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Abstract

This thesis compiles a few developments on the S-matrix bootstrap, conformal field
theory, and integrability in N = 4 SYM. After an introduction contextualizing the various
works that compose this thesis, we present a number of results in independent chapters,
followed by a conclusion discussing some future directions. A lightning summary of each
chapter is as follows:

• In chapter 2, we extend the S-matrix Bootstrap by considering the analyticity and
unitarity of multiple amplitudes at once, and describe how to generalize the frame-
work in order to study theories with a mass hierarchy in two space-time dimensions.

• In chapter 3 we consider a number of 2D bootstrap problems, uncovering a web of
integrable theories at the boundary of theory space.

• In chapter 4 we develop an alternative formulation to the 2D S-matrix bootstrap
that rules out quantum field theories by proving that there cannot exist analytic
S-matrices with given physical properties.

• In chapter 5 we explore the multi-lightcone limit of six-point functions in a conformal
gauge theory to estabilish precise formulas mapping structure constants of large spin
operators and null-hexagonal Wilson loops in conformal gauge theory.

• In chapter 6 we consider the problem of computing structure constants of multiple
spinning operators from integrability in N = 4 SYM.

• In chapter 7 we develop a framework computing structure constants in N = 4 SYM
in terms of Baxter Q-functions to the first few orders in perturbation theory. At
leading order, this reduces to the “Separation of Variables” framework of rational
spin-chains.

• In chapter 8 we describe how analyticity in spin is compatible with the growth in
the number of primary operators with spin in conformal field theory. We do so by
introducing a technique that allows to compute complex spin CFT data from the
Euclidean data.
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Chapter 1

Introduction

Strongly interacting quantum field theories (QFTs) underlie some of the most awe-inspiring
phenomena in nature. The large quantum fluctuations that give rise to their rich dynamics
also make them notoriously challenging to study. QFTs come in all shapes and forms, and
there is no one-size-fits-all strategy to analyse them. This thesis investigates various types
of QFTs, most often exploring Lorentzian physics. In this introduction, we provide context
for the various chapters that comprise this work.

An important class of quantum theories consists of those which admit asymptotic stable
particles, allowing us to probe the theory’s dynamics through particle scattering experi-
ments. This class includes “gapped” theories, for which the vacuum is unique and long
range interactions are absent, as well as theories with sufficiently “soft” low energy physics,
such as theories of Goldstone bosons.

Not all results of these scattering experiments are consistent with a microscopic theory
respecting fundamental principles such as causality, locality, and unitarity [8]. Indeed,
systematic exploration of the consistency between these basic requirements leads to a rigid,
constraining framework. This framework, known as the S-matrix Bootstrap [9], in turn,
allows us to place powerful bounds on possible outcomes of collision experiments, even
when the low energy dynamics is strongly coupled1.

Locality and causality of the microscopic theory are reflected in the analytic structure of
the scattering amplitudes as a function of kinematic invariants 2. At the boundaries of the
domain of analyticity the scattering amplitudes are constrained by (generalized) unitarity

1See [1,10–27] for a number of examples as well as [28–43] for a number of related technical developments.
2See reviews [44–46].
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equations. One possible numerical realization of the S-matrix bootstrap is to parameterize
the space of analytic functions, for example through some power series representation, or
a dispersion relation, and numerically search this space, imposing the unitarity equations
as constraints along the boundaries of the analyticity domain. One may then optimize
over the value of certain physical observables, such as effective couplings or Wilson coeffi-
cients, thus deriving bounds on these objects as the numerical search converges. Inheriting
nomenclature from convex optimization, this is often referred to as the “primal” S-matrix
Bootstrap3.

This strategy is easier to put in practice when considering the two-to-two scattering
of the lightest particles in the field theory. In this case the boundaries of the domain of
analyticity are simple to characterize: they correspond to regions of physical momenta in
the complexified kinematic space, and are thus bounded by simple unitarity equations.
When heavier stable particles exist, more powerful bounds on the space of quantum field
theory can be obtained by requiring that all two-to-two amplitudes are consistent with the
aforementioned fundamental principles.

In chapter 2 we extend the S-matrix bootstrap framework to the case of multiple two-
to-two amplitudes. There are two main novelties. First, there are now singularities away
from the physical scattering region. Their monodromies are given by “extended” unitar-
ity equations, of a more complicated nature. Second, the unitarity equations now couple
several amplitudes at once. After these challenges are overcome we observe powerful im-
provements over previous single amplitude bounds, and uncover rich physics sourced by the
interplay of the various scattering processes. Our results are valid provided the heaviest
scattered particles are not too heavy in units of the lightest mass in the theory. Extending
our results to arbitrary mass spectrum is an important direction of future investigation.

An important experimental observation in these studies is that, when imposing the
consistency of two-to-two scattering, theories on the boundary of the allowed S-matrix
space saturate unitarity: the probability of two particles scattering into anything other
than two particles is zero. Generically this is unphysical. Indeed, in higher dimensions,
Aks theorem [47] shows that an interacting analytic and crossing symmetric two-to-two
amplitude cannot saturate unitarity4. Vanishing particle production is possible in two
dimensional integrable theories. The presence of higher-spin symmetries in these theories
imply these selection rules as well as algebraic constrains on the two-to-two S-matrix,
which must satisfy the Yang-Baxter equation: sequential scattering processes must lead to

3Haters might claim this strategy is also primitive. See chapter 4.
4This is not in contradiction with the numerics since they only asymptote to unitarity saturation, and

Aks theorem does not set a lower bound on particle production at finite energies.
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identical results irrespective of the order in which particles scatter. In chapter 3 we explore
a number of 2D scattering setups involving multiple particle species. We find that in the
boundary of the allowed space of theories live a number of remarkable integrable theories5.
In these explorations, only analyticity and unitarity are imposed. At the boundary, Yang-
Baxter emerges. In fact, through these numerical explorations we identify a previously
unknown - to us, at least - integrable deformation of the supersymmetric sine-Gordon S-
matrix. Thus integrable field theories not only serve as beacons in the space of S-matrices,
but also can be uncovered by the bootstrap.

To exclude unphysical S-matrices on the boundary of the allowed space of previous
studies one must impose constraints that forbid vanishing particle production. Unless
something extraordinary happens, as does in integrable theories, this is ideally achieved by
requiring the analyticity and unitarity of multiparticle amplitudes6. It is an ambitious goal
to parametrize the domains of analyticity of multiparticle amplitudes. So far, this seems far
from reach. Nevertheless, in [48] we will discuss the first multiparticle S-matrix bootstrap
study. We consider the scattering of the Goldstone bosons of broken Poincare symmetry
in long effective strings. In these theories, bundles of left- or right-moving Goldstones
effectively behave as one-particle states. Requiring the consistency of the scattering of
these effective “jets” thus allow us to probe physical theories with non-vanishing particle
production. Fortunately, there is an ideal application to this technique: to study the
dynamics of long chromodynamic fluxtubes. We study the multiparticle scattering on 3D
Yang-Mills fluxtubes in [48], and leave the case of 4D Yang-Mills for future work.

The primal bootstrap strategy adopted in these works is unsatisfactory for two reasons.
First, it is often computationally expensive to search the infinite-dimensional space of
scattering amplitudes. Only when convergence of the numerical algorithm is achieved can
one claim a bound on the space of theories. Second, once an S-matrix is constructed
in the primal method, it is not guaranteed that this amplitude will remain valid once
more physical principles are demanded, e.g. some of the S-matrices at the surface of
the two-to-two S-matrix studies are incompatible with unitarity of two-to-many processes.
It would be preferable to develop a dual strategy that rules out regions of theory space
once and for all, and for which one can claim true bounds regardless of the convergence
of numerical algorithms. This is the strategy adopted in the very successful numerical
conformal bootstrap: there, one searches over functionals with certain properties, which
once found exclude regions of conformal field theory space once and for all. In chapter 4

5Some had already been observed in chapter 2.
6Generically, higher point amplitudes contain singularities whose discontinuities are proportional to

lower point amplitudes, and these do not vanish along the boundary of theory space of previous studies.
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we develop the dual S-matrix bootstrap method in the case of two dimensional theories7.

So far we have discussed quantum field theory that admit a basis of scattering states.
More generally, in scenarios involving long range interactions, especially when these inter-
actions are strong, measuring isolated asymptotic particles might not be possible due to
the uncontrolled emission of massless excitations. Of course, we can still prepare states
in these quantum field theories, perform asymptotic measurements, and require that the
outcome of these measurements are compatible with microscopic local, unitary and causal
physics, even if “particle detectors”are not well defined. A classical example of these can be
found in [49], where the authors consider the consistency of energy-flux measurements in
a unitary conformal field theory and derive bounds on the ratio of the conformal anomaly
coefficients a/c.

What is the space of asymptotic measurements in these more general quantum field the-
ories? In conformal field theory, a minimal set are null averages of local operators, known as
“light-transforms”. These includes the energy and charge flux measurements just discussed.
One might ask, in analogy with local operators, if there exists a convergent expansion of
two light-transforms in terms of effective non-local operators. The answer turns out to be
positive [50, 51], but the objects that appear in this operator product expansion are not
light-transforms of local operators but generalized continuous spin light-ray operators [52].
It is an open problem to determine whether the algebra of light-transforms closes on these
generalized light-ray operators. Uncovering the algebra of asymptotic measurements in
these theories could open the way to systematically bootstrap real-time observable in these
theories. A crucial point to note is that correlation functions of these observable are, by
construction, free of infrared divergences.

The structure of these generalized light-ray remains somewhat poorly understood, spe-
cially in the case of multi-twist trajectories, i.e. those composed of more than two opera-
tors8. In chapters 8 we address a few of these puzzles through analysis of related objects in
N = 4 SYM. In particular, we explain how analyticity in spin, see [55], is compatible with
the growth of primary operators at large spin and develop technology to compute complex
spin continuations of CFT correlators from the euclidean CFT data. In a longer article to
appear along this thesis [56], we consider how the naive continuum of light-ray operators
at weak coupling is quantized into a discrete set of operators corresponding to the discrete
Reggee trajectories of the theory, explain how to compute CFT data in this theory directly
at complex spin and analyse the fate of these infinite families of discrete trajectories as

7See [12] where this strategy was first developed in a single-component setup from a different perspective
as well as [34,35] for some developments in higher dimensions.

8This description makes sense in general CFT at large spin [53,54].
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they interact in the complex spin plane. We hope that the technology which we started
to develop here might help in uncovering the structure of these light-ray operators more
generally.

As the paragraph above illustrates, a common strategy in exploring QFTs is to examine
in detail models that are simple enough to employ analytic methods in their study but rich
enough to capture generic features. This is advantageous in two ways. First, from the
explicit solution to the theory, one may uncover unexpected universal structures. Second,
one can use these theories as a playground to explicitly test general conjectures. With this
strategy in mind, N = 4 SYM serves as an excellent laboratory to explore QFTs, being at
once a conformal gauge theory, a theory of quantum gravity, and exactly solvable at large
Nc.

Integrability of the largeNc dynamics inN = 4 SYM is possible thanks to the AdS/CFT
correspondence [57,58]. Observables in this gauge theory can be computed by a dual string
theory, and it is the the dynamics on the two-dimensional string worldsheet that satisfy a
more standard definition of integrability: the theory on the long-string admits an S-matrix
description, and this S-matrix integrable - the multiparticle scattering is factorized, mo-
mentas are individually conserved, and the fundamental two-to-two amplitude satisfy the
Yang-Baxter equation. The caveat is that the world-sheet S-matrix is not relativistic, and
thus admits a much richer analyticity structure than those considered earlier in this intro-
duction. Nevertheless, symmetry considerations paired with minimal physical assumptions
are enough to completely fix the long-string scattering amplitudes in this theory at any
value of the coupling [59,60].

With knowledge of the long-string S-matrix, a strategy can be developed to compute a
large class of observables in the gauge theory such as exact conformal dimensions [61–65],
correlation functions of local single trace operators [66–70], gluon scattering amplitudes
and null Wilson loops [71–76], and others [77–79]. These computations can be summarized
as follows. One starts from a world-sheet description of these observables. One then
considers a “large geometry” expansion, in which one cuts open the world-sheet along
some tesselation. The finite volume structure of the world-sheet is in this way replaced
by a sum over excitations that propagate over the cut edges. Evaluating each patch of
the world-sheet is now reduced to a generalized scattering problem - we have particles in
asymptotic regions which now are decompactified. These generalized scattering problem
can be completely solved by the “integrable” S-matrix bootstrap. One then recovers the
field theory observable by re-summing these patches.

The main challenge lies on realizing this last step. Re-suming the large-geometry ex-
pansion is often too hard as one must consider contributions of any number of particle
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excitations along cut edges and integrate over their phase-spaces. This strategy is thus
of practical use only when subleading terms in this expansion are under control. This in-
clude, for example, correlations of heavy operators, scattering amplitudes in near collinear
kinematics, or perturbative computations.

In the case of conformal dimensions, i.e the spectrum, this re-summation can be per-
formed in general, thanks to special techniques under the name of “thermodynamic Bethe
ansatz”9 [61–65]. Careful investigation of the final results uncovers deep simplicity that is
obscured in the very physical but complicated large volume expansion [83, 84]. Based on
these observations, a beautiful reformulation of the spectral problem has been accomplished
under the name of “Quantum Spectral Curve” [85, 86]. These are a set of finite difference
and monodromy equations on a set of “Q-functions” living on an infinite genera Riemann
surface whose solutions encode the complete spectrum of the planar gauge theory. They
admit efficient numerical solution [87]. The spectrum problem in this gauge theory is thus
solved.

Given the success of the Quantum Spectral Curve, and the hidden simplicity uncovered
in the spectral problem, it is natural to ask if there exist a sort of Riemann-Hilbert problem
for other observables in this gauge theory, such as local correlation functions and scattering
amplitudes. Inspired by a number of related advancements [88–100], in chapter 7 we lay
down the groundwork for such a formulation in the case of three-point correlators. At
leading order in the coupling, this construction reduces to the “Separation of Variables”
(SoV) framework of integrable rational spin-chains. We develop the first few “quantum
corrections” to this formalism, and reproduce the first few finite volume effects associated
to the closed world-sheet geometry describing these observables. To some problems, this
new framework is already far more efficient than previous “tesselation based” methods,
most notably for the investigations of light-ray operators in chapter 8. Hopefully it will be
possible to lift the SoV structure to finite coupling in the coming years.

Computations of local correlators and of gluon amplitudes are not independent in this
theory. The later are included in the former by considering correlation function with
operators approaching cusps of null polygons [101]. The multi-lightcone singularities of
these correlators are controlled by excitations propagating along the null separations which
effectively source polygonal null Wilson loops. The latter are related by string dualities to
scattering amplitudes [102, 103]. In chapter 5 we provide sharp formulas expressing these
hexagonal Wilson loops/six gluon amplitudes in terms of three point functions of large spin
operators. The kinematics of the scattering process are controlled by the spin polarisation
of the spinning operators. The result is derived solely by analysing the six-point crossing

9See [78–82] for a few other notable exceptions.
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equation in the multi-lightcone limit, and does not rely on integrability.

On the other hand, these results have clear implications for the integrability structure
of N = 4 SYM: it shows that different tesselations strategies - those applied to scattering
amplitudes and those applied to local correlators - should provide the same answer. In
particular, the manifest simplicity of the collinear expansion in the amplitudes side must
imply huge hidden simplifications on the correlation computation, while this latter might
simplify and reveal structure in a different kinematical region. In chapter 6 we investigate
three-point functions of spinning operators from this perspective. Despite deriving all-
loop formulas expressing the structure constants of large twist spinning operators in some
particular polarizations through nice pfaffian formulas, we do not succeed in making direct
contact with scattering amplitudes. Instead, we provide recursion relations capable of
generating “analytic data” for these structure constants at finite values of spin. These
should be important in the development of the SoV framework10, which so far computes
correlation functions with at most one spinning correlator11.

In summary, this thesis tackles questions in quantum field theory from diverse per-
spectives. The various chapters can be read independently, and up to minor adaptations
are equivalent to the papers listed in the Statement of Contributions of this thesis. The
chapters are ordered with +iϵ.

10The SoV framework also seems more suitable to large spin applications than the hexagonaliza-
tion/tesselation framework. It might thus be the better framework to investigate local correlator/scattering
amplitudes dualities from the integrability perspective.

11With one minor exception, see chapter 7.
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Chapter 2

The S-matrix Bootstrap: Multiple
Amplitudes

2.1 Introduction

The bootstrap of the two-to-two S-matrix of the lightest particle in a relativistic unitar-
ity quantum field theory was revived in [9, 10, 104] and extended to particles with flavour
in [11, 13–15]. These works can be seen as gapped counterparts of the conformal boot-
strap explorations in [105, 106] and [107] (without and with flavour respectively). In this
chapter we discuss the bootstrap analysis of S-matrix elements involving different external
particles in Z2 symmetric theories. This multiple amplitude study again mimics a similar
development in the conformal bootstrap, namely the multiple correlator analysis of the
Ising model which famously gave rise to the CFT islands in [108].

We will consider two-dimensional QFTs with exactly two stable particles of masses m1

and m2. We will assume the theory to be parity and time-reversal invariant and both
particles to be parity even. For simplicity we will also postulate the existence of a Z2

symmetry, under which the first particle is odd and the second particle is even.1 This
means that the nonzero three-particle couplings are g112 and g222, which can be defined
non-perturbatively in terms of the residues of a pole in a suitable S-matrix element. In the
first part of this chapter we will analyze all the two-to-two S-matrices of particles 1 and 2
and use crossing symmetry, analyticity and unitarity to explore the space of possible points
in the (non-dimensionalized) (g112, g222) plane as a function of m2/m1 – see figure 2.8 on
page 24 to get an idea. In order to avoid singularities or Coleman-Thun poles [109], which
complicate the analytic structure of the scattering amplitudes, we will restrict ourselves to

m2 ≤
√
2m1 . (2.1)

Note that we allow m2 < m1 also.

Under the stated assumptions there are five different physical two-to-two scattering
processes as shown in figure 2.1. These can be grouped either according to the nature of

1In two dimensions theories with fermions and scalars are naturally Z2 symmetric theories so the setup
here applies as well to any theories with scalars and fermions, not necessarily supersymmetric.
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their intermediate states, which can be Z2 odd or even, or according to whether they are
‘diagonal’ or not. To wit, for a diagonal process the incoming and outgoing momenta are
the same whereas for an off-diagonal process they are different.2 As is also indicated in
figure 2.1, we call the 12 → 12 diagonal process ‘forward’ scattering, and the 12 → 12
off-diagonal process ‘backward’.

In section 2.2 we will state in detail the conditions of unitarity, analyticity, and crossing
symmetry that these five processes must obey. To guide ideas let us mention two conspic-
uous facts. First, we note that crossing symmetry flips the s and t axes on the diagram.
This relates the two off-diagonal processes and thereby reduces the number of indepen-
dent amplitudes (i.e. functions of the Mandelstam invariant) to four. Of course, it also
imposes a non-trivial constraint on the amplitudes for the diagonal processes. Second, we
observe that particle 1 can appear as an intermediate state in all the odd processes and
gives rise to a pole in these amplitudes with residue proportional to g2112, whereas particle
2 gives rise to poles in all the even amplitudes with residues proportional to g2112, g112g222
or g2222, depending on the process. These poles can be thought of as our definition of the
corresponding couplings.3

2.1.1 Quick comparison with single-correlator bounds

As a warm up exercise let us first discuss the three diagonal processes in isolation and
explain how the methods discussed in [9, 10, 110] already lead to some constraints on the
couplings.

The analyticity and crossing symmetry of the diagonal processes in the Mandelstam s
plane is pretty straightforward. For example, the odd process has a two-particle s-channel
cut starting at s = (m1+m2)

2 and a pole at m2
1 with residue proportional to g2112, plus the

crossed t-channel singularities obtained by swapping s→ 2m2
1+2m2

2−s. The even processes
S11→11 and S22→22 have their two-particle s-channel cuts starting at min(4m2

1, 4m
2
2) and a

pole with residue g2112 or g2222, again plus the crossed t-channel singularities obtained by
swapping s → 4m2

1 − s or s → 4m2
2 − s. As for unitarity, notice that the discontinuity

across the cut is always positive, but it is bounded from above only for physical s, which
means s > 4m2

1 for S11→11 and s > 4m2
2 for S22→22. Therefore only for the lightest of the

two particles is the discontinuity everywhere bounded from above, whereas for the other
particle the discontinuity can be arbitrarily large (but not negative) in the interval between
min(4m2

1, 4m
2
2) and max(4m2

1, 4m
2
2).

We can bound the couplings as follows. First let us bound g2112 by using the maximum
modulus principle for Sforward

12→12 following [9,10,110]. We define

f12→12(s) ≡ Sforward
12→12 (s)/

h12(s) + h12(m
2
1)

h12(s)− h12(m2
1)
, (2.2)

2As explained further below, in two dimensions the scattering angle can take only two values by kine-
matical restrictions; the outgoing momenta are essentially ‘locked’ in terms of the incoming momenta.
Unlike in higher dimensions, there is therefore no (analytic) function interpolating between forward and
backward scattering.

3The astute reader will have noticed that this defines the couplings only up to an overall sign flip,
leading to an obvious reflection symmetry in some of our plots.
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Figure 2.1: Diagonal processes are those where the incoming and outgoing particles have the
same momenta as illustrated in the first row; they are all crossing invariant. The non-diagonal
processes in the second row are those for which the final momenta are not the same as the initial
momenta. Swapping space and time interchanges the odd and even off-diagonal processes so these
off-diagonal processes play a crucial role in connecting these two sectors of different Z2 charge.

with hab(s) ≡
√

(s− (ma −mb)2)((ma +mb)2 − s). The function f12→12 is free of singular-
ities (since we divided out by functions with poles at the pole location of the amplitudes)
and is bounded at the s– and t– channel cuts (since the functions we divided by are phases
at those cuts and the amplitude is bounded). Therefore f12→12(s) must have absolute value
smaller or equal to 1 everywhere, and in particular at m2

2 and m
2
1 where we can simply read

off the maximally allowed couplings in these amplitudes. This leads to a universal upper
bound on g2112, which is the solid line in figure 2.2.

The exact same analysis can be used for the elastic amplitude for the lightest of the
two particles. If we denote this by ℓ, so mℓ = min(m1,m2), then the maximum modulus
principle for

fℓℓ→ℓℓ(s) ≡ Sℓℓ→ℓℓ(s)/
hℓℓ(s) + hℓℓ(m

2
2)

hℓℓ(s)− hℓℓ(m2
2)

(2.3)

gives a bound on the coupling appearing on Sℓℓ→ℓℓ, which is g2ℓℓ2. This is the dashed line
for m2 > m1 in figure 2.2 and the solid line for m2 < m1 in figure 2.3.
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Figure 2.2: Upper bounds on the cubic coupling g2112 as a function of µ ≡ m2/m1. Dashed line:
Analytic bound based on the scattering of the lightest odd particle, from [9]. Solid line: Analytic
bound arising from the forward (or transmission) scattering of the odd particle against the even
particle; it is a much stronger bound. Red dots: The numeric bound obtained from all two-to-two
processes as discussed in the main text. The shaded regions represent the allowed regions which
nicely shrink as we include more constraints. Any relativistic, unitary, Z2 invariant theory theory
with two stable particles (one odd with mass m1 and one even with mass m2) must lie inside the
darkest blue region.

Finally we can use the techniques of [9] to also derive a bound on g222 from the amplitude
S22→22 even when m2 is not the lightest particle. In this case there is a cut which is not
bounded directly by unitarity as depicted in figure 2.4. As we derive in appendix A.3, the

12



0.6 0.8 1.2 1.4

2

4

6

8

10log

✓
g2
222

m4
1

◆

g2
max from all amplitudes = Numerics

222

222

µ ⌘ m2

m1

g2
max from 22!22 =

8
<
:

12m4
2

p
3 if µ < 1

12m4
1µ

2
p

3

✓
µ2

p
3+4
p

µ2�1

µ2
p

3�4
p

µ2�1

◆
if µ > 1

Figure 2.3: Upper bounds on the cubic coupling g222 as a function of µ ≡ m2/m1. Solid line: An-
alytic bound based on the scattering of the lightest even particle, from [9]. Red dots: The numeric
bound obtained from all two-to-two processes as discussed in the main text. The shaded region
represent the allowed region. When the even particle is the lightest, we can solve analytically for
the maximal coupling, even considering the full set of amplitudes. When the odd particle is the
lightest, the coupling can be bigger, diverging when singularities of the amplitudes corresponding
to physical processes collide. This happens at m2/m1 = 2/

√
3. After this mass ratio the upper

bound disappears.

amplitude with maximal g2222 is given by

S22→22(s) = −
h22(s) + h22(m

2
2)

h22(s)− h22(m2
2)
× h22(s) + h22(4m

2
1)

h22(s)− h22(4m2
1)

(2.4)

The corresponding bound on g2222 is plotted as the solid line in figure 2.3 for m2 > m1. As
the figure shows, the bound actually disappears for m2 ≥ 2√

3
m1, which is due the t-channel

pole colliding with the s-channel cut in the 22 → 22 process at this mass ratio. This is
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Figure 2.4: Analytic structure of the S22→22 amplitude (for clarity we do not show the left cut
and s-channel pole following from crossing symmetry S22→22(s) = S22→22(4m

2
2− s)). If m2 is not

the lightest particle, there is a new feature in the S22→22 amplitude: a two particle cut starting
at s = 4m2

1 corresponding to the contribution of two particles m1. This cut appears before the
cut for two particles m2 at physical energies s ≥ 4m2

2 where regular unitarity is imposed and the
amplitude needs to be bounded. As m2 grows beyond 2/

√
3m1 the t-channel pole corresponding

to the exchange of particle m2 enters the new cut (by crossing symmetry the s-channel pole enters
the t-channel cut) so we “lose” this pole. Beyond this point we can no longer bound g222 since it
does not appear in any other diagonal amplitude. This is indeed what we observe in the numerics
as illustrated in figure 2.3. Note that before the bound on g222 disappears it diverges. This
divergence, arising from the collision of the t-channel pole with an s-channel cut is analogous to
the divergences in bounds on couplings when s– and t– channel poles collide as already observed
in [9]; the dashed line in figure 2.2 which was taken from [9] diverges at m2 =

√
2m1 for exactly

this reason.

the simplest instance of a phenomenon we call screening. It is detailed in figure 2.4 and
we will encounter it again below. In the same way we could obtain a bound on g2112 from
the 11 → 11 process even when m1 is the heaviest particle. This bound corresponds to
the dashed line in figure 2.2 for µ < 1, and is always less restrictive than the bound from
Sforward
12→12 .

This concludes our discussion of the single-amplitude results. As a preview for the more
detailed numerical results presented below, we already marked in figures 2.2 and 2.3 in red
dots our best numerical values of the coupling obtained from a simultaneous analysis of
the full set of two-to-two amplitudes depicted in figure 2.1. Figure 2.2 displays a clear
improvement over the quick single-amplitude analysis for m1/

√
2 < m2 <

√
2m1, with an

intriguing kink at m2 = m1. It would be fascinating to find if this kink corresponds to a
physical theory. On the other hand, in figure 2.3 we see no improvement over the single-
amplitude results. In fact, in section 2.3 we will prove that the maximal value of g222 in the
multi-amplitude analysis saturates the single-amplitude analytic bounds just derived. In
the same section we will show a more complete picture by considering the entire (g112, g222)
plane.
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2.1.2 QFT in AdS

As shown in [104], there exists a completely orthogonal approach towards the problem of
determining the maximal couplings in QFT. Rather than working from the S-matrix, which
required analyticity assumptions that in general dimension D are not very well understood,
the idea is to consider QFTs on an AdS background. The boundary correlators of such
a QFT, which are defined in a similar way as in the AdS/CFT correspondence, behave
much like conformal correlation functions in one lower dimension d = D − 1. By applying
numerical conformal bootstrap methods of [105] one can put a universal upper bound on
the three-point couplings of QFTs in AdS. One can then extrapolate this bound to the
flat-space limit (by sending all scaling dimensions to infinity), resulting in putative bounds
for flat-space QFTs. In [9,104] this was shown to work extremely well for two-dimensional
QFTs: a precise match was found between the single-correlator analysis using the confor-
mal bootstrap, and the single-amplitude analysis that we partially reviewed above.

In this chapter we extend these explorations. As discussed further in section 2.4, the
Z2 symmetric setup that we consider is easily translated to a multi-correlator conformal
bootstrap problem for QFTs in AdS. In most cases we again find a very good match, and
in particular we are able to recover the coupling of the 3-state Potts field theory from
the conformal crossing equations. For large-ish mass ratios, however, we will see that
the multi-correlator bootstrap appears to be less powerful than even the single-amplitude
bootstrap.

2.1.3 Outline

The Z2 symmetric S-matrix bootstrap is fully spelled out in section 2.2 and analysed
numerically in section 2.3 leading to various bounds on the allowed coupling space for
various mass ratios as illustrated in figure 2.8. In section 2.3.3 we discuss integrable Z2

symmetric theories with m2 = m1 and how some of them nicely show up at the boundary
of the allowed S-matrix space found in the numerical bootstrap. These include a massive
deformation of the 3-state Potts model, the super-symmetric Sine-Gordon model and a
SUSY breaking integrable elliptic deformation of the super-symmetric Sine-Gordon which
seems to be novel as far as we know. Section 2.4 contains the results from the QFT in
AdS analysis. Various appendices complement the main text with further extensions. (For
example, the special role of the Tricritical Ising model as a kink in the space of S-matrices
is discussed in appendix A.8.)

2.2 Multiple amplitudes

2.2.1 Kinematics of the various Z2 preserving processes

There are six two-to-two processes involving particles m1 (odd) and m2 (even) in a two
dimensional Z2 symmetric theory. We also assume time-reversal and parity symmetry.
Four of those six are even processes where we scatter either 11 or 22 into either 11 or 22.
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Figure 2.5: In two dimensions when we scatter two particles ma and mb from the infinite past
with ma to the left of mb we can end up, in the infinite future with ma to the right of mb or vice-
versa. If the particles are distinguishable these are two genuinely different processes denoted as
the forward or backward process. (They are sometimes also called the transmission and reflection
processes.) In higher dimensions, these two scenarios are limiting values of the a single amplitude
when the scattering angle tends to θ = 0 or θ = π, but in two dimensions there is no scattering
angle and these processes are described by independent functions. As we exchange time and
space, i.e. as we analytically continue these processes by swapping t and s we see that the
forward process is mapped to itself while the backward process as seen from its crossed channel
describes the mama → mbmb event. This translates into equations (2.19) and (2.20) in the main
text.

Of those four, two are trivially related by time-reversal,

M22→11 =M11→22 (2.5)

so we can ignore one of them (say 22→ 11) in what follows. The remaining two processes
are Z2 odd processes where we scatter the odd particle against the even particle obtaining
those same two particles in the future. As explained in the introduction this process splits
into two possibilities which we call the forward and the backward component, see figures
2.1 and 2.5.

In two dimensions, any process depends uniquely on the center of mass energy or
equivalently on the Mandelstam invariant

s = (p1 + p2)
2 . (2.6)

This in particular means that the other two Mandelstam invariants

t = (p1 − p3)2 , u = (p1 − p4)2 . (2.7)

are completely determined in terms of s. It is important to find the precise relation be-
cause crossing symmetry permutes the three Mandelstam invariants and therefore leads
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to symmetries of the amplitudes M(s) that we need to impose. In a process4 involving
mamb → mcmd

0 = 8

∣∣∣∣∣∣

p1 · p1 p1 · p2 p1 · p3
p2 · p1 p2 · p2 p2 · p3
p3 · p1 p3 · p2 p3 · p3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

2m2
a s−m2

a −m2
b −t+m2

a +m2
c

s−m2
a −m2

b 2m2
b −u+m2

b +m2
c

−t+m2
a +m2

c −u+m2
b +m2

c 2m2
c

∣∣∣∣∣∣
(2.8)

The first equal sign is the two dimensional constraint: in two dimensions p3 is always a
linear combination of the two-vectors p1 and p2 and hence the determinant vanishes. In
the second equal sign we used the on-shell conditions and momentum conservation. For
example 2p2 · p3 = −(p2− p3)2+ p22+ p23 = −(p1− p4)2+ p22+ p23 = −u+m2

b + d2c and so on.
Evaluated explicitly and combined with the previous linear constraint on the Mandelstam
invariants, this can be cast in a nice symmetric form:

0 = stu+ s(m2
a +m2

b)(m
2
c +m2

d) + t(m2
a +m2

c)(m
2
b +m2

d) + u(m2
a +m2

d)(m
2
b +m2

c) + C(2.9)

where C = −1
6
(
∑
m2
i )

3 − 1
2
(
∑
m4
i )(
∑
m2
i ) +

2
3

∑
m6
i .

Let us now specialize to the Z2 preserving cases mentioned above. For the simplest
processes corresponding to all equal masses (i.e. for 11 → 11 and 22 → 22) the condition
dramatically simplifies into stu = 0 which leads to u = 0 or t = 0 or s = 0. In fact, we can
not set s = 0 since by definition we assume s to be constructed from two incoming particles
and setting u = 0 or t = 0 is the same up to a simple relabelling of the final particles which
we can always do for indistinguishable particles. Hence without loss of generality we can
set u = 0 recovering the famous result that elastic scattering of identical particles in two
dimensions has zero momentum transfer.

Next we have the processes involving two particles of mass m1 and two particles of mass
m2. Here it matters whether the two particles of the same mass are both incoming or if
one is incoming and the other is outgoing. Let us start first with the second case so that
we can set ma = md = m1 and mb = mc = m2 in agreement with the conventions of figure
2.5. Then we obtain a nice factorization of the constraint (2.9) into

0 = u
((
m2

1 −m2
2

)2 −
(
2m2

2 + 2m2
1 + s

)
s+ su

)
(2.10)

with two clear solutions: u = 0 corresponding to forward scattering and u = 2m2
1 + 2m2

2 −
(m2

1 −m2
2)

2
/s+ s corresponding to the more complicated backward scattering. Note that

in forward scattering the final momenta are equal to the initial momenta but this is not
the case in backward scattering where the momentum transfer is non-zero as highlighted
in figure 2.5.

Lastly we have the even process 11 → 22 where ma = mb = m1 and mc = md = m2

which of course corresponds to a simple relabelling of the previous constraint in which
s↔ u and thus leads, after discarding the s = 0 solution, to

0 =
(
m2

1 −m2
2

)2 −
(
2m2

2 + 2m2
1 + u

)
u+ su (2.11)

4In the convention p21 = m2
a, p

2
2 = m2

b , p
2
3 = m2

c and p24 = m2
d.
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whose solutions are u = 1
2
(2m2

1 + 2m2
2 ±

√
(4m2

1 − s)
√

(4m2
2 − s) − s). In fact, these two

solutions are equivalent up to relabelling of the two outgoing particles. Of course, the s↔ u
relation between 11→ 22 and backward 12→ 12 scattering is just crossing symmetry.

All in all we understood that all amplitudes can be thought of as functions of s with
the other Mandelstam invariants given by

M11→11(s) : t = 4m2
1 − s, u = 0, (2.12)

M22→22(s) : t = 4m2
2 − s, u = 0, (2.13)

M forward
12→12 (s) : t = 2m2

1 + 2m2
2 − s, u = 0, (2.14)

Mbackward
12→12 (s) : u+ t = 2m2

1 + 2m2
2 − s, t =

(m2
1 −m2

2)
2

s
, (2.15)

M11→22(s) : u− t =
√

(4m2
1 − s)

√
(4m2

2 − s), u+ t = 2m2
1 + 2m2

2 − s . (2.16)

The above equations allow us to state the crossing symmetry equations which we will
impose in the sequel. They are:

M11→11(4m
2
1 − s) =M11→11(s) , (2.17)

M22→22(4m
2
2 − s) =M22→22(s) , (2.18)

M forward
12→12 (2m2

1 + 2m2
2 − s) =M forward

12→12 (s) , (2.19)

M11→22(2m
2
1 + 2m2

2 −
(m2

1 −m2
2)

2

s
− s) =Mbackward

12→12 (s) . (2.20)

Note in particular that the last crossing relation plays quite an important role: it connects
the even and the odd sectors.

For more on how the above discussion can be related to a similar analysis in higher
dimensions see appendix A.1.

2.2.2 Analyticity, Unitarity and Extended Unitarity

The central hypothesis for the S-matrix bootstrap is that the scattering amplitudes are
analytic for arbitrary complex values of s up to so-called Landau singularities [111] corre-
sponding to on-shell intermediate processes. For the amplitudes and mass range discussed
in this chapter, these singularities in the physical sheet correspond to the possibility of
the full a → b scattering process to factorise into two scatterings, first a → c and then
c → b. Each on-shell state c of the theory will produce a singularity in the a → b process
for s equal to the center of mass energy squared of the state c. This singularity will then
proliferate according to its image under crossing transformations, see e.g. (2.17–2.20).
The discontinuities around these singularities are governed by the generalized unitarity
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equations [111],

M12→34(s+ iϵ)−M12→34(s− iϵ) = 2ImM12→34(s+ iϵ) =
∑

c

∫
dΠcM

∗
12→cMc→34 (2.21)

(where the first equality assumes time reversal invariance.) Equation (2.21) is very powerful
and reduces to a number of familiar examples in special cases:

• The contribution from one particle intermediate states corresponds to nothing but
the usual bound-state poles: there the phase space integral reduces to the energy
momentum delta function and the product of amplitudes to the physical three-point
couplings, combining to the bound-state pole discontinuity −2πiδ(s−m2

k)g12kg34k.

• For real values of s for which there are no on-shell states, (2.21) reduces to the reality
condition ImM12→34 = 0.

• If we are at physical energies, s > max{(m1 +m2)
2, (m3 +m4)

2}, then (2.21) is just
the physical unitarity condition ⟨34|S†S − 1|12⟩ = 0.

• All of the above are very well known. Indeed, for the lightest two particle states
in a given channel, there is nothing more to (2.21) than bound state poles, real
analyticity and unitarity. For heavier external states, however, (2.21) extends the
unitarity relation to the unphysical energy region s < max{(m1 +m2)

2, (m3 +m4)
2}

by keeping the quadratic terms in the unitarity equation that correspond to physical
intermediate states of energy

√
s. This is what is called extended unitarity.

In our Z2 symmetric setup and for
√
s < min(3m2, 2m1 +m2),

5 we find

2ImM11→11 =
|M11→11|2

2
√
s(s− 4m2

1)
θ(s− 4m2

1) +
|M11→22|2

2
√
s(s− 4m2

2)
θ(s− 4m2

2), (2.22)

2ImM11→22 =
M11→22M

∗
11→11

2
√
s(s− 4m2

1)
θ(s− 4m2

1) +
M∗

11→22M22→22

2
√
s(s− 4m2

2)
θ(s− 4m2

2), (2.23)

2ImM22→22 =
|M11→22|2

2
√
s(s− 4m2

1)
θ(s− 4m2

1) +
|M22→22|2

2
√
s(s− 4m2

2)
θ(s− 4m2

2), (2.24)

and for
√
s < min(3m1, 2m2 +m1),

2ImMForward
12→12 =

|MForward
12→12 |2 + |MBackward

12→12 |2
2
√

(s− (m1 −m2)2)(s− (m1 +m2)2)
θ(s− (m1 +m2)

2), (2.25)

2ImMBackward
12→12 =

M∗Forward
12→12 MBackward

12→12 +M∗Backward
12→12 MForward

12→12

2
√

(s− (m1 −m2)2)(s− (m1 +m2)2)
θ(s− (m1 +m2)

2),

(2.26)

5The bound corresponds to the first Z2 even three particle state.
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where the denominators come from the phase space factors and θ is the Heaviside
step function. For example, if m2 > m1 then equation (2.24) for s > 4m2

2 is just
unitarity for the 22 → 22 process, but for 4m2

1 < s < 4m2
2 it is a “new” constraint

over the |11⟩ production cut.

Of course, the scattering amplitudes also have cuts and poles corresponding to crossed
intermediate processes. The discontinuities around those singularities are governed by
the generalised unitarity equations for the crossed scattering, together with the crossing
equations (2.17–2.20).

For energies above the three particle threshold, new terms corresponding to three-
particle intermediate states should be introduced in the r.h.s. of equations (2.22-2.26) It
is useful, however, to keep only the contributions from two-particle intermediate states
and replace the full set of equations (2.22-2.26) by a positive semidefinite constraint on
the amplitudes. For the Z2 even sector, by dropping the contributions from intermediate
states with three or more particles in (2.21), we can write in matrix form

2ImM ⪰M†ρ2M, M =

(
M11→11 M11→22

M11→22 M22→22

)
, ρ =

(
ρ11 0
0 ρ22

)
, (2.27)

where ρ2ab =
θ(s−(ma+mb)

2)
2
√
s−(ma+mb)

2
√
s−(ma−mb)2

takes into account the phase space volume. Note

that (2.27) is saturated for
√
s < min(3m2, 2m1 +m2). As discussed in section 2.3, for the

numerical implementation we impose (2.27) even before multiparticle thresholds, leaving
for the computer to achieve saturation where (2.22-2.24) applies. A similar discussion holds
for the Z2 odd sector.

In appendix A.2, we provide a direct derivation of (2.27) for
√
s > 2max(m1,m2). This

derivation elucidates the physical meaning of the matrix M and its relation to transition
probabilitues between initial and final states.

2.3 Numerics

2.3.1 Implementation

As discussed in section 2.2.2, the Z2 symmetric scattering amplitudes in the mass range
(2.1) are analytic functions in the physical sheet of the the kinematical variable s up to
poles corresponding to bound states. This sheet is defined by continuing the amplitudes
away from physical kinematics respecting the iϵ prescription and has as its boundaries
cuts corresponding to two and higher particle production thresholds which may happen in
the s, t and u channels. These can be summarised by expressing the amplitudes through
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dispersion relations, as illustrated in figure 2.6. For the case m1 < m2, we obtain

M11→11(s) = C11→11 −
g2112

s−m2
2

− g2112
t(s)−m2

2

+
1

π

∫ ∞

4m2
1

ImM11→11(s
∗)

s∗ − s ds∗ (2.28)

+
1

π

∫ ∞

4m2
1

ImM11→11(t
∗)

t∗ − t(s) dt∗,

M22→22(s) = C22→22 −
g2222

s−m2
2

− g2222
t(s)−m2

2

+
1

π

∫ ∞

4m2
1

ImM22→22(s
∗)

s∗ − s ds∗ (2.29)

+
1

π

∫ ∞

4m2
1

ImM22→22(t
∗)

t∗ − t(s) dt∗,

MForward
12→12 (s) = C12→12 −

g2112
s−m2

1

− g2112
t(s)−m2

1

+
1

π

∫ ∞

(m1+m2)2

ImM12→12(s
∗)

s∗ − s ds∗ (2.30)

+
1

π

∫ ∞

(m1+m2)2

ImM12→12(t
∗)

t∗ − t(s) dt∗,

M11→22(s) = C11→22 −
g112g222
s−m2

2

− g2112
t(s)−m2

1

− g2112
u(s)−m2

1

+
1

π

∫ ∞

4m2
1

ImM11→22(s
∗)

s∗ − s ds∗

(2.31)

+
1

π

∫ ∞

(m1+m2)2

ImMBackward
12→12 (t∗)

t∗ − t(s) dt∗ +
1

π

∫ ∞

(m1+m2)2

ImMBackward
12→12 (u∗)

u∗ − u(s) du∗,

with Ca→b constant. Equations for the m1 > m2 case are obtained by replacing
4m2

1 → 4m2
2 in the lower limits of the integrals. Recall that these are the only independent

amplitudes, since MBackward
12→12 (s) =M11→22(2m

2
1 + 2m2

2 − (m2
1−m2

2)
2

s
− s).

In deriving this relations, see figure 2.6, we assumed that the scattering amplitudes have
no essential singularities at infinity, and in fact approach a constant in this limit, i.e. the
S-matrix becomes free. This latter assumption is not crucial nor required: it can be lifted
by introducing subtractions as discussed in [9] and the numerical problem of maximising
the couplings is not sensitive to this. This is to be expected physically, since the low
energy physics of bound state poles should not be much sensitive to the behaviour of the
amplitudes at high energies.

To obtain a concrete numerical implementation to the problem, we proceed as follows.
First, we define a dispersion grid {x1, ..., xM} along the integration domains in (2.28-2.31).
We then approximate the discontinuities ImMa→b(x

∗) by splines σa→b(s)
6 linear in between

the grid points up to a cutoff point xM , after which we assume the discontinuities decay as
ImMa→b(x

∗) ∼ 1/x∗.7 With this approximation we can analytically perform the integrals

6If m1 < m2, extended unitarity, equations (2.22-2.24), allows for M22→22 to diverge as 1/
√
s− 4m2

1

close to the 4m2
1 threshold. Due to this, between the first two grid points, we approximate ImM22→22 ∝

1/
√
s− 4m2

1. If m1 > m2 we should replace 1↔ 2 in this discussion.
7This is similar to the numerical implementation in [9]. We could have parametrised our amplitudes

using the ρ variables defined in [10]. These variables provide a cleaner framework for the numerics but,
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Figure 2.6: Analytic structure of M11→22(s). According to the kinematics in equation (2.15), as
we move in the s plane, we hit poles and two-particle (as well as multiparticle) thresholds in the
s and u channel, but not in the t-channel. This is a consequence of our arbitrary definition of t
and u (in the language of appendix A.1, this comes from choosing for each s a single point in the
two-valued hyperbolas of figure A.2). To derive the dispersion (2.31) we start by assuming the
amplitude approaches a constant at infinity (but see discussion in the main text) and write the

identity M11→22(s) = M∞ + 1
2πi

∫
γ
M11→22(s∗)−M∞

s∗−s ds∗, where γ is the dotted contour above. We
can then neglect the arcs at infinity. The contribution from the arcs around the red singularities
correspond to the s-channel pole and s∗ integral in (2.31). After changing the integration variable
in the remaining terms to u∗(s∗) according to equation (2.15), we find the kernel transformation∫∞
0

ds∗

s∗−s →
∫∞
(m1+m2)2

( 1
u∗−u + 1

u∗−t)du
∗ + C11→22, where we could relabel u∗ → t∗ in the second

term. Then, after absorbing M∞ into the constant C11→22 and using the crossing relation (2.20)
and the discontinuity formula (2.21) for the pole terms, we obtain the dispersion relation (2.31).

in (2.28-2.31) obtaining, in the case m1 < m2 and for M11→11, as an example,

M11→11(s) ≈ C11→11 −
g2112

s−m2
2

− g2112
t(s)−m2

2

+
M∑

i=1

σ11→11(xi)(Ki(s) +Ki(t(s))), (2.32)

where the functions Ki are defined in the appendix A of [9]. Next, we impose (2.27) along a
fine grid over s > min{4m2

1, 4m
2
2} (we impose analogous constraints over analogous ranges

for the Z2 odd channels). Note that we leave for the computer to achieve saturation of
(2.27) before the three-particles thresholds. As shown in appendix A.9, equation (2.27)is
equivalent to the semidefiniteness constraint

(
I ρM

(ρM)† 2Im M

)
⪰ 0 , (2.33)

and a similar rewriting can be done for the Z2 odd sector. If we fix α = g222
g112

, as well as the

masses, then the matrix in the l.h.s. of (2.33) is linear on the variables {Ca→b, g
2
112, σa→b(xi)}.

The problem of maximising g2112 in this space of variables under the positive semidefinite

in practice, we find that convergence with the ρ variables is much slower than with the use of discretized
dispersion relations.
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Figure 2.7: Maximum coupling g112 as a function of α = g222/g112 for a Z2 symmetric theory with
an odd and an even particle both with the same mass. Solid black: bounds from single amplitude
analytics. Red: bounds from multiple amplitudes numerics. The interesting points A,B,C,D
are discussed in more detail in the next section. Multiplying the α axis by g112 we convert this
plot into a plot of the allowed coupling space (g112, g222), see figure 2.9.

constraint (2.27) (and equivalent for the Z2 odd sector) is therefore a semidefinite program
and can be solved with, say, SDPB [112].

2.3.2 Results for any m2/m1

For each mass ratio m2/m1 and for each coupling ratio α ≡ g222/g112 we can now look for
the maximum value of g112. By varying all parameters we obtain a nice 3D plot which is
presented in appendix A.4; by contrast, in this section we will restrict ourselves to showing
only 2D plots that each correspond to a fixed value ofm2/m1. For example, at equal masses
m2/m1 = 1 we have figure 2.7 which shows the upper bound as a function of α. Although
holding α fixed is convenient for the numerics (as explained above), it is sometimes more
useful to visualize the allowed space of couplings (g112, g222) instead. To do this we simply
multiply the α axis in the numerics by g112, and in this way we can represent the same
m2/m1 = 1 data as in figure 2.9. Applying the same mapping to other mass ratios in

23



-2 -1 1 2

-4

-2

2

4

100
---
141

g222

m2
1

g112

m2
1

m2

m1
= 1/1.41

-2 -1 1 2

-4

-2

2

4

100
---
131

g222

m2
1

g112

m2
1

m2

m1
= 1/1.31

-3 -2 -1 1 2 3

-4

-2

2

4

100
---
121

g222

m2
1

g112

m2
1

m2

m1
= 1/1.21

-3 -2 -1 1 2 3

-4

-2

2

4

100
---
111

g222

m2
1

g112

m2
1

m2

m1
= 1/1.11

-10 -5 5 10

-4

-2

2

4

21
--
20

g222

m2
1

g112

m2
1

m2

m1
= 1.05

-15 -10 -5 5 10 15

-4

-2

2

4

107
---
100

g222

m2
1

g112

m2
1

m2

m1
= 1.07

-200 -100 100 200

-4

-2

2

4

131
---
100

g222

m2
1

g112

m2
1

m2

m1
= 1.31

-200 -100 100 200

-4

-2

2

4

141
---
100

g222

m2
1

g112

m2
1

m2

m1
= 1.41

Figure 2.8: Space of allowed couplings for fixed mass ratios. Horizontal and vertical solid lines:
Analytic bounds based on diagonal scattering derived in section 2.1. Red dots: The numeric
bound obtained from all two-to-two processes. Features of the panels discussed in the main text.
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the range m1/
√
2 < m2 <

√
2m1 we furthermore obtain the panels shown in figure 2.8.

(As explained below, the results for m2 < m1/
√
2 are somehow trivial due to screening.)

For the most part, the numerical bounds in these figures significantly improve the bounds
single amplitude bounds derived in the introduction which set the box sizes.

The most remarkable feature of figures 2.7 and 2.8 is the existence of a pronounced
maximum of g112, which is attained for a non-trivial value of the ratio α = g222/g112. In
particular, for equal masses this maximum (point B in figure 2.7) is a clear kink in the
boundary of the allowed region. It would be remarkable if there is a physical theory sitting
close to this kink. As shown in figure 2.10, such a theory should not be integrable.

Sometimes the numerical red dots in figures 2.8 approach the solid black lines. When
this happens the full numerical bounds saturate the analytically derived diagonal bounds.
We see that this happens for very small g112

8 and when we approach the boundaries of the
mass range m1/

√
2 < m2 <

√
2 (for some small values of α). This is not surprising: when

g112 → 0 we decouple the odd and even particles. Since there would be no poles in any
amplitude but in M22→22, the bound would reduce to the single amplitude bound coming
from the 22→ 22 process and yielding

g2222|max = 12
√
3m4

2 for m2 < m1 or (2.34)

g2222|max = 12m4
1µ

2
√
3

(
µ2
√
3 + 4

√
µ2 − 1

µ2
√
3− 4

√
µ2 − 1

)
for
√
2 > µ ≡ m2/m1 > 1. (2.35)

This explains the analytic bound in figure 2.3. In the second case, when we approach the
boundary of the mass range, we expect screening to be very important since the extended
unitarity region becomes quite large. The poles in the M11→22 component can now be
almost perfectly screened, see also appendix A.5.2, allowing for the diagonal amplitude
bounds on g112 to be saturated. We omitted panels for m2 < m1/

√
2 since in this range

we can have perfect screening for any value of g112/g222, so that the multiple amplitudes
bounds in the (g112, g222) plane coincide with the rectangular frame derived from diagonal
processes.

Note also that there are no vertical walls in the last row of panels in figure 2.8 since
for m2 >

2√
3
m1 there are no longer analytic bounds on g222 from the 22 → 22 amplitude.

As the extended unitarity region in 22 → 22 becomes bigger, it becomes increasingly
more effective at screening the pole, until at m2/m1 = 2/

√
3 the s (t) channel 22 → 11

production threshold collide with the t (s) channel pole as discussed in figure 2.4. After
this mass ratio, the discontinuity across the cut can completely screen the bound state pole
implying that its residue can be arbitrary. This is indeed nicely backed up by our numerics
as seen in the last two panels in figure 2.8 where we see that g222 becomes unbounded at
this mass range.

Finally, we can also look for the maximum value of either coupling (g112 or g222) leaving
the other coupling arbitrary. In other words, how tall (g112) and wide (g222) are the darker
allowed regions in (2.8) where the allowed coupling live. Once plotted for various mass

8The fact that the numerical points do not exactly touch the vertical lines in panels (a)-(d) in figure
2.8 when g112 ≃ 0 is due to numerical convergence. In that region it would be more sensible to ask for the
computer to maximise g222 instead of g112. This would lead to numerical saturation of the vertical lines.
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ratios, this gives figures 2.2 and 2.3 in the introduction.

Each optimal S-matrix at the boundary of the allowed coupling space is numerically seen
to saturate the extended unitarity equations (2.22-2.26). This means that the scattering of
two particles of type 1 or 2 can never lead to multi-particle production. Processes such as
11→ 222 are forbidden. When dealing with 2D S-matrices, in particular extremal examples
saturating unitarity such as the ones stemming from this numerical computation, we are
commanded to look for integrable field theories. For m2 ̸= m1, these are only possible if
the inelastic amplitudes M11→22 = MBackward

12→12 = 0 but no S-matrices we found satisfy this
condition9 so the boundary S-matrices we find for m2 ̸= m1 can at most be close to those
describing good physical theories. This still leaves the possibility of finding interesting
physical theories along the equal mass line m2 = m1.

10

2.3.3 (Surprises at) the m2 = m1 line

Indeed, nice surprises are to be found in the m2 = m1 line depicted in the two equivalent
figure 2.9 (depicting the space of allowed couplings) and figure 2.7 (for the maximum
coupling g112 as a function of the coupling ratio α ≡ g222/g112). Although equivalent these
two figures highlight different aspects of this interesting line so it is worth having both in
mind.

As concluded in the last section, the line m2 = m1 is where our hope lies if we are
to match the S-matrices we obtained numerically with physical integrable theories. This
necessary condition is not sufficient. For an extremal S-matrix to correspond to an in-
tegrable theory it should also obey the factorization conditions encoded in the so-called
Yang-Baxter equations [113,114]. In figure 2.10 we see how our extremal S-matrices fail to
satisfy these conditions as we move along the allowed coupling region (by sweeping α).

Before unveiling which analytic S-matrices we successfully identified along the m1 = m2

line let us go over these numerics in some detail: We observe that for large negative α Yang-
Baxter is violated until we reach α = −1 (i.e. when the couplings are equal up to a sign,
g222 = −g112) at which point Yang-Baxter is beautifully satisfied. This point is isolated;
immediately to the right of α = −1 Yang-Baxter fails again. It is curious to note that this
special point – our first candidate for a physical integrable theory – marked with an A in
figures 2.9 and 2.7 looks absolutely innocent there, without any apparent kink features.
As we increase α further into positive values we reach point B for α ≃ 0.76 where the
coupling g112 is maximal. As seen in figures 2.9 and 2.7 this point is a nice kink. Since
it does not obey Yang-Baxter, however, this can hardly correspond to a physical theory.
As we increase α further we reach α = +1 marked with a C in figures 2.9 and 2.7 where
again something interesting happens. At that point something goes unstable as far as
testing of Yang-Baxter goes indicated by the shower of points in figure 2.10 from α = 1
until somewhere around α ≃ 1.2. Once this mess settles we observe a nice line where
Yang-Baxter is satisfied throughout! A particularly nice point along that line is point D

9This is not an accident, we knew this to be the case apriori since this could only happen if the bound
state poles in these amplitudes collided and cancelled or if some extra Landau poles were present. This is
not a possibility in the mass range (2.1).

10Actually, this line is a one-dimensional kink in the maximal coupling surface described in detail in
appendix A.4.
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Figure 2.9: Allowed space of couplings for equal masses. A: Potts massive field theory, B: Max-
imum coupling g112, C: Beginning of elliptic deformation line, D: Supersymmetric sine-Gordon
(along the elliptic deformation line).

located at α =
√
3. That point actually is the one furthest from the origin in figure 2.9,

in other words, it maximizes g2112 + g2222 and as described below it corresponds to a nice
known physical theory.

Now we unveil what we found about these points. In short (setting m1 = 1 here):

• Point A is a massive deformation of the three state Potts Model.

Here gmax
112 = −gmax

222 =
√

3
√
3 ≃ 2.28.
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Figure 2.10: Because of Z2 symmetry, some Yang-Baxter equations are automatically satisfied.
Y B is an average over the non-trivial Yang-Baxter equations, with external rapidities at physical
values. The qualitative features of the plot do not depend on averaging over the equations nor on
the values of the external rapidities, taken here to be θ1 = 1/2, θ2 = 0, θ3 = −1/3. Once again,
A: Potts massive field theory, B: Maximum coupling g112, C: Beginning of elliptic deformation
line, D: Supersymmetric sine-Gordon.

• Point B is yet to be identified. We do not know the analytic form of the corresponding
S-matrix; Since it does not obey YB it can at most be close to a physical theory.

Here gmax
112 ≃ 1/0.76 gmax

222 ≃ 3.38.

• Point D is (an analytic continuation of the lightest breather S-matrix of) the super-
symmetric Sine-Gordon model.

Here gmax
112 = −gmax

222 ≃ 2.56.

• There is a line going from point C at α = 1 all the way to α =∞ where the optimal
S-matrix is given by an elliptic deformation of the super-symmetric Sine-Gordon. We
are unaware of a physical theory with this S-matrix. Point C is the tip of the elliptic
deformation where it becomes hyperbolic.

Here gmax
112 = −gmax

222 =
√
6
√
3 ≃ 3.22.

For comparison recall that the analytic diagonal bounds were |gmax
112 | = |gmax

222 | = 4.56.

28



We will now slowly build up towards those conclusions. The first observation, reviewed
in appendix A.6, is that the full numerical optimization problem can actually be diagonal-
ized and solved exactly for α = ±1, that is when the two physical couplings are the same
up to a sign. For α = −1 the result is the S-matrix of the massive deformation of the
three-state Potts model [115]11

M11→11 =M22→22 =MForward
12→12 =3m4

1/(
√
3m2

1 −
√

(4m2
1 − s)s)−

√
3m2

1 − 3
√
(4m2

1 − s)s

M11→22 = −MBackward
12→12 =

√
3(s− 2m2

1)
√
(4m2

1 − s)s/(
√
3m2

1 −
√
(4m2

1 − s)s) .
(2.36)

From this solution we read off g112 = −g222 =
√
3
√
3m2

1 which matches perfectly with
point B in figures 2.9 and 2.7. In appendix A.7, we briefly review the 3 state Potts field
theory.

As also explained in appendix A.6, the point α = +1 is the other point where we
can find a clever change of basis to diagonalize our problem and compute the maximal

couplings analytically to find g112 = +g222 =
√

6
√
3m2

1 which again matches perfectly
with point C in figures 2.9 and 2.7. What we also observe in the process of deriving that
analytic solution is that the S-matrix saturating this bound is not unique; there are zero
modes. This is probably the explanation of the shower in figure 2.10. These zero modes
are probably only present for α = +1 but in the vicinity of this point there is probably
still some small numerical remnant thereof. We thus expect the shower in figure 2.10 to be
nothing but a zero-mode related numerical artifact; the true solution to the optimization
problem probably obeys Yang-Baxter for any α > 1. Yet, since this seems to be a zero
mode issue, we expect the coupling as predicted by the numerics to still be correct. We
will soon provide very strong evidence for these claims.

Point D for α =
√
3 is a potentially interesting point if we interpret the Z2 symmetry as

fermion number and think of particles 1 and 2 a Majorana fermion and a boson respectively.
Then the condition g222/g112 =

√
3 would follow for theories where these two particles are

part of a N = 1 supersymmetry multiplet, see also [2]. Inspired by this – and by [2] – we
tried to compare the optimal S-matrices at g222/g112 =

√
3 to those of the lightest breathers

of the super-symmetric sine-Gordon theory.12 Beautifully, although we only impose the

11Here we rotated the one particle basis from [115] as |A⟩ = eiπ/4 |2⟩−i|1⟩√
2

, |A†⟩ = e−iπ/4 i|2⟩−|1⟩√
2

, so that

the charge conjugation operator is diagonalized. This operator is to be interpreted as the Z2 symmetry
generator. In the |A⟩, |A†⟩ basis the S-matrix is diagonal and that is why we can solve this point exactly,
see Appendix A.6.

12Strictly speaking we are comparing with an analytic continuation of that S-matrix since our bound-
states have mass equal to the external particles while the next-to-lighests breathers of super-symmetric
sine-Gordon have mass bigger than

√
2 times that of the external particles. In [9] the usual bosonic sine-

Gordon S-matrix was identified as the theory with the largest coupling in the S-matrix of the lightest
particle with a single bound-state of mass mb. When mb >

√
2 this is kosher but as mb <

√
2 (and in

particular for mb = 1) we also need to extend the definition of the SG S-matrix beyond its original mass
range. In that case it amounted to multiplying the S-matrix by −1. Here the situation is morally the same
but the modification ends up a bit more complicated. This means that here – as there – we do not know
a physical theory and we can only write an exact S-matrix that saturates the bound.
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SUSY condition at the level of the couplings, we see that SUSY emerges at the level of the
full S-matrix elements and indeed the optimal S-matrix saturating our bounds at point D
is an analytical continuation of the lightest breather supermultiplet of the super-symmetric
Sine-Gordon! Unfortunately, while we are able to check this to very convincing numerical
accuracy we have no analytic derivation of this statement. For completeness, here are some
super SG formulae [116].

The lightest breather supermultiplet SSG S-matrix S
(1,1)
SSG (θ) is equal to13

−sinh (θ) + i sin (γ)

sinh (θ)− i sin (γ) Y (θ)Y (iπ − θ)




i sin(γ/2)

sinh( θ2) cosh(
θ
2)
− 1 0 0 sin(γ/2)

cosh( θ2)
0 1 i sin(γ/2)

sinh( θ2)
0

0 i sin(γ/2)

sinh( θ2)
1 0

sin(γ/2)

cosh( θ2)
0 0 i sin(γ/2)

sinh( θ2) cosh(
θ
2)

+ 1




where

Y (θ) =
Γ (−iθ/2π)

Γ (1/2− iθ/2π) (2.37)

×
∞∏

n=1

Γ (γ/2π − (iθ/2π) + n) Γ (−γ/2π − (iθ/2π) + n− 1) Γ2 (−(iθ/2π) + n− 1/2)

Γ (γ/2π − (iθ/2π) + n+ 1/2) Γ (−γ/2π − (iθ/2π) + n− 1/2) Γ2 (−(iθ/2π) + n− 1)
.

and where γ is fixed so that the bound state mass is equal to 1. That is γ = 2π/3. Note
that even though the overall scalar factor in the S-matrix is invariant under γ = 2π/3 ↔
γ = π/3, the matrix part is not. This is the sense in which our S-matrix is an analytic
continuation of SSG. (compare with SG, in which picking mb = 1 instead of mb =

√
3 only

leads to an overall minus sign). More generally mb/m1 = 2 cos γ/2 and the physical mass
range for SSG is 2 > mb >

√
2.

Two-particle Z2 symmetric solutions of the Yang-Baxter equations are classified [117].
It is natural that if an extension of SSG exists with an extra parameter, that it is given
by an elliptic solution of the Yang-Baxter equations. In fact, examining the classified
solutions we see that the only good candidate for being promoted to an S-matrix with all
the symmetry properties we have and that reduces to SSG in the trigonometric limit is
solution 8VII of [117], which is equivalent to

ED (θ) ≡




ϵdn(θω|κ)sn(γω|κ)
cn(θω|κ)sn(θω|κ) − dn(γω|κ) 0 0 ϵdn(θω|κ)sn(γω|κ)

cn(θω|κ)

0 1 ϵ sn(γω|κ)
sn(θω|κ) 0

0 ϵ sn(γω|κ)
sn(θω|κ) 1 0

ϵdn(θω|κ)sn(γω|κ)
cn(θω|κ) 0 0 dn(γω|κ) + ϵdn(θω|κ)sn(γω|κ)

cn(θω|κ)sn(θω|κ)



,

(2.38)

where we normalised by the 12→ 12 forward component so that comparison with SSG is

13In the basis |11⟩, |12⟩, |21⟩, |22⟩ so that the second (third) element on the second row is the forward
(backward) 12→ 12 component, for instance.
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easier. ϵ = ±1 from YB. The s-channel poles of 12→ 12 forward and backward correspond
to the flow of a particle of type one, and therefore the residues of this two amplitudes at
the θ = 2πi/3 pole must coincide. This fixes ϵ sn(γω|κ) = sn(2πi

3
ω|κ). Crossing symmetry

together with the fact that in the trigonometric limit κ → 0 we have to recover SSG fix
ω = − i

π
K(κ) where K is the complete elliptic integral of the first kind (more precisely,

crossing gives ω = − i
π
(2n + 1)K(κ) with n an integer. The κ → 0 limit fixes n). This

completely fix a crossing symmetric matrix structure up to one free parameter, κ, which
hopefully is unconstrained. There is a miracle going on. For our amplitudes, we have that

res
θ=2πi/3

M22→22 res
θ=2πi/3

M11→11 =

(
res

θ=2πi/3
M11→22

)2

(2.39)

and, moreover,
res

θ=2πi/3
M11→11 = res

θ=2πi/3
MForward

12→12 (2.40)

If (2.38) is a candidate of matrix structure of the S-matrices saturating the numerical
bounds, we must have the same relation between the respective components. It turns
out that this holds automatically for any κ after all the conditions above are imposed.
Otherwise this would fix κ = 0 and we would conclude that there are no Yang-Baxter
deformations respecting the symmetries and spectrum of our problem. So all we need to
do now is to unitarize and introduce the poles. Note that

ED (θ)ED (−θ) =


1−

sn
(

2K(κ)
3

∣∣∣κ
)2

sn
(
iθK(κ)
π

∣∣∣κ
)2


 I ≡ g (θ) I (2.41)

and g(θ) ≥ 1 for θ ∈ R. Therefore, as follows from [9], to unitarize ED we just need to
multiply it by

U(θ) = −i sinh (θ) exp
(
−
∫ ∞

∞

dθ′

2πi

log (g−1(θ′)/ sinh(θ′))

sinh (θ − θ′ + iϵ)

)
, (2.42)

while to introduce the poles, we multiply by CDDpole with direct channel pole at 2πi/3,

CDDpole (θ) =
sinh (θ) + i sin (2π/3)

sinh (θ)− i sin (2π/3) (2.43)

At the end of the day, a candidate for a unitary, crossing symmetric, integrable deformation
of the supersymmetric sine-Gordon reads

SED (θ) = −CDDpole (θ)U(θ)ED (θ) (2.44)

Points D and C with α =
√
3 and α = 1 would now correspond to κ → 0 and κ → 1

respectively. As κ→ −∞, α →∞. We can now compute the couplings associated to the
elliptic deformation (2.44), cross our fingers and compare those couplings with the numerics
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of figures 2.9 and 2.7. The elliptic deformation analytic results are the solid chartreuse14

lines in those figures. The agreement could not be better. Note that the agreement goes all
the way to point C and since by construction the elliptic solution obeys Yang-Baxter, the
shower in figure 2.10 should indeed be a simple zero-mode related numerical artifact. To
make precise the elliptic notation used here, we present in appendix A.10 a representation
of this S-matrix in Mathematica friendly notation, ready to be copy pasted so the reader
can more easily explore this exotic solution.

An obvious question is whether this elliptic deformation corresponds to a nice physical
theory.15 Since the supersymmetric sine-Gordon we encountered here is not a totally kosher
theory but an analytic continuation thereof, it is natural to first extend this analysis to the
mass range were the super-sine Gordon breather lives and to study its elliptic deformation
for those more physical set of parameters. This is investigated in chapter 3.

The m2 = m1 line was indeed full of surprises.

2.4 QFT in AdS

In the previous section we have numerically explored the space of scattering amplitudes that
allow for a Mandelstam representation and we found examples of amplitudes that appear to
maximize couplings subject to the unitarity constraints. These extremal coupling constants
are not true ‘upper bounds’: although our numerical results appear to have converged, a
numerically more refined ansatz will find slightly larger values. See also chapter 4 for an
S-matrix resolution to this issue.

An orthogonal approach to the extremization of three-point couplings in field theories
was developed in [104]. The idea is to consider a field theory in an AdS background and
investigate the ‘boundary’ correlation functions that are so familiar from the AdS/CFT
correspondence. In our setup gravity is non-dynamical and this translates into the absence
of a stress tensor among the set of boundary operators. Nevertheless it is natural to
claim [104] that these correlation functions obey all the other axioms of a unitary CFT,
including crossing symmetry, making them amenable to a numerical bootstrap analysis as
in [105]. In this way any general constraints on CFT data directly imply corresponding
constraints for QFTs in AdS, and by extrapolating these results to the flat-space limit
we can get constraints on flat-space QFTs as well. (For a gapped QFT in AdS2 scaling
dimensions and masses are related as m2R2 = ∆(∆ − 1) and therefore the flat-space
limit is typefied by sending all scaling dimensions ∆ → ∞ whilst keeping ratios fixed,
∆i/∆j → mi/mj.)

The QFT in AdS approach uses CFT axioms to provide rigorous upper bounds, at least
modulo our extrapolation procedures. It does not assume analyticity or any particular
behavior at large complex energies, and the unitarity constraints are phrased in terms of
reflection positivity rather than in terms of probabilities. And yet it was shown in [104]
that it provides upper bounds on flat-space couplings that are numerically equal (up to
three significant digits in some cases) to the extremal couplings obtained with the S-matrix

14Chartreuse, of selcouth beauty, is a colour half-way between yellow and green.
15We thank Davide Gaiotto for illuminating discussions on related topics.
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bootstrap methods. In this section we demonstrate that this striking equivalence was not
just a fluke by employing once more the QFT in AdS approach to reproduce some of the
previous S-matrix bootstrap results from conformal crossing equations.

2.4.1 Setup

We will consider four-point functions of operators on the real line, which we think of as the
boundary of an AdS2 space with curvature radius R. There are two distinguished operators
ϕ1 and ϕ2 of dimensions ∆1 and ∆2, which correspond to the two single-particle states of
the setup described above – in particular it is understood that ∆i(∆i − 1) = m2

iR
2 for

i = 1, 2. Besides the assumed Z2 symmetry, under which ϕ1 is odd and ϕ2 is even, we will
also assume that the QFT is parity invariant and that ϕ1 and ϕ2 are both parity even.16

The OPEs are, schematically,

ϕ1 × ϕ1 = 1+ λ112ϕ2 + (parity and Z2 even operators with ∆ ≥ 2min(∆1,∆2))

ϕ2 × ϕ2 = 1+ λ222ϕ2 + (parity and Z2 even operators with ∆ ≥ 2min(∆1,∆2))

ϕ1 × ϕ2 = λ112ϕ1 + (any Z2 odd operators with ∆ ≥ ∆1 +∆2)

(2.45)

Here the (non-)appearance of ϕ1 and ϕ2 on the right-hand sides is dictated by Z2 symmetry.
The other operators are meant to correspond to multi-particle states for the QFT in AdS
and their minimal scaling dimension mimicks the beginning of the two-particule cuts in
the corresponding scattering amplitudes. The parity properties are dictated by the parity
of the operators on the left-hand side. We should add that the OPE coefficients λijk are
related to bulk couplings gijk via

g123/m
2
0 = λ123C(∆0; ∆1,∆2,∆3) (2.46)

with the unsightly relative normalization coefficient [118]

C(∆0; ∆1,∆2,∆3) =
π24−∆1−∆2−∆3

√
Γ[2∆1]Γ[2∆2]Γ[2∆3]

∆2
0Γ[∆123/2]Γ[∆231/2]Γ[∆312/2]Γ[(∆1 +∆2 +∆3 − 1)/2]

(2.47)

where ∆ijk = ∆i +∆j −∆k. This relation was explained in [104].

In one dimension conformal transformations preserve operator ordering modulo cyclic
permutations. This leads to the following non-equivalent four-point functions

⟨ϕ1ϕ1ϕ1ϕ1⟩, ⟨ϕ2ϕ2ϕ2ϕ2⟩, ⟨ϕ1ϕ1ϕ2ϕ2⟩, ⟨ϕ1ϕ2ϕ1ϕ2⟩, (2.48)

and we will numerically analyze the lot of them.17 Our recipe follows that of [104] with

16It is often helpful to think of the parity odd operators as vectors. Indeed, they are equivalent in one
dimension because the rotation group is reduced to the parity group Z2 and which has only one non-trivial
irreducible representation.

17An interesting observation is that the ⟨ϕ1ϕ2ϕ1ϕ2⟩ correlator does not feature the identity operator.
A conformal bootstrap analysis of this correlator in itself therefore does not give any bounds whatsoever
because it lacks an overall normalization. This is completely different from the forward 12→ 12 amplitude
which we have seen can give a meaningful bound on g112. However we will shortly see that the ensemble
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minor variations. Suppose that we wish to obtain a bound on g2112 (in units of m1) for a
given coupling ratio α = g222/g112 and mass ratio µ = m2/m1. We then proceed as follows:

1. Choose a ∆1. Then set ∆2 = µ∆1 and also fix the ratio

λ222
λ112

= α
C(∆1; ∆1,∆1,∆2)

C(∆1; ∆2,∆2,∆2)
. (2.49)

2. A single conformal bootstrap analysis of the four correlators listed above now yields
a numerical upper bound on λ2112. Our multi-correlator bootstrap analysis is very
similar to the one introduced in [108] where it was successfully applied it to the three-
dimensional Ising model. The systematics of our analysis (normalizations, conformal
block decompositions, functionals) can be found in appendix A.11. The bound so
obtained also depends on the number of derivatives of the crossing equations that we
analyze and this introduces a new parameter Λ, so we write

(g2112)
max[µ, α,∆1,Λ] (2.50)

where we use (2.46) to pass from (λ2112)
max to (g2112)

max.

3. Upon repeating step 2 for various Λ one finds that (g2112)
max depends significantly on

Λ. To obtain an estimate of the bound that we would obtain if we could analyze
all the crossing equations, i.e., if we possessed infinite computational resources, we
extrapolate the results for various Λ to estimate

lim
Λ→∞

(g2112)
max[µ, α,∆1,Λ] (2.51)

In practice we do this by fitting a polynomial through data points ranging from
Λ = 32 up to Λ = 140.18 Examples of this extrapolation are shown in figure A.13
on page 212. This limit provides our estimate for the best possible upper bound for
a QFT in AdS with two particles with masses determined by ∆1 and µ and bulk
coupling constant ratio given by α.

4. We view ∆1 as a proxy for the AdS curvature radius. We therefore repeat steps 1 to
3 for a number of different values of ∆1 and once more extrapolate to infinite ∆1 to
obtain a result on the flat-space coupling:

(g2112)
max(µ, α) = lim

∆1→∞

{
lim
Λ→∞

(g2112)
max[µ, α,∆1,Λ]

}
(2.52)

This is the coupling we can compare with the flat-space S-matrix bootstrap analysis.

Appendix A.11.5 contains technical details of the extrapolation procedure.

of correlators does give numerical results that mostly agree with the ensemble of amplitudes.
18In [104] we were able to obtain results up to Λ = 200 or Λ = 300 for the different scenarios. The

multi-correlator analysis of this chapter is numerically more demanding, even more so because the rho
series expansion [119] for conformal blocks with large unequal dimensions converges much more slowly.
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For finite Λ and ∆ our results provide rigorous upper bounds on the three-point cou-
plings for any QFT in AdS that obeys the stated assumptions. Once we begin the extrapo-
lations we introduce errors that are hard to quantify and this is an unavoidable drawback of
our method. Nevertheless we will soon see, as was the case in [104], that the extrapolated
bounds appear to accurately reproduce the S-matrix bootstrap results in most cases.

2.4.2 Results

The numerical algorithm outlined above is computationally demanding. For a single µ and
α we need about 10 different values of ∆1 and for each of these we need about 15 different
values of Λ, implying about 150 multi-correlator bootstrap runs. We have therefore chosen
a few representative values of µ and α to demonstrate both the feasibility of the multi-
correlator conformal bootstrap approach to scattering processes and the match with the
flat-space S-matrix bootstrap results.

Results for equal masses

Our first plot is for µ = 1 so we have two particles of equal masses. In figure 2.11 we
overlay the QFT in AdS results (isolated data points) with the S-matrix bootstrap region
shown before in figure 2.9. The black frame again indicates the single-amplitude bounds,
which are in fact equal to the single-correlator bounds found in [104]. We have performed
a multi correlator QFT in AdS analysis for ratios α = g222/g112 equal to +1, 0, −1 and
−8/3 and in all cases we find reasonably good agreement with the multiple amplitude
S-matrix bootstrap result. For α = −8/3 our bound comes out somewhat higher than
the value reached by the S-matrix bootstrap. This might be due to our extrapolation
procedure, which also makes it difficult to put error bars on the QFT in AdS points, but it
might also be a consequence of the finite truncation level in the S-matrix bootstrap. It is of
course reassuring that the S-matrix bootstrap always gives lower values than the conformal
bootstrap.

For the data points in figure 2.11 the extrapolation is standard, i.e., as outlined

above and elaborated on in appendix A.11, but the data point requires a comment. In
that case we found that the maximal squared coupling (g2112)

max[µ, α,∆1,Λ] from the multi-
correlator analysis is always numerically equal to one half of the corresponding maximal
squared coupling obtained from the single-correlator analysis – even for finite ∆1 and Λ
so before any extrapolations. Therefore, rather than doing a detailed multi-correlator
analysis, we just plotted one half the single-correlator result. This factor of one half is
understandable: using a change of operator basis similar to the one described in appendix
A.6, one finds that the multi-correlator problem effectively becomes that of two decoupled
single-correlator problems which each feature a squared coupling that is rescaled by a factor
2.19
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Figure 2.11: Overlaid on a repetition of figure 2.9, the green data points show the maximal
values of |g112| as derived from the QFT in AdS analysis for fixed values of α = g222/g112. (The
green straight lines then indicate the allowed range in coupling space.) The conformal bootstrap
agrees very well with the S-matrix bootstrap. The point with α = −1 is point A in figure 2.9
which corresponds to the 3-state Potts model, which ‘emerges’ here from the conformal crossing
equations in one dimension.

Results for α = −1

Our next result is shown in figure 2.12, where we have assumed g222/g112 = −1. We will
discuss in turn the black curve, the red shaded region, and the green (new) data points.

The black curve corresponds to the best single-correlator bound for the given mass
ratio. It is actually made up of two parts: for m2 > m1 it is the bound obtained from
the ⟨1111⟩ four-point function, whereas for m2 < m1 it is the bound obtained from the
⟨2222⟩ four-point function. These single-correlator bounds were already obtained in [104]
and were shown to agree with the single-amplitude analysis of [9].

In red we show the multi-amplitude results obtained with the methods discussed in
section 2.3.1. It is again made up of different parts: for 1/

√
2 < m2/m1 <

√
2 we can use

the numerical analysis and we take the α = −1 slice from figure A.3. For m2/m1 < 1/
√
2

19It is essential here that α = 1 so λ222 = λ112.
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Figure 2.12: The green data points show the maximal values of log(g2112) provided by the multi-
correlator QFT in AdS analysis, now for α = g222/g112 = −1 and as a function of the mass
ratio m2/m1. For comparison we have also added the single-correlator QFT in AdS bounds
from [104], as solid lines, as well as the S-matrix bootstrap data, in red. The plot naturally splits
into three regions. First of all, for m2/m1 < 1/

√
2 there is screening and the multi-amplitude

bound reduces to the single-amplitude bound. As shown, the correlator bounds nicely follow this
behavior. Moving rightward, for 1/

√
2 < m2/m2 <

√
2 we find a respectable match between

the multi-correlator and the multi-amplitude data, in particular we again recover the three-state
Potts field theory at m2 = m1. For

√
2 < m2/m1 there are Landau singularities and the multi-

amplitude analysis becomes complicated. However we know that the multi-amplitude bound must
lie at or below the single-amplitude bound from Sforward

12→12 , meaning that it must end up somewhere
in the striped region. The multi-correlator analysis, on the other hand, appears unable to improve
on the weaker ⟨1111⟩ single-correlator bound.

we have screening and the multiple amplitude analysis does not give stronger results than
the analysis of the single amplitude S22→22 which, as we stated before, agrees with the
⟨2222⟩ single-correlator bound. For

√
2 < m2/m1 there are Landau singularities and a

more sophisticated analysis is necessary to obtain multiple amplitude results, but we do
know that the maximal coupling from the multiple amplitude analysis can only lie below
the single amplitude bounds. In particular, it must lie below the bound obtained from
Sforward
12→12 , which was given as the solid line in figure 2.2 in the introduction and here yields

the striped region in figure 2.12.20

Finally, the new data points obtained from the multi-correlator conformal bootstrap

are indicated in green. The data points are obtained from a standard extrapolation, as

before, whereas for the data points the numerical multi-correlator analysis gave identical

20We explain in appendix A.12 that Landau singularities do not appear in M forward
12→12 for any mass ratio

in the range 0 < m2/m1 < 2, so the corresponding single-amplitude bound should be perfectly valid.
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results to the numerical single-correlator analysis for all ∆ and Λ. The extrapolation will
therefore trivially equal the single-correlator result as is indicated in the plot.

For all points with m2/m1 <
√
2 our extrapolated QFT in AdS results lie at or just

above the S-matrix results. As for the previous plot, the small finite difference might be
either due to our extrapolation procedure but also due to the S-matrix bootstrap results
not yet having converged. The points with m2/m1 >

√
2 are more puzzling. The striped

domain, as we mentioned, arises from an analysis of Sforward
12→12 alone and so a multi-amplitude

analysis (with Landau singularities and all) will only be able to land somewhere in that
domain. Unfortunately this single-amplitude bound does not seem to be picked up by the
multi-correlator analysis at all.21 It would be nice to know why this is the case: are we
missing constraints to be imposed for the QFT in AdS bootstrap?22 Alternatively, is there
maybe a ‘phase transition’ where by pushing to a very high number Λ of derivatives the
single- and multi-correlator analysis begin to differ? Such a phenomenon would obviously
invalidate our large Λ extrapolations and might therefore resolve the puzzle. It would
be somewhat analogous to the observations discussed in appendix A.11.4, see in particular
figure A.12, where we explain that taking different Λ’s for different crossing equations leads
to non-smooth behavior.

Of course, as we mentioned at the beginning of this section, at a technical level the
conformal bootstrap analysis looks completely different from the S-matrix bootstrap. We
are confident that both analyses yield valid constraints on three-point couplings, but besides
physical intuition there was no a priori guarantee that these constraints had to be exactly
the same. From this perspective the aspect most in need of an explanation in figure
2.12 is the quantitative match between the results for m2/m1 <

√
2 (and similarly for

all points in figure 2.11 and the results of [104]) rather than the discrepancy in the other
points. Either way, the precise connection between conformal correlators and scattering
amplitudes warrants further investigation.

2.5 Discussion

We have demonstrated the feasibility of the multiple-amplitude bootstrap for the lightest
two particles, and shown that it gives stronger bounds compared to the simpler S-matrix
bootstrap of only the lightest particle. Clearly one expects to get increasingly stronger
bounds by considering more and more scattering processes. It is interesting to consider
how such results could converge to an ‘optimal bound’ that we would obtain by considering
the entire S-matrix, as follows.

In all our numerical experiments it turns out that the unitarity condition at all energies
is (numerically) saturated in the subspace we work on. To illustrate this, consider for
example the various possible outcomes from scattering the lightest particle in our setup –

21See also footnote 17.
22At least the multi-correlator result, which is a hard upper bound, is above or equal to the S-matrix

bootstrap results in all cases, so the results are not in direct conflict with each other.
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let us say that it is the Z2 odd particle – against itself. Probabilities must add up to 1 so

1 =

≥0︷ ︸︸ ︷
|S11→11|2︸ ︷︷ ︸

≤1

+

≥0︷ ︸︸ ︷
|S11→22|2

︸ ︷︷ ︸
≤1

+

≥0︷ ︸︸ ︷
|S11→112|2

︸ ︷︷ ︸
≤1

+

≥0︷ ︸︸ ︷
|S11→1111|2+ . . . . (2.53)

where the red and blue inequalities follow trivially from probability positivity as indicated
in dark green. In [9] we effectively considered only the weakest red inequality. The theories
which lie on the boundary of this space turn out to saturate this inequality for all energies.
This would mean that any other process has zero probability, and a theory saturating
the bounds of [9] must therefore have zero particle creation or transmutation since the
only allowed process is elastic scattering. This is possible for special cases like integrable
theories, but generically it cannot be the case. Therefore, by including also the constraints
of the other processes we should get better bounds and this is indeed what we have observed
in this chapter: our improved bounds are due to the stronger constraint given by the lower
blue inequality.

However, we once more found that the optimal solutions now saturate this new con-
dition for all values of the energy, so the remaining processes for the extremal S-matrix
are again all zero.23 In other words, theories lying on the boundary of the new space are
theories where particles 11 can continue into 11 or transmute into 22 but we still get zero
probability for all other processes that have a different final-state particle content. We ex-
pect this pattern to continue by including more and more processes in the game, i.e. we will
continue to observe unitarity saturation within the subspace we consider, no matter how
large. As we increase the size of our truncation we will hopefully asymptotically approach
an optimal bound, but we are unlikely to hit a non-integrable theory at our boundary if
we consider only a finite number of processes.

Indeed, for our setup with two particles with mass m1 and m2 we find no integrable the-
ories if the masses are different, whereas if they are equal then there are exciting physical
theories at our boundary: the three-states Potts model and (an analytic continuation of)
the super-symmetric sine-Gordon model. We also find a full segment around the supersym-
metric sine-Gordon theory which seems to obey all the necessary factorisation requirements
to be an integrable theory; it would be very interesting to see if that is the case.

We also discussed how the same bootstrap results can be obtained from AdS, using
the setup first discussed in [104]. Putting a gapped Z2 symmetric theory into an AdS box
induces a one dimensional Z2 symmetric conformal theory in its boundary which we can
analyze by numerical conformal bootstrap methods. To make contact with flat space, we
take this box to be large which corresponds to large scaling dimensions on the boundary. As
it happens the numerical conformal bootstrap results become rather weak at large scaling
dimensions and this makes it computationally quite challenging to obtain reliable results.
This is the main drawback of the AdS approach. Fortunately there are interesting and
potentially very helpful developments on this front: according to [120], convergence can be

23We do not know why this happens; it stands as an empirical observation.
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Figure 2.13: Landau diagram that gives rise to a double pole in M22→22 if m2 >
√
2m1.

much improved by a smarter choice of functionals (see also [121, 122]). It would be very
interesting to explore this further.

An important advantage of the AdS approach, on the other hand, is that it requires
no subtle assumptions about the various analytic properties of scattering amplitudes. The
AdS box is thus a literal black box from which we can get beautiful S-matrix bootstrap
results even when the analytic properties of such amplitudes might be less obvious.

A good example of such a subtle assumption is extended unitarity, which we have seen
is crucial for our multiple-amplitude bounds. Recall that this is a generalisation of usual
unitarity which controls the analytic behaviour of scattering amplitudes for unphysical
energies, below physical thresholds. For example, when we scatter the next-to-lightest
particle against itself we have a two particle cut associated to the lightest particle starting
at s = (2mlightest)

2, before the physical two particle cut at s = (2mnext-to-lightest)
2, and ex-

tended unitarity governs the discontinuity of scattering amplitudes in the segment between
those two values. Extended unitarity is built into perturbation theory [111] but it is not
straightforwardly justified non-perturbatively. However, the fact that our QFT in AdS
approach exactly reproduces the flat space results provides strong evidence for the validity
of the extended unitarity assumption.

Relatedly, it is puzzling that the AdS bounds for m2 >
√
2m1 are so much weaker

than the 12 → 12 forward flat space extremal coupling, see figure 2.12. Either the AdS
numerics did not converge yet or perhaps there is something deeper to be learned there.
It would be very interesting to extend our flat space analysis beyond the mass range (2.1)
into the m2 >

√
2m1 domain. Here we would need to include so-called Coleman-Thun

singularities in our setup. An example is shown in figure 2.13.

Another very important new ingredient which is not unrelated to the anomalous cuts
arising in the extended unitarity region and which appeared in this chapter is the phe-
nomenon of screening. Amplitudes involving heavier particles can sometimes produce dis-
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continuities in some of these anomalous cuts which cancel, i.e. screen, other singularities
such as physical poles corresponding to bound-state stable particles. That is, these dis-
continuities can be tuned so that the amplitudes can often be quite small in the physical
energy region where experiments are done. This mechanism is not only possible but it is
actually realised by some amplitudes which lie at the boundary of the truncated 2 → 2
multiple correlator S-matrix space. It is natural to expect that similar phenomena would
also be realised at the boundary of the full S-matrix space. If this boundary is physically
significant then screening would be an interesting way for nature to hide strong couplings
from the observer.

Let us conclude with some interesting open problems and future directions.

One open problem for which we now have all tools to explore concerns the tricritical
Ising field theory. This theory is obtained by deforming a conformal minimal model with
two relevant deformations, see appendix A.8, and is integrable if one of the deformations
is set to zero. It would be very interesting to bootstrap this theory when both parameters
are non-zero. This is a particularly nice case study because the next to lightest particle
here is well below

√
2 times the mass of the lightest particle – see table A.1 for its value at

the integrable point – which means we can readily apply all the methods developed here.
The only modification would be to include further poles in the ansatz corresponding to
the other stable particles this theory has – see again table A.1. So here is a homework
exercise: consider a line in the mass ratio parameter space which passes by the masses
of the integrable theory. Something remarkable should happen: In the anomalous cut of
the 22 → 22 amplitudes we should see a peak developing as we approach the integrable
theory. This peak is going to become a new stable particle in the integrable theory with a
mass we know. Seeing this peak show up in detail would be great, as it would constitute a
“discovery” of a new particle through the S-matrix bootstrap. Of course, more interesting
still would then be to move away from the masses of the integrable theory and explore the
full tricritical Ising field theory, non-integrable and all. The previously discovered sharp
peak – typical of an integrable theory – would now be smoothened out and correspond to
a nearly stable resonance. Because there are so many masses and couplings this would be
a challenge numerically, albeit a worthwhile one.

Another open problem which we could now easily address is the problem of multiple
amplitudes without Z2 symmetry. We would now also include amplitudes such as 11→ 12
which have amusing 2D kinematics by themselves. The Ising field theory perturbed by
both magnetic field and temperature would be a perfect case study for this case.

A much more challenging but very interesting open problem would be to extend the
multiple amplitude analysis to higher dimensions (as in [10] and [15]). The Z2 sponta-
neously broken phase of the ϕ4 model in 3D, for instance, seems to have a single stable
bound state of mass m2 ≃ 1.8m1 [123]; it would be fascinating to try to bootstrap this
S-matrix.

Finally, another frontier in 2D would be to delve into the multiple particle S-matrix
bootstrap. Can we tame scattering of 2 particles into 3, 4, . . . final particles? There are two
obvious obstacles. One is the analytic structure of these amplitudes. They depend now on
more kinematical variables and have a huge plethora of Landau singularities; it is unclear
if we can characterise them fully. The other challenge is even more basic: can we close up
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the system of equations? Suppose we consider a basis of initial and final states with both
two and three particles. Then we need to deal with the 3 → 3 amplitudes. But those, by
crossing, are related to 2→ 4 (and much more! See [40].). By unitarity we would then need
to include four particles in the final and initial states as well. But then we are forced to
consider 4→ 4 processes which are now related by crossing to 3→ 5 and 2→ 6 scattering
and so on. It seems we are suddenly obliged to consider any number of final particles at
once which of course would be computationally completely infeasible. A suitable strategy
in the case of massless scattering will be discussed in [48]. Along these lines, perhaps we
could first try to get some inspiration from the AdS side. Some of the necessary higher point
conformal blocks are well known in 1D [124], and some initial investigations of multipoint
numerical bootstrap appeared in [125]. Can we use this to devise a 1D CFT bootstrap
numerical problem dual to the very intimidating flat space multiple particle bootstrap?
Even if very challenging numerically, this would prove of extreme conceptual value.
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Chapter 3

The S-matrix Bootstrap: SUSY, Z2 and
Z4 symmetry

3.1 Some beautiful sections

The S-matrix space can be very rich, with pointy structures such as edges and cusps. It is
hard to visualize it since we are dealing with an infinite dimensional space so in practice
we pick sections. If the theory has bound states, for instance, a natural set of variables to
follow are the residues of S-matrix elements at their corresponding poles which physically
correspond to the on-shell three particle couplings. While if the theory has no bound
states we can measure the two-to-two S-matrix elements at some off-shell points, thus
defining effective off-shell four point couplings. By picking appropriate linear functionals
and S-matrix ansatze, we thus explore the possible S-matrix space sections compatible with
crossing and unitarity following [1,9]. In this chapter we will consider a few simple sections
which are two or three dimensional and thus can be nicely plotted. The physical setups
we will consider are:

(A) Scattering of a massive real supermultiplet with and without bound states.

(B) A generic degenerate boson-fermion scattering where the previous case should sit in
a special limit.

(C) Z4 symmetric models.

We will always be in two spacetime dimensions.

These examples are richer than the setup of [9, 10, 104] where the scattering of the
lightest real bosonic particles in a gapped theory was considered but still simpler than
the scattering of particles in the fundamental representation of a O(N) flavour symmetry
[11, 13], with U(N) symmetry [14] or when we scatter the two lightest particles in Z2

symmetric 2D theories [1]. The great merit of the simpler examples considered herein is that
they are simple enough to be able to be analytically described while rich enough to capture
many of the intricate features of these other more elaborate examples. To generate all the
plots here we followed the usual numerical algorithms in S-matrix bootstrap explorations,
see appendix B.6 for a telegraphic summary.
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3.1.1 The simplicity of supersymmetry

As the first example we consider a system with N = 1 supersymmetry in which the
lightest supermultiplet consists of a single real boson ϕ and a Majorana fermion ψ both of
massm. There are five possible two-to-two scattering amplitudes but SUSY relates most of
them so that in the end only two channels are independent: the scattering of bosons Sϕϕϕϕ(s)

and the forward scattering of a boson against a fermion Sϕψϕψ (s). These two amplitudes are
crossing symmetric. They may have poles corresponding to bosonic or fermionic bound-
states which would also be in an N = 1 multiplet, hence with couplings all related by
SUSY, see appendix B.3 for details. Evaluated at the crossing symmetric point s∗ = 2m2

these two amplitudes define a nice two dimensional section of effective four point off-shell
couplings which we can use to probe the supersymmetric S-matrix space.

The space allowed for the two independent quartic off-shell couplings is depicted in
figure 3.1. In purple, the smallest region, corresponds to the allowed coupling space for
theories with no bound states. Then the S-matrix elements have no poles inside the physical
strip. This purple football-like shape has two cusps corresponding to the free theories where
S = ±I. At its boundary we find a remarkable well-known S-matrix: it’s nothing but
the lightest breather-breather S-matrix of the supersymmetric sine-Gordon theory (SSG)
stripped out of the overall CDD-pole. This is also known as the breather S-matrix of
the restricted sine-Gordon model (RSG) although this is quite a misnomer since the RSG
model has no bound states. For a brief review of the so called RSG model see appendix
B.4.2. The purple shape’s boundary can actually be read off from the RSG S-matrices and
possess a nice closed form

(
Sϕϕϕϕ(s∗), S

ϕψ
ϕψ (s∗)

)
boundary

= ±
exp
(
i
π
Li2
( i(1−2a

√
1−a2)

2a2−1

)
− i

π
Li2
( i(2a√1−a2−1)

2a2−1

)
− 2C

π

)

(1± 2a, 1)−1
√
1− a2 + a

,

where C ≃ 0.915966 is the Catalan’s constant and a > 0. It is quite amusing to see such
rich analytic structure arise from such a simple convex optimization problem. From an
algebraic perspective, it is quite remarkable that all along the purple region we obtain S-
matrices which obey the Yang-Baxter factorization condition although this condition was
not imposed in any way.

In addition to the scattered boson and fermion we also consider a setup where there is
a single bound state supermultiplet (b, f) of mass mbs with b and f being the bosonic and
fermionic bound states, respectively. This is implemented by allowing for simple poles in
the physical sheet in the previous S-matrix elements at s and t equal to m2

bs. As explained
in appendix B.3 the bound state supermultiplet can transforms in the fundamental or the
anti-fundamental representaion. These differ for slightly different relations between the
couplings arising in the S-matrix elements, see equations (B.4). The allowed S-matrix
space for both cases obtained from the numerical optimization is depicted in figure 3.1.
The various red or blue regions correspond to the allowed S-matrix space for various bound
state masses mbs in either of the two possible representations. As the mass of the bound
state increases these regions shrink. When mbs = 2m, the bound state dissolves into the
two-particle threshold and we recover the bound state free space depicted in purple at

45



- 1 1 3 5 7 9 11 13

- 1

0

1

2

3

4

5

6

7

Figure 3.1: Allowed N = 1 S-matrix space with a single bound state of mass mbs/m =
{1.73, 1.76, 1.80, 1.85, 1.90, 1.96} transforming in the fundamental/anti-fundamental representa-
tion represented in red/blue. As we increase the mass of the bound state the allowed space
shrinks.

figure 3.1.

The vertex at the top right corner of the red regions – corresponding to the S-matrix
space with a single fundamental multiplet bound state – corresponds to the lightest breather
S-matrix of the supersymmetric sine-Gordon model (SSG) [116]. We could also find that
the S-matrix living at the top cusp of the blue regions – corresponding to the S-matrix
space with a single anti-fundamental multiplet bound state – is an analytic continuation of
the SSG S-matrix multiplied by an overall minus sign, see appendix B.4.4 for details. We
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do not know of a Lagrangian theory which realizes this factorized S-matrix. Finally, we
have the boundaries connecting to these red and blue vertices. We were able to find the
exact S-matrices living at these boundaries, see appendix B.4.6. They saturate unitarity
as usual but don’t satisfy the Yang-Baxter factorization equations. These S-matrices are
most likely not physical S-matrices but perhaps they are close enough to physical S-matrices
with very little particle production. Finally, note that all this seems to be consistent with
the classical intuition from [126] where it was found that the only supersymmetric model
with a single real scalar boson and a Majorana fermion, with a Lagrangian description and
without tree level particle production is the SSG model. Would be interesting to see if the
blue cusps admits a Lagrangian description in terms of a fermion plus a pseudo-scalar.

3.1.2 How special is SUSY?

Supersymmetric theories are special instances of theories with bosons and fermions with
further non-bosonic symmetries relating them. It is thus natural to look for generic theories
with bosons and fermions without supersymmetry and see whether supersymmetry, with
its extra structure, emerges naturally at special points in the allowed theory space. This
is what we turn to next.

We consider a general Z2 symmetric system with an even (the boson ϕ) and an odd
particle (the fermion ψ) with the same mass m, but a priori no symmetry relating them.
To make contact with the previous bounds we also assume the existence of a boson (b),
fermion (f) pair of bound states both with the same massmbs but, again, with no symmetry
relating them. We then have a nice three dimensional section of the allowed S-matrix space
parametrized by the three independent couplings gϕϕb, gψψb and gϕψf . This space can be
plotted following [1]; the result is the nice hourglass looking coupling space shown in figure
3.2. The supersymmetric sine-Gordon model beautifully appears as a special point (the
green dot) on the boundary of the allowed space. At this point, all three couplings are
related by supersymmetry. We also encounter an elliptic deformation of the SSG model
(black curve) previously obtained in [1].1 This elliptic deformation contains a parameter κ
and varying it in the allowed range yields the bold curve in figure 3.2, in special when κ = 0
we recover SSG. This elliptic deformation preserves integrability, but breaks supersymmetry
and its explicit form is given in appendix B.4.5.

This elliptic S-matrix is not the famous Zamolodchikov’s Z4 S-matrix found in [114];
the Z2 S-matrix we found has a different matrix structure and contains a bound-state.
Nonetheless, it does share many of its properties. Given that we encounter such rich
elliptic solutions at the boundary of the allowed S-matrix space it is most natural to look
for Zamolodchikov’s Z4 S-matrix and see if that one can also be found in an appropriate
bootstrap problem. This is what we discuss in the next section.

1Strictly speaking the elliptic deformation found in [1] is an analytic continuation of the one found here.
Here we are taking mbs >

√
2m to pass by the SSG in its physical domain where the second breathers are

constrained to be in such mass range. There we took mbs = 1 so we were instead studying the elliptic
deformation of an analytic continuation of the SSG beyond its physical regime. We expect the elliptic
deformation encountered here to correspond to a proper physical theory; we suspect that this is not the
case for the analytically continued version in [1].
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Figure 3.2: Coupling space for Z2 symmetric theories with a single bound state obtained from
the S-matrix bootstrap. In this figure mbs =

√
3m and all couplings are measured in units of m.

The green point is the supersymmetric sine-Gordon theory, while the bold black line corresponds
to an integrable elliptic deformation of SSG. The blue region is the fundamental domain: the rest
of the 3D space can be obtained from it through trivial reflections corresponding to symmetries
of the bootstrap problem.

3.1.3 The faces of Z4 symmetry

Inspired by the newly obtained elliptic S-matrix discussed in section 3.1.2, we consider a
Z4 symmetric setup with a particle-antiparticle pair of mass m whose charges under Z4 are
one and three. We assume that there are no further particles in the spectrum

After imposing selection rules from charge conservation and constraints from crossing,
C, P and T, see details in appendix B.2, we are left with 3 independent amplitudes: S11

11 ,
S33
11 and S31

13 . In similar spirit to the scenario without bound states considered in the SUSY
setup, section 3.1.1, we bootstrap the allowed space for the off-shell four point couplings
defined by the values of these three independent amplitudes evaluated at the crossing
symmetric point s∗ = 2m2.
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The result is the smoothed rhombic dodecahedron displayed in figure 3.3. Yang-Baxter
factorization once again makes an unexpected appearance: the full two dimensional sur-
face2 corresponds to Zamolodchikov’s famous Z4 symmetric integrable S-matrix [114].
Edges connecting threefold vertices and fourfold vertices correspond, up to change of ba-
sis, to limits where the Z4 S-matrix degenerates into the sine-Gordon kinks S-matrix with
γ ≥ π, see section 3.2. In particular, fourfold vertices are equivalent to limits in which the
Z4 or sine-Gordon S-matrix becomes free . The threefold vertices of the dodecahedron are
smoothened resembling the pre-vertices of [12].

As far as Yang-Baxter is concerned we encountered this mysterious bonus factorization
at special kinks in the supersymmetric setup (figure 3.1); at special lines in the Z2 bounds
(figure 3.2) and now in full surfaces in the Z4 problem (figure 3.3). Would be great to
understand mathematically where this additional physical factorization is coming from.

3.2 A web of relations

Both in this and in previews works [1, 9] a myriad of integrable two-component 2D S-
matrices were found to be located along the boundary of the space of amplitudes allowed
by consistency with UV completeness. The various S-matrices obtained in this way are not
independent, but connected through an intricate web of relations, summarized in figure
3.4 and reviewed in this section. The expressions for the exact S-matrices can be found in
appendix B.4 where more details are given.

We begin the web of relations with the Zamolodchikov’s Z4 S-matrix, bootstrapped in
figure 3.3. The most curious feature of this S-matrix, described in details in appendix B.4.3,
is its periodicity for real values of the rapidity θ, defined by s = 4m2 cosh(θ/2)2, which
at high energies amounts to periodicity in log s. As pointed out by Zamolodchikov [114],
this suggests a sort of RG-time periodicity, which may explain the current lacks of a
Lagrangian description for this model. The S-matrix is described by two parameters: the
elliptic modulus κ and the coupling γ. When we take κ→ 0 (arrow 1⃝) the Z4 charge gets
enhanced to a U(1) topological charge, and the S-matrix gets reduced to the sine-Gordon
kinks S-matrix. The remaining real parameter is the free parameter γ of the sine-Gordon
model which controls the spectrum of the theory.

As a limit of the Z4 S-matrix (which has no bound-states) we land in the regime
γ > π where the only stable particles are the sine-Gordon solitons. Once we analytically
continue into γ < π we reach the regime where there are bound states called breathers.
The scattering of these breathers can be obtained by fusing pairs of kinks in a multi-kink
scattering process (arrow 2⃝), detailed in appendix B.4.1. The lightest breather S-matrix,
obtained in this way, is the simplest S-matrix one can bootstrap as analyzed in [9, 110].

As said previously, for γ > π the only stable particles in the sine-Gordon spectrum
are the solitons. However when γ = πp, with p ≥ 3 and p ∈ Z, some multi-soliton states
decouple and the spectrum can be restricted (arrow 3⃝). This process defines the restricted
sine-Gordon theory, see appendix B.4.2. This theory has no free parameters and no bound

2More precisely, part of the surface corresponds to Zamolodchikov’s Z4 S-matrix after charge conjugation
of one of the particles, see appendix B.2.
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Figure 3.3: S-matrix space for the Z4 symmetric S-matrix bootstrap at s∗ = 2m2. The faces
are equivalent to the Zamolodchikov’s Z4 S-matrices (appendix B.4.3) and the edges to the sine-
Gordon kinks S-matrices (appendix B.4.1).

states. The case of interest is p = 4, for which the restricted theory is supersymmetric.

The supersymmetric sine-Gordon solitons S-matrix is built in a nice factorized way
(arrow 4⃝) from the two S-matrices we just encountered as

SSSGkinks
(θ, γ) = SSGkinks

(θ, γ)⊗ S(p=4)
RSGkinks

(θ) ,

where the SG soliton scattering matrix part takes care of the topological quantum numbers
while the RSG matrix deals with the SUSY charges. Just like in SG we can fuse (arrow
5⃝) the (supersymmetric) kinks to obtain the S-matrix of the (supersymmetric) breathers,
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Figure 3.4: Connections between S-matrices showing up in this chapter as well as in [1,9]. Green
boxes: S-matrices with bound-states. Blue boxes: S-matrices without bound states. ∗: Known
corresponding Lagrangian field theory (LFT). ■: Unknown corresponding LFT.

which retains the factorized structure,

SSSGbreathers
(θ, γ) = SSGbreathers

(θ, γ)⊗ S(p=4)
RSGbreathers

(θ, γ) .

This is the S-matrix at the vertex of figure 3.1.

Since the fusing momenta depend on γ, the fusion process introduces a γ dependence in
the SUSY-related factor. However, this term does not correspond to a scattering process
in the RSG theory. After all, as said before, the restricted model has no free parameter
and no breathers. Nevertheless it is precisely this S-matrix factor by itself that shows up
as as the boundary of the purple region in figure 3.1.

The SUSY factor in the SSG 1st breather supermultiplet S-matrix can be deformed
into an elliptic integrable S-matrix SED controlled by an extra parameter κ, arrow 6⃝. This
deformation breaks supersymmetry but preserves the Z2 fermion number symmetry intact.
We encounter it as the solid line in the more general Z2 setup of figure 3.2. Finally, it
is also possible to deform the SSG 1st breather S-matrix preserving supersymmetry but
breaking integrability, see arrow 7⃝ and appendix B.4.6. Such S-matrix, SNF, describes
the full boundary of the space of theories in figure 3.1. It is a curious example of solution
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which we can find analytically and yet does not obey Yang-Baxter. Would be nice if there
was a physical theory which realizes (at least an approximate version) of this S-matrix.

The lower dimensional sections of various S-matrix spaces in figures 3.1, 3.2 and 3.3 –
with a vast plethora of very rich S-matrices at their boundary as summarized in figure 3.4 –
are the main results of this chapter. Some of the amazing features in these S-matrix spaces
– such as unitarity saturation – are now somehow demystified [12] while others – such
as emerge of factorization or exotic periodicities in the kinematical variables – remain as
elusive as ever. Would be very interesting to explore other setups with different symmetries
and space-time dimensions to better shed light over these puzzles and to best understand
how universal they really are. One very concrete avenue for analytic progress is to zoom
in on the vertices close to free theories and see if there is still some interesting Lagrangian
games to be played a la [126,127]. Would be nice to see if such simple perturbative games,
combined with some important bootstrap intuition, could lead to the discovery of new
interesting theories.
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Chapter 4

The S-matrix Bootstrap: 2D Dual Theory

4.1 Introduction

Figure 4.1 is extracted from [10] and [15].

(a) (b)
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Figure 4: Largest possible value |g|max as a function of m2
b , using a triple rho expansion of the

amplitude for the given values of Nmax and after imposing the unitarity constraints for spins up to
`max = 20. As explained in the text, the shaded area is physically incompatible with our analyticity
assumption. We added the analytic result of appendix E as the dashed line near m2

b = 4.

`  `max and along a grid of values for s. Experimentally we observe that our results remain
meaningful if `max is not much smaller than Nmax and if the grid is su�ciently refined. In
appendix F we discuss the dependence on these parameters in more detail, and outline the
numerical implementation.

4 Results

In this section we present our numerical results for several maximization problems using
the S-matrix bootstrap method explained above. For most of this section we restrict our
attention to 3+1 dimensional QFTs, i.e. d = 3 in our notation. In the final subsection 4.4,
we consider 2 + 1 dimensional QFTs.

4.1 Cubic coupling

For our first result we consider a scattering amplitude with a single pole corresponding to
the exchange of a scalar particle of mass mb, exactly as in our ansatz (15), and maximize
the value of the residue g2 as a function of mb.

12

In figure 4 we plot the maximum absolute value of the coupling |g| defined as the residue
of the pole, with the di↵erent curves corresponding to di↵erent values of Nmax. We have

12For mb 6= m this in particular implies that there is by assumption no three-point coupling where all
particles have mass m. This could be due to a symmetry but we do not have to commit to an underlying
mechanism here.

12

Allowed

Beautiful 
convergence

Tough 
convergence

Figure 4.1: a) Maximal cubic coupling showing up in the scattering of the lightest particle in a
gapped theory with a single bound-state (in this channel at least) [10]. Convergence is perfect
when the bound-state mass (measured in units of the lightest mass) is bigger than

√
2 and quite

painful otherwise. b) The allowed chiral zeroes space of putative pion S-matrices associated to
an SU(2) chiral symmetry breaking patterns draws a beautiful peninsula like object with a sharp
tip [15].1Convergence is great almost everywhere except close to the tip where numerics struggle.
In those cases where the primal problem struggles, having a dual rigorous bound would be a
blessing. This chapter is about such dual bounds.

1There are, at least, other two structures would benefit a dual description. One is the “pion lake” [15],
found imposing the presence of the physical ρ resonance only. Another interesting and recent structure is
the “pion river” [128], found imposing additional constraints on the scattering lengths arising from χPT
and monotonicity of the relative entropy. The dual formulation would allow to rigorously define these
structures excluding theories not compatible with the assumed low energy QCD behavior.
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These works explore the allowed space of physical 4D S-matrices. One parametrizes a
vast family of S-matrices compatible with given physical and mathematical assumptions
and maximize or minimize quantities within this ansatz to find the boundaries of what is
possible. The more parameters the ansatz has, the better is the exploration. As the number
of parameters become very large, one hopes that these boundaries converge towards the
true boundaries of the S-matrix space.

Sometimes this works beautifully as illustrated in the figure; sometimes convergence is
painful, to say the least, as also illustrated in the figure. In those cases where convergence
is a struggle, what can we do? Sometimes, it is a simple matter of improving the ansatz;
sometimes it is not clear what exactly is missing. And in either case, how can we ever tell
how close to converging are we anyways?

A solution would be to develop a dual numerical procedure – called the dual problem
– where instead of constructing viable S-matrices we would instead rule out unphysical
S-matrix space.2 Then we would approach the boundaries of the S-matrix space from two
sides, dual and primal, and in this way rigorously bracket the true boundaries of the sought
after S-matrix space. This was recently achieved in two dimensions for simple models with
a single type of particle transforming in some non-trivial global symmetry group [12].3

This chapter concerns two dimensional multi-particle systems with arbitrary mass spec-
tra from this dual perspective, clearly one step further in the complexity ladder, closer to
the full higher dimensional problem.4 We will also consider a different technical approach,
complementary to [12], with some aspects which we hope can be more directly transposable
to higher dimensions.

4.2 Dual optimization and the S-matrix bootstrap

To achieve the desired dual formulation, it is useful to revisit the S-matrix bootstrap
with a slightly different perspective.

In the primal S-matrix bootstrap formulation one constructs scattering amplitudes
consistent with a set of axioms, or constraints. Such amplitudes are said to be feasible, that
is, they belong to the allowed space of theories. One then optimizes physical observables,
such as the interaction strength between stable particles, in the space of feasible amplitudes.
The prototypical example is [9, 110]: in a 2D theory with a single stable particle of mass
m, what is the maximum cubic coupling g consistent with a 2 → 2 scattering amplitude
M satisfying the constraints of unitarity, extended analyticity, and crossing?

In other words, we would like to solve the optimization problem

2Such dual bounds were attempted more than 50 years ago already in [129–132]. Would be very
important to do some archeology work and revive/translate/re-discover/improve those old explorations in
a modern computer friendly era. A beautiful first step is currently being pursued by Martin Kruczenski
and Yifei He [34]. The conformal bootstrap bounds are also exclusion analysis of this sort [133].

3The primal version of these single particle studies with global symmetry was the subject of [11,13,14];
the case without global symmetry was considered in [9, 110].

4Multi-particle primal problems of this kind were pioneered in [1, 2].
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Primal problem

maximize
in M(s), g2

g2 (4.1)

constrained by A(s) ≡M(s)−
(
M∞ −

g2

s−m2
+

∞∫

4m2

dz

π

ImM(z)

s− z+i0+
(
s↔ 4m2 − s

) )
= 0

for s > 4m2, (4.2)

U(s) ≡ 2 ImM(s)− |M(s)|2
2
√
s− 4m2

√
s
≥ 0 for s > 4m2. (4.3)

where we maximize over the space of analytic functionsM , and emphasize that one param-
eter in this infinite dimensional space is the residue of such functions at s = m2 which is
equal to −g2. The first constraint (4.2), an exact equality, imposes that feasible scattering
amplitudes must respect crossing, real analyticity, and have singularities determined by
physical processes: poles corresponding to one particle states, and cuts corresponding to
multi-particle states.5 We choose to impose this condition for s > 4m2, but because we
maximise over analytic functions, feasible amplitudes will have have this property for all s
in the physical sheet.6 The convenience of imposing this condition for s > 4m2 will become
clear in time. The second constraint (4.3) is the physical unitarity condition, equivalent
to |S(s)| ≤ 1.

Since the quantity we are maximising, the objective, is a linear map in the space
of analytic functions, the map that evaluates the residue at a point, and since the con-
straints (4.2), (4.3) are affine and convex respectively, the optimization problem we aim to
solve is an infinite dimensional convex optimization problem. For such a simple problem,
there are now two directions that can be taken. The first option is to solve the infinite
dimensional problem analytically. As is well known by now, this follows from a simple ap-
plication of the maximum modulus principle [9,110]. The second option, available in more
complicated situations, is to bring the problem to the realm of computers by maximiz-
ing our objective in some finite dimensional subspace of analytic functions. For example,
one can consider analytic functions that are, up to poles, polynomial of at most degree
Nmax in some foliation variable ρ that trivializes the constraint (4.2), as done in [10]. This
truncated problem can be efficiently solved by a convex optimization software, for example
SDPB [112,134]. By choosing and increasing the finite dimensional subspace smartly, one
obtains lower bounds to the solution of the primal problem that should converge to the
correct bound with more expensive numerics.

The primal formulation suffers from two important shortcomings. First, for some prob-
lems it is hard to identify a simple ansatz, or truncation scheme, that allows for fast
convergence. This is often the case in higher dimensional S-matrix bootstrap applications,

5It turns out that there is no loss of generality in omitting subtractions from (4.2), since a more careful
analysis shows that the inclusion of those leads to the same result (4.15). We opt for not including
subtractions in the main text for the sake of clarity – see appendix C.2.1 for a more detailed discussion.

6The physical sheet is defined as the first Riemann sheet encountered after analytically continuing from
physical kinematics, s > 4m2, using the +iϵ prescription.

56



or when scattering heavy particles in 2D. Second, and perhaps more importantly, one may
want to add extra variables and constraints to the primal problem. In the previous ex-
ample, those variables and constraints could be, respectively, higher point amplitudes and
higher point unitarity equations. It may be the case that a feasible 2 → 2 amplitude in
the original primal problem may no longer be feasible in the enlarged space with extra
constraints. In those cases, a point in theory space previously said to be allowed becomes
forbidden. It would be more satisfying if bounds on the space of theories obtained by
studying some scattering subsector remained true once the full set of QFT constraints
were imposed.7 To overcome both of this shortcomings, we introduce the dual formulation.
We use the coupling maximization problem as a guiding example, before generalizing.

Consider the Lagrangian8

L(M,w, λ) = g2 +

∫ ∞

4m2

ds w(s)A(s) + λ(s)U(s) (4.4)

with λ(s) ≥ 0 and define the dual functional

d(w, λ) = sup
{M,g}
L(M,w, λ) (4.5)

Notice that the supremum is taken over unconstrained analytic functions M .9 The dual
functional d is the central object in the dual formulation due to the following property:

Weak Duality

Let the solution of the primal problem be g2∗. Then d(w, λ) ≥ g2∗. (4.6)

Weak duality holds due to two observations. First, note that since

inf
{λ≥0,w}

L(M,w, λ) =

{
g2 if M is feasible

−∞ otherwise,
(4.7)

we have that

g2∗ = sup
{M,g}

[
inf

{λ≥0,w}
L(M,w, λ)

]
.

Weak duality then follows from the max-min inequality

d(w, λ) ≥ inf
{λ≥0,w}

[
sup
{M,g}
L(M,w, λ)

]
≥ sup

{M,g}

[
inf

{λ≥0,w}
L(M,w, λ)

]
= g2∗. (4.8)

7Much in the same way that CFT data excluded by the numerical conformal bootstrap remains excluded
once more crossing equations are included into the system.

8Note A(s) is actually real.
9It is useful to think of analytic functions as being defined through their independent real and imaginary

parts along a line. Of course, if the dispersion (4.2) were to hold, then those would not be independent.
However, since we maximise over generic analytic functions, we are free to treat Re M and Im M for
s > 4m2 as independent.
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Exploring the {w, λ} space, the space of dual variables, we therefore obtain upper
bounds on the values of g allowed by the axioms and exclude regions in theory space. This,
in turn, partially solves the first shortcome of the primal formulation: by providing upper
limits on the coupling, it bounds how far from converging an ineffective primal truncation
scheme may be. To find the best possible upper bound, we solve the

Dual problem (generic)

minimize
in w(s), λ(s)

d(w, λ) (4.9)

constrained by λ(s) ≥ 0

The construction of dual functionals from a primal optimization problem is standard
in optimization theory, but the particularities of the problems encountered in the S-matrix
bootstrap lead to important simplifications. One of these is that the analyticity of the
scattering amplitude is inherited by the dual variable w(s), conjugate to the analyticity
constraint. In fact, let’s define a “dual scattering function”, W (s)10, odd under crossing
and whose absorptive part is w(s):

W (s) ≡ 1

π

∫ ∞

4m2

dz
w(z)

s− z+i0 −
(
s↔ 4m2 − s

)
. (4.10)

Then, swapping a few integrals in (4.4) and using 1
(s−z±i0) = ∓iπδ(s− z)+P 1

(s−z) leads
to a very simple representation for the lagrangian as

L(M,W, λ) = g2
(
1 + πW (m2)

)
+

∫ ∞

4m2

ds Im (W (s)M(s)) + λ(s)U(s). (4.11)

Note that the Lagrangian density is now manifestly local in M as the Cauchy kernel
from (4.2) has been nicely absorbed into W . This locality, together with the quadratic
nature of the constraint equations11 leads to the next simplification over generic dual op-
timization problems: we can perform both the maximization over M in (4.5) and the
minimization over λ in (4.9) exactly. We now analyze those in sequence.

Before doing that, first notice, linearity of L under g2 implies that

d(W,λ) = +∞ unless πW (m2) = −1. (4.12)

This means that unlessW is properly normalized atm2, the bounds obtained from the dual
functional are vacuous. Hence, in solving the dual problem, there is no loss of generality
in restricting ourselves to the space of W satisfying the constrain in (4.12).

10It is worth stressing that the introduction of an analytic functionW (s) is not mandatory. It is possible
to work with real densities w(s) and follow the argument presented in this section using the same logic.
This possibility is particularly useful in higher dimensions if one wants to assume no more than the proven
analyticity domains [132].

11Dispersions for higher point amplitudes are no longer expected to be quadratic in lower point functions
due to the presence of Landau singularities.
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The linear Lagrange equations with respect to variations of M(s) for s > 4m2 results
in

Mcritical(s) = [Im(W (s))/λ(s) + i (2λ(s) + Re(W (s))/λ(s))] /(2ρ211).

where ρ211 = 1/(2
√
s− 4m2

√
s). Second order variations show that, indeed, this is a

local maximum provided λ(s) > 0. It follows from the definition (4.5) that, provided
πW (m2) = −1,

d(W,λ) =

∫ ∞

4m2

ds

( |W (s)|2
4λ(s)

+ λ(s) + ReW (s))

)
/ρ211. (4.13)

Next, we minimize over λ leading to λ = |W (s)|/2. The result is D(W ) ≡ inf
λ≥0

d(W,λ))

given by

D(W ) =

∫ ∞

4m2

ds (Re(W (s)) + |W (s)|) /ρ211., (4.14)

in which case12

Mcritical(s) =
i

ρ211

(
1 +

W ∗

|W |

)
.

In sum, the dual of (4.1) simplifies to

Dual problem (S-matrix bootstrap)

minimize
in W (s)

D(W ) =

∫ ∞

4m2

ds (Re(W (s)) + |W (s)|) /ρ211 (4.15)

constrained by πW (m2) = −1. (4.16)

The dual problem can be tackled numerically through the same strategy used for the
primal problem, that is, restricting our search to a finite dimensional subspace of analytic
W s. For example, one could use the ρ foliation variables to write the ansatz13

Wansatz(s) =
1

s(4m2 − s)
Nmax∑

n=1

an(ρ(s)
n − ρ(t)n), (4.17)

where

ρ(s) =

√
2m2 −

√
4m2 − s√

2m2 +
√
4m2 − s

, (4.18)

and minimize the functional (4.15) in the finite dimensional space parametrized by the an’s.
Note that the constraint (4.16) is a linear constraint in this space. The functional (4.14)
is nonlinear, but it is convex in W . Performing such minimization, say, in Mathematica

shows that, as one increases Nmax, the result of the problem (4.15) converges to the result
of the primal problem (4.1). This is expected if our optimization problem satisfies

12Note that unitarity is automatically saturated once we minimize in λ.
13The Ansatz (4.17) is consistent with the dispersion (4.10). In particular, the poles in (4.17) correspond

to a delta function contribution in w(s).
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Strong Duality

The solutions to the primal (4.1) and dual problem (4.15) are identical, i.e. g2∗ =
min
in W

D(W ). In other words, the ≥ symbol in (4.6) is actually an = sign.

This property is argued for in appendix C.1.

To explain how the dual formulation solves the second shortcoming of the primal op-
timization, and in view of the applications in section 4.3, let’s consider a slightly different
class of S-matrix Bootstrap problems. Consider a gapped theory with two real stable
particles of masses m1 and m2 respectively, m1 < m2, and suppose we were interested
in maximizing the cubic coupling of particle m1. Let Mab = Ma→b. Assuming P and T
symmetry, M is a symmetric matrix. We would like to solve the problem

Primal problem (matrix)

maximize
in M

g2 (4.19)

constrained by A(s) = 0 for s > 4m2
1, (4.20)

U(s) ≡ 2 ImM(s)−M†ρM ⪰ 0 for s > 4m2
1. (4.21)

where Aab ≡ Aa→b are analogous to (4.2) and impose the correct dispersion relations for
the amplitudes Ma→b (see e.g. (4.36) in the next section). Here ρ are the phase space
factors for the intermediate states (see e.g. (4.35) in the next section). To obtain the dual
problem, we introduce the Lagrangian

L(M,w,Λ) = g2 +

∫ ∞

4m2
1

ds Tr (w · A(s) + Λ · U(s)) , (4.22)

where w and Λ are respectively symmetric and hermitian matrices of dual variables with Λ
positive semi-definite. The new dual functional

d(w,Λ) = sup
M
L(M,w,Λ) (4.23)

satisfies weak duality by similar arguments as those in equations (4.7-4.8). The dual
optimization problem is

Dual problem (matrix)

minimize
in w(s), Λ(s)

d(w,Λ) (4.24)

constrained by Λ(s) ⪰ 0.

Note that an upper bound on the solution of the primal problem (4.1) is obtained by
choosing minimizing d in the subspace wab(s) = δ11a δ

11
b w(s), Λab = δ11a δ

11
b λ(s), λ ≥ 0. This

is equivalent to the dual problem obtained by including only the amplitude M11→11 in the
bootstrap system, or primal problem. Restricting to a scattering subsector in the dual
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formulation provides true bounds to the more complete optimization problem. Conversely,
bounds obtained by studying some restricted space of amplitudes and constrains remain
valid once extra axioms and degrees of freedom are considered. We hope it is clear that the
argument provided by means of an example is generic. This solves the second shortcoming
of the primal formulation.

4.3 An application

4.3.1 The setup

We now turn our attention to much richer S-matrix bootstrap. We consider a theory with
two particles of mass m1 and m2 > m1. We will not assume any global symmetry. For
concreteness, we will take14

m1 = 1 , m2 = 3/2 .

There are a priori four couplings involving these two particles: g111, g112, g122, g222. They
would show up as s-channel residues in the various scattering amplitudes:

Amplitude Exchange of particle 1 Exchange of particle 2
11→ 11 g2111 g2112
11→ 12 g111g112 g112g122
12→ 12 g2112 g2122
11→ 22 g111g122 g112g222
12→ 22 g112g122 g122g222
22→ 22 g2122 g2222

We will not consider the full coupled system of six amplitudes. Instead we will consider a
nice closed subset involving the 11 → 11, 11 → 12 and (the forward) 12 → 12 processes
only (that is, the first three lines in the table). As such we will be insensitive to g222. We
will furthermore consider a section of the remaining three-dimensional space where g122 = 0
so that the problem simplifies slightly to15

Amplitude Exchange of particle 1 Exchange of particle 2
11→ 11 g2111 g2112
11→ 12 g111g112 0
12→ 12 g2112 0

and our main goal here is to explore the allowed two dimensional (g112, g111) space. A
convenient way to find the boundary of this space is by shooting radially. We fix an angle

14Setting m1 = 1 simply sets our units. All m2 >
√
2 would then give very similar plots/conclusions.

We could also consider m2 <
√
2; the plots are a little bit less eye pleasing in that case. The significance

of the transition point m∗
2 =
√
2 is that this is the crossing invariant point for the 11 → 11 process; on

either sign of this point residues have different signs leading to quite different optimization results.
15The analysis for any other fixed value of g122 follows identically, see more at the end of this section.
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β and define a radius R as

(g112, g111) = R(cos β, sin β) .

Then we find the maximum value of R for each β choice to plot the full two-dimensional
space.

In the primal language we will get larger and larger R’s as our ansatz is more and
more complete. In the dual language we will rule out smaller and smaller R as we improve
our ansatz. Sandwiched between the two will be the true (two dimensional section of the)
boundary of the S-matrix space.

It is equally straightforward to fix g122 to any other value and analyze another 2d
section in this way or even collect various values of g122 to construct the full 3D space. We
leave such detailed scans for the future when we will have more realistic setups designed
to bootstrap particular relevant physical theories such as the (regular and tricritical) Ising
model (perturbed by thermal and magnetic deformations) as discussed in the conclusions.

4.3.2 Single Component Horn

Let us start our search for the two dimensional section of the allowed S-matrix space by
focusing on the constraints arising from the single M =M11→11 component alone.

This is a warm up section and many of the results here are not new: indeed, the
primal formulation of single component scattering has been the subject of [9]; a minor new
ingredient we will consider here is the radial search element. (The radial problem for the
space of S-matrices with O(N) symmetry and no bound states was introduced in [12].) In
appendix H of [1] an almost identical primal problem was solved analytically; the analytic
curves in figure 4.2 are obtained by trivially adapting the arguments therein. The dual
formulation for these single component cases with several exchanges masses, however, will
be novel and provide very useful intuition for the most general case.

The primal radial problem can be compactly formulated as

Primal Radial Problem for Single Component

maximize
in M,R2

R2

constr. by Resm2
1
(M) = R2 sin2 β, Resm2

2
(M) = R2 cos2 β (4.25)

s ≥ 4m2
1 A(s) =M(s)−M∞ +

(
g2111

s−m2
1

+
g2112

s−m2
2

− 1

π

∫ ∞

4m2
1

dz
ImM(z)

z − s + (s↔ t)

)
=0

s ≥ 4m2
1 U(s) = 2ImM(s)− ρ211|M(s)|2 ≥ 0. (4.26)

We will now construct the dual problem. If it were not for the radial additional equal-
ity constraints (4.25) the corresponding dual problem would be given already in eq. (4.15).
In this case we need to introduce additional Lagrange multipliers ν1 and ν2 to the la-

62



grangian (4.4)

L = R2+ν1(Resm2
1
(M)−R2 sin2 β)+ν2(Resm2

2
(M)−R2 cos2 β)+

∫ ∞

4m2
1

dsA(s)w(s)+U(s)λ(s).

(4.27)
Now we follow the logic of section 4.2 verbatin modulo a few small differences inherent to
the radial nature of the primal problem which we will highlight. First of all note that the
maximum of the Lagrangian with respect to R2 yields a bounded result only when

1− ν1 sin2 β − ν2 cos2 β = 0.

Next, identifying w(s) = ImW (s) with W (s) given by (4.10) as before will lead to a
beautiful dual problem formulation with a totally local optimization target. Importantly

∫ ∞

4m2
1

dsA(s)w(s) =
∫ ∞

4m2
1

ds Im(M(s)W (s)) + πResm2
1
(M)W (m2

1) + πResm2
2
(M)W (m2

2)

so we see that the optimization with respect to the parameters Resm2
i
(M) identifies the

lagrange multipliers νi with the normalization of the dual functional at the stable mass
values W (m2

i ). All in all we therefore obtain the simple dual problem radial generalization
of (4.15) as

Dual Radial Problem for Single Component

minimize
in W

D(W ) =

∫ ∞

4m2
1

ds (Re(W (s)) + |W (s)|) /ρ211

constrained by 1 + πW (m2
1) sin

2 β + πW (m2
2) cos

2 β = 0. (4.28)

Notice again the nice complementarity between the pole singularities associated to
bound states in the physical amplitude and the absence of poles in the “dual scattering
function”W given by (4.10), replaced instead by the simple normalization conditions (4.28).
Conversely, when we maximize effective couplings in theories without bound-states the
primal S-matrices have no bound-states and the dual functionals have poles [12].

In figure 4.2 we show the numerical results for both the primal (inner blue shaded
regions) and the dual problem (outer red shaded regions).

4.3.3 Multiple Component Kinematics

Next we consider the full system with 11→ 11, 11→ 12 and forward 12→ 12 amplitudes.16

The two dimensional kinematics of the 11→ 11 process and of the forward 12→ 12 process
are reviewed in great detail in section 2 of [1] so here we will mostly focus on the new

16As reviewed in detail in [1] when a particle of type 1 scatters with a particle of type 2 it can either
continue straight (forward amplitude) or bounce back (backward amplitude). Here we consider the forward
process only. This process is nicely crossing symmetric. (The backward process is not; instead it is related
by crossing to 11 → 22 scattering so considering this backward process would require more scattering
processes to close the system of unitarity equations.)
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Figure 4.2: Numerical bounds on the coupling space {g111, g112}. The blue shaded regions enclose
the allowed points for different Nmax in our primal ansatz. The red shaded regions mark the
points that are rigorously excluded. The thin black analytic curve is the boundary of the allowed
region [1]. As we increase Nmax from 1 to 5 in the primal problem, the blue regions enlarge,
allowing for more and more points and eventually converging to touch the boundary of the
permitted space (this is more evident in the “horn” region). In the dual strategy as we increase
Nmax from 1 to 5 we exclude more and more points. At convergence the excluded region touches
the boundary of the allowed space. We restrict the plot to the first quadrant since it is symmetric
under g ↔ −g.

11 → 12 process.17 This scattering process is a nice fully symmetric process. No matter
which channel we look at it, it always describes two particles of type 1 (in the infinite
future or past) scattering into a particle of type 1 and another of type 2. As such

M11→12(s, t, u)

is fully symmetric under any permutation of the three Mandelstam variables s, t, u. Of
course, they are not independent. Besides

s+ t+ u = 3m2
1 +m2

2 (4.29)

17This process was not considered in [1] because it violates Z2 symmetry. Here we don’t have Z2

symmetry so it is the first most natural process to consider after the lightest 11→ 11 scattering amplitude.
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Figure 4.3: Maldelstam Triangle for 11 → 12 scattering. The x-axis is given by x = (s + 2t −
3m2

1 −m2
2)/
√
3. The 11 → 12 scattering if fully crossing invariant and indeed so is this picture.

Physical processes in 2D lie on top of the blue solid lines and outside the red lines; in higher
dimensions they fill in the interior of the regions delimited by the blue solid lines as one scans
over physical scattering angles. Similar triangle for 12→ 12 scattering can be found in [1].

which holds in any dimension, we have the two dimensional constraint

stu = m2
1

(
m2

1 −m2
2

)
2 (4.30)

Equations (4.29) and (4.30) describe a curve. Its projection into real s, t, u is given by
the solid curved blue lines in figure 4.3. There, we see four disconnected regions: three
non-compact parabola like curves related by a rotation symmetry and a round triangle
in the middle. The three outer curves are the three physical regions associated to the
three scattering channels. The one in the top, for instance, corresponds to the s-channel.
(Each outer curve has a left and right components which are equivalent; they are related
to a simple parity transformation.) The s-channel outer curve start at s = (m1 + m2)

2

as indicated by the red solid line. That corresponds to the minimal energy necessary to
produce a particle of type 1 and a particle of mass 2 at rest. (Recall that 2 is heavier than 1.)
Another important energy marked by the blue dashed line in the figure occurs at s = (2m1)

2
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which would correspond to the minimal energy necessary to produce two particle of type
1 at rest. This is however not a physical energy for this process since physical energies
are those for which we can produce both initial and final state. Nonetheless, the region
between s = 4m2

1 and s = (m1 +m2)
2 is very interesting because we know precisely what

are the only possible physical states in that energy range: they can only be two particle
states involving two particles of type 1. [111] The equation which reflects this is the so
called extended unitarity relation which in this case reads

2ImM11→12 = ρ211M11→11M
∗
11→12, 4m2

1 < s < (m1 +m2)
2 (4.31)

Here, since we are focusing on the top curve (which is crossing equivalent to any of the
other two) we can think of M as a single function of s with

t(s) =
1

2

(
3m2

1 +m2
2 − s−

√
(s− 4m2

1) (−2m2
2 (m

2
1 + s) + (s−m2

1)
2 +m4

2)

s

)
(4.32)

u(s) =
1

2

(
3m2

1 +m2
2 − s+

√
(s− 4m2

1) (−2m2
2 (m

2
1 + s) + (s−m2

1)
2 +m4

2)

s

)
(4.33)

As a check, note that as m2 → m1 we find u → 0 and t → 4m2
1 − s as expected for two

dimensional elastic scattering of particles of equal mass.

The extended unitarity relation (4.31) is of course part of a coupled system of equations
when we consider all components at once. They can all be nicely packed into matrix form
by defining

U ≡ 2ImM−M†ρM , (4.34)

where

M ≡
(
M11→11 M11→12

M11→12 M12→12

)
, ρ ≡



ρ211 =

θ(s−4m2
1)

2
√
s−4m2

1

√
s

0

0 ρ212 =
θ(s−(m1+m2)2)

2
√
s−(m1+m2)2

√
s−(m1−m2)2




(4.35)
Then extended unitarity is the statement that U = 0 for s ∈ [4m2

1, (m1 + m2)
2]. Above

s = (m1+m2)
2 we are at physical energies and the extended unitarity relation is replaced by

regular unitarity which is now nothing but the statement that U is a positive semi-definite
matrix U ⪰ 0 for s > (m1 +m2)

2.18

Finally we have poles. These correspond to the single particle exchanges when s or t
or u are equal to either m1 or m2. The poles show up in the (rounded) triangle region
in the Mandelstam triangle picture 4.3 in the 11 → 12 process as depicted in figure 4.4.
For 12 → 12, we have u = 0 and the two t-channel poles lie in the extended unitarity

18Strictly speaking we can impose U = 0 for a while longer in the unitarity region, more precisely until
the energy where we can produce two particles of type 2 or three particles of type 1. In practice, bounds
we will find will saturate unitarity so this will be automatic. Because of this, in all implementations, we
will actually impose U ⪰ 0 even in the extended unitarity region, that is for any s > 4m2

1. This is very
convenient as it renders the problem convex.
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Figure 4.4: t(s) (blue) and u(s) (yellow) for 11→ 12 scattering and m2 =
3
2m1. u(s) and t(s) are

two branches of the same analytic function. In the extended unitarity region they are complex.
As a function of s, all poles are located before the extended unitarity region. The grey horizontal
dashed lines are equal to m2

1 and m2
2 and fix the position of the t– and u– channel poles.

region. Note here the important difference between unitarity and extended unitarity. In
the unitarity region the amplitudes describe physical probability amplitudes, are bounded
and can thus never have poles. In the extended unitarity region they can in principle. And
here they do as we see in the figure.

All in all, we can summarize the analytic structure of our amplitudes with their cuts
and poles by dispersion relations as usual. These can be conveniently packaged into a
simple matrix statement A = 0 with

A ≡
(
A11→11 A11→12

A11→12 A12→12

)
(4.36)

67



2 4 6 8

-2

2

4

6

8

t = m2
1t = m2

2s = m2
1 s = m2

2

extended 
unitarity unitarity

t-channel poles sit in the s-channel extended unitarity region (and vice-versa)

t(s) = 2m2
1 + 2m2

2 � s

u(s) = 0

s

Figure 4.5: t(s) (blue) and u(s) = 0 (yellow) for 12 → 12 forward scattering and m2 = 3
2m1.

In the s-channel extended unitarity sit t-channel poles (and vice-versa). The s-channel poles lie
before the s-channel extended unitarity region. As in the previous figure, the grey horizontal
dashed lines are equal to m2

1 and m2
2 determine the position of t-channel poles.

and

A11→11(s) ≡M11→11(s)−M∞
11→11 + g2111

(
1

s−m2
1

+
1

t(s)−m2
1

)
+ g2112

(
1

s−m2
2

+
1

t(s)−m2
2

)

− 1

π

∫ ∞

4m2
1

ImM11→11(z)

(
1

z − s +
1

z − t(s)

)
dz , (4.37)

A11→12(s) ≡M11→12(s)−M∞
11→12 + g111g112

(
1

s−m2
1

+
1

t(s)−m2
1

+
1

u(s)−m2
1

)

− 1

π

∫ ∞

4m2
1

ImM11→12(z)

(
1

z − s +
1

z − t(s) +
1

z − u(s)

)
dz , (4.38)

A12→12(s) ≡M12→12(s)−M∞
12→12 + g2112

(
1

s−m2
1

+
1

t(s)−m2
1

)

− 1

π

∫ ∞

4m2
1

ImM12→12(z)

(
1

z − s +
1

z − t(s)

)
dz . (4.39)

68



We hope there will be no confusing created by the fact that t(s) signifies different things
depending in which equation we are since crossing is implemented differently for different
components. In (4.37) is it t(s) = 4m2

1 − s; in (4.38) it is given by (4.32); and in (4.39)
it is given by t(s) = 2m2

1 + 2m2
2 − s. In what follows, it should always be clear from the

context which t(s) we are talking about.

4.3.4 Multiple Component Dual Problem

The formulation of the dual problem for the multiple component scenario can be derived
following the steps outlined in Sec. 4.2. There are, however, two practical obstacles: one is
the complicated analytic structure of the 11→ 12 component, the other is the presence of
the extended unitarity region. In this section we shall solve both problems if we want to
arrive at an elegant and efficient dual numerical setup.

As always, we start from the primal radial problem
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Primal Radial Problem for Multiple Component

maximize
in R2,M

R2

constr. by 0 = c1 ≡ Resm2
1
(M11→11)−R2 sin2 β ,

0 = c2 ≡ Resm2
2
(M11→11)−R2 cos2 β ,

0 = c3 ≡ Resm2
1
(M11→12)−R2 sin β cos β ,

0 = c4 ≡ Resm2
1
(M12→12)−R2 cos2 β ,

s > 4m2
1 A = 0 where A is given in (4.36) ,

s > 4m2
1 U ⪰ 0 where U is given in (4.34) . (4.40)

If not for the ci = 0 equality constraints related to the radial problem, this setup would
fit (4.19). Note also that the last constraint incorporate automatically unitarity and ex-
tended unitarity. Sometimes it is convenient to analyze it separately in the extended and
regular unitarity regions corresponding to s bigger/smaller than (m1 +m2)

2 respectively.

We start our path towards the dual problem with the usual Lagrangian starting point

L=R2 +
4∑

i=1

ciνi +

∫ ∞

4m2
1

tr (wA) ds+
∫ ∞

4m2
1

tr (ΛU) ds, (4.41)

with

w =

(
w1

1
2
w2

1
2
w2 w3

)

and Λ semi-definite positive. Next we want to identify w as the discontinuities of full
analytic functions W such that the resulting lagrangian becomes manifestly local. This is
still possible here but turns out to be more interesting than before because of the richer
11→ 12 kinematics reviewed in the previous section. The final result is

W =

(
W1

1
2
W2

1
2
W2 W3

)
(4.42)

with the dispersive representations of the three dual scattering functions

W1(s) =
1

π

∫ ∞

4m2
1

dz ImW1(z)

(
1

z − s −
1

z − 4m2
1 + s

)
, (4.43)

W2(s) =
1

π

∫ ∞

4m2
1

dz ImW2(z)

(
1

z − s +
Jt(s)

z − t(s) +
Ju(s)

z − u(s)

)
, (4.44)

W3(s) =
1

π

∫ ∞

4m2
1

dz ImW3(z)

(
1

z − s −
1

z − (m1 +m2)2 + s

)
. (4.45)

Note that the first and last lines here are pretty much as before: they correspond to anti-
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crossing symmetric symmetric functionalsW1 andW3. The middle line – with its Jacobians
Jt = dt/ds and Ju = du/ds from (4.33,4.32) – is more interesting and more subtle. We
explain its origin in full detail in appendix C.2.2.

Then we have the crucial relation required to render the Lagrangian local:

∫ ∞

4m2
1

tr (wA) ds =

∫ ∞

4m2
1

Im tr (WM) ds+ π
(
Res
m2

1

(M11→11)W1(m
2
1) + Res

m2
2

(M11→11)W1(m
2
2)

+Res
m2

1

(M11→12)W3(m
2
1) + Res

m2
1

(M12→12)W2(m
2
1)
)

Once we plug this relation into our lagrangian (4.41) the last line nicely combines with the
first two terms there; these terms are the only terms where R, νi and the various residues
appear.19 Maximization with respect to the residues will relate the various functionals W
evaluated at the stable particle masses to the lagrange multipliers νi as before while maxi-
mization with respect to R will lead to to a linear constraint involving all these functionals
which plays the important role of our normalization condition. It reads:

1 + π(W1(m1)
2 sin2 β +W1(m

2
2) cos

2 β +W2(m
2
1) sin β cos β +W3(m

2
1) cos

2 β) = 0 . (4.46)

At this point we already got rid of the lagrange multipliers, the radius and the residues;
our (partially extremized) Lagrangian is now a functional of the real and imaginary parts
of the amplitudes M above 4m4

1 and of the functionals Wi also for s > 4m2
1. Our dual

functional d is therefore the maximization over the amplitudes M of

d(W,Λ) = sup
M

∫ ∞

4m2
1

ds
(
tr (ImWM) + tr (ΛU(M))

)
(4.47)

Since we are dealing with small 2× 2 matrices we found it convenient to go to components
at this point and also to separate the last integral into its extended and regular unitarity
contributions separately.

For example, using

Λ =

(
λ1

1
2
λ2

1
2
λ∗2 λ3

)
⪰ 0, (4.48)

and evaluating the equations of motion for ReM12→12 and ImM12→12 in the extended
unitarity region we get

ReW3 + 2λ3 = 0, ImW3 = 0.

These two equations constrain the dual scattering function associated to the 12 → 12
to have a discontinuity starting at (m1 + m2)

2. Moreover, the semidefinite-positiveness
condition on Λ implies20 that

λ3(s) ≥ 0 =⇒ ReW3(s) ≤ 0, for 4m2
1 < s < (m1 +m2)

2.

19Recall that R, the residues and M(s) for s > 4 are our primal variables, while νi and Wi(s) are our
dual variables.

20Second order variations show that the full positive semidefiniteness of Λ is required for the critical Mc

to be a maximum.
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We can solve all equations for all amplitude components in both the regular and extended
unitarity region for the simple reason that U is quadratic in M. In this way we get d(W,Λ)
which we should now minimize. Its explicit expression is in appendix C.3.

We can now minimize first over positive semi-definite Λ to obtain our final dual func-
tional D(W). This step is quite non-trivial but leads to a very compact final result:

Dual Radial Problem for Multiple Component

minimize
in W

Dext(W) +Dphys(W) (4.49)

Dext(W) = −
∫ (m1+m2)2

4m2
1

ds
|W2|2 − 4ReW1W3 + |W 2

2 − 4W1W3|
4ρ211W3

Dphys(W) =

∫ ∞

(m1+m2)2
ds

(
ReW1

ρ211
+

ReW3

ρ212
+

√
|W1|2
ρ411

+
|W3|2
ρ412

+
|W2|2+|W 2

2−4W1W3|
2ρ211ρ

2
12

)

const. by ReW3 ≤ 0, ImW3 = 0 for 4m2
1 ≤ s ≤ (m1 +m2)

2

and by 1 + π(W1(m1)
2 sin2 β+W1(m

2
2) cos

2 β+W2(m
2
1) sin β cos β+W3(m

2
1) cos

2 β) = 0

Here, the two contributions Dphys(W) and Dext(W) correspond to the contributions of
regular and extended unitarity. The last condition is the normalization condition (4.46) and
the next-to-last line with the linear inequality constraint is in the end the only remnant of
the positive semi-definiteness of the lagrange multiplier matrix Λ. All these constraints can
actually be trivialized as we explain in the next section. This will lead to a unconstrained
(albeit non-linear) dual minimization problem which we will then solve numerically.

4.3.5 Numerical Results

Now we perform both a primal and a dual numerical exploration to check the correctness
of problem (4.49).

It what follows we will propose ansatze to parametrize families of dual functionalsWj’s.
The cleverer the ansatze, the best will the bounds be and the fastest they will converge of
course. Clever or not, it is of course important to stress that any ansatze for Wi leads to
a totally rigorous exclusion bound.

The 11 → 11 dual ansatz is the same used to produce the rigorous dual bounds in
figure 4.2

W1(s) =
1

s(4m2
1 − s)

Nmax∑

n=1

an (ρ(s)
n − ρ(t)n) , (4.50)

where t = 4m2
1−s, an are free variables and ρ(s) is the usual ρ-variable foliation introduced

in [10] – see eq. (4.18) with m = m1. This ansatz has the right branch-point discontinuities
and it is manifestly anti-crossing symmetric. At infinity it decays as W1 ∼ s−5/2; in fact,
this behavior ensures that the dual objective in (4.28) is integrable. The poles at s = 4m2

1
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and s = 0 are not necessary to obtain optimal bounds, but in practice they speed up the
numerical convergence.21

For the 11→ 12 dual ansatz we use

W2(s) =
1√

4m2
1 − s

√
4m2

1 − t
√

4m2
1 − u

Pmax∑

n=1

bn (ρ(s)
n + Jt(s)ρ(t)

n + Ju(s)ρ(u)
n) , (4.51)

where t and u are respectively given in (4.32) and (4.33). Recall also that Jt = dt/ds and
Ju = du/ds. At infinity W2 ∼ s−3/2, therefore the dual objective function (4.49) wouldn’t
be integrable at infinity. However, it is sufficient to fix two of the bn’s free variables to
ensure the W2 ∼ s−5/2 decay. Notice that eq. (4.51) has branch point singularities at
s = t = u = 4m2

1 where the extended unitarity discontinuity in the physical amplitude
start. At the physical threshold s = (m1 + m2)

2 in principle we could add additional
singularities such as a pole (similarly to (4.50)), however it turns out that numerically it
makes no difference.

It is convenient to design the 12 → 12 dual ansatz such that it automatically satisfy
the constraints ImW3 = 0 and ReW3 < 0 in the extended unitarity region so that our
optimization is unconstrained. The former is easily achieved using a ρ-foliation with cut
starting at s = (m1 +m2)

2 such as

ρ̃(s) =

√
(m1 +m2)2 − 2m2

1 −
√

(m1 +m2)2 − s√
(m1 +m2)2 − 2m2

1 +
√
(m1 +m2)2 − s

.

The latter is more subtle: we could always impose linear constraints such as ReW3(s) ≡
W3(s) ≤ 0 on some grid of points in the 4m2

1 < s < (m1 + m2)
2 segment in our dual

minimization problem, but this would make Mathematica’s basic FindMinimum slow and
nearly unusable. Instead, we opt to write the ansatz

W3(s) = (ρ̃(t)− ρ̃(s))
(

1√
(m1 +m2)2 − s

+ (s↔t)
)(

Qmax∑

n=0

cn(ρ̃(s)
n + ρ̃(t)n)

)2

where t = 2m2
1 + 2m2

2 − s. It is easy to check that W3 has actually definite sign in a larger
region than extended unitarity: W3 > 0 in t((m1 +m2)

2) = (m1 −m2)
2 < s < m2

1 +m2
2

and W3 < 0 in m2
1 +m2

2 < s < (m1 +m2)
2 which of course include the extended unitarity

region. This may sound too restrictive, however this is one of the advantages of the dual
formulation: as long as the dual scattering functions satisfy the dual constraints, the bounds
obtained are rigorous. Of course, a legitimate question is whether our ansatz is able to
attain the optimal value of the dual problem. It turns out that for the case we are studying

21We have numerical evidence to believe they are the right singularities the optimal dual scattering
function should have. However, it is worth noticing they do not spoil integrability at threshold. We can
look at eq. (4.11): the

∫∞
4

Im (M(s)W (s)) ds is integrable if W (s) ∼ 1/(s− 4) close to threshold because

the amplitude vanishes as M(s) ∼
√
s− 4.

22The dual curves, from outer to inner corresponds (Nmax, Pmax, Qmax) equal to (8, 8, 8), (10, 10, 10) and
(10, 20, 20); the primal curves from inner to outer correspond to 136, 271 and 1111 degrees of freedom in
the primal ansatz for the amplitude matrix. We used splines analogous to those used in [1].
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g111

g112

Figure 4.6: Dual (red) and Primal (blue) excluded/allowed regions once the full system of ampli-
tudes is included.22 The multi-component improved boundary is now rigorously trapped between
the primal and dual bounds. The red dashed line is the previous single component boundary. As
we now impose the full system constraints the bound improves dramatically excluding most of the
horn like figure. The red star point, for instance, was allowed (feasible) before from the primal
problem perspective (it was blue in figure 4.2) and is now excluded. Once again, we restrict the
plot to the first quadrant due to g ↔ −g symmetry.

this ansatz is also approximately optimal numerically.

Now we have all the ingredients to just code the objective in (4.49) and minimize it
unconstrained. The result for the {g111, g112} space is shown in figure 4.6 (red shaded
regions). In the same figure, the blue shaded areas are determined running the primal
problem eq. (4.40) – see [1] for details about primal multiple component numerics. The
red dashed line marks the single component analytic bound. The white space in between
the primal and dual areas is the uncertainty we have in the definition of the boundary for
the full coupled system. Clearly the optimal bound is almost completely trapped!

4.4 Discussion

Icarus said that all limits are self-imposed. That is not totally true. Unitarity, crossing
symmetry and analyticity clearly also impose very important bounds.

In this chapter we described the first steps towards a dual bootstrap program and ap-
plied it on the next-to-simplest S-matrix bootstrap scenario: Two dimensional amplitudes
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with more than one particle type and more than one mass.23

One main goal of this chapter was to set up the theory behind this physical problem
and connect it with the standard language of dual and primal maximization problems as
optimization problems. Indeed, a great deal of section 4.2 can bet transported from math
books [135–137].

In the S-matrix bootstrap studied here the primal problem is linear but constrained;
the dual problem is non-linear but unconstrained.24 For the primal problem, we used
the powerful SDPB code to perform the optimizations. For the dual problem we used
Mathematica’s basic FindMinimum.25 Even so, the dual problem is orders of magnitude
faster right now.26 It would be very interesting to look for more tailor made algorithms for
our kind of minimizations to speed the dual even more.

Of course, the main advantage of having a dual problem is not speed but the fact that
the bounds whence generated are completely rigorous. What is once excluded can never
be included back. This is in contradistinction with the primal formulation where more
constraints will often rule out a previously feasible solution. In practice the best is to use
both dual and primal problems at once. When they almost touch each other – meaning
the so called duality gap is closing – we know we are reaching the very optimal bounds!

Having developed the theory and a very fast dual problem, we look forward to putting
it to use in several interesting physical applications.

One goal would be to bootstrap the Ising model field theory with both thermal and
magnetic deformations turned on. Let us recall why we think this is promising. The
Ising field theory with pure magnetic deformation [138] is at the boundary of the single
amplitude bound [9], see figure 12 there. What is more, it is precisely at the top of a
sharp horn like 3D bound in the coupling space as depicted in figure 4.7.27 Something we
clearly learned in this chapter is how multiple amplitudes can truncate such horns; compare
figures 4.2 and 4.6. At the magnetic Ising point this dramatic truncation can not happen.
This theory exists after all, we can not rule it out. What happens is that the very special
values of the masses of the stable particles of this theory allow for fine tuned cancelations
in 11→ 12 and other amplitudes such that they completely vanish and thus do not affect
the single component bound which produces the horn. In other words, the purely magnetic
deformation, being precisely integrable, is very special. As soon as we move away from
these special masses by turning a thermal deformation, the multiple amplitude bounds are
now expected to strongly affect the single component analysis and this provides a strong

23The simplest example was kicked off in [12] for a single particle species transforming in some global
symmetry group.

24The unconstrained nature of the dual problem is an extremely powerful and fortunate property which
was not a priori guaranteed. It is the nature of the S-matrix Bootstrap problems considered up to now
that allowed us to trivialize all dual constraints encountered thus far.

25FindMinimum is sometimes an art. It is not uncommon to ask for a minimization, give Mathematica a
viable starting point and obtain a final result bigger than the starting value. Go figure. Of course, it is a
price to pay when having a one size fits all algorithm. See also next footnote.

26The dual curves in figure 4.6 contain thousands of points and take about a day to generate in a regular
laptop. The primal curves take a few days in a cluster. One reason why we did not use the cluster for the
dual problem is that we found it useful to hotstart FindMinimum by starting the minimization search at a
given point using the final result of the neighbouring point.

27In [9] only the maximum g111 coupling was plotted so it was not possible to see this cusp so sharply.
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ĝ111

ĝ112

ĝ113

Figure 4.7: Left: Maximum couplings g11j for a theory with the masses of the Ising field theory de-

formed by magnetic field depicted by normalizing those by the Ising couplings, ĝ11j ≡ g11j/gIsing11j

at this E8 point. Right: The plot on the right is obtained by a simple rotation of the first by 45
degrees which magnify some of the nice features of the plot. (These plots were generated using
the dual method developed in this chapter with N = 20; it might be possible to derive this shape
analytically. We did it for one of the faces but did not pursue this further.) The Ising field theory,
the red dot, lies beautifully at the very tip of these horn shaped single component plots.

improvement over the bounds in [9]. This is not totally trivial to implement because close
to the magnetic point, the Ising field theory has three stable particles. Exploring the space
of couplings gijk between these particles is hard because this space is ten dimensional. The
trick here is to find a clever lower dimensional section of this multidimensional space, with
good optimization targets, which could efficiently isolate the magnetic plus thermal Ising
deformation.

Another interesting theory to explore would be the tri-critical Ising model. In the
discussion section of [1] an S-matrix bootstrap homework exercise was proposed in relation
to this model. With the great speed gains from the dual technology here developed this
homework seems very doable. The deformation proposed there concerns a deformation
preserving Z2 symmetry. The dual Z2 symmetric bootstrap is discussed in appendix C.4 for
the case of equal masses; the uneven masses case should be a straightforward generalization
of the analysis of the main text.

One step up in the complexity ladder of bootstrap problems are problems whose am-
plitudes depend on more than a single complex variable. One example is of course higher
dimensions where we have both an energy and an angle even in two-to-two scattering pro-
cesses.28 Another example are higher point amplitudes, even in two dimensions. In fact,
in a very roundabout way, we arrived at the class of problems presented in this chapter
precisely while starting to tackle these multi-particle problems in work in progress with J.

28It is also in higher dimensions where the tension between absence of particle production and crossing
symmetry is most striking [45, 47] which is another point a dual formulation should be very helpful in
clarifying.
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Figure 4.8: The kinematics of the two-to-two process 11→ 12 is very reminiscent of two-to-three
scattering of massless particles as illustrated here. Both processes are fully crossing symmetric.
Particle 2 on the left is analogous to the jet of two right-movers on the right. This two-to-
three scattering process should show up in flux tube physics [139–141] where parity is broken.
Extending the flux tube S-matrix boostrap program initiated in [142] to include such processes
would be extremely interesting.

Penedones, [48]. The point is that the 11→ 12 amplitudes studied in this chapter are in a
sense very similar to a sort of 2→ 3 scattering process of massless particles as illustrated
in figure 4.8. The jet of the two right movers in the future is like particle 2. Of course,
that jet can have any sub-energy. Nonetheless, this problem is within reach.
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Chapter 5

The Wilson Loop – Large Spin OPE
Dictionary

5.1 Introduction

In appendix B of [143] a duality was proposed between the n-point correlation functions
of large spin single trace twist-two operators in planar N = 4 SYM and the expectation
value of null polygonal Wilson loops with 2n sides.1 The simplest non-trivial example of
such duality would relate three point functions and the null hexagon Wilson loop

⟨OJ1(x1, ϵ1)OJ2(x2, ϵ2)OJ3(x3, ϵ3)⟩ ←→W(U1, U2, U3) (5.1)

The goal of this chapter is to sharpen the arrow in this relation making it into a precise
equation with an equal sign with all the appropriate normalizations and with a precise
dictionary relating the variables on both sides of this equation: the spins Jj and polarization
vector ϵj on the left hand side and the hexagon cross-ratios Ui on the right hand side.

This is (5.27).2

We got there in two steps. First we examined the OPE decomposition of six point func-
tions in the so-called snowflake channel: we fuse adjacent pairs of external operators into
spinning operators which are then glued together through a tensor structure parametrized
by integer indices ℓi. The starting point is intimidating. It is given by 9 sums (3 are spin
sums, 3 are sums over tensor structures indices and the last 3 appear in the representa-
tion of the relevant conformal block). When the external points approach the cusps of a

1This duality is one branch out of a rich web of dualities relating various seemingly distinct quantities
in N = 4 SYM such as Wilson Loops and Scattering Amplitudes [102] and Wilson loop and the null limit
of correlation functions [101]. Indeed, null correlation functions are dominated by leading twist large spin
operators which is one way to argue for the duality mentioned in the main text. The argument in [143]
also uses some string theory intuition coming from the behavior of minimal surfaces of spinning strings and
how they are expected to become related to the minimal surface describing null polygonal Wilson loops
when their spin is taken to infinity. The argument was qualitative and no precise equality was spelled out
in [143]. Our main result (5.27) fills in this gap.

2The reader might be frowning. In (5.27) there are ℓi’s instead of ϵi’s. Worry not, they are simply
conjugate variables as reviewed in the next section and it is straightforward to change from one to the
other. The map of kinematics using the spinors is given in (D.9).
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null hexagon, six of these sums can be performed by saddle point. The location of the
saddle point will fix the tensor structure indices ℓj to precise locations depending on the
cross-ratios Uj of the null hexagon. This gives us the map ℓ(U) spelled out in equation
(5.14) below. Next we analysed further the null six point correlator through an analytic
bootstrap perspective (generalizing [144] – where this was carried over for small Uj in the
so called origin limit [145] – to generic finite cross-ratios Uj). This allowed us to see how the
correlators becomes Wilson loops and what are all the precise conversion factors showing
up along the way.

Null hexagon Wilson loops have light-cone singularities when non-adjacent vertices be-
come null. We conjecture how these singularities emerge from the discrete structure of the
structure constants in the large spin limit. The limit (5.1) should be understood to hold
before light-cones are crossed, i.e. in the “Euclidean” region of positive cross ratios. Config-
urations with time-like separations should then be achieved through analytic continuation
from this safe region. These musings are backed up by explorations of novel one loop data
we extract.

In sum, in this chapter we cleaned up the kinematics behind the duality (5.1) using
bootstrap techniques.

5.2 Spinning Three Point Functions

The purpose of this section is to establish notation. A traceless symmetric, spin J , primary
operator in a CFT can be represented through an homogenous polynomial of degree J on
an auxiliary null polarization vector ϵ

OJ(x, ϵ) = ϵµ1 . . . ϵµJOµ1...µJ (x). (5.2)

In a parity preserving 4D CFT, three point functions of traceless symmetric parity even
operators can be parametrized as

⟨OJ1(x1, ϵ1),OJ2(x2, ϵ2),OJ3(x3, ϵ3)⟩ =

∑
ℓi

CJ1,J2,J3
ℓ1,ℓ2,ℓ3

V J1−ℓ2−ℓ3
1,23 V J2−ℓ3−ℓ1

2,31 V J3−ℓ1−ℓ2
3,12 Hℓ1

23H
ℓ2
31H

ℓ3
12

(x212)
κ1+κ2−κ3

2 (x223)
κ2+κ3−κ1

2 (x231)
κ3+κ1−κ2

2

,

(5.3)
where κi is the conformal spin and

Vi,jk =
(
ϵi · xikx2ij − ϵi · xijx2ik

) 1

x2jk
, Hij = ϵi · xijϵj · xij − 1

2
x2ijϵi · ϵj,

are a basis of conformal covariant tensors [146], see appendix D.1. We sum over all non-
negative integers ℓ’s such that all exponents in (5.3) are non-negative.

Henceforth we will consider twist two operators in planar N = 4 SYM at weak coupling
and use the short-hand notation C••• ≡ CJ1,J2,J3

l1,l2,l3
for the structure constants of three
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spinning operators. We also have

C••• = Ĉ••• ×
3∏

i=1

Ji!
2

(ℓi!)2
√

(2Ji)!(Ji + ℓi −
∑3

j=1 ℓj)!︸ ︷︷ ︸
C•••

tree level

(5.4)

where Ĉ••• ≡ C•••/C•••
tree level is given by an expansion in small ’t Hooft coupling λ and

captures all loop corrections.

5.3 Null Correlators and the U(ℓ) map

We consider the null polygonal limit of the six point correlator of the lightest single trace
gauge invariant scalar operators as in [144]. This correlator is given by 9 cross-ratios
carefully reviewed in appendix D.3. We will sequentially send 6 of them to zero when
taking each xi to be null separated from xi+1 to obtain in the end a function which depends
on the remaining 3 cross-ratios. More precisely, the final result will depend on the three
finite cross-ratios as well as logs of the six vanishing cross-ratios. The dependence on the
latter will be through a factorized universal pre-factor which we can fix. The dependence
on the finite cross-ratios will be related to the renormalized Wilson loop which is theory
dependent.

As explained in [144] we can project into leading twist (i.e. two) in the 12, 34 and 56
channel in the snowflake decomposition by taking u1, u3, u5 → 0 or x212, x

2
34, x

2
56 → 0 as

depicted in figure 5.1a. In this limit, in perturbation theory the six point function behaves
as

G6(u1, u2, u3, u4, u5, u6, U1, U2, U3)→ u1u3u5 Ĝ6(u2, u4, u6, U1, U2, U3) (5.5)

The function Ĝ6 has no powers of u1, u3 or u5 but it implicitly contains arbitrarily many
powers of ln(u1), ln(u3) and ln(u5) arising from the anomalous dimensions of the twist two
operators. This function can be expanded as

G6 =
∑

J1,J2,J3

∑

ℓ1,ℓ2,ℓ3

P̂ •••(J1, J2, J3, ℓ1, ℓ2, ℓ3)︸ ︷︷ ︸
dynamic

∫

yj∈[0,1]

dy1dy2dy3F(Ji, ℓi, yi, ui, Ui)︸ ︷︷ ︸
kinematics

(5.6)

where P̂ is a (theory dependent) normalized product of three point functions3 and F
is a (theory independent) conformal block integrand worked out in [144] and recalled in
appendix D.4.

Series expanding the left and right hand side of relation (5.6) around ui, Ui = 1 –

3It is given by a product of three three point functions of two scalar and one spinning operator (for the
three OPE’s of the 12, 34 and 56 OPE’s of the external scalar operators) and a fully spinning three point
function (the intersection of the three gray lines in figure 5.1),

P̂ •••(J1, J2, J3, ℓ1, ℓ2, ℓ3) = Ĉ•••(J1, J2, J3, ℓ1, ℓ2, ℓ3)Ĉ
◦◦•(J1)Ĉ

◦◦•(J2)Ĉ
◦◦•(J3) . (5.7)

Here the hat Ĉ stands for tree-level normalized quantity C/Ctree level.
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Figure 5.1: Various snow-flake OPE limits discussed in this chapter. The bottom right one is
the double light-like OPE explored in this section. The top right one is the more conventional
Euclidian OPE used in appendix D.5 to extract new one loop OPE data which is analysed in
appendix D.6. We can get to both starting from the single light-like OPE on the left.

corresponding to the conventional Euclidean OPE limit depicted in figure 5.1b – allows us
to extract structure constants P̂ for the lowest spins J ’s and polarization integers ℓ’s. This
data extraction using the one loop result [147] for G6 is described in appendices D.5, D.6.
This one loop OPE data will be used in section 5.

In this section, we consider instead the limit u2, u4, u6 → 0 (at fixed Uj) – known as
the Lorentzian null OPE limit depicted in figure 5.1c – which is realized when all external
points approach the cusps of a null hexagon which in turn is parametrized by the finite
cross-ratios Ui. In this limit

Ĝ6(u2, u4, u6, U1, U2, U3)→ u2u4u6 G̃6(U1, U2, U3) (5.8)

where G̃ is a non-trivial function of the finite Ui which still contains arbitrary powers of
ln(uj) but no powers of uj since these were by now all sent to zero. We find two important
simplifications when computing the correlator (5.6) in this uj → 0 limit:
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• The integral is dominated by large spins Jj and large polarization integers ℓj. We
can thus transform

∑

J1,J2,J3

∑

ℓ1,ℓ2,ℓ3

→ 1

8

∞∫

0

dJ1dJ2dJ3dℓ1dℓ2dℓ3

in (5.6) being left with nine integrals in total. (The 8 = 23 comes from the fact that
the spins J are even.)

• Six of those nine integrals can be done by saddle point.

More precisely, we find that 0 = ∂ lnF/∂ℓj = ∂ lnF/∂yj leads to the saddle point location

y1 =
J2

J2 + J3

√
U2U3

U1

, (5.9)

y2 =
J3

J3 + J1

√
U1U2

U3

, (5.10)

y3 =
J1

J1 + J2

√
U1U3

U2

(5.11)

and more importantly

ℓ1 =
J2J3

J2 + J3 + J1

√
U2

U1U3

, (5.12)

ℓ2 =
J1J3

J1 + J3 + J2

√
U1

U2U3

, (5.13)

ℓ3 =
J1J2

J1 + J2 + J3

√
U3

U1U2

(5.14)

which nicely relate the Wilson loop cross-ratios in the right hand side of (5.1) with the
spin and polarization integers appearing in structure constant in the left hand side of this
relation. They are the sought after dictionary between these two worlds. (If Ji ≫ ℓi ≫ 1
then the Ui are very small; this was the limit studied in [144].)

The saddle point evaluation leads to

G̃6 =
4u2u4u6

(U1U2U3)
1
2

∫ ∞

0

dJ1 dJ2 dJ3 P̂
•••(J1, J2, J3, ℓ1, ℓ2, ℓ3)e

−J1J2
J3

× u2
√
U2√

U1U3
−J2J3

J1
× u4

√
U1√

U2U3
−J1J3

J2
× u6

√
U3√

U1U2

× 2γ1+γ2+γ3
(
u1
J1

) γ1
2
(
u3
J2

) γ2
2
(
u5
J3

) γ3
2
(
ℓ1

U1
1
2

)−γ1+γ2+γ3
2

(
ℓ2

U3
1
2

) γ1−γ2+γ3
2

(
ℓ3

U2
1
2

) γ1+γ2−γ3
2

,

(5.15)
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where ℓj depend on the integration variables Jj through (5.14). Implicit in this discussion
is the assumption that the integral is dominated by the saddle point developed by the
conformal block integrand. This should be valid for positive Us, see further discussion in
section 5.5. One can nicely check that when λ = 0 (so that the full second line as well as

P̂ ••• can be set to 1) this expression indeed integrates into the free theory result G̃6 = 1.

We close this section with the inverse of the map (5.14):

U1 =
J1J3ℓ1ℓ3

((J2 + J3) ℓ1 − J2J3) ((J1 + J2) ℓ3 − J1J2)
,

U2 =
J2J3ℓ2ℓ3

((J1 + J3) ℓ2 − J1J3) ((J1 + J2) ℓ3 − J1J2)
, (5.16)

U3 =
J1J2ℓ1ℓ2

((J2 + J3) ℓ1 − J2J3) ((J1 + J3) ℓ2 − J1J3)
.

It is going to be used intensively below.

5.4 Multi-point Null Bootstrap and the C123/W relation

We took a limit where all points approach the boundary of a null hexagon corresponding to
all uj → 0. Because we did it in two steps (first u1, u3, u5 → 0 projecting to leading twist
and then u2, u4, u6 → 0 projecting to large spin) the final result (5.15) is not manifestly
cyclic invariant. In this section we follow [144] and impose the cyclic symmetry of our
correlator under ui → ui+1 and Ui → Ui+1 to further constraint the structure constants
P̂ . This will generalize the result in [144] from the origin kinematics to generic hexagon
cross-ratios.

To kick this analysis off we start by converting the starting point (5.15) from the cross-
ratios uj to the more local cross-ratios vj (both are reviewed in appendix D.3) since the
expectation is that the Wilson loop should factorize into a universal prefactor depending
on these variables alone times a renormalized Wilson loop [101, 144]. Beautifully, we see
that this factorization is almost automatic once we convert to the v variables. Indeed, we
find

G̃6 =4
√
v2v4v6

∞∫

0

dJ1 dJ2 dJ3 e
−J1J2

J3

√
v2v6
v4

−J2J3
J1

√
v2v4
v6

−J1J3
J2

√
v4v6
v2

+
γ1
4

ln
16v1v5
v3J

2
1

+
γ2
4

ln
16v1v3
v5J

2
2

+
γ3
4

ln
16v3v5
v1J

2
3

× P̂ •••(J1, J2, J3, ℓ1, ℓ2, ℓ3)/
3∏

i=1

ℓ
γi−γi+1−γi−1

2
i (5.17)

so that the first line is already only made out of vj’s while all Uj dependence arises from
the second line through the ℓj(Ji, Ui) map (5.14). The problem at this point is how to

constrain P̂ so that the Uj and vj dependence factorizes and so that the final result is
cyclic invariant under vj, Uj → vj+1, Uj+1. The factorization would be automatic as soon
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as the ℓj dependence in P̂ comes through a factor of the form

factor ≡
3∏

i=1

ℓi
γi−γi+1−γi−1

2 × (5.18)

×W( J1J3ℓ1ℓ3
((J2+J3)ℓ1−J2J3)((J1+J2)ℓ3−J1J2) ,

J1J3ℓ1ℓ3
((J2+J3)ℓ1−J2J3)((J1+J2)ℓ3−J1J2) ,

J1J3ℓ1ℓ3
((J2+J3)ℓ1−J2J3)((J1+J2)ℓ3−J1J2))

Indeed, the first factor would cancel precisely the factor in the denominator in the last
line of (5.17) whereas – on the saddle point solution (5.14) – the arguments of the second
function will become precise the Uj variables as indicated in (5.16). That is, if

P̂ •••(J1, J2, J3, ℓ1, ℓ2, ℓ3) = factor× p(J1, J2, J3) . (5.19)

then we automatically find an explicit factorization

G̃6 =W(U1, U2, U3)×
[
4
√
v2v4v6

∞∫

0

dJ1 dJ2 dJ3 e
−J1J2

J3

√
v2v6
v4

−J2J3
J1

√
v2v4
v6

−J1J3
J2

√
v4v6
v2 (5.20)

e
f
4
ln(J1) ln

(
v1v5
v3

)
+ f

4
ln(J2) ln

(
v1v3
v5

)
+ f

4
ln(J3) ln

(
v3v5
v1

)
+ g

4
ln
(
163v1v3v5
J21J

2
2J

2
3

)
− f

2

3∑
j=1

ln(Jj) ln(Jj/4)

p(J1, J2, J3)
]

where we have used the explicit form of the large spin anomalous dimension γi = f ln(Ji)+g
to massage the second line. It is hard to imagine how anything else would lead to a
factorization but we did not establish the uniqueness of (5.19); it is a conjecture which
passes some non-trivial checks below and reduces to [144] in the origin limit.4

Next we have to impose cyclicity. For the first factor in (5.20) this simply means that
W(U1, U2, U3) = W(U2, U3, U1) but it does not constraint W any further. On the contrary,
for the second factor, cyclicity is very powerful. It fixes p completely to all loop orders
in perturbation theory, under very mild assumptions as explained below. The result is
remarkably simple:

p(J1, J2, J3) = N
3∏

i=1

(
Γ (1− γi) e

f
2
ln(Ji)

2−f ln 2 ln Ji
)
. (5.21)

It is a nice and very instructive exercise to plug this proposal into (5.20), expand the
integrand to any desired order in perturbation theory (corresponding to small cusp anoma-
lous dimension f and small collinear anomalous dimension g), perform all the resulting
integrations and realize that we only generate ln(vj)’s and that moreover the result non-
trivially combines, order by order in perturbation theory, into a fully cyclic expression.

4The challenge is to relate (non-)factorization of integrands versus (non-)factorization of integrated
expressions. Any extra ℓj dependence in (5.19) would show up inside the square bracket in (5.20) and thus
generically lead to a Uj dependence once we integrate in Jj with (5.14). It might be that a very subtle
ℓj dependence could integrate to zero or generate a factorized function of Uj which would renormalize W.
We were not imaginative enough to find any such example which made us confident that (5.19) is indeed
unique.
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It is an even more instructive exercise to simply plug a general perturbative ansatz
for p(J1, J2, J3) as an infinite series of monomials made out of powers of ln(Ji)’s in (5.20).
Each such monomial will again integrate to simple polynomials in ln(vj)’s. Remarkably,
imposing cyclicity at each order of perturbation theory will completely fix these polynomials
and thus the full perturbative expansion up to an overall normalization constant. In this
way, by considering a very large number of loops we could eventually recognize a simple
pattern and arrive at (5.21). This brute force derivation is perfectly valid but was not how
we originally arrived at (5.21).

We proceeded in a slightly more sophisticated way following similar ideas in the four
point function analysis in [148]. This is explained in the box that follows; this discussion
can be probably skipped in a first reading.

Deriving (5.21)

We first look for an integral transform for p such that ciclicity can be imposed at integrand level. We
define

q (ln J1, ln J2, ln J3) = e
− f

2

3∑
j=1

ln(Jj) ln(Jj/4)

p(J1, J2, J3) (5.22)

to absorb the last factor in the exponential in the second line in (5.20) and we change integration
variables to

x1 =
J2J3
J1

√
v2v4
v6

, x3 =
J1J2
J3

√
v2v6
v4

, x5 =
J1J3
J2

√
v4v6
v2

, (5.23)

to trivialize the tree level measure. Then the previous expression (5.20) takes the very suggestive form

G̃6 =W(U1, U2, U3)× e
∑
i

f
16 ln vi ln vi+3− f

8 ln vi ln vi+1+
g
4 ln vi× (5.24)

×
∞∫

0

dx1 dx3 dx5 e
−

3∑
i=1

(x2i−1+
g
2 ln(x2i−1/4)− f

4 ln(x2i−1) ln(v2i−1))

× q
(
lnx1 + lnx5 − ln v6

2
,
lnx3 + lnx1 − ln v2

2
,
lnx3 + lnx5 − ln v4

2

)

where we see the explicit appearance of the Sudakov factor [101, 144] in the first line. The lack of
ciclicity is now quite striking in the very different way that the even and odd cross-ratios show up
in the integral: The odd cross-ratios appear in the exponent in the form ln(xi) ln(vi) while the even
cross-ratios appear inside the arguments of the dressed structure constant p̂. That asymmetry is trivial
to fix: It suffices to write q itself as an integral transform introducing three new integration variables
x2, x4, x6 as

q(X,Y, Z) =

∞∫

0

dx2 dx4 dx6 e
−

3∑
i=1

(x2i+
g
2 ln(x2i/4))− f

2 (ln(x6)X+ln(x2)Y+ln(x4)Z)
q̃(x4, x5, x6) (5.25)

where the measure (first factor in the exponent) is written to mimic the already existing measure over
x1, x3, x5 to make sure the full result is properly symmetric. Similarly, the factor f/2 in the second
factor in the exponential guarantees that the new ln(xi) ln(vi) terms containing the even cross-ratios
come with the same overall prefactor as their odd cousins in (5.24). Note also that ln(x6) will multiply
X which contains its two neighbors ln(x1=6+1) and ln(x5=6−1) and similarly for all other arguments.
So in total we will get a beautiful symmetric chain of interactions and overall the only symmetry
breaking term is q̃(x4, x5, x6)! We should thus set it to a constant. Integrating (5.25) with q̃ equal to
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a constant indeed leads to the anticipated simple result (5.21). This concludes our derivation.

Putting everything together we thus find the final result for the full correlator in the
light-like limit (and for general hexagon kinematics) as

G̃6 =
(
W(U1, U2, U3)
︸ ︷︷ ︸

Renormalized Wilson loop

× exp
(∑

i

f

16
ln vi ln vi+3 −

f

8
ln vi ln vi+1 +

g − fγE
4

ln vi
)

︸ ︷︷ ︸
Sudokov Factor

×

(5.26)

×N




∞∫

0

6∏

j=1

dxje
−

6∑
i=1

(xi+
g
2
ln(xi)− f

4
ln(xi)ln(xi+1)− f

4
ln(xi)ln(vi))+

∑
i

fγE
4

ln(vi)




︸ ︷︷ ︸
Recoil J

,

where ln(x) = ln(x) + γE.

To obtain the full map between spinning three point functions and the Wilson loop we
simply need to convert P̂ to Ĉ using (5.7). In other words, we divide the result whence
obtained by three large spin structure constants for a single spinning operator which were
computed in [149]. This ratio nicely removes some of the gamma functions in (5.21) leading
to our final main result

Structure Constant/Wilson Loop duality

Ĉ•••(Ji, ℓi) = N
3∏

i=1

( Jiℓi
2ℓi+1ℓi−1

) γi
2

︸ ︷︷ ︸
conversion factor

×W(U1, U2, U3). (5.27)

with the map between variables on both sides of this equation given by (5.14) or (5.16).

5.5 One-loop check and some speculative musings

The structure constant variables (J1, J2, J3, ℓ1, ℓ2, ℓ3) are mapped into the Wilson loop
cross-ratios (U1, U2, U3) through the map (5.16). The Ji are even non-negative integers and
the ℓi are non-negative integers bounded by the condition that ℓi + ℓj ≤ Jk with i, j, k all
different. For J1 = J2 = J3 = 30 for instance we would have 7816 discrete ℓj choices, each
with its own structure constant. The map (5.16) maps each one of these ℓj choices to a
point in the cross-ratio space as depicted in figure 5.2.

The set of ℓk < JiJj/(Ji + Jj) covers the full space of positive real cross-ratios Uj
as represented in the figure 5.2 by the blue dots/region. The remaining ℓk’s cover three
disjoint regions in cross-ratio space where one cross-ratio is positive and two are negative.
(In the large spin limit of course.) The region of all positive cross-ratios can be called the
space-like region since it can be realized with all squared distances positive. The other
three regions need some squared distances to be negative to get negative cross-ratios so we
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Figure 5.2: The OPE data Ĉ•••(J1, J2, J3, ℓ1, ℓ2, ℓ3) can be plotted in the cross-ratio space
(U1, U2, U3) if we map the ℓi and Ji variables to the Ui using (5.16). The one loop structure
constants have a good Ji → ∞ limit in the blue region perfectly matching with the Wilson
loop in the Euclidean space-like (S) sheet. In contrast, the same structure constants blow up as
Ji →∞ in the red region which would naively correspond to the Wilson loop in some Lorentzian
time-like regions (Ti). To reach these regions we should instead start in the blue region and take
the large spin limit so that an emergent analytic structure arises with new branch cuts. We can
then cross them by analytically continuing away from the blue region and in this way obtain
a match beyond the Euclidean regime. The structure constant/Wilson loop duality is a cute
concrete example where expansions and analytic continuations do not commute.

call them time-like regions. (A beautiful detailed analysis of the geometry of the Ui space
for hexagonal Wilson loops is given in [150].)

We propose that as we take the large Jk, ℓk limit the structure constants in the space-like
region (S) will nicely match – according to (5.27) – with the Wilson loop in the space-like
(or Euclidean) sheet, where we start with all cusps space-like separated and do not cross
any light-cone. Let us discuss a non-trivial one loop check of this proposal.

In perturbation theory we have Ĉ•••(Ji, ℓi) = 1 + λc + . . . , conversion factor =
1 + λh + . . . and W(Ui) = 1 + λw + . . . so that at one loop our prediction (5.27) simply
translates into (up to an overall shift by a constant)

c(Ji, ℓi)− h(Ji, ℓi) = w
(
Ui(Ji, ℓi)

)
. (5.28)

The one loop Wilson loop is universal in any non-abelian gauge theory in the planar limit
since it is given by a single gluon exchange from an edge of the hexagon to another. It
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reads [145,150–152]

w
(
U1, U2, U3

)
= −4π2 + 2

3∑

i=1

Li2 (1− 1/Ui) . (5.29)

This object – in the space-like region where all Ui are positive – should emerge from the
one loop structure constant of large spin operators. These are extracted from the OPE of
the one loop correlation functions of six 20′ operators in planar N = 4 SYM, see appendix
D.5.1.

A speculative detour

Before discussing the quantitative match of the structure constant and the Wilson loop
we will open a speculative parentheses here. It can be skipped by the more orthodox
readers.

Note that the analytic structure of the structure constant before taking the large
spin and large polarizations limit is strikingly different to that of the Wilson loop.

The Wilson loop has a rich cut structure. In the physical sheet there are cuts at
Ui = 0 which need to be crossed to go from space-like to time-like configurations. These
are the only singularities of the Wilson loop in the physical space-like sheet [152]. If we
cross the Ui = 0 cuts we go to other sheets and do see other singularities most notably
at Ui = 1 but also at various other interesting locations, see e.g. [153–155].

Instead, the structure constant are meromorphic functions of ℓi and Jj with no cuts
whatsoever – see appendix D.6.3 for explicit expressions full of Harmonic numbers,
rational binomial sums and other similar meromorphic building blocks. They have
poles at unphysical values of polarizations and spins. In the large ℓi and Ji limit these
poles condense; seen from far away they become cuts as illustrated in figure 5.3. (This
phenomenon of poles condensing into cuts is all over, most notably in Matrix model
studies.) In other words, at finite ℓi, Ji there are no other sheets and no monodromies
to be picked, only the space-like sheet exists. All other Lorentzian sheets are emergent.
They only appear in the semi-classical limit of large ℓi, Ji. As such, what we expect is
that if we stay in the Euclidean regime ℓk < JiJj/(Ji + Jj) corresponding to the blue
region in figure 5.2 we should obtain a match with the Wilson loop in the large spin
limit. But if we want to access other regions in the Wilson loop, the order of limits is
key: We first need to take the large spin and large polarization limit so cuts emerge;
then we analytically continue our structure constant through those cuts.

When doing a numerical comparison of the Wilson loop and the structure constants
we observe an interesting phenomenon which seems to back this up. In the space-like
ℓk < JiJj/(Ji + Jj) region the one loop structure constants c are O(1) numbers; as we
increase the spin we observe that these numbers do approach the expected Wilson loop
expression (5.29). On the other hand, for ℓk > JiJj/(Ji+ Jj) the structure constants c
become exponentially large real numbers which blow up as Jj →∞! This is in perfect
synthony with the picture of the previous paragraph: to cross the cuts and reach the
Lorentzian domain -encountering a complex valued finite Wilson loop - we must first
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(a) (b)
Figure 5.3: a) (Imaginary part of) H(z) where H(z) are Harmonic numbers evaluate to rational
numbers for z positive integer and has poles at negative integers. For large argument it behaves
as log(z). In other words, seen from far away the poles condense into a cut. b) (Imaginary part
of) log(z) lives in an infinite sheeted surface. The first one agrees with that of H(z) for large
arguments while the other sheets are emergent.

go to a safe region in the physical sheet and then take a classical limit so the cuts
appear in the first place. If we go to the cuts directly in the structure constant side
we encounter instead a divergence – we could call it a firewall in analogy with black
holes. In this black hole analogy, the smooth cuts with emerge in the classical limit
resemble the smooth black hole horizons while the poles in the structure constants
which we would only see through very sensitive experiments would be the analogue of
the quantum black hole micro-states inner structure; some kind of fuzzball.

A analytical toy model for this phenomenon is Ĉ••◦ in the large spin limit, discussed
in detail in appendix D.6.2. In equation (D.34) we obtain nice O(1) expressions valid
for ℓ < J1J2/(J1+J2) with emergent branch points at ℓ = J1J2/(J1+J2) which should
be thought of as analogues for the U = 0 light-cone singularities of the hexagonal
Wilson loop. On the other hand, for ℓ > J1J2/(J1 + J2) the one-loop corrections
become exponentially divergent, see equation (D.35). In fact, extending the black hole
analogy, one must be careful when using these limits to compute observables that probe
the “horizon” or “interior” regions. For example, the equal spins sum over ℓ of the three
point function is finite in the large spin limit – given by (D.37) in the appendix – but
it is not purely captured by the naive large ℓ, J limit with ℓ/J fixed. Indeed, if one
first takes the large spin limit, a non integrable expression is obtained in the “interior”
region. This singularity can be thought of as a “UV” divergence that is regulated by
finer corrections coming from the microscopical structure of three point functions.

End of speculative detour.

We could not completely fix the analytic form of the one loop structure constants
c(Ji, ℓi) and so we could not establish (5.28) fully. Instead we expanded the Wilson loop
around the so-called origin limit [145] corresponding to small cross-ratios. Note that we
have

w
(
U1, U2, U3

)
=

3∑

i=1

ln2 (Ui) +
3∑

i=1

ln (Ui)Ai + B (5.30)
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where Ai and B have regular Taylor expansions around the origin U1 = U2 = U3 = 0.5 For
instance

B = −5π2 +
2

1

∑

i

Ui +
2

4

∑

i

U2
i +

2

9

∑

i

U3
i +

2

16

∑

i

U4
i + . . . (5.31)

The representation (5.30) makes manifest the branch-cuts at Ui = 0 of the Wilson
loop. In the structure constant side, to make contact with the Wilson loop as an expansion
around the origin we should consider the limit of very large spin and polarizations but very
small ratios of the two,

ℓi ≫ 1 , Ji ≫ 1 , ℓi/Jj ≪ 1 , (5.32)

indeed, in this regime we easily see that the cross-ratios obtained through (5.16) are very
small, for example:

U1 =
ℓ1ℓ3
J2
2

+
ℓ21ℓ3
J3
2

+
ℓ21ℓ3
J2
2J3

+
ℓ1ℓ

2
3

J3
2

+
ℓ1ℓ

2
3

J1J2
2

+ . . . , ln(U1) = ln

(
ℓ1ℓ3
J2
2

)
+
ℓ1
J2

+
ℓ1
J3

+
ℓ3
J1

+
ℓ3
J2

+ . . . .

(5.33)

When matching the one-loop correlation function c with the Wilson loop w the various
logs arising in the large spin limit of the structure constants should match the explicit logs in
(5.30) while the powerlaw corrections in ℓj/Jk should be matched with the series expansion
of B and Ai for small cross-ratios.6 If we can match all terms in these Taylor expansions
we would establish (5.28) completely. We almost did it. We matched all terms in the
expansion of Ai (see discussion around (D.48) in the appendix D.6.3) and we matched the
first 873 terms in the expansion of B once we translate (5.31) into small ratios expansions
as (5.33) to more easily compare with the structure constants (see discussion around (D.49)
in the appendix D.6.3). This is more than plenty to leave zero doubt in our mind that
(5.28) holds. To fully establish it we would need to finish the full analytic determination of
the structure constants which translate into finding a closed expression to the very simple
remaining β constants discussed around (D.52) in appendix D.6.3. It would be very nice
to find these constants. One reason is to conclude this analytic comparison but a perhaps
even more interesting reason would be to analytically understand all the various speculative
remarks about the behavior of the structure constants inside and outside the Euclidean
regime which we mused about in the speculative detour above.

5Explicitly, Ai = 2 ln(1− Ui) and B = 2Li2(U1) + 2Li2(U2) + 2Li2(U3)− 5π2.
6In the structure constant there are also terms like ℓ1/J

3
2 and so on which have less powers of ℓ’s in the

numerator compared to powers of J ’s in the denominator; we call these terms unbalanced. The unbalanced
terms vanish in the large spin/large polarization limit so we are insensitive to them when testing the
WL/Correlation function duality. In other words, the structure constants contain way more information
than the Wilson loop. We can think of them as an off-shell quantum version of the Wilson loop which
reduced to the Wilson loop in a classical limit where we keep balanced terms only such as the ones in the
expansions (5.33).
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Figure 5.4: Top arrow: Large spin three-point function/hexagon Wilson loop duality [143]. Left
arrow: Three point functions can be decomposed in terms of two hexagons [66]. For spinning
operators the necessary formalism is cleaned up in [4]. Right arrow: Wilson loops can be decom-
posed in terms of two pentagons [71]. Bottom arrow: The top duality hints at a transmutation of
hexagons into pentagons in the large spin limit. Would be fascinating to find out how this works.
It might lead to a unified integrability description of open and closed strings in AdS/CFT.

5.6 Discussion

This chapter concerns the duality relation depicted at the top of figure 5.4. On the top left
corner we have three point functions of three twist-two operators with large spins Ji and
with polarizations tensor structures parametrized by ℓi. On the top right corner we have
a renormalized Wilson loop parametrized by three finite conformal cross-ratios Ui. Our
main result is (5.27) which precisely links these two quantities with a precise kinematical
dictionary.7

Armed with a precise dictionary for the kinematics we can now attack the dynamics of
this problem from an integrability perspective.

Three point functions of three excited two-two operators (each parametrized by Ji
integrability magnon excitations) can be decomposed in terms of two hexagons [66]. When
cutting each operator into two these excitations can end up on either hexagon; we must

7Key in deriving this result was the so-called snowflake decomposition of six point correlation function.
It is an interesting open problem to use instead the comb decomposition of a six point correlation function
and arrive at the Wilson loop limit. The method used in this chapter can also applied to derive a link
between three point functions of two spinning operators and the expectaction value of a square Wilson
loop and a local operator [156,157].
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sum over where they end up as indicated in the bottom left corner of figure 5.4.8 The larger
the spin, the more excitations we have and thus the scarier are these sums. In the large
spin limit they ought to simplify and give rise to a Wilson loop (an adjoint Wilson loop
or the square of a fundamental one). In turn, the Wilson loop can be obtained by gluing
together two pentagons and summing over all possible virtual particles therein [71]. So the
sum over hexagon’s with their large number of BMN physical excitations should somehow
transmute into a sum over pentagons with a sum over GKP virtual excitations. To attack
this fascinating alchemy exercise, we need to understand how to polarize the hexagon OPE
expansion for spinning operators (all examples so far were for scalar structure constants or
spinning structure constants with a single tensor structure). This is the subject of chapter
6.9

8In principle we should also integrate over all possible mirror states at the three lines where the two
hexagons are glued to each other. We are ignoring this extra contribution. We believe it is subleading at
large spin when the effective size of all operators is very large. We are currently trying to check this by an
explicit finite size computation.

9Related to that, in appendix D.6 we extract data for C•••
123 at one loop in N = 4 SYM generalizing

previous results by Marco Bianchi in [158]; as usual, this data will be very useful in testing any integrability
based approaches.
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Chapter 6

Spinning Hexagons

6.1 Introduction

Three point functions of single trace operators in planarN = 4 SYM describe the scattering
of three closed strings in AdS and are thus given by a pairs of pants. Pairs of pants can be
obtained by stitching two hexagons together. That is how tailors make pants and it is also
how one computes three point functions in this gauge theory using integrability [66]. This
chapter is about spinning pair of pants where two or more operators have spin. In this
case the 3pt function is given by a sum of conformal invariant tensor structures and we
need to explain how the hexagons extract the coefficient multiplying each such structure.
For three twist-two operators with spin 2, 4 and 6, for instance, we have the perturbative
result (6.1), see [144], where ⟨ij⟩ is a scalar product involving a left spinor parametrizing
operator i and a right spinor parametrizing operator j.1 A main goal of this chapter is to
develop the formalism to reproduce such results from integrability.

Not all terms are equally easy to get. The terms in blue, for instance, are the tree
level contributions; we will develop an efficient recursion algorithm which will allow us to
determine them all (and produce a plethora of new predictions for structure constants of
larger twist operators). The boldfaced terms are what we call the abelian terms; these
structure constants are very integrability friendly as they lack a complicated so-called
hexagon matrix part ; these abelian terms we can actually compute easily at one loop (in
cyan here) or even at higher loops. The remaining non boldfaced orange terms are non-
abelian one loop terms; we can also get them but it is quite painful to do so specially for
operators of larger spin.

At the center of all these integrability based computations is a beautiful partition func-
tion represented in figure 6.1. We call it the hexagon partition function. The vertex in this
partition function is Beisert’s centrally extended SU(2|2) R-matrix [59] while the open
boundary conditions are given by contracting each boundary with a fixed two dimensional
spinor. The various possible choices of such spinors parametrize the various tensor struc-
tures described above. (For some choice of boundary conditions this partition function
trivializes – leading to the much simpler abelian contributions described above.) This

1These spinor variables render the various conformal invariant tensor structures into simple scalar
products, recalled in appendix E.1.
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hexagon partition function is the building block of all spinning correlators. It is an in-
teresting object on its own right which we want to advertise. It has a beautiful very rich
integrable structure, the surface of which we are barely starting to scratch.

C(2, 4, 6) =
1
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This chapter is naturally split into two main sections.

In section 6.2 we study the hexagon partition function mentioned above. This section
might be interesting for hardcore integrabilists, even those with no interest in three point
functions in SYM. We will study this partition function at weak coupling when it reduces
to a rational vertex model partition function and at finite coupling where it is richer, of
Hubbard type. Recursion relations, analytic continuations and several other tricks will
play a key role in this analysis.

In section 6.3 we describe how to introduce polarizations into the hexagon formalism
to compute spinning structure constants. We will do it mostly in the so called asymptotic
regime where mirror particles can be ignored except in section E.6.1 where we perform some
checks involving mirror particles at two loops. We will show how the triangle partition
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w3

<latexit sha1_base64="L7f55p3w4cWPwKCzkDNNUwapg+s=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcKuRvQY8OIxonlAEsLsZDYZMju7zPQqYcknePGgiFe/yJt/4yTZgyYWNBRV3XR3+bEUBl3328mtrK6tb+Q3C1vbO7t7xf2DhokSzXidRTLSLZ8aLoXidRQoeSvWnIa+5E1/dDP1m49cGxGpBxzHvBvSgRKBYBStdP/Uu+gVS27ZnYEsEy8jJchQ6xW/Ov2IJSFXyCQ1pu25MXZTqlEwySeFTmJ4TNmIDnjbUkVDbrrp7NQJObFKnwSRtqWQzNTfEykNjRmHvu0MKQ7NojcV//PaCQbX3VSoOEGu2HxRkEiCEZn+TfpCc4ZybAllWthbCRtSTRnadAo2BG/x5WXSOC97lfLlXaVUPcviyMMRHMMpeHAFVbiFGtSBwQCe4RXeHOm8OO/Ox7w152Qzh/AHzucPCSyNkw==</latexit>

w2

<latexit sha1_base64="4O69bOit+7fgArNtczr6PlVmCEk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuiOgx4MVjRPOAZAmzk95kyOzsMjOrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81iMqzWP5YMYJ+hEdSB5yRo2V7p96lV6x5JbdOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeG1P+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrJS9avnyrlqqXWRx5OEETuEcPLiCGtxCHRrAYADP8ApvjnBenHfnY9Gac7KZY/gD5/MHB6iNkg==</latexit>

w1

<latexit sha1_base64="Js4mahdI1ztZX8RsfyNwZMYwNoo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4kJJIRY8FLx4r2g9oQ9lsJ+3SzSbsbpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekSleSwfzDhBP6IDyUPOqLHS/VPP65XKbsWdgSwTLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCJ8VuqjGhbEQH2LFU0gi1n81OnZBTq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwms/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0ijYEb/HlZdK8qHjVyuVdtVw7z+MowDGcwBl4cAU1uIU6NIDBAJ7hFd4c4bw4787HvHXFyWeO4A+czx8GJI2R</latexit>

u1

<latexit sha1_base64="QJrvI09FiXI9MqE3+KwepZ8aV2g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPa9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAJto2l</latexit>

u2

<latexit sha1_base64="R6C0Ukt7sATDkS4hL8vGHY+Ihh0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+7Rf65crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb169eKuXmlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcLOo2m</latexit>

u3

<latexit sha1_base64="gw7c1OibQjLzS3SWaYCpX5phRzQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0Yo8FLx4rWltoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfjm5nffkKleSwfzCRBP6JDyUPOqLHSfdq/7JcrbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwrqfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKnm8qHq16tVdrdKo53EU4QRO4Rw8uIYG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcJvI2d</latexit>

v3

<latexit sha1_base64="B4ZUhXAg7vxcJO1+7+ps+RhzpFA=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYVo0eiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOpedoslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5LGRdmrlK8eKqXqbRZHHk7gFM7Bg2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8ADkSNqA==</latexit>

v1

<latexit sha1_base64="mbBdPcnL32Ecol33cqW49dqyXwY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REKnosePFY0dpCG8pmO2mXbjZhd1MooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+PnnScKoZNFotYtQOqUXCJTcONwHaikEaBwFYwup35rTEqzWP5aCYJ+hEdSB5yRo2VHsY9r1euuFV3DrJKvJxUIEejV/7q9mOWRigNE1Trjucmxs+oMpwJnJa6qcaEshEdYMdSSSPUfjY/dUrOrNInYaxsSUPm6u+JjEZaT6LAdkbUDPWyNxP/8zqpCW/8jMskNSjZYlGYCmJiMvub9LlCZsTEEsoUt7cSNqSKMmPTKdkQvOWXV8nTZdWrVa/ua5X6RR5HEU7gFM7Bg2uowx00oAkMBvAMr/DmCOfFeXc+Fq0FJ585hj9wPn8ABJ6NkA==</latexit>

v2

<latexit sha1_base64="/1mrOm+vq1uNaagmH+EZ+qAwOFA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuiOgx4MVjRPOAJITZyWwyZHZ2mekNhCWf4MWDIl79Im/+jZNkD5pY0FBUddPd5cdSGHTdbye3sbm1vZPfLeztHxweFY9PmiZKNOMNFslIt31quBSKN1Cg5O1Ycxr6krf88d3cb024NiJSTziNeS+kQyUCwSha6XHSr/SLJbfsLkDWiZeREmSo94tf3UHEkpArZJIa0/HcGHsp1SiY5LNCNzE8pmxMh7xjqaIhN710ceqMXFhlQIJI21JIFurviZSGxkxD33aGFEdm1ZuL/3mdBIPbXipUnCBXbLkoSCTBiMz/JgOhOUM5tYQyLeythI2opgxtOgUbgrf68jppVspetXz9UC3VrrI48nAG53AJHtxADe6hDg1gMIRneIU3RzovzrvzsWzNOdnMKfyB8/kDBiKNkQ==</latexit>

w3

<latexit sha1_base64="L7f55p3w4cWPwKCzkDNNUwapg+s=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcKuRvQY8OIxonlAEsLsZDYZMju7zPQqYcknePGgiFe/yJt/4yTZgyYWNBRV3XR3+bEUBl3328mtrK6tb+Q3C1vbO7t7xf2DhokSzXidRTLSLZ8aLoXidRQoeSvWnIa+5E1/dDP1m49cGxGpBxzHvBvSgRKBYBStdP/Uu+gVS27ZnYEsEy8jJchQ6xW/Ov2IJSFXyCQ1pu25MXZTqlEwySeFTmJ4TNmIDnjbUkVDbrrp7NQJObFKnwSRtqWQzNTfEykNjRmHvu0MKQ7NojcV//PaCQbX3VSoOEGu2HxRkEiCEZn+TfpCc4ZybAllWthbCRtSTRnadAo2BG/x5WXSOC97lfLlXaVUPcviyMMRHMMpeHAFVbiFGtSBwQCe4RXeHOm8OO/Ox7w152Qzh/AHzucPCSyNkw==</latexit>

w2

<latexit sha1_base64="4O69bOit+7fgArNtczr6PlVmCEk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuiOgx4MVjRPOAZAmzk95kyOzsMjOrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81iMqzWP5YMYJ+hEdSB5yRo2V7p96lV6x5JbdOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeG1P+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrJS9avnyrlqqXWRx5OEETuEcPLiCGtxCHRrAYADP8ApvjnBenHfnY9Gac7KZY/gD5/MHB6iNkg==</latexit>

w1

<latexit sha1_base64="Js4mahdI1ztZX8RsfyNwZMYwNoo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4kJJIRY8FLx4r2g9oQ9lsJ+3SzSbsbpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekSleSwfzDhBP6IDyUPOqLHS/VPP65XKbsWdgSwTLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCJ8VuqjGhbEQH2LFU0gi1n81OnZBTq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwms/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0ijYEb/HlZdK8qHjVyuVdtVw7z+MowDGcwBl4cAU1uIU6NIDBAJ7hFd4c4bw4787HvHXFyWeO4A+czx8GJI2R</latexit>

v3

<latexit sha1_base64="B4ZUhXAg7vxcJO1+7+ps+RhzpFA=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYVo0eiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOpedoslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5LGRdmrlK8eKqXqbRZHHk7gFM7Bg2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8ADkSNqA==</latexit>

v1

<latexit sha1_base64="mbBdPcnL32Ecol33cqW49dqyXwY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REKnosePFY0dpCG8pmO2mXbjZhd1MooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+PnnScKoZNFotYtQOqUXCJTcONwHaikEaBwFYwup35rTEqzWP5aCYJ+hEdSB5yRo2VHsY9r1euuFV3DrJKvJxUIEejV/7q9mOWRigNE1Trjucmxs+oMpwJnJa6qcaEshEdYMdSSSPUfjY/dUrOrNInYaxsSUPm6u+JjEZaT6LAdkbUDPWyNxP/8zqpCW/8jMskNSjZYlGYCmJiMvub9LlCZsTEEsoUt7cSNqSKMmPTKdkQvOWXV8nTZdWrVa/ua5X6RR5HEU7gFM7Bg2uowx00oAkMBvAMr/DmCOfFeXc+Fq0FJ585hj9wPn8ABJ6NkA==</latexit>

v2

<latexit sha1_base64="/1mrOm+vq1uNaagmH+EZ+qAwOFA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuiOgx4MVjRPOAJITZyWwyZHZ2mekNhCWf4MWDIl79Im/+jZNkD5pY0FBUddPd5cdSGHTdbye3sbm1vZPfLeztHxweFY9PmiZKNOMNFslIt31quBSKN1Cg5O1Ycxr6krf88d3cb024NiJSTziNeS+kQyUCwSha6XHSr/SLJbfsLkDWiZeREmSo94tf3UHEkpArZJIa0/HcGHsp1SiY5LNCNzE8pmxMh7xjqaIhN710ceqMXFhlQIJI21JIFurviZSGxkxD33aGFEdm1ZuL/3mdBIPbXipUnCBXbLkoSCTBiMz/JgOhOUM5tYQyLeythI2opgxtOgUbgrf68jppVspetXz9UC3VrrI48nAG53AJHtxADe6hDg1gMIRneIU3RzovzrvzsWzNOdnMKfyB8/kDBiKNkQ==</latexit>

u1

<latexit sha1_base64="QJrvI09FiXI9MqE3+KwepZ8aV2g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPa9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAJto2l</latexit>

u2

<latexit sha1_base64="R6C0Ukt7sATDkS4hL8vGHY+Ihh0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+7Rf65crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb169eKuXmlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcLOo2m</latexit>

u3

<latexit sha1_base64="gw7c1OibQjLzS3SWaYCpX5phRzQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0Yo8FLx4rWltoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfjm5nffkKleSwfzCRBP6JDyUPOqLHSfdq/7JcrbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwrqfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKnm8qHq16tVdrdKo53EU4QRO4Rw8uIYG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcJvI2d</latexit>

R1

<latexit sha1_base64="XkAl6a9tbcTEzi+sIHXlxDYhQnQ=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4GpLasV0W3bisjz6gHUomzbShmcyQZIQy9BPcuFDErV/kzr8xfQgqeuDC4Zx7ufeeIBFcG4Q+nNzK6tr6Rn6zsLW9s7tX3D9o6ThVlDVpLGLVCYhmgkvWNNwI1kkUI1EgWDsYX8789j1TmsfyzkwS5kdkKHnIKTFWur3p436xhFzk4XMPQeSeVavlctkShFENexC7aI4SWKLRL773BjFNIyYNFUTrLkaJ8TOiDKeCTQu9VLOE0DEZsq6lkkRM+9n81Ck8scoAhrGyJQ2cq98nMhJpPYkC2xkRM9K/vZn4l9dNTVjzMy6T1DBJF4vCVEATw9nfcMAVo0ZMLCFUcXsrpCOiCDU2nYIN4etT+D9plV1ccb3rSql+sYwjD47AMTgFGFRBHVyBBmgCCobgATyBZ0c4j86L87pozTnLmUPwA87bJyQJjbk=</latexit>

L2

<latexit sha1_base64="3oOyBFfoReB5cQdzLwjnqsmBj94=">AAAB6nicdVDLSsNAFL2pr1pfVZduBovgKiRt6mNXdOPCRUX7gDaUyXTSDp08mJkIJfQT3LhQxK1f5M6/cdJGUNEDFw7n3Mu993gxZ1JZ1odRWFpeWV0rrpc2Nre2d8q7e20ZJYLQFol4JLoelpSzkLYUU5x2Y0Fx4HHa8SaXmd+5p0KyKLxT05i6AR6FzGcEKy3dXg+qg3LFMk9q507dRpZpzZER26lZdWTnSgVyNAfl9/4wIklAQ0U4lrJnW7FyUywUI5zOSv1E0hiTCR7RnqYhDqh00/mpM3SklSHyI6ErVGiufp9IcSDlNPB0Z4DVWP72MvEvr5co/8xNWRgnioZkschPOFIRyv5GQyYoUXyqCSaC6VsRGWOBidLplHQIX5+i/0m7atqOWb9xKo2LPI4iHMAhHIMNp9CAK2hCCwiM4AGe4NngxqPxYrwuWgtGPrMPP2C8fQIIo42m</latexit>

L3

<latexit sha1_base64="tBSDM481fJt2RnJR1iyQtyEoA9I=">AAAB6nicdVDLSsNAFL3xWeur6tLNYBFchSRttO6Kbly4qGgf0IYymU7aoZNJmJkIpfQT3LhQxK1f5M6/cfoQVPTAhcM593LvPWHKmdKO82EtLa+srq3nNvKbW9s7u4W9/YZKMklonSQ8ka0QK8qZoHXNNKetVFIch5w2w+Hl1G/eU6lYIu70KKVBjPuCRYxgbaTb626pWyg6tuO5Jc9Dju155xX31JCy5/t+Bbm2M0MRFqh1C++dXkKymApNOFaq7TqpDsZYakY4neQ7maIpJkPcp21DBY6pCsazUyfo2Cg9FCXSlNBopn6fGONYqVEcms4Y64H67U3Fv7x2pqNKMGYizTQVZL4oyjjSCZr+jXpMUqL5yBBMJDO3IjLAEhNt0smbEL4+Rf+Thme7Zdu/KRerF4s4cnAIR3ACLpxBFa6gBnUg0IcHeIJni1uP1ov1Om9dshYzB/AD1tsnLniNwQ==</latexit>

L1

<latexit sha1_base64="d8kv+EGIEU4UJsNT2hNgFQydRT4=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4GpLasV0W3bhwUdE+oB1KJs20oZnMkGSEMvQT3LhQxK1f5M6/MX0IKnrgwuGce7n3niARXBuEPpzcyura+kZ+s7C1vbO7V9w/aOk4VZQ1aSxi1QmIZoJL1jTcCNZJFCNRIFg7GF/O/PY9U5rH8s5MEuZHZCh5yCkxVrq97uN+sYRc5OFzD0HknlWr5XLZEoRRDXsQu2iOElii0S++9wYxTSMmDRVE6y5GifEzogyngk0LvVSzhNAxGbKupZJETPvZ/NQpPLHKAIaxsiUNnKvfJzISaT2JAtsZETPSv72Z+JfXTU1Y8zMuk9QwSReLwlRAE8PZ33DAFaNGTCwhVHF7K6Qjogg1Np2CDeHrU/g/aZVdXHG9m0qpfrGMIw+OwDE4BRhUQR1cgQZoAgqG4AE8gWdHOI/Oi/O6aM05y5lD8APO2yca5Y2z</latexit>

R2

<latexit sha1_base64="sf3bzsRIFcWdWPPAG0rZnSwmh3c=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmaSicst6MVjXLJAMoSeTk/SpGehu0cIQz7BiwdFvPpF3vwbe5IRVPRBweO9KqrqeTFnUlnWh1FYWl5ZXSuulzY2t7Z3yrt7bRklgtAWiXgkuh6WlLOQthRTnHZjQXHgcdrxJpeZ37mnQrIovFPTmLoBHoXMZwQrLd3eDKqDcsUyT2rnTt1GlmnNkRHbqVl1ZOdKBXI0B+X3/jAiSUBDRTiWsmdbsXJTLBQjnM5K/UTSGJMJHtGepiEOqHTT+akzdKSVIfIjoStUaK5+n0hxIOU08HRngNVY/vYy8S+vlyj/zE1ZGCeKhmSxyE84UhHK/kZDJihRfKoJJoLpWxEZY4GJ0umUdAhfn6L/Sbtq2o5Zv3YqjYs8jiIcwCEcgw2n0IAraEILCIzgAZ7g2eDGo/FivC5aC0Y+sw8/YLx9AhHHjaw=</latexit>

R3

<latexit sha1_base64="DnRVTDUFfzoTLlmB4p9AhXme4EY=">AAAB6nicdVDLSsNAFL3xWeur6tLNYBFchSRttO6KblzWRx/QhjKZTtqhk0mYmQil9BPcuFDErV/kzr9x+hBU9MCFwzn3cu89YcqZ0o7zYS0tr6yurec28ptb2zu7hb39hkoySWidJDyRrRArypmgdc00p61UUhyHnDbD4eXUb95TqVgi7vQopUGM+4JFjGBtpNubbqlbKDq247klz0OO7XnnFffUkLLn+34FubYzQxEWqHUL751eQrKYCk04VqrtOqkOxlhqRjid5DuZoikmQ9ynbUMFjqkKxrNTJ+jYKD0UJdKU0Gimfp8Y41ipURyazhjrgfrtTcW/vHamo0owZiLNNBVkvijKONIJmv6NekxSovnIEEwkM7ciMsASE23SyZsQvj5F/5OGZ7tl278uF6sXizhycAhHcAIunEEVrqAGdSDQhwd4gmeLW4/Wi/U6b12yFjMH8APW2yc3nI3H</latexit>

(a)

<latexit sha1_base64="Ac+cs8EQeHY6Uohp+aTWQJMy8+k=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXInoMevEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mnGCfkQHkoecUWOlhzI97xVLbsWdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi4pXrVzeV0u1myyOPJzAKZTBgyuowR3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8Ai0ONUg==</latexit>

(b)

<latexit sha1_base64="rxjSKpI2fnS4OezoS9VdqYwPrBU=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBDiJexKRI8BQTxGNA9IljA7mU2GzM4uM71CWAL+gBcPinj1i7z5N04eB00saCiquunuChIpDLrut7Oyura+sZnbym/v7O7tFw4OGyZONeN1FstYtwJquBSK11Gg5K1EcxoFkjeD4fXEbz5ybUSsHnCUcD+ifSVCwSha6b4UnHULRbfsTkGWiTcnRZij1i18dXoxSyOukElqTNtzE/QzqlEwycf5Tmp4QtmQ9nnbUkUjbvxseuqYnFqlR8JY21JIpurviYxGxoyiwHZGFAdm0ZuI/3ntFMMrPxMqSZErNlsUppJgTCZ/k57QnKEcWUKZFvZWwgZUU4Y2nbwNwVt8eZk0zstepXxxVylWb55mceTgGE6gBB5cQhVuoQZ1YNCHZ3iFN0c6L8678zFrXXHmER7BHzifP7P8jdc=</latexit>

L1

<latexit sha1_base64="d8kv+EGIEU4UJsNT2hNgFQydRT4=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4GpLasV0W3bhwUdE+oB1KJs20oZnMkGSEMvQT3LhQxK1f5M6/MX0IKnrgwuGce7n3niARXBuEPpzcyura+kZ+s7C1vbO7V9w/aOk4VZQ1aSxi1QmIZoJL1jTcCNZJFCNRIFg7GF/O/PY9U5rH8s5MEuZHZCh5yCkxVrq97uN+sYRc5OFzD0HknlWr5XLZEoRRDXsQu2iOElii0S++9wYxTSMmDRVE6y5GifEzogyngk0LvVSzhNAxGbKupZJETPvZ/NQpPLHKAIaxsiUNnKvfJzISaT2JAtsZETPSv72Z+JfXTU1Y8zMuk9QwSReLwlRAE8PZ33DAFaNGTCwhVHF7K6Qjogg1Np2CDeHrU/g/aZVdXHG9m0qpfrGMIw+OwDE4BRhUQR1cgQZoAgqG4AE8gWdHOI/Oi/O6aM05y5lD8APO2yca5Y2z</latexit>

R2

<latexit sha1_base64="sf3bzsRIFcWdWPPAG0rZnSwmh3c=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmaSicst6MVjXLJAMoSeTk/SpGehu0cIQz7BiwdFvPpF3vwbe5IRVPRBweO9KqrqeTFnUlnWh1FYWl5ZXSuulzY2t7Z3yrt7bRklgtAWiXgkuh6WlLOQthRTnHZjQXHgcdrxJpeZ37mnQrIovFPTmLoBHoXMZwQrLd3eDKqDcsUyT2rnTt1GlmnNkRHbqVl1ZOdKBXI0B+X3/jAiSUBDRTiWsmdbsXJTLBQjnM5K/UTSGJMJHtGepiEOqHTT+akzdKSVIfIjoStUaK5+n0hxIOU08HRngNVY/vYy8S+vlyj/zE1ZGCeKhmSxyE84UhHK/kZDJihRfKoJJoLpWxEZY4GJ0umUdAhfn6L/Sbtq2o5Zv3YqjYs8jiIcwCEcgw2n0IAraEILCIzgAZ7g2eDGo/FivC5aC0Y+sw8/YLx9AhHHjaw=</latexit>

R3

<latexit sha1_base64="DnRVTDUFfzoTLlmB4p9AhXme4EY=">AAAB6nicdVDLSsNAFL3xWeur6tLNYBFchSRttO6KblzWRx/QhjKZTtqhk0mYmQil9BPcuFDErV/kzr9x+hBU9MCFwzn3cu89YcqZ0o7zYS0tr6yurec28ptb2zu7hb39hkoySWidJDyRrRArypmgdc00p61UUhyHnDbD4eXUb95TqVgi7vQopUGM+4JFjGBtpNubbqlbKDq247klz0OO7XnnFffUkLLn+34FubYzQxEWqHUL751eQrKYCk04VqrtOqkOxlhqRjid5DuZoikmQ9ynbUMFjqkKxrNTJ+jYKD0UJdKU0Gimfp8Y41ipURyazhjrgfrtTcW/vHamo0owZiLNNBVkvijKONIJmv6NekxSovnIEEwkM7ciMsASE23SyZsQvj5F/5OGZ7tl278uF6sXizhycAhHcAIunEEVrqAGdSDQhwd4gmeLW4/Wi/U6b12yFjMH8APW2yc3nI3H</latexit>

L2

<latexit sha1_base64="3oOyBFfoReB5cQdzLwjnqsmBj94=">AAAB6nicdVDLSsNAFL2pr1pfVZduBovgKiRt6mNXdOPCRUX7gDaUyXTSDp08mJkIJfQT3LhQxK1f5M6/cdJGUNEDFw7n3Mu993gxZ1JZ1odRWFpeWV0rrpc2Nre2d8q7e20ZJYLQFol4JLoelpSzkLYUU5x2Y0Fx4HHa8SaXmd+5p0KyKLxT05i6AR6FzGcEKy3dXg+qg3LFMk9q507dRpZpzZER26lZdWTnSgVyNAfl9/4wIklAQ0U4lrJnW7FyUywUI5zOSv1E0hiTCR7RnqYhDqh00/mpM3SklSHyI6ErVGiufp9IcSDlNPB0Z4DVWP72MvEvr5co/8xNWRgnioZkschPOFIRyv5GQyYoUXyqCSaC6VsRGWOBidLplHQIX5+i/0m7atqOWb9xKo2LPI4iHMAhHIMNp9CAK2hCCwiM4AGe4NngxqPxYrwuWgtGPrMPP2C8fQIIo42m</latexit>

R1

<latexit sha1_base64="XkAl6a9tbcTEzi+sIHXlxDYhQnQ=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4GpLasV0W3bisjz6gHUomzbShmcyQZIQy9BPcuFDErV/kzr8xfQgqeuDC4Zx7ufeeIBFcG4Q+nNzK6tr6Rn6zsLW9s7tX3D9o6ThVlDVpLGLVCYhmgkvWNNwI1kkUI1EgWDsYX8789j1TmsfyzkwS5kdkKHnIKTFWur3p436xhFzk4XMPQeSeVavlctkShFENexC7aI4SWKLRL773BjFNIyYNFUTrLkaJ8TOiDKeCTQu9VLOE0DEZsq6lkkRM+9n81Ck8scoAhrGyJQ2cq98nMhJpPYkC2xkRM9K/vZn4l9dNTVjzMy6T1DBJF4vCVEATw9nfcMAVo0ZMLCFUcXsrpCOiCDU2nYIN4etT+D9plV1ccb3rSql+sYwjD47AMTgFGFRBHVyBBmgCCobgATyBZ0c4j86L87pozTnLmUPwA87bJyQJjbk=</latexit>

L3

<latexit sha1_base64="tBSDM481fJt2RnJR1iyQtyEoA9I=">AAAB6nicdVDLSsNAFL3xWeur6tLNYBFchSRttO6Kbly4qGgf0IYymU7aoZNJmJkIpfQT3LhQxK1f5M6/cfoQVPTAhcM593LvPWHKmdKO82EtLa+srq3nNvKbW9s7u4W9/YZKMklonSQ8ka0QK8qZoHXNNKetVFIch5w2w+Hl1G/eU6lYIu70KKVBjPuCRYxgbaTb626pWyg6tuO5Jc9Dju155xX31JCy5/t+Bbm2M0MRFqh1C++dXkKymApNOFaq7TqpDsZYakY4neQ7maIpJkPcp21DBY6pCsazUyfo2Cg9FCXSlNBopn6fGONYqVEcms4Y64H67U3Fv7x2pqNKMGYizTQVZL4oyjjSCZr+jXpMUqL5yBBMJDO3IjLAEhNt0smbEL4+Rf+Thme7Zdu/KRerF4s4cnAIR3ACLpxBFa6gBnUg0IcHeIJni1uP1ov1Om9dshYzB/AD1tsnLniNwQ==</latexit>

⇥

<latexit sha1_base64="DFN4sfNhBNG+B7awRb3y/Saos6c=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9FxE2/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxW1S/xsfu2UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGavk4HQnKGcWEKZFvZWwkZUU4Y2oJINwVt+eZW0LqperXp5X6vUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvTuy8OO/Ox6K14OQzx/AHzucPuMOPPA==</latexit>

Abelian Factor

<latexit sha1_base64="CGFem+tcvlc7x5lBXWP4GdIpn3E=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqswUiy6rgrisYB/QjiWTZtrQTDIkGaUM/Q83LhRx67+4829M21lo64HA4Zx7uDcniDnTxnW/ndzK6tr6Rn6zsLW9s7tX3D9oapkoQhtEcqnaAdaUM0EbhhlO27GiOAo4bQWj66nfeqRKMynuzTimfoQHgoWMYGOlh8vAJrFAN5gYqXrFklt2Z0DLxMtICTLUe8Wvbl+SJKLCEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcAR1X46u3qCTqzSR6FU9gmDZurvRIojrcdRYCcjbIZ60ZuK/3mdxIQXfspEnBgqyHxRmHBkJJpWgPpMUWL42BJMFLO3IjLEylZgiyrYErzFLy+TZqXsnZWrd5VS7SqrIw9HcAyn4ME51OAW6tAAAgqe4RXenCfnxXl3PuajOSfLHMIfOJ8/CJSSNw==</latexit>

Figure 6.1: (a) The hexagon partition function ZJ1,J2,J3 , illustrated here in the case Z3,3,3, describe
the scattering of three sets of fermions, labelled by their rapidities vi, uj , wk, in the N = 4
SYM spin-chain. Each set starts polarized in a fixed direction labeled by the spinors R2, L1, R3

respectively. The particles then scatter in all possible pairings according to Beisert’s PSU(2|2)
vertex. The final state is then projected into fermions of definite polarization spinors L2, R1, L3.
In the gauge theory, the boundary conditions are set by the spacetime polarizations of spinning
operators whose structure constants are governed by the hexagon partition function. Because
the vertex is proportional to the identity when the incoming or outgoing particles are fermions
with identical polarizations, the outer parts of the graph are trivial and result in a simple abelian
factor. We represent these trivial scattering by the green red and blue colours. They can be
factored out resulting in the equivalent representation (b). The interesting dynamics happens in
the pink region in which particles from different sets interact.

function naturally shows up and the fundamental building block and we will test the
hexagon construction against perturbative data for a few simple examples with low spins.

6.2 The Hexagon Partition Function

6.2.1 The Partition Function

The central object in this chapter is dubbed the hexagon partition function or simply the
hexagon. It is defined in figure 6.1a. The name hexagon becomes clear when we realize it
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is given by a simpler partition function depicted in figure 6.1b.

As usual, the partition function can be thought of as 2d classical statistical mechanical
model where we sum over statistical weights at each vertex (more precisely the vertex is the
Shastry R-matrix of the Hubbard model) and where at the edges we impose appropriate
boundary conditions. For the hexagon partition function there are six different boundary
conditions to impose each parametrized by its own two dimensional spinor.

Alternatively we can think of it as an integrable 1d quantum mechanical model. In
this picture we start with three sets of fermions in an in-state and let them scatter –
in a purely factorized fashion – into a final state also with three sets of fermions. (At
intermediate time steps these fermions can scatter into bosons as well but in the initial and
final states we only consider fermions.) These fermions have an SU(2) flavour index and
we contract each of the six sets of fermions (three in plus three out) with the same spinor;
in other words, we scatter three groups of identical fermions. Because these fermions are
identical scattering among the fermions of the same type will be trivial and this is why
the big partition function in 6.1a ends up simplifying to the hexagon shape in figure 6.1b
which gives the name to the partition function. In fact, this simplified shape is far from
unique. Since the underlying model is integrable the order by which the particles scatter
is imaterial so we can alternatively cast this partition function in a myriad of equivalent
ways as illustrated in figure 6.2.

Each particle has a physical momenta which is conserved in each elastic scattering
event; it is thus associated to each line in the figure. We parametrize it by a physical
rapidity. Since we have three sets of momenta we will have three sets of rapidities which
we label as vi, uj, wk. What was before a valance four statistical mechanical weight is in
this picture the two-to-two scattering matrix of two of the 1d particles:

Scdab(z, z
′) ≡ a

<latexit sha1_base64="zhStrDX93g61qQ17AeRH7Mp3TyA=">AAAB6HicdVBNS8NAEJ3Ur1q/qh69LBbBU0hibOut6MVjC7YV2lA22027dvPB7kYoob/AiwdFvPqTvPlv3LQVVPTBwOO9GWbm+QlnUlnWh1FYWV1b3yhulra2d3b3yvsHHRmngtA2iXksbn0sKWcRbSumOL1NBMWhz2nXn1zlfveeCsni6EZNE+qFeBSxgBGstNTCg3LFMi/qVcetIsu0rJrt2Dlxau6Zi2yt5KjAEs1B+b0/jEka0kgRjqXs2VaivAwLxQins1I/lTTBZIJHtKdphEMqvWx+6AydaGWIgljoihSaq98nMhxKOQ193RliNZa/vVz8y+ulKqh7GYuSVNGILBYFKUcqRvnXaMgEJYpPNcFEMH0rImMsMFE6m5IO4etT9D/pOKbtmuctt9K4XMZRhCM4hlOwoQYNuIYmtIEAhQd4gmfjzng0XozXRWvBWM4cwg8Yb58mE40v</latexit>

b

<latexit sha1_base64="ftYuAm7J+6tWwE5ncreF26K7hMc=">AAAB6HicdVBNS8NAEJ3Ur1q/qh69LBbBU0hibOut6MVjC7YV2lA22027dvPB7kYoob/AiwdFvPqTvPlv3LQVVPTBwOO9GWbm+QlnUlnWh1FYWV1b3yhulra2d3b3yvsHHRmngtA2iXksbn0sKWcRbSumOL1NBMWhz2nXn1zlfveeCsni6EZNE+qFeBSxgBGstNTyB+WKZV7Uq45bRZZpWTXbsXPi1NwzF9layVGBJZqD8nt/GJM0pJEiHEvZs61EeRkWihFOZ6V+KmmCyQSPaE/TCIdUetn80Bk60coQBbHQFSk0V79PZDiUchr6ujPEaix/e7n4l9dLVVD3MhYlqaIRWSwKUo5UjPKv0ZAJShSfaoKJYPpWRMZYYKJ0NiUdwten6H/ScUzbNc9bbqVxuYyjCEdwDKdgQw0acA1NaAMBCg/wBM/GnfFovBivi9aCsZw5hB8w3j4BJ5eNMA==</latexit>

c

<latexit sha1_base64="RdjuJP/4lW0AOKpiwiV30veAtVM=">AAAB6HicdVBNS8NAEJ3Ur1q/qh69LBbBU0hibOut6MVjC7YV2lA22027dvPB7kYoob/AiwdFvPqTvPlv3LQVVPTBwOO9GWbm+QlnUlnWh1FYWV1b3yhulra2d3b3yvsHHRmngtA2iXksbn0sKWcRbSumOL1NBMWhz2nXn1zlfveeCsni6EZNE+qFeBSxgBGstNQig3LFMi/qVcetIsu0rJrt2Dlxau6Zi2yt5KjAEs1B+b0/jEka0kgRjqXs2VaivAwLxQins1I/lTTBZIJHtKdphEMqvWx+6AydaGWIgljoihSaq98nMhxKOQ193RliNZa/vVz8y+ulKqh7GYuSVNGILBYFKUcqRvnXaMgEJYpPNcFEMH0rImMsMFE6m5IO4etT9D/pOKbtmuctt9K4XMZRhCM4hlOwoQYNuIYmtIEAhQd4gmfjzng0XozXRWvBWM4cwg8Yb58pG40x</latexit>

d

<latexit sha1_base64="lVEe1GFRgE1wnaDhu693V0YZqTY=">AAAB6HicdVBNS8NAEJ3Ur1q/qh69LBbBU0hqbOut6MVjC7YV2lA2m027dvPB7kYoob/AiwdFvPqTvPlv3LQVVPTBwOO9GWbmeQlnUlnWh1FYWV1b3yhulra2d3b3yvsHXRmngtAOiXksbj0sKWcR7SimOL1NBMWhx2nPm1zlfu+eCsni6EZNE+qGeBSxgBGstNT2h+WKZV40alWnhizTsup21c5Jte6cOcjWSo4KLNEalt8HfkzSkEaKcCxl37YS5WZYKEY4nZUGqaQJJhM8on1NIxxS6WbzQ2foRCs+CmKhK1Jorn6fyHAo5TT0dGeI1Vj+9nLxL6+fqqDhZixKUkUjslgUpBypGOVfI58JShSfaoKJYPpWRMZYYKJ0NiUdwten6H/SrZq2Y563nUrzchlHEY7gGE7Bhjo04Rpa0AECFB7gCZ6NO+PReDFeF60FYzlzCD9gvH0CKp+NMg==</latexit>

z

<latexit sha1_base64="5sIPYzgI5pBwcp8wTW+W7BRsr1o=">AAAB6HicdVDLSgMxFM3UV62vqks3wSK4GjJlWju7ohuXLdgHtEPJpJk2NpMZkoxQh36BGxeKuPWT3Pk3pg9BRQ9cOJxzL/feEyScKY3Qh5VbW9/Y3MpvF3Z29/YPiodHbRWnktAWiXksuwFWlDNBW5ppTruJpDgKOO0Ek6u537mjUrFY3OhpQv0IjwQLGcHaSM37QbGEbFStIa8Gke2ictWpGuJ5FbfsQcdGC5TACo1B8b0/jEkaUaEJx0r1HJRoP8NSM8LprNBPFU0wmeAR7RkqcESVny0OncEzowxhGEtTQsOF+n0iw5FS0ygwnRHWY/Xbm4t/eb1UhzU/YyJJNRVkuShMOdQxnH8Nh0xSovnUEEwkM7dCMsYSE22yKZgQvj6F/5N22XZcu9J0S/XLVRx5cAJOwTlwwAWog2vQAC1AAAUP4Ak8W7fWo/VivS5bc9Zq5hj8gPX2CWrzjV4=</latexit>

z0
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(6.2)

where each index can take four values (a fermion doublet and a boson doublet combined into
an SU(2|2) fundamental; for the external states we have fermions only but in intermediate
states we will of course produce everyone in the multiplet.) This S-matrix is Beisert’s
PSU(2|2) S-matrix [59,159] explicitly given by a simple combination of ten terms

Scdab(z, z
′) = h(z, z′)

(
A(z, z′)∆

c
a∆

d
b +∆d

a∆
c
b

2
+ B(z, z′)∆

c
a∆

d
b −∆d

a∆
c
b

2
+

1

2
C(z, z′)ϕ−1

Z (z, z′)Eabϵ
cd

+D(z, z′)δ
c
aδ
d
b + δdaδ

c
b

2
+ E(z, z′)δ

c
aδ
d
b − δdaδcb
2

+
1

2
F(z, z′)ϕZ(z, z

′)ϵabE
cd + G(z, z′)δcb∆d

a

(6.3)

+ L(z, z′)δda∆c
b +K(z, z′)δdb∆c

a +H(z, z′)δca∆d
b

)
.
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The Beisert matrix elements A,B, C,D, E ,F ,G,H,L,K as well as the non-local markers
ϕZ are defined in appendix E.2 and depend on the rapidities z,z′ through the Zhukovsky
variables x± only. These are defined through

z + i/2

g
= x+(z) +

1

x+(z)
,

z − i/2
g

= x−(z) +
1

x−(z)
. (6.4)

where g = λ/(4π)2 is the coupling.

The three particle sets are not on equal footing. In our conventions, uj are physical
rapidities while vi and wk are crossed kinematics. We can think of the corresponding exci-
tations as anti-particles. Crossed parameters in the matrix elements are to be understood
as analytically continued. The result of this analytic continuation is simple in this case:
we should pick monodromies around the branch points of the Zhukovsky variables. This
amounts to

x±(v⟳)→ 1/x±(v), x±(w⟲)→ 1/x±(w) (6.5)

so that when we write, e.g.,

A(z, z′) ≡ x+(z′)− x−(z)
x−(z′)− x+(z) ,

we are simultaneously defining

A(v, w) = 1/x+(w)− 1/x−(v)

1/x−(w)− 1/x+(v)
, A(v, u) = x+(u)− 1/x−(v)

x−(u)− 1/x+(v)
, A(u,w) = 1/x+(w)− x−(u)

1/x−(w)− x+(u) .

All other factors are treated in the same simple fashion; the exception is the overall factor
h(x, y) given by [66]

h(z, z′) ≡ x−(z)− x−(z′)
x−(z)− x+(z′)

1− 1
x−(z)x+(z′)

1− 1
x+(z)x+(z′)

σ(z, z′)−1, (6.6)

with σ the BES dressing phase [60] and which transforms nontrivial due to the non-trivial
crossing transformation of σ under the v⟳ and w⟲ monodromies, see appendix E.3. In
any case, this overall factor will lead to an overall factorized product sitting outside as an
overall normalization; it is irrelevant for most of our discussion.

As emphasized above, each line segment in the partition function is a PSU(2|2) state
|x⟩ parametrized by two component polarizations cα and da as

|x⟩ = cα|ψα⟩︸ ︷︷ ︸
fermions

+ da|ϕa⟩︸ ︷︷ ︸
bosons

≡ (c1, c2, d1, d2)
T .
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Figure 6.2: The PSU(2|2) vertex satisfies the Yang-Baxter relation illustrated in the first line.
Simply put, the partition function is invariant under translating lines across vertices. These allows
for many possible rewritings of the partition function, as expressed in the second line. The term
on the left-hand side corresponds to the second line of (6.7). The next two terms give alternative
representations whose explicit form we hope is clear from the picture. In particular, the middle
shape relates the hexagon partition function to a Hubbard-type model in a Kagome-type lattice.

In this basis, the matrices δ,∆, ϵ, E act as

δ =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 , ∆ =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


 , ϵ =




0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


 , E =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0


 .

The boundary conditions are so that initial and final states are purely fermionic. Particles
in the sets u, v, w have, respectively, incoming polarization spinors L1, R2, R3 and outgoing
polarization spinors R1, L2, L3

2. In the bulk of the partition function, coloured in pink in
figure 6.1, the particles can transmute into scalars and explore the full PSU(2|2) dynamics.

Having defined all these elements, we can translate picture 6.1 into an equation for

2This weird choice of labels is made to simplify formulas in section 6.3, in which Li and Ri will
correspond to physical left and right space-time polarization spinors of local operators in N = 4 SYM.
Particle sets vi and wk, being crossed, have their right and left handed spinning components exchanged.
It will also simplify some of the formulas to follow, see e.g. equation (6.16).
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the partition function. This is equation (6.7). Note the vertex simplify dramatically for
identical fermionic outgoing states, the matrix part being reduced to the element D = −1.
This was used to write the last three factors in equation (6.7).

ZJ1,J2,J3 ≡
J2∏

i=1

J1∏

j=1

J3∏

k=1

L1
b1jR2

a1iR3
c1k︸ ︷︷ ︸

incoming b.c.

×R1b
J2+J3
j

L2a
J1+J3
i

L3c
J1+J2
k︸ ︷︷ ︸

outgoing b.c.

× (−1)J2+J3︸ ︷︷ ︸
crossing factor

× (6.7)

S
aj+1
i bi+1

j

aji b
i
j

(vJ2+1−i, uj)
︸ ︷︷ ︸

vi, uj scattering

× Sa
J1+k+1
i ci+1

k

a
J1+k
i cik

(vJ2+1−i, wk)
︸ ︷︷ ︸

vi, wk scattering

×Sb
J2+k+1
j c

J2+j+1
k

b
J2+k
j c

J2+j
k

(uJ1+1−j, wk)

︸ ︷︷ ︸
uj , wk scattering

×

∏

i′<i

(−1)J2(J2−1)/2h(vi′ , vi)︸ ︷︷ ︸
vi′ , vi scattering

∏

j′<j

(−1)J1(J1−1)/2h(uj′ , uj)︸ ︷︷ ︸
uj′ , uj scattering

×
∏

k′<k

(−1)J3(J3−1)/2h(wk′ , wk)︸ ︷︷ ︸
wk′ , wk scattering

.

6.2.2 Properties of the partition function

The PSU(2|2) vertex enjoys four important properties which we will make use in the next
few sections. First, it satisfies the Yang-Baxter relation

Sαβbc (z
′, z′′)Sdγaα(z, z

′′)Sefγβ(z, z
′) = Sβγab (z, z

′)Sαfγc (z, z
′′)Sdeβα(z

′, z′′) (6.8)

which allows for many possible rewritings of the partition formula (6.7) as illustrated in
figure 6.2. Second, it satisfies the unitarity relation

Sαβab (z, z
′)Scdαβ(z

′, z) = h(z, z′)h(z′, z), (6.9)

as follows from the unitarity of the Beisert PSU(2|2) S-matrix.

Note that unitarity immediately allows us to show that, up to a trivial overall factor, the
hexagon partition function is an invariant function under swapping of any fermions of the
same type as illustrated in figure 6.3. More precisely we can decompose any permutation of
fermions within the same group as a sequence of neighbouring swaps, each of which simply
generates an abelian S-matrix factor S0(zi, zi−1) ≡ h(zi, zi−1)/h(zi−1, zi),

ZJ1,J2,J3

∣∣∣
zi↔zi−1

= S0(xi, xi−1)ZJ1,J2,J3 (6.10)

This is the so-called Watson relation.3

The two properties above allow one to move lines around (Yang-Baxter) and collapse
bubbles (Unitarity). The next two properties lead to situations which prepare the lines to
be moved.

First, at equal rapidities, the scattering vertex degenerates. For example, when vi →
3Note that we could have redefined the partition function by a trivial product of h factors so that the

symmetry relation (6.10) would simplify to full invariance under any swap of rapidities. We found it better
not to do so to preserve some nice analytic properties.
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Figure 6.3: The Watson axiom imply that particles in the same external set can be exchanged
through the action of the SL(2, R) S-matrix S0(x, y) ≡ h(x, y)/h(y, x). This follows explicitly
from the fact that for identical outgoing polarizations the vertex (6.3) projects into the D element.
In equations, R1cR1dS

cd
ab(ui, ui+1) = −R1aR1bh(ui, ui+1) = S0(ui, ui+1)R1cR1dS

cd
ab(ui+1, ui).

wk
4 we have, up to regular terms,

Scdab(vi, wk) ∼
i/µ(wk)

vi − wk
(
−δcaδdb − δca∆d

b −∆c
aδ
d
b −∆c

a∆
d
b

)
= a
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<latexit sha1_base64="lVEe1GFRgE1wnaDhu693V0YZqTY=">AAAB6HicdVBNS8NAEJ3Ur1q/qh69LBbBU0hqbOut6MVjC7YV2lA2m027dvPB7kYoob/AiwdFvPqTvPlv3LQVVPTBwOO9GWbmeQlnUlnWh1FYWV1b3yhulra2d3b3yvsHXRmngtAOiXksbj0sKWcR7SimOL1NBMWhx2nPm1zlfu+eCsni6EZNE+qGeBSxgBGstNT2h+WKZV40alWnhizTsup21c5Jte6cOcjWSo4KLNEalt8HfkzSkEaKcCxl37YS5WZYKEY4nZUGqaQJJhM8on1NIxxS6WbzQ2foRCs+CmKhK1Jorn6fyHAo5TT0dGeI1Vj+9nLxL6+fqqDhZixKUkUjslgUpBypGOVfI58JShSfaoKJYPpWRMZYYKJ0NiUdwten6H/SrZq2Y563nUrzchlHEY7gGE7Bhjo04Rpa0AECFB7gCZ6NO+PReDFeF60FYzlzCD9gvH0CKp+NMg==</latexit>

vi

<latexit sha1_base64="PCa0OT4Qh67tRJG/eUrTzGYvNXA=">AAAB6nicdVDJSgNBEK1xjXGLevTSGARPQ09IYuYW9OIxolkgGUJPpydp0rPQ3RMIQz7BiwdFvPpF3vwbO4ugog8KHu9VUVXPTwRXGuMPa219Y3NrO7eT393bPzgsHB23VJxKypo0FrHs+EQxwSPW1FwL1kkkI6EvWNsfX8/99oRJxePoXk8T5oVkGPGAU6KNdDfp836hiG1crWG3hrBdxqWqUzXEdSvlkoscGy9QhBUa/cJ7bxDTNGSRpoIo1XVwor2MSM2pYLN8L1UsIXRMhqxraERCprxsceoMnRtlgIJYmoo0WqjfJzISKjUNfdMZEj1Sv725+JfXTXVQ8zIeJalmEV0uClKBdIzmf6MBl4xqMTWEUMnNrYiOiCRUm3TyJoSvT9H/pFWynbJduS0X61erOHJwCmdwAQ5cQh1uoAFNoDCEB3iCZ0tYj9aL9bpsXbNWMyfwA9bbJ98njjY=</latexit>

wk

<latexit sha1_base64="qjWaIKNU2qBMavQxZi3KjnpMsUo=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgaZkNm5i9Bb14jGhMIFnC7GQ2GTL7YGZWCSGf4MWDIl79Im/+jZOHoKIFDUVVN91dQSq40hh/WLmV1bX1jfxmYWt7Z3evuH9wq5JMUtakiUhkOyCKCR6zpuZasHYqGYkCwVrB6GLmt+6YVDyJb/Q4ZX5EBjEPOSXaSNf3vVGvWMI2rtawV0PYdnG56lQN8byKW/aQY+M5SrBEo1d87/YTmkUs1lQQpToOTrU/IVJzKti00M0USwkdkQHrGBqTiCl/Mj91ik6M0kdhIk3FGs3V7xMTEik1jgLTGRE9VL+9mfiX18l0WPMnPE4zzWK6WBRmAukEzf5GfS4Z1WJsCKGSm1sRHRJJqDbpFEwIX5+i/8lt2XZcu3LllurnyzjycATHcAoOnEEdLqEBTaAwgAd4gmdLWI/Wi/W6aM1Zy5lD+AHr7RPjtY45</latexit>

. (6.11)

In the limit, the vertex develops a pole proportional to the index permutation operator,
the residue of which defines the measure µ(wk). Physically we can interpret this singularity
as a a clustering property (two far away particles disconnect from the rest). As illustrated
in the figure, at this point the two lines meeting at a vertex are now disentangled; they
are thus ready to be moved around with unitarity and Yang-baxter in a sequence of moves
which can dramatically simplify the partition function.

Finally, the vertex also simplifies in the infinite rapidity limit. We have, up to 1/u
corrections

Scdab(v, u) = Sdcba(u,w) ∼
(
−δdaδcb + δda∆

c
b +∆d

aδ
c
b +∆d

a∆
c
b

)
+O(1/u) = a

<latexit sha1_base64="zhStrDX93g61qQ17AeRH7Mp3TyA=">AAAB6HicdVBNS8NAEJ3Ur1q/qh69LBbBU0hibOut6MVjC7YV2lA22027dvPB7kYoob/AiwdFvPqTvPlv3LQVVPTBwOO9GWbm+QlnUlnWh1FYWV1b3yhulra2d3b3yvsHHRmngtA2iXksbn0sKWcRbSumOL1NBMWhz2nXn1zlfveeCsni6EZNE+qFeBSxgBGstNTCg3LFMi/qVcetIsu0rJrt2Dlxau6Zi2yt5KjAEs1B+b0/jEka0kgRjqXs2VaivAwLxQins1I/lTTBZIJHtKdphEMqvWx+6AydaGWIgljoihSaq98nMhxKOQ193RliNZa/vVz8y+ulKqh7GYuSVNGILBYFKUcqRvnXaMgEJYpPNcFEMH0rImMsMFE6m5IO4etT9D/pOKbtmuctt9K4XMZRhCM4hlOwoQYNuIYmtIEAhQd4gmfjzng0XozXRWvBWM4cwg8Yb58mE40v</latexit>

b

<latexit sha1_base64="ftYuAm7J+6tWwE5ncreF26K7hMc=">AAAB6HicdVBNS8NAEJ3Ur1q/qh69LBbBU0hibOut6MVjC7YV2lA22027dvPB7kYoob/AiwdFvPqTvPlv3LQVVPTBwOO9GWbm+QlnUlnWh1FYWV1b3yhulra2d3b3yvsHHRmngtA2iXksbn0sKWcRbSumOL1NBMWhz2nXn1zlfveeCsni6EZNE+qFeBSxgBGstNTyB+WKZV7Uq45bRZZpWTXbsXPi1NwzF9layVGBJZqD8nt/GJM0pJEiHEvZs61EeRkWihFOZ6V+KmmCyQSPaE/TCIdUetn80Bk60coQBbHQFSk0V79PZDiUchr6ujPEaix/e7n4l9dLVVD3MhYlqaIRWSwKUo5UjPKv0ZAJShSfaoKJYPpWRMZYYKJ0NiUdwten6H/ScUzbNc9bbqVxuYyjCEdwDKdgQw0acA1NaAMBCg/wBM/GnfFovBivi9aCsZw5hB8w3j4BJ5eNMA==</latexit>

c

<latexit sha1_base64="RdjuJP/4lW0AOKpiwiV30veAtVM=">AAAB6HicdVBNS8NAEJ3Ur1q/qh69LBbBU0hibOut6MVjC7YV2lA22027dvPB7kYoob/AiwdFvPqTvPlv3LQVVPTBwOO9GWbm+QlnUlnWh1FYWV1b3yhulra2d3b3yvsHHRmngtA2iXksbn0sKWcRbSumOL1NBMWhz2nXn1zlfveeCsni6EZNE+qFeBSxgBGstNQig3LFMi/qVcetIsu0rJrt2Dlxau6Zi2yt5KjAEs1B+b0/jEka0kgRjqXs2VaivAwLxQins1I/lTTBZIJHtKdphEMqvWx+6AydaGWIgljoihSaq98nMhxKOQ193RliNZa/vVz8y+ulKqh7GYuSVNGILBYFKUcqRvnXaMgEJYpPNcFEMH0rImMsMFE6m5IO4etT9D/pOKbtmuctt9K4XMZRhCM4hlOwoQYNuIYmtIEAhQd4gmfjzng0XozXRWvBWM4cwg8Yb58pG40x</latexit>

d

<latexit sha1_base64="lVEe1GFRgE1wnaDhu693V0YZqTY=">AAAB6HicdVBNS8NAEJ3Ur1q/qh69LBbBU0hqbOut6MVjC7YV2lA2m027dvPB7kYoob/AiwdFvPqTvPlv3LQVVPTBwOO9GWbmeQlnUlnWh1FYWV1b3yhulra2d3b3yvsHXRmngtAOiXksbj0sKWcR7SimOL1NBMWhx2nPm1zlfu+eCsni6EZNE+qGeBSxgBGstNT2h+WKZV40alWnhizTsup21c5Jte6cOcjWSo4KLNEalt8HfkzSkEaKcCxl37YS5WZYKEY4nZUGqaQJJhM8on1NIxxS6WbzQ2foRCs+CmKhK1Jorn6fyHAo5TT0dGeI1Vj+9nLxL6+fqqDhZixKUkUjslgUpBypGOVfI58JShSfaoKJYPpWRMZYYKJ0NiUdwten6H/SrZq2Y563nUrzchlHEY7gGE7Bhjo04Rpa0AECFB7gCZ6NO+PReDFeF60FYzlzCD9gvH0CKp+NMg==</latexit>

u

<latexit sha1_base64="L6zcOLWK+EG8le5j70i4nKp8ZSc=">AAAB6HicdVDJSgNBEO2JW4xb1KOXxiB4GnpCEjO3oBePCZgFkiH0dGqS1p6F7h4hDPkCLx4U8eonefNv7CyCij4oeLxXRVU9PxFcaUI+rNza+sbmVn67sLO7t39QPDzqqDiVDNosFrHs+VSB4BG0NdcCeokEGvoCuv7d1dzv3oNUPI5u9DQBL6TjiAecUW2kVjoslohNanXi1jGxK6Rcc2qGuG61UnaxY5MFSmiF5rD4PhjFLA0h0kxQpfoOSbSXUak5EzArDFIFCWV3dAx9QyMagvKyxaEzfGaUEQ5iaSrSeKF+n8hoqNQ09E1nSPVE/fbm4l9eP9VB3ct4lKQaIrZcFKQC6xjPv8YjLoFpMTWEMsnNrZhNqKRMm2wKJoSvT/H/pFO2nYpdbVVKjctVHHl0gk7ROXLQBWqga9REbcQQoAf0hJ6tW+vRerFel605azVzjH7AevsEY1+NWQ==</latexit>

v or w

<latexit sha1_base64="2m7CZcTgYr1tfBitFnPclis5N88=">AAAB9HicdVDJTgJBFOxxRdxQj146EhNPkx4CCDeiF4+YyJLAhPQ0PdChZ7H7DUomfIcXDxrj1Y/x5t/YLCZqtE6Vqvfy6pUXS6GBkA9rZXVtfWMzs5Xd3tnd288dHDZ1lCjGGyySkWp7VHMpQt4AAZK3Y8Vp4Ene8kaXM7815kqLKLyBSczdgA5C4QtGwUjuuAv8HlIcKTy96+XyxCblCqlWMLGLpFB2yoZUq6VioYodm8yRR0vUe7n3bj9iScBDYJJq3XFIDG5KFQgm+TTbTTSPKRvRAe8YGtKAazedh57iU6P0sW8u+1EIeK5+30hpoPUk8MxkQGGof3sz8S+vk4BfcVMRxgnwkC0O+YnEEOFZA7gvFGcgJ4ZQpoTJitmQKsrA9JQ1JXx9iv8nzYLtFO3SdTFfu1jWkUHH6ASdIQedoxq6QnXUQAzdogf0hJ6tsfVovVivi9EVa7lzhH7AevsEXLCSgw==</latexit>

, (6.12)

the minus sign in the first term corresponding to the trivial scattering of anticommuting
fermions. Physically, when the rapidity is sent to infinity the particle has zero momenta and
became a goldstone excitation which scatters trivially with other particles. After this limit
the two lines also became two disentangled pairs, albeit a different choice of pairs compared
to the decoupling example. In this case the particle whose root is sent to infinity scatters
trivially with all other particles so the simplification of the partition function implies right
away that in the u1 →∞ limit, we simply have

4Here we mean to take wk and vi to be equal after performing the crossing monodromies v⟳i and w⟲
k .
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v1

<latexit sha1_base64="mbBdPcnL32Ecol33cqW49dqyXwY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REKnosePFY0dpCG8pmO2mXbjZhd1MooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+PnnScKoZNFotYtQOqUXCJTcONwHaikEaBwFYwup35rTEqzWP5aCYJ+hEdSB5yRo2VHsY9r1euuFV3DrJKvJxUIEejV/7q9mOWRigNE1Trjucmxs+oMpwJnJa6qcaEshEdYMdSSSPUfjY/dUrOrNInYaxsSUPm6u+JjEZaT6LAdkbUDPWyNxP/8zqpCW/8jMskNSjZYlGYCmJiMvub9LlCZsTEEsoUt7cSNqSKMmPTKdkQvOWXV8nTZdWrVa/ua5X6RR5HEU7gFM7Bg2uowx00oAkMBvAMr/DmCOfFeXc+Fq0FJ585hj9wPn8ABJ6NkA==</latexit>

w2

<latexit sha1_base64="4O69bOit+7fgArNtczr6PlVmCEk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuiOgx4MVjRPOAZAmzk95kyOzsMjOrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81iMqzWP5YMYJ+hEdSB5yRo2V7p96lV6x5JbdOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeG1P+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrJS9avnyrlqqXWRx5OEETuEcPLiCGtxCHRrAYADP8ApvjnBenHfnY9Gac7KZY/gD5/MHB6iNkg==</latexit>

R2

<latexit sha1_base64="sf3bzsRIFcWdWPPAG0rZnSwmh3c=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmaSicst6MVjXLJAMoSeTk/SpGehu0cIQz7BiwdFvPpF3vwbe5IRVPRBweO9KqrqeTFnUlnWh1FYWl5ZXSuulzY2t7Z3yrt7bRklgtAWiXgkuh6WlLOQthRTnHZjQXHgcdrxJpeZ37mnQrIovFPTmLoBHoXMZwQrLd3eDKqDcsUyT2rnTt1GlmnNkRHbqVl1ZOdKBXI0B+X3/jAiSUBDRTiWsmdbsXJTLBQjnM5K/UTSGJMJHtGepiEOqHTT+akzdKSVIfIjoStUaK5+n0hxIOU08HRngNVY/vYy8S+vlyj/zE1ZGCeKhmSxyE84UhHK/kZDJihRfKoJJoLpWxEZY4GJ0umUdAhfn6L/Sbtq2o5Zv3YqjYs8jiIcwCEcgw2n0IAraEILCIzgAZ7g2eDGo/FivC5aC0Y+sw8/YLx9AhHHjaw=</latexit>

w2

<latexit sha1_base64="4O69bOit+7fgArNtczr6PlVmCEk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuiOgx4MVjRPOAZAmzk95kyOzsMjOrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81iMqzWP5YMYJ+hEdSB5yRo2V7p96lV6x5JbdOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeG1P+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrJS9avnyrlqqXWRx5OEETuEcPLiCGtxCHRrAYADP8ApvjnBenHfnY9Gac7KZY/gD5/MHB6iNkg==</latexit>

v1

<latexit sha1_base64="mbBdPcnL32Ecol33cqW49dqyXwY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REKnosePFY0dpCG8pmO2mXbjZhd1MooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+PnnScKoZNFotYtQOqUXCJTcONwHaikEaBwFYwup35rTEqzWP5aCYJ+hEdSB5yRo2VHsY9r1euuFV3DrJKvJxUIEejV/7q9mOWRigNE1Trjucmxs+oMpwJnJa6qcaEshEdYMdSSSPUfjY/dUrOrNInYaxsSUPm6u+JjEZaT6LAdkbUDPWyNxP/8zqpCW/8jMskNSjZYlGYCmJiMvub9LlCZsTEEsoUt7cSNqSKMmPTKdkQvOWXV8nTZdWrVa/ua5X6RR5HEU7gFM7Bg2uowx00oAkMBvAMr/DmCOfFeXc+Fq0FJ585hj9wPn8ABJ6NkA==</latexit>

u1

<latexit sha1_base64="QJrvI09FiXI9MqE3+KwepZ8aV2g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPa9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAJto2l</latexit>

u2

<latexit sha1_base64="R6C0Ukt7sATDkS4hL8vGHY+Ihh0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+7Rf65crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb169eKuXmlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcLOo2m</latexit>

R1

<latexit sha1_base64="XkAl6a9tbcTEzi+sIHXlxDYhQnQ=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4GpLasV0W3bisjz6gHUomzbShmcyQZIQy9BPcuFDErV/kzr8xfQgqeuDC4Zx7ufeeIBFcG4Q+nNzK6tr6Rn6zsLW9s7tX3D9o6ThVlDVpLGLVCYhmgkvWNNwI1kkUI1EgWDsYX8789j1TmsfyzkwS5kdkKHnIKTFWur3p436xhFzk4XMPQeSeVavlctkShFENexC7aI4SWKLRL773BjFNIyYNFUTrLkaJ8TOiDKeCTQu9VLOE0DEZsq6lkkRM+9n81Ck8scoAhrGyJQ2cq98nMhJpPYkC2xkRM9K/vZn4l9dNTVjzMy6T1DBJF4vCVEATw9nfcMAVo0ZMLCFUcXsrpCOiCDU2nYIN4etT+D9plV1ccb3rSql+sYwjD47AMTgFGFRBHVyBBmgCCobgATyBZ0c4j86L87pozTnLmUPwA87bJyQJjbk=</latexit>

u1

<latexit sha1_base64="QJrvI09FiXI9MqE3+KwepZ8aV2g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPa9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAJto2l</latexit>

v2

<latexit sha1_base64="/1mrOm+vq1uNaagmH+EZ+qAwOFA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuiOgx4MVjRPOAJITZyWwyZHZ2mekNhCWf4MWDIl79Im/+jZNkD5pY0FBUddPd5cdSGHTdbye3sbm1vZPfLeztHxweFY9PmiZKNOMNFslIt31quBSKN1Cg5O1Ycxr6krf88d3cb024NiJSTziNeS+kQyUCwSha6XHSr/SLJbfsLkDWiZeREmSo94tf3UHEkpArZJIa0/HcGHsp1SiY5LNCNzE8pmxMh7xjqaIhN710ceqMXFhlQIJI21JIFurviZSGxkxD33aGFEdm1ZuL/3mdBIPbXipUnCBXbLkoSCTBiMz/JgOhOUM5tYQyLeythI2opgxtOgUbgrf68jppVspetXz9UC3VrrI48nAG53AJHtxADe6hDg1gMIRneIU3RzovzrvzsWzNOdnMKfyB8/kDBiKNkQ==</latexit>

w1

<latexit sha1_base64="Js4mahdI1ztZX8RsfyNwZMYwNoo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4kJJIRY8FLx4r2g9oQ9lsJ+3SzSbsbpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekSleSwfzDhBP6IDyUPOqLHS/VPP65XKbsWdgSwTLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCJ8VuqjGhbEQH2LFU0gi1n81OnZBTq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwms/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0ijYEb/HlZdK8qHjVyuVdtVw7z+MowDGcwBl4cAU1uIU6NIDBAJ7hFd4c4bw4787HvHXFyWeO4A+czx8GJI2R</latexit>

u2

<latexit sha1_base64="R6C0Ukt7sATDkS4hL8vGHY+Ihh0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+7Rf65crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb169eKuXmlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcLOo2m</latexit>

L1

<latexit sha1_base64="d8kv+EGIEU4UJsNT2hNgFQydRT4=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4GpLasV0W3bhwUdE+oB1KJs20oZnMkGSEMvQT3LhQxK1f5M6/MX0IKnrgwuGce7n3niARXBuEPpzcyura+kZ+s7C1vbO7V9w/aOk4VZQ1aSxi1QmIZoJL1jTcCNZJFCNRIFg7GF/O/PY9U5rH8s5MEuZHZCh5yCkxVrq97uN+sYRc5OFzD0HknlWr5XLZEoRRDXsQu2iOElii0S++9wYxTSMmDRVE6y5GifEzogyngk0LvVSzhNAxGbKupZJETPvZ/NQpPLHKAIaxsiUNnKvfJzISaT2JAtsZETPSv72Z+JfXTU1Y8zMuk9QwSReLwlRAE8PZ33DAFaNGTCwhVHF7K6Qjogg1Np2CDeHrU/g/aZVdXHG9m0qpfrGMIw+OwDE4BRhUQR1cgQZoAgqG4AE8gWdHOI/Oi/O6aM05y5lD8APO2yca5Y2z</latexit>

w1

<latexit sha1_base64="Js4mahdI1ztZX8RsfyNwZMYwNoo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4kJJIRY8FLx4r2g9oQ9lsJ+3SzSbsbpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekSleSwfzDhBP6IDyUPOqLHS/VPP65XKbsWdgSwTLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCJ8VuqjGhbEQH2LFU0gi1n81OnZBTq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwms/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0ijYEb/HlZdK8qHjVyuVdtVw7z+MowDGcwBl4cAU1uIU6NIDBAJ7hFd4c4bw4787HvHXFyWeO4A+czx8GJI2R</latexit>

v2

<latexit sha1_base64="/1mrOm+vq1uNaagmH+EZ+qAwOFA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuiOgx4MVjRPOAJITZyWwyZHZ2mekNhCWf4MWDIl79Im/+jZNkD5pY0FBUddPd5cdSGHTdbye3sbm1vZPfLeztHxweFY9PmiZKNOMNFslIt31quBSKN1Cg5O1Ycxr6krf88d3cb024NiJSTziNeS+kQyUCwSha6XHSr/SLJbfsLkDWiZeREmSo94tf3UHEkpArZJIa0/HcGHsp1SiY5LNCNzE8pmxMh7xjqaIhN710ceqMXFhlQIJI21JIFurviZSGxkxD33aGFEdm1ZuL/3mdBIPbXipUnCBXbLkoSCTBiMz/JgOhOUM5tYQyLeythI2opgxtOgUbgrf68jppVspetXz9UC3VrrI48nAG53AJHtxADe6hDg1gMIRneIU3RzovzrvzsWzNOdnMKfyB8/kDBiKNkQ==</latexit>

L2

<latexit sha1_base64="3oOyBFfoReB5cQdzLwjnqsmBj94=">AAAB6nicdVDLSsNAFL2pr1pfVZduBovgKiRt6mNXdOPCRUX7gDaUyXTSDp08mJkIJfQT3LhQxK1f5M6/cdJGUNEDFw7n3Mu993gxZ1JZ1odRWFpeWV0rrpc2Nre2d8q7e20ZJYLQFol4JLoelpSzkLYUU5x2Y0Fx4HHa8SaXmd+5p0KyKLxT05i6AR6FzGcEKy3dXg+qg3LFMk9q507dRpZpzZER26lZdWTnSgVyNAfl9/4wIklAQ0U4lrJnW7FyUywUI5zOSv1E0hiTCR7RnqYhDqh00/mpM3SklSHyI6ErVGiufp9IcSDlNPB0Z4DVWP72MvEvr5co/8xNWRgnioZkschPOFIRyv5GQyYoUXyqCSaC6VsRGWOBidLplHQIX5+i/0m7atqOWb9xKo2LPI4iHMAhHIMNp9CAK2hCCwiM4AGe4NngxqPxYrwuWgtGPrMPP2C8fQIIo42m</latexit>

R3

<latexit sha1_base64="DnRVTDUFfzoTLlmB4p9AhXme4EY=">AAAB6nicdVDLSsNAFL3xWeur6tLNYBFchSRttO6KblzWRx/QhjKZTtqhk0mYmQil9BPcuFDErV/kzr9x+hBU9MCFwzn3cu89YcqZ0o7zYS0tr6yurec28ptb2zu7hb39hkoySWidJDyRrRArypmgdc00p61UUhyHnDbD4eXUb95TqVgi7vQopUGM+4JFjGBtpNubbqlbKDq247klz0OO7XnnFffUkLLn+34FubYzQxEWqHUL751eQrKYCk04VqrtOqkOxlhqRjid5DuZoikmQ9ynbUMFjqkKxrNTJ+jYKD0UJdKU0Gimfp8Y41ipURyazhjrgfrtTcW/vHamo0owZiLNNBVkvijKONIJmv6NekxSovnIEEwkM7ciMsASE23SyZsQvj5F/5OGZ7tl278uF6sXizhycAhHcAIunEEVrqAGdSDQhwd4gmeLW4/Wi/U6b12yFjMH8APW2yc3nI3H</latexit>

L3

<latexit sha1_base64="tBSDM481fJt2RnJR1iyQtyEoA9I=">AAAB6nicdVDLSsNAFL3xWeur6tLNYBFchSRttO6Kbly4qGgf0IYymU7aoZNJmJkIpfQT3LhQxK1f5M6/cfoQVPTAhcM593LvPWHKmdKO82EtLa+srq3nNvKbW9s7u4W9/YZKMklonSQ8ka0QK8qZoHXNNKetVFIch5w2w+Hl1G/eU6lYIu70KKVBjPuCRYxgbaTb626pWyg6tuO5Jc9Dju155xX31JCy5/t+Bbm2M0MRFqh1C++dXkKymApNOFaq7TqpDsZYakY4neQ7maIpJkPcp21DBY6pCsazUyfo2Cg9FCXSlNBopn6fGONYqVEcms4Y64H67U3Fv7x2pqNKMGYizTQVZL4oyjjSCZr+jXpMUqL5yBBMJDO3IjLAEhNt0smbEL4+Rf+Thme7Zdu/KRerF4s4cnAIR3ACLpxBFa6gBnUg0IcHeIJni1uP1ov1Om9dshYzB/AD1tsnLniNwQ==</latexit>

u1

<latexit sha1_base64="QJrvI09FiXI9MqE3+KwepZ8aV2g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPa9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAJto2l</latexit>

u2

<latexit sha1_base64="R6C0Ukt7sATDkS4hL8vGHY+Ihh0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+7Rf65crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb169eKuXmlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcLOo2m</latexit>

v1

<latexit sha1_base64="mbBdPcnL32Ecol33cqW49dqyXwY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REKnosePFY0dpCG8pmO2mXbjZhd1MooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+PnnScKoZNFotYtQOqUXCJTcONwHaikEaBwFYwup35rTEqzWP5aCYJ+hEdSB5yRo2VHsY9r1euuFV3DrJKvJxUIEejV/7q9mOWRigNE1Trjucmxs+oMpwJnJa6qcaEshEdYMdSSSPUfjY/dUrOrNInYaxsSUPm6u+JjEZaT6LAdkbUDPWyNxP/8zqpCW/8jMskNSjZYlGYCmJiMvub9LlCZsTEEsoUt7cSNqSKMmPTKdkQvOWXV8nTZdWrVa/ua5X6RR5HEU7gFM7Bg2uowx00oAkMBvAMr/DmCOfFeXc+Fq0FJ585hj9wPn8ABJ6NkA==</latexit>

v2

<latexit sha1_base64="/1mrOm+vq1uNaagmH+EZ+qAwOFA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuiOgx4MVjRPOAJITZyWwyZHZ2mekNhCWf4MWDIl79Im/+jZNkD5pY0FBUddPd5cdSGHTdbye3sbm1vZPfLeztHxweFY9PmiZKNOMNFslIt31quBSKN1Cg5O1Ycxr6krf88d3cb024NiJSTziNeS+kQyUCwSha6XHSr/SLJbfsLkDWiZeREmSo94tf3UHEkpArZJIa0/HcGHsp1SiY5LNCNzE8pmxMh7xjqaIhN710ceqMXFhlQIJI21JIFurviZSGxkxD33aGFEdm1ZuL/3mdBIPbXipUnCBXbLkoSCTBiMz/JgOhOUM5tYQyLeythI2opgxtOgUbgrf68jppVspetXz9UC3VrrI48nAG53AJHtxADe6hDg1gMIRneIU3RzovzrvzsWzNOdnMKfyB8/kDBiKNkQ==</latexit>

w2

<latexit sha1_base64="4O69bOit+7fgArNtczr6PlVmCEk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuiOgx4MVjRPOAZAmzk95kyOzsMjOrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81iMqzWP5YMYJ+hEdSB5yRo2V7p96lV6x5JbdOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeG1P+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrJS9avnyrlqqXWRx5OEETuEcPLiCGtxCHRrAYADP8ApvjnBenHfnY9Gac7KZY/gD5/MHB6iNkg==</latexit>

w1

<latexit sha1_base64="Js4mahdI1ztZX8RsfyNwZMYwNoo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4kJJIRY8FLx4r2g9oQ9lsJ+3SzSbsbpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekSleSwfzDhBP6IDyUPOqLHS/VPP65XKbsWdgSwTLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCJ8VuqjGhbEQH2LFU0gi1n81OnZBTq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwms/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0ijYEb/HlZdK8qHjVyuVdtVw7z+MowDGcwBl4cAU1uIU6NIDBAJ7hFd4c4bw4787HvHXFyWeO4A+czx8GJI2R</latexit>

w2

<latexit sha1_base64="4O69bOit+7fgArNtczr6PlVmCEk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuiOgx4MVjRPOAZAmzk95kyOzsMjOrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81iMqzWP5YMYJ+hEdSB5yRo2V7p96lV6x5JbdOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeG1P+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrJS9avnyrlqqXWRx5OEETuEcPLiCGtxCHRrAYADP8ApvjnBenHfnY9Gac7KZY/gD5/MHB6iNkg==</latexit>

w1

<latexit sha1_base64="Js4mahdI1ztZX8RsfyNwZMYwNoo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4kJJIRY8FLx4r2g9oQ9lsJ+3SzSbsbpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekSleSwfzDhBP6IDyUPOqLHS/VPP65XKbsWdgSwTLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCJ8VuqjGhbEQH2LFU0gi1n81OnZBTq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwms/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0ijYEb/HlZdK8qHjVyuVdtVw7z+MowDGcwBl4cAU1uIU6NIDBAJ7hFd4c4bw4787HvHXFyWeO4A+czx8GJI2R</latexit>

v1

<latexit sha1_base64="mbBdPcnL32Ecol33cqW49dqyXwY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REKnosePFY0dpCG8pmO2mXbjZhd1MooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+PnnScKoZNFotYtQOqUXCJTcONwHaikEaBwFYwup35rTEqzWP5aCYJ+hEdSB5yRo2VHsY9r1euuFV3DrJKvJxUIEejV/7q9mOWRigNE1Trjucmxs+oMpwJnJa6qcaEshEdYMdSSSPUfjY/dUrOrNInYaxsSUPm6u+JjEZaT6LAdkbUDPWyNxP/8zqpCW/8jMskNSjZYlGYCmJiMvub9LlCZsTEEsoUt7cSNqSKMmPTKdkQvOWXV8nTZdWrVa/ua5X6RR5HEU7gFM7Bg2uowx00oAkMBvAMr/DmCOfFeXc+Fq0FJ585hj9wPn8ABJ6NkA==</latexit>

v2

<latexit sha1_base64="/1mrOm+vq1uNaagmH+EZ+qAwOFA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuiOgx4MVjRPOAJITZyWwyZHZ2mekNhCWf4MWDIl79Im/+jZNkD5pY0FBUddPd5cdSGHTdbye3sbm1vZPfLeztHxweFY9PmiZKNOMNFslIt31quBSKN1Cg5O1Ycxr6krf88d3cb024NiJSTziNeS+kQyUCwSha6XHSr/SLJbfsLkDWiZeREmSo94tf3UHEkpArZJIa0/HcGHsp1SiY5LNCNzE8pmxMh7xjqaIhN710ceqMXFhlQIJI21JIFurviZSGxkxD33aGFEdm1ZuL/3mdBIPbXipUnCBXbLkoSCTBiMz/JgOhOUM5tYQyLeythI2opgxtOgUbgrf68jppVspetXz9UC3VrrI48nAG53AJHtxADe6hDg1gMIRneIU3RzovzrvzsWzNOdnMKfyB8/kDBiKNkQ==</latexit>

u1

<latexit sha1_base64="QJrvI09FiXI9MqE3+KwepZ8aV2g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPa9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAJto2l</latexit>

u2

<latexit sha1_base64="R6C0Ukt7sATDkS4hL8vGHY+Ihh0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+7Rf65crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb169eKuXmlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcLOo2m</latexit>

=

<latexit sha1_base64="NULZghUWQqgwnPkqe2W3Rk9z3bU=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKRC9C0IvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/0iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkuZF2auUL+uVUvU2iyMPJ3AK5+DBFVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP49ljMk=</latexit>

Yang-Baxter

<latexit sha1_base64="qd/HoOC2jRk2irMKqNvaAmgyo10=">AAAB8nicbVBNSwMxEM36WetX1aOXYBG8WHaLosdSLx4r2A/ZLmU2zbah2WRJsmJZ+jO8eFDEq7/Gm//GtN2Dtj4YeLw3w8y8MOFMG9f9dlZW19Y3Ngtbxe2d3b390sFhS8tUEdokkkvVCUFTzgRtGmY47SSKQhxy2g5HN1O//UiVZlLcm3FCgxgGgkWMgLGS/wBicF6HJ0NVr1R2K+4MeJl4OSmjHI1e6avblySNqTCEg9a+5yYmyEAZRjidFLuppgmQEQyob6mAmOogm508wadW6eNIKlvC4Jn6eyKDWOtxHNrOGMxQL3pT8T/PT010HWRMJKmhgswXRSnHRuLp/7jPFCWGjy0Bopi9FZMhKCA2Al20IXiLLy+TVrXiXVQu76rlWj2Po4CO0Qk6Qx66QjV0ixqoiQiS6Bm9ojfHOC/Ou/Mxb11x8pkj9AfO5w/7OZEQ</latexit>

Unitarity

<latexit sha1_base64="Kuk9Vlt/hxG7WF1QrkbQsnEB2pI=">AAAB8HicbVBNSwMxFMzWr1q/qh69BIvgqewWRY9FLx4ruG2lXUo2zbahSXZJ3grL0l/hxYMiXv053vw3pu0etHUgMMy8x8tMmAhuwHW/ndLa+sbmVnm7srO7t39QPTxqmzjVlPk0FrHuhsQwwRXzgYNg3UQzIkPBOuHkduZ3npg2PFYPkCUskGSkeMQpASs9+ooD0RyyQbXm1t058CrxClJDBVqD6ld/GNNUMgVUEGN6nptAkBMNnAo2rfRTwxJCJ2TEepYqIpkJ8vmHp/jMKkMcxdo+BXiu/t7IiTQmk6GdlATGZtmbif95vRSi6yDnKkmBKbo4FKUCQ4xn6fGQa0ZBZJYQanNziumYaELBdlSxJXjLkVdJu1H3LuqX941a86aoo4xO0Ck6Rx66Qk10h1rIRxRJ9Ixe0ZujnRfn3flYjJacYucY/YHz+QMlOpCj</latexit>
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Figure 6.4: Decoupling limit in the Z2,2,2 case. Top: lines can be disentangled through the
basic Yang-Baxter and Unitarity moves. Bottom: When v1 → w2 the vertex degenerate into
the permutation operator, see equation (6.11). One can then use the basic moves (6.8, 6.9) to
completely factorize the depende on v1 and w2, leading to equation (6.14). In doing so one makes
use of the unitarity identities h(v⟳i , v

⟳
j )h(v

⟳
j , v

⟲
i ) = h(w⟲

j , w
⟲
j )h(w

⟳
i , w

⟲
j ) = h(v⟳i , uj)h(uj , v

⟲
i ) =

1,.

ZJ1,J2,J3 ∼ (−1)J1+J2+J3+1⟨L1, R1⟩Zu1
J1−1,J2,J3

, u1 →∞ (6.13)

which is depicted in figure 6.6. Here and below, rapidities in a superscript in a partition
function Z indicates that the rapidities in the superscript are absent from the partition
function.

These four properties can be used to derive recursion formulas for the partition function.
When a vertex degenerates into a permutation operator we can sequentially apply the Yang-
baxter and unitarity properties to completely factorize the two decoupling particles from
the rest of the partition function, as explained in figure 6.4. The result is that the singular
term in the v1 → wJ3 limit is

ZJ1,J2,J3 ∼ −
i

µ(wJ)

⟨L2, R3⟩⟨L3, R2⟩
v1 − wJ3

ZJ1,J2−1,J3−1

∣∣∣
va→va+1

, (6.14)

with ⟨La, Rb⟩ ≡ LaiR
i
b. This relation was particularly easy to visualize graphically because

we decoupled neighboring particles, namely the last particle of type w with the first particle
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of type v, see kets and bras in figure (6.1) where that is even more manifest. However,
since we can rearrange any particles within any set using (6.10) we can immediately write
down the decoupling between any v and any w particle,

ZJ1,J2,J3 ∼ −
i

µ(wj)

⟨L2, R3⟩⟨L3, R2⟩
vi − wk

i−1∏

i′=1

S0(vi′ , vi)

J3∏

k′=k+1

S0(wk, wk′)ZJ1,J2−1,J3−1

∣∣∣
va→va+1

,

(6.15)

Decouplings for other pairs vi, wk can be obtained by moving the particle vi to the
position of v1, and similar for wk and wJ3 , by means of Watson equation, (6.10) .

Crossing symmetry relates different expressions for the partition function that exchange
the various sets of particles. We illustrate this in figure 6.5. In particular, the expression
(6.1) is invariant under u→ v, v → w,w → u with Li → Li+1, Ri,→ Ri+1:

ZJ1,J2,J3 = ZJ2,J3,J1

∣∣∣∣u→v,v→w,w→u
(Li,Ri)→(Li+1,Ri+1)

. (6.16)

Combining permutation invariance (6.16) with the v → w decoupling (6.14) provides
u→ v and u→ w decoupling formulas

ZJ1,J2,J3 ∼−
i

µ(vi)

⟨L1, R2⟩⟨L2, R1⟩
uj − vi

j−1∏

j′=1

S0(uj′ , uj)

J2∏

i′=i+1

S0(vi, vi′)× Zuj ,vi
J1−1,J2−1,J3

, (6.17)

ZJ1,J2,J3 ∼
i

µ(wk)

⟨L1, R3⟩⟨L3, R1⟩
uj − wk

J1∏

j′=j+1

S0(uj, uj′)
k−1∏

k′=1

S0(wk′ , wk)× Zuj ,wk
J1−1,J2,J3−1. (6.18)

Once again we write only the singular terms in the uj → vi and uj → wk limits respectively.

The equations (6.13) and (6.17, 6.18) in boxes are powerful constraints. They relate
partition functions with a certain number of particles (lhs’s) with partition functions with
less particles (rhs’s). An obvious question is whether we can turn them into recursion
relations which completely determine the partition function in terms of trivial tiny partition
functions with a vertex or two. We could not find a way to do it at finite coupling. The
basic obstacle is that the partition function is not a simple rational function of the rapidities
whose residues are simple, but instead a multi-sheeted object since the Zhukosky variables
naturally take values in tori [160]. Before crossing cuts, all poles are of the type described
in (6.13, 6.17, 6.18). However, in the second sheet there are extra poles capturing the fusion
of the fundamental fermions into bound states. Correspondingly, the residues are no longer
simple decoupled partition functions but instead partition functions with external bound-
states. One could hope to bootstrap the complete system of partition functions including
all possible external bound-states in a recursive way, but we did not achieve that. On the
other hand, in perturbation theory the coupling goes to zero and these tori degenerate and
simplify into simple (punctured) spheres. In more pedestrian terms, the square roots in the
Zhukosky variables disappear and these become simply proportional to the Bethe roots so
that the partition function becomes a nice rational function of the Bethe roots whose poles
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Figure 6.5: The N = 4 hexagon form factor [66] from which the hexagon partition function orig-
inates is symmetric in its three physical edges, represented here by solid lines. The expression
(6.7) is obtained by moving all particles from the v and w edges to the top u edge, left picture.
Moving particles to non-adjacent edges of the hexagon correspond to crossing transformations.
Alternatively, the hexagon form factor could be evaluated through the prescription of the right
figure, in which v particles remain physical while w is crossed clockwise and u crossed anticlock-
wise. The result is equation (6.16). An equivalent statement is that the hexagon form factor is
invariant under crossing all particles in the same direction.

correspond to simple decouplings.5 In that case we can indeed convert the above relations
into powerful recursion relations. It is what we will do in section 6.2.3. After that we will
consider a particular example where we can evaluate the full hexagon partition function at
any value of the coupling.

6.2.3 Tree Level

When g → 0 the Zhukovsky variables (6.4) become rational functions of the rapidities.
More surprisingly, the full hexagon partition function becomes rational, the various square
roots from the matrix elements (E.6 - E.7) cancelling out. In this section we use rationality
to derive recursion relations that efficiently compute the hexagon partition function for any
Ji.

Rational functions are completely fixed by their singularities and asymptotics. As
a function of u1, Z(J1, J2, J3) has two types of poles both of which with clear physical
meaning. The first are poles corresponding to the fusion of two physical particles, u1 and
uj, into a bound state. These are the singularities contained in the h(u1, uj) factors in (6.7).
All other singularities at tree level6 are decoupling poles (6.17,6.18). We are immediately

5Even this is actually not totally trivial because of the non-local ϕ Z-markers with its own square roots.
It turns out that these square roots can be simplify away.

6At g ̸= 0 the physical particles may form bound states with the crossed particles, resulting in new
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v2

<latexit sha1_base64="/1mrOm+vq1uNaagmH+EZ+qAwOFA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuiOgx4MVjRPOAJITZyWwyZHZ2mekNhCWf4MWDIl79Im/+jZNkD5pY0FBUddPd5cdSGHTdbye3sbm1vZPfLeztHxweFY9PmiZKNOMNFslIt31quBSKN1Cg5O1Ycxr6krf88d3cb024NiJSTziNeS+kQyUCwSha6XHSr/SLJbfsLkDWiZeREmSo94tf3UHEkpArZJIa0/HcGHsp1SiY5LNCNzE8pmxMh7xjqaIhN710ceqMXFhlQIJI21JIFurviZSGxkxD33aGFEdm1ZuL/3mdBIPbXipUnCBXbLkoSCTBiMz/JgOhOUM5tYQyLeythI2opgxtOgUbgrf68jppVspetXz9UC3VrrI48nAG53AJHtxADe6hDg1gMIRneIU3RzovzrvzsWzNOdnMKfyB8/kDBiKNkQ==</latexit>

u2

<latexit sha1_base64="R6C0Ukt7sATDkS4hL8vGHY+Ihh0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+7Rf65crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb169eKuXmlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcLOo2m</latexit>

v1

<latexit sha1_base64="mbBdPcnL32Ecol33cqW49dqyXwY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REKnosePFY0dpCG8pmO2mXbjZhd1MooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+PnnScKoZNFotYtQOqUXCJTcONwHaikEaBwFYwup35rTEqzWP5aCYJ+hEdSB5yRo2VHsY9r1euuFV3DrJKvJxUIEejV/7q9mOWRigNE1Trjucmxs+oMpwJnJa6qcaEshEdYMdSSSPUfjY/dUrOrNInYaxsSUPm6u+JjEZaT6LAdkbUDPWyNxP/8zqpCW/8jMskNSjZYlGYCmJiMvub9LlCZsTEEsoUt7cSNqSKMmPTKdkQvOWXV8nTZdWrVa/ua5X6RR5HEU7gFM7Bg2uowx00oAkMBvAMr/DmCOfFeXc+Fq0FJ585hj9wPn8ABJ6NkA==</latexit>

v2

<latexit sha1_base64="/1mrOm+vq1uNaagmH+EZ+qAwOFA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuiOgx4MVjRPOAJITZyWwyZHZ2mekNhCWf4MWDIl79Im/+jZNkD5pY0FBUddPd5cdSGHTdbye3sbm1vZPfLeztHxweFY9PmiZKNOMNFslIt31quBSKN1Cg5O1Ycxr6krf88d3cb024NiJSTziNeS+kQyUCwSha6XHSr/SLJbfsLkDWiZeREmSo94tf3UHEkpArZJIa0/HcGHsp1SiY5LNCNzE8pmxMh7xjqaIhN710ceqMXFhlQIJI21JIFurviZSGxkxD33aGFEdm1ZuL/3mdBIPbXipUnCBXbLkoSCTBiMz/JgOhOUM5tYQyLeythI2opgxtOgUbgrf68jppVspetXz9UC3VrrI48nAG53AJHtxADe6hDg1gMIRneIU3RzovzrvzsWzNOdnMKfyB8/kDBiKNkQ==</latexit>

w1

<latexit sha1_base64="Js4mahdI1ztZX8RsfyNwZMYwNoo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4kJJIRY8FLx4r2g9oQ9lsJ+3SzSbsbpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekSleSwfzDhBP6IDyUPOqLHS/VPP65XKbsWdgSwTLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCJ8VuqjGhbEQH2LFU0gi1n81OnZBTq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwms/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0ijYEb/HlZdK8qHjVyuVdtVw7z+MowDGcwBl4cAU1uIU6NIDBAJ7hFd4c4bw4787HvHXFyWeO4A+czx8GJI2R</latexit>

w1

<latexit sha1_base64="Js4mahdI1ztZX8RsfyNwZMYwNoo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4kJJIRY8FLx4r2g9oQ9lsJ+3SzSbsbpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekSleSwfzDhBP6IDyUPOqLHS/VPP65XKbsWdgSwTLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCJ8VuqjGhbEQH2LFU0gi1n81OnZBTq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwms/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0ijYEb/HlZdK8qHjVyuVdtVw7z+MowDGcwBl4cAU1uIU6NIDBAJ7hFd4c4bw4787HvHXFyWeO4A+czx8GJI2R</latexit>

u2

<latexit sha1_base64="R6C0Ukt7sATDkS4hL8vGHY+Ihh0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+7Rf65crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb169eKuXmlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcLOo2m</latexit>

u1

<latexit sha1_base64="QJrvI09FiXI9MqE3+KwepZ8aV2g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPa9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAJto2l</latexit>

u1

<latexit sha1_base64="QJrvI09FiXI9MqE3+KwepZ8aV2g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPa9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAJto2l</latexit>

u1

<latexit sha1_base64="QJrvI09FiXI9MqE3+KwepZ8aV2g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPa9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAJto2l</latexit>

u2

<latexit sha1_base64="R6C0Ukt7sATDkS4hL8vGHY+Ihh0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+7Rf65crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb169eKuXmlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcLOo2m</latexit>

v1

<latexit sha1_base64="mbBdPcnL32Ecol33cqW49dqyXwY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REKnosePFY0dpCG8pmO2mXbjZhd1MooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+PnnScKoZNFotYtQOqUXCJTcONwHaikEaBwFYwup35rTEqzWP5aCYJ+hEdSB5yRo2VHsY9r1euuFV3DrJKvJxUIEejV/7q9mOWRigNE1Trjucmxs+oMpwJnJa6qcaEshEdYMdSSSPUfjY/dUrOrNInYaxsSUPm6u+JjEZaT6LAdkbUDPWyNxP/8zqpCW/8jMskNSjZYlGYCmJiMvub9LlCZsTEEsoUt7cSNqSKMmPTKdkQvOWXV8nTZdWrVa/ua5X6RR5HEU7gFM7Bg2uowx00oAkMBvAMr/DmCOfFeXc+Fq0FJ585hj9wPn8ABJ6NkA==</latexit>

v2

<latexit sha1_base64="/1mrOm+vq1uNaagmH+EZ+qAwOFA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuiOgx4MVjRPOAJITZyWwyZHZ2mekNhCWf4MWDIl79Im/+jZNkD5pY0FBUddPd5cdSGHTdbye3sbm1vZPfLeztHxweFY9PmiZKNOMNFslIt31quBSKN1Cg5O1Ycxr6krf88d3cb024NiJSTziNeS+kQyUCwSha6XHSr/SLJbfsLkDWiZeREmSo94tf3UHEkpArZJIa0/HcGHsp1SiY5LNCNzE8pmxMh7xjqaIhN710ceqMXFhlQIJI21JIFurviZSGxkxD33aGFEdm1ZuL/3mdBIPbXipUnCBXbLkoSCTBiMz/JgOhOUM5tYQyLeythI2opgxtOgUbgrf68jppVspetXz9UC3VrrI48nAG53AJHtxADe6hDg1gMIRneIU3RzovzrvzsWzNOdnMKfyB8/kDBiKNkQ==</latexit>

w1

<latexit sha1_base64="Js4mahdI1ztZX8RsfyNwZMYwNoo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4kJJIRY8FLx4r2g9oQ9lsJ+3SzSbsbpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekSleSwfzDhBP6IDyUPOqLHS/VPP65XKbsWdgSwTLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCJ8VuqjGhbEQH2LFU0gi1n81OnZBTq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwms/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0ijYEb/HlZdK8qHjVyuVdtVw7z+MowDGcwBl4cAU1uIU6NIDBAJ7hFd4c4bw4787HvHXFyWeO4A+czx8GJI2R</latexit>

w1

<latexit sha1_base64="Js4mahdI1ztZX8RsfyNwZMYwNoo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4kJJIRY8FLx4r2g9oQ9lsJ+3SzSbsbpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekSleSwfzDhBP6IDyUPOqLHS/VPP65XKbsWdgSwTLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCJ8VuqjGhbEQH2LFU0gi1n81OnZBTq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwms/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0ijYEb/HlZdK8qHjVyuVdtVw7z+MowDGcwBl4cAU1uIU6NIDBAJ7hFd4c4bw4787HvHXFyWeO4A+czx8GJI2R</latexit>

u1

<latexit sha1_base64="QJrvI09FiXI9MqE3+KwepZ8aV2g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPa9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAJto2l</latexit>

u2

<latexit sha1_base64="R6C0Ukt7sATDkS4hL8vGHY+Ihh0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+7Rf65crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb169eKuXmlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcLOo2m</latexit>

v1

<latexit sha1_base64="mbBdPcnL32Ecol33cqW49dqyXwY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REKnosePFY0dpCG8pmO2mXbjZhd1MooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+PnnScKoZNFotYtQOqUXCJTcONwHaikEaBwFYwup35rTEqzWP5aCYJ+hEdSB5yRo2VHsY9r1euuFV3DrJKvJxUIEejV/7q9mOWRigNE1Trjucmxs+oMpwJnJa6qcaEshEdYMdSSSPUfjY/dUrOrNInYaxsSUPm6u+JjEZaT6LAdkbUDPWyNxP/8zqpCW/8jMskNSjZYlGYCmJiMvub9LlCZsTEEsoUt7cSNqSKMmPTKdkQvOWXV8nTZdWrVa/ua5X6RR5HEU7gFM7Bg2uowx00oAkMBvAMr/DmCOfFeXc+Fq0FJ585hj9wPn8ABJ6NkA==</latexit>

v2

<latexit sha1_base64="/1mrOm+vq1uNaagmH+EZ+qAwOFA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuiOgx4MVjRPOAJITZyWwyZHZ2mekNhCWf4MWDIl79Im/+jZNkD5pY0FBUddPd5cdSGHTdbye3sbm1vZPfLeztHxweFY9PmiZKNOMNFslIt31quBSKN1Cg5O1Ycxr6krf88d3cb024NiJSTziNeS+kQyUCwSha6XHSr/SLJbfsLkDWiZeREmSo94tf3UHEkpArZJIa0/HcGHsp1SiY5LNCNzE8pmxMh7xjqaIhN710ceqMXFhlQIJI21JIFurviZSGxkxD33aGFEdm1ZuL/3mdBIPbXipUnCBXbLkoSCTBiMz/JgOhOUM5tYQyLeythI2opgxtOgUbgrf68jppVspetXz9UC3VrrI48nAG53AJHtxADe6hDg1gMIRneIU3RzovzrvzsWzNOdnMKfyB8/kDBiKNkQ==</latexit>

Figure 6.6: Decoupling when u1 → ∞ for Z2,2,1. When one of the rapidities is sent to infinity
the vertex reduces to the free S-matrix. All scatterings of particle u1 are of the fermion-fermion
type, resulting in the (−1)J1+J2+J3−1 factor of equation (6.13).

led to the recursion relation

ẐJ1,J2,J3 =(−1)J1+J2+J3+1⟨L1, R1⟩Ẑu1
J1−1,J2,J3

+ (6.19)

−
J2∑

i=1

i

µ(vi)

⟨L1, R2⟩⟨L2, R1⟩
u1 − vi

J2∏

i′=i+1

S0(vi, vi′)

J1∏

j=2

ĥ(vi, uj)
−1 × Ẑu1,vi

J1−1,J2−1,J3
+

+

J3∑

k=1

i

µ(wk)

⟨L1, R3⟩⟨L3, R1⟩
u1 − wk

J1∏

j′=2

S0(u1, uj′)
k−1∏

k′=1

S0(wk′ , wk)

J1∏

j=2

ĥ(wk, uj)
−1 × Ẑu1,wk

J1−1,J2,J3−1

with ẐJ1,J2,J3 = ZJ1,J2,J3
∏

j<j′ h(uj, u
′
j)

−1. Here ĥ = h computed without performing
crossing monodromies in the arguments, since in the decoupling limit uj approaches vi
and wk without going around Zhukovsky branch points7. Explicitly, at tree level

ĥ(x, y) =
x− y

x− y − i , µ(x) = 1, S0(x, y) =
x− y + i

x− y − i . (6.20)

Repeated use of (6.19) reduces the computation of ZJ1,J2,J3 to that of Z0,J2,J3 . One
could then use rationality in vi and wk to write further recursions that reduce the formula
all the way to Z0,0,0 = 1. One can skip this step, in practice, since the recursions for Z0,J2,J3

singularities.
7These branch points disappear at tree level, the Zhukovsky variables becoming rational. This is an

important point. The crossing transformations do not commute with the perturbative expansion. Crossing
can only be performed at finite coupling. In a sense, the simplicity of the tree level result encode some
of the finite coupling structure through the many properties derived from crossing and used to bootstrap
(6.19).
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can be solved explicitly. Through induction one finds the determinant formula

Z0,J2,J3 = (−1)AJ2J3
∏J2

i=1

∏J3
k=1(vi − wk + i)

(
∏

i<i′ vi′ − vi + i)(
∏

k<k′ wk − wk′ − i)
detM,

where M is a square matrix of size max(J2, J3) whose elements are given by

Mij =





⟨23⟩⟨32⟩
vi−wj + ⟨22⟩⟨33⟩

vi−wj+i −
⟨23⟩⟨32⟩
vi−wj+i , if i ≤ J2 ∧ j ≤ J3

− ⟨23⟩⟨32⟩
⟨33⟩vJ3−j+1

i

− ⟨22⟩
(vi+i)J3−j+1 +

⟨23⟩⟨32⟩
⟨33⟩(vi+i)J3−j+1 , if j > J3

⟨23⟩⟨32⟩
⟨22⟩wJ2−i+1

j

+ ⟨33⟩
(wj−i)J2−i+1 − ⟨23⟩⟨32⟩

⟨22⟩(wj−i)J2−i+1 , if i > J2

,

with ⟨ij⟩ ≡ ⟨Li, Rj⟩ and

AJ2J3 = (J2 + 1)(J3 + 1) +
3∑

i=2

(Ji − 1)Ji/2 +

{
(J3−J2)(1+J3−J2)

2
, if J2 < J3

0 , otherwise
.

In section 6.3.2 the recursive formulas (6.19 ,6.21) will be used to produce three point
structures data for operators of arbitrary twist at tree level. For convenience, we attach
a ready to copy-and-paste Mathematica implementation of the tree level recursion. The
SL(2) S-matrix and dynamical factor are

S0[z_, zp_] = (z - zp + I)/(z - zp - I);

h[z_, zp_] = (z - zp)/(z - zp - I);

We then write the recursive formulas for the partition function. As explained above,
when applying the recursion to one of the three particle sets, it is useful to factor out the
dynamical factors. We denote this procedure through “hats” which must be removed to
recover Z. First we do recursions for “v’s” starting with the trivial one-set answer:

Zhathat[0,J3_] := V[3]^J3 Product[(-1) h[w[k], w[kk]], {kk, J3}, {k, kk - 1}];

Zhathat[J2_,J3_]:= Zhathat[J2,J3] = (-1)^(J2+J3+1) V[2] (Zhathat[J2-1,J3] /.v[i_]:>v[i+1])-

Sum[I H[2,3]/(v[1]-w[k])Product[S0[w[k],w[kk]],{kk,k+1,J3}] Product[h[w[k],v[i]]^-1,{i,2,J2}]

(Zhathat[J2-1,J3-1] /.{v[i_]:>v[i+1],w[kkk_]/;kkk>=k:>w[kkk+1]}),{k,J3}];

Zhat[0,J2_,J3_]:=Zhathat[J2, J3]Product[h[v[i], v[ii]],{ii,J2},{i,ii-1}];

Next, we perform recursions for the “u” particles to recover the full partition function,

Zhat[J1_,J2_,J3_]:= Zhat[J1,J2,J3]=(-1)^(J1+J2+J3+1)V[1](Zhat[J1-1,J2,J3] /.u[j_]:>u[j+1])-

Sum[I H[1,2]/(u[1]-v[i])Product[S0[v[i],v[ii]],{ii,i+1,J2}]Product[h[v[i],u[j]]^-1,{j,2,J1}]

(Zhat[J1-1,J2-1,J3]/.{u[j_]:>u[j+1],v[iii_]/;iii>=i:>v[iii+1]}),{i,J2}]+

Sum[I H[3,1]/(u[1]-w[k])Product[S0[u[1],u[jj]],{jj,2,J1}]Product[S0[w[kk],w[k]],

{kk,1,k-1}] Product[h[w[k],u[j]]^-1,{j,2,J1}](Zhat[J1-1, J2,J3-1]/.{u[j_]:>u[j+1],
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u1

<latexit sha1_base64="QJrvI09FiXI9MqE3+KwepZ8aV2g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPa9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAJto2l</latexit>

u2

<latexit sha1_base64="R6C0Ukt7sATDkS4hL8vGHY+Ihh0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+7Rf65crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb169eKuXmlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcLOo2m</latexit>

u3

<latexit sha1_base64="gw7c1OibQjLzS3SWaYCpX5phRzQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0Yo8FLx4rWltoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfjm5nffkKleSwfzCRBP6JDyUPOqLHSfdq/7JcrbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwrqfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKnm8qHq16tVdrdKo53EU4QRO4Rw8uIYG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcJvI2d</latexit>

v3

<latexit sha1_base64="B4ZUhXAg7vxcJO1+7+ps+RhzpFA=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYVo0eiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOpedoslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5LGRdmrlK8eKqXqbRZHHk7gFM7Bg2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8ADkSNqA==</latexit>

v1

<latexit sha1_base64="mbBdPcnL32Ecol33cqW49dqyXwY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REKnosePFY0dpCG8pmO2mXbjZhd1MooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+PnnScKoZNFotYtQOqUXCJTcONwHaikEaBwFYwup35rTEqzWP5aCYJ+hEdSB5yRo2VHsY9r1euuFV3DrJKvJxUIEejV/7q9mOWRigNE1Trjucmxs+oMpwJnJa6qcaEshEdYMdSSSPUfjY/dUrOrNInYaxsSUPm6u+JjEZaT6LAdkbUDPWyNxP/8zqpCW/8jMskNSjZYlGYCmJiMvub9LlCZsTEEsoUt7cSNqSKMmPTKdkQvOWXV8nTZdWrVa/ua5X6RR5HEU7gFM7Bg2uowx00oAkMBvAMr/DmCOfFeXc+Fq0FJ585hj9wPn8ABJ6NkA==</latexit>

v2

<latexit sha1_base64="/1mrOm+vq1uNaagmH+EZ+qAwOFA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuiOgx4MVjRPOAJITZyWwyZHZ2mekNhCWf4MWDIl79Im/+jZNkD5pY0FBUddPd5cdSGHTdbye3sbm1vZPfLeztHxweFY9PmiZKNOMNFslIt31quBSKN1Cg5O1Ycxr6krf88d3cb024NiJSTziNeS+kQyUCwSha6XHSr/SLJbfsLkDWiZeREmSo94tf3UHEkpArZJIa0/HcGHsp1SiY5LNCNzE8pmxMh7xjqaIhN710ceqMXFhlQIJI21JIFurviZSGxkxD33aGFEdm1ZuL/3mdBIPbXipUnCBXbLkoSCTBiMz/JgOhOUM5tYQyLeythI2opgxtOgUbgrf68jppVspetXz9UC3VrrI48nAG53AJHtxADe6hDg1gMIRneIU3RzovzrvzsWzNOdnMKfyB8/kDBiKNkQ==</latexit>

w3

<latexit sha1_base64="L7f55p3w4cWPwKCzkDNNUwapg+s=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcKuRvQY8OIxonlAEsLsZDYZMju7zPQqYcknePGgiFe/yJt/4yTZgyYWNBRV3XR3+bEUBl3328mtrK6tb+Q3C1vbO7t7xf2DhokSzXidRTLSLZ8aLoXidRQoeSvWnIa+5E1/dDP1m49cGxGpBxzHvBvSgRKBYBStdP/Uu+gVS27ZnYEsEy8jJchQ6xW/Ov2IJSFXyCQ1pu25MXZTqlEwySeFTmJ4TNmIDnjbUkVDbrrp7NQJObFKnwSRtqWQzNTfEykNjRmHvu0MKQ7NojcV//PaCQbX3VSoOEGu2HxRkEiCEZn+TfpCc4ZybAllWthbCRtSTRnadAo2BG/x5WXSOC97lfLlXaVUPcviyMMRHMMpeHAFVbiFGtSBwQCe4RXeHOm8OO/Ox7w152Qzh/AHzucPCSyNkw==</latexit>

w2

<latexit sha1_base64="4O69bOit+7fgArNtczr6PlVmCEk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuiOgx4MVjRPOAZAmzk95kyOzsMjOrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81iMqzWP5YMYJ+hEdSB5yRo2V7p96lV6x5JbdOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeG1P+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrJS9avnyrlqqXWRx5OEETuEcPLiCGtxCHRrAYADP8ApvjnBenHfnY9Gac7KZY/gD5/MHB6iNkg==</latexit>

w1

<latexit sha1_base64="Js4mahdI1ztZX8RsfyNwZMYwNoo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4kJJIRY8FLx4r2g9oQ9lsJ+3SzSbsbpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekSleSwfzDhBP6IDyUPOqLHS/VPP65XKbsWdgSwTLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCJ8VuqjGhbEQH2LFU0gi1n81OnZBTq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwms/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0ijYEb/HlZdK8qHjVyuVdtVw7z+MowDGcwBl4cAU1uIU6NIDBAJ7hFd4c4bw4787HvHXFyWeO4A+czx8GJI2R</latexit>

w3

<latexit sha1_base64="L7f55p3w4cWPwKCzkDNNUwapg+s=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcKuRvQY8OIxonlAEsLsZDYZMju7zPQqYcknePGgiFe/yJt/4yTZgyYWNBRV3XR3+bEUBl3328mtrK6tb+Q3C1vbO7t7xf2DhokSzXidRTLSLZ8aLoXidRQoeSvWnIa+5E1/dDP1m49cGxGpBxzHvBvSgRKBYBStdP/Uu+gVS27ZnYEsEy8jJchQ6xW/Ov2IJSFXyCQ1pu25MXZTqlEwySeFTmJ4TNmIDnjbUkVDbrrp7NQJObFKnwSRtqWQzNTfEykNjRmHvu0MKQ7NojcV//PaCQbX3VSoOEGu2HxRkEiCEZn+TfpCc4ZybAllWthbCRtSTRnadAo2BG/x5WXSOC97lfLlXaVUPcviyMMRHMMpeHAFVbiFGtSBwQCe4RXeHOm8OO/Ox7w152Qzh/AHzucPCSyNkw==</latexit>

w2

<latexit sha1_base64="4O69bOit+7fgArNtczr6PlVmCEk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuiOgx4MVjRPOAZAmzk95kyOzsMjOrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81iMqzWP5YMYJ+hEdSB5yRo2V7p96lV6x5JbdOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeG1P+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrJS9avnyrlqqXWRx5OEETuEcPLiCGtxCHRrAYADP8ApvjnBenHfnY9Gac7KZY/gD5/MHB6iNkg==</latexit>

w1

<latexit sha1_base64="Js4mahdI1ztZX8RsfyNwZMYwNoo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4kJJIRY8FLx4r2g9oQ9lsJ+3SzSbsbpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekSleSwfzDhBP6IDyUPOqLHS/VPP65XKbsWdgSwTLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCJ8VuqjGhbEQH2LFU0gi1n81OnZBTq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwms/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0ijYEb/HlZdK8qHjVyuVdtVw7z+MowDGcwBl4cAU1uIU6NIDBAJ7hFd4c4bw4787HvHXFyWeO4A+czx8GJI2R</latexit>

v3

<latexit sha1_base64="B4ZUhXAg7vxcJO1+7+ps+RhzpFA=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYVo0eiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOpedoslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5LGRdmrlK8eKqXqbRZHHk7gFM7Bg2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8ADkSNqA==</latexit>

v1

<latexit sha1_base64="mbBdPcnL32Ecol33cqW49dqyXwY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REKnosePFY0dpCG8pmO2mXbjZhd1MooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+PnnScKoZNFotYtQOqUXCJTcONwHaikEaBwFYwup35rTEqzWP5aCYJ+hEdSB5yRo2VHsY9r1euuFV3DrJKvJxUIEejV/7q9mOWRigNE1Trjucmxs+oMpwJnJa6qcaEshEdYMdSSSPUfjY/dUrOrNInYaxsSUPm6u+JjEZaT6LAdkbUDPWyNxP/8zqpCW/8jMskNSjZYlGYCmJiMvub9LlCZsTEEsoUt7cSNqSKMmPTKdkQvOWXV8nTZdWrVa/ua5X6RR5HEU7gFM7Bg2uowx00oAkMBvAMr/DmCOfFeXc+Fq0FJ585hj9wPn8ABJ6NkA==</latexit>

v2

<latexit sha1_base64="/1mrOm+vq1uNaagmH+EZ+qAwOFA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuiOgx4MVjRPOAJITZyWwyZHZ2mekNhCWf4MWDIl79Im/+jZNkD5pY0FBUddPd5cdSGHTdbye3sbm1vZPfLeztHxweFY9PmiZKNOMNFslIt31quBSKN1Cg5O1Ycxr6krf88d3cb024NiJSTziNeS+kQyUCwSha6XHSr/SLJbfsLkDWiZeREmSo94tf3UHEkpArZJIa0/HcGHsp1SiY5LNCNzE8pmxMh7xjqaIhN710ceqMXFhlQIJI21JIFurviZSGxkxD33aGFEdm1ZuL/3mdBIPbXipUnCBXbLkoSCTBiMz/JgOhOUM5tYQyLeythI2opgxtOgUbgrf68jppVspetXz9UC3VrrI48nAG53AJHtxADe6hDg1gMIRneIU3RzovzrvzsWzNOdnMKfyB8/kDBiKNkQ==</latexit>

u1

<latexit sha1_base64="QJrvI09FiXI9MqE3+KwepZ8aV2g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPa9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAJto2l</latexit>

u2

<latexit sha1_base64="R6C0Ukt7sATDkS4hL8vGHY+Ihh0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+7Rf65crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb169eKuXmlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcLOo2m</latexit>

u3

<latexit sha1_base64="gw7c1OibQjLzS3SWaYCpX5phRzQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0Yo8FLx4rWltoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfjm5nffkKleSwfzCRBP6JDyUPOqLHSfdq/7JcrbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwrqfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKnm8qHq16tVdrdKo53EU4QRO4Rw8uIYG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcJvI2d</latexit>

w3

<latexit sha1_base64="L7f55p3w4cWPwKCzkDNNUwapg+s=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcKuRvQY8OIxonlAEsLsZDYZMju7zPQqYcknePGgiFe/yJt/4yTZgyYWNBRV3XR3+bEUBl3328mtrK6tb+Q3C1vbO7t7xf2DhokSzXidRTLSLZ8aLoXidRQoeSvWnIa+5E1/dDP1m49cGxGpBxzHvBvSgRKBYBStdP/Uu+gVS27ZnYEsEy8jJchQ6xW/Ov2IJSFXyCQ1pu25MXZTqlEwySeFTmJ4TNmIDnjbUkVDbrrp7NQJObFKnwSRtqWQzNTfEykNjRmHvu0MKQ7NojcV//PaCQbX3VSoOEGu2HxRkEiCEZn+TfpCc4ZybAllWthbCRtSTRnadAo2BG/x5WXSOC97lfLlXaVUPcviyMMRHMMpeHAFVbiFGtSBwQCe4RXeHOm8OO/Ox7w152Qzh/AHzucPCSyNkw==</latexit>

w2

<latexit sha1_base64="4O69bOit+7fgArNtczr6PlVmCEk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuiOgx4MVjRPOAZAmzk95kyOzsMjOrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81iMqzWP5YMYJ+hEdSB5yRo2V7p96lV6x5JbdOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeG1P+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrJS9avnyrlqqXWRx5OEETuEcPLiCGtxCHRrAYADP8ApvjnBenHfnY9Gac7KZY/gD5/MHB6iNkg==</latexit>

w1

<latexit sha1_base64="Js4mahdI1ztZX8RsfyNwZMYwNoo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4kJJIRY8FLx4r2g9oQ9lsJ+3SzSbsbpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekSleSwfzDhBP6IDyUPOqLHS/VPP65XKbsWdgSwTLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCJ8VuqjGhbEQH2LFU0gi1n81OnZBTq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwms/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0ijYEb/HlZdK8qHjVyuVdtVw7z+MowDGcwBl4cAU1uIU6NIDBAJ7hFd4c4bw4787HvHXFyWeO4A+czx8GJI2R</latexit>

w3

<latexit sha1_base64="L7f55p3w4cWPwKCzkDNNUwapg+s=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcKuRvQY8OIxonlAEsLsZDYZMju7zPQqYcknePGgiFe/yJt/4yTZgyYWNBRV3XR3+bEUBl3328mtrK6tb+Q3C1vbO7t7xf2DhokSzXidRTLSLZ8aLoXidRQoeSvWnIa+5E1/dDP1m49cGxGpBxzHvBvSgRKBYBStdP/Uu+gVS27ZnYEsEy8jJchQ6xW/Ov2IJSFXyCQ1pu25MXZTqlEwySeFTmJ4TNmIDnjbUkVDbrrp7NQJObFKnwSRtqWQzNTfEykNjRmHvu0MKQ7NojcV//PaCQbX3VSoOEGu2HxRkEiCEZn+TfpCc4ZybAllWthbCRtSTRnadAo2BG/x5WXSOC97lfLlXaVUPcviyMMRHMMpeHAFVbiFGtSBwQCe4RXeHOm8OO/Ox7w152Qzh/AHzucPCSyNkw==</latexit>

w2

<latexit sha1_base64="4O69bOit+7fgArNtczr6PlVmCEk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuiOgx4MVjRPOAZAmzk95kyOzsMjOrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3cz81iMqzWP5YMYJ+hEdSB5yRo2V7p96lV6x5JbdOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeG1P+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrJS9avnyrlqqXWRx5OEETuEcPLiCGtxCHRrAYADP8ApvjnBenHfnY9Gac7KZY/gD5/MHB6iNkg==</latexit>

w1

<latexit sha1_base64="Js4mahdI1ztZX8RsfyNwZMYwNoo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4kJJIRY8FLx4r2g9oQ9lsJ+3SzSbsbpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekSleSwfzDhBP6IDyUPOqLHS/VPP65XKbsWdgSwTLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCJ8VuqjGhbEQH2LFU0gi1n81OnZBTq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwms/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0ijYEb/HlZdK8qHjVyuVdtVw7z+MowDGcwBl4cAU1uIU6NIDBAJ7hFd4c4bw4787HvHXFyWeO4A+czx8GJI2R</latexit>

u1

<latexit sha1_base64="QJrvI09FiXI9MqE3+KwepZ8aV2g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPa9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAJto2l</latexit>

u2

<latexit sha1_base64="R6C0Ukt7sATDkS4hL8vGHY+Ihh0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+7Rf65crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb169eKuXmlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcLOo2m</latexit>

u3

<latexit sha1_base64="gw7c1OibQjLzS3SWaYCpX5phRzQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0Yo8FLx4rWltoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfjm5nffkKleSwfzCRBP6JDyUPOqLHSfdq/7JcrbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwrqfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKnm8qHq16tVdrdKo53EU4QRO4Rw8uIYG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcJvI2d</latexit>

u1

<latexit sha1_base64="QJrvI09FiXI9MqE3+KwepZ8aV2g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPa9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAJto2l</latexit>

u2

<latexit sha1_base64="R6C0Ukt7sATDkS4hL8vGHY+Ihh0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+7Rf65crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb169eKuXmlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcLOo2m</latexit>

u3

<latexit sha1_base64="gw7c1OibQjLzS3SWaYCpX5phRzQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0Yo8FLx4rWltoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfjm5nffkKleSwfzCRBP6JDyUPOqLHSfdq/7JcrbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwrqfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKnm8qHq16tVdrdKo53EU4QRO4Rw8uIYG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcJvI2d</latexit>

v3

<latexit sha1_base64="B4ZUhXAg7vxcJO1+7+ps+RhzpFA=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYVo0eiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOpedoslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5LGRdmrlK8eKqXqbRZHHk7gFM7Bg2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8ADkSNqA==</latexit>

v1

<latexit sha1_base64="mbBdPcnL32Ecol33cqW49dqyXwY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REKnosePFY0dpCG8pmO2mXbjZhd1MooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+PnnScKoZNFotYtQOqUXCJTcONwHaikEaBwFYwup35rTEqzWP5aCYJ+hEdSB5yRo2VHsY9r1euuFV3DrJKvJxUIEejV/7q9mOWRigNE1Trjucmxs+oMpwJnJa6qcaEshEdYMdSSSPUfjY/dUrOrNInYaxsSUPm6u+JjEZaT6LAdkbUDPWyNxP/8zqpCW/8jMskNSjZYlGYCmJiMvub9LlCZsTEEsoUt7cSNqSKMmPTKdkQvOWXV8nTZdWrVa/ua5X6RR5HEU7gFM7Bg2uowx00oAkMBvAMr/DmCOfFeXc+Fq0FJ585hj9wPn8ABJ6NkA==</latexit>

v2

<latexit sha1_base64="/1mrOm+vq1uNaagmH+EZ+qAwOFA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuiOgx4MVjRPOAJITZyWwyZHZ2mekNhCWf4MWDIl79Im/+jZNkD5pY0FBUddPd5cdSGHTdbye3sbm1vZPfLeztHxweFY9PmiZKNOMNFslIt31quBSKN1Cg5O1Ycxr6krf88d3cb024NiJSTziNeS+kQyUCwSha6XHSr/SLJbfsLkDWiZeREmSo94tf3UHEkpArZJIa0/HcGHsp1SiY5LNCNzE8pmxMh7xjqaIhN710ceqMXFhlQIJI21JIFurviZSGxkxD33aGFEdm1ZuL/3mdBIPbXipUnCBXbLkoSCTBiMz/JgOhOUM5tYQyLeythI2opgxtOgUbgrf68jppVspetXz9UC3VrrI48nAG53AJHtxADe6hDg1gMIRneIU3RzovzrvzsWzNOdnMKfyB8/kDBiKNkQ==</latexit>

v3

<latexit sha1_base64="B4ZUhXAg7vxcJO1+7+ps+RhzpFA=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYVo0eiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOpedoslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5LGRdmrlK8eKqXqbRZHHk7gFM7Bg2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8ADkSNqA==</latexit>

v1

<latexit sha1_base64="mbBdPcnL32Ecol33cqW49dqyXwY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REKnosePFY0dpCG8pmO2mXbjZhd1MooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+PnnScKoZNFotYtQOqUXCJTcONwHaikEaBwFYwup35rTEqzWP5aCYJ+hEdSB5yRo2VHsY9r1euuFV3DrJKvJxUIEejV/7q9mOWRigNE1Trjucmxs+oMpwJnJa6qcaEshEdYMdSSSPUfjY/dUrOrNInYaxsSUPm6u+JjEZaT6LAdkbUDPWyNxP/8zqpCW/8jMskNSjZYlGYCmJiMvub9LlCZsTEEsoUt7cSNqSKMmPTKdkQvOWXV8nTZdWrVa/ua5X6RR5HEU7gFM7Bg2uowx00oAkMBvAMr/DmCOfFeXc+Fq0FJ585hj9wPn8ABJ6NkA==</latexit>

v2

<latexit sha1_base64="/1mrOm+vq1uNaagmH+EZ+qAwOFA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuiOgx4MVjRPOAJITZyWwyZHZ2mekNhCWf4MWDIl79Im/+jZNkD5pY0FBUddPd5cdSGHTdbye3sbm1vZPfLeztHxweFY9PmiZKNOMNFslIt31quBSKN1Cg5O1Ycxr6krf88d3cb024NiJSTziNeS+kQyUCwSha6XHSr/SLJbfsLkDWiZeREmSo94tf3UHEkpArZJIa0/HcGHsp1SiY5LNCNzE8pmxMh7xjqaIhN710ceqMXFhlQIJI21JIFurviZSGxkxD33aGFEdm1ZuL/3mdBIPbXipUnCBXbLkoSCTBiMz/JgOhOUM5tYQyLeythI2opgxtOgUbgrf68jppVspetXz9UC3VrrI48nAG53AJHtxADe6hDg1gMIRneIU3RzovzrvzsWzNOdnMKfyB8/kDBiKNkQ==</latexit>

⇥

<latexit sha1_base64="DFN4sfNhBNG+B7awRb3y/Saos6c=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9FxE2/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxW1S/xsfu2UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGavk4HQnKGcWEKZFvZWwkZUU4Y2oJINwVt+eZW0LqperXp5X6vUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvTuy8OO/Ox6K14OQzx/AHzucPuMOPPA==</latexit>

⇥

<latexit sha1_base64="DFN4sfNhBNG+B7awRb3y/Saos6c=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9FxE2/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxW1S/xsfu2UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGavk4HQnKGcWEKZFvZWwkZUU4Y2oJINwVt+eZW0LqperXp5X6vUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvTuy8OO/Ox6K14OQzx/AHzucPuMOPPA==</latexit>

/

<latexit sha1_base64="/dBEfBhZbJG/KGiqDXG4HdQbu2Q=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKosegF48RzAOSJcxOZpMhszvDTK8QQj7CiwdFvPo93vwbJ8keNLGgoajqprsr0lJY9P1vr7C2vrG5Vdwu7ezu7R+UD4+aVmWG8QZTUpl2RC2XIuUNFCh5WxtOk0jyVjS6m/mtJ26sUOkjjjUPEzpIRSwYRSe1utoojapXrvhVfw6ySoKcVCBHvVf+6vYVyxKeIpPU2k7gawwn1KBgkk9L3cxyTdmIDnjH0ZQm3IaT+blTcuaUPomVcZUimau/JyY0sXacRK4zoTi0y95M/M/rZBjfhBOR6gx5yhaL4kwSVGT2O+kLwxnKsSOUGeFuJWxIDWXoEiq5EILll1dJ86IaXFavHi4rtds8jiKcwCmcQwDXUIN7qEMDGIzgGV7hzdPei/fufSxaC14+cwx/4H3+AKVzj8g=</latexit>

Figure 6.7: When the incoming state are fermions with parallel polarizations, the vertex becomes
proportional to the identity, e.g. R2

aL1
bScdab(ui, ui+1) = −R2

cL1
dh(v2, u1). This simplification

happens at all vertices if L1 = R2 = R3, the partition function reducing to the product of abelian
factors times the inner product between incoming and outgoing polarizations, equation (6.21).
Of course, the same simplification holds if instead we have R1 = L2 = L3.

w[kkk_]/;kkk>=k:>w[kkk+1]}),{k,J3}];

Z[J1_,J2_,J3_]:=Zhat[J1,J2,J3]Product[h[u[j],u[jj]],{jj,J1},{j,jj-1}];

as promised. In the code we denoted V [i] ≡ ⟨Li, Ri⟩ and H[i, j] ≡ ⟨Li, Rj⟩⟨Ri, Lj⟩.

6.2.4 All Loop Abelian Simplifications

When L1 = R2 = R3 the triangle partition function dramatically simplifies. In that case,
only the terms proportional to the D matrix element in (6.3) survives. As shown in figure
6.7, the result is

ZAbelian
J1,J2,J3

=⟨L1, R1⟩J1⟨L2, R2⟩J2⟨L3, R3⟩J3 × (−1)J2+J3+J(J−1)/2 (6.21)

J2∏

i=1

J1∏

j=1

J3∏

k=1

h(vi, uj)h(uj, wk)h(vi, wk)
∏

i′<i
j′<j
k′<k

h(vi′ , vi)h(uj′ , uj)h(wk′ , wk),

with J = J1 + J2 + J3. We emphasize this result holds at finite coupling g.

Of course, from permutation invariance, the result also simplifies for L2 = R1 = R3

and L3 = R1 = R2. This is non-trivial from the expression (6.7) but can be made manifest
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through crossing transformations. The vertices are also projected into the D element if
R1 = L2 = L3 or permutations, as can be seen from (6.3). The partition function for these
polarizations also reduces to formula (6.21).

6.3 Spinning hexagons

6.3.1 Polarizing the Hexagon OPE

Now we shift gears by focusing on the computation of three point functions of primary
operators in the SL(2|R) sector of N = 4 SYM. One important ingredient in our analysis,
as we shall see below, is the hexagon partition function analysed in the previous section.
Before delving into those details let us define the precise form of the operators that are
being considered and summarize how the hexagon formalism can be used to compute three
point functions.

The primary operators in the SL(2|R) sector are traceless symmetric single traces made
out of covariant derivative excitations Dαα̇ on top of a BPS “vaccum” of fundamental
scalars, Tr(Y⃗ · ϕ⃗)τ . To denote operators of spin Ji we use the index free notation in terms
of polarization spinors

OJi(x) ≡ OJi(x, Li, Ri) =

(
Ji∏

j=1

LiαjRiα̇j

)
Oα1...αJi α̇1... ˙αJi
Ji

(x). (6.22)

These operators are the same type of spinning operators we consider in the conformal
bootstrap [4], being the only difference here that we do not need to consider leading twist,
in fact, here they can have any twist τ , which we leave implicit.

By conformal symmetry, the full three point function can be recovered from its values
in the conformal frame8. We place operators along the x2 axis at 0, 1 and∞. The rescaled
correlator

C(J1, J2, J3) ≡ lim
L→∞

L2∆3⟨OJ1(0)⟩OJ2(1)OJ3(L) (6.23)

can then be expressed as a sum over tensor structures invariant under the residual unfixed
symmetry [146,161]. As defined in appendix E.1, these tensor structures can be written as
inner products of the polarization spinors Li and Ri, as follows

C(J1, J2, J3) =
∑

ℓ1,ℓ2,ℓ3

CJ1,J2,J3
ℓ1,ℓ2,ℓ3

⟨1, 1⟩J1−ℓ2−ℓ3⟨2, 2⟩J2−ℓ1−ℓ3⟨3, 3⟩J3−ℓ1−ℓ2
⟨2, 3⟩−ℓ1⟨3, 2⟩−ℓ1⟨1, 3⟩−ℓ2⟨3, 1⟩−ℓ2⟨1, 2⟩−ℓ3⟨2, 1⟩−ℓ3 . (6.24)

where ⟨i, j⟩ = ⟨Li, Rj⟩. The goal is to reproduce this three point function – which at once
captures all structure constants for any tensor structures – from the hexagon formalism.

The hexagon formalism has already been developed and tested thoroughly for spinless

8More generally, by superconformal symmetry, we can also fix the R-symmetry polarizations Yi to
point at fixed directions in SO(6). The dependence on them is completely fixed by the Ward identities. In
practice we use the twisted translated polarizations of [66]. The R-symmetry factors will not be important
in our discussion and we mostly omit them.
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Figure 6.8: Each closed spin chain operator is split into two open chain operators. We sum over
all the ways its excitations can end up in either one of the chains. Gluing the hexagons together
amounts to integrating over all possible mirror states.

operators to very high perturbative orders (as well as for spinning correlators without
non-trivial tensor structures) so the main novelty here is how to deal with the various
spinor polarizations leading to the various terms summed in (6.24). Before presenting the
relevant expressions with these spinor boundary conditions accounted for let us recall that
the hexagon formalism entails two main components as illustrated in figure 6.8:

• One is a sum over partitions of physical rapidities for each external operator. When
we cut the three point function pair of pants into two hexagons the excitations on
each operator can end up on either hexagon so we must sum over ways of partitioning
such excitations. These sums are often referred to as the asymptotic sums.

• The other are integrals over mirror rapidities along the three seams of the pair of
pants. When we glue back the hexagons into a pair of pants we must sum over all
possible quantum states along each edge where we glue. These mirror integrals are
often referred to as wrapping effects.

In this chapter we completely ignore the second effect. Except for section E.6.1.

There are two simple reasons for doing so. The first is that wrapping corrections are
delayed in perturbation theory. At tree level and one loop they do not show up even for
the smallest twist two external operators for instance and for larger twist operators they
are delayed even more in perturbation theory. So we better clean up the asymptotic part
first – where all the subtleties related to the spinors already shows up – before addressing
these finite size mirror corrections. The second reason is that even at loop level, sometimes
we can drop the wrapping corrections altogether if the distances travelled by the mirror
particles are very large. This happens for large operators with lots of R-charge but also
for operators of small R-charge and very large spin. The intuition is that when the spin
is very large the centripetal force effectively opens up the operator making it effectively
very large; in this case sometimes these finite size corrections can be ignored. We thus
suspect this to be the case for the case of three twist two operators with very large spin
and generic polarizations. Evaluating this kind of correlator should beautifully connect to
the remarkable Wilson loop dualities [4,143,162]. So if our goal is to eventually prove these
dualities from integrability perhaps we can ignore wrapping for now.

With wrapping out of the window, we can then present our main formula for the
spinning three point function. It is a long formula but fortunately most ingredients are
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Figure 6.9: To obtain a correlator with all excitations on top we perform one crossing transforma-
tion in the left (⟳) and another in the right (⟲). These monodromies will change the Zhukovsky
variables as well as the indices of the excitations.

self-explanatory and have appeared before in several spinless studies. It reads

C(J1, J2, J3) = N (u)N (v)N (w)︸ ︷︷ ︸
normalizations

×
∑

a∪ ā=u
b∪ b̄=v
c∪ c̄=w

ωℓ13(a, ā)ωℓ12(b, b̄)ωℓ23(c, c̄)︸ ︷︷ ︸
splitting factors

×H(a, b, c)×H(ā, c̄, b̄)︸ ︷︷ ︸
hexagons

(6.25)
where the normalization and splitting factors are given by

N (u)2 =

J∏
i=1

µ(ui)

J∏
i ̸=j

S(ui, uj) det (∂uiϕj)

, ωℓ(a, ā) =
∏

uj∈ā

(−eip(uj)ℓ)
∏

ui∈a
i>j

S(ui, uj) . (6.26)

These are the same factors arising already in [66]; the notation and physical meaning of
these factors is the same as there.

The most important objects in (6.25) – and where important novelty lies – are the
hexagons form factors H. We can relate either of them to a purely creation amplitude with
all excitations in the top by applying a sequence of crossing transformations, see figure 6.9.
This leads to a representation of the hexagon as

H(a, b, c) = (−1) (a+b+c)(a+b+c−1)
2

∏

ui∈a
vj∈b
wk∈c

L1,α1 . . . L2,α2,j
L3,α3,k

R1,β1,iR2,β2,jR3,β3,k×

× ⟨h|Dα2,jβ2,j(v⟳j )Dα1,iβ1,i(ui)Dα3,kβ3,k(w⟲
k )⟩ (6.27)

where the minus factor in front is the grading associated with the fermionic nature of the
excitations.

This creation amplitude describes the scattering of three sets of fermions, labelled by
their rapidities u, v and w in the N = 4 SYM spin-chain. Each set starts polarized in a
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fixed direction labeled by their correspondent left-hand spinors. The particles then scatter
in all possible pairings according to Beisert’s PSU(2|2) vertex, with the final state being
the projection into fermions of definite polarization defined by its right-hand spinors. The
object that accounts for all these scatterings is the hexagon partition function (Z), defined
as

H(ua, vb, wc) = (−1) (a+b+c)(a+b+c−1)
2 Za,b,c . (6.28)

The particles entering this partition function are not on equal footing, since we used
crossing transformations for the rapidities v and w. The first effect of these transformations
is the exchange their left and right PSU(2|2) indices

Dαβ ⟲−→ −Dβα and Dαβ ⟳−→ −Dβα , (6.29)

this will swap incoming and outgoing indices for particles v and w. More precisely, it will
set L1, R2, R3 to be the incoming boundary conditions and R1, L2, L3 to be the outgoing
boundary conditions for the scattering, see figure 6.1a.

Another implication of crossing is the introduction of crossed parameters in the S-
matrix elements. This amounts to analytically continue these matrix elements when con-
sidering the crossed rapidities v and w. The effects of these analytical continuations are
simple: we must pick monodromies around the branch point of the Zhukovsky variables
(6.5) and mind the non-trivial factors introduced by the BES dressing phase, see appendix
E.3.

In the next sections we use the properties of the hexagon partition function (6.7)
discussed in section 6.2 to generate spinning three point functions data and compare it
with the perturbative results such as (6.1).

6.3.2 Perturbative checks

As derived in (6.19) the tree-level hexagon partition function can be written as a recursion
relation. The minus signs introduced by gradding slightly change the expression (6.28),
but the physics behind it is still the same. One can fully determine the tree-level partition
function by considering its decoupling poles and its behavior at infinity.

Both the recursion relation and its sum over partitions can be easily evaluated using for
example Mathematica. Replacing the u, v and w by the Bethe roots for twist-2 operators
with spins J1 = 2, J2 = 4 and J3 = 6 we reproduce all the blue numbers in (6.1).

One nice aspect of the integrability formalism is that, even though the amount of terms
in the recursion relation and in the sum over partitions grows exponentially with the spins
of the operators they do not grow with the twist of these operators.

Therefore, the recursion relation above is a powerful tool to explore the corner of low
spin and large twist three point functions. For example, the data for twist-10 operators
with spins J1 = 2, J2 = 4 and J3 = 6 can be easily evaluated. In particular for equal bridge
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lengths (ℓij = 5) and Bethe roots

u = {−0.0718891, 0.0718891} ,
v = {0.164766, 0.327921, 0.844103, 1.31232} ,
w = {0.296976, 0.491824, 0.756996, 1.13713, 2.62857, 3.91077} ,

it reads

C(2, 4, 6) = ⟨11⟩⟨13⟩⟨22⟩3⟨23⟩⟨31⟩⟨32⟩⟨33⟩4 (−0.0000297465) + ⟨12⟩2⟨21⟩2⟨22⟩2⟨33⟩6
(
1.9812× 10−6

)
+

+ ⟨11⟩⟨13⟩⟨23⟩4⟨31⟩⟨32⟩4⟨33⟩ (0.00491993) + ⟨13⟩2⟨22⟩⟨23⟩3⟨31⟩2⟨32⟩3⟨33⟩ (−0.00216325)+

+ ⟨12⟩⟨13⟩⟨21⟩⟨23⟩3⟨31⟩⟨32⟩3⟨33⟩2 (0.00999526) + ⟨13⟩2⟨22⟩4⟨31⟩2⟨33⟩4
(
1.1861× 10−6

)
+

+ ⟨12⟩⟨13⟩⟨21⟩⟨22⟩⟨23⟩2⟨31⟩⟨32⟩2⟨33⟩3 (−0.00073364) + ⟨11⟩2⟨22⟩4⟨33⟩6
(
1.30467× 10−7

)
+

+ ⟨11⟩⟨12⟩⟨21⟩⟨22⟩2⟨23⟩⟨32⟩⟨33⟩5 (−0.000071986) + ⟨11⟩2⟨23⟩4⟨32⟩4⟨33⟩2 (−0.00144007)+

+ ⟨13⟩2⟨22⟩3⟨23⟩⟨31⟩2⟨32⟩⟨33⟩3 (−0.000092995) + ⟨11⟩2⟨22⟩2⟨23⟩2⟨32⟩2⟨33⟩4 (0.000522219)+

+ ⟨12⟩2⟨21⟩2⟨22⟩⟨23⟩⟨32⟩⟨33⟩5 (0.0000727415) + ⟨11⟩2⟨22⟩⟨23⟩3⟨32⟩3⟨33⟩3 (0.000908203)+

+ ⟨12⟩⟨13⟩⟨21⟩⟨22⟩3⟨31⟩⟨33⟩5
(
−2.52289× 10−6

)
+ ⟨11⟩⟨12⟩⟨21⟩⟨22⟩3⟨33⟩6

(
−2.11167× 10−6

)
+

+ ⟨11⟩⟨13⟩⟨22⟩4⟨31⟩⟨33⟩5
(
−1.31656× 10−6

)
+ ⟨11⟩⟨13⟩⟨22⟩⟨23⟩3⟨31⟩⟨32⟩3⟨33⟩2 (−0.00342357)+

+ ⟨13⟩2⟨23⟩4⟨31⟩2⟨32⟩4 (0.000683143) + ⟨11⟩⟨12⟩⟨21⟩⟨22⟩⟨23⟩2⟨32⟩2⟨33⟩4 (−0.00146526)+

+ ⟨12⟩⟨13⟩⟨21⟩⟨22⟩2⟨23⟩⟨31⟩⟨32⟩⟨33⟩4 (0.000215642) + ⟨12⟩2⟨21⟩2⟨23⟩2⟨32⟩2⟨33⟩4 (0.00255232)+

+ ⟨13⟩2⟨22⟩2⟨23⟩2⟨31⟩2⟨32⟩2⟨33⟩2 (0.00212987) + ⟨11⟩⟨12⟩⟨21⟩⟨23⟩3⟨32⟩3⟨33⟩3 (0.000540332)+

+ ⟨11⟩⟨13⟩⟨22⟩2⟨23⟩2⟨31⟩⟨32⟩2⟨33⟩3 (−0.00103067) + ⟨11⟩2⟨22⟩3⟨23⟩⟨32⟩⟨33⟩5
(
9.51785× 10−6

)
+

+
(
⟨11⟩2⟨23⟩4⟨32⟩4⟨33⟩2 − ⟨11⟩⟨13⟩⟨23⟩4⟨31⟩⟨32⟩4⟨33⟩

)
(0.0020167)+

+
(
⟨13⟩2⟨22⟩4⟨31⟩2⟨33⟩4 − ⟨13⟩2⟨22⟩3⟨23⟩⟨31⟩2⟨32⟩⟨33⟩3

) (
4.14448× 10−6

)
+

+
(
⟨12⟩2⟨21⟩2⟨22⟩2⟨33⟩6 − ⟨12⟩2⟨21⟩2⟨22⟩⟨23⟩⟨32⟩⟨33⟩5

) (
6.5287× 10−6

)
+ . . . , (6.30)

Beyond tree-level, the hexagon partition function is not a simple rational function of
the rapidities. Lack of control over the singularities in other Riemann sheets prevent us
from writing a recursion relation akin to (6.19) at loop order. We are forced to evaluate
the scattering of the hexagon form factor via the explicit form of the hexagon partition
function (6.7).

For general boundary conditions the one-loop evaluation is computationally demanding.
One of the problems is that structure constants are given by linear combinations of multiple
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hexagons, which can be made explicit by combining (6.24) and (6.25) to write

∑

ℓ1,ℓ2,ℓ3

CJ1,J2,J3
ℓ1,ℓ2,ℓ3

⟨1, 1⟩J1−ℓ2−ℓ3⟨2, 2⟩J2−ℓ1−ℓ3⟨3, 3⟩J3−ℓ1−ℓ2
⟨2, 3⟩−ℓ1⟨3, 2⟩−ℓ1⟨1, 3⟩−ℓ2⟨3, 1⟩−ℓ2⟨1, 2⟩−ℓ3⟨2, 1⟩−ℓ3 =

= N (u)N (v)N (w)×
∑

a∪ ā=u
b∪ b̄=v
c∪ c̄=w

ωℓ13(a, ā)ωℓ12(b, b̄)ωℓ23(c, c̄)×H(a, b, c)×H(ā, c̄, b̄) . (6.31)

When we fix the external polarizations Li and Ri we must evaluate all the scaterrings,
sum over partitions and in the end we obtain that a single glued hexagon is given by a
combination of structure constants CJ1,J2,J3

ℓ1,ℓ2,ℓ3
. By considering several polarizations one can

invert these relations obtaining single structure constants in terms of combinations of glued
hexagons, see appendix E.5.

For simplicity we will consider a particular polarization where the computation of a
single hexagon gives us a simple combination of structure constants. This is the configura-
tion where all the operators have the same polarizations (i.e all the excitations are chosen
to be the longitudinal modes D12̇). In terms of spinors, these means L1 = L2 = L3 and
R1 = R2 = R3, making the inner products of (6.25) equal. The tensor structure factors
out and we get that

⟨1, 1⟩J1+J2+J3
∑

ℓ1,ℓ2,ℓ3

CJ1,J2,J3
ℓ1,ℓ2,ℓ3

(6.32)

is given by a single glued hexagon where all the excitations have the same polarization.
Note that, this is not an abelian configuration, once we cross the rapidities v and w to the
top operator we end up with distinct excitations that do not scatter trivially.

For twist-2 operators we were able to evaluate this sum for arbitrary values of spins in
a close formula

∑

ℓ1,ℓ2,ℓ3

CJ1,J2,J3
ℓ1,ℓ2,ℓ3

=
Γ (1 + J1 + J2) Γ (1 + J1 + J3) Γ (1 + J2 + J3)

Γ (1 + J1) Γ (1 + J2) Γ (1 + J3)
√

Γ (1 + 2J1) Γ (1 + 2J2) Γ (1 + 2J3)
×

× 4F3

[−J1, − J2, − J3, − 1− J1 − J2 − J3
−J1 − J2, − J1 − J3, − J2 − J3

; 1

]
(6.33)

By computing the equal polarizations hexagon for twist-2 and spin J1 = 2, J2 = 4 and
J3 = 6 we recovered this tree-level value from the hexagon partition function (6.7) and also
obtained the one-loop contribution

∑

ℓ1,ℓ2,ℓ3

C2,4,6
ℓ1,ℓ2,ℓ3

=
75√
55
− 59077

4620
√
55
g2 + . . . . (6.34)

which is reproduces the sum over all structure constants (all orange and cyan terms)
appearing in the three point function (6.1).
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Figure 6.10: The first operator is orthogonal to the other two operators, once we perform crossing
we end up with identical excitations in the physical edge, which scatter trivially. This configura-
tion corresponds to the abelian configuration A1. By considering the other configurations where
the operators two and three are the ones orthogonal to the other operators we get the abelian
structures A2 and A3, respectively.

6.3.3 Abelian

As advertised in 6.2.4 there some polarizations which completely trivialize the scattering
of the excitations. Since they are given by the abelian part of the hexagon partition
function (6.7), we denote them by abelian components. They are associated with three-
point functions where one operator has orthogonal polarization to the other two, see figure
(6.10). By crossing these two operators we are left with three sets of excitations with
identical polarizations in the same physical edge, which in turn scatter trivially.

One of such configurations can be obtained by considering R1 = L2 = L3 and L1 =
R2 = R3, which sets the inner products of (6.24) to zero ⟨12⟩ = ⟨13⟩ = 0. Moreover,
⟨23⟩⟨32⟩ = ⟨22⟩⟨33⟩, so the tensor structure factors out, resulting that the three point
function

⟨1, 1⟩J1⟨2, 2⟩J2⟨3, 3⟩J3
∑

ℓ1,ℓ2,ℓ3

CJ1,J2,J3
ℓ1,0,0

(6.35)

is given by an abelian hexagon. By permutation of the indices 1, 2, 3 we have the other
components

A1 =
∑

ℓ1

CJ1,J2,J3
ℓ1,0,0

, A2 =
∑

ℓ2

CJ1,J2,J3
0,ℓ2,0

, A3 =
∑

ℓ3

CJ1,J2,J3
0,0,ℓ3

(6.36)

which are structure constants given by hexagon form factors with purely abelian factors.

The scattering with these boundary conditions forces a trivial matrix part in (6.25)
and yields the totally factorized contribution for the hexagon partition function shown in
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(6.21) and reviewed here

H(ua, vb, wc) = ⟨1, 1⟩a⟨2, 2⟩b⟨3, 3⟩c × (−1)b+c
∏

vi∈b

∏

uj∈a

∏

wk∈c

h(vi, uj)h(uj, wk)h(vi, wk)×

×
∏

vl∈b
l<i

∏

um∈a
m<j

∏

wn∈c
n<k

h(vl, vi)h(um, uj)h(wn, wk) , (6.37)

where the h′s above must be crossed according with their arguments, following (6.6).

These abelian form factors can be easily evaluated at any order in perturbation theory,
in particular at one-loop and for twist-2 operators with spins J1 = 2, J2 = 4 and J3 = 6
their sum over partitions reproduce the one-loop structure constants (colored in cyan) in
expression (6.1).

It turns out that in the abelian case the sum over partitions can be performed ana-
lytically. The result (6.42) is a determinant formula for the three point function in the
asymptotic regime valid for operators with arbitrary twist, which dependence enters only
implicitly through the bridge lengths and the Bethe roots. This vastly reduces the compu-
tational effort required to evaluate the structure constants, and opens avenues to explore
via integrability the large spin limit of the three point functions.

In this section we go over the result and derivation whose details and notation can
be found in appendix E.6. The result for the case of one spinning operator was obtained
in [163]. The key observation was that the sum over partitions of products of hexagon
dynamical factors,

H(uā, uā) ≡
∏

i<j∈ā

h(ui, uj)h(uj, ui),

could be interpreted as the expansion of a Fredholm pfaffian,

∑

ā⊂u

(−1)|ā|w′(uā)H(uā, uā) = pf(I −K)2J1×2J1 . (6.38)

We define the matrix K in appendix E.6. Crucial for our purposes is that this holds for
any factorized function of the rapidities w′(uā) =

∏
i∈āw

′(ui).

The asymptotic structure constant for three spinning operators (6.31) can be rewritten
in the abelian case as9

A1(J1, J2, J3) =⟨11⟩J1⟨22⟩J2⟨33⟩J3N (J1)N (J2)N (J3)h(û, û)h(v̂, v̂)h(ŵ, ŵ) (6.39)

×
∑

a∪ā⊂u
b∪b̄⊂v
c∪c̄⊂w

(−1)|ā|+|b̄|+|c̄|euāe
v
b̄e
w
c̄ H(uā, uā)H(vb̄, vb̄)H(wc̄, wc̄)

× h(v⟳b , ua)h(ua, w⟲
c )h(w

⟳
c̄ , uā, )h(uā, v

⟲
b̄
)h(v⟳b , w

⟲
c )h(w

⟳
c̄ , v

⟲
b̄
),

9For the rest of this section we will be explicit about the crossing kinematics ⟲, ⟳.
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with h(û, û) ≡∏i<j h(ui, uj),

euā ≡
∏

i∈ā

eiP (ui)ℓ13

h(û, ui)
, h(û, ui) ≡

∏

j ̸=i

h(uj, ui), h(v⟳b , ua) ≡
∏

i∈a
j∈b

h(v⟳j , ui),

and similar for the other terms. The red terms depend explicitly on both sets a, ā. However,
by completing the factors h(v⟳b , ua)h(ua, w

⟲
c ) to h(v⟳b , û)h(û, w

⟲
c ) and using the unitarity

relation h(x⟳, y)h(y, x⟲) = 1, it can be rewritten as

red = h(v⟳b , û)h(û, w
⟲
c )
∑

a∪ā⊂u

(−1)|ā|euāH(uā, uā)
h(w⟳

c̄ , uā)h(uā, v
⟲
b̄
)

h(v⟳b , uā)h(uā, w
⟲
c )

= h(v⟳b , û)h(û, w
⟲
c )
∑

ā⊂u

(−1)|ā|ω′(uā)H(uā, uā),

with ω′(uā) = euā/ (h(v
⟳, uā)h(uā, w

⟲)), for which the pfaffian identity (6.38) applies.

Physically, from the point of view of O1, the effect of the orthogonal operators O2, O3

is to create an effective background redefining the propagation factor euā but leaving the
interaction term H(uā, uā) untouched. As we will see next, the same is true from the point
of view of O2, O3 provided we interpret it as a larger operator with J2 + J3 excitations.

Plugging this result in (6.39) leaves us with the blue terms,

blue =
∑

b∪b̄⊂v
c∪c̄⊂w

(−1)|b̄|+|c̄|evb̄e
w
c̄ H(vb̄, vb̄)H(wc̄, wc̄)h(v

⟳
b , û)h(û, w

⟲
c )h(v

⟳
b , w

⟲
c )h(w

⟳
c̄ , v

⟲
b̄
). (6.40)

Once again completing to the overall factors and using the unitarity identity, we can re-
duce10 the summand to functions of b̄, c̄ only,

blue = h(v̂⟳, ŵ⟲)h(v̂⟳, û)h(û, ŵ⟲)
∑

b∪b̄⊂v
c∪c̄⊂w

(−1)|b̄|+|c̄|ω′(v⟳
b̄
)ω′(wc̄)H(v⟳

b̄
, v⟳
b̄
)H(wc̄, wc̄)H(v⟳

b̄
, wc̄),

(6.41)
with ω′(v⟳

b̄
), ω′(wc̄) defined in appendix (E.6). To conclude, one must reinterpret the double

sum over partition as a single sum over the partition of the set z = v⟳ ∪w. One can then
write

blue = h(v̂⟳, ŵ⟲)h(v̂⟳, û)h(û, ŵ⟲)
∑

d∪d̄⊂z

(−1)|d̄|ω′(zd̄)H(zd̄, zd̄)

which can be cast as a pfaffian through (6.38).

The final result is

A1(J1, J2, J3) = ⟨11⟩J1⟨22⟩J2⟨33⟩J3h(v̂⟳, û)h(û, ŵ⟲)h(v̂⟳, ŵ⟲)h(v̂, v̂)h(ŵ, ŵ)h(û, û)×
N (J1)N (J2)N (J3)× pf (I−K)2J1×2J1

pf (I−K′)2(J2+J3)×2(J2+J3)
, (6.42)

10See appendix (E.6) for details.
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with the matrices K and K′ defined in appendix (E.6).

As discussed above, these formulas express the abelian three point functions at finite
coupling in the asymptotic regime, that is, ignoring finite volume corrections coming from
excitations wrapping around the seams of the pair of pants. These mirror corrections can
be properly ignored at weak coupling when we consider three point functions of large twist
operators so that all bridge numbers ℓij are large. Due to the Boltzmann suppression of
propagation over large distances ℓij, mirror particles only start to contribute at (ℓij + 1)
loops.

For example, when we consider operators of classical twist τ1 = τ2 = τ3 = 6 and bridge
lengths ℓij = 3, equation (6.42) provides exact formulas up to three loops. As an example,
for spins J1 = 6, J2 = 4, J3 = 2 and bethe roots (at tree-level)

u = {−3.34538,−2.2266,−1.45396,−0.894775,−0.500817,−0.22559} ,
v = {−2.18949,−1.24366,−0.66142, 0.163878} ,
w = {−1.03826, 1.03826} ,

we obtain11,

Cabelian(6, 4, 2) =0.000087168875373411949253081221196521450200295689674319409

−0.0010941423754946036043705421214308022132833891655992081 g2

+0.0024639150636611583478721259566761789123679977153044975 g4

+(0.15149466528731340172164338220385987881409857001459463

+0.0099644970255952430277488412973707304997053789074945953× ζ(3))g6.

We hope that the novel data generated through this result will be useful in future integra-
bility explorations.

6.4 Discussion

This chapter reduces the computation of asymptotic three point functions of three spinning
operators in N = 4 SYM to the statistical mechanical problem of computing the partition
function of a system of the Hubbard type on a Kagome-like lattice whose boundary condi-
tions are determined by the polarizations and quantum numbers of the spinning operators,
equations (6.7, 6.25, 6.28). The analytic structure of this partition function is inherited
from the vertex, Beisert’s SU(2|2) extended S-matrix [59], and therefore is extremely rich.
Its singularities are determined by the spectrum of the dual world-sheet theory and have
clear physical interpretations: particles decoupling, annihilating, fusing into bound states,
and others.

In the limit of weak coupling the vertex reduces to the rational type and the partition
function can be solved. We do so in this chapter by exploiting the analyticity of the partition

11We keep the ζ(3) from the dressing phase explicit.
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function. After stripping out overall factors, the partition function in the rational limit is
a meromorphic function of the rapidities with no bound-state poles. It can be then solved
recursively by concatenating the various decoupling poles in each of the rapidities. This is
the result (6.19). From the point of view of the gauge theory, it provides an efficient way
of generating tree-level structure constant data for spinning operators of arbitrary twist.

It would be fascinating to solve this partition function away from weak coupling. From
the point of view of analyticity, we now have functions on a multi-sheeted Riemann surface
with multiple additional fusion poles whose residues should be related to smaller partition
functions involving bound-state lines. From the statistical mechanics viewpoint, similar
integrable systems were solved in a more traditional fashion. For example, in [164] Baxter
solves the thermodynamic partition function of a 8-vertex model defined on the faces of
a Kagome lattice by matching it to the computation in the standard square lattice. His
construction is the same behind the integrability of the fishnet model by Zamolodchikov
[165]. Exploring solid-on-solids dualities of this type might lead to a direct solution in
terms of the transfer-matrices and functional equations.

Once the statistical mechanics problem is solved, one must still resolve the sum over
partitions (6.25), the complexity of which grows rapidly at large but finite spin12. Turns out
this problem can be solved, at any value of the coupling, for certain boundary conditions
of the partition function. When two operators are parallel and orthogonal to the third
the hexagon becomes a simple abelian factor, the sum over partitions of which can be
cast in pfaffian form. This is the result (6.42). It provides an efficient way of generating
some high-loop data for structure constants of high twist spinning operators.13 Note: for
each generic three spinning operators, the pfaffian formulas provide three independent
structure constants, one for each choice of orthogonal operator. The three point function
must therefore interpolate between these three highly non-trivial pfaffian formulas involving
matrices of different dimensionality as the polarization vectors vary. It would be great
to identify non-trivial objects linear in the tensors structures (6.24) that performs such
interpolation, as they might be relevant for describing the full three point function of
spinning operators in N = 4 SYM.

At large spin the asymptotic structure constant should provide the exact three point
function of the gauge theory, finite size corrections being power-law suppressed in spin.
In [4] we considered the null-hexagon limit of six point functions of 20′ operators and its
respective snowflake OPE decomposition in terms of three large spin operators to derive
a map between the expectation value of null hexagonal Wilson loops (WL) and the large
spin limit of the three point functions considered in this chapter. Combining [4] and this
chapter, we can write a sharp formula expressing the expectation value of the null WL in

12In the strict large spin limit we hope to have alternative techniques, see discussion below.
13Some corners of the cross ratios space parametrized by the null snowflake OPE limit of the 6-pt

function should be controlled by the abelian structure constants. Having complete control over those,
we could therefore generalize [163] to the higher point case and provide valuable boundary data for an
eventual bootstrap approach to fix these correlators [80,166,167].
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Figure 6.11: Top arrow: this chapter, decomposition of the spinning three point functions into
polarized hexagons. Left arrow: large spin three-point functions duality with null Wilson loops
[144]. Bottom arrow: decomposition of null Wilson loops into integrable pentagons [71]. Right
arrow: future work, how the integrable hexagons and integrable pentagons are related in the large
spin limit.

any geometrical configuration to the hexagons expansion:

W(U1, U2, U3) = lim
Ji,ℓi→∞

NλNuNvNw(
Cℓ1,ℓ2,ℓ3
J1,J2,J3

)
tree

×
3∏

i=1

(
Jiℓi

2ℓi+1ℓi−1

)− γi
2

×
∑

a∪ ā=u
b∪ b̄=v
c∪ c̄=w

ωℓ13ωℓ12ωℓ23×Ha,b,cHā,c̄,b̄

(6.43)
where the ratios of ℓi and Ji are kept fixed and determined in terms of the null hexagon cross
ratios Ui through (10) of [4]; the boundary conditions of the hexagon partition function H
are fixed in terms of Ui through (37) of [4]. Above, γi are the anomalous dimensions of
operator Oi, while Nλ is a spin independent normalization constant to be determined.

Null WL can be decomposed as an expansion around the collinear limit by the Pen-
tagon OPE, higher energy excitations of the GKP vacuum controlling the geometric ex-
pansion [71]. Equation (6.43) can therefore be understood as a map between hexagons and
pentagons, see figure 6.11. Since the adjoint Wilson loop W is the square of the fundamen-
tal Wilson loop in the large N limit and since the latter is obtained gluing two pentagons
P together we can cast the sharp equation (6.43) as the simplified slogan

(∑
P × P

)2
= lim

large spin

∑
H×H . (6.44)

Explicitly uncovering this relation is a problem for the future which could lead to a more
universal integrability framework for N = 4 SYM. More generally, one should ask if (6.43)
could lead to an alternative effective way of computing WL physics and their dual gluon
scattering amplitudes [102, 154]. The answer to this question depends on understanding
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how to simplify the large spin limit of the computations discussed in this chapter. The
thermodynamic limit of the hexagon partition function is therefore of special importance.
The matrix-models inspired methods of [91,168,169] should also be useful.

It is also possible that instead of simplifying the building blocks arising in the summand
in (6.43) we should discard all these partition functions and look for new tricks to compute
directly the full sum over partitions. That would be bitter sweet, and naturally motivates
the next chapter.14

14Even if that turns out to be the case, these (sums over) hexagon partition functions will always be
useful to produce important data to test such scenario specially in perturbation theory.
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Chapter 7

Structure Constants in N = 4 SYM and
Separation of Variables

7.1 Introduction

Solving planar N = 4 SYM in a satisfactory way would mean efficiently computing both
the spectrum as well as higher point correlation functions – starting with three points – at
any value of the ’t Hooft coupling.

A formalism for computing three point functions by means of integrability exists. It is
the so called hexagon approach [66]. It is conjectured to hold for any coupling indeed but
it is not easy to use, at least not by the remarkable standards of the spectrum quantum
spectral curve approach [85,86]. With hexagons one needs to go over infinitely many sums
and integrals to produce such correlators. At weak coupling perturbation theory these
sums and integrals truncate [69,170,171] and we can use hexagons to produce a wealth of
data to test any putative new framework. We will do it all the time below.

In this chapter we suggest a new approach for correlation functions in N = 4 SYM
based on the Baxter Q-functions. The final representations are of so-called separation of
variables (SoV) type where these Baxter functions are integrated against simple universal
measures to produce the structure constants.

Q-functions play the central role in the quantum spectral curve, the top of the line tech
for computing the dimension of any single trace operator in this conformal gauge theory so
it is only natural to look for a similar central role for these objects in the context of other
physical observables such as the OPE structure constants.

In the most conventional integrable spin chains, Q-functions are polynomials whose
roots are the so called Bethe roots vk. In SYM these polynomials are present at leading
order at weak coupling but at higher coupling they get dressed by quantum non-polynomial
factors. This is expected; as we crank up the coupling we are no longer dealing with a spin
chain or with a classical string but something in between and so these Baxter polynomials
get naturally deformed. For the so-called SL(2) sector of the theory which includes all
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Figure 7.1: Three point functions of operators with sizes L1, L2 and L3. At tree level there are
ℓij = (Li + Lj − Lk)/2 propagators between operators i and j; these integers ℓij are called the
bridge lengths. We will usually use L ≡ L1 for the length of the non-BPS operator and ℓ ≡ ℓ12
for its so-called left adjacent bridge (the right adjacent bridge will have length L− ℓ); the bottom
bridge we will often denote as ℓB ≡ ℓ23.

operators of the schematic form Tr(DJZL) + permutations we have

Q(u) ≡
(

J∏

k=1

u− vk√
x+k x

−
k

)
exp

(
g2

2
Q+

1H
+
1 (u) +

g2

2
Q−

1H
−
1 (u) +O(g4)

)
(7.1)

where the charges Q±
1 are simple functions of the Zhukowsky variables x±k = x±(vk) and

H±
k are harmonic functions, see appendix F.1.1.

An operator is given by a Q-function (7.1). What we are after is thus a functional
eating these functions and spitting out a number, the structure constant.

For the most part we will consider a single non-BPS operator and two BPS operators.
The geometry of the three point function depends on the size of all these operators or –
equivalently – on the so-called bridges that connect them as reviewed in figure 7.1.

The proposal is that (the square of) the structure constant is given by a ratio of SoV
like scalar products

C2
•◦◦ =

(J!)2

(2J)!
⟨Q,1⟩2ℓ
⟨Q,Q⟩L

(7.2)
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Here J = J + g2Q+
1 and the scalar product

⟨Q1,Q2⟩ℓ ≡
(
J1 + J2 + ℓ− 1

ℓ− 1

)∫
dµℓ−1

ℓ−1∏

i=1

Q1(ui)Q2(ui) (7.3)

with a nice factorized measure

dµℓ =
ℓ∏

i=1

dui µ1(ui)
ℓ−1∏

i=1

ℓ∏

j=i+1

µ2(ui, uj) (7.4)

which is constructed out of the building blocks (using, su, cu, tu for sinh(πu), cosh(πu), tanh(πu))

µ1(u)=
π

2c2u

(
1 + g2π2

(
3t2u − 1

)
+ ...

)
(7.5)

µ2(u, v)=
π(u− v)su−v

cucv

(
1+g2π2

(
(tu + tv)

2− 4
3

)
+...

)
(7.6)

valid to leading order (LO) and next-to-leading order (NLO); the dots in the above ex-
pressions are NNLO corrections which start at O(g4). The structure of the result might be
corrected at subleading orders as explained below. The contours in (7.2) are the real axis
for all ui.

We can prove (7.2) by exhaustion by comparing it with hexagon produced data for
numerous L’s and ℓ’s and for different operators corresponding to different Q-functions.
We did it; (7.2) is correct. We can also establish it more honestly as discussed in the next
section.

Representations like (7.2) are the main results of this chapter. In section 7.3 we present
an SU(2) counterpart of this representation in (7.19); we managed to fully test it to LO,
NLO and NNLO. We compare these two rank one sectors in section 7.4. In the discus-
sion section 7.5 we discuss further generalizations such as multiple spinning operators and
speculate on all loop structures we expect to find. Many appendices complement the main
text.

7.2 SL(2)

At leading order, that is at tree level, correlation functions are given by Wick contractions.
Each operator can be thought of as a spin chain and these Wick contractions are thus given
by spin chain scalar products [172–174]. For the SL(2) sector such scalar products can be
cast as SoV integrals [88] – see also [91] in the N = 4 context. Once we properly normalize
all these scalar products as in [174] to extract the structure constant we precisely end up
with (7.2) for g = 0.

What we find remarkable is that this classical g = 0 expression seems to have a nice
quantum lift as anticipated in the introduction.

Let us first discuss the simplest possible case where a twist two operator (L = 2) splits
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evenly into two BPS operators (ℓ = 1) so that the proposal (7.2) simply reads

C2
•◦◦ =

J!2

(2J+ 1)!

(∫
duµ1(u)Q(u)2

)−1

. (7.7)

We derived the single-particle measure µ1 as well as the quantum deformed Baxter functions
Q in two ways. Both are based on looking for a measure such that, for two different twist-
two states (i.e. with different spins J and J ′), we have an orthogonality relation

∫
µ1(u)QJ(u)QJ ′(u) ∝ δJJ ′ , (7.8)

a powerful relation which has been extensively exploited by [93–95] in numerous SoV
studies, most of which for rational spin chains or for the fishnet reduction [175] of SYM,
see most notably [96].

The first uses the fact that the Bethe roots vk of twist two operators are given by
the zeros of Hahn polynomials, a fact that persists at NLO. We have that

∏
k(u − vk) is

proportional to the Hahn polynomial [176–178] pJ(u|a, b, b, a) where a − b = 2i
√
2g and

a+b = 1+4g2H1(J). Hahn polynomials are orthogonal with a simple measure as reviewed
in appendix F.2.1 which allows us to derive (7.5) up to some simple tuning due to the
mild J dependence in the polynomial parameters a, b, see appendix for details. It is the J
dependence that renders the derivation non-trivial and which is responsible for the needed
modification of the Baxter functions in (7.1).

The second derivation follows [94] closely (the novelty being the extension to g2 correc-
tions) and makes use of the Baxter equation [179]

B ◦Q = T (u)Q(u) (7.9)

where Q(u) are the Baxter polynomials (i.e. just the parentheses in (7.1)) and the Baxter
operator

B ≡ (x+)L
(
1− g2

x−(u)
(Q+

1 − iQ−
1 )
)
ei∂u + c.c. (7.10)

Note that at g = 0 we have x+ = u+ i/2 and most importantly, B becomes a simple linear
operator but as we turn on g corrections this is no longer true since the charges Q±

1 depend
on Q. Consider first g = 0 and L = 2 so that the transfer matrix is T (u) = 2u2 + cJ .
Multiplying (7.9) by the sought after measure µ1 and by another Baxter polynomial with
a different spin, subtracting that to the same thing with the spin swapped and integrating
yields

(cJ − cJ ′)

∫
µ1QJQJ ′ =

∫
µ1

(
QJ ′(B ◦QJ)− (B ◦QJ ′)QJ

)
. (7.11)

If we manage to make B self-adjoint we will thus have the required orthogonality. An
i-periodic µ1 would do the job since under shifts of contour the two terms of Baxter would
swap and cancel in the right hand side. In detail, QJ ′(u)(u ± i

2
)2QJ(u ± i)µ1(u) becomes

QJ ′(u∓ i)(u∓ i
2
)2QJ(u)µ1(u∓ i) under a shift of contour by ∓i leading to an interchange

(and thus cancellation) of the two terms in (7.11) once we use that the measure is periodic.
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To make this manipulation kosher we need to make sure no singularities are picked when
deforming the contour and to make the measure acceptable we need to make sure it decays
fast enough at infinity so that it can be integrated against polynomials of arbitrary degree.
Both this problems are solved at once with

µ1(u) =
π/2

cosh2(πu)
+O(g2) . (7.12)

The function decays faster than any polynomial and the double poles at ±i/2 precisely
cancel the double zeroes in the potential terms (u ∓ i/2)L when L = 2 so that they lead
to no extra contribution when deforming the contours. A periodic function without these
double poles would not decay fast enough and a function with more than double poles
would lead to extra contributions when deforming the contours; (7.12) is the sweet spot.

Turning on g corrections is not complicated. The redefinition (7.1) brings the Baxter
operator to a linear operator again but introduces some further poles at ±i/2 in the (no
longer polynomial) Baxter Q functions so that the measure now needs some extra poles to
cancel the contribution of these when deforming the contour. This explains (7.1) as well
as (7.5); more details in appendix F.2.2.

Having derived the measure µ1 and the Baxter polynomial dressing it remains to fix the
overall normalization of the structure constant to be sure everything is in order. Evaluating
the SoV integral using the loop corrected Bethe roots for various spins immediately leads
to the cute result

(∫
duµ1(u)Q(u)2

)−1

=
1 + g2

(
4H2(J) +

8H1(J)
2J+1

)
+ . . .

2J + 1
(7.13)

which is indeed almost the correct loop level structure constant computed in [180]. The
prefactor in (7.7) with J deformed into J in a reciprocity reminiscent fashion [181, 182]
neatly combines with this expression to give the full NLO structure constants for twist-two
operators.

At this point it is straightforward to guess the general structure constant for any SL(2)
operators of any twists by simply taking the tree level g = 0 result and deforming the
new ingredient for higher twists – the two particle measure µ2 – by a bunch of hyperbolic
tangents following what was derived for twist two. The coefficients of these hyperbolic tan-
gents are then fixed by requiring orthogonality between any two different Baxter solutions.
The last line deformation of the Baxter functions in (7.1) – which was invisible for twist
two operators for which odd charges vanish – is also fixed by imposing orthogonality. In
the end, we just need to check that with a minimal reciprocity friendly prefactor as in (7.2)
we precisely agree with perturbative data produced by hexagons. We do.

Even without matching with data, there is a nice self-consistency check of the full
construction including the deformed pre-factor: The structure should be invariant under
swapping left and right bridges ℓ ↔ L − ℓ; we checked that this is indeed realized by our
expressions once the prefactors are deformed as in (7.2).

We made some progress at higher loops, in particular at NNLO (two loops) and for the
smallest possible sizes and bridge lengths. For twist L = 2 operators for example we found
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a Baxter function dressing as well as an orthogonal one-particle measure realizing (7.8) as

Q(u) ≡
J∏

k=1

u− vk√
x+k x

−
k

× e 1
2
g2Q+

1 H
+
1 + 1

8
g4Q+

1 Q
+
2 H

+
1 − 1

2
g4Q+

1 H
+
3

and

µ1(u) =
π

2c2u
exp

(
π2g2

(
3t2u − 1

)
+ π4g4

(
5
6
− 7t2u +

11
2
t4u
)

− g4

8
H+

1

(
Q+

1 (v1)Q
+
2 (v2) +Q+

1 (v2)Q
+
2 (v1)

))
, (7.14)

where we use the fact that Q−
k = 0 for twist-2 operators.

The last line is exotic as it depends now on the charges of the two operators in (7.8)
with Bethe roots v1 and v2 respectively. Note, however, that when considering the pairings
⟨Q, 1⟩ and ⟨Q,Q⟩ a single Baxter function shows up and thus this mixing term can be
absorbed as new factor dressing Q. One would then have different dressings in each pairing,
a phenomenon we observe in the next section as well (in the SU(2) sector).

The first line in (7.14) is also not any random combination of trigonometric functions.
Take the tree level measure 1/ cosh2(πu) – which is periodic with period i and has poles
at all the imaginary half integers – and promote it to a periodic function where all these
poles are opened up into small cuts following [96], see figure 7.2,

µ̂1 ≡
∮

dv

2πi

π/2

cosh2(π(u− v))
1

x(v)
. (7.15)

The integration contour encircles the Zhukowsky cut v ∈ [−2g, 2g]. Evaluating this in-
tegral in perturbation theory precisely reproduces the first line in (7.14) up to an overall
normalization constant! It is tempting to conjecture that the finite coupling expression
(7.15) might play an important role in an all loop SoV formulation. We make further
comments on NNLO structure constants in the discussion.

Other sectors such as the SU(2) sector might also hint at other important structures in
a putative all loop formulation. This is what we turn to now.

7.3 SU(2)

Up to NNLO the SU(2) magnon S-matrix does not receive corrections. Quantum effects do
correct the propagation of scalar particles on top of the BMN vacuum. One could imagine
mimicking this dressed propagation through appropriate deformations of the background
vacuum by the insertions of inhomogeneities θi. This was made concrete in [183] where the
authors determined NLO (one loop) structure constants in the SU(2) sector through the
construction of a differential “θ-morphism” operator acting on the (θ-deformed) spin-chain
scalar products defining the LO structure constants [173] and outputting the quantum
three point functions.
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cosh2(⇡u)
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Figure 7.2: Zhukowskization of trigonometric functions opens up an infinite tower of poles into
an infinite ladder of cuts.

Here we make two observations. First we note that there exists a θ-morphism that
promotes XXX1/2 inhomogenous spin chain scalar products,

Aθ =
∑

u=α∪ᾱ

(−1)|ᾱ|
ℓ∏

n=1

∏

i∈ᾱ

ui − θn + i/2

ui − θn − i/2
∏

j∈α

uj − ui + i

uj − ui
,

Bθ = det

[
∂ui log

(
L∏

n=1

uj − θn + i/2

uj − θn − i/2
∏

k ̸=j

uj − uk − i
uj − uk + i

)]

×
∏

i<j

(ui − uj)2
1 + (ui − uj)2

, (7.16)

into N = 4 SU(2) structure constants all the way to NNLO:

C2
•◦◦ =

∣∣∣∣∣
(M◦Aθ)2
ΛBM◦Bθ

∣∣∣∣∣

∣∣∣∣∣
θ=0

+O(g6), (7.17)
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where

M =exp

[
L∑

i=1

(
g2(∂i,i+1)

2 − 1

4
g4(∂i,i+1)

2(∂i+1,i+2)
2

)

− ig2Q+
1 (∂1 − ∂L) + g4δMNNLO-b

]
, (7.18)

with ∂i = ∂θi and ∂i,i+1 = ∂i − ∂i+1, see appendix F.3.1 for δMNNLO-b, and where ΛB is a
simple norm factor, (F.15). To NLO this is just the construction of [183]. We fix the NNLO
part through comparison with the hexagons prediction, see appendix F.3.1 for details.

The second observation is that given the known integral representation for the scalar
products in the inhomogeneous XXX1/2 spin-chain, derived from Sklyanin’s [89], Baxter’s
[93] and hexagon methods [90, 91], one can straightforwardly derive the functional SOV
representation for the NNLO structure constants simply by acting with the θ-morphism
operator on this classical measure.

The result is once again (the square of) a ℓ − 1 dimensional integral over an L − 1
dimensional integral,

C2
•◦◦ = Λℓ(Q)×

(J !)2

(2J)!
×
⟨⟨Q,1⟩⟩2ℓ,L
⟨⟨Q,Q⟩⟩L,L

+O(g6), (7.19)

with ⟨⟨f, g⟩⟩ℓ,L ≡ ⟨f, g⟩ℓ,L/⟨1, 1⟩ℓ,L and

⟨Q1,Q2⟩ℓ,L ≡
(

ℓ

J1 + J2

)∮

γ

dµℓ,L

ℓ−1∏

i=1

Q1(ui)Q2(ui). (7.20)

The contour of integration is a circle wrapping the singularities of the measure (i.e. both
Zhukowsky cuts), which once again is factorized:

dµℓ,L =
ℓ−1∏

i=1

dui µ
1
ℓ,L(ui)

ℓ−1∏

j ̸=i

µ2
ℓ,L(ui, uj), (7.21)

with

µ1
ℓ,L(u) =

sinh(2πu)

(x+u x
−
u )

2
eδℓ̸=LAℓ,L(u) (7.22)

µ2
ℓ,L(u, v) =

sinh(2π(u− v))(u− v)
2x+u x

−
u x

+
v x

−
v

eδℓ ̸=LAℓ,L(u,v) (7.23)

Q(u) ≡
J∏

k=1

u− vk√
x+k x

−
k

eδℓ̸=LB(u) (7.24)

The scalar product in the denominator of (7.19) enters with ℓ = L, and therefore the
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Figure 7.3: For SL(2) we integrate over the real axis; in SU(2) we have a contour integral encircling
the Zhukowsky cuts.

exponential in all these expressions should be dropped in that case. For the numerator we
need these extra quantum dressing factors. They read

Aℓ,L(u) = g2(q−1 )
2 + g4

(
1
2
(q+2 )

2 + 4α(q−1 )
2 − 6π2q+2 δℓ=2

)
,

Aℓ,L(u, v) = g2q−1 q̃
−
1 + g4

(
1
2
q+2 q̃

+
2 + 2αq+2 + 4αq−1 q̃

−
1

)
,

B(u) = g2q−1 Q
−
1 (7.25)

+ g4
(

1
2
q+2 Q

+
2 + αQ+

2 + 4αq−1 Q
−
1 − π2q−1 Q

−
1 δℓ=2+

+
((

1
8
(Q+

1 )
2− 1

4
Q+

2 −Q+
1 +

3
8
(Q−

1 )
2
)
q+2 − 1

2
q−3 Q

−
1

)
δℓ,L−1

)
,

where the charges q±k = q±k (u) and q̃
±
k = q±k (v) are defined in appendix F.1 and α = 2

3
π2−1.

Finally Λℓ(Q) is a simple function of the higher conserved charges also given in appendix
F.1.

Having expressed the results, a number of remarks are in order. The first is that (7.19)
is an exact result capturing finite-volume effects around the seams adjacent to the NBPS
operator1. These effects start at N3LO in the SL(2) sector and therefore were not considered
in the previous section, but for SU(2) they are present already at NNLO. Their effect in
the SOV representation is encoded in the dressing of the Q-function through the δℓ,L−1

factor, see appendix F.3.3 for a lengthy discussion on these finite volume effects. Here we
emphasize that the structure constant geometry dress the Q-function: Q depends both on
the state and ℓ.

1In this section we assume that ℓ23 ≥ 2 so that bottom mirror corrections can be neglected [170].
Otherwise, we expect its inclusion to follow a similar prescription as in the SL(2) case.
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The second remark is the presence of the δℓ=2 “anomaly” in (7.25). Its origin is not
clear to us. Should it be put on foot with the ℓ = 1 result (7.27) in the SL(2) sector at
NNLO in which a new integral appears? Is it an indication that we are integrating out a
simpler higher-dimensional integral for this short bridge overlap?

To a more basic point, in contrast to the SL(2) sector result (7.2), different measures
and Q-dressings enter the numerator and denominator of (7.19) already at NLO. From the
θ-morphism point of view, the mismatch is due to the boundary terms in the second line of
(7.18) which cancel when acting on the denominator, a symmetric function of the θi, but
do not on the numerator. It turns out that the denominator’s Gaudin measure follows as
in the SL(2) case from an orthogonality principle – see appendix (F.3.2). The numerator
measure is more complicated and we could not identify an orthogonality principle that
fixes it. Is there an alternative principle that generalizes to higher loops and allow us to
move forward? We hope so. As usual, one can always rely on hexagons to compare any
new proposal with data, as we did to confirm the correctness of (7.19).

7.4 SL(2) vs SU(2)

It is amusing to compare our results so far in the following summary table:

SL(2) SU(2)

Main result (7.2) and (7.26) (7.19)
Factorized
measure

yes yes

Same µ and Q
for A and B yes no

Contour Real axis
Encircling
x±(u) cuts

Manifest
transcendentality

yes no

Wrapping effects
incorporated

Bottom: e.g. (7.27) Adjacent: e.g. (7.25)

Derivation and
guesswork tools

Hahn polynomials
Baxter orthogonality
Zhukowskization
Hexagon data

Bottom Wrapping
Reciprocity

θ-morphism
Baxter

Hexagon data
Adj. Wrapping
Selection rules

Next step
Finish NNLO

(& guess all loops)
Do NNNLO

(& guess all loops)

Many things are common to both SU(2) and SL(2) correlators most notably both are
given by a SoV like scalar products involving factorized quantum corrected measures and
quantum dressed Baxter functions. As far as we checked, both are capable of capturing
wrapping corrections.

There are also differences. Some seem minor: for example, the counting of transcenden-
tality in the SU(2) expressions is a bit weird specially due to the mixed transcendentality
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factor α = 2
3
π2 − 1 23.

Some differences seem deeper: The contour of the non-compact SL(2) sector is non-
compact while the contour for the SU(2) compact sector is a closed contour, see figure 7.3.
(This was already observed before in rational SoV explorations, see e.g. [91,93,94]).

For states with two particles of opposite momenta {v,−v}, SL(2) three-point functions
of length L and adjacent bride ℓ should match SU(2) correlators of length L+2 and bridge
ℓ + 1. We checked this by explicit evaluation but it is amusing that this type of relation
– which follows from some SU(2) and SL(2) states being in the same supermultiplet – is
manifest in the spectrum problem [184] but is totally obscure here. Would be desirable to
make it more manifest; this might hint at an even more unified description of both sectors.

Let us conclude this section highlighting the beautiful appendix G of [91] by Jiang, Ko-
matsu, Kostov and Serban. There the starting point are the hexagon sums over partitions
for A. These sums are cast as contour integrals and after several cleaver manipulations
these contours end up being recast as new SoV like integrals. They do this for both SU(2)
and SL(2). (The SL(2) derivation is more involved with some ”straightforward (but compli-
cated and tedious)” steps.) In other words, they derive SoV from hexagons. The drawback
if that this derivation was done at tree level and there are a few steps (see previous quote)
that don’t seem to be obvious to lift to all loops. Revisiting this appendix in light of what
we learned seems promising.

7.5 Discussion

We have initiated here a project for recasting correlators in N = 4 SYM in a language
closer to that of the spectrum quantum spectral curve. With all recent SoV related advances
[93–100, 185] we believe the time is ripe for seeking out for such a new approach. We are
probably scratching the tip of an iceberg as far as the full finite coupling structure goes
but some elements are clearly emerging.

One is the central importance of SoV quantum corrected measures µ(u1, . . . , up) which
can be found by combining a myriad of different approaches from orthogonality of quantum
corrected Baxter equations, matching SoV integrals with hexagon combinatorics, convert-
ing hexagons sums into contour integrals which one then massages into SoV like integrals,
θ−morphism operations on in-homogeneous SoV integrals, re-summing wrapping correc-
tions, extending orthogonality relations of known classical polynomials, Zhukowsky up-
grades of trigonometric functions etcetera. (This etcetera often includes a good deal of
inspired guesswork.)

These measures are then used to build scalar product like integrals which couple Baxter
functions Q(u) for the various involved operators. The Baxter functions also are corrected

2It would be desirable to restore naive trascendentality counting, see also discussion at the end of
appendix F.1.1.

3There is a fun fact about all the π’s floating around in the SU(2) result – see the anomaly δl,2 as
well as α: they are there simply to cancel π’s generated from the integrations so that the final result is
a rational function of the Bethe roots. From a practical point of view we could drop these π’s provided
we also drop any π’s generated when picking up residues. At higher loops the structure constants are no
longer rational and such games would be dangerous.
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Figure 7.4: The NBPS operators have twists Li and spins Ji. Their polarizations are orthogonal.
In the conventions of [5] it is equivalent to

∑
ℓC

••◦(J1, J2, ℓ).

away from their tree level polynomial forms.

The most obvious question is then how to fix the measures and the Baxter Q-functions.
Do these measures obey any sort of all loop bootstrap set of axioms? They must. It is
crucial to work it out. Are these Q-functions some of the finite coupling solutions to the
Quantum Spectral Curve? We hope so.

For the most part we considered a single non-trivial non-BPS operator but we could
have considered correlation functions involving more than one non-BPS operators using
the very same universal measures and Baxter functions. Take for the example the case
of two spinning operators as studied in [5] and consider the so-called abelian polarization
there, see figure 7.4. We found a compact representation of all such correlators at NLO as

(∑

ℓ

C••◦
ℓ

)2
=

(J1 + J2)!2

(2J1)!(2J2)!
⟨Q1,Q2⟩2ℓ

⟨Q1,Q1⟩L1⟨Q2,Q2⟩L2

. (7.26)

Would be very interesting to find an SoV representation for the other spinning correlator
tensor structures studied in [5]; a strategy could be to embed the external operator SL(2)’s
into higher rank SL(N) where we could borrow recent SoV technology from [94].

Is the number of SoV integrals going to remain constant or at least grow in a controllable
way? And if they grow, can we re-sum the full result into some kind of exotic infinite
dimensional sort of scalar products? We have little to say about the last speculative
question but as far as the growth of the number of integrals goes, we do seem to find some
interesting structure. Take for example the SL(2) correlation function involving a single
non-BPS operator with twist L = 2 and adjacent bridges ℓ = 1. With ℓ = 1 the numerator
⟨Q, 1⟩1 = 1 to LO and NLO since the scalar product in (7.3) is an ℓ − 1 dimensional
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integral. This is of course consistent with the hexagon approach where this numerator is
given by the sum over partitions of magnons A1 weighted by the hexagon form factors –
see (F.13) – and this sum over partitions normalized as in this chapter indeed evaluated
to 1 + O(g4). At NNLO O(g4), however, it is no longer unity. Instead it is given by a
cute expression involving Bernouli numbers which we summarize in appendix F.2.3. Also,
at this loop order, if the bottom bridge ℓ23 = ℓB = 1 there is a new wrapping correction
to the structure constant [66]. Both these new effects can be compactly incorporated by
simply modifying the trivial scalar product

⟨Q, 1⟩1 → 1 + ηg4
∫
du ν(u)

Q(u)

Q(i/2)
(7.27)

+ simple contact termsη +O(g6) ,

with the various ingredients spelled out in appendix F.2.3 and where η = 1 for ℓB > 1 (no
wrapping effects) and η = 2 for ℓB = 1 (wrapping effects included). It is very encouraging
to see wrapping and asymptotic effects cast in such unified way. We see it as evidence
that the number of integrals in this SoV approach should increase as we go to higher
and higher loops but that increase is not directly related to wrapping effects which can
be automatically incorporated (as seen in this bottom wrapping example and also in the
SU(2) adjacent wrapping example, see appendix F.3.3). This growth of the number of SoV
integrals is consistent with the picture that at finite coupling we are dealing with three
quantum strings with infinitely many degrees of freedom and in the SoV approach the
number of integrals is related to the number of such degrees of freedom [96].

As we go to higher loops, multiple wrapping effects come in at once and we should
make contact with [186] where PSU(2, 2|4) transfer matrices are shown to appear. Again,
our hope is that even in those cases, wrapping and no-wrapping are all cast in the same
unified way.

We should fit strong coupling in this framework. For large operators there could be
interesting semi-classical limits [90,168,187–189] where one might be able to make progress;
for small operators we know very little about what to expect for the Baxter functions and
we have nothing intelligent to say. A good starting point there might be [163] where
important sets of wrapping corrections were beautifully resummed for structure constants
involving one small operator and two large operators.

Another limit worth exploring is large spin. This is a particular limit where SoV should
be quite powerful since the number of integrals does not grow with spin. Very interesting
structures seem to emerge4 which might also shed light on WL/correlator dualities [101,143]
along the lines of chapters 5 and 6.

It would also be very interesting to think about how all this fits into a higher point
function picture [67,68]. What is the SoV description of a four point function of BPS oper-
ators? Does it involve integrating over intermediate Baxter functions? Will the measures
derived here play a role in this integration? A starting point for these explorations could
be recasting the Coronado’s all loop octagon correlator [80, 81] in this language, perhaps
using its determinant representations [190]. The octagon is a large R-charge correlator

4Unpublished work with Benjamin Basso.
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though so at the same time we should probably figure out what sort of simplifications take
place on the SoV side when we consider large operators. (Another motivation for studying
this limit.)

We explored the SU(2) and SL(2) sectors of N = 4 SYM. There is life beyond it. We
should look for it.
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Chapter 8

Complex Spin: The Missing Zeroes and
Newton’s Dark Magic

8.1 Introduction

Certain CFT data can be analytically continued to complex values of spin S [55]. Specifi-
cally, for each four-point function ⟨O1O2O3O4⟩, Caron Huot’s Lorentzian inversion formula
produces functions c±1234(∆, S) with the following properties. For integer S, they have sim-
ple poles at the locations of local spin-S operatorsOi appearing in the OPE O1O2 → O3O4:

c
(−1)S

1234 (∆, S) ∼
∑

i

− f12if34i
∆−∆i

, (S ∈ Z), (8.1)

where f12i, f34i are OPE coefficients.1 Furthermore, the c±1234(∆, S) are analytic in S and
bounded for Re(S) > 1, when ∆ = d

2
+ iν is on the principal series. The latter condition

is crucially tied to the boundedness of correlators in the Regge limit and conformal Regge
theory [55,191].

Because the same local operators appear in every OPE (modulo global symmetries),
different c(∆, J)-functions associated to different four-point functions have identical pole
locations at integer S. We call this “local operator universality.”

What happens at non-integer S is less clear. In [52], it was argued that singularities
in ∆ at non-integer S should be interpreted as matrix elements of light-ray operators.
However, little is known about the structure of such singularities. Are there always single
poles in ∆, or can there be higher poles, or cuts? Is there “light-ray operator universality,”
where the same light-ray operators appear in different c(∆, S) functions, or do different
four-point functions see completely different light-ray operators?

Perhaps the simplest hypothesis is that there is “light-ray operator universality”— that
is, local operators live on discretely-spaced Regge trajectories, whose dimensions ∆(S) and
structure constants C(S) are analytic in S.2 Furthermore, one should be able to construct
the corresponding light-ray operators directly, without reference to a particular four-point

1In other words, c±1234 give analytic continuations of CFT data away from even-spin/odd-spin.
2Though there will be accumulation points in twist-space [53,54].
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function or c1234(∆, S) that they appear in. Some evidence for this idea can be found in
perturbative constructions of certain classes of light-ray operators [192–202].

However, this idea raises an obvious puzzle:

There are usually many more local operators with large spin S than with small spin S.
We illustrate this in figure 8.1, where we plot the leading-order dimensions and structure
constants of twist 3 operators in planar N = 4 SYM with even spin (up to spin sixty). As
these figures clearly illustrate, the operators do seem to be nicely organized into smooth
trajectories — or families — which we made more visible with colouring. This is consistent
with analyticity in spin mentioned above. On the other hand, the contribution of the
various families to physical observables is ostensibly non-analytic, given the disappearance
of physical operators at small spin. How can these two facts be reconciled?

There is a simple possible solution to this puzzle:

Perhaps the analytically continued structure constants C(S) of a higher family which
starts at some large physical S∗ will have zeroes at all integer spins below S∗, where a local
operator is “missing”. In other words, an infinite number of Regge trajectories of light-ray
operators exist for complex S, but most of them have zeros at integer spins.3

In this chapter we confirm this picture. Using an extrapolation technique found in
Newton’s 1687 Principia we will continue physical4 data at integer spins into the complex
plane. What we will see can only be described as dark magic: these Newton series extrap-
olations will beautifully converge to functions with precisely these zeroes at the locations
of “missing” operators.

8.2 The Twist 3 Data

Figure 8.1a contains the one loop anomalous dimensions γ(S) for all primary operators of
the form

Tr(DS
+Z

3) + permutations (8.2)

with even5 spin S. These operators have three units of R-charge and classical twist equal
to three. Figure 8.1b depicts the three point functions C(S) between these operators and
two scalar BPS operators.6

3In [203] Regge trajectories of the (2, 0) theory were studied. Several related puzzles were raised there
and – for some of those (see issue 2 there for instance) – one of the proposed decoupling mechanisms is
identical to the one observed here. Could the Newton methods employed here help sharpen some of the
conjectures in [203]?

4We use physical to refer to the data directly related to local operators. The continuation of the data
is as physical as the local data once we consider null Wilson line operators [52,196,204,205].

5We will consider even spin for the most part. It is well known that analytic continuation of even and
odd spins are independent. We checked indeed that similar conclusions would be reached for odd spins.

6Any scalar BPS operators would lead to the same S-dependence of the three point function. These
BPS operators are scalars with protected dimensions. We will not discuss them further.
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Figure 8.1: (a) Leading order anomalous dimensions γ(S) where ∆(S) = 3 + S + g2γ(S) and (b)
square of structure constants C(S)2 for the twist 3 operators of even spin. The energy of the
lowest trajectory (8.5) as well as sum rules of all structure constants for fixed S (8.7) are known
for any complex spin S; the structure constants for the lowest family (8.6) are derived here for
even integer S.
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{Degenerate

Lowest family nj

Figure 8.2: The uj ’s need to be all distinct since these parametrize the momentum of the S
excitations in the spin chain which behave as fermions. Since F and f vanish at the origin,
solutions with distinct uj require distinct external fields nj . Since F and f are bounded functions
these mode numbers must lie in the range quoted in the main text and since there are S + 1
integers in this range we see that one of them – called the hole n∗ – is not used. There is one
additional selection rule on this n∗: It must generate a state of zero momentum (this is a gauge
theory condition: the trace in (8.2) means we are only interested in cyclic symmetric quantum
spin chain states). This requires n∗/3 to be an integer. There are 2⌊S/6⌋+ 1 such choices which
perfectly matches the counting of primaries. In the figure we illustrate the two possible choices
for spin 10 corresponding to the lowest family and the second family; the black dots are the nj
and the white circle is the hole n∗.

The family of operators (8.2) will be central player in this note. These operators are
the second simplest spinning operators in this conformal gauge theory. The simplest would
be the twist two operators – simply replace Z3 by Z2 in (8.2) – which are however too
simple for our purpose since there is a single lonely primary twist-two operator for each
(even) spin S. The twist-two family is still very interesting, as reviewed in appendix G.4.

At weak coupling, the primary operators (8.2) can be thought of as eigenstates of an
SL(2, R) quantum spin chain of length 3 with S excitations, the conformal dimension of
the operators corresponding to the energy levels of the quantum spin chain [206,207]. This
energy, in turn, can be determined by solving a simple electrostatic problem of S charges
in a line with real positions uj given by

∑

j ̸=k

f(uj − uk) + F (uj)− 2πnj = 0, (8.3)

where the external force F (u) = 6 arctan(2u), the interaction forces f = 2arctan(u) and
the mode numbers7 nj are distinct integers taking all values from −S/2 to S/2, skipping
one value which we call n∗. The twist three families depend on this missing mode number
n∗ also denoted as the hole, see figure 8.2. The lowest (dimension) family has n∗ = 0.8 All
other families are degenerate pairs with n∗ = ±1,±2, . . . .

Solving the electrostatic equations (8.3) is trivial: Mathematica’s built-in FindRoot

does the job.9 Once we find a {u1, . . . , uS} we extract the energy – that is the dimension

7In the electrostatic picture we can think of them as an extra constant force felt by each particle. We
can think that the particles have charge nj and are acted by a constant electric field of magnitude 2π for
instance to explain the last term in (8.3).

8Dimensions are monotonic as a function of |n∗|.
9We solved these equations all the way to spin 200 for all possible choices of n∗. We had to solve them
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of the corresponding operator – by adding up the energies of each particle

∆ = 3 + S + g2
(
γ ≡

S∑

j=1

2

u2j + 1/4

)
. (8.4)

This is how figure 8.1a was generated. Similarly, the structure constant C(S) is also given
by an expression in terms of the uj from which we generated figure 8.1b. The explicit
plug-in expressions are simple but not as simple the spectrum expression: C(S) is given
by a ratio of determinants of matrices of size S built out of these uj or equivalently in

terms of integrals of so called Baxter polynomials Q(x) =
∏S

j=1(x − uj), as reviewed in
appendix G.1.

Of course, this integrability description of the conformal data is tailored for physical
operators: It is hard to put a non-integer number of particles on a line or make sense of
determinants of matrices with non-integers sizes! We will soon discuss how to (partially)
overcome this limitation.

This concludes the description of how we obtained all the physical twist three data.
There are a few analytic things we know about it.

For the lowest family, we know ∆ and S analytically for any even spin S. They are
rational numbers. For even S, we have

∆(S)lowest family = 3 + S + 8g2H(S/2) (8.5)

C(S)2lowest family =
4S!2

(2S + 1)!




∞∑

j=0

(√
1 + 4j Γ

(
1
2
+ j
)2
Γ
(
1 + S

2
+ j
)
/Γ(j + 1)2

Γ
(
1
2
− S

2
+ j
)
Γ
(
1 + S

2
− j
)
Γ
(
3
2
+ S

2
+ j
)
)2

−1

.

(8.6)

The expression (8.5) for the energy of this lowest family was first found in [206, 208], see
also appendix G.2.

The expression (8.6) for the structure constant is new. It is derived in appendix G.2
using the recently developed SoV representation of structure constants in this gauge theory
[6]. We can use it to very efficiently produce physical data for spins as large as we want.10

Evaluating (8.6) for S = 10, for instance, leads to C(10)lowest family = 1/84756.

There is something unusual about (8.6): this expression holds for all even integers S
– there is nothing wrong with it if we stick to physical operators – and it looks perfectly
analytic in spin and yet it is not the correct analytic continuation of the physical data to
complex spin S. Indeed, if we were to study this function in the complex plane we would
find a myriad of unphysical poles in the right half-plane (RHP) (from zeroes of the big

with huge precision to make sure the corresponding energies and structure constants are accurately pre-
dicted. We found it very efficient to find the position of the particles uj first with some reasonable precision
(using FindRoot with WorkingPrecision->100 digits say) and then using these locations as a starting
point to solve the equations again with more precision (using FindRoot again with WorkingPrecision-

>1000 digits say)
10Note that the sum in the second line of (8.6) can be truncated to j ≤ S/2 since all terms with bigger

j vanish. This sum in (8.6) can actually be trivially done: the result is a sum of two 8F7’s.
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parentheses in the last line), violating the expected Regge bahavior of this theory. The
correct analytic continuation away from the even integers S is given to us by Newton as
explained in the next section.

We also know 11 analytically the sum of all C(S)2 is for each spin S. These sum rules
appear in correlation functions, where all operators appear in the OPE. They evaluate to
nice rational numbers [174]. Here, we find

sum(S) ≡
∑

families

C(S)2 =
S!2

(2S + 1)!
× (S + 1)(S + 3)

3
. (8.7)

For spin S = 10, for instance, we get sum(10) = 1/81396. At this spin, there are only
two families and since we know the lowest one analytically we can read off the second
family as12 C(10)2second family = 5/20532141. Above spin S ≥ 12, we have more than two
families and only the lowest family is given by a rational number. All other solutions are
given by more complicated algebraic numbers which we computed numerically with several
hundreds of digits for all spins up to S = 200.

This concludes the study of the twist 3 data for physical integer spin. We now need to
go to the complex spin plane. Enter Newton.

8.3 Newton’s Magic

Given the CFT data at spins S = 2, 4, 6, . . . , we want to go to the complex plane. Normally
this is not a well posed problem; we can always add a bunch of simple (trigonometric)
functions that vanish at the integers to any possible analytic continuation.

Here, however, physics come to the rescue to render the continuation unique. Confor-
mal Regge theory ensures that the c(∆, S) functions discussed in the introduction should
be bounded and free of singularities in the complex S plane to the right of S = 1 [55,191].
In a planar theory, this requirement is slightly weakened: singularities are excluded to the
right of S = 2, as a consequence of the bound on chaos [209]. We hypothesize that this
requirement extends to the individual structure constants C(S) of each Regge trajectory

11We can derive this result in two trivial ways. We can construct this sum for various spins S from
the solutions of the electrostatic problem and simply observe that they follow a nice sequence given by
this expression; Mathematica’s FindSequenceFunction would give it right away. Alternatively we could
simply decompose the leading twist contribution to the tree level BPS correlator (take (66) from [174] say)

Gtree
2233(z, z̄) =

(2z (z̄ − 1)− 2z̄ + 3) (zz̄)
3/2

(z − 1)2 (z̄ − 1)
2 ≃ (3− 2z)z3/2z̄3/2

(z − 1)2

= z̄3/2
∑

S

sum(S)

C2
233

zS+ 3
2 2F1(S + 2, S + 2; 2S + 3; z)

to read off (8.7) for even spin and sum(S) = S!2/(2S + 1)! × (S + 1)(S − 1)/3 for odd spin. From a four
point functions point of view we can only go beyond extracting such sum rules if we explore higher loops
and/or multiple correlators otherwise all we access are these sums over classically degenerate operators.

12Recall that all higher families are double degenerate so that sum(10) is equal to C(10)2lowest family +

2C(10)2second family.
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Figure 8.3: Cartoon for complex S plane behavior for C(S). The main result of this note is the
confirmation of the expected zeroes in the right half-plane.

(which are residues of c(∆, S) at the locations of poles). A rough argument is that different
C(S) can be accessed as different residues of c(∆, S) in ∆. As long as the ∆ are not degen-
erate, these residues should be individually finite13. Finally, in our case, supersymmetry
relates the twist-3 operators of interest to operators with higher spin by 2 units14. Thus,
we expect that C(S) should be bounded and free of singularities to the right of S∗ = 0.

(At the same time, in the left half plane we do expect a host of singularities of various
types as depicted in figure 8.3.)

Together, these conditions suffice for Carlson’s theorem, which ensures the uniqueness
of the analytic continuation of this data.15

What is perhaps less well-known is that the unique extension alluded to in Carlson’s
theorem can be explicitly constructed by a beautiful interpolation series written down by
Newton in 1687’s Principia Mathematica.16 Newton’s series

fN(z) ≡
N∑

j=0

(
z

j

) j∑

i=0

(
j

i

)
(−1)j−if(i) . (8.8)

converges to the proper extension f(z) as N → ∞. For us, f could be either the energy
of the structure constants and the argument would be z = S/2 − Sn/2 where Sn is the
first value for which a given family exists. That is is S1 = 0 for the lowest family, S2 = 6
for the second family, S3 = 12 for the third family etc. Then physical values correspond
to z = 0, 1, 2, . . . and we include N of these in the interpolation. Newton’s series is very
powerful: it supposed to converge to the right of the first allowed singularity, so for us it

13We verify no such degeneracies occur in the RHP through an integrability based method in section
8.4. That the method presented in this section works suggests in itself the absence of degeneracies, as
discussed in the main text.

14See [210,211] for the precise Ward-identities in the twist 2 case.
15Carlson would require less. The function could grow exponentially along the imaginary direction

provided the exponent is smaller than π (this is roughly speaking what rules out trigonometric functions
like sin’s and cos’s while tan’s and cot’s are excluded by the absence of singularities.)

16It is Case 1 of Lemma V of Book III on the problem of To find a curve line of the parabolic kind which
shall pass though any given number of points.
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Figure 8.4: The Newton continuation of the operators dimensions is represented here for the
lowest five families at N = 88. The white dots corresponding to an alternative integrability
method described in section 8.4. They lie perfectly on top of the Newton continuations.

should converge in the full right half complex spin plane [212].

Applying this method to the anomalous dimensions of the various trajectories with N =
88 results in figure 8.4. Experimentally, the method quickly converges as N is increased.
This confirms the picture that, indeed, each trajectory γ(S) is free of singularities in the
RHP, as otherwise the method would not have converged. Of course, given convergence,
one could simply scan over the complex plane and observe that no degeneracies occur away
from the real line. In section 8.4 we discuss an alternative integrability-based method that
allows for the computation of the energies directly at complex spin. As shown in figure
8.4, it confirms the absence of operator mixing in the RHP and the numerical accuracy of
the Newton series.

Having confirmed the lack of degeneracies, let us now jump to the most exciting appli-
cation of this method: The study of the structure constants for the second family, which
starts at spin S = 6. We first apply (8.8) using the first N = 15 physical spins; then we
include more and more physical operators in the interpolation up to N = 97, see figure 8.5.
As we increaseN we see that the analytic continuation beautifully converges17 and precisely
predicts zeros at the lower spins S = 4 and S = 2 as mentioned in the introduction!

17To be precise, we continue 2log(2)SC(S) and later subtract the exponential. The reason for this is
that the structure constants decay too quickly, which turns out to be an issue for the series convergence.
Generically, once can always subtract the exponential behaviour of the interpolated sequence to obtain a
convergent series representation provided there is no Stokes-like phenomena in the RHP. This is the case
here due to Regge theory.
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Figure 8.5: Newton’s continuation of the structure constants for the second family converging
as we include more and physical operators for N = 15, . . . , 97. The outcome of Newton’s inter-
polation is almost spooky: The physical structure constants are growing as we come from the
right approaching S = 6 and the continuation reverses this growth and dives perfectly through
zero surgically at (the even integer) 4 coming back up through zero again precisely at (the even
integer) 2! If this is not dark magic, what is dark magic?

Repeating (a refinement of) this analysis for all families we end up with figure 8.6.18

The picture put forward in the introduction with the decoupling of the various higher
families at lower physical spins is neatly realized.

8.4 Baxter’s Blessing

Can we cross-check the analysis of the last section and compute directly the CFT data at
complex spin? We do not know how to do it for structure constants – as discussed below –
but for the spectrum γ(S) Baxter equations give an alternative method we can use which
reduces to the previous electrostatic description for integer spin, but generalizes neatly for
complex spin.

18We could in principle go all the way to S = 0 but it is harder to get convergence there; this is of
course not surprising as S = 0 is the boundary of the RHP. We are agnostic about the expectation of (non)
emergence zeroes at S = 0.
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Figure 8.6: To extend the analytic continuation for all S > 0 we first run the interpolation for
a family starting at Sn and check that a zero emerges dynamically as Sn − 2 as we increase N .
Once this happens we can put it in by hand and continue instead the Newton’s series interpolation
of C2(S) × (S − Sn + 2) and see if a zero at Sn − 4 emerges; If so we include it and interpolate
C2(S)× (S − Sn + 2)× (S − Sn + 4) and so on, always checking for stability of the procedure.

The starting point is the Baxter twist three equation

Q(u+ i)(u+ i/2)3 +Q(u− i)(u− i/2)3 −Q(u)
(
2u3 − (S2 + 2S + 3

2
)u+ q

)
= 0.

For integer spin, this equation is equivalent to the electrostatic problem described above.
Indeed, for integer S we look for polynomial solutions which we parametrize as Q(u) =∏S

j=1(u − uj). Evaluating this equation at u = uj we find that the second line vanishes
and thus the ratio of the two terms in the first line must be equal to −1 when u = uj. The
logarithm of this statement is the electrostatic equation (8.3); the integers nj correspond to
the various possible log branches. From the Baxter point of view, the different trajectories
are labelled through their q ≡ q(S, n∗) eigenvalue, which is self-determined from (8.9) plus
polinomiality.

What is beautiful about this equivalent Baxter formulation is that it now allows for
an extension to complex spin S, once we relax the polynomiality property of the Baxter
function Q(u). The proposal is that we should look for the slowest growing entire solution
of (8.9). We review this prescription in appendix G.3.

A numerical algorithm to obtain such solutions is as follows. Assume Q is given by a
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Figure 8.7: We can find the physical values of q by requiring that the continued Baxter solution
preserves the zero momentum condition associated with single trace operators. More terms in
the expansion (8.9) are needed to converge as we scan over higher values of q, corresponding to
higher families, as indicated by the various Nmax curves, which are evaluated at S = 11/3 here;
to find the third family Nmax = 35 is almost enough for instance while Nmax = 50 is definitely
plenty. The method identifies both even and odd spin trajectories, which come as alternating
zeroes, since the same Baxter equation describes both sectors.

truncated power series normalized at u = i/2:

Q(u) = 1 +
Nmax∑

k=1

ak(u− i/2)k. (8.9)

Plugging (8.9) in (8.9) and requiring that the first Nmax orders of the expansion around
u = 0 are satisfied completely fixes the coefficients ak in terms of S and q(S, n∗). The claim
is that this procedure, in which we approximate the power series tail by zero, converges to
the slowest growing entire solution as Nmax →∞. One is left with solving the quantization
problem of determining q(S, n∗) for complex S. This is achieved by requiring the cyclicity
condition Q(i/2) = Q(−i/2), see figure 8.2.

This procedure is illustrated in figure 8.7. Starting from integer spin, one can identify
which local minimum of |Q(i/2)−Q(−i/2)| corresponds to each family and adiabatically
deform from there. Alternatively, one could determine q(S, n∗) through the Newton’s series
of the physical data. Both methods show perfect agreement.

Having determined the power series (8.9) one can then simply extract the energies from

γ = 2i
(
Q′( i

2
)−Q′(− i

2
)
)
, (8.10)
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which generalizes (8.4) to the non-polynomial case. The result for the first five families is
presented in figure 8.4. It is in perfect agreement with the Newton’s series continuation
from the integer spin data.

8.5 Discussion

The complex spin plane is a formidable universe and planar N = 4 SYM, being a solvable
higher dimensional conformal field theory is a perfect laboratory for its exploration.

In this chapter, we focused on the right half-plane Re(S) > 0. On this side, conformal
Regge theory predicts controllable growth at large spin and no singularities at finite spin.
As such, there is not much room for surprises in the RHP. The notable exception are the
missing zeroes we explored here. We found that the analytic continuation of structure
constants for higher trajectories develops zeroes at integer positive spins, explaining their
decoupling from correlation functions and resolving the puzzle raised in the introduction.

We conjecture this decoupling picture to be a general mechanism for any higher dimen-
sional conformal field theory. Of course, testing it is not easy. Here, the data obtained
in planar N = 4 SYM through integrability was precious. To convincingly observe these
zeroes, we used about a hundred physical data points computed with hundreds of digits of
precision and plugged those into a beautiful continuation formula by Newton. Of course,
this is not a luxury we can afford in the 3D Ising model where we might have at most a
few physical operators with a few digits of precision.

It would be very interesting to explore other theories where we might be able to com-
pute large amounts of physical structure constants with great precision and look for the
emergence of the missing zeroes there as well. We could also assume these zeroes to be
there and use them to more efficiently continue physical data into the complex plane.

In N = 4 SYM, we could also explore other sectors and learn about analyticity (or
lack thereof) in several other parameters such as R-charges, mixed spins (S1, S2) for more
complicated spinning operators, twist, etc. A very nice study of strong coupling double
trace operator decoupling as one analytically continues their R-charge representations can
be found in [213].

It is also an important open problem to understand how to directly compute the struc-
ture constants at any complex spin S from integrability without resorting to Newton’s
magic – as done for the spectrum in section 8.4 using Baxter’s Q-functions. In [6] new
formulae were put forward for structure constants in this theory in terms of Separation of
Variables (SoV) like integrals [88,91,94] of Q-functions so one might wonder if we can not
simply plug the Q-functions found in the spectrum study there. Sadly, we do not know
how to do it. Take for example the simplest possible leading order structure constant in the
SL(2) sector corresponding to twist-two operators. There is no operator degeneracy and
a single family of operators in this case for which Dolan and Osborn [180, 214] extracted
C(S)2twist-2 LO =

S!2

(2S)!
many years ago already. In integrability terms this can be obtained
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from chapter 7

C(S)2twist-2 LO =
S!2

(2S + 1)!

1
∞∫

−∞

du
π

2

Q(u)2

cosh(πu)2

, (8.11)

see appendix G.4. For any even integer spin the Q function is a polynomial so that
integral is perfectly convergent; it evaluates to 1/(2S + 1) [6], see also appendix G.2.1 for
a derivation. When S is not integer, the Baxter function Q grows as e2πu at infinity [215]
however and the integral no longer converges. It would be interesting to generalize [6]
so that it could apply not just for physical local operators of integer spin but also for
analytically continued spins. One approach could be to try to make the SoV expressions
manifestly gauge invariant under the symmetry Q→ fi-periodicQ of the Baxter equation.

A related question is whether we can explicitly write down the light-ray operators
corresponding to the Regge trajectories we found in this chapter, in the spirit of [192–202].
Such light-ray operators should take the form

∫
dα1dα2dα3ψ(α1, α2, α3) Tr(Z(α1)Z(α2)Z(α3)). (8.12)

Here, Z(α) is an insertion of Z on a Wilson line lying along future null infinity, at retarded
time α. The three Z insertions are integrated against a wavefunction ψ(αi), which must
be translationally-invariant in retarded time to describe a primary light-ray operator. The
homogeneity of ψ is related to the spin S.19

In trying to directly construct such operators, we run into puzzles. Naively, at fixed
S, the wavefunction ψ can depend in an arbitrary way on the translationally-invariant
homogeneity-zero combination χ = α12/α13. In other words, there seem to be a continuous
infinity of primary light-ray operators we can write down at each spin S, parametrized by
an arbitrary function of χ.

What reduces this continuous infinity of choices down to a discrete set of Regge trajec-
tories? In our case, the mode number n∗ gave a natural way to define trajectories. More
generally, what mechanism could reduce the naive continuous infinity of light-ray opera-
tors (8.12) to a discrete set in non-integrable perturbative theories, like the Wilson-Fisher
theory? Can we figure out the general mechanism by understanding operators in N = 4
SYM well-enough?

A proposal will appear in [56]: we indeed manage to explicitly construct the light-ray
operators appearing in this chapter in the form (8.12). These trajectories are selected out
of the naive continuum by a smoothness criterion20 on the wavefunctions ψ(α1, α2, α3). We
expect that similiar criterions apply in more general perturbative theories. The explicit
expressions to appear in [56] also manifest the missing zeroes.

19In the case of integer spin, ψ should be a combination of δ-functions and their derivatives, and (8.12)
becomes the light-transform [52] of a local operator.

20Let χ = cos(x)/ cos(x − 2π/3). Then the light-ray operators which correspond to the trajectories
considered in this chapter are such that the Fourier modes an =

∫ π

−π
einxψ(x, r)dx decay as 1/|n| as

|n| → ∞, where the r =
∑

i α
2
ii+1 dependence is controlled by homogeneity. This can be translated as a

smoothness condition in the variables αi.

150



Everything we observed in this chapter at leading order in perturbation theory should
hold at finite coupling.21 Repeating the leading-order analysis at next-to-leading-order
should be straightforward, for instance. More ambitiously, can the missing zeroes be useful
in searching for a finite coupling version of chapter 7?

Finally, we have the left-half plane (LHP) of S, where there is a host of exciting physics
to explore. In this left hand-side of the complex spin plane there will be dragons. In
perturbation theory, we expect there a host of different singularities from poles at negative
spins which would open up into cuts at finite coupling, creating an intricite infinitely-
sheeted Riemann surface. This part of the plane contains so-called“horizontal trajectories”
of BFKL type [197, 198, 217] whose tree-level spin S is fixed, but whose dimension ∆ can
vary. When the coupling is turned on, horizontal trajectories can recombine with the more
traditional 45◦ trajectories discussed in this chapter [218].22 In perturbation theory, such
recombinations manifest as poles in anomalous dimensions and structure constants, which
satisfy compatibility conditions between the two combining branches, see e.g. [191,218]. A
class of horizontal trajectories that should recombine with the twist-3 operators considered
here was explored in [219]. It would be very interesting to describe the recombinations
explicitly at the level of operators, using the techniques of [202]. We also expect branch
cuts in perturbation theory where different twist-3 trajectories recombine, see figure 8.3.
We will confirm this picture in [56].

21Confirming this picture is hard but it is not science fiction in planar N = 4 SYM. In [87] and [216]
beautiful finite coupling analysis of the spectrum of twist two operators was carried out with spectacular
results. Our twist three setup is more complicated and for structure constants we do not have the powerful
technology of the quantum spectral curve at our disposal yet despite recent advances such as [6] building
on important previous works [88,89,91,93,94,96,97].

22The terminology “horizontal” and “45◦” refers to the Chew-Frautschi plot, where we plot S vs. ∆− d
2 .
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Chapter 9

Conclusion

Once upon a time, physicists realized that most of nature was described by relativistic
quantum fields. This thesis is about quantum field theory. Yet, in a sense, quantum

fields have not made an appearance in almost three hundred pages. There is not a single
physical Lagrangian expressed in terms of local fields in this thesis; the word“Hamiltonian”
does not appear. Instead, throughout we focused on discussing physical observable directly.

Some motivation to do so comes already from perturbation theory. Even at tree-level,
computing scattering amplitudes of gluons from Feynman diagrams is an incredible labo-
rious task that soon grows completely out of control. However, for example in the case of
maximally helicity violating amplitudes, Park and Taylor observed that the end product
of this computations takes a remarkable simple form [220]:

Mc.o.

(
1+2+ . . . i− . . . j− . . . n+

)
=

⟨ij⟩
⟨12⟩ . . . ⟨n1⟩ . (9.1)

Other tree-level amplitudes can be efficiently computed recursively [221]. This simplicity
becomes clear only once one does away with Lagrangians, virtual particles, gauge redun-
dancies, and what not, and focuses on the underlying physical principles1.

This success story is not limited to perturbative computations. In the case of confor-
mal field theory the bootstrap axioms, which directly encode underlying physical principles,
have proven to be powerful enough to de-facto solve a number of second-order phase tran-
sitions. For example, in the 3D Ising model, the numerical conformal bootstrap is able
to rigorously determine that the leading scaling dimensions ∆σ, ∆ϵ and OPE coefficients,
Cσσϵ, Cϵϵϵ live in a tiny island [222]:

(∆σ,∆ϵ, Cσσϵ, Cϵϵϵ) = (0.5181489(10), 1.412625(10), 1.0518537(41), 1.532435(19)) . (9.2)

In the middle of the island known solutions to crossing involve hundreds of operators for
which structure constants and scaling dimensions vary very little, allowing one to (non-
rigorously) predict their values as well2.

1To me, that is cinema.
2On the other hand, some observables such as the dimension of operators with very high twist are

largely unconstrained by these studies.
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A good fraction of this thesis was devoted to developing a strategy to constrain scatter-
ing observables in strongly coupled quantum field theories by appealing direly to physical
principles. The hope is that, by tackling these observables heads on, we might encounter
unexpected simplicity and enjoy some of the successes obtained in the perturbative am-
plitudes or conformal theories. In some aspects, we already have some humbly exciting
successes. In others, there is clearly a lot of work to be done.

Let us describe one such success [48]. Consider a long flux tube in three dimensional3

Yang-Mills theory sourced by external quarks. The low energy theory on the flux tube is
that of a massless particle, the Goldstone boson of the 3D Poincare symemtry broken by
the presence of the long string. We can describe the dynamics on this“QCD string”through
the Lagrangian S-matrix of these particles. At low energies the S-matrix is constrained
by the broken Poincare symmetry which is non-linearly realized. More interesting is the
behaviour of the S-matrix at energies of order ℓ−1

s where ℓs is the characteristic length of
the flux tube. In this regime, the dynamics are strongly coupled. Can we say anything
about the S-matrix at this energy scale? If so, how?

We can require that this S-matrix is unitary, analytic, etcetera and try to get something
out of it. However, and here comes a twist, in this case we are not limited to 2 → 2
scattering! Let us see how. Because we are in two dimensions and the particles are massless,
they must be either left or right movers. Consider a bundle of several left movers4 with
total energy pL and energy fractions αi distributed among the various partons:

ψ(α1, . . . , αN) ≡ |α1pL, . . . , αNpL⟩

with an analogous expression for right-movers. Suppose we integrate the state ψ against
some wavefunction for the distribution of energy among the partons. This defines a jet.
Kinematically, the jets behaves just like new massless one-particle states5. This means we
can scatter left- and right- moving jets, and their S-matrices will satisfy standard analyticity
(as a function of the energy), unitarity and crossing 2 → 2 properties6! Backtracking:
what can we learn about the QCD string S-matrix by requring the consistency of the
jet scattering? A first step towards the answer is described in figure 9.1. In sum, we
can provide sharp bounds on the dynamics at order ℓ−1

s : all SU(N) 3D pure Yang-Mills
theories must live in the small green island of figure 9.1.

Now, let us discuss some unsatisfactory features of these results - similar comments
apply to most other S-matrix bootstrap studies. The first is that this small island is
not so small: as emphasized, it includes all SU(N) Yang-Mills theories, and is therefore
a continent. A crucial question is whether we can do better and pinpoint each SU(N)
theory in an archipelago of sorts. This should be possible, as we do not expect to be able
to continuously move between various SU(N) theories in a parametric family of analytic
and unitarity flux tube theories7.

3There is no obstruction to repeating what follows in four dimensions.
4There are no collinear divergences due to the incredibly soft behaviour imposed by the symmetry

breaking. To see this, boost the collinear particles to low energies.
5Note that this is very special to massless particles in 2D.
6Of course, all these properties are very non-trivially inherited from the full multi-particle S-matrix.

Worry not, it works.
7It would be very interesting if this turned out to be false.
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Figure 9.1: We consider all 2 → 2 processes involving the fundamental NGB |f⟩ and the jet

state |jet⟩ ≡
∫ 1
0 dα

(
ψ(α, 1− α)/

√
8πα(1− α)

)
. Define y = 2

π

∫∞
0 dsReSff→ff (s)/(s

2 + 1) and

x = 2
π

∫∞
0 dsReSff→jetjet(s)/(s

2 + 1), with the center-of-mass energy
√
s measured in units of

ℓ−1
s . The specific form of the kernel is not essential and can be easily modified. The important
point is that x and y are sum rules which capture the physics at order s ∼ ℓ−2

s . They are not
low energy sum rules. The blue bounds are obtained by requiring the analyticity, crossing (see
figure 9.2) and unitarity of these processes. For the red region we additionally require that, up
to order s2 the S-matrix is universal and given by the Nambu-Goto action, as determined by the
non-linearly realized symmetries. Finally, the green region is defined by requiring that the first
non-universal operator in the EFT comes with a dimensionless coupling γ3l

6
s ≤ 10−3, see [48,142]

for precise definition of γ3. This assumption is conservative for pure SU(N) flux tubes according
to lattice QCD simulations. This allow us to place sharp bounds on the multiparticle S-matrix.
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It is not expected that including more low energy constrains imposed by the broken
Poincare effective field theory will change picture 9.1 much. Nor should considering more
jet states8 into the bootstrap system. What could we be missing then? Two speculative
possibilities could be considered. The first is that isolating each SU(N) theory is not a
question about branons on the long flux tube, but about embedding this S-matrix in the
richer framework of interacting strings: we should consider the physics of glueball emission
and absortion by the long strings9, and their interplay with glueball scattering10; or perhaps
we should consider the consistency of the theory on finite volume11. The second possibility
is that this is still a question that can be addressed by further exploring the scattering
on the long string. For example, we have not explored analyticity on the energy fractions
inside jets. Can we cross a single particle from inside a jet from the past to the future? It is
not clear whether this is possible: it might be that no on-shell analytic path of continuation
is available connecting these kinematics. If it is, then crossing is expected to take a more
complicated form [40], see figure 9.2. These crossing constrains are highly non-linear, and
seem to naturally break the convexity exploited in all bootstrap studies so far. This is
exactly what is needed to break a convex island into a disjoint (and therefore non-convex)
archipelago.

Perhaps a good laboratory to explore both of these proposals is the Ising field theory
bootstrap. In that case, we know that the quantum field theories defined by pure magnetic
or pure thermal deformations away from criticality define S-matrices at the boundary of
the space of theories defined by consistent 2→ 2 scattering [9]. The one-parameter family
of QFTs defined by arbitrary relevant deformations should then hopefully not be too far
from the space defined by consistent 2 → 2 scattering. In contrast to the critical Ising
island from the conformal bootstrap, the interior of the current S-matrix space contain
theories whose physics are quite varied, making it impossible to make sensible predictions
about the Ising field theory dynamics. How can we pin down the Ising theory? Once
again, there are two suggestions: one is that we should impose much more information
about the exactly solvable UV CFT than has been done so far [20]. The other is that the
consistency of highly non-linear constrains will carve out large chunks of the current allowed
space. In the case of Ising we do not need to go to multiparticle scattering to explore these
ideas since the natural large hierarchy of masses for large magnetic deformations introduce
non-convexities12 at the 2→ 2 level through anomalous Landau diagrams, see chapter 2.

8A complete basis of jet states can be constructed.
9Related to this point, analyticity assumption on the S-matrix in quantum gravity are often quite

speculative. The same is true in this flux tube problem since, after all, we are discussing a 1+1D quantum
gravity theory. It would be very nice to examine these analyticity assumption more careful in this case.
For example, what is the S-matrix for the scattering of two branons in critical bosonic string theory in the
presence of a handle on the long-string? Sounds like a fun computation to think about.

10Against this proposal, one might ask about the large N theory first.
11We expect a Hagedorn transition at RH ∼ ls. However one could imagine a scenario where, unless the

S-matrix is fine-tuned -thus forming an archipelago- one obtains RH ≫ ls. Recall this conclusion is a fairy
tale.

12A baby example: consider an analytic function on the disk bounded in modulus by one at |z| = 1 and
with a pole at the origin whose residue is −4g2+g4. We interpret the first term as a t-channel pole and the
second term as a Landau singularity. As follows from the maximus modulus principle, the allowed space
for the “coupling” g is not connected, with a small island that is intrinsically strongly coupled at around
g = 2. Of course, the real bootstrap system is much more elaborate than this.
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<latexit sha1_base64="N3h7XznkeQV5iCrJAwbqCjIz3BY=">AAAB6HicdVDLSgNBEOz1GeMr6tHLYBA8hd1gEr0FvXhMwDwgWcLspDcZM/tgZlYIS77AiwdFvPpJ3vwbJ8kKKlrQUFR1093lxYIrbdsf1srq2vrGZm4rv72zu7dfODhsqyiRDFssEpHselSh4CG2NNcCu7FEGngCO97keu537lEqHoW3ehqjG9BRyH3OqDZSszYoFO2SvQBZEqdsSMV2LqtV4mRWETI0BoX3/jBiSYChZoIq1XPsWLsplZozgbN8P1EYUzahI+wZGtIAlZsuDp2RU6MMiR9JU6EmC/X7REoDpaaBZzoDqsfqtzcX//J6ifYv3JSHcaIxZMtFfiKIjsj8azLkEpkWU0Mok9zcStiYSsq0ySZvQvj6lPxP2uWSc16qNMvF+lUWRw6O4QTOwIEa1OEGGtACBggP8ATP1p31aL1Yr8vWFSubOYIfsN4+AbAPjN8=</latexit>

8

<latexit sha1_base64="5xTuz2qU7SCffiXNNM0SenTnzZ8=">AAAB6HicdVDLSgNBEOz1GeMr6tHLYBA8hd1gYrwFvXhMwDwgWcLspDcZM/tgZlYIS77AiwdFvPpJ3vwbJ8kKKlrQUFR1093lxYIrbdsf1srq2vrGZm4rv72zu7dfODhsqyiRDFssEpHselSh4CG2NNcCu7FEGngCO97keu537lEqHoW3ehqjG9BRyH3OqDZSszYoFO2SvQBZEqdsSMV2LqtV4mRWETI0BoX3/jBiSYChZoIq1XPsWLsplZozgbN8P1EYUzahI+wZGtIAlZsuDp2RU6MMiR9JU6EmC/X7REoDpaaBZzoDqsfqtzcX//J6ifZrbsrDONEYsuUiPxFER2T+NRlyiUyLqSGUSW5uJWxMJWXaZJM3IXx9Sv4n7XLJOS9VmuVi/SqLIwfHcAJn4MAF1OEGGtACBggP8ATP1p31aL1Yr8vWFSubOYIfsN4+AbGTjOA=</latexit>

S

<latexit sha1_base64="ubwbK8cGZkWbMLWFFThCwgBxy5s=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo9ELx4hyiOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJYPZpygH9GB5CFn1Fipft8rltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdlr1K+rFdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+ALC9jN8=</latexit>

S†

<latexit sha1_base64="rgeh4Glb3Yf1un90fRIPUKe0v38=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqexKRY9FLx4r2g9p15LNzrahSXZJskJZ+iu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8IOFMG9f9dgorq2vrG8XN0tb2zu5eef+gpeNUUWjSmMeqExANnEloGmY4dBIFRAQc2sHoeuq3n0BpFst7M07AF2QgWcQoMVZ6uHvshWQwANUvV9yqOwNeJl5OKihHo1/+6oUxTQVIQznRuuu5ifEzogyjHCalXqohIXREBtC1VBIB2s9mB0/wiVVCHMXKljR4pv6eyIjQeiwC2ymIGepFbyr+53VTE136GZNJakDS+aIo5djEePo9DpkCavjYEkIVs7diOiSKUGMzKtkQvMWXl0nrrOrVque3tUr9Ko+jiI7QMTpFHrpAdXSDGqiJKBLoGb2iN0c5L8678zFvLTj5zCH6A+fzB6gxkFM=</latexit>

S†

<latexit sha1_base64="rgeh4Glb3Yf1un90fRIPUKe0v38=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqexKRY9FLx4r2g9p15LNzrahSXZJskJZ+iu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8IOFMG9f9dgorq2vrG8XN0tb2zu5eef+gpeNUUWjSmMeqExANnEloGmY4dBIFRAQc2sHoeuq3n0BpFst7M07AF2QgWcQoMVZ6uHvshWQwANUvV9yqOwNeJl5OKihHo1/+6oUxTQVIQznRuuu5ifEzogyjHCalXqohIXREBtC1VBIB2s9mB0/wiVVCHMXKljR4pv6eyIjQeiwC2ymIGepFbyr+53VTE136GZNJakDS+aIo5djEePo9DpkCavjYEkIVs7diOiSKUGMzKtkQvMWXl0nrrOrVque3tUr9Ko+jiI7QMTpFHrpAdXSDGqiJKBLoGb2iN0c5L8678zFvLTj5zCH6A+fzB6gxkFM=</latexit>

S†

<latexit sha1_base64="rgeh4Glb3Yf1un90fRIPUKe0v38=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqexKRY9FLx4r2g9p15LNzrahSXZJskJZ+iu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8IOFMG9f9dgorq2vrG8XN0tb2zu5eef+gpeNUUWjSmMeqExANnEloGmY4dBIFRAQc2sHoeuq3n0BpFst7M07AF2QgWcQoMVZ6uHvshWQwANUvV9yqOwNeJl5OKihHo1/+6oUxTQVIQznRuuu5ifEzogyjHCalXqohIXREBtC1VBIB2s9mB0/wiVVCHMXKljR4pv6eyIjQeiwC2ymIGepFbyr+53VTE136GZNJakDS+aIo5djEePo9DpkCavjYEkIVs7diOiSKUGMzKtkQvMWXl0nrrOrVque3tUr9Ko+jiI7QMTpFHrpAdXSDGqiJKBLoGb2iN0c5L8678zFvLTj5zCH6A+fzB6gxkFM=</latexit>

S†

<latexit sha1_base64="rgeh4Glb3Yf1un90fRIPUKe0v38=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqexKRY9FLx4r2g9p15LNzrahSXZJskJZ+iu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8IOFMG9f9dgorq2vrG8XN0tb2zu5eef+gpeNUUWjSmMeqExANnEloGmY4dBIFRAQc2sHoeuq3n0BpFst7M07AF2QgWcQoMVZ6uHvshWQwANUvV9yqOwNeJl5OKihHo1/+6oUxTQVIQznRuuu5ifEzogyjHCalXqohIXREBtC1VBIB2s9mB0/wiVVCHMXKljR4pv6eyIjQeiwC2ymIGepFbyr+53VTE136GZNJakDS+aIo5djEePo9DpkCavjYEkIVs7diOiSKUGMzKtkQvMWXl0nrrOrVque3tUr9Ko+jiI7QMTpFHrpAdXSDGqiJKBLoGb2iN0c5L8678zFvLTj5zCH6A+fzB6gxkFM=</latexit>

3

<latexit sha1_base64="M3F3HWaZCY+Bw5KqKDA7S2NbeOs=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgKexGE/UW9OIxAZMIyRJmJ73JmNkHM7NCWPIFXjwo4tVP8ubfOElWUNGChqKqm+4uLxZcadv+sHJLyyura/n1wsbm1vZOcXevraJEMmyxSETy1qMKBQ+xpbkWeBtLpIEnsOONr2Z+5x6l4lF4oycxugEdhtznjGojNU/6xZJdtucgC+JUDKnazkWtRpzMKkGGRr/43htELAkw1ExQpbqOHWs3pVJzJnBa6CUKY8rGdIhdQ0MaoHLT+aFTcmSUAfEjaSrUZK5+n0hpoNQk8ExnQPVI/fZm4l9eN9H+uZvyME40hmyxyE8E0RGZfU0GXCLTYmIIZZKbWwkbUUmZNtkUTAhfn5L/SbtSdk7L1WalVL/M4sjDARzCMThwBnW4hga0gAHCAzzBs3VnPVov1uuiNWdlM/vwA9bbJ6n/jNs=</latexit>

4

<latexit sha1_base64="ZewY0KrdgearNCNFgNkvE4Je9Dw=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgKewGE/UW9OIxAfOAZAmzk95kzOyDmVkhLPkCLx4U8eonefNvnCQrqGhBQ1HVTXeXFwuutG1/WLmV1bX1jfxmYWt7Z3evuH/QVlEiGbZYJCLZ9ahCwUNsaa4FdmOJNPAEdrzJ9dzv3KNUPApv9TRGN6CjkPucUW2k5tmgWLLL9gJkSZyKIVXbuazViJNZJcjQGBTf+8OIJQGGmgmqVM+xY+2mVGrOBM4K/URhTNmEjrBnaEgDVG66OHRGTowyJH4kTYWaLNTvEykNlJoGnukMqB6r395c/MvrJdq/cFMexonGkC0X+YkgOiLzr8mQS2RaTA2hTHJzK2FjKinTJpuCCeHrU/I/aVfKzlm52qyU6ldZHHk4gmM4BQfOoQ430IAWMEB4gCd4tu6sR+vFel225qxs5hB+wHr7BKuDjNw=</latexit>

1

<latexit sha1_base64="AIFvW6HinmBCoCzBmb9oHFRDQ4A=">AAAB6XicdVDLSgNBEOz1GeMr6tHLYBA8hd1got6CXjxGMQ9IQpid9CZDZmeXmVkhLPkDLx4U8eofefNvnCQrqGhBQ1HVTXeXHwuujet+OEvLK6tr67mN/ObW9s5uYW+/qaNEMWywSESq7VONgktsGG4EtmOFNPQFtvzx1cxv3aPSPJJ3ZhJjL6RDyQPOqLHSrUf6haJbcucgC+KVLam43kW1SrzMKkKGer/w3h1ELAlRGiao1h3PjU0vpcpwJnCa7yYaY8rGdIgdSyUNUffS+aVTcmyVAQkiZUsaMle/T6Q01HoS+rYzpGakf3sz8S+vk5jgvJdyGScGJVssChJBTERmb5MBV8iMmFhCmeL2VsJGVFFmbDh5G8LXp+R/0iyXvNNS5aZcrF1mceTgEI7gBDw4gxpcQx0awCCAB3iCZ2fsPDovzuuidcnJZg7gB5y3T/yMjQM=</latexit>

2

<latexit sha1_base64="K7p0SiVKGDm8k7HRFer7dsIUOfc=">AAAB5HicdVBNS8NAEJ3Urxq/qlcvi0XwVJKiVW9FLx4r2A9oQ9lsJ+3azSbsboRS+gu8eFC8+pu8+W/cthFU9MHA470ZZuaFqeDaeN6HU1hZXVvfKG66W9s7u3sld7+lk0wxbLJEJKoTUo2CS2wabgR2UoU0DgW2w/H13G8/oNI8kXdmkmIQ06HkEWfUWOm22i+VvYq3AFkSv2rJmedf1mrEz60y5Gj0S++9QcKyGKVhgmrd9b3UBFOqDGcCZ24v05hSNqZD7FoqaYw6mC4OnZFjqwxIlChb0pCF+n1iSmOtJ3FoO2NqRvq3Nxf/8rqZiS6CKZdpZlCy5aIoE8QkZP41GXCFzIiJJZQpbm8lbEQVZcZm49oQvj4l/5NWteKfVs7K9as8jCIcwhGcgA/nUIcbaEATGCA8wjO8OPfOk/O6bCw4+cQB/IDz9gk+NYuy</latexit>

7

<latexit sha1_base64="N3h7XznkeQV5iCrJAwbqCjIz3BY=">AAAB6HicdVDLSgNBEOz1GeMr6tHLYBA8hd1gEr0FvXhMwDwgWcLspDcZM/tgZlYIS77AiwdFvPpJ3vwbJ8kKKlrQUFR1093lxYIrbdsf1srq2vrGZm4rv72zu7dfODhsqyiRDFssEpHselSh4CG2NNcCu7FEGngCO97keu537lEqHoW3ehqjG9BRyH3OqDZSszYoFO2SvQBZEqdsSMV2LqtV4mRWETI0BoX3/jBiSYChZoIq1XPsWLsplZozgbN8P1EYUzahI+wZGtIAlZsuDp2RU6MMiR9JU6EmC/X7REoDpaaBZzoDqsfqtzcX//J6ifYv3JSHcaIxZMtFfiKIjsj8azLkEpkWU0Mok9zcStiYSsq0ySZvQvj6lPxP2uWSc16qNMvF+lUWRw6O4QTOwIEa1OEGGtACBggP8ATP1p31aL1Yr8vWFSubOYIfsN4+AbAPjN8=</latexit>

8

<latexit sha1_base64="5xTuz2qU7SCffiXNNM0SenTnzZ8=">AAAB6HicdVDLSgNBEOz1GeMr6tHLYBA8hd1gYrwFvXhMwDwgWcLspDcZM/tgZlYIS77AiwdFvPpJ3vwbJ8kKKlrQUFR1093lxYIrbdsf1srq2vrGZm4rv72zu7dfODhsqyiRDFssEpHselSh4CG2NNcCu7FEGngCO97keu537lEqHoW3ehqjG9BRyH3OqDZSszYoFO2SvQBZEqdsSMV2LqtV4mRWETI0BoX3/jBiSYChZoIq1XPsWLsplZozgbN8P1EYUzahI+wZGtIAlZsuDp2RU6MMiR9JU6EmC/X7REoDpaaBZzoDqsfqtzcX//J6ifZrbsrDONEYsuUiPxFER2T+NRlyiUyLqSGUSW5uJWxMJWXaZJM3IXx9Sv4n7XLJOS9VmuVi/SqLIwfHcAJn4MAF1OEGGtACBggP8ATP1p31aL1Yr8vWFSubOYIfsN4+AbGTjOA=</latexit>

5

<latexit sha1_base64="ZKjGio2KsVn9ci2htc7eY06tHOI=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgKewGE/UW9OIxAfOAZAmzk95kzOyDmVkhLPkCLx4U8eonefNvnCQrqGhBQ1HVTXeXFwuutG1/WLmV1bX1jfxmYWt7Z3evuH/QVlEiGbZYJCLZ9ahCwUNsaa4FdmOJNPAEdrzJ9dzv3KNUPApv9TRGN6CjkPucUW2kZnVQLNllewGyJE7FkKrtXNZqxMmsEmRoDIrv/WHEkgBDzQRVqufYsXZTKjVnAmeFfqIwpmxCR9gzNKQBKjddHDojJ0YZEj+SpkJNFur3iZQGSk0Dz3QGVI/Vb28u/uX1Eu1fuCkP40RjyJaL/EQQHZH512TIJTItpoZQJrm5lbAxlZRpk03BhPD1KfmftCtl56xcbVZK9assjjwcwTGcggPnUIcbaEALGCA8wBM8W3fWo/VivS5bc1Y2cwg/YL19Aq0HjN0=</latexit>

6

<latexit sha1_base64="KgAUdW/3mLaJK20vo+YQxwwg49s=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgKewGE/UW9OIxAfOAZAmzk95kzOyDmVkhLPkCLx4U8eonefNvnCQrqGhBQ1HVTXeXFwuutG1/WLmV1bX1jfxmYWt7Z3evuH/QVlEiGbZYJCLZ9ahCwUNsaa4FdmOJNPAEdrzJ9dzv3KNUPApv9TRGN6CjkPucUW2kZm1QLNllewGyJE7FkKrtXNZqxMmsEmRoDIrv/WHEkgBDzQRVqufYsXZTKjVnAmeFfqIwpmxCR9gzNKQBKjddHDojJ0YZEj+SpkJNFur3iZQGSk0Dz3QGVI/Vb28u/uX1Eu1fuCkP40RjyJaL/EQQHZH512TIJTItpoZQJrm5lbAxlZRpk03BhPD1KfmftCtl56xcbVZK9assjjwcwTGcggPnUIcbaEALGCA8wBM8W3fWo/VivS5bc1Y2cwg/YL19Aq6LjN4=</latexit>

S

<latexit sha1_base64="ubwbK8cGZkWbMLWFFThCwgBxy5s=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo9ELx4hyiOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJYPZpygH9GB5CFn1Fipft8rltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdlr1K+rFdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+ALC9jN8=</latexit>

1

<latexit sha1_base64="AIFvW6HinmBCoCzBmb9oHFRDQ4A=">AAAB6XicdVDLSgNBEOz1GeMr6tHLYBA8hd1got6CXjxGMQ9IQpid9CZDZmeXmVkhLPkDLx4U8eofefNvnCQrqGhBQ1HVTXeXHwuujet+OEvLK6tr67mN/ObW9s5uYW+/qaNEMWywSESq7VONgktsGG4EtmOFNPQFtvzx1cxv3aPSPJJ3ZhJjL6RDyQPOqLHSrUf6haJbcucgC+KVLam43kW1SrzMKkKGer/w3h1ELAlRGiao1h3PjU0vpcpwJnCa7yYaY8rGdIgdSyUNUffS+aVTcmyVAQkiZUsaMle/T6Q01HoS+rYzpGakf3sz8S+vk5jgvJdyGScGJVssChJBTERmb5MBV8iMmFhCmeL2VsJGVFFmbDh5G8LXp+R/0iyXvNNS5aZcrF1mceTgEI7gBDw4gxpcQx0awCCAB3iCZ2fsPDovzuuidcnJZg7gB5y3T/yMjQM=</latexit>

2

<latexit sha1_base64="K7p0SiVKGDm8k7HRFer7dsIUOfc=">AAAB5HicdVBNS8NAEJ3Urxq/qlcvi0XwVJKiVW9FLx4r2A9oQ9lsJ+3azSbsboRS+gu8eFC8+pu8+W/cthFU9MHA470ZZuaFqeDaeN6HU1hZXVvfKG66W9s7u3sld7+lk0wxbLJEJKoTUo2CS2wabgR2UoU0DgW2w/H13G8/oNI8kXdmkmIQ06HkEWfUWOm22i+VvYq3AFkSv2rJmedf1mrEz60y5Gj0S++9QcKyGKVhgmrd9b3UBFOqDGcCZ24v05hSNqZD7FoqaYw6mC4OnZFjqwxIlChb0pCF+n1iSmOtJ3FoO2NqRvq3Nxf/8rqZiS6CKZdpZlCy5aIoE8QkZP41GXCFzIiJJZQpbm8lbEQVZcZm49oQvj4l/5NWteKfVs7K9as8jCIcwhGcgA/nUIcbaEATGCA8wjO8OPfOk/O6bCw4+cQB/IDz9gk+NYuy</latexit>

3

<latexit sha1_base64="M3F3HWaZCY+Bw5KqKDA7S2NbeOs=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgKexGE/UW9OIxAZMIyRJmJ73JmNkHM7NCWPIFXjwo4tVP8ubfOElWUNGChqKqm+4uLxZcadv+sHJLyyura/n1wsbm1vZOcXevraJEMmyxSETy1qMKBQ+xpbkWeBtLpIEnsOONr2Z+5x6l4lF4oycxugEdhtznjGojNU/6xZJdtucgC+JUDKnazkWtRpzMKkGGRr/43htELAkw1ExQpbqOHWs3pVJzJnBa6CUKY8rGdIhdQ0MaoHLT+aFTcmSUAfEjaSrUZK5+n0hpoNQk8ExnQPVI/fZm4l9eN9H+uZvyME40hmyxyE8E0RGZfU0GXCLTYmIIZZKbWwkbUUmZNtkUTAhfn5L/SbtSdk7L1WalVL/M4sjDARzCMThwBnW4hga0gAHCAzzBs3VnPVov1uuiNWdlM/vwA9bbJ6n/jNs=</latexit>

4

<latexit sha1_base64="ZewY0KrdgearNCNFgNkvE4Je9Dw=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgKewGE/UW9OIxAfOAZAmzk95kzOyDmVkhLPkCLx4U8eonefNvnCQrqGhBQ1HVTXeXFwuutG1/WLmV1bX1jfxmYWt7Z3evuH/QVlEiGbZYJCLZ9ahCwUNsaa4FdmOJNPAEdrzJ9dzv3KNUPApv9TRGN6CjkPucUW2k5tmgWLLL9gJkSZyKIVXbuazViJNZJcjQGBTf+8OIJQGGmgmqVM+xY+2mVGrOBM4K/URhTNmEjrBnaEgDVG66OHRGTowyJH4kTYWaLNTvEykNlJoGnukMqB6r395c/MvrJdq/cFMexonGkC0X+YkgOiLzr8mQS2RaTA2hTHJzK2FjKinTJpuCCeHrU/I/aVfKzlm52qyU6ldZHHk4gmM4BQfOoQ430IAWMEB4gCd4tu6sR+vFel225qxs5hB+wHr7BKuDjNw=</latexit>

7

<latexit sha1_base64="N3h7XznkeQV5iCrJAwbqCjIz3BY=">AAAB6HicdVDLSgNBEOz1GeMr6tHLYBA8hd1gEr0FvXhMwDwgWcLspDcZM/tgZlYIS77AiwdFvPpJ3vwbJ8kKKlrQUFR1093lxYIrbdsf1srq2vrGZm4rv72zu7dfODhsqyiRDFssEpHselSh4CG2NNcCu7FEGngCO97keu537lEqHoW3ehqjG9BRyH3OqDZSszYoFO2SvQBZEqdsSMV2LqtV4mRWETI0BoX3/jBiSYChZoIq1XPsWLsplZozgbN8P1EYUzahI+wZGtIAlZsuDp2RU6MMiR9JU6EmC/X7REoDpaaBZzoDqsfqtzcX//J6ifYv3JSHcaIxZMtFfiKIjsj8azLkEpkWU0Mok9zcStiYSsq0ySZvQvj6lPxP2uWSc16qNMvF+lUWRw6O4QTOwIEa1OEGGtACBggP8ATP1p31aL1Yr8vWFSubOYIfsN4+AbAPjN8=</latexit>

8

<latexit sha1_base64="5xTuz2qU7SCffiXNNM0SenTnzZ8=">AAAB6HicdVDLSgNBEOz1GeMr6tHLYBA8hd1gYrwFvXhMwDwgWcLspDcZM/tgZlYIS77AiwdFvPpJ3vwbJ8kKKlrQUFR1093lxYIrbdsf1srq2vrGZm4rv72zu7dfODhsqyiRDFssEpHselSh4CG2NNcCu7FEGngCO97keu537lEqHoW3ehqjG9BRyH3OqDZSszYoFO2SvQBZEqdsSMV2LqtV4mRWETI0BoX3/jBiSYChZoIq1XPsWLsplZozgbN8P1EYUzahI+wZGtIAlZsuDp2RU6MMiR9JU6EmC/X7REoDpaaBZzoDqsfqtzcX//J6ifZrbsrDONEYsuUiPxFER2T+NRlyiUyLqSGUSW5uJWxMJWXaZJM3IXx9Sv4n7XLJOS9VmuVi/SqLIwfHcAJn4MAF1OEGGtACBggP8ATP1p31aL1Yr8vWFSubOYIfsN4+AbGTjOA=</latexit>

5

<latexit sha1_base64="ZKjGio2KsVn9ci2htc7eY06tHOI=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgKewGE/UW9OIxAfOAZAmzk95kzOyDmVkhLPkCLx4U8eonefNvnCQrqGhBQ1HVTXeXFwuutG1/WLmV1bX1jfxmYWt7Z3evuH/QVlEiGbZYJCLZ9ahCwUNsaa4FdmOJNPAEdrzJ9dzv3KNUPApv9TRGN6CjkPucUW2kZnVQLNllewGyJE7FkKrtXNZqxMmsEmRoDIrv/WHEkgBDzQRVqufYsXZTKjVnAmeFfqIwpmxCR9gzNKQBKjddHDojJ0YZEj+SpkJNFur3iZQGSk0Dz3QGVI/Vb28u/uX1Eu1fuCkP40RjyJaL/EQQHZH512TIJTItpoZQJrm5lbAxlZRpk03BhPD1KfmftCtl56xcbVZK9assjjwcwTGcggPnUIcbaEALGCA8wBM8W3fWo/VivS5bc1Y2cwg/YL19Aq0HjN0=</latexit>

6

<latexit sha1_base64="KgAUdW/3mLaJK20vo+YQxwwg49s=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgKewGE/UW9OIxAfOAZAmzk95kzOyDmVkhLPkCLx4U8eonefNvnCQrqGhBQ1HVTXeXFwuutG1/WLmV1bX1jfxmYWt7Z3evuH/QVlEiGbZYJCLZ9ahCwUNsaa4FdmOJNPAEdrzJ9dzv3KNUPApv9TRGN6CjkPucUW2kZm1QLNllewGyJE7FkKrtXNZqxMmsEmRoDIrv/WHEkgBDzQRVqufYsXZTKjVnAmeFfqIwpmxCR9gzNKQBKjddHDojJ0YZEj+SpkJNFur3iZQGSk0Dz3QGVI/Vb28u/uX1Eu1fuCkP40RjyJaL/EQQHZH512TIJTItpoZQJrm5lbAxlZRpk03BhPD1KfmftCtl56xcbVZK9assjjwcwTGcggPnUIcbaEALGCA8wBM8W3fWo/VivS5bc1Y2cwg/YL19Aq6LjN4=</latexit>

S

<latexit sha1_base64="ubwbK8cGZkWbMLWFFThCwgBxy5s=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo9ELx4hyiOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJYPZpygH9GB5CFn1Fipft8rltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdlr1K+rFdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+ALC9jN8=</latexit>

1

<latexit sha1_base64="AIFvW6HinmBCoCzBmb9oHFRDQ4A=">AAAB6XicdVDLSgNBEOz1GeMr6tHLYBA8hd1got6CXjxGMQ9IQpid9CZDZmeXmVkhLPkDLx4U8eofefNvnCQrqGhBQ1HVTXeXHwuujet+OEvLK6tr67mN/ObW9s5uYW+/qaNEMWywSESq7VONgktsGG4EtmOFNPQFtvzx1cxv3aPSPJJ3ZhJjL6RDyQPOqLHSrUf6haJbcucgC+KVLam43kW1SrzMKkKGer/w3h1ELAlRGiao1h3PjU0vpcpwJnCa7yYaY8rGdIgdSyUNUffS+aVTcmyVAQkiZUsaMle/T6Q01HoS+rYzpGakf3sz8S+vk5jgvJdyGScGJVssChJBTERmb5MBV8iMmFhCmeL2VsJGVFFmbDh5G8LXp+R/0iyXvNNS5aZcrF1mceTgEI7gBDw4gxpcQx0awCCAB3iCZ2fsPDovzuuidcnJZg7gB5y3T/yMjQM=</latexit>

2

<latexit sha1_base64="K7p0SiVKGDm8k7HRFer7dsIUOfc=">AAAB5HicdVBNS8NAEJ3Urxq/qlcvi0XwVJKiVW9FLx4r2A9oQ9lsJ+3azSbsboRS+gu8eFC8+pu8+W/cthFU9MHA470ZZuaFqeDaeN6HU1hZXVvfKG66W9s7u3sld7+lk0wxbLJEJKoTUo2CS2wabgR2UoU0DgW2w/H13G8/oNI8kXdmkmIQ06HkEWfUWOm22i+VvYq3AFkSv2rJmedf1mrEz60y5Gj0S++9QcKyGKVhgmrd9b3UBFOqDGcCZ24v05hSNqZD7FoqaYw6mC4OnZFjqwxIlChb0pCF+n1iSmOtJ3FoO2NqRvq3Nxf/8rqZiS6CKZdpZlCy5aIoE8QkZP41GXCFzIiJJZQpbm8lbEQVZcZm49oQvj4l/5NWteKfVs7K9as8jCIcwhGcgA/nUIcbaEATGCA8wjO8OPfOk/O6bCw4+cQB/IDz9gk+NYuy</latexit>

5

<latexit sha1_base64="ZKjGio2KsVn9ci2htc7eY06tHOI=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgKewGE/UW9OIxAfOAZAmzk95kzOyDmVkhLPkCLx4U8eonefNvnCQrqGhBQ1HVTXeXFwuutG1/WLmV1bX1jfxmYWt7Z3evuH/QVlEiGbZYJCLZ9ahCwUNsaa4FdmOJNPAEdrzJ9dzv3KNUPApv9TRGN6CjkPucUW2kZnVQLNllewGyJE7FkKrtXNZqxMmsEmRoDIrv/WHEkgBDzQRVqufYsXZTKjVnAmeFfqIwpmxCR9gzNKQBKjddHDojJ0YZEj+SpkJNFur3iZQGSk0Dz3QGVI/Vb28u/uX1Eu1fuCkP40RjyJaL/EQQHZH512TIJTItpoZQJrm5lbAxlZRpk03BhPD1KfmftCtl56xcbVZK9assjjwcwTGcggPnUIcbaEALGCA8wBM8W3fWo/VivS5bc1Y2cwg/YL19Aq0HjN0=</latexit>

6

<latexit sha1_base64="KgAUdW/3mLaJK20vo+YQxwwg49s=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgKewGE/UW9OIxAfOAZAmzk95kzOyDmVkhLPkCLx4U8eonefNvnCQrqGhBQ1HVTXeXFwuutG1/WLmV1bX1jfxmYWt7Z3evuH/QVlEiGbZYJCLZ9ahCwUNsaa4FdmOJNPAEdrzJ9dzv3KNUPApv9TRGN6CjkPucUW2kZm1QLNllewGyJE7FkKrtXNZqxMmsEmRoDIrv/WHEkgBDzQRVqufYsXZTKjVnAmeFfqIwpmxCR9gzNKQBKjddHDojJ0YZEj+SpkJNFur3iZQGSk0Dz3QGVI/Vb28u/uX1Eu1fuCkP40RjyJaL/EQQHZH512TIJTItpoZQJrm5lbAxlZRpk03BhPD1KfmftCtl56xcbVZK9assjjwcwTGcggPnUIcbaEALGCA8wBM8W3fWo/VivS5bc1Y2cwg/YL19Aq6LjN4=</latexit>

7

<latexit sha1_base64="N3h7XznkeQV5iCrJAwbqCjIz3BY=">AAAB6HicdVDLSgNBEOz1GeMr6tHLYBA8hd1gEr0FvXhMwDwgWcLspDcZM/tgZlYIS77AiwdFvPpJ3vwbJ8kKKlrQUFR1093lxYIrbdsf1srq2vrGZm4rv72zu7dfODhsqyiRDFssEpHselSh4CG2NNcCu7FEGngCO97keu537lEqHoW3ehqjG9BRyH3OqDZSszYoFO2SvQBZEqdsSMV2LqtV4mRWETI0BoX3/jBiSYChZoIq1XPsWLsplZozgbN8P1EYUzahI+wZGtIAlZsuDp2RU6MMiR9JU6EmC/X7REoDpaaBZzoDqsfqtzcX//J6ifYv3JSHcaIxZMtFfiKIjsj8azLkEpkWU0Mok9zcStiYSsq0ySZvQvj6lPxP2uWSc16qNMvF+lUWRw6O4QTOwIEa1OEGGtACBggP8ATP1p31aL1Yr8vWFSubOYIfsN4+AbAPjN8=</latexit>

8

<latexit sha1_base64="5xTuz2qU7SCffiXNNM0SenTnzZ8=">AAAB6HicdVDLSgNBEOz1GeMr6tHLYBA8hd1gYrwFvXhMwDwgWcLspDcZM/tgZlYIS77AiwdFvPpJ3vwbJ8kKKlrQUFR1093lxYIrbdsf1srq2vrGZm4rv72zu7dfODhsqyiRDFssEpHselSh4CG2NNcCu7FEGngCO97keu537lEqHoW3ehqjG9BRyH3OqDZSszYoFO2SvQBZEqdsSMV2LqtV4mRWETI0BoX3/jBiSYChZoIq1XPsWLsplZozgbN8P1EYUzahI+wZGtIAlZsuDp2RU6MMiR9JU6EmC/X7REoDpaaBZzoDqsfqtzcX//J6ifZrbsrDONEYsuUiPxFER2T+NRlyiUyLqSGUSW5uJWxMJWXaZJM3IXx9Sv4n7XLJOS9VmuVi/SqLIwfHcAJn4MAF1OEGGtACBggP8ATP1p31aL1Yr8vWFSubOYIfsN4+AbGTjOA=</latexit>

3

<latexit sha1_base64="M3F3HWaZCY+Bw5KqKDA7S2NbeOs=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgKexGE/UW9OIxAZMIyRJmJ73JmNkHM7NCWPIFXjwo4tVP8ubfOElWUNGChqKqm+4uLxZcadv+sHJLyyura/n1wsbm1vZOcXevraJEMmyxSETy1qMKBQ+xpbkWeBtLpIEnsOONr2Z+5x6l4lF4oycxugEdhtznjGojNU/6xZJdtucgC+JUDKnazkWtRpzMKkGGRr/43htELAkw1ExQpbqOHWs3pVJzJnBa6CUKY8rGdIhdQ0MaoHLT+aFTcmSUAfEjaSrUZK5+n0hpoNQk8ExnQPVI/fZm4l9eN9H+uZvyME40hmyxyE8E0RGZfU0GXCLTYmIIZZKbWwkbUUmZNtkUTAhfn5L/SbtSdk7L1WalVL/M4sjDARzCMThwBnW4hga0gAHCAzzBs3VnPVov1uuiNWdlM/vwA9bbJ6n/jNs=</latexit>

4

<latexit sha1_base64="ZewY0KrdgearNCNFgNkvE4Je9Dw=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgKewGE/UW9OIxAfOAZAmzk95kzOyDmVkhLPkCLx4U8eonefNvnCQrqGhBQ1HVTXeXFwuutG1/WLmV1bX1jfxmYWt7Z3evuH/QVlEiGbZYJCLZ9ahCwUNsaa4FdmOJNPAEdrzJ9dzv3KNUPApv9TRGN6CjkPucUW2k5tmgWLLL9gJkSZyKIVXbuazViJNZJcjQGBTf+8OIJQGGmgmqVM+xY+2mVGrOBM4K/URhTNmEjrBnaEgDVG66OHRGTowyJH4kTYWaLNTvEykNlJoGnukMqB6r395c/MvrJdq/cFMexonGkC0X+YkgOiLzr8mQS2RaTA2hTHJzK2FjKinTJpuCCeHrU/I/aVfKzlm52qyU6ldZHHk4gmM4BQfOoQ430IAWMEB4gCd4tu6sR+vFel225qxs5hB+wHr7BKuDjNw=</latexit>

S

<latexit sha1_base64="ubwbK8cGZkWbMLWFFThCwgBxy5s=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo9ELx4hyiOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJYPZpygH9GB5CFn1Fipft8rltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdlr1K+rFdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+ALC9jN8=</latexit>

S†

<latexit sha1_base64="rgeh4Glb3Yf1un90fRIPUKe0v38=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqexKRY9FLx4r2g9p15LNzrahSXZJskJZ+iu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8IOFMG9f9dgorq2vrG8XN0tb2zu5eef+gpeNUUWjSmMeqExANnEloGmY4dBIFRAQc2sHoeuq3n0BpFst7M07AF2QgWcQoMVZ6uHvshWQwANUvV9yqOwNeJl5OKihHo1/+6oUxTQVIQznRuuu5ifEzogyjHCalXqohIXREBtC1VBIB2s9mB0/wiVVCHMXKljR4pv6eyIjQeiwC2ymIGepFbyr+53VTE136GZNJakDS+aIo5djEePo9DpkCavjYEkIVs7diOiSKUGMzKtkQvMWXl0nrrOrVque3tUr9Ko+jiI7QMTpFHrpAdXSDGqiJKBLoGb2iN0c5L8678zFvLTj5zCH6A+fzB6gxkFM=</latexit>

S†

<latexit sha1_base64="rgeh4Glb3Yf1un90fRIPUKe0v38=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqexKRY9FLx4r2g9p15LNzrahSXZJskJZ+iu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8IOFMG9f9dgorq2vrG8XN0tb2zu5eef+gpeNUUWjSmMeqExANnEloGmY4dBIFRAQc2sHoeuq3n0BpFst7M07AF2QgWcQoMVZ6uHvshWQwANUvV9yqOwNeJl5OKihHo1/+6oUxTQVIQznRuuu5ifEzogyjHCalXqohIXREBtC1VBIB2s9mB0/wiVVCHMXKljR4pv6eyIjQeiwC2ymIGepFbyr+53VTE136GZNJakDS+aIo5djEePo9DpkCavjYEkIVs7diOiSKUGMzKtkQvMWXl0nrrOrVque3tUr9Ko+jiI7QMTpFHrpAdXSDGqiJKBLoGb2iN0c5L8678zFvLTj5zCH6A+fzB6gxkFM=</latexit>

2

<latexit sha1_base64="K7p0SiVKGDm8k7HRFer7dsIUOfc=">AAAB5HicdVBNS8NAEJ3Urxq/qlcvi0XwVJKiVW9FLx4r2A9oQ9lsJ+3azSbsboRS+gu8eFC8+pu8+W/cthFU9MHA470ZZuaFqeDaeN6HU1hZXVvfKG66W9s7u3sld7+lk0wxbLJEJKoTUo2CS2wabgR2UoU0DgW2w/H13G8/oNI8kXdmkmIQ06HkEWfUWOm22i+VvYq3AFkSv2rJmedf1mrEz60y5Gj0S++9QcKyGKVhgmrd9b3UBFOqDGcCZ24v05hSNqZD7FoqaYw6mC4OnZFjqwxIlChb0pCF+n1iSmOtJ3FoO2NqRvq3Nxf/8rqZiS6CKZdpZlCy5aIoE8QkZP41GXCFzIiJJZQpbm8lbEQVZcZm49oQvj4l/5NWteKfVs7K9as8jCIcwhGcgA/nUIcbaEATGCA8wjO8OPfOk/O6bCw4+cQB/IDz9gk+NYuy</latexit>

6

<latexit sha1_base64="KgAUdW/3mLaJK20vo+YQxwwg49s=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgKewGE/UW9OIxAfOAZAmzk95kzOyDmVkhLPkCLx4U8eonefNvnCQrqGhBQ1HVTXeXFwuutG1/WLmV1bX1jfxmYWt7Z3evuH/QVlEiGbZYJCLZ9ahCwUNsaa4FdmOJNPAEdrzJ9dzv3KNUPApv9TRGN6CjkPucUW2kZm1QLNllewGyJE7FkKrtXNZqxMmsEmRoDIrv/WHEkgBDzQRVqufYsXZTKjVnAmeFfqIwpmxCR9gzNKQBKjddHDojJ0YZEj+SpkJNFur3iZQGSk0Dz3QGVI/Vb28u/uX1Eu1fuCkP40RjyJaL/EQQHZH512TIJTItpoZQJrm5lbAxlZRpk03BhPD1KfmftCtl56xcbVZK9assjjwcwTGcggPnUIcbaEALGCA8wBM8W3fWo/VivS5bc1Y2cwg/YL19Aq6LjN4=</latexit>

7

<latexit sha1_base64="N3h7XznkeQV5iCrJAwbqCjIz3BY=">AAAB6HicdVDLSgNBEOz1GeMr6tHLYBA8hd1gEr0FvXhMwDwgWcLspDcZM/tgZlYIS77AiwdFvPpJ3vwbJ8kKKlrQUFR1093lxYIrbdsf1srq2vrGZm4rv72zu7dfODhsqyiRDFssEpHselSh4CG2NNcCu7FEGngCO97keu537lEqHoW3ehqjG9BRyH3OqDZSszYoFO2SvQBZEqdsSMV2LqtV4mRWETI0BoX3/jBiSYChZoIq1XPsWLsplZozgbN8P1EYUzahI+wZGtIAlZsuDp2RU6MMiR9JU6EmC/X7REoDpaaBZzoDqsfqtzcX//J6ifYv3JSHcaIxZMtFfiKIjsj8azLkEpkWU0Mok9zcStiYSsq0ySZvQvj6lPxP2uWSc16qNMvF+lUWRw6O4QTOwIEa1OEGGtACBggP8ATP1p31aL1Yr8vWFSubOYIfsN4+AbAPjN8=</latexit>

8

<latexit sha1_base64="5xTuz2qU7SCffiXNNM0SenTnzZ8=">AAAB6HicdVDLSgNBEOz1GeMr6tHLYBA8hd1gYrwFvXhMwDwgWcLspDcZM/tgZlYIS77AiwdFvPpJ3vwbJ8kKKlrQUFR1093lxYIrbdsf1srq2vrGZm4rv72zu7dfODhsqyiRDFssEpHselSh4CG2NNcCu7FEGngCO97keu537lEqHoW3ehqjG9BRyH3OqDZSszYoFO2SvQBZEqdsSMV2LqtV4mRWETI0BoX3/jBiSYChZoIq1XPsWLsplZozgbN8P1EYUzahI+wZGtIAlZsuDp2RU6MMiR9JU6EmC/X7REoDpaaBZzoDqsfqtzcX//J6ifZrbsrDONEYsuUiPxFER2T+NRlyiUyLqSGUSW5uJWxMJWXaZJM3IXx9Sv4n7XLJOS9VmuVi/SqLIwfHcAJn4MAF1OEGGtACBggP8ATP1p31aL1Yr8vWFSubOYIfsN4+AbGTjOA=</latexit>

5

<latexit sha1_base64="ZKjGio2KsVn9ci2htc7eY06tHOI=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgKewGE/UW9OIxAfOAZAmzk95kzOyDmVkhLPkCLx4U8eonefNvnCQrqGhBQ1HVTXeXFwuutG1/WLmV1bX1jfxmYWt7Z3evuH/QVlEiGbZYJCLZ9ahCwUNsaa4FdmOJNPAEdrzJ9dzv3KNUPApv9TRGN6CjkPucUW2kZnVQLNllewGyJE7FkKrtXNZqxMmsEmRoDIrv/WHEkgBDzQRVqufYsXZTKjVnAmeFfqIwpmxCR9gzNKQBKjddHDojJ0YZEj+SpkJNFur3iZQGSk0Dz3QGVI/Vb28u/uX1Eu1fuCkP40RjyJaL/EQQHZH512TIJTItpoZQJrm5lbAxlZRpk03BhPD1KfmftCtl56xcbVZK9assjjwcwTGcggPnUIcbaEALGCA8wBM8W3fWo/VivS5bc1Y2cwg/YL19Aq0HjN0=</latexit>

1

<latexit sha1_base64="AIFvW6HinmBCoCzBmb9oHFRDQ4A=">AAAB6XicdVDLSgNBEOz1GeMr6tHLYBA8hd1got6CXjxGMQ9IQpid9CZDZmeXmVkhLPkDLx4U8eofefNvnCQrqGhBQ1HVTXeXHwuujet+OEvLK6tr67mN/ObW9s5uYW+/qaNEMWywSESq7VONgktsGG4EtmOFNPQFtvzx1cxv3aPSPJJ3ZhJjL6RDyQPOqLHSrUf6haJbcucgC+KVLam43kW1SrzMKkKGer/w3h1ELAlRGiao1h3PjU0vpcpwJnCa7yYaY8rGdIgdSyUNUffS+aVTcmyVAQkiZUsaMle/T6Q01HoS+rYzpGakf3sz8S+vk5jgvJdyGScGJVssChJBTERmb5MBV8iMmFhCmeL2VsJGVFFmbDh5G8LXp+R/0iyXvNNS5aZcrF1mceTgEI7gBDw4gxpcQx0awCCAB3iCZ2fsPDovzuuidcnJZg7gB5y3T/yMjQM=</latexit>

3

<latexit sha1_base64="M3F3HWaZCY+Bw5KqKDA7S2NbeOs=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgKexGE/UW9OIxAZMIyRJmJ73JmNkHM7NCWPIFXjwo4tVP8ubfOElWUNGChqKqm+4uLxZcadv+sHJLyyura/n1wsbm1vZOcXevraJEMmyxSETy1qMKBQ+xpbkWeBtLpIEnsOONr2Z+5x6l4lF4oycxugEdhtznjGojNU/6xZJdtucgC+JUDKnazkWtRpzMKkGGRr/43htELAkw1ExQpbqOHWs3pVJzJnBa6CUKY8rGdIhdQ0MaoHLT+aFTcmSUAfEjaSrUZK5+n0hpoNQk8ExnQPVI/fZm4l9eN9H+uZvyME40hmyxyE8E0RGZfU0GXCLTYmIIZZKbWwkbUUmZNtkUTAhfn5L/SbtSdk7L1WalVL/M4sjDARzCMThwBnW4hga0gAHCAzzBs3VnPVov1uuiNWdlM/vwA9bbJ6n/jNs=</latexit>

4

<latexit sha1_base64="ZewY0KrdgearNCNFgNkvE4Je9Dw=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgKewGE/UW9OIxAfOAZAmzk95kzOyDmVkhLPkCLx4U8eonefNvnCQrqGhBQ1HVTXeXFwuutG1/WLmV1bX1jfxmYWt7Z3evuH/QVlEiGbZYJCLZ9ahCwUNsaa4FdmOJNPAEdrzJ9dzv3KNUPApv9TRGN6CjkPucUW2k5tmgWLLL9gJkSZyKIVXbuazViJNZJcjQGBTf+8OIJQGGmgmqVM+xY+2mVGrOBM4K/URhTNmEjrBnaEgDVG66OHRGTowyJH4kTYWaLNTvEykNlJoGnukMqB6r395c/MvrJdq/cFMexonGkC0X+YkgOiLzr8mQS2RaTA2hTHJzK2FjKinTJpuCCeHrU/I/aVfKzlm52qyU6ldZHHk4gmM4BQfOoQ430IAWMEB4gCd4tu6sR+vFel225qxs5hB+wHr7BKuDjNw=</latexit>

?

<latexit sha1_base64="YcIOB+nB1irHUQzMTizB/XITxyQ=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgKewGE/Vk0IvHBEwiJEuYnfQmY2YfzMwKYckXePGgiFc/yZt/4yRZQUULGoqqbrq7vFhwpW37w8otLa+sruXXCxubW9s7xd29tooSybDFIhHJW48qFDzEluZa4G0skQaewI43vpr5nXuUikfhjZ7E6AZ0GHKfM6qN1LzoF0t22Z6DLIhTMaRqO+e1GnEyqwQZGv3ie28QsSTAUDNBleo6dqzdlErNmcBpoZcojCkb0yF2DQ1pgMpN54dOyZFRBsSPpKlQk7n6fSKlgVKTwDOdAdUj9dubiX953UT7Z27KwzjRGLLFIj8RREdk9jUZcIlMi4khlElubiVsRCVl2mRTMCF8fUr+J+1K2TkpV5uVUv0yiyMPB3AIx+DAKdThGhrQAgYID/AEz9ad9Wi9WK+L1pyVzezDD1hvn7wvjOc=</latexit>

=

<latexit sha1_base64="CPScEWpI0n5AZgjPBDjU+nQw9FQ=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgKewGE/UgBL14TMAkQrKE2UlvMmb2wcysEJZ8gRcPinj1k7z5N06SFVS0oKGo6qa7y4sFV9q2P6zc0vLK6lp+vbCxubW9U9zda6sokQxbLBKRvPWoQsFDbGmuBd7GEmngCex446uZ37lHqXgU3uhJjG5AhyH3OaPaSM2LfrFkl+05yII4FUOqtnNeqxEns0qQodEvvvcGEUsCDDUTVKmuY8faTanUnAmcFnqJwpiyMR1i19CQBqjcdH7olBwZZUD8SJoKNZmr3ydSGig1CTzTGVA9Ur+9mfiX1020f+amPIwTjSFbLPITQXREZl+TAZfItJgYQpnk5lbCRlRSpk02BRPC16fkf9KulJ2TcrVZKdUvszjycACHcAwOnEIdrqEBLWCA8ABP8GzdWY/Wi/W6aM1Z2cw+/ID19gm5J4zl</latexit>

Figure 9.2: In this figure the direction of lines define left- or right- moving particles, and grey
patches denotes a sum over a complete basis of states. A multiparticle crossing equation has been
recently conjectured in [40]. First row: for example, the first arrow describes the (12) ↔ (56)
crossing in a 4 → 4 process. From the point of view of jets, this is just the standard 2 → 2
crossing. Indeed, since there is no left-left or right-right scattering in this theory, the crossing
equation simplifies, as described in the second arrow. On the other hand, when crossing a single
particle from inside a jet, the proposed crossing equation of [40] is given by the second row, and
is a highly non-linear and non-trivial constrain.

Of course, we can’t run from the central problem forever. Particle production is often
the dominant outcome when particles are scattered. Except in the very particular case of
flux tubes - soft massless two dimensional scattering - there are no known viable strategies
to bootstrap multiparticle amplitudes. New ideas are urgent. Most likely one must develop
techniques to bootstrap with limited knowledge on analyticity properties, much like in the
jet’s scenario where we used a single-variable dispersion on the total energy, but did not
appeal to sub-energy analyticity. If this ancient problem is not overcome, the S-matrix
bootstrap is likely to be saturated and die once again.

Before moving on to future questions beyond the S-matrix bootstrap, it is worth to
mention a much less explored frontier which is to consider scattering in the presence of
long-range topological order. It seems reasonable to expect that asymptotic states carrying
topological lines are well-defined, but the standard crossing and analyticity assumptions
are modified [32, 33, 223]. Uncovering the general structure would open another path to
explore the very rich dynamics of non-abelian gauge theories coupled to matter which often
exhibit rich IR topological phases [224].

In the case of a non-trivial IR CFT, a description of the quantum field theory in terms
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of a basis of asymptotic particles is not available, and particle detectors are not good
observables. On the other hand, nothing prevents us from preparing a state in the past,
evolve it, and perform more general asymptotic measurements at future infinity. Requiring
that the outcome of these Lorentzian measurements are consistent with a microscopic
dynamics that is causal, local and unitary might reveal constrains that are deeply hidden
in more microscopic definitions of the quantum field theory.

It is therefore crucial to uncover the space of asymptotic “detectors”. Restricting to
the IR CFT first, a minimal set of detectors are integrals of local operators at I +. But
that is certainly not a complete basis, as can be seen from the OPE [49, 50] - one needs
to add at least the light-ray operators of [52]. What else is needed to have a systematic
description of these objects? A related question is to understand what controls correlation
functions in various kinematical regions. For example, the leading contributions in the
Regge limit are given by light-ray operators. Is there a physical interpretation for the
complete expansion of correlators in the Regge sheet [225]? What about more complicated
Lorentzian kinematics that can be accessed in higher-point correlators? Answering this
questions should clarify the structure of non-local operators in CFT and beyond. As usual,
we expect that planar N = 4 SYM shall serve as a great laboratory to explore and test
these ideas [56]. Of course, non-local operators are interesting regardless of what they can
do for local correlators, and are effectively terra incognita compared to our understanding
of local operators. The questions raised above should thus apply to and make contact with
more general conformal defects investigations.

A particular type of defects relevant to this thesis are integrable line defects. For
example, the transfer T and Baxter Q operators can be constructed explicitly in minimal
2D CFTs [226,227], realizing standard TQ and QQ relations13. In integrable planar gauge
theories, such as N = 4 SYM and its dual string theory, the construction of such operators
remains elusive. In the case of 2D lattice theories whose continuum limit are integrable 2D
CFTs the corresponding T and Q operators have recently been constructed from the point
of view of 4D Chern-Simons theory [231–234]. It would be fascinating if this strategy could
provide a operatorial derivation of the quantum spectral curve in planar gauge theories.

Possibly even more fascinating would be if this construction could shed light on how
the integrability structure simplifies at strong coupling, making manifest the emergence of
locality in the bulk. Even though integrability computations reproduce the correct results
in this limit, it is often at a great cost and locality seems to be something that can only
be observed a posteriori, once the results are at hand. Understanding whether there is a
better way of thinking about the finite coupling integrability structure which clarify the
relevant degrees of freedom at strong coupling could open the path to systematically study
very quantum short strings in AdS/CFT.

Hopefully a top-down approach to the separation of variables framework for correlation
functions will take off before any of these bottom-up approaches catch up. One direct
frontier is to promote the weak coupling structure of chapter 7 to a psu(2, 2|4) covariant
framework. It is expected that some of the complicated structure that seem to be emerg-

13Let us point out that these structure allow for a description of these CFTs directly in terms of scattering
states [228–230]. This directly contradicts the previous lore statement that this should not be possible.
When can a CFT admit a scattering structure? Is this stricly limited to minimal models in 2D, or is this
just the simplest case we have uncovered?

158



ing descends from privileging certain Q-functions associated to the rank-one sectors under
consideration. Covariantizing the framework should reveal if this is correct and force us
to exploit the full super-symmetry of the theory, which proven to be crucial both in the
spectral problem as well as in the hexagonalization. It should also ease merging the sepa-
ration of variables program with the quantum spectral curve, and point the way to finite
coupling.

As in any thesis conclusion discussing solving N = 4 SYM, I am legally obliged to
mention how Onsager’s solution of the 2D Ising model was crucial in the understanding
of phase transitions, renormalization group, lattice field theories and so forth. The hope
is that N = 4 should play this role for gauge, conformal and string theory. In particular,
Onsager’s solution inspired numerical methods that allowed for the solution of more general
non-integrable models. In the case of the holographic strings describing N = 4 SYM,
knowledge of the “long string” S-matrix was enough to compute the spectrum of short
closed strings from the thermodynamic Bethe ansatz. Can we learn the right lessons from
this computation, bootstrap the long string S-matrix in pure Yang-Mills, and numerically
recover the spectrum of glueballs? And they lived happily ever after.
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Appendix A

Appendix: The S-matrix Bootstrap:
Multiple Amplitudes

A.1 Two dimensions and higher dimensional kinematics

The Mandelstam plane provides us with a very useful depiction of the (real sections of the)
interrelations between the three Mandelstam variables u, s, t. The first important object
in this plane is the Mandelstam triangle.

Consider a two-to-two process involving particles with momenta pa, pb, pc, pd associated
to particles of mass ma,mb,mc,md. We define the three Mandelstam invariants s = (pa +
pb)

2, t = (pa + pc)
2 and u = (pa + pd)

2. If particles pa, pb are the two incoming particles
then

√
s is the centre of mass energy of the scattering process. The same is true if the

incoming particles are particles pc, pd. In either of these cases the process can only be
physical if we have enough energy to produce both the initial and final state, so for s ≥
max((ma+mb)

2, (mc+md)
2). Of course, the same scattering amplitudes can describe other

channels.1 If pa, pc (or pb, pd) are the two incoming particles then
√
t is the centre of mass

energy of the scattering process and similarly for u so the physical conditions in those cases
would read t ≥ max((ma +mc)

2, (mb +md)
2) and u ≥ max((ma +md)

2, (mb +mc)
2). The

three inequalities are depicted by the shaded pink regions in figure A.1. The white region
is the Mandelstam triangle.

To be in a physical region we thus need to be in the pink region. This is necessary but
not sufficient. We need to have enough energy but we also need to scatter at a real angle.
For instance for incoming particles pa, pb we can easily compute the scattering angle to find

cos(θab) =
(s+m2

a −m2
b)(s+m2

c −m2
d) + 2s(t−m2

a −m2
c)√

((s−m2
a −m2

b)
2 − 4m2

am
2
b)((s−m2

c −m2
d)

2 − 4m2
cm

2
d)
. (A.1)

For any left hand side between −1 and +1 corresponding to a real angle, and for any s

1To describe other channels we can either swap the masses and always keep s to the be the center
of mass energy (as in the main text) or leave the masses untouched but reinterpret which Mandelstam
invariant corresponds to the center of mass energy (as in this appendix). It is very simple (and very
instructive) to go between these active/passive viewpoints.
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Figure A.1: The Mandelstam triangle is the region where all Mandelstam variables are below
their corresponding two-particle threshold: s < max((ma +mb)

2, (mc +md)
2) ∧ t < max((ma +

mc)
2, (mb +md)

2) ∧ u < max((ma +md)
2, (mb +mc)

2) represented by the white region in this
figure. (The y axis is s and the x axis is given by x = (s + 2t −m2

a −m2
b −m2

c −m2
d)/
√
3 as in

the next figures.)

in the physical range this equation determines a physical t. (Of course, u = m2
a + m2

b +
m2
c +m2

d− s− t is automatically fixed.) The set of physical s and t determined in this way
determine the physical region in the s-channel. The other channels are treated similarly
with

cos(θac) = RHS of (A.1)mb↔mc, s↔t , cos(θad) = RHS of (A.1)mb↔md, s↔u (A.2)

If all masses are equal (to m) then (A.1) reduces to the famous relation

cos(θ) = 1− 2t

4m2 − s . (A.3)

so that the physical region in the s-channel is simply s > 4m2 and 4m2 − s ≤ t ≤ 0
represented by the top blue region in figure A.2a. In two dimensions the angle ought to be
0 or π so that we have either t = 0 or t = 4m2− s, i.e. u = 0. These two conditions (t = 0
and u = 0) are equivalent if the external particles are indistinguishable so in that case we
can pick either; in the main text we took u = 0. Note that these two conditions are nothing
but the boundary of the darker blue region. Similarly we could study all other channels
which we can simply obtain by relabelling the Mandelstam variables in (A.3). The two
extra physical regions are the other two blue regions in the same figure A.2a. Note that
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Figure A.2: (a) Physical regions (in dark blue) for a two-to-two process with all external particles
of identical mass. The boundary of these regions correspond to scattering angle 0 or π and can
thus also be identified with the physical scattering ‘regions” (or better scattering lines) in two
dimensions. (b) Physical regions for a process where the masses are equal in pairs. The darker
blue region is the process m1m1 → m2m2 while the two lighter regions (which are equivalent for
identical particles) correspond to the m1m2 → m1m2 channels. The boundary of these regions
are again the two dimensional physical lines. The boundaries of the lighter blue regions are not
identical: one corresponds to forward scattering; the other to backward scattering.

the boundary of all these blue regions can be written concisely as stu = 0 which is nothing
but the constraint obtained in the main text from the two dimensional constraint (2.9) and
represented by the dashed lines in figure A.2a.

Finally, we come to the more interesting case where the external masses are only pair-
wise equal: ma = mb = m1 and mc = md = m2. This same configuration can describe the
11 → 22 process (with

√
s being the centre of mass energy), and the 12 → 12 processes

(with
√
t being the centre of mass energy). For the first case we use (A.1) to get

cos(θ11→22) =
−2m2

1 − 2m2
2 + s+ 2t√

(s− 4m2
1) (s− 4m2

2)
. (A.4)

The physical region corresponding to −1 ≤ cos θ11→22 ≤ +1 is now a more interesting
curved region, represented by the darker blue region in figure A.2b. Again, in two dimen-
sions we can only have backward or forward scattering so t must saturate one of these
inequalities. If the particles of the same mass are indistinguishable then both solutions are
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equivalent as before. We can thus take θ11→22 = 0 without loss of generality leading to

t, u = m2
1 +m2

2 −
s

2
± 1

2

√
(s− 4m2

1)(s− 4m2
2) . (A.5)

and reproduce in this way the results below (2.11) in the main text. In the t-channel
particles ma = m1,mc = m2 are incoming so we are scattering a odd particle against an
even particle. Then we use the first relation in (A.2) which now reads

cos(θ12→12) = 1 +
2ts

−2m2
1 (m

2
2 + t) + (m2

2 − t) 2 +m4
1

(A.6)

Note that in our convention it is
√
t (and not

√
s) who is the center of mass energy in this

channel.2 The physical region corresponding to | cos(θ12→12)| ≤ 1 is now represented by
the lighter blue region in figure A.2b. The two dimensional conditions that the angle is 0
or π are now quite different. The former corresponds to forward scattering and is obtained
by s = 0 (obtained by equating the RHS of (A.6) to +1) while the later corresponds to
backward scattering and yields the more involved relation

s = 2
(
m2

1 +m2
2

)
− t− (m2

1 −m2
2)

2

t
(A.7)

(obtained by equating the RHS of (A.6) to −1.) Note that this relation is nothing but
(A.5) if we solve for s. In other words, these two configurations are simply related by
crossing symmetry s↔ t.

To summarize: the boundary of the physical regions are now given by the black solid
line and by the black dashed curve in figure A.2b. Crossing u↔ t at s = 0 relates the left to
the right of the straight line – leading to condition (2.19). Crossing symmetry also relates
the top to the bottom branch of the hyperbolic looking curve – reflected in equation (2.20).
In two dimensions these two curves (the hyperbola and the straight line) are independent
while in higher dimensions they are smoothly connected (by moving in angle space).

A.2 Unitarity and final state probabilities

The S-matrix is defined by the expansion of in-states in terms of out-states

|A⟩in =
∑

B

SA→B|B⟩out . (A.8)

The in-states and the out-states are both a complete basis of the Hilbert space. Let us
start by discussing the physical meaning of the diagonal unitarity equations (2.22) and
(2.24). These follow from the statement that the state |A⟩in above is normalized. However,
due to the continuum of states this is a bit subtle. The trick is to contract the state with

2Recall footnote 1 when comparing the results that follow to the main text.
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itself but with different momenta

in⟨A′|A⟩in =
∑

B

∑

B′

SA→BS
∗
A′→B′ out⟨B′|B⟩out . (A.9)

Here, the state |A′⟩in represents a state with the same particle content but different mo-
menta. We use the standard normalization for the inner products:

out⟨C|B⟩out = in⟨C|B⟩in = δB,C
∏

i∈B

2Ei2πδ(p
B
i − pCi ) , (A.10)

where the product runs over each particle in the state |B⟩in. Unitarity then reads

1 =
∑

B

|SA→B|2JA,B , (A.11)

where JA,B is the jacobian defined by

out⟨B′|B⟩out = JA,B in⟨A′|A⟩in . (A.12)

The natural physical interpretation is that

PA→B = |SA→B|2JA,B (A.13)

is the probability of the in-state |A⟩in end up in the out-state |B⟩out.
For two particle states |A⟩in = |12⟩in and |B⟩out = |34⟩out, equation (A.12) reduces to

E3E4δ(p3 − p′3)δ(p4 − p′4) = J12,34E1E2δ(p1 − p′1)δ(p2 − p′2) , (A.14)

with Ei =
√
m2
i + p2i and

p1 + p2 = p3 + p4 , E1 + E2 = E3 + E4 =
√
s , (A.15)

p′1 + p′2 = p′3 + p′4 , E ′
1 + E ′

2 = E ′
3 + E ′

4 . (A.16)

This gives

J12,34 =

√
s− (m3 −m4)2

√
s− (m3 +m4)2√

s− (m1 −m2)2
√
s− (m1 +m2)2

=
ρ212
ρ234

. (A.17)

We conclude that, for two particle states, the transition probabilities are given by

P12→34 = |S12→34|2
ρ212
ρ234

. (A.18)

For example, for the initial state |11⟩in, we can write

|S11→11|2 + |S11→22|2
√
s− 4m2

2√
s− 4m2

1

= 1− P11→(N≥3 particles) . (A.19)
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This equation is equivalent to (2.22) in the energy range

max(2m1, 2m2) <
√
s < min(3m2, 2m1 +m2) (A.20)

where only 2 particle states are available. To show this we contract (A.8) with a generic
out-state out⟨C|, to find

out⟨C|A⟩in =
∑

B

SA→B out⟨C|B⟩out , (A.21)

and use the standard definition of the amplitude M :

out⟨C|A⟩in = in⟨C|A⟩in + i(2π)2δ(2)(PC − PA)MA→C , (A.22)

where PA denotes the total momentum of the state |A⟩in. This relates S with M . In the
particular case of two particle states one finds

S12→34 = δ12,34 +
iM12→34

2
√
s− (m3 −m4)2

√
s− (m3 +m4)2

= δ12,34 + iρ234M12→34 , (A.23)

where the first term is present (and equal to 1) if and only if the initial and final states are
the same. This allows us to rewrite (A.19) in terms of M ,

2ImM11→11 = ρ211|M11→11|2 + ρ222|M11→22|2 +
P11→(N≥3 particles)

ρ211
, (A.24)

which should be compared with (2.22). Notice that the physical derivation given here is
not valid for 2min(m1,m2) <

√
s < 2max(m1,m2) because the two particle state of the

heavier particle is not available. This is the regime of extended unitarity where we must
use (2.22).

There is also a more intuitive derivation of the full matrix form of the unitarity con-
straints (2.27). Consider the Z2 even sector for simplicity. The matrix of inner products
of the states {|11⟩in, |22⟩in, |11⟩out, |22⟩out}:




|11⟩in |22⟩in |11⟩out |22⟩out
in⟨11| in⟨11|11⟩in in⟨11|22⟩in in⟨11|11⟩out in⟨11|22⟩out
in⟨22| in⟨22|11⟩in in⟨22|22⟩in in⟨22|11⟩out in⟨22|22⟩out
out⟨11| out⟨11|11⟩in out⟨11|22⟩in out⟨11|11⟩out out⟨11|22⟩out
out⟨22| out⟨22|11⟩in out⟨22|22⟩in out⟨22|11⟩out out⟨22|22⟩out


 (A.25)

must be positive semi-definite. In fact, for the range of energies (A.20) where there are
only two particle states, the rank of this matrix must be 2 because both the in and the out
states are complete basis. This is a very intuitive way to derive the unitary constraints.
However, one must be careful with Jacobian factors that relate different delta-functions.
Factoring out in⟨11|11⟩in and using (A.8) and (A.12), we can define a positive semi-definite
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matrix (without delta-functions)




|11⟩in |22⟩in |11⟩out |22⟩out
⟨11|in 1 0 S∗

11→11
ρ211
ρ222
S∗
11→22

⟨22|in 0
ρ211
ρ222

S∗
22→11

ρ211
ρ222
S∗
22→22

⟨11|out S11→11 S22→11 1 0

⟨22|out ρ211
ρ222
S11→22

ρ211
ρ222
S22→22 0

ρ211
ρ222




(A.26)

It is convenient to rescale the states |22⟩ → ρ22
ρ11
|22⟩ so that all diagonal entries become 1.

This leads to the following positive semi-definite matrix:

V =




|11⟩in ρ22
ρ11
|22⟩in |11⟩out ρ22

ρ11
|22⟩out

⟨11|in 1 0 S∗
11→11

ρ11
ρ22
S∗
11→22

ρ22
ρ11
⟨22|in 0 1 ρ22

ρ11
S∗
22→11 S∗

22→22

⟨11|out S11→11
ρ22
ρ11
S22→11 1 0

ρ22
ρ11
⟨22|out ρ11

ρ22
S11→22 S22→22 0 1


 (A.27)

Notice that using (A.23), the 4× 4 matrix V can be written as

V =

[
I S†

S I

]
, S = I+ iρMρ (A.28)

whereM and ρ are the 2×2 matrices defined in (2.27). We will now show that the condition
V ⪰ 0 is equivalent to (2.27) for

√
s > 2max(m1,m2). First notice that the eigenvalues of

the hermitian matrix I − V take the form (−λ2,−λ1, λ1, λ2).3 Then, the condition V ⪰ 0
implies that λ2i < 1. On the other hand, if we compute explicitly the square of I − V, we
find

(I− V)2 =
[
S†S 0
0 SS†

]
. (A.29)

Therefore, the eigenvalues of S†S must be less than 1. Equivalently, we can say that

I− S†S = I− (I− iρM†ρ)(I+ iρMρ) = ρ
(
2ImM−M†ρ2M

)
ρ ⪰ 0 (A.30)

and (2.27) follows.4 In the extended unitarity region 2min(m1,m2) <
√
s < 2max(m1,m2)

this derivation does not apply but we can still use (2.27).

A.2.1 Bounding ImM11→22

The discontinuity of the amplitude M11→22 does not have well defined sign. Furthermore,
in the region 2min(m1,m2) <

√
s < 2max(m1,m2) below the physical regime, one could

worry that the discontinuity could be very large and lead to screening. However, the

3It is easy to see that the characteristic polynomial det(I− V− xI) is an even function of x.
4If a matrix ρXρ ⪰ 0 then X ⪰ 0. This follows from the fact that if u†ρXρu ≥ 0 for any vector u then

v†Xv ≥ 0 for any vector v (just choose u = ρ−1v).
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generalized unitarity equations (2.22)-(2.24) forbid this phenomena in the range of masses
we consider.

For 2min(m1,m2) <
√
s < 2max(m1,m2), equations (2.22-2.24) reduce to

2ImM11→11 = ρ2ℓℓ |M11→ℓℓ|2 (A.31)

2ImM11→22 = ρ2ℓℓM22→ℓℓM
∗
11→ℓℓ (A.32)

2ImM22→22 = ρ2ℓℓ |M22→ℓℓ|2 (A.33)

where the label ℓ = 1 or ℓ = 2 stands for the lightest particle. Taking the modulus square
of equation (A.32) and using the other two equations, we find

|ImM11→22|2 = ImM11→11ImM22→22 (A.34)

Therefore the size of ImM11→22 is related to the positive discontinuities ImM11→11 and
ImM22→22, which for this reason are bounded. In fact, in our numerical procedure we
impose unitarity as the set of inequalities (2.27), which in particular implies

ImM ⪰ 0 . (A.35)

This leads to

det ImM ≥ 0 ⇔ |ImM11→22|2 ≤ ImM11→11ImM22→22 (A.36)

which bounds ImM11→22 in our setup.

A.2.2 Phase shifts

In the Z2 even sector, it is trivial to define diagonal phase shifts

S11→11(s) = e2iδ11(s) , S22→22(s) = e2iδ22(s) . (A.37)

The Z2 odd sector is slightly more interesting. In this sector, it is convenient to use states
of definite parity,

|12⟩± =
1√
2
(|12⟩ ± |21⟩) . (A.38)

Then, we define the phase shifts by

e2iδ
±
12 ≡ ±

out⟨12|12⟩±in = SForward
12→12 ± SBackward

12→12 = 1 + iρ212
(
MForward

12→12 ±MBackward
12→12

)
. (A.39)

In our numerical algorithm, we impose unitarity in the odd sector by the following
positive semi-definite condition

2ImM̃ ⪰ ρ212M̃†M̃, M̃ =

[
MForward

12→12 MBackward
12→12

MBackward
12→12 MForward

12→12

]
, s > (m1 +m2)

2 . (A.40)

It is instructive to see what this implies for the phase shifts δ±12. Using (A.39), we conclude
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that ∣∣∣e2iδ±12(s)
∣∣∣
2

= 1− ρ212 (a± b) , (A.41)

where [
a b
b a

]
= 2ImM̃− ρ212M̃†M̃ ⪰ 0 . (A.42)

Thus |b| ≤ a and we recover the usual unitarity inequality for the phase shifts

∣∣∣e2iδ±12(s)
∣∣∣
2

≤ 1 , s > (m1 +m2)
2 . (A.43)

A.3 Analytic upper bound on g2222

The goal of this appendix is to prove that (2.4) is the amplitude with maximal coupling
g2222 compatible with crossing symmetry and unitarity. To this end, it is convenient to
define

q(s) = −S22→22(s)
h22(s)− h22(m2

2)

h22(s) + h22(m2
2)

h22(s)− h22(4m2
1)

h22(s) + h22(4m2
1)

(A.44)

such that
q(s) = q(4m2

2 − s) , (A.45)

|q(s)|2 ≤ 1 , s > 4m2
2 , (A.46)

and

q(m2
2) =

g2222

(√
3m2

2 − 4m1

√
m2

2 −m2
1

)2

12
√
3m4

2 (4m
2
1 − 3m2

2) (4m
2
1 −m2

2)
. (A.47)

Furthermore, q(s) is analytic in the s-plane minus the s-channel cut (4m2
1,+∞) and the

t-channel cut (−∞, 4m2
2 − 4m2

1). In the extended unitarity region 4m2
1 > s > 4m2

2, we have
5

Im q(s) = −ImM22→22(s)

2h22(s)

h22(s)− h22(m2
2)

h22(s) + h22(m2
2)

h22(s)− h22(4m2
1)

h22(s) + h22(4m2
1)
≤ 0 , (A.48)

where we assumed m2
1 < m2

2 <
4
3
m2

1. We conclude that maximizing g2222 is equivalent to
maximizing q(m2

2) subject to q(s) = q(4m2
2 − s), Im q(s) ≤ 0 for 4m2

1 > s > 4m2
2 and

|q(s)|2 ≤ 1 for s > 4m2
2.

To prove that the optimal solution is given by q(s) = 1 it is useful to change to the
coordinate

z(s) =
h22(m

2
2)− h22(s)

h22(m2
2) + h22(s)

, (A.49)

such that the unit disk |z| < 1 covers (the half Re s > 2m2
2 of) the physical sheet (see

figure 1 of [10] for more details). In these coordinates, the optimization problem translates
to maximizing q(z = 0) subject to |q(z)| ≤ 1 for |z| = 1 and Im q(z) ≤ 0 for 0 < z(4m2

1) ≡
z0 < z < 1, with q(z) analytic on the unit disk minus the cut from z0 to 1. Then Cauchy’s

5Recall that S22→22(s) = 1 + M22→22(s)
2h22(s)

.
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theorem leads to

q(0) =
1

2πi

∮

0

dz

z
q(z) =

1

π

∫ 1

z0

dz

z
Im q(z) +

1

2π

∫ 2π

0

dθ q(z = eiθ) . (A.50)

Clearly, the optimal solution is given by q(z) = 1 (and Im q(z) = 0 inside the unit disk).

A.4 3D Plots

Figure A.3 presents the numerical results for the maximum value of g112 for each mass
ratio m2/m1 and for each coupling ratio α = g222/g112. By changing axes and looking at
different sections we obtain figures 2.8 and 2.9 from the main text. Many of its features
were discussed in section 2.3.2. The black and red surface correspond to the bounds coming
from diagonal processes and are, respectively, the translated versions of the horizontal and
vertical solid lines in figure 2.8.

Figure A.3 has a ridge where the coupling g112 is maximal for each mass ratio. That
maximal value set an upper bound for the question: how big can the coupling g112 be in a
Z2 symmetric theory with only two stable particles? In figure 2.2 we depict this maximum
gmax
112 (m2/m1) (a similar analysis can be done for g222, leading to figure 2.3). We see that
this maximal coupling approaches the analytic bound derived from the diagonal 12 → 12
component as the mass approaches the boundary of the mass range (2.1) and is otherwise
significantly stronger, specially when the particles are mass degenerate where we observe
a nice kink feature in figure 2.2.

This kink has a cute geometrical interpretation in the full 3d plot in figure A.3: The top
of the ridge meets a valley at m1 = m2. The valley is a kink for any α. For equal masses
there is no extended unitarity region and that renders the numerics way more manageable.
This is why we can afford to have so many points along the valley as clearly seen in the
figure.

There is one more motivation for resolving this valley region very finely: It is the
natural place to look for interesting physical theories. Indeed, each optimal S-matrix in
the surface of figure A.3 saturates the extended unitarity equations (2.22-2.26). This means
that the scattering of two particles of type 1 or 2 can never lead to multiparticle production.
Processes such as 11→ 222 are forbidden. When dealing with 2D S-matrices, in particular
extremal examples saturating unitarity such as the ones stemming from this numerical
computation, we are commanded to look for integrable field theories. For m2 ̸= m1, these
are only possible ifM11→22 =MBackward

12→12 = 0. It turns out that no point in the surface (A.3)
satisfies this condition.6 This leaves the possibility of having physical theories along the
equal mass line m2 = m1. This line is an one-dimensional kink in the maximal coupling
surface described in detail in section 2.3.3.

6This is not an accident, we knew this to be the case a priori since this could only happen if the bound
state poles in these amplitudes collided an cancelled or if some extra Landau poles were present. This is
not a possibility in the mass range (2.1).
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Figure A.3: Bounds on g2112 following from the multiple amplitudes analysis, as a function of α
and m2/m1. These bounds should hold for any Z2 symmetric quantum field theory with two
particles in the spectrum, 1 being odd and 2 being even. They improve the bounds derived from
individual amplitudes, corresponding to the red and black surfaces. As can be seen from the
various angles (a)-(d), the bound surface has many interesting features that are described in the
main text.

A.5 Screening

A.5.1 Invisibility Cloak Toy Model

In this appendix we highlight the importance of not leaving any densities unconstrained
as they can lead to very efficient screening thus invalidating any possible bounds. To this
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Figure A.4: Absolute value of the function f(x) defined in the main text. The pole at the origin
can be screened anywhere to any desired accuracy by a simple density in the orange region. The
price to pay is that the density there is pretty extreme, fluctuating wildly and of huge magnitude.
If we have regions where amplitude discontinuities are unbounded, we might expect such screening
phenomena to produce such strange behaviour at unphysical regions leading to no bounds.

purpose consider as a toy model the function

f(x) =
1

x
+

∫ b

a

ρ(y)

x− y (A.51)

where 0 < a < b. We think of the first term, the pole at the origin, as a target which we
would like to screen. The region [a, b] where the density term is defined is denoted as the
screening region and that second term is denoted as the screening term. We can think of it
as an invisibility cloak whose role is to make the full function small in pre-defined regions.
To make it concrete suppose we want the target to be screened in a region to the right
of the screening region (as we would usually associate to an invisibility cloak a la Harry
Potter) but also – thus making it much more challenging – in a region between the target
and the screening region and even in another region to the left of the target! The point
we want to make here is that this screening is trivial to achieve if we put no bounds on
the density ρ. For that purpose it suffices to consider a discretized version of the problem
f(x) = 1

x
+
∑

grid
ci

x−xi and show that by tuning the ci’s we can indeed screen the function
remarkably well. Here is an example in Mathematica:

grid=Range[15, 20, 1/5];

screening=Range[25,30,1/10]~Join~Range[-10,-5,1/10]~Join~Range[5,10,1/10];
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Figure A.5: If m2 < m1 then the amplitude M22→11 = M11→22 contains an extended unitarity
region which is bounded by the extended unitarity region in M11→11. That, in turn, can not be
too large or unitarity will be violated in the physical regions (in solid black).

f[x_]= 1/x + Sum[c[y]/(x - y), {y, grid}];

Total[f[screening]^2]//FindMinimum[#,Variables[#],WorkingPrecision->500]&

leading to the plot in figure A.4. Of course this only works because the density is un-
constrained here otherwise the amount of possible screening is limited. In the screening
region between a and b the function we get is pretty huge and wild. In other words, the
invisibility cloak is working hard so that spectators in the blue screened regions see nothing.

A.5.2 Screening in our setup

The phenomenon of screening happens in our setup for m2 < m1/
√
2. In this case, the op-

timal bounds on the couplings g112 and g222 are just the same as the ones obtained from the
single amplitude analysis. In fact, the off-diagonal amplitudes M11→22 that saturate these
bounds vanish in the physical region. To understand how this is possible it is convenient
to first understand why the bounds improve in the region m1/

√
2 < m2 < m1.

For m1/
√
2 < m2 < m1, the amplitude M11→22 can not vanish generically so the diago-

nal amplitude M22→22 can not saturate unitarity since some production of 11 is inevitable.
To see this more precisely note that M11→22 has poles and an extended unitarity region
where the discontinuity is bounded by the diagonal M11→11 and M22→22 components as in
(A.36). On the one hand, M22→22 is bounded by unitarity because this amplitude has no
extended unitarity region. On the other hand, the discontinuity of the 11→ 11 amplitude
is positive in the extended unitarity region and therefore is bounded by unitarity in the
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Figure A.6: The s- and t- channel discontinuities come with opposite signs. As such, when there
is an overlapping region as in the 11 → 11 amplitude represented at the top, they can both be
very large as long as their sum remains bounded and does not lead to violation of unitarity in the
physical region represented by the black solid lines at the top. Furthermore the discontinuity of
M11→22 (at the bottom) in that same kinematical region is bounded by the ImM11→11 and has
no definite sign. Therefore, in the region where ImM11→11 is unbounded, the amplitude M11→22

can take advantage of screenning.

physical region. This is depicted in figure A.5. To summarize: we see that some screening
is possible but it can not lead to a vanishing 11→ 22 amplitude in the physical region and
thus to unitarity saturation for 11→ 11. This is why the multiple amplitude analysis had
to improve the bound obtained from a purely diagonal analysis.

This same analysis also explains why for m2 <
m1√
2
the diagonal bound is optimal in

our setup. This is because in this range we have a collision between the s-channel and
t-channel cuts corresponding to intermediate production of two of the lightest particles in
the scattering of the heaviest particle 11 → 11, see figure A.6a. The s– and t– channel
discontinuities can now be huge as long as they cancel each other and do not lead to
a violation of unitarity for the 11 → 11 component in the physical region. If they are
unbounded, then there is a region in the 11 → 22 non-diagonal component where this
amplitude can also be unbounded. (Note that if the cuts overlap then the imaginary part
in the right hand side of (2.22) should be understood as the s-channel discontinuity.) If the
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amplitude can be huge with both signs in a finite segment then it can screen as illustrated
in the previous section and can thus kill 11 → 22 in the physical region (the backward
12 → 12 amplitude, related by analytic continuation to the 11 → 22 process can also be
killed of course). In other words, for m2 <

m1√
2
we can set to zero all non-diagonal processes

without violating any of our physical constraints! Therefore the full numerical plots are
expected to coincide with the analytical diagonal bounds. This is indeed what we observed
in our numerics.

Would be great to find a way to improve our bounds form2 <
m1√
2
. The following section

contains a toy model of this screening phenomena which might help elucidate what kind
of physics could produce it.

For m2 >
√
2m1 there is a similar screening phenomena that occurs. Furthermore, in

this mass range there are other Landau singularities known in two dimensions as higher
pole Coleman-Thun singularities [109]. Indeed, if the massm2 >

√
2m1 an on-shell diagram

as in figure 2.13 will produce a double pole. Its residue, as seen in the figure, is governed
by the coupling (to the fourth power) and by the 2 → 2 on-shell S-matrix of the lightest
particle. These are all objects which we are already manipulating and it should thus be
possible to tame these singularities if we properly understand how to deal with the inherent
non-linearities. We look forward to reporting on this interesting problem in the future.

A.5.3 Multiple resonance toy model

One might wonder if the screening mechanism is a numerical artifact or could actually
be realized in a reasonable QFT. Here we provide an example pointing towards the later
provided we accept some fine tuning.

Consider a theory where m1 >
√
2m2. The dangerous screening region is the region

where the s and t channel cuts overlap in the 11→ 11 amplitude, i.e. for s ∈ [4m2
2, 4m

2
1−

4m2
2] as described in the previous section. Suppose we have many extra Z2 even particles

m3,m4, . . . ,m2N with m2
A in that screening region range7 and suppose further that for each

particle with mass squaredm2
A in that region there is a particle with mass squared

m2
A+1 = 4m2

1 −m2
A +O(ϵ2) , (A.52)

where ϵ is a small parameter. Assume further that the couplings scale with this small
parameter as

g22A = O(ϵ) , g11A = O(1/ϵ) , (A.53)

while g12A = 0 since the extra particles are even. Finally, assume that the couplings g11A for
two particles related as in (A.52) are the same up to small ϵ corrections. In this scenario,
several interesting things might happen, including screening:

• The particles would not appear in the 22 → 22 channel since they would come as

7Strictly speaking these can not be stable particles since their mass is above 2m1 so we should think
of them as long lived resonances. In other words, we should think of the corresponding poles as coming
with a small imaginary part. Our cavalier analysis ignores these subtleties; the conclusions should remain
the same since these small imaginary parts are important mostly for the 11 → 11 amplitude and for this
amplitude we will see that these particles do not show up.
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Figure A.7: We can realize the screening mechanism with a large number of resonances with
masses m2

A ∈ [4m2
2, 4m

2
1 − 4m2

2] in crossing related pairs so that their contribution is moderate
in the diagonal channels due to s- and t-channel pair-wise cancelations while, at the same time,
having the potential to screen the non-diagonal processes where no t-channel poles show up (since
the resonances are taken to be Z2 even) and where the s-channel poles can have arbitrary sign as
this is not a reflection symmetric process.

poles with residues of order ϵ2 → 0 or in the 12→ 12 channel since they are Z2 even.

• The particles would appear in the 11 → 11 amplitude. Each particle contributes a
huge amount since each coupling is of order 1/ϵ2. However, because of the condition
(A.52), for each s-channel pole there is a corresponding nearby t-channel pole which
nearly cancels it, leading to a finite O(ϵ0) result, see figure A.7a. If the mass degener-
acy if very tiny the couplings could be huge and still lead to a very good cancelation,
compatible with unitarity for this 11→ 11 amplitude.

• The particles would also appear as s-channel poles in the 11 → 22 amplitude since
g11Ag22A = O(ϵ0), see figure A.7b. Note that this product could be very large and
can take any sign. Hence it could lead to screening if N is large as explained in the
toy example in section A.5.1. This screening could then lead to 11→ 22 being very
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small in the physical region.

Of course we could ask: “who ordered these extra particles?” No one did but since it is
a priori consistent to add them, the numerics will take advantage of them and add them
whenever useful for the optimization goal.

A.6 Solvable Points at m1 = m2

For m1 = m2 it is sometimes possible to rotate the one-particle basis as

|1′⟩ = δ|1⟩+ β|2⟩, |2′⟩ = β̄|1⟩ − δ̄|2⟩, with |δ|2 + |β|2 = 1 (A.54)

so that the off-diagonal amplitudes have no poles. If that is the case, we can consistently
set these amplitudes to zero and allow for the diagonal processes to saturate unitarity. For
the spectrum considered in chapter 2, the poles terms in the Z2 basis are

PolesZ2 =




−g2112
s−m2

2
+

−g2112
t−m2

2
0 0 −g112g222

s−m2
2

+
−g2112
t−m2

1

0
−g2112
s−m2

1
+

−g2112
t−m2

1

−g2112
s−m2

1
+ −g112g222

t−m2
2

0

0
−g2112
s−m2

1
+ −g112g222

t−m2
2

−g2112
s−m2

1
+

−g2112
t−m2

1
0

−g112g222
s−m2

2
+

−g2112
t−m2

1
0 0

−g2222
s−m2

2 +
−g2222
t−m2

2



.

(A.55)
A straightforward brute force analysis in Mathematica shows that a change of basis as in
equation (A.54) can diagonalise (A.55) only if

g222
g112

= −1 =⇒ δ = 1/
√
2, β = −i/

√
2, (A.56)

in which case the rotated poles terms become of the formDiag
(

−2g2112
s−m2

1
,
−2g2112
t−m2

1
,
−2g2112
t−m2

1
,
−2g2112
s−m2

1

)
,

or
g222
g112

= 1 =⇒ δ = 1/
√
2, β = −1/

√
2, (A.57)

where now the poles terms reduce to Diag
(

−2g2112
s−m2

1
+

−2g2112
t−m2

1
, 0, 0,

−2g2112
s−m2

1
+

−2g2112
s−m2

1

)
. In both

cases, the S-matrix in the rotated basis (A.54) is schematically of the form




a c c b
c e d c
c d e c
b c c a


 . (A.58)

It is then straightforward to apply the maximum modulus principle as in section 2.1 to
obtain bounds the optimal couplings. For the (A.56) scenario, we conclude that a and e
are fixed while b = c = d = 0, since the diagonal processes must saturate unitarity. This
solution corresponds to the S-matrix of the 3-states Potts model at T ̸= Tc. Note that in the
rotated basis we no longer have s↔ t symmetry for diagonal processes in this case, since

196



the external particles no longer diagonalise the charge conjugation operator, see appendix
A.7. On the other hand, for (A.57) we conclude only that a is fixed and b = c = 0 (note
that after changing basis b is no longer related to d by crossing), while d and e correspond
to a zero modes that do not affect the optimal coupling. A particular choice of d and e
lead to the hyperbolic limit of the elliptic deformation of the supersymmetric Sine-Gordon
model, discussed in section 2.3.3.

A.7 3-state Potts field theory

The 3-state Potts model in two dimensions has a continuous phase transition described
by a non-diagonal minimal model with central charge c = 4/5 and a global permutation
symmetry S3. This conformal field theory (CFT) contains 3 relevant scalar operators
invariant under Z2 ⊂ S3 (see [258] for a nice introduction to this topic). This allows us to
define a family of Z2 symmetric QFTs with action

AQFT = ACFT + τ

∫
d2x ϵ(x) + h

∫
d2x σ+(x) + h′

∫
d2xΩ+(x) , (A.59)

where τ , h and h′ are relevant couplings and we used the notation of [115]. The scaling
dimensions of the relevant operators are ∆ϵ =

4
5
, ∆σ = 2

15
and ∆Ω = 4

3
. The purely thermal

deformation (τ ̸= 0 and h = h′ = 0) preserves the S3 symmetry and leads to an integrable
QFT. This theory has only two stable particles with the same mass m transforming as a
doublet of S3. These particles are usually described in a basis |A⟩, |A†⟩ where the Z2 acts
as charge conjugation C|A⟩ = |A†⟩ with C2 = 1 [115, 237]. In this basis, the S-matrix is
diagonal, i.e. SAA→A†A† = SBackward

AA†→AA† = 0 and

SAA→AA = SA†A†→A†A† =
sinh

(
θ
2
+ iπ

3

)

sinh
(
θ
2
− iπ

3

) , SForward
AA†→AA† = −

sinh
(
θ
2
+ iπ

6

)

sinh
(
θ
2
− iπ

6

) , (A.60)

where we used the rapidity θ to parametrize the Mandelstam invariant s = 4m2 cosh2 θ
2
.

Notice that, in this basis, the Yang-Baxter equations are trivially satisfied.

In chapter 2, we work in the eigenbasis of the Z2 global symmetry generated by charge
conjugation,

|1⟩ = eiπ/4
|A⟩ − |A†⟩√

2
, |2⟩ = e−iπ/4

|A⟩+ |A†⟩√
2

. (A.61)

In this basis, we find

S11→11 = S22→22 = SForward
12→12 = − i sinh θ

2i sinh θ +
√
3
, (A.62)

S11→22 = −SBackward
12→12 =

√
3 cosh θ

2i sinh θ +
√
3
. (A.63)

Using equation (A.23) we can obtain the expressions (2.36) for the connected scattering
amplitudes that maximize g2112 for m1 = m2 and g222 = −g112 (point A in figure 2.9).

197



The magnetic deformations h and h′ in (A.59) preserve Z2 and therefore must be

compatible with our bounds, at least for small magnetic deformations hτ−
14
9 ≪ 1 and

h′τ−
10
9 ≪ 1 that do not give rise to more stable particles. In fact, the mass spectrum

of these theories (with h ̸= 0 and h′ = 0) has been studied in [115] using the Truncated
Conformal Space Approach. The authors observed that the degeneracy between the two
particles is lifted for h ̸= 0. It would be interesting to study the cubic couplings and the
S-matrices of this 2-parameter family of Z2 symmetric QFTs and compare them to our
bounds.

A.8 Tricritical Ising (cusp)

The tricritical Ising model in two dimensions has a continuous phase transition described
by a diagonal minimal model with central charge c = 7/10 and a Z2 (spin flip) symmetry.
This conformal field theory (CFT) contains 2 relevant scalar operators invariant under Z2

(see [258] for a nice introduction to this topic). This allows us to define a family of Z2

symmetric QFTs with action

AQFT = ACFT + τ

∫
d2x ϵ(x) + τ ′

∫
d2x ϵ′(x) , (A.64)

where τ , τ ′ are relevant couplings. The scaling dimensions of the relevant operators are
∆ϵ =

1
5
and ∆ϵ′ =

6
5
. The purely thermal deformation (τ ̸= 0 and τ ′ = 0) leads to an

integrable QFT. This theory has seven particles but only four of them have masses below
the continuum of multi-particle states. The masses of these particles are given in table
A.1.

In chapter 2 we constrained the space of 2D S-matrices with Z2 symmetry by requir-
ing unitarity and analyticity for the two-to-two S-matrix elements involving only the two
lightest particles {m1,m2} as external states. We restrained ourselves to study the subset
of theories for which only m1 and m2 themselves appeared as bound states in these matrix
elements. This excludes the tricritical Ising field theory from our analysis in chapter 2.
However, one can easily relax this restriction. We shall not do a full numerical study of the
multiple amplitude bootstrap in this more general setup. We will just derive the analytic
bounds that follow from the amplitudes S11→11 and S

Forward
12→12 . For concreteness, we consider

a theory with Z2 symmetry and a mass spectrum as in the table A.1.8

With this setup there is a richer structure of couplings to play with. For example, in
the 11→ 11 amplitude we have bound state poles corresponding to particles m2 and m4:

S11→11(s) = −J (m2
2)

g2112
s−m2

2

− J (m2
4)

g2114
s−m2

4

+ t-channel poles + cuts (A.65)

8Any masses within the range 0 < 4m2
1−m2

4 < m2
2 < 2m2

1 and m2
1 < 2m2

1+2m2
2−m2

3 < m2
1+m

2
2 would

lead to qualitatively the same conclusions regarding single amplitude bounds as below but the precise
locations of cusps and edges on the bounds does depend on the masses. If we deviate away from these
mass constraints then we we would have to redo the analysis. This is the same discontinuous nature of the
bounds already observed in [9], see e.g. figures 10 and 11 therein.
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Particle Mass Z2 charge

m1 m odd
m2 2m cos 5π/18 ≈ 1.29m even
m3 2m cos π/9 ≈ 1.88m odd
m4 2m cosπ/18 ≈ 1.97m even

+ possibly extra particles with masses bigger than m1 +m2.

Table A.1: Spectrum assumed for the analysis in this appendix.

z(s)
z(1)

z(m2
b)

z

z(2m2
1)

s

4m2
1

2m2
1

0

m2
b

z(4m2
1)

Figure A.8: The change of variables from s to z trivialises the crossing symmetry of the S-matrix
and maps the cut half-plane s > 2m2

z to the unit disk by “opening” the cut and mapping it to
the boundary of the unit disk. In doing so, it maps s = m2

b to z = 0, s = ∞ to z = −1 and the
imaginary axis s ∈ [2m2

1 − i∞, 2m2
1 + i∞] to a segment in the real z axis.

where J (s) = 1

2
√
s(4m2

1−s)
. One question that could be asked is: what values for the pair

(g2112, g
2
114) are allowed by the unitarity constraint |S11→11| ≤ 1?

To answer this question, it is useful to introduce the variables

z(s) =
mb

√
4m2

1 −m2
b −
√
s
√

4m2
1 − s

mb

√
4m2

1 −m2
b +
√
s
√

4m2
1 − s

, (A.66)

za ≡ z(m2
a) (A.67)

wa ≡ w(z,ma) =
z − za
1− z̄az

, |z0| ≤ 1 (A.68)

where we take m2
b = 2m2

1 for convenience. This choice of mb maps s ∈ [2m2
1, 4m

2
1] to

z ∈ [0, 1] and the imaginary axis s ∈ [2m2
1 − i∞, 2m2

1 + i∞] to z ∈ [−1, 0]. See figures A.8
and A.9 for an illustration of such maps.

As a function of the z variable, S11→11 has poles at z(m2
2) and z(m2

4). Therefore the
function

f(z) = −S(z)w2w4 (A.69)

is a holomorphic function on the unit disk which satisfies, as a consequence of unitarity,
|f(z)| ≤ 1. Moreover, from the fact that S(s) has a negative residue at s = m2

2 and a
positive residue at s = m2

4, we find that f(z) is positive at z2 and z4.
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z w

w(z, ma)

za 0

Figure A.9: The map wa is an automorphism of the unit disk. It maps za to the origin. When
za is real, it preserves the real segment [−1, 1].

Suppose we want to maximise g2112. This is equivalent to maximising f(z∗ = z(m2
2)).

But by the maximum modulus principle, |f(z)| ≤ 1 everywhere inside the unit disc and,
moreover, the optimal value |f(z∗)| = 1 is only achieved when |f(z)| = 1. From the fact
that f is positive at z2 and z4 we conclude that a maximal g2112 is obtained for f(z) = 1
and

(gmax112 )2 = ress=m2
2

1

J (s)w2w4

. (A.70)

Note that this solution also maximises g2114 so that

(gmax112 )2 = ress=m2
4

1

J (s)w2w4

. (A.71)

Now we maximise g2112 under the extra constraint that g2114 = α(gmax114 )2 with α ∈ [0, 1].
This maximisation problem (together with the equivalent problem of maximising g2114 with
g2112 fixed) completely determines the subspace of (g2112, g

2
114) compatible with |S11→11| ≤ 1,

since this space is convex.

Under this extra constraint, we know that f(z4) = α and so the solution f(z) = 1 is no
longer possible. Consider, however, the function

g(w4) = w(f(z(w4), α) =
f(z(w4))− α
1− αf(z(w4))

, (A.72)

where we now think of f as a function of w4 by inverting equation A.68. Since w(f, α)

is an increasing function of f , to maximise f(w4(z2)) =
g2112

(gmax112 )2
is equivalent to maximise

g(w4(z2)). Moreover, since g is an automorphism of the disk, unitarity implies |g(w4)| ≤ 1
for w4 on the unit disc. Finally, g(0) = 0. Now recall Schwartz Lemma:

Lemma 1 Schwartz Lemma: Let D be the unit disk and g : D → D be a holomorphic
map such that g(0) = 0 and |g(w)| ≤ 1 on D. Then |g(w)| ≤ |w|. Moreover, if the
inequality is saturated for any non-zero point in D, then g(w) = aw with |a| = 1.

We conclude that under the extra constraint g2114 = α(gmax114 )2, the maximal value for
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Figure A.10: Space of allowed couplings compatible with |S11→11| ≤ 1 and spectrum according
to table (A.1). This space has kinks that are related to integrable theories.

g2112 is given by the solution of the following algebraic equation on S11→11:

w4 =
f(z(w4))− α
1− αf(z(w4))

. (A.73)

After performing the equivalent exercise for the maximisation of g2114 under g2112 =
β(gmax112 )2, where β ∈ [0, 1], we obtain the allowed space of (g2112, g

2
114) as depicted in the

figure A.10.

One can play the same game for the SForward
12→12 matrix element, which contains bound state

poles corresponding to particles m1 and m3 (and therefore constrain the space (g2112, g
2
123).

One can then combine both results into a 3D plot of allowed triplets (g2112, g
2
114, g

2
123) com-

patible with |S11→11| ≤ 1 and |S12→12| ≤ 1. This is figure A.11.

It would be interesting to perform a multiple amplitudes analysis for this setup and
explore the space of masses (m1,m2,m3,m4) in the vicinity of the values of table A.1.
Notice that in such an analysis, the values in table A.1 would be single out by the condition
that the multiple amplitude bounds saturate the single amplitude bounds of figure A.11 at
the tip of the spear. That is because only for those particular masses can the multiple poles
in the off-diagonal channels coincide and cancel (à la integrable bootstrap), allowing for
the off-diagonal amplitudes to vanish and for the diagonal processes to saturate unitarity,
as in the boundary of the yellow surface in figure A.11. It would also be interesting to see
if the sub-leading (non-integrable) deformation τ ′ of the tricritical Ising model leads to any
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Figure A.11: Space of allowed couplings compatible with |S11→11| ≤ 1 and |S12→12| ≤ 1 and
spectrum as in table (A.1). The tip of this spear is the thermal deformation of the Tricritical
Ising Model.

feature of the bounds.

A.9 Numerical optimization as a SDP

As discussed in section 2.3.1, once we fix α = g222
g112

, our discretised ansatz for the amplitudes

depends only on the variables η⃗ = {g2112, Ca→b, σa→b(xi)}. To reduce the maximisation
problem to an SDP, all we need to do is to write the extended unitarity constraint (2.27)
as a semidefinite constraint linear on η⃗, as in (2.33). The purpose of this appendix is to
prove the equivalence of (2.27) and (2.33) or, explicitly,

(
I ρM

(ρM)† 2Im M

)
⪰ 0 ⇐⇒ 2ImM ⪰M†ρ2M. (A.74)
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Proof of ⇒:

(
I ρM

(ρM)† 2Im M

)
⪰ 0⇒

(
v⃗
w⃗

)†( I ρM
(ρM)† 2Im M

)(
v⃗
w⃗

)
≥ 0, ∀v⃗, w⃗ ∈ C2

(A.75)
This becomes the r.h.s of (A.74) if we pick v⃗ = −ρMw⃗.

Proof of ⇐:

0 ≤ (v⃗ + ρMw⃗)†(v⃗ + ρMw⃗) = v⃗†v⃗ + v⃗†ρMw⃗ + w⃗†M†ρv⃗ + w⃗†M†ρ2Mw⃗ (A.76)

≤ v⃗†v⃗ + v⃗†ρMw⃗ + w⃗†M†ρv⃗ + w⃗†ImMw⃗ ⇐⇒
(

I ρM
(ρM)† 2Im M

)
⪰ 0

where we used the r.h.s. of (A.74) in the second inequality.

A.10 Elliptic Deformation

Bellow one can find the definition of the supersymmetric sine-Gordon elliptic deformation
S-matrix in Mathematica friendly notation.

w = EllipticK[k]/\[Pi];

e = 1;

g = 2 \[Pi]/3;

ED = {{JacobiDN[g w, k] - (JacobiDN[I q w, k] JacobiSN[g w, k])/(e

JacobiCN[I q w, k] JacobiSN[I q w, k]), 0, 0,

(JacobiDN[I q w, k] JacobiSN[g w, k])/(e JacobiCN[I q w, k])},

{0, 1, -(JacobiSN[g w, k]/(e JacobiSN[I q w, k])), 0},

{0, -(JacobiSN[g w, k]/(e JacobiSN[I q w, k])), 1, 0},

{(JacobiDN[I q w, k] JacobiSN[g w, k])/(e JacobiCN[I q w, k]), 0, 0, -JacobiDN[g w, k]

- (JacobiDN[I q w, k] JacobiSN[g w, k])/(e JacobiCN[I q w, k] JacobiSN[I q w, k])}};

IntR[x_, k_] := 1/(2 \[Pi] I)Block[{w = (EllipticK[k]/\[Pi])},

(NIntegrate[Log[((1 - JacobiSN[g w, k]^2/JacobiSN[I q w, k]^2)^ -1)

/Sinh[q]^2]/Sinh[q - x], {q, -Infinity, Infinity}])];

U[x_, k_] := -I Sinh[x] Exp[IntR[x, k]];

CDDPole[q_] := (Sinh[q] + I Sin [g])/(Sinh[q] - I Sin[g])

SED[Q_, K_] := U[Q, K] CDDPole[Q] ((ED /. w -> EllipticK[k]/\[Pi])

/. {k -> K, q -> Q});

Note that to compute the S-matrix for physical θ ∈ R, one must be careful and take
the appropriate principal value around the singularity at θ = x in the integrand of IntR.
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A.11 Conformal computations

A.11.1 Crossing symmetry in one dimension

We consider correlation functions of primary operators ϕi(xi) in a one-dimensional bound-
ary field theory. The weight of the operator ϕi will be denoted as ∆i. We will work in the
Euclidean theory on R ∪ {∞}. The conformal group is a two-fold cover of PSL(2,R); its
elements act by the usual fractional linear transformations on the positions,

x→ x′ =
ax+ b

cx+ d
(A.77)

with ad − bc = ±1. The elements with negative determinant involve the parity transfor-
mation x→ −x. The Jacobian of this transformation is (ad− bc)(cx+ d)−2 and the fields
transform as

ϕ(x)→ ϕ′(x′) = (ad− bc)Pϕ |cx+ d|2hϕ(x) (A.78)

with Pϕ ∈ {0, 1} dictated by the parity of ϕ.9 In a correlation function we should remember
that the parity operation also reverses the operator ordering.

In a suitable basis the two-point functions take the familiar form

⟨ϕ(x)ϕ(0)⟩ = (−1)Pϕ
|x|2∆ϕ (A.79)

The two-point function of a parity odd operator is negative, so the associated norm ⟨ϕ|ϕ⟩
is positive.10

The operator product expansion reads

ϕ1(x)ϕ2(0) =
C k

12

|x|∆1+∆2−∆k
ϕk(0) + . . . (A.80)

where we assume that x < 0. If we act with the parity operator on both sides then we find

(−1)P1+P2ϕ2(0)ϕ1(−x) = (−1)Pk C k
12

|x|∆1+∆2−∆k
ϕk(0) + . . . (A.81)

and therefore the reflected OPE coefficients between primaries are

C k
21 = (−1)σ12kC k

12 (A.82)

with
σ12k := P1 + P2 + Pk mod 2 . (A.83)

9The parity operator is unitary and its square is an internal symmetry transformation. Up to a well-
known caveat [236, section 3.3] we can always redefine the parity operator so it squares to 1 and its
eigenvalues are then ±1 as we assumed.

10It may help the reader that parity odd operators are the same as one-dimensional vectors ϕµ(x). The
reflection-positive two-point function is then ⟨ϕµ(x)ϕν(0)⟩ = |x|−2∆ϕ

(
δµν − 2

xµxν

x2

)
= −|x|−2∆ϕ , in one

dimension.
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The previous relation in particular implies that parity odd operators can never appear in
the OPE of two identical operators. We will work in a basis where two-point functions are
diagonal. The structure of three-point functions then dictates that

C12k = (−1)σ12kCk21 (A.84)

and so the OPE coefficients transform either in the trivial representation (if σ12k = 0) or
the sign representation (if σ12k = 1) of the permutation group S3. Notice that, even if
parity is broken, the cyclic symmetry is always preserved. This for example means that
C12k = Ck12, whereas C12k and C21k are not always the same.

We will be specifically interested in four-point functions,

⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)⟩ =
∣∣∣∣
x14
x24

∣∣∣∣
∆21
∣∣∣∣
x14
x13

∣∣∣∣
∆34 G1234(x)
|x12|∆1+∆2|x34|∆3+∆4

(A.85)

with, as usual, (·)ij = (·)i − (·)j and

x :=
x12x34
x13x24

. (A.86)

If xi < xi+1 for i = 1, 2, 3 then 0 < x < 1. The s-channel conformal block decomposition
reads

G1234(x) =
∑

k

C k
12 C34k g(∆21,∆34; ∆k;x) (A.87)

with the conformal blocks

g(a, b; ∆; z) := |z|∆2F1(∆ + a,∆+ b; 2∆; z) . (A.88)

where we added an absolute value sign so the expression is unambiguous also for negative
values of its argument.

Let us briefly discuss operator ordering. Correlation functions with operator orderings
that are cyclic permutations of each other are directly related, as follows from covariance
under the (orientation-preserving) inversion xi → −1/xi. Furthermore, parity symmetry
dictates that

G1234(x) = G4321(x)(−1)σ1234 (A.89)

To see the complications that arise if we just swap two adjacent operators, let us swap
operators 1 and 2. A simple relabeling leads to the block decomposition

G2134(x) =
∑

k

C k
21 C34kg(∆12,∆34; ∆k;x) (A.90)

and assuming a parity invariant theory this is equal to

G2134(x) = (1− x)∆34

∑

k

C k
12 C34k(−1)σ12k g

(
∆21,∆34; ∆k;

x

x− 1

)
(A.91)

where we used a standard hypergeometric transformation formula, valid for x < 1. The
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factor (−1)Pk and the absolute value sign in the definition (A.88) imply that G2134 and G1234
are not, in general, related in an obvious manner. The symmetries and non-symmetries
altogether leave us with three independent four-point functions from which the others
follow. We can take these to be ⟨2134⟩, ⟨1234⟩, and ⟨1324⟩, which respectively correspond
to x < 0, 0 < x < 1, and 1 < x. We will here be interested in just the second of these
correlators.

With the ordering fixed there are only two OPE channels. For the ⟨1234⟩ ordering we
gave the first one above; the crossed channel OPE reads

G2341(y) =
∑

p

C p
23 Cp41 g(∆32,∆41;h; y) (A.92)

with y = x23x41/x24x31 = 1− x. Crossing symmetry then takes the form11

G1234(x) =
|x|∆3+∆4

|1− x|∆2+∆3
G2341(1− x) (A.93)

Let us consider all correlation functions of two parity-even operators ϕ1 and ϕ2. We
then find, in a diagonal operator basis, the following set of non-trivial crossing equations:

0 =
∑

k

C2
11k g(0, 0;∆k;x)−

|x|2∆1

|1− x|2∆1

∑

k

C2
11kg(0, 0;∆k; 1− x)

0 =
∑

k

C2
22k g(0, 0;∆k;x)−

|x|2∆2

|1− x|2∆2

∑

k

C2
22kg(0, 0;∆k; 1− x)

0 =
∑

k

C22kC12k g(0,∆21; ∆k;x)−
|x|2∆2

|1− x|2∆2

∑

k

C22kC12k g(0,∆12; ∆k, 1− x)

0 =
∑

k

C11kC12k g(0,∆12; ∆k;x)−
|x|2∆1

|1− x|2∆1

∑

k

C11kC12k g(0,∆21; ∆k, 1− x)

0 =
∑

p

(−1)PpC2
12p g(∆21,∆12; ∆p;x)−

|x|∆1+∆2

|1− x|∆1+∆2

∑

p

(−1)PpC2
12p g(∆12,∆21; ∆p; 1− x)

0 =
∑

k

C11kC22k g(0, 0;∆k;x)−
|x|2∆2

|1− x|∆1+∆2

∑

p

C2
12p g(∆21,∆21; ∆p; 1− x)

(A.94)

where the operators labeled k are parity even, whereas the operators labeled p can be either
parity even or parity odd.

11One foolproof way to obtain this expression is to relabel the operators in the original expression (A.85)
and then use a conformal transformation to relate ⟨2341⟩ to ⟨1234⟩. To verify that directly fusing operators
2 and 3 together in (A.85) gives the same OPE limit requires that C1p4 = Cp41 which we proved previously.
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A.11.2 Transition to convex optimization

In matrix form, the I’th crossing symmetry equation can be written as:

∑

p,Pp=1

Ct
pM

I
pCp +

∑

p,Pp=−1

Ct
pN

I
pCp = 0 (A.95)

with
Ct
p =

(
C11p C12p C22p

)t
(A.96)

and with

M1
p =



F 1
p (x) 0 0
0 0 0
0 0 0


 N1

p = 0

M2
p =



0 0 0
0 0 0
0 0 F 2

p (x)


 N2

p = 0

M3
p =



0 0 0
0 0 F 3

p (x)
0 F 3

p (x) 0


 N3

p = 0 (A.97)

M4
p =




0 F 4
p (x) 0

F 4
p (x) 0 0
0 0 0


 N4

p = 0

M5
p =



0 0 0
0 F 5

p (x) 0
0 0 0


 N5

p = −M5
p

M6
p =




0 0 F 6
p (x)

0 G6
p(x) 0

F 6
p (x) 0 0


 N6

p =



0 0 0
0 G6

p(x) 0
0 0 0




where

F 1
p (x) = |1− x|2∆1g(0, 0;∆p;x)− |x|2∆1g(0, 0;∆p; 1− x)

F 2
p (x) = |1− x|2∆2g(0, 0;∆p;x)− |x|2∆2g(0, 0;∆p; 1− x)

F 3
p (x) = |1− x|2∆2g(0,∆21; ∆p;x)− |x|2∆2g(0,∆12; ∆p, 1− x)

F 4
p (x) = |1− x|2∆1g(0,∆12; ∆p;x)− |x|2∆1g(0,∆21; ∆p, 1− x)

F 5
p (x) = |1− x|∆1+∆2g(∆12,∆21; ∆p;x)− |x|∆1+∆2g(∆12,∆21; ∆p; 1− x)

F 6
p (x) =

1

2
|1− x|∆1+∆2g(0, 0;∆p;x)

G6
p(x) = −|x|2∆2g(∆21,∆21; ∆p; 1− x)

(A.98)
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We can act with a functional on each equation, and then add all of them. This yields

∑

p,Pp=1

Ct
p



F 1
p F 4

p F 6
p

F 4
p G6

p + F 5
p F 3

p

F 6
p F 3

p F 2
p


Cp +

∑

p,Pp=−1

Ct
p



0 0 0
0 G6

p − F 5
p 0

0 0 0


Cp = 0 (A.99)

where F I
p (without an argument) is shorthand for the function of ∆p obtained by acting

with the corresponding component of the functional.

If we single out the identity (with C110 = C220 = 1 and C120 = 0) and the external
operators from the sums then we obtain

0 = F 1
0 + 2F 6

0 + F 2
0

+
(
C111 C112 C122 C222

)



F 1
1 F 4

1 F 6
1 0

F 4
1 G6

1 + F 5
1 + F 1

2 F 3
1 + F 4

2 F 6
2

F 6
1 F 3

1 + F 4
2 F 2

1 +G6
2 + F 5

2 F 3
2

0 F 6
2 F 3

2 F 2
2







C111

C112

C122

C222




+
∑

p,Pp=1

Ct
p



F 1
p F 4

p F 6
p

F 4
p G6

p + F 5
p F 3

p

F 6
p F 3

p F 2
p


Cp

+
∑

p,Pp=−1

Ct
p



0 0 0
0 G6

p − F 5
p 0

0 0 0


Cp

(A.100)

For a feasibility study we can normalize the functionals on the unit operators, giving

F 1
0 + 2F 6

0 + F 2
0 = 1 (A.101)

and furthermore demand positive semidefiniteness of the three square matrices listed above.
We can also get bounds on products of OPE coefficients. For example, if we set

F 1
1 = 1 F 4

1 = F 6
1 = 0 (A.102)

and then maximize/minimize F 1
0 + 2F 6

0 + F 2
0 , we obtain a lower/upper bound on C2

111.
More precisely, if we extremize and the result is positive then crossing cannot be solved. If
the result is negative then the absolute value of the result is our upper (for minimization)
or lower (for maximization) bound.

A.11.3 Setup with Z2 symmetry

In the previous section we discussed the general one-dimensional conformal bootstrap anal-
ysis for two operators. Let us now specialize to the case discussed in the main text, so we
consider a QFT in AdS2 with a Z2 symmetry and only two stable parity even particles; a
Z2 odd one created by an operator ϕ1 and a Z2 even one created by an operator ϕ2.
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With this additional symmetry F 3 = F 4 = 0 automatically which leaves four non-trivial
correlation functions of ϕ1 and ϕ2. In these correlators we should also label the internal
operators with an even/odd quantum number depending on the OPE channel in which
they appear. Our notation above is already adapted to this situation: in equation (A.94)
the operators labeled k are necessarily parity and Z2 even, whereas the operators labeled p
are parity even or odd but always Z2 odd. (Operators that are Z2 even but parity odd do
not feature in this set of correlation functions.) With the exception of ϕ1 and ϕ2 themselves
we take their dimensions to lie above the following ‘gap’ values:

Z2 P gap index in (A.103)
even even min(2∆1, 2∆2) k
odd even ∆1 +∆2 p, Pp = 1
odd odd ∆1 +∆2 p, Pp = −1

These gaps are precisely the two-particle values for a QFT in AdS, reflecting our assumption
that there are no further stable single-particle states.

Going then through the same logic as before we write the crossing equations in matrix
form as ∑

p,Pp=1

C2
pM

I
p +

∑

p,Pp=−1

C2
pN

I
p +

∑

k

Ct
kQ

I
kCk = 0 , (A.103)

with (note some redefinitions with respect to the previous formulae)

Ck =
(
C11k C22k

)t
Cp = C12p (A.104)

and with

M1
p = 0 N1

p = 0 Q1
k =

(
F 1
k (x) 0
0 0

)

M2
p = 0 N2

p = 0 Q2
k =

(
0 0
0 F 2

k (x)

)

M5
p = F 5

p (x) N5
p = −F 5

p (x) Q5
p = 0

M6
p = G6

p(x) N6
p = G6

p(x) Q6
k =

(
0 F 6

k (x)
F 6
k (x) 0

)

(A.105)

After acting with the functional and singling out the important operators again we find

0 = F 1
0 + 2F 6

0 + F 2
0 +

(
C112 C222

)(G6
1 + F 5

1 + F 1
2 F 6

2

F 6
2 F 2

2

)(
C112

C222

)

+
∑

p,Pp=1

C2
p(G

6
p + F 5

p ) +
∑

p,Pp=−1

C2
p(G

6
p − F 5

p ) +
∑

k

(
C11k C22k

)(F 1
k F 6

k

F 6
k F 2

k

)(
C11k

C22k

)

(A.106)

If we want to find bounds in the (C112, C222) plane we can set C222 = βC112 and set a
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normalization
1 = G6

1 + F 5
1 + F 1

2 + 2βF 6
2 + β2F 2

2 (A.107)

With this normalization our problem takes the form of a semidefinite program and we can
proceed using the well-known numerical bootstrap methods of [107,108] and the specialized
solver of [112]. Further technical details are available upon request from the authors.

A.11.4 Functionals and derivative combinations

As in previous works, our choice of functionals are linear combinations of derivatives of the
crossing equations at z = 1/2, so our functionals α can be written as

α[F (z)] =
Λ∑

n=0

αn
dnF

dzn
(1/2). (A.108)

The coefficients αn should be thought of as the main degrees of freedom to be fixed by
the optimization procedure. Furthermore, in a multi-correlator study we can act with a
different functional on each of the crossing equations in (A.94), so the degrees of freedom
are

αIn, I ∈ {1, 2, 5, 6}, n ∈ {0, 1, 2, . . .Λ} . (A.109)

where, as before, I denotes the different crossing equations and we used that the third and
fourth equation are identically zero by our Z2 symmetry assumptions.

Of course the functions that are odd around z = 1/2, like the first and second crossing
equation in (A.94), contribute only about Λ/2 non-trivial degrees of freedom since the
αn for odd n are meaningless (and in fact should be set to zero to prevent numerical
instabilities). This reduces the scaling of the number of components to 3Λ rather than 4Λ.

In our earliest attempts we thought it unfair to first two crossing equations that they
could only contribute half as many functional components as the fifth and sixth equation.
Therefore we decided to cut off the sum in (A.108) at Λ/2 for the fifth and sixth equation
but at Λ for the first and second equation. Such an egalitarian approach, however, would
have led to completely different and incorrect results. To illustrate this we plot in figure
A.12 the upper bound on the coupling as a function of Λ5 = Λ6, i.e. the cutoffs for the
fifth and sixth equation, whilst holding fixed every other parameter, including the cutoffs
Λ1 = Λ2 for the first and second equation. Clearly for Λ5 = Λ1/2 the multi-correlator bound
offers exactly no improvement over the single-correlator bound. So, if we had continued to
work with the egalitarian cutoffs then we would erroneously conclude that no improvement
would have been possible over the single-correlator bound! Only when increasing Λ5 beyond
Λ1/2 do we begin to see a gradual improvement, which stops as abruptly as it started at
Λ5 = Λ1.

Notice that the plot is drawn for the data point in figure 2.11, which has the special
property that the multi-correlator bound turns out to be exactly half that of the single-
correlator bound. We however observed very similar behavior, including the kinks and
stabilization, also for other data points where the final multi-correlator bound is completely
non-trivial.
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Figure A.12: Bound on the maximal coupling (without any extrapolations) as a function of
Λ5 = Λ6 for fixed Λ1 = Λ2 = 80. We see that the multi-correlator bound does not improve over
the single-correlator bound (in black) for a range of values of Λ5 = Λ6, and this may lead one
to believe that no improvement is possible whatsoever. On the other hand, increasing Λ5 = Λ6

above the natural value given by Λ1 = Λ2 does not seem to lead to further improvements for the
range of values that we tested. The case shown here has ∆1 = ∆2 = 6.58895 and g222/g112 = 1,
but other cases look similar: we start with a plateau, then a kink (not necessarily at Λ1/2) marks
the start of a downward trajectory (which is not necessarily this linear), and then another kink
at Λ5 = Λ1 leads to a second plateau where the bound is constant.

A.11.5 Extrapolations

An example of the extrapolation procedure outlined in section 2.4.1 is shown in figure
A.13. One important subtlety not mentioned in the main text is that we extrapolate the
log-ratio of the multi-correlator and the single-correlator result. That is, for every multi-
correlator optimization run we also ran a single-correlator optimization run (for either
⟨1111⟩ or ⟨2222⟩) and so we get raw data that we can denote (g2112)

max,multi[µ, α,∆1,Λ]
and (g2112)

max,single[µ, α,∆1,Λ]. We found that direct extrapolation of the multi-correlator
bounds led to a relatively large dependence on our fitting procedure, whereas extrapolation
of the log-ratio

log(g2112)
max,multi[µ, α,∆1,Λ]− log(g2112)

max,single[µ, α,∆1,Λ] (A.110)

could, as shown, be done with relatively low-degree fits. Since we know that the single-
correlator bounds match the analytic single-amplitude bounds with large accuracy [104],
we can add (the logarithm of) this known answer to our extrapolated log-ratio to obtain a
better estimate of the flat-space multi-correlator bound.

The first 8 plots show the raw data and subsequent extrapolations to infinite Λ. The
three curves correspond to fits with a polynomial in Λ−1 of degree 3 (in blue), degree 4
(in orange, mostly coinciding with blue), and degree 2 (in green). In the fits we did not
include the (three) data points with Λ < 60. We observe a rather small difference between
the different extrapolations, and we have checked that these fits give good predictions for
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Figure A.13: The double extrapolation for the data point with m2/m1 = 1.15 in figure 2.12.
Vertically we plot the logarithm of the maximal coupling, but with the logarithm of the single-
correlator bound subtracted, so δ(log(g2max)) = log(g2max,multi) − log(g2max,single). In the first 8
plots we show our raw data in black, and the curves correspond to three different extrapolations
to infinite Λ. In the final plot we collected the Λ → ∞ extrapolations and the single red line
represents our ∆1 →∞ extrapolation. Our final answer gives δ(log(g2max)) ≈ −1.446 in the flat-
space limit, and adding the single-correlator bound 3.673 gives the 2.226 plotted in figure 2.12.
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the high Λ raw data points if we exclude one or more of them by hand.

The final plot in figure A.13 collects all the extrapolated points to infinite Λ. The
data points line up nicely, providing evidence for a small non-systematic error in our first
extrapolation. We have fitted a linear function in ∆−1 to the degree 3 (in blue) points,
leading to the extrapolated value of −1.446 for the log-ratio of this data point. From this
plot it is clear that there is no meaningful difference if we had extrapolated the degree 4
(in orange) points instead.

We employed exactly the same extrapolation procedure, including the choice of the
degree of the fitting functions, for all the other data points shown in the main text.
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Figure A.14: An on-shell scattering process must lie inside the convex hull defined by the vertices
attached to external lines. This is due to momentum conservation: an on-shell internal particle
that wandered outside the convex hull would never be able to move back inside, since there would
be no external momentum available to kick it back in. There are 3 possible convex hulls for 2→ 2
amplitudes: a quadrilateral, a triangle, or a line.

A.12 Landau Singularities in 12→ 12 Scattering

Landau singularities are associated to diagrams representing particle interactions with all
lines on-shell and momentum conservation at each vertex [109, 111]. We claimed in the
text that for the forward 12 → 12 scattering there ought to be no new such singularities
(to be added to the bound state poles already there) whereas for the 12 → 12 backward
component we claimed that when m2 >

√
2m1 we do find such new on-shell processes. It

is easy to convince oneself of that with a few pictures. For that purpose, we adapt here
some beautiful discussion in chapter 18 of the book [235] by Bjorken and Drell, translating
it to our two dimensional case of interest.

Start with a diagram representing a two-to-two on-shell process. Each of the four
external particles eventually encounter a vertex (several can meet at the same vertex).
Consider those vertices containing an external line. They define a convex hull which can
be a quadrilateral, a triangle or a line as shown in figure A.14. Next we draw all other
internal lines to complete the Landau diagram. The first important claim is that all those
lines must lie inside the convex hulls just defined. That is simply because of momentum
conservation: if they got out of the convex hull there would be no external particle to kick
them back in (and the diagram would never close)! With this in mind we can go on to
analyse the three possible convex hulls in turn.

Consider first the quadrilateral case and assume first that at each of the four external
vertices we have a cubic vertex. Then, momentum conservation and on-shellness constrains
the angles at those cubic vertices12. For example, for the case at hand with two particles of

12In this appendix we assume that the diagrams and four-momenta are euclidean. This is the case
in-between two-particle cuts, since then all spatial momenta can be chosen to be purely imaginary, making
the lorentzian metric effectively euclidean. The absence of Landau diagrams in the full physical sheet
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Figure A.15: On-shellness and energy-momentum conservation fix angles in cubic vertices. Im-
portantly, when m2 > m1

√
2 there are acute angles in cubic couplings and the analysis of Landau

singularities becomes more intricate.

different masses we have the angles in figure A.15. For m2 <
√
2m1 we realize right away

that the angles are obtuse so it is generically impossible to form a quadrilateral! What
about using other vertices when particles first interact? Well, that would be even worse
as the total opening angles would be even greater in that case. If m2 >

√
2m1 then one

of the angles is smaller than π/2 so we have a better chance of finding extra singularities
and, indeed, we can sometimes form such diagrams, as the one in figure 2.13, but not if
two external particles are of type 2 and two particles are of type 1 as illustrated in figure
A.16(a). Hence, there are no “quadrilateral convex hull” Landau diagrams for 12 → 12
scattering.

What about “triangular convex hull” singularities? When m2 >
√
2m1, as explained

in figure A.16(b), those are indeed present in the backward component, but not in the
forward one. So the backward amplitude should have extra Landau poles but the forward
amplitude should not. As such, the bound on g2112 derived from the forward component
should hold even form2 >

√
2m1. As discussed in the main text, this bound is not captured

by the QFT in AdS bootstrap, see figure 2.12.

We did not discuss the case where the convex hull is the line: those are just the usual
singularities such as the bound state poles and all the production cuts which open for
multi-particles at rest, and thus moving parallel to each other, along the convex hull line.

follows from their absence in the euclidean region after a causality argument, as detailed in [235].
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Figure A.16: (a) There are no possible “quadrilateral convex hull” Landau singularities in the
12 → 12 amplitude even when m2 >

√
2m1. To understand this, consider a vertex with an

external leg attached. The total opening between internal edges on such vertex must be greater
than x (y) for an external even (odd) leg. Hence, for the 12 → 12 process, the total internal
angles at the four external vertices must be greater than 2(x+ y) ≥ 2π, so that it is inconsistent
to have a closed singular diagram inside the convex hull. (b) The same is true for “triangular
convex hull”diagrams unless two odd particles meet at the same external vertex, as on the bottom
right diagram - as in other cases the total opening at external vertices would be greater than π.
For the forward component there would be no momentum transfer through such vertex, so that
by on-shellness and energy-momentum conservation the internal opening at this vertex would
be at least π, once again making it impossible to have a singular Landau diagram. For the
backward component, on the other hand, the momentum transfer through the vertex, and hence
the opening angle, can be arbitrary. In turn, this amplitude will have extra Landau singularities
for m2 >

√
2m1.
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Appendix B

Appendix: The S-matrix Bootstrap:
SUSY, Z2 and Z4 symmetry

B.1 Parity and signs

In this appendix we formally review the relation between parity and the signs of residues
appearing in the S-matrix [239].

Consider a diagonal scattering process in which a particle a collides against a particle
b where both have mass m. If ab can form a bound state c of mass mc, the S-matrix Sabab
will contain a pole at s = m2

c :

Sabab(s→ m2
c) ∼ −Jc

out⟨ab|c⟩∗inout⟨c|ab⟩in
s−m2

c

,

where Jc = m4/(2mc

√
4m2 −m2

c) is a Jacobian factor relating the free and interacting
parts of the S-matrix.

We can use a PT transformation to rewrite the first three point function as1

out⟨ab|c⟩in = in⟨ab|c⟩outη∗aη∗bσabηc,

where σab = −1 if a and b are fermions, one otherwise, and ηx is the intrinsic parity of x.
Therefore the sign of the residue of the s-channel pole is given by −η∗aη∗bσabηc.

Let’s compare the general result above with some familiar examples. Recall that bosons
may have intrinsic parity ±1 while Majorana fermions may have intrinsic parity ±i. If we
scatter two identical bosons or Majorana fermions, the s-channel residue is always negative,
since η∗aη

∗
bσab = 1 in these cases (as is ηc from parity conservation).

Next suppose that we scatter a parity even boson and a Majorana fermion of parity i.
If they form as a bound state a Majorana fermion with the same parity as the external
fermion, then the residue in the s-channel will be negative as well. On the other hand, if the
bound state fermion has parity −i the residue will be positive. The same would occur when

1Our discussion is formal because this bound state production process happens for unphysical values
of s, and so the two-particle states |ab⟩in/out are schematic.
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scattering two non-identical even bosons which produce a pseudo-scalar as a bound state.
These unusual signs are relevant for the SUSY setup with an anti-fundamental bound state
considered in section 3.1.1, see also appendix B.3.

B.2 Selection rules and crossing

In the main text we considered three two-particle scattering scenarios. The SUSY setup, in
which we scatter a N = 1 supermultiplet against itself, is discussed in detail in appendix
B.3. In this appendix we spell out the selection rules imposed by symmetry and the
constraints from crossing in the two remaining cases: the Z2 setup, where we consider
the scattering of two particle states formed out of a degenerate boson and fermion pair,
(ϕ, ψ), and the Z4 setup, where we scatter all two particle states formed out of a particle
of unit charge under Z4, 1, together with its antiparticle, 3. In all cases we assume that
the scattered particles are the lightest in the (gapped) spectrum.

In the Z2 setup, fermion number symmetry together with parity and time-reversal
symmetry impose that the two-to-two S-matrix, in the {|ϕϕ⟩, |ϕψ⟩, |ψϕ⟩, |ψψ⟩} basis, is of
the form

SZ2(θ) =




Sϕϕϕϕ(θ) 0 0 Sψψϕϕ (θ)

0 Sϕψϕψ (θ) Sψϕϕψ (θ) 0

0 Sψϕϕψ (θ) Sϕψϕψ (θ) 0

Sψψϕϕ (θ) 0 0 Sψψψψ (θ)


 ,

where as usual, the rapidity θ is related to the center of mass energy squared s through
s = 4m2 cosh2(θ/2).

Crossing symmetry relates the scattering amplitudes at different channels through an-
alytic continuation. The diagonal elements are self-crossing and the annihilation and re-
flection amplitudes, cross into each other: Sψψϕϕ (θ) = Sψϕϕψ (iπ − θ).

The bound state spectrum in each setup is implemented through the presence of single
poles in each S-matrix element. For example, in the Z2 setup, assuming the presence of a
degenerate boson and fermion pair (b, f) of mass mbs as bound states, we have

Sψψϕϕ (s) = −Jbs
gϕϕbgψψb
s−m2

bs

− Jbs
g2ϕψf

t−m2
bs

+ regular

where regular correspond to analytic terms away from the unitarity cuts at s < 0 or
s > 4m2 and Jbs = m4/(2mbs

√
4m2 −m2

bs) is a Jacobian factor.

In the Z4 setup, the selection rules from charge conservation combined with parity,
time-reversal and charge conjugation symmetry constrain the S-matrix to be

SZ4(θ) =




S11
11(θ) 0 0 S33

11(θ)
0 S13

13(θ) S31
13(θ) 0

0 S31
13(θ) S13

13(θ) 0
S33
11(θ) 0 0 S11

11(θ)


 (B.1)
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in the {|11⟩, |13⟩, |31⟩, |33⟩} basis. Crossing symmetry acts as Scdab(θ) = S
c(4−b)
a(4−d)(iπ− θ) and

thus relates the transmission amplitudes as S11
11(θ) = S13

13(iπ−θ) while the annihilation and
reflection amplitudes, S33

11(θ) and S
31
13(θ), are now self crossing symmetric.

Given a solution of the Z4 bootstrap setup, i.e. an S-matrix with the correct analytic
structure, satisfying unitarity and crossing, one can generate extra solutions by applying
independently the following set of transformations:

SZ4 → −SZ4 ,

S33
11 → −S33

11 ,

S31
13 → −S31

13 , (B.2)



S11
11

S33
11

S13
13

S31
13


→




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0







S11
11

S33
11

S13
13

S31
13


 .

The last transformation can be understood as a conjugation of the S-matrix by the
operator 1 ⊗ C, each factor acting on a single asymptotic particle, with particles being
ordered in two particle states by their rapidities, and C denoting charge conjugation. The
other transformations are trivial or unphysical modifications.

B.3 Supersymmetry algebra and representations

The N = 1 superalgebra can be written in light-cone coordinates as

{Q−, Q+} = 0 , Q2
+ = P+ , Q

2
− = P− ,

where P± = me±θ are the light-cone momenta. We realize the algebra as follows

Q+|ϕ⟩ = ϵ
√
meθ/2|ψ⟩

Q+|ψ⟩ = ϵ∗
√
meθ/2|ϕ⟩

Q−|ϕ⟩ = ϵ∗
√
me−θ/2|ψ⟩

Q−|ψ⟩ = ϵ
√
me−θ/2|ϕ⟩

where θ is the rapidity of the state it acts on and ϵ is a phase conventionally chosen to be
ϵ = e−iπ/4 so that crossing is implemented without extra phases, see [240].

Requiring that the Z2 S-matrix (B.1) further commutes with the supercharges [116,241],
constrains the S-matrix SSUSY to take the form

SSUSY =




Sϕϕϕϕ 0 0
i(Sϕψϕψ−S

ϕϕ
ϕϕ)

csch(θ/2)

0 Sϕψϕψ
Sϕϕϕϕ−S

ϕψ
ϕψ

sech(θ/2)
0

0
Sϕϕϕϕ−S

ϕψ
ϕψ

sech(θ/2)
Sϕψϕψ 0

i(Sϕψϕψ−S
ϕϕ
ϕϕ)

csch(θ/2)
0 0 Sϕϕϕϕ − 2Sϕψϕψ




(B.3)
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which we can also write as SSUSY = σ+T+ + σ−T− with

T− =




sinh(θ/4)2

cosh(θ/2)
0 0 i tanh(θ/2)

2

0 1
2
−1

2
0

0 −1
2

1
2

0
i tanh(θ/2)

2
0 0 − cosh2(θ/4)

cosh(θ/2)




and

T+ =




cosh2(θ/4)
cosh(θ/2)

0 0 − i tanh(θ/2)
2

0 1
2

1
2

0
0 1

2
1
2

0

− i tanh(θ/2)
2

0 0 − sinh(θ/4)2

cosh(θ/2)


 .

The tensors Ti are invariant under supersymmetry and are constructed such that

Ti(θ)Tj(−θ) = δijPi(θ) ,

where Pi are orthonormal projectors:

Pi(θ)Pj(θ) = δijPi(θ) ,
P−(θ) + P+(θ) = 1 .

Using these properties we can simply write

S(θ)S(−θ) = |σ−(θ)|2P−(θ) + |σ+(θ)|2P+(θ) .

In sum, the advantage of this parametrization is that it trivializes unitarity to

|σ+(θ)|2 ≤ 1 and |σ−(θ)|2 ≤ 1 .

At this point unitarity is cast in the same spirit of previous S-matrix bootstrap works [11,
15]. As in those works, we are splitting the symmetry group into irreducible representations
associated with the projectors P+ and P− corresponding to the fundamental and anti-
fundamental representations of the supersymmetry algebra. Within each channel, unitarity
is as straightforward as for a single component scattering.

To put a bound state excitation in a particular representation we must put a single
pole in the correspondent σi function, or conversely, require that the residue of the other
representation is zero. If we let θ∗ = iγ be the position of the bound state pole in the
θ-plane, we have the following relations between the coupling strenghts2:

fundamental : g2ϕϕb = g2ϕψf
(
1 + sec

(
γ
2

))
,

anti-fundamental : g2ϕϕb = g2ϕψf
(
−1 + sec

(
γ
2

))
.

(B.4)

2We can also arrive at the coupling relations by writing the residues as three point functions and use
supersymmetric Ward identities.
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The difference in the signs of residues in each case can be interpreted as a difference in
the parities of the bound states, see appendix B.1. In both scenarios the boson is parity
even, but the fermionic bound state differs. It has the same parity as the external fermion
when the multiplet is in the fundamental representation and the opposite parity when it is
in the anti-fundamental representation.

B.4 Exact S-matrices

In this appendix we briefly review the exact S-matrices and related field theories showing
up in chapter 3. These include the regular sine-Gordon model (SG) [238], the supersym-
metric sine-Gordon model (SSG) [116], the restricted sine-Gordon model (RSG) [242,243],
Zamolodchikov’s Z4 S-matrix [114] and, so far as we are aware, a novel elliptic deformation
of the SSG breathers S-matrix [1], and a new non-factorizable deformation of SSG. The
relations between the various S-matrices are summarised in section 3.2.

B.4.1 Sine-Gordon

We begin with the regular sine-Gordon theory, whose action is

ASG =
(γ + π)

8πγ

∫
d2x

(
∂µϕ ∂

µϕ

2
+m2 (cosϕ− 1)

)
,

where γ is the effective coupling. For γ ≥ π the spectrum consists of solitons {|+⟩, |−⟩}
carrying U(1) topological charges. Their exact scattering [238] matrix SSGkinks

(θ), in the
{|++⟩, |+−⟩, | −+⟩, | − −⟩} basis, is equal to

U(θ)×




sinh π(iπ−θ)
γ 0 0 0

0 sinh πθ
γ i sin π2

γ 0

0 i sin π2

γ sinh πθ
γ 0

0 0 0 sinh π(iπ−θ)
γ


 (B.5)

where U(θ) =
Γ
(
π
γ

)
Γ
(
1+i

θ
γ

)
Γ
(
1−π

γ
−i θ
γ

)

iπ

∞∏
n=1

Fn(θ)Fn(iπ−θ)
Fn(0)Fn(iπ)

with Fn(θ) =
Γ( 2nπ+iθ

γ )Γ(1+ 2nπ+iθ
γ )

Γ( (2n+1)π+iθ
γ )Γ(1+ (2n−1)π+iθ

γ )
.

The S-matrix (B.5) corresponds to the green edge along the boundary of the Z4 symmetric
S-matrices of figure 3.3. The edge is parameterized by γ ∈ (π,∞), with γ = π correspond-
ing to free field theory.

For γ < π the solitons can form bound-states called breathers. In integrable theories,
the bound states S-matrix can be obtained from the fusion of the S-matrices of their
constituents, figure B.1. For the lightest breather of sine-Gordon this gives

SSGbreathers
(θ) =

sinh θ + i sin γ

sinh θ − i sin γ ,

which appeared in the S-matrix bootstrap context in [9]. There it was shown (both ana-
lytically and numerically) that this S-matrix has the biggest coupling between the external
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✓2 � ✓b/2

✓2 + ✓b/2

Sbreathers (✓ ⌘ ✓1 � ✓2)

✓1 ✓2

Figure B.1: Suppose we scatter two pairs of kinks, the constituents of each pair having the
precise relative rapidity θb so as to form a breather. We then let this bound states collide and
later decay. That will correspond to a double pole of the 4 → 4 kink S-matrix whose coefficient
is proportional to the breather-breather S-matrix of the theory. This is the process described in
the left hand side of the picture. From integrability, we can rearrange the incoming wave packets
so that the kinks scatter before fusing into bound states, as in the right hand side of the figure.
In this way, we relate the breathers S-matrix to a factorised product of four two-to-two kinks S-
matrix. For simplicity, we omitted quantum numbers that would be relevant in the sine-Gordon
or supersymmetric sine-Gordon theories, such as topological or SUSY charges. The fusing angle
is fixed both in SG and SSG to be θb = iγ.

particles (lightest breather) and their bound state (second-lightest breather).

B.4.2 Restricted sine-Gordon

The sine-Gordon theory possess Uq(sl(2)) quantum symmetry with q = −e−iπ2/γ. The
physics of the model is drastically modified when q is a root of identity, i.e., for γ = πp,
with p ≥ 3 and p ∈ Z. For this values some multi-soliton states decouple and the spectrum
can be restricted. It is then useful to introduce a new basis of particles, as described in
figure B.2, each carrying a rapidity and two Uq(sl(2)) spin quantum numbers.

The S-matrix between these new excitations is obtained from the fundamental solitons
S-matrix (B.5) through an interaction-round-a-face to vertex transformation. For a given
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1
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Figure B.2: Consider an n-soliton state in sine-Gordon theory. Each soliton carries a rapidity θi
and a spin 1/2 index mi. To construct a basis of Uq(sl(2)) invariant states we order the solitons
in a comb-like structure and project into intermediate Uq(sl(2)) partial-waves at each vertex
by contracting the incoming Uq(sl(2)) indices with some appropriately normalised 3j-symbols,
see [242] for details. Here we omit and sum over the spin indices of the intermediate states, as
well as sum over external indices mi. The state is invariant if we require that the final symbol
projects the state into the spin 0 representation. The invariant subspace is spanned by different
decomposition histories (0, 1/2, j2, . . . , jn−2, 1/2, 0). In this basis, it is useful to think of each
rapidity θi as carrying two quantum numbers (ji−1, ji), see figure B.3.

p, the RSG kinks S-matrix is defined by

|j0 ← θ1 → j1 . . . ji−1 ← θi → ji ← θi+1 → ji+1 . . . jn⟩ =
∑

ji

S
(p)
RSGkinks

(
ji−1 j′i
ji ji+1

∣∣∣∣ θ ≡ θi − θi+1

)
(B.6)

|j0 ← θ1 → j1 . . . ji−1 ← θi → ji ← θi+1 → ji+1 . . . jn⟩.

As explained in figure B.3, one can then determine this S-matrix in terms of SSGkinks

and the Uq(sl(2)) 3j-symbols [243], to be

S
(p)
RSGkinks

(
a b
c d

∣∣∣∣ θ
)

= U(θ)
2

(
[2a+1][2b+1]
[2c+1][2d+1]

) iθ
2π Rab

cd

Rab
cd =

√
[2a+1][2b+1]
[2c+1][2d+1]

sinh
(
πθ
γ

)
δad + sinh

(
iπ−θ
γ

)
δcb ,

[x] = qx−q−x
q−q−1 ,
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SsG kinks
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ji�1 j0i
ji ji+1

���� ✓ ⌘ ✓i � ✓i+1

◆

X

X

Figure B.3: Each RSG kink carries a rapidity θi and quantum numbers (ji−1, ji) associated to
the neighbouring intermediate spins. Their S-matrix is defined by equation (B.6) in terms of the
states described in figure B.2, and its relation to the regular SG kinks’ S-matrix is illustrated
above. As before, spin indexes are summed over and ommited. Note that the incoming and
outgoing kinks must share the ji−1 and ji+1 quantum numbers: this is an IRF type S-matrix.

where U(θ) has the same form as in SSGkinks
.

As a consistency check on the restriction one can use this explicit form to verify that
the RSG scattering amplitudes vanish whenever a, c, d ≤ p/2 − 1 < b. For p = 4 the
quantum group charges act on the scattering states described in figure B.2 as N = 1
supersymmetry3.

B.4.3 Zamolodchikov’s Z4 S-matrix

It turns out that for γ > π the sine-Gordon kinks’ S-matrix admits a one-parameter
deformation which preserves integrability. This is the Z4-symmetric elliptic S-matrix of
Zamolodchikov [114], and is the basic building block to construct the full boundary of
the space considered in figure 3.3. It describes the two-to-two scattering in a theory with
two particles {|1⟩, |3⟩}. These form a particle-antiparticle pair with charges one and three
under Z4, respectively. The explicit S-matrix SZ4(θ) in the {|11⟩, |13⟩, |31⟩, |33⟩} basis is

3Strictly speaking one has to do a change of basis on this states to define a canonical basis that
transforms appropriately under supersymmetry as detailed in [116].
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equal to

U(θ)×




sn(π+iθ)α
snπα

0 0
sn(π+iθ)αsniθα

k

0 − sniθα
snπα

1 0

0 1 − sniθα
snπα

0
sn(π+iθ)αsniθα

k
0 0

sn(π+iθ)α
snπα




where k = −1/√κ and where here

U(θ) = exp
∞∑
n=1

4 sinh2(2πn(π−β)/β′) sin(2πn(iπ−θ)/β′)
n csc(2πnθ/β′) sinh (4πnβ/β′) cosh (2π2n/β′)

,

β = 2K(κ)/α , β′ = 2K(1− κ)/α , snx ≡ sn(x, κ) ,

with K(κ) denoting the complete elliptic integral of the first kind and sn the Jacobi elliptic
sine and α = π/γ.

From real analyticity the deformation parameter κ must takes values in [0, 1) while α
must be either purely imaginary or real. In the κ → 0 limit we recover the sine-Gordon
kinks S-matrix. It turns out that due to periodicity on the θ-plane the coupling value must

be further constrained by α ∈ i
(
0, K(1−κ)

π

)
or α ∈

(
0, 2K(κ)

π

)
to prevent unphysical poles

from coming into the physical sheet. Applying transformations (B.2) to Zamolodchikov’s
Z4 S-matrix the full boundary of the space described in figure 3.3 is obtained.

B.4.4 Minimal supersymmetric sine-Gordon

The N = 1 supersymmetric sine-Gordon action is given by

ASSG =
(γ + 2π)

4πγ

∫
d2x

(
∂µϕ ∂

µϕ

2
+
i

2
ψ̄ /∂ψ+

+
m2

4
cosϕ2 − m

2
ψ̄ψ cosϕ

)
.

Just as sine-Gordon, for γ < π, the spectrum contains bound states (breathers). And
by the same process of fusion, described in figure B.1, we obtain the S-matrix of the lightest
breather supermultiplet, [116]. In the {|ϕϕ⟩, |ϕψ⟩, |ψϕ⟩, |ψψ⟩} basis it is given by

SSSGbreather
(θ) = SSGbreather

(θ)U (θ)× (B.7)




2i sin(γ/2)
sinh(θ) +1 0 0 sin(γ/2)

cosh( θ2)

0 1 i sin(γ/2)

sinh( θ2)
0

0 i sin(γ/2)

sinh( θ2)
1 0

sin(γ/2)

cosh( θ2)
0 0 2i sin(γ/2)

sinh(θ) −1



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where

U (θ) =

[
Γ (−iθ/2π)

Γ (1/2− iθ/2π)
∞∏

n=1

(
Γ (γ/2π − (iθ/2π) + n)

Γ (γ/2π − (iθ/2π) + n+ 1/2)
×

Γ (−γ/2π − (iθ/2π) + n− 1) Γ2 (−(iθ/2π) + n− 1/2)

Γ (−γ/2π − (iθ/2π) + n− 1/2) Γ2 (−(iθ/2π) + n− 1)

)]
×

[θ → iπ − θ]

The poles in the lightest breather S-matrix correspond to the second-lightest breather
supermultiplet of the spectrum.

It turns out that the supersymmetric sine-Gordon S-matrix is completely fixed by super-
symmetry and Yang-Baxter [240, 241]. Indeed, requiring that the general SUSY S-matrix
(B.3) satisfies the Yang-Baxter condition implies that Sϕϕϕϕ/S

ϕψ
ϕψ = 1 + iα/ sinh θ/2 with

α a constant. The overall factor is then fixed by unitarity up to CDD ambiguities. Fur-
thermore, by requiring that the residues in different matrix elements are consistent with
a bound state in the fundamental representation we fix α and obtain the matrix struc-
ture of the SSG breathers S-matrix (B.7). For a bound state in the anti-fundamental
representation, the S-matrix is similarly fixed to be SSSGbreathers

analytically continued to
γ → γ + 2π.

B.4.5 Elliptic deformation of the supersymmetric sine-Gordon

In [1] a Yang-Baxter preserving but supersymmetry breaking deformation of (B.7) was
obtained. The S-matrix is

SED(θ) = SSGbreathers
(θ)U(θ)×




dnθωsniγω
cnθωsnθω

+ dniγω 0 0
dnθωsniγω

cnθω

0 1 snγω
snθω

0

0 snγω
snθω

1 0
dnθωsniγω

cnθω
0 0

dnθωsniγω
cnθωsnθω

− dniγω




where

U(θ) = −i sinh (θ) exp
(∫∞

−∞
dθ′

2πi

log(g(θ′)/ sinh(θ′)2)
sinh(θ−θ′+iϵ)

)

ω = − i
π
K(κ) , g(θ) = 1− sn(iγω,κ)2

sn(θω,κ)2
,

snx = sn(x, κ) , dnx = dn(x, κ) , cnx = cn(x, κ) .

The deformation parameter κ is constrained to the interval (−∞, 1) due to real analyt-
icity, with the SSG breathers S-matrix being recovered in the κ→ 0 limit. The residues of
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this S-matrix as a function of κ correspond to the solid line in figure 3.3.

B.4.6 Non factorizable deformation of supersymmetric sine-Gordon

Following the steps described in appendix B.5 we were able to obtain an analytical expres-
sion for the supersymmetric S-matrices that lies along boundary of the space described in
figure 3.1:

SNF(θ) = SSSGbreathers
(θ)U(θ)×




r(θ) 0 0 i(1−r(θ))
csch(θ/2)

0 1 r(θ)−1
sech(θ/2)

0

0 r(θ)−1
sech(θ/2)

1 0
i(1−r(θ))
csch(θ/2)

0 0 r(θ)− 2




, (B.8)

where

U(θ) = ±
(
sinh θ − i

√
t

sinh θ + i
√
t

)Θ(t)

× exp

(
−
∫ ∞

−∞

dθ′

2πi

log
(
1− cosh2 (θ′/2) (1− r(θ′))2

)

sinh(θ′ − θ + iϵ)

)
,

with r(θ) being the ratio function found in (B.10).

By varying the parameter t ∈ R and the overall signs in U we parametrize the full
boundary of figure 3.1. The CDD-zero only makes sense for positive t. Negative values of
this parameter would break real analyticity and introduce poles in physical of scattering
energies, hence the presence of the step function. The reader can see that t = 0 yields the
SSG model.

B.5 More on the ratio function

The S-matrices on the boundary of the supersymmetric bootstrap are unitary. This con-
strains the S-matrices to be on the form (B.8) with the condition that

r(θ) + r(−θ) = 2 (B.9)

where r is simply the ratio between the two independent S-matrices elements (r = Sϕϕϕϕ/S
ϕψ
ϕψ ).

Using crossing symmetry in the relation above, is easy to see that this ratio function
is 2πi-periodic. This allows us to look only at two sheets of the θ-plane. It turns out
that on the boundary the ratio has a very simple analytical structure. In the first sheet
the numerical solutions have a pole at θ = iδ1, a zero at θ = iδ2 and their corresponding
crossing symmetric partners. On the second sheet they have the same poles plus an extra
zero at θ = iπ + δ3 and its crossing symmetric partner4.

4Numerically we observe that the δ’s belong to (0, π) or
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We start with an ansatz manifestly crossing symmetric and with the correct analytic
structure

r(θ) = A

(
sinh( 1

2
(θ−iδ2)) sinh( 1

2
(θ−iδ3))

sinh(θ−iδ1)

)
× (δj → π − δj) .

The unitarity constraint (B.9) fixes δ3 as a function of δ1 and δ2, leaving two free
parameters. Let θ∗ = iγ be the position of the bound state pole. The fact that the residues
of the supersymmetric S-matrix elements are related by (B.4) gives another constraint,

r(iγ) = 1± sec(γ/2) ,

where the sign reflects which representation one chooses. This relation fixes δ2 as a function
of δ1.

At the SSG point (or at its equivalent for the anti-fundamental representation) we have
δ1 = 0 and therefore

r(θ)|δ1=0 = 1± 2i sin(γ/2)

sinh θ
,

which fixes the overall constant A.

The final solution then depends on two parameters: t = sin2 δ1 and γ that determines
the bound state mass,

r(θ) = 1± i
(
2 sin

(γ
2

)
− t

sin γ cos
(
γ
2

)
)

sinh(θ)

t+ sinh(θ)2
. (B.10)

Note that when t = 0 we recover the SSG model as expected and when t = sin(γ)2 we
reach the free theories points.

B.6 Numerics

Our numerics follow verbatin the algorithms in [1, 9, 13]. In short we first propose a very
general ansatz for the S-matrix elements in terms of a large linear combination of basis
functions as (here the index a labels all possible scattering channels)

Sa(s) = polesa + regulara =
N∑

n=1

c(n)a fn(s) .

with N as large as our computers allow. What are these functions fn? They can be any
basis which spans the full space of possible S-matrices – with their required analytic prop-
erties – as N →∞. Common examples are Fourier series, Taylor expansions, (discretized)
dispersion relations etc. We use the latter for the plots in chapter 3.

Note that both the S-matrix elements at some off-shell value, Sa(s∗), as well as the
residues of the poles of the S-matrix elements are then explicit linear combinations of the
c
(n)
a . These linear combinations are what we want to maximize or minimize to determine

{π/2 + iτ |τ ∈ R}.
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the boundary of the allowed S-matrix space.

So all we have to do is to maximize these linear combinations subject to the two relevant
physical constraints which are crossing and unitarity. Crossing Sa(4 − s) = CabSb(s) is a

simple linear constraints on the c
(n)
a ’s. We can use it to simply eliminate some of these

constants in terms of the others. Unitarity is more interesting. In terms of probability
conservation it reads as |Sa(s)|2 ≤ 1 for any real s above the two-particle production
threshold. This condition can be trivially linearized as the statement that the matrix

(
1 Sa(s)

Sa(s)
∗ 1

)

is positive semi-definite in that same range of s. In practice we impose this condition
in a grid in s starting from threshold and going to some large energy value. For each
s we get a positive semi-definite condition, all of which linear in all the parameters c

(n)
a .

Hence our maximization problem is nothing but what is called a semidefinite programming
(SDP) problem for which we can use the very powerful sdpb software developed by Simons-
Duffin [112]. That is what we did.
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Appendix C

Appendix: The S-matrix Bootstrap: 2D
Dual Theory

C.1 Strong Duality

AssumeM∗ solves the primal problem (4.19) with optimal coupling g2∗, and note that there
are some amplitudes do not saturate unitarity since we could always cook up models with
other particles also with mass m1 and m2 so that probability could leak into those hidden
sectors and manifest itself as non-saturation of unitarity in our truncated Hilbert space.1

This means that

Inner point property

There exists an Mi such that U(Mi) ≻ 0 and A(Mi) = 0. (C.1)

In this appendix we argue that this implies strong duality [135–137]. Consider the
following auxiliary convex set in the space of real G, symmetric A(s) and hermitian U(s):

Aux = {(G,A(s),U(s)) s.t. G ≤ g2,A(s) = A(M(s)),U(s) ⪯ U(M(s)) for some analytic M}.

The point bp ≡ {g2∗, 0, 0} is at the boundary of Aux. Since Aux has an interior point, the
supporting hyperplane theorem2 guarantees that there exists a hyperplane (i.e. a linear
functional on the (G,A(s),U(s)) space) containing bp so that the set Aux is to one side
of it. In equations, there exists real γ, symmetric wc(s) and hermitian Λc(s), not all
simultaneously zero, such that

γG +

∫ ∞

4m2
1

ds Tr(wc · A(s) + Λc · U(s)) ≤ γg2∗ for all (G,A(s),U(s)) in Aux. (C.2)

Note that, due to the definition of A, this is only possible if γ ≥ 0 and Λ ⪰ 0.3

1Here unitarity refers to both unitarity and extended unitarity.
2In the infinite dimensional case, this is a consequence of Hahn-Banach’s theorem.
3To see explicitly, assume Λc(s) isn’t positive semidefinite. Then there exists x⃗ such that x⃗†Λcx⃗ < 0.

In turn, this implies that Tr(Λc · (U + rx⃗x⃗†)) could become arbitrarily negative as we take r →∞. Note,
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Equation (C.2) should hold in particular when the inequalities in (C.2) are saturated,
in which case it reduces to

γg2 +

∫ ∞

4m2
1

ds Tr(wc · A+ Λc · U) ≤ γg2∗ for all M. (C.3)

Next, we need to argue that γ ̸= 0. First note that, if that were the case, then, after
renormalizing wc → γwc and Λc → γΛc, we would conclude that

L(M,wc,Λc) = g2 +

∫ ∞

4m2
1

ds Tr(wc · A+ Λc · U) ≤ g2∗ for all M,

which, paired with weak duality, leads to strong duality:

g2∗ ≤ d(wc,Λc) ≡ sup
M
L(M,wc,Λc) ≤ g2∗ =⇒ d(wc,Λc) = g2∗.

In particular this implies that unless Λc has a zero eigenvalue, U = 0, i.e. unitarity is
saturated. This is the matrix version counterpart of the argument in [12] for unitarity
saturation.

To prove that γ > 0, assume γ = 0 and look for a contradiction. Plugging Mi from
(C.1) into (C.3) would show that Λc = 0. This in turns would lead, using (C.2), to

∫ ∞

4m2
1

ds Tr(wc · A(s)) ≤ 0 for all (G,A(s),U(s)) in Aux.,

which can only be true for a symmetric w if wc = 0. But γ,wc(s),Λc(s) are not all zero
by the supporting hyperplane theorem, which shows that γ = 0 is a contradiction. This
concludes the argument.

C.2 More on dispersion relations

C.2.1 Subtracted dispersions

The construction of the dual problem starts with the dispersive representation of the am-
plitude, see for instance eq. (4.2). In order to allow the most general behavior compatible
with polynomial boundedness, one introduces subtractions.

Here we show that for the case of M =M11→11 scattering, our derivation is compatible
with one-subtracted dispersions. Let us start from the identity (we set the units by the
mass of the external particle m = 1)

M(s)−M(2) =

∫

Cε(s)

M(z)

z − s dz −
∫

Cε(2)

M(z)

z − 2
dz, (C.4)

however, that (G,A,U + rx⃗x⃗†) is in A for all r > 0 provided (G,A,U) is. These two facts together are in
contradiction with (C.2).
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where Cε(s0) is a circular path around s0 of radius ε and we can imagine there always exist
a path connecting them. The amplitude M(s), by physical assumptions, can only have
poles on the real axis in the segment 0 < s < 4.4

Blowing up the contour in eq. (C.4) we get

0 = A(s) =M(s)−M(2)−
∑

i

g2i (s− 2)

(
1

(m2
i − s)(m2

i − 2)
− 1

(t(m2
i )− s)(t(m2

i )− 2)

)

− 1

π

∫ ∞

4

ImM(z)

(
s− 2

(z − s)(z − 2)
+

t(s)− t(2)
(z − t(s))(z − t(2))

)
dz

=M(s)−M(2) +
∑

i

g2i

(
1

s−m2
i

+
1

t(s)−m2
i

− 2

m2
i − 2

)

− 1

π

∫ ∞

4

ImM(z)
2(s−2)2

(z−s)(z − 2)(z+s−4)dz. (C.5)

The last line of equation above shows that the imaginary part of the amplitude can grow
as ImM(z) ∼ z for large z.

We want to integrate (C.5) against the Lagrange multiplier w(s). Now, note that a
new primal variable we have now is the constant M(2) in (C.5); when we construct the
Lagrangian by integrating (C.5) agains w(s), that constant term will be multiplied by the
integral of w(s) and thus its equations of motion will lead to

∫∞
4
w(s)ds = 0 which we

assume henceforth. Then, it is easy to show that

∫ ∞

4

w(s)A(s)ds =
∫ ∞

4

M(s)w(s) +
∑

i

g2i

∫ ∞

4

w(s)

(
1

s−m2
i

+
1

t(s)−m2
i

)
ds

− 1

π

∫ ∞

4

dz ImM(z)

∫ ∞

4

w(s)
2(s−2)2

(z−s)(z − 2)(z+s−4) .

If we decompose the subtracted integration kernel in partial fractions

2(s−2)2
(z−s)(z − 2)(z+s−4) =

1

z − s +
1

z + s− 4
− 2

z − 2

the integration against the Lagrange multiplier nicely yields5

∫ ∞

4

w(s)
2(s−2)2

(z−s)(z − 2)(z+s−4)ds = −
∫ ∞

4

w(s)

(
1

s− z −
1

s− t(z)

)
ds.

Following the logic outlined in Sec. 4.2, we introduce the anti-crossing analytic function,

4We chose s = 2 as a subtraction point for convenience: the only dangerous situation is when the mass
of the bound state is m2

b = 2. However, in that case the s and t-channel poles would collide canceling each
other, therefore we can avoid this situation and always assume m2

b ̸= 2 without loosing generality.
5In all these manipulations we are assuming that w(s) decays fast enough to justify the integration

exchanges.
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holomorphic in the complex-plane without the normal unitarity cuts

W (z) =
1

π

∫ ∞

4

ImW (s)

(
1

s− z −
1

s− t(z)

)
ds,

such that ImW (s) = w(s) for s > 4. At the end we get the useful identity

∫ ∞

4

w(s)A(s)ds =
∫ ∞

4

Im (W (s)M(s))ds+ π
∑

i

g2iW (m2
i ),

that we have used, for instance, to get eq. (4.11).

C.2.2 The 11→ 12 functional.

The analysis leading to the dispersion relation (4.44) arises from the analysis of the term

∫ ∞

4m2
1

A11→12w2 = Resm2
1
(M11→12)

∫ ∞

4m2
1

w2

(
1

s−m2
1

+
1

t−m2
1

+
1

u−m2
1

)
ds+

+

∫ ∞

4m2
1

ReM11→12w2 ds−
1

π

∫ ∞

4m2
1

dzImM11→12(z)

∫ ∞

4m2
1

w2(s)

(
1

z − s +
1

z − t(s) +
1

z − u(s)

)
.

(C.6)

once we use the dispersion relation (4.38).

The second line suggests that we could define an analytic function W2 such that w2 =
ImW2, in particular

ReW2(z) = −
1

π

∫ ∞

4m2
1

ImW2(s)

(
1

z − s +
1

z − t(s) +
1

z − u(s)

)
ds.

It is interesting to notice that whileM11→12 is manifestly crossing invariant in s, t, u because
the integration kernel is, the crossing properties of W2 are now implicitly defined and we
need to invert the relation between t(s), u(s) and z. Some simple algebra shows that

ReW2(z) =
1

π

∫ ∞

4m2
1

ImW2(s)

(
1

s− z +
Jt(z)

s− t(z) +
Ju(z)

s− u(z)

)
ds, (C.7)

with Jt = dt/ds and Ju = du/ds. In other words, we can define an analytic function which
is dual crossing symmetric in the sense that when we cross we pick a jacobian factor. Notice
that this definition is compatible with (4.10) as for single component Jt = dt/ds = −1 and
Ju = 0. The standard anti-crossing case thus follows as a particular case from this general
rule. From eq. (C.7) we immediately recover

∫ ∞

4m2
1

ImW2(s)

(
1

s−m2
1

+
1

t(s)−m2
1

+
1

u(s)−m2
1

)
ds = πW2(m

2
1).
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In practice, we have shown that eq. (C.6) can be reduced to

∫ ∞

4m2
1

A11→12w2 =

∫ ∞

4m2
1

Im (W2M11→12) ds+Resm2
1
(M11→12)W2(m

2
1).

The analysis of the 12 → 12 component follows straightforwardly and is analogous to the
11→ 11 case.

C.3 Dual Lagrangian for multiple components

Here we present some of the algebra manipulations pertaining to section 4.3.4. In particu-
lar, the final expressions in this appendix contain the optimal phase shifts in terms of the
critical dual functionals. Varying the Lagrangian

L(M,W,Λ) =

∫ ∞

4m2
1

ds tr
(W ·M−M ·W

2i︸ ︷︷ ︸
Im(WM)

+Λ ·
(
2
M−M

2i
−M · ρ ·M

)
︸ ︷︷ ︸

Λ·U(M))

)
. (C.8)

with respect to M and its conjugate6

0 =

∫ ∞

4m2
1

ds tr
(
δM ·

[W
2i

+
Λ

i
− ρ ·M · Λ

]
+ δM ·

[ W
−2i +

Λ

−i − Λ ·M · ρ
])

Now, since δM (and its hermitian conjugate) are expressed in a basis of pauli matrices
σ0(= I), σ1, σ3 but not σ2 ≡ σ we can only say that each term in square brackets is zero
up to a term proportional to σ which will always vanish under the trace,

W
−2i +

Λ

−i − Λ ·M · ρ = aσ . (C.9)

At this junction we will split the analysis into the extended and regular unitarity region
for the simple reason that ρ is invertible only in the regular unitarity region.

Let us first focus on the regular unitarity region. Dotting (C.9) with σ · ρ · Λ−1 from
the left and taking the trace kills the last two terms on the left hand side and leads to a
simple expression for a. Next, armed with a we can simply multiply the equation by Λ−1

and ρ−1 from the left/right respectively to get M,

M =
i

2
Λ−1 ·

(
2Λ +W+ σ

tr (σ ·W · Λ−1 · ρ)
tr (Λ−1 · ρ)︸ ︷︷ ︸

a

)
· ρ−1

We could still simplify this expression a bit more noting that ρ−1 = σ · ρ · σ/ det(ρ) and
Λ−1 = σ ·Λ · σ/ det(Λ) to get rid of the some inverses. Finally, we can plug this expression

6Note that for the symmetric matrices M and W in (4.35) and (4.42) hermitian conjugation is the same
as conjugation hence the absence of daggers in these expressions.
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into the Lagrangian (C.8) to obtain a beautiful compact matrix form for the dual objective
in the regular unitarity region:

dregular(W,Λ)=

∞∫

4m2
1

ds tr
(
ρ−1 ·

(
Λ+

W
2

)
·Λ−1 ·

(
Λ+

W
2

))
+
tr
(
ρ−1·W·σ·Λ

)
tr
(
ρ−1·W·Λ−1·σ

)

4 tr
(
ρ−1 · Λ

) .

Nicely, note how one can formally reduce it to a single component by replacing σ by zero
(thus killing the second term), dot products by simple products and matrices by functions;
then this Lagrangian would precisely reduce to the single component expression (4.13).

Next we consider the extended unitarity region. An annoying feature is now that ρ is
not invertible. On the other hand, the reason why ρ is not invertible is precisely because
it becomes full of zeros and hence extremely simple:

ρ→
(
ρ211 0
0 0

)

which renders the analysis of the extremization of (C.8) in components a straightforward
task. We obtain

dextended(W,Λ) =
1

2ρ211(λ
2
2 − 4λ1λ3)

(
− 8λ3λ1Re (w1)− 4λ2λ1Re (w2) + 4λ22Re (w1)− 8λ3λ

2
1

−2λ1w2 (w2)
∗ + λ2w2 (w1)

∗ − 2λ3w1 (w1)
∗ + λ2w1 (w2)

∗
)
.

It is possible to minimize analytically the dual functional d(W,Λ) with respect to Λ.
The resulting dual objective has been already shown in eq. (4.49). Here we shall report
the expressions for the critical amplitudes as function of W only.

In the extended unitarity region 4 < s < (m1 +m2)
2 the critical amplitudes are given

by

M11→11 =
i

ρ211

(
1 +

(W 2
2 − 4W1W3)

∗

|W 2
2 − 4W1W3|

)
,

M11→12 =
i

2ρ211

4W ∗
1W2W3 − |W2|2 − |W 2

2 − 4W1W3|
W3|W 2

2 − 4W1W3|
, (C.10)

ImM12→12 =
|W2|4 + |W2|2|W 2

2 − 4W1W3| − 4W3Re (W
2
2W

∗
1 )

4ρ211|W 2
2 − 4W1W3|W 2

3

.

Notice that we cannot have direct access to ReM12→12, but we can reconstruct it from
its imaginary part. This is of course related to the fact that our equations in the extended
unitarity region, with ρ non-invertible, are a bit more degenerate.

In the unitarity region, s > (m1 +m2)
2, the expressions of the critical amplitudes are

235



much more involved. It is convenient to introduce the two auxiliary functions

α =
1

2ρ211

√
ρ412|W1|2 + ρ411|W3|2 +

1

2
ρ211ρ

2
12(|W2|2 + |W 2

2 − 4W1W3|),

β =
α

2i

4W2W
∗
1 |W3|2 +W3W

∗
2 (|W 2

2 − 4W1W3| − |W2|2)
2ImW2ReW2Re (W1W3)− Re (W 2

2 )Im (W1W3)
.

The amplitudes can then compactly written as

M11→11 =
i

2α

(
2α +W ∗

1

ρ211
− W ∗

3 β

ρ212β
∗

)
,

M11→12 =
i

ρ212

W ∗
3

β∗ , (C.11)

M12→12 = −
i

2α|β|2ρ412
(W ∗

3 (4α
2ρ212 − |β|2ρ211) + ρ212β

∗(W ∗
1 β

∗ − 2α(β +W ∗
2 ))).

Quite non-trivially, relations (C.10) and (C.11) manifestly saturate extended and regular
unitarity in our truncated space.

C.4 Dual Z2 bootstrap

C.4.1 Setup the primal problem

Here we consider a simple application of the dual technology developed in Sec. 4.2 to the
scattering of equal mass particles with different field parity: 1 odd and 2 even. Defining
the S-matrix element for the process ij → kl as Sklij = out⟨kl|ij⟩in, we can group the even
and odd scattering processes into two 2× 2 matrices7

Seven =

(
S11→11 S11→22

S11→22 S22→22

)
Sodd =

(
S12→12 S12→21

S12→21 S12→12

)
. (C.12)

Unitarity is simply given by the two positivity constraints

Ueven = 1− Seven(Seven)† ⪰ 0, Uodd = 1− Sodd(Sodd)† ⪰ 0, s ≥ 4m2. (C.13)

Analyticity and crossing properties are encoded into the dispersion relations

Aa(s) = Sa(s)−Sa(∞)+
Jg2a

s−m2
+

JCabg2b
t(s)−m2

− 1

π

∫ ∞

4m2

(
Im Sa(z)

z − s +
CabIm Sb(z)

z − t(s)

)
dz = 0,

(C.14)

7Recall that in 1 + 1 dimensions forward 12 → 12 and backward 12 → 21 scattering of non-identical
particles are independent processes.
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where J = 1/2
√
m2(4−m2) and a, b = {11 → 11, 22 → 22, 12 → 12, 11 → 22, 12 → 21}.

In this basis the crossing matrix is simply

C =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0



. (C.15)

The processes {11→ 11, 22→ 22, 12→ 12} are invariant under crossing s→ t = 4m2− s.
The last two processes 11→ 22 and 12→ 21 are crossed of each other.

Because of Z2 symmetry there are only two independent couplings that we call g112 and
g222. They show up in the different processes as follows

Amplitude Exchange of particle 1 Exchange of particle 2
11→ 11 0 g2112
22→ 22 0 g2222
12→ 12 g2112 0
11→ 22 0 g112g222
12→ 21 g2112 0

One way to explore the space of allowed couplings is to formulate the problem in a
radial form. We define

g112 = R cos θ, g222 = R sin θ,

and the vector v(θ) = {cos2 θ, sin2 θ, cos2 θ, sin θ cos θ, cos2 θ}. Then for each fixed θ we
solve:
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Primal Z2 Problem

maximize
in {R2,Sa}

R2

constr. by Resm2(Sa) = va(θ)R
2 for a = 1, . . . , 5 (C.16)

Aa(s) = 0 for s > 4m2, for a = 1, . . . , 5

Ueven(s) ⪰ 0, Uodd(s) ⪰ 0 for s > 4m2. (C.17)

This problem and therefore the space of the allowed couplings {g112, g222} has been already
determined in [1]. Our aim is to give an equivalent dual formulation which makes the
problem so simple that can be ran in few minutes using Mathematica on a standard laptop.

C.4.2 Dual construction I: residue constraints

As explained in Sec. 4.2, the construction of the dual problem starts with the introduction
of Lagrange multipliers for any constraint given in the primal problem (C.17). The first
set of linear constraints (C.16) defines what we call “radial problem” – see also [12]. They
can be easily taken into account introducing the Lagrangian

L(R2, S, ν) = R2+
∑

a

νa(Resm2(Sa)−va(θ)R2) = R2

(
1−

∑

a

νava(θ)

)
+
∑

a

νaResm2(Sa).

The Lagrange equation for R2 yields simply the condition

1−
∑

a

νava(θ) = 0,

and the problem can be cast in a simpler equivalent form

min
νa

{
max
Sa

∑

a

νaResm2(Sa) constrained by

Aa(s) = 0, s ≥ 4m2, a = 1, . . . , 5

Ueven(s) ⪰ 0, Uodd(s) ⪰ 0, s ≥ 4m2

}

constrained by 1−
∑

a

νava(θ) = 0. (C.18)

C.4.3 Dual construction II: analyticity and crossing

All crossing and analyticity properties of the various S-matrices involved in the Z2 system
can be derived from the dispersion relations in eq. (C.14). Indeed, for each s they can be
viewed as a set of linear constraints enforcing a precise relation among the ReM(s) and
ImM(s), otherwise independent.
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For each component we introduce a dual scattering function wa and replace the objective
in (C.18) by

L(S, ν, w) =
∑

a

νaResm2(Sa) +
∑

a

∫ ∞

4m2

wa(s)Aa(s) ds. (C.19)

The wa(s) are real functions in general. However, it is often useful to define analytic
functions starting from wa(s) to simplify the analyticity and crossing constraint. It can be
shown that if we introduce a dual crossing function Wa(4m

2 − s) = −CabWb(s) such that

Wa(s) =
1

π

∫ ∞

4m2

(
Im Wa(z)

z − s − CabIm Wb(z)

z − t(s)

)
dz

and identify
wa(s) = ImWa(s), for s > 4m2,

the last term in eq. (C.19) becomes

∑

a

∫ ∞

4m2

wa(s)Aa(s) ds = πJ
∑

a

Resm2(Sa)Wa(m
2) +

∑

a

∫ ∞

4m2

Im (WaSa) ds. (C.20)

Substituting eq. (C.20) into the Lagrangian (C.19) allows us to maximize in the Resm2(Sa)
variables

∂

∂Resm2(Sa)
L(S, ν, w) = νa + πJWa(m

2) = 0, for a = 1, . . . , 5,

and use these 5 equations to eliminate the Lagrange multipliers setting νa = −πJWa(m
2).

The radial constraint translates into a condition on the Wa dual scattering functions

min
νa,Wa

{
max
Sa

∑

a

∫ ∞

4m2

Im (WaSa) ds constrained by

Ueven(s) ⪰ 0, Uodd(s) ⪰ 0, s ≥ 4m2

}

constrained by 1 + πJ
∑

a

va(θ)Wa(m
2) = 0. (C.21)

C.4.4 Dual construction III: unitarity

The last constraint to add to the dual Lagrangian is unitarity. This can be elegantly done
if we cast the problem (C.21) into a matrix form. If we define the symmetric matrices

Weven =

(
2W1 W4

W4 2W2

)
, Wodd =

(
W3 W5

W5 W3

)
. (C.22)
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the objective of (C.21) is just

∑

a

∫ ∞

4m2

Im (WaSa) ds =

∫ ∞

4m2

ds

(
1

2
Im (tr WevenSeven) +

1

2
Im
(
tr WoddSodd

))
,

recalling Seven/odd were introduced in (C.12). It is then natural to introduce the semidefinite-
positive matrix Lagrange multipliers Λeven and Λodd

L(S,W,Λ)=

∫ ∞

4m2

ds

(
1

2
Im
(
tr WevenSeven+tr WoddSodd

)
+

1

2
tr ΛevenUeven +

1

2
tr ΛoddUodd

)
,

(C.23)
So that

δSL=
∫ ∞

4m2

ds
∑

η=even,odd

tr

[(
−Wη

4i
− 1

2
Λη · Sη

)
δSη + conjugate

]
(C.24)

Since 0 = tr (σy · S̄) = tr (σy · S) = tr (σy · δS̄) = tr (σy · δS) the parentheses does not need
to vanish. It does need to be proportional to σy with a proportionality constant which we
can easily find by dotting it with the appropriate matrices:

−W
4i
− 1

2
Λ · S = − 1

4i

tr(Λ−1 ·W · σy)
tr(Λ−1)

σy (C.25)

where we dropped the implicit label η. For η = odd this equation simplifies dramatically
because8

Λodd =

(
λ3 λ5
λ5 λ3.

)

and the right hand side of (C.25) vanishes once we use (C.22). In that case we therefore

obtain the critical S-matrix in the odd sector as compactly given by Sodd = i
4
(Λodd)−1Wodd

.
Furthermore, minimizing the dual functional over Λ is equivalent to solving the constraint
equation 1 = Sodd(Sodd)† which determines9

Λodd =
1

2

√
Wodd ·Wodd. (C.26)

Plugging eq. (C.26) into the dual functional we finally get

inf
Λ
d(W,Λ)odd = Dodd(W) =

1

2

∫ ∞

4m2

tr
(√

W ·W
)odd

ds. (C.27)

In the even sector case such an honest explicit derivation is not available because of the
very non-linear appearance of Λ. Inspired by the simplicity of (C.27) we guessed the matrix

8Notice Uodd is real and symmetric, we can take Λodd real and symmetric as well without loss of
generality.

9The square root of a matrix is not uniquely defined in general. Here we should pick the positive-
semidefinite solution.
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formulation of the dual problem

Dual Z2 Problem

minimize
in {Weven,Wodd}

1

2

∫ ∞

4m2

tr
(√

W ·W
)odd

+ tr
(√

W ·W
)even

ds,

constr. by 1 + πJ
∑

a

va(θ)Wa(m
2) = 0. (C.28)

This guess is correct. We checked it numerically and also derived it by brute force going
to components.
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Potts model
<latexit sha1_base64="S5O4oGdq2A9l66JNeG4MBMhGmYM=">AAACB3icbVC7TsNAEDyHVwivQEqaExESVWQjJCgjaCiDRB5SYkXnyyaccuez7taIyMoH8BW0UNEhWj6Dgn/BNi4gYarRzK52doJICouu++mUVlbX1jfKm5Wt7Z3dver+Qcfq2HBocy216QXMghQhtFGghF5kgKlAQjeYXmV+9x6MFTq8xVkEvmKTUIwFZ5hKw2ptgPCASUsjWqr0COS8MqzW3Yabgy4TryB1UqA1rH4NRprHCkLkklnb99wI/YQZFFzCvDKILUSMT9kE+ikNmQLrJ3n4OT2OLUNNIzBUSJqL8HsjYcramQrSScXwzi56mfif149xfOEnIoxihJBnh1BIyA9ZbkTaCtCRMIDIsuRARUg5MwwRjKCM81SM05qyPrzF75dJ57ThpfzmrN68LJopk0NyRE6IR85Jk1yTFmkTTmbkiTyTF+fReXXenPef0ZJT7NTIHzgf37rOmVw=</latexit><latexit sha1_base64="S5O4oGdq2A9l66JNeG4MBMhGmYM=">AAACB3icbVC7TsNAEDyHVwivQEqaExESVWQjJCgjaCiDRB5SYkXnyyaccuez7taIyMoH8BW0UNEhWj6Dgn/BNi4gYarRzK52doJICouu++mUVlbX1jfKm5Wt7Z3dver+Qcfq2HBocy216QXMghQhtFGghF5kgKlAQjeYXmV+9x6MFTq8xVkEvmKTUIwFZ5hKw2ptgPCASUsjWqr0COS8MqzW3Yabgy4TryB1UqA1rH4NRprHCkLkklnb99wI/YQZFFzCvDKILUSMT9kE+ikNmQLrJ3n4OT2OLUNNIzBUSJqL8HsjYcramQrSScXwzi56mfif149xfOEnIoxihJBnh1BIyA9ZbkTaCtCRMIDIsuRARUg5MwwRjKCM81SM05qyPrzF75dJ57ThpfzmrN68LJopk0NyRE6IR85Jk1yTFmkTTmbkiTyTF+fReXXenPef0ZJT7NTIHzgf37rOmVw=</latexit><latexit sha1_base64="S5O4oGdq2A9l66JNeG4MBMhGmYM=">AAACB3icbVC7TsNAEDyHVwivQEqaExESVWQjJCgjaCiDRB5SYkXnyyaccuez7taIyMoH8BW0UNEhWj6Dgn/BNi4gYarRzK52doJICouu++mUVlbX1jfKm5Wt7Z3dver+Qcfq2HBocy216QXMghQhtFGghF5kgKlAQjeYXmV+9x6MFTq8xVkEvmKTUIwFZ5hKw2ptgPCASUsjWqr0COS8MqzW3Yabgy4TryB1UqA1rH4NRprHCkLkklnb99wI/YQZFFzCvDKILUSMT9kE+ikNmQLrJ3n4OT2OLUNNIzBUSJqL8HsjYcramQrSScXwzi56mfif149xfOEnIoxihJBnh1BIyA9ZbkTaCtCRMIDIsuRARUg5MwwRjKCM81SM05qyPrzF75dJ57ThpfzmrN68LJopk0NyRE6IR85Jk1yTFmkTTmbkiTyTF+fReXXenPef0ZJT7NTIHzgf37rOmVw=</latexit><latexit sha1_base64="S5O4oGdq2A9l66JNeG4MBMhGmYM=">AAACB3icbVC7TsNAEDyHVwivQEqaExESVWQjJCgjaCiDRB5SYkXnyyaccuez7taIyMoH8BW0UNEhWj6Dgn/BNi4gYarRzK52doJICouu++mUVlbX1jfKm5Wt7Z3dver+Qcfq2HBocy216QXMghQhtFGghF5kgKlAQjeYXmV+9x6MFTq8xVkEvmKTUIwFZ5hKw2ptgPCASUsjWqr0COS8MqzW3Yabgy4TryB1UqA1rH4NRprHCkLkklnb99wI/YQZFFzCvDKILUSMT9kE+ikNmQLrJ3n4OT2OLUNNIzBUSJqL8HsjYcramQrSScXwzi56mfif149xfOEnIoxihJBnh1BIyA9ZbkTaCtCRMIDIsuRARUg5MwwRjKCM81SM05qyPrzF75dJ57ThpfzmrN68LJopk0NyRE6IR85Jk1yTFmkTTmbkiTyTF+fReXXenPef0ZJT7NTIHzgf37rOmVw=</latexit>

Dual Excluded

Primal Allowed

Beginning of elliptic deformation line
<latexit sha1_base64="DFFI1ugNU2soRGjWcWV0LhLfd0M=">AAACIXicbVC7SgNBFJ31GeMramkzGAQbw64IWgZtLCMYDSQhzE5u4sXZ2WXmrihLvsJP8CtstbITOxH/xdk1hSae6nDuua8TJgot+f6HNzM7N7+wWFoqL6+srq1XNjYvbZwaCU0Zq9i0QmFBoYYmISloJQZEFCq4Cm9O8/rVLRiLsb6g+wS6kRhqHKAU5KReZb9DcEfZCQxRa9RDHg84KIUJoeR9GMQmKpw8XzDqVap+zS/Ap0kwJlU2RqNX+er0Y5lGoEkqYW078BPqZsK48QpG5U5qIRHyRgyh7agWEdhuVrw14rupFRTzBAxHxQsRfndkIrL2Pgqd0x15bSdrufhfrZ3S4LiboU5SAi3zRYQKikVWGnR5Ae+jASKRXw4cNZfCCCIwyIWUTkxdLGWXRzD5/TS5PKgFjp8fVusn42RKbJvtsD0WsCNWZ2eswZpMsgf2xJ7Zi/fovXpv3vuPdcYb92yxP/A+vwGVAqSH</latexit><latexit sha1_base64="DFFI1ugNU2soRGjWcWV0LhLfd0M=">AAACIXicbVC7SgNBFJ31GeMramkzGAQbw64IWgZtLCMYDSQhzE5u4sXZ2WXmrihLvsJP8CtstbITOxH/xdk1hSae6nDuua8TJgot+f6HNzM7N7+wWFoqL6+srq1XNjYvbZwaCU0Zq9i0QmFBoYYmISloJQZEFCq4Cm9O8/rVLRiLsb6g+wS6kRhqHKAU5KReZb9DcEfZCQxRa9RDHg84KIUJoeR9GMQmKpw8XzDqVap+zS/Ap0kwJlU2RqNX+er0Y5lGoEkqYW078BPqZsK48QpG5U5qIRHyRgyh7agWEdhuVrw14rupFRTzBAxHxQsRfndkIrL2Pgqd0x15bSdrufhfrZ3S4LiboU5SAi3zRYQKikVWGnR5Ae+jASKRXw4cNZfCCCIwyIWUTkxdLGWXRzD5/TS5PKgFjp8fVusn42RKbJvtsD0WsCNWZ2eswZpMsgf2xJ7Zi/fovXpv3vuPdcYb92yxP/A+vwGVAqSH</latexit><latexit sha1_base64="DFFI1ugNU2soRGjWcWV0LhLfd0M=">AAACIXicbVC7SgNBFJ31GeMramkzGAQbw64IWgZtLCMYDSQhzE5u4sXZ2WXmrihLvsJP8CtstbITOxH/xdk1hSae6nDuua8TJgot+f6HNzM7N7+wWFoqL6+srq1XNjYvbZwaCU0Zq9i0QmFBoYYmISloJQZEFCq4Cm9O8/rVLRiLsb6g+wS6kRhqHKAU5KReZb9DcEfZCQxRa9RDHg84KIUJoeR9GMQmKpw8XzDqVap+zS/Ap0kwJlU2RqNX+er0Y5lGoEkqYW078BPqZsK48QpG5U5qIRHyRgyh7agWEdhuVrw14rupFRTzBAxHxQsRfndkIrL2Pgqd0x15bSdrufhfrZ3S4LiboU5SAi3zRYQKikVWGnR5Ae+jASKRXw4cNZfCCCIwyIWUTkxdLGWXRzD5/TS5PKgFjp8fVusn42RKbJvtsD0WsCNWZ2eswZpMsgf2xJ7Zi/fovXpv3vuPdcYb92yxP/A+vwGVAqSH</latexit><latexit sha1_base64="DFFI1ugNU2soRGjWcWV0LhLfd0M=">AAACIXicbVC7SgNBFJ31GeMramkzGAQbw64IWgZtLCMYDSQhzE5u4sXZ2WXmrihLvsJP8CtstbITOxH/xdk1hSae6nDuua8TJgot+f6HNzM7N7+wWFoqL6+srq1XNjYvbZwaCU0Zq9i0QmFBoYYmISloJQZEFCq4Cm9O8/rVLRiLsb6g+wS6kRhqHKAU5KReZb9DcEfZCQxRa9RDHg84KIUJoeR9GMQmKpw8XzDqVap+zS/Ap0kwJlU2RqNX+er0Y5lGoEkqYW078BPqZsK48QpG5U5qIRHyRgyh7agWEdhuVrw14rupFRTzBAxHxQsRfndkIrL2Pgqd0x15bSdrufhfrZ3S4LiboU5SAi3zRYQKikVWGnR5Ae+jASKRXw4cNZfCCCIwyIWUTkxdLGWXRzD5/TS5PKgFjp8fVusn42RKbJvtsD0WsCNWZ2eswZpMsgf2xJ7Zi/fovXpv3vuPdcYb92yxP/A+vwGVAqSH</latexit>

Figure C.1: Space of the Z2 symmetric coupling constants {g222, g112}. We restrict to the UHP
due to g ↔ −g symmetry. The black dots are obtained minimizing the objective in (C.29). The
red solid line was obtained in [1] running the primal problem. The dual data have been obtained
with very little effort: in this plot Nmax = 5 for all dual scattering functions ansatz. The blue
and green dots mark respectively the well known integrable 3-states Potts and supersymmetric
Sine-Gordon. We recall that starting at θ = π/4, the yellow dot, and all the way to θ = π/2 the S-
matrix saturating the boundary is known analytically and correspond to the elliptic deformation
of supersymmetric Sine-Gordon – see [1, 2] for details.

Despite the simplicity of the matrix formulation, it is convenient to go back to compo-
nents when performing numerical explorations. The matrix W ·W for both odd and even
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sectors is a 2× 2 hermitian matrix. We can therefore use the general formula

M =

(
A B
B∗ D

)
→ tr

√
M =

√
A+D + 2

√
AD − |B|2

to derive the explicit form of the functional. Applying this formula we get pretty straight-
forwardly that the first line in (C.28) is given by

1√
2

∞∫

4m2

ds
(√
|W3|2+|W5|2+|W 2

3−W 2
5 |+

√
|W4|2+2|W1|2+2|W2|2+|W 2

4−4W1W2|
)
,

(C.29)

which is the objective we minimize in practice.

C.4.5 Dual problem numerics

For the dual scattering functions associated to the crossing invariant processes 11 →
11, 22→ 22, and 12→ 12 we can simply write the following anti-crossing ansatz

Wa(s) =
1√

s(4m2 − s)
(ρ(s)− ρ(t(s)))



N

(a)
max∑

n=0

α(a)
n (ρ(s)n + ρ(t(s))n)


 , a = 1, 2, 3.

For the objective functional (C.29) we must require that Wa ∼ s−3/2 for s → ∞. Our
ansatz for these components has automatically the right behavior since ρ(s)−ρ(t) ∼ s−1/2.

We can package the 11 → 22 and 12 → 12-backward into a single scattering function
not symmetric under crossing

W4(s) =
1√

s(4m2 − s)



N

(4)
max∑

n=0

β(1)
n ρ(s)n + β(2)

n ρ(t(s))n


 .

However, such an ansatz does not automatically decay with the right power and one must
tune one of the free parameters. The numerical results for the dual radial problem (C.28)
are shown in figure C.1.
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Appendix D

Appendix: The Wilson-Loop – Large Spin
OPE dictionary

D.1 Spinors

Equation (5.3) provides a manifestly covariant expression for the three point function.
However, with the prospects of fitting chapter 5 in the context of N = 4 integrability, it is
useful to express the three point function in a convenient conformal frame following [246].
In −+++ signature we choose

x1 = (0, 0, 0, 0) , x2 = (0, 0, 1, 0) , x3 = (0, 0,L, 0) (D.1)

and consider the rescaled correlator

C(ϵ1, ϵ2, ϵ3) ≡ lim
L→∞

L2∆3⟨O1(x1, ϵ1),O2(x2, ϵ2),O3(x3, ϵ3)⟩. (D.2)

Besides choosing a frame, in the context of integrability, it is useful to express the correlator
in terms of polarization spinors. That is, to each operator Oi we assign auxiliary spinors
Li

α and Riβ̇. These are related to the polarization vectors by

ϵµi = Riβ̇σ̄
µβ̇αLiα, (D.3)

where in our conventions the sigma matrices σµαα̇, σ̄
µα̇α are given by

σ0 =

(
−1 0
0 −1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

(D.4)
σ̄ = (σ0,−σ1,−σ2,−σ3), and indices are raised and lowered with

−ϵαβ = ϵαβ = −ϵα̇β̇ = ϵα̇β̇ =

(
0 1
−1 0

)
. (D.5)
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One of the very nice features of this conformal frame is how clean the invariant structures
H and V in (5.3) become. In terms of the left and right spinors they simply read

Hij = ⟨Li, Rj⟩⟨Lj, Ri⟩, Vi,jk = ⟨Li, Ri⟩, ⟨Li, Rj⟩ ≡ iRj α̇σ̄
α̇α
2 Liα . (D.6)

A general spinning three point function can then be cast as linear combination of
monomials made out of these brackets. For instance, translating the results of appendix
D.6 for the case of three spinning operators with spin 2, 4, 6 respectively we can write

C
•••
246 =

(
1

84
√
55

)(
⟨11⟩⟨13⟩⟨22⟩2⟨23⟩2⟨31⟩⟨32⟩2⟨33⟩3

(
720 −

2480321

1155
g
2
)

+ ⟨11⟩⟨12⟩⟨21⟩⟨22⟩3⟨33⟩6
(
8 −

1202701

17325
g
2
)

+

+ ⟨11⟩⟨13⟩⟨22⟩3⟨23⟩⟨31⟩⟨32⟩⟨33⟩4
(
240 −

600189

385
g
2
)

+ ⟨11⟩2⟨22⟩2⟨23⟩2⟨32⟩2⟨33⟩4
(
90 −

822427

1155
g
2
)

+

+ ⟨12⟩⟨13⟩⟨21⟩⟨22⟩⟨23⟩2⟨31⟩⟨32⟩2⟨33⟩3
(
1440 −

811882

1155
g
2
)

+ ⟨11⟩⟨12⟩⟨21⟩⟨22⟩2⟨23⟩⟨32⟩⟨33⟩5
(
144 −

1335487

1925
g
2
)

+

+ ⟨12⟩⟨13⟩⟨21⟩⟨22⟩2⟨23⟩⟨31⟩⟨32⟩⟨33⟩4
(
720 −

179332

385
g
2
)

+ ⟨11⟩⟨12⟩⟨21⟩⟨22⟩⟨23⟩2⟨32⟩2⟨33⟩4
(
360 −

433393

1155
g
2
)

+

+ ⟨11⟩2⟨22⟩3⟨23⟩⟨32⟩⟨33⟩5
(
24 −

694912

1925
g
2
)

+ ⟨11⟩⟨13⟩⟨22⟩4⟨31⟩⟨33⟩5
(
12 −

716273

5775
g
2
)

+

+ ⟨11⟩2⟨22⟩4⟨33⟩6
(
1 −

814939

34650
g
2
)

+ ⟨12⟩⟨13⟩⟨21⟩⟨22⟩3⟨31⟩⟨33⟩5
(
48 +

36268

5775
g
2
)

+

+ ⟨13⟩2⟨23⟩4⟨31⟩2⟨32⟩4
(
15 +

4261

231
g
2
)

+ ⟨12⟩2⟨21⟩2⟨22⟩2⟨33⟩6
(
6 +

219941

5775
g
2
)

+

+ ⟨13⟩2⟨22⟩4⟨31⟩2⟨33⟩4
(
15 +

25231

462
g
2
)

+ ⟨11⟩2⟨22⟩⟨23⟩3⟨32⟩3⟨33⟩3
(
80 +

670748

3465
g
2
)

+

+ ⟨12⟩2⟨21⟩2⟨22⟩⟨23⟩⟨32⟩⟨33⟩5
(
72 +

572534

1925
g
2
)

+ ⟨12⟩2⟨21⟩2⟨23⟩2⟨32⟩2⟨33⟩4
(
90 +

422663

1155
g
2
)

+

+ ⟨12⟩⟨13⟩⟨21⟩⟨23⟩3⟨31⟩⟨32⟩3⟨33⟩2
(
480 +

433666

1155
g
2
)

+ ⟨13⟩2⟨22⟩⟨23⟩3⟨31⟩2⟨32⟩3⟨33⟩
(
240 +

97282

231
g
2
)

+

+ ⟨13⟩2⟨22⟩3⟨23⟩⟨31⟩2⟨32⟩⟨33⟩3
(
240 +

33146

77
g
2
)

+ ⟨11⟩2⟨23⟩4⟨32⟩4⟨33⟩2
(
15 +

520958

1155
g
2
)

+

+ ⟨13⟩2⟨22⟩2⟨23⟩2⟨31⟩2⟨32⟩2⟨33⟩2
(
540 +

53288

77
g
2
)

+ ⟨11⟩⟨12⟩⟨21⟩⟨23⟩3⟨32⟩3⟨33⟩3
(
160 +

2899591

3465
g
2
)

+

+ ⟨11⟩⟨13⟩⟨23⟩4⟨31⟩⟨32⟩4⟨33⟩
(
60 +

984272

1155
g
2
)

+ ⟨11⟩⟨13⟩⟨22⟩⟨23⟩3⟨31⟩⟨32⟩3⟨33⟩2
(
480 +

1301071

1155
g
2
))

(D.7)

where ⟨ij⟩ = ⟨Li, Rj⟩.
Note that by simply looking at the various homogeneous degrees in Li and Ri we can

automatically infer the three spins of this correlator. A very concrete test of the spinning
hexagonalization cleaned up in [4] is to reproduce this equation from the hexagon formalism.

D.2 The ℓ(ϵ) map

In the limit of large spin the structure constants C••• are exponentially small. However,
as remarked in section 5.5, Ĉ••• suffers from a Stokes-like phenomenon: in the space-like
region it is of order one, while in the time-like region it diverges exponentially. These leads
to a dramatic simplification in the sum of (5.3) in the large spin limit. Provided the tree-

level decay combined with the chemical potentials Ti,jk ≡ Hjk
Vj,kiVk,ij

are enough to suppress

the contribution from the time-like regions, (5.3) reduces to a saddle point computation
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governed by tree-level1. The loop corrections are then simply evaluated at the saddle
location, in which they are of order one.2

In this regime, we thus conclude that

⟨OJ1(x1, ϵ1)OJ2(x2, ϵ2)OJ3(x3, ϵ3)⟩
⟨OJ1(x1, ϵ1)OJ2(x2, ϵ2)OJ3(x3, ϵ3)⟩tree level

= Ĉ••• evaluated at ℓi given by
∂W

∂ℓi
= 0

where

eW ≡


C

•••
tree level ≃

∏

i

(
Ji + ℓi −

∑
k

ℓk
)∑
k
ℓk−Ji−ℓi− 1

2

π
3
4 ℓ2ℓi+1
i e

∑
k
ℓk−3ℓi

2Ji+1J
−Ji− 3

4
i


V J1−l2−l3

1,23 V J2−ℓ3−ℓ1
2,31 V J3−ℓ1−ℓ2

3,12 Hℓ1
23H

ℓ2
31H

ℓ3
12 .

The critical points of the potentialW in the large spin limit take a remarkably simple form

H2,3

V2,31V3,1,2
=

ℓ21
(J3 − ℓ1 − ℓ2)(J2 − ℓ1 − ℓ3)

H3,1

V3,12V1,23
=

ℓ22
(J1 − ℓ2 − ℓ3)(J3 − ℓ2 − ℓ1)

(D.8)

H1,2

V1,23V2,31
=

ℓ23
(J2 − ℓ3 − ℓ1)(J1 − ℓ3 − ℓ2)

where Ji and ℓi are both large and of the same order. This constitutes the sought after
ϵ(ℓ) map.3 We emphasize this map should be understood to hold in the space-like region
corresponding to the image covered by positive U ’s through the ℓ(U) map (5.14). To
access the time-like regions, one must analytically continue away from the well controlled
Euclidean region.

Combining (D.8) with (5.14) we can also translate our map into spinor variables. We
get

⟨Li+1, Ri+1⟩⟨Li+2, Ri+2⟩
⟨Li+1, Ri+2⟩⟨Li+2, Ri+1⟩

=

(
Ri+1;i+2 i −

1 +Ri+1;i+2 i

1 +Ri;i+2 i+1

)(
Ri+2;i+1 i −

1 +Ri+2;i+1 i

1 +Ri;i+1 i+2

)

(D.9)

1In the toy model case of two spinning operators at one-loop discussed in the previous section, the
sum over tensor structures also simplifies to a saddle computation under the same conditions. There, the
chemical potential can suppress the exponential divergences of the one-loop structure constants provided
T3,12 < 1.

2We verified this statement numerically in perturbation theory.
3Of course, we can not fix the polarization themselves but only meaningful conformal invariant combi-

nations in the left hand side of relation (D.8). In practice we can however pick a particular conformal frame
and use (D.8) to define a realization ϵi(ℓ1, ℓ2, ℓ3). This particular realization is what is most convenient
when dealing with these structure constants from an integrability perspective as explained in [4].
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Figure D.1: The six point function has nine independent cross-ratios. We pick three of them to
be U1, represented here, plus its two cyclic images and the remaining six are either the u1 plus its
cyclic images or v1 and its cyclic images, both represented above. We convert these pictures into
the formulae in the text by writing the cross-ratio as the (product of the square of the) distances
represented by the solid lines divided by the ones associated with the dashed lines.

with i = 1, 2, 3, all indices taken modulo 3 and where

Ra;b c =

Jb
Ja

+ Jc
Ja

√
Ũc
ŨaŨb

Jc
Ja

+ Jb
Ja

√
Ũb
ŨaŨc

, Ũ1 = U2, Ũ2 = U1, Ũ3 = U3. (D.10)

Note that there are more variables in the three point function side of the duality so
we have some freedom on how to approach the duality. Only ratios matter: We can take
the large spin limit of the three point function with all spins (approximately) equal, for
instance. Then all the (red) ratios of spins evaluate to 1 and this already simple relation
simplifies even more.

D.3 Cross-ratios

The cross-ratios used to write the six point correlation function are presented in figure D.1.
We have

u1 =
x212x

2
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x213x
2
25

, u2 =
x223x

2
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x224x
2
36

, u3 =
x234x

2
51

x235x
2
41

, u4 =
x245x

2
62

x246x
2
52

, u5 =
x256x

2
13

x251x
2
63

, u6 =
x261x

2
24

x262x
2
14
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with x2ij = (xi−xj)2. This set of cross-ratios ui has a single null distance in the numerator
when we send x2i,i+1 → 0. This is quite convenient for taking one null limit at a time.

For instance, if we take 12, 34 and 56 to become null that sets the odd cross-ratios
u1, u3, u5 → 0. That is represented in figure 5.1a. This is a so-called single light-like OPE.
In this null limit we have (x1 − x2)

2 → 0 since x1 and x2 are becoming null separated
without necessarily colliding with each other. We could make this distance zero with
the stronger condition x2 → x1 corresponding to the euclidean OPE. If we take all pairs
12, 34 and 56 to collide in this Euclidean sense we set not only the odd cross-ratios to
zero, u1, u3, u5 → 0, but we should expand the even ones around one, u2, u4, u6 → 1, as
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represented in figure 5.1b. A very different limit we could take is to keep 12, 34 and 56
null and then send the remaining consecutive pairs of points 23, 45 and 61 to be null so
that in total all consecutive points are null drawing a full closed polygon as represented in
figure 5.1c. In that case we set all the odd and even cross-ratios to zero ui → 0. This very
Lorentzian limit is also called a double light-like OPE limit.

In this appendix and respective chapter we always take u1, u3, u5 to zero first. This
projects into leading twist operators in the corresponding three OPE channels as repre-
sented in figure 5.1a. In the main text we then take the remaining u2, u4, u6 to zero to con-
struct a full null polygonal configuration. This projects further into large spin exchanges.
In appendix D.5.1, instead, we expand around the Euclidean limit where u2, u4, u6 → 1 to
extract OPE data for finite spins.

Another important set of cross-ratios is

v1 =
x261x

2
23

x262x
2
13

, v2 =
x212x
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, v3 =
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, v4 =
x234x

2
56

x235x
2
46

, v5 =
x245x

2
61

x246x
2
51

, v6 =
x256x

2
12

x251x
2
62

,
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which have two vanishing distances in the null limit. Because of these two distances,
taking (either Euclidean or Lorentzian) OPE limits in a sequential way as discussed above
is murkier in the vj language. They have, however, the big advantage of being very local
and symmetric, more so that the uj as can be clearly seen in figure D.1. It is in these local
variables that the important recoil effect introduced in [101] is expressed. We will thus use
the uj’s for most derivations but switch to the vj’s when imposing the required symmetries
of the final results to bootstrap the correlators.

The remaining three cross-ratios (U1, U2, U3) which parametrize the six point function
are

U1 =
x213x

2
46

x214x
2
36

, U2 =
x224x

2
51

x225x
2
41

, U3 =
x235x

2
62

x236x
2
52

. (D.13)

These cross-ratios remain finite in the double light-cone limit. They parametrize the re-
sulting null hexagons. (In the triple Euclidean OPE we have Ui → 1.)

D.4 Conformal block integrand F
The light cone six point snowflake conformal block governing the exchange of leading twist
single trace operators and all its descendents admits a simple triple integral representa-
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tion [144] which we quote here for completeness. The integrand F in (5.6) reads

F =
Γ (2J1 + γ1 + 2)

Γ
(
J1 +
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2
+ 1
)2

Γ (2J2 + γ2 + 2)

Γ
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2
+ 1
)2

Γ (2J3 + γ3 + 2)

Γ
(
J3 +

γ3
2
+ 1
)2
u2u4u6
u1u3u5

U1U2U3 u1
γ1
2 u3

γ2
2 u5

γ3
2

× (U1 − u2)ℓ3(U2 − u6)ℓ2(U3 − u4)ℓ1U1
J2+
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2
+
γ2
2
− γ3

2 U2
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2
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2
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2 U3
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2
+
γ3
2
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−1−J1−J2+ℓ1+ℓ2+ γ3
2
− γ2

2
− γ1

2
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2
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2
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2

× (y3(1− y3))J3+
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2
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× (U1 − u2U2 + U2(u2 − U1)y2 − U1(U3 − 1)y3 + (U2 − u6U3)(U1y2y3 + u2(1− y2)y3))J1−ℓ2−ℓ3

× (U3 − u4U1 + U1(u4 − U3)y3 − U3(U2 − 1)y1 + (U1 − u2U2)(U3y1y3 + u4(1− y3)y1))J2−ℓ1−ℓ3
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D.5 Decomposition through Casimirs

The snowflake light-cone blocks

FJ1,J2,J3,ℓ1,ℓ2,ℓ3 ≡
∫ 1

0

dy1

∫ 1

0

dy2

∫ 1

0

dy3F (D.14)

obey three important Casimir equations:

(
Ĉ12 − C∆J1 ,J1

)
· FJ1,J2,J3,ℓ1,ℓ2,ℓ3 = 0 , (D.15)

(
Ĉ34 − C∆J2 ,J2

)
· FJ1,J2,J3,ℓ1,ℓ2,ℓ3 = 0 , (D.16)

(
Ĉ56 − C∆J3 ,J3

)
· FJ1,J2,J3,ℓ1,ℓ2,ℓ3 = 0, (D.17)

where C∆,J = J(−2 + d+ J) +∆(∆− d) is the Casimir eigenvalue4 and Ĉij represents the
light-cone Casimir operator which we can obtain from

Ĉijf (u1, . . . , U3) = (x212x
2
34x

2
56)

∆ϕ

[
1

2
(LAB,i + LAB,j)

2

]
1

(x212x
2
34x

2
56)

∆ϕ
f (u1, . . . , U3)

∣∣∣∣
u2i−1→0

(D.18)

4We are in four dimensions so that d = 4 however the leading twist expansion is known to be dimension
independent since the kinematics of the OPE is governed by two dimensional light-cone plane. It is still
convenient for debugging purposes to leave d unevaluated in all intermediate steps and check that the d
dependence drops out in the end.
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where the LAB,i is a generator of the conformal group and u2i−1 → 0 stands for the leading
term in this limit. It is convenient to introduce yet another set of cross ratios given by

u2 =
(1− z2) (1− z1z2ẑ3)

1− z2z3ẑ1
, u4 =

(1− z3) (1− z2z3ẑ1)
1− z1z3ẑ2

, u6 =
(1− z1) (1− z1z3ẑ2)

1− z1z2ẑ3
,

U1 =
1− z2

1− z2z3ẑ1
, U2 =

1− z1
1− z1z2ẑ3

, U3 =
1− z3

1− z1z3ẑ2
. (D.19)

The first few terms of the Casimir differential operator Ĉ12, in these new variables, reads

Ĉ12

2
= u21 (z1 − 2) ∂2u1z

2
1z3ẑ

2
2u5∂u5∂ẑ2 +

z21 (z2ẑ3 − 1) 2

(z1 − 1) (z1z2ẑ3 − 1)
u3ẑ3∂u3∂ẑ3 + . . . . (D.20)

We like these new variables because of the most transparent OPE (zi, ẑi → 0) boundary
conditions:

FJ1,J2,J3,ℓ1,ℓ2,ℓ3 ≃
1

2
∑
i(Ji−li)

zJ11 z
J2
2 z

J3
3 ẑ

l1
1 ẑ

l2
2 ẑ

l3
3 (D.21)

Given a perturbative data data (see next subsection (D.25)) we can then extract any OPE
data using the projections (D.15,D.16,D.17) as

∑

ℓ1,ℓ2,ℓ3

P •••
123 (J1, J2, J3, ℓ1, ℓ2, ℓ3)ẑ

ℓ1
1 ẑ

ℓ2
1 ẑ

ℓ3
3 = lim

z1,2,3→0

1

zJ11 z
J2
2 z

J3
3

dataJ1,J2,J3

where

dataJ1,J2,J3 ≡
∏

j3<J3

Ĉ56 − C∆j3 ,j3
C∆J3 ,J3 − C∆j3 ,j3

·
∏

j2<J2

Ĉ34 − C∆j2 ,j2
C∆J2 ,J2 − C∆j2 ,j2

·
∏

j1<J1

Ĉ12 − C∆j1 ,j1
C∆J1 ,J1 − C∆j1 ,j1

· data

(D.22)
is the perturbative data with spins smaller than J1, J2, J3 projected out. Every time we act
with Casimir on the conformal block we get back the block times its Casimir eigenvalue.
The denominator in (D.22) is chosen such that the coefficient multiplying power of zii ẑ

ℓi
i is

the OPE coefficient.

This way of extracting is very convenient. The data itself is organized in a simple
manner, for given power of zaii the ẑlii powers are such that l1 + l2 ≤ J3 is satisfied and
analogously for the others li and at one loop these powers can be dressed by lnui. An
efficient way to do this extraction is transform the Casimir into a matrix that acts on
a vector space created powers of zi, ẑi and lnui which then makes (D.22) into a matrix
multiplication problem, see figure D.2. Obviously we need to consider finite dimensional
vector spaces so we take a cut off (Λi, Λ̂i) in the powers of zi, ẑi. This allows to extract
OPE coefficients up to spin Ji = Λi, ℓi = Λ̂i. With this we manage to extract around three
hundred thousand OPE coefficients at one loop order which we will analyze in the next
section.
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<latexit sha1_base64="MMIAP3nsMe/tMB1hzvdeiht0DHs=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1atXLZq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfTWMvQ==</latexit>

1764

<latexit sha1_base64="RSK26jdRVTwLk6xqqddUSBlkjIg=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9mV1nosevFYwX5Au5Rsmm1Dk+ySZIWy9C948aCIV/+QN/+N2XYP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTjo4SRWibRDxSvQBrypmkbcMMp71YUSwCTrvB9C7zu09UaRbJRzOLqS/wWLKQEWwyyWtc14blilt1F0DrxMtJBXK0huWvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvqcSCaj9d3DpHF1YZoTBStqRBC/X3RIqF1jMR2E6BzUSvepn4n9dPTHjjp0zGiaGSLBeFCUcmQtnjaMQUJYbPLMFEMXsrIhOsMDE2npINwVt9eZ10rqperVp/qFWat3kcRTiDc7gEDxrQhHtoQRsITOAZXuHNEc6L8+58LFsLTj5zCn/gfP4A4TGNfA==</latexit>

3528

<latexit sha1_base64="LBw421o1WBqKc2wjrCbxWuxL/1w=">AAAB63icbVBNSwMxEJ31s9avqkcvwSJ4Kru1xR6LXjxWsB/QLiWbZtvQJLskWaEs/QtePCji1T/kzX9jtt2Dtj4YeLw3w8y8IOZMG9f9djY2t7Z3dgt7xf2Dw6Pj0slpR0eJIrRNIh6pXoA15UzStmGG016sKBYBp91gepf53SeqNIvko5nF1Bd4LFnICDaZdF2vNoalsltxF0DrxMtJGXK0hqWvwSgiiaDSEI617ntubPwUK8MIp/PiINE0xmSKx7RvqcSCaj9d3DpHl1YZoTBStqRBC/X3RIqF1jMR2E6BzUSvepn4n9dPTNjwUybjxFBJlovChCMToexxNGKKEsNnlmCimL0VkQlWmBgbT9GG4K2+vE461YpXq9QfauXmbR5HAc7hAq7Agxtowj20oA0EJvAMr/DmCOfFeXc+lq0bTj5zBn/gfP4A4S+NfA==</latexit>

5292

<latexit sha1_base64="9VCTNO/CQ1sva9LSZLYKRc2Wqxs=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9ktLeqt6MVjBfsB7VKyabYNTbJLkhXK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G07vM7z5RpVkkH80spr7AY8lCRrDJpEbtpjYsV9yquwBaJ15OKpCjNSx/DUYRSQSVhnCsdd9zY+OnWBlGOJ2XBommMSZTPKZ9SyUWVPvp4tY5urDKCIWRsiUNWqi/J1IstJ6JwHYKbCZ61cvE/7x+YsJrP2UyTgyVZLkoTDgyEcoeRyOmKDF8ZgkmitlbEZlghYmx8ZRsCN7qy+ukU6t69WrjoV5p3uZxFOEMzuESPLiCJtxDC9pAYALP8ApvjnBenHfnY9lacPKZU/gD5/MH4TaNfA==</latexit>

7056

<latexit sha1_base64="yetNy0NLlkht7IUTOGCwqWSCYCY=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9mV1nosevFYwX5Au5Rsmm1Dk+ySZIWy9C948aCIV/+QN/+N2XYP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTjo4SRWibRDxSvQBrypmkbcMMp71YUSwCTrvB9C7zu09UaRbJRzOLqS/wWLKQEWwyqeHWr4flilt1F0DrxMtJBXK0huWvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvqcSCaj9d3DpHF1YZoTBStqRBC/X3RIqF1jMR2E6BzUSvepn4n9dPTHjjp0zGiaGSLBeFCUcmQtnjaMQUJYbPLMFEMXsrIhOsMDE2npINwVt9eZ10rqperVp/qFWat3kcRTiDc7gEDxrQhHtoQRsITOAZXuHNEc6L8+58LFsLTj5zCn/gfP4A4TSNfA==</latexit>

1764

<latexit sha1_base64="RSK26jdRVTwLk6xqqddUSBlkjIg=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9mV1nosevFYwX5Au5Rsmm1Dk+ySZIWy9C948aCIV/+QN/+N2XYP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTjo4SRWibRDxSvQBrypmkbcMMp71YUSwCTrvB9C7zu09UaRbJRzOLqS/wWLKQEWwyyWtc14blilt1F0DrxMtJBXK0huWvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvqcSCaj9d3DpHF1YZoTBStqRBC/X3RIqF1jMR2E6BzUSvepn4n9dPTHjjp0zGiaGSLBeFCUcmQtnjaMQUJYbPLMFEMXsrIhOsMDE2npINwVt9eZ10rqperVp/qFWat3kcRTiDc7gEDxrQhHtoQRsITOAZXuHNEc6L8+58LFsLTj5zCn/gfP4A4TGNfA==</latexit>

3528

<latexit sha1_base64="LBw421o1WBqKc2wjrCbxWuxL/1w=">AAAB63icbVBNSwMxEJ31s9avqkcvwSJ4Kru1xR6LXjxWsB/QLiWbZtvQJLskWaEs/QtePCji1T/kzX9jtt2Dtj4YeLw3w8y8IOZMG9f9djY2t7Z3dgt7xf2Dw6Pj0slpR0eJIrRNIh6pXoA15UzStmGG016sKBYBp91gepf53SeqNIvko5nF1Bd4LFnICDaZdF2vNoalsltxF0DrxMtJGXK0hqWvwSgiiaDSEI617ntubPwUK8MIp/PiINE0xmSKx7RvqcSCaj9d3DpHl1YZoTBStqRBC/X3RIqF1jMR2E6BzUSvepn4n9dPTNjwUybjxFBJlovChCMToexxNGKKEsNnlmCimL0VkQlWmBgbT9GG4K2+vE461YpXq9QfauXmbR5HAc7hAq7Agxtowj20oA0EJvAMr/DmCOfFeXc+lq0bTj5zBn/gfP4A4S+NfA==</latexit>

7056

<latexit sha1_base64="yetNy0NLlkht7IUTOGCwqWSCYCY=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9mV1nosevFYwX5Au5Rsmm1Dk+ySZIWy9C948aCIV/+QN/+N2XYP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTjo4SRWibRDxSvQBrypmkbcMMp71YUSwCTrvB9C7zu09UaRbJRzOLqS/wWLKQEWwyqeHWr4flilt1F0DrxMtJBXK0huWvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvqcSCaj9d3DpHF1YZoTBStqRBC/X3RIqF1jMR2E6BzUSvepn4n9dPTHjjp0zGiaGSLBeFCUcmQtnjaMQUJYbPLMFEMXsrIhOsMDE2npINwVt9eZ10rqperVp/qFWat3kcRTiDc7gEDxrQhHtoQRsITOAZXuHNEc6L8+58LFsLTj5zCn/gfP4A4TSNfA==</latexit>

5292

<latexit sha1_base64="9VCTNO/CQ1sva9LSZLYKRc2Wqxs=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9ktLeqt6MVjBfsB7VKyabYNTbJLkhXK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G07vM7z5RpVkkH80spr7AY8lCRrDJpEbtpjYsV9yquwBaJ15OKpCjNSx/DUYRSQSVhnCsdd9zY+OnWBlGOJ2XBommMSZTPKZ9SyUWVPvp4tY5urDKCIWRsiUNWqi/J1IstJ6JwHYKbCZ61cvE/7x+YsJrP2UyTgyVZLkoTDgyEcoeRyOmKDF8ZgkmitlbEZlghYmx8ZRsCN7qy+ukU6t69WrjoV5p3uZxFOEMzuESPLiCJtxDC9pAYALP8ApvjnBenHfnY9lacPKZU/gD5/MH4TaNfA==</latexit>

1

<latexit sha1_base64="MMIAP3nsMe/tMB1hzvdeiht0DHs=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1atXLZq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfTWMvQ==</latexit>

1

<latexit sha1_base64="MMIAP3nsMe/tMB1hzvdeiht0DHs=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1atXLZq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfTWMvQ==</latexit>

1764

<latexit sha1_base64="RSK26jdRVTwLk6xqqddUSBlkjIg=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9mV1nosevFYwX5Au5Rsmm1Dk+ySZIWy9C948aCIV/+QN/+N2XYP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTjo4SRWibRDxSvQBrypmkbcMMp71YUSwCTrvB9C7zu09UaRbJRzOLqS/wWLKQEWwyyWtc14blilt1F0DrxMtJBXK0huWvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvqcSCaj9d3DpHF1YZoTBStqRBC/X3RIqF1jMR2E6BzUSvepn4n9dPTHjjp0zGiaGSLBeFCUcmQtnjaMQUJYbPLMFEMXsrIhOsMDE2npINwVt9eZ10rqperVp/qFWat3kcRTiDc7gEDxrQhHtoQRsITOAZXuHNEc6L8+58LFsLTj5zCn/gfP4A4TGNfA==</latexit>

3528

<latexit sha1_base64="LBw421o1WBqKc2wjrCbxWuxL/1w=">AAAB63icbVBNSwMxEJ31s9avqkcvwSJ4Kru1xR6LXjxWsB/QLiWbZtvQJLskWaEs/QtePCji1T/kzX9jtt2Dtj4YeLw3w8y8IOZMG9f9djY2t7Z3dgt7xf2Dw6Pj0slpR0eJIrRNIh6pXoA15UzStmGG016sKBYBp91gepf53SeqNIvko5nF1Bd4LFnICDaZdF2vNoalsltxF0DrxMtJGXK0hqWvwSgiiaDSEI617ntubPwUK8MIp/PiINE0xmSKx7RvqcSCaj9d3DpHl1YZoTBStqRBC/X3RIqF1jMR2E6BzUSvepn4n9dPTNjwUybjxFBJlovChCMToexxNGKKEsNnlmCimL0VkQlWmBgbT9GG4K2+vE461YpXq9QfauXmbR5HAc7hAq7Agxtowj20oA0EJvAMr/DmCOfFeXc+lq0bTj5zBn/gfP4A4S+NfA==</latexit>

5292

<latexit sha1_base64="9VCTNO/CQ1sva9LSZLYKRc2Wqxs=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9ktLeqt6MVjBfsB7VKyabYNTbJLkhXK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G07vM7z5RpVkkH80spr7AY8lCRrDJpEbtpjYsV9yquwBaJ15OKpCjNSx/DUYRSQSVhnCsdd9zY+OnWBlGOJ2XBommMSZTPKZ9SyUWVPvp4tY5urDKCIWRsiUNWqi/J1IstJ6JwHYKbCZ61cvE/7x+YsJrP2UyTgyVZLkoTDgyEcoeRyOmKDF8ZgkmitlbEZlghYmx8ZRsCN7qy+ukU6t69WrjoV5p3uZxFOEMzuESPLiCJtxDC9pAYALP8ApvjnBenHfnY9lacPKZU/gD5/MH4TaNfA==</latexit>

7056

<latexit sha1_base64="yetNy0NLlkht7IUTOGCwqWSCYCY=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9mV1nosevFYwX5Au5Rsmm1Dk+ySZIWy9C948aCIV/+QN/+N2XYP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTjo4SRWibRDxSvQBrypmkbcMMp71YUSwCTrvB9C7zu09UaRbJRzOLqS/wWLKQEWwyqeHWr4flilt1F0DrxMtJBXK0huWvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvqcSCaj9d3DpHF1YZoTBStqRBC/X3RIqF1jMR2E6BzUSvepn4n9dPTHjjp0zGiaGSLBeFCUcmQtnjaMQUJYbPLMFEMXsrIhOsMDE2npINwVt9eZ10rqperVp/qFWat3kcRTiDc7gEDxrQhHtoQRsITOAZXuHNEc6L8+58LFsLTj5zCn/gfP4A4TSNfA==</latexit>

1764

<latexit sha1_base64="RSK26jdRVTwLk6xqqddUSBlkjIg=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9mV1nosevFYwX5Au5Rsmm1Dk+ySZIWy9C948aCIV/+QN/+N2XYP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTjo4SRWibRDxSvQBrypmkbcMMp71YUSwCTrvB9C7zu09UaRbJRzOLqS/wWLKQEWwyyWtc14blilt1F0DrxMtJBXK0huWvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvqcSCaj9d3DpHF1YZoTBStqRBC/X3RIqF1jMR2E6BzUSvepn4n9dPTHjjp0zGiaGSLBeFCUcmQtnjaMQUJYbPLMFEMXsrIhOsMDE2npINwVt9eZ10rqperVp/qFWat3kcRTiDc7gEDxrQhHtoQRsITOAZXuHNEc6L8+58LFsLTj5zCn/gfP4A4TGNfA==</latexit>

3528

<latexit sha1_base64="LBw421o1WBqKc2wjrCbxWuxL/1w=">AAAB63icbVBNSwMxEJ31s9avqkcvwSJ4Kru1xR6LXjxWsB/QLiWbZtvQJLskWaEs/QtePCji1T/kzX9jtt2Dtj4YeLw3w8y8IOZMG9f9djY2t7Z3dgt7xf2Dw6Pj0slpR0eJIrRNIh6pXoA15UzStmGG016sKBYBp91gepf53SeqNIvko5nF1Bd4LFnICDaZdF2vNoalsltxF0DrxMtJGXK0hqWvwSgiiaDSEI617ntubPwUK8MIp/PiINE0xmSKx7RvqcSCaj9d3DpHl1YZoTBStqRBC/X3RIqF1jMR2E6BzUSvepn4n9dPTNjwUybjxFBJlovChCMToexxNGKKEsNnlmCimL0VkQlWmBgbT9GG4K2+vE461YpXq9QfauXmbR5HAc7hAq7Agxtowj20oA0EJvAMr/DmCOfFeXc+lq0bTj5zBn/gfP4A4S+NfA==</latexit>

7056

<latexit sha1_base64="yetNy0NLlkht7IUTOGCwqWSCYCY=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9mV1nosevFYwX5Au5Rsmm1Dk+ySZIWy9C948aCIV/+QN/+N2XYP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTjo4SRWibRDxSvQBrypmkbcMMp71YUSwCTrvB9C7zu09UaRbJRzOLqS/wWLKQEWwyqeHWr4flilt1F0DrxMtJBXK0huWvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvqcSCaj9d3DpHF1YZoTBStqRBC/X3RIqF1jMR2E6BzUSvepn4n9dPTHjjp0zGiaGSLBeFCUcmQtnjaMQUJYbPLMFEMXsrIhOsMDE2npINwVt9eZ10rqperVp/qFWat3kcRTiDc7gEDxrQhHtoQRsITOAZXuHNEc6L8+58LFsLTj5zCn/gfP4A4TSNfA==</latexit>

5292

<latexit sha1_base64="9VCTNO/CQ1sva9LSZLYKRc2Wqxs=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9ktLeqt6MVjBfsB7VKyabYNTbJLkhXK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G07vM7z5RpVkkH80spr7AY8lCRrDJpEbtpjYsV9yquwBaJ15OKpCjNSx/DUYRSQSVhnCsdd9zY+OnWBlGOJ2XBommMSZTPKZ9SyUWVPvp4tY5urDKCIWRsiUNWqi/J1IstJ6JwHYKbCZ61cvE/7x+YsJrP2UyTgyVZLkoTDgyEcoeRyOmKDF8ZgkmitlbEZlghYmx8ZRsCN7qy+ukU6t69WrjoV5p3uZxFOEMzuESPLiCJtxDC9pAYALP8ApvjnBenHfnY9lacPKZU/gD5/MH4TaNfA==</latexit>

Ĉ12

<latexit sha1_base64="lkalaKuoYFouZl1m6+ngN1XOxV4=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSSlosdiLx4r2FpoQtlsN+3SzSbsToQS8je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IBFco+N8W6WNza3tnfJuZW//4PCoenzS03GqKOvSWMSqHxDNBJesixwF6yeKkSgQ7DGYtuf+4xNTmsfyAWcJ8yMyljzklKCRPG9CMGvnw8xt5MNqzak7C9jrxC1IDQp0htUvbxTTNGISqSBaD1wnQT8jCjkVLK94qWYJoVMyZgNDJYmY9rPFzbl9YZSRHcbKlER7of6eyEik9SwKTGdEcKJXvbn4nzdIMbzxMy6TFJmky0VhKmyM7XkA9ogrRlHMDCFUcXOrTSdEEYompooJwV19eZ30GnW3Wb+6b9Zat0UcZTiDc7gEF66hBXfQgS5QSOAZXuHNSq0X6936WLaWrGLmFP7A+vwBysmRiA==</latexit>

Ĉ34

<latexit sha1_base64="78zNlU/Rwbhx6PluS4IUT/rUVfI=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0m0osdiLx4rWFtoQtlsN+3SzQe7E6GE/A0vHhTx6p/x5r9x2+agrQ8GHu/NMDPPT6TQaNvfVmltfWNzq7xd2dnd2z+oHh496jhVjHdYLGPV86nmUkS8gwIl7yWK09CXvOtPWjO/+8SVFnH0gNOEeyEdRSIQjKKRXHdMMWvlg+yykQ+qNbtuz0FWiVOQGhRoD6pf7jBmacgjZJJq3XfsBL2MKhRM8rzipponlE3oiPcNjWjItZfNb87JmVGGJIiVqQjJXP09kdFQ62nom86Q4lgvezPxP6+fYnDjZSJKUuQRWywKUkkwJrMAyFAozlBODaFMCXMrYWOqKEMTU8WE4Cy/vEoeL+pOo35136g1b4s4ynACp3AODlxDE+6gDR1gkMAzvMKblVov1rv1sWgtWcXMMfyB9fkD0N+RjA==</latexit>

Ĉ56

<latexit sha1_base64="cS44UHXQkTrRELuY45bOlRTDUtU=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSTSqsdiLx4r2A9oQtlsN+3SzSbsToQS+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8IBFco+N8W4WNza3tneJuaW//4PCofHzS0XGqKGvTWMSqFxDNBJesjRwF6yWKkSgQrBtMmnO/+8SU5rF8xGnC/IiMJA85JWgkzxsTzJqzQVa/ng3KFafqLGCvEzcnFcjRGpS/vGFM04hJpIJo3XedBP2MKORUsFnJSzVLCJ2QEesbKknEtJ8tbp7ZF0YZ2mGsTEm0F+rviYxEWk+jwHRGBMd61ZuL/3n9FMNbP+MySZFJulwUpsLG2J4HYA+5YhTF1BBCFTe32nRMFKFoYiqZENzVl9dJ56rq1qr1h1qlcZfHUYQzOIdLcOEGGnAPLWgDhQSe4RXerNR6sd6tj2VrwcpnTuEPrM8f1vWRkA==</latexit>

Figure D.2: The six point function in the snowflake OPE limit (zi, ẑi → 0) can be expressed as a
sum of monomials

∏
i z
ai
i ẑ

li
i which in perturbation theory can be dressed by log(ui). The action

of the Casimir operators in this base of dressed monomials can be represented as sparse matrices
which are plotted here for ai ≤ 6, li ≤ 2. The basis is restricted to l1 + l2 ≤ a3 and similar for
the other ai as discused in the main text. At one loop, the basis can be divided into terms with
no logs, or a single log(u1), log(u2) or log(u3), leading to the 4× 4 block structure. The Casimir
can remove logs but never generate them, justifying the absence of off diagonal terms in the last
three columns.

D.5.1 Data

Perturbative results for three point functions with more than one spinning operator are
considerably more complicated to compute than with just one operator with spin. While
three point functions with one spinning operator have been computed, in N = 4 SYM,
up to three loops [247], three point functions with two spinning operators have only been
computed up to one loop 5. In the following we will compute these three point functions
at one loop for both one, two and three spinning operators by doing conformal block
decomposition decomposition of a one loop six point function.

The starting point is the six point function of 20′ operators

O2(x) = yIyJTr(ϕI(x)ϕJ), y2 = 0, I = 1, . . . 6 (D.23)

which has been computed at one loop in [147] and it is expressed as a simple linear com-
bination of one loop four point integrals Ii1i2i3i4(see eq. (32,60-61) of [147] for the precise
definition of the six point function)

Ii1i2i3i4 =

∫
d4x0

x2i10x
2
i20
x2i30x

2
i40

(D.24)

which can be easily computed in terms of cross ratios.

5There are some results for low spinning operators up to two loops [158].
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We are interested in obtaining three point functions in the [0, 2, 0] representation of
SO(6) in the OPE. This can be achieved by projecting appropriately the null polarization
vectors y into this particular representation (see appendix B of [244] for details). Then we
take the light-cone limits x212, x

2
34, x

2
56 → 0 to focus on leading twist operators. At the end

of this procedure we arrive at the (tree level plus one loop) expression (D.25), where the
two permutations are just given by ui, Ui → ui+2, Ui+2;ui+4, Ui+4 and where the dots in
the last line stand for higher order powers in zi. This is precisely the object that enters in
(D.22) and that can be used to extract OPE coefficients of three spinning operators at one
loop. The last line is transformed into a vector of the monomials and logs which is then
acted by the Casimir matrix of figure D.2 to efficiently extract all the needed OPE data.

Through this method we extracted over three hundred thousand OPE coefficients. Both
the notebook used for extraction as well as a sample of the result are presented in the
attached Mathematica notebooks. Our goal now is to write such data as an expression
analytically both in spins and polarizations. In the next three sections we display the
structure constant for one, two and three spinning operators.
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data = (x212x
2
34x

2
56)

2⟨O2(x1) . . .O2(x6)⟩
∣∣∣∣
projection on [0, 2, 0]

x212,x
2
34,x

2
56→0

. (D.25)

=
3∏

i=1

u2i−1

u2iUi

[
3u2u4U1U2(1 + u6) + U1U2U3(1 + u2u4u6)

24
+

− λ

4

(
lnu1

[
U3 lnu2(u4u6(U1 − u2U2) + U2(U1 − u2u6))

+ U2 lnu6(u2(u4(1− u6)U1 − u6U3) + U1U3) + u4u6U3 lnU2((1 + u2)U1 − u2(1 + U1)U2)

+ U3 lnU1(U2(u2u6 − U1) + u4u6(u2U2 − U1))
]
+ lnu2

[
u2u6U3 lnU3(U2 − u4U1)

+ U1 lnU2(u2u4(U2 + u6U3)− U3(U2 + u4u6))
]
+ U2 lnU1 lnU2(U1U3 + u2u6(u4U1 − (1 + u4)U3))

+ u6(u4U1U3 + u2(U2U3 − u4U1(U2 + U3)))Li2(1− u2)
+ U2(U1U3 − u2u4(U1 + u6U3(U1 − 1)))Li2(1− U1)

+
(
U1U3(u4u6 + U2) + u2(u4U1U2(u6 − 1) + u6U3(U2(u4(U1 − 1)− 1)− U1u4))

)
Li2

(
1− u2

U1

)

+ U2(U1U3 − u2u4(U1 + u6U3(U1 − 1)))Li2

(
1− u2u4

U3

)

+ u4(u6U1U3 − u2U2(u6U3 + U1(u6 − 1)))Li2

(
1− u2U2

U1

))
+ two permutations

]

=
3∏

i=1

u2i−1

[
1 +

∑
i(zi + z2i )

2
+
z1z2 + z1z3 + z2z3

4
− z2z3ẑ1 + z1z3ẑ2 + z1z2ẑ3

4
+

+ λ
(
z21(lnu1 − 2) + z22(lnu3 − 2) + z23(lnu5 − 2)

)
+ . . .

]
(D.26)

D.6 One Loop Explorations

D.6.1 One spinning operator

The structure constants for one spinning operator have been studied extensively in the
literature. The first non trivial computation of these three point functions in N = 4 was
done at one loop level in [248] via conformal block decomposition of a four point function.
It is the most efficient way of computing these three point function. Using this method the
structure constants with one spinning operator have been computed up to three loops for
any spin in [247] and is known up to five loops for spin two [245].

The one loop structure constant simply reads

Ĉ◦◦•
1-loop = 4S1(J)

2 − 4S1(J)S1(2J)− 2S2(J) (D.27)
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where Si are the harmonic functions.

To set the coupling convention let us quote here the dimension of these operators

∆J = 2 + J + 8λS1(J) +O(λ2) (D.28)

so that from large spin we read

f = 8λ+O(λ2) , and g = 8λγE +O(λ2) . (D.29)

D.6.2 Two spinning operators

Here we complete Bianchi’s computation [158] for the one loop structure constant

Ĉ◦••
1-loop = 4 (S1(J1) + S1(J2))

ℓ∑

i=1

(
J1+J2+1

i

)(
ℓ
i

)

i
(
J1
i

)(
J2
i

) − 4
(J1 + 1)(J2 + 1)

J1 + J2 + 2

ℓ∑

i=1

(
J1+J2+2

i

)
aℓi

i
(
J1
i

)(
J2
i

) +

+
2∑

i=1

4S1(Ji)
2 − 4S1(Ji)S1(2Ji)− 2S2(Ji) (D.30)

where the constants aℓi were only known in special limiting cases. They are given by

aℓi =
(−1)i
2

(
−S1(ℓ)

2 − S2(ℓ) + 2
i∑

k=2

(−1)k
(

l
k−1

)

k − 1
(S1(k − 2) + S1(ℓ))

)
. (D.31)

For i = 1 and for i = ℓ it simplifies to the two previously known special cases (4.5) and
(4.6) in [158]. This one loop structure constant can also be rewritten as (D.33), where

B(j, l) = (−1)l
(
j

l

)
. (D.32)

Having the full expression for the structure constant at one loop in the form of (D.33) allow
us to study the physics of this correlator at large spin and polarizations, with ℓ

Ji
fixed. As

discussed in section 5.5, this serves as a toy model for the large spin limit of three point
functions of spinning operators and its relation to the null hexagonal Wilson loops.
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Ĉ◦••
1-loop = 8S1(J1)

2 − 4S1(J1)S1(2J1) + 8S1(J1)S1(J2) + 8S1(J2)
2 − 4S1(J2)S1(2J2)+

− 4S1(J1)S1(J1 − ℓ)− 4S1(J2)S1(J1 − ℓ)− 4S1(J1)S1(J2 − ℓ)− 4S1(J2)S1(J2 − ℓ)+
− 4S1(J1)S1(ℓ)− 4S1(J2)S1(ℓ) + 4S1(J1 − ℓ)S1(ℓ) + 4S1(J2 − ℓ)S1(ℓ)− 2S1(ℓ)

2+

− 2S2(J1)− 2S2(J2)− 2S2(ℓ)− 4
∞∑

p=1

((
B(J1, ℓ− p)
B(J1, ℓ)

+
B(J2, ℓ− p)
B(J2, ℓ)

)
S1(p− 1)

p
+

+ 4(S1(J1) + S1(J2)− S1(ℓ))
B(J1, ℓ− p)
B(J1, ℓ)

B(J2, ℓ− p)
B(J2, ℓ)

1

p
− 4

B(J1, ℓ− p)
B(J1, ℓ)

×

× B(J2, ℓ− p)
B(J2, ℓ)

S1(p) + S1(ℓ− p)− S1(ℓ)

p
+

p−1∑

q=1

B(J1, ℓ− p)
B(J1, ℓ)

B(J2, ℓ− q)
B(J2, ℓ)

1

(p− q)p

+
∞∑

q=p+1

B(J1, ℓ− p)
B(J1, ℓ)

B(J2, ℓ− q)
B(J2, ℓ)

1

(q − p)q

)
. (D.33)

There are two regimes of interest, depending on whether ℓ is before or after ℓ∗ ≡ J1J2
(J1+J2)

.6

Before ℓ∗ we obtain the order one result

Ĉ••◦
1-loop

J1,J2,ℓ→∞−−−−−−→− π2 − 4 log(2) log
(
J1J2e

2γE
)
− 2 log2 (ℓeγE) (D.34)

− 2 log
(
1− ℓ

J1
− ℓ

J2

)
log
(e2γEJ2

1J
2
2

ℓ2
(
1− ℓ

J1
− ℓ

J2

))

while after ℓ∗ we obtain the exponentially large expression

Ĉ••◦
1-loop

J1,J2,ℓ→∞−−−−−−→J−2J1−1
1 J−2J2−1

2 (J1 + J2)
J1+J2+

3
2 ℓ2ℓ+1 (J1 − ℓ) J1−ℓ+

1
2 (J2 − ℓ) J2−ℓ+

1
2

J1J2 − J1ℓ− J2ℓ
×

× 4
√
2π log

(
ℓ

J1
+

ℓ

J2
− 1

)
. (D.35)

Note that the singular point ℓ∗ is reminiscent of the singularities encountered in the U(ℓ)
map, equation (5.16). The log singularities at ℓ∗ in (D.34) should therefore be compared
with the log singularities of the hexagonal Wilson loop at Ui = 0, see (5.30). This justifies
treating C••◦ as a toy model for the transition in behaviour of C••• from the space-like
region to the time-like region in section 5.5.

Lets comment on how these results can be derived. The only non-trivial pieces in (D.33)

6Note that the tree level three point function, given by

C••◦
tree =

Γ(J1 + 1)Γ(J2 + 1)√
Γ(2J1 + 1)Γ(2J2 + 1)Γ(J1 − ℓ+ 1)Γ(J2 − ℓ+ 1)Γ(ℓ+ 1)

,

approaches a gaussian centered at ℓ∗ in the large spin limit.
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are the sums, of which there are two types, that with a single ratio of binomials, as in the
third line, and those with a product of ratio of binomials, as in the last three lines. First
we analyze the latter.

Binomials
(
j
l

)
, in the large j limit with ℓ

j
fixed approach gaussians with mean j/2 and

standard deviation
√
j/2. The product of binomials in the denominators therefore approach

gaussians7 with mean ℓ∗ = J1J2
J1+J2

and standard deviation O(
√
J). Similar happens in the

numerators only that arguments are shifted. The sum indices p and q being positive, we
see that if ℓ < ℓ∗ so that the denominator is evaluated to the left of the maximum, large
p and q are exponentially suppressed relative to p, q of order one. In this limit, the sums
are easily evaluated. For example, in the fifth line we have the simplification

l∑

p=1

(
B(J1, ℓ− p)
B(J1, ℓ)

B(J2, ℓ− p)
B(J2, ℓ)

1

p
→
(

ℓ2

(J1 − ℓ)(J2 − l)

)p
1

p

)
= − log

(
ℓ(J1 + J2)− J1J2
(J1 − ℓ)(J2 − ℓ)

)
.

(D.36)
On the other hand, if ℓ > ℓ∗, provided p and q are O(J), we can tune the indices so that
the numerator sits at the top of the gaussian. The sums are therefore evaluated by saddle
point and we obtain the exponential expression in (D.35).

For the summand with a single ratio of binomials, for similar reasons, p of order one
dominates when ℓ < ℓ∗ and logs are generated. However, for this term there are no
exponential contributions when ℓ > ℓ∗ due to the oscillating phase in (D.32). Therefore
this term can be neglected in the ℓ > ℓ∗ regime.

Finally, we note a sum rule for the one-loop sum of structure constants, valid at finite
J1 and J2:

∑

ℓ

C••◦
1-loop = 4 (S1(J1) + S1(J2))S1(J1 + J2)−

2∑

i=1

4S1(Ji)S1(2Ji) + 2S2(Ji) , (D.37)

note that this sums is for the full one loop correction to the structure constants (C =
Ctree + C1-loop) and not the correction normalized by tree level (Ĉ).

D.6.3 Three spinning operators

For three spinning operators we were not able to find an expression analogous (D.30) or
(D.33), which is analytical both in spin and polarizations. In this section we present a
general expression for the one-loop structure constant in terms of unknown coefficients
that we could not fix entirely. However, when considering small polarizations (where we
have abundant perturbative data) we were able to fix such coefficients and arrive in an
analytic expression for the structure constant in terms of the spins Ji, such as (D.43).

We start by parametrizing the one-loop structure constant as the sum of three terms

ĈJ1,J2,J3
ℓ1,ℓ2,ℓ3

= X J1,J2,J3 + YJ1,J2,J3ℓ1,ℓ2,ℓ3
+ ZJ1,J2,J3ℓ1,ℓ2,ℓ3

(D.38)

The first term of (D.38) is a generalization of the one spin structure constant (D.27),

7The product of gaussians is a gaussian.

255



and it is simply given by

X J1,J2,J3 = 4S1(J1)
2 − 4S1(J1)S1(2J1)− 2S2(J1) + 4S1(J2)

2 − 4S1(J2)S1(2J2)+

− 2S2(J2) + 4S1(J3)
2 − 4S1(J3)S1(2J3)− 2S2(J3) (D.39)

this term gives the one-loop structure constants for vanishing polarizations (ℓi = 0).

The second term of (D.38) is inspired in the two spin structure constants (D.30), which
reads

YJ1,J2,J3ℓ1,ℓ2,ℓ3
= 4 (S1(J1) + S1(J2))

ℓ3∑

i=1

((
J1+J2+1

i

)(
ℓ3
i

)

i
(
J1
i

)(
J2
i

)
)
− 4

(J1 + 1)(J2 + 1)

J1 + J2 + 2

ℓ3∑

i=1

((
J1+J2+2

i

)
aℓ3i

i
(
J1
i

)(
J2
i

)
)
+

+ 4 (S1(J1) + S1(J3))

ℓ2∑

i=1

((
J1+J3+1

i

)(
ℓ2
i

)

i
(
J1
i

)(
J3
i

)
)
− 4

(J1 + 1)(J3 + 1)

J1 + J3 + 2

ℓ2∑

i=1

((
J1+J3+2

i

)
aℓ2i

i
(
J1
i

)(
J3
i

)
)
+

+ 4 (S1(J2) + S1(J3))

ℓ1∑

i=1

((
J2+J3+1

i

)(
ℓ1
i

)

i
(
J2
i

)(
J3
i

)
)
− 4

(J2 + 1)(J3 + 1)

J2 + J3 + 2

ℓ1∑

i=1

((
J2+J3+2

i

)
aℓ1i

i
(
J2
i

)(
J3
i

)
)
+

+ 4
3∑

i=1

S1(ℓi)S1(ji). (D.40)

This expression is a simple symmetrization of (D.30), except the last line, which does not
exist in the context of two spinning operators. When combined with X J1,J2,J3 it gives the
structure constants with two vanishing polarizations (ĈJ1,J2,J3

0,0,ℓ ).

Through lengthy explorations of the extracted one loop data and inspired by [158] we
were able to parametrize any one-loop structure constant via the following ansatz

ZJ1,J2,J3ℓ1,ℓ2,ℓ3
= q (J1, J2, J3, ℓ1, ℓ2) + q (J2, J3, J1, ℓ2, ℓ3) + q (J3, J1, J2, ℓ3, ℓ1) (D.41)

where

q (j1, j2, j3, l1, l2)

(1 + j1)(1 + j2)
= (1 + j3)

l2∑

n=1

l1∑

m=1

l1+l2∑

p=1

βn,m,pl1,l2

B(j1, l2 − n)
B(j1, l2)

B(j2, l1 −m)

B(j2, l1)
B(j3, l1 + l2 − p)
B(j3, l1 + l2)

+

l2∑

n=1

l1∑

m=1

l1+l2∑

p=n+m

γn,m,pl1,l2

B(j1, l2 − n)
B(j1, l2)

B(j2, l1 −m)

B(j2, l1)
B(j3, l1 + l2 − p)
B(j3, l1 + l2)

S1(j3)

(D.42)

with B, defined in (D.32) and being βn,m,pli,lj
and γn,m,pli,lj

unknown coefficients. We were able

to fix all γn,m,pli,lj
coefficients and a large portion of the βn,m,pli,lj

, by comparing this ansatz with
perturbative data and large spin expansions.

By matching with the extracted perturbative data we were able to fix all the γn,m,pli,lj

coefficients for polarizations up to ℓmax = 5 and all the βn,m,pl1,l2
for polarizations up to

ℓmax = 3, being expression (D.43) below an explicit example with polarizations {ℓ1 =
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1, ℓ2 = 2, ℓ3 = 3}.

ĈJ1,J2,J3

1,2,3 = X J1,J2,J3 + YJ1,J2,J3

1,2,3 +

(
(1 + J2)(1 + J3)S1(J1)

B(J2, 3)B(J3, 2)B(J1, 5)

)(
4

5
− 8J2

15
+

13J1J2
30

+

− J2
1J2
30

+
2J2

2

15
− 2J1J

2
2

15
+
J2
1J

2
2

30
− 2J3

5
+
J1J3
5

+
4J2J3
15

− 31J1J2
60

+
J2
1J2J3
5

+

J3
1J2J3
60

− J2
2J3
15

+
J1J

2
2J3
6

− J2
1J

2
2J3

10
+
J3
1J

2
2J3

60

)
+

+

(
(1 + J1)(1 + J3)S1(J2)

B(J1, 3)B(J3, 1)B(J2, 4)

)(
1− 2J1

3
+
J2
1

6
+

3J1J2
4
− J2

1J2
4
− J1J

2
2

12
+
J2
1J

2
2

12

)
+

+

(
(1 + J1)(1 + J2)S1(J3)

B(J1, 2)B(J2, 1)B(J3, 3)

)(
4

3
− 2J1

3
+

2J1J3
3

)
+

+

(
(1 + J1)(1 + J2)(1 + J3)

B(J1, 5)B(J2, 4)B(J3, 3)

)(
− 17

60
− 29J1

720
+

71J2
1
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− 61J3

1

2160
+

13J4
1

4320
+

+
13J2
120

+
623J1J2
4320

− 5269J2
1J2

25920
+

877J3
1J2

12960
− 187J4

1J2
25920

− 7J2
2

270
− 41J1J

2
2

405
+

859J2
1J

2
2

6480
+

− 1177J3
1J

2
2

25920
+

25J4
1J

2
2

5184
+
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2

270
+
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3
2
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1J
3
2
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+

227J3
1J

3
2

25920
− 5J4

1J
3
2
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+
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+
167J1J3
1440
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1J3
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+

83J3
1J3

1440
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1J3
2880

+
37J2J3
240

− 153J1J2J3
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+
2393J2

1J2J3
5760

+

− 569J3
1J2J3

4320
+

239J4
1J2J3

17280
− 73J2

2J3
540

+
215J1J

2
2J3
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1J
2
2J3
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+
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1J

2
2J3

12960
+
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1J

2
2J3
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+
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2J3
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− 49J1J

3
2J3
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+
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1J

3
2J3

25920
− 83J3

1J
3
2J3

5184
+

23J4
1J

3
2J3

12960
− J2

3
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+

− 11J1J
2
3
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+
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1J

2
3

1728
− 209J3

1J
2
3

8640
+

11J4
1J

2
3

4320
− 53J2J

2
3

720
+

5J1J2J
2
3
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− 4199J2

1J2J
2
3

25920

+
173J3

1J2J
2
3

3240
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1J2J
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25920
+
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2J

2
3

540
− 53J1J

2
2J

2
3

405
+

1807J2
1J

2
2J

2
3

17280
− 3487J3

1J
2
2J

2
3

103680
+

+
127J4

1J
2
2J

2
3

34560
− 11J3

2J
2
3

1080
+

623J1J
3
2J

2
3

25920
− 31J2

1J
3
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2
3

1620
+

43J3
1J

3
2J

2
3

6912
− 73J4
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3
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3
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)
. (D.43)

We now consider the large spin expansion, i.e. Ji → ∞ with ℓi finite. It is easy to
expand the ansatz above (D.42) up to some arbitrary order Λ. The ratio of binomials has
a simple large spin limit, which allow us to truncate the sums up to Λ. This means we can
trade our knowledge of knowing the γn,m,pli,lj

and βn,m,pli,lj
up to some ℓmax to knowing the large

spin expansion up to some order O(1/J ℓmax).

Furthermore, in this large spin limit is easy to disentangle the terms that are associated
with the coefficients γn,m,pli,lj

and βn,m,pl1,l2
, since the first one multiplies S1(Ji) and will come

together with a ln Ji factor. Therefore, using our perturbative data we can write the large
spin expansion for the one-loop structure constant for arbitrary polarizations, up to order
O(1/J5) for the terms with logs and up to order O(1/J3) for the rest (which are simple
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polynomials in polarizations and harmonic numbers), for example at order O(1/J1) it reads

ĈJ1,J2,J3
ℓ1,ℓ2,ℓ3

= −π2 − 2S1(ℓ1)
2 − 2S1(ℓ1)S1(ℓ2)− 2S1(ℓ2)

2 − 2S1(ℓ1)S1(ℓ3)− 2S1(ℓ2)S1(ℓ3)+

− 2S1(ℓ3)
2 − 2S2(ℓ1)− 2S2(ℓ2)− 2S2(ℓ3) + 4(ln J1 + γE)(S1(ℓ1)− ln 2)+

+ 4(ln J2 + γE)(S1(ℓ2)− ln 2 + 4(ln J3 + γE)(S1(ℓ3)− ln 2) +
2

J1
+

2

J2
+

2

J3
+

− 2 ln 2

J1
− 2 ln 2

J2
− 2 ln 2

J3
+ (ln J1 + γE)

( 1

J1
+

4ℓ2
J1

+
4ℓ2
J3

+
4ℓ3
J1

+
4ℓ3
J2

)
+

+ (ln J2 + γE)
( 1

J2
+

4ℓ1
J2

+
4ℓ1
J3

+
4ℓ3
J1

+
4ℓ3
J2

)
+ (ln J3 + γE)

( 1

J3
+

4ℓ1
J2

+

+
4ℓ1
J3

+
4ℓ2
J1

+
4ℓ2
J3

)
+ S1(ℓ1)

( 2

J1
− 4ℓ1

J2
− 4ℓ1

J3
− 2ℓ2

J1
− 2ℓ2

J3
− 2ℓ3

J1
− 2ℓ3

J2

)
+

+ S1(ℓ2)
( 2

J2
− 4ℓ2

J1
− 4ℓ2

J3
− 2ℓ1

J2
− 2ℓ1

J3
− 2ℓ3

J1
− 2ℓ3

J2

)
+ S1(ℓ3)

( 2

J3
− 4ℓ3

J1
+

− 4ℓ3
J1
− 2ℓ1

J2
− 2ℓ1

J3
− 2ℓ2

J1
− 2ℓ2

J3

)
+O(1/J2

i ) (D.44)

where γE is the Euler’s constant.

Our goal now is to use the large spin expansion to write the one-loop structure con-
stant using the basis of binomials akin to (D.33). We again divide the structure constant
expression in three factors

ĈJ1,J2,J3
ℓ1,ℓ2,ℓ3

= XJ1,J2,J3
ℓ1,ℓ2,ℓ3

+ Y J1,J2,J3
ℓ1,ℓ2,ℓ3

+ ZJ1,J2,J3
ℓ1,ℓ2,ℓ3

(D.45)

The first factor corresponds to terms which in the large spin limit come multiplying logs.
These terms are easier to obtain for two reasons. The first one is simply that we have more
data in the large spin expansion for them (O(1/J5)). The second is transcendentality: the
harmonic numbers account for transcendentality one so the factors that come multiplying
them turned out to be simpler than one naively would expect for the full one-loop structure
constant.

Here the big advantage of the binomials representation comes to play. We can parametrize
families of terms in the large spin expansion using a basis of the binomials B. For example,
when expanding in large spin we find the following factors

ĈJ1,J2,J3
ℓ1,ℓ2,ℓ3

= · · ·+ 4 ln J1

(
ℓ22
J1J3

− ℓ22
J1J2

3

− ℓ22

J2
1J3

+
ℓ1ℓ

2
2

J1J2
3

+
ℓ32
J1J2

3

+
ℓ32
J2
1J3

+O(J3)

)
+ . . .

(D.46)

so we consider a linear combination of sums involving ratios of the binomials B(J1, ℓ2),
B(J3, ℓ2), B(J1, ℓ1), B(J1− ℓ1), B(J3− ℓ1, ℓ2) and fix their coefficients by matching with the
large spin expansion (D.46). For this piece of the one-loop structure constant, we obtain
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the following expression

ĈJ1,J2,J3
ℓ1,ℓ2,ℓ3

= · · ·+ 4S1(J1)

(
∞∑

p=1

B(J1, ℓ2 − p)
B(J1, ℓ2)

B(J3 − ℓ1, ℓ2 − p)
B(J3 − ℓ1, ℓ2)

1

p

)
+ . . . (D.47)

a simple check of this expression is to expand it in the large spin limit and recover (D.46).

By following these procedure we were able to write the first factor in (D.45) of the
one-loop structure constant, it reads

XJ1,J2,J3

ℓ1,ℓ2,ℓ3
=
(
8S1(J1)

2 − 4S1(J1)S1(2J1) + 4S1(J1)S1(J2) + 4S1(J1)S1(J3) + 2S1(ℓ1)S1(J1 − ℓ2)+

− 4S1(J1)S1(J3 − ℓ2)− 4S1(J1)S1(ℓ2) + 2S1(J1 − ℓ2)S1(ℓ2)− S1(ℓ2)
2 + 2S1(ℓ1)S1(J1 − ℓ3)+

− 4S1(J1)S1(J2 − ℓ3)− 4S1(J1)S1(J1 − ℓ2 − ℓ3) + 2S1(ℓ2)S1(J1 − ℓ2 − ℓ3)− 4S1(J1)S1(ℓ3)+

− 2S1(ℓ2)S1(ℓ3) + 2S1(J1 − ℓ3)S1(ℓ3) + 2S1(J1 − ℓ2 − ℓ3)S1(ℓ3)− S1(ℓ3)
2 − 2S2(J1)− S2(ℓ2)+

− S2(ℓ3)
)
+ 4
(
S1(J1)−

S1(ℓ2)

2
− S1(ℓ3)

2

)( ∞∑

p=1

∞∑

q=1

B(J2, ℓ3 − p)
B(J2, ℓ3)

B(J3, ℓ2 − q)
B(J3, ℓ2)

B(ℓ2, p)B(ℓ3, q)
B

(1+J1−ℓ2−ℓ3)
(p+q)

+

+

∞∑

p=1

B(J2, ℓ3 − p)
B(J2, ℓ3)

B(J1 − ℓ2, ℓ3 − p)
B(J1 − ℓ2, ℓ3)

1

p
+

∞∑

p=1

B(J3, ℓ2 − p)
B(J3, ℓ2)

B(J1 − ℓ3, ℓ2 − p)
B(J1 − ℓ3, ℓ2)

1

p

)
+

({J1, ℓ1} ←→ {J2, ℓ2}) + ({J1, ℓ1} ←→ {J3, ℓ3}) (D.48)

where B
(b)
(a) is the inverse of the Euler’s beta function, B

(b)
(a) = 1/B(a, b).

With this factors fully fixed we can turn now to the match with the Wilson loop. In
order to compare with the Wilson loop we will consider the expansion around the origin
limit of (5.32). The factor (D.48) written above encodes all the contributions proportional
to logs, therefore it is precisely this factor that should reproduce the Ai factor of (5.30).
And indeed, up to order O(1/J10) in the origin expansion we find a perfect match between
the structure constant and the Wilson loop for the terms linear in logs. For finite Ji/ℓj
ratio, we can perform the sums akin to (D.36) and use the (5.14) to write the combinations
of spins and polarizations in terms of cross-ratios recovering precisely that Ai = 2 ln(1−Ui),
in perfect agreement with the Wilson loop (5.30).

The second term of (D.45) in the large spin limit is given only by powers of the po-
larizations ℓi. By transcendentality the combination of binomials appearing here can be
more complicated than before, as happens in the two spins case of (D.33). This expansion
is again separated in various families depending in the Ji and ℓi that they display, which
then we try to match with a linear combination of sum of ratio of binomials. However,
we were not able to fix all the combinations of B in a close form like (D.48), these partial
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results we display below

Y J1,J2,J3

ℓ1,ℓ2,ℓ3
= 4

( ∞∑

p=1

B(J1, ℓ2 − p)
B(J1, ℓ2)

B(J3, ℓ2 − p)
B(J3, ℓ2)

S1(ℓ2)− S1(p)− S1(ℓ2 − p)
p

−
∞∑

p=1

B(J3, ℓ1 − p)
B(J3, ℓ1)

S1(p− 1)

p
+

+

∞∑

p=1

p−1∑

q=1

B(J1, ℓ2 − p)
B(J1, ℓ2)

B(J3, ℓ2 − q)
B(J3, ℓ2)

1

(p− q)p +

∞∑

p=1

∞∑

q=p+1

B(J1, ℓ2 − p)
B(J1, ℓ2)

B(J3, ℓ2 − q)
B(J3, ℓ2)

1

(q − p)q+

−
∞∑

p=1

∞∑

q=1

B(J1, ℓ3 − p)
B(J1, ℓ3)

B(J3, ℓ1 − p)
B(J3, ℓ1)

1

2pq
−

∞∑

p=1

B(J1, ℓ3 − p)
B(J1, ℓ3)

S1(p− 1)

p

)
+

+ ({J1, ℓ1} ←→ {J2, ℓ2}) + ({J3, ℓ3} ←→ {J1, ℓ2}) (D.49)

More precisely, we were not able to fix the combinations of binomials in a close form, for
factors that in the large spin expansion mix the following spins and polarizations ℓi−1ℓi+1

Ji
,

ℓi−1ℓi+1

JiJi+1
and ℓi−1ℓi+1

Ji+1JiJi+1
. The last term in (D.45) accounts for that

ZJ1,J2,J3
ℓ1,ℓ2,ℓ3

= q (J1, J2, J3, ℓ1, ℓ2) + q (J2, J3, J1, ℓ2, ℓ3) + q (J3, J1, J2, ℓ3, ℓ1) (D.50)

where

q (j1, j2, j3, l1, l2) =

l2∑

n=0

l1∑

m=0

l1+l2∑

p=0

βn,m,pl1,l2

B(j1, l2 − n)
B(j1, l2)

B(j2, l1 −m)

B(j2, l1)
B(j3, l1 + l2 − p)
B(j3, l1 + l2)

(D.51)

but now it has no γn,m,pli,lj
since the coefficients of the logs were already fixed. The remaining

unknown coefficients βn,m,pli,lj
are all fixed for ℓmax = 4 and only six remain unfixed for

ℓmax = 5. These fixed βn,m,pli,lj
are a set of simple numbers,

β0,0,0
0,0 = 0, β0,0,0

0,1 = 0, β0,0,0
0,2 = 0, β0,0,0

0,3 = 0, β0,0,0
0,3 = 0, β0,0,1

0,1 = 0,

β0,0,1
0,2 = 1, β0,0,1

0,3 = 2
3
, β1,0,1

0,1 = 0, β1,0,1
0,2 = −1, β1,0,1

0,3 = −2
3
, . . .

(D.52)

which we were not able to find a pattern for. This and the other fixed coefficients are in
the attached Mathematica notebook.

Finally, let’s consider the relation with the Wilson loop. The only factor left to match
in (5.30) is B. Since we lack a close expression for the βn,m,pli,lj

we cannot recover the full B
in terms of cross-ratios, however using the βn,m,pli,lj

fixed through data we were able to match
the Wilson Loop expansion up to order six, meaning we matched the first 873 terms of the
origin expansion.
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Appendix E

Appendix: Spinning Hexagons

E.1 Spinors

In section 6.3 we parametrize spinning operators through their left- and right-handed po-
larization spinors Liα and Riα̇. These are related to the polarization vectors by

ϵµi = Riβ̇ (σ̄
µ)β̇α Liα. (E.1)

In our conventions the sigma matrices σµαα̇, σ̄
µα̇α are given by

σ0 = −
(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (E.2)

σ̄ = (σ0,−σ1,−σ2,−σ3). Indices are raised and lowered with

ϵαβ = ϵα̇β̇ = −ϵαβ = −ϵα̇β̇ =

(
0 1
−1 0

)
. (E.3)

The structures ⟨i, j⟩ ≡ iRj α̇(σ̄2)
α̇αLiα are preserved by the residual symmetry of the

conformal frame chosen along the x2 direction. Due to this it is useful to define, when
working in the conformal frame, left-handed spinors Rα = iRα̇(σ̄2)

α̇α = ϵαα̇Rα̇. These can
now be straightforwardly contracted with the Li spinors to form invariants, as is used in
section 6.2 to define the hexagon partition function (6.7).

The ⟨i, j⟩ structures are related to the canonical covariant Vi, Hij structures used in
the literature [146] through

⟨i, j⟩⟨j, i⟩ ≡ Hij, ⟨i, i⟩ ≡ Vi. (E.4)

E.2 Frames, Vertex, and Markers

The integrability description of N = 4 SYM requires a choice of a frame, i.e. a repre-
sentation for the single-trace operators in terms of magnons on top of a spin chain. Two
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choices are common: the string and spin-chain frame [66]. For most of chapter 6 we use
the spin-chain frame, in which a single trace operator made out of L fundamental fields
is assigned to a spin chain of length L. Clearly the number of fields composing an opera-
tor is not a non-perturbative notion. Moreover, it is not preserved by the dynamics: the
scattering between excitations on top of the vacuum can change the chain length, deleting
or introducing additional sites Z in the chain. These are represented by the Z∓ markers.
The spin-chain frame is nevertheless useful to compare with previous weak coupling results
available in the literature.

The S-matrix for excitations in the spin chain frame is given by

S|ϕa(x)ϕb(y)⟩ = A(x, y)|ϕ{a(y)ϕb}(x)⟩+ B(x, y)|ϕ[a(y)ϕb](x)⟩+ 1

2
C(x, y)Σabϵcd|Z−ψc(y)ψd(x)⟩

S|ψa(x)ψb(y)⟩ = D(x, y)|ψ{a(y)ψb}(x)⟩+ E(x, y)|ψ[a(y)ψb](x)⟩+ 1

2
F(x, y)ϵabΣcd|Z+ϕc(y)ϕd(x)⟩

S|ϕa(x)ψb(y)⟩ = G(x, y)|ψb(y)ϕa(x)⟩+H(x, y)|ϕa(y)ψb(x)⟩

S|ψa(x)ϕb(y)⟩ = K(x, y)|ψa(y)ϕb(x)⟩+ L(x, y)|ϕb(y)ψa(x)⟩. (E.5)

The S-matrix elements are expressed in terms of the Zhukovsky variables as [59,159]

A(x, y) = x+(y)− x−(x)
x−(y)− x+(x) , (E.6)

B(x, y) = −1 + (x+(x)− x+(y)) (x−(x) (x−(y)− 2x+(y)) + x+(x)x+(y))

(−1 + x−(x)x−(y)) (x−(y)− x+(x))x+(x)x+(y) ,

C(x, y) = 2γ(x)γ(y) (x+(x)− x+(y))
(1− x−(x)x−(y)) (x−(y)− x+(x)) ,

D(x, y) = −1,

E(x, y) = x+(y)− x−(x)
x−(y)− x+(x) +

(x+(x)− x+(y)) (x−(x)x−(y) + x+(x) (x+(y)− 2x−(y)))

(1− x−(x)x−(y)) (x−(y)− x+(x))x+(x)x+(y) ,

F(x, y) = 2x−(x)x−(y) (x−(x)− x+(x)) (x−(y)− x+(y)) (x+(x)− x+(y))
γ(x)γ(y) (−1 + x−(x)x−(y)) (x−(y)− x+(x))x+(x)x+(y) ,

G(x, y) = x+(y)− x+(x)
x−(y)− x+(x) ,

H(x, y) = γ(x) (x+(y)− x−(y))
γ(y) (x−(y)− x+(x)) ,

L(x, y) = x−(y)− x−(x)
x−(y)− x+(x) ,

K(x, y) = γ(y) (x+(x)− x−(x))
γ(x) (x−(y)− x+(x)) , (E.7)
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where
γ(x) =

√
x−(x)− x+(x).

In computing the hexagon form factors we cross all Dαα̇ excitations to the u edge, figure
(6.9), break them into left- and right- fermions, and then scatter all left components with
the PSU(2|2) S-matrix described above. Finally we project the scattering result into the
final state of right-fermions. When fermions scatter they may produce markers according
to the C and F elements in (E.5). Our computation scheme is then to, as soon as a Z
marker is created in this chain of scatterings, move it immediately to the extreme left side
of the spin chain. This amounts to a translation by unit on the asymptotic wavefunctions
of the excitations [59,159]

|ψ(u)Z⟩ = χ+(u)

χ−(u)
|Zψ(u)⟩. (E.8)

Once on the left side of the chain, it can be ignored for the rest of the computation. The
result is an extra factor in the matrix elements corresponding to the product of momentas
x+(z)
x−(z)

for all fermions to the left of those being scattered. The result are the cumulative Z
marker factors

ϕZ(vi, uj) =
i−1∏

a=1

J1∏

b=j+1

x+(va)

x−(va)

x−(ub)

x+(ub)
, ϕZ(vi, wj) =

i−1∏

a=1

J3∏

b=k+1

x+(va)

x−(va)

x+(wb)

x−(wb)
,

ϕZ(uj, wk) =

J1∏

a=j+1

J2∏

b=1

J3∏

c=k+1

x−(ua)

x+(ua)

x+(vb)

x−(vb)

x+(wc)

x−(wc)
.

in equation (6.3).

Once the Z marker is removed in this way, we proceed with the remaining scatterings.
Note that the x(v), x(w) factors are inverted with respect to the χ(u) factors due to the
crossed kinematics, equation (6.5).

In the string frame the length of the spin-chain is well defined non-perturbatively,
corresponding to the R-charge of the dual single-trace operator. As a consequence, the
S-matrix in the string frame does not produce Z markers and non-perturbative crossing
transformations are simple. For a PSU(2|2)2 bifundamental magnon excitation ηAḂ(z)
crossing in the string frame simply amounts to

ηAḂ(z)
⟳−→ −ηBȦ(z⟳), ηAḂ(z)

⟲−→ −ηBȦ(z⟲). (E.9)

Crossing in the spin-chain frame is in general complicated, requiring one to map the spin-
chain frame magnons to the string frame, use (E.9), and convert back. For our purposes the
procedure is trivial, since in the SL(2,R) sector we just need to cross covariant derivatives
and Dαα̇spin-chain = Dαα̇string.
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E.3 σ crossing

The crossing transformations are implemented through analytic continuation on the ra-
pidities around the u = ± i

2
+ 2g branch points. The S-matrix elements (E.6-E.7) have

simple transformation rules under these monodromies, as follows from (6.4). Clockwise z⟳

and anti-clockwise z⟲ crossings are equivalent for these factors.

The dynamical factor h(z, z′), on the other hand, transforms non-trivially [66]. The
necessary formulae can be derived as a consequence of the crossing equation for the BES
factor,

σ(z⟳, z′)σ(z, z′) =
(1− 1/x+y+)(1− x−/y+)
(1− x−/y−)(1− 1/x+y−)

(E.10)

combined with unitarity, σ(z, z′)σ(z′, z) = 1. We use x and y to denote the Zhukovsky
variable associated to z and z′ respectively. Some of the most useful equations are

h(z⟳, z′) = h(z, z′
⟲
) =

1− 1/x+y−

1− 1/x−y+
σ(z, z′) (E.11)

h(z⟳, z′
⟲
) =

y− − x+
y− − x−

1− 1/y+x+

1− 1/y−x+
1

σ(z, z′)
(E.12)

which in particular imply the simplified unitarity equations referred to in figure 6.4.

E.4 Equal spins operators

When two or more operators have the same spin the hexagon form factors can have off-shell
singularities which display an order of limits issue when going on-shell [249].

For two spinning operators (consider J1 = J2 = J and J3 = 0), this can be easily
avoided via two operations. First we cross the v rapidities twice v → v±4γ, which makes
the matrix part of the hexagon form factor invariant and makes the kinematic pole of the
diagonal limit appear only in the dynamical part. Second we use Bethe equations in the
splitting factors of the u particles

ωℓ13(a, ā) = (−1)ā
∏

uj∈ā

e−ip(uj)ℓ12
∏

ui∈a
i<j

S−1(uj, ui) (E.13)

which eliminates ℓ13 for ℓ12. As worked out in [249], after summing over partitions the
diagonal poles cancel resulting in the well-defined off-shell object.

Turning on the third operator, provided that it is not equal to the other two, does
not introduce new poles, so again we have well-defined off-shell object. However, for three
spinning operators of equal spins (J1 = J2 = J3 = J) we cannot choose crossing and
splitting factors in such a way that all the sets of particles satisfy the two criteria above.
In other words, there is no choice of crossing and weights for the excitations w that make
the glued hexagon free of off-shell poles. However when going on-shell these poles must
cancel with zeros coming from the matrix part and yield the physical three-point function.
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We were not able to come with a correct prescription for the glued hexagons that deals
with the order of limit issue, therefore we avoided equal three spinning operators such as
the seemingly harmless J1 = J2 = J3 = 2 case. We believe that understanding the correct
prescription is another interesting question for the hexagon formalism.

E.5 From C to H’s

In this section we explain how to express the structure constant in terms of hexagon
components. Our starting point is (6.31), which we rewrite here as

∑

ℓ1,ℓ2,ℓ3

CJ1,J2,J3
ℓ1,ℓ2,ℓ3

( ⟨1, 1⟩J1−ℓ2−ℓ3⟨2, 2⟩J2−ℓ1−ℓ3⟨3, 3⟩J3−ℓ1−ℓ2
⟨2, 3⟩−ℓ1⟨3, 2⟩−ℓ1⟨1, 3⟩−ℓ2⟨3, 1⟩−ℓ2⟨1, 2⟩−ℓ3⟨2, 1⟩−ℓ3

)
=

= L1,α⃗1L2,α⃗2L3,α⃗3R1,β⃗1
R2,β⃗2

R3,β⃗3
Hα⃗1β⃗1;α⃗2β⃗2;α⃗3β⃗3
G (u, v,w) (E.14)

where HG are the glued hexagons.

By expanding in components and taking derivatives with respect to the spinors in both
sides of the expression above we can construct a matrix M that writes the polarized glued
hexagons in terms of structure constants

H(α⃗1β⃗1);(α⃗2β⃗2);(α⃗3β⃗3)
G =M

(α⃗1β⃗1);(α⃗2β⃗2);(α⃗3β⃗3)
ℓ1,ℓ2,ℓ3

CJ1,J2,J3
ℓ1,ℓ2,ℓ3

, (E.15)

where we emphasize that the indices of HG are completely symmetrized, in accordance
with the symmetric traceless nature of the operators we are considering.

Notice that the rectangular matrixM has linearly independent columns, so thatMTM
is invertible (since it is a grammiam matrix of linearly independent vectors). Therefore we
can act on the LHS of equation (E.15) with the left inverse M+ = (MTM)−1MT and find
the inverted relation

Cℓ1,ℓ2,ℓ3
J1,J2,J3

=
(
M ℓ1,ℓ2,ℓ3

(α⃗1β⃗1);(α⃗2β⃗2);(α⃗3β⃗3)

)+
H(α⃗1β⃗1);(α⃗2β⃗2);(α⃗3β⃗3)
G (E.16)

which writes the structure constants as combinations of hexagons. Note also that the O(3)
invariance implies several identities between the hexagon components. These identities are
simply the vanishing of the null vectors of M+.

E.6 Abelian C••• and Pfaffians

In section (6.3.3) we presented a determinant formula for structure constants of three non
protected spinning operators polarized so that two are parallel and orthogonal to the third.
Here we make explicit some of the formulas and detail some steps.

First we discuss the pfaffian identity. As derived in [69],

∑

ā⊂u

(−1)|ā|w′(uā)H(uā, uā) = pf(I −K)2J1×2J1 .
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where the matrix K is defined as

K =

(
K11(u, u) K12(u, u)
K21(u, u) K22(u, u)

)
(E.17)

with

K11(a, b)ij ≡ gai /k(x
+(ai), x

−(bj)), K12(a, b)ij ≡ −gai k(x+(ai), x+(bj))/(x+(ai)x+(bj))2,
K21(a, b)ij ≡ gai k(x

−(ai), x
−(bj))/(x

−(ai)x
−(bj))

2, K22(a, b)ij ≡ −gai /k(x−(ai), x+(bj)),

and where

gui = k(x+(ui), x
−(ui))ω

′(ui), k(x, y) =
x− y

1− 1/xy
. (E.18)

As previously emphasized, this formula holds for any factorized function of the rapidities
w′(uā) =

∏
i∈āw

′(ui).

The next point we would like to clarify in this appendix is the sequence of manipulations
leading to the pfaffian representation of the blue terms. The starting point is equation
(6.40) which reads

blue =
∑

b∪b̄⊂v
c∪c̄⊂w

(−1)|b̄|+|c̄|evb̄e
w
c̄ H(vb̄, vb̄)H(wc̄, wc̄)h(v

⟳
b , û)h(û, w

⟲
c )h(v

⟳
b , w

⟲
c )h(w

⟳
c̄ , v

⟲
b̄
).

We then write

h(v⟳b , w
⟲
c ) =

h(v̂⟳, ŵ⟲)h(v⟳
b̄
, w⟲

c̄ )

h(v⟳
b̄
, w⟲

c̄ )h(v
⟳
b̄
, w⟲

c )h(v
⟳
b , w

⟲
c̄ )h(v

⟳
b̄
, w⟲

c̄ )
, h(v⟳b , û) =

h(v̂⟳, û)

h(v⟳
b̄
, û)

, h(û, w⟲
c ) =

h(û, ŵ⟲)

h(û, w⟲
c̄ )

to end up with

blue =h(v̂⟳, ŵ⟲)h(v̂⟳, û)h(û, ŵ⟲)
∑

b∪b̄⊂v
c∪c̄⊂w

(−1)|b̄|+|c̄|
(

ev
b̄

h(v⟳
b̄
, ŵ⟲)h(v⟳

b̄
, û)

)

︸ ︷︷ ︸
≡ω′(v⟳

b̄
)

(
ewc̄

h(û, w⟲
c̄ )h(v̂⟳, w

⟲
c̄ )

)

︸ ︷︷ ︸
≡ω′(wc̄)

×H(vb̄, vb̄)H(wc̄, wc̄)h(v
⟳
b̄
, w⟲

c̄ )h(w
⟳
c̄ , v

⟲
b̄
).

Here, as before, we interpret the effect of O1 on operators O2 and O3 as a background that
corrects their propagation but does not affect their interactions. Next, we use the identity
h(v⟳

b̄
, w⟲

c̄ )h(w
⟳
c̄ , v

⟲
b̄
) = h(v⟳

b̄
, wc̄)h(wc̄, v

⟲
b̄
) to obtain the result from the main text (6.41),

blue = h(v̂⟳, ŵ⟲)h(v̂⟳, û)h(û, ŵ⟲)
∑

b∪b̄⊂v
c∪c̄⊂w

(−1)|b̄|+|c̄|ω′(v⟳
b̄
)ω′(wc̄)H(v⟳

b̄
, v⟳
b̄
)H(wc̄, wc̄)H(v⟳

b̄
, wc̄).

The next step is to recognize the sum over partitions for the effective operator O2 ∪O3
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as a pfaffian,

∑

d∪d̄⊂z

(−1)|d̄|ω′(zd̄)H(zd̄, zd̄) = pf(I −K′)2(J2+J3)×2(J2+J3).

Comparing with the definition (E.17), K′ is defined in terms of the functions Kx,y(a, b) as

K′ = −




K11(v
⟳, v⟳) K12(v

⟳, v⟳) K11(v
⟳, w) K12(v

⟳, w)
K21(v

⟳, v⟳) K22(v
⟳, v⟳) K21(v

⟳, w) K22(v
⟳, w)

K11(w, v
⟳) K12(w, v

⟳) K11(w,w) K12(w,w)
K21(w, v

⟳) K22(w, v
⟳) K21(w,w) K22(w,w)


 .

where gv
⟳
i = k(x+(v⟳i ), x

−(v⟳i ))ω
′(v⟳i ) and g

w
i = k(x+(wi), x

−(wi))ω
′(wi).

A last comment regards the choice of splitting factors in (6.39). There we chose to cross
all three sets of magnons from the front to the back hexagon through the right boundary
of the cut chain. Alternative pfaffian representations can be obtained in an analogous
manner for all other possible choices1 of splitting factor provided one replaces (6.39) by
the appropriate expression. The only difference is the final result is the replacement of the
original splitting factors eax̄ by their left alternatives in the pfaffian formula. As usual, the
expressions differ off-shell but reproduce the same structure constants.

E.6.1 A two loop check

An important question is if the asymptotic part is sufficient to capture the leading con-
tribution, in the large spin limit, of three point functions with more than one non-BPS
operator. The goal of this section is to lay out the main ingredients that are necessary to
compute the first correction to the asymptotic part of the OPE coefficient in the Abelian
polarization. Most of the discussion is valid for operators with any spin but we compute
explicitly only the finite size correction of the OPE coefficient of two Konishi operators and
one BPS leaving a more general analysis(including the large spin limit mentioned above)
to the future. These new effects are obtained by gluing the two hexagons along the three
seams (from now on referred to as mirror edges) to form a pair of pants. The gluing
procedure is achieved by dressing the mirror edges with multiparticle states and integrat-
ing over their rapidities. The multiparticle states are labeled by boundstate number n as
explained [66,69,170,171].

One crucial but important detail is that the bound state particles live in the mirror
edges. This might seem innocuous but is the reason why their contribution only starts at
two loops. To have a better grasp on this matter let us look at the integrand of just one

1e.g. left-left-left, right-right-left, etc.
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Figure E.1: Single mirror particle contribution to a three point function with three spinning
operators. The mirror particle would correspond to a bottom contribution (in the notation
of [66]) if the operators 2, 3 were BPS and adjacent if the the 1 and 2 or 3 were absent.

boundstate particle in the hexagon formalism

int =
∑

a∪ ā=u
b∪ b̄=v
c∪ c̄=w
X

µ(zγ)eip
γ
zωl13(a, ā)ωl23(c, c̄)ωl12(b, b̄)H(b2γ, a, c−2γ, z−3γ)H(c̄2γ, ā, b̄−2γ, z−3γ)

(E.19)

where X is a particle in the mirror theory with rapidity z and

µ(zγ) =
n(x[+n]x[−n])2

g2(x[+n]x[−n] − 1)2((x[+n])2 − 1)(1− (x[−n])2)
, eipuγ =

1

x[n]x[−n]
, (E.20)

with n being the boundstate number. Since the boundstate particle lives in the mirror
edge we need to do an odd number of γ rotations. In this case the expressions for µ(zγ)
and eipuγ start with g2 at weak coupling. Physically, this is just saying that we pay a
coupling for the mirror particle to travel from the front hexagon to the back. For this
reason the finite size correction for twist two operators only makes an appearance at the
two loop level. Fortunately there is perturbative data computed using traditional Feynman
integrals that we can compare against [158]. The rest of this section is devoted to obtain
the finite size correction at two loops and for two spin two operators and match it with the
result obtained in [158].

The integrand (E.19) is very similar to the hexagon partition function, as it is the
scattering of three sets of particles in a pairwise fashion, but now with an additional bound
state particle arising from the mirror contributions.

There are several simplifications for the Abelian polarization, for example the scattering
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⇥

=

=

X

Figure E.2: The sum over the flavour indices of the mirror particle states in the matrix part of the
hexagon form factor is proportional to a transfer matrix. This is precisely the same mechanism
present in the OPE with just one spinning operator.

between the three sets of particles u, v and w is simple. If it was not for the boundstate
particles, the whole matrix part would be trivial. However, as depicted in figure E.2, in this
abelian configuration the boundstate scattering can be recasted as a transfer matrix [66],

Ta(z) =
1∑

n=−1

(3n2 − 2)
n∏

m=0

R(+)(z[2m−a])

R(−)(z[2m−a])

a−2n
2∑

j= 2−a
2

a−2
2∏

k=j+n

R(+)(z[2n−2k])B(+)(z[−2k])

R(−)(z[2n−2k])B(−)(z[−2k])
, (E.21)

where

R(±)(z) =
∏

j

(x(z)− x∓j ) , B(±)(z) =
∏

j

(
1

x(z)
− x∓j

)
. (E.22)

and the product in j should be taken over all physical particles. Notice that some of these
particles are mirror rotated as can be seen in figure E.1 and for this reason the transfer
matrix that shows up in the integrand (E.19) is not exactly (E.21). Instead, the integrand
will be written in term of T⟳⟲

n (z) which is defined by

T⟳⟲
n (z) = Tn(z)

∣∣∣
x[−a]→ 1

x[−a]
, x±j → 1

x±
j

j ∈ v ∪w. (E.23)
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+ +

(a) (b)

Figure E.3: For two non-BPS operators there is one mirror edge that is distinct from the other
two. It turns out that up to two loops only the finite size corrections (a) contribute while the
finite size correction (b) will only starts at three loop order.

The integrand (E.19) can then be written in a compact form as

int(z) =
T⟳⟲
n (z)µ(zγ)eip

γ
z

hn(z−γ,v)hn(zγ,u)
hn(w, z

−γ)
∑

a∪ ā=u
b∪ b̄=v
c∪ c̄=w

ω′
l23
(c, c̄)ωl13(a, ā)ω

′
l12
(b, b̄)×

× h(b2γ, a)h(b4γ, c)h(a, c−2γ)h(c̄2γ, ā)h(c̄4γ, b̄2)h(ā, b̄
−2γ)

3∏

i=1

h(wi, wi)h(w̄i, w̄i), (E.24)

with ω′, pn and hn defined by

ω′
ℓ23
(c, c̄) = ωℓ23(c, c)pn

(
c̄4γ, z−γ

)
, ω′

ℓ12
(b, b̄) = ωℓ12(b, b)pn

(
b̄, z−γ

)
, (E.25)

pn(u, v) = hn(u, v)hn(v, u) =
(u− v)2 + (n−1)2

4

(u− v)2 + (n+1)2

4

(
1− 1

y−x[+n]

1− 1
y−x[−n]

1− 1
y+x[−n]

1− 1
y+x[+n]

)2

, (E.26)

Sn(u, v) =
1

σ2
n(u, v)

(u− v + in−1
2
)(u− v + in+1

2
)

(u− v − in−1
2
)(u− v − in+1

2
)

n−1
2∏

k=−n−1
2

(
1− 1

y+x[−2k−1]

1− 1
y−x[+2k+1]

)2

(E.27)

and σn(u, v) is the (fused) BES dressing phase [60]. Let us remark that these formulas
should be valid for operators with any spin but only in the Abelian polarization.

For simplicity we focus on three point functions with two spinning operators J1 = J2 = 2
and one BPS and compare it with perturbative results obtained in [158]. Obviously, this
choice breaks the symmetry between the mirror edges since one of them will be between
the two non-BPS operators, as can be seen in figure E.3. It is straightforward to check
by expanding at weak coupling that we only need to take into consideration the finite size
corrections represented in E.3.a.

The building blocks to get this contribution are very explicit and now it is just a matter

270



of evaluating them at weak coupling after taking the appropriate monodromies. After doing
this we obtain

int(z) =
55296(−1)2/3n2g4(12z2−n2)(3n2+12z2−4)

(n2+4z2)3(216n6(6z2−1)+432n4(18z4−2z2+1)+384n2(54z6+9z4−15z2−1)+81n8+256(9z4+3z2+1)2)
(E.28)

where we used the Konishi Bethe roots for the two spinning operators

u = v =

(
− 1

2
√
3
,

1

2
√
3

)
. (E.29)

The OPE coefficient2 for two spin two operators is given by at two loops

2∑

ℓ=0

Cℓ
2,2,0 = N (2)N (2)

(
asymptotic Abelian + 2

∞∑

n=1

∫
dzint(z)

)
. (E.30)

where asymptotic are the abelian structures given by the hexagon partition function (6.37)
or by the pfaffian (6.42) and the factor of two in front of the integral takes into account
the two possibilities to add mirror particles as shown in figure E.3.a.

The integral over the rapidity z, that can be done by picking residues and the sum over
the boundstate n can be evaluated without much effort. After adding everything up we
obtain

2∑

ℓ=0

Cℓ
2,2,0 =

1

6

(
1− 12g2 + 147g4

)
(E.31)

which matches exactly the result obtained in [158].

It should be possible to obtain the finite size correction for other spins (in the Abelian
polarization). The only issue that might occur is that the integral/sum needs to be reg-
ularized. However, we expect that the HPL method of [170] can be used to regularize
efficiently the sums in a similar fashion as in one spinning case. Along these lines it would
be interesting to extend the results of [186] to our setting.

Obtaining finite size corrections for other polarizations is somewhat harder but should
be doable at least at leading order in the coupling and for small spins. The main issue is
that the sum over mirror particles in (E.19) is more involved.

2One might be worried about the (−1) 2
3 in (E.28) because it can give rise to an imaginary part in the

structure constant. However this does not pose an issue since this factor is removed with the normalization

factor N (2)2 = (−1)−
2
3

54 .
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Appendix F

Appendix: Structure Constants in N = 4
SYM and Separation of Variables

F.1 Notation

F.1.1 Roots and Charges

Up to at least 4 loops, the Bethe roots vk are the solutions to the asymptotic Bethe
equations [184,252]

1 =

(
x+k
x−k

)L∏

j ̸=k

(
x−j − x+k
x+j − x−k

)η
1− g2/(x−j x+k )
1− g2/(x+j x−k )

σ(vk, vj)
2

for the simplest SU(2) and SL(2) rank one sectors where η = ±1 respectively. Here the
Zhukowsky variables

x±k = x(vk ± i
2
) with x(u) =

u+
√
u2 − 4g2

2
≃ u− g2

u
+ . . .

where g2 = λ/(4π)2 is the coupling. (For three point functions g2k effects are NkLO effects
while for the quantum anomalous dimensions they are Nk−1LO effects.) We sometimes
also use x[±a] ≡ x(u± ia/2). Finally the dressing phase starts only at very high loop order,
σ = 1 + O(g6) and we will not use its explicit expression in this appendix. Generating
Bethe roots for SL(2) is simple since they are real; for SU(2) we used [250] to produce
tree level solutions and then we found the loop corrections by linearizing Bethe equations
around these seed values.

We also define the auxiliary real functions

q+k (u) = ik+0(x+(u))−k + (−i)k+0(x−(u))−k , (F.1)

q−k (u) = ik−1(x+(u))−k + (−i)k−1(x−(u))−k , (F.2)
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which can be used to construct the conserved charges

Q±
k =

J∑

i=1

q±k (vj) . (F.3)

The Q+
k are even and Q−

k are odd functions of the Bethe roots. The anomalous dimension
of an operator is nothing by γ = 2g2Q+

1 for instance.

We can also package the Bethe roots into Baxter polynomials Q(u) ≡ ∏J
k=1(u − vk)

or dressed Baxter functions as in (7.1) or (7.25). Then these charges can be extracted by
simple contour integrals as well. For instance:

Q+
1 =

∮
u du

4πg2
√
u2 − 4g2

log
Q(u+ i/2)

Q(u− i/2) (F.4)

where the contour encircles the Zhukowsky cut u ∈ [−2g, 2g]. This is an interesting defi-
nition since it now applies to any function Q, be it a polynomial or not. We can use such
definitions to pair up arbitrary functions in scalar products such as (7.3).

The concept of transcendentality is often useful. At loop order n we expect functions
of uniform transcendentality n to show up once properly counted. It is tempting to assign
transcendentality k to the charges q±k . Some identities like (q+1 )

2 − (q−1 )
2 = 2q+2 nicely

preserve this counting but others such as (q+1 )
2+(q−1 )

2 = 4q+1 +O(g
2) can lead to ambiguities

in perturbation theory. In the SL(2) sector Harmonic numbers Hk of transcendentality k
often show up. We use the mathematica notation Hk(x) = HarmonicNumber(x, k) and

H+
n (u) ≡ Hn(−1/2 + iu) +Hn(−1/2− iu) , (F.5)

iH−
n (u) ≡ Hn(−1/2 + iu)−Hn(−1/2− iu) . (F.6)

F.1.2 Structure Constants and Hexagons

The hexagon formalism [66] is a non-perturbative integrability framework developed to
evaluate structure constants in planar N = 4 SYM. It was used throughout chapter 7
to generate a myriad of perturbative data. This formalism entails two main components:
asymptotic sums and mirror corrections, as depicted in figure F.1.

When we cut the three point function pair of pants into two hexagons the excitations on
each operator can end up on either hexagon so we must sum over the ways of partitioning
such excitations. In the end when we glue back the hexagons into a pair of pants we must
sum over all possible quantum states along each edge where we glue. In this appendix we
ignore these second effect, focusing only in the asymptotic contributions.

The three point function depicted in figure 7.1 in the hexagon formalism is given by
the ratio of two quantities

(
C2

•◦◦
)
ℓ
=
A2
ℓ

B . (F.7)

The numerator entering the ratio above is the central object of the hexagons approach. In
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Figure F.1: Each closed spin chain operator is split into two open chain operators. We sum over
all the ways its excitations can end up in either one of the chains. Gluing the hexagons together
amounts to integrating over all possible mirror states.

the asymptotic regime

Aasymptotic
ℓ = NJ,ℓ

∑

α∪ᾱ=v

(−1)|ᾱ| e
−ipᾱℓ

hᾱα
(F.8)

where p is the momentum of the excitation

pᾱ =
∑

vi∈ᾱ

p(vi) where eip(u) = x+(u)/x−(u) (F.9)

and the so-called dynamical factor hᾱα =
∏
vi∈ᾱ
vj∈α

h(vi, vj) ,

h(u, v) =
(
x−(u)−x+(v)
x+(u)−x−(v)

)η
x−(u)−x−(v)
x−(u)−x+(v)

1− 1
x−(u)x+(v)

1− 1
x+(u)x+(v)

1
σ(u,v)

(F.10)

with η = 0 for SL(2) and η = 1 for SU(2).

The denominator of (F.7) is the normalization of the three point function by its two
point function constituents

B =
|NJ |2det(∂viϕj)∏J

i=1 µ(vi)
∏J

i ̸=j h(vi, vj)
(F.11)

where eiϕj ≡ eip(vj)L
∏

k ̸=j S(vj, vk) and

µ(u)=
(
1−g2/(x+x−)

)2(
1−g2/(x+)2

)−1(
1−g2/(x−)2

)−1

is the hexagon measure, not to be confused with the various SoV measures. The factor |N2
J |

is the (ℓ-independent) absolute value of NJ,ℓ. The normalization cancels when evaluating
the physical three point function but matters when comparing with the SoV formalism. It
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is given by

NJ,ℓ =
(∏

i,j

(
1− g2

x+i x
−
j

))−η( J
J− J

)η−1

× i2ℓ+J+1

J !
×

×
J∏

i=1

√
x+i x

−
i × e−

i
2
p(vi)ℓ (F.12)

where η = 0 for SL(2) and η = 1 is for SU(2).

Similar to the hexagon formalism, our SoV expressions for the three point functions are
also given by the ratio of two quantities. We were able to directly match each one of the
inner products entering the SoV with its hexagon formalism counter parts. For SL(2) it is
simply

Aℓ = ⟨Q,1⟩ℓ , B =
(2J)!
(J!)2

⟨Q,Q⟩L , (F.13)

and for SU(2) it reads

Aℓ = ΛA⟨⟨Q,1⟩⟩ℓ,L , B = ΛB
(2J)!

(J !)2
⟨⟨Q,Q⟩⟩L,L . (F.14)

where

ΛA = eg
4(α−δℓ=2π

2)((Q−
1 )2+Q+

2 ) (F.15)

ΛB =
J∏

i,j

(
1− g2

x+(vi)x+(vj)

) J∏

i,j

(
1− g2

x−(vi)x−(vj)

)

The normalization factor in (7.19) is then Λℓ(Q) = Λ2
A/ΛB.

F.2 SL(2) material

F.2.1 Hahn Polynomials and Measures

A Hahn polynomial pJ(x|a, b, c, d) is given by

3F2

(
a+ ix , a+ b+ c+ d− 1 + J , −J

a+ c , a+ d

∣∣∣∣ 1
)

(F.16)

and admits a simple orthogonality relation

∫
dxµHahn(x) pJ(x|a, b, c, d)p′J(x|a, b, c, d) ∝ δJJ ′ (F.17)

with
µHahn(x) = Γ(a+ ix)Γ(b+ ix)Γ(c− ix)Γ(d− ix) . (F.18)
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At LO the twist-2 Baxter functions are given by these polynomials with a, b, c, d = 1
2
so

that the measure becomes Γ(1
2
+ ix)2Γ(1

2
− ix)2 ∝ sech2(πx) as quoted in (7.5).

At loop level the corrections to 1/2 for the coefficients a, b, c, d depend on J albeit
mildly, through the Harmonic number H1(J), so that (F.16) reads

3F2

(
1
2
+ i
√
2g + 2g2H1 + iu , J + 1 + 8g2H1 , −J
1 + 4g2H1 , 1 + 2i

√
2g + 4g2H1

∣∣∣∣ 1
)

where we highlighted the NLO corrections in magenta. If we plug the J dependent one
loop values for a, b, c, d in (F.18) we would obtain

µHahn(x) ∝
1

cosh2(πx)

(
1 + 2π2g2α tanh2(πx)

+4g2H1(J)H
+
1 (x) +O(g4)

)
. (F.19)

where α = 1. This is unsatisfactory as it is J dependent. To fix this we tried to absorb the
second line into the definition of QJ ; recalling that these Harmonic numbers are nothing
but the energy Q+

1 of these twist-two operators we end up with the correction in the first
line in (7.1). (We can not derive the second line with this simple derivation since the odd
charge Q−

1 vanishes for the operators in this leading Regge trajectory.) What we did is
then absorb this second line of (F.19) into the Baxter functions and look for an orthogonal
measure for these no longer polynomial Baxter functions of the form of the first line of
(F.19). It exists with α = 3/2. In (7.5) we fixed the overall normalization of the measure
so that the vacuum (Q0 = 1) is unit normalized.

There are still interesting open problems to pursue along these lines. NNLO corrections
to twist-two Baxter polynomials are also known [177, 251]. Can we use them to infer the
next correction to the measure? Some twist three families are also known [251, 253–255].
Can we use them to shed light on the multi-particle measure µ2?

F.2.2 SL(2) Baxter and Measure

It is easy1 to check that for on-shell solutions of the one-loop twist 2 Baxter equation (7.9)
the dressed polynomials (7.1) solve the simplified difference equation

B̃ ◦ Q(u) = T (u)Q(u) (F.20)

with B̃ ≡ (x+)2ei∂u + c.c. without any charge dependence in contradistinction with the
original B.

From this is easy to build a one loop orthogonal inner product for the twist 2 solutions.

1One simply use the Baxter equation (7.9) to solve for Q[+2] in terms of Q and Q[−2], plug the result
in (F.20), use recurrence identities to cancel the Harmonic functions and note that that what is left is zero
provided Q is an even function. This is the case for twist 2 Bethe states.
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We look for a measure so that B̃ is self adjoint in the inner product

⟨Qi,Qj⟩ ≡
∫
dxµ1(x)QiQj (F.21)

on the space of dressed polynomials (7.1). Deforming the contours in ⟨B̃ ◦Q1,Q2⟩ as done
in section 7.2 shows that it is enough to consider a periodic measure with fast enough decay
at infinity provided all poles of the integrand – which now receive contributions from µ1,
Q and B̃ – have vanishing combined residue. See [94] for similar ideas applied to SL(N)
spin chains. Writing an ansatz

µ1(x) =
π/2

cosh2(πx)

(
a1 + g2

[
a2 tanh

2(πu) + a3
])

(F.22)

and requiring the cancelation of poles combined with the requirement that the vacuum
(Q0 = 1) is normalized to one in (F.21) fix a1 = 1, a2 = 3π2, a3 = −1. This is (7.5).

F.2.3 Hexagons A at ℓ = 1

For minimal left bridge length ℓ = 1 the hexagon sum over partitions simplifies dramat-
ically. We thank Frank Coronado for highlighting this and for help in establishing the
asymptotic formulae (F.23) a few years ago.

The asymptotic result (F.8) for ℓ = 1 simplifies to

(Aasymptotic
ℓ=1 )2 = 1 + g4

S∑

k=3

∑

i1<···<ik

ik(4− k)B3−k
k∏
l=1

(
vil +

i
2

) + c.c.

plus O(g6). Here Bn are the Bernouli numbers.

Since the roots vi that appear in the denominator product never appear repeated we
can cast the sum as

1 + g4
P (vj)

Q(−i/2) + c.c. (F.23)

where P (vk) is a polynomial linear in each of the Bethe roots vj, just like the Baxter
polynomial Q(u) ≡ ∏

(u − vk) =
∑

n cnu
n is. We can thus look for a linear integral

operator acting on Q and producing such P (vj),

⟨Q(u)⟩ =
S∑

n=0

cn(vj)⟨un⟩ = P (vj) . (F.24)

(It is not granted that such operation exists for all S.) We imposed it spin by spin and
observed that we can indeed satisfy (F.24) as long as we fix the linear map moments as

⟨1⟩ = ⟨u⟩ = ⟨u2⟩ = 0 , ⟨u3⟩ = i
2
, ⟨u4⟩ = 1 , ⟨v5⟩ = −7i

6
, . . .
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We computed the first few dozens such moments from which we guessed that they can be
generated from

⟨F ⟩ ≡ π2

15
F (−i

2
) + 3iζ3F

′(−i
2
)− π4

12
F ′′(−i

2
) +

∫
du ν(u)F (u)

where the measure

ν(u) =
iπ − i(u+ i

2
)π2 tanh(πu)

2
(
u+ i

2

)3
cosh2(πu)

. (F.25)

This came as a surprise as this very same measure arose before in a very different context.
Once we use that Q( i

2
) = Q(− i

2
) for physical states to combine both terms in (F.23) we see

that (the real part of) this measure is nothing but the measure which arose when computing
the first wrapping correction when the bottom bridge ℓB = 1, see equations (44),(55) in [66]!
We conclude that we can not only cast the two loop asymptotic contribution (F.23) as a
simple SoV looking integral but we can also trivially incorporate the bottom wrapping
effects:

(
Aasymptotic + bottom wrapping
ℓ=1

)2
= 1+ (F.26)

+ g4
(
η π

2

12
Q+

1 − η π
2

6
Q+

2 − 6(2− η)ζ(3)Q+
1 + η 4π4

15
+

+ 16πη

∫
1−12u2+2πu(1+4u2) tanh(πu)

(1+4u2)3 cosh2(πu)

Q(u)
Q(i/2)

du
)
+ . . .

where η = 1 for ℓB > 1 and η = 2 for ℓB = 12.

Do we continue to have identical formulas with and without wrapping at higher loops?
The NNNLO effective wrapping measure correction was nicely worked out in appendix B
of [171] (in appendix E of [170] an equivalent representation – a sort of Fourier transform
– was derived). Can the next loop order asymptotic result still be neatly combined with
the wrapping correction?

At higher loops we will get more mirror corrections which we might be able to cast as
SoV like integrals. We should probably expect a similar growth in the number of integrals
for the asymptotic part of the result as well. Ultimately, at finite coupling, the distinction
between the two should fade away as in the spectrum problem.

2For ℓB > 1 the right hand side of (F.26) is a rational number; the π’s and the ζ(3) in the second
line are simply cancelling the π’s and the ζ(3) generated by the integral. For ℓB = 1 the π’s still cancel
but there is no ζ(3) in the second line. (In that sense the expression is even simpler in this case when
wrapping is present!) A ζ(3) term is generated by the integral so that the rhs of (F.26) is of the form
rational+ rational′ζ(3) as it should.
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F.3 SU(2) material

F.3.1 θ-morphism at NNLO

The morphism operator M performs a “Zhukowskization” of the rational propagation of
magnons in the XXX1/2 through the action on background inhomogeneities. From our
perspective M is defined by equation (7.17). We write an ansatz and fix it by requiring
the match of the RHS of (7.17) with C2

•◦◦ which can be computed from hexagons. It can
be divided into a closed part and a boundary part,

M =Mc · Mb +O(g6). (F.27)

At NLO we recover the result in [183]; at NNLO we obtain

Mc = exp
( L∑

i=1

(
g2(∂i,i+1)

2 − 1

4
g4(∂i,i+1)

2(∂i+1,i+2)
2
))

,

and
Mb = exp

(
− ig2Q+

1 (∂1 − ∂L) + g4δMNNLO-b

)
, (F.28)

with

MNNLO-b = 1
2

(
2(Q+

1 )
2 − iQ−

2 −Q−
1 Q

+
1

)
∂21 + iQ+

1 ∂
3
1+

1
2

(
Q−

1 Q
+
1 − (Q+

1 )
2
)
∂22 − 1

2
iQ+

1 ∂
3
2 − i

2
Q+

1 ∂1∂
2
2+

1
2
(iQ−

2 − (Q+
1 )

2)∂1∂2 − (∂1 ↔ ∂L, ∂2 ↔ ∂L−1) . (F.29)

It would be interesting to re-deriveMc andMb along the lines of [183].

The closed action satisfies the morphism property when acting on symmetric functions
fsym(θ) of the inhomogeneities θj:

Mc ◦ (fsym g) = (Mc ◦ fsym) (Mc ◦ g) (F.30)

for a generic function g. It also satisfies the “Zhukowskization” property

Mc ◦
L∏

i=1

(u− θi ± i/2)k =
(
x±
)kL

. (F.31)

The inhomogeneous Gaudin norm (7.16) is given in the SOV representation, see [89] for
details, by

Bθ = fsym(θ)×
∮
dµ̃µθ

L−1∏

j=1

Q(uj)2 (F.32)

with the θ dependence entering only through the symmetric normalization function fsym(θ)
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and the measure

µθ =
L−1∏

i=1

L∏

j=1

((ui − θj)2 + 1/4)−1. (F.33)

Combining (F.30), (F.31) we get the NNLO Gaudin measure

dµL,L = dµ̃×
(
Mc ◦ µθ = (x+j x

−
j )

−L) (F.34)

as in (7.21,7.22,7.23). The same measure is derived from a orthogonality principle in section
(F.3.2). Comparison with the NNLO gaudin determinant fixes the conversion factor ΛB to
(F.15), so that in the end we are left with

|ΛBM◦Bθ| = B,

with B given in (F.14) 3. Note thatMb, (F.28), acts trivialy in Bθ since it is a symmetric
function of θi.

Having fixed the morphism operator through hexagons, the SOV result (7.19) then
follows4 from the action of the morphism operator (F.27) on the inhomogeneous XXX1/2

spin chain SOV overlaps [89,91,93].

F.3.2 SU(2) orthogonality

The Gaudin measure defining ⟨Q,Q⟩L,L was derived in sections 7.3, F.3.1 from the θ-
morphism action. Here we show it also defines an orthogonal scalar product for NNLO
Baxter polynomials Q, meaning

⟨Q1,Q2⟩L,L = N1δ12 (F.35)

if Q1,Q2 are solutions to the Baxter equation B ◦Q = T (u)Q(u) with

B = (x+)Le−i∂u + (x−)Lei∂u . (F.36)

What follows is a simple loop generalization of the XXX case [93]. Consider the pairing

⟨f, g⟩µ ≡
∮

γ

duµ(u)f(u)g(u) (F.37)

with the γ countour being the boundary of the [−3g, 3g]× [−2i, 2i] square. Inserting B,

⟨
(
(x+)Le−i∂u + (x−)Lei∂u

)
◦ f, g⟩µ, (F.38)

3In writing (7.19), (F.14) we introduced the vacuum integrals ⟨1, 1⟩ℓ,L relative to the naive θ-morphism
action in order to simplify the resulting measure and normalizations factors. We also massaged the ex-
pression into a manifestly real form.

4In writing (7.19), (F.14) we introduced the vacuum integrals ⟨1, 1⟩ℓ,L relative to the naive θ-morphism
action in order to simplify the resulting measure and normalizations factors. We also massaged the ex-
pression into a manifestly real form.
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and shifting contours down by i in the first term and up by i in the second term, as done
below equation (7.11), we find that B is self-adjoint with respect to (F.37) provided

µ[2]/µ = (x[−1]/x[3])L, (F.39)

so that µ = (x+x−)−Lµp with µp an i−periodic factor.

Note that T (u) is polynomial for physical zero-momentum states at NNLO

T (u) = 2uL +
L−2∑

i=0

ci(Q)ui (F.40)

with ci(Q) being the state-dependent integrals of motion. Consider the family of measures

µj =
sinh(2πu)

(x+x−)L
× exp[2πu(2j − L)] (F.41)

with j = 1, . . . , L− 1. Let Q1,Q2 be solutions of the Baxter equation. We then have, from
self-adjointness,

L−2∑

i=0

(ci(Q1)− ci(Q2))⟨Q1, u
iQ2⟩µj = 0 (F.42)

since the LHS is simply ⟨B ◦Q1,Q2⟩µj − ⟨Q1,B ◦Q2⟩µj = 0. The integrals of motion ci are
generic and therefore the linear system (F.42) should be non degenerate, implying

det
[
⟨Q1, u

i−1Q2⟩µj
]
= N1δ12. (F.43)

with i, j = 1, . . . , L − 1. Our claim is that expanding the Vandermonde-like determinant
(F.43)into a L− 1 dimensional integral reproduces the main text result (7.21,7.22,7.23) for
ℓ = L up to a combinatorial normalization factor,

det
[
⟨Q1, u

i−1Q2⟩µj
]
∝
∮

γ

dµL,L

L−1∏

i=1

Q1(ui)Q2(ui).

We conclude that the Gaudin measure defines and orthogonal scalar product and, more
over, the Gaudin norm takes determinant form in the SOV representation.

For A things are more involved as explained in the main text with the additional
exponential dressings in (7.22,7.23) kicking in.

F.3.3 SU(2) structure constants at finite volume

At leading order mirror particles have infinite energy and vanishing phase space, and there-
fore can be ignored. Their contribution, which starts at NNLO, is however crucial. It is
only when they are taken into account that selection rules are realized for instance. In
this appendix, we review how the first mirror contributions are computed in the hexagon
formalism, adapting the SL(2) computations of [69, 170, 171] to the SU(2) case. We then
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discuss how these virtual effects are taken into account in the SOV approach by appropri-
ately dressing the Q-functions.

Part I: mirror particles on the hexagon

When gluing hexagons together to reconstruct the closed string geometry one must
insert a complete basis of states along the seams (ℓ12, ℓ31, ℓ23). This complete set of states
is given by the Fock space of mirror particles labeled by their rapidities v and bound state
index a. The contribution from terms with nij particles on edge ℓij is

A(nij) =
∑

{a}

∫
dµ(v)e−Ẽ(vij)ℓijH2(v, a)

where {a} = {aijk } is a collective index for the bound state label aijk of particle k on edge (ij)
and similar for the mirror rapidities vijk . Above µ(v) and Ẽ are respectively the phase space
measure and the energy of the mirror particle and H2(v, a) are the glued hexagon form
factors with mirror particles labeled by (v, a) inserted along the seams, the dependence on
the external operators being left implicit. Below we provide explicit expressions for the
case of interest, see [69,170] for general expressions.

At weak coupling multiparticle mirror states are suppressed, both the energies and
the measure being of O(g2). Mirror contributions are also suppressed for large geometries
so that at NNLO only edges with bridge length ℓij = 1 can support mirror excitations.
Moreover, at this order only one edge can be excited at a time: we may have an excitation
in the adjacent or in the opposite edge to the non BPS operator.

Adjacent virtual corrections in the SU(2) sector provide an example of the selection
rules restoration aforementioned. We now delve into this in detail to understand what is
expected from the SOV formulas at NNLO. Structure constants in the SU(2) sector for
states with R-charge M when an adjacent bridge length ℓ < M vanish. At the classical
level (g = 0) this is simply the statement that we cannot contract J scalars through a
bridge of length ℓ [66, 168, 183]. The asymptotic contribution nij = 0 correctly reproduce
this selection rule at LO and NLO, but at NNLO a non-zero contribution is obtained when
ℓ12 = 1. The claim is that the mirror factor cancels this contribution and restore the
symmetry5. This reads

Aasymptotic
ℓ = −A(n12 = 1), (F.44)

with

A(n12 = 1) =NJ,ℓ

∫
dv

2π

ag4

(v2 + a2/4)3
τ⃗SU(2)(v

γ,O1)×

∑

α∪ᾱ

(−1)|ᾱ| e
−ipᾱha(v

γ, α)

h
SU(2)
ᾱ,α ha(ᾱ, vγ)

. (F.45)

where ha are the fused hexagon dynamical factors, vγ denotes analytic continuation to
mirror kinematics across the x

[+a]
v cuts, h

SU(2)
ᾱ,α are the SU(2) dynamical factors (F.10) and

5Note that primary SU(2) operators have M ≥ 2 and therefore all structure constants for ℓ12 = 1
vanish.
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τ⃗SU(2)(v
γ,O1) is the forward SU(2) transfer-matrix eigenvalue for the Bethe state describing

operator O1. We sum over partitions of the bethe state u = α∪ ᾱ, and use the short hand
notation ha(ᾱ, v

γ) =
∏

ui∈ᾱ ha(ui, v
γ) and similar for ha(v

γ, α). To leading order the objects
in (F.45) read

ha(v
γ, uj) =

uj + i/2

uj + i/2− v + ai/2

ha(uj, v
γ) =

−g2j
uj + i/2

(v − uj)2 + (a− 1)2/4

(v − uj) + i(a+ 1)/2

and τ⃗SU(2)(v
γ,O1) is given by

(a+ 1)
J∏

j=1

f−
j + a

J∏

j=1

f+
j + a

J∏

j=1

gjf
−
j + (a− 1)

J∏

j=1

gjf
+
j

where gj = (uj − v − i
2
(a+ 1))(uj +

i
2
)/((uj − v − i

2
(a− 1))(uj − i

2
)) and f±

j = (uj − v +
i
2
(a± 1))/(uj − i

2
a). Equation (F.44) holds off-shell. The LHS is a rational function of the

rapidities uk. The RHS integral can be evaluated by residues. Poles at v = uk ± i
2
(a− 1)

cancel after summing over the bound-state index while those at v = ± i
2
a sum to a rational

function matching the LHS.

Performing an R-symmetry transformation permuting the polarizations of operators
O2 ↔ O3 should leave the structure constant invariant. In the integrability description
this amounts to the replacement ℓ ↔ L − ℓ. The structure constant must therefore also
vanish when ℓ = L− 1. The story in this case is more interesting. First, the LO and NLO
asymptotic contributions only vanish on-shell, since after all the expression (F.8) only
knows that the right bridge ℓ31 = 1 through the Bethe roots which solve Bethe equations
on a chain of size L = ℓ12 + ℓ31. At the NNLO the rational result is non-zero on-shell. The
mirror contribution A(n31 = 1) is now given by an expression identical to (F.45) with the
last line replaced by

∑

α∪ᾱ

(−1)|ᾱ| e
−ipᾱha(v

γ, ᾱ)

h
SU(2)
ᾱ,α ha(α, vγ)

. (F.46)

After summing over the bound state index in the wrapping corrections we now obtain a
complicated expression full of ζ and Polygamma functions whose coefficients vanish on-shell
so that in the end the we are left with simple algebraic numbers that cancel the asymptotic
result, reproducing the selection rule.

Part II: dressing the Q-functions

Wrapping effects at NNLO are due to virtual particles propagating over bridges of size
one. Since nontrivial SU(2) operators have R-charge M ≥ 2, NNLO wrapping effects are
only present when restoring the selection rules discussed in Part I of F.3.3. There are two
cases to consider in the SOV proposal: ℓ12 ≡ ℓ = 1 and ℓ31 = 1 i.e. ℓ = L − 1. The
selection rules are realized trivially for ℓ = 1 simple due to the binomials in (7.20). This
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holds off-shell, as in the hexagon method. We henceforth focus on the nontrivial case. In
other words, we seek to restore the important ℓ↔ L−ℓ symmetry for any possible lengths.

The NNLO SOV expression for structure constants in the SU(2) sector (7.19) was
derived from the morphism action, (7.17). Note that Aθ depends only on θi with i ≤ ℓ.
One might therefore naively think that the method is unaware of ℓ31 being short or long
and therefore cannot distinguish when mirror corrections are relevant. The solution is
provided by the right boundary terms, i.e. terms with explicit ∂L and ∂L−1 dependence
in the second line of (7.18)6. These can be ignored whenever ℓ < L − 1. Equation (7.17)
then reproduces the asymptotic structure constants. However, when ℓ = L − 1 the right
boundary acts non-trivially. Its action generates the extra terms proportional to δℓ,L−1 in
(7.25). Once these terms are properly taken into account, the selection rules are correctly
reproduced when (7.19) is evaluated on-shell. Note that this corresponds to an infinite
number of constrains on the on-shell action of the right boundary terms, and therefore the
match is quite non-trivial.

6The action of ∂L boundary terms is irrelevant for the non-extremal correlators considered here.
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Appendix G

Appendix: Complex Spin: The Missing
Zeroes and Newton’s Dark Magic

G.1 Structure Constants From Integrability

Local operators in N = 4 SYM are described by Q-functions. For SL(2) operators such as
(8.2) the Q-functions reduce, at leading order, to the Baxter polynomials Q(x) =

∏S
j=1(x−

uj). Structure constants between such operators and BPS scalars are given by simple
overlaps between the polynomials Q,

C(S)2

C2
BPS

=
(S!)2

(2S)!

⟨Q,1⟩2ℓ
⟨Q,Q⟩L

(G.1)

where C2
BPS is the (protected) structure constant between the 2 fixed BPS scalars and the

BPS operator given by (8.2) with S = 0.

The case we are interested is L = 3, ℓ = 1, corresponding to the twist 3 operators
(8.2). For ℓ = 1 the numerator overlap trivializes, ⟨Q,1⟩2ℓ = 1, while the norm ⟨Q,Q⟩L is
non-trivial. It is given in terms of the roots {u1, . . . , uS} through a determinant [174]

⟨Q,Q⟩L =
det (∂uiϕj)Q(i/2)Q(−i/2)

(2S)!
∏S

i ̸=j
ui−uj
ui−uj−i

, (G.2)

with eiϕj = (
uj+i/2

uj−i/2)
L
∏

k ̸=j
uj−uk+i
uj−uk−i

, or through the Separation of Variables integrals [6, 88,

91,94]

⟨Q,Q⟩L =

(
2S + L− 1

L− 1

)∫

RL−1

µL

L−1∏

i=1

Q(xi)
2, (G.3)

with factorized measure

dµL =
L−1∏

i=1

dxi µ1(xi)
L−2∏

i=1

L−1∏

j=i+1

µ2(xi, xj)
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where

µ1(u)=
π

2 cosh(πu)2
, µ2(u, v)=

π(u− v) sinh(π(u− v))
cosh(πu) cosh(πv)

.

Once the roots are determined through (8.3), either (G.2) or (G.3) can be used to generate
the figure 8.1 data.

G.2 Twist 3 Lowest Family

At leading order the Baxter functions are polynomials. These polynomials are known
analytically in the cases of the twist 2 and lowest twist 3 trajectories. They are given [177,
208] by

Q2(u, S) = 3F2 (1 + S,−S, 1/2 + iu; 1, 1|1) , (G.4)

Qlowest
3 (u, S) = 4F3

(
−S

2
, 1 + S

2
, 1
2
+ iu, 1

2
− iu; 1, 1, 1|1

)
. (G.5)

In this section we use this result to determine the structure constants for these trajecto-
ries in closed form. Note that naively these Q-functions are not appropriate to describe the
trajectory at non-(even-)integer values of spin. For example, Qlowest

3 (u, S) has a symme-
try S → −2− S which is not a symmetry of the anomalous dimension γlowest3 = 8H(S/2).
This will be reflected in the analytic structure constant obtained.

We are therefore interested in the structure constants described in (G.1) in the case

L = 3 and ℓ = 1. For ℓ = 1 the numerator in (G.1) trivializes since there are no integrals
to be performed. Only the denominator is non-trivial. The SOV integrals (G.3) simplify
in the tree-level approximation and acquire determinant form. In the case of interest we
have

⟨Qlowest
3 ,Qlowest

3 ⟩3 =
(
2S + 2

2

)
det

[∫
dµi,j(u)Qlowest

3

]

with
dµi,j(u) = uiπ cosh(πu)−2 tanh(πu)j, i, j = 0, 1.

Moreover, since the lowest trajectory Qlowest
3 is an even polynomial at even spins, the off-

diagonal integrals vanish. We therefore have

det

[∫
dµi,j(u)Qlowest

3

]
=

(
I1 ≡

∫
du
π

2

(Qlowest
3 )2

cosh(πu)2

)(
I2 ≡

∫
du
π2u tanh(πu)(Qlowest

3 )2

cosh(πu)2

)
.

The integral I2 is simple. One can check that it evaluates to I2 = (S + 1)−1. This is
shown in appendix G.2.1. We are thus left with the evaluation of I1. We do so through
two observations. First, note that I1 measure is an orthogonal measure for the twist 2
Q-functions (see [6, 88,94]):

∫
du
π

2

Q2(u, S)Q2(u, S
′)

cosh(πu)2
= δS,S′(−1)S(2S + 1)−1 .

We also derive this integral in appendix G.2.1. Second, note that, for even spin S, the
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Q-functions (G.4, G.5) are even polynomials of degree S. One can therefore decompose
the twist 3 polynomials (G.5) in a basis of twist 2 polynomials (G.4). The result is

Qlowest
3 (u, S) =

S/2∑

j=0

Q2(u, 2j)×

(
i2j+S(1 + 4j)Γ

(
1
2
+ j
)2

Γ
(
(1 + S

2
+ j)

)
/Γ (1 + j)2

2Γ
(
1
2
− S

2
+ j
)
Γ
(
1 + S

2
− j
)
Γ
(
3
2
+ S

2
+ j
)

)

We can therefore combine these two observations to write

I1 =
S/2∑

j=0

(√
1 + 4jΓ

(
1
2
+ j
)2

Γ
(
1 + S

2
+ j
)
/Γ (1 + j)2

2Γ
(
1
2
− S

2
+ j
)
Γ
(
1 + S

2
− j
)
Γ
(
3
2
+ S

2
+ j
)
)2

, (G.6)

The sum (G.6) can be extended to infinity. Combining with (G.3) leads to the final result
(8.6) which holds for any even integer S.

G.2.1 Hypergeometric integrals, orthogonality and recursions

In this subsection we compute the integrals

IA(S) =
∫
du
π

2

Q2(S)
2

cosh(πu)2
, (G.7)

IB(S) =
∫
du
π2u tanh(πu)Qlowest

3 (S)2

cosh(πu)2
. (G.8)

Key are the recursion relations satisfied by the Hahn polynomials (G.4,G.5),

(S + 2)2Q[2]
2 + 2i(3 + 2S)uQ[1]

2 = (S + 1)2Q[0]
2 , (G.9)

(S + 2)3Q[2]
3 + S3Q[−2]

3 = 2(1 + S)(2 + 2S + S2 − 8u2)Q[0]
3 . (G.10)

with Q[a]
2 ≡ Q2(S + a) and Q[a]

3 ≡ Qlowest
3 (S + a). As follows from the SOV methods

of [6], the kernels of (G.7, G.8) define orthogonal scalar products for the trajectories under
consideration:

∫
du
π

2

Q2(S)Q2(S
′)

cosh(πu)2
∝ δSS′ , (G.11)

∫
du
π2u tanh(πu)Qlowest

3 (S)Qlowest
3 (S ′)

cosh(πu)2
∝ δSS′ . (G.12)

To compute IA(S), integrate equation (G.9) against Q2(S)
π
2
cosh(πu)−2. Using the
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decomposition

uQ2(S) = i
(1 + S)2

2 + 4S
Q2(S + 1) +

S∑

k=0

ckQ2(k),

which follows from matching asymptotics, and the orthogonality relation (G.11), we obtain
the recursion

3 + 2S

1 + 2S
IA(S + 1) + IA(S) = 0

whose solution is

IA(S) =
(−1)S
2S + 1

. (G.13)

Similarly, to compute IB(S), integrate (G.10) against π2u tanh(πu)Qlowest
3 (S−2) cosh(πu)−2.

Using the decomposition

u2Qlowest
3 (S − 2) = 16(1−S)

S3 Qlowest
3 (S) +

S
2
−1∑

k=0

c2kQlowest
3 (2k)

and the orthogonality relation (G.12) we obtain

1 + S

1− S IB(S) + IB(S − 2) = 0

from which follows

IB(S) =
1

S + 1
. (G.14)

The derivation in this section is a bit of an overkill given the simplicity of the final results.
It would be much simpler to evaluate the integrals (G.7) and (G.8) for the first few physical
spins S and immediately recognize (G.13) and (G.14). (This was of course how we first
found them.)

G.3 Baxter at Complex Spin

Analysis of the asymptotics of (8.9) determine that the leading power-law behaviour of Q
can be either uS or u−2−S. In [215] Janik proposed, in the case of twist 2 operators, that
it is the second class of solutions which control the correct analytic continuation in spin
of the physical data. Note: as one approach integer spin, Q must approach point-wise the
polynomial solutions with uS asymptotics describing the local operators while decaying (in
the RHP) as u−2−S when u → +∞! Once the decaying Q is known, the energy can be
extracted from

γ = 2i

∮
du

2πi

1

u2
log

(
Q(u+ i/2)

Q(u− i/2)

)
, (G.15)

which generalize (8.4) to the non-polynomial case.

Baxter equation, being a finite difference equation, admits a gauge redundancy Q(u)→
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Q(u)p(u) for any i-periodic p. The energy is invariant under this transformation1. This
gauge invariance is crucial for the method proposed here. Solutions with leading power-
law asymptotics have poles at u = i

2
+ ik, k ∈ Z. These poles can be removed through

multiplication by sinh(2πu) factors so that we are left with an entire solution normalizable
at i/2. This does not fix the gauge freedom completely as we can still multiply Q by,
say, cosh(πu)2 factors. These would increase the exponential rate of Q as u → ∞. We
therefore look for the slowest growing entire solutions to (8.9). In section 8.4 we propose a
numerical algorithm that determines this solution and computes the correct continuation
of the energies.

G.4 Twist 2, Newton Series and Integrability

The analytically solvable twist 2 trajectory

Tr
(
ZDS

+Z
)
+ permutations (G.16)

serves as the perfect toy model to test the ideas presented in chapter 8. Its anomalous di-
mension γ2(S) = 8H(S) and structure constant (with two BPS operators) C(S)2twist-2LO =
2(S!)2

(2S)!
can be extracted from the four point correlator and are given by [180,214].

Alternatively, it can be computed from integrability through the twist 2 Baxter equation

(u+ i/2)2Q(u+ i)+(u− i/2)2Q(u− i)
=(2u2 − S(S + 1)− 1/2)Q(u),

whose solution at integer spin is given by Hahn polynomials Q2(u, S), equation (G.4).

Newton series can be used to reproduce γ2 and C(S)
2
twist-2LO everywhere in the complex

plane provided one subtracts singularities. In the case of the structure constant it is
important to subtract the exponential behaviour through multiplication by e(2 log(2)S) before
applying the interpolation method.

One can also extract the energies directly at complex spin, as proposed by Janik in [215],
through the slow-growing solution described in section 8.4. In this case the slow-growing
Q-function can be written analytically as

Qslow =
i sinh(2πu)

2 sin(πS)

(
(
1− i tan(π S

2
) coth(πu)

)
Q2(u, S)−

(
1 + i tan(π S

2
) coth(πu)

)
Q2(−u, S)

)
(G.17)

1The asymptotics condition can also be expressed in an invariant form as the requirement that
log (Q(u+ i)/Q(u− i)) ∼ i(M + 2)/u as u→∞.
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from which one reads the energy

γ = 2i

(Q′
slow(

i
2
)

Qslow(
i
2
)
− Q

′
slow(− i

2
)

Qslow(− i
2
)

)
= 8H(S). (G.18)

As mentioned in section 8.5 there are currently no available integrability methods to
extract structure constants directly at complex spin. On the other hand, in the case of twist
2 the light-ray operators that physically realize the complex spin data {γ2, C(S)2twist-2LO}
can be constructed explicitly [52], providing a direct method to extract the data. This is
reviewed in section G.5.

G.5 Twist 2 and Light-ray operators

In this appendix we review how the matrix elements of the explicit leading order twist 2
light-ray operators constructed in [52] encode the complex spin structure constants.

The leading order twist 2 local (even S) primary operators are given by

OS(x) =
1√

2(2S)!

∑

i

ψiTr
(
Di

+ZD
S−i
+ Z

)
(x),

where ψi = (−1)i
(
S
i

)2
is completely fixed by the primary condition [K−, OS(0)] = 0. The

operators are unit-normalized so that

⟨ŌS(x)OS(0)⟩ =
(x−)2S

(x2)∆
.

The three point function between OS and 1
2
-BPS operators 2 O(2) and O(3) is then given

by

⟨O(2)(x2)OS(x1)O(3)(x3)⟩ =
√
2(S!)√
(2S)!

(
x−13x

2
12 − x−12x213

)S

x2+2S
12 x2+2S

13 x223
, (G.19)

from which one reads C(S)2 = 2(S!)2

(2S)!
. We assumed the insertions were space-like sepa-

rated.

The operators OS only make sense at integer spin. Our goal is to construct operators
in continuous spin representations whose matrix-elements at integer S reproduce the local
operator data C(S). These are necessarily non-local [52,259]. With that purpose in mind,
consider the light-transform of operator OS

L[OS] =
∞∫

−∞

dαOS(αn+). (G.20)

In [52] it was shown that these operators transform as primaries with dimension ∆L = 1−S
2Explicitly, consider O(2) = Tr(Z̄X̄) and O(3) = Tr(Z̄X).
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and spin SL = 1−∆ inserted at past-null infinity (at (0,−∞, 0) in light-cone coordinates
(x−, x+, x⃗)).

Indeed, fixing the insertions as in figure G.1 and acting with the transform on (G.19)
while being careful with implicit iϵs we obtain3

⟨Ω|O(2)L[OS]O(3)|Ω⟩ = C(S)f(S)

x−2 x
−
3 x

2
23

(
x23
x−3
− x22
x−2

)−1−S

, (G.21)

with f(S) = 2πiΓ(2S + 1)/Γ(S + 1)2. This is precisely the structure of a correlator of two
BPS scalars and a primary with quantum numbers (∆L, SL).

So far, all we did was to perform an integral transform. However, we are rewarded once
we realize (G.20) belong to a continuous family of light-ray operators

O(S) =
i

4π

√
2
√

Γ(2S + 1)

Γ(S + 1)
× (G.22)

∫ ∞

−∞
dαdβ

(
1

(α− β + iϵ)S+1
+ (α↔ β)

)
Tr (Z(α)Z(β)) .

which transform as primaries with quantum numbers (∆L, SL) for arbitrary values of S [52]!
Indeed, at even S we have

(
1

(α− β + iϵ)S+1
+ (α↔ β)

)
= − 2πi

Γ(S + 1)
δ(S)(α− β),

so that in this case

O(S) =

√
Γ(2S + 1)√
2Γ(S + 1)2

∫
dαTr

(
ZDS+Z

)
(α) = L[OS].

where we used integration by parts to act with all derivatives inside OS on the second
field. Hence, at the even integers the partons must move together along the light-ray and
we recover the (correctly normalized) light-transform of the local operator.

For non-integer S, O provides a physical realization of the structures C(S). To see
that, compute through Wick contractions the matrix element

⟨Ω|O(2)OSO
(3)|Ω⟩ = i

4π

√
2
√
Γ(2S + 1)

Γ(S + 1)

∫
dαdβ

(α− β + iϵ)S+1

× 2

αx−2 + x22 − iϵ
1

βx−3 + x23 − iϵ
1

x223
+ (β ↔ α). (G.23)

The iϵs are crucial and follow from the operator ordering. Since x−2 > 0 and x−3 < 0, see
figure G.1, only the first term contributes since otherwise the contours can be deformed
to infinity and the integral vanishes. For the first term, the integral in pinched by the

3As usual, when inserting the operator at past null infinity we rescale the correlator by a factor
(x+1 )

∆L+SL before taking the x+1 →∞ limit.
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Figure G.1: We insert the operators at x−1 = 0, x−2 > 0 and x−3 < 0. When computing the matrix
element ⟨Ω|O(2)OSO

(3)|Ω⟩ the green partons are integrated along the light-ray, equation (G.23).
The integral is evaluated by picking residues that localize the partons on the null-cone of the BPS
insertions.

singularities. Picking the residues from the propagators, see figure G.1, we obtain

⟨Ω|O(2)OSO
(3)|Ω⟩ = f(S)C(S)

x−2 x
−
3 x

2
23

(
x23
x−3
− x22
x−2

)−S−1

,

which match (G.21) exactly.

The anomalous dimension can be read off similarly. The one-loop dilatation action on
the Wilson line insertions is given by [178,256,257]

D ◦ Tr (Z(α)Z(β)) = 4g2
∫ 1

0

dτ

τ

(
Tr (Z(α)Z(β))

− Tr (Z(α(1− τ) + βτ)Z(β)) + (α↔ β)

)
. (G.24)

Acting with D on (G.22) and changing variables to transpose the convolution from the
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fields to the wavefunction, we readily obtain

D ◦O(S) =


8g2

∫ 1

0

dτ

τ

(
1− (1− τ)S

)

︸ ︷︷ ︸
H(S)


O(S).

Thus, we are able to reconstruct the complex spin data {γ(S), C(S)} from the explicit
wavefunctions of the light-ray operators. In the twist 2 case the computation is sort of
trivial: C(S), for example, is essentially encoded in the normalization of the operator so
that when computing the matrix elements all the integrals do is reproduce the correct
tensor structures. This is not a surprise as both the twist 2 local operators and light-rays
have their wavefunctions completely fixed by conformal symmetry.

It is an important open problem to generalize this construction to higher-twist oper-
ators. There we do not expect such trivialities to occur, and the structure of the wave-
function should contribute non-trivially to the complex spin structure constants. Besides
giving direct access to the complex spin data, such construction should clarify a number
of puzzles regarding the higher-twist trajectories. See further discussion in section 8.5.
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