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Abstract

This thesis compiles a few developments on the S-matrix bootstrap, conformal field
theory, and integrability in N' =4 SYM. After an introduction contextualizing the various
works that compose this thesis, we present a number of results in independent chapters,
followed by a conclusion discussing some future directions. A lightning summary of each
chapter is as follows:

e In chapter 2, we extend the S-matrix Bootstrap by considering the analyticity and
unitarity of multiple amplitudes at once, and describe how to generalize the frame-
work in order to study theories with a mass hierarchy in two space-time dimensions.

e In chapter 3 we consider a number of 2D bootstrap problems, uncovering a web of
integrable theories at the boundary of theory space.

e In chapter 4 we develop an alternative formulation to the 2D S-matrix bootstrap
that rules out quantum field theories by proving that there cannot exist analytic
S-matrices with given physical properties.

e In chapter 5 we explore the multi-lightcone limit of six-point functions in a conformal
gauge theory to estabilish precise formulas mapping structure constants of large spin
operators and null-hexagonal Wilson loops in conformal gauge theory.

e In chapter 6 we consider the problem of computing structure constants of multiple
spinning operators from integrability in N' =4 SYM.

e In chapter 7 we develop a framework computing structure constants in N'= 4 SYM
in terms of Baxter Q-functions to the first few orders in perturbation theory. At
leading order, this reduces to the “Separation of Variables” framework of rational
spin-chains.

e In chapter 8 we describe how analyticity in spin is compatible with the growth in
the number of primary operators with spin in conformal field theory. We do so by
introducing a technique that allows to compute complex spin CFT data from the
Euclidean data.
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Chapter 1

Introduction

Strongly interacting quantum field theories (QFTs) underlie some of the most awe-inspiring
phenomena in nature. The large quantum fluctuations that give rise to their rich dynamics
also make them notoriously challenging to study. QFTs come in all shapes and forms, and
there is no one-size-fits-all strategy to analyse them. This thesis investigates various types
of QFTs, most often exploring Lorentzian physics. In this introduction, we provide context
for the various chapters that comprise this work.

An important class of quantum theories consists of those which admit asymptotic stable
particles, allowing us to probe the theory’s dynamics through particle scattering experi-
ments. This class includes “gapped” theories, for which the vacuum is unique and long
range interactions are absent, as well as theories with sufficiently “soft” low energy physics,
such as theories of Goldstone bosons.

Not all results of these scattering experiments are consistent with a microscopic theory
respecting fundamental principles such as causality, locality, and unitarity [8]. Indeed,
systematic exploration of the consistency between these basic requirements leads to a rigid,
constraining framework. This framework, known as the S-matrix Bootstrap [9], in turn,
allows us to place powerful bounds on possible outcomes of collision experiments, even
when the low energy dynamics is strongly coupled!.

Locality and causality of the microscopic theory are reflected in the analytic structure of
the scattering amplitudes as a function of kinematic invariants 2. At the boundaries of the
domain of analyticity the scattering amplitudes are constrained by (generalized) unitarity

1See [1,10-27] for a number of examples as well as [28-43] for a number of related technical developments.
2See reviews [44-46).



equations. One possible numerical realization of the S-matrix bootstrap is to parameterize
the space of analytic functions, for example through some power series representation, or
a dispersion relation, and numerically search this space, imposing the unitarity equations
as constraints along the boundaries of the analyticity domain. One may then optimize
over the value of certain physical observables, such as effective couplings or Wilson coeffi-
cients, thus deriving bounds on these objects as the numerical search converges. Inheriting
nomenclature from convex optimization, this is often referred to as the “primal” S-matrix
Bootstrap®.

This strategy is easier to put in practice when considering the two-to-two scattering
of the lightest particles in the field theory. In this case the boundaries of the domain of
analyticity are simple to characterize: they correspond to regions of physical momenta in
the complexified kinematic space, and are thus bounded by simple unitarity equations.
When heavier stable particles exist, more powerful bounds on the space of quantum field
theory can be obtained by requiring that all two-to-two amplitudes are consistent with the
aforementioned fundamental principles.

In chapter 2 we extend the S-matrix bootstrap framework to the case of multiple two-
to-two amplitudes. There are two main novelties. First, there are now singularities away
from the physical scattering region. Their monodromies are given by “extended” unitar-
ity equations, of a more complicated nature. Second, the unitarity equations now couple
several amplitudes at once. After these challenges are overcome we observe powerful im-
provements over previous single amplitude bounds, and uncover rich physics sourced by the
interplay of the various scattering processes. Our results are valid provided the heaviest
scattered particles are not too heavy in units of the lightest mass in the theory. Extending
our results to arbitrary mass spectrum is an important direction of future investigation.

An important experimental observation in these studies is that, when imposing the
consistency of two-to-two scattering, theories on the boundary of the allowed S-matrix
space saturate unitarity: the probability of two particles scattering into anything other
than two particles is zero. Generically this is unphysical. Indeed, in higher dimensions,
Aks theorem [47] shows that an interacting analytic and crossing symmetric two-to-two
amplitude cannot saturate unitarity?. Vanishing particle production is possible in two
dimensional integrable theories. The presence of higher-spin symmetries in these theories
imply these selection rules as well as algebraic constrains on the two-to-two S-matrix,
which must satisfy the Yang-Baxter equation: sequential scattering processes must lead to

3Haters might claim this strategy is also primitive. See chapter 4.
4This is not in contradiction with the numerics since they only asymptote to unitarity saturation, and
Aks theorem does not set a lower bound on particle production at finite energies.



identical results irrespective of the order in which particles scatter. In chapter 3 we explore
a number of 2D scattering setups involving multiple particle species. We find that in the
boundary of the allowed space of theories live a number of remarkable integrable theories®.
In these explorations, only analyticity and unitarity are imposed. At the boundary, Yang-
Baxter emerges. In fact, through these numerical explorations we identify a previously
unknown - to us, at least - integrable deformation of the supersymmetric sine-Gordon S-
matrix. Thus integrable field theories not only serve as beacons in the space of S-matrices,

but also can be uncovered by the bootstrap.

To exclude unphysical S-matrices on the boundary of the allowed space of previous
studies one must impose constraints that forbid vanishing particle production. Unless
something extraordinary happens, as does in integrable theories, this is ideally achieved by
requiring the analyticity and unitarity of multiparticle amplitudes®. It is an ambitious goal
to parametrize the domains of analyticity of multiparticle amplitudes. So far, this seems far
from reach. Nevertheless, in [48] we will discuss the first multiparticle S-matrix bootstrap
study. We consider the scattering of the Goldstone bosons of broken Poincare symmetry
in long effective strings. In these theories, bundles of left- or right-moving Goldstones
effectively behave as one-particle states. Requiring the consistency of the scattering of
these effective “jets” thus allow us to probe physical theories with non-vanishing particle
production. Fortunately, there is an ideal application to this technique: to study the
dynamics of long chromodynamic fluxtubes. We study the multiparticle scattering on 3D
Yang-Mills fluxtubes in [48], and leave the case of 4D Yang-Mills for future work.

The primal bootstrap strategy adopted in these works is unsatisfactory for two reasons.
First, it is often computationally expensive to search the infinite-dimensional space of
scattering amplitudes. Only when convergence of the numerical algorithm is achieved can
one claim a bound on the space of theories. Second, once an S-matrix is constructed
in the primal method, it is not guaranteed that this amplitude will remain valid once
more physical principles are demanded, e.g. some of the S-matrices at the surface of
the two-to-two S-matrix studies are incompatible with unitarity of two-to-many processes.
It would be preferable to develop a dual strategy that rules out regions of theory space
once and for all, and for which one can claim true bounds regardless of the convergence
of numerical algorithms. This is the strategy adopted in the very successful numerical
conformal bootstrap: there, one searches over functionals with certain properties, which
once found exclude regions of conformal field theory space once and for all. In chapter 4

5Some had already been observed in chapter 2.
6Generically, higher point amplitudes contain singularities whose discontinuities are proportional to
lower point amplitudes, and these do not vanish along the boundary of theory space of previous studies.



we develop the dual S-matrix bootstrap method in the case of two dimensional theories”.

So far we have discussed quantum field theory that admit a basis of scattering states.
More generally, in scenarios involving long range interactions, especially when these inter-
actions are strong, measuring isolated asymptotic particles might not be possible due to
the uncontrolled emission of massless excitations. Of course, we can still prepare states
in these quantum field theories, perform asymptotic measurements, and require that the
outcome of these measurements are compatible with microscopic local, unitary and causal
physics, even if “particle detectors” are not well defined. A classical example of these can be
found in [49], where the authors consider the consistency of energy-flux measurements in
a unitary conformal field theory and derive bounds on the ratio of the conformal anomaly
coefficients a/c.

What is the space of asymptotic measurements in these more general quantum field the-
ories? In conformal field theory, a minimal set are null averages of local operators, known as
“light-transforms”. These includes the energy and charge flux measurements just discussed.
One might ask, in analogy with local operators, if there exists a convergent expansion of
two light-transforms in terms of effective non-local operators. The answer turns out to be
positive [50,51], but the objects that appear in this operator product expansion are not
light-transforms of local operators but generalized continuous spin light-ray operators [52].
It is an open problem to determine whether the algebra of light-transforms closes on these
generalized light-ray operators. Uncovering the algebra of asymptotic measurements in
these theories could open the way to systematically bootstrap real-time observable in these
theories. A crucial point to note is that correlation functions of these observable are, by
construction, free of infrared divergences.

The structure of these generalized light-ray remains somewhat poorly understood, spe-
cially in the case of multi-twist trajectories, i.e. those composed of more than two opera-
tors®. In chapters 8 we address a few of these puzzles through analysis of related objects in
N =4 SYM. In particular, we explain how analyticity in spin, see [55], is compatible with
the growth of primary operators at large spin and develop technology to compute complex
spin continuations of CF'T correlators from the euclidean CFT data. In a longer article to
appear along this thesis [56], we consider how the naive continuum of light-ray operators
at weak coupling is quantized into a discrete set of operators corresponding to the discrete
Reggee trajectories of the theory, explain how to compute CFT data in this theory directly
at complex spin and analyse the fate of these infinite families of discrete trajectories as

See [12] where this strategy was first developed in a single-component setup from a different perspective
as well as [34,35] for some developments in higher dimensions.
8This description makes sense in general CFT at large spin [53,54].



they interact in the complex spin plane. We hope that the technology which we started
to develop here might help in uncovering the structure of these light-ray operators more
generally.

As the paragraph above illustrates, a common strategy in exploring QFTs is to examine
in detail models that are simple enough to employ analytic methods in their study but rich
enough to capture generic features. This is advantageous in two ways. First, from the
explicit solution to the theory, one may uncover unexpected universal structures. Second,
one can use these theories as a playground to explicitly test general conjectures. With this
strategy in mind, N' =4 SYM serves as an excellent laboratory to explore QFTs, being at
once a conformal gauge theory, a theory of quantum gravity, and exactly solvable at large
N..

Integrability of the large N, dynamics in N' = 4 SYM is possible thanks to the AdS/CFT
correspondence [57,58]. Observables in this gauge theory can be computed by a dual string
theory, and it is the the dynamics on the two-dimensional string worldsheet that satisfy a
more standard definition of integrability: the theory on the long-string admits an S-matrix
description, and this S-matrix integrable - the multiparticle scattering is factorized, mo-
mentas are individually conserved, and the fundamental two-to-two amplitude satisfy the
Yang-Baxter equation. The caveat is that the world-sheet S-matrix is not relativistic, and
thus admits a much richer analyticity structure than those considered earlier in this intro-
duction. Nevertheless, symmetry considerations paired with minimal physical assumptions
are enough to completely fix the long-string scattering amplitudes in this theory at any
value of the coupling [59, 60].

With knowledge of the long-string S-matrix, a strategy can be developed to compute a
large class of observables in the gauge theory such as exact conformal dimensions [61-65],
correlation functions of local single trace operators [66-70], gluon scattering amplitudes
and null Wilson loops [71-76], and others [77-79]. These computations can be summarized
as follows. One starts from a world-sheet description of these observables. Omne then
considers a “large geometry” expansion, in which one cuts open the world-sheet along
some tesselation. The finite volume structure of the world-sheet is in this way replaced
by a sum over excitations that propagate over the cut edges. Evaluating each patch of
the world-sheet is now reduced to a generalized scattering problem - we have particles in
asymptotic regions which now are decompactified. These generalized scattering problem
can be completely solved by the “integrable” S-matrix bootstrap. One then recovers the
field theory observable by re-summing these patches.

The main challenge lies on realizing this last step. Re-suming the large-geometry ex-
pansion is often too hard as one must consider contributions of any number of particle



excitations along cut edges and integrate over their phase-spaces. This strategy is thus
of practical use only when subleading terms in this expansion are under control. This in-
clude, for example, correlations of heavy operators, scattering amplitudes in near collinear
kinematics, or perturbative computations.

In the case of conformal dimensions, i.e the spectrum, this re-summation can be per-
formed in general, thanks to special techniques under the name of “thermodynamic Bethe
ansatz™ [61-65]. Careful investigation of the final results uncovers deep simplicity that is
obscured in the very physical but complicated large volume expansion [83,84]. Based on
these observations, a beautiful reformulation of the spectral problem has been accomplished
under the name of “Quantum Spectral Curve” [85,86]. These are a set of finite difference
and monodromy equations on a set of “Q-functions” living on an infinite genera Riemann
surface whose solutions encode the complete spectrum of the planar gauge theory. They
admit efficient numerical solution [87]. The spectrum problem in this gauge theory is thus
solved.

Given the success of the Quantum Spectral Curve, and the hidden simplicity uncovered
in the spectral problem, it is natural to ask if there exist a sort of Riemann-Hilbert problem
for other observables in this gauge theory, such as local correlation functions and scattering
amplitudes. Inspired by a number of related advancements [88-100], in chapter 7 we lay
down the groundwork for such a formulation in the case of three-point correlators. At
leading order in the coupling, this construction reduces to the “Separation of Variables”
(SoV) framework of integrable rational spin-chains. We develop the first few “quantum
corrections” to this formalism, and reproduce the first few finite volume effects associated
to the closed world-sheet geometry describing these observables. To some problems, this
new framework is already far more efficient than previous “tesselation based” methods,
most notably for the investigations of light-ray operators in chapter 8. Hopefully it will be
possible to lift the SoV structure to finite coupling in the coming years.

Computations of local correlators and of gluon amplitudes are not independent in this
theory. The later are included in the former by considering correlation function with
operators approaching cusps of null polygons [101]. The multi-lightcone singularities of
these correlators are controlled by excitations propagating along the null separations which
effectively source polygonal null Wilson loops. The latter are related by string dualities to
scattering amplitudes [102,103]. In chapter 5 we provide sharp formulas expressing these
hexagonal Wilson loops/six gluon amplitudes in terms of three point functions of large spin
operators. The kinematics of the scattering process are controlled by the spin polarisation
of the spinning operators. The result is derived solely by analysing the six-point crossing

9See [78-82] for a few other notable exceptions.



equation in the multi-lightcone limit, and does not rely on integrability.

On the other hand, these results have clear implications for the integrability structure
of N' =4 SYM: it shows that different tesselations strategies - those applied to scattering
amplitudes and those applied to local correlators - should provide the same answer. In
particular, the manifest simplicity of the collinear expansion in the amplitudes side must
imply huge hidden simplifications on the correlation computation, while this latter might
simplify and reveal structure in a different kinematical region. In chapter 6 we investigate
three-point functions of spinning operators from this perspective. Despite deriving all-
loop formulas expressing the structure constants of large twist spinning operators in some
particular polarizations through nice pfaffian formulas, we do not succeed in making direct
contact with scattering amplitudes. Instead, we provide recursion relations capable of
generating “analytic data” for these structure constants at finite values of spin. These
should be important in the development of the SoV framework!?, which so far computes
correlation functions with at most one spinning correlator!!.

In summary, this thesis tackles questions in quantum field theory from diverse per-
spectives. The various chapters can be read independently, and up to minor adaptations
are equivalent to the papers listed in the Statement of Contributions of this thesis. The
chapters are ordered with +ie.

10The SoV framework also seems more suitable to large spin applications than the hexagonaliza-
tion/tesselation framework. It might thus be the better framework to investigate local correlator /scattering
amplitudes dualities from the integrability perspective.

11With one minor exception, see chapter 7.






Chapter 2

The S-matrix Bootstrap: Multiple
Amplitudes

2.1 Introduction

The bootstrap of the two-to-two S-matrix of the lightest particle in a relativistic unitar-
ity quantum field theory was revived in [9,10,104] and extended to particles with flavour
in [11,13-15]. These works can be seen as gapped counterparts of the conformal boot-
strap explorations in [105,106] and [107] (without and with flavour respectively). In this
chapter we discuss the bootstrap analysis of S-matrix elements involving different external
particles in Zs symmetric theories. This multiple amplitude study again mimics a similar
development in the conformal bootstrap, namely the multiple correlator analysis of the
Ising model which famously gave rise to the CFT islands in [108].

We will consider two-dimensional QFT's with exactly two stable particles of masses m;
and mo. We will assume the theory to be parity and time-reversal invariant and both
particles to be parity even. For simplicity we will also postulate the existence of a Zs
symmetry, under which the first particle is odd and the second particle is even.! This
means that the nonzero three-particle couplings are gi12 and g0, which can be defined
non-perturbatively in terms of the residues of a pole in a suitable S-matrix element. In the
first part of this chapter we will analyze all the two-to-two S-matrices of particles 1 and 2
and use crossing symmetry, analyticity and unitarity to explore the space of possible points
in the (non-dimensionalized) (g112, g202) plane as a function of my/m; — see figure 2.8 on
page 24 to get an idea. In order to avoid singularities or Coleman-Thun poles [109], which
complicate the analytic structure of the scattering amplitudes, we will restrict ourselves to

my < V2m; . (2.1)

Note that we allow my < my also.

Under the stated assumptions there are five different physical two-to-two scattering
processes as shown in figure 2.1. These can be grouped either according to the nature of

'Tn two dimensions theories with fermions and scalars are naturally Z, symmetric theories so the setup
here applies as well to any theories with scalars and fermions, not necessarily supersymmetric.



their intermediate states, which can be Zs odd or even, or according to whether they are
‘diagonal’ or not. To wit, for a diagonal process the incoming and outgoing momenta are
the same whereas for an off-diagonal process they are different.? As is also indicated in
figure 2.1, we call the 12 — 12 diagonal process ‘forward’ scattering, and the 12 — 12
off-diagonal process ‘backward’.

In section 2.2 we will state in detail the conditions of unitarity, analyticity, and crossing
symmetry that these five processes must obey. To guide ideas let us mention two conspic-
uous facts. First, we note that crossing symmetry flips the s and ¢ axes on the diagram.
This relates the two off-diagonal processes and thereby reduces the number of indepen-
dent amplitudes (i.e. functions of the Mandelstam invariant) to four. Of course, it also
imposes a non-trivial constraint on the amplitudes for the diagonal processes. Second, we
observe that particle 1 can appear as an intermediate state in all the odd processes and
gives rise to a pole in these amplitudes with residue proportional to g7,,, whereas particle
2 gives rise to poles in all the even amplitudes with residues proportional to g%u, 1129222
or g3,,, depending on the process. These poles can be thought of as our definition of the
corresponding couplings.?

2.1.1 Quick comparison with single-correlator bounds

As a warm up exercise let us first discuss the three diagonal processes in isolation and
explain how the methods discussed in [9,10,110] already lead to some constraints on the
couplings.

The analyticity and crossing symmetry of the diagonal processes in the Mandelstam s
plane is pretty straightforward. For example, the odd process has a two-particle s-channel
cut starting at s = (m; +mz)? and a pole at m? with residue proportional to g?,,, plus the
crossed t-channel singularities obtained by swapping s — 2m3+2m2—s. The even processes
S11511 and Sop_s99 have their two-particle s-channel cuts starting at min(4m?,4m3) and a
pole with residue g%, or g2,,, again plus the crossed t¢-channel singularities obtained by
swapping s — 4m? — s or s — 4m3 — s. As for unitarity, notice that the discontinuity
across the cut is always positive, but it is bounded from above only for physical s, which
means s > 4m? for Si;_1; and s > 4m3 for Sgs_,90. Therefore only for the lightest of the
two particles is the discontinuity everywhere bounded from above, whereas for the other
particle the discontinuity can be arbitrarily large (but not negative) in the interval between
min(4m?,4m3) and max(4m?, 4m3).

We can bound the couplings as follows. First let us bound g%, by using the maximum
modulus principle for S¥ard following [9,10,110]. We define

hia(s) 4 hia(m3)
hia(s) — hia(m?)’

2As explained further below, in two dimensions the scattering angle can take only two values by kine-
matical restrictions; the outgoing momenta are essentially ‘locked’ in terms of the incoming momenta.
Uunlike in higher dimensions, there is therefore no (analytic) function interpolating between forward and
backward scattering.

3The astute reader will have noticed that this defines the couplings only up to an overall sign flip,
leading to an obvious reflection symmetry in some of our plots.

fiaoz(s) =S54 (s)/ (2.2)
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Figure 2.1: Diagonal processes are those where the incoming and outgoing particles have the
same momenta as illustrated in the first row; they are all crossing invariant. The non-diagonal
processes in the second row are those for which the final momenta are not the same as the initial
momenta. Swapping space and time interchanges the odd and even off-diagonal processes so these
off-diagonal processes play a crucial role in connecting these two sectors of different Zs charge.

with hgp(s) = \/(s — (mq — myp)?)((Mmg +myp)? — s). The function fio_,12 is free of singular-
ities (since we divided out by functions with poles at the pole location of the amplitudes)
and is bounded at the s— and ¢— channel cuts (since the functions we divided by are phases
at those cuts and the amplitude is bounded). Therefore fi5 ,12(s) must have absolute value
smaller or equal to 1 everywhere, and in particular at m3 and m? where we can simply read
off the maximally allowed couplings in these amplitudes. This leads to a universal upper
bound on g?,,, which is the solid line in figure 2.2.

The exact same analysis can be used for the elastic amplitude for the lightest of the
two particles. If we denote this by ¢, so my; = min(mq,ms), then the maximum modulus
principle for
h,gg(s) + hgg(m%)
he(s) = hee(m3)

gives a bound on the coupling appearing on Sy, which is gZ,. This is the dashed line
for my > my in figure 2.2 and the solid line for my < m; in figure 2.3.

Josee(8) = Sesue(s)/

(2.3)
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Figure 2.2: Upper bounds on the cubic coupling g7, as a function of y = ma/my. Dashed line:
Analytic bound based on the scattering of the lightest odd particle, from [9]. Solid line: Analytic
bound arising from the forward (or transmission) scattering of the odd particle against the even
particle; it is a much stronger bound. Red dots: The numeric bound obtained from all two-to-two
processes as discussed in the main text. The shaded regions represent the allowed regions which
nicely shrink as we include more constraints. Any relativistic, unitary, Zs invariant theory theory
with two stable particles (one odd with mass m; and one even with mass mso) must lie inside the
darkest blue region.

Finally we can use the techniques of [9] to also derive a bound on gq99 from the amplitude
Soo_y00 €ven when meo is not the lightest particle. In this case there is a cut which is not
bounded directly by unitarity as depicted in figure 2.4. As we derive in appendix A.3, the
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Figure 2.3: Upper bounds on the cubic coupling go99 as a function of p = mo/my. Solid line: An-
alytic bound based on the scattering of the lightest even particle, from [9]. Red dots: The numeric
bound obtained from all two-to-two processes as discussed in the main text. The shaded region
represent the allowed region. When the even particle is the lightest, we can solve analytically for
the maximal coupling, even considering the full set of amplitudes. When the odd particle is the
lightest, the coupling can be bigger, diverging when singularities of the amplitudes corresponding
to physical processes collide. This happens at ms/m; = 2/4/3. After this mass ratio the upper
bound disappears.

amplitude with maximal g3,, is given by

_]’LQQ(S) + hgg(ﬂ’b%) % hgg(S) + h22(4m%)
haa(s) — haa(m3) — haa(s) — haa(4m7)

Sazs92(s) = (2.4)

The corresponding bound on g3,, is plotted as the solid line in figure 2.3 for my > my. As
the figure shows, the bound actually disappears for msy > \%ml, which is due the t-channel
pole colliding with the s-channel cut in the 22 — 22 process at this mass ratio. This is
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Figure 2.4: Analytic structure of the Sss_,90 amplitude (for clarity we do not show the left cut
and s-channel pole following from crossing symmetry Soo_,99(s) = 522%22(4771% —5)). If mgy is not
the lightest particle, there is a new feature in the S9s_,90 amplitude: a two particle cut starting
at s = 4m% corresponding to the contribution of two particles my. This cut appears before the
cut for two particles my at physical energies s > 4m2 where regular unitarity is imposed and the
amplitude needs to be bounded. As my grows beyond 2/4/3m; the t-channel pole corresponding
to the exchange of particle mg enters the new cut (by crossing symmetry the s-channel pole enters
the t-channel cut) so we “lose” this pole. Beyond this point we can no longer bound gs92 since it
does not appear in any other diagonal amplitude. This is indeed what we observe in the numerics
as illustrated in figure 2.3. Note that before the bound on go9s disappears it diverges. This
divergence, arising from the collision of the ¢t-channel pole with an s-channel cut is analogous to
the divergences in bounds on couplings when s— and ¢— channel poles collide as already observed
in [9]; the dashed line in figure 2.2 which was taken from [9] diverges at mg = v/2m; for exactly
this reason.

the simplest instance of a phenomenon we call screening. It is detailed in figure 2.4 and
we will encounter it again below. In the same way we could obtain a bound on g%, from
the 11 — 11 process even when m; is the heaviest particle. This bound corresponds to

the dashed line in figure 2.2 for p < 1, and is always less restrictive than the bound from

forward
512% 12 -

This concludes our discussion of the single-amplitude results. As a preview for the more
detailed numerical results presented below, we already marked in figures 2.2 and 2.3 in red
dots our best numerical values of the coupling obtained from a simultaneous analysis of
the full set of two-to-two amplitudes depicted in figure 2.1. Figure 2.2 displays a clear
improvement over the quick single-amplitude analysis for m,/v/2 < my < v/2my, with an
intriguing kink at mo = my. It would be fascinating to find if this kink corresponds to a
physical theory. On the other hand, in figure 2.3 we see no improvement over the single-
amplitude results. In fact, in section 2.3 we will prove that the maximal value of gs9o in the
multi-amplitude analysis saturates the single-amplitude analytic bounds just derived. In
the same section we will show a more complete picture by considering the entire (g112, g222)
plane.
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2.1.2 QFT in AdS

As shown in [104], there exists a completely orthogonal approach towards the problem of
determining the maximal couplings in QFT. Rather than working from the S-matrix, which
required analyticity assumptions that in general dimension D are not very well understood,
the idea is to consider QFTs on an AdS background. The boundary correlators of such
a QFT, which are defined in a similar way as in the AdS/CFT correspondence, behave
much like conformal correlation functions in one lower dimension d = D — 1. By applying
numerical conformal bootstrap methods of [105] one can put a universal upper bound on
the three-point couplings of QFTs in AdS. One can then extrapolate this bound to the
flat-space limit (by sending all scaling dimensions to infinity), resulting in putative bounds
for flat-space QFTs. In [9,104] this was shown to work extremely well for two-dimensional
QFTs: a precise match was found between the single-correlator analysis using the confor-
mal bootstrap, and the single-amplitude analysis that we partially reviewed above.

In this chapter we extend these explorations. As discussed further in section 2.4, the
Zo symmetric setup that we consider is easily translated to a multi-correlator conformal
bootstrap problem for QFTs in AdS. In most cases we again find a very good match, and
in particular we are able to recover the coupling of the 3-state Potts field theory from
the conformal crossing equations. For large-ish mass ratios, however, we will see that
the multi-correlator bootstrap appears to be less powerful than even the single-amplitude
bootstrap.

2.1.3 Outline

The Zy symmetric S-matrix bootstrap is fully spelled out in section 2.2 and analysed
numerically in section 2.3 leading to various bounds on the allowed coupling space for
various mass ratios as illustrated in figure 2.8. In section 2.3.3 we discuss integrable Z,
symmetric theories with ms = m; and how some of them nicely show up at the boundary
of the allowed S-matrix space found in the numerical bootstrap. These include a massive
deformation of the 3-state Potts model, the super-symmetric Sine-Gordon model and a
SUSY breaking integrable elliptic deformation of the super-symmetric Sine-Gordon which
seems to be novel as far as we know. Section 2.4 contains the results from the QFT in
AdS analysis. Various appendices complement the main text with further extensions. (For
example, the special role of the Tricritical Ising model as a kink in the space of S-matrices
is discussed in appendix A.8.)

2.2 Multiple amplitudes

2.2.1 Kinematics of the various Z, preserving processes

There are siz two-to-two processes involving particles m; (odd) and my (even) in a two
dimensional Z, symmetric theory. We also assume time-reversal and parity symmetry.
Four of those six are even processes where we scatter either 11 or 22 into either 11 or 22.
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Figure 2.5: In two dimensions when we scatter two particles m, and m; from the infinite past
with m, to the left of my we can end up, in the infinite future with m, to the right of my or vice-
versa. If the particles are distinguishable these are two genuinely different processes denoted as
the forward or backward process. (They are sometimes also called the transmission and reflection
processes.) In higher dimensions, these two scenarios are limiting values of the a single amplitude
when the scattering angle tends to # = 0 or § = m, but in two dimensions there is no scattering
angle and these processes are described by independent functions. As we exchange time and
space, i.e. as we analytically continue these processes by swapping ¢ and s we see that the
forward process is mapped to itself while the backward process as seen from its crossed channel
describes the mgm, — mpmy; event. This translates into equations (2.19) and (2.20) in the main
text.

Of those four, two are trivially related by time-reversal,
Moo 11 = Mi122 (2.5)

so we can ignore one of them (say 22 — 11) in what follows. The remaining two processes
are Zsy odd processes where we scatter the odd particle against the even particle obtaining
those same two particles in the future. As explained in the introduction this process splits
into two possibilities which we call the forward and the backward component, see figures
2.1 and 2.5.

In two dimensions, any process depends uniquely on the center of mass energy or
equivalently on the Mandelstam invariant

s=(p1+m)>. (2.6)

This in particular means that the other two Mandelstam invariants

t=(p1 — ps)za u=(p1 — p4)2~ (2.7)

are completely determined in terms of s. It is important to find the precise relation be-
cause crossing symmetry permutes the three Mandelstam invariants and therefore leads
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to symmetries of the amplitudes M(s) that we need to impose. In a process® involving
MMy — MMy
p1-p1 P1-P2 D1-Ds3 2m;; s—mg —mi  —t+m;+m
0=8| pa-p1 P2-p2 P2-P3 | =] 5—mf—my 2mj —u +mjp +m;
P3-p1 P3Pz D3 D3 —t+mj +m? —u+mi+m? 2m;
(2.8)

The first equal sign is the two dimensional constraint: in two dimensions ps is always a
linear combination of the two-vectors p; and p, and hence the determinant vanishes. In
the second equal sign we used the on-shell conditions and momentum conservation. For
example 2p; - p3 = —(p2 — p3)* +p3 +p3 = —(p1 — pa)® +p3 +p3 = —u-+mj +d; and so on.
Evaluated explicitly and combined with the previous linear constraint on the Mandelstam
invariants, this can be cast in a nice symmetric form:

0 = stu+ s(m2 +m;)(m2 +m3) + t(m2 +m?2)(mj +m3) + u(m? +m3)(mi +m?) + J2.9)

where ' = —¢(3.m7)* — 3(0mi) (3o m?) + 3 3o mf.

Let us now specialize to the Z, preserving cases mentioned above. For the simplest
processes corresponding to all equal masses (i.e. for 11 — 11 and 22 — 22) the condition
dramatically simplifies into stu = 0 which leads tou =0 or ¢t =0 or s = 0. In fact, we can
not set s = 0 since by definition we assume s to be constructed from two incoming particles
and setting v = 0 or t = 0 is the same up to a simple relabelling of the final particles which
we can always do for indistinguishable particles. Hence without loss of generality we can
set u = 0 recovering the famous result that elastic scattering of identical particles in two
dimensions has zero momentum transfer.

Next we have the processes involving two particles of mass m; and two particles of mass
msy. Here it matters whether the two particles of the same mass are both incoming or if
one is incoming and the other is outgoing. Let us start first with the second case so that
we can set m, = mg = my and m, = m. = my in agreement with the conventions of figure
2.5. Then we obtain a nice factorization of the constraint (2.9) into

O:u((m% —m%)Q— (2m§+2m%+s)s~l—su> (2.10)

with two clear solutions: u = 0 corresponding to forward scattering and v = 2m? + 2m3 —
(m? — m%)2 /s + s corresponding to the more complicated backward scattering. Note that
in forward scattering the final momenta are equal to the initial momenta but this is not
the case in backward scattering where the momentum transfer is non-zero as highlighted
in figure 2.5.

Lastly we have the even process 11 — 22 where m, = m;, = my and m, = mg = ms
which of course corresponds to a simple relabelling of the previous constraint in which
s <> u and thus leads, after discarding the s = 0 solution, to

0= (mf—mg)g— (2m3 + 2m} +u) u + su (2.11)

4In the convention p? = m?, p2 = mg, p3 =m? and p3 = mg.
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whose solutions are u = 1(2m? + 2m3 £ \/(4m? — s)y/(4m3 — s) — s). In fact, these two
solutions are equivalent up to relabelling of the two outgoing particles. Of course, the s <+ u
relation between 11 — 22 and backward 12 — 12 scattering is just crossing symmetry.

All in all we understood that all amplitudes can be thought of as functions of s with
the other Mandelstam invariants given by

Mi111(s) t =4m? — s, u=0, (2.12)
M22%22<S) . t= 4m§ — S, u = 0, (213)
Miorvard g . t=2m?+2mi—s,  u=0, (2.14)
2 2)2
M) utt—omd i, p= TS (215)
s
M1 22(s) : u—t= \/(4m%—s)\/(4m§—s), u+t=2mi+2m;—s. (2.16)

The above equations allow us to state the crossing symmetry equations which we will
impose in the sequel. They are:

M11a11(4m% - 3) = M11H11(5> ) (2-17)
M22_>22(4m§ - 5) = M22—>22(5) s (2-18)
MG (2m] 4 2m3 — s) = M35 (s) (2.19)

(mi — m3)*

M11_>22(2m% + 2m% — — S) = M&ai(f;ard<8) . (220)

s
Note in particular that the last crossing relation plays quite an important role: it connects
the even and the odd sectors.

For more on how the above discussion can be related to a similar analysis in higher
dimensions see appendix A.1.

2.2.2 Analyticity, Unitarity and Extended Unitarity

The central hypothesis for the S-matrix bootstrap is that the scattering amplitudes are
analytic for arbitrary complex values of s up to so-called Landau singularities [111] corre-
sponding to on-shell intermediate processes. For the amplitudes and mass range discussed
in this chapter, these singularities in the physical sheet correspond to the possibility of
the full a — b scattering process to factorise into two scatterings, first a — ¢ and then
¢ — b. Each on-shell state ¢ of the theory will produce a singularity in the a — b process
for s equal to the center of mass energy squared of the state c¢. This singularity will then
proliferate according to its image under crossing transformations, see e.g. (2.17-2.20).
The discontinuities around these singularities are governed by the generalized unitarity
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equations [111],
Mio34(s +i€) — Mig_y34(s — i€) = 2ImMi9_,34(s + i€) = Z / dl My, M y3q  (2.21)

(where the first equality assumes time reversal invariance.) Equation (2.21) is very powerful
and reduces to a number of familiar examples in special cases:

e The contribution from one particle intermediate states corresponds to nothing but
the usual bound-state poles: there the phase space integral reduces to the energy
momentum delta function and the product of amplitudes to the physical three-point
couplings, combining to the bound-state pole discontinuity —2mid(s — m?)gioxg34r-

e For real values of s for which there are no on-shell states, (2.21) reduces to the reality
condition ImM124>34 =0.

e If we are at physical energies, s > max{(m; + my)?, (m3 + my4)?}, then (2.21) is just
the physical unitarity condition (34|STS — 1]12) = 0.

e All of the above are very well known. Indeed, for the lightest two particle states
in a given channel, there is nothing more to (2.21) than bound state poles, real
analyticity and unitarity. For heavier external states, however, (2.21) extends the
unitarity relation to the unphysical energy region s < max{(m; +ms)?, (ms +my)?}
by keeping the quadratic terms in the unitarity equation that correspond to physical
intermediate states of energy /s. This is what is called extended unitarity.

In our Zy symmetric setup and for y/s < min(3ms, 2m; + ms),> we find

2ImMyy 41y = My 0(s — 4m?3) + Myl (s — 4m3) (2.22)
=11 = ) .
s(s —4m?) ! 24/s(s — 4m3) 2
M M* M M-
MMy g9 = — e U2 g gp2) 4 U222 22026 42), (2.23)
21/5(s — 4m?) 21/5(s — 4m3)
M 2 M-
2ImM22*>22 = | 11%22' 5 9(5 — 4m%) + | 22_}22| > 9(8 — 4m3), (224)
2¢/s(s —4m?) 24/5s(s —4m3)

and for /s < min(3my, 2my + my),

|MForward|2 + |MBackward|2

M M = e M Bs — (m+mo)’), (2:29)
TG m ) (s £ )
gyt — MESE VS + MRS IMESE (s 4 ma)?),

2/(s — (m1 —my)?)(s — (my +mg)?)
(2.26)

5The bound corresponds to the first Zo even three particle state.
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where the denominators come from the phase space factors and @ is the Heaviside
step function. For example, if my > m; then equation (2.24) for s > 4m2 is just
unitarity for the 22 — 22 process, but for 4m? < s < 4m3 it is a “new” constraint
over the |11) production cut.

Of course, the scattering amplitudes also have cuts and poles corresponding to crossed
intermediate processes. The discontinuities around those singularities are governed by
the generalised unitarity equations for the crossed scattering, together with the crossing
equations (2.17-2.20).

For energies above the three particle threshold, new terms corresponding to three-
particle intermediate states should be introduced in the r.h.s. of equations (2.22-2.26) It
is useful, however, to keep only the contributions from two-particle intermediate states
and replace the full set of equations (2.22-2.26) by a positive semidefinite constraint on
the amplitudes. For the Zy even sector, by dropping the contributions from intermediate
states with three or more particles in (2.21), we can write in matrix form

M M 0
MMM = M p2M M = 11—11 11—22 _ P11 297
= (M11—>22 Mao 2 )’ P 0 p2)’ ( )

9(5—(ma+mb)2)

2y/s—(ma+mp)?/s—(ma—mp)?
that (2.27) is saturated for /s < min(3ms, 2m; + my). As discussed in section 2.3, for the
numerical implementation we impose (2.27) even before multiparticle thresholds, leaving
for the computer to achieve saturation where (2.22-2.24) applies. A similar discussion holds
for the Zs odd sector.

In appendix A.2, we provide a direct derivation of (2.27) for /s > 2max(my, mz). This
derivation elucidates the physical meaning of the matrix M and its relation to transition
probabilitues between initial and final states.

where p?, = takes into account the phase space volume. Note

2.3 Numerics

2.3.1 Implementation

As discussed in section 2.2.2, the Z, symmetric scattering amplitudes in the mass range
(2.1) are analytic functions in the physical sheet of the the kinematical variable s up to
poles corresponding to bound states. This sheet is defined by continuing the amplitudes
away from physical kinematics respecting the ie prescription and has as its boundaries
cuts corresponding to two and higher particle production thresholds which may happen in
the s, t and u channels. These can be summarised by expressing the amplitudes through
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dispersion relations, as illustrated in figure 2.6. For the case m; < my, we obtain

2 2 1 [ ImM s*
Miisi(s) = Criisu — 9_112 5 — gliQ 5 + —/ 11—j11()ds* (2.28)
s—my  U(s)—m3 T [y s*—s
1 [ ImM t*
+ _/ m 11—)11( )dt*,
T Jame = 1(s)
3 2 1 [ ImM- s*
Maz-s22(s) = Cazs20 — 9_222 5 — 9232 5 —/ iQ—jQQ()ds* (2.29)
s—mz  Hs)—m3 T Sy s*—s
1 /oo ImM22—>22(t*)dt*
T Jamz T —t(s) ’
2 2 1 & ImM12 12(8*)
M Forward oy _ Y2 9112 +_/ - ds* 92.30
1212 ( ) 12—12 S — m% t(s) _ m% 7 S s ma)? $* — g ( )
n 1 /OO ImM12H12(t*)dt*
™ (m1+mg)? t* — t(S) 7
2 2 o] *
91129222 J112 9112 1 Im My 09(87) |
Muoan(s) = Cuoee =y — o ~ Uy g %/ eI
2 1 1 4m? §°—S
(2.31)
- ki) L I Iy ) |
T J(m14m2)2 tr = t(S) T J(m14m2)? ur — U,(S) 7

with C,, constant. Equations for the m; > msy case are obtained by replacing
4m? — 4m?2 in the lower limits of the integrals. Recall that these are the only independent
amplitudes, since MErKward () = M) 90(2m2 + 2m3 — M —3).

In deriving this relations, see figure 2.6, we assumed that the scattering amplitudes have
no essential singularities at infinity, and in fact approach a constant in this limit, i.e. the
S-matrix becomes free. This latter assumption is not crucial nor required: it can be lifted
by introducing subtractions as discussed in [9] and the numerical problem of maximising
the couplings is not sensitive to this. This is to be expected physically, since the low
energy physics of bound state poles should not be much sensitive to the behaviour of the
amplitudes at high energies.

To obtain a concrete numerical implementation to the problem, we proceed as follows.
First, we define a dispersion grid {z1, ..., x)s} along the integration domains in (2.28-2.31).
We then approximate the discontinuities ImM,_,,(z*) by splines o,_;(s) © linear in between
the grid points up to a cutoff point x,;, after which we assume the discontinuities decay as
ImM, ,(x*) ~ 1/2*.7 With this approximation we can analytically perform the integrals

OIf m1 < mag, extended unitarity, equations (2.22-2.24), allows for Mas 02 to diverge as 1/4/s — 4m?
close to the 4m? threshold. Due to this, between the first two grid points, we approximate ImMag_s90 X
1/y/s — 4m%. If m1 > mo we should replace 1 < 2 in this discussion.

"This is similar to the numerical implementation in [9]. We could have parametrised our amplitudes
using the p variables defined in [10]. These variables provide a cleaner framework for the numerics but,
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Figure 2.6: Analytic structure of My1922(s). According to the kinematics in equation (2.15), as
we move in the s plane, we hit poles and two-particle (as well as multiparticle) thresholds in the
s and u channel, but not in the t-channel. This is a consequence of our arbitrary definition of ¢
and u (in the language of appendix A.1, this comes from choosing for each s a single point in the
two-valued hyperbolas of figure A.2). To derive the dispersion (2.31) we start by assuming the
amplitude approaches a constant at infinity (but see discussion in the main text) and write the

identity M1122(s8) = Moo + % f7 %ds*, where ~ is the dotted contour above. We
can then neglect the arcs at infinity. The contribution from the arcs around the red singularities
correspond to the s-channel pole and s* integral in (2.31). After changing the integration variable
in the remaining terms to u*(s*) according to equation (2.15), we find the kernel transformation

OOO s‘i“fs — f(ﬁﬁmZ)Q(ﬁ + u*l_t)du* + C11-s29, where we could relabel ©* — t* in the second
term. Then, after absorbing M., into the constant C11_22 and using the crossing relation (2.20)

and the discontinuity formula (2.21) for the pole terms, we obtain the dispersion relation (2.31).

in (2.28-2.31) obtaining, in the case m; < my and for M, 1, as an example,

2 2 M
Mi111(s) = Crisn — Iz 3 Iz + Zallﬁll(xi)(Ki(‘g) + Ki(t(s))), (2.32)

s—m3 t(s) —m3 —

where the functions K; are defined in the appendix A of [9]. Next, we impose (2.27) along a
fine grid over s > min{4m? 4m3} (we impose analogous constraints over analogous ranges
for the Zy odd channels). Note that we leave for the computer to achieve saturation of
(2.27) before the three-particles thresholds. As shown in appendix A.9, equation (2.27)is
equivalent to the semidefiniteness constraint

((pgﬂ)f 21anM> =0, (2.33)

and a similar rewriting can be done for the Z, odd sector. If we fix a = %, as well as the

masses, then the matrix in the L.h.s. of (2.33) is linear on the variables {Cy_p, 712, Tasp (i)}
The problem of maximising g7, in this space of variables under the positive semidefinite

in practice, we find that convergence with the p variables is much slower than with the use of discretized
dispersion relations.
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Figure 2.7: Maximum coupling g112 as a function of o = ga22/g112 for a Zs symmetric theory with
an odd and an even particle both with the same mass. Solid black: bounds from single amplitude
analytics. Red: bounds from multiple amplitudes numerics. The interesting points A, B,C, D
are discussed in more detail in the next section. Multiplying the « axis by g112 we convert this
plot into a plot of the allowed coupling space (g112, g222), see figure 2.9.

constraint (2.27) (and equivalent for the Zs odd sector) is therefore a semidefinite program
and can be solved with, say, SDPB [112].

2.3.2 Results for any ms/m;

For each mass ratio my/my and for each coupling ratio o = ga92/g112 We can now look for
the maximum value of g112. By varying all parameters we obtain a nice 3D plot which is
presented in appendix A.4; by contrast, in this section we will restrict ourselves to showing
only 2D plots that each correspond to a fixed value of mg/m;. For example, at equal masses
ms/my = 1 we have figure 2.7 which shows the upper bound as a function of «. Although
holding « fixed is convenient for the numerics (as explained above), it is sometimes more
useful to visualize the allowed space of couplings (g112, geo2) instead. To do this we simply
multiply the o axis in the numerics by g2, and in this way we can represent the same
ms/my = 1 data as in figure 2.9. Applying the same mapping to other mass ratios in
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Figure 2.8: Space of allowed couplings for fixed mass ratios. Horizontal and vertical solid lines:
Analytic bounds based on diagonal scattering derived in section 2.1. Red dots: The numeric
bound obtained from all two-to-two processes. Features of the panels discussed in the main text.
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the range m;/v2 < my < v/2m; we furthermore obtain the panels shown in figure 2.8.
(As explained below, the results for my < m;/v/2 are somehow trivial due to screening.)
For the most part, the numerical bounds in these figures significantly improve the bounds
single amplitude bounds derived in the introduction which set the box sizes.

The most remarkable feature of figures 2.7 and 2.8 is the existence of a pronounced
maximum of gj12, which is attained for a non-trivial value of the ratio a = g292/g112. In
particular, for equal masses this maximum (point B in figure 2.7) is a clear kink in the
boundary of the allowed region. It would be remarkable if there is a physical theory sitting
close to this kink. As shown in figure 2.10, such a theory should not be integrable.

Sometimes the numerical red dots in figures 2.8 approach the solid black lines. When
this happens the full numerical bounds saturate the analytically derived diagonal bounds.
We see that this happens for very small ¢;15° and when we approach the boundaries of the
mass range m1/v/2 < my < v/2 (for some small values of o). This is not surprising: when
g112 — 0 we decouple the odd and even particles. Since there would be no poles in any
amplitude but in My 99, the bound would reduce to the single amplitude bound coming
from the 22 — 22 process and yielding

g§22|max = 12\/§m;l for my < my or (2.34)

23+ 4y/p12 — 1
roolmax = 12mp*V/3 (“ RSN ) for V2 > pu=my/my > 1.  (2.35)

N2\/§_4 u?—1

This explains the analytic bound in figure 2.3. In the second case, when we approach the
boundary of the mass range, we expect screening to be very important since the extended
unitarity region becomes quite large. The poles in the Mj;_,99 component can now be
almost perfectly screened, see also appendix A.5.2; allowing for the diagonal amplitude
bounds on g2 to be saturated. We omitted panels for my < my/ V/2 since in this range
we can have perfect screening for any value of g112/g220, so that the multiple amplitudes
bounds in the (g112, ga22) plane coincide with the rectangular frame derived from diagonal
processes.

Note also that there are no vertical walls in the last row of panels in figure 2.8 since
for my > \%ml there are no longer analytic bounds on gg9s from the 22 — 22 amplitude.
As the extended unitarity region in 22 — 22 becomes bigger, it becomes increasingly
more effective at screening the pole, until at my/m; = 2/4/3 the s (t) channel 22 — 11
production threshold collide with the t (s) channel pole as discussed in figure 2.4. After
this mass ratio, the discontinuity across the cut can completely screen the bound state pole
implying that its residue can be arbitrary. This is indeed nicely backed up by our numerics
as seen in the last two panels in figure 2.8 where we see that gsso becomes unbounded at
this mass range.

Finally, we can also look for the maximum value of either coupling (gi12 or gage) leaving
the other coupling arbitrary. In other words, how tall (g112) and wide (ga22) are the darker
allowed regions in (2.8) where the allowed coupling live. Once plotted for various mass

8The fact that the numerical points do not exactly touch the vertical lines in panels (a)-(d) in figure
2.8 when g112 ~ 0 is due to numerical convergence. In that region it would be more sensible to ask for the
computer to maximise gooo instead of gi12. This would lead to numerical saturation of the vertical lines.
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ratios, this gives figures 2.2 and 2.3 in the introduction.

Each optimal S-matrix at the boundary of the allowed coupling space is numerically seen
to saturate the extended unitarity equations (2.22-2.26). This means that the scattering of
two particles of type 1 or 2 can never lead to multi-particle production. Processes such as
11 — 222 are forbidden. When dealing with 2D S-matrices, in particular extremal examples
saturating unitarity such as the ones stemming from this numerical computation, we are
commanded to look for integrable field theories. For mgy # my, these are only possible if
the inelastic amplitudes Mii_99 = Ml%ajklvgard = 0 but no S-matrices we found satisfy this
condition? so the boundary S-matrices we find for my # m; can at most be close to those
describing good physical theories. This still leaves the possibility of finding interesting
physical theories along the equal mass line my = m;.*°

2.3.3 (Surprises at) the my = m; line

Indeed, nice surprises are to be found in the ms = m; line depicted in the two equivalent
figure 2.9 (depicting the space of allowed couplings) and figure 2.7 (for the maximum
coupling g112 as a function of the coupling ratio o = ga92/g112). Although equivalent these
two figures highlight different aspects of this interesting line so it is worth having both in
mind.

As concluded in the last section, the line my = m; is where our hope lies if we are
to match the S-matrices we obtained numerically with physical integrable theories. This
necessary condition is not sufficient. For an extremal S-matrix to correspond to an in-
tegrable theory it should also obey the factorization conditions encoded in the so-called
Yang-Baxter equations [113,114]. In figure 2.10 we see how our extremal S-matrices fail to
satisfy these conditions as we move along the allowed coupling region (by sweeping «).

Before unveiling which analytic S-matrices we successfully identified along the m; = my
line let us go over these numerics in some detail: We observe that for large negative a Yang-
Baxter is violated until we reach a = —1 (i.e. when the couplings are equal up to a sign,
g222 = —g112) at which point Yang-Baxter is beautifully satisfied. This point is isolated;
immediately to the right of &« = —1 Yang-Baxter fails again. It is curious to note that this
special point — our first candidate for a physical integrable theory — marked with an A in
figures 2.9 and 2.7 looks absolutely innocent there, without any apparent kink features.
As we increase « further into positive values we reach point B for o ~ 0.76 where the
coupling ¢112 is maximal. As seen in figures 2.9 and 2.7 this point is a nice kink. Since
it does not obey Yang-Baxter, however, this can hardly correspond to a physical theory.
As we increase « further we reach @ = +1 marked with a C in figures 2.9 and 2.7 where
again something interesting happens. At that point something goes unstable as far as
testing of Yang-Baxter goes indicated by the shower of points in figure 2.10 from o = 1
until somewhere around o ~ 1.2. Once this mess settles we observe a nice line where
Yang-Baxter is satisfied throughout! A particularly nice point along that line is point D

9This is not an accident, we knew this to be the case apriori since this could only happen if the bound
state poles in these amplitudes collided and cancelled or if some extra Landau poles were present. This is
not a possibility in the mass range (2.1).

10 Actually, this line is a one-dimensional kink in the maximal coupling surface described in detail in
appendix A.4.
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Figure 2.9: Allowed space of couplings for equal masses. A: Potts massive field theory, B: Max-
imum coupling g112, C: Beginning of elliptic deformation line, D: Supersymmetric sine-Gordon
(along the elliptic deformation line).

located at a = v/3. That point actually is the one furthest from the origin in figure 2.9,
in other words, it maximizes g%, + g3, and as described below it corresponds to a nice
known physical theory.

Now we unveil what we found about these points. In short (setting m; = 1 here):

e Point A is a massive deformation of the three state Potts Model.
Here i3 = — g3 = 1/3v/3 ~ 2.28.
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Figure 2.10: Because of Zo symmetry, some Yang-Baxter equations are automatically satisfied.
Y B is an average over the non-trivial Yang-Baxter equations, with external rapidities at physical
values. The qualitative features of the plot do not depend on averaging over the equations nor on
the values of the external rapidities, taken here to be #; = 1/2, 6, = 0, §5 = —1/3. Once again,
A: Potts massive field theory, B: Maximum coupling g112, C: Beginning of elliptic deformation
line, D: Supersymmetric sine-Gordon.

e Point B is yet to be identified. We do not know the analytic form of the corresponding
S-matrix; Since it does not obey YB it can at most be close to a physical theory.

Here ¢33* ~ 1/0.76 g5%* ~ 3.38.

e Point D is (an analytic continuation of the lightest breather S-matrix of) the super-
symmetric Sine-Gordon model.

max axX ~u

e There is a line going from point C' at a = 1 all the way to a = co where the optimal
S-matrix is given by an elliptic deformation of the super-symmetric Sine-Gordon. We
are unaware of a physical theory with this S-matrix. Point C' is the tip of the elliptic
deformation where it becomes hyperbolic.

Here gia* = — g3 = \/6y/3 ~ 3.22.

For comparison recall that the analytic diagonal bounds were ¢33 = |ghss’| = 4.56.
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We will now slowly build up towards those conclusions. The first observation, reviewed
in appendix A.6, is that the full numerical optimization problem can actually be diagonal-
ized and solved exactly for a = 41, that is when the two physical couplings are the same
up to a sign. For a = —1 the result is the S-matrix of the massive deformation of the
three-state Potts model [115]'!

M11_>11 = M22_>22 = MlF‘Qo;wlaérd :3m?/(\/§m% — (4m% — 8)8) — \/§mf -3 (4m% — S)S

My zy = —=MEFES™ =V3(s — 2m7)\ [ (4m3 — 5)s/(V3m] — \/ (4m3 — 5)s) .
(2.36)
From this solution we read off g110 = —goon = 3\/§m% which matches perfectly with

point B in figures 2.9 and 2.7. In appendix A.7, we briefly review the 3 state Potts field
theory.

As also explained in appendix A.6, the point @ = +1 is the other point where we
can find a clever change of basis to diagonalize our problem and compute the maximal
couplings analytically to find g1 = +go22 = V/6v3m? which again matches perfectly
with point C' in figures 2.9 and 2.7. What we also observe in the process of deriving that
analytic solution is that the S-matrix saturating this bound is not unique; there are zero
modes. This is probably the explanation of the shower in figure 2.10. These zero modes
are probably only present for a = +1 but in the vicinity of this point there is probably
still some small numerical remnant thereof. We thus expect the shower in figure 2.10 to be
nothing but a zero-mode related numerical artifact; the true solution to the optimization
problem probably obeys Yang-Baxter for any a@ > 1. Yet, since this seems to be a zero
mode issue, we expect the coupling as predicted by the numerics to still be correct. We
will soon provide very strong evidence for these claims.

Point D for o = v/3 is a potentially interesting point if we interpret the Z, symmetry as
fermion number and think of particles 1 and 2 a Majorana fermion and a boson respectively.
Then the condition geg2/g112 = v/3 would follow for theories where these two particles are
part of a A/ = 1 supersymmetry multiplet, see also [2]. Inspired by this — and by [2] — we
tried to compare the optimal S-matrices at goos/g112 = v/3 to those of the lightest breathers
of the super-symmetric sine-Gordon theory.'? Beautifully, although we only impose the

"Here we rotated the one particle basis from [115] as |A) = e”/‘l%, |AT) = e‘”“%, so that
the charge conjugation operator is diagonalized. This operator is to be interpreted as the Z, symmetry
generator. In the |A), |A") basis the S-matrix is diagonal and that is why we can solve this point exactly,
see Appendix A.6.

12G¢trictly speaking we are comparing with an analytic continuation of that S-matrix since our bound-
states have mass equal to the external particles while the next-to-lighests breathers of super-symmetric
sine-Gordon have mass bigger than /2 times that of the external particles. In [9] the usual bosonic sine-
Gordon S-matrix was identified as the theory with the largest coupling in the S-matrix of the lightest
particle with a single bound-state of mass m,. When m;, > v/2 this is kosher but as my < V2 (and in
particular for mp = 1) we also need to extend the definition of the SG S-matrix beyond its original mass
range. In that case it amounted to multiplying the S-matrix by —1. Here the situation is morally the same
but the modification ends up a bit more complicated. This means that here — as there — we do not know
a physical theory and we can only write an exact S-matrix that saturates the bound.
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SUSY condition at the level of the couplings, we see that SUSY emerges at the level of the
full S-matrix elements and indeed the optimal S-matrix saturating our bounds at point D
is an analytical continuation of the lightest breather supermultiplet of the super-symmetric
Sine-Gordon! Unfortunately, while we are able to check this to very convincing numerical
accuracy we have no analytic derivation of this statement. For completeness, here are some
super SG formulae [116].

The lightest breather supermultiplet SSG S-matrix Sé{gg () is equal to'?

isin(y/2) sin(vy/2)
sinh(%)cosh(%) -1 0 0 cosh(g)
isin(y/2)
sinh () + i sin () . 0 L S 0
Y ()Y (i — 6) iy )
sinh (f) — isin (7) 0 () 1 0
sin(vy/2) : isin(vy/2)
COSh(g) 0 0 sinh(%)cosh(g) +1
where
I (~if/27)
Y (0) = 2.
O) =F /2= i8/2m) (2.37)

y H [ (y/2m — (i0/27) +n) T (—v/27 — (i0/27) + n — 1) T2 (—(i0/27) +n — 1/2)

S D(y/2m = (i0/2m) +n+1/2) T (=y/2m — (i0/27) + n — 1/2) T2 (= (i/27) + n — 1)’
and where 7 is fixed so that the bound state mass is equal to 1. That is v = 27/3. Note
that even though the overall scalar factor in the S-matrix is invariant under v = 27/3 <«
v = m/3, the matrix part is not. This is the sense in which our S-matrix is an analytic
continuation of SSG. (compare with SG, in which picking m;, = 1 instead of m; = v/3 only
leads to an overall minus sign). More generally my;,/m; = 2 cosy/2 and the physical mass
range for SSG is 2 > my > V2.

Two-particle Zy symmetric solutions of the Yang-Baxter equations are classified [117].
It is natural that if an extension of SSG exists with an extra parameter, that it is given
by an elliptic solution of the Yang-Baxter equations. In fact, examining the classified
solutions we see that the only good candidate for being promoted to an S-matrix with all
the symmetry properties we have and that reduces to SSG in the trigonometric limit is
solution 8VII of [117], which is equivalent to

dn(fw|k)sn(yw|k) dn(fw|k)sn(yw|k)
ecn(9w|m)sn(gw\n) o dn(vaﬁ) 0 SH(S‘UIH) € CH(GW‘H’;
ED (9) — 0 1 Esn(ew\m) 0
- 0 emaen 0 ’
dn(fw|k)sn(yw|k) dn(fw|k)sn(yw|k)
€ cn(9w|n')y 0 0 dn(f}/w"i) + ecn(9w|n)sn(gw\/{)

(2.38)

where we normalised by the 12 — 12 forward component so that comparison with SSG is

13Tn the basis |11),]12),]21),]22) so that the second (third) element on the second row is the forward
(backward) 12 — 12 component, for instance.
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easier. € = +1 from YB. The s-channel poles of 12 — 12 forward and backward correspond
to the flow of a particle of type one, and therefore the residues of this two amplitudes at
the § = 27i/3 pole must coincide. This fixes esn(yw|x) = sn(#w|x). Crossing symmetry
together with the fact that in the trigonometric limit x — 0 we have to recover SSG fix
w = —% (k) where K is the complete elliptic integral of the first kind (more precisely,
crossing gives w = —%(2n + 1)K (k) with n an integer. The £ — 0 limit fixes n). This
completely fix a crossing symmetric matrix structure up to one free parameter, «, which

hopefully is unconstrained. There is a miracle going on. For our amplitudes, we have that

2
res M224)22 res Mll~>11: res M114)22 (239)
0=2mi/3 0=27i/3 0=2mi/3
and, moreover,
Forward
res My 411 = res M 2.40
9=2mi/3 o=2nij3 12712 (240)

If (2.38) is a candidate of matrix structure of the S-matrices saturating the numerical
bounds, we must have the same relation between the respective components. It turns
out that this holds automatically for any s after all the conditions above are imposed.
Otherwise this would fix x = 0 and we would conclude that there are no Yang-Baxter
deformations respecting the symmetries and spectrum of our problem. So all we need to
do now is to unitarize and introduce the poles. Note that

ﬁ)z
)

and g(¢) > 1 for § € R. Therefore, as follows from [9], to unitarize ED we just need to
multiply it by

2K (k)

3

ED (0)ED (—0) = | 1— Sn(

I=g(0)1 2.41
(o 90 (241)

U(8) = —isinh (6) exp (— / 49 loglg_(8)] Sinhw/))) , (2.42)

2mi sinh (0 — 0’ + ie)

o0

while to introduce the poles, we multiply by CDD,, with direct channel pole at 27i/3,

sinh (0) + isin (27/3)
sinh (#) — isin (27/3)

CDDyore (6) = (2.43)

At the end of the day, a candidate for a unitary, crossing symmetric, integrable deformation
of the supersymmetric sine-Gordon reads

Sep (0) = —CDD,yq. (8) U(6)ED (6) (2.44)

Points D and C' with o = v/3 and a@ = 1 would now correspond to £ — 0 and x — 1
respectively. As Kk — —00, @ — 0o. We can now compute the couplings associated to the
elliptic deformation (2.44), cross our fingers and compare those couplings with the numerics
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of figures 2.9 and 2.7. The elliptic deformation analytic results are the solid chartreuse!

lines in those figures. The agreement could not be better. Note that the agreement goes all
the way to point C' and since by construction the elliptic solution obeys Yang-Baxter, the
shower in figure 2.10 should indeed be a simple zero-mode related numerical artifact. To
make precise the elliptic notation used here, we present in appendix A.10 a representation
of this S-matrix in Mathematica friendly notation, ready to be copy pasted so the reader
can more easily explore this exotic solution.

An obvious question is whether this elliptic deformation corresponds to a nice physical
theory.'® Since the supersymmetric sine-Gordon we encountered here is not a totally kosher
theory but an analytic continuation thereof, it is natural to first extend this analysis to the
mass range were the super-sine Gordon breather lives and to study its elliptic deformation
for those more physical set of parameters. This is investigated in chapter 3.

The msy = m, line was indeed full of surprises.

2.4 QFT in AdS

In the previous section we have numerically explored the space of scattering amplitudes that
allow for a Mandelstam representation and we found examples of amplitudes that appear to
maximize couplings subject to the unitarity constraints. These extremal coupling constants
are not true ‘upper bounds’: although our numerical results appear to have converged, a
numerically more refined ansatz will find slightly larger values. See also chapter 4 for an
S-matrix resolution to this issue.

An orthogonal approach to the extremization of three-point couplings in field theories
was developed in [104]. The idea is to consider a field theory in an AdS background and
investigate the ‘boundary’ correlation functions that are so familiar from the AdS/CFT
correspondence. In our setup gravity is non-dynamical and this translates into the absence
of a stress tensor among the set of boundary operators. Nevertheless it is natural to
claim [104] that these correlation functions obey all the other axioms of a unitary CFT,
including crossing symmetry, making them amenable to a numerical bootstrap analysis as
in [105]. In this way any general constraints on CFT data directly imply corresponding
constraints for QFTs in AdS, and by extrapolating these results to the flat-space limit
we can get constraints on flat-space QFTs as well. (For a gapped QFT in AdS, scaling
dimensions and masses are related as m?R? = A(A — 1) and therefore the flat-space
limit is typefied by sending all scaling dimensions A — oo whilst keeping ratios fixed,

The QFT in AdS approach uses CFT axioms to provide rigorous upper bounds, at least
modulo our extrapolation procedures. It does not assume analyticity or any particular
behavior at large complex energies, and the unitarity constraints are phrased in terms of
reflection positivity rather than in terms of probabilities. And yet it was shown in [104]
that it provides upper bounds on flat-space couplings that are numerically equal (up to
three significant digits in some cases) to the extremal couplings obtained with the S-matrix

4 Chartreuse, of selcouth beauty, is a colour half-way between yellow and green.
15We thank Davide Gaiotto for illuminating discussions on related topics.
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bootstrap methods. In this section we demonstrate that this striking equivalence was not
just a fluke by employing once more the QFT in AdS approach to reproduce some of the
previous S-matrix bootstrap results from conformal crossing equations.

2.4.1 Setup

We will consider four-point functions of operators on the real line, which we think of as the
boundary of an AdS, space with curvature radius R. There are two distinguished operators
¢1 and ¢ of dimensions A; and As, which correspond to the two single-particle states of
the setup described above — in particular it is understood that A;(A; — 1) = m?R? for
1 =1, 2. Besides the assumed Z, symmetry, under which ¢, is odd and ¢» is even, we will
also assume that the QFT is parity invariant and that ¢; and ¢, are both parity even.'®
The OPEs are, schematically,

$1 X ¢1 = 1 + Aj1a¢9 + (parity and Zy even operators with A > 2min(Aq, Ay))
By X 3 = 1 + Xagohy + (parity and Z, even operators with A > 2min(Ay, Ay))  (2.45)
1 X ¢ = A12¢1 + (any Zs odd operators with A > Ay + Ay)

Here the (non-)appearance of ¢; and ¢ on the right-hand sides is dictated by Zy symmetry.
The other operators are meant to correspond to multi-particle states for the QFT in AdS
and their minimal scaling dimension mimicks the beginning of the two-particule cuts in
the corresponding scattering amplitudes. The parity properties are dictated by the parity
of the operators on the left-hand side. We should add that the OPE coefficients A;;;, are
related to bulk couplings g;;, via

9123/m(2) = )\123C(A0; A1, A2, A3) (2'46)

with the unsightly relative normalization coefficient [118]

‘ B r2i-A1=8e=8s /TN T [2A,]T[2A3]
B0 B B 8] = AGT[Ad23/2]T[Agz1 /2|T[Az12/2]T[(Ar + Ag + Az — 1) /2] (2.47)

where A, = A; + A; — A, This relation was explained in [104].
In one dimension conformal transformations preserve operator ordering modulo cyclic
permutations. This leads to the following non-equivalent four-point functions

(P1010101), (P2226b2), (P110202), (P1020102), (2.48)

and we will numerically analyze the lot of them.!'” Our recipe follows that of [104] with

16Tt is often helpful to think of the parity odd operators as vectors. Indeed, they are equivalent in one
dimension because the rotation group is reduced to the parity group Zs and which has only one non-trivial
irreducible representation.

17An interesting observation is that the (¢;@a¢1¢2) correlator does not feature the identity operator.
A conformal bootstrap analysis of this correlator in itself therefore does not give any bounds whatsoever
because it lacks an overall normalization. This is completely different from the forward 12 — 12 amplitude
which we have seen can give a meaningful bound on ¢112. However we will shortly see that the ensemble
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minor variations. Suppose that we wish to obtain a bound on g%}, (in units of m;) for a
given coupling ratio o« = ga92/9112 and mass ratio g = ms/my. We then proceed as follows:

1. Choose a A;. Then set Ay = uA; and also fix the ratio

X222 C(A; A Ay AY)
=« . 2.49
M OBy By, By, ) (2.49)

2. A single conformal bootstrap analysis of the four correlators listed above now yields
a numerical upper bound on A?;,. Our multi-correlator bootstrap analysis is very
similar to the one introduced in [108] where it was successfully applied it to the three-
dimensional Ising model. The systematics of our analysis (normalizations, conformal
block decompositions, functionals) can be found in appendix A.11. The bound so
obtained also depends on the number of derivatives of the crossing equations that we
analyze and this introduces a new parameter A, so we write

(g10) ™ 1 v, Ay, A (2.50)

where we use (2.46) to pass from (A5)™* to (g7,5)™.

3. Upon repeating step 2 for various A one finds that (g2,,)™* depends significantly on
A. To obtain an estimate of the bound that we would obtain if we could analyze
all the crossing equations, i.e., if we possessed infinite computational resources, we
extrapolate the results for various A to estimate

lim (g7,5)™ [, @, Ay, Al (2.51)
A—o0
In practice we do this by fitting a polynomial through data points ranging from
A = 32 up to A = 140.!® Examples of this extrapolation are shown in figure A.13
on page 212. This limit provides our estimate for the best possible upper bound for
a QFT in AdS with two particles with masses determined by A; and p and bulk
coupling constant ratio given by a.

4. We view A; as a proxy for the AdS curvature radius. We therefore repeat steps 1 to
3 for a number of different values of A; and once more extrapolate to infinite A; to
obtain a result on the flat-space coupling;:

(9312)™ () = Jim { lim (g)™ 1,0, Ay, A] | (2.52)

A1—o0o0 L A—oo

This is the coupling we can compare with the flat-space S-matrix bootstrap analysis.

Appendix A.11.5 contains technical details of the extrapolation procedure.

of correlators does give numerical results that mostly agree with the ensemble of amplitudes.

18In [104] we were able to obtain results up to A = 200 or A = 300 for the different scenarios. The
multi-correlator analysis of this chapter is numerically more demanding, even more so because the rho
series expansion [119] for conformal blocks with large unequal dimensions converges much more slowly.
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For finite A and A our results provide rigorous upper bounds on the three-point cou-
plings for any QFT in AdS that obeys the stated assumptions. Once we begin the extrapo-
lations we introduce errors that are hard to quantify and this is an unavoidable drawback of
our method. Nevertheless we will soon see, as was the case in [104], that the extrapolated
bounds appear to accurately reproduce the S-matrix bootstrap results in most cases.

2.4.2 Results

The numerical algorithm outlined above is computationally demanding. For a single p and
a we need about 10 different values of A; and for each of these we need about 15 different
values of A, implying about 150 multi-correlator bootstrap runs. We have therefore chosen
a few representative values of 1 and o to demonstrate both the feasibility of the multi-
correlator conformal bootstrap approach to scattering processes and the match with the
flat-space S-matrix bootstrap results.

Results for equal masses

Our first plot is for 4 = 1 so we have two particles of equal masses. In figure 2.11 we
overlay the QFT in AdS results (isolated data points) with the S-matrix bootstrap region
shown before in figure 2.9. The black frame again indicates the single-amplitude bounds,
which are in fact equal to the single-correlator bounds found in [104]. We have performed
a multi correlator QFT in AdS analysis for ratios o = ge22/9112 equal to +1, 0, —1 and
—8/3 and in all cases we find reasonably good agreement with the multiple amplitude
S-matrix bootstrap result. For a = —8/3 our bound comes out somewhat higher than
the value reached by the S-matrix bootstrap. This might be due to our extrapolation
procedure, which also makes it difficult to put error bars on the QFT in AdS points, but it
might also be a consequence of the finite truncation level in the S-matrix bootstrap. It is of
course reassuring that the S-matrix bootstrap always gives lower values than the conformal
bootstrap.

For the © data points in figure 2.11 the extrapolation is standard, i.e., as outlined

above and elaborated on in appendix A.11, but the 2\ data point requires a comment. In
that case we found that the maximal squared coupling (g%,5)™* [, v, Ay, A] from the multi-
correlator analysis is always numerically equal to one half of the corresponding maximal
squared coupling obtained from the single-correlator analysis — even for finite A; and A
so before any extrapolations. Therefore, rather than doing a detailed multi-correlator
analysis, we just plotted one half the single-correlator result. This factor of one half is
understandable: using a change of operator basis similar to the one described in appendix
A.6, one finds that the multi-correlator problem effectively becomes that of two decoupled

single-correlator problems which each feature a squared coupling that is rescaled by a factor
2'19
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g222

Figure 2.11: Overlaid on a repetition of figure 2.9, the green data points show the maximal
values of |g112| as derived from the QFT in AdS analysis for fixed values of oo = g292/g112- (The
green straight lines then indicate the allowed range in coupling space.) The conformal bootstrap
agrees very well with the S-matrix bootstrap. The point with « = —1 is point A in figure 2.9
which corresponds to the 3-state Potts model, which ‘emerges’ here from the conformal crossing
equations in one dimension.

Results for = —1

Our next result is shown in figure 2.12, where we have assumed gg92/g112 = —1. We will
discuss in turn the black curve, the red shaded region, and the green (new) data points.

The black curve corresponds to the best single-correlator bound for the given mass
ratio. It is actually made up of two parts: for mys > m; it is the bound obtained from
the (1111) four-point function, whereas for my < m; it is the bound obtained from the
(2222) four-point function. These single-correlator bounds were already obtained in [104]
and were shown to agree with the single-amplitude analysis of [9].

In red we show the multi-amplitude results obtained with the methods discussed in
section 2.3.1. It is again made up of different parts: for 1/v/2 < my/m; < v/2 we can use
the numerical analysis and we take the a = —1 slice from figure A.3. For my/m; < 1/+/2

19Tt is essential here that o = 1 S0 Aggs = A119.
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Figure 2.12: The green data points show the maximal values of log(g?;5) provided by the multi-
correlator QFT in AdS analysis, now for @ = g292/g112 = —1 and as a function of the mass
ratio mg/my. For comparison we have also added the single-correlator QFT in AdS bounds
from [104], as solid lines, as well as the S-matrix bootstrap data, in red. The plot naturally splits
into three regions. First of all, for ma/m; < 1/4/2 there is screening and the multi-amplitude
bound reduces to the single-amplitude bound. As shown, the correlator bounds nicely follow this
behavior. Moving rightward, for 1/v/2 < msa/ma < v/2 we find a respectable match between
the multi-correlator and the multi-amplitude data, in particular we again recover the three-state
Potts field theory at ms = m;. For V2 < my /mq there are Landau singularities and the multi-
amplitude analysis becomes complicated. However we know that the multi-amplitude bound must
lie at or below the single-amplitude bound from S35 meaning that it must end up somewhere
in the striped region. The multi-correlator analysis, on the other hand, appears unable to improve
on the weaker (1111) single-correlator bound.

we have screening and the multiple amplitude analysis does not give stronger results than
the analysis of the single amplitude Sy .00 which, as we stated before, agrees with the
(2222) single-correlator bound. For V2 < my /my there are Landau singularities and a
more sophisticated analysis is necessary to obtain multiple amplitude results, but we do
know that the maximal coupling from the multiple amplitude analysis can only lie below
the single amplitude bounds. In particular, it must lie below the bound obtained from
Sterward “which was given as the solid line in figure 2.2 in the introduction and here yields

the striped region in figure 2.12.2°
Finally, the new data points obtained from the multi-correlator conformal bootstrap
are indicated in green. The © data points are obtained from a standard extrapolation, as

before, whereas for the (] data points the numerical multi-correlator analysis gave identical

20We explain in appendix A.12 that Landau singularities do not appear in M{™a:d for any mass ratio
in the range 0 < my/my < 2, so the corresponding single-amplitude bound should be perfectly valid.
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results to the numerical single-correlator analysis for all A and A. The extrapolation will
therefore trivially equal the single-correlator result as is indicated in the plot.

For all points with my/m; < v/2 our extrapolated QFT in AdS results lie at or just
above the S-matrix results. As for the previous plot, the small finite difference might be
either due to our extrapolation procedure but also due to the S-matrix bootstrap results
not yet having converged. The points with m,/m; > v/2 are more puzzling. The striped
domain, as we mentioned, arises from an analysis of SI9™Vard alone and so a multi-amplitude
analysis (with Landau singularities and all) will only be able to land somewhere in that
domain. Unfortunately this single-amplitude bound does not seem to be picked up by the
multi-correlator analysis at all.?2! It would be nice to know why this is the case: are we
missing constraints to be imposed for the QFT in AdS bootstrap??? Alternatively, is there
maybe a ‘phase transition’” where by pushing to a very high number A of derivatives the
single- and multi-correlator analysis begin to differ? Such a phenomenon would obviously
invalidate our large A extrapolations and might therefore resolve the puzzle. It would
be somewhat analogous to the observations discussed in appendix A.11.4, see in particular
figure A.12, where we explain that taking different A’s for different crossing equations leads
to non-smooth behavior.

Of course, as we mentioned at the beginning of this section, at a technical level the
conformal bootstrap analysis looks completely different from the S-matrix bootstrap. We
are confident that both analyses yield valid constraints on three-point couplings, but besides
physical intuition there was no a priori guarantee that these constraints had to be exactly
the same. From this perspective the aspect most in need of an explanation in figure
2.12 is the quantitative match between the results for my/m; < v/2 (and similarly for
all points in figure 2.11 and the results of [104]) rather than the discrepancy in the other
points. Either way, the precise connection between conformal correlators and scattering
amplitudes warrants further investigation.

2.5 Discussion

We have demonstrated the feasibility of the multiple-amplitude bootstrap for the lightest
two particles, and shown that it gives stronger bounds compared to the simpler S-matrix
bootstrap of only the lightest particle. Clearly one expects to get increasingly stronger
bounds by considering more and more scattering processes. It is interesting to consider
how such results could converge to an ‘optimal bound’ that we would obtain by considering
the entire S-matrix, as follows.

In all our numerical experiments it turns out that the unitarity condition at all energies
is (numerically) saturated in the subspace we work on. To illustrate this, consider for
example the various possible outcomes from scattering the lightest particle in our setup —

21See also footnote 17.
22 At least the multi-correlator result, which is a hard upper bound, is above or equal to the S-matrix
bootstrap results in all cases, so the results are not in direct conflict with each other.
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let us say that it is the Z, odd particle — against itself. Probabilities must add up to 1 so

>0 >0 >0 >0
/—’ﬁ /—/ﬁ — > % >
1= [Stsnl” +[Stuseel” + [Stusiel” + [Susan [+ ... (2.53)
—_————
<1
pel

where the red and blue inequalities follow trivially from probability positivity as indicated
in dark green. In [9] we effectively considered only the weakest red inequality. The theories
which lie on the boundary of this space turn out to saturate this inequality for all energies.
This would mean that any other process has zero probability, and a theory saturating
the bounds of [9] must therefore have zero particle creation or transmutation since the
only allowed process is elastic scattering. This is possible for special cases like integrable
theories, but generically it cannot be the case. Therefore, by including also the constraints
of the other processes we should get better bounds and this is indeed what we have observed
in this chapter: our improved bounds are due to the stronger constraint given by the lower
blue inequality.

However, we once more found that the optimal solutions now saturate this new con-
dition for all values of the energy, so the remaining processes for the extremal S-matrix
are again all zero.?? In other words, theories lying on the boundary of the new space are
theories where particles 11 can continue into 11 or transmute into 22 but we still get zero
probability for all other processes that have a different final-state particle content. We ex-
pect this pattern to continue by including more and more processes in the game, i.e. we will
continue to observe unitarity saturation within the subspace we consider, no matter how
large. As we increase the size of our truncation we will hopefully asymptotically approach
an optimal bound, but we are unlikely to hit a non-integrable theory at our boundary if
we consider only a finite number of processes.

Indeed, for our setup with two particles with mass m; and msy we find no integrable the-
ories if the masses are different, whereas if they are equal then there are exciting physical
theories at our boundary: the three-states Potts model and (an analytic continuation of)
the super-symmetric sine-Gordon model. We also find a full segment around the supersym-
metric sine-Gordon theory which seems to obey all the necessary factorisation requirements
to be an integrable theory; it would be very interesting to see if that is the case.

We also discussed how the same bootstrap results can be obtained from AdS, using
the setup first discussed in [104]. Putting a gapped Z, symmetric theory into an AdS box
induces a one dimensional Zs symmetric conformal theory in its boundary which we can
analyze by numerical conformal bootstrap methods. To make contact with flat space, we
take this box to be large which corresponds to large scaling dimensions on the boundary. As
it happens the numerical conformal bootstrap results become rather weak at large scaling
dimensions and this makes it computationally quite challenging to obtain reliable results.
This is the main drawback of the AdS approach. Fortunately there are interesting and
potentially very helpful developments on this front: according to [120], convergence can be

23We do not know why this happens; it stands as an empirical observation.
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Figure 2.13: Landau diagram that gives rise to a double pole in Mass 99 if Mo > V2m;.

much improved by a smarter choice of functionals (see also [121,122]). It would be very
interesting to explore this further.

An important advantage of the AdS approach, on the other hand, is that it requires
no subtle assumptions about the various analytic properties of scattering amplitudes. The
AdS box is thus a literal black box from which we can get beautiful S-matrix bootstrap
results even when the analytic properties of such amplitudes might be less obvious.

A good example of such a subtle assumption is extended unitarity, which we have seen
is crucial for our multiple-amplitude bounds. Recall that this is a generalisation of usual
unitarity which controls the analytic behaviour of scattering amplitudes for unphysical
energies, below physical thresholds. For example, when we scatter the next-to-lightest
particle against itself we have a two particle cut associated to the lightest particle starting
at s = (2Miigntest)?, before the physical two particle cut at s = (2mpext tolightest)?, and ex-
tended unitarity governs the discontinuity of scattering amplitudes in the segment between
those two values. Extended unitarity is built into perturbation theory [111] but it is not
straightforwardly justified non-perturbatively. However, the fact that our QFT in AdS
approach exactly reproduces the flat space results provides strong evidence for the validity
of the extended unitarity assumption.

Relatedly, it is puzzling that the AdS bounds for my > v/2m; are so much weaker
than the 12 — 12 forward flat space extremal coupling, see figure 2.12. Either the AdS
numerics did not converge yet or perhaps there is something deeper to be learned there.
It would be very interesting to extend our flat space analysis beyond the mass range (2.1)
into the ms > v/2m; domain. Here we would need to include so-called Coleman-Thun
singularities in our setup. An example is shown in figure 2.13.

Another very important new ingredient which is not unrelated to the anomalous cuts
arising in the extended unitarity region and which appeared in this chapter is the phe-
nomenon of screening. Amplitudes involving heavier particles can sometimes produce dis-
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continuities in some of these anomalous cuts which cancel, i.e. screen, other singularities
such as physical poles corresponding to bound-state stable particles. That is, these dis-
continuities can be tuned so that the amplitudes can often be quite small in the physical
energy region where experiments are done. This mechanism is not only possible but it is
actually realised by some amplitudes which lie at the boundary of the truncated 2 — 2
multiple correlator S-matrix space. It is natural to expect that similar phenomena would
also be realised at the boundary of the full S-matrix space. If this boundary is physically
significant then screening would be an interesting way for nature to hide strong couplings
from the observer.
Let us conclude with some interesting open problems and future directions.

One open problem for which we now have all tools to explore concerns the tricritical
Ising field theory. This theory is obtained by deforming a conformal minimal model with
two relevant deformations, see appendix A.8, and is integrable if one of the deformations
is set to zero. It would be very interesting to bootstrap this theory when both parameters
are non-zero. This is a particularly nice case study because the next to lightest particle
here is well below /2 times the mass of the lightest particle — see table A.1 for its value at
the integrable point — which means we can readily apply all the methods developed here.
The only modification would be to include further poles in the ansatz corresponding to
the other stable particles this theory has — see again table A.1. So here is a homework
exercise: consider a line in the mass ratio parameter space which passes by the masses
of the integrable theory. Something remarkable should happen: In the anomalous cut of
the 22 — 22 amplitudes we should see a peak developing as we approach the integrable
theory. This peak is going to become a new stable particle in the integrable theory with a
mass we know. Seeing this peak show up in detail would be great, as it would constitute a
“discovery” of a new particle through the S-matrix bootstrap. Of course, more interesting
still would then be to move away from the masses of the integrable theory and explore the
full tricritical Ising field theory, non-integrable and all. The previously discovered sharp
peak — typical of an integrable theory — would now be smoothened out and correspond to
a nearly stable resonance. Because there are so many masses and couplings this would be
a challenge numerically, albeit a worthwhile one.

Another open problem which we could now easily address is the problem of multiple
amplitudes without Z, symmetry. We would now also include amplitudes such as 11 — 12
which have amusing 2D kinematics by themselves. The Ising field theory perturbed by
both magnetic field and temperature would be a perfect case study for this case.

A much more challenging but very interesting open problem would be to extend the
multiple amplitude analysis to higher dimensions (as in [10] and [15]). The Z, sponta-
neously broken phase of the ¢* model in 3D, for instance, seems to have a single stable
bound state of mass ms ~ 1.8m; [123]; it would be fascinating to try to bootstrap this
S-matrix.

Finally, another frontier in 2D would be to delve into the multiple particle S-matrix
bootstrap. Can we tame scattering of 2 particles into 3,4, ... final particles? There are two
obvious obstacles. One is the analytic structure of these amplitudes. They depend now on
more kinematical variables and have a huge plethora of Landau singularities; it is unclear
if we can characterise them fully. The other challenge is even more basic: can we close up
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the system of equations? Suppose we consider a basis of initial and final states with both
two and three particles. Then we need to deal with the 3 — 3 amplitudes. But those, by
crossing, are related to 2 — 4 (and much more! See [40].). By unitarity we would then need
to include four particles in the final and initial states as well. But then we are forced to
consider 4 — 4 processes which are now related by crossing to 3 — 5 and 2 — 6 scattering
and so on. It seems we are suddenly obliged to consider any number of final particles at
once which of course would be computationally completely infeasible. A suitable strategy
in the case of massless scattering will be discussed in [48]. Along these lines, perhaps we
could first try to get some inspiration from the AdS side. Some of the necessary higher point
conformal blocks are well known in 1D [124], and some initial investigations of multipoint
numerical bootstrap appeared in [125]. Can we use this to devise a 1D CFT bootstrap
numerical problem dual to the very intimidating flat space multiple particle bootstrap?
Even if very challenging numerically, this would prove of extreme conceptual value.
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Chapter 3

The S-matrix Bootstrap: SUSY, Z> and
Z., symmetry

3.1 Some beautiful sections

The S-matrix space can be very rich, with pointy structures such as edges and cusps. It is
hard to visualize it since we are dealing with an infinite dimensional space so in practice
we pick sections. If the theory has bound states, for instance, a natural set of variables to
follow are the residues of S-matrix elements at their corresponding poles which physically
correspond to the on-shell three particle couplings. While if the theory has no bound
states we can measure the two-to-two S-matrix elements at some off-shell points, thus
defining effective off-shell four point couplings. By picking appropriate linear functionals
and S-matrix ansatze, we thus explore the possible S-matrix space sections compatible with
crossing and unitarity following [1,9]. In this chapter we will consider a few simple sections
which are two or three dimensional and thus can be nicely plotted. The physical setups
we will consider are:

(A) Scattering of a massive real supermultiplet with and without bound states.

B) A generic degenerate boson-fermion scattering where the previous case should sit in
g g g p
a special limit.

(C) Z4 symmetric models.

We will always be in two spacetime dimensions.

These examples are richer than the setup of [9, 10, 104] where the scattering of the
lightest real bosonic particles in a gapped theory was considered but still simpler than
the scattering of particles in the fundamental representation of a O(N) flavour symmetry
[11,13], with U(N) symmetry [14] or when we scatter the two lightest particles in Z,
symmetric 2D theories [1]. The great merit of the simpler examples considered herein is that
they are simple enough to be able to be analytically described while rich enough to capture
many of the intricate features of these other more elaborate examples. To generate all the
plots here we followed the usual numerical algorithms in S-matrix bootstrap explorations,
see appendix B.6 for a telegraphic summary.
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3.1.1 The simplicity of supersymmetry

As the first example we consider a system with N’ = 1 supersymmetry in which the
lightest supermultiplet consists of a single real boson ¢ and a Majorana fermion ) both of
mass m. There are five possible two-to-two scattering amplitudes but SUSY relates most of
them so that in the end only two channels are independent: the scattering of bosons Si’i’(s)

and the forward scattering of a boson against a fermion S(‘;’Zﬁ (s). These two amplitudes are
crossing symmetric. They may have poles corresponding to bosonic or fermionic bound-
states which would also be in an A/ = 1 multiplet, hence with couplings all related by
SUSY, see appendix B.3 for details. Evaluated at the crossing symmetric point s, = 2m?
these two amplitudes define a nice two dimensional section of effective four point off-shell
couplings which we can use to probe the supersymmetric S-matrix space.

The space allowed for the two independent quartic off-shell couplings is depicted in
figure 3.1. In purple, the smallest region, corresponds to the allowed coupling space for
theories with no bound states. Then the S-matrix elements have no poles inside the physical
strip. This purple football-like shape has two cusps corresponding to the free theories where
S = 41I. At its boundary we find a remarkable well-known S-matrix: it’s nothing but
the lightest breather-breather S-matrix of the supersymmetric sine-Gordon theory (SSG)
stripped out of the overall CDD-pole. This is also known as the breather S-matrix of
the restricted sine-Gordon model (RSG) although this is quite a misnomer since the RSG
model has no bound states. For a brief review of the so called RSG model see appendix
B.4.2. The purple shape’s boundary can actually be read off from the RSG S-matrices and
possess a nice closed form
eXp(%Lig(i(1_2am)) _ %Lig(imdm_l)) _ 2(,')

2a2—1 2a2—1

ol &P _
<S¢¢(S*)’ Sw(s*))boundary == (1£2a,1)"'VI—a®+a ’
where C ~ 0.915966 is the Catalan’s constant and a > 0. It is quite amusing to see such
rich analytic structure arise from such a simple convex optimization problem. From an
algebraic perspective, it is quite remarkable that all along the purple region we obtain S-
matrices which obey the Yang-Baxter factorization condition although this condition was

not imposed in any way.

In addition to the scattered boson and fermion we also consider a setup where there is
a single bound state supermultiplet (b, ) of mass mys with b and f being the bosonic and
fermionic bound states, respectively. This is implemented by allowing for simple poles in
the physical sheet in the previous S-matrix elements at s and ¢ equal to m?,. As explained
in appendix B.3 the bound state supermultiplet can transforms in the fundamental or the
anti-fundamental representaion. These differ for slightly different relations between the
couplings arising in the S-matrix elements, see equations (B.4). The allowed S-matrix
space for both cases obtained from the numerical optimization is depicted in figure 3.1.
The various red or blue regions correspond to the allowed S-matrix space for various bound
state masses my, in either of the two possible representations. As the mass of the bound
state increases these regions shrink. When mys = 2m, the bound state dissolves into the
two-particle threshold and we recover the bound state free space depicted in purple at
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Figure 3.1: Allowed /' = 1 S-matrix space with a single bound state of mass mys/m =
{1.73,1.76,1.80,1.85,1.90,1.96} transforming in the fundamental/anti-fundamental representa-
tion represented in red/blue. As we increase the mass of the bound state the allowed space
shrinks.

figure 3.1.

The vertex at the top right corner of the red regions — corresponding to the S-matrix
space with a single fundamental multiplet bound state — corresponds to the lightest breather
S-matrix of the supersymmetric sine-Gordon model (SSG) [116]. We could also find that
the S-matrix living at the top cusp of the blue regions — corresponding to the S-matrix
space with a single anti-fundamental multiplet bound state — is an analytic continuation of
the SSG S-matrix multiplied by an overall minus sign, see appendix B.4.4 for details. We
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do not know of a Lagrangian theory which realizes this factorized S-matrix. Finally, we
have the boundaries connecting to these red and blue vertices. We were able to find the
exact S-matrices living at these boundaries, see appendix B.4.6. They saturate unitarity
as usual but don’t satisfy the Yang-Baxter factorization equations. These S-matrices are
most likely not physical S-matrices but perhaps they are close enough to physical S-matrices
with very little particle production. Finally, note that all this seems to be consistent with
the classical intuition from [126] where it was found that the only supersymmetric model
with a single real scalar boson and a Majorana fermion, with a Lagrangian description and
without tree level particle production is the SSG model. Would be interesting to see if the
blue cusps admits a Lagrangian description in terms of a fermion plus a pseudo-scalar.

3.1.2 How special is SUSY?

Supersymmetric theories are special instances of theories with bosons and fermions with
further non-bosonic symmetries relating them. It is thus natural to look for generic theories
with bosons and fermions without supersymmetry and see whether supersymmetry, with
its extra structure, emerges naturally at special points in the allowed theory space. This
is what we turn to next.

We consider a general Z, symmetric system with an even (the boson ¢) and an odd
particle (the fermion 1) with the same mass m, but a priori no symmetry relating them.
To make contact with the previous bounds we also assume the existence of a boson (b),
fermion ( f) pair of bound states both with the same mass my,s but, again, with no symmetry
relating them. We then have a nice three dimensional section of the allowed S-matrix space
parametrized by the three independent couplings gegp, gy and geyr. This space can be
plotted following [1]; the result is the nice hourglass looking coupling space shown in figure
3.2. The supersymmetric sine-Gordon model beautifully appears as a special point (the
green dot) on the boundary of the allowed space. At this point, all three couplings are
related by supersymmetry. We also encounter an elliptic deformation of the SSG model
(black curve) previously obtained in [1].! This elliptic deformation contains a parameter x
and varying it in the allowed range yields the bold curve in figure 3.2, in special when x = 0
we recover SSG. This elliptic deformation preserves integrability, but breaks supersymmetry
and its explicit form is given in appendix B.4.5.

This elliptic S-matrix is not the famous Zamolodchikov’s Z, S-matrix found in [114];
the Z, S-matrix we found has a different matrix structure and contains a bound-state.
Nonetheless, it does share many of its properties. Given that we encounter such rich
elliptic solutions at the boundary of the allowed S-matrix space it is most natural to look
for Zamolodchikov’s Z, S-matrix and see if that one can also be found in an appropriate
bootstrap problem. This is what we discuss in the next section.

1Strictly speaking the elliptic deformation found in [1] is an analytic continuation of the one found here.
Here we are taking mps > v/2m to pass by the SSG in its physical domain where the second breathers are
constrained to be in such mass range. There we took mps = 1 so we were instead studying the elliptic
deformation of an analytic continuation of the SSG beyond its physical regime. We expect the elliptic
deformation encountered here to correspond to a proper physical theory; we suspect that this is not the
case for the analytically continued version in [1].
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Figure 3.2: Coupling space for Zs symmetric theories with a single bound state obtained from
the S-matrix bootstrap. In this figure mys = v/3m and all couplings are measured in units of m.
The green point is the supersymmetric sine-Gordon theory, while the bold black line corresponds
to an integrable elliptic deformation of SSG. The blue region is the fundamental domain: the rest
of the 3D space can be obtained from it through trivial reflections corresponding to symmetries
of the bootstrap problem.

3.1.3 The faces of Z, symmetry

Inspired by the newly obtained elliptic S-matrix discussed in section 3.1.2, we consider a
Z, symmetric setup with a particle-antiparticle pair of mass m whose charges under Z, are
one and three. We assume that there are no further particles in the spectrum

After imposing selection rules from charge conservation and constraints from crossing,
C, P and T, see details in appendix B.2, we are left with 3 independent amplitudes: Si{,
533 and S3L. In similar spirit to the scenario without bound states considered in the SUSY
setup, section 3.1.1, we bootstrap the allowed space for the off-shell four point couplings
defined by the values of these three independent amplitudes evaluated at the crossing
symmetric point s, = 2m?.
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The result is the smoothed rhombic dodecahedron displayed in figure 3.3. Yang-Baxter
factorization once again makes an unexpected appearance: the full two dimensional sur-
face? corresponds to Zamolodchikov’s famous Zs symmetric integrable S-matrix [114].
Edges connecting threefold vertices and fourfold vertices correspond, up to change of ba-
sis, to limits where the Z, S-matrix degenerates into the sine-Gordon kinks S-matrix with
v > 7, see section 3.2. In particular, fourfold vertices are equivalent to limits in which the
Z4 or sine-Gordon S-matrix becomes free . The threefold vertices of the dodecahedron are
smoothened resembling the pre-vertices of [12].

As far as Yang-Baxter is concerned we encountered this mysterious bonus factorization
at special kinks in the supersymmetric setup (figure 3.1); at special lines in the Zy bounds
(figure 3.2) and now in full surfaces in the Z4 problem (figure 3.3). Would be great to
understand mathematically where this additional physical factorization is coming from.

3.2 A web of relations

Both in this and in previews works [1,9] a myriad of integrable two-component 2D S-
matrices were found to be located along the boundary of the space of amplitudes allowed
by consistency with UV completeness. The various S-matrices obtained in this way are not
independent, but connected through an intricate web of relations, summarized in figure
3.4 and reviewed in this section. The expressions for the exact S-matrices can be found in
appendix B.4 where more details are given.

We begin the web of relations with the Zamolodchikov’s Z, S-matrix, bootstrapped in
figure 3.3. The most curious feature of this S-matrix, described in details in appendix B.4.3,
is its periodicity for real values of the rapidity 6, defined by s = 4m?cosh(6/2)?, which
at high energies amounts to periodicity in logs. As pointed out by Zamolodchikov [114],
this suggests a sort of RG-time periodicity, which may explain the current lacks of a
Lagrangian description for this model. The S-matrix is described by two parameters: the
elliptic modulus x and the coupling v. When we take k — 0 (arrow (D) the Z, charge gets
enhanced to a U(1) topological charge, and the S-matrix gets reduced to the sine-Gordon
kinks S-matrix. The remaining real parameter is the free parameter v of the sine-Gordon
model which controls the spectrum of the theory.

As a limit of the Z4 S-matrix (which has no bound-states) we land in the regime
~v > 7 where the only stable particles are the sine-Gordon solitons. Once we analytically
continue into v < 7m we reach the regime where there are bound states called breathers.
The scattering of these breathers can be obtained by fusing pairs of kinks in a multi-kink
scattering process (arrow @)), detailed in appendix B.4.1. The lightest breather S-matrix,
obtained in this way, is the simplest S-matrix one can bootstrap as analyzed in [9,110].

As said previously, for v > 7 the only stable particles in the sine-Gordon spectrum
are the solitons. However when v = 7p, with p > 3 and p € Z, some multi-soliton states
decouple and the spectrum can be restricted (arrow @)). This process defines the restricted
sine-Gordon theory, see appendix B.4.2. This theory has no free parameters and no bound

2More precisely, part of the surface corresponds to Zamolodchikov’s Z4 S-matrix after charge conjugation
of one of the particles, see appendix B.2.
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1.021.0

Figure 3.3: S-matrix space for the Z, symmetric S-matrix bootstrap at s, = 2m?. The faces
are equivalent to the Zamolodchikov’s Z4 S-matrices (appendix B.4.3) and the edges to the sine-
Gordon kinks S-matrices (appendix B.4.1).

states. The case of interest is p = 4, for which the restricted theory is supersymmetric.

The supersymmetric sine-Gordon solitons S-matrix is built in a nice factorized way
(arrow @) from the two S-matrices we just encountered as

SSSGkinks (9’ 7) = SSGkinks (97 7) & Sl(DiDS:ka)inks(e) )

where the SG soliton scattering matrix part takes care of the topological quantum numbers
while the RSG matrix deals with the SUSY charges. Just like in SG we can fuse (arrow
®) the (supersymmetric) kinks to obtain the S-matrix of the (supersymmetric) breathers,
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Figure 3.4: Connections between S-matrices showing up in this chapter as well as in [1,9]. Green
bores: S-matrices with bound-states. Blue bores: S-matrices without bound states. *: Known
corresponding Lagrangian field theory (LFT). M: Unknown corresponding LFT.

which retains the factorized structure,

4)
SSSGbreathers (07 ’y) = SSGbreathers (0 ) ® Sl({)SGbreathers (07 /y) °

This is the S-matrix at the vertex of figure 3.1.

Since the fusing momenta depend on +, the fusion process introduces a v dependence in
the SUSY-related factor. However, this term does not correspond to a scattering process
in the RSG theory. After all, as said before, the restricted model has no free parameter
and no breathers. Nevertheless it is precisely this S-matrix factor by itself that shows up
as as the boundary of the purple region in figure 3.1.

The SUSY factor in the SSG 1st breather supermultiplet S-matrix can be deformed
into an elliptic integrable S-matrix Sgp controlled by an extra parameter x, arrow ©). This
deformation breaks supersymmetry but preserves the Z, fermion number symmetry intact.
We encounter it as the solid line in the more general Z, setup of figure 3.2. Finally, it
is also possible to deform the SSG 1st breather S-matrix preserving supersymmetry but
breaking integrability, see arrow (7) and appendix B.4.6. Such S-matrix, Syr, describes
the full boundary of the space of theories in figure 3.1. It is a curious example of solution
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which we can find analytically and yet does not obey Yang-Baxter. Would be nice if there
was a physical theory which realizes (at least an approximate version) of this S-matrix.

The lower dimensional sections of various S-matrix spaces in figures 3.1, 3.2 and 3.3 —
with a vast plethora of very rich S-matrices at their boundary as summarized in figure 3.4 —
are the main results of this chapter. Some of the amazing features in these S-matrix spaces
— such as unitarity saturation — are now somehow demystified [12] while others — such
as emerge of factorization or exotic periodicities in the kinematical variables — remain as
elusive as ever. Would be very interesting to explore other setups with different symmetries
and space-time dimensions to better shed light over these puzzles and to best understand
how universal they really are. One very concrete avenue for analytic progress is to zoom
in on the vertices close to free theories and see if there is still some interesting Lagrangian
games to be played a la [126,127]. Would be nice to see if such simple perturbative games,
combined with some important bootstrap intuition, could lead to the discovery of new
interesting theories.
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Chapter 4

The S-matrix Bootstrap: 2D Dual Theory

4.1 Introduction

Figure 4.1 is extracted from [10] and [15].
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Figure 4.1: a) Maximal cubic coupling showing up in the scattering of the lightest particle in a
gapped theory with a single bound-state (in this channel at least) [10]. Convergence is perfect
when the bound-state mass (measured in units of the lightest mass) is bigger than /2 and quite
painful otherwise. b) The allowed chiral zeroes space of putative pion S-matrices associated to
an SU(2) chiral symmetry breaking patterns draws a beautiful peninsula like object with a sharp
tip [15].! Convergence is great almost everywhere except close to the tip where numerics struggle.
In those cases where the primal problem struggles, having a dual rigorous bound would be a
blessing. This chapter is about such dual bounds.

!There are, at least, other two structures would benefit a dual description. One is the “pion lake” [15],
found imposing the presence of the physical p resonance only. Another interesting and recent structure is
the “pion river” [128], found imposing additional constraints on the scattering lengths arising from xPT
and monotonicity of the relative entropy. The dual formulation would allow to rigorously define these
structures excluding theories not compatible with the assumed low energy QCD behavior.
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These works explore the allowed space of physical 4D S-matrices. One parametrizes a
vast family of S-matrices compatible with given physical and mathematical assumptions
and maximize or minimize quantities within this ansatz to find the boundaries of what is
possible. The more parameters the ansatz has, the better is the exploration. As the number
of parameters become very large, one hopes that these boundaries converge towards the
true boundaries of the S-matrix space.

Sometimes this works beautifully as illustrated in the figure; sometimes convergence is
painful, to say the least, as also illustrated in the figure. In those cases where convergence
is a struggle, what can we do? Sometimes, it is a simple matter of improving the ansatz;
sometimes it is not clear what exactly is missing. And in either case, how can we ever tell
how close to converging are we anyways?

A solution would be to develop a dual numerical procedure — called the dual problem
— where instead of constructing viable S-matrices we would instead rule out unphysical
S-matrix space.? Then we would approach the boundaries of the S-matrix space from two
sides, dual and primal, and in this way rigorously bracket the true boundaries of the sought
after S-matrix space. This was recently achieved in two dimensions for simple models with
a single type of particle transforming in some non-trivial global symmetry group [12].3

This chapter concerns two dimensional multi-particle systems with arbitrary mass spec-
tra from this dual perspective, clearly one step further in the complexity ladder, closer to
the full higher dimensional problem.* We will also consider a different technical approach,
complementary to [12], with some aspects which we hope can be more directly transposable
to higher dimensions.

4.2 Dual optimization and the S-matrix bootstrap

To achieve the desired dual formulation, it is useful to revisit the S-matrix bootstrap
with a slightly different perspective.

In the primal S-matrix bootstrap formulation one constructs scattering amplitudes
consistent with a set of axioms, or constraints. Such amplitudes are said to be feasible, that
is, they belong to the allowed space of theories. One then optimizes physical observables,
such as the interaction strength between stable particles, in the space of feasible amplitudes.
The prototypical example is [9,110]: in a 2D theory with a single stable particle of mass
m, what is the maximum cubic coupling ¢ consistent with a 2 — 2 scattering amplitude
M satisfying the constraints of unitarity, extended analyticity, and crossing?

In other words, we would like to solve the optimization problem

2Such dual bounds were attempted more than 50 years ago already in [129-132]. Would be very
important to do some archeology work and revive/translate/re-discover/improve those old explorations in
a modern computer friendly era. A beautiful first step is currently being pursued by Martin Kruczenski
and Yifei He [34]. The conformal bootstrap bounds are also exclusion analysis of this sort [133].

3The primal version of these single particle studies with global symmetry was the subject of [11,13,14];
the case without global symmetry was considered in [9,110].

4Multi-particle primal problems of this kind were pioneered in [1,2].
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Primal problem

maximize 2 4.1
in M(s), g2 g ( )
nstrain = — — haiadinniniell AP _ _
constrained by S S e 5 240 S m- —s
4m?2
for s > 4m?, (4.2)
M 2
U(s) =2 TImM(s) M)l >0 for s > 4m?>. (4.3)

N dm?\/s

where we maximize over the space of analytic functions M, and emphasize that one param-
eter in this infinite dimensional space is the residue of such functions at s = m? which is
equal to —g?. The first constraint (4.2), an exact equality, imposes that feasible scattering
amplitudes must respect crossing, real analyticity, and have singularities determined by
physical processes: poles corresponding to one particle states, and cuts corresponding to
multi-particle states.”® We choose to impose this condition for s > 4m?, but because we
maximise over analytic functions, feasible amplitudes will have have this property for all s
in the physical sheet.® The convenience of imposing this condition for s > 4m? will become
clear in time. The second constraint (4.3) is the physical unitarity condition, equivalent
to |S(s)| < 1.

Since the quantity we are maximising, the objective, is a linear map in the space
of analytic functions, the map that evaluates the residue at a point, and since the con-
straints (4.2), (4.3) are affine and convex respectively, the optimization problem we aim to
solve is an infinite dimensional convex optimization problem. For such a simple problem,
there are now two directions that can be taken. The first option is to solve the infinite
dimensional problem analytically. As is well known by now, this follows from a simple ap-
plication of the maximum modulus principle [9,110]. The second option, available in more
complicated situations, is to bring the problem to the realm of computers by maximiz-
ing our objective in some finite dimensional subspace of analytic functions. For example,
one can consider analytic functions that are, up to poles, polynomial of at most degree
Npax in some foliation variable p that trivializes the constraint (4.2), as done in [10]. This
truncated problem can be efficiently solved by a convex optimization software, for example
SDPB [112,134]. By choosing and increasing the finite dimensional subspace smartly, one
obtains lower bounds to the solution of the primal problem that should converge to the
correct bound with more expensive numerics.

The primal formulation suffers from two important shortcomings. First, for some prob-
lems it is hard to identify a simple ansatz, or truncation scheme, that allows for fast
convergence. This is often the case in higher dimensional S-matrix bootstrap applications,

°It turns out that there is no loss of generality in omitting subtractions from (4.2), since a more careful
analysis shows that the inclusion of those leads to the same result (4.15). We opt for not including
subtractions in the main text for the sake of clarity — see appendix C.2.1 for a more detailed discussion.

6The physical sheet is defined as the first Riemann sheet encountered after analytically continuing from
physical kinematics, s > 4m?, using the +ie prescription.
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or when scattering heavy particles in 2D. Second, and perhaps more importantly, one may
want to add extra variables and constraints to the primal problem. In the previous ex-
ample, those variables and constraints could be, respectively, higher point amplitudes and
higher point unitarity equations. It may be the case that a feasible 2 — 2 amplitude in
the original primal problem may no longer be feasible in the enlarged space with extra
constraints. In those cases, a point in theory space previously said to be allowed becomes
forbidden. It would be more satisfying if bounds on the space of theories obtained by
studying some scattering subsector remained true once the full set of QFT constraints
were imposed.” To overcome both of this shortcomings, we introduce the dual formulation.
We use the coupling maximization problem as a guiding example, before generalizing.

Consider the Lagrangian®

o0

L(M,w,\) = ¢* +/ ds w(s)A(s) + N(s)U(s) (4.4)

4m?2

with A(s) > 0 and define the dual functional

d(w, ) = sup L(M,w, \) (4.5)
{M.g}

Notice that the supremum is taken over unconstrained analytic functions M.° The dual
functional d is the central object in the dual formulation due to the following property:

Weak Duality

Let the solution of the primal problem be g2. Then d(w, \) > ¢2. (4.6)

Weak duality holds due to two observations. First, note that since

2 if M is feasibl
inf L(M,w,\) =49 TR easDE (4.7)
{A>0,w} —o0  otherwise,
we have that
2= su l inf EM,w,)\}
9= b |ty SO0 e
Weak duality then follows from the max-min inequality
d(w,\) > inf sup L(M,w,\)| > su inf L(M,w,\)| = g2 4.8
)= nf | s £ >] s | ot L0Lw )| =g (48)

"Much in the same way that CFT data excluded by the numerical conformal bootstrap remains excluded
once more crossing equations are included into the system.

8Note A(s) is actually real.

9Tt is useful to think of analytic functions as being defined through their independent real and imaginary
parts along a line. Of course, if the dispersion (4.2) were to hold, then those would not be independent.
However, since we maximise over generic analytic functions, we are free to treat Re M and Im M for
s > 4m? as independent.
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Exploring the {w, A} space, the space of dual variables, we therefore obtain upper
bounds on the values of g allowed by the axioms and exclude regions in theory space. This,
in turn, partially solves the first shortcome of the primal formulation: by providing upper
limits on the coupling, it bounds how far from converging an ineffective primal truncation
scheme may be. To find the best possible upper bound, we solve the

Dual problem (generic)

minimize d(w, A 4.9
in w(s), A(s) ( ) ( )
constrained by A(s) >0

The construction of dual functionals from a primal optimization problem is standard
in optimization theory, but the particularities of the problems encountered in the S-matrix
bootstrap lead to important simplifications. One of these is that the analyticity of the
scattering amplitude is inherited by the dual variable w(s), conjugate to the analyticity
constraint. In fact, let’s define a “dual scattering function”, W (s)!°, odd under crossing
and whose absorptive part is w(s):

o0

W(s) = —/4 dz& — (s 4m® —s). (4.10)

m2 S5 — z+10

Then, swapping a few integrals in (4.4) and using m = Find(s—z2)+ P@ leads
to a very simple representation for the lagrangian as

LM, W,A) =g* (1+7W(m?) + / ds Tm (W (s)M(s)) + A(s)U(s). (4.11)
4m2
Note that the Lagrangian density is now manifestly local in M as the Cauchy kernel
from (4.2) has been nicely absorbed into W. This locality, together with the quadratic
nature of the constraint equations'! leads to the next simplification over generic dual op-
timization problems: we can perform both the maximization over M in (4.5) and the
minimization over A in (4.9) exactly. We now analyze those in sequence.

Before doing that, first notice, linearity of £ under ¢g? implies that
d(W,\) = +o0 unless W (m?) = —1. (4.12)

This means that unless W is properly normalized at m?, the bounds obtained from the dual
functional are vacuous. Hence, in solving the dual problem, there is no loss of generality
in restricting ourselves to the space of W satisfying the constrain in (4.12).

107t is worth stressing that the introduction of an analytic function W (s) is not mandatory. It is possible
to work with real densities w(s) and follow the argument presented in this section using the same logic.
This possibility is particularly useful in higher dimensions if one wants to assume no more than the proven
analyticity domains [132].

"Dispersions for higher point amplitudes are no longer expected to be quadratic in lower point functions
due to the presence of Landau singularities.
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The linear Lagrange equations with respect to variations of M (s) for s > 4m? results
in
Meritical () = [Im(W (5)) /A(s) + i (2A(s) + Re(W (s))/A(s))] /(201))-
where p?; = 1/(2v/s —4m?\/s). Second order variations show that, indeed, this is a
local maximum provided A(s) > 0. It follows from the definition (4.5) that, provided
W (m?) = —1,

[ (W) 2
dW,\) = ds + A(s) + ReW(s)) ) /pi;- (4.13)
4m2 4A<S)
Next, we minimize over A leading to A = |[W(s)|/2. The result is D(W) = i}\n>f0d(VV, A))
given by -
D(W) = /4 s (Re(W(s)) + [W(s)]) /oty (4.14)
in which case'? , W
7 *
Mitical (s) = —— | 1+ ) .
s = (14

In sum, the dual of (4.1) simplifies to

Dual problem (S-matrix bootstrap)

minfmize DOV) = [ dsRe(WEN+ WOy (@15)
m S 4m2
constrained by aW(m?) = —1. (4.16)

The dual problem can be tackled numerically through the same strategy used for the
primal problem, that is, restricting our search to a finite dimensional subspace of analytic
Ws. For example, one could use the p foliation variables to write the ansatz'?

Wonaia(s) = sy 2 aalpls)" = p(0)) (4.17)
where N .
o(s) = 2m? — \/4m? — s (4.18)

Vom2 +4Am2 — s
and minimize the functional (4.15) in the finite dimensional space parametrized by the a,,’s.
Note that the constraint (4.16) is a linear constraint in this space. The functional (4.14)
is nonlinear, but it is convex in W. Performing such minimization, say, in Mathematica
shows that, as one increases Nyax, the result of the problem (4.15) converges to the result
of the primal problem (4.1). This is expected if our optimization problem satisfies

12Note that unitarity is automatically saturated once we minimize in A.
13The Ansatz (4.17) is consistent with the dispersion (4.10). In particular, the poles in (4.17) correspond
to a delta function contribution in w(s).
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Strong Duality

The solutions to the primal (4.1) and dual problem (4.15) are identical, i.e. ¢? =
mg/l D(W). In other words, the > symbol in (4.6) is actually an = sign.

This property is argued for in appendix C.1.

To explain how the dual formulation solves the second shortcoming of the primal op-
timization, and in view of the applications in section 4.3, let’s consider a slightly different
class of S-matrix Bootstrap problems. Consider a gapped theory with two real stable
particles of masses m; and msy respectively, m; < ms, and suppose we were interested
in maximizing the cubic coupling of particle m;. Let My, = M, ,,. Assuming P and T
symmetry, M is a symmetric matrix. We would like to solve the problem

Primal problem (matrix)

maxiﬁ?ize g° (4.19)
constrained by A(s) =0 for s > 4m3, (4.20)
U(s) =2 ImM(s) — MpM > 0 for s > 4m3. (4.21)

where A,, = A, are analogous to (4.2) and impose the correct dispersion relations for
the amplitudes M, (see e.g. (4.36) in the next section). Here p are the phase space
factors for the intermediate states (see e.g. (4.35) in the next section). To obtain the dual
problem, we introduce the Lagrangian

LM, w,A) = g* + /00 ds Tr(w-A(s) + A-U(s)), (4.22)

2
4m7

where w and A are respectively symmetric and hermitian matrices of dual variables with A
positive semi-definite. The new dual functional

d(w,A) = sup L(M, w,A) (4.23)

satisfies weak duality by similar arguments as those in equations (4.7-4.8). The dual
optimization problem is

Dual problem (matrix)

minimize d(w, A 4.24
in w(s), A(s) ( ) ( )
constrained by A(s) = 0.

Note that an upper bound on the solution of the primal problem (4.1) is obtained by
choosing minimizing d in the subspace wa(s) = 62104 w(s), Mgy = 62104 A(s), A > 0. This
is equivalent to the dual problem obtained by including only the amplitude M;j;_,;; in the
bootstrap system, or primal problem. Restricting to a scattering subsector in the dual
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formulation provides true bounds to the more complete optimization problem. Conversely,
bounds obtained by studying some restricted space of amplitudes and constrains remain
valid once extra axioms and degrees of freedom are considered. We hope it is clear that the
argument provided by means of an example is generic. This solves the second shortcoming
of the primal formulation.

4.3 An application

4.3.1 The setup

We now turn our attention to much richer S-matrix bootstrap. We consider a theory with
two particles of mass m; and my > my. We will not assume any global symmetry. For
concreteness, we will take'*

my = 1 s mo = 3/2 .

There are a priori four couplings involving these two particles: ¢i11, g112, 9122, g222. They
would show up as s-channel residues in the various scattering amplitudes:

Amplitude | Exchange of particle 1 | Exchange of particle 2
11 =11 giu i
11 —12 1119112 Jg1129122
12 =12 i iz
11 — 22 91119122 91129222
12 — 22 g1129122 91229222
22 — 22 Jiao 9522

We will not consider the full coupled system of six amplitudes. Instead we will consider a
nice closed subset involving the 11 — 11, 11 — 12 and (the forward) 12 — 12 processes
only (that is, the first three lines in the table). As such we will be insensitive to gae. We
will furthermore consider a section of the remaining three-dimensional space where g2 = 0
so that the problem simplifies slightly to'®

Amplitude | Exchange of particle 1 | Exchange of particle 2
11 —11 gin i
11 — 12 g1119112 0
12 — 12 e 0

and our main goal here is to explore the allowed two dimensional (g112,9111) space. A
convenient way to find the boundary of this space is by shooting radially. We fix an angle

Getting my = 1 simply sets our units. All mo > /2 would then give very similar plots/conclusions.
We could also consider my < v/2; the plots are a little bit less eye pleasing in that case. The significance
of the transition point mj = /2 is that this is the crossing invariant point for the 11 — 11 process; on
either sign of this point residues have different signs leading to quite different optimization results.

15The analysis for any other fixed value of gj25 follows identically, see more at the end of this section.
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£ and define a radius R as

(9112, g111) = R(cos B,sin 3) .

Then we find the maximum value of R for each 3 choice to plot the full two-dimensional
space.

In the primal language we will get larger and larger R’s as our ansatz is more and
more complete. In the dual language we will rule out smaller and smaller R as we improve
our ansatz. Sandwiched between the two will be the true (two dimensional section of the)
boundary of the S-matrix space.

It is equally straightforward to fix g129 to any other value and analyze another 2d
section in this way or even collect various values of gy95 to construct the full 3D space. We
leave such detailed scans for the future when we will have more realistic setups designed
to bootstrap particular relevant physical theories such as the (regular and tricritical) Ising
model (perturbed by thermal and magnetic deformations) as discussed in the conclusions.

4.3.2 Single Component Horn

Let us start our search for the two dimensional section of the allowed S-matrix space by
focusing on the constraints arising from the single M = M;;_,;; component alone.

This is a warm up section and many of the results here are not new: indeed, the
primal formulation of single component scattering has been the subject of [9]; a minor new
ingredient we will consider here is the radial search element. (The radial problem for the
space of S-matrices with O(N) symmetry and no bound states was introduced in [12].) In
appendix H of [1] an almost identical primal problem was solved analytically; the analytic
curves in figure 4.2 are obtained by trivially adapting the arguments therein. The dual
formulation for these single component cases with several exchanges masses, however, will
be novel and provide very useful intuition for the most general case.

The primal radial problem can be compactly formulated as

Primal Radial Problem for Single Component

maximize R?
in M,R?

constr. by Res2(M) = R?sin’ B, Res,,3(M) = R? cos® B (4.25)

s—mi s—m3 z—s

2 21 [® ImM
s > 4m? A(s):M(s)—MOO—|—< g, 9ue ——/ dzm—<z)+(s<—>t)> —0
4

2
T

s>4m]  U(s) = 2Im M (s) — p},|M(s)]* > 0. (4.26)

We will now construct the dual problem. If it were not for the radial additional equal-
ity constraints (4.25) the corresponding dual problem would be given already in eq. (4.15).
In this case we need to introduce additional Lagrange multipliers v, and v5 to the la-
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grangian (4.4)

L= R2—|—1/1(Resm§(M)—R2 sin? B)—i—l/g(l——{esm%(M)—R2 cos? 5)+/OO ds A(s)w(s)+U(s)A(s).

4m7
(4.27)
Now we follow the logic of section 4.2 verbatin modulo a few small differences inherent to
the radial nature of the primal problem which we will highlight. First of all note that the
maximum of the Lagrangian with respect to R? yields a bounded result only when

1 —vsin? B — vycos® B =0.

Next, identifying w(s) = Im W (s) with W (s) given by (4.10) as before will lead to a
beautiful dual problem formulation with a totally local optimization target. Importantly

/400 ds A(s)w(s) = /400 dsIm(M(s)W(s)) + WResmf(M)W(m%) + WResmg(M)W(mg)

2 2
my my

so we see that the optimization with respect to the parameters Resmlz(M ) identifies the
lagrange multipliers v; with the normalization of the dual functional at the stable mass
values W (m?). All in all we therefore obtain the simple dual problem radial generalization
of (4.15) as

Dual Radial Problem for Single Component

minimize D(W) = / ds (Re(W (s)) + [W(s)]) /p3,
m 4m?
constrained by 1+ 7 W(m3)sin® 8 + 7 W(m3) cos® 8 = 0. (4.28)

Notice again the nice complementarity between the pole singularities associated to
bound states in the physical amplitude and the absence of poles in the “dual scattering
function” W given by (4.10), replaced instead by the simple normalization conditions (4.28).
Conversely, when we maximize effective couplings in theories without bound-states the
primal S-matrices have no bound-states and the dual functionals have poles [12].

In figure 4.2 we show the numerical results for both the primal (inner blue shaded
regions) and the dual problem (outer red shaded regions).

4.3.3 Multiple Component Kinematics

Next we consider the full system with 11 — 11, 11 — 12 and forward 12 — 12 amplitudes.'¢
The two dimensional kinematics of the 11 — 11 process and of the forward 12 — 12 process
are reviewed in great detail in section 2 of [1] so here we will mostly focus on the new

16 As reviewed in detail in [1] when a particle of type 1 scatters with a particle of type 2 it can either
continue straight (forward amplitude) or bounce back (backward amplitude). Here we consider the forward
process only. This process is nicely crossing symmetric. (The backward process is not; instead it is related
by crossing to 11 — 22 scattering so considering this backward process would require more scattering
processes to close the system of unitarity equations.)
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25;
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© 10 20 30 40 50 60 7112
Figure 4.2: Numerical bounds on the coupling space {g111, g112}. The blue shaded regions enclose
the allowed points for different Ny . in our primal ansatz. The red shaded regions mark the
points that are rigorously excluded. The thin black analytic curve is the boundary of the allowed
region [1]. As we increase Nyax from 1 to 5 in the primal problem, the blue regions enlarge,
allowing for more and more points and eventually converging to touch the boundary of the
permitted space (this is more evident in the “horn” region). In the dual strategy as we increase
Nmax from 1 to 5 we exclude more and more points. At convergence the excluded region touches
the boundary of the allowed space. We restrict the plot to the first quadrant since it is symmetric
under g < —g.

11 — 12 process.'” This scattering process is a nice fully symmetric process. No matter
which channel we look at it, it always describes two particles of type 1 (in the infinite
future or past) scattering into a particle of type 1 and another of type 2. As such

Mii10(s,t,u)

is fully symmetric under any permutation of the three Mandelstam variables s,t,u. Of
course, they are not independent. Besides

s+t+u=3m]+m3 (4.29)

17"This process was not considered in [1] because it violates Z, symmetry. Here we don’t have Z,
symmetry so it is the first most natural process to consider after the lightest 11 — 11 scattering amplitude.
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Figure 4.3: Maldelstam Triangle for 11 — 12 scattering. The x-axis is given by = = (s + 2t —
3m3 —m3)/ V3. The 11 — 12 scattering if fully crossing invariant and indeed so is this picture.
Physical processes in 2D lie on top of the blue solid lines and outside the red lines; in higher
dimensions they fill in the interior of the regions delimited by the blue solid lines as one scans
over physical scattering angles. Similar triangle for 12 — 12 scattering can be found in [1].

which holds in any dimension, we have the two dimensional constraint
stu=mj (m} —m3)” (4.30)

Equations (4.29) and (4.30) describe a curve. Its projection into real s, ¢, u is given by
the solid curved blue lines in figure 4.3. There, we see four disconnected regions: three
non-compact parabola like curves related by a rotation symmetry and a round triangle
in the middle. The three outer curves are the three physical regions associated to the
three scattering channels. The one in the top, for instance, corresponds to the s-channel.
(Each outer curve has a left and right components which are equivalent; they are related
to a simple parity transformation.) The s-channel outer curve start at s = (m; + my)?
as indicated by the red solid line. That corresponds to the minimal energy necessary to
produce a particle of type 1 and a particle of mass 2 at rest. (Recall that 2 is heavier than 1.)
Another important energy marked by the blue dashed line in the figure occurs at s = (2m;)?
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which would correspond to the minimal energy necessary to produce two particle of type
1 at rest. This is however not a physical energy for this process since physical energies
are those for which we can produce both initial and final state. Nonetheless, the region
between s = 4m? and s = (my + my)? is very interesting because we know precisely what
are the only possible physical states in that energy range: they can only be two particle
states involving two particles of type 1. [111] The equation which reflects this is the so
called extended unitarity relation which in this case reads

2Im M11—>12 = P%1M11—>11M1*1_>12, 4m% < s < (m1 + m2)2 (431)

Here, since we are focusing on the top curve (which is crossing equivalent to any of the
other two) we can think of M as a single function of s with

1) =3 (gmf g - e A (2 4 0) (o = )2 m3>)4.32>

2 S

u(s) = <3m§ ml— s+ % (s — 4md) (—2m3 (mt SOEXCE m)? + m%>94.33>
As a check, note that as mo — my we find v — 0 and ¢t — 4m? — s as expected for two
dimensional elastic scattering of particles of equal mass.

The extended unitarity relation (4.31) is of course part of a coupled system of equations
when we consider all components at once. They can all be nicely packed into matrix form
by defining

U=2ImM—-M'pM, (4.34)

where

0(3—4m%)

2 = —
M = M Miisae _ P 24/s—4m3/s
= s p =
M1 Missio 0 pfg _

0

0(s—(m1+m2)?)
2¢/s—(m1+mg2)2/s—(m1—m2)?
(4.35)
Then extended unitarity is the statement that U = 0 for s € [4m?, (m; + ms)?]. Above
s = (m1+ms)? we are at physical energies and the extended unitarity relation is replaced by
regular unitarity which is now nothing but the statement that U is a positive semi-definite
matrix U = 0 for s > (my +my)2.1®
Finally we have poles. These correspond to the single particle exchanges when s or ¢
or u are equal to either m; or my. The poles show up in the (rounded) triangle region
in the Mandelstam triangle picture 4.3 in the 11 — 12 process as depicted in figure 4.4.
For 12 — 12, we have u = 0 and the two ¢-channel poles lie in the extended unitarity

18Gtrictly speaking we can impose U = 0 for a while longer in the unitarity region, more precisely until
the energy where we can produce two particles of type 2 or three particles of type 1. In practice, bounds
we will find will saturate unitarity so this will be automatic. Because of this, in all implementations, we
will actually impose U = 0 even in the extended unitarity region, that is for any s > 4m?2. This is very
convenient as it renders the problem convex.
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6 u(s) and t(s) are complex conjugate here
extended
unitarity unitarity

Figure 4.4: t(s) (blue) and u(s) (yellow) for 11 — 12 scattering and my = Smy. u(s) and ¢(s) are
two branches of the same analytic function. In the extended unitarity region they are complex.
As a function of s, all poles are located before the extended unitarity region. The grey horizontal
dashed lines are equal to m? and m3 and fix the position of the ¢~ and u— channel poles.

region. Note here the important difference between unitarity and extended unitarity. In
the unitarity region the amplitudes describe physical probability amplitudes, are bounded
and can thus never have poles. In the extended unitarity region they can in principle. And
here they do as we see in the figure.

All in all, we can summarize the analytic structure of our amplitudes with their cuts
and poles by dispersion relations as usual. These can be conveniently packaged into a
simple matrix statement A = 0 with

A= (Allall A11a12> (4.36)

A11ﬁ12 -/412%12
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\ t-channel poles sit in the s-channel extended unitarity region (and vice-versa)

t(s) = 2m} +2m3 — s

4r extended
I unitarity unitarity
_____ B il -
i ‘ s
e L e — ® ] ! ‘
-2 s =mj s =m3 t=m3 t =m?

Figure 4.5: t(s) (blue) and u(s) = 0 (yellow) for 12 — 12 forward scattering and mo = 3mj.
In the s-channel extended unitarity sit t-channel poles (and vice-versa). The s-channel poles lie
before the s-channel extended unitarity region. As in the previous figure, the grey horizontal
dashed lines are equal to m? and m3 determine the position of ¢-channel poles.

and

1 1 1 1
A11—>11(8) EM11—>11(S) - Mff_m + 9%11 (S_mQ + _mg) + 9%12 <s—m2 + 2)

_ l/:o Tm My 1(2) < L (S)) dz (4.37)

T Jam? z—8 z—1

1 1 1
A11_>12(S) = M11_>12(S) — Mlof_ﬂQ + gi119112 (S — 2 + 2 —+ 2)

L e 1 1 1
S A = '
7_‘_\/4 . m 11 12(2) <Z—S+Z—t(8) +Z_u(8>> 2 ( 38)

my

1 1
A1212(8) = Migo1a(s) — Mis 10 + 971, (5 —— * 2)

1 /:o Ilig_,u(z)( L ! (8))dz. (4.39)

T Jam2 z—8 z—1
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We hope there will be no confusing created by the fact that t(s) signifies different things
depending in which equation we are since crossing is implemented differently for different
components. In (4.37) is it #(s) = 4m? — s; in (4.38) it is given by (4.32); and in (4.39)
it is given by #(s) = 2m?} + 2m3 — s. In what follows, it should always be clear from the
context which ¢(s) we are talking about.

4.3.4 Multiple Component Dual Problem

The formulation of the dual problem for the multiple component scenario can be derived
following the steps outlined in Sec. 4.2. There are, however, two practical obstacles: one is
the complicated analytic structure of the 11 — 12 component, the other is the presence of
the extended unitarity region. In this section we shall solve both problems if we want to
arrive at an elegant and efficient dual numerical setup.

As always, we start from the primal radial problem
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Primal Radial Problem for Multiple Component

maximize R?
in R2,M
constr. by 0 =c; = Res,2(M1111 R%*sin? 3,

0 =cy = Res,,,2(M1111 R?*cos® 3,

2( ) —
2 ) —

= ¢3 = Res,2(My1,12) — R?sin B cos 3,
2( ) —

0 = c4 = Res,2(Mi2-12 R%*cos’ 3,
s > 4m; A= where A is given in (4.36),
5 > 4m] U>0  where U is given in (4.34). (4.40)

If not for the ¢; = 0 equality constraints related to the radial problem, this setup would
fit (4.19). Note also that the last constraint incorporate automatically unitarity and ex-
tended unitarity. Sometimes it is convenient to analyze it separately in the extended and
regular unitarity regions corresponding to s bigger/smaller than (m; + ms)? respectively.

We start our path towards the dual problem with the usual Lagrangian starting point

L=R?>+ chl/z /

4m1

1
_ [ wr jw
W=11
571)2 W3

and A semi-definite positive. Next we want to identify w as the discontinuities of full
analytic functions W such that the resulting lagrangian becomes manifestly local. This is
still possible here but turns out to be more interesting than before because of the richer
11 — 12 kinematics reviewed in the previous section. The final result is

(W w
o (M 2 wn

r (wA)ds + /00 tr (AU) ds, (4.41)

2
dmy

with

with the dispersive representations of the three dual scattering functions

Wi(s) = %/4: d= Tm W1 (2) (Z L - — 4;% + S) , (4.43)
Was) = - /4 ; 0z Tm Wa(2) (Z Ly Z‘f(:()s) 4 Z‘f‘f()s)) | (4.44)
Wi(s) — %/4: 4= Tm Wi(2) (Z Lo (m1+1m2)2 +S> | (4.45)

Note that the first and last lines here are pretty much as before: they correspond to anti-
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crossing symmetric symmetric functionals W; and W5. The middle line — with its Jacobians
Jy = dt/ds and J, = du/ds from (4.33,4.32) — is more interesting and more subtle. We
explain its origin in full detail in appendix C.2.2.

Then we have the crucial relation required to render the Lagrangian local:

/ tr (wA)ds = / Imtr (WM)ds + W(ReZS(MH%H)Wl(m%) + ReQS(MHHH)Wl(mg)
4 4 my ma

2 2
my my

+R%S(M11a12)ws(m?) + R%S<M12H12)W2(m%)>
mi mi

Once we plug this relation into our lagrangian (4.41) the last line nicely combines with the
first two terms there; these terms are the only terms where R, v; and the various residues
appear.!? Maximization with respect to the residues will relate the various functionals W
evaluated at the stable particle masses to the lagrange multipliers v; as before while maxi-
mization with respect to R will lead to to a linear constraint involving all these functionals
which plays the important role of our normalization condition. It reads:

1+ 7(Wi(my)?sin® 8+ Wy (m3) cos® B + Wa(m?) sin B cos 3 + Wa(m3) cos® ) = 0. (4.46)

At this point we already got rid of the lagrange multipliers, the radius and the residues;
our (partially extremized) Lagrangian is now a functional of the real and imaginary parts
of the amplitudes M above 4m$ and of the functionals W; also for s > 4m?2. Our dual
functional d is therefore the maximization over the amplitudes M of

(W, 4) = sup /4 " ds (tr (Im W M) + tr (AU(M))) (4.47)

mi

Since we are dealing with small 2 x 2 matrices we found it convenient to go to components
at this point and also to separate the last integral into its extended and regular unitarity
contributions separately.

For example, using
A= (Al %) =0 (4.48)
%A; A3 ] — 7 '
and evaluating the equations of motion for Re Mis_,15 and Im Mi5_,15 in the extended
unitarity region we get
R6W3+2)\3:O, IIIlW3:0

These two equations constrain the dual scattering function associated to the 12 — 12
to have a discontinuity starting at (m; + ms)?. Moreover, the semidefinite-positiveness
condition on A implies?” that

A3(s) >0 = ReWjs(s) <0, for 4m? < s < (my +ms)>.

9Recall that R, the residues and M(s) for s > 4 are our primal variables, while v; and W;(s) are our
dual variables.

20Second order variations show that the full positive semidefiniteness of A is required for the critical M,
to be a maximum.
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We can solve all equations for all amplitude components in both the regular and extended
unitarity region for the simple reason that U is quadratic in M. In this way we get d(W, A)
which we should now minimize. Its explicit expression is in appendix C.3.

We can now minimize first over positive semi-definite A to obtain our final dual func-
tional D(W). This step is quite non-trivial but leads to a very compact final result:

Dual Radial Problem for Multiple Component

minimize D¥(W) + DPMs(W) (4.49)
(mitma)®  \W,|2 — ARe Wy Ws + W2 — AW, W,
Dext(w):_/ L] e Wy 23+’ 5 1 W3]
4m?2 4p11 W
o ReW; ReW. Wil2  [Ws]2 W24 |W2—4W, V.
Dphys(w):/ ds | W BeWs | |41|+\43|+’ 2| |222 1 W3]
(m1+ma)2 P11 P12 P11 P12 20119719

const. by ReWs; <0, ImWs;=0 for 4m? <s < (m;+my)?
and by 1+ (Wi (my)? sin® B+W;(m3) cos® B+Wa(m?) sin 8 cos B+Ws(m]) cos® B) = 0

Here, the two contributions DPYs(W) and D**(W) correspond to the contributions of
regular and extended unitarity. The last condition is the normalization condition (4.46) and
the next-to-last line with the linear inequality constraint is in the end the only remnant of
the positive semi-definiteness of the lagrange multiplier matrix A. All these constraints can
actually be trivialized as we explain in the next section. This will lead to a unconstrained
(albeit non-linear) dual minimization problem which we will then solve numerically.

4.3.5 Numerical Results

Now we perform both a primal and a dual numerical exploration to check the correctness
of problem (4.49).

It what follows we will propose ansatze to parametrize families of dual functionals W;’s.
The cleverer the ansatze, the best will the bounds be and the fastest they will converge of
course. Clever or not, it is of course important to stress that any ansatze for W; leads to
a totally rigorous exclusion bound.

The 11 — 11 dual ansatz is the same used to produce the rigorous dual bounds in
figure 4.2

= ——5——= > au(p(s)" = p(1)"), (4.50)

where t = 4m? — s, a,, are free variables and p(s) is the usual p-variable foliation introduced
in [10] — see eq. (4.18) with m = m,. This ansatz has the right branch-point discontinuities
and it is manifestly anti-crossing symmetric. At infinity it decays as W, ~ s7°/2; in fact,

this behavior ensures that the dual objective in (4.28) is integrable. The poles at s = 4m?
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and s = 0 are not necessary to obtain optimal bounds, but in practice they speed up the
numerical convergence.?!

For the 11 — 12 dual ansatz we use

Pmax

B VAaAm? — 5\/4;2 — /42 —u Z bu (p(8)" + Je(s)p(t)" + Ju(s)p(u)"), (4.51)

where ¢ and u are respectively given in (4.32) and (4.33). Recall also that J; = dt/ds and
Ju = du/ds. At infinity Wy ~ 5732 therefore the dual objective function (4.49) wouldn’t
be integrable at infinity. However, it is sufficient to fix two of the b,’s free variables to
ensure the Wy ~ s7°/2 decay. Notice that eq. (4.51) has branch point singularities at
s =t = u = 4m? where the extended unitarity discontinuity in the physical amplitude
start. At the physical threshold s = (m; + ms)? in principle we could add additional
singularities such as a pole (similarly to (4.50)), however it turns out that numerically it
makes no difference.

WQ(S)

It is convenient to design the 12 — 12 dual ansatz such that it automatically satisfy
the constraints Im W3 = 0 and Re W3 < 0 in the extended unitarity region so that our
optimization is unconstrained. The former is easily achieved using a p-foliation with cut
starting at s = (my 4+ mg)? such as

5(s) = V(my +ma)2 —2m? — \/(my + my)? —s
V(my +mg)? —2mi + \/(my +my)? — s

The latter is more subtle: we could always impose linear constraints such as Re Ws(s) =
W3(s) < 0 on some grid of points in the 4m? < s < (m; + my)? segment in our dual
minimization problem, but this would make Mathematica’s basic FindMinimum slow and
nearly unusable. Instead, we opt to write the ansatz

Qumax 2
Wa(s) = (3(t) = p(s)) ( —— <sm>> (Z ealpls)" + ﬁ(t)”))

\/<m1 + mo

n=0

where t = 2m? + 2m2 — s. It is easy to check that W3 has actually definite sign in a larger
region than extended unitarity: W3 > 0 in t((m; + ms)?) = (my — mo)? < s < m3 +m3
and W3 < 0 in m? +m3 < s < (my + mz)? which of course include the extended unitarity
region. This may sound too restrictive, however this is one of the advantages of the dual
formulation: as long as the dual scattering functions satisfy the dual constraints, the bounds
obtained are rigorous. Of course, a legitimate question is whether our ansatz is able to
attain the optimal value of the dual problem. It turns out that for the case we are studying

2IWe have numerical evidence to believe they are the right singularities the optimal dual scattering
function should have. However, it is worth noticing they do not spoil integrability at threshold. We can
look at eq. (4.11): the [~ Im (M(s)W (s))ds is integrable if W(s) ~ 1/(s — 4) close to threshold because
the amplitude vanishes as M(s) ~ /s — 4.

22The dual curves, from outer to inner corresponds (Npax, Pmax, Qmax) equal to (8,8,8), (10,10, 10) and
(10,20, 20); the primal curves from inner to outer correspond to 136, 271 and 1111 degrees of freedom in
the primal ansatz for the amplitude matrix. We used splines analogous to those used in [1].
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Figure 4.6: Dual (red) and Primal (blue) excluded/allowed regions once the full system of ampli-
tudes is included.?? The multi-component improved boundary is now rigorously trapped between
the primal and dual bounds. The red dashed line is the previous single component boundary. As
we now impose the full system constraints the bound improves dramatically excluding most of the
horn like figure. The red star point, for instance, was allowed (feasible) before from the primal
problem perspective (it was blue in figure 4.2) and is now excluded. Once again, we restrict the
plot to the first quadrant due to g <> —¢g symmetry.

this ansatz is also approximately optimal numerically.

Now we have all the ingredients to just code the objective in (4.49) and minimize it
unconstrained. The result for the {gi11, g112} space is shown in figure 4.6 (red shaded
regions). In the same figure, the blue shaded areas are determined running the primal
problem eq. (4.40) — see [1] for details about primal multiple component numerics. The
red dashed line marks the single component analytic bound. The white space in between
the primal and dual areas is the uncertainty we have in the definition of the boundary for
the full coupled system. Clearly the optimal bound is almost completely trapped!

4.4 Discussion

Icarus said that all limits are self-imposed. That is not totally true. Unitarity, crossing
symmetry and analyticity clearly also impose very important bounds.

In this chapter we described the first steps towards a dual bootstrap program and ap-
plied it on the next-to-simplest S-matrix bootstrap scenario: Two dimensional amplitudes
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with more than one particle type and more than one mass.??

One main goal of this chapter was to set up the theory behind this physical problem
and connect it with the standard language of dual and primal maximization problems as
optimization problems. Indeed, a great deal of section 4.2 can bet transported from math
books [135-137].

In the S-matrix bootstrap studied here the primal problem is linear but constrained;
the dual problem is non-linear but unconstrained.?* For the primal problem, we used
the powerful SDPB code to perform the optimizations. For the dual problem we used
Mathematica’s basic FindMinimum.?® Even so, the dual problem is orders of magnitude
faster right now.2¢ It would be very interesting to look for more tailor made algorithms for
our kind of minimizations to speed the dual even more.

Of course, the main advantage of having a dual problem is not speed but the fact that
the bounds whence generated are completely rigorous. What is once excluded can never
be included back. This is in contradistinction with the primal formulation where more
constraints will often rule out a previously feasible solution. In practice the best is to use
both dual and primal problems at once. When they almost touch each other — meaning
the so called duality gap is closing — we know we are reaching the very optimal bounds!

Having developed the theory and a very fast dual problem, we look forward to putting
it to use in several interesting physical applications.

One goal would be to bootstrap the Ising model field theory with both thermal and
magnetic deformations turned on. Let us recall why we think this is promising. The
Ising field theory with pure magnetic deformation [138] is at the boundary of the single
amplitude bound [9], see figure 12 there. What is more, it is precisely at the top of a
sharp horn like 3D bound in the coupling space as depicted in figure 4.7.2” Something we
clearly learned in this chapter is how multiple amplitudes can truncate such horns; compare
figures 4.2 and 4.6. At the magnetic Ising point this dramatic truncation can not happen.
This theory exists after all, we can not rule it out. What happens is that the very special
values of the masses of the stable particles of this theory allow for fine tuned cancelations
in 11 — 12 and other amplitudes such that they completely vanish and thus do not affect
the single component bound which produces the horn. In other words, the purely magnetic
deformation, being precisely integrable, is very special. As soon as we move away from
these special masses by turning a thermal deformation, the multiple amplitude bounds are
now expected to strongly affect the single component analysis and this provides a strong

23The simplest example was kicked off in [12] for a single particle species transforming in some global
symmetry group.

24The unconstrained nature of the dual problem is an extremely powerful and fortunate property which
was not a priori guaranteed. It is the nature of the S-matrix Bootstrap problems considered up to now
that allowed us to trivialize all dual constraints encountered thus far.

25FindMinimum is sometimes an art. It is not uncommon to ask for a minimization, give Mathematica a
viable starting point and obtain a final result bigger than the starting value. Go figure. Of course, it is a
price to pay when having a one size fits all algorithm. See also next footnote.

26The dual curves in figure 4.6 contain thousands of points and take about a day to generate in a regular
laptop. The primal curves take a few days in a cluster. One reason why we did not use the cluster for the
dual problem is that we found it useful to hotstart FindMinimum by starting the minimization search at a
given point using the final result of the neighbouring point.

2"In [9] only the maximum g;1; coupling was plotted so it was not possible to see this cusp so sharply.
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Figure 4.7: Left: Maximum couplings gi1; for a theory with the masses of the Ising field theory de-
formed by magnetic field depicted by normalizing those by the Ising couplings, §11; = g11;/ gi[fji.ng
at this Fg point. Right: The plot on the right is obtained by a simple rotation of the first by 45
degrees which magnify some of the nice features of the plot. (These plots were generated using
the dual method developed in this chapter with N = 20; it might be possible to derive this shape
analytically. We did it for one of the faces but did not pursue this further.) The Ising field theory,

the red dot, lies beautifully at the very tip of these horn shaped single component plots.

improvement over the bounds in [9]. This is not totally trivial to implement because close
to the magnetic point, the Ising field theory has three stable particles. Exploring the space
of couplings g;;; between these particles is hard because this space is ten dimensional. The
trick here is to find a clever lower dimensional section of this multidimensional space, with
good optimization targets, which could efficiently isolate the magnetic plus thermal Ising
deformation.

Another interesting theory to explore would be the tri-critical Ising model. In the
discussion section of [1] an S-matrix bootstrap homework exercise was proposed in relation
to this model. With the great speed gains from the dual technology here developed this
homework seems very doable. The deformation proposed there concerns a deformation
preserving Zs symmetry. The dual Z, symmetric bootstrap is discussed in appendix C.4 for
the case of equal masses; the uneven masses case should be a straightforward generalization
of the analysis of the main text.

One step up in the complexity ladder of bootstrap problems are problems whose am-
plitudes depend on more than a single complex variable. One example is of course higher
dimensions where we have both an energy and an angle even in two-to-two scattering pro-
cesses.?® Another example are higher point amplitudes, even in two dimensions. In fact,
in a very roundabout way, we arrived at the class of problems presented in this chapter
precisely while starting to tackle these multi-particle problems in work in progress with J.

28Tt is also in higher dimensions where the tension between absence of particle production and crossing
symmetry is most striking [45,47] which is another point a dual formulation should be very helpful in
clarifying.
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Figure 4.8: The kinematics of the two-to-two process 11 — 12 is very reminiscent of two-to-three
scattering of massless particles as illustrated here. Both processes are fully crossing symmetric.
Particle 2 on the left is analogous to the jet of two right-movers on the right. This two-to-
three scattering process should show up in flux tube physics [139-141] where parity is broken.
Extending the flux tube S-matrix boostrap program initiated in [142] to include such processes
would be extremely interesting.

Penedones, [48]. The point is that the 11 — 12 amplitudes studied in this chapter are in a
sense very similar to a sort of 2 — 3 scattering process of massless particles as illustrated
in figure 4.8. The jet of the two right movers in the future is like particle 2. Of course,
that jet can have any sub-energy. Nonetheless, this problem is within reach.
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Chapter 5

The Wilson Loop — Large Spin OPE
Dictionary

5.1 Introduction

In appendix B of [143] a duality was proposed between the n-point correlation functions
of large spin single trace twist-two operators in planar N' = 4 SYM and the expectation
value of null polygonal Wilson loops with 2n sides.! The simplest non-trivial example of
such duality would relate three point functions and the null hexagon Wilson loop

<OJ1 (.%'1, EI)OJZ(IQ, 62)(9]3(.733, 63)> < W(Ul, Ug, U3) (51)

The goal of this chapter is to sharpen the arrow in this relation making it into a precise
equation with an equal sign with all the appropriate normalizations and with a precise
dictionary relating the variables on both sides of this equation: the spins J; and polarization
vector €; on the left hand side and the hexagon cross-ratios U; on the right hand side.

This is (5.27).2

We got there in two steps. First we examined the OPE decomposition of six point func-
tions in the so-called snowflake channel: we fuse adjacent pairs of external operators into
spinning operators which are then glued together through a tensor structure parametrized
by integer indices ¢;. The starting point is intimidating. It is given by 9 sums (3 are spin
sums, 3 are sums over tensor structures indices and the last 3 appear in the representa-
tion of the relevant conformal block). When the external points approach the cusps of a

!This duality is one branch out of a rich web of dualities relating various seemingly distinct quantities
in A/ =4 SYM such as Wilson Loops and Scattering Amplitudes [102] and Wilson loop and the null limit
of correlation functions [101]. Indeed, null correlation functions are dominated by leading twist large spin
operators which is one way to argue for the duality mentioned in the main text. The argument in [143]
also uses some string theory intuition coming from the behavior of minimal surfaces of spinning strings and
how they are expected to become related to the minimal surface describing null polygonal Wilson loops
when their spin is taken to infinity. The argument was qualitative and no precise equality was spelled out
in [143]. Our main result (5.27) fills in this gap.

2The reader might be frowning. In (5.27) there are £;’s instead of ¢;’s. Worry not, they are simply
conjugate variables as reviewed in the next section and it is straightforward to change from one to the
other. The map of kinematics using the spinors is given in (D.9).
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null hexagon, six of these sums can be performed by saddle point. The location of the
saddle point will fix the tensor structure indices ¢; to precise locations depending on the
cross-ratios U; of the null hexagon. This gives us the map ¢(U) spelled out in equation
(5.14) below. Next we analysed further the null six point correlator through an analytic
bootstrap perspective (generalizing [144] — where this was carried over for small U; in the
so called origin limit [145] — to generic finite cross-ratios U;). This allowed us to see how the
correlators becomes Wilson loops and what are all the precise conversion factors showing
up along the way.

Null hexagon Wilson loops have light-cone singularities when non-adjacent vertices be-
come null. We conjecture how these singularities emerge from the discrete structure of the
structure constants in the large spin limit. The limit (5.1) should be understood to hold
before light-cones are crossed, i.e. in the “Euclidean” region of positive cross ratios. Config-
urations with time-like separations should then be achieved through analytic continuation
from this safe region. These musings are backed up by explorations of novel one loop data
we extract.

In sum, in this chapter we cleaned up the kinematics behind the duality (5.1) using
bootstrap techniques.

5.2 Spinning Three Point Functions

The purpose of this section is to establish notation. A traceless symmetric, spin J, primary
operator in a CF'T can be represented through an homogenous polynomial of degree J on
an auxiliary null polarization vector e

Oy(x,€) =€y ... €, 0" (). (5.2)

In a parity preserving 4D CF'T, three point functions of traceless symmetric parity even
operators can be parametrized as

Z Cghfg,fg ‘/1723 ‘/2,31 ‘/23,12 H23H31H12
£;
<OJ1 (xla 61)7 OJ2 (1‘2, 62)7 OJs (1’3, 63)> - "1tra—rg

(22y) T F T (a) T (a2))

Y

(5.3)
where k; is the conformal spin and
V-*("» 2 e 2)i Ho: =€ - Toi€s - Toi — 1226 - €.
i,jk = \& xzkxlj € " LijTyp, PR ij = € " Lij€5 - Tij Qxij‘fz €55
jk

are a basis of conformal covariant tensors [146], see appendix D.1. We sum over all non-
negative integers ¢’s such that all exponents in (5.3) are non-negative.
Henceforth we will consider twist two operators in planar A = 4 SYM at weak coupling

and use the short-hand notation C**® = C’l‘{ll’flf’ for the structure constants of three
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spinning operators. We also have

3
A J;!?
C*** =(C**" x H 3 (5.4)
i1 (G2 QI+ 6= 325, 4)!
Ct’r’ei?evel
where C*** = (C***/C2*® ..., is given by an expansion in small 't Hooft coupling A and

captures all loop corrections.

5.3 Null Correlators and the U(¢) map

We consider the null polygonal limit of the six point correlator of the lightest single trace
gauge invariant scalar operators as in [144]. This correlator is given by 9 cross-ratios
carefully reviewed in appendix D.3. We will sequentially send 6 of them to zero when
taking each z; to be null separated from x;,; to obtain in the end a function which depends
on the remaining 3 cross-ratios. More precisely, the final result will depend on the three
finite cross-ratios as well as logs of the six vanishing cross-ratios. The dependence on the
latter will be through a factorized universal pre-factor which we can fix. The dependence
on the finite cross-ratios will be related to the renormalized Wilson loop which is theory
dependent.

As explained in [144] we can project into leading twist (i.e. two) in the 12, 34 and 56
channel in the snowflake decomposition by taking wuy,us,us — 0 or x3y, 22, 3, — 0 as
depicted in figure 5.1a. In this limit, in perturbation theory the six point function behaves
as )

Ge(ur, ug, us, uy, us, ug, Uy, Us, Us) — ujusus Gg(ug, ug, ug, Uy, Uz, Us) (5.5)

The function G has no powers of u;, uz or us but it implicitly contains arbitrarily many
powers of In(uy ), In(uz) and In(us) arising from the anomalous dimensions of the twist two
operators. This function can be expanded as

Ge = Z Z ?...<J17J27J37€1>€2>€32 / dylddeySI(JiagiayiauiinZ (5.6)

J1,J2,J3 £1,02,03

dynamic y;€[0,1] kinematics

where P is a (theory dependent) normalized product of three point functions® and F
is a (theory independent) conformal block integrand worked out in [144] and recalled in
appendix D.4.

Series expanding the left and right hand side of relation (5.6) around w;,U; = 1 —

31t is given by a product of three three point functions of two scalar and one spinning operator (for the
three OPE’s of the 12, 34 and 56 OPE’s of the external scalar operators) and a fully spinning three point
function (the intersection of the three gray lines in figure 5.1),

p...(']17 J27 JBa 61, €27£3) = é...(Jla J27 J37 617‘62, 63)6‘00.(J1)éoo.(Jz)éoo.(J;),) . (57)

Here the hat C stands for tree-level normalized quantity C'/Clyee level-
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Figure 5.1: Various snow-flake OPE limits discussed in this chapter. The bottom right one is
the double light-like OPE explored in this section. The top right one is the more conventional
Fuclidian OPE used in appendix D.5 to extract new one loop OPE data which is analysed in
appendix D.6. We can get to both starting from the single light-like OPE on the left.

corresponding to the conventional Euclidean OPE limit depicted in figure 5.1b — allows us
to extract structure constants P for the lowest spins J’s and polarization integers ¢’s. This
data extraction using the one loop result [147] for G is described in appendices D.5, D.6.
This one loop OPE data will be used in section 5.

In this section, we consider instead the limit uo, us, u¢ — 0 (at fixed U;) — known as
the Lorentzian null OPE limit depicted in figure 5.1c — which is realized when all external
points approach the cusps of a null hexagon which in turn is parametrized by the finite
cross-ratios U;. In this limit

Gio(ug, ug, ug, Uy, Uy, Us) — usugug Ge(Uy, Uy, Us) (5.8)

where G is a non-trivial function of the finite U; which still contains arbitrary powers of
In(u;) but no powers of u; since these were by now all sent to zero. We find two important
simplifications when computing the correlator (5.6) in this u; — 0 limit:
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e The integral is dominated by large spins J; and large polarization integers ¢;. We
can thus transform

>y - / AT, AT d o0y dlydls

J1,J2,J3 £1,02,03 0

in (5.6) being left with nine integrals in total. (The 8 = 23 comes from the fact that
the spins J are even.)

e Six of those nine integrals can be done by saddle point.

More precisely, we find that 0 = 01n F/0¢; = 01ln F /0y, leads to the saddle point location

J:
(1 :—QUU; (5.9)
o+ T3/
J;
v = —. (5.10)
J3 4 Ji4/ [1]—32
J
Y3 :—lUU (5.11)
Ji+ Joy ) P
and more importantly
6 = J2Js : (5.12)
Jo+ Js 4 Jiy/ U1U3
0y = J1Js : (5.13)
Ji+ T3+ Jay/ oo
J1J.
ls = 2 (5.14)

T+ Jo + Jsy [

which nicely relate the Wilson loop cross-ratios in the right hand side of (5.1) with the
spin and polarization integers appearing in structure constant in the left hand side of this
relation. They are the sought after dictionary between these two worlds. (If J; > ¢; > 1
then the U; are very small; this was the limit studied in [144].)

The saddle point evaluation leads to

=~ 41LQU4U6 J1J2 ~ Uzﬁ J2J3 u4\/71 J1J3 ug/Us
G6 :—1/ dJl dJ2 ng P...(J17J2,J37€1,€2,€3> VUIU3 \/U2U3 2 VU1U2
(U,UxU3)2

7 72 —1tveta3 71—72+73 Y1+72-73

e G N G N G M ) B ) B ) B
Ji Jo J3 Ulé Ugé UZ% ’

(5.15)
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where /; depend on the integration variables .J; through (5.14). Implicit in this discussion
is the assumption that the integral is dominated by the saddle point developed by the
conformal block integrand. This should be valid for positive Us, see further discussion in
section 5.5. One can nicely check that when A = 0 (so that the full second line as well as
P*** can be set to 1) this expression indeed integrates into the free theory result 66 =1

We close this section with the inverse of the map (5.14):

. T sl (s
YT (ot J3) b — o ds) (J1 + o) s — JiJs)
JoJslols
U, = ‘ , 5.16
T+ )y — I d3) (Jy + Jo) bs — Jids) (5.16)
U3 _ Jljgglfg

((Jo+ J3) 01 — Jod3) ((Jy + J3) lo — JiJ3)

It is going to be used intensively below.

5.4 Multi-point Null Bootstrap and the C93/W relation

We took a limit where all points approach the boundary of a null hexagon corresponding to
all u; — 0. Because we did it in two steps (first uy, us, us — 0 projecting to leading twist
and then wus, uy,us — 0 projecting to large spin) the final result (5.15) is not manifestly
cyclic invariant. In this section we follow [144] and impose the cyclic symmetry of our
correlator under u; — ;41 and U; — U4y to further constraint the structure constants
P. This will generalize the result in [144] from the origin kinematics to generic hexagon
cross-ratios.

To kick this analysis off we start by converting the starting point (5.15) from the cross-
ratios u; to the more local cross-ratios v; (both are reviewed in appendix D.3) since the
expectation is that the Wilson loop should factorize into a universal prefactor depending
on these variables alone times a renormalized Wilson loop [101,144]. Beautifully, we see
that this factorization is almost automatic once we convert to the v variables. Indeed, we

find

o
. 12 \/W, JoJ3 \/W, J1J3 ”4”6+ﬂ In 16vqv5 +ﬁ In 16vyv3 +’yf3 In 16v3vg
J: J J: 4 2 4 2 4 2
GG =4 \/Uyv40¢ /dj1 dJ2 ng e 3 v ! ve 2 2 v3Ji 573 v1l3
0

3 di—vig1—vie
P (o Ty Js by Uy € A 5.17
X (1,2,3717273)/ i ()

=1

so that the first line is already only made out of v;’s while all U; dependence arises from
the second line through the ¢;(.J;, U;) map (5.14). The problem at this point is how to
constrain P so that the U; and v; dependence factorizes and so that the final result is
cyclic invariant under v;, U; — vj41,Uj41. The factorization would be automatic as soon
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as the ¢; dependence in P comes through a factor of the form

3

YY1 Yi1
factor = Héi 2 X (5.18)
=1
X W( J1J301 03 ‘ J1J3l1 03 J1J301 03 ‘ )
((Jo+J3)01—J2J3)((J1+J2)l3—J1J2) 7 ((Ja+J3)l1—J2J3)((J1+J2)l3—J1J2) " ((Jo+J3)l1—J2J3)((J1+J2)l3—J1J2)

Indeed, the first factor would cancel precisely the factor in the denominator in the last
line of (5.17) whereas — on the saddle point solution (5.14) — the arguments of the second
function will become precise the U; variables as indicated in (5.16). That is, if

P***(Jy, Jo, J3, U1, Uy, 03) = factor x p(Ji, Ja, Js) . (5.19)

then we automatically find an explicit factorization

~ J1Jo  [vove  JaJ3 [vav4 J1J3  [v4v
G6 :W(Ul, UQ, U3) X |:4\/U2U4UG /d]l dJ2 ng e ‘1]32 346 2‘]13 3’64 523 %26 (520)
0

3 3
£in(J1)n (%)+g In(J2) In (1T3) +2 In(Js)In (3715) 491 (%ifs) —1 32 In(J5) In(J;/4)
e 1=

p(J1, Ja, Js)}

where we have used the explicit form of the large spin anomalous dimension v; = fIn(J;)+g¢
to massage the second line. It is hard to imagine how anything else would lead to a
factorization but we did not establish the uniqueness of (5.19); it is a conjecture which
passes some non-trivial checks below and reduces to [144] in the origin limit.*

Next we have to impose cyclicity. For the first factor in (5.20) this simply means that
W(Uy, Uy, Us) = W(Us, Us, Uy) but it does not constraint W any further. On the contrary,
for the second factor, cyclicity is very powerful. It fixes p completely to all loop orders
in perturbation theory, under very mild assumptions as explained below. The result is
remarkably simple:

3
£ (I — Fin21n J:
pUIs Jo, J5) = N T (T (1= ) e - snzinss). (5.21)
=1

It is a nice and very instructive exercise to plug this proposal into (5.20), expand the
integrand to any desired order in perturbation theory (corresponding to small cusp anoma-
lous dimension f and small collinear anomalous dimension g), perform all the resulting
integrations and realize that we only generate In(v;)’s and that moreover the result non-
trivially combines, order by order in perturbation theory, into a fully cyclic expression.

4The challenge is to relate (non-)factorization of integrands versus (non-)factorization of integrated
expressions. Any extra ¢; dependence in (5.19) would show up inside the square bracket in (5.20) and thus
generically lead to a U; dependence once we integrate in J; with (5.14). It might be that a very subtle
¢; dependence could integrate to zero or generate a factorized function of U; which would renormalize W.
We were not imaginative enough to find any such example which made us confident that (5.19) is indeed
unique.
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It is an even more instructive exercise to simply plug a general perturbative ansatz
for p(Jy, Ja, J3) as an infinite series of monomials made out of powers of In(.J;)’s in (5.20).
Each such monomial will again integrate to simple polynomials in In(v;)’s. Remarkably,
imposing cyclicity at each order of perturbation theory will completely fix these polynomials
and thus the full perturbative expansion up to an overall normalization constant. In this
way, by considering a very large number of loops we could eventually recognize a simple
pattern and arrive at (5.21). This brute force derivation is perfectly valid but was not how
we originally arrived at (5.21).

We proceeded in a slightly more sophisticated way following similar ideas in the four
point function analysis in [148]. This is explained in the box that follows; this discussion
can be probably skipped in a first reading.

Deriving (5.21)

We first look for an integral transform for p such that ciclicity can be imposed at integrand level. We
define

£ 3 In(J;) In(J;/4)
g(nJy,InJo,InJs) =e 9= p(J1, Ja, J3) (5.22)

to absorb the last factor in the exponential in the second line in (5.20) and we change integration
variables to
- J2J3 VU4 - J1J2 V2Vg - J1J3 V4 Vg

T3 Ty =
J1 ve J3 vy Jo Vo

I 0 (523)

to trivialize the tree level measure. Then the previous expression (5.20) takes the very suggestive form

> lf—ﬁlnvi lnvi+37§ Inv; Inwviy1+4 Inwv;

Ge =W(Ur,Us, Us) X €7 x (5.24)
o0 3
— Toi_1+2 In(xg;— — L In(zgi—1) In(vai_
x/dmdazgdxg,e Z; (a1t g In(mai1/4) =g In(@2i-1) In(v2i 1))
0

Inz; +Inzs —lnvg Inzg+Inzry —lnwve Inxs+Inzs —Invy

x q ) )
2 2 2
where we see the explicit appearance of the Sudakov factor [101, 144] in the first line. The lack of
ciclicity is now quite striking in the very different way that the even and odd cross-ratios show up
in the integral: The odd cross-ratios appear in the exponent in the form In(z;) In(v;) while the even
cross-ratios appear inside the arguments of the dressed structure constant p. That asymmetry is trivial
to fix: It suffices to write ¢ itself as an integral transform introducing three new integration variables
T2,T4,Te aAS

oo 3

— S (@2i+2 In(w2:/4))— L (In(z6) X +In(z2) Y +n(z4) Z)
qX,Y,7Z) :/dmg dxydrge =t ae : ° ’ ! G(zq, x5, 26) (5.25)
0

where the measure (first factor in the exponent) is written to mimic the already existing measure over
x1,x3, x5 to make sure the full result is properly symmetric. Similarly, the factor f/2 in the second
factor in the exponential guarantees that the new In(z;) In(v;) terms containing the even cross-ratios
come with the same overall prefactor as their odd cousins in (5.24). Note also that In(zg) will multiply
X which contains its two neighbors In(z1-641) and In(z5-¢_1) and similarly for all other arguments.
So in total we will get a beautiful symmetric chain of interactions and overall the only symmetry
breaking term is ¢(z4, x5, 26)! We should thus set it to a constant. Integrating (5.25) with ¢ equal to
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a constant indeed leads to the anticipated simple result (5.21). This concludes our derivation.

Putting everything together we thus find the final result for the full correlator in the
light-like limit (and for general hexagon kinematics) as

9— e

66 = WU, U, Us) X exp (Z % Inv; Inwv; 13 — gln v Inw; g + 1 In Ui) X
D Y e I3
Renormalized Wilson loop N ~~ o
Sudokov Factor
(5.26)
T NN (g N_f . 1 . ) e .
> (@it+gIn(z;)— gIn(z)In(zi 1) — g In(z:)In(v;))+3° 55 In(v;)

X N dxje =t g ,

o 7=t

~
Recoil J

where In(z) = In(z) + vg.

To obtain the full map between spinning three point functions and the Wilson loop we
simply need to convert P to C' using (5.7). In other words, we divide the result whence
obtained by three large spin structure constants for a single spinning operator which were
computed in [149]. This ratio nicely removes some of the gamma functions in (5.21) leading
to our final main result

Structure Constant/Wilson Loop duality

3

“eeoe Jlgz %
C (JZ; Ez) = NH <W> XW(Ul, UQ, Ug) (527)
i=1 sy

conversion factor

with the map between variables on both sides of this equation given by (5.14) or (5.16).

5.5 Omne-loop check and some speculative musings

The structure constant variables (Ji, Jo, Js, 01, f2,f3) are mapped into the Wilson loop
cross-ratios (Uy, Uy, Us) through the map (5.16). The J; are even non-negative integers and
the ¢; are non-negative integers bounded by the condition that ¢; 4+ ¢; < J;, with ¢, j, k all
different. For J; = Jy = J3 = 30 for instance we would have 7816 discrete ¢; choices, each
with its own structure constant. The map (5.16) maps each one of these ¢; choices to a
point in the cross-ratio space as depicted in figure 5.2.

The set of ¢, < J;J;/(J; + J;) covers the full space of positive real cross-ratios U;
as represented in the figure 5.2 by the blue dots/region. The remaining ¢;’s cover three
disjoint regions in cross-ratio space where one cross-ratio is positive and two are negative.
(In the large spin limit of course.) The region of all positive cross-ratios can be called the
space-like region since it can be realized with all squared distances positive. The other
three regions need some squared distances to be negative to get negative cross-ratios so we
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Figure 5.2: The OPE data C’"'(Jl,Jg,Jg,él,Eg,fg) can be plotted in the cross-ratio space
(Uy,Uy,Us) if we map the ¢; and J; variables to the U; using (5.16). The one loop structure
constants have a good J; — oo limit in the blue region perfectly matching with the Wilson
loop in the Euclidean space-like (S) sheet. In contrast, the same structure constants blow up as
J; — oo in the red region which would naively correspond to the Wilson loop in some Lorentzian
time-like regions (7;). To reach these regions we should instead start in the blue region and take
the large spin limit so that an emergent analytic structure arises with new branch cuts. We can
then cross them by analytically continuing away from the blue region and in this way obtain
a match beyond the Euclidean regime. The structure constant/Wilson loop duality is a cute
concrete example where expansions and analytic continuations do not commute.

call them time-like regions. (A beautiful detailed analysis of the geometry of the U; space
for hexagonal Wilson loops is given in [150].)

We propose that as we take the large Ji, £ limit the structure constants in the space-like
region (S) will nicely match — according to (5.27) — with the Wilson loop in the space-like
(or Euclidean) sheet, where we start with all cusps space-like separated and do not cross
any light-cone. Let us discuss a non-trivial one loop check of this proposal.

In perturbation theory we have C***(J;,f;) = 1+ Ac + ..., conversion factor =
14+ A+ ... and W(U;) = 1+ Aw + ... so that at one loop our prediction (5.27) simply
translates into (up to an overall shift by a constant)

o(Ji, 6) — h(J;, ) = w(Ui(J;, 4;)) - (5.28)

The one loop Wilson loop is universal in any non-abelian gauge theory in the planar limit
since it is given by a single gluon exchange from an edge of the hexagon to another. It
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reads [145,150-152]

3
w(Uy, Uz, Us) = 47> +2Y Lis (1 - 1/U5). (5.29)

=1

This object — in the space-like region where all U; are positive — should emerge from the
one loop structure constant of large spin operators. These are extracted from the OPE of
the one loop correlation functions of six 20" operators in planar N' = 4 SYM, see appendix
D.5.1.

A speculative detour

Before discussing the quantitative match of the structure constant and the Wilson loop
we will open a speculative parentheses here. It can be skipped by the more orthodox
readers.

Note that the analytic structure of the structure constant before taking the large
spin and large polarizations limit is strikingly different to that of the Wilson loop.

The Wilson loop has a rich cut structure. In the physical sheet there are cuts at
U; = 0 which need to be crossed to go from space-like to time-like configurations. These
are the only singularities of the Wilson loop in the physical space-like sheet [152]. If we
cross the U; = 0 cuts we go to other sheets and do see other singularities most notably
at U; = 1 but also at various other interesting locations, see e.g. [153-155].

Instead, the structure constant are meromorphic functions of ¢; and J; with no cuts
whatsoever — see appendix D.6.3 for explicit expressions full of Harmonic numbers,
rational binomial sums and other similar meromorphic building blocks. They have
poles at unphysical values of polarizations and spins. In the large ¢; and J; limit these
poles condense; seen from far away they become cuts as illustrated in figure 5.3. (This
phenomenon of poles condensing into cuts is all over, most notably in Matrix model
studies.) In other words, at finite ¢;, J; there are no other sheets and no monodromies
to be picked, only the space-like sheet exists. All other Lorentzian sheets are emergent.
They only appear in the semi-classical limit of large ¢;, J;. As such, what we expect is
that if we stay in the Euclidean regime ¢, < J;J;/(J; + J;) corresponding to the blue
region in figure 5.2 we should obtain a match with the Wilson loop in the large spin
limit. But if we want to access other regions in the Wilson loop, the order of limits is
key: We first need to take the large spin and large polarization limit so cuts emerge;
then we analytically continue our structure constant through those cuts.

When doing a numerical comparison of the Wilson loop and the structure constants
we observe an interesting phenomenon which seems to back this up. In the space-like
Uy < J;iJ;/(J; + J;) region the one loop structure constants ¢ are O(1) numbers; as we
increase the spin we observe that these numbers do approach the expected Wilson loop
expression (5.29). On the other hand, for ¢, > J;J;/(J; + J;) the structure constants c
become exponentially large real numbers which blow up as J; — oo! This is in perfect
synthony with the picture of the previous paragraph: to cross the cuts and reach the
Lorentzian domain -encountering a complex valued finite Wilson loop - we must first
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Figure 5.3: a) (Imaginary part of) H(z) where H(z) are Harmonic numbers evaluate to rational
numbers for z positive integer and has poles at negative integers. For large argument it behaves
as log(z). In other words, seen from far away the poles condense into a cut. b) (Imaginary part
of) log(z) lives in an infinite sheeted surface. The first one agrees with that of H(z) for large
arguments while the other sheets are emergent.

go to a safe region in the physical sheet and then take a classical limit so the cuts
appear in the first place. If we go to the cuts directly in the structure constant side
we encounter instead a divergence — we could call it a firewall in analogy with black
holes. In this black hole analogy, the smooth cuts with emerge in the classical limit
resemble the smooth black hole horizons while the poles in the structure constants
which we would only see through very sensitive experiments would be the analogue of
the quantum black hole micro-states inner structure; some kind of fuzzball.

A analytical toy model for this phenomenon is C**° in the large spin limit, discussed
in detail in appendix D.6.2. In equation (D.34) we obtain nice O(1) expressions valid
for ¢ < J1J5/(J1 + J2) with emergent branch points at ¢ = JyJ5/(J; + Jo) which should
be thought of as analogues for the U = 0 light-cone singularities of the hexagonal
Wilson loop. On the other hand, for ¢ > J;J5/(J; + J3) the one-loop corrections
become exponentially divergent, see equation (D.35). In fact, extending the black hole
analogy, one must be careful when using these limits to compute observables that probe
the “horizon” or “interior” regions. For example, the equal spins sum over ¢ of the three
point function is finite in the large spin limit — given by (D.37) in the appendix — but
it is not purely captured by the naive large ¢, J limit with ¢/J fixed. Indeed, if one
first takes the large spin limit, a non integrable expression is obtained in the “interior”
region. This singularity can be thought of as a “UV” divergence that is regulated by
finer corrections coming from the microscopical structure of three point functions.

End of speculative detour.

We could not completely fix the analytic form of the one loop structure constants
c(J;, ¢;) and so we could not establish (5.28) fully. Instead we expanded the Wilson loop
around the so-called origin limit [145] corresponding to small cross-ratios. Note that we

have
3 3

w(Uy, Uz, Us) = > In* (U;) + > In(U;) A + B (5.30)

i=1 i=1
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where A; and B have regular Taylor expansions around the origin U; = Uy = Uz = 0.° For
instance 5 5 5 5
2 2 3 4
_ z 4 Z 24 - 54— o 31
B=—bm +1;UZ+4;UZ+9;UZ+16;UZ+ (5.31)

The representation (5.30) makes manifest the branch-cuts at U; = 0 of the Wilson
loop. In the structure constant side, to make contact with the Wilson loop as an expansion
around the origin we should consider the limit of very large spin and polarizations but very
small ratios of the two,

;> 1, Ji>1, 0;]J; < 1, (5.32)

indeed, in this regime we easily see that the cross-ratios obtained through (5.16) are very
small, for example:

Gty Gl Bl 08 L0
Uy, =

Gl b b b L
(5.33)
When matching the one-loop correlation function ¢ with the Wilson loop w the various
logs arising in the large spin limit of the structure constants should match the explicit logs in
(5.30) while the powerlaw corrections in ¢;/.J;, should be matched with the series expansion
of B and A; for small cross-ratios.® If we can match all terms in these Taylor expansions
we would establish (5.28) completely. We almost did it. We matched all terms in the
expansion of A; (see discussion around (D.48) in the appendix D.6.3) and we matched the
first 873 terms in the expansion of B once we translate (5.31) into small ratios expansions
as (5.33) to more easily compare with the structure constants (see discussion around (D.49)
in the appendix D.6.3). This is more than plenty to leave zero doubt in our mind that
(5.28) holds. To fully establish it we would need to finish the full analytic determination of
the structure constants which translate into finding a closed expression to the very simple
remaining 5 constants discussed around (D.52) in appendix D.6.3. It would be very nice
to find these constants. One reason is to conclude this analytic comparison but a perhaps
even more interesting reason would be to analytically understand all the various speculative
remarks about the behavior of the structure constants inside and outside the Euclidean
regime which we mused about in the speculative detour above.

5EXpliCitly, »Az = 2ln(1 - UZ) and B = 2L12(U1) + 2L12(U2) + 2L12(U3) - 57T2.

6In the structure constant there are also terms like ¢1/J3 and so on which have less powers of £’s in the
numerator compared to powers of J’s in the denominator; we call these terms unbalanced. The unbalanced
terms vanish in the large spin/large polarization limit so we are insensitive to them when testing the
WL/Correlation function duality. In other words, the structure constants contain way more information
than the Wilson loop. We can think of them as an off-shell quantum version of the Wilson loop which
reduced to the Wilson loop in a classical limit where we keep balanced terms only such as the ones in the
expansions (5.33).
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Figure 5.4: Top arrow: Large spin three-point function/hexagon Wilson loop duality [143]. Left
arrow: Three point functions can be decomposed in terms of two hexagons [66]. For spinning
operators the necessary formalism is cleaned up in [4]. Right arrow: Wilson loops can be decom-
posed in terms of two pentagons [71]. Bottom arrow: The top duality hints at a transmutation of
hexagons into pentagons in the large spin limit. Would be fascinating to find out how this works.
It might lead to a unified integrability description of open and closed strings in AdS/CFT.

5.6 Discussion

This chapter concerns the duality relation depicted at the top of figure 5.4. On the top left
corner we have three point functions of three twist-two operators with large spins J; and
with polarizations tensor structures parametrized by ¢;. On the top right corner we have
a renormalized Wilson loop parametrized by three finite conformal cross-ratios U;. Our
main result is (5.27) which precisely links these two quantities with a precise kinematical
dictionary.”

Armed with a precise dictionary for the kinematics we can now attack the dynamics of
this problem from an integrability perspective.

Three point functions of three excited two-two operators (each parametrized by J;
integrability magnon excitations) can be decomposed in terms of two hexagons [66]. When
cutting each operator into two these excitations can end up on either hexagon; we must

"Key in deriving this result was the so-called snowflake decomposition of six point correlation function.
It is an interesting open problem to use instead the comb decomposition of a six point correlation function
and arrive at the Wilson loop limit. The method used in this chapter can also applied to derive a link
between three point functions of two spinning operators and the expectaction value of a square Wilson
loop and a local operator [156,157].
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sum over where they end up as indicated in the bottom left corner of figure 5.4.% The larger
the spin, the more excitations we have and thus the scarier are these sums. In the large
spin limit they ought to simplify and give rise to a Wilson loop (an adjoint Wilson loop
or the square of a fundamental one). In turn, the Wilson loop can be obtained by gluing
together two pentagons and summing over all possible virtual particles therein [71]. So the
sum over hexagon’s with their large number of BMN physical excitations should somehow
transmute into a sum over pentagons with a sum over GKP virtual excitations. To attack
this fascinating alchemy exercise, we need to understand how to polarize the hexagon OPE
expansion for spinning operators (all examples so far were for scalar structure constants or
spinning structure constants with a single tensor structure). This is the subject of chapter
6.

8In principle we should also integrate over all possible mirror states at the three lines where the two
hexagons are glued to each other. We are ignoring this extra contribution. We believe it is subleading at
large spin when the effective size of all operators is very large. We are currently trying to check this by an
explicit finite size computation.

9Related to that, in appendix D.6 we extract data for C733 at one loop in N' = 4 SYM generalizing
previous results by Marco Bianchi in [158]; as usual, this data will be very useful in testing any integrability
based approaches.
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Chapter 6

Spinning Hexagons

6.1 Introduction

Three point functions of single trace operators in planar N’ = 4 SYM describe the scattering
of three closed strings in AdS and are thus given by a pairs of pants. Pairs of pants can be
obtained by stitching two hexagons together. That is how tailors make pants and it is also
how one computes three point functions in this gauge theory using integrability [66]. This
chapter is about spinning pair of pants where two or more operators have spin. In this
case the 3pt function is given by a sum of conformal invariant tensor structures and we
need to explain how the hexagons extract the coefficient multiplying each such structure.
For three twist-two operators with spin 2, 4 and 6, for instance, we have the perturbative
result (6.1), see [144], where (ij) is a scalar product involving a left spinor parametrizing
operator i and a right spinor parametrizing operator j.! A main goal of this chapter is to
develop the formalism to reproduce such results from integrability.

Not all terms are equally easy to get. The terms in blue, for instance, are the tree
level contributions; we will develop an efficient recursion algorithm which will allow us to
determine them all (and produce a plethora of new predictions for structure constants of
larger twist operators). The boldfaced terms are what we call the abelian terms; these
structure constants are very integrability friendly as they lack a complicated so-called
hexagon matriz part; these abelian terms we can actually compute easily at one loop (in
cyan here) or even at higher loops. The remaining