule as

u
∂u

∂t
=

1

2

∂u2

∂t
,

and applying IBP to the second term of the left hand side results in∫ xR

xL

u
∂u

∂x
dx =

1

2
u2

∣∣∣∣xR

xL

.

Furthermore, we can use Leibniz integration rule on the temporal term, thus,

d

dt

∫ xR

xL

u2dx+ u2

∣∣∣∣xR

xL

= 0,

d

dt

∫ xR

xL

u2dx = −
(
u(xR)

2 − u(xL)
2
)
.

Defining ∥u∥2 =
∫ xR

xL
u2dx, the above equation can be written as

d

dt
∥u∥2 = u(xL)

2 − u(xR)
2.

We can integrate in time from t = 0 to t = T to find that∫ T

0

d

dt
∥u∥2 dt =

∫ T

0

u(xL)
2 − u(xR)

2 dt,

=

∫ T

0

u(xL)
2 dt−

∫ T

0

u(xR)
2 dt.

The second term on the right hand side is less than or equal to zero since the integrand is
positive for all u(xR), thus∫ T

0

d

dt
∥u∥2 dt ≤

∫ T

0

u(xL)
2 dt.

20



Integrating the left hand side and substituting the boundary condition u(xL) = G(t) results
in

∥u(·, T )∥2 − ∥u(·, 0)∥2 ≤
∫ T

0

G(t)2 dt.

Finally, substitute the initial condition, u(x, 0) = F (x), to obtain

∥u(·, T )∥2 ≤ ∥F (·)∥2 +
∫ T

0

G(t)2 dt.

Thus, we have bounded the norm of the solution by the data of the problem, and since the
PDE is linear, this bound can then be used to show continuous dependence on the data of
the problem, as required for well-posedness.

We can mimic this continuous stability analysis at the semi-discrete level using the
SBP-SAT technique as follows. We discretize the spatial domain in (3.4) using a single
element with N nodes for convenience – we will perform the same analysis in the next
section using multiple elements. The numerical solution reads u = [u1, . . . , uN ]

T. Then,
using the SBP derivative operator to approximate the spatial derivative and adding the
SAT term SATs = −γP−1tL (u1 −G(t)), to weakly enforce the boundary condition, the
semi-discrete scheme reads

ut + Du = SATs,

ut + Du = −γP−1tL (u1 −G(t)) .
(3.5)

At first glance, it is not clear why the added SAT term enforces the boundary condition
and what its effect on the solution is. Shortly, we will derive the SATs from a discontinuous
Galerkin point of view, but here we point out that in (3.5), inside of the brackets on the right
hand side is a rearrangement of the boundary condition. Thus, we are approximating the
PDE as well as the boundary conditions simultaneously. Now, we mimic the continuous
analysis at the semi-discrete level by left multiplying the semi-discrete scheme by uTP,
which is the discrete equivalent of multiplying by the solution and integrating over the
domain, to find that

1

2

duTPu

dt
+ uTQu = −γuTtL(u1 −G(t)), (3.6)

where, uTP∂u
∂t

= 1
2
duTPu

dt
, is the discrete analog to,

∫
u∂u

∂t
dx = 1

2
d
dt

∫
u2 dx. Then, the
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second term on the left hand side can be written as follows,

uTQu = uT
(
E− QT

)
u,

= uTEu− uTQTu,

uTQu = uTEu− uTQu,

uTQu =
1

2
uTEu.

Plugging the above result into (3.6) results in

1

2

duTPu

dt
+

1

2
uTEu = −γuTtL(u1 −G(t)),

1

2

d

dt
∥u∥2P = −1

2
uTEu− γuTtL(u1 −G(t)).

Now, substituting the form of E, one finds that

1

2

d

dt
∥u∥2P = −1

2
u2
N +

1

2
u2
1 − γu2

1 + γu1G(t),

= −1

2
u2
N − (γ − 1

2
)u2

1 + γu1G(t).

Now, complete the square on the last two terms to obtain

1

2

d

dt
∥u∥2P = −1

2
u2
N − (γ − 1

2
)

(
u1 −

γ

2(γ − 1
2
)
G(t)

)2

+
γ2

4|γ − 1
2
|
G2(t).

The first two terms on the right hand side are less than or equal to zero for all values of
u1, uN , and G(t) when γ > 1

2
. Therefore, by choosing γ > 1

2
and defining,

Γ =
γ2

4
(
γ − 1

2

) ,
we have,

1

2

d

dt
∥u∥2P ≤ ΓG2(t).

Then, integrate in time to find that∫ T

0

d

dt
∥u∥2P dt ≤ 2

∫ T

0

ΓG2(t) dt,

∥u(T )∥2P − ∥u(0)∥2P ≤ 2

∫ T

0

ΓG2(t) dt.
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Moving the initial condition to the right hand side results in

∥u(T )∥2P ≤ ∥F (x)∥2P + 2Γ

∫ T

0

G2(t) dt.

Therefore, we have bounded the norm of the numerical solution by the data of the problem
as in the continuous case. This analysis also gives us a restriction on the value of γ that
scales the SAT term, i.e., γ > 1

2
. With the choice of γ = 1, the scheme can be shown to be

conservative, which is an important property to satisfy via the Lax-Wendroff [40] theorem
for discretizations of conservation laws.

As demonstrated, one of the main purposes of the SBP-SAT technique is to enable the
design of arbitrary-order accurate spatial discretizations, that are provably stable [18]. Here
we have shown stability using the energy method, but, for the isentropic Baer-Nunizato
model, we will prove stability of the problem using the entropy of the system. Furthermore,
approximating the derivative in an element is completely determined by the solution within
that element. This means that, in the multi-element case, the only information that
is passed between elements is when computing the SAT terms to enforce the element
coupling, as will be shown in the next section. Additionally, the SBP-SAT technique
allows for solutions that are discontinuous across element interfaces [18], as we do not
strongly enforce solution continuity at element interfaces. Meaning that, for some element,
j, we do not adjust the solution so that the last node on the jth element is equal to the
first node on the (j+1)th element. Instead, to couple adjacent elements, we use SAT terms
which weakly couples the numerical solution across the interface. In the next section we
will demonstrate the use of SAT terms which are used to both enforce periodic boundary
conditions as well as coupling element interfaces.

3.3.2 Inter-element Coupling SATs

Now that we have motivated the use of SATs, we demonstrate the use of symmetric and
upwind SATs, which will be used throughout this thesis to enforce periodic boundary
conditions and couple adjacent elements since we will study periodic solutions to the isen-
tropic Baer-Nunziato model. To demonstrate how symmetric and upwind SATs enforce
these conditions, we once again consider the linear advection equation from the previous
section. In this section, we study periodic problems on the domain [xL, xR], to study
periodic boundary conditions.

As in the last chapter, we can show stability of the equation with periodic boundary
conditions at the continuous level. We begin by adding the periodic boundary term to
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(3.4).
∂u

∂t
+

∂u

∂x
= 0, x ∈ [xL, xR], t > 0,

u(xL, t) = u(xR, t),

u(x, 0) = F (x).

(3.7)

Once again, multiplying the equation by u and integrating over the spatial domain one
finds that

d

dt

∫ xR

xL

u2dx = −
(
u(xR)

2 − u(xL)
2
)
= 0.

From here, integrate in time from t = 0 to t = T to obtain

∥u(T )∥2 = ∥F∥2.

Thus, we have bounded the norm of the solution by the data of the problem. We mimic
this continuous stability at the discrete level by discretizing the domain into n equally sized
elements, with N nodes per element. Our discrete scheme will have the following generic
form,

duk

dt
+ Duk = SATs, k = 1, 2, . . . , n. (3.8)

We now justify the SATs that will be used by considering the discretization of (3.4)
using a discontinuous Galerkin type of approach (the presentation here is not meant to
be rigorous, for more detail see the following book [31]). The first step is to construct
the weak form of (3.4) by multiplying the linear advection equation by a test function, v,
from an appropriate function space, and integrating over a given element k. Then, we will
discretize the results using arbitrary-order SBP operators. This will give us a general form
of the SATs. Suppose we are studying an element k such that on this element, x ∈ [xl, xr].
Then, multiplying (3.4) by a test function, v, and integrating over the element leads to∫ xr

xl

v
∂u

∂t
dx+

∫ xr

xl

v
∂u

∂x
dx = 0.

Then, using IBP on the second term on the left hand side results in∫ xr

xl

v
∂u

∂t
dx−

∫ xr

xl

∂v

∂x
udx+ vu

∣∣∣∣xr

xl

= 0.
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The next step in the discontinuous Galerkin approach is to replace u with some numerical
flux, u∗, which will approximate u at the element interfaces resulting in∫ xr

xl

v
∂u

∂t
dx−

∫ xr

xl

∂v

∂x
udx+ vu∗

∣∣∣∣xr

xl

= 0.

Apply IBP to the second term on the left hand side of the equation to find that∫ xr

xl

v
∂u

∂t
dx+

∫ xr

xl

v
∂u

∂x
dx = v(u− u∗)

∣∣∣∣xr

xl

.

We can now discretize the equation using arbitrary-order SBP operators. As follows,

vTP
duk

dt
+ vTPDuk = vk,N(uk,N − u∗

R)− vk,1(uk,1 − u∗
L).

We can use (3.3) to re-write the right hand side of the above equation using vk,N = tTRv
and vk,1 = tTLv, with similar definitions for u:

vTP
duk

dt
+ vTPDuk = vTtR(t

T
Ruk − u∗

R)− vTtL(t
T
Luk − u∗

L),

vT

[
P
duk

dt
+ PDuk

]
= vT

[
tR(t

T
Ruk − u∗

R)− tL(t
T
Luk − u∗

L)
]
.

Since this must hold for arbitrary v, we have that the terms inside the square brackets
must be equal, therefore,

P
duk

dt
+ PDuk = tR(t

T
Ruk − u∗

R)− tL(t
T
Luk − u∗

L),

where u∗
R is the numerical flux evaluated at the right boundary and u∗

L is the numerical
flux evaluated at the left boundary. Multiplying the above equation by P−1 gives

duk

dt
+ Duk = P−1tR(t

T
Ruk − u∗

R)− P−1tL(t
T
Luk − u∗

L),

which is in the exact form of (3.8) with

SATs = P−1tR(t
T
Ruk − u∗

R)− P−1tL(t
T
Luk − u∗

L). (3.9)

All that remains is to choose a suitable numerical flux u∗. Recall that the numerical flux
needs to be designed so that it approximates u at the element interfaces. Here, we will show
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two suitable numerical fluxes that can be chosen for the linear advection equation, namely,
the upwind numerical flux and a central numerical flux. Since (3.4) advects information
from left to right, it is logical that we would use an upwind numerical flux since we want to
take information from the upwind direction. In fact, this is the numerical flux we will use
to study the convergence rates of the multi-element scheme in the next section. However,
we still show the symmetric SATs that are obtained with a central flux, as these SATs
mimic the SATs we use in the Baer-Nunziato equations to couple adjacent elements and
weakly enforce periodic boundary conditions.

We begin by examining the upwind SATs. The upwind numerical flux for (3.4) is given
by u∗

L = u(k−1),N = tTRuk−1 and u∗
R = uk,N = tTRuk. Plugging this choice of u∗ into (3.9)

results in

SATs = P−1tR((((((((
(tTRuk − tTRuk)− P−1tL(t

T
Luk − tTRu(k−1)),

therefore, using an upwind numerical flux in (3.9), we find the upwind SATs,

SATs = −P−1tL(t
T
Luk − tTRu(k−1)). (3.10)

Now that we have found the upwind SATs that come from using the upwind flux in
(3.9), we will show the use of the central flux to create symmetric SATs. The central
flux takes the average of the numerical solution on either side of the element interface,
i.e., u∗

R = 0.5(uk,N + u(k+1),1) = 0.5(tTRuk + tTLu(k+1)), and u∗
L = 0.5(uk,1 + u(k−1),N) =

0.5(tTLuk + tTRu(k−1)). Plugging these choices of the numerical flux function into (3.9)
results in

SATs =
1

2
P−1tR(t

T
Ruk − tTLu(k+1))−

1

2
P−1tL(t

T
Luk − tTRu(k−1)). (3.11)

In our study of the multi-element semi-discrete scheme we will use the upwind SATs
(3.10) to weakly enforce the boundary condition as well as the inter-element coupling. Using
these SATs, the semi-discrete scheme for the multi-element linear advection equation can
be written as

duk

dt
= −Duk − P−1tL(t

T
Luk − tTRu(k−1)), k = 1, 2, . . . , n. (3.12)

Note that since we are considering periodic problems, when k = 1, k − 1 = n. We would
like to show that (3.12) mimics the stability analysis that was performed at the continuous
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level. We left multiply (3.12) by uT
kP resulting in

1

2

d

dt
uT

kPuk + uT
kPDuk = −uT

kPP
−1tL(t

T
Luk − tTRu(k−1)),

1

2

d

dt
uT

kPuk︸ ︷︷ ︸
(1)

+uT
kQuk︸ ︷︷ ︸
(2)

= −uT
k tL(t

T
Luk − tTRu(k−1))︸ ︷︷ ︸

(3)

.
(3.13)

First, term (1) can be rewritten as 1
2

d
dt
∥uk∥2P . Then, term (2) can be re-written using the

SBP property Q = E− QT as

uT
kQuk = uT

k (E− QT)uk,

uT
kQuk = uT

k Euk − uT
kQ

Tuk.

We can take the transpose of the second term on the right hand side since it is a scalar
value to find that

uT
kQuk = uT

k Euk − uT
kQuk,

uT
kQuk =

1

2
uT

k Euk.

Then, substituting the form of the E matrix results in

uT
kQuk =

1

2
(u2

k,N − u2
k,1).

Finally, we expand term (3) as

−uT
k tL(t

T
Luk − tTRu(k−1)) = uk,1u(k−1),N − u2

k,1.

Plugging this back into (3.13) we find that for an element k,

1

2

d

dt
∥uk∥2P = −1

2
u2
k,N − 1

2
u2
k,1 + uk,1u(k−1),N .

Now, sum over all n elements

1

2

n∑
k=1

(
d

dt
∥uk∥2P

)
=

n∑
k=1

(
−1

2
u2
k,N − 1

2
u2
k,1 + uk,1u(k−1),N

)
.
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Expanding the sum on the right hand side and gathering like terms gives

1

2

n∑
k=1

(
d

dt
∥uk∥2P

)
=

n∑
k=1

(
−1

2
u2
k,1 + uk,1u(k−1),N − 1

2
u2
(k−1),N

)
,

= −1

2

n∑
k=1

(
u2
k,1 − 2uk,1u(k−1),N + u2

(k−1),N

)
,

1

2

n∑
k=1

(
d

dt
∥uk∥2P

)
= −1

2

n∑
k=1

(uk,1 − u(k−1),N)
2,

then, integrating in time results in∫ T

0

n∑
k=1

(
d

dt
∥uk∥2P

)
dt = −

∫ T

0

n∑
k=1

(uk,1 − u(k−1),N)
2 dt,

n∑
k=1

∥uk(T )∥2P =
n∑

k=1

∥uk(0)∥2P −
∫ T

0

n∑
k=1

(uk,1 − u(k−1),N)
2 dt.

The second term on the right hand side of the above equation is a negative semi-definite
term, therefore,

n∑
k=1

∥uk(T )∥2P ≤
n∑

k=1

∥Fk∥2P , (3.14)

where Fk is the initial condition evaluated at the nodes of the kth element. Thus, we have
bounded the time derivative of the norm of the solution from above. Therefore, we claim
that the semi-discrete scheme (3.12) is stable as we have shown the norm of the solution
to be a decreasing function in time. This means that the norm is bounded by the data of
the problem.

In section 3.3.1, we showed that using both upwind and symmetric SATs results in
discretizations that can be algebraically manipulated into a consistent approximation to
the integral form of the linear advection equation, discretized using a single element. The
proofs of the single element case easily transfer to the multi-element case, and therefore,
the discretization is conservative at the element level.

Now that we have motivated the use of the SBP-SAT technique to discretize the spatial
term in the linear advection equation, we show the results we have obtained considering
both the single and multi-element semi-discretizations. We will demonstrate the conver-
gence properties of the scheme as well as the stability properties we have claimed for the
scheme.
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3.3.3 Results for the Linear Advection Equation

We have now motivated the use of the SBP-SAT technique to solve PDEs. Specifically,
we will demonstrate the convergence properties of the single element scheme, (3.5), as well
as the multi-element scheme, (3.12), through numerical experiments. To study the con-
vergence properties of the schemes, we first need an exact solution to the linear advection
equation that we can compare our numerical solution against.

We will take our exact solution to be uEX = sin(x− t) on x ∈ [0, 2π] and t > 0. Clearly,
sin(x− t) is periodic on the domain and it can easily be substituted into (3.4) to see that
it satisfies the PDE. Thus, we can write our PDE as follows:

∂u

∂t
+

∂u

∂x
= 0, x ∈ [0, 2π], t > 0,

u(0, t) = u(2π, t),

u(x, 0) = sin(x).

(3.15)

To study the convergence rates of the schemes (3.5) and (3.12), we will use a third-
order strong stability preserving Runge-Kutta (SSP-RK3) scheme, (5.32), to march in time
from t = 0s to t = 1s, with a time step of 10−5. Then, we will compute the error vector,
E = unum − uEX , where, unum is the numerical solution, and uEX is the exact solution.
Finally, the approximate L2 error can be computed as follows:

L2 =

(
n∑

i=1

ET
i PEi

) 1
2

, (3.16)

where, the sum over i represents the sum over all elements in the discretization. To display
the results we will use log-log error plots as the convergence rates of the scheme can be
seen in the slope of the line in the log-log error plot.

To begin, we will show the numerical results for the single element case. We use SBP
operators of degree 1 through 4, and use 50, 100, 200, 400, and 800 nodes to discretize the
spatial domain. Then, we will give the slope of the line of best fit in the last 3 points on
the plot to determine the convergence rates of each degree. The results can be found in
Figure (3.1).

It is clear from Figure (3.1) that the scheme, (3.5), achieves convergence on the order
of p + 1 for a degree p SBP operator. We can show that this convergence order is also
achieved in the multi-element case. In this case, we discretize the domain into multiple
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Figure 3.1: The convergence test on the linear advection equation discretized in space
using (3.5). The domain was discretized using a single element with number of nodes =
50, 100, 200, 400, and 800.

elements and keep the number of nodes per element constant. We use 20 nodes per element
and set our number of elements to 2, 4, 8, 16, and 32. The results can be found in Figure
(3.2). Therefore, in both the single and multi-element case, we observe p+ 1 convergence
using degree p SBP operators.

We can check the other properties of the semi-discretization. To do so, we will show
that the stability property, (3.14), holds when running simulations. At each time step,
we multiply the right hand side of (3.12) by uT

kP and sum over all elements. As shown
theoretically, this sum should be less than or equal to zero for all time steps. Figures (3.3),
(3.4), (3.5), and (3.6) show the numerical result of this test in the case of degree 1, 2, 3,
and 4 SBP operators, respectively. In each test, the domain is discretized into 32 elements
with 20 nodes per element. As seen in figure (3.3), the time rate of change of the p-norm
of the numerical solution, when discretizing with degree 1 SBP operators, is less than or
equal to zero for all time. Similarly, in figure (3.4), it can be seen that when using degree
2 SBP operators, the time rate of change of the p-norm is less than or equal to zero for
all time, however, it is several orders of magnitude less than the degree 1 case. Finally, in
figures (3.5) and (3.6), we see that, when using degree 3 and 4 SBP operators, the time
rate of change of the p-norm is machine zero. Therefore, the numerical solution satisfies
the stability property that we demonstrated for the semi-discrete scheme using degree 1-4
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SBP operators.

Figure 3.2: The convergence test on the linear advection equation discretized in space
using (3.12). The domain was discretized using multiple elements = 2, 4, 8, 16, and 32
with number of nodes per element held constant at 20.
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Figure 3.3: The stability test for the multi-element linear advection equation, (3.12),
discretized using degree 1 SBP operators. The domain was discretized into 32 elements
with 20 nodes per element. This plot shows the time rate of change of the p-norm of the
solution vs time.

Figure 3.4: The stability test for the multi-element linear advection equation, (3.12),
discretized using degree 2 SBP operators. The domain was discretized into 32 elements
with 20 nodes per element. This plot shows the time rate of change of the p-norm of the
solution vs time.
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Figure 3.5: The stability test for the multi-element linear advection equation, (3.12),
discretized using degree 3 SBP operators. The domain was discretized into 32 elements
with 20 nodes per element. This plot shows the time rate of change of the p-norm of the
solution vs time.

Figure 3.6: The stability test for the multi-element linear advection equation, (3.12),
discretized using degree 4 SBP operators. The domain was discretized into 32 elements
with 20 nodes per element. This plot shows the time rate of change of the p-norm of the
solution vs time.
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3.4 Special SBP Derivative Operator

In later chapters, we will study the isentropic Baer-Nunziato equations which contain
variables, such as densities, that can get arbitrarily close to zero, but, can never be less
than or equal to zero. To maintain this property, we will develop a positivity-preserving
scheme for the Baer-Nunziato equations. In the construction of our scheme, we will use a
special derivative operator.

Recall from Definition (3.2.1) that the SBP derivative matrix is defined as D = P−1Q.
One can create a derivative matrix using the first-order Q matrix, which we will denote as
Q1, and a high-order P matrix, which we will denote as PH . Indeed, using high-order PH

and first-order Q1, the derivative matrix is constructed as

D1 = P−1
H Q1, (3.17)

where,

Q1 =


−1/2 1/2
−1/2 0 1/2

. . . . . . . . .

−1/2 0 1/2
−1/2 1/2

 .

It can be shown that discretizations using the derivative operator, (3.17), have a truncation
error of O(h), by studying the integral form of a general conservation law. For this purpose,
consider the following generic scalar conservation law with solution u and flux f , in the
domain x ∈ [xL, xR]

∂u

∂t
+

∂f

∂x
= 0.

Integrating in space over the domain results in∫ xR

xL

∂u

∂t
dx+

∫ xR

xL

∂f

∂x
dx = 0,∫ xR

xL

∂u

∂t
dx+ f

∣∣∣∣xR

xL

= 0.

(3.18)

We will show that our discretization of the strong formulation can be represented as a
discretization of the integral form of the equations, and from this perspective, show that
the truncation error is of order O(h). To do so, we define a set of intermediate points,
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x = [x0, . . . , xN ], with a similar definition in the multi element case, which defines bounding
control volumes around each solution point x = [x1, . . . , xN ]. Furthermore, x1 = x1 and
xN = xN . These points, x, are called flux points [25, 62, 63]. The flux points form a grid
whose spacing is equal to the entries in the diagonal norm matrix PH , i.e.,

∆x = PH1,

where, the ∆ operator is an N × (N + 1) matrix defined as

∆ =


−1 1 0 0 . . . 0
0 −1 1 0 . . . 0
0 0 −1 1 0

. . . . . . . . .

0 −1 1

 .

Fisher et al. [24] have shown that all one dimensional SBP first derivative operators can
be recast into telescopic flux form

Df = P−1Qf = P−1∆f , (3.19)

where f is a flux vector of size (N+1) which is defined on the flux points. It is clear from
(3.19) that Qf = ∆f . For the degree 1 SBP operator, Q1, we have

f =
[
f1, f 1, . . . , fN−1, fN

]T
, (3.20)

where f i =
1
2
(fi+1 + fi) for i ∈ [1, N − 1]. Using this telescopic flux form, we can recast

our scheme into a consistent approximation to (3.17) as follows

dui

dt
+ (D1f)i = (SATs)i ,

dui

dt
+ (P−1

H Q1f)i = (SATs)i .

Multiplying the above equation by (PH)ii results in

(PH)ii
dui

dt
+ (∆f)i = (PH)ii (SATs)i . (3.21)

In this form, it can be shown that discretizing in space using the special derivative operator,
(3.17), results in first-order truncation error. Furthermore, it can be seen that the derivative
operator (3.17) is degree zero, in that, it differentiates a constant exactly. This is easy to
see from the telescopic flux form, since, for a constant solution, f is constant, thus,

D1 = P−1
H Q1 = P−1

H ∆f = 0.
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Theorem 3.4.1. Discretization (3.21) has first-order truncation error in space using the
derivative operator (3.17), that is

(PH)ii
dui

dt
+ (∆f)i − (PH)ii (SATs)i =

∫ xi

xi−1

∂u

∂t
dx+ f

∣∣∣∣xi

xi−1

+O(h), i = 1, 2, . . . , N.

Proof : We will show that using the degree 1 SBP matrix, Q, in equation (3.21) results
in a first-order approximation to (3.18), thus showing that the derivative operator, (3.17),
results in a discretization with first-order truncation error. To do so, we will substitute the
exact solution into (3.21). Note that the SAT term does not need to be considered since,
when using the exact solution, this term vanishes. We first examine the interior nodes by
expanding the spacial derivative term in (3.21) to find that

(PH)ii
dui

dt
+ (f i − f i−1) = 0, (3.22)

for i = 2, 3, . . . , N − 1. We now look to show the following 2 properties for the terms in
(3.22): 1)

f(xi)− f(xi−1) = f i − f i−1 +O(h), (3.23)

and 2) ∫ xi

xi−1

du

dt
dx = (PH)ii

dui

dt
+O(h), (3.24)

if these two properties hold, then (3.22) is a first-order approximation to the integral form
over the domain x ∈ [xi−1, xi]. To prove property (3.23), consider (3.23); by expanding the
terms on the right hand side using (3.20) to find that

f i − f i−1 =
1

2
(fi + fi+1)︸ ︷︷ ︸

1

− 1

2
(fi + fi−1)︸ ︷︷ ︸

2

. (3.25)

Then, using Taylor series of f(x) centered around the flux points, we can find approxima-
tions of fi, fi+1, and fi−1 evaluated at the flux nodes. First, consider the flux node xi, this
node is surrounded by the solution points xi and xi+1. Since xi+1 − xi = h, we can say
that xi = xi − αh and xi+1 = xi + βh, where α + β = 1. Therefore, taking a Taylor series
approximation of f(x) around xi and evaluating at xi one finds that

fi = f(xi) +
df

dx

∣∣∣∣
xi

(−αh) +O(h2),
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and similarly, evaluating the Taylor series at xi+1 results in

fi+1 = f(xi) +
df

dx

∣∣∣∣
xi

(βh) +O(h2).

Therefore, term 1 in (3.25) can be written as

1

2
(fi + fi+1) = f(xi)− α

df

dx

∣∣∣∣
xi

h+ β
df

dx

∣∣∣∣
xi

h+O(h2),

= f(xi) +O(h).

A similar procedure can be carried out for the flux node xi−1 to find that term 2 in equation
(3.25) can be written as

1

2
(fi + fi−1) = f(xi−1) +O(h).

Therefore, f i−f i−1 = f(xi)−f(xi−1)+O(h) and (3.23) is satisfied. Now, all that remains
to show is that (3.24) holds. To begin, note that, by the Leibniz integral rule we can
rewrite (3.24) as

d

dt

∫ xi

xi−1

u dx =
d

dt
(PH)iiui +O(h),

thus, we check that we can satisfy the equivalent condition∫ xi

xi−1

u dx = (PH)iiui +O(h).

To this end, take a Taylor series approximation of u(x) around the solution point xi, to
find that

u(x) =
∞∑
k=0

∂uk

∂xk

∣∣∣∣
xi

(x− xi)
k

k!
.

Integrating across the domain results in∫ xi

xi−1

u dx =

∫ xi

xi−1

∞∑
k=0

∂uk

∂xk

∣∣∣∣
xi

(x− xi)
k

k!
dx,

=
∞∑
k=0

∂uk

∂xk

∣∣∣∣
xi

(
(xi − xi)

k+1

(k + 1)!
− (xi−1 − xi)

k+1

(k + 1)!

)
,

= ui[(xi − xi)− (xi−1 − xi)] +
∞∑
k=1

∂uk

∂xk

∣∣∣∣
xi

(
(xi − xi)

k+1

(k + 1)!
− (xi−1 − xi)

k+1

(k + 1)!

)
.
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The first term on the right hand side of the above equation gives

ui[(xi − xi)− (xi−1 − xi)] = ui(xi − xi−1) = ui(PH)ii,

where, it can be shown that the second term is O(h) as follows:

∞∑
k=1

∂uk

∂xk

∣∣∣∣
xi

(
(xi − xi)

k+1

(k + 1)!
− (xi−1 − xi)

k+1

(k + 1)!

)
=

1

2

∂u

∂x

∣∣∣∣
xi

[(xi − xi)
2 − (xi−1 − xi)

2],

+
∞∑
k=2

∂uk

∂xk

∣∣∣∣
xi

(
(xi − xi)

k+1

(k + 1)!
− (xi−1 − xi)

k+1

(k + 1)!

)
.

Then, expand the term (xi − xi)
2 − (xi−1 − xi)

2 to find

(xi − xi)
2 − (xi−1 − xi)

2 = −2xi(xi − xi−1) + x2
i − x2

i−1,

= −2xih(P̃H)ii + x2
i − x2

i−1,

= O(h).

Therefore, we have that
∫ xi

xi−1
u dx = (PH)iiui +O(h), ∀ i = 2, 3, . . . , N − 1, which means

both properties (3.23) and (3.24) hold on the interior nodes. All that remains to be show
is that properties 1 and 2 hold on the boundary nodes i = 1, N . The analysis is the same
for both nodes, therefore, we only detail node 1. Where we have that

(PH)11
∂u1

∂t
+
(
f1 − f1

)
= 0.

We immediately see that property 1 holds since, as shown previously, f(x1) = f1 +O(h),
and f1 = f(x1) = f(x0), thus, f(x1)− f(x0) = f1 − f0 +O(h). Then, the same proof for

property 2 holds for both the first and last nodes. Therefore, we have that
∫ xi

xi−1
u dx =

(PH)iiui + O(h) for i = 1, N . Thus, the derivative operator, (3.17), results in first-order
truncation error.

In compliment to theorem (3.4.1), we show numerically the convergence rate of dis-
cretizations using the special derivative operator. We do so by testing the multi-element
convergence rates of the linear advection equation using this special derivative matrix. We
will construct the derivative matrix using second, third, and fourth-order P, and show that
the scheme (3.12) converges at first-order no matter the degree of P. Note that we do
not include first-order P since this would simply return the regular first-order derivative
operator, which has already been discussed in section 3.3.3. Our numerical experiments
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demonstrate that the special derivative operator leads to solution convergence at first-
order. This is not unreasonable, since, recollect in section 3.3.3, we demonstrated that
degree p SBP operators result in p + 1 convergence rates for the multi-element scheme
(3.12). Thus, it is not unreasonable to expect the degree zero special derivative operator
to lead to discretizations which converge at first-order. To run this test the domain is
discretized into multiple elements with 20 nodes per element. After each run the approxi-
mate L2 error, (3.16), is computed, then, the number of elements is doubled and the test
is repeated. We complete this process for P matrix of order 2, 3, and 4 and then plot the
results on a log-log plot. The convergence rate is determined by taking the line of best fit
between the last 3 nodes. Figure (3.7) shows that no matter the order of the P matrix (for
order greater than one), the special derivative operator, D1, defined in (3.17), converges at
first-order.

Finally, one might think that we see convergence using the special derivative operator
only because we have accompanied it with upwind SATs, which allow the scheme to con-
verge at p+1. Thus, we run the same test on the special derivative operator, but this time,
use symmetric SATs to show that the scheme is still converging to the exact solution. Fig-
ure (3.8) shows the results of the linear advection equation discretized using regular SBP
operators and symmetric SATs. The even degree operators achieve convergence on an
order between p + 1

2
and p + 1. But, the odd degree SBP operators achieve convergence

on the order of p. Then, running the same test using the special derivative operator and
symmetric SATs, it can be seen from Figure (3.9), that the numerical solution converges to
the exact solution as the grid is refined using degree 2, 3, and 4 norm matrix P. Therefore,
the special derivative matrix, (3.17), converges at first-order.

In this chapter we have demonstrated the SBP properties and the accuracy of the
operators through the model problem of the linear advection equation. For the remainder
of this thesis, we will be studying the isentropic Baer-Nunizato model. Our goal is to
develop an entropy-stable scheme that preserves positivity of the void fractions as well as
the densities no matter how close the quantities get to zero. We also want our scheme
to be high-order accurate for smooth solutions and have the capability to capture shocks.
In the next chapter, we will make the first step to achieving our goal by developing a
numerical scheme to handle the simplest possible solution to the Baer-Nunziato equations;
that being a smooth solution with periodic boundary conditions. Such a solution conserves
the entropy of the system, thus, we develop a high-order entropy-conservative scheme to
solve the isentropic Baer-Nunziato model through the use of high-order SBP operators.
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Figure 3.7: The convergence plot of the special first-order derivative operator using upwind
SATs. This is a log-log plot of the L2 error vs the grid spacing. The domain is discretized
into multiple elements = 2, 4, 8, 16, and 32, with 20 nodes per element. The lines are
labeled degree 2 through 4 and this indicates the degree of the P matrix that was used.
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Figure 3.8: The convergence plot of multi-element linear advection equation using sym-
metric SATs instead of upwind SATs. The domain was discretized using multiple elements
= 2, 4, 8, 16, and 32, with the number of nodes per element held constant at 20.

Figure 3.9: The convergence plot of the special first-order derivative operator using sym-
metric SATs. The lines are labeled according to the degree of the P matrix that was used.
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Chapter 4

Entropy-Conservative Discretizations

4.1 Motivation

As is implied in the name, an entropy-conservative scheme is a scheme where the entropy of
the system is conserved. The second law of thermodynamics for a closed system states that
the change in entropy of a system is caused by entropy generation and entropy transfer.
Entropy generation could occur in places such as across a discontinuity, thus, in this chapter
we consider smooth solutions to the Baer-Nunziato equations (2.3). Entropy transfer occurs
when there is heat or mass transferred in or out of the closed system. A mathematical model
would reflect this transfer of heat or mass through the use of boundary conditions. We will
take a systematic approach to solving the isentropic Baer-Nunziato equations where we will
first create a scheme to handle smooth solutions and then use this scheme as a baseline
to solve more difficult problems. Therefore, in this chapter we will develop an entropy-
conservative scheme to solve the simplest possible problem; a smooth, periodic solution
to the isentropic Baer-Nunziato model. Extending this scheme to non-periodic problems
requires the formulation of entropy-stable boundary conditions, which is a non-trivial task
and will not be dealt with in this thesis.

Many practical problems will contain shocks, discontinuities, and boundary conditions
that will lead to the production of entropy in the system. An entropy-conservative scheme
can serve as the foundation to which entropy-dissipative terms can be added, leading to
an entropy-stable scheme. Entropy-stable schemes bound the mathematical entropy of a
system from above, and have the capability to dissipate the entropy. Thus, they produce
solutions that are physically correct in the presence of entropy generation, whereas an
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entropy-conservative scheme would not produce a solution that is physically realizable.
Therefore, entropy-stable schemes can be applied to shocked problems.

We have motivated the use of entropy-conservative/stable schemes from a physical
point of view, but, they also serve a practical one as well. From a practical standpoint,
we want to ensure that our numerical solution will not blow up, and as shown in section
2.2, we can convert a bound on the entropy of the system to an L2 bound on the solution.
Therefore, our starting point to study the Baer-Nunziato model numerically is to develop
an entropy-conservative scheme in this chapter. However, we are interested in shocked
problems and if the solution is not smooth, then physically the entropy of the system is
not conserved. This means that, even if the entropy-conservative scheme were to converge,
it would not converge to a physically realizable solution. Thus, in the next chapter, we
take our entropy-conservative scheme, and add two entropy-dissipative terms to make it
entropy-stable.

There exists an extensive body of work in the field that uses SBP operators to develop
entropy-stable schemes for systems of nonlinear PDEs. For example, Fisher and Carpenter
[25] combined the use of finite-difference SBP operators with the entropy-conservative
numerical flux of Ismael and Roe [35], to create an entropy-stable, high-order scheme
for the compressible Navier-Stokes equations. Furthermore, Hicken, Del Rey Fernández,
and Zingg [32] have extended the SBP framework to handle general element types such
as triangles and tetrahedra which can make SBP-SAT schemes easier to implement on
complex domains. Renac [50] has developed a general framework to design high-order
discretizations for nonconservative hyperbolic systems of the form (2.10) that satisfy the
entropy inequality (2.7).

Recently, Upperman and Yamaleev [63] have developed a first-order entropy-stable
positivity-preserving scheme for the Navier-Stokes equations. They use diagonal-norm
SBP operators and re-write the scheme in a typical finite-volume manner, known as a flux-
differencing form. In this flux-differencing form, combined with the Brenner regularization
to the Navier-Stokes equations, they create an artificial dissipation operator that allows
them to prove point-wise positivity of the thermodynamic variables. Upperman [62] then
extends this work to high-order through the use of a mixing scheme, where the first-
order positivity-preserving scheme is mixed with the high-order positivity-violating scheme
to create a high-order positivity-preserving scheme. Alternatively, Rueda-Ramı́rez and
Gassner [51] show that the existence of a flux-differencing form allows for the use of sub-
cell limiting strategies which improve the robustness of the high-order scheme and can be
used to preserve positivity.

In this chapter, we present a baseline entropy-conservative scheme for (2.3) using
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diagonal-norm finite-difference SBP operators and the Hadamard formalism. This scheme
is capable of handling smooth solutions to the Baer-Nunziato model with high-order accu-
racy through the use of high-order SBP operators. However, it has no positivity-preserving
properties and is prone to spurious oscillations in the presence of discontinuities. In the fol-
lowing chapter, we will present a first-order entropy-stable scheme that addresses these lim-
itations. Then, as in Upperman [62], we will mix the first-order entropy-stable positivity-
preserving scheme, with the high-order entropy-conservative scheme constructed in this
chapter to create a high-order entropy-stable positivity-preserving scheme for the Baer-
Nunziato equations.

4.2 Entropy-Conservative Semi-Discrete Scheme

For the remainder of the thesis, we will study the isentropic Baer-Nunziato model which is
a five equation model. Therefore, we will be studying vector valued functions. The SBP-
SAT technique detailed in chapter 3 describes a one equation system. We can extend the
SBP-SAT framework to a system of equations easily through the use of tensor products.
Let us define the SBP operators for a one equation model as L, which can represent any
of the SBP operators from Definition (3.2.1). Then, for a 5 equation model we define the
SBP operator as L = L⊗ I5, where I5 is the 5x5 identity matrix. That is

P = P⊗ I5, D = D⊗ I5, Q = Q⊗ I5, E = E⊗ I5, tL = tL ⊗ I5, tR = tR ⊗ I5, 1 = 1⊗ 1̂,

where, 1̂ is a vector of ones with 5 entries. Furthermore, to denote a quantity, u, on node
i within element j, we use the notation uj,i. The continuous entropy analysis performed
in chapter 2.2 induces a “non-linear IBP rule”∫ xR

xL

wT

(
∂f(u)

∂x
+ c(u)

∂u

∂x

)
dx = q

∣∣∣xR

xL

.

We recollect that wT = ∂η
∂u
, are the entropy variables, η is the entropy, and q is the entropy

flux. The SBP property alone is insufficient to mimic the above at the discrete level.
Therefore, unlike the linear advection equation, where we could approximate the spatial
derivative as ∂u

∂x
≈ Du, we will make use of the Hadamard product to approximate spatial

derivatives as follows:

2D ◦ F(u,u)1 ≈
(
∂f(u)

∂x
+ c(u)

∂u

∂x

)
. (4.1)
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Note that the Hadamard product, ◦, is a binary operation that takes two matrices of the
same size and returns a matrix composed of the product of the corresponding elements,
i.e., (A ◦ B)ij = AijBij. Later, we will prove that when using high-order SBP operators,

(4.1) is high-order accurate, i.e., ∂f(u)
∂x

+c(u)∂u
∂x

= 2D◦F(u,u)1+O (hp). Furthermore, we
will prove that (4.1) discretely mimics the non-linear IBP rule. In equation (4.1), F(u,u)
is a two-point flux function matrix, constructed block-wise, from the entropy-conservative
two-point flux function of Renac [50], f (EC)(ui,uj), such that Fij is a 5x5 diagonal matrix,
where its non-zero entries correspond to the entries of f (EC)(ui,uj). The two point flux
functions takes the form f (EC)(ui,uj) = h(ui,uj)− f(ui) + b(ui,uj) where,

h (ui,uj) =



0

α1 v1ĥ1

α1

(
v1

2ĥ1 + p1

)
α2 v2ĥ2

α2

(
v2

2ĥ2 + p2

)

,f (ui) =


0

α1ρ1v1
α1 (ρ1v

2
1 + p1)

α2ρ2v2
α2 (ρ2v

2
2 + p2)

 , (4.2)

b (ui,uj) =


v2i
0

−p1i
0
p1i

 α1j − α1i

2
,

ĥa (ρai, ρaj) =

{
∆pa(ρa)
∆ha(ρa)

, ρai ̸= ρaj,

ρa, ρai = ρaj = ρa,
, a = 1, 2, (4.3)

and u =
ui+uj

2
. The entropy-conservative two-point flux function can be re-written in

fluctuation form, which will be used to prove entropy conservation,

f (EC)(ui,uj) = D−(ui,uj)−D+(uj,ui), (4.4)

where

D−(ui,uj) =
1

2
(h(ui,uj)− f (ui) + b (ui,uj)) ,

D+(ui,uj) =
1

2
(f (uj)− h(ui,uj)− b (uj,ui)) .

This equality holds since h(ui,uj) = h(uj,ui). Furthermore, the fluctuation fluxes, D±,
satisfy the following consistency property:

D± (u,u) = 0,∀u ∈ Ω. (4.5)
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Here, we use the terminology of Castro et al. [10] and for the entropy-entropy flux pair
(2.8), the fluctuation fluxes D± satisfy

w (ui)
TD−(ui,uj) +w (uj)

T D+(ui,uj) =
1

2
q (uj)−

1

2
q (ui) . (4.6)

Later, we will make use of (4.6) to prove the high-order accuracy of (4.1) and to show that
it discretely mimics the non-linear IBP rule (2.9). We weakly impose boundary conditions
using the SBP-SAT technique [18]. Here, we only consider periodic problems and hence
consider symmetric SATs, which have the following form for a single element discretization
of the domain

SATs =− P−1
(
tLt

T
L ◦ F(u,u)1− tLt

T
R ◦ F(u,u)1

)
+ P−1

(
tRt

T
R ◦ F(u,u)1− tRt

T
L ◦ F(u,u)1

)
,

(4.7)

where tL and tR are defined in (3.3). Notice that this form of the symmetric SATs are very
similar to those discussed in section 3.3.2 for the linear advection equation. We are only
weakly enforcing inter-element coupling as we are not forcing the values at the element
interfaces to be equal. Instead, we are penalizing the difference in the solution at an
element interface. For example, take the first term in (4.7); in the case of a single element
with N nodes, this reduces to −P−1tL (F(u1, u1)− F(u1, uN)). Since we are considering
a periodic problem, for the first time step, after initializing the problem, we have that
u1 = uN , meaning that the SAT term reduces to zero. The symmetric SAT only acts when
numerical error is introduced into the solution, resulting in u1 ̸= uN and works to bring u1

and uN closer to the same value. Thus, in the case of a single element, the semi-discrete
scheme reads

du

dt
+ 2D ◦ F(u,u)1 = SATs. (4.8)

However, this can be easily extended to multiple elements. To couple elements that are
adjacent to each other, we re-use the symmetric SATs. Suppose the domain is discretized
into n elements, then the semi-discrete scheme reads
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du1

dt
+ 2D ◦ F(u1,u1)1 =− P−1

(
tLt

T
L ◦ F(u1,u1)1− tLt

T
R ◦ F(u1,un)1

)
+ P−1

(
tRt

T
R ◦ F(u1,u1)1− tRt

T
L ◦ F(u1,u2)1

)
,

duk

dt
+ 2D ◦ F(uk,uk)1 =− P−1

(
tLt

T
L ◦ F(uk,uk)1− tLt

T
R ◦ F(uk,uk−1)1

)
+ P−1

(
tRt

T
R ◦ F(uk,uk)1− tRt

T
L ◦ F(uk,uk+1)1

)
,

dun

dt
+ 2D ◦ F(un,un)1 =− P−1

(
tLt

T
L ◦ F(un,un)1− tLt

T
R ◦ F(un,un−1)1

)
+ P−1

(
tRt

T
R ◦ F(un,un)1− tRt

T
L ◦ F(un,u1)1

)
,

(4.9)

for k ∈ [2, n − 1]. Note that uk denotes the numerical solution on the kth element. Now,
we introduce a theorem which will provide us with a general formula that will be used to
prove entropy conservation.

Theorem 4.2.1. Let a and b represent two elements in the discretization. Then, for any
operator A = A⊗ IM, where M is the number of equations:

wa
TA ◦ F (ua,ub)1− 1TA ◦ FT (ub,ua)wb = 1

T
Aqb − qT

a A1,

where ua and ub denote the solution on the ath and bth elements respectively, and for
example, wa = w(ua) and qa = q(ua).

Proof : We will rewrite the above expression in summation notation and use the form of the
entropy-conservative two-point flux function in (4.4) to simplify the expression. Assume
that each element has N nodes. Then, let L = wa

TA ◦ F (ua,ub)1− 1TA ◦ FT (ub,ua)wb,
and with this definition we find that:

L = wa
TA ◦ F (ua,ub)1− 1TA ◦ FT (ub,ua)wb,

=
N∑
i=1

[
wa,i

T

N∑
j=1

Aijf
(EC) (ua,i,ub,j)−

N∑
j=1

Aijf
(EC)T (ub,j ,ua,i)wb,j

]
.
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Note that f (EC)T (ub,j ,ua,i)wb,j is a scalar value and hence can be written as

wb,j
Tf (EC) (ub,j ,ua,i), therefore,

L =
N∑
i=1

N∑
j=1

Aij

[
wa,i

Tf (EC) (ua,i,ub,j)−wb,j
Tf (EC) (ub,j ,ua,i)

]
.

Recall from (4.4) that f (EC) (ua,i,ub,j) = D− (ua,i,ub,j)−D+ (ub,j ,ua,i). Inserting this
into the above equation results in

L =
N∑
i=1

N∑
j=1

Aijwa,i
T
[
D− (ua,i,ub,j)−D+ (ub,j ,ua,i)

]
−

N∑
i=1

N∑
j=1

Aijwb,j
T
[
D− (ub,j ,ua,i)−D+ (ua,i,ub,j)

]
,

=
N∑
i=1

N∑
j=1

Aij

[
wa,i

TD− (ua,i,ub,j) +wb,j
TD+ (ua,i,ub,j)

]
−

N∑
i=1

N∑
j=1

Aij

[
wb,j

TD− (ub,j ,ua,i) +wa,i
TD+ (ub,j ,ua,i)

]
.

Substituting (4.6) gives

L =
N∑
i=1

N∑
j=1

Aij

[
1

2
(q(ub,j)− q(ua,i))−

1

2
(q(ua,i)− q(ub,j))

]
,

=1
T
Aqb − qT

a A1.

Now, we will prove the accuracy of the spatial discretization in (4.1), by following
Renac’s proof in [50], but changing the notation to fit that of this thesis. Furthermore,
with theorem (4.2.1) in hand, we can also prove that (4.1) discretely mimics the non-linear
IBP rule (2.9).

Theorem 4.2.2. Assuming the fluctuation fluxes (4.6) have the following form

D± (ui,uj) = 2A± (ui,uj)∆u, (4.10a)

A (ui,uj) = A− (ui,uj) +A+ (ui,uj) , (4.10b)

A (ui,uj) +A (uj,ui) = A (ui) + A (uj) , (4.10c)

A (u,u) = A (u) , (4.10d)
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for all ui/j ∈ Ω, where we assume that the domain is discretized using a single element,
hence, we drop the element indices and the i and j indices denote the node label, and
∆u = uj−ui. Then, 2D◦F(u,u)1 is a high-order approximation to the spatial derivatives
of smooth solutions. That is

A (u)
∂u

∂x
=

∂f(u)

∂x
+ c(u)

∂u

∂x
= 2D ◦ F(u,u)1+O (hp) .

Furthermore, when multiplied by the entropy variables and discretely integrated over the
domain, 2D ◦ F(u,u)1 discretely mimics the non-linear IBP rule (2.9) as follows

2wTPD ◦ F1 = qN − q1,

where qN = q(xN) and q1 = q(x1) when the domain is discretized into N nodes.

Proof : We will show that 2D ◦ F(u,u)1 is a high-order approximation of ∂f(u)
∂x

+ c(u)∂u
∂x

at all solution points, where we assume that we are on a single element for ease of notation
and hence, drop the element indices. For any two-functions a(x) and b(x), we can take the
derivative of (ab)(x), and evaluate it at a point xi as follows

d(ab)(x)

dx

∣∣∣∣
x=xi

=
da(x)

dx

∣∣∣∣
x=xi

b(xi) + a(xi)
db(x)

dx

∣∣∣∣
x=xi

.

Discretizing the right hand side of the above with a degree p SBP operator, D, results in

d(ab)(x)

dx

∣∣∣∣
x=xi

=
da(x)

dx

∣∣∣∣
x=xi

b(xi) + a(xi)
db(x)

dx

∣∣∣∣
x=xi

,

= (Da)ibi + ai(Db)i +O (hp) ,

= (
N∑
j=1

Dijaj)bi + ai(
N∑
j=1

Dijbj) +O (hp) .

(4.11)

Now, consider the Hadamard product in summation notation

2D ◦ F(u,u)1 = 2
N∑
j=1

Dijf
(EC)(ui,uj),

substituting the form of the alternate entropy-conservative flux (4.4) leads to

2D ◦ F(u,u)1 = 2
N∑
j=1

Dij

(
D−(ui,uj)−D+(uj,ui)

)
,
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substituting (4.10a) into the above equation for D± results in

2D ◦ F(u,u)1 =
N∑
j=1

Dij

[
A−(ui,uj) (uj − ui)−A+(uj,ui) (ui − uj)

]
,

rearranging the equation one finds that

2D ◦ F(u,u)1 =
N∑
j=1

Dij

[
A−(ui,uj) +A+(uj,ui)

]
[uj − ui] . (4.12)

To proceed, we begin by applying (4.11) in the following context

N∑
j=1

DijA
−(ui,uj)uj = A−(ui,ui)

N∑
j=1

Dijuj + ui

N∑
j=1

DijA
−(ui,uj) +O (hp) .

Rearranging the equation gives

N∑
j=1

DijA
−(ui,uj) [uj − ui] = A−(ui,ui)

N∑
j=1

Dijuj +O (hp) ,

then, using the accuracy property of SBP operators results in

N∑
j=1

DijA
−(ui,uj) [uj − ui] = A−(ui,ui)

∂u

∂x

∣∣∣∣
x=xi

+O (hp) . (4.13)

Applying the same rule to
∑N

j=1DijA
+(uj,ui)uj, we find that

N∑
j=1

DijA
+(uj,ui) [uj − ui] = A+(ui,ui)

N∑
j=1

Dijuj +O (hp) .

Again, using the accuracy property of SBP operators results in

N∑
j=1

DijA
+(uj,ui) [uj − ui] = A+(ui,ui)

∂u

∂x

∣∣∣∣
x=xi

+O (hp) . (4.14)

Recall equation (4.12):

2D ◦ F(u,u)1 =
N∑
j=1

Dij

[
A−(ui,uj) +A+(uj,ui)

]
[uj − ui] ,
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and apply (4.13) and (4.14) to the above equation resulting in

2D ◦ F(u,u)1 =
(
A−(ui,ui) +A+(ui,ui)

) ∂u
∂x

∣∣∣∣
x=xi

+O (hp) .

In this form, (4.10b) can be applied to the above equation to find that

2D ◦ F(u,u)1 = A(ui,ui)
∂u

∂x

∣∣∣∣
x=xi

+O (hp) ,

where finally, (4.10d) can be applied to the above equation resulting in

2D ◦ F(u,u)1 = A (ui)
∂u

∂x

∣∣∣∣
x=xi

+O (hp) .

Therefore, 2D ◦ F(u,u)1 is a high-order approximation to the spatial derivative of
smooth solutions to (2.10). What remains to be shown is that 2D ◦ F(u,u)1 can be used
to discretely mimic the non-linear IBP rule that arises in the continuous entropy analysis,
i.e., ∫ xR

xL

wT

(
∂f(u)

∂x
+ c(u)

∂u

∂x

)
dx = q

∣∣∣xR

xL

.

The discrete counter part of multiplying the entropy variables and integrating over the
domain is left multiplication of 2D ◦ F(u,u)1 by wTP. We show that doing so results in
the difference in the entropy flux function, q, between the first and last nodes. Begin by
left multiplying 2D ◦ F(u,u)1 by wTP to find that

wTP (2D ◦ F(u,u)1) = 2wTQ ◦ F(u,u)1,
=
(
wTQ ◦ F1+wTQ ◦ F1

)
.

Note that F = F(u,u), is used for ease of notation, therefore,

2wTPD ◦ F1 =
(
wTQ ◦ F1+ 1TFT ◦ QTw

)
.

The Hadamard product is symmetric, i.e., A ◦ B = B ◦ A, thus,

2wTPD ◦ F1 =
(
wTQ ◦ F1+ 1TQT ◦ FTw

)
.
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Recall the property of SBP operators: QT = E − Q. Substituting this into the above
expression gives

2wTPD ◦ F1 =
(
wTQ ◦ F1− 1TQ ◦ FTw + 1TE ◦ FTw

)
.

Using theorem (4.2.1) on the first two terms on the right hand side results in

2wTPD ◦ F1 = 1
T
Qq − 1

T
Q q +wTE ◦ F1.

Furthermore, since the second term on the right hand side is a scalar, we can take it’s
transpose. Thus,

2wTPD ◦ F1 = 1
T
Qq −��

��qTQ1+wTE ◦ F1.

Where we have cancelled the middle term since and SBP operator, Q, of any order, will
result in Q1 = 0. Thus,

2wTPD ◦ F1 = 1
T
Qq +wTE ◦ F1,

replacing E with E = tRt
T
R − tLt

T
L results in

2wTPD ◦ F1 = 1
T
Qq + 1TtRt

T
R ◦ Fwi − 1TtLt

T
L ◦ Fwi.

Using (3.3), we can write

tRt
T
R ◦ F = diag(0, . . . , 0, F (ui,N , ui,N)),

and similarly
tLt

T
L ◦ F = diag(F (ui,1, ui,1), 0, . . . , 0).

Then, equations (4.4) and (4.5), give F (ui,N , ui,N) = F (ui,1, ui,1) = 0. Plugging this into
the above equation gives

2wTPD ◦ F1 = 1
T
Qq,

= 1
T
(
E− Q

T
)
q,

= 1
T
Eq −����

1
T
Q

T
q,

2wTPD ◦ F1 = qN − q1.

Therefore, the Hadamard product, (4.1), discretely mimics the non-linear IBP rule (2.9).

With Theorems (4.2.1) and (4.2.2) in hand, we can now prove that the semi-discrete scheme
is entropy-conservative.
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Theorem 4.2.3. Let wi be the entropy variables associated with an entropy function η,
on an element i, such that ∂ηi

∂ui
= wT

i . Then, the semi-discrete scheme (4.9), which is

discretized into n elements, satisfies the following equality when left multiplied by wT
i P,

n∑
i=1

1
T
P
dηi

dt
= 0,

where P = P ⊗ I5, and ηi = η(ui). That is, the semi-discrete scheme, (4.9), is entropy-
conservative.

Proof : We mimic the steps taken in the continuous proof of entropy conservation at the
discrete level and show that the total entropy over the domain remains constant over all
time, i.e.,

d

dt

∫ xR

xL

ηdx = q(xL)− q(xR) = 0,

in the case of a periodic problem. As the discrete analog to multiplying the equations by
the entropy variables and integrating over the domain, we left multiply (4.9) by wTP. For
element i = 1, 2 . . . , n we find the time derivative term on the left hand side of (4.9)

wT
i P

dui

dt
=

N∑
j=1

wi,jPjj
dui,j

dt
,

=
N∑
j=1

Pjj
dηi,j
dui,j

dui,j

dt
,

=
N∑
j=1

Pjj
dηi,j
dt

,

wT
i P

dui

dt
= 1

T
P
dηi

dt
.

The second term on the left hand side of (4.9) can be simplified following the same steps
as in the proof of theorem (4.2.2). We re-use the notation F(ui,uj) = Fij, to find that

2wT
i PD ◦ Fii1 = 1TQqi + 1TtRt

T
R ◦ Fiiwi − 1TtLt

T
L ◦ Fiiwi.
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Thus, after left multiplying (4.9) by wTP we find for an element i = 1, 2, . . . , n,

1TP
dηi
dt

+ 1TQqi +((((((((
1TtRt

T
R ◦ Fiiwi −

hhhhhhhh1TtLt
T
L ◦ Fiiwi =−wT

i

(XXXXXXtLt
T
L ◦ Fii1− tLt

T
R ◦ Fi(i−1)1

)
+wT

i

(
������
tRt

T
R ◦ Fii1− tRt

T
L ◦ Fi(i+1)1

)
,

1TP
dηi

dt
+ 1TQqi =+wT

i

(
tLt

T
R ◦ Fi(i−1)1

)
−wT

i

(
tRt

T
L ◦ Fi(i+1)1

)
.

(4.15)
Note that if i = 1, then, in the above equation, (i − 1) = n. Similarly, if i = n, then
(i + 1) = 1, since we are considering a periodic domain. To prove entropy conservation
over the entire domain we must sum over all elements. The remaining SAT terms from
(4.15) can be shown to sum to

SAT =
n∑

i=1

[
wT

i

(
tLt

T
R ◦ Fi(i−1)1

)
−wT

i

(
tRt

T
L ◦ Fi(i+1)1

)]
.

Expanding the sum and gathering similar Fij terms results in

SAT =
n∑

i=1

[
wT

i

(
tLt

T
R ◦ Fi(i−1)1

)
−wT

i−1

(
tRt

T
L ◦ F(i−1)i1

)]
,

=
n∑

i=1

[
wT

i tLt
T
R ◦ Fi(i−1)1− 1TtLt

T
R ◦ FT

(i−1)iwi−1

]
.

Now, these operators are in the form of theorem (4.2.1), thus, they can be re-written in
terms of the entropy flux function

SAT =
n∑

i=1

[
1
T
tL tR

T
q(i−1) − qT

i tL tR
T
1
]
,

=
n∑

i=1

[
q(i−1),N − qi,1

]
.

Expanding out the sum and gathering like terms results in

SAT =
n∑

i=1

[qi,N − qi,1] ,
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where, qi,j stands for the entropy flux function evaluated on the jth node of the ith element.

Next, we sum the term 1
T
Qqi from (4.15) over all elements to find that

n∑
i=1

1
T
Qqi =

n∑
i=1

1
T
(
E− Q

T
)
qi,

=
n∑

i=1

[
1
T
Eqi −�����

1
T
Q

T
qi

]
,

n∑
i=1

1
T
Qqi =

n∑
i=1

[qi,N − qi,1] .

Therefore, summing (4.15) over all elements leaves us with:

n∑
i=1

1
T
P
dηi

dt
+

n∑
i=1

[qi,N − qi,1] =
n∑

i=1

[qi,N − qi,1] ,

n∑
i=1

1
T
P
dηi

dt
= 0.

Therefore, (4.9) is a semi-discrete entropy-conservative discretization of the Baer-Nunziato
model. It can achieve high order accuracy for smooth solutions through the use of high-
order SBP operators.

In this chapter, we developed a high-order entropy-conservative scheme which solves
the isentropic Baer-Nunziato equations for smooth, periodic solutions. We have used the
Hadamard formalism, (4.1), to discretize the spatial terms in the isentropic Baer-Nunziato
equations since the SBP property alone is insufficient to mimic the “non-linear IBP rule,”
(2.9), that arises from the continuous entropy analysis. Furthermore, we have introduced
the symmetric SATs, (4.7), which are used to enforce periodic boundary conditions as
well as couple adjacent elements. Since we are interested in studying the bubble collapse
problem in relation to HIFU, we are interested in studying discontinuous solutions to the
isentropic Baer-Nunziato equations, since the collapse introduces a shock into the system.
The entropy-conservative scheme, (4.9), is not capable of handling this case since, around a
shock, the mathematical entropy of the system must dissipate according to the second law
of thermodynamics. Thus, the entropy-conservative scheme will not produce solutions that
are physically relevant. Furthermore, this scheme has no positivity-preserving properties
and, as such, could produce solutions that contain negative void fractions and densities,
which is not only nonphysical, but, will also cause the code to crash. Therefore, in the next
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chapter, we detail a first-order scheme that is entropy-stable and positivity-preserving. We
will introduce a novel dissipation operator, which is an entropy-dissipative term, to the
numerical scheme, thus, dissipating the entropy around a discontinuity. Furthermore,
this dissipation operator will have tuneable dissipation coefficients that can be selected
such that the first-order scheme is provably node-wise positivity-preserving, which, to
the authors knowledge, is a novel contribution to the solution of the isentropic Baer-
Nunziato equations. Finally, we will detail a mixing scheme that will combine the high-
order entropy-conservative scheme, (4.9), detailed in chapter 4, with the first-order entropy-
stable positivity preserving scheme, detailed in section 5.1, to achieve a high-order entropy-
stable positivity-preserving scheme.
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Chapter 5

Entropy-Stable Positivity-Preserving
Scheme

In the previous chapter we detailed a high-order entropy-conservative scheme for the isen-
tropic Baer-Nunziato model. It is capable of handling smooth solutions, but is prone to
developing spurious oscillations around discontinuities, as is the case with other nonlinear
hyperbolic systems [41]. Furthermore, at discontinuities, the physical entropy of the system
must increase to satisfy the second law of thermodynamics and the entropy-conservative
scheme detailed in the previous chapter conserves entropy. Meaning that, at discontinu-
ities, the entropy-conservative scheme, (4.9), is physically incorrect. As we are interested in
studying the bubble collapse problem in relation to HIFU, we wish to study discontinuous
solutions to the Baer-Nunziato model. It is well known that the mathematical entropy
of a system must be dissipated around a shock [41], hence, we add appropriate numerical
dissipation to ensure mathematical entropy dissipation. This concept is known as entropy
stability. In this chapter we present a scheme that is capable of handing discontinuous
solutions through the use of entropy-dissipative terms. Furthermore, we would like to be
able to handle void fractions and densities that get arbitrarily close to zero. However,
as values get close to zero, the base numerical scheme, (4.9), may not preserve the posi-
tivity of void fractions and densities. These quantities need to remain positive not only
to make physical sense, but our stability estimate depends on the strict convexity of the
entropy. The entropy function, (2.8), is strictly convex if and only if the void fractions and
densities are strictly positive. Thus, in this chapter, we seek a high-order entropy-stable
positivity-preserving scheme for the isentropic Baer-Nunziato model.

To begin, we detail a first-order entropy-stable positivity-preserving scheme. The
positivity-preserving properties result from the use of a first-order entropy-dissipative term
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which was inspired by the work of Upperman and Yamaleev [63], who used the Brenner
regularization of the Navier-Stokes equations to construct a dissipation operator which can
guarantee the node-wise positivity of density and temperature in the Navier-Stokes equa-
tions. Then, to attain high-order accuracy, we leverage the work of Upperman [62] and take
a convex combination of the first-order positivity-preserving entropy-stable scheme and the
high-order positivity-violating entropy-conservative scheme, (4.9), to attain a high-order
positivity-preserving entropy-stable scheme. Finally, we include the algorithm and imple-
mentation details.

5.1 First-Order Entropy-Stable Positivity-Preserving

Scheme

We now present a first-order entropy-stable positivity-preserving scheme for the isen-
tropic Baer-Nunziato model (2.3). For the remainder of this thesis, we will use v =
[α1 ρ1 v1 ρ2 v2]

T as the vector of primitive variables and u = [α1 α1ρ1 α1ρ1v1 α2ρ2 α2ρ2v2]
T

as the vector of conserved variables.

The first-order entropy-stable positivity-preserving semi-discrete scheme can be written
as follows

du

dt
+ 2D1 ◦ F(u,u)1 = P̃−1

H (Diss ◦M)v + uEID + SATs. (5.1)

This semi-discrete scheme is the same as (4.9) with the addition of an artificial dissipation
operator

ADO = P̃−1
H (Diss ◦M)v, (5.2)

and the element interface dissipation uEID. It is important to note that while (4.9) can
attain high-order accuracy through the use of high-order SBP operators, (5.1) attains only
first-order accuracy. This is because we use a specific derivative operator in (5.1). The
derivative operator, D1, defined in (3.17), is constructed as P−1

H Q1, where, PH is a high-
order norm matrix and Q1 is the first-order Q matrix. The reason (5.1) needs to use
this specific derivative operator will become clear when proving the positivity-preserving
properties of the scheme. For the remainder of this chapter, we drop the subscript of the
derivative matrix, i.e., D1 = D. Furthermore, we use a high-order mass matrix PH so that
we can prove entropy-stability of the high-order mixed scheme detailed in the next section.

The artificial dissipation operator, (5.2), is broken into 3 parts: the undivided high-
order SBP mass matrix P̃H (i.e., PH = hP̃H), the Hadamard product between Diss and M,

58



and the primitive variables v. For the remainder of this thesis, we will assume that the
SBP mass matrix is of high-order and write PH = hP̃H = P = hP̃. Note that:

Diss =



−2 1 0 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 0

. . . . . . . . .

1 −2 1
1 −2


, (5.3)

and M is a symmetric block matrix that has the form

M =



M11 M12 0 0 . . . 0
M12 M22 M23 0 . . . 0
0 M23 M33 M34 . . . 0

. . . . . . . . .

M(n−1)(n−2) M(n−1)(n−1) M(n−1)n

M(n−1)n Mnn


, (5.4)

where,

M11 =
M12

2
, Mnn =

M(n−1)n

2
, ∀ i ̸= 1, n Mii =

M(i−1)i +Mi(i+1)

2
. (5.5)

Then, for i ̸= j

Mij =


σ1 0 0 0 0
σ2ρ1 σ2α1 0 0 0

σ2ρ1 v1 σ2α1 v1 0 0 0
−σ4ρ2 0 0 σ4α2 0

−σ4ρ2 v2 0 0 σ4α2 v2 0

 , (5.6)

where,

ρ1 =
(ρ1)i + (ρ1)j

2
,

with similar definitions for the other averages in (5.6). Also, σ1, σ2, and σ4 are positive
constants and their value will be determined in order to enforce positivity.

The artificial dissipation operator adds volume dissipation within an element, and as
such, only deals with nodes on the same element. On the other hand, the element interface
dissipation, uEID, which uses the same framework as the artificial dissipation operator,
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requires some different notation as we will be using values from two adjacent elements. For
the ith element we find that

uEID = P̃−1[−Mi
N1∆

iv, 0, . . . , 0,M
(i+1)
N1 ∆(i+1)v]T. (5.7)

Where Mi
N1 is the same operator, M, as introduced in (5.4), except, its entries are

computed using vi,1 and v(i−1),N , and ∆iv = vi,1 − v(i−1),N . Furthermore, the dissipation
coefficients, σa, a ∈ {1, 2, 4}, are calculated by scaling the maximum absolute value of the
eigenvalues of the flux Jacobian, which is described in the appendix A. We will now prove
that the artificial dissipation operator, (5.2), vanishes for a constant solution.

Theorem 5.1.1. The artificial dissipation operator, as defined in (5.2), vanishes for a
constant solution, that is, when given a constant solution, P̃−1 (Diss ◦M)v = 0.

Proof : The artificial dissipation operator is comprised of terms of the form P̃iiMij∆v, i.e.,

P̃−1 (Diss ◦M)v = P̃−1


M12(v2 − v1)

...
−M(i−1)i(vi − vi−1) +Mi(i+1)(vi+1 − vi)

...
−M(N−1)N(vN − vN−1)

 . (5.8)

Written in the above form, it is clear that the artificial dissipation operator vanishes for a
constant solution. A constant solution implies that the primitive variables, v, are constant.
Since the operator can be written as a sum of differences in the primitive variables between
adjacent nodes, when given a constant solution, these values are all zero. Thus, the artificial
dissipation operator, (5.2), vanishes when given a constant solution.

In addition to the above theorem, the artificial dissipation operator is consistent with
the volume dissipation added by Upperman and Yamaleev [63] to their discretization for
the Navier-Stokes equations. In their work, first-order accuracy is easily seen by converting
the discretizations into a telescopic flux form. Additionally, from the analysis performed
in section 3.4, it seems reasonable to assume that the artificial dissipation operator should
converge to 0 at first-order. Here, we do not present the analysis, however, in chapter 6,
we present numerical tests which confirm that the artificial dissipation operator converges
to zero at first-order. Furthermore, the artificial dissipation operator has been constructed
so that it is an entropy-stable term. We will now prove a relation between the entropy
variables, the operator Mij, and the primitive variables that will help us prove that the
artificial dissipation operator, (5.2), is entropy-stable.
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Theorem 5.1.2. For all admissible states u ∈ Ω, and all i = 1, 2, . . . , N − 1, there exists
σ1, σ2, and σ4 such that

∆α1 [σ2ρ1∆h1 − σ1∆p1] > 0 and ∆α1 [σ1∆p2 − σ4ρ2∆h2] > 0,

and therefore
∆wTMi(i+1)∆v ≥ 0,

where ∆w = wi+1 −wi and ∆v = vi+1 − vi, with similar definitions for other variables.

Proof : To prove that ∆wTMi(i+1)∆v ≥ 0, we first carry through the multiplication using
arbitrary nodes i and i+1. Then, by placing lower bounds on the values of the dissipation
coefficients, that correspond to the magnitude of the density, we will be able to show that
the contraction is greater than or equal to zero for all nodes i ∈ [1, N − 1]. We have

∆w =


∆p2 −∆p1
∆h1 − v1∆v1

∆v1
∆h2 − v2∆v2

∆v2

,Mi(i+1)∆v =


σ1∆α1

σ2ρ1∆α1 + σ2α1∆ρ1
σ2ρ1 v1∆α1 + σ2α1 v1∆ρ1
−σ4ρ2∆α1 + σ4α2∆ρ2

−σ4ρ2v2∆α1 + σ4α2v2∆ρ2

 . (5.9)

Carrying through the multiplication and gathering like terms gives

∆wTMi(i+1)∆v =∆α1 [σ2ρ1∆h1 − σ1∆p1] + ∆α1 [σ1∆p2 − σ4ρ2∆h2] +

∆ρ1[σ2α1]∆h1 +∆ρ2[σ4α2]∆h2+

∆α1

[
(((((((((
σ2ρ1 v1 − σ2ρ1 v1

]
∆v1 +∆α1[(((((((((

σ4ρ2 v2 − σ4ρ2 v2]∆v2+

∆ρ1
[
(((((((((
σ2α1 v1 − σ2α1 v1

]
∆v1 +∆ρ2

[
(((((((((
σ4α2 v2 − σ4α2 v2

]
∆v2. (5.10)

The last four terms in (5.10) are always zero as the interior of the terms exactly cancel
out. Then, it is possible to show that the terms on the second line of (5.10) are also
greater than or equal to zero under the assumptions that σ2, σ4, α1, and α2 are positive.
This results because we are considering ideal gases, meaning that the change in enthalpy,

∆hi =
(

kγi
γi−1

)
∆
(
ργi−1
i

)
, has the same sign as the change in density, ∆ρi.

All that remains is to ensure that the terms in the first line of (5.10) are positive. These
terms can always be made positive, if they are not positive already, by increasing one of
the dissipation coefficients (σ1,σ2, or σ4). We will show the proof for the case where ∆α1,
∆p1, and ∆p2 are positive. Note that the sign of ∆h1 is equal to the sign of ∆p1 and
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likewise for the second phase since we are considering polytropic ideal gas. One can ensure
the positivity of the second term in (5.10) by choosing

∆α1 [σ1∆p2 − σ4ρ2∆h2] > 0,

σ1∆p2 − σ4ρ2∆h2 > 0,

σ1∆p2 > σ4ρ2∆h2,

σ1 >
σ4ρ2∆h2

∆p2
,

then, considering the above restriction on σ1 chose

∆α1 [σ2ρ1∆h1 − σ1∆p1] > 0,

σ2ρ1∆h1 − σ1∆p1 > 0,

σ2ρ1∆h1 > σ1∆p1,

σ2 >
σ1∆p1
ρ1∆h1

.

A similar procedure can be carried for the case where ∆α1 < 0. Furthermore, for an
ideal gas, these constraints that are placed onto the dissipation coefficients will not cause
the coefficients to grow uncontrollably as ∆p

∆h
is on the order of magnitude of density. This

property will become important when discussing the positivity-preservation algorithm.

We can now use Theorem (5.1.2) to show that the artificial dissipation operator and
the element interface dissipation are entropy-dissipative terms. With this we can conclude
that the first-order scheme (5.1) is entropy-stable.

Theorem 5.1.3. Left multiplying the artificial dissipation operator, defined in (5.2), on
some element i, by the entropy variables wT

i , and the SBP norm matrix P, results in

wT
i PP̃

−1(Diss ◦M)vi ≤ 0.

Furthermore, left multiplying the element interface dissipation, defined in (5.7), by wT
i P

and summing over all elements i = 1, 2, . . . , n leads to

n∑
i=1

wT
i Pu

EID
i ≤ 0.

Hence, the first-order scheme, (5.1), is entropy-stable, i.e.,
∑n

i=1 1
T
Pdηi

dt
≤ 0, where P =

P⊗ I5 and ηi = η(ui).
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Proof : From theorem (4.2.3), (4.9) is entropy-conservative. Furthermore, (5.1) is simply
(4.9) with the addition of the artificial dissipation operator, (5.2), and element interface
dissipation (5.7). Therefore, to prove that (5.1) is entropy-stable all that needs to be shown
is that (5.2) and (5.7) are entropy-dissipative.

The artificial dissipation operator can be shown to be entropy-stable over each element
individually, meaning that, when summed over all elements, the total contribution of the
dissipation operator is also entropy-stable. Therefore, it is sufficient to show that (5.2) is
entropy-stable in a single element with N nodes. To do this, we take a similar approach as
in the proof that (4.9) is entropy-conservative. We left multiply the artificial dissipation
operator by wTP, except this time show that the contraction is less than or equal to zero.
Note that PP̃−1 = h, where h is the grid spacing.

wTPP̃−1(Diss ◦M)v = hwT(Diss ◦M)v,

hwT(Diss ◦M)v = h


w1

w2

w3
...

wN


T 

−2M11 M12 0 0 . . . 0
M21 −2M22 M23 0 . . . 0
0 M32 −2M33 M34 . . . 0

. . . . . . . . .

0 0 0 . . . M(N−1)N −2MNN




v1

v2

v3
...

vN

 ,

= h


w1

w2

w3
...

wN


T 

−2M11v1 +M12v2

M12v1 − 2M22v2 +M23v3

M23v2 − 2M33v3 +M34v4
...

M(N−1)Nv(N−1) − 2MNNvN

 .

Carrying out the multiplication and substituting in the form of Mii from (5.5) ∀ i =
1, 2, . . . , N we find that

wTPP̃−1(Diss ◦M)v = −h
N−1∑
i=1

(
w(i+1) −wi

)T
Mi(i+1)

(
v(i+1) − vi

)
,

= −h

N−1∑
i=1

∆wTMi(i+1)∆v,

by theorem (5.1.2), ∆wTMi(i+1)∆v ≥ 0 ∀ i = 1, 2, . . . , N − 1. Thus,

wTPP̃−1(Diss ◦M)v = −h
N−1∑
i=1

∆wTMi(i+1)∆v ≤ 0.
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Therefore, wTPP̃−1(Diss ◦ M)v ≤ 0 in each element. Hence, the artificial dissipation
operator is an entropy-dissipative term. All that remains to be shown is that the element
interface dissipation is entropy-dissipative. To demonstrate that the interface term (5.7)
results in entropy dissipation, we need to contract with the entropy on each element and
then sum the results over all elements. Assume the domain has been discretized into n
elements with N nodes per element. Thus, left multiplying (5.7) by wTP and summing
over all elements gives

n∑
i=1

wT
i Pu

EID
i =

n∑
i=1

wT
i PP̃

−1[−Mi
N1∆

iv, 0, . . . , 0,M
(i+1)
N1 ∆(i+1)v]T.

Here, in the case of a periodic problem, when i = n, (i+ 1) = 1. Therefore,

n∑
i=1

wT
i Pu

EID
i = h

n∑
i=1

−wi,1M
i
N1∆

iv +wi,NM
(i+1)
N1 ∆(i+1)v,

= h
n∑

i=1

(w(i−1),N −wi,1)M
i
N1∆

iv,

= −h
n∑

i=1

(wi,1 −w(i−1),N)M
i
N1∆

iv,

n∑
i=1

wT
i Pu

EID
i = −h

n∑
i=1

∆iwMi
N1∆

iv.

By theorem (5.1.2), ∆iwMi
N1∆

iv ≥ 0, thus,
∑N

i=1w
T
i Pu

EID
i ≤ 0. Therefore, both the

artificial dissipation, (5.2), and the element interface dissipation are entropy-dissipative,
meaning (5.1) is entropy-stable, since it is the sum of an entropy-conservative scheme,
(4.9), and two entropy-dissipative terms.

For the isentropic Baer-Nunziato model, we require positivity in α1, ρ1, α2 and ρ2. In
numerical simulations we compute α2 as 1−α1. Therefore, to maintain positivity of α2 we
require α1 to be bounded above by 1. That is, α1 ∈ (0, 1), ρ1, ρ2 > 0. This is equivalent to
requiring positivity in equations 1, 2, and 4 of (2.3) since the vector of conserved variables
is [α1, α1ρ1, α1ρ1v1, α2ρ2, α2ρ2v2]

T. We will take (5.1) and analyze only equations 1, 2, and
4 for positivity.

First, we can write (5.1) in a simplified form by substituting the form of the first-order
SBP operator Q1, which will allow us to prove node-wise positivity of the scheme. We will
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prove positivity on an element by element basis, thus, for the following discussion we are
only considering one element, j, and element indices will not be used for ease of notation.
Using first-order Q1 SBP-finite-difference operators one finds that

2D ◦ F(u,u)1 = 2(P−1Q) ◦ F(u,u)1 = P−1(2Q1) ◦ F(u,u)1 =
1

h
P̃−1


f

(EC)
12
...

f
(EC)
i(i+1) − f

(EC)
i(i−1)

...

−f
(EC)
N(N−1)

 .

Furthermore, the artificial dissipation operator can be written as

P̃−1 (Diss ◦M)v = P̃−1


M12(v2 − v1)

...
−M(i−1)i(vi − vi−1) +Mi(i+1)(v(i+1) − vi)

...
−M(N−1)N(vN − vN−1)

 .

Finally, we will pull the P term out of the SATs as follows

SATs = P−1SATs =
1

h
P̃−1SATs.

For ease of notation we absorb the 1
h
term into the SATs as well as the Hadamard

product term so that 1
h
f

(EC)
ij = f ij and 1

h
SATs = S. Plugging the above into (5.1) we

can rewrite the scheme nodewise as follows:

du1

dt
=

1

P̃11

[
−f 12 +M12(v2 − v1)−Mj

N1∆
jv + S

]
,

dui

dt
=− 1

P̃ii

[
f i(i+1) −Mi(i+1)(v(i+1) − vi)

]
+

1

P̃ii

[
f i(i−1) −M(i−1)i(vi − vi−1)

]
,

duN

dt
=

1

P̃NN

[
fN(N−1) −M(N−1)N(vN − vN−1) +M

(j+1)
N1 ∆(j+1)v + S

]
,

(5.11)

where i = 2, 3, . . . , N − 1. The scheme (5.11) is now written in a form such that, when
marching in time using the explicit forward Euler discretization, we can prove that posi-
tivity of the densities and void fractions will be preserved. Positivity is preserved under
certain restrictions on the dissipation coefficients as well as the allowable time step.
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Theorem 5.1.4. Consider the semi-discrete scheme (5.11) with the explicit forward Euler
discretization in time on a single element, with a time step of ∆t:

un+1
1 =un

1 −
∆t

P̃11

[
f 12 −M12(v2 − v1) +Mj

N1∆
jv − S

]
,

un+1
i =un

i −
∆t

P̃ii

[
f i(i+1) −Mi(i+1)(v(i+1) − vi)

]
+

∆t

P̃ii

[
f i(i−1) −M(i−1)i(vi − vi−1)

]
,

un+1
N =un

N +
∆t

P̃NN

[
fN(N−1) −M(N−1)N(vN − vN−1) +M

(j+1)
N1 ∆(j+1)v + S

]
.

(5.12)
Assuming that un is in the admissible set and under certain choices for σ1, σ2, and σ4,
defined below, the above first-order scheme preserves the positivity of ρ1, ρ2, α1, and α2

under the CFL-like condition:{
∆t < P̃ii

2Γ
i = 1, N

∆t < P̃ii

4Γ
i = 2, 3, . . . , N − 1

,

where Γ = max(σ1,σ2,σ4). Assuming that each element is discretized using N nodes, the
dissipation coefficients σ1, σ2, and σ4 are selected as follows:
For i = 1 choose the dissipation coefficients such that:

σ1 ≥ max

(
|f (1)

12 + σ∆ju(1) − S(1)|
u
(1)
1 + u

(1)
2

,
|σ∆j(α2) + S(1) − f

(1)
12 |

(α2)1 + (α2)2

)
,

σa ≥
|f (a)

12 + σ∆ju(a) − S(a)|
u
(a)
1 + u

(a)
2

, a = 2, 4.
(5.13)

For i = 2, 3, . . . , N − 1 choose the dissipation coefficients such that:

σ1 ≥ max

(
|f (1)

i(i+1)|

u
(1)
i + u

(1)
i+1

,
|f (1)

i(i−1)|

u
(1)
i + u

(1)
i−1

,
|f (1)

i(i+1)|
(α2)i + (α2)(i+1)

,
|f (1)

i(i−1)|
(α2)i + (α2)(i−1)

)
,

σa ≥ max

(
|f (a)

i(i+1)|

u
(a)
i + u

(a)
i+1

,
|f (a)

i(i−1)|

u
(a)
i + u

(a)
i−1

)
, a = 2, 4.

(5.14)

66



For i = N choose the dissipation coefficients such that:

σ1 ≥ max

(
|f (1)

N(N−1) + σ∆(j+1)u(1) + S(1)|

u
(1)
N + u

(1)
N−1

,
|f (1)

N(N−1) − σ∆(j+1)(α2) + S(1)|
(α2)N + (α2)(N−1)

)
,

σa ≥
|f (a)

N(N−1) + σ∆(j+1)u(a) + S(a)|

u
(a)
N + u

(a)
N−1

, a = 2, 4.

(5.15)

Proof : To prove the node-wise positivity of the numerical scheme we will make use of
the design of the artificial dissipation operator (5.2). Notice that the operator M has been
designed so that when multiplied by the change in primitive variables it returns the change
in conserved variables in the relevant equations as follows,

Mij∆v =


σ1∆α1

σ2ρ1∆α1 + σ2α1∆ρ1
σ2ρ1 v1∆α1 + σ2α1 v1∆ρ1
−σ4ρ2∆α1 + σ4α2∆ρ2

−σ4ρ2v2∆α1 + σ4α2v2∆ρ2

 =


σ1∆α1

σ2∆(α1ρ1)
σ2v1∆(α1ρ1)
σ4∆(α2ρ2)
σ4v2∆(α2ρ2)

 =


σ1∆u(1)

σ2∆u(2)

σ2v1∆u(2)

σ4∆u(4)

σ4v2∆u(4)

 ,

where u(a) denotes the ath conserved variable in the 5 equation isentropic Baer-Nunziato
model. The analysis on equations 1, 2, and 4 is identical, thus, here we perform them all
at once, i.e.,

u
n+1(a)
1 =u

n(a)
1 − ∆t

P̃11

[
f
(a)
12 − [M12(v2 − v1)]

(a) +
[
Mj

N1∆
jv
](a) − S(a)

]
,

u
n+1(a)
i =u

n(a)
i − ∆t

P̃ii

[
f
(a)
i(i+1) −

[
Mi(i+1)(v(i+1) − vi)

](a)]
+

∆t

P̃ii

[
f
(a)
i(i−1) −

[
M(i−1)i(vi − vi−1)

](a)]
,

u
n+1(a)
N =u

n(a)
N +

∆t

P̃NN

[
f
(a)
N(N−1) −

[
M(N−1)N(vN − vN−1)

](a)
+
[
M

(j+1)
N1 ∆(j+1)v

](a)
+ S(a)

]
,

(5.16)
for a ∈ {1, 2, 4}. For the rest of the proof we will omit the (a) symbol and assume that,
unless stated otherwise, the analysis holds for equations 1, 2, and 4. Suppose we are on
node i, define ∆+b = bi+1 − bi and ∆−b = bi − bi−1 for some quantity b. First, let’s study
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the interior nodes:

un+1
i = un

i −
∆t

P̃ii

[
fi(i+1) −Mi(i+1)(v(i+1) − vi)

]
+

∆t

P̃ii

[
fi(i−1) −M(i−1)i(vi − vi−1)

]
,

= un
i −

∆t

P̃ii

[
fi(i+1) − σ∆+u

]
+

∆t

P̃ii

[
fi(i−1) − σ∆−u

]
,

=

[
un
i

2
− ∆t

P̃ii

(
fi(i+1) − σ∆+u

)]
+

[
un
i

2
+

∆t

P̃ii

(
fi(i−1) − σ∆−u

)]
.

(5.17)

To maintain positivity at the next time step we can maintain positivity of each term
on the right hand side of (5.17). Consider the first term on the right hand side; we want

to determine restrictions on σ and ∆t such that
un
i

2
− ∆t

P̃ii

(
fi(i+1) − σ∆+u

)
> 0. We will

determine such restrictions as follows,

un
i

2
− ∆t

P̃ii

(
fi(i+1) − σ∆+u

)
≥ un

i

2
− ∆t

P̃ii

(
|fi(i+1)| − σ∆+u

)
,

=
un
i

2
− 2σ∆t

P̃ii

(
|fi(i+1)|
2σ

− ∆+u

2

)
,

≥ un
i

2
− 2σ∆t

P̃ii

(
uA − ∆+u

2

)
.

Note that this is true if and only if uA ≥ |fi(i+1)|
2σ

or σ ≥ |fi(i+1)|
2uA

, where uA = ui+ui+1

2
.

We assume that positivity was maintained on the previous time step, therefore, uA is
guaranteed to be positive. Furthermore, uA − ∆+u

2
= un

i . Thus,

un
i

2
− ∆t

P̃ii

(
fi(i+1) − σ∆+u

)
≥ un

i

2
− 2σ∆t

P̃ii

(un
i ) ,

= un
i

(
1

2
− 2σ∆t

P̃ii

)
> 0.

The solution at time step n, un, is in the set of admissible states, thus, all we need to

do is choose a time step, ∆t, such that 1
2
− 2σ∆t

P̃ii
> 0. Therefore, by choosing σ ≥ |fi(i+1)|

2uA

and ∆t < P̃ii

4σ
, we can maintain positivity in the first term on the right hand side. Now,
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lets perform the same exercise with the second term on the right hand side of (5.17):

un
i

2
+

∆t

P̃ii

(
fi(i−1) − σ∆−u

)
=

un
i

2
− ∆t

P̃ii

(
−fi(i−1) + σ∆−u

)
,

≥ un
i

2
− ∆t

P̃ii

(
|fi(i−1)|+ σ∆−u

)
,

=
un
i

2
− 2σ∆t

P̃ii

(
|fi(i−1)|
2σ

+
∆−u

2

)
,

≥ un
i

2
− 2σ∆t

P̃ii

(
uA +

∆−u

2

)
.

Note that, this is true if and only if uA ≥ |fi(i−1)|
2σ

or σ ≥ |fi(i−1)|
2uA

, where uA = ui+ui−1

2
.

Furthermore, uA + ∆−u
2

= un
i , thus,

un
i

2
+

∆t

P̃ii

(
fi(i−1) − σ∆−u

)
≥ un

i

2
− 2σ∆t

P̃ii

(un
i ) ,

= un
i

(
1

2
− 2σ∆t

P̃ii

)
> 0.

Therefore, to maintain positivity in the second half of the equation we need σ ≥ |fi(i−1)|
2uA

and the same CFL-like condition ∆t < P̃ii

4σ
. Therefore, to maintain positivity on an interior

node i, we need to choose σ such that

σ ≥ max

(
|fi(i+1)|
ui + ui+1

,
|fi(i−1)|
ui + ui−1

)
.

Furthermore, we must take a time step, ∆t, such that

∆t <
P̃ii

4σ
.

It is crucial that ∆t does not become arbitrarily small and this happens when σ becomes
arbitrarily large. Later, we will prove that σ cannot grow uncontrollably. Now, all that
remains is to prove positivity at the first and last nodes. The procedure is similar for both
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nodes and so we will only show the proof for node 1.

un+1
1 = un

1 −
∆t

P̃11

(
f12 −M12(v2 − v1) +Mj

N1∆
jv − S

)
,

= un
1 −

∆t

P̃11

[
f12 − σ∆+u+ σ∆ju− S

]
,

= un
1 −

2σ∆t

P̃11

(
f12
2σ

− ∆+u

2
+

σ∆ju

2σ
− S

2σ

)
,

≥ un
1 −

2σ∆t

P̃11

(
|f12 + σ∆ju− S|

2σ
− ∆+u

2

)
,

≥ un
1 −

2σ∆t

P̃11

(
uA − ∆+u

2

)
,

= un
1 −

2σ∆t

P̃11

(un
1 ),

= un
1

(
1− 2σ∆t

P̃11

)
> 0.

Note that 2Mj
N1∆

j = 2σ∆ju where σ does not have to equal σ, meaning we can use
a different dissipation coefficient for the element interface dissipation. Above we have

assumed that σ has been selected such that σ ≥ |f12+σ∆ju−S|
2uA

. Therefore, to maintain
positivity on node 1, we pick a time step such that

∆t <
P̃11

2σ
,

with

σ ≥ |f12 + σ∆ju− S|
2uA

.

Similarly, it can be shown that we can maintain positivity on node N with

σ ≥
|fN(N−1) + σ∆(j+1)u+ S|

2uA

,

and a time step

∆t <
P̃NN

2σ
.

The above approach will preserve the positivity of ρ1, ρ2, and α1. However, we also
need to maintain positivity of α2. Since α1 and α2 must satisfy the closure law α1 + α2 =
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1, maintaining positivity in α2 is equivalent to maintaining boundedness on α1, namely,
α1 < 1. To maintain boundedness on α1, we use the first equation in the isentropic Baer-
Nunziato model since it describes the evolution of α1.

1 >
(
u
(1)
i

)n+1

,

1−
(
u
(1)
i

)n+1

> 0.

From here we can substitute the form of (5.16) for
(
u
(1)
i

)n+1

. The analysis is similar to

the proof of positivity so we only outline the analysis performed for node 1. Furthermore,
all terms in the update equation for un+1

i are at time level n, thus, we drop the superscript
“n”.

1− u
(1)
1 +

∆t

P̃11

[
f
(1)
12 − σ∆+u(1) + σ∆ju(1) − S(1)

]
> 0.

It is informative to substitute α1 = u(1) into the above expression to find that

1− α1 +
∆t

P̃11

[
f
(1)
12 − σ∆+(α1) + σ∆ju(1) − S(1)

]
> 0.

Recall, α2 = 1− α1, thus, ∆
±(α1) = −∆±(α2). Therefore,

α2 +
∆t

P̃11

[
f
(1)
12 + σ∆+(α2) + σ∆ju(1) − S(1)

]
> 0,

α2 −
∆t

P̃11

[
−f

(1)
12 − σ∆+(α2)− σ∆ju(1) + S(1)

]
> 0.

From here, the same analysis from earlier can be performed to find a lower bound on
the dissipation coefficient, σ, and an upper bound on the allowable time step to maintain
positivity of α2 and therefore, maintain an upper bound on α1. The dissipation coefficient
and time step restriction to maintain boundedness of α1 can be summarized as follows:
For i = 2, 3, . . . , N − 1:

σ1 ≥ max

(
|f (1)

i(i+1)|
(α2)i + (α2)(i+1)

,
|f (1)

i(i−1)|
(α2)i + (α2)(i−1)

)
,

∆t <
P̃ii

4σ1

.
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For i = 1:

σ1 ≥
|σ∆j(α2) + S(1) − f

(1)
12 |

(α2)1 + (α2)2
,

∆t <
P̃11

2σ1

,

For i = N :

σ1 ≥
|f (1)

N(N−1) − σ∆(j+1)(α2) + S(1)|
(α2)N + (α2)(N−1)

,

∆t <
P̃NN

2σ1

.

Therefore, to preserve node-wise positivity of ρ1, ρ2, α1, and α2 in the first-order scheme,
we first go node by node and select the largest value of σ1, σ2, and σ4 based on equations
(5.13),(5.14), and (5.15). Then, letting Γ = max(σ1, σ2, σ4), we calculate the time step
restriction required to maintain positivity as:{

∆t < P̃ii

2Γ
i = 1, N

∆t < P̃ii

4Γ
i = 2, 3, . . . , N − 1

. (5.18)

It is very important that none of the dissipation coefficients, σ’s, grow uncontrollably as
the time step restriction shrinks proportionally to the inverse of the dissipation coefficients.
Thus, if the coefficients were to become very large, it would not only destroy the accuracy
of the numerical solution by adding large amounts of artificial dissipation, but, it would
cause the time step to become arbitrarily small, which is not of practical use in running
simulations. However, using the entropy-conservative two-point flux function of Renac [50],
it can be shown that the dissipation coefficients will not grow uncontrollably.

The value of the dissipation coefficients are calculated by σa ≥ |f (a)
ij |

2u
(a)
A

, where j = i + 1

or j = i− 1. We now prove that this cannot grow uncontrollably no matter how close the
positive quantities get to zero. First we begin with σ1

σ1 ≥
|f (1)

ij |
2u

(1)
A

=
|(v2)i[(α1)j − (α1)i]|

(α1)j + (α1)i
,

= |(v2)i|
|(α1)j − (α1)i|
(α1)j + (α1)i

.
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The term
|(α1)j−(α1)i|
(α1)j+(α1)i

, is bound between 0 and 1 given α1 ∈ (0, 1), therefore, the only

thing that could cause σ1 to grow uncontrollably is if the magnitude of the velocity of
phase 2 were to grow uncontrollably. The entropy stability properties of the scheme imply
a bound on the norm of the solution, thus, the velocity of phase 2 will not diverge for finite
time. Now, we consider σ2

σ2 ≥
|f (2)

ij |
2u

(2)
A

=
|α1 v1ĥ1 − (α1)i(ρ1)i(v1)i|

(α1ρ1)j + (α1ρ1)i
,

≤ |α1 v1ĥ1|
(α1ρ1)j + (α1ρ1)i

+
|(α1)i(ρ1)i(v1)i|
(α1ρ1)j + (α1ρ1)i

,

= |v1|
α1ĥ1

(α1ρ1)j + (α1ρ1)i
+ |(v1)i|

(α1ρ1)i
(α1ρ1)j + (α1ρ1)i

.

It is clear that unless (v1)i were to diverge that the second term on the right hand side

of the above equation will not diverge. Then, considering the first term, ĥ1 =
(p1)j−(p1)i
(h1)j−(h1)i

,

in the case of an ideal gas, this simplifies to γ1−1
γ1

(ρ1)
γ1
j −(ρ1)

γ1
i

(ρ1)
γ1−1
j −(ρ1)

γ1−1
i

, therefore,

α1ĥ1

(α1ρ1)j + (α1ρ1)i
= R,

where,

R =
γ1 − 1

γ1

(α1)j(ρ1)
γ1
j − (α1)i(ρ1)

γ1
i − (α1)j(ρ1)

γ1
i + (α1)i(ρ1)

γ1
j

2
[
(α1)j(ρ1)

γ1
j − (α1)i(ρ1)

γ1
i − (α1)j(ρ1)j(ρ1)

γ1−1
i + (α1)i(ρ1)i(ρ1)

γ1−1
j

] .
This function will not diverge as the void fraction and density go to zero, thus, σ2

will not diverge since the stability properties of the scheme ensure that the velocities will
remain bounded, for finite time. The restrictions on σ4 mimic the restrictions on σ2, except
they use phase 2 quantities instead of phase 1 quantities. Therefore, the analysis performed
for σ2 will hold for σ4. Thus, the dissipation coefficients, σ1, σ2, and σ4, cannot diverge,
meaning that the allowable time step to maintain positivity will not become arbitrarily
small.

We have thus far discussed entropy stability and positivity preservation; however, there
are other important properties one might want to preserve. For example, Abgrall and
Karni [2] show that if care is not taken in the discretization of the non-conservative terms in
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(2.3), then oscillations may occur across interfaces separating fluids with different material
properties. As we are interested in studying the bubble collapse problem, this is a point
which needs to be addressed. In compressible, multiphase flows, a guideline for creating
suitable discretizations is provided by Abgrall’s criterion [1], which states that a two-phase
flow that is uniform in pressure and velocity must remain uniform as the system evolves
in time. We will now show that (5.1) satisfies Abgrall’s criterion.

Theorem 5.1.5. The first-order entropy-stable positivity-preserving scheme, (5.1), satis-
fies Abgrall’s criterion, which is formulated as follows. Assume that the velocity of both
phases are uniform and equal and the pressure of both phases are also uniform and equal
at time t(n), that is

(va)j,i = v, (pa)j,i = p, a = 1, 2, ∀j = 1, 2, . . . , n, ∀i = 1, 2, . . . , N, (5.19)

where v and p are given constants that are not necessarily equal, then, given equal dissi-
pation coefficients, i.e., σ1 = σ2 = σ4 = σ, the velocity and pressure remain uniform and
equal at time t(n+1).

Proof : The proof is the same on all elements and so we will drop the index j for ease of
notation. Furthermore, if we are assuming equal and uniform pressure, that means that
the densities, ρ1 and ρ2, are also uniform, but not necessarily equal since the pressures
are calculated as pa = kργaa . Under these assumptions it can be shown that the entropy-
conservative flux simplifies to

f (EC) (ui,uj) =


1
ρ1
ρ1v
−ρ2
−ρ2v

 v∆α1. (5.20)

Now, we will show the proof on the interior nodes, but it can easily be extended to the
boundary nodes. On the interior nodes P̃−1(Diss◦M)v = 1

P̃ii

(
−M(i−1)i∆vi +Mi(i+1)∆vi+1

)
,

where ∆vi = vi − vi−1 and

Mij∆v =


σ1∆α1

σ2ρ1∆α1

σ2ρ1v∆α1

−σ4ρ2∆α1

−σ4ρ2v∆α1

 .

74



If the velocities and pressures are uniform, we set σ1 = σ2 = σ4 = σ = max(σ1, σ2, σ4).
This allows us to simplify the above to

Mij∆v =


1
ρ1
ρ1v
−ρ2
−ρ2v

σ∆α1. (5.21)

Note that setting all of the dissipation coefficients to be σ = max(σ1, σ2, σ4) does not
effect the positivity preserving properties of the scheme since we simply need to select the
dissipation coefficients to be greater than or equal to a minimum value that was determined
in theorem (5.16). Thus, by selecting the largest value of σ1, σ2, and σ4, we ensure that
the condition is met for all equations.

On the interior we have ut = P̃−1(Diss ◦M)v − 2D ◦ F (u,u)1. Plugging in the above
we find that

ut =


1
ρ1
ρ1v
−ρ2
−ρ2v


(
σ∆(α1)i+1

P̃ii

− σ∆(α1)i+1

P̃ii

− v
N∑
i=1

Dij[(α1)j − (α1)i]

)
=


1
ρ1
ρ1v
−ρ2
−ρ2v

R,

where R =
(

σ∆(α1)i+1

P̃ii
− σ∆(α1)i+1

P̃ii
− v

∑N
i=1 Dij[(α1)j − (α1)i]

)
. Now, assuming a forward

Euler discretization is used to march in time, the update on each of the 5 equations is

(α1)
(n+1)
i − (α1)

(n)
i = R, (5.22a)

(α1)
(n+1)
i

[
(ρ1)

(n+1)
i − (ρ1)

]
+ ρ1

[
(α1)

(n+1)
i − (α1)

(n)
i

]
= ρ1R, (5.22b)

(α1ρ1)
(n+1)
i

[
(v1)

(n+1)
i − v

]
+ v

[
(α1ρ1)

(n+1)
i − (α1)

(n)
i ρ1

]
= ρ1vR, (5.22c)

(α2)
(n+1)
i

[
(ρ2)

(n+1)
i − (ρ2)

]
+ ρ2

[
(α2)

(n+1)
i − (α2)

(n)
i

]
= −ρ2R, (5.22d)

(α2ρ2)
(n+1)
i

[
(v2)

(n+1)
i − v

]
+ v

[
(α2ρ2)

(n+1)
i − (α2)

(n)
i ρ2

]
= −ρ2vR. (5.22e)

Then, (5.22b) - ρ1×(5.22a), implies (ρ1)
(n+1)
i = ρ1. This allows us to show (5.22c)

-ρ1v×(5.22a), gives (v1)
(n+1)
i = v. Then, completing the same procedure using (5.22d) and

(5.22e), we find that (ρ2)
(n+1)
i = ρ2 and (v2)

(n+1)
i = v.
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Using theorem (5.1.5), we immediately find that the high-order entropy-conservative
scheme, (4.9), also satisfies Abgrall’s criterion.

Corollary 1. The high-order entropy-conservative scheme, (4.9), satisfies Abgrall’s crite-
rion as defined in theorem (5.1.5).

Proof : The proof follows immediately from theorem (5.1.5) by dropping the term (5.21).
This leads to the following semi-discrete scheme

ut =


1
ρ1
ρ1v
−ρ2
−ρ2v


(
−v

N∑
i=1

Dij[(α1)j − (α1)i]

)
=


1
ρ1
ρ1v
−ρ2
−ρ2v

R,

where R is now defined as R = −v
∑N

i=1Dij[(α1)j − (α1)i]. From here, the same analysis
performed in theorem (5.1.5) holds, and we have that the high-order entropy-conservative
scheme, (4.9), satisfies Abgrall’s criterion.

In section 2.2, we showed that, at the continuous level, having a bound on the entropy
of the solution corresponds to a bound on the L2 norm of the solution itself. We now show
that for the first-order entropy-stable positivity-preserving scheme (5.1), a bound on the
discrete entropy, leads to a bound on the discrete solution.

Theorem 5.1.6. The discrete L2 norm of the first-order entropy-stable positivity-preserving
scheme, defined in (5.1), is bounded by the data of the problem as follows

∥u∥2P ≤ 2
C

η′′min

+ ∥u0∥2P ,

where η′′min is the minimum value of the Hessian of the entropy function in space and time,
u0 is a constant state which lies in the set of admissible states, and C is a constant such
that C

η′′min
≥
∑N

j=1(PH)jj(uj − u0)
T(uj − u0).

Proof : To begin, we define a new discrete entropy at all nodes j = 1, 2, . . . , N

ηj = ηj − η(u0)− η′(u0)
T(uj − u0),

such that η = [η1, . . . , ηN ]
T and η′ = ∂η

∂u
. Note that u0 is a constant, non-zero state. We

choose the state u0 such that αi = (αi)0 > 0 and ρi = (ρi)0 > 0 for i = 1, 2. Then,
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define the new entropy variables wT = dη
du

= η′ − η′(u0), where wx = wx. To find a
bound on the new discrete entropy of the system, we will multiply the first-order entropy-
stable positivity-preserving scheme, (5.1), bywi

TPH , wherewi is the new entropy variables
defined on the ith element. Then, we will sum over all elements to find a bound on the
new discrete entropy for the entire system. On the ith element we find that

wTPH
du

dt︸ ︷︷ ︸
1

+2wTQ ◦ F(u,u)1︸ ︷︷ ︸
2

= hwT(Diss ◦M)v︸ ︷︷ ︸
3

+wTPHu
EID︸ ︷︷ ︸

4

+wTPHSATs︸ ︷︷ ︸
5

, (5.23)

where we have dropped the element index. Term 1 can be recast as follows

wTPH
du

dt
=

N∑
j=1

wj(PH)jj
duj

dt
,

=
N∑
j=1

(PH)jj
dηj
duj

duj

dt
,

=
N∑
j=1

(PH)jj
dηj
dt

,

wTPH
du

dt
= 1

T
PH

dη

dt
.

Next, consider term 3, here we break apart the new entropy function into its components,
i.e., wT = η′ − η′(u0) = wT −wT

0 . Therefore, term 3 can be written as

hwT(Diss ◦M)v = hwT(Diss ◦M)v − hwT
0 (Diss ◦M)v,

where the first term on the right hand side of the above equation has been proven to be
less than or equal to zero in theorem (5.1.3). Thus,

hwT(Diss ◦M)v ≤ −hwT
0 (Diss ◦M)v,

= −h
N−1∑
j=1

((w0)j+1 − (w0)j)
TMj,(j+1)(vj+1 − vj).

Since w0 is a constant, (w0)j+1 − (w0)j = 0, thus, term 3 is bounded as follows

hwT(Diss ◦M)v ≤ 0.
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A similar process can be carried out for term 4 and when summed over all elements one
finds that

n∑
i=1

wT
i PHu

EID
i ≤ 0.

With these changes, we can re-write (5.23) as

1
T
PH

dη

dt
+ 2wTQ ◦ F(u,u)1 ≤ wTPHSATs,

1
T
PH

dη

dt
+ 2(�

�wT −w0)
TQ ◦ F(u,u)1 ≤ (��wT −w0)

TPHSATs,

1
T
PH

dη

dt︸ ︷︷ ︸
1

− 2wT
0 Q ◦ F(u,u)1︸ ︷︷ ︸

2

≤ −wT
0 PHSATs︸ ︷︷ ︸

5

,

where the wT terms cancel in terms 2 and 5 as is shown in the proof of theorem (4.2.3).
Next, consider the remainder of term 2. Here, we will write F(u,u) = F for ease of notation.

2wT
0 Q ◦ F1 = wT

0 Q ◦ F1+wT
0 Q ◦ F1,

= wT
0 Q ◦ F1+ 1TFT ◦ QTw0.

Now, we use the SBP property QT = E− Q to find that

2wT
0 Q ◦ F1 = wT

0 Q ◦ F1+ 1TFT ◦ (E− Q)w0,

where, by considering the entropy-conservative flux in fluctuation form, (4.4), coupled with
the consistency property, (4.5), we obtain 1TFT ◦ Ew0 = 0. This results in

2wT
0 Q ◦ F1 = wT

0 Q ◦ F1− 1TFT ◦ Qw0,

= wT
0 Q ◦ F1− 1TQ ◦ FTw0,

where the last equality holds using the symmetry of the Hadamard product. Next, we
expand the right hand side in summation notation to obtain

2wT
0 Q ◦ F1 =

N∑
i=1

[
wT

0

N∑
j=1

QijFij −
N∑
j=1

QijF
T
ijw0

]
.
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Since FT
ijw0 is a scalar value, we can take its transpose to find that

2wT
0 Q ◦ F1 =

N∑
i=1

[
wT

0

N∑
j=1

QijFij −
N∑
j=1

Qijw
T
0 Fij

]
,

= wT
0

N∑
i=1

[
N∑
j=1

QijFij −
N∑
j=1

QijFij

]
,

2wT
0 Q ◦ F1 = 0.

The same procedure can be taken to study term 5 to obtain

wT
0 PHSATs = 0,

thus, combining these results, and summing over all elements we find that

n∑
i=1

wT
i PH

dui

dt
=

n∑
i=1

1
T
PH

dηi

dt
≤ 0. (5.24)

We drop the element indices and consider a single element for the rest of the analysis,
however, this can be easily extended to multiple elements. Now, we modify the definition
of the new entropy from (2.14) to reflect that we are at the discrete level, that is

ηj = ηj − η(u0)− η′(u0)
T(uj − u0) =

1

2
(uj − u0)

Tη′′(uj(θ))(uj − u0), (5.25)

where the index j, denotes the node label, thus, j = 1, 2, . . . , N . Furthermore, the analysis
performed in chapter 2.2 holds in the discrete case, thus, η′′(uj(θ)) has real and positive
eigenvalues. Now, integrate (5.24) in time from t = 0 to t = T to find that

1
T
PHη(T ) ≤ 1

T
PHη(0),

N∑
j=0

(PH)jj(ηj(T )) ≤
N∑
j=0

(PH)jj(ηj(0)),

then, substitute (5.25) into the left hand side of the above equation to obtain

1

2

N∑
j=1

(PH)jj(uj − u0)
Tη′′(uj(θ(T )))(uj − u0) ≤

N∑
j=0

(PH)jj(ηj(0)).
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Therefore, we can say that
∑N

j=1(PH)jj(uj − u0)
Tη′′(uj(θ(T )))(uj − u0) ≤ C, and from

this we can deduce

N∑
j=1

(PH)jj(uj − u0)
Tη′′min(uj − u0) = η′′min

N∑
j=1

(PH)jj(uj − u0)
T(uj − u0) ≤ C. (5.26)

Using the same algebraic manipulations as in (2.16) we find that

N∑
j=1

uT
j (PH)jjuj ≤ 2

N∑
j=1

(PH)jj(uj − u0)
T(uj − u0) + 2

N∑
j=1

uT
0 (PH)jju0,

then, using (5.26), we obtain

uTPu ≤ 2
C

η′′min

+ 2uT
0 Pu0,

∥u∥2P ≤ 2
C

η′′min

+ ∥u0∥2P .

Therefore, by bounding the discrete entropy of the solution, it is possible to obtain a bound
on the discrete norm of the solution itself.
We also immediately have the following corollary for the high-order entropy-conservative
scheme.

Corollary 2. The discrete L2 norm of the entropy-conservative scheme is bounded by the
data of the problem as follows

∥u∥2P = 2
C

η′′min

+ ∥u0∥2P ,

with the same definitions for η′′min, u0, and C as in theorem (5.1.6).

Proof : If we drop the entropy-dissipative terms from (5.1), we recover the high-order
entropy-conservative scheme (when replacing the special SBP derivative operator in (5.1)
with a high-order SBP operator). From theorem (5.1.6), we immediately have that the
high-order entropy conservative scheme (4.9) satisfies

∥u∥2P = 2
C

η′′min

+ ∥u0∥2P ,
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where we have an equality in the above expression because the terms in (4.9) conserve
entropy at the discrete level, thus, we do not insert the inequality as done in theorem
(5.1.6).

Through the use of the novel artificial dissipation operator, (5.2), we have developed a
first-order scheme that is entropy-stable and preserves the positivity of the void fractions
as well as densities. We used the entropy-conservative scheme, (4.9), as a base to which
element interface dissipation, as well as the artificial dissipation operator were added to
dissipate entropy in the system. To complete our goal of developing a high-order entropy-
stable positivity-preserving scheme to solve the isentropic Baer-Nunziato equations, we de-
tail a mixing scheme in the next section which will mix the high-order entropy-conservative
scheme, (4.9), with the first-order entropy-stable positivity-preserving scheme (5.1).

5.2 High-Order Entropy-Stable Positivity-Preserving

Scheme

In the previous section, we developed a scheme that is entropy-stable and positivity-
preserving, however, it is only first-order accurate. In this section, inspiration is taken
from the work of Upperman [62] to develop a scheme that is entropy-stable, positivity-
preserving, and high-order.

The high-order entropy-stable positivity-preserving scheme is constructed by taking a
convex combination of the first-order entropy-stable positivity-preserving scheme, (5.1),
and a high-order entropy-conservative positivity-violating scheme (4.9). It is important
to note that the first-order scheme is also used on elements where shocks are detected,
therefore, the use of the high-order entropy-conservative scheme does not limit the shock
capturing capabilities of the numerical scheme. Furthermore, using the first-order entropy-
stable scheme on elements that contain discontinuities ensures that entropy is dissipated
across shocks as required by the second law of thermodynamics. Thus, the high-order
entropy-stable positivity-preserving scheme, if it converges, will converge to a physically
relevant solution. Finally, since we mix the first-order entropy-stable positivity-preserving
scheme and the high-order entropy-conservative scheme on an element-by-element basis,
as detailed in this chapter, we drop the element subscript for the remainder of this section.

Assume that the time derivative is approximated with a first-order explicit forward
Euler scheme, so that on any element we have the following approximations to the solution
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at time tn+1:

un+1
p = un +∆t

(
du

dt

)
p

,

un+1
1 = un +∆t

(
du

dt

)
1

,

where un+1
p is the high-order numerical solution computed using (4.9) and un+1

1 is the
first-order numerical solution computed using (5.1). Furthermore, the second term on the
right hand side of the above equations are the right hand side of the semi-discrete schemes,
(4.9) and (5.1), if the temporal term is held on the left hand side and the spatial terms are
moved to the right hand side. For example, in the high-order entropy-conservative single
element scheme (4.8), we find that(

du

dt

)
p

= SATs− 2D ◦ F (u,u)1.

The first-order scheme has been proven to be positivity-preserving in the last section, but
the high-order scheme has no positivity guarantees. We will combine the first-order and
high-order schemes in troubled elements where the high-order scheme violates positivity
or where a shock occurs in the solution. In these troubled elements the solution will be
computed as follows

un+1 (θ) = un +∆t

[
θ

(
du

dt

)
p

+ (1− θ)

(
du

dt

)
1

]
,

= θun+1
p + (1− θ)un+1

1 ,

(5.27)

where θ ∈ [0, 1]. From theorem (5.1.5) and corollary (1) we immediately find that the
mixing scheme (5.27) satisfies Abgrall’s criterion.

Corollary 3. The high-order entropy-stable positivity-preserving scheme, (5.27), satisfies
Abgrall’s criterion as defined in theorem (5.1.5), for any θ ∈ [0, 1].

Proof : The proof follows from the fact that the mixing scheme, (5.27), is a convex com-
bination of the high-order entropy-conservative scheme, (4.9), and the first-order entropy-
stable scheme, (5.1), which both satisfy Abgrall’s criterion as proved in theorem (5.1.5)
and corollary (1).

To step in time, we first compute the high-order scheme. Then, proceed element by
element and use the shock sensor of Zhao et al. [71] to detect discontinuities in the solution.
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The shock sensor uses the smoothness indicators for a weighted essentially non-oscillatory
(WENO) scheme and measures the smoothness of the numerical solution by taking the
ratio of the largest to the smallest smoothness indicators:

δ =
βmax

βmin + ϵ
. (5.28)

The smoothness indicators that are used in this thesis are [71]:

β0 =
1

36
(−2uj−3 + 9uj−2 − 18uj−1 + 11uj)

2 +
12

13
(−uj−3 + 4uj−2 − 5uj−1 + 2uj)

2

+
781

720
(−uj−3 + 3uj−2 − 3uj−1 + uj)

2 ,

β1 =
1

36
(uj−2 − 6uj−1 + 3uj + 2uj+1)

2 +
12

13
(uj−1 − 2uj + uj+1)

2

+
781

720
(−uj−2 + 3uj−1 − 3uj + uj+1)

2 ,

β2 =
1

36
(−2uj−1 − 3uj + 6uj+1 − uj+2)

2 +
12

13
(uj−1 − 2uj + uj+1)

2

+
781

720
(−uj−1 + 3uj − 3uj+1 + uj+2)

2 ,

β3 =
1

36
(−11uj + 18uj+1 − 9uj+2 + 2uj+3)

2 +
12

13
(2uj − 5uj+1 + 4uj+2 − uj+3)

2

+
781

720
(−uj + 3uj+1 − 3uj+2 + uj+3)

2 ,

where uj is the numerical solution for one of the five equations on the jth node. We have
dropped the element notation since the smoothness is determined on an element by element
basis.

The ratio in (5.28) becomes large when at least one of the WENO sub-stencils contains
a discontinuity. Note, ϵ is picked to be a small positive quantity to avoid division by zero,
and here, we take ϵ = 10−6. Furthermore, the smoothness of each of the five equations in
the isentropic Baer-Nunziato model are tested independently from each other. If a shock
is found in any equation, then only the first-order scheme is run on that element, i.e., set
θ = 0 in (5.27) to find un+1(0) = un+1

1 .

For elements where shocks are not present, we check whether or not the high-order
scheme violates positivity. In the case of α1, we also check if α1 is greater than one,
to ensure boundedness as required by the saturation condition (2.4). If the high-order
scheme violates positivity or boundedness, then we mix the first-order scheme with the
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high-order scheme to ensure positivity-preservation. To mix the schemes we first define
local lower/upper limits per node for u

(a)
i , a = {1, 2, 4} at the next time level, n+ 1. The

lower limits are defined as
ϵai = ((u1)

(a)
i )n+1 hp,

and the upper limit for the first equation to ensure positivity of α2 is defined as

ε1i =
[
((u1)

(1)
i )n+1 hp

]
+ (1− hp).

This set up allows the high-order entropy-stable positivity-preserving scheme to get closer
to zero (or one) than the first-order scheme, but, never cross zero (or one). Then, we can
determine how much the scheme needs to be mixed in order to maintain the upper and
lower limits ϵai and ε1i through θ. We now consider quantities that are obtained at the
time level n+ 1, thus, we drop the superscript “n+ 1”. For every solution point, i, on an
element where positivity has been violated, define the set

Ha
i = {θi ∈ [0, 1]|u(a)

i (θi) ≥ ϵai }.

Recall from (5.27), that if θi is zero, only the first-order scheme is used to step in
time. Similarly, if θi is taken to be one, then only the high-order scheme is used. The
set Ha

i can be written as Ha
i = [0, θi,max], where, θi,max ∈ (0, 1] and if 0 ≤ θi < θi,max,

then u
(a)
i (θi) > ϵai . Furthermore, by definition of θi,max we have u

(a)
i (θi,max) = ϵai . These

relations follow immediately from the fact that u
(a)
i (θ), calculated using (5.27), is a linear

combination of the first-order and high-order schemes. Similarly, define a set to ensure
that the boundedness of α1 is maintained

B1 = {θi ∈ [0, 1]|u(1)
i (θ) ≤ ε1i }.

Again, if θi is taken to be zero we have that (u1)
(1)
i < ε1i by definition of ε1i , thus, there

exits some θi = θi,max > 0 such that u
(1)
i (θi,max) = ε1i . Therefore, to find the proper mixing

coefficient, θ, for an element where the high-order scheme has violated positivity, first, go
node by node in the troubled element and find θi,max on each node positivity was violated
on, for equations 1, 2, and 4. Then, take the smallest value of θi,max and set it equal to θmax.

Finally, we set θ = 0.9× θmax so that u
(a)
i (θ) > ϵai and u

(1)
i (θ) < ε1i for all i = 1, 2, . . . , N .

To maintain positivity in equations 1, 2, and 4, θi,max is calculated as

(u
(a)
i )n+1(θi,max) = θi,max((up)

(a)
i )n+1 + (1− θi,max)((u1)

(a)
i )n+1,

ϵai = θi,max((up)
(a)
i )n+1 + (1− θi,max)((u1)

(a)
i )n+1,

θi,max =
ϵai − ((u1)

(a)
i )n+1

((up)
(a)
i )n+1 − ((u1)

(a)
i )n+1

.

(5.29)
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Then, to maintain boundedness in equation 1, θi,max is calculated as

(u
(a)))n+1(θi,max)
i = θi,max((up)

(a)
i )n+1 + (1− θi,max)((u1)

(a)
i )n+1,

ε1i = θi,max((up)
(a)
i )n+1 + (1− θi,max)((u1)

(a)
i )n+1,

θi,max =
ε1i − ((u1)

(a)
i )n+1

((up)
(a)
i )n+1 − ((u1)

(a)
i )n+1

.

(5.30)

Once we find θ in a given element we update the numerical scheme according to (5.27).
The advantage of this approach is that the first-order scheme is only used on troubled
elements where there is either a discontinuity, or positivity is violated by the high-order
scheme. This means that the scheme can capture shocks as well as maintain positivity
of the densities and void fractions. In the case of smooth solutions, this further allows
the overall scheme to maintain high-order accuracy which we will prove in the following
theorem.

Theorem 5.2.1. The high-order positivity-preserving scheme, (5.27), achieves high-order
accuracy through the use of high-order SBP operators, ∥un+1

i (θ) − uex
i (tn+1)∥ = O(hp),

where uex
i (tn+1) denotes the exact solution at the ith solution point at time t = tn+1, and

un+1
i (θ) denotes the numerical solution computed using (5.27).

Proof : Here, we follow the steps taken by Upperman [62] closely and change notation to
adapt to our schemes. In this proof ∥.∥ denotes the Euclidean norm. We now assume that
the solution is sufficiently smooth such that

∥(u1)
n+1
i − (up)

n+1
i ∥ ≤ ∥(u1)

n+1
i − uex

i (tn+1)∥+ ∥uex
i (tn+1)− (up)

n+1
i ∥ = O(h).

We wish to show that ∥un+1
i (θ)−uex

i (tn+1)∥ = O(hp) for all solution points, where un+1
i (θ)

is the numerical solution computed by (5.27). If θ = 1, then un+1
i (1) = (up)

n+1
i and the

result follows immediately since up is the high-order accurate solution. All that remains
to be shown is that ∥un+1

i (θ) − uex
i (tn+1)∥ = O(hp) for θ < 1. In this case, it is sufficient

to show that 1 − θ = O(hp−1) to prove the error properties of the mixing scheme. If
1− θ = O(hp−1), then, for every solution point we have

∥un+1
i (θ)− uex

i (tn+1)∥ ≤ (1− θ)∥(u1)
n+1
i − uex

i (tn+1)∥+ θ∥(up)
n+1
i − uex

i (tn+1)∥,
= (1− θ)O(h) + θO(hp),

= O(hp).

To show that 1− θ = 1−min(θi,max) = O(hp−1), we will show that 1− θi,max = O(hp−1).
We will break the discussion up into two cases: 1) computing θi,max to maintain positivity
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in equations 1, 2, and 4 and 2) computing θi,max to maintain boundedness in equation 1.
We begin with case 1. Since θi,max < 1, the following inequality holds for equations 1, 2,
and 4

(u(a)
p )n+1

i < ϵ
(a)
i ≤ (u(a))exi (tn+1), a = {1, 2, 4}, (5.31)

which leads to (u
(a)
p )n+1

i = ϵ
(a)
i +O(hp). We have that θi,max satisfies

(u(a))n+1
i (θi,max) = ϵ

(a)
i = (1− θi,max)(u

(a)
1 )n+1

i + θi,max(u
(a)
p )n+1

i ,

ϵ
(a)
i = (u

(a)
1 )n+1

i + θi,max[(u
(a)
p )n+1

i − (u
(a)
1 )n+1

i ].

Thus,

1− θi,max =
ϵ
(a)
i − (u

(a)
p )n+1

i

(u
(a)
1 )n+1

i − (u
(a)
p )n+1

i

=
O(hp)

O(h)
= O(hp−1).

Case 2, has the exact same analysis as case 1, expect substitute ϵ
(a)
i with ε1i , so we omit

the analysis here. Therefore, 1 − θi,max = O(hp−1) and it follows that 1 − θ = O(hp−1).
Thus,

∥un+1
i (θ)− uex

i (tn+1)∥ ≤ (1− θ)∥(u1)
n+1
i − uex

i (tn+1)∥+ θ∥(up)
n+1
i − uex

i (tn+1)∥,
= (1− θ)O(h) + θO(hp),

= O(hp).

Therefore, the high-order positivity-preserving scheme, (5.27), achieves high-order accuracy
through the use of high-order SBP operators.

The high-order mixing scheme, (5.27), is constructed by taking a convex combination
of the first-order entropy-stable positivity-preserving scheme, (5.1), and the high-order
entropy-conservative positivity-violating scheme (4.9). We will now show that this convex
combination results in an entropy-stable scheme.

Theorem 5.2.2. The high-order positivity-preserving scheme defined in (5.27) is entropy-
stable, that is, when left multiplied by the entropy variables wT

i , the SBP norm matrix P,
and summed over all elements i = 1, 2, . . . , n,

n∑
i=1

1
T
P
dηi

dt
≤ 0,

where P = P⊗ I5 and ηi = η(ui).
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Proof : To show that the scheme (5.27) is entropy-stable, we must show that when left
multiplied by wTP the contraction is less than or equal to zero.

wTP
du

dt
= wTPθ

(
du

dt

)
p

+wTP (1− θ)

(
du

dt

)
1

,

= θwTP

(
du

dt

)
p

+ (1− θ)wTP

(
du

dt

)
1

.

From theorem (4.2.3), we have that wTP
(
du
dt

)
p
=
∑n

i=1 1
T
Pdηi

dt
= 0. Furthermore, from

theorem (5.1.3), we have that wTP
(
du
dt

)
1
=
∑n

i=1 1
T
Pdηi

dt
≤ 0. Therefore, the convex

combination of the high-order and first-order schemes is entropy-stable.

Furthermore, using theorem (5.1.6) and corollary (2), we find that, since the mixing
scheme, (5.27), bounds the mathematical entropy of the system, there exists a bound on
the norm of the solution itself.

Corollary 4. The discrete L2 norm of the high-order entropy-stable positivity-preserving
scheme, defined in (5.27), is bounded by the data of the problem as follows

∥u∥2P ≤ 2
C

η′′min

+ ∥u0∥2P ,

where η′′min, u0, and C are defined in theorem (5.1.6).

Proof : The proof follows immediately from theorem (5.1.6) and corollary (2). If the
first-order entropy-stable positivity-preserving scheme satisfies

∥u∥2P ≤ 2
C

η′′min

+ ∥u0∥2P ,

and the entropy-conservative scheme satisfies

∥u∥2P = 2
C

η′′min

+ ∥u0∥2P ,

then the mixing scheme, which is a convex combination of the first-order entropy-stable
positivity-preserving scheme and the entropy-conservative scheme, satisfies

∥u∥2P ≤ 2
C

η′′min

+ ∥u0∥2P .
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All the schemes presented in this thesis have provable stability properties for the dis-
cretization of the spatial derivatives. The time integration technique that is used, SSP-
RK3, is not guaranteed to be entropy-stable. This limitation can be addressed through the
use of relaxation Runge-Kutta methods [37], which can be used to enforce conservation
and stability in the time integration. However, this is not performed in this thesis and is a
topic of future research. In the next section, we describe the implementation details of the
high-order entropy-stable positivity-preserving scheme, and include the implementation
details for the SSP-RK3 scheme, which we use to integrate in time.

5.3 Algorithm and Implementation Details

In the previous two sections we have proven that the first-order scheme, as well as the high-
order scheme, preserve the positivity of densities and void fractions. However, the proofs in
the previous section hold only when the explicit forward Euler method is used to discretize
the time derivative. To extend the method to high-order temporal discretizations, we use
SSP-RK schemes developed in [53], which can be represented as a convex combination of
forward Euler schemes. Specifically, in this thesis, we use the third-order SSP-RK scheme
with the form from [30]. Suppose the semi-discrete scheme reads ut = RHS(u), then the
SSP-RK3 scheme reads:

u(1) = un +∆tRHS(u(n)),

u(2) =
3

4
u(n) +

1

4
u(1) +

∆t

4
RHS(u(1)),

u(n+1) =
1

3
u(n) +

2

3
u(2) +

2∆t

3
RHS(u(2)).

(5.32)

At each Runge-Kutta stage, the high-order positivity-preserving entropy-stable scheme is
computed according to the following algorithm.

Algorithm

1. Before the start of the computation, the user sets the maximum allowable time step,
and in this thesis, the maximum time step was set on and order between 10−5 and
10−6 depending on the simulation. The mixing scheme, (5.27), is then run using
this maximum time step and the time step will only decrease as needed from the
positivity-preserving algorithm. Furthermore, we require that ∆t(n+1) ≤ 1.01∆t(n),
where ∆t(n) is the previous time step.
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2. Compute
(
du
dt

)
p
using (4.9).

3. Assuming n elements and N nodes per element, compute the shock sensor, (5.28),
for each node j = 4, 5, . . . , N − 4. Do this calculation separately for each equation to
determine if a shock occurs in any of the n elements, and any of the five equations.

4. On the elements where a shock has not been detected, check to see if positivity (or
boundedness in the case of α1) has been violated on any node.

5. On the elements where a shock has been detected or the high-order scheme has
violated positivity, calculate

(
du
dt

)
1
according to (5.1). Furthermore, if on the first

Runge-Kutta stage and the time step restriction required for positivity is more stiff
than the user defined maximum time step; change the time step.

6. Go element by element and mix the schemes together according to (5.27). If on an
element with a shock, then, set θ = 0. If on an element where positivity has been
violated, then, compute θ according to (5.29) and (5.30). Finally, if not on a troubled
element, set θ = 1.

7. If on the second or later Runge-Kutta stage and (5.27) does not preserve positivity,
set ∆t(n+1) = 0.5∆t(n+1) and restart from the first Runge-Kutta stage.

8. If positivity is not preserved on the second or later Runge-Kutta stage for three
iterations of dividing the time step, as per step 7 in the algorithm, then, proceed to
run a forward Euler scheme in time. Using a forward Euler scheme is guaranteed to
preserve positivity.

9. Proceed to the next Runge-Kutta stage.

The scheme guarantees the positivity of densities and void fractions on the first Runge-
Kutta stage by construction. For the subsequent Runge-Kutta stages, the scheme, which
can be represented as a convex combination of forward Euler steps, will maintain positivity
if the time step restriction that was chosen on the first stage also satisfies the time step
restriction on the current stage. When the scheme fails to maintain positivity on a later
stage of the Runge-Kutta scheme, simply update the time step to be half of the current time
step and iterate until the constraint for positivity is satisfied for each stage, or you have run
through 3 iterations. If, after 3 iterations, the scheme still does not maintain positivity on
one of the later Runge-Kutta stages, march in time using a forward Euler scheme. This will
guarantee that positivity is preserved. Note, however, that for all problems presented in
this thesis, this condition was never met and we never needed to use a forward Euler update
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in time. This potential issue in using a SSP-RK scheme to run the positivity-preserving
algorithm can be avoided by using a SSP multi-time step discretization as detailed in [70],
but we do not use this time discretization in this thesis.
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Chapter 6

Results

We test the proposed high-order entropy-conservative, (4.9), first-order entropy-stable
positivity-preserving, (5.1), and high-order entropy-stable positivity-preserving, (5.27),
schemes numerically. For all three methods, we present convergence plots on smooth
problems to demonstrate the convergence rates of each scheme. For these tests, we use
the method of manufactured solutions (MMS). MMS is a technique that allows the user
to select what they would like the exact solution of the PDE to be. This solution is then
plugged into the equations and the result is added to the right hand side of the equa-
tions as a source term. Using the MMS technique, we created sinusoidal solutions to the
isentropic Baer-Nunziato equations. Using these solutions, we numerically tested the con-
vergence of the schemes presented in chapters 4 and 5, as we can compare the numerical
solution against the exact solution. We also show numerical tests of entropy-conservation
as well as entropy-stability for all schemes in sections 6.1, 6.2, and 6.3. Finally, in sec-
tion 6.3, we demonstrate the shock capturing capabilities of the high-order entropy-stable
positivity-preserving scheme on two Riemann problems.

In this chapter, all tests are run using the SSP-RK3 scheme, (5.32), to march in time.
For any tests run using degree 1, 2, or 3 SBP operators, a maximum time step of 10−5

has been chosen, and for any test run using degree 4 operators, a maximum time step
of 10−6 has been chosen since SSP-RK3 is third-order accurate in time. Furthermore, to
obtain convergence rates using the log-log error plot, we take the slope of the line of best
fit between the final three points on plot, unless otherwise noted. Finally, for all tests
considered in this thesis, we set k = 1, γ1 = 3, and γ2 = 1.5 unless stated otherwise.
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6.1 Results for the High-Order Entropy-Conservative

Scheme

To study the high-order entropy-conservative scheme, (4.9), we consider a smooth, periodic
problem that does not approach zero. It is important that the scheme does not approach
zero since (4.9) has no positivity-preserving properties. We will refer to this problem as
the easy problem which has an exact solution

α1 = 0.25 sin (x+ t) + 0.5,

ρ1 = 0.25 sin (x+ 2t) + 0.5,

v1 = 0.25 sin (x+ t) + 0.5,

ρ2 = 0.25 cos (x+ 2t) + 0.5,

v2 = 0.25 cos (x+ t) + 0.5,

(6.1)

where, the system is initialized following the exact solution at time t = 0. Figures (6.1),
(6.2), (6.3), and (6.4), show the convergence plots for the entropy-conservative scheme,
(4.9), using degree 1, 2, 3, and 4 SBP operators, respectively. Furthermore, each scheme
was marched in time until t = 0.1s. We see that for degree 1 and 3, in figures (6.1) and
(6.3), that the numerical scheme is converging at approximately p + 1

2
, where p is the

degree of the SBP operators. Then, for degree 2, in figure (6.2), we see that the scheme is
converging slightly over p+1, and degree 4, in figure (6.4), is converging between p+ 1

2
and

p+1. We note that there is a phenomenon occurring here where the odd degree operators
are slightly under-converging and the even degree operators are converging well. Although
this is a well known phenomenon for linear problems and typically is corrected with an
upwind numerical flux, for entropy-stable schemes, there appears, in general, to be some
under convergence even with an upwind numerical flux [34].

Figure (6.5) shows the results of left multiplying all spatial terms in (4.9), by wTP,
that is, we rearrange (4.9), abstractly as

du

dt
= RHS(u),

and plot in figure (6.5), wTPRHS, when the right hand side is discretized using degree
4 SBP operators. From theorem (4.2.3), we have that this contraction with the entropy
variables should be equal to zero. While figure (6.5) may look like this sum is varying
wildly, the scale is on the order of 10−16, thus, the sum is always machine zero. We only
show the result for degree 4 SBP operators since all other degrees return similar plots,
thus, we omit them here. Therefore, we have numerically validated theorem (4.2.3) and
the high-order entropy-conservative scheme, (4.9), does in fact, conserve entropy.
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Figure 6.1: Convergence plot for the entropy-conservative discretization, (4.9), for degree
1 SBP operators using MMS solution (6.1). This is a log-log error plot of the grid spacing
vs the approximate L2 error computed using (3.16) in the numerical solution. For each
grid level there were 20 nodes per element and then the number of elements was set to 4,
8, 16, and 32.
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Figure 6.2: Convergence plot for the entropy-conservative discretization, (4.9), for degree
2 SBP operators using MMS solution (6.1). This is a log-log error plot of the grid spacing
vs the approximate L2 error computed using (3.16) in the numerical solution. For each
grid level there were 20 nodes per element and then the number of elements was set to 4,
8, 16, and 32.
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Figure 6.3: Convergence plot for the entropy-conservative discretization, (4.9), for degree
3 SBP operators using MMS solution (6.1). This is a log-log error plot of the grid spacing
vs the approximate L2 error computed using (3.16) in the numerical solution. For each
grid level there were 20 nodes per element and then the number of elements was set to 4,
8, 16, and 32.
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Figure 6.4: Convergence plot for the entropy-conservative discretization, (4.9), for degree
4 SBP operators using MMS solution (6.1). This is a log-log error plot of the grid spacing
vs the approximate L2 error computed using (3.16) in the numerical solution. For each
grid level there were 20 nodes per element and then the number of elements was set to 4,
8, 16, and 32.
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Figure 6.5: The entropy contraction is the result of left multiplying the entropy-
conservative scheme, (4.9), for degree 4 SBP operators, by wT

i P and summing over all
elements i = 1, 2, . . . , n. Notice that the scale on the contraction is on the order of 10−16.
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6.2 Results for the First-Order Entropy-Stable Positivity-

Preserving Scheme

To test both the first-order and high-order entropy-stable positivity-preserving schemes,
we will consider another problem that approaches zero, since now, we also want to test the
positivity-preserving properties of the schemes. We will refer to this problem as the hard
problem which has an exact solution

α1 = 0.4999 sin (x+ t− 0.05) + 0.5,

ρ1 = 0.25 sin (x+ 2t− 0.1) + 0.5,

v1 = 0.25 sin (x+ t− 0.05) + 0.5,

ρ2 = 0.25 cos (x+ 2t− 0.1) + 0.5,

v2 = 0.25 cos (x+ t− 0.05) + 0.5,

(6.2)

where, the system is initialized following the exact solution at time t = 0. At the current
time of writing this thesis, simulating problems that get close to zero become ill-conditioned
as we march in time due to the need to convert from conserved variables to primitive
variables. For example, when computing the velocity of the second phase, we compute this
as

v2 =
u5

u4

=
α2ρ2v2
α2ρ2

,

where u4 is the fourth conserved variable and u5 is the fifth conserved variable. This
becomes ill-conditioned for two reasons, the first being that dividing two small numbers can
lead to rounding error in the computation. The second reason is that, as the error builds in
the numerical scheme, this can lead to a disproportionately large error in the computation
of the primitive variables. Take our example of computing the velocity of the second phase
again, but, this time consider the the error in computing v2. We assume that the numerical
solution (u4)num = (u4)exact +Error1, and likewise (u5)num = (u5)exact +Error2. Therefore,
to compute v2 we have that

v2 =
(u5)num
(u4)num

=
(u5)exact + Error2
(u4)exact + Error1

,

where it is clear that as the error in the fourth and fifth conserved variables grow to be
about the order of magnitude of the exact solution, there will be large error in computing
the value of v2. This error causes instabilities to grow in the numerical solution and prevents
us from marching indefinitely in time as, even though the error in the conserved variables
may be small, the error when converting to primitive variables is large. For this reason, the
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first-order entropy-stable positivity-preserving scheme, (5.1), as well as the mixing scheme,
(5.27), discretized using degree 2 and 3 SBP operators, shown in figures (6.6), (6.10),
and (6.11) were marched until t = 0.055s, as this time was able to be reached for all mesh
levels. However, since degree 4 operators result in a discretization that is significantly more
accurate than degree 1, 2, and 3 operators, the mixing scheme, (5.27), discretized using
degree 4 SBP operators, was marched until t=0.5s. We believe that the velocity limiters of
Upperman and Yamaleev [63], which were implemented for the Navier-Stokes equations,
can rectify this problem. This will be discussed in the future work section of chapter 7.
Here, we also emphasize that our stability proofs are at the semi-discrete level, and we
have no guarantees on stability once we discretize in time using SSP-RK3. However, this
has a known solution, namely one can use relaxation Runge-Kutta methods [37, 49] to
extend the semi-discrete stability properties to the fully discrete case and this is an area
of future research.

Figure (6.6) shows the convergence test of the first-order entropy-stable positivity-
preserving scheme, (5.1), run on the hard problem. Note that, when the first-order entropy
conservative scheme was used to try and run the hard problem, the scheme crashed between
6 × 10−3s and 9 × 10−2s, depending on the mesh level, due to positivity being violated.
Thus, (5.1) is ensuring that positivity of the void fractions and densities are maintained
whereas the entropy-conservative scheme, (4.9), does not. From figure (6.6), we see that
the first-order entropy-stable positivity-preserving scheme is converging at first-order as
stated in section 5.1. Then, we also test the entropy-dissipative properties of the artifi-
cial dissipation operator, (5.2), and the element interface dissipation, (5.7), as proved in
theorem (5.1.3). Figure (6.7) shows the result obtained when left multiplying the artifi-
cial dissipation operator and element interface dissipation by wT

i P and summing over all
elements i = 1, 2, . . . , n. As shown in theorem (5.1.3), these contractions with the entropy
variables should be less than or equal to zero for finite time, and as seen in figure (6.7), this
contraction is numerically less than or equal to zero between t = 0 and t = 1s. Thus, we
have validated numerically that the artificial dissipation operator, (5.2), and the element
interface dissipation, (5.7), are entropy-dissipative terms. Note that this test was run on
the easy problem so that we could march in time until 1s.

Similarly, we have shown that the remainder of theorem (5.1.3) holds numerically. That
is, the first-order entropy-stable positivity-preserving scheme is entropy-stable. As done
before to prove entropy-conservation of the entropy-conservative scheme, (4.9), we move
all of the spatial terms to the right hand side of (5.1), such that only the time derivative
term remains on the left hand side. Then, left multiply the right hand side by wT

i P and
sum over all elements i = 1, 2, . . . , n. For this test, we ran (5.1) on the easy problem so
that we could step all the way to one second and the result is seen in figure (6.8). From
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the figure we have that the contraction with the entropy variables is less than zero for all
time between t = 0 and t = 1s. Thus, we have numerically validated that the first-order
entropy-stable positivity-preserving scheme, (5.1), is in fact entropy-stable.

The last property we wish to show for the first-order entropy-stable positivity-preserving
scheme, (5.1), is that the artificial dissipation operator, (5.2), converges to zero at first-
order. Figure (6.9), shows the convergence plot of the maximum absolute value in the
artificial dissipation operator when given the initial condition of the hard problem. After
a single instance of calling the operator, the maximum absolute value is found. Theorem
(5.1.1) proves that the artificial dissipation operator vanishes for a constant solution, thus,
for smooth problems, as the grid is refined, the artificial dissipation operator should con-
verge to zero. In chapter 5, we argue that the artificial dissipation operator should converge
to zero at first-order. Figure (6.9) numerically demonstrates that the artificial dissipation
operator converges to zero at first-order.
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Figure 6.6: Convergence plot for the first-order entropy-stable positivity-preserving
scheme, (5.1). This is a log-log error plot of the grid spacing vs the approximate L2

error computed using (3.16) in the numerical solution. For each grid level there were 20
nodes per element and then the number of elements was set to 4, 8, 16, 32, 64, and 128.
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Figure 6.7: The entropy contraction is the result of left multiplying the artificial dissipation
operator, (5.2), and the element interface dissipation, (5.7), by wT

i P and summing over all
elements i = 1, 2, . . . , n.
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Figure 6.8: The entropy contraction is the result of left multiplying the first-order entropy-
stable positivity-preserving scheme, (5.1), by wT

i P and summing over all elements i =
1, 2, . . . , n.
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Figure 6.9: The convergence plot for the artificial dissipation operator, (5.2). This is a
log-log plot of the grid spacing vs the maximum absolute value of the operator. For each
grid level, there were 20 nodes per element and the number of elements was set to 4, 8, 16,
and 32.
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6.3 Results for the High-Order Entropy-Stable Positivity-

Preserving Scheme

In this section, we first test the convergence properties of the high-order entropy-stable
positivity-preserving scheme, (5.27), on the hard problem detailed in section 6.2. Since the
base entropy-stable positivity-preserving scheme, (5.1), is already first-order, we test the
convergence properties of (5.27) using degree 2, 3, and 4 SBP operators. Furthermore, due
to the current limitations of the numerical algorithm on handling the division between small
numbers as discussed in section 6.2, it is not possible to run smooth solutions that would
become negative for degree 2 through 4 SBP operators. This is because the degree 2 through
4 SBP operators are accurate enough that, for a smooth problem to become negative due
to error build-up, would require problems that are very close to zero, thus exacerbating
the numerical instability. Instead, the schemes are mixed when they cross a threshold
slightly above 0 and below 1. For the degree 2 mixing scheme, this threshold was taken
as 2.49× 10−5, for the degree 3 mixing scheme, this threshold was taken as 2.4999× 10−5,
and for the degree 4 mixing scheme, this threshold was taken as 2.499999 × 10−5. These
thresholds were picked because the minimum value of the exact solution in the hard problem
is 2.5 × 10−5, thus, when the high-order numerical solution crosses slightly below this
minimum value, we used the mixing scheme to update the numerical solution. Notice that
the threshold gets closer to 2.5 × 10−5 as the degree of the operator increases. This is
because, the error decreases very rapidly as the degree of the SBP operators are increased
for a fixed mesh size and we wanted the mixing scheme to be required at least once on
every mesh level. Thus, the degree 4 operators require a threshold closer to the minimum
value of the exact solution than the degree 2 and 3 operators, such that enough error is
built up in the simulation that the entropy-conservative scheme needs to be mixed with
the entropy-stable scheme at each mesh level.

Figures (6.10), (6.11), and (6.12) show the convergence plots for the degree 2, 3, and
4 mixing schemes, respectively. Each figure also contains a bar chart to show the total
number of times the high-order entropy-conservative scheme needed to be mixed with the
first-order entropy-stable positivity-preserving scheme to maintain positivity of the scheme
(when the high-order scheme violated the threshold for positivity or boundedness). It is
clear from these figures that the high-order entropy-stable positivity-preserving scheme is
converging between p+ 1

2
and p+ 1, thus, the scheme (5.27) achieves high-order accuracy

for smooth solutions as proved in theorem (5.2.1). Furthermore, as can be seen in the bar
charts of the figures, as the mesh is refined, the amount of mixing that is required between
the schemes (4.9) and (5.1) goes down, as is expected, since a finer mesh means a more
accurate solution.
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Note that figure (6.11), includes guiding lines that show each slope is bound between 3
and 4 since there was a large drop in the error in equation 1 going from 8 to 16 elements.
For this reason, in this figure, the slope of the line for equation 1 is taken from only the last
two nodes, as the large decrease in error from 8 elements to 16 elements skews the results.
Ideally, this plot would be pushed further to show that the trend we observe in the last
two data points continues, however, mixing was only required on a single element in the
32 element case. Thus, if we continued to refine the mesh, we would simply be running the
entropy-conservative scheme with degree 3 SBP operators, and the convergence properties
of this scheme have already been studied in section 6.1.

Finally, we consider two Riemann problems that were studied in [50]. Both problems
are associated with initial conditions of the form

u0 =

{
uL, x < 0,

uR, x > 0,

where x ∈ [−0.5, 0.5]. The first problem we study is denoted as RP1 and takes the initial
condition

uL = (0.1, 0.85, 0.4609513139, 0.96, 0.0839315299)T,

uR = (0.6, 1.2520240113, 0.7170741165, 0.2505659851,−0.3764790609)T,
(6.3)

and the problem is evolved in time until t = 0.14s. Then, the second problem we study is
denoted RP2 and takes a constant solution, except for a shock in α1. This problem was
chosen to validate that the high-order entropy-stable positivity-preserving scheme, (5.27),
satisfies Abgrall’s criterion. This problem is denoted RP2 and takes the initial condition

uL = (0.6, 0.5, 1.0, 0.5, 1.0)T,

uR = (0.4, 0.5, 1.0, 0.5, 1.0)T,
(6.4)

and the problem is evolved in time until t = 0.1s. Furthermore, for RP2 we set k = 1,
γ1 = 3, and γ2 = 3 such that the velocities and pressures are equal for both phases, as is
required for Abgrall’s criterion.

Figures (6.13), (6.14), and (6.15) show the convergence of the entropy-stable positivity-
preserving scheme, (5.27), discretized using degree 4 SBP operators, on RP1. It can be seen
that as the number of elements increases, the discontinuities are more accurately captured,
but, even in the 128 element case, there are still large oscillations that occur at the shock.
This tells us that, while the entropy-stable positivity-preserving scheme, (5.27), can capture
shocks, more dissipation is required to damp these oscillations. How this limitation will
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be addressed is contained in the future work section of chapter 7. Then, figure (6.16)
shows that the high-order positivity-preserving scheme, (5.27), is in fact entropy-stable.
These results were obtained using degree 4 SBP operators, on RP1, but similar results
hold for all other degrees, thus, they are omitted here. From the figure, we have that the
contraction is less than zero for all time, thus, the we have validated theorem (5.2.2), as
we have numerically shown that the scheme (5.27) is entropy-stable.

Finally, figure (6.17) shows the results of RP2 discretized using the entropy-stable
positivity-preserving scheme, (5.27), and degree 4 SBP operators. RP2, was the test to en-
sure the numerical scheme satisfies Abgrall’s criterion. The velocities and pressure remain
uniform as required by corollary (3), thus, the numerical scheme (5.27) satisfies Abgrall’s
criterion.
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Figure 6.10: The convergence plot for the entropy-stable positivity-preserving mixing
scheme, (5.27), for degree 2 SBP operators. This is a log-log error plot of the grid spacing
vs the approximate L2 error computed using (3.16) in the numerical solution. For each
grid level there were 20 nodes per element and then the number of elements was set to
4, 8, 16, and 32. Then, the bar chart below shows the total number of elements that
required the entropy-conservative scheme to be mixed with the first-order entropy-stable
positivity-preserving scheme during the simulation for each mesh level. The number of
elements that required mixing were 681, 447, 57, and 15 for the mesh levels with 4, 8, 16,
and 32 elements, respectively.
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Figure 6.11: The convergence plot for the entropy-stable positivity-preserving mixing
scheme, (5.27), for degree 3 SBP operators. This is a log-log error plot of the grid spacing
vs the approximate L2 error computed using (3.16) in the numerical solution. For each
grid level there were 20 nodes per element and then the number of elements was set to
4, 8, 16, and 32. Then, the bar chart below shows the total number of elements that
required the entropy-conservative scheme to be mixed with the first-order entropy-stable
positivity-preserving scheme during the simulation for each mesh level. The number of
elements that required mixing were 2959, 1044, 39, and 1 for the mesh levels with 4, 8, 16,
and 32 elements, respectively.
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Figure 6.12: The convergence plot for the entropy-stable positivity-preserving mixing
scheme, (5.27), for degree 4 SBP operators. This is a log-log error plot of the grid spacing
vs the approximate L2 error computed using (3.16) in the numerical solution. For each
grid level there were 20 nodes per element and then the number of elements was set to 4,
8, 16, and 32. Then, the bar chart below shows the total number of elements that required
the entropy-conservative scheme to be mixed with the first-order entropy-stable positivity-
preserving scheme during the simulation for each mesh level. The number of elements that
required mixing were 232, 67, 4, and 1 for the mesh levels with 4, 8, 16, and 32 elements,
respectively.
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Figure 6.13: RP1 discretized using the entropy-stable positivity-preserving scheme, (5.27),
for degree 4 SBP operators, with 20 nodes per element and 32 elements.
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Figure 6.14: RP1 discretized using the entropy-stable positivity-preserving scheme, (5.27),
for degree 4 SBP operators, with 20 nodes per element and 64 elements.

112



Figure 6.15: RP1 discretized using the entropy-stable positivity-preserving scheme, (5.27),
for degree 4 SBP operators, with 20 nodes per element and 128 elements.
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Figure 6.16: The entropy contraction is the result of left multiplying the entropy-stable
positivity-preserving mixing scheme, (5.27), using degree 4 SBP operators, by wT

i P and
summing over all elements i = 1, 2, . . . , n.
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Figure 6.17: RP2 discretized using the entropy-stable positivity-preserving scheme, (5.27),
for degree 4 SBP operators, with 50 nodes per element and 20 elements. While there only
appears to be three lines on the plot, the density line contains both ρ1 and ρ2. Furthermore,
the velocity line contains both v1 and v2.
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Chapter 7

Conclusion

7.1 Summary of Work

We have presented a new high-order entropy-stable positivity-preserving scheme for the
1-D isentropic Baer-Nunziato equations. We began by developing an entropy-conservative
scheme, which is capable of attaining high-order accuracy for smooth solutions. However,
this entropy-conservative scheme is not capable of handling discontinuous solutions as it
is prone to Gibbs oscillations around discontinuities, and will not converge to a physically
relevant weak solution. Our targeted scheme needed to be able to handle discontinuous
solutions to the isentropic Baer-Nunziato model, as our goal is the simulation of the bubble
collapse problem in relation to HIFU. The collapse of the bubble introduces a shock into
the system and therefore, we need a scheme which can capture shocks. Therefore, we
sought a scheme which is entropy-stable, ensuring that the mathematical entropy across a
shock is dissipated, as is required by the second law of thermodynamics. Furthermore, as
shown in chapter 5, bounding the entropy of the solution implies a bound on the norm of
the solution itself, thus, for finite time, the norm of the solution will not diverge to infinity
and cause the simulation to crash. Another desirable property we wish for our scheme
to have is positivity-preservation. The set of admissible states requires the densities and
void fractions to be strictly positive, yet, we wish to simulate problems where the densities
and void fractions can get arbitrarily close to zero. Furthermore, positivity-preservation is
needed to ensure code stability as there are several computations that are not defined for
negative densities and void fractions. Additionally, the entropy-stability proofs presented
in this thesis, depend on keeping the solution within the set of admissible states, therefore,
if a negative void fraction were to occur, then the entropy-stability proofs no longer hold.
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To develop an entropy-stable positivity-preserving scheme we began by developing a
first-order entropy-stable positivity-preserving scheme in section 5.1, where we used the
entropy-conservative scheme developed in chapter 4 as a base to which entropy-dissipative
terms were introduced to add entropy-stability and positivity-preserving properties. First,
we added element interface dissipation, which couples adjacent elements and results in
entropy-dissipation at these interfaces. Then, we present the key development in this
thesis, namely, the novel artificial dissipation operator, which adds volume dissipation to
the scheme. The artificial dissipation operator was designed in such a way that, it is
not only an entropy-dissipative term, but, it also can be used to add provable positivity-
preservation to the scheme. The dissipation operator has tuneable dissipation coefficients
that can be selected to provably maintain positivity of the densities and void fractions
node-wise, in conjunction with a time step restriction. Furthermore, in section 5.1, it was
shown that the dissipation coefficients will not diverge to infinity no matter how close
the primitive variables get to zero. Consequently, the time step restriction required to
maintain positivity will not become arbitrarily small, which is of practical importance in
running simulations. Finally, the derivative operator used in the first-order entropy-stable
positivity-preserving scheme is a special derivative operator which is composed of high-
order P, and first-order Q. In chapter 3, we proved that discretizing in space using this
special derivative operator results in a scheme that has first-order truncation error and we
demonstrated numerically that it converges at first-order.

This special operator was used in the first-order scheme so that we could mix the high-
order entropy-conservative scheme, with the first-order entropy-stable positivity-preserving
scheme, to create a high-order entropy-stable positivity-preserving scheme. When the norm
matrix used to create the special derivative operator is selected such that it matches the
order of the entropy-conservative scheme, it was proved in section 5.2, that the high-
order positivity-preserving scheme, which mixes the entropy-conservative scheme with the
first-order entropy-stable positivity-preserving scheme, is entropy-stable. To create the
high-order entropy-stable positivity-preserving scheme we march in time using the high-
order entropy-conservative scheme and, at each time step, check for two conditions on
each element. First, we check if a discontinuity is present on an element by using WENO
smoothness indicators. If a discontinuity is detected in an element, then only the first-
order entropy-stable positivity-preserving scheme is used to evolve that element. The
second condition that is checked at each time level is if positivity is violated by the high-
order entropy-conservative scheme. If positivity is violated, then the high-order entropy-
conservative scheme is mixed with the first-order positivity-preserving scheme, as detailed
in section 5.2. This mixing scheme results in a novel high-order entropy-stable positivity-
preserving scheme which solves the 1-D isentropic Baer-Nunziato equations.
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In chapter 6, all three schemes developed in this thesis were tested on several different
problems. First, we demonstrated the convergence properties of the high-order entropy-
conservative numerical scheme, where, we observed convergence rates between p+ 1

2
and p+

1 for all SBP operators of degree p = {1, 2, 3, 4}. Then, we tested the entropy-conservative
properties of the scheme and observe that at each time level, entropy is conserved down to
machine accuracy.

Next, we test the first-order entropy-stable positivity-preserving scheme on a problem
that gets close to zero. This is a problem which the entropy-conservative scheme cannot run
using degree 1 SBP operators, due to positivity being violated as the scheme is marched
in time. Not only do we observe that the scheme preserves positivity of the densities
and void fractions, but, we see that the scheme converges at first-order as claimed in
section 5.1. Furthermore, we test that the element interface dissipation and novel artificial
dissipation operator are entropy-dissipative terms and we find that, numerically, they are
entropy-dissipating for all time. To show that the addition of these two terms to the
entropy-conservative scheme leads to an entropy-stable scheme, we also numerically test
for entropy-stability of the first-order entropy-stable positivity-preserving scheme. Finally,
we run a test on the convergence of the novel artificial dissipation operator, to validate our
claim that it should converge to 0 at first-order. We observe that the artificial dissipation
operator, does converge to zero at first-order.

Finally, we tested the mixed high-order entropy-stable positivity-preserving scheme.
First, we demonstrated the convergence properties of the scheme by running the scheme
using degree 2, 3, and 4 SBP operators, where we observed convergence rates between
p+ 1

2
and p+ 1 for all degrees tested. We also observed that the number of elements that

required mixing due to positivity being violated decreased as the mesh was refined. This
is exactly the property that was desired, since, a finer mesh, equates to a more accurate
numerical solution, which should require less mixing to maintain positivity. Then, we
demonstrate the shock capturing capabilities of the high-order entropy-stable positivity-
preserving scheme by running two Riemann problems. For the first Riemann problem,
we demonstrate how refining the mesh leads to a more accurate capturing of the shocks
by displaying the numerical solution on three different mesh levels. The final Riemann
problem that is shown, numerically validates that the high-order entropy-stable positivity-
preserving scheme satisfies Abgrall’s criterion. We demonstrated that, given uniform and
equal velocities and pressures at time t = 0, they remain uniform and equal as proved in
corollary (3). Satisfying Abgrall’s criterion is not straightforward, but highly necessary to
discretize the non-conservative term in the Baer-Nunziato equations, especially given the
context of bubble collapse. Therefore, theorem (5.1.5), corollary (1), and corollary (3) is
a significant contribution of this work. Finally, we showed the entropy-stability properties
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of the high-order entropy-stable positivity-preserving scheme.

7.2 Future Work

In this thesis, we presented numerical schemes that solve the 1-D isentropic Baer-Nunziato
model. We have developed a scheme which is positivity-preserving and capable of capturing
shocks. In the short term, the numerical instability that occurs when the values of the
conservative variables get close to zero needs to be addressed. To do so, we plan to use a
similar technique to the velocity limiters presented by Upperman and Yamaleev [63]. In
their work on entropy-stable positivity-preserving schemes for the Navier-Stokes equations,
they introduce entropy-stable velocity limiters which keeps the time step restriction of their
scheme from becoming too stiff. The general idea is to bound the deviation from the average
velocity by an upper limit, and if the velocity at any node falls outside of this limit, then the
entropy-stable velocity limiter is applied iteratively until the velocity at all nodes satisfy
the upper limit. In our work, we are seeing spikes occur in the velocities and densities as
the values in the conserved variables become close to zero, thus, we believe that taking
inspiration from the work of Upperman and Yamaleev, to create our own entropy-stable
velocity and density limiters, will solve this numerical instability.

Then, as demonstrated in section 6.3, our entropy-stable positivity-preserving scheme,
(5.27), is capable of capturing shocks, and as we mesh refine, the solution is more resolved.
However, more dissipation is needed to damp oscillations occurring at the discontinuity.
This is typical for this class of schemes, for example, Upperman and Yamaleev add more
operators and limiting to their entropy-stable positivity-preserving scheme for the Navier-
Stokes equations to ensure sufficient dissipation is being added to the scheme around
shocks; such as artificial viscosity and velocity limiting [63, 62]. First, we plan to add dissi-
pation to the high-order entropy-conservative scheme, (4.9), using the dissipation operators
constructed by Mattsson et al. [43]. This will immediately add more dissipation to the nu-
merical scheme since, currently, the high-order scheme has no dissipation. Furthermore,
we will add more artificial dissipation to our first-order entropy-stable positivity-preserving
scheme. The key will be to add a shock sensor that will not only inform where the shocks
in the numerical solution are occurring, but also, inform how much dissipation needs to
be added to the scheme. For this, we look to the work of Upperman [62], who has devel-
oped an entropy residual-based sensor for the Navier-Stokes equations. Finally, we believe
that the velocity and density limiters we will add to our scheme to address the numerical
instability, will also damp oscillations that occur around a shock.

The approach for stability taken in this thesis, only gives semi-discrete stability proofs
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and the fully discrete scheme presented in this thesis, does not inherit these stability
properties, though in practice, we see that such schemes are more robust. However, by
using the relaxation Runge-Kutta approach [37, 49], one can extend the semi-discrete
stability proofs to the fully discrete case.

With these changes to our entropy-stable positivity-preserving scheme, (5.27), we will
have developed a strong building block to be able to simulate a bubble collapse problem in
the context of HIFU. However, such a problem would need to be simulated in at least 2-D,
and as such, upgrading the scheme to be able to handle multi-dimensional problems is a
necessary point to be addressed in future work. The work in 1-D could be extended to multi-
D through the use of tensor products and the author does not foresee any complications
in upgrading the scheme to be able to handle multi-dimensional problems. Furthermore,
to serve clinical applications, the bubble collapse problem needs to be studied in relation
to how it interacts with soft tissues. Such knowledge would support the development of
revolutionary applications of HIFU and improve upon existing techniques such as tumor
ablation, thus improving patient outcomes.
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Appendix A

The Eigenvalues of the Flux Jacobian
for the Isentropic Baer-Nunziato
Model

In section (5.1), we introduced the element interface dissipation

uEID = P̃−1[−Mi
N1∆

iv, 0, . . . , 0,M
(i+1)
N1 ∆(i+1)v]T,

where the dissipation coefficients, σa, a ∈ [1, 2, 4], are calculated by scaling the maximum
absolute value of the eigenvalues of the flux Jacobian. To find the flux Jacobian, consider
the isentropic Baer-Nunziato equations

∂u

∂t
+

∂f(u)

∂x
+ c(u)

∂u

∂x
= 0.

Now, rewrite the spatial terms in the equations in terms of the primitive variables, v, as
follows

∂u

∂t
+

(
∂f

∂v

∂v

∂x
+ c

∂u

∂v

∂v

∂x

)
= 0,

∂u

∂t
+

(
∂f

∂v
+ c

∂u

∂v

)
∂v

∂x
= 0.

We seek the maximum absolute absolute eigenvalue of

Flux Jacobian =
∂f

∂v
+ c

∂u

∂v
,
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using both of the values on either side of the element interface. The element interface
dissipation coefficients are then set to the maximum absolute eigenvalue, emax, i.e.,

σa = emax, a = [1, 2, 4].

The eigenvalues are defined as

e1 = v2,

e2 =
α2v2
2

+ α2ρ2v2 +

√
4α2(v22 + p′2)α2ρ2 + α2v22 − 4α2

2ρ2v
2
2 + 4α2ρ2v22

2
,

e3 =
α2v2
2

+ α2ρ2v2 −
√

4α2(v22 + p′2)α2ρ2 + α2v22 − 4α2
2ρ2v

2
2 + 4α2ρ2v22

2
,

e4 =
α1v1
2

+ α1ρ1v1 +

√
4α1(v21 + p′1)α1ρ1 + α1v21 − 4α2

1ρ1v
2
1 + 4α1ρ1v21

2
,

e5 =
α1v1
2

+ α1ρ1v1 −
√

4α1(v21 + p′1)α1ρ1 + α1v21 − 4α2
1ρ1v

2
1 + 4α1ρ1v21

2
,

where p′a =
dpa
dρa

, a = {1, 2}.
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Glossary

Entropy inequality A condition which weak solutions to the isentropic Baer-Nunziato
model must satisfy, in a weak sense.

Entropy-conservative scheme A semi-discrete scheme which conserves the mathemat-
ical entropy of the numerical solution.

Entropy-dissipative term A term which dissipates (or decreases) the mathematical en-
tropy of the numerical solution.

Entropy-stable scheme A semi-discrete scheme which decreases the mathematical en-
tropy of the numerical solution.

High-order scheme A semi-discrete scheme that has an order of accuracy greater than
1.

Mixed scheme A semi-discrete scheme that mixes the high-order entropy-conservative
scheme with the first-order entropy-stable positivity-preserving scheme.

Positivity-preserving scheme A semi-discrete scheme which maintains the positivity
of the densities and void fractions in the isentropic Baer-Nunziato model.

Void fractions Describes the fraction of space which is occupied by a phase in the isen-
tropic Baer-Nunziato model.
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