
Observe, Predict, Adapt:

A Neural model of Adaptive

Motor Control

by

Natarajan Vaidyanathan

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Systems Design Engineering

Waterloo, Ontario, Canada, 2023

© Natarajan Vaidyanathan 2023

Examining Committee Membership

The following served on the Examining Committee for this thesis.

External Examiner Douglas Tweed
Professor,
Department of Physiology,
University of Toronto

Supervisor Chris Eliasmith
Professor,
Department of Philosophy and
Department of Systems Design Engineering,
University of Waterloo

Internal Member Bryan Tripp
Associate Professor,
Department of Systems Design Engineering,
University of Waterloo

Internal Member John McPhee
Professor,
Department of Systems Design Engineering,
University of Waterloo

Internal-External Member Ewa Niechwiej-Szwedo
Associate Professor,
Department of Kinesiology,
University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of
the thesis, including any required final revisions, as accepted by my examiners.
I understand that my thesis may be made electronically available to the public.

iii

Abstract

Biological control systems have evolved to perform efficiently in an envi-
ronment characterized by high uncertainty and unexpected disturbances, while
relying on noisy sensors and unreliable actuators. Despite these challenges, bi-
ological control systems remain superior to engineered control systems in many
respects. This edge in performance can be attributed to the exceptional ability
of the brain to predict adaptively, and continuously update its control strategies
in the face of uncertainties. Consequently, to harness these control abilities, it
is crucial to delve into the study and modeling of cortical functioning.

This thesis presents a novel and comprehensive approach to elucidate the
underlying mechanisms governing motor control. Specifically, we propose a bi-
ologically plausible spiking neural network model of the primate sensory-motor
control system. The core of the model lies in its effective handling of noisy ob-
servations, integration of different sensory modalities, and the ability to learn to
control the arm in the presence of perturbations. This is accomplished through
the introduction of the Neural Adaptive Filter, a mechanism that dynamically
predicts sensory consequences based on control inputs and observations.

The developed functional model of the sensory-motor control system ex-
hibits complex behaviours observed in primates’ reaching and demonstrates
neural activities comparable to experimental findings. By adopting a spiking
architecture, and connecting the lower-level synaptic dynamics and higher-level
behaviours, such as visuomotor rotation, the model offers valuable insights into
underlying mechanisms. Furthermore, the incorporation of anatomical struc-
ture and neural constraints enhances the biological plausibility and explanatory
power of the model.

Moreover, the realization of a functional spiking model of the sensory-motor
control system holds broader implications, particularly in control theory and its
applications. This spiking model preserves the brain’s inherent sparse coding,
optimal performance, and energy efficiency, all of which are highly advantageous
for engineering solutions. The model’s operation can be generalized to that of a
filter-controller framework capable of adapting to unknown nonlinear systems.
This enhances robustness and plasticity derived from biological inspiration. Ul-
timately, by integrating the principles of a biological control system into modern
control theory, our model not only offers insights into the sensory-motor control
system and proposes potential advancements in modern control methodologies.

iv

Acknowledgements

As I reflect on my PhD journey, I am struck by the profound experiences
and invaluable memories that I encountered along the way. This journey would
have been markedly different without the support of several amazing individuals
and I want to raise a toast to them for being an incredible part of it.

Foremost, I would like to express my gratitude to my advisor, Chris Elia-
smith. He has been a great mentor and a friend throughout my years in Water-
loo. His patience, depth of knowledge and both “What did you expect? That
is what research is like” and “Ah! Those are some nice plots” has always been
a source of inspiration to me.

Special thanks are due to Terry Stewart, Travis DeWolf, and Aaron Voelker.
Their willingness to entertain my relentless email spams and provide assistance
at various stages of my research was invaluable.

I extend my appreciation to both the past and present members of the CNRG
lab. It has been a special pleasure to pick the minds of Andreas Stöckel, Ivana
Kajić, Pete Duggins, Nicole Dumont and Michael Furlong. They have been a
cheerful bunch and a pleasure to share ideas with. Will definitely miss the board
game nights and summer school musings.

My journey would have been incomplete without my Waterloo kin. Kenan
Ulveea, for being a pillar of support, pushing and accompanying me in this
journey (and the relentless one to glory). Ruta Patel, ever so kind and com-
passionate, has been a constant through the rollercoaster of highs, lows and
despicable memes. Snehaa Suryanarayanan for being a patient listener, under-
standing and providing relaxing/chaotic company. Lakshmanan Arumugam,
always there assisting me with much needed reason and more heated debates.
I’m lucky to have them and my heartfelt greetings for you’re stuck with me.

Finally, I would like to thank my family for, well, everything. My deepest
gratitude is reserved for my mum, Bala Vaidyanathan, and my dad, Vaidyanathan
Natarajan - who instilled in me the love for learning, whose sacrifices have paved
the way for my achievements and for putting up with me. And to my brother,
Akshy Kumar, for his faith, boundless support and an occasional “Isn’t your
thesis over already?”.

v

Table of Contents

List of Figures viii

1 Introduction 1

2 Engineering Background 7
2.1 Linear control . 8
2.2 Linear filter . 10

2.2.1 The Kalman filter . 12
2.3 Nonlinear control . 13

2.3.1 Lyapunov’s direct method 14
2.3.2 Adaptive nonlinear control 16

2.4 Nonlinear filter . 21
2.4.1 Extended Kalman filter 21
2.4.2 Particle filter . 22

2.5 System identification methods . 24
2.5.1 Sparse Identification of Nonlinear Dynamics with control

- SINDy-c . 25
2.5.2 Feedback-based Online Local Learning Of Weights (FOL-

LOW) . 27

3 Neuroscience background 30
3.1 The brain: a powerful controller 30

3.1.1 Prediction . 30
3.1.2 Perception . 32
3.1.3 Generalization . 33
3.1.4 Adaptation . 33

4 Motor control modelling 37
4.1 Current state of motor control models 37
4.2 The Neural Engineering Framework 40

4.2.1 Representation . 41
4.2.2 Transformation . 42
4.2.3 Dynamics . 42
4.2.4 The Legendre Memory Unit (LMU) 44

vi

4.2.5 Learning . 45
4.3 Recurrent Error-driven Adaptive Control Hierarchy - REACH . . 46

5 A Linear Model 51
5.1 Linear prediction model . 52
5.2 Neural implementation of a Kalman Filter 53
5.3 Linear Filter Results . 56

5.3.1 Performance while varying measurement uncertainties . . 58
5.4 Linear Sensorimotor control model 62

5.4.1 The Visuomotor Rotation paradigm 62
5.4.2 Experimental setup . 65
5.4.3 Model description and function 66
5.4.4 Results . 66

5.5 Limitations of a linear system model 70

6 Neural Adaptive Filter 72
6.1 Method . 74

6.1.1 Moving to the Legendre space 76
6.1.2 Neural Implementation 77

6.2 Architecture of the Neural Adaptive Filter (NAF) 78
6.3 NAF Performance . 80

6.3.1 Lorenz Attractor . 81
6.3.2 Forced Damped Pendulum 89
6.3.3 Two-link Arm . 91

6.4 Benchmark comparison . 95

7 Sensorimotor Control Model 102
7.1 Model description . 102
7.2 Anatomical parallels . 105
7.3 Experimental Setup . 106

7.3.1 Single trial . 106
7.3.2 Rotation . 106

7.4 Results . 107
7.4.1 Baseline Stage . 107
7.4.2 Rotation Stage . 107
7.4.3 Washout Stage . 109

7.5 Discussion . 110

8 Conclusions 113
8.1 Thesis Contributions . 113
8.2 Future work . 115

Bibliography 117

vii

List of Figures

1.1 The spatio-temporal domain of neuroscience methods available
for the study of the nervous system 3

2.1 State flow diagram of control feedback in classical control and
sensorimotor control . 9

2.2 Individual components of a Linear controller and a Linear filter . 11
2.3 Damped pendulum model . 16
2.4 Two-link arm dynamical system 19
2.5 SINDy-c model . 26

3.1 Two adaptive behaviour paradigms 35

4.1 LTI system vs Neural implementation: NEF dynamics 43
4.2 The REACH model . 47
4.3 Results of the REACH model . 48

5.1 System environment - Unit mass 54
5.2 Spiking neuron model of the Kalman Filter 56
5.3 Results of Numerical simulation vs Neural Implementation 57
5.4 State propagation and estimation of the filter 58
5.5 Performance of the neural implementation of Kalman filter . . . 59
5.6 RMSE error for different noise covariances 61
5.7 Estimate errors and covariances 61
5.8 Visuomotor rotation experiment 63
5.9 Linear sensorimotor control model 64
5.10 Observations vs Estimates . 67
5.11 Linear Model Trajectory comparisons 69
5.12 Linear model Behavioral comparisons 69

6.1 Neural Adaptive Filter’s Architecture 79
6.2 Lorenz Attractor in 3D Space . 81
6.3 State flow diagram illustrating the Neural Adaptive Filter (NAF)

implementation for the Lorenz system 82
6.4 Time series plots of the three states of the Lorenz attractor, x, y

and z . 85

viii

6.5 Estimation error across time . 86
6.6 Filter Estimation in 3D through time 87
6.7 Trajectory after observation reintroduction 88
6.8 Forced damped pendulum dynamics 90
6.9 Pendulum states across time . 92
6.10 Pendulum States Estimation Error 93
6.11 Two-link arm dynamics . 94
6.12 Two-link arm states across time 96
6.13 Two-link arm Estimation Error 97
6.14 Benchmark comparison for SINDy-c vs FOLLOW vs NAF:

The three panels show the performance of the three methods in
capturing the dynamic propagation of (a) Lorenz attractor (b)
Forced damped pendulum (c) Two-link arm model. The IAEttt

metric is the time for the prediction error to hit a threshold, hence
longer times implies better model at prediction. 100

7.1 Experimental and Model Setup 103
7.2 Sensorimotor control model . 104
7.3 Nonlinear model Trajectory comparison 108
7.4 Nonlinear model Behavior Comparison 109
7.5 Demonstration of online adaptation 111
7.6 Unstable control in the absence of observations 112

ix

Chapter 1

Introduction

Modern control theory and artificial neural network researchers have developed
innovative algorithms to control various systems, ranging from robotic arms to
spacecrafts. In the process of solving these diverse problems, better sensors, pre-
cise actuators and novel optimization techniques have emerged, but so has the
demand for faster computations, energy efficiency and more sophisticated algo-
rithms. In order to meet these demands, a controller is typically tailor-made for
a particular problem. As a result, such controllers are typically highly specific,
designed using a variety of particular control methods, and highly tuned. This
often results in controllers with very little ability to adapt to dynamic situations.

When compared to modern technologies, biological systems outperform them
at core control tasks with remarkable efficiency and speed. This superior perfor-
mance is primarily due to biology’s unique ability to process and integrate vast
amounts of information simultaneously to adapt to changing conditions, and
learn and evolve over time. For instance, consider the problem of autonomous
navigation, one of the difficult challenges faced by engineers. Biology has not
only solved this problem but has also demonstrated remarkable proficiency, even
in the most primitive of brains. Megalopta genalis, a variety of bee, achieves its
feat of rainforest navigation in the dead of night by estimating its location with
fewer than five photons [Warrant, 2004]. Similarly, an essential element in the
behavioural repertoire of a dragonfly is its swift flight. Dragonflies can skillfully
maneuver, anticipate the trajectories of their prey, and intercept at exception-
ally high velocities relative to its body length. Its small brain of only a million
neurons is able to achieve this with a success rate as high as 97% [Olberg et al.,
2005].

When considering neurobiological systems as complex as humans and other
non-human primates, we find extraordinary learning, adaptability and dexterity
in performing complex, context-dependant control tasks. What is more remark-
able is the ability of the brain to exert control, and simultaneously adapt to the
changes in its uncertain environment on-the-fly. The brain’s ability to gracefully

1

handle constantly changing internal goals, different external rewards, dynamic
and kinematic transformations, and varying biological costs, further bolsters
the claim that the brain remains superior in control to our current technologies.
The advancement of neural sensory and motor systems through years of evo-
lution has rendered them highly intricate and notoriously resilient. Thus, the
sensorimotor control system has the potential to help us improve our engineer-
ing control methodologies.

Understanding the brain’s working and creating a model of its mechanisms
is not a novel idea. Years of studying the cortex has provided a rich litera-
ture describing how different brain circuits and their mechanisms work. In fact,
experiments from multiple domains of neuroscience has increased our breadth
of understanding of the brain’s working at varying functional levels [Sejnowski
et al., 2014]. At a behavioural level, experiments have investigated how the
brain chooses between different courses of action and how different functional
areas of the cortex influence these decisions. Behavioural studies allow us to
investigate the abilities of the brain to learns and adapt to a variety of tasks,
but these studies are often limited in the information they provide about indi-
vidual mechanisms that give rise to these behaviours. Experiments on a systems
level, are better equipped to give insights into the relevant cortical pathways.
Observations from studying injuries, disorders, and clinical experiments, can
help us deduce the system states, and the functions of specific regions, and the
relevant cortical circuits at a mechanistic level. On the other hand, with the
help of multi-electrode arrays and optogenetic techniques, it is possible to dive
further into the firing patterns, and how the cortical mechanisms manifest at
a cellular level. Interestingly, experiments at multiple levels of the hierarchy,
solve different parts of the same puzzle of how does the brain works. Hence,
it is difficult for us to restrict ourselves to a single methodology to get a com-
prehensive understanding of the working of the brain. Rather, there is a need
to combine findings to have a unifying model that is capable of explaining the
workings from the synaptic level to higher level behaviour.

To fuse the breadth of experimental findings to produce a unified compu-
tational brain model, we need to address some significant challenges. Figure 1
depicts how different experimental techniques can probes the brain at varying
spatial and temporal resolutions [Sejnowski et al., 2014]. Recordings range from
patch clamps and EEGs to large scaled fMRI and lesion studies. To approxi-
mate the neural mechanisms, it is necessary for our model to capture the details
of synaptic level dynamics that happens within a few milliseconds as well as the
brain’s behaviours that spans across minutes or even longer timescales. It is
important to note that many of the higher level behaviours are often dictated
by the lower level circuitry. For instance, consider long-term potentiation (LTP)
and long-term depression (LTD), [RobertC et al., 1999] forms of synaptic plas-
ticity referring to the ability of synapses to change their strength in response to
patterns of neural activity. Studies have shown how LTP in the hippocampus
is critical for encoding and storing spatial information [Bliss and Collingridge,

2

Figure 1.1: The spatio-temporal domain of neuroscience methods
available for the study of the nervous system. Each colored region rep-
resents the useful domain of spatial and temporal resolution for one method
available for the study of the brain. Open regions represent measurement tech-
niques; filled regions, perturbation techniques (as described in [Sejnowski et al.,
2014]).

3

1993]. Also, particularly for motor control, LTD in the Purkinjee cells of cere-
bellum has shown to be is involved in motor learning and coordination [Masetty
et al., 1989]. Changes in the connectivity between the amygdala and the pre-
frontal cortex can lead to changes in emotional regulation and decision-making,
showing how a lower level change can dictate a higher level behaviour. This
evidence collectively supports the idea that it is necessary to model the brain at
different scales to encapsulate the overall working of the brain, with comparable
firing patterns, neural structures and synaptic connectivity.

While modelling the brain to exhibit organizational details captured by var-
ious levels of analysis, we should also remember to attend to the inherent bi-
ological constraints of the relevant mechanisms. For instance, we can model a
neural network to perform a task of image classification, and use a very com-
mon optimization algorithm in Artificial Neural Networks (ANN’s), such as back
propagation. This neural network model, while capable of performing classifi-
cation with remarkable accuracy [Lu and Weng, 2007], may not not guarantee
biological realism. As shown by many, back propagation is not biologically re-
alistic [Scellier and Bengio, 2017], hence makes the algorithm difficult to realize
biologically and may not mimic the actual working of the brain. Likewise, it is
possible to design a number of computationally adept models to solve a partic-
ular task, but it is the models with biological realism and comparable structure
and function that are the ones most relevant for understanding the mechanisms
of the brain. The model must be explainable and comparable with observed
neuroscientific results, since the goal is to match the computational function of
the cortex and not the mere performance at a given task. At first, the above
additional constraints might appear as an unnecessary overhead to an already
difficult problem of engineering the nuances of motor control. Interestingly, bio-
logical mimicry in modelling sometimes offers its own advantages. Constraining
biological structure in encoding and information processing can help us incorpo-
rate effective computational strategies into our models. For example, in models
that process images, V1 like cells emerge in convolutional models of vision, where
the convolution is inspired by neural observations. Similarly,in [Cueva and Wei,
2018], the authors show grid-like representations, similar to those observed in
the entorhinal cortex of rodents, emerge in artificial neural networks trained to
perform spatial localization tasks. These ideas highlights a particular challenge
in creating a unified model of the cortex. It is crucial to not merely reduce the
brain’s functions into to a black box, but to incorporate explainable structures
with added neuro-anatomical constraints to not only have a comparable and
comprehensive understanding of the brain, but also to enhance those solutions
that we seek for our control problems.

While tackling the challenges in the modelling process, it is also important
to select the system to model wisely – after all modelling the entire brain is cur-
rently an impossible task. The sensorimotor control system is an exceptional
candidate for modelling, however, not only for the control engineering impli-
cations but from a neurobiological perspective as well. Motor control involves

4

the execution of coordinated movements and is relatively well understood com-
pared to other complex cognitive processes such as memory or decision-making.
Movements are observable and quantifiable behaviour and makes it easier to
model and compare against experimental findings. Furthermore, it is through
the sensory and motor systems we interact with our reality. We experience
sensory observations, anticipate changes and model our body as well as the en-
vironment and constantly adapt to environmental changes. In fact, the goals
of the sensorimotor control system such as handling uncertainties, predicting
action outcomes and adapting to changes, are not objectives exclusive to motor
control alone, but common to many other cortical systems. Given that there
are strong parallels between other cortical systems and the motor control sys-
tem, modelling the sensorimotor system is an excellent target for improving our
understanding of the brain. Furthermore, the engineering and control implica-
tions, generalizability to other perceptual systems, and applications in robotics
and medical interventions all emphasize the necessity of such modeling endeav-
ors. Consequently, modelling the sensorimotor control is a useful approach not
only to enhance our engineering methodologies but also for building a more
comprehensive model of the brain.

Currently, there are very few models of sensorimotor control that tie lower
level dynamics with higher level behaviour. One pioneering model that addresses
this issue is the REACH model (Recurrent Error-driven Adaptive Control Hi-
erarchy ([DeWolf et al., 2016]). The REACH model establishes connections
between spiking neural networks and higher-level behaviours, incorporating ex-
perimental findings. To achieve this, the REACH model utilizes the Neural En-
gineering Framework (NEF), a tool for implementing neurobiological circuitry
and processing information through spike trains. By leveraging the NEF, the
REACH model not only organizes and structures the motor control system more
effectively but also provides insights into the functionalities of this complex sys-
tem. In subsequent sections, we will delve into a more detailed examination
of the REACH model and the NEF, exploring their respective implementations
and contributions to motor control. This discussion helps to situate the current
research and shows how we can leverage the NEF for building a new model of
sensorimotor control.

In this thesis, we introduce a biologically plausible spiking neuron model
of the sensorimotor control system, which integrates lower-level dynamics with
higher-level behaviour. We begin by identifying the challenges present in control
and estimation methodologies and contrast them with biological observations
that shed light on the brain’s approaches to control, estimation, and adapta-
tion. These challenges include handling noisy observations, integrating multiple
sources of sensory information, and effectively controlling the arm for various
tasks. Based on the analysis of these challenges, we construct a system that
aims to address them effectively. Initially, we present a linear version of the
model for estimation, followed by a more accurate spiking nonlinear version.
The model’s performance is evaluated by testing it in a well-studied experimen-
tal paradigm and comparing the results against experimental data. The pro-
posed model effectively handles noisy observations, integrates multiple sources

5

of sensory information to make predictions, and successfully controls the arm
for various tasks. By adopting a spiking architecture with anatomical and neu-
robiological constraints, the model replicates the functioning of the elements
sensorimotor system, allowing for comparisons across different spatio-temporal
resolutions, from synaptic to behavioural levels. The incorporation of anatom-
ical structure and neural constraints ensures the model’s biological plausibility
and explanatory power. Furthermore, translating these mechanisms into an
engineering context not only addresses control challenges but also harnesses ad-
vantages from bio-mimicry, such as optimality, robustness, and energy efficiency.
The presentation of this model aims to foster the integration of neuroscience and
engineering, offering inspiration for novel, sophisticated control methodologies.
We believe this model will contribute to the development of a comprehensive,
explainable, comparable, and accurate modeling framework, thereby hopefully
furthering our understanding of the mammalian brains.

6

Chapter 2

Engineering Background

Dynamic systems are systems that evolve with time. The mathematical mod-
elling of dynamic systems is ubiquitous in engineering. Such modelling has
diverse applications ranging from controlling the temperature of a room to pre-
dicting the weather of a city. Regardless of the application, it is of great im-
portance to study the interaction of the system variables and how the inputs
can be controlled to produce desired behaviour in the system. The fundamental
principle of control engineering is to characterize these processes, and design
tools for studying and manipulating the behaviour of a system to drive the sys-
tem to the desired state. In this section we describe different control theoretical
concepts and leverage this a foundation towards the building of our model. In
control engineering, the main components typically involved in designing and
implementing control systems are (see Figure 2.1):

• Plant or dynamical system: The plant refers to the physical system or
process being controlled. In general, this could be a mechanical system,
an electrical circuit, a chemical process, or any other system that exhibits
dynamic behaviour.

• Sensors: Sensors are devices that measure the relevant system signals
of the plant. They provide feedback to the control system by converting
physical quantities (e.g., position, temperature, pressure) into electrical
signals that can be processed by the controller. In reality, it is often
common to see noises added to the sensory measurements.

• Estimator: The estimator gathers the noisy measurements of the rele-
vant system states from the sensors. Often combining multiple sensory
information, the estimator provides an accurate estimate the current sys-
tem state. This estimate is then compared with the desired system states
to generate an error signal.

• Controller: The controller is responsible for determining the command
signal. It takes the error signal as input and generates the control signal
as output. The control signal is then sent to the actuator.

7

• Actuators: The calculated control signal influences the plant with the
help of an actuator. An actuator converts the control signal into a physical
action which could be a motor, a heater, a valve, or any other device that
can manipulate the plant. Actuators, commonly physical devices, are
subject to noises and disturbances that are capable of adding uncertainties
into the system states.

Drawing parallels between the panels (a) and (b) of Figure 2.1, we can see
how the classical control formulation can be helpful in modelling the sensori-
motor control system. Essentially, in sensory-motor control, the system we aim
at controlling is the arm interacting with the environment. We observe the
system states using our vision (position and velocity information of the arm in
Cartesian space) and proprioception (angular position and velocity information
from the joint tension). It is our perception system that takes the role of an
estimator in our control system. It uses the efference copy of the command sig-
nal and the two streams of noisy sensory information, to produce estimates in
the two modalities and then the combined estimate of the hand location. This
estimate is then compared with the desired trajectory of the arm to produce
an error signal to generate the necessary command signal to follow the desired
trajectory. Our muscles convert the neuronal activation into joint torques, com-
pleting the control loop that helps us move our hand to the desired trajectory.
The added noise in neural transmission, physical disturbances such as gravity,
external forces, etc. adds noise to the system as shown in the model in the
Figure.2.1, (b). It is also important to note that there are details omitted here:
for e.g., the system identification or learning that occurs in biological estimation
or adaptive control while moving the actuators. We shall discuss such subtleties
and the dynamic abilities of the individual components in the later chapters.
For now, we delineate the individual elements that define the working process
of the control system we aim at modelling, and importantly, how these elements
can be realized within the framework of control theory.

In the remaining sections of the chapter, we provide brief descriptions of
control and estimation – moving from linear to nonlinear methodologies – and
also discuss the current state of system identification to provide an engineering
foundation for our later neurobiological modelling.

2.1 Linear control

Building control systems, historically started with linear controllers and estima-
tors for linear systems. Linear Time Invariant (or LTI) systems are a class of
systems whose outputs for a linear combination of inputs are the same as a linear
combination of individual responses to those inputs. When the input/output
relation does not change with changes in time, it refers to the time invariant
quality of the system. When the system under control is an LTI system, we can
employ a corresponding linear controller to move the system to the desired tar-
get optimally. An LTI system can be expressed as a set of n coupled first-order
ordinary differential equations, known as the state equations (eq. 2.1). For

8

Figure 2.1: State flow diagram of control feedback in classical control
and sensorimotor control. The top panel (a) shows the flow of control states
in a classical feedback control loop from the plant enabled by the sensors and
actuators. The bottom panel (b) shows the comparison of control flow in a
sensory motor feedback loop states flowing from the arm to the cortex through
vision and proprioception and the muscle actuating the arm.

9

describing a linear system, the states are combined into a vector form x ∈ Rn,
propagated by the dynamics matrix A ∈ Rn×n and the input matrix B ∈ Rn×m

for the control inputs u ∈ Rm:

ẋ(t) = Ax(t) +B u(t) (2.1)

The above equation characterizes the evolution of the linear system. For the
time invariant case, the A and B matrices do not change through time, and we
have dropped the time notation for simplicity. Linear control theory revolves
around optimally estimating the evolving system and driving the system states
to the desired target.

The optimal linear control problem is solved by a quadratic cost for driving
the states to zero [Stengel, 1994], [Kirk, 2004]. The cost function J is defined
as:

J =

∫ tf

o

(
1

2
xTQxdx +

1

2
uTRu du

)
(2.2)

where Q and R are state and control penalties respectively. Solving for the
above cost function using the Algebraic Riccati equation, we get the optimal
gain for u to drive the x → 0 as t −→ tf . Adding the optimal feedback control
gain Kc ∈ Rn×m we get the control law:

u∗ = −Kcε (2.3)

ẋ = (A−BKc)ε (2.4)

By employing the above control, we ensure the system is driven to (ε → 0). For
controlling the system to a desired state xdes, the optimal control law becomes
eq. 2.3, where the error is given by ε = xdes−x. Substituting it into 2.1 gives us
the new system dynamics 2.4, and with the gain parameter Kc, where Kc > 0,
we can change the eigen values of the combined matrix A − BKc, making it
negative, converging the system to be asymptotically stable at zero. The Figure
2.2 (a) shows the control diagram of the linear state space control problem.
Since this setup regulates the system states to a desired target by optimally
reducing a quadratic cost, this control structure is known as a Linear Quadratic
Regulator. This method, if incorporated with an integral term for the error,
becomes similar to the working of a control strategy often known as the PID
control, and is a common controlling strategy in implementing a linear control
system with a simple feedback loop.

2.2 Linear filter

The above control scenario, with a simple feedback gain, works only when we
have access to the actual state of the system. Often we have limited access to
the full state of the system, either due to uncertainty or system restrictions.

10

(a) (b)

Figure 2.2: Individual components of a Linear controller and a Linear
filter: (a) Shows the flow diagram of a linear controller giving the control signal
u when the desired state xdes is given where Kc is the control gain. (b) Shows
the flow diagram of a Linear filter or a Kalman filter, estimating x̂ when given
y, the observations are made from the environment. Kc is the controller gain
and Kf is the filter gain

For example, we have access to the states of our arm through the noisy sensors
of vision and proprioception. In such cases, it is necessary that we estimate
the system states using our observations. An optimal linear filter or estimator
provides a state estimate x̂ by observing the noisy sensory information y and
can be described as a form of linear observer:

ŷ = Cx̂

˙̂x =Ax̂+B u+Kf (y − ŷ)

˙̂x =(A−KfC)x̂+
[
B Kf

] [u
y

] (2.5)

The Kf is known as the optimal filter gain. We can determine how the error
(ε) between the estimate and actual state is driven to zero. Let us combine our
system equation 2.1 and the estimate equation 2.5 to get the propagation of our
error.

ε̇ = ẋ− ˙̂x = (Ax+B u)− (A−KfC)x̂+
[
B Kf

] [u
y

]
= Ax−Ax̂+��B u+KfCx̂−Kf Cx̂−��B u

(2.6)

ε̇ = (A−KfC)ε (2.7)

From the above equation, we can choose an appropriate Kf to make the
combined A − KfC matrix negative, thereby ensuring the error converges to
zero. This implies that the estimate x̂ would eventually converge to the actual
state x. Figure 2.2 (b) shows the flow diagram of the implementation of this
linear filter formulation.

11

The optimal filter gain can be seen as reducing the quadratic cost function:

J =

∫ tf

o

(
1

2
(x− x̂)TQ (x− x̂) dx

)
(2.8)

where Q is the penalty term for the difference between the actual state and the
estimated state. It is because of solving for the quadratic cost function, this
formulation of the filter eq. 2.7 is called as Linear Quadratic Estimator.

Comparing the previous eq. 2.4 and eq. 2.7 shows the duality of the control
and the estimation problems. In both cases we are solving for a quadratic cost,
to give a gain that guarantees convergence. Employing these two together, gives
us the Linear Quadratic Gaussian controller that together estimates the system
states and regulates the system towards the desired trajectory.

2.2.1 The Kalman filter

The Kalman Filter is a reformulation of the Linear Quadratic Estimator that
helps us in dealing with process and measurement noise. In addition to the linear
assumptions we made for the LQR, we also assume zero-mean and Gaussian
distributions for the noises added to the system. This gives us the Kalman
filter, a common, optimal methodology for linear state estimation that is widely
used. With the added noise, the linear system propagation is slightly modified
as below:

ẋ = Ax+B u+Gw (2.9)

y = Cx+ v (2.10)

where A is the dynamics matrix, B is the control matrix, G is the dynamics
noise matrix and C is the observation matrix. y corresponds to the observations
of the system states x. wd is the process noise, sampled from a Gaussian, zero-
mean and of variance Qn is the measurement noise, similarly sampled from a
zero-mean Gaussian distribution with covariance Rn.

The combined system equation with a linear controller and Kalman gains
becomes:

[
ẋ
ε̇

]
=

[
(A−BKc) BKc

0 (A−KfC)

] [
x
ε

]
+

[
I 0
I −Kf

] [
wd

wn

]
(2.11)

It is important to note that in the combined system, the state convergence
is still dictated by the control and filter gains. The knowledge of noise and
uncertainty variance help in identifying how far the estimate is from the ground
truth.

The Kalman filter technique is often expressed as an iterative approach as
described below. With the knowledge of dynamics and measurement covariance
Q and R and an estimate covariance, P , we can deduce the steps as:

12

Ṗ = AP + PAT +GQGT − PCTR−1CPT (2.12)

K = P (t)CTR−1 (2.13)

˙̂x = (Ax̂+Bu) +K(y − x̂) (2.14)

The estimation covariance is often of interest during estimation to know
how certain we are of the estimates from the Qn and Rn. This gives more in-
formation on the certainty especially if Qn and Rn becomes time varying. Also,
during times when the observations is not available or has a large noise, the
measurement uncertainty R is increased implying, the current x̂ should be a
function of our prediction system rather than the observation.

The preceding formulations have provided a framework for understanding
linear dynamical systems and have facilitated the design of optimal controller
and estimator pairs for such cases. However, real-world systems, including the
biological control of our arm, often exhibit nonlinear behaviour. Nonlinear sys-
tems involve intricate relationships and nonlinearities that cannot be adequately
described by linear models. Consequently, linear control and estimation tech-
niques fall short in capturing the rich dynamics needed to accurately model
nonlinear systems. Therefore, alternative approaches specifically designed to
handle nonlinear systems are essential for effective control and estimation. In
the following section, we will explore the setup of nonlinear systems and delve
into the corresponding techniques for control and estimation. By doing so, we
aim to tackle the challenges posed by nonlinear dynamics and provide insights
into effective strategies for addressing them.

2.3 Nonlinear control

The behaviour of linear systems through time is well defined. Change to the
input to the system produces a proportional change in the system states. For
an LTI, there are several ways to understand the system response to a given
control input and its further evolution through time, using techniques including
the impulse response, Laplace transforms, root locus, Nyquist stability criterion,
etc. [Bhattacharyya et al., 2018]. As we have seen, there exist well-established
control and estimation techniques that work with great generality. The prescrip-
tion of linear controllers and estimation works for all classes of problems that
can be fully defined in a LTI framework. However, linear formulations cannot
address the complexities of nonlinear systems due to their inherent limitations
in capturing nonlinear dynamics and interactions. Fundamentally, nonlinear
systems are not characterized by superposition principle, which means that the
relationships between the system variables are neither proportional nor additive.
Furthermore, nonlinear systems are highly dissimilar from one another, and are
difficult to categorize. Hence, a control regime that works for one system might
not work for another. Similar to systems in nature, this class of problems is

13

characterized by inherently nonlinear interaction of states. Nonlinear systems
include those systems that are characterized by chaos, which means the system
evolution is highly sensitive to minute changes in the initial conditions bring-
ing drastically different state trajectories [Slotine and Li, 1987]. The system
becomes more complex if it is also time variant. These differences from typical
linear systems makes nonlinear systems often impossible to solve analytically
and hence it is difficult to devise generalized systemic procedures to such sys-
tems. Hence, there is a need to develop new methods to test for stability and
novel tools to design controllers.

A nonlinear model can be represented by an equation of the form eq. 2.15,
where f is a nonlinear function and x ∈ R1×n state vector. The number of
states n is called the order of the system. The input u is the control signal that
drives the system:

ẋ = f(x(t), u(t)) (2.15)

It is necessary to emphasize that nonlinearity is inevitable when modelling
real world control systems. Many of the forces present in natural systems,
including coriolis forces, drag, damping and friction, behaves nonlinearly. Fur-
thermore, during the linear control formulation we assumed that the dynamic
system parameters are known, time invariant constants. In practice the sys-
tem parameters vary with time and some times present us with no means to
measure quantitatively. For instance, consider the system of an inverted pen-
dulum. The system parameters such as mass, length, damping from the air
resistance, and friction can be measured with great precision. However, these
physical systems are susceptible to wear, tear and fatigue, and modelling dy-
namic friction, damping, and corialis forces becomes impractical. In these cases
of nonlinearities, applying linear control solutions to nonlinear systems, even
with linearization, comes with severe limitations [Morgan, 2015]. Overall, when
dynamic systems are characterized by non-linearities, a separate formulation for
characterizing and controlling these systems is required, which we shall discuss
in the following sections.

2.3.1 Lyapunov’s direct method

Before we start devising control methodologies, let us understand the stability of
nonlinear systems. Essentially, understanding the stability and the equilibrium
of the system can help us study the evolution of the states and can be used as
precursors to estimating and controlling the plant of interest. Lyapunov’s theory
provides us with tools for determining the stability of an equilibrium point or a
trajectory of a dynamical system. An equilibrium point, also known as a fixed
point, is a state of the system where the state variables do not change over
time. Stability describes whether the system returns to the equilibrium point
or diverges away from it over time. Consider the dynamical system described
before:

14

ẋ = f(x(t), u(t)) (2.15)

where x represents the state variables of the system, t is time, and f(x)
is a function that determines the system’s behaviour. An equilibrium point is
defined as a state x∗ such that f(x∗) = 0.

If there exists a function V (x) (referred to as a Lyapunov function) that
satisfies the following conditions, then Lyapunov’s direct method prescribes that
there are three types of stability that can be inferred: local stability, local
asymptotic stability, and global asymptotic stability. Informally,:

1. If the candidate function V (x) is locally positive definite and the derivative
is locally negative semi-definite, then the system is stable inside a given
radius.

V (x) > 0 ∀x ∈ B (2.16)

V̇ (x) ≤ 0∀x ∈ B (2.17)

for some neighborhood B of the equilibrium, the system is proven to be
stable.

2. If the candidate function is locally positive definite and the derivative is
locally negative definite, then the system will always converge to the
equilibrium state starting inside a given radius.

V (x) > 0 ∀x ∈ B (2.18)

V̇ (x) < 0∀x ∈ B (2.19)

for some neighborhood B of the equilibrium, the system is proven to be
locally asymptotically stable.

3. If the candidate function is globally positive definite and the derivative is
globally negative definite, then regardless of initial state the system will
always converge to equilibrium, and the system is proven to be globally
asymptotically stable.

V (x) > 0 ∀x ∈ B (2.20)

|x| → inf =⇒ V (x) → inf (2.21)

V̇ (x) < 0 ∀x ∈ B (2.22)

The Lyapunov’s candidate function V (x) can be seen as analogous to the
energy of a system, and help us in finding points of equilibrium where the system
converges upon dissipating energy. The idea here is: “if the system continues to
dissipate energy, then it will eventually settle down to a state of minimal energy
or an equilibrium point”. Asymptotic stability is a very desirable feature of a
system, that points us in the direction of formulating control as we have seen
before in linear systems – driving the system to a “zero” state. But this can

15

be difficult to prove with the above theorems, as often V (x) is only negative
semi-definite, rather than negative definite, and finding a Lyapunov function
candidate with a negative definite derivative can be very difficult. To alleviate
the difficulty of finding a candidate function with a strictly negative derivative,
the invariant set theorem can be used. An invariant set is any set of states of a
dynamical system where once the set has been entered, the system remains in
that set. To put these theories into practice, let us implement an example using
the above prescriptions.

2.3.2 Adaptive nonlinear control

It is necessary to reiterate the fact that nonlinear systems are quite different
from one another, and hence to manipulate the system, generalized control
frameworks are not available. Instead, each system requires its own stability
consideration and control formulation. Therefore, in the following sections, we
set up specific examples of nonlinear dynamics, identify system stability, and
also go a step further by manipulating the system to follow a desired state
trajectory.

Dampled pendulum dynamics

Let us analyze the stability of a nonlinear system of a damped pendulum dy-
namics [Slotine and Li, 1987] (see Figure 2.3. It has a simple non-linearity. The
governing equation of the damped pendulum is given by:

J q̈ + b q̇|q̇|+mgl sin(q) = u (2.23)

where m, l, J are the mass, length and inertia of the pendulum respectively, b
is the damping coefficient and the g is the acceleration due to gravity.

Figure 2.3: Damped pendulum model

Here we consider a trajectory control problem, where the desired trajectory
to maintain is qdes and the tracking error is q̃:

q̃ = q(t)− qdes(t) (2.24)

16

For the ease of writing let us also introduce an intermediate variable qr and
a sliding variable s, given by :

s = ˙̃q + λq̃ = q̇ − q̇r (2.25)

=⇒ ṡ = q̈ − q̈r (2.26)

where we define q̇r = q̇des − λq̃. In having the prescriptions stated before,
consider a Lyapunov candidate function V (s(x)) given by,

V (s) =
1

2
J s2 (2.27)

whose derivative now becomes:

V̇ (s) = s J ṡ = s(Jq̈ − J q̈r) (2.28)

= s (u− bq̇|q̇| −mgl sin(q)− Jq̈r) (2.29)

Structuring this further, let us rearrange the system state variable separately
from the system parameters θd. Then the equation 2.28 becomes:

V̇ (s) = s (u− Yd(q, q̇, q̈r) θ) (2.30)

where Yd(q, q̇, q̈r) = [q̈r q̇|q̇| sin(q)] and θ = [m b mgl]T . The Yd is a set
of known functions of the considered system states and the θd is the constant
encompassing the system parameters.

If we were to apply the control law:

u∗(t) = −Kss+ Yd(q, q̇, q̈r) θ (2.31)

Plugging it back into eq (2.28), then the function V becomes,

V̇ (s) = −Kss
2 ≤ 0 (2.32)

According to Lyapunov’s theory, the system has essentially become asymp-
totically stable, and since u∗(t) penalizes the tracking error as a part of s, the
system also follows the trajectory qdes(t). As a result, we have successfully de-
vised a control regime for a nonlinear system, with the help of Lyapunov’s direct
method.

It is important to draw a contrast between the classic linear control we
have seen before and the new control regime implemented here. The choice of
control here in eq 2.31, is not only a function of the system states, but now a
function of the system parameters as well. This u∗(t) driving the system on
the desired trajectory hinges on the assumption that the system parameters,
are known with certainty. However, there is uncertainty in the measurement of
the system parameters and as a result this control choice can introduce noise
in the system, the convergence of the system states cannot be guaranteed. To
tackle this problem, we adopt the algorithms developed by Dr. Slotine ([Slotine
and Li, 1987]). They provide an adaptive control algorithm to manage the

17

system parameter uncertainties, thereby guaranteeing system convergence for a
nonlinear system.

We shall demonstrate the new algorithm by continuing the previous example
and its control regime. Let us consider an offset in system parameter measure-
ments from the actual parameters θ̃:

θ̃(t) = θ̂(t)− θ(t). (2.33)

Given this new term, we are going to add this to the cost function.

V (s) =
1

2
Js2 +

1

2
θ̃TP−1θ̃ (2.34)

where P−1 is a symmetric, positive semi definite matrix. The derivative can
be calculated as:

d

dt

(
1

2
θ̃TP−1

)
=

1

2

(
θ̇ − ˙̂

θ
)T

P−1θ̃ +
1

2
θ̃TP−1

(
θ̇ − ˙̂

θ
)

(2.35)

Given that θ̇ = 0 indicating that the system parameters are constants, and
that each constant term is equal to it’s own transpose, the two terms become
equivalent and the derivative can be rewritten as:

d

dt

(
1

2
θ̃TP−1

)
= − ˙̂

θTP−1 ˙̂θ (2.36)

Here,
˙̂
θ specifies how θ̂ changes over time. Hence it is sufficient for us to

specify
˙̂
θ so that the newly added term cancels out, making the the system

stable again. So, the reformulated adaptation law is given by:

˙̂
θ = PY T (q, q̇, q̈r) s (2.37)

We can see from the above eq.2.37, the sliding error of system states s also
drives the system parameter learning too. Now the control law suggested from
the previous section 2.31 combined with our eq. 2.37 provides an Adaptive con-
trol algorithm to control a plant to follow a desired state trajectory qdes while
taking into account the uncertainty in the system parameters.

Two-link arm dynamics

This technique is useful in tackling a larger family of similar nonlinear dynamical
systems. Next we consider an example of two-link arm dynamics (or a double
pendulum dynamics) that is more relevant from a motor control perspective.
We discuss how we can translate the working of the adaptive controller to this
new dynamical system. The dynamics of the two-link model can be described
by (see Figure 2.4):

18

Figure 2.4: Two-link arm dynamical system

Mq̈ + C(q, q̇) + g(q) = u (2.38)

where M is the inertial matrix of the system in joint space, C(q, q̇) is the
matrix describing the Coriolis and the centrifugal component and the g(q) is
the term that describes gravity in joint space. Following a similar strategy as
before, we can also define the sliding error and the reference trajectories. Now
the q(t) will essentially be the state vector containing both the joint’s angles:

q̃ = q(t)− qdes(t) (2.39)

s = ˙̃q + λq̃ = q̇ − q̇r (2.40)

=⇒ ṡ = q̈ − q̈r (2.41)

The candidate value function is:

V (s) =
1

2
sTM(q) s, (2.42)

and the derivative now becomes,

V̇ (s) = sTM(q) ṡ+
1

2
sT Ṁ(q)s (2.43)

= sTM(q) ṡ+ sTC(q, q̇)s (2.44)

= ṡ
(
M(q)q̈ −M(q)q̈r + C(q, q̇)q̇ − C(q, q̇)q̇r

)
(2.45)

V̇ (s) = ṡ
(
u− g(q)−M(q)q̈r − C(q, q̇)q̇r

)
(2.46)

19

Setting the control signal equal to:

u = −Kss+ g(q) +M(q)qr + C(q, q̇)q̇r (2.47)

where Ks is a symmetric positive definite matrix, and substituting into eq.
2.46 gives:

V̇ (s) = −sTKss ≤ 0. (2.48)

The system is globally asymptotically stable, and now it is guaranteed to
have zero position and velocity error when it enters the steady-state because V̇
contains s = q̇ − q̇r, which must be zero when the system is at equilibrium.

Adaptation to unknown dynamics

The given control design above compensates for the gravity g(q), inertial M(q)
and Corialis and centripetal forces C(q, q̇) assuming that a perfect model of the
system dynamics is known. As discussed earlier, this is often unrealistic and we
need to adapt to the uncertainties to avoid adding error or otherwise the system
becomes unstable. Similar to our previous system, we can split forcing function
into unknown system parameters θ and the function of observable system states
Y :

u = sTKs + Y (q, q̇, q̈r)θ̂. (2.49)

The external forces that are not accounted for are thus counter-acted by
learning the weights for a set of basis functions, Y ∈ Rn×d, defined over system
states q and q̇. The output of the basis functions is weighted by a set of learned
parameters θ̂ ∈ Rd×1 consisting of estimates of [M̂(q)

∣∣Ĉ(q, q̇)
∣∣ g(q)]T . Following

the same method as before, choosing the candidate function becomes:

V (s) =
1

2
sTM(q) s+

1

2
θ̃TL−1θ̃ (2.50)

The first term in the eq. 2.50, is similar to our previous equation 2.43. Hence
let us calculate the derivative of the second term:

d

dt

(1
2
θ̃TL−1θ̃

)
=

1

2
(θ̇− ˙̂

θ)TL−1θ̃ +
1

2
θ̃TL−1(θ̇ − ˙̂

θ) (2.51)

d

dt

(1
2
θ̃TL−1θ̃

)
= − ˙̂

θTL−1θ̃ (2.52)

To bring about stability in the system, consider the adaptation law:

˙̂
θ = LY T (q, q̇, q̈r)s, (2.53)

20

Now, substituting this in the candidate function 2.51 the derivative becomes:

V̇ (s) = −Kss
2 + sY (q, q̇, q̈r)θ̃ − ˙̂

θTL−1θ̃

= −Kss
2 + sY (q, q̇, q̈r)θ̃ − (LY T (q, q̇, q̈r)s)

TL−1θ̃,

= −Kss
2 + sY (q, q̇, q̈r)θ̃ − sY (q, q̇, q̈r)LL

−1θ̃,

= −Kss
2 + sY (q, q̇, q̈r)θ̃ − sY (q, q̇, q̈r)θ̃,

= −Kss
2 ≤ 0.

and the system is proven to be globally asymptotically stable. With the
choice of the control law eq. 2.49, and the adaptation law in eq. 2.53, it it now
guaranteed that the system will follow the trajectory given by qdes, q̇des, and
more importantly converge to this trajectory even with imperfect measurement
of the system states initially.

The above methods of Lyapunov and the derived adaptive control mecha-
nisms help us address the limitations of traditional linear control methods in
dealing with complex and highly nonlinear systems. In short, the Lyapunov
method can help us analyze a nonlinear dynamical system and with careful
choice of control we can drive the systems to the desired state trajectory.

2.4 Nonlinear filter

With a foundation in nonlinear control established, the subsequent sections will
delve into the methods of nonlinear filter (or nonlinear estimators). Nonlinear
estimation is as an integral component within a control loop, providing the es-
sential state information necessary for guiding control actions by processing the
noisy state observations. In the following sections we briefly examine the princi-
ples underlying two different nonlinear state estimation techniques, namely the
Extended Kalman filters, and the particle filters.

2.4.1 Extended Kalman filter

The Extended Kalman filter (EKF) is a nonlinear state estimation technique
that extends the traditional, previously seen linear Kalman Filter to handle
systems with nonlinear dynamics. It is widely used in control systems, and
signal processing, where accurate state estimation is crucial. Let us understand
the process of state estimation of EKF.

The system equations are given by :

x = f(x, u) + wd (2.54)

y = h(x) + wn (2.55)

where wd ∼ N (0, Q(t)) and wn ∼ N (0, R(t)) are process and measurement
noise, respectively. We initialize the estimated state (x̂) and covariance (P) as,

x̂(t0) = E[x(t0)], P (t0) = V ar[x(t0)] (2.56)

21

To update the prediction, we propagate both the state estimate and covari-
ance:

˙̂x = f(x̂, u) +K(y − h(x̂)) (2.57)

Ṗ = FP + PFT −KHP +Q (2.58)

K = PHR−1 (2.59)

F =
∂f

∂x
|x̂,u (2.60)

H =
∂h

∂x
|x̂ (2.61)

where K is the Kalman gain, and the state transition and observation ma-
trices are the Jacobians F and H. Note here that x, h, y, P , K, F and H are
all functions of time, but the time notation is dropped for readability.

Here we handle the nonlinear state transition matrix by linearizing the sys-
tem dynamics function and observation function. To propagate the estimated
state and finding derivatives of the state transition function, we assume that we
have perfect knowledge of the system dynamics and they do not change over
time.

2.4.2 Particle filter

Another approach to estimating state propagation of a nonlinear system is the
particle filter. A particle filter is a Bayessian state estimator that uses discrete
particles to approximate the state estimate [Lundquist et al., 2015; Thrun, 2002].
The EKF, being a Gaussian filter, assumes a unimodal Gaussian distribution
for the state estimate. In contrast, particle filters are capable of capturing and
representing multiple modes in the state estimate.

The particle filter formulation, often described in discrete space, is given by:

xk = f(xk−1, uk, vk−1) (2.62)

zk = h(xk, uk, nk) (2.63)

Drawing parallels from eq. 2.15, the f is the dynamic function that maps the
state xk−1 at time step k − 1 to the next time step k and h is the observation
function. A particle is an individual state estimate defined by its location in the
state space x̂ and a probability p, that indicates the likelihood of the estimation.
The samples of a posterior distribution are called particles and are denoted by:

χt = {x[1]
t , x

[2]
t , x

[3]
t , ..., x

[M]
t } (2.64)

Now the state estimation problem is addressed as a Bayessian estimation
problem. The posterior distribution at the previous time step p(xk−1|z1:k−1),
is combined with the process model that describes how the state evolves over
time in the prediction step. The result is referred to as the prior state:

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (2.65)

22

The prior represents the best guess at a given time, given measurements
upto time k − 1. The algorithm for implementing a particle filter is:

1. Sample x
[m]
t ∼ p(xt|z1:t, u1:t)

2. Calculate w
[m]
t = p(zt|x[m]

t)

3. Update χ+
t = χt + < x

[m]
t , w

[m]
t >

4. For all partcles, draw i with probability with ∝ w
[m]
t

5. Add x
[i]
t to χt

The denser a subregion of the state space is populated by samples, the more
likely it is that the true state falls into this region.

Although the particle filter is a powerful estimation technique for nonlinear
systems, especially effective at capturing noises from a multimodal distribution,
they come with limitations. Firstly, this technique for solving for estimation
using multiple particles is computationally expensive. It becomes difficult to
scale as soon as we have many states in the system. Another limitation of a
particle filter is that the algorithm is essentially nondeterministic. The fact that
the particles are drawn with a sampling technique, could give rise to different
state estimates depending upon the collective sample obtained.

Both the EKF and the particle filters help us control known nonlinear sys-
tems, estimate system states, and leverage system propagation to adapt to the
varying unknown parameters of the system. This controller/estimator pair is
also found in an approach called Model Predictive Control (MPC) where we
observe the systems, predict the plant’s system states for a time horizon, and
produce the appropriate command to control the system of interest. Depending
upon the system, the required control and the noise involved, a good choice for
filtering can be made.

However, in designing MPC’s, irrespective of the individual computational
advantages with each estimation methods (eg. the EKF, the particle filter etc.),
they collectively suffer from a common challenge. In propagating the system
state estimates, it is often assumed that the dynamic system is constant, and
more importantly, that it is known with certainty. In reality, system interactions
change with time. From a motor control perspective, we have to manipulate
different objects with varying dynamic and kinematic nonlinearities. Our brain
is capable of handling new dynamics with different state interactions, and learns
to control the new system. The current estimator techniques are not sufficient
to handle unknown and changing nonlinear dynamics. This is where we employ
the methods of system identification, which we shall discuss in the following
section.

23

2.5 System identification methods

Here we discuss a scenario where we need to identify the interaction of the sys-
tem states with one another, to employ predictive control methods. Given a
continuous stream of observations, the problem is to deduce the dynamics of
the plant. Techniques that solve this problem are often known as system iden-
tification or dynamics system discovery methods. These methods use statistical
techniques to obtain mathematical models of the dynamics of interest, neces-
sary both to predict the future, and if possible, drive the system in a desired
trajectory. Such methods are employed in numerous applications across several
disciplines. It is useful in modelling climate [Lim and Zohren, 2021], biology
[MacNeil et al., 1992], finance [Lee et al., 2006]. Unsurprisingly, such methods
also apply to modelling the motor system. Our brain tries to model the sur-
roundings all the time. We observe different states spaces, across different time
spans to model changes that happens around us – from dropping a ball to the
change of seasons. While some predictions are more abstract, we here delve
into system dynamics frameworks for a control system. It should be noted that
these methods are not simply estimation techniques, but a system identification
for a plant of unknown dynamics.

Historically, there have been several techniques that are explored for dealing
with data driven system identification, including Dynamic Mode Decomposition
(DMD) [Schmid, 2010], Koopman theory [Budǐsić et al., 2012] [Williams et al.,
2015], nonlinear autoregressive models [Akaike, 1969], and neural network mod-
els [Wehmeyer and Noé, 2018] [Lu et al., 2021], [Raissi et al., 2019]. Effectively,
system identification techniques can be classified into two different approaches:

1. Black box modelling: These methods often work without assuming
any prior mathematical structure to the observed data. They try to fit
the observation configuration given as much data as possible to constrain
the model. Most system identification methods fall under this category.
While system evolution can be predicted with some certainty, it is often
difficult to explain how the system states actually interact to give rise to
these dynamics.

2. White box modelling: These methods are inspired by the style of mod-
elling that uses the first principles to impose structure on the observed
data and fit a prioiri constraints to estimate the system model. Given
these constraints, it is more explainable at multiple levels as to how the
system states interact to propagate the dynamics

In the next section, we take a detailed look at one recent example of white
box modelling that captures system dynamics called Sindy-C. This method pro-
vides a state-of-the-art benchmark for a new, biologically plausible method that
we discuss later in the thesis.

24

2.5.1 Sparse Identification of Nonlinear Dynamics with
control - SINDy-c

The sparse identification of nonlinear dynamics with control (SINDy-c) [Budǐsić
et al., 2012; Kaiser et al., 2018] approach uses sparse regression methods to ap-
proximate the equations governing the system. SINDy-c trains on state observa-
tions to give a concise description of interactions between variables to describe
the system. SINDy-C also enables us to sweep through the parameters to choose
the Pareto-optimal model from a family of models by balancing accuracy and
efficiency.

Let us derive the working of the SINDy-c algorithm. Consider a non linear
system described as:

d

dt
x = f(x, u), x(0) = x0. (2.66)

Now give m measured snapshots of the state x ∈ R[p×1] and the input signal
u ∈ R[q×1] in time, we arrange the observations into two matrices:

X =

 | | |
x1 x2 ... xm

| | |


p×m

U =

 | | |
u1 u2 ... um

| | |


q×m

The library of the candidate nonlinear functions can be chosen using the ob-
served measurements X and input U , for example:

Θ(X,U) =
[
1T XT UT (X ⊗X)T (X ⊗ U)T ... sin(X)T sin(U)T sin(X ⊗ U)T ...

]
where x⊗y defines the vector of all product combinations of the components

in X and U . A suitable library of candidate terms is crucial for the working of
SINDy-c algorithm. One potential strategy is to start with a common choice
of polynomials, and increase the complexity of the library by including other
nonlinear terms (trigonometric functions, exponential etc). A prior knowledge
of the physics of the system of interest can also help us in making a smarter
choices of functions too.

The system equation can thus be written as:

Ẋ = ΞΘT (X,U) (2.67)

The time derivative Ẋ, if not measured directly can be computed by numerical
differentiation. With the new formulation, we employ sparse regression to iden-
tify a Ξ. This regression is done by balancing sparsity, which corresponding to
fewest nonlinearities to describe the system, with the accuracy to fit the given
measurements. The components ξ of Ξ are obtained using:

ξk = argmin
ξ̂k

1

2
∥Ẋk − ξ̂kθ

T (X,U)∥22 + λ∥ξ̂k∥1. (2.68)

25

Figure 2.5: SINDy-c model: Schematic of the SINDy-c algorithm and exten-
sions.Active terms in a library of candidate nonlinearities are selected via sparse
regression.Illustration of the modular nature of the SINDy-c with control frame-
work (bottom row) and its ability to handle high-dimensional systems, limited
measurements, known physical constraints and model selection.

26

where Ẋk represents the kth row of Ẋ and ξk is the kth row of Ξ. Upon
regression, the Ξ can be used to describe the system equations as a linear com-
bination of polynomials.

This method of sparse regression has many advantages. With very little
data, we can approximate the system interaction and it is comparatively robust
against noise [Budǐsić et al., 2012]. Unlike many blackbox methods, SINDy-c
is also explainable. Despite these advantages, there are a few drawbacks to
address in implementing this technique for modelling the sensory-motor control
system of our brain.

• Choice of functional basis: SINDy-c is highly sensitive to the choice of
functional bases we choose in Θ. Consequently, with a poor choice of the
library of functions, an accurate system dynamics may not be arrived.

• Cannot do feedback control: If the input u corresponds to feedback con-
trol, so that u = f(x), it becomes impossible to disambiguate the effect of
the feedback control u from the interactions within the dynamical system;
In other words, the SINDY-C regression becomes ill-conditioned.

• No online learning: SINDy-c is not a recurrent algorithm, but relies on
a separate training and testing phases. Hence it is impossible to correct
for errors online as we obtain new observations. This effectively prevents
us from estimating of evolving systems or perform dynamic or kinematic
learning, which are essential for model our biological control system.

• Incompatible biological framework: This framework inherently works with
a process that cannot be reproduced using a biological system (library
of polynomials, etc). Hence SINDY-C methodology is not apt for the
purposes of neuro-scientifically realistic model of the brain.

• Numerical solving: After system identification, the system is solved for
the state propagation using a numeric solver. This state trajectory is
only as good as the choice of the numerical solver. Even when system
is identified, since the dynamics are predominately chaotic, this method
of system propagation can causes the system states to diverge from the
actual states of the system.

2.5.2 Feedback-based Online Local Learning Of Weights
(FOLLOW)

One comparable estimation technique is proposed by [Gilra and Gerstner, 2017].
The authors present an estimation technique that is capable of learning the
system dynamics online. This method is described as a specific learning rule
called the Feedback-based Online Local Learning Of Weights (FOLLOW). This
method is notable for its local and online nature. The method in their work
demonstrates learning of linear, non-linear, and chaotic dynamics.

27

From an online estimation perspective, the FOLLOW approach stands out
for several reasons. Firstly, it is adaptable and works online, constantly incor-
porating new data, which is a significant advantage for online systems that need
to respond dynamically to changing inputs. Let us outline the working of the
FOLLOW method that helps in capturing the dynamics. Given a nonlinear
system described by:

ẋα(t) = hα(x(t), u(t)), (2.69)

where x with components xα (where α = 1, ... Nd) is the vector of observable
state variables and h is a vector whose components are arbitrary non-linear
functions hα. The forward predicitve model then learns to make the error,

ϵ ≡ xα(t)− x̂α(t) (2.70)

They assume that the predicted state is linearly decoded from the activity
of the recurrent neural network of integrate and fire neurons. The input current
to a neuron in the network learning the dynamics is given by:

Ji =
∑
l

wff
il (Sff

l ∗ k)(t) +
∑
j

wij(Sj ∗ k)(t) +
∑
a

keia(ϵa ∗ k)(t) + bi (2.71)

where the wff
il are the feedforward weights that computes the influence of the

control input u(t) to the system, Sff
l are the spike trains from the feedforward

path, wij are the recurrent weights and Sj are the spike trains within the recur-
rent network.The keia are fixed error feedback weights. The k(t) is an exponential
filter kernel and bi is a neuron-specific bias.

The learning rule of the FOLLOW mechanism is given by:

∆wij = η δ(t− tprej) (ϵi ∗ k)(t) (2.72)

This equation represents the weight change ∆wij in the learning rule. Here,
η is the learning rate, δ(t − tprej) is the Dirac delta function centered at the
presynaptic spike time tprej , and (ϵi ∗ k)(t) is the filtered error signal at the
postsynaptic neuron. The equation is a key part of the learning mechanism
described in the paper, specifically in the context of synaptic weight adjustment
based on timing and error signals. The FOLLOW method is highly similar to
what we aim at designing and hence an ideal candidate to compare to. At the
end of our model performance evaluation (see Section 6.4) we discuss how the
technique we propose differs in its working and compare against this mechanism.

This chapter has provided an overview of various control theory concepts, en-
compassing linear control, linear filters, nonlinear controls, nonlinear filters, and
system identification methods. While these techniques serve as valuable foun-
dations for control engineering, it is important to recognize their limitations and
challenges when applied to model real-world systems, particularly when the goal
is to biologically realize perception and control systems. Real-world systems of-
ten involve nonlinearity and unfamiliar dynamics that cannot be adequately

28

addressed by linear approaches alone. To address these challenges, it is neces-
sary to build upon these fundamental concepts and leverage their strengths in
developing more sophisticated models and techniques. Bridging the gap between
theory and practice requires considering the biological background of motor con-
trol systems within our brain. The upcoming section explores the existing body
of knowledge and research, providing insights from relevant studies that inform
our understanding and guide the construction of our model. By capturing the
mechanisms and abilities of the motor control system and framing the problem
from an engineering perspective, we can incorporate the wisdom gained from
this broader context. This approach enables the development of more robust
and accurate models for the complex motor control systems found in biological
systems.

29

Chapter 3

Neuroscience background

Understanding the intricacies of primate sensorimotor control systems is essen-
tial in developing accurate models capable of effectively mimicking and manipu-
lating such systems. By delving into the behavioural and neuroscientific aspects
of motor control, we aim to obtain insights to enhance our understanding of
mechanisms that drive rich motor behaviours. Recent research has shed light
on the vital roles played by various brain regions, such as the motor cortex, basal
ganglia, and the cerebellum, in orchestrating and coordinating complex move-
ments. Furthermore, the interplay between sensory input, motor commands,
and feedback loops collectively helps the brain to achieve movement goals. By
reviewing relevant studies and findings, we can uncover the critical components
required for execution of motor tasks, and for modelling the biological control
system.

3.1 The brain: a powerful controller

Biological systems often deal with highly nonlinear and unreliable systems by
handling observations through often noisy sensors with delay and uncertainty.
It is interesting how the brain integrates the sensory information to estimate
the relevant system states and solve for the control required. In many ways,
nonlinear control and estimation is a solved problem in biology, and our brains
have surpassed the performance of many of the current engineering solutions.
In the following sections, we discuss a variety of experimental findings and how
they describe specific qualities of the cortex that are critical for the efficient
control of limbs.

3.1.1 Prediction

The delays in most sensorimotor loops are large. Efferent sensory signals are de-
layed as a result of neural conduction latency, low-pass filtering and interaction
between neurons and muscles. It can take 100-300 ms to send a command, move

30

the arms and receive visual feedback to perceive a change in hand location [Miall
et al., 1993; Saunders and Knill, 2003; Miall et al., 2007]. The delays present in
the sensory feedback loops are thus long enough to cause stability issues in the
control system. Counter-intuitively, the stable control of the limbs indicates the
presence of an internal mechanism to handle these delays for regulating move-
ments, even before the controller receives a sensory feedback. In fact, Colby
et al. found evidence suggesting that prediction of the sensory consequence in a
saccade movement study, can be seen explicitly in monkeys. A group of cells in
posterior parietal cortex (PPC), fires in anticipation of a light stimulus falling
on the receptive field as the animal moves the eye from one location to another.
In another example, [Haarmeier et al., 1997] conducted a study related to the
perception of motion on a patient ‘RW’. The patient, who suffered a stroke in
the parietal and occipital cortex, reported seeing moving dots while the dots
were actually stationary. ‘RW’ was unable to cancel the velocity of the eyes’
movements from the image that fell on the retina, rendering the dots motionless
only when the dots moved at the same speed as the eyes.

When considering the motor plant itself, parameters often change dynam-
ically, both internally and externally with respect to the plant. This change
happens at a shorter timescales (e.g., addition of masses, tool use, external
forces like gravity, or damping) and in a longer timescale (e.g. muscular and
neuronal fatigue, growing of limbs and the strengthening of muscles). To coun-
teract such changes, it is reasonable to assume that the nervous system monitors
external changes and forms an internal model of the plant and the environment
[Shadmehr and Mussa-Ivaldi, 1994]. Numerous studies show the role of the
cerebellum in creating a forward model [Manto et al., 2012], getting the effer-
ence copy, understand the timing of tasks and also generating errors comparing
the action outcome and the estimated outcome [Ivry and Keele, 1989; Wolpert
et al., 1995; Ohyama et al., 2003]. In a step tracking task performed by trained
monkeys, researchers presented evidence supporting the prediction hypothesis
[Fishbach et al., 2007]. Different analyses of the velocity profiles also made it
evident that the corrective sub movements were initiated when the probabil-
ity distribution of the predicted end-point, from the continuously accumulated
information, is statistically different from the target location. Moreover, a la-
tency in onset of the following sub-movements proportional to the amplitude of
the previous primitive and the ‘extent to go’ of the reach shows that there is
a continuous feedforward controller. These studies in addition to many others,
strongly point towards the existence of an internal model in addition to the
feedback system, that continuously predicts the plant’s states during reaching.

The above suggests that delays in sensorimotor loops, as well as dynamic
changes in the motor plant itself, necessitate the existence of internal mech-
anisms to handle these delays and regulate movements even before receiving
sensory feedback. Hence, to accommodate for these behaviours our sensori-
motor control model should include a predictive system that anticipates the
consequence of a motor command.

31

3.1.2 Perception

Adapting to external perturbations and providing the appropriate control, de-
mands knowledge of the relevant state variables. In the context of reaching, this
includes the location and velocity information of the hand. With the available
noisy observations from vision and proprioception, the brain estimates the state
variable with considerable accuracy. Rushworth et al. found neural correlates
of the independent contributions of both vision and proprioception in the pos-
terior parietal cortex of monkeys. Lesions to lateral intraparietal area (LIP)
and area 7 in the inferior parietal lobe (IPL) did not affect reaches where the
goals were defined in the proprioceptive coordinates (in the dark), but produced
mis-reaching, when in light [Rushworth et al., 1997]. In contrast, monkeys with
lesions to Area 5 in the superior parietal lobule (SPL) could reach accurately in
the light but not in the dark. Hence it is appropriate to suggest that the SPL
may be involved in proprioceptive estimates of limb position in space, while the
IPL is involved in visual estimates of limb position. An example of this in hu-
mans comes from the patient ‘PJ’ who had an extra-axial cyst encroaching on
her left SPL [Wolpert et al., 1998a].Without vision of her right arm, PJ’s per-
ception of arm position became increasingly uncertain until she reported that
the arm disappeared altogether. Thus, PJ was unable to store a propriocep-
tively derived estimate of limb state but, presumably because of the intact IPL,
could use vision to maintain a sense of the limb’s position in space. Similar to
Rushworth’s monkeys with SPL lesion, PJ made accurate reaches when vision
was present.

Furthermore, in addition to individual perception, it is interesting to study
how multiple sources of information are used to have a combined perception of
the arm states. In adaptation studies (see Figure 3.1) [van Beers et al., 2002],
[Haith et al., 2008], after adaptation subjects estimated the hand location some-
where in between the actual location and the observed visual feedback. This was
a clear indication of a weighted summation of sensory information. In fact, the
model proposed by [Reuschel et al., 2010] shows that the sensory integration is
close to the maximum likelihood estimate – the most probable prediction of the
state given the prior knowledge and current observations. Further, in the pro-
cess of obtaining the estimate, the brain seems to perform kinematic learning,
as these two sources of sensory information are observed in different representa-
tional spaces – proprioception in angular reference frame and the visual feedback
in a Cartesian reference frame. The estimate of the final hand state is obtained
by learnt combination of the two streams of information. [Körding and Wolpert,
2004; Vaziri et al., 2006; Izawa and Shadmehr, 2008].

Overall, it evident that an effective motor control model should not only
anticipate the state propagation, but it also gathers multiple streams of sensory
information to obtain a combined perception to estimate the limb states, to
generate errors and learn to move the limbs in a variety of situations.

32

3.1.3 Generalization

Another important aspect of the motor control system is its ability to generalize,
or apply what has been learned in one context to another unfamiliar context.
This aspect of reaching goes beyond rote memory - not simply accessing a
built-in look-up table of labelled sequences of muscle activation, but learning
to reach under modified contexts. Examples of this generalization have been
shown in many context such as temporal and amplitude generalization in motor
learning in [Goodbody and Wolpert, 1998]. Here, upon learning to move in a
novel velocity dependant force-field, subjects successfully generalized to a new
state space while being asked to make movements of either half the duration or
twice the amplitude. Generalization has also been described between movements
with movement direction [Bedford, 1993; Huang and Shadmehr, 2007], angle
[Krakauer et al., 2000] and even varying movement paths [Conditt et al., 1997].
Overall, generalization is a favorable trait that helps the brain to use prior
knowledge to reach in a different context.

3.1.4 Adaptation

Given an internal model of the state estimate and constant feedback to correct
the model and the consequence of movements, the brain demonstrates plethora
of interesting adaptations. There are numerous instances showing compensation
for dynamic changes, including force field studies where the hand is perturbed by
external forces [Shadmehr and Mussa-Ivaldi, 1994; Li et al., 2001]. The brain can
also learn to make successful reaches while in a rotating room with centripetal
forces [Lackner and Dizio, 1994] and when other manipulations to the properties
of the arm by attaching additional masses and other devices [Wang and Sain-
burg, 2004]). Studies have shown examples of reaching adaptation for kinematic
changes, as seen in: (i) visuomotor gains [Heuer and Hegele, 2008], where the
extent of reaching only altered visually; and (ii) visuomotor rotations, where the
visual feedback is implicitly decorrelated and rotated with respect to the actual
arm [Krakauer, 2009]. There are also more complex prism tasks[Von Helmholtz,
1867; Inoue and Kitazawa, 2018] and mirror tasks [Telgen et al., 2014], where
the visual feedback is altered with a complex transformation and does not rep-
resent arm location explicitly. The brain is shown to adapt to making reaches
when the hand visual feedback is provided with varying visual cues such as bars
or rings indicating the distance away from targets [Vaidyanathan et al., 2020].
Adaptation happens even when the cursor is mapped on to highly complex hand
gestures [Danziger and Mussa-Ivaldi, 2012]. The brain can adapt to reach suc-
cessfully even in the presence of sensory decorrelation [Krakauer, 2009]. This
evidence collectively showcase the extent of complexity the brain can handle
when it comes to inferring limb states and performing a variety of unfamiliar
tasks.

What is interesting in all of the adaptation studies, is that the cortex learns
to compensate for changes to the environment, sensory misalignment and the
relevant task simultaneously online. In some studies, the changes in the envi-

33

ronment or the arm is made explicit during the experiment, and in other the
changes are implicit. One involves a deliberate change of plan while the other is
unconsciously driven by task errors. This further highlights the fact that error
generation, planning and adaptations occur at multiple levels from observation,
prediction, perception, and task goals. Additionally, the brain learns to com-
pensate on the fly, not only when the perturbations are introduced, but also
when removed. In sum, it is clear that adaptation is a staggeringly essential
trait that demonstrates the versatility of sensorimotor control and capturing
this adaptation is vital in modelling the biological control system.

Among the various adaptation studies, two experimental paradigms are most
common– force field studies and visuomotor adaptation studies (see Figure 3.1).
Each study reveals a unique property of the motor adaptive system. In force
field studies, both the proprioceptive as well as the visual consequence of the
hand are perturbed. Numerous studies have found effortless adaptation to ex-
ternal forces applied to the hand. Some of the most direct evidence comes
from [Gandolfo et al., 2000]. They show a gradual recruitment of previously
silent cortical neurons in M1, which begin responding to the sensory error. In
this experiment the estimate from vision and from proprioception coincide with
each other, giving one source of error – an unambiguous difference between the
observed and perceived hand location. This error drives the learning process.
After adaptation, the system regains its original performance of reaching to
targets by learning to compensate for the external forces. The adaptation to
force-fields, provides evidence that the brain accommodates for uncertainties in
dynamics by correcting for errors in the task space.

The second common type of adaptation to visuomotor rotation [Shadmehr
and Mussa-Ivaldi, 1994; Krakauer et al., 2000; Krakauer, 2009; Taylor and Ivry,
2011]. This experimental setup consists of a tabletop reaching task with the goal
of moving a cursor, that represents the subject’s hand, to targets that appear
on the screen. The screen is placed directly above the subject’s hand thereby
blocking the direct view of the hand, while the cursor moves in accordance to
the hand’s movement. The subjects reach for the targets with the help of the
visual cues on the screen and their proprioceptive feedback. After a period
of successful reaches, visuomotor rotation is introduced. In the visuomotor
rotation paradigm, a systematic directional bias is introduced around the hand
thereby mismatching the visual feedback and the proprioceptive information of
the hand location. For instance, if the subject were to move at 0◦, the cursor
would move 30◦ away with respect to the angle of reach. It is logical to infer
that this inconsistency affects the estimate of the hand location we have in our
brain since proprioception and vision indicate different estimate for the hand
location in such a scenario. It is observed in these experiments, that subjects
aim and reach for targets without compensating for the rotational bias initially.
But after a few trials, subjects gradually adapt to this new mapping and move
their actual hand in the opposite direction to the transformation, adapting to
the change. This learning also happens when the experiment is made more
difficult by providing the cursor only during the beginning and the end of a

34

(a)

(b)

Figure 3.1: Two adaptive behaviour paradigms: The top panel shows the
set up for force field adaptation and the bottom panel describes adaptation
to visuomotor rotation. The baselines show perfect straight reaches in both
conditions. (a) Subjects in early force-field adaptation have curved reaches in a
counterclockwise curl-field applied by the robotic manipulator, and they learn
to reach straight by the end of few trials. (b) Subjects in visuomotor rotation
experiments learn the rotational transformation and learn to aim differently
to reach for the target when the view of their hand is blocked. These two
experiments provide complementory perspectives on primate motor control

single reaching movement.
The adaptation to visuomotor rotation is interesting for a number of rea-

sons. Firstly, the behaviour reinforces the robustness and adaptability of the
biological motor control. In addition to previous evidence of forward models
which comes from the period during the reach where the visual feedback is un-
available, this task sheds light into the details of how the brain predicts the
kinematics of the hand, while also dealing with unfamiliar changes in observa-
tions. In this case of sensory inconsistency, it seems that the brain assigns the
observed error to both the visual estimate and the proprioceptive estimate, even
though the actual bias is introduced only in the visual feedback. In particular,
studies have shown that the brain creates a sensory illusion and perceives the
hand somewhere in between the proprioceptive and visual estimate [van Beers
et al., 2002]. An estimate of the hand location different from the visual and the
proprioceptive observation, hints that the brain attributes the sensory error to

35

sensory uncertainties. The model proposed by [Haith et al., 2008] describes how
the adaptation in the brain is driven by associating the visual error partially
with the internal model (i.e., accounting for the unreliability of the plant) and
partially to the uncertainty in the sensory information. There is rich evidence
suggesting that there is continuous learning and kinematic mapping to account
for these uncertainties. Schaeffer et al. shows that the cerebellum plays a major
role in learning an internal model during reaching movements. Studies in mon-
keys, [Wise et al., 1998], also show the changes in M1, M2, and PMd reflect the
learning of visuomotor transformations. This adaptation is also known to have
(a) retrograde, anterograde after effects (when the learning of new information
interferes with the recall of old information) (b) structured recall (immediate
adaptation strategy can be employed when given cues) (c) consolidation (adap-
tation becomes better with time and committed to memory). These features of
the adaptation exemplify the richness of this learning ability and the efficiency in
handling uncertainties and dynamic changes. Collectively, these evidence sup-
ports the potential involvement of prediction, perception, generalization and
adaptation in a single experimental paradigm of visuomotor rotation.

Overall, the sensorimotor control system is able to efficiently control a non-
linear and unreliable plant, and is robust against a variety of perturbations. As
a solution to this complex problem, the system has incorporated several mech-
anisms that are constantly updated to conform with dynamic and kinematic
changes in both the environment and the plant. Furthermore, the biological
controller remains superior to engineered controls by its ability to accommodate
generalizations, adaptation depending upon contexts and prior information all
while continuously learning from predictive error. Modelling these features of
biological learning, could not only be a remarkable tool in describing the es-
sential components that are crucial for accurately modeling the sensorimotor
control system but also in replicating adaptable control mechanisms in engi-
neered control systems.

36

Chapter 4

Motor control modelling

In this chapter, we consider attempts to bridge the gap between neuro-behavioural
observations and mathematical tools to construct a models of the motor control
system. Building upon the foundations laid in the previous chapters, which
discussed the control engineering and neuroscience background, we discuss the
history of motor control models. We begin by describing the varieties of models
in motor control, the current state of models, and finally describe the modelling
framework that we intend to leverage in building our model.

4.1 Current state of motor control models

Over the past decades, our understanding of motor control has undergone sig-
nificant improvements through vast number of experiments and employment of
theoretical tools to model the pathway of voluntary movements. While most
computational models rely on empirical data generated by observation and ex-
periments, they often capture different levels of abstraction. Models span from
describing the cellular and molecular mechanisms of neural activities, to higher
level behaviours of complex movements in humans and primates. Depending
upon the experimental paradigm and the objective being explored, the cur-
rent computational models in motor control can be largely classified into three
groups: (a) cost strategy models (b) dynamic systems models (c) neural popu-
lation models.

Cost strategy models are motivated by the theory that brains should have
evolved to optimize the control strategy. Given that movement itself is an energy
expensive process – ranging from firing of neurons to using energy to produce
joint torques. The cost strategy approach seeks to find the optimal set of control
inputs that minimizes an objective function while satisfying system constraints
often minimizing mechanical precursors of metabolic costs, such as joint torque
rates, energy ([Uno et al., 1989; Alexander, 1997; Kang et al., 2005; Flash and
Sejnowski, 2001]. [Flash and Hogan, 1985] proposed a model of reaching move-
ments that incorporates the minimization of torque as a cost function. The

37

authors in [Todorov and Jordan, 2002] showed that their model can accurately
predict the trajectory of reaching movements by providing a theoretical frame-
work of ’minimal intervention principle’. This principle states that an optimal
controller, upon providing the optimal command for controlling the system,
does not have to correct for task-irrelevant deviations. Relatedly, [Prilutsky
and Zatsiorsky, 2002], which compared different choices of cost functions that
explained the observed muscle activation pattern during reaching movements.
There are several other models that look into the working of the motor control
system by explaining its behaviour as an optimizing strategy. These mathe-
matical models typically ground their findings in behaviours to a higher level
optimizing control.

Dynamic systems models move their focus from a higher level variables such
as movement cost, to a lower level movement states such as instantaneous joint
torques, velocity, position, etc. These models try to characterize movement
system as a controller concerned with task objectives, state variables, and the
errors that drive adaptation. They also help in studying adaptation (or the lack
of, in e.g. lesion studies) by attributing them to system level mechanisms to
understand the distribution of the movement goal and contributing towards its
respective anatomically distributed structures. Through this perspective, the
movement system is perceived as a controller, balancing task objectives with
state variables and the inevitable errors that guide adaptation. This view aligns
well with Scott, who evidences the harmonization of movement cost optimiza-
tion in reaching movements with internalized models of both the individual’s
physiology and the surrounding environment. Such an understanding is further
advanced by Wolpert et al., suggesting an internal model driven by a predic-
tive Kalman filter feedback system, emphasizing the brain’s anticipatory nature
in movement regulation. The dynamic systems approach also encapsulates the
interaction of external forces on movement, a perspective supported by Shad-
mehr and Mussa-Ivaldi. Their research underscores how adaptations to these
external forces can be mapped through the intrinsic coordinate systems of sen-
sors and actuators. Moreover, when aiming to discern sources of motor errors,
models like those of [Berniker and Kording, 2008] point to intricate neural mech-
anisms through probabilistic frameworks. Some models describe the evolution
of specifics such as the timeline of learning, adaptations, and generalization. All
of dynamic system models aim at replicating the behaviour aspect of the motor
cortex.

The third approach of neural population modelling shifts focus to a more
cellular level. Such models enable us to connect the firing patterns of neurons,
or the activity of brain regions, to provide understanding of the neural mecha-
nisms underlying motor behaviour. One of the earliest studies to inspire models
is [Georgopoulos et al., 1989], which demonstrated that the activity of individual
neurons in the motor cortex are highly correlated with the direction of move-
ment. This study proposed a ‘population code’ to predict movement direction by
observing neurons from dorsal premotor cortex and the primary motor cortex.
Subsequent research has bolstered our capability to correlate various movement

38

aspects with their corresponding neural activities. Cellular-level models can also
capture complex interactions between different brain regions, as demonstrated
by Churchland et al., who proposed a model of neural population dynamics dur-
ing reaching that accounted for both feedforward and feedback control. These
models can also be employed to make predictions about the effects of neural
manipulations, as shown by [Sadtler et al., 2014], who used optogenetic tech-
niques to examine how learning is constrained by the neural representation of
the task. In [Mante et al., 2013], they monitored an area of PFC involved in
the selection and execution of saccadic eye movements.

Different approaches to modeling motor control operate at different func-
tional levels and offer varying levels of detail. The cost strategy model, based
on optimization principles, focuses on efficient control by considering the cost
of movement. While it can explain higher-level constraints in motion selection,
it may not fully capture the underlying low-level mechanisms of neural con-
trol. On the other hand, the dynamics systems approach can mimic individual
brain structures, providing an area-level understanding of the neural circuitry
involved. However, caution is necessary as not all system-level descriptions are
biologically plausible, limiting their ability to accurately represent the motor
pathways. Cellular-level approaches offer comprehensive and detailed insights
into synaptic mechanisms, but can be challenging to interpret and scale up to
capture higher-level behaviours. It is important to acknowledge that each ap-
proach has its strengths and aids in testing different hypotheses about the brain’s
function. However, it is evident that none of these approaches single-handedly
can provide a comprehensive explanation connecting overall behaviours to neu-
ral mechanisms. To achieve a more holistic understanding, a new approach
is required, one that integrates cellular activities with higher-level behaviours,
organizes cortical structures, and incorporates biological plausibility to better
approximate the workings of the brain.

Recently, there has been a few models that tried connecting some of the
aspects we discuss here. In Denève et al., they proposed a computational frame-
work where the brain can be thought of as a hierarchical system of processing
layers, each layer containing a set of computational units that learn to encode
increasingly complex and abstract representations of sensory information. The
authors provided evidence to support this framework, including simulations of
artificial neural networks that exhibit similar properties to the brain, and repro-
duce neurophysiological data from studies of learning and adaptation in humans
and animals. Although this work is an appropriate candidate for unifying high-
level behaviour and cellular mechanisms, the proposed model assumes that each
layer in the hierarchy is composed of the same type of computational units and
oversimplified processing units and connectivity patterns, especially when it
comes to adaptivity and learning. Additionally, the model’s treatment of noise
and uncertainty—-fundamental elements in any biological system, and especially
in neural processing-—is fairly limited. While the model may be computation-
ally effective, it could not accurately represent the actual biological processes
occurring in the brain. In its current state, Denève et al.’s model might offer
a mechanistic and theoretical viewpoint, but it falls short in truly capturing

39

the multifaceted and nuanced processes intrinsic to the brain’s operations. A
genuine unification of high-level behaviour and cellular mechanisms mandates a
model that respects the complexity, adaptability, and intricacies of the biological
substrate it seeks to emulate

In contrast to the previous deterministic models, [Berniker and Penny, 2019]
provided a probabilistic approach that focused on the goals and the constraints
of limb movement. They proposed a network to implement an LQR controller
for a reaching task. However, there are areas where the model could see en-
hancements. For instance, the training of the proposed network presumes flaw-
less state encoding. The model’s foundation on the inherent stochastic nature of
neurons, from a probabilistic viewpoint, resulted in a void in neuronal dynamics.
The environmental parameters used for the model were also strictly Cartesian
and purely observation-based. Enriching the model with predictive feedforward
control and a more nuanced grasp of arm dynamics would undoubtedly fortify
its modeling prowess. It is helpful to have the ability to capture biological de-
tails in encoding, learning and capturing neuroscietific details when describing
the behaviour. While replicating a computational description of the causal re-
lationship between neurons and the motor behaviour, it is equally imperative
that the framework be rooted in biological realism.

Many of the deterministic frameworks and probabilistic approaches have
notable limitations that hinder their ability to fully capture the intricacies of
the brain’s biological processes. A comprehensive model should incorporate
biologically plausible elements, such as realistic processing units, adaptivity,
robustness to noise, and uncertainty, at the same time scalable to encompass
the complexity of the brain. Developing such a model can provide a more
deeper and realistic understanding of the brain’s functioning, enabling accurate
representations of biological processes. In the following section we briefly discuss
one such framework, that not only connects the lower level activity to the higher
level behaviour, but also capturing biological constraints.

4.2 The Neural Engineering Framework

The Neural Engineering Framework [Eliasmith and Anderson, 2003] leverages
techniques from dynamical systems theory that help us model neuronal and
synaptic dynamics using a spiking neural network. Biological constraints can
be included by specifying the details of neurons, such as their dynamics, firing
rate, the time constants of the neurotransmitters and many other features. From
an engineering standpoint, NEF also allows smooth transition of these neural
models to be implemented in spiking neuromorphic hardwares making it possible
to also have robotic implementations and have sophisticated controllers. In the
following sections, we shall discuss the core principles of this framework and the
tools available for us to construct our cortical structures within this framework.

40

4.2.1 Representation

To perceive the information about the environment, to cognize them as inter-
nal states and to use the states to solve problems, it is important to construct
representations of the physical quantities into system states. Here, the NEF
describes a mathematical framework for representation, by encoding the phys-
ical quantities into neural activities. In other words, if x(t) ∈ Rq denotes a
continuous time varying system state, it is represented in a higher dimensional
vector space in the population of neuronal activity, a(t) given by:

Ji(t) = α < ei, x(t) > +βi (4.1)

ai(t) = Gi[Ji(t)] (4.2)

where si(t) is the input current to the ith neuron, < ., . > denotes a dot
product, ai(t) is the neural activity generated by the ith neuron encoding the
vector x(t) at time t, and Gi[.] is the nonlinear transfer function modelling the
spike-generation of a single neuron.

The function G depends upon the choice of neuron model used. A common
choice is a Leaky Integrate and Fire or the LIF neuron model [Koch and Segev,
1998]. For a given neuron, this model maintains a one dimensional voltage
trace vi(t) by continuously integrating the current source Ji over time with
some leakage governed by τRC . It is equivalent to a resistor-capacitor network
or a low pass filter dynamics. After scaling the voltage to the interval [0,1], the
governing equation is:

τRC v̇i(t) = −vi(t) + Ji(t), 0 ≤ vi(t) < 1 (4.3)

where vi(t) → 1 generates a spike at time t and the voltage resets to zero
for a τref time period. Although this neuron model is an approximation to neu-
ronal dynamics, the NEF allows computation with a choice of more biologically
detailed neuron models as well.

Along with the neuronal dynamics, we include the post-synaptic filter that
models the post synaptic current triggered by the action potential arriving at the
synaptic cleft. This is modeled to be an exponentially decaying post-synaptic
current with a time constant τ :

h(t) =
1

τ
e−(t

τ), t ≥ 0 (4.4)

As we represent the state variable in this fashion, we obtain a neuronal spike
train that encodes the given value through time. These neuron spike trains are
nonlinear encoding of vector spaces that can be linearly decoded to obtain the
state representations. We can characterize the decoding of the neural response

41

as follows:

(x ∗ h)(t) ≈
n∑

i=1

(ai ∗ h)(t)di (4.5)

=

n∑
i=1

∑
m

h(t− ti,m)di (4.6)

where D = [d1, d2, ..., dn]
T ∈ Rn×q is the decoding matrix, used to decode

the filtered version of x(t) from the population activity. The ∗ operator is the
convolution operator representing the synaptic filter. The collective decoders
D can be found optimally to decode the appropriate state from the spike train,
which is described in the following section.

4.2.2 Transformation

While the representation principle helps us encode state variables into neuron
activities a(x), we now describe how we not only decode the state variable but
also realize new functions of the state variable. Here we leverage different linear
decoding to estimate any arbitrary vector functions of the given input. In order
to realize a function f we can compute it in the connection between two neuronal
populations. We can then approximate function f using a function decoder Df .
This decoder Df should have the property:

y = f(x) ≈ ŷ = Dfa(x) (4.7)

These decoders can be found by solving for a least squares problem by re-
ducing the error in:

E =
1

vol(X)

∫ ∫
X

|f(x)−Df (a(x) + v)|22dx, where v N (0, σ). (4.8)

This decoding error is both a function of the number of neurons in the pre
population as well as the smoothness of the function calculated. With the
help of the calculated decoders, arbitrary nonlinear functions can be realized.
Combining the encoding and decoding equations, we can interpret the ‘neuronal
weights’ required to compute the function, that is W = ED.

4.2.3 Dynamics

We have shown how to represent a state variable and devised a method to
compute nonlinear functions of the state variable as well. In this section, we
add temporal elements to describe dynamics. Here, we implement arbitrary
dynamics of the form:

ẋ = Ax(t) +Bu(t) (4.9)

where x is the time varying system state, ẋ is the time derivative. Similar to
how the feedforward connection weights were computed, we can find a weight

42

Figure 4.1: LTI system vs Neural implementation: NEF dynamics
Comparison between an LTI system being evaluated using an integrator,

compared to the neural implementation. The τA+ I and the τB is equivalent
to the A,B matrices of the LTI system.

W f that approximates a certain dynamical equation. For the LTI system in 4.9,
the propogation through time happens with the help of an integrator. Similarly
in neurons characterized as above, the dynamics stems from the leaky integrator
given by the canonical first order low pass filter modelled by the synapse.

h(t) =
1

τ
e−(t

τ) = L−1 1

τs+ 1
(4.10)

In the Laplasian domain this can be rewritten as:

X(s) =
1

s
(AX(s) +BU(s)) (4.11)

X(s) =
1

1 + τs
(A′X(s) +B′U(s)) (4.12)

Rearranging the second equation, we get,

X(s) =
1

s
(
A′ − I

τ
X(s) +

B′

τ
U(s)) (4.13)

=⇒ A′ = τA+ I, B′ = τB (4.14)

43

Here we have introduced the neural dynamics matrix, A′ and input matrix B′

which define the dynamics of the system implemented in a recurrent neural
fashion, and can be related to the standard dynamics and input matrices A
and B from the state eq. 4.13 (See Figure 4.1). By deducing the dynamics
representation of a linear system, this principle allows us to map any arbitrary
dynamical system that can represented in the format of eq.4.9. This gives
raise to interesting circuitry realizations, such as oscillators, which are often an
integral part of cortical mechanisms.

4.2.4 The Legendre Memory Unit (LMU)

An important dynamic system that we employ in our model one which repre-
sents a window of signal across time. The ‘LMU’ is mathematically derived
to orthogonalize the continuous-time history in a window by mapping it into
corresponding Legendre polynomials [Voelker et al., 2019]. This approximation
of the signal allows us to learn functions from the memory of the signal in time.
In this section we describe briefly the working of LMU and represent it as a
linear dynamical system, which can then be implemented within the framework
of NEF using the methods described in Sections 4.2.1-4.2.3.

Let us consider a continuous time delay of θ seconds, expressed as :

y(t) = u ∗ δ−θ(t) = u(t− θ), θ > 0 (4.15)

where δ−θ denotes the Dirac delta function shifted backwards in time. This
function helps us in taking in a time varying scalar signal u(t) and outputs a
purely delayed version, u(t− θ). For this the transfer function of the system is
defined as:

F (s) :=
L (y(t))

L (u(t))
= e−θs (4.16)

The pure delay (see equation 4.16) has infinite order when expressed as a
ratio of polynomials. To overcome this, it is approximated the irrational transfer
function e−θs as a proper ratio of finite order polynomials. We do so using Padé
approximates — the coefficients of a Taylor series extended to the ratio of two
polynomials — expanded about s = 0 [Padé, 1892]. Doing so gives:

[p/q]e−θs =
Bp(−θs)

Bq(θs)
, (4.17)

Bm(s) :=

m∑
i=0

(
m
i

)
(p+ q − i)!

(p+ q)!
si. (4.18)

Upon choosing 0 ≤ p ≤ q, we may numerically find the state-space model
that satisfies equation 4.17 given by:

ṁ(t) = Am(t) +Bu(t) (4.19)

44

where m is the Legendre representation of the input u. The state space matrix
A and B are given by:

A =


−v0 −v0 · · · −v0
v1 0 · · · 0

0
. . .

. . .
...

0 0 vq−1 0

 , B =
(
v0 0 · · · 0

)⊤
, (4.20)

where vi := (q + i)(q − i)(i + 1)−1, fori = 0..q − 1. The C vector helps us
in decoding any instant of the signal represented in the window back in to its
time dimension.

u(t− θ‘) ≈
q−1∑
i=0

Pi

(
θ′

θ

)
mi(t) , 0 ≤ θ′ ≤ θ (4.21)

Pi(r) = (−1)i
i∑

j=0

(
i
j

)(
i+ j
j

)
(−r)j (4.22)

where Pi(r) is the ith shifted Legendre polynomial. The basic idea is that the
LMU allows us to represent a sliding window of time θ and then extract different
parts of the window linearly. This method of representing a signal through
time has a huge significance in representing and learning function of the signal
represented across time. In later chapters, we leverage this methodology to
build a prediction model.

4.2.5 Learning

Synaptic plasticity is arguably one of the fundamental mechanisms in our brain
that makes it possible for the cortex to change synaptic weights to adapt over
time. Many synaptic plasticity experiments result in learning rules that ex-
plain how individual connection weights change. One of the methods by which
plasticity is incorporated into the framework of NEF is the Prescribed Error
Sensitivity (PES) learning rule [Bekolay et al., 2013]. This rule or the PES
learning rule uses the NEF principles to help modify the decoders to learn a
specific function. An error signal is generated comparing the present and the
target value represented. Mathematically, this results in the learning rule:

∆di = −κ

n
Eai (4.23)

where di are the decoders that are being learned, κ is the scalar learning rate,
E is the error signal E = f(x̂) − f(x), and a is the activation of the neurons.
This rule can either directly modify the decoders, d, or the connection weights
wij between neural populations. In later models, we use this rule to implement
a variety of adaptation models for motor control and perception.

These core principles of NEF – representation, transformation and dynamics
– give a framework for us to represent system states and calculate different func-
tions within a spike based network. Embedding these tools in our methodology

45

allows us to realize neural network mechanisms in a more biologically plausi-
ble fashion and to test out the working of various cortical mechanisms. In the
next section, we look at a recent model of motor control that uses the NEF
and connect the lower level dynamics with the motor behaviours in a spiking
architecture.

4.3 Recurrent Error-driven Adaptive Control Hi-
erarchy - REACH

The Recurrent Error-driven Adaptive Control Hierarchy (REACH model) [De-
Wolf et al., 2016] presents an anatomically organized spiking neuron model for
the motor control system using the NEF (see figure 4.2). The neural adaptive
controller presented here is also used as neuromorphic implementation in [De-
Wolf et al., 2020]. The REACH model proposes an implementation of motor
control with the help of control feedback in the operational space for moving an
arm model to reach for targets. It exhibits complex high-level behaviours while
also capturing lower level neuronal dynamics.

By leveraging the anatomical organization of primary motor cortex (M1),
premotor cortex (PMC), supplementary motor cortex (SCx), and the cerebel-
lum, the model generates trajectories and controls that closely resemble human-
like traces and velocity profiles (see Figure.4.3). This is made possible through
the integration of the spike timing-based PES learning rule, which facilitates two
crucial aspects – cerebellar adaptation and cortical adaptation. During reaching
tasks in an unknown force field (the task described previously in Section 3.1.4),
the REACH model showcases its cerebellar adaptation capability. Initially con-
fronted with an unknown force field, the model adapts its movements by in-
corporating the dynamic changes introduced by the external forces. Through
the use of the cerebellum, the model fine-tunes its motor commands, gradu-
ally aligning its movements to accurately navigate the force field. In addition
to cerebellar adaptation, the REACH model also exhibits cortical adaptation,
specifically when faced with incorrect information about segment lengths. In
scenarios where the model starts with inaccurate segment length information,
it seamlessly adapts its kinematics to ensure precise reaches within a velocity-
based force field. This cortical adaptation mechanism reflects the model’s ca-
pacity to rectify initial errors and optimize its motor output to achieve accurate
reaching movements.

This model was one of the first realizations of such high level capabilities
with built-in biological constraints. The REACH model uses spiking neural
mechanisms for the neural representation and for computing dynamics to re-
alize its control process. This made it possible to group the network into well
defined anatomical structures in the brain. As a consequence of combining the
bottom up and top down approaches, it was also able to realize neural firing
patterns that are very similar to the ones observed in the monkey cortex (see
Figure.4.3) reflecting correlations found in experimental research. REACH re-

46

Figure 4.2: REACH model: An overview of the REACH model, shown con-
trolling a three-link arm. Numbers identify major communication pathways.
Dashed lines indicate closed-loop feedback signals generated from the senses.
The premotor cortex(PMC) generates a trajectory for the system to follow with
a sequence of (x,y) coordinates. The primary motor cortex (M1) receives these
target positions (1) from the PMC and compares them with the current system
state, received from the sensory cortices (SCx), through (2). M1 combines this
signal with locally calculated Jacobians to transform the desired hand move-
ment commands into a low-level signal that is sent to the arm and cerebellum
(CB) along (3). The CB projects an adaptive signal to the body along (4) that
compensates for velocity and movement errors. Visual and proprioceptive feed-
back projects from the body along (5) to the CB and SCx (taken from [DeWolf
et al., 2016]).

produces population encoding of the movement magnitude, movement velocity,
acceleration, and rotational dynamics that can be seen in M1. It also exhibits
similar neural oscillatory patterns in low-dimensional state space analyses ob-
served in primates. The ability to reproduce these neural dynamics with the
adaptation behaviours, showed how the holistic and biologically constrained
approach was useful for better explaining the working of the primate motor
control system. By adding neurobiological details, the REACH model encapsu-
lated both behavioural and neural level details of the cortex. This framework
employed a modified form of the adaptive nonlinear control (discussed earlier

47

Figure 4.3: Results of the REACH model(a) Plots of the neurons from
the primary motor cortex (M1; left column) and cerebellum (CB; right column)
correlating with various high-level movement parameters. (b) Examining a neu-
ron’s activity profile in response to the arm reaching out to eight surround-centre
targets over five trials. Top: original results from [48] on the left, and REACH
model results on the right. Bottom: performing the same sinusoidal regression
as in [48] allows a quantitative comparison. (c) jPCA analysis applied to data
collected from monkeys and the model during reach trials. Results from the
original analysis are on the left, and from model analysis on the right. The
colour is determined by the starting position of the neural activity. Both analy-
ses exhibit a similar rotating path through the low-dimensional state space over
time (taken from [DeWolf et al., 2016]).

48

[Slotine and Li, 1987] and Section 2.3.2) that formed the basis of adaptive con-
trol mechanisms implemented in many neuromorphic control of robotic arms
,[DeWolf et al., 2020, 2023].

Despite the REACH model capturing many of the adaptive control aspects
of the motor control system and reproducing biological observations, it has a few
critical limitations. Firstly, the model lacks details in the sensory cortex. The
majority of adaptations captured by the REACH model relies on the perfect
instantaneous access to the system states – both end-effector position and joint
angles. With the lack of any form of ‘forward model’ or predictive system, the
model in incapable of reaching during noisy measurements or importantly in the
absence of sensory observations. As we have discussed earlier (see Section 3.1.1),
prediction plays an important role in the perception and control of the limbs
and actively helps in deducing plant and environment dynamics. In addition,
there are no separate sensory streams of visual and proprioceptive information.
The characteristic features of these sensory observations give useful information
about the uncertainty and sources of error that drives adaptation at multiple
levels. As discussed in Section 3.1.2 the individual estimates of state values from
various modalities are necessary to characterize both the sensory cortex and the
motor cortex, which together orchestrate various adaptations. There is strong
evidence for separate representations of visual, proprioceptive and hand percep-
tions, which need not align and give rise to some of the important behaviours.
There is an “illusion” of the hand that drives the fulfilment of the task at hand,
until any learning for de-correlation or changes in the environment happens.
Behavioural adaptation in the absence of sensory perception, the abilities of the
motor control model to adapt to several complex changes which are observed
in biology. Hence, towards the goal of constructing a detailed realization of the
cortex a combined sensorimotor perception system is an indispensable step.

Sensory perception systems can also be helpful well beyond adaptive strate-
gies. While interacting with dynamically changing environments, we also learn
contexts and build models of the word around us. This can only be made
possible with a detailed perception systems generating errors between the an-
ticipated states and the observed states. For example, error source attribution
[Liepelt et al., 2008], a crucial mechanism in the brain that enables the discern-
ing of changes and attributing the motor errors to improper prediction, sensory
changes or from environmental factors. Such mechanisms hint at a larger sys-
tem at play that leverages the detailed working of perceptual systems beyond
just motor control, but to understand the physics of the environment that we
are a part of. Hence, the collective shortcomings from REACH and other the
current models of motor control creates a need for a more detailed and elaborate
biological modelling of the sensorimotor control system.

If the control and actuation side of the motor system helps the brain to
influence the environment, it is the sensory side of the motor system that helps
us observe and create a perception of the outside world we interact with. Con-
sequently, in a step towards more accurate modelling of the motor cortex, in
the following sections, we work towards building a model of a sensory percep-
tion system to help us embody a more complete motor control system, instilling

49

the ability to adapt to more complex environments, and hopefully pushing the
model towards a more comprehensive model of the cortex that control our limbs.

50

Chapter 5

A Linear Model

With reference to the experimental accounts reviewed in the previous chapter,
we have identified the salient components of the motor control system: pre-
diction, perception, and adaptation mechanisms. To summarize, the predictive
system plays a crucial role in constructing a forward model of the plant dy-
namics while continuously estimating the necessary system states for limb con-
trol. These predictions actively guide perception by inferring system states from
multiple sensory inputs and contextual information. Moreover, the predictive
mechanism assists in perceptual filling-in phenomena by providing insights into
sensory uncertainties and discerning system states when direct observations are
unavailable. The brain detects discrepancies by comparing observations, pre-
dictions, and perceptions, facilitating adaptations that lead to improved future
motor commands. In the subsequent sections, we delve into the construction of
a preliminary linear filter model that incorporates these components to encom-
pass the motor control system.

Based on the analysis of biological behaviours, let us distill the necessary
functional elements of the prediction system. The prediction mechanism has
a running recurrent estimate that forms the basis of the forward model. To
construct an effective forward prediction model, it is essential to incorporate
the concept of an efference copy of the control signal. This copy of the input
command is used to propagate the system states, enabling the formation of an
internal prediction of the expected sensory outcomes resulting from the applied
motor commands. Given the dynamic nature and noise present in sensory infor-
mation, the prediction mechanism should effectively handle observation noise.
Additionally, it is clear that the brain estimates system states by weighing the
certainty of incoming sensory observations (see Section 3.1). In the presence of
increased noise in the observations, greater trust is placed in estimates, while
more accurate observations allow for adjustments of the prior beliefs. Further-
more, the intended motor control model must also account for dynamic changes
in limbs that occur over multiple timescales, including variations in system pa-
rameters (e.g., mass, length, stiffness) and kinematic or dynamic alterations
in the target dynamics. It is important to note that arm dynamics are often

51

nonlinear, underscoring the complexity inherent the prediction system.

5.1 Linear prediction model

Let us draw upon the engineering methodologies established earlier in Chapter
2, to build a biologically relevant prediction mechanism. Among the various
systems explored, the Kalman filter emerges as a compelling starting point for
an estimation model due to its alignment with many of our prediction model
requirements. The Kalman filter offers a reliable framework for real-time esti-
mation and control, operating recursively to refine predictions with each new
measurement. Notably, the filter’s utility arises from its optimal estimation,
with the knowledge of the noise covariance of input measurements and the dy-
namics. Moreover, the robustness against noise better equips the filter to handle
the challenges of an online motor control system to deal with noisy sensory data,
providing an accurate estimates of the system’s true state. Constant calculation
of system gradients is required in an Extended Kalman filter and Particle filters
are stochastic in nature making these filters difficult to realize these filters in a
biologically plaussible fashion. The simplicity and deterministic nature of the
Kalman filter further reinforces its suitability, compared to its computation-
ally heavy and biologically implausible counterparts. Given these merits, the
Kalman filter serves as an ideal real-time estimation system and a promising
starting point for our prediction model.

Indeed, the Kalman filter is a viable candidate, but it is important to con-
sider its limitations and its impact on the prerequisites of building a biologically
realistic sensory-motor prediction model. One limitation is the filter’s reliance
on assumptions of linearity for system state propagation. This linearity con-
straint results in inaccurate predictions when dealing with real-world nonlinear
interactions in hand control dynamics, kinematics, and sensory transformations.
Additionally, the Kalman filter assumes Gaussian distributions for the measure-
ment and process noise, while noise sources in practice may exhibit non-Gaussian
characteristics, such as heavy tails or skewness [Victor and Purpura, 1996; John-
son, 2001]. These violations of the Gaussian noise assumption can significantly
affect the filter’s performance and result in less accurate state estimates. Fur-
thermore, the Kalman filter requires precise knowledge of system dynamics and
the influence of control inputs on the system, which may not be fully known in
the context of motor control. Moreover, the motor control plant is also known
to be susceptible to change over time. In light of these inherent shortcomings,
along with the overhead of tailoring the mechanism to a biologically realistic
framework, using a Kalman filter model presents significant challenges.

To strike a balance between capturing complexity and ease of implementa-
tion, we consider a few alterations and assumptions while building an initial
version of the model. In an effort to match the linearity assumption of the fil-
ter, our preliminary model will approximate the nonlinear arm dynamics of the
plant with a unit mass system moving on a frictionless surface perpendicular to
the plane of gravity. This simplification linearizes the target plant, making the

52

system suitable for a Kalman filter framework while realizing the relevant motor
control system states such as position, velocity, and control forces. In the future,
this system will also be appropriate for capturing the estimation of a ’cursor’
or a visual marker dynamics representing the arm’s end-effector, which is in-
herently linear. To address the complexity of noise characteristics, we assume
an independent Gaussian distribution. While this simplification allows for ease
of estimation and hypothesis testing, it is important to acknowledge that real-
world noise encompasses various complexities across multiple levels, including
system dynamics perturbations, visual and proprioceptive sensory noises, and
transmission noises. Additionally, to account for instances when observations
are unavailable, such as when visual cues disappear or when the eyes are closed,
we prevent system correction driven by errors by inhibiting the error popula-
tion. This inhibition ensures that the estimation system remains robust during
sensory unavailability. Furthermore, for this initial implementation, we relax
the constraint of dynamically changing systems and instead work with a known
time-invariant system. These assumptions and alterations allow us to develop
an implementation of a Kalman filter-based estimation system that provides an
initial step towards a more sophisticated implementation.

Despite the simplifications mentioned, Kalman filter estimation serves as a
valuable starting point for the forward prediction model and is relevant to our
ultimate goal of building a novel motor control model. The objective here is
to establish a basic filter-controller mechanism that accurately deduces system
states from noisy observations in a biologically plausible manner, and drives the
system to the desired target. To achieve biological plausibility, we implement
the algorithm using the NEF framework and spiking neurons. We simulate
the system physics numerically and handle the representation and prediction in
spiking neural ensembles. We shall evaluate the prediction system’s performance
in the absence of observations, adding noise, changing the noise covariance while
implementing it in a motor control model to reproduce biological behaviours.
It is important to note that many of these assumptions will be dropped, and
a more realistic estimation framework is developed in the later parts of this
thesis. For now, the realized linear prediction will be used for testing initial
performance while also incorporating a neurobiologically plausible framework
for realtime feedback control.

5.2 Neural implementation of a Kalman Filter

Consider a unit mass system moving on a frictionless surface, as the system
to be controlled in our neural Kalman filter implementation (see Fig.5.1). The
system’s dynamics are described by linear state space equations:

ẋ(t) = Ax(t) +B u(t) +Gw(t) (5.1)

z(t) = Cx(t) + v(t) (5.2)

53

Figure 5.1: System environment - Unit mass: Control of a unit mass system
to move to different targets on a unit circle. The grey circle represents the mass
and the red dots represents the minimum jerk trajectory from one target to
another, along which the mass is made to move.

where x =
[
x, y, ẋ, ẏ

]T
is the state of the system consisting of the Carte-

sian position and velocity, u =
[
ux,uy

]T
are the forces acting in the x and

y directions and z =
[
z1, z2, z3, z4

]T
is the corresponding observation vector.

The A,B,G,C matrices are the state transition, control, dynamic noise and
observation matrices, respectively. w(t) is the process noise, sampled from a
Gaussian, zero-mean and of covariance Qn and v(t) is the measurement noise,
sampled from a Gaussian, zero-mean and of covariance Rn. Furthermore, w(t),
v(t) and x(0) are chosen to be mutually uncorrelated. The A,B,G,C matrices
are chosen appropriately to describe a unit mass dynamics observing all the four
system states.

Given the ground state x =
[
x, y, ẋ, ẏ

]T
, the objective of the controller is to

move the mass, to randomly generated targets on a circle, along the shortest
minimum jerk trajectory to the target. The implemented controller is a linear
proportional derivative (PD) controller, given by:[

ux

uy

]
= Kp

([
xr

yr

]
−

[
x
y

])
+Kd

([
ẋr

ẏr

]
−
[
ẋ
ẏ

])
(5.3)

where the xr , yr and ẋr, ẏr are the desired minimum jerk positions and ve-
locities. The trajectory and the control gains Kp and Kd are chosen so as to

54

drive the mass to the target within 1 second. When the mass hits a position
threshold and a velocity threshold, a trial is considered complete and a new
target is generated.

The observed state z from the simulation is represented in an ensemble of
neurons. The estimation mechanism does not have access to the ground truth,
but rather the noisy observations only. The goal of the prediction system is
to provide a state estimate x̂, given the noisy observation z, and the forces
u applied on the mass to move in the desired trajectory to the target. The
estimate process noise covariance Qest and the estimate measurement noise
covariance Rest (in eq. 5.4) are variables that represent the uncertainties, and
can be varied for different trials to evaluate the performance of the filter. It
is to be noted that the earlier Qn and Rn are the actual noise covariances
that gave raise to the simulation measurements, whereas the Qest and Rest are
perceived covariances that are used for our estimation. The covariances from
the simulation and the estimation need not necessarily match with each other,
since the estimation network does not have the ground truth knowledge of actual
covariance even from a biological perspective. Especially it is convenient to have
these as separate variables as we intend to vary the Qest and Rest to evaluate
their influence in the estimation process.

Recall the previously discussed Kalman filter estimation algorithm. The
propagation of the estimate covariance is with the help of the continuous recur-
rent Kalman filter equation given by:

Ṗ (t) = AP (t) + P (t)AT +GQestG
T − P (t)CTR−1

estCP (t)T (5.4)

The covariance of the current belief or the estimate is given by P . From the
eq. 5.4, it is clear that both the process and measurement noise covariance affect
the estimate covariance propagation. Note that if Qest and Rest are maintained
at a constant value, P either increases or decreases accordingly but settles at a
steady state value eventually. The rate of change of this estimate covariance is
also a function of the state transition matrix A. With the help of this estimated
covariance matrix, we can calculate the filter gain K using:

K(t) = P (t)CTR−1
est (5.5)

˙̂x(t) = (Ax̂(t) +Bu(t)) +K(t)(z(t)− x̂(t)). (5.6)

In the neural implementation, a separate ensemble calculates the Kalman
gain (K) with the help of the estimate covariance matrix (P). The neural net-
work structure of the filter is represented in Figure 5.2. The neuron populations
that represents the state estimates of position and velocity recurrently predicts
the states, with the knowledge of the state transition matrix A and the effer-
ence copy of the command u(t), which is sent to the plant. These two equations
form the prediction part of the estimation system that propagates the system
states. Given eq. 5.4 and eq. 5.5, we have a rough intuition of how the estimate
covariance and the Kalman gain propagates. The estimate covariance P acts

55

Figure 5.2: Spiking neuron model of the Kalman Filter: The Q and
P nodes represent the the covariance of dynamics uncertainty Qest and the
covariance of the measurement uncertainty Rest. The ensemble P represents
the running estimate covariance of the states and K represents the Kalman
gain. The x̂ is the estimate of the system given the calculated control u and
measurement z from the simulation. The circles represents neuron ensembles
while diamonds represent non-neural input nodes.

as a weight that dictates how much of the new estimate is reliant on the obser-
vation versus the estimates provided by the prediction system that propagates
the previous estimate using the system model. When the process covariance
Qest increases (or the measurement noise covariance Rest decreases), P and K
increase. This results in adjustment of the prediction by correcting with respect
to the newly obtained observation. Conversely, when the process noise Qest

decreases (or the measurement noise Rest increases), P is reduced and so is the
Kalman gain. This way, the new estimate is driven closer to the prediction than
that to observation.

The measurements z(t) are compared against the prediction x̂, generating
the error signal required for correction that is calculated in the err population.
This correction is now scaled with respect to the calculated Kalman gain.

5.3 Linear Filter Results

The Figure 5.3 shows the results of the controlling of the mass on a 2D fric-
tionless plane, with the numerical implementation on the left and the spiking
neural implementation on the right. The dynamics simulation that provides
the observation for both the implementations are run in python. The dynam-
ics simulation takes in the control forces u(t) as the input and generates the
ground truth position and velocity observations of the mass, with the added
noise (according to Qn and Rn). In this section, since we purely evaluate the
the performance of the estimation system and its accuracy compared to the
ground truth, the system dynamics are controlled by the ground truth, as op-

56

Figure 5.3: Results of Numerical simulation vs Neural Implementation:
(a) Numerical implementation (b)Neural Implementation. The noisy observa-
tions are depicted by green dots. The Targets are represented by ‘red x’ and the
actual position or the ground truth is depicted in solid black and the estimate
is shown in green.

posed to the estimate obtained from the Kalman filter. So the system can be
viewed as independent filter and controller systems, and the imperfections in
the estimate do not affect the system dynamics.

The left panel in Figure 5.3(a) shows an empirically run Kalman filter model
and the panel on the right 5.3(b) shows the neural implementation of the same
Kalman filter. The measurement used for estimation is shown in green dots.
The state estimate is initialized at origin, where x̂ = [x̂, ŷ, ˆ̇x, ˆ̇y]T = [0, 0, 0, 0]T ,
whereas the actual mass is randomly placed away from the origin. From the
plots, it is evident that the model’s estimate x̂ (in solid green) in either simu-
lation, falls close to the ground truth (in black). Upon observing the states of
the mass, the filter quickly recovers from the offset and corrects the estimate
within a few steps. This correction for error can be more clearly seen from the
Figure 5.4c and the error plot in Figure 5.4. The estimates corresponds to an
estimate noise covariance of Rest = 0.01 and plant dynamics noise Qest = 10.
The predictive system, despite getting a comparatively noisy observation, is able
to predict the states of the system accurately. Comparing the states from both
the panels, in Figure 5.4 and the error plots from Figure5.4c, the performance
of the neural implementation is comparable with the empirical simulation of the
Kalman filter.

There are a few differences between the results of the two implementations as
seen in Figure 5.4. Although the dynamics of the state propagation is similar, it
is important to note that there is additional noise in the neural implementation
compared to the numerical implementation. This is due to the fact that the
estimation system is running in spiking neurons, which has an inherently noisy
representation due to the use of spikes. This comes from respecting the biological

57

Figure 5.4: State propagation and estimation of the filter: The left col-
umn is the numerical simulation and the right column is the neural simulation.
The figure shows the ground truth and the estimates across time. The control
input is given in the bottom panel

constraints of the working of the mechanism and further helps us induce the
robustness of the model against measurement noise. The slight difference in
the beginning of the trial (about 0.2 sec), corresponds to the transient period
in the neural simulation (initial time required for the simulation to begin), and
hence the control is turned on only after the transient period is over. Within this
period the initialized observation catches up with the observation comparatively
quickly.

5.3.1 Performance while varying measurement uncertain-
ties

One requirement of the model is to combine predictions with measurements.
The system’s estimate should consider the uncertainty in the prediction and
the measurements and the Kalman gain is the optimal weighting based on the
relevant noise covariances. In this section, we test the system for this property
by varying the process noise covariances, and the measurement noise covari-
ances across different runs. The resulting position estimates are shown in the
Figure 5.5 and the Root Mean Square Error(RMSE) is calculated for the noise
covariance sweep, given in Fig.5.6.

The top panel (both Figure 5.5 and Figure 5.6), shows how the estimate
changes with an increase in Qest dynamics covariance with a constant measure-
ment covariance, and the bottom panels, shows how the model estimate changes

58

F
ig
u
re

5.
5:

P
e
rf
o
rm

a
n
c
e
o
f
th

e
n
e
u
ra

l
im

p
le
m
e
n
ta

ti
o
n

o
f
K
a
lm

a
n

fi
lt
e
r:

T
h
e
to
p
p
a
n
el

sh
ow

s
th
e
p
er
fo
rm

a
n
ce

o
f
th
e

m
o
d
el

w
it
h
a
co
n
st
an

t
m
ea
su
re
m
en
t
n
oi
se

(R
e
s
t
=

0
.0
1
)
w
h
il
e
ch
a
n
g
in
g
Q

e
s
t
a
n
d
th
e
b
o
tt
o
m

p
a
n
el

h
a
s
a
co
n
st
a
n
t
d
y
n
a
m
ic

n
oi
se

(Q
e
s
t
=
10
)
w
h
il
e
va
ry
in
g
R

e
s
t
.
T
h
e
st
a
te

es
ti
m
a
ti
o
n
is

sm
o
o
th
er

a
n
d
cl
o
se
r
to

g
ro
u
n
d
tr
u
th

w
h
en

b
o
th

th
e
u
n
ce
rt
a
in
ti
es

ar
e
lo
w
.
T
h
e
fi
lt
er

re
li
es

on
m
ea
su
re
m
en
t
m
o
re

w
it
h
lo
w
er

R
e
s
t
a
n
d
re
li
es

m
o
re

w
it
h
th
e
p
re
d
ic
ti
o
n
w
h
en

Q
e
s
t
is

lo
w
.

59

when the Rest measurement covariance is increased but the dynamic covariance
is held constant. The increase of Qest is tested for over the range of [0-1000]
while the Rest is varied in the range of [0-1], since Qest affects the derivative
and the noise is scaled by a factor of dt. The RMSE is calculated for both the
position and velocity after the transient period of 200ms to prevent the initial
dynamics of the neurons and initiation error affecting the RMSE. Hence the
RMSE error reported here is a quantitative measure of the steady state error.

The 2D position plot in Figure 5.5, with the increase in Qest in the top
panel, the estimate relies on the measurement more. This is also evident from
the increasing trend in RMSE error in Figure 5.6. The “unit mass” nature of
the dynamics is lost and the estimate looks increasingly noisy. In the bottom
panel, the Rest is increased, indicating high measurement uncertainty. Thus the
calculated gains drive the estimate to rely less on the measurements and rely
more on the prediction. Especially, given that the position estimate is initialized
at zero and the estimate quickly converging towards the measurements supports
this inference further. As shown in the bottom panel in Figure 5.5, the system
has an increased reliance on the incorrect estimate initialization, indicating a
stark deviation from the ground truth. It is also interesting to point out that
since the velocity estimate is closer to the ground truth, the estimated heading
direction is in the same direction as the ground truth. Additionally, the error
gradually diminishes, pushing the estimate towards the ground truth eventually.

The trends in the performance of the neural implementation of Kalman filter
can be seen in Figure 5.6. With an increase in either noise covariance, Qest and
Rest, the RMSE error increases. There is also a considerable error difference
in position compared with the RMSE error in velocity. This is caused by three
different factors. Firstly, the initialization of the position is farther from the
ground truth than the velocity, resulting in slow convergence of the estimate in
position opposed to the velocity. Secondly, the Rn is a chosen constant of 0.01
for both position and velocity, where the magnitude of position and velocity is
different (see Figure 5.4. Finally, the position vector is more sensitive to errors,
since the incorrect estimate in velocity also adds into the position estimate by
virtue of the system dynamics.

We now have a neural implementation of the Kalman filter that works in ac-
cordance with our requirements. The filter can effectively handle measurement
noises, and optimally combines the prediction and the measurements based on
the proper calculation of gains from the estimate process and measurement noise
covariances. From our previous discussion of the features of our prediction and
perception system, we have to implement the additional features namely:

• State estimation under absence of measurements

• Online estimates driving the control in place of the ground truth complet-
ing the feedback loop

• The prediction system actively driving the perception system, and hence
facilitating adaptation

60

Figure 5.6: RMSE error for different noise covariances: The top panel
shows the error change with the increase in Qest with a constant measurement
covariance Rest = 0.01 , and the bottom panel, shows error increase with in-
crease in Rest and a conostant Qest = 10. The left panel shows the positional
error and the right shows the velocity error.

Figure 5.7: Estimate errors and covariances: The left column shows the
error in the numerical implementation while the right column shows the error in
the neural implementation. The top two panels shows the position and velocity
errors in the estimate while the third shows the estimate covariance. The two
implementations are comparable in their performances.

61

We incorporate the Kalman filter implementation in our first iteration of the
sensorimotor control model. This way, we can test out the prediction system
as well as incorporate the adaptation mechanisms thereby building towards a
more biological plausible model.

5.4 Linear Sensorimotor control model

The sensory-motor control system deals with two streams of information to per-
ceive the hand or the end-effector states – vision and proprioception. These two
sensory inputs help the system estimate the states required for controlling the
arm to accomplish tasks in the operational space. In the context of reaching,
visual observation helps deduce target information, hand location, and hand ve-
locity necessary for planning a reach. Proprioception joint angles and rotational
velocities allow inference of joint locations and the transformation of end-effector
forces to arm torques to follow a specified trajectory. The optimal combination
of visual and proprioceptive estimates enables the brain to perceive the hand’s
location, which ultimately aids in control of arm reaching. To realize the entire
system and incorporate biological mechanisms for prediction, perception, and
adaptation, evaluating the model’s behavioural implications becomes crucial.
Hence, to explore the model’s behavioural capability, we test its performance
during the canonical behaviours of visuomotor rotation (VMR).

5.4.1 The Visuomotor Rotation paradigm

As discussed earlier (in Section 3.1.4), the task of visuomotor rotation (or VMR)
is a familiar rotational perturbation experiment where a transformation is in-
troduced in the visual feedback of the hand location. Generally, this is either
induced by having the subject wear a distortion prism while reaching for differ-
ent targets, or by blocking the view of the hand and providing a altered cursor
feedback representing the hand (See Figure 5.8). Initially, during the baseline
reaches, there is no distortion, and hence the visual and proprioceptive feed-
back are in agreement with each other. Hence the reaches for the targets are
typical and generally head straight towards the target. After the baseline expo-
sure, the visual consequence of the hand movement is rotated about an origin
in the task space, leaving the proprioceptive feedback unperturbed. As soon
the subject is exposed to this visual perturbation, there arises an incongruency
between the visual and proprioceptive inference of the hand location. Subjects,
while initially aiming at an offset created by directional error, within a few tri-
als compensate for this rotational transformation by changing their motor plan.
By the end of the exposure, subjects direct their hand to a different angle from
the origin, thereby moving the cursor straight towards the target. What’s more
interesting is that when this incongruency is removed, to make the feedback to
align with the actual arm location, subjects aim at the compensated angle. Now
this learned compensation has to be unlearned in the washout trials, to return
to the original perception and task performance.

62

Figure 5.8: Visuomotor rotation experiment: (a) Experimental setup where
the visual feedback is provided on the screen, blocking the actual view of the
hand. (b) The baseline, initial exposure and after learning washout trials demon-
strating adaptation to the visuomotor rotation of the visual feedback. The solid
line shows the path of the cursor while the dashed line represents the path of
the hand.

This experimental paradigm of VMR particularly aligns with our goal of
capturing the intricacies of the multiple perception and adaptive mechanisms
of the sensory-motor control system. Consider the architecture of the sensory
motor control system as described in the Figure 5.9. Before the introduction
of the rotation, the proprioceptive estimate, the visual estimate and the hand
estimate are all aligned. When the combined hand estimate drives the system,
it completes the feedback loop driving the arm to move to the desired location.
This system on its own helps us delineate the two perceptive systems and a
combined hand estimate, encapsulating the closed-loop sensory perception and
control system. Once the transformation is introduced, the estimates become
misaligned triggering mechanisms at multiple levels. Firstly, the visual predic-
tive system now needs to predict differently. For the same forces applied to the
arm, the visual feedback behaves differently from the previous experience and
hence the predictive systems should anticipate this new change. Secondly, in
many of the VMR experiments, the feedback of the cursor’s position is made
invisible from the start of the reach and is provided at the end of the reach.
The system observes that even when the supposed hand location is on the tar-
get, the cursor is misaligned from the target. To perform the task successfully,
the control system needs to learn the transformation of the movement vector
such that the cursor lands on the target (and not the hand). Furthermore, in
the control of the limb in real world, is a Jacobian that maps the joint angles
from the proprioceptive estimate to provide the hand estimate. Since there is a
misalignment, we also need to learn this kinematic transformation to perceive
our hand better. These various adaptations are driven by different sources of
errors, and changes in perception. This variety of modifications of prediction
makes the VMR experiment a wonderful candidate to provide insights into the
sensorimotor control in the brain.

While the behaviour itself is rich and informative about adaptation in the

63

Figure 5.9: Linear sensorimotor control model: The hand provides the
visual and proprioceptive observations. The visual predictive systems provide
a visual estimate (red) and the proprioceptive predictive system provides a
proprioceptive estimate (blue). CB corresponds to the cerebellum and PMd
corresponds to the Pre-motor cortex. A combined movement vector is learned
from the hand heading direction and correction realized from the end point
error. The controller also provides rhe efference copy to the predictive systems.

64

sensorimotor control system, it also contributes towards the increasing complex-
ity of the the model. This suggests that some assumptions we need to make
during the building of the first iteration. In this preliminary model, we re-
move the complexity of working in different coordinate systems for the multiple
modalities (joint and Cartesian coordinates), and hence we have approximated
the arm dynamics to a unit mass linear subsystem. This relaxation is also con-
sistent with our previous filter implementation allowing us to incorporate the
Kalman filter model for the prediction of the dynamics. We also remove the
adaptive prediction that learns to dynamically predict differently through the
course of inaccurate observations. The prediction systems will have a constant
state transition dynamics. To compensate for this, and to capture the result-
ing behaviour, we shall have an increased reliance on the observations, which
forces the estimate to be more closer to the observations the predictions. It is
necessary to emphasize, that these assumptions are for the first iteration of the
model, and we remove them to realize a more accurate model in a subsequent
chapter. For now, we structure the sensorimotor control system to allow the
implementation of a neural realization of the prediction, perception and adap-
tation mechanisms to exhibit the visuomotor rotation behaviour and to have a
biologically plausible working model.

5.4.2 Experimental setup

The environment in our experiment consists of a unit mass system that moves on
a frictionless 2D surface, along the transverse plane and perpendicular to gravity.
The mass is made to move along the surface by applying forces to reach for the
targets. The simulation is run with a dt of 1ms. Proprioceptive observation is
measured unperturbed from visual observations or rotated whenever necessary.
The rotation is made at a angle of 45 degrees in a counter clockwise direction
with respect to the origin. The targets appear at 8 directions around a unit circle
in a pseudo-random order, and the hand is expected to make center-out reaches
to these targets. A single trial is defined as the movement of the cursor, that
represents the visual feedback, from the origin to the target. The reach towards
the origin does not count towards the trial for the behaviour. A minimum jerk
trajectory is generated so that mass lands on the target within 0.5 s. The trial
ends when either the cursor lands within a position and velocity threshold or
the reach time exceeds a maximum time of 1 s (reach time 0.5 s + wait time
0.5 sec). The visual feedback is provided only at the beginning and the end of
the reach and is made invisible during the majority of the reach.

There are three stages to the experiment. The first 16 trials correspond to the
baseline reach. During this time the visual feedback coincides with the ground
truth hand location and no rotation is introduced. After the baseline stage and
the initial exposure, the visuomotor rotation is introduced with a sequence of
80 trials. Following this, during the washout stage, the visual perturbation is
removed constituting another batch of 80 trials. The heading direction for each
of the trials is calculated when the cursor feedback appears at the end of the
reach. The time course of the change of heading direction for each of the reaches

65

is monitored across the stages to study the extent of adaptation.
The visual and proprioceptive observations are provided with the x-y posi-

tion and velocity of the mass with noise as described by the Qn and Rn for each
modality. This measurement is sent to the spiking neuron model of the sensory
motor control system, which gives the final movement vector that is fed back
into the simulation.

5.4.3 Model description and function

To build an initial architecture of the sensory-motor control system, we imple-
ment individual prediction, perception and adaptation systems. The pictorial
representation of the model is given in Figure.5.9. To incorporate visual and
proprioceptive estimations, the model has two perceptual systems – vision and
proprioception. The plant provides two sensory observations, yprop and yvision,
and we implement two separate neural Kalman filters for estimating the states
through each of the individual modalities. The filters generate predictions based
on the built-in plant dynamics and the efference copy of the forces applied on
the system u, and update the predictions based on noisy measurements. The
estimate covariance and the Kalman gains are calculated based on the Qest and
Rest for each sensory modality. Each of the neural spiking Kalman filters is
identical to the one described in the Section 5.1.

The estimates obtained from the two modalities are combined together to
compute the combined estimate of the hand state. This combination is per-
formed by weighting the sensory estimates with the relevant covariances of vi-
sion and proprioception systems. The resulting combined estimate of the hand
is given to the controller. The controller uses a proportional derivative control
to generate the movement vector that drives the arm along a minimum jerk tra-
jectory to the target. As discussed earlier, in this simplified preliminary model
of the sensorimotor control system, the only adaptation is the adaptation of the
movement vector to follow a trajectory to compensate for the introduced rota-
tion. This is learned by the PES learning rule, with hand estimates as the input
feature and cursor incongruency error driving the learning. With the combined
prediction, perception, and adaptation mechanisms realized in a spiking neural
framework, this model describes our first iteration of a biologically plausible
sensorimotor control system.

5.4.4 Results

The system is simulated for the VMR task and made to reach for the baseline,
exposure and washout stages, so as to monitor the hand’s heading direction and
its change with the introduction of rotation.

Single reach results

Let us consider the working of the sensorimotor control model with respect to a
single trial or a repeated center-out reaches. In Figure 5.9, the Kalman filter for

66

Figure 5.10: Observations vs Estimates: The visual (red) and proprioceptive
(blue) observations and estimate are shown before and after the introduction
of visuomotor rotation. (a) Before rotation all the estimates lie on top of each
other during the entire trial(b) After rotation, the estimate of the vision splits
after the cursor feedback. The hand estimate (green) lies in between the visual
and proprioceptive estimates.

the proprioceptive system predicts the propagation of the system state based
on the proprioceptive input. The Kalman filter for the visual predictive system
predicts the position and velocity of the cursor visual feedback that represent
the hand position and velocity. Similar to the previous results of the filter,
in a single trial, accurate estimates are obtained that lie close to the ground
truth of the observation (see Figure 5.10). As observed in the experimental
behaviour, the proprioceptive, visual and resulting combined hand estimates of
the model lies on top of each other during the baseline reaches, when there is no
rotation involved. The full feedback of the cursor is available, and the estimation
relies both on the prediction and the correction from the noisy state observation
throughout the entire trial. During the exposure stage of the experiment, where
perturbations are involved, the cursor feedback is made invisible and is provided
only at the end of the reach. When the observations are not available, the error
populations are inhibited so that the measurement errors are not added to the
system and does not drive any of the learning mechanisms.

During the reach where visual feedback is unavailable, the estimation system
completely relies on the prediction until the cursor is observed. Meanwhile the
proprioceptive estimate uses both prediction and the sensory measurements, as
they are always available. As shown in Figure 5.10b, we can observe that the
visual estimate (in red) follows the initial observation of the cursor’s movement,
and the proprioceptive estimate (in blue) follows the actual hand’s ground truth
position. In accordance with the expected behaviour, it can also be seen that
the perceived hand estimate lies in between the visual estimate and the pro-
prioceptive estimate. This corresponds to the subject’s perception of the hand
location, somewhere in between the visual estimate and the proprioceptive es-
timate, depending upon the relative covariances of the individual modalities.

67

Once the cursor feedback is available, it can also be seen that the visual es-
timate is corrected for the new misaligned cursor observation. This in-turn
changes the perceived hand’s position and velocity estimate. Hence, within a
single trial it is evident that the biological prediction-perception system works
in harmony in generating the expected behaviour as observed in experimental
results.

Across trials

The Figure 5.11 shows the trial-by-trial progression of the directional error made
by the model. The dotted black line shows the rotational transformation intro-
duced in the experiment. The first 16 trials are the baseline trials, where the
visuomotor rotation is absent and the cursor feedback is available throughout
the trail. During these trials, all the perceptual estimates are in congruence
with each other, and the directional error is almost close to 0. From the figure,
it is clear that the movement trajectories are fairly straight from the origin to
the target. This describes an typical reach made with complete visual feedback.

Once the rotation is introduced in the initial exposure stage, we see a marked
difference in the directional error in the experimental data. This behaviour is
also reproduced by the model, during the rotation block of trials, where the
initial directional error is high and the cursor hits the target by an offset. When
the cursor feedback is available and the visual estimate is corrected for, we
can see highly curved trajectories similar to the experimental observation. This
misalignment in the cursor drives the controller to learn a new movement vector
as a function of the hand estimate.

With multiple trials of rotational exposure, the model compensates for di-
rectional error by changing the trajectory and learning the additional movement
vector as a function of the hand location over the course of the trials. The model
exemplifies a similar rate of adaptation for the reaches similar as found in the
human experimental data 5.12. Furthermore, the model’s output closely aligns
with the actual trajectories from the primate experiments as well 5.11. At the
end of the initial exposure stage, after 80 trials, the directional error is fully
compensated, and the hand’s straight path is restored. This behaviour of the
model is in agreement with the trajectories from the data.

After the exposure stage, a washout stage is introduced. During this stage
the rotational elevation is removed and the visual feedback is now once again
made to align with the proprioceptive measurements. Despite the measure-
ments replicating the original congruence of the feedback in the baseline stage,
we observe directional errors in the opposite direction to the experienced per-
turbation. This behaviour of the model shows that the sensory motor system
has adapted to this transformation and the controller has learned to move the
arm to manage the previously seen perturbations. The trend of the directional
error across time is also very similar to the experimental data. By the end of
the washout segment the model has completely unlearned the rotation and the
trajectory is very similar to the ones that are observed during the baseline trials.

This initial implementation has now laid the foundation for a biologically

68

Figure 5.11: Trajectory comparisons: Experimental (top) and model (bot-
tom) data during visuomotor rotation: (a) the initial baseline trials without
any rotation; (b) early adaptation with onset of rotation at 30o CCW direction;
(c) later stage of adaptation to rotation (d) washout trials when the rotation is
returned to 0o.

Figure 5.12: Behaviour comparison: Time course of directional error at
threshold of the model’s reaches (blue) compared against experimental data
(red) (reproduced from the graphs from [Mazzoni and Krakauer, 2006]. The
black line shows the angle of rotation of the cursor with respect to the hand
location.

69

plausible framework for the prediction, perception and the adaptation systems.
This model has satisfied many of the requirements that we laid out in the be-
ginning for the sensorimotor system. Each of the prediction, perception and
adaptive mechanisms are realized in spiking neural networks and each systems
is modular in structure potentially helping us draw anatomical significance (see
Figure 5.9). Furthermore, by reproducing the behaviour, the model is also capa-
ble of adapting to this complex sensory misalignment and is able to compensate
for it in a similar fashion to that observed in the experimental data of both
primates and human trials. This connection of behaviour, mechanisms, biolog-
ical plausibility and anatomical significance, collectively establishes an initial,
successful modelling of a biological sensory motor control system.

5.5 Limitations of a linear system model

The model developed in the previous section is able to adapt to sensory per-
turbation by learning to aim for a different target as the cursor appeared at a
different location than predicted by the visual estimation system. Although the
model is able to replicate the correction for the directional error over the trials,
there are a few improvements that can be made to more realistically model the
sensory motor prediction systems.

1. Correcting for the visual change: As soon as the rotational bias is
introduced with repeated trials of incorrect visual feedback, the estimation
system should predict for the change in dynamics. There is evidence for
the cerebellum updating the internal model with experience of errors in
predicting the consequences of the command [Imamizu and Kawato, 2009]
[Wolpert et al., 1998b]. However, the visual prediction system here does
not evolve over time. The system dynamics are baked into the synapses
to help it predict for the given unit mass system, while the brain is known
for adapting to various dynamic systems.

2. Proper prediction of the hand estimate: By trusting the incoming
measurements more than the internal prediction we were able to get away
with better visual estimates. In reality, however, we need to have a visual
predictive system, which much predict the cursor’s location in accordance
with the previously observed dynamics of the cursor movement, in the
absence of observations. This will provide a visual estimate away from
the proprioceptive estimate as observed in the experimental behaviours.

3. Accommodate for nonlinearity: On top of continuously evolving to
model the plant dynamics, the motor control system handles nonlineari-
ties. The dynamics of the arm, any additional tool, other sensor feedback
distortions often introduces nonlinearities. As a result, our prediction sys-
tems should also handle nonlinear dynamics and not merely work with
linear approximation to the plant dynamics.

70

4. Working with multiple modalities: The visual and the proprioceptive
streams of information are sensing different quantities, vision gives infor-
mation of a virtual “end-effector” to control in the task space, while the
proprioception system provides angular position and angular velocities in
the joint angle space. The ideal hand states are then inferred by com-
bining these two estimates. Hence, for proprioception we need to switch
from a Cartesian space to a joint angle representation and infer the hand
location by learning a Jacobian with the help of the measurements. In
fact this forms the basis of another kinematic adaptation that is indeed
unavoidable for this behavioural task

5. Further anatomical parallels: Although the above model had some
anatomical significance, improvements can be made to detail the involve-
ment of some structures. These contributions are missed out in the initial
assumptions made for this first iteration. By reinstating those complexi-
ties, more cortical structures can be replicated, adding to the reproduction
of the anatomical structure in the overall sensorimotor control system.

To incorporate the above improvements, in the following chapter we dis-
cuss a nonlinear adaptive filter and its performance from a perspective of the
sensorimotor control system.

71

Chapter 6

Neural Adaptive Filter

In the previous chapter, we delved into the initial iteration of the sensory-motor
control model. We modelled the system’s prediction, perception, and adaptation
mechanisms within a linear framework. This model offered valuable insights into
the fundamental operations of the sensorimotor control system by simulating
the motor pathways and identifying the states that drive adaptation. While the
linear model was effective in emulating the adaptive behaviour, it struggled to
capture the diverse dynamics and nonlinear characteristics found in biological
systems.

In modelling the sensory motor control system, addressing nonlinearities
is essential at many levels. For instance, our limbs have inherent nonlinear
biomechanics. This is evident from phenomena such as, the force-length and
force-velocity relationships of muscles, which deviate from simple linear predic-
tions [Shadmehr and Wise, 2004]. Furthermore, the stretch reflex, a fundamen-
tal component of motor control, exhibits pronounced nonlinearities, especially
when muscles operate at different lengths or speeds [Nichols and Houk, 1976].
The intricate interactions among muscles, tendons, and bones aside, merely the
physics of controlling a multi-link arm is intrinsically nonlinear. In addition,
different modalities of observations often occur in different coordinate spaces.
Thus, it is clear that our system must be adept at prediction, planning, and
control within the nonlinear realm. In this context, relying on linear models
would be an oversimplification and can lead to significant inaccuracies in un-
derstanding the nuances of motor control. Therefore, a nonlinear approach is
not just preferable, it is imperative for a comprehensive understanding of motor
control dynamics.

Furthermore, the adaptability of the motor control system, a cornerstone of
its functionality, was not adequately captured in the preceding model. The sen-
sorimotor control system, at its core, is a dynamic entity that constantly inter-
acts with an ever-evolving environment. As individuals grow and age, the system
recalibrates its prediction and control strategies in response to changes in limb
lengths and muscular strength. Additionally, on more immediate timescales, it
must swiftly adjust to different dynamics, be it movement in water or kinematic

72

alterations due to perceptual distortions such as mirror reflections. Sole reliance
on sensory feedback during immediate distortions could easily disorient and dis-
rupt motor actions. Yet, the system’s predictive mechanism intervenes, rapidly
adapting to the modified sensory feedback and fine-tuning motor commands to
guarantee precise and coordinated actions. A static model, regardless of its so-
phistication, would become obsolete in the face of such variability. Thus, it is
evident that the motor control system’s intricate nature necessitates an approach
that holistically embodies both nonlinearity and adaptability, highlighting the
pressing need for an advanced modeling technique.

This chapter introduces the Neural Adaptive Filter (NAF), a novel nonlin-
ear filtering method designed to address the shortcomings of the linear model,
providing a more comprehensive representation of the sensory-motor control
system. The NAF mechanism is tailored to predict the nonlinear system in
real-time and exerts control over the plant in a manner reminiscent of biological
processes. We will first delve into its workings and its integration within the
NEF framework. Starting with a basic nonlinear system, we will systematically
explore the filter’s performance as we introduce increasing complexities, culmi-
nating in a detailed modeling of a biologically accurate sensory-motor control
system.

In light of the above discussions, the filter design in this chapter adheres to
specific constraints:

1. Nonlinear Prediction and Control: The filter is designed to predict
and help control nonlinear systems.

2. Real time stable control: The filter processes incoming observations
and controls across time. It adapts to their interactions in real-time main-
taining stable control. Even when predictions are initially poor, the filter
ensures consistent control until better accuracy is achieved.

3. Quick Convergence under Uncertainty: The filter’s ability to quickly
converge, especially under ambiguous conditions, is vital—since prolonged
convergence might compromise control stability.

4. Recurrent Prediction: In instances where observations are sparse, the
filter leverages its previously acquired model to generate uninterrupted
predictions.

5. Generalized Framework: The brain’s adaptability to diverse nonlin-
ear systems necessitates a versatile filter capable of learning a range of
nonlinear dynamics.

6. Biological Plausibility: The design should be rooted in plausible bio-
logical processes, ensuring its relevance and applicability to understanding
brain mechanisms.

73

6.1 Method

Having established the critical constraints and requirements for our filter design,
we now turn our attention to the mathematical underpinnings that will drive
its design. The foundation of our approach lies in accurately modeling the
nonlinear dynamics inherent to the sensory-motor control system.

Consider a non-linear dynamics of the form:

ẋ = f(x, u) (6.1)

where x is the state of the system and u is the control input. In reality,
the overall nonlinear dynamics can be a combination of any multiple nonlinear
functions of the given states of the system and the control input. For example:

ẍ = a0f1(ẋ) + a1f2(x) + a2f3(u) + ...+ anfn(x, ẋ...u) (6.2)

Here an are the individual weights of the different nonlinear functions fn that
describes the dynamics of the system. Assuming, the control input to the system
is known, let us consider an estimator of the same form, given by:

¨̂x = â0f1(ẋ) + â1f2(x) + â2f3(u) + ...+ ânfn(x, ẋ...u) (6.3)

Similarly, the ân are the estimated weights of the different nonlinear func-
tions of the input states and its derivatives. Suppose, we do have access to
the actual functions fn and with the help of the observations we can calculate
the different fn(x, ẋ.., u), then the dynamics of this nonlinear estimator can be
rewritten in a state space representation. We linearly split the terms into prod-
ucts of a set of constant parameters and a set of known functions of the system
states and the control input.

[
˙̂x
¨̂x

]
=

[
0 1 0 0 · · · 0
0 â0 â1 â2 · · · ân

]


ẋ
f1(ẋ)
f2(x)
f3(u)

...
fn(x, u)


(6.4)

˙̂x = θ̂ . Z(f(x, ẋ...u)) (6.5)

where x ∈ Rn×1 is the state vector comprised of x, ẋ, θ ∈ Rn×d is an un-
known estimated matrix of constant parameters and Z(f(x, ẋ...u)) ∈ Rd×1 is a
known vector containing functions of the estimator states and the control input,
where n is the number of estimator states and d is the number of basis func-
tions. Note that this formulation allows for multiple interacting x’s in x. The
parameters θ and the functional bases Z(x, u) would have corresponding entries
in the columns. By comparison, the actual state dynamics can be rewritten as:

ẋ = θ . Z(f(x, ẋ...u)) (6.6)

74

Now, the error ε is defined as the difference between the actual and the
estimated system, given by:

ε = x− x̂ (6.7)

When the estimated parameter matrix θ̂ is equal to the actual system’s θ,
then we have an ideal estimator. With this formulation, the estimation becomes
a problem of regression, i.e., of finding the linear combination of the nonlinear
functions of states and control. Again, it is important to note that until now
the estimator is a function of the states and its nonlinear functions.

The objective is to minimize the squared error:

J(θ̂) =
1

2
εT ε

=
1

2
(x− x̂)T (x− x̂)

To find the optimal theta, we can continue to update our parameters by:

θ̂∗ = argmin
θ̂

J(θ̂)

This can be solved using gradient descent or any optimization algorithm on-the-
fly from the observations. The update rule for gradient descent is:

θ̂k+1 = θ̂k − α∇J(θ̂k) (6.8)

where α is the learning rate and ∇J(θ̂k) is the gradient of the cost function

with respect to θ̂ at iteration ‘k’. With more observations, we can continue to
update our θ.

To implement the suggested optimal estimator, we face two fundamental
challenges. First, our initial approach assumes the availability of observation
derivatives. However, in practice we typically have access only to the state
information, denoted as x, and not its derivatives. The second challenge pertains
to the details of the nonlinear functions. While we might possess some prior
knowledge about the choice of dynamics, the exact list of functions, fn, that
capture the system’s behaviour is unknown. A potential solution might involve
selecting a functional basis tailored to a specific system of choice based on
prior knowledge. However, this approach is untenable for our purposes, as our
estimator must possess the flexibility to adapt and learn new nonlinear systems.
Given the mutable nature of the nonlinear dynamics that we aim to capture,
the system could be described by a potentially infinite set of nonlinear functions
of the system states and control. Consequently, to determine the parameters for
optimal estimation, the function set Z(x̂, u) must be broad and adaptive enough
to model the system dynamics faithfully. Addressing these challenges is crucial
for the creation of an effective filter to predict evolving nonlinear dynamics.
Solutions to these issues will be explored in the subsequent sections.

75

6.1.1 Moving to the Legendre space

We need to represent the observations and control inputs through time and find
a workaround to obtain the state derivatives. With this goal, the Legendre rep-
resentation can help us in approximate the derivatives and functions of the state.
Specifically, the Legendre Delay Network (refer to section 2.4) orthogonalizes
the continuous-time history of its input signal, x(t) ∈ R, across a sliding window
of length θ ∈ R > 0 decomposing into its q constituent Legendre polynomial
coefficients m.

ṁ(t) = Am(t) +Bx(t) (6.9)

A =


−v0 −v0 · · · −v0
v1 0 · · · 0

0
. . .

. . .
...

0 0 vq−1 0

 , B =


v0
0
...
0

 , (6.10)

The state m ∈ Rq represents more information than just the input θ seconds
ago. It represents the state at every point in time up to θ seconds. In fact, m

represents the function f[t−θ,t]

(
θ′

θ

)
≈ x (t′ − θ′) in the Legendre basis

x (t′ − θ′) ≈ f[t−θ,t]

(
θ′

θ

)
=

q∑
i=1

P̃i

(
θ′

θ

)
mi(t) . (6.11)

This network implements an optimal recurrent neural network remembering
a slice of the past, or a so called “reservoir”. By representing the θ window of the
observation and control, we split the signal into its corresponding polynomial
entities, and from that can compute its time derivatives.

mt = [m
[1]
t (x[t′−θ′]),m

[2]
t (x[t′−θ′]), ...,m

[q]
t (x[t′−θ′])] (6.12)

From the polynomial approximates, we can decode the state x at any given
point t within the θ window using a simple linear combination:

xt ≈ Cmt (6.13)

Taking the derivative on both sides,

d

dt
xt ≈ C

d

dt
mt (6.14)

d

dt
xt ≈ C(Amt +Bxt) (6.15)

∆x ≈ x(t)− x(t−∆t)

∆t
≈

C[τ=t]m− C[τ=t−∆t]m

∆t
(6.16)

76

Hence, with the help of the collective polynomial coefficients mt we now have
an approximation of the time derivatives of the input signal x. Essentially,
the memory vector mt not only has the compressed representation of the sig-
nal across the window to compute x, but also contains the approximate time
derivatives that we require. Therefore, with an appropriate choice of decoders,
it is possible to linearly decode x + ∆x, the next state ahead in time. Hence,
projecting both the states as well as the control signal into the Legendre space,
we get:

Mt = [mt(x) |mt(u)] ≈ [x, ẋ, ..., u, u̇] (6.17)

˙̂x ≈ θ . Z[f(Mt(x, u))] (6.18)

By moving to the Legendre representation, we have essentially created a
method to address the challenge of obtaining the derivatives. As the number
of Legendre polynomials in M increases, we get closer to the true derivatives.
Now the remaining challenge is to make sure Z(M) is sufficiently expressive
enough to capture the nonlinearities in state propagation, and can support the
continuous learning of the parameters to move towards an ideal estimator.

6.1.2 Neural Implementation

The focal challenge now is to deduce a nonlinear function of the input that
mirrors the dynamics of the observed system. The NEF stands out as an optimal
solution for this task. Our previous forays into the NEF framework underscored
its ability to represent and decode nonlinear state transformations. Moving
to the neuronal space brings about a distinctive advantage. Earlier, selecting
the number of basis functions necessitated specific knowledge of the dynamics
being approximated. A more advantageous approach would bypass this need,
and employ a diverse set of simple basis functions to comprehensively cover the
state space, ensuring any relevant function can be approximated. The transition
into the neuronal space equips us with a means of approximating an extensive
array of functions with precision.

The goal here is to learn a set of decoders d that can accurately approximate
the actual θ of our system dynamics, such that the prediction x̂ is close to the
the x, eventually driving the error ε to zero. The learning rule for updating the
learned parameters θ̂, is responsible for minimizing the approximation error.
The neuronal activation contains the nonlinear functions of the state of the
system, given by G(M). A set of decoders dt can be generated to learn the
parameters θ to predicts our x̂.

at = G (Mt(x, ẋ, u)) (6.19)

x̂t+∆t = dtat (6.20)

We here use the PES learning rule (see section NEF) for learning the appro-
priate decoder that would give us the ideal ˙̂x. This is comparable to a stochastic

77

gradient descent, but operating iteratively online on a single sample available in-
stantaneously. As we compare the current estimate and available observations,
we then update the weights using the following learning rule:

∆dt = κϵτaτ (6.21)

ϵt = xt − x̂t (6.22)

Where κ is a positive constant learning rate, ϵτ is the error at the current
instance τ . Given we use sufficient number of basis functions and we sweep
though a rich enough sample space, we can see that the parameter regressor
matrix for the approximate functions of the derivatives we sought in the first
place:

˙̂x ≈ θ . Z[f(Mt(x, u))] (6.23)

which is a close approximate of the ideal estimator.
It is important to note that the estimator directly uses the observation during

the learning of the parameters θ. Once these parameters are learnt, the esti-
mated state x̂ can be recurrently sent to the system where initially the ground
truth of the system states were sent. This way the estimator can predict on its
own from its previous state prediction in the absence of observations.

6.2 Architecture of the Neural Adaptive Filter
(NAF)

Figure 6.1 illustrates the architecture of the filter. System state observations
are denoted by z, while the system’s state estimate is represented as x̂. Both
the instantaneous observation z and the previous estimate x̂ are input into the
‘ctxt’ or selective context population. This population can choose to estimate
the current state either from the observation or the previous estimate. When
observations are available, each state z is projected into the Legendre represen-
tation by its respective Legendre Delay Network: Qx. Concurrently, the delay
network Qu transfers the control input to the Legendre space, resulting in the
combined Legendre representation Mt, which encompasses the windowed rep-
resentations of both states and the control signal. The A and B matrices are
chosen based on the choice of window size θx, θu and the number of Legendre
polynomials qx and qu to represent the signal. Depending upon the system,
each state x and control u gets its own Q to represent the signal.

This combined representation, Mt, is then channeled into the ‘adapt’ pop-
ulation, where the interaction between states and control takes place. Here,
the signal is projected into a neural population, providing the representational
bases necessary to learn the system’s dynamics. The estimation process involves
comparing the estimate x̂ with the instantaneous observation z. The resulting
error, represented as ε in prior equations, guides the filter’s learning process to
refine the estimate x̂. It is crucial to clarify that the objective is state estima-
tion, not merely one-step-ahead prediction. While the terms “prediction” and

78

Figure 6.1: Neural Adaptive Filter’s Architecture: A schematic represen-
tation of the filter’s components and signal flow, where instantaneous obser-
vations and previous estimates guide state predictions. The z represents the
observed state and the x̂ represents the state estimate. The state and the con-
trol each has its own LDN given by Qx and Qu. A and B corresponds to the
matrices for building the LDN for a given window size and number of polyno-
mials. The opq lines, depicted in red, selectively control the learning process,
while the learning connections from the err population are highlighted in green.

79

“estimation” might seem synonymous, in an ideal setup, the ‘adapt’ population
derives the current state from the windowed observation representation. When
the current estimate x̂ aligns with the observation z, the ‘err’ population output
is zero.

The ‘opq’ component modulates the operations of the ‘ctxt’ and ‘err’ popu-
lations based on observation availability. When observations are present, ‘opq’
is set to 1, and when absent, it is 0. The value can range anywhere between 0
and 1. This mechanism enables the filter to determine the source of prediction
at any given moment. During training phases with available observations, the
system learns to predict from these observations, prompting the ‘ctxt’ popu-
lation to utilize z. Conversely, in testing phases or situations with uncertain
or missing observations, the previous state estimate x̂ is processed by Qx for
recursive prediction. The ‘opq’ also regulates the error population based on the
context, as learning from estimates alone isn’t ideal. The resulting estimate x̂
then controls the plant in real-time.

In essence, these components and interactions constitute the Neural Adap-
tive Filter (NAF).

While the NAF deals with complex nonlinear systems, it is important to reit-
erate the choice of the working mechanism, especially towards keeping feedback
delays in mind. The NAF with the inherent use of the Legendre representation,
captures a windowed representation of the relevant state variables. Even with a
case of a simple system working with feedback delay, when a snapshot represen-
tation through time isn’t available, any method that works with an assumption
of time alignment will fail to learn the dynamics. Thus, this choice of mecha-
nism can potentially help us deal with incoming state observations that are not
aligned in time. Initial tests with this scenario showed potential for handling
delays upto 20ms in the damped pendulum system where conventional control
failed to control the plant in a stable manner (results not shown). Although the
feature of handling delay is not explored in this thesis, and is a work for the
future, it is important to highlight that the NAF for now has not only added
value towards nonlinear estimation through comparable performance with its
predecessors but is also setup for potential improvements.

6.3 NAF Performance

In this section, we methodically evaluate the filter’s performance by progres-
sively introducing complexities in the test scenarios. Starting with the Lorenz
attractor—a classic nonlinear chaotic system without control input—we progress
to the damped pendulum system, where torque control comes into play. Cul-
minating our tests, we delve into a two-link arm system, observed in Cartesian
space but controlled by torque control. For each of these systems, we will discuss
the construction, training, and testing of the filter. Furthermore, to position our
Neural Adaptive Filter within a broader landscape of dynamical predictive sys-
tems, we will compare its performance against the state-of-the-art benchmarks
at the end of the section.

80

Figure 6.2: Lorenz Attractor in 3D Space: A visualization of the iconic
chaotic system, showcasing the intricate trajectory patterns in 3D space. Chosen
values: σ = 10, β = 8

3 and ρ = 28

6.3.1 Lorenz Attractor

Consider the Lorenz system, a canonical model of nonlinear dynamics derived
from simplified atmospheric convection models. Widely acknowledged in sci-
entific literature for its chaotic behaviour, the Lorenz attractor is sensitive to
initial conditions, leading to rapid divergence—a defining trait of chaotic non-
linear systems. Given its lack of a forcing function and this sensitivity, it serves
as an apt test-bed for evaluating the Neural Adaptive Filter. The dynamics of
the system is described by:

ẋ = σ(y − x) (6.24)

ẏ = x(ρ− z)− y (6.25)

ż = xy − βz (6.26)

Here the x, y, z are the states of our system and the coefficients σ, ρ and β
are fixed constants. Typical values of σ = 10, β = 8

3 and ρ = 28 are chosen for
the simulation. See the figure 6.2 for a visualization of this chaotic dynamics.

Method

We assessed the Neural Adaptive Filter’s performance by learning the Lorenz
system using a Python-developed simulation environment, with the filter im-
plemented using NEF. The simulation runs at a 1ms time-step, and states are

81

Figure 6.3: State flow diagram illustrating the Neural Adaptive Filter
(NAF) implementation for the Lorenz system: The diagram showcases
the observed system states [x, y, z] and the estimates [x̂, ŷ ẑ]. Each state is pro-
cessed through its respective Legendre Delay Network (LDN), resulting in three
distinct LDNs for each state. The ALDN and BLDN are the state transition
matrices for the LDN. For simplicity, the ‘opq’ object, which typically regulates
information flow, is hidden in this representation

82

normalized to [-1, 1] before input. We use spiking neurons to construct the
estimation network, enabling on-the-fly learning. A ‘seed’ parameter introduces
variability in initial conditions of both the dynamic system and the neural pop-
ulation.

The Lorenz system comprises three states. Each state is fed into its re-
spective Legendre Delay Network (LDN) to derive the Legendre polynomial
coefficients M (as depicted in Figure 6.3). These coefficients, which encapsulate
a windowed representation of the states, are then relayed to a neural ensemble.
This ensemble is tasked with discerning the nonlinear interactions inherent to
the states. The ‘ctxt’ node, governs the data relayed to the LDN node Qx,
facilitating the learning process. During the training phase, state observations
[x, y, z] are input into the network, allowing the ‘adapt’ population to discern
the relationship between input states to estimate [x̂, ŷ ẑ]. In the testing phase,
however, we shift the ‘ctxt’ node’s function to rely on the predictions from
previous timestep to estimate recursively.

Each Legendre Delay Network, responsible for projecting the input into a
higher-dimensional space, operates based on two hyper-parameters: the mem-
ory’s time window θ and the number of polynomials q encoding this window.
Given the three distinct states, we are presented with six hyperparameters. For
this study, both the window size and polynomial count were kept consistent
across all states. The selection of θ and q is contingent upon the specific sys-
tem under approximation. As a general guideline, dynamics with pronounced
high-frequency content necessitate a greater polynomial count for accurate ap-
proximation. For this implementation, we set θ = 0.05 seconds and q = 5 for
optimal performance.

The filter’s exposure to more observations prompts iterative refinements in
its estimates, drawing them closer to the actual ground truth. The overarching
objective is real-time system state observation, coupled with on-the-fly system
learning of the states. The training duration was set at 1500s (final 5 secs of
testing). Post-training, a testing signal is introduced gradually, reducing the
weight of observations and amplifying the weight of estimates, thereby facilitat-
ing recurrent estimation. This gradual transition ensures a seamless shift from
training to testing, as represented by:

context = (1− α) z + αx

err = (1− α)(z − x)

Here, α denotes the testing signal value. It is 0 during training and switched
to 1 during testing. This signal also modulates the error used for the learning
mechanism. The onset of the testing signal corresponds to a reduction in learn-
ing. It is important to note that this signal helps in the smooth transition of
the model to start using the estimations recurrently.

83

Results

The Figure 6.4 illustrates an instance of the Lorenz system’s state propagation
(dotted black) and the estimation from the NAF (in green). Initially, the error
from the filter is poor but diminishes over time, aligning closely with the ob-
servation by 1500s. It can be seen that when the testing is turned on gradually
and the system starts to recurrently predict using its previous estimate, it con-
tinues to stay close to the ground truth well into the training phase. Despite
the inherent noise in neuron approximations, after the observation is removed,
the learned filter’s estimates maintain a trajectory akin to the system states and
qualitatively continues to stay in a typical trajectory for a Lorenz system. This
trajectory evolution underscores the filter’s progressive learning of the system
dynamics (see Figure 6.6). Since the system is chaotic, with a slight offset in
the prediction, it eventually diverges from the actual ground truth.

In order to quantify the the error between the estimate and the ground truth
different metrics were considered and the Integral of Absolute Error (IAE) was
chosen to be an appropriate metric as it is widely used for evaluating nonlinear
systems. Traditional error metrics such as Root Mean Squared Error(RMSE)
can give misleading results because of its sensitivity to large errors and invari-
ance to error across time. More importantly for a chaotic system, it is essential
to know how far in time the estimate stayed close to the ground truth as time
progresses. IAE offers a holistic view of performance over time by accumulat-
ing the absolute error. This distinction and the choice of metric will be better
justified in the forthcoming section when control is involved. The IAE of the
prediction is calculated by:

IAE =

∫ T

0

|e(t)|dt (6.27)

IAEttt = (t >= thresh) (6.28)

where e(t) is the error between the estimate and ground truth. IAEttt is
the ‘time-to-threshold’ value which refers to the time in seconds required for
the integral absolute value to reach the chosen threshold. The threshold is a
fixed constant value that is arbitrarily chosen to indicate when the error hits a
specific limit for the given dynamics. In this scenario for the Lorenz system, a
threshold of 0.05 is used.

To clarify, for two signals that are highly different, this IAEttt value would be
closer to 0 indicating quick accumulation of error, and for two identical signals
IAEttt gets closer ∞, since the error is close to zero and hence it takes t → ∞
to indicate divergence.

Across multiple runs (N=5), the IAEttt for the three states were [1.405,
1.252, 1.293]seconds with standard deviations of [0.099, 0.067, 0.076]seconds.
For instance, this metric can be read as: the estimation error for state x reached
a threshold of 0.05 at 1.405 seconds once testing is turned on. Notably, this met-
ric quantifies the filter’s predictive power, rather than its performance during
observation. In fact, from Figure 6.4, there is very little to no error between

84

Figure 6.4: Time series plots of the three states of the Lorenz attractor,
x, y and z: The black dashed lines represent the ground truth (GT) of the
system, while the green lines depict the estimates from the Neural Adaptive
Filter. The plots provide a comparative view of the filter’s estimation accuracy
against the actual dynamics of the Lorenz system over time. The red line shows
the transition from observations being provided to pure prediction. Once the
observation is removed, the system is qualitatively similar, but drifts from the
GT. The states are normalized between [-1, 1]. A population of 1000 neurons
was used for the estimation.

85

Figure 6.5: Estimation error across time. The x-axis is the simulation time
and the y-axis shows the error. The three panels correspond to each of the
three states of the Lorenz Attractor. The estimation error reduces with more
learning.

the prediction and ground truth by the end of 1500s when the observation is
present. Furthermore, after training, reintroducing observations realign diver-
gent predictions with the filter’s pre-test accuracy (see Figure 6.7).

The plots highlights the effect of the Lorenz system’s inherent chaos. Mi-
nor prediction deviations amplify over time, causing increasing divergence from
the true value. This dynamic showcases the filter’s ability to model chaotic
nonlinearities, rather than simply replicating an integrator or communication
channel. Were it only relaying state information, the decoding during testing
would stagnate at the last observed state. Similarly, if merely approximating an
integrator, accumulating errors would quickly lead to system saturation. How-
ever, the exhibited oscillations, characteristic of a Lorenz system, highlight the
filter’s ability to capture the system dynamics.

It should also be noted that the gradual switch from training to testing
phase is not critical to good performance. The effect of the gradual switch can
be appreciated more in the forthcoming plants with control.

In sum, the results demonstrate the filter’s ability to predict the Lorenz
system dynamics, even with its chaotic nature. Given the manner we have set up
this Lorenz system scenario, irrespective of poor predictions, the ground truth
propagation remains uninfluenced by the estimate produced. This is useful as
we were able to scrutinize the filter performance by turning off the observations.
Now we shall increase the complexity to further test the filter performance by
using it in two control systems: a damped pendulum, and a two-link arm.

86

F
ig
u
re

6.
6:

F
il
te
r
E
st
im

a
ti
o
n
in

3
D

th
ro

u
g
h
ti
m
e
:
T
h
e
to
p
p
a
n
el

(a
)
sh
ow

s
th
a
t
th
e
fi
lt
er

is
le
a
rn
in
g
to

p
re
d
ic
t
th
e
sy
st
em

st
at
es

fr
om

a
p
op

u
la
ti
on

of
sp
ik
in
g
n
eu
ro
n
s.

T
h
e
b
o
tt
o
m

p
a
n
el

sh
ow

s
th
e
fi
lt
er
’s

es
ti
m
a
ti
o
n
(i
n
g
re
en
)
d
u
ri
n
g
(b
)
in
it
ia
l
1
0
s

of
tr
ai
n
in
g
(b
)
af
te
r
15
0
s
of

tr
ai
n
in
g
(d
)
af
te
r
10
0
0
s
o
f
tr
a
in
in
g
.
D
u
ri
n
g
th
e
fi
rs
t
fe
w

se
co
n
d
s,

th
e
p
re
d
ic
ti
o
n
s
a
re

re
a
ll
y
p
o
o
r

an
d
w
it
h
m
or
e
tr
ai
n
in
g
d
at
a,

th
e
p
re
d
ic
ti
on

ge
ts

b
et
te
r
a
n
d
b
y
th
e
en
d
o
f
tr
a
in
in
g
,
th
e
es
ti
m
a
ti
o
n
is
cl
o
se

to
th
e
g
ro
u
n
d
tr
u
th

(i
n
b
la
ck
).

87

Figure 6.7: Trajectory after observation reintroduction: The estimations
diverge from the ground truth (in dashed black) when testing (red) is turned on
and no observations are given. As the observations are reintroduced by turning
off the test signal, the estimations realign with the observations with the filter’s
pre-test accuracy.

88

The benchmark comparison for all the systems are performed collectively after
specifying the dynamics.

6.3.2 Forced Damped Pendulum

Transitioning from the Lorenz system, an open-loop nonlinear model without
control inputs, we now shift our focus to a more challenging system that in-
corporates external forces. We delve into the dynamics of a forced damped
pendulum, commonly referred to as a one link arm. This progression allows us
to evaluate the Neural Adaptive Filter’s performance in scenarios where control
inputs play a pivotal role, adding another layer of complexity to the estimation
challenge.

The dynamics of the pendulum is given by:

Jq̈ − b|q̇|q̇ −mgl sin(q) = u (6.29)

where m, l and J are the mass, length and inertia of the pendulum, g is the
gravitational term and b corresponds to the damping coefficient. u corresponds
to the input torque. The nonlinearities here arise from the trigonometric and
damping terms.

Methods

The general working of the pendulum is as follows. The pendulum is initialized
at a random angle from [-π/2, π/2] from the vertical at zero velocity. A random
target is chosen and a minimum jerk trajectory is generated to reach for the
target with an average velocity of 1rad/sec. Upon reaching the target within
the prescribed threshold, or after a wait time, a new target is generated. The
observed states are the angle (q) and the angular velocity (q̇) of the pendulum.
The estimator now has to predict the location and the velocity of the pendulum
and the resulting estimates [q, q̇], are sent to the controller to move the pen-
dulum along the desired target trajectory. A unit mass, length, and damping
coefficients are chosen, and the gravity is set to 10 m/s2. For the sake of sim-
plicity, the controller is designed to compensate for the gravitational term. It
is important to note that, this simplification while reducing the complexity on
the controller side, does not negate the impact of the gravity on the pendulum’s
state propagation. The controller still has to compensate for gravity, but it is
baked in rather than learning to compensate.

Similar to the Lorenz system evaluation, the simulation for the damped
pendulum system is executed in Python with a consistent time-step of dt = 1
ms. The states of the pendulum, namely the angle (q) and the angular velocity
(q̇), are normalized before feeding them into the filter. A ‘seed’ parameter, allows
for variability in initial conditions of the dynamic system and the initialization
of neural population weights. A typical proportional derivative controller is used
(Kp = 100,Kd = 10) to follow a minimum-jerk trajectory.

89

Figure 6.8: Forced damped pendulum dynamics: The above diagram illus-
trates the dynamics of a damped pendulum. The pendulum consists of a bob
with mass m suspended from a pivot by a rod of length l. The angle q repre-
sents the pendulum’s displacement from the vertical. Gravity acts downward,
influencing the pendulum’s motion.

The filter’s implementation for the pendulum system closely resembles that
for the Lorenz attractor. However, an essential modification involves incorpo-
rating a control input to influence the pendulum based on estimated states.
Two Legendre Delay Networks (LDNs) represent the states, while a separate
LDN handles the control torque. These combined Legendre representations are
dispatched to the ‘adapt’ population, which, consisting of 1000 neurons, learns
the pendulum’s dynamics. A window size of θ = 0.01 s and the number of
polynomials q = 4 for both the states and control.

It is imperative to highlight that this closed-loop control of the pendulum
is significantly more challenging than the open-loop Lorenz system. Initially,
before the estimator has effectively learned state predictions, large discrepancies
emerge between estimated and true states. Consequently, the controller receives
flawed predictions, resulting in huge and high frequency control torques that
jeopardize system stability. A conventional, open-world random sweep of the
pendulum might prove counterproductive.

To avoid this problem of immediate instability at the initial period, a tar-
get scheduling is employed. Random targets are generated at the lower range
initially. Once a target is produced, a minimum jerk trajectory is generated to
move at a constant average velocity. This choice of constant average velocity is
to limit the span of the velocity for easy scaling and representation in the neural
population. When the pendulum lands on the given target within a position
and velocity threshold, it is considered a ‘hit’ and only then the target range is
increased by a 10% of the overall sweeping range.

Moreover, during dynamic estimation, the challenge of catastrophic forget-
ting arises. Traversing through the state space can mean that neural weights
optimize for a localized region in the state space, inadvertently unlearning vital
representations for other regions. An excessively high learning rate can exac-
erbate this, blending observation noise into the learning process and erasing
learned features rapidly. Striking a balance is crucial: the learning rate should

90

ensure quick convergence of estimates, while maintaining estimation capability
across the entire state space. After evaluation, a learning rate of 1e-4 proved
optimal.

Results

The pendulum is simulated in Python with a simulation time-step of dt = 1ms.
The Figure 6.9 shows an example the state propagation of the pendulum and
the estimator prediction. The pendulum is made to reach for the targets with
the help of the estimation generated. In the first few trails, when the system
estimates are poor, and the system interaction has not yet been captured, the
control is quite unstable. Large control and velocity values are estimated even
for a small range of targets. With more training data, the model learns to
estimate the angular position and velocity. This can also be seen in the Figure
6.10, where the estimation error was high in the beginning, and by the end of
the training the error has decreased significantly. The number of hits increases
per unit time and the target range is updated faster (not shown). As evident in
Figure 6.10 and 6.9, by the end of 1000s, the estimation errors have significantly
decreased, with an accurate prediction of the estimate (see figure 6.9) and almost
all targets being hit by the end (hit rates not shown). This demonstrates the
estimator’s ability to control the arm by precise estimate of the dynamics.

To evaluate the performance of the filter after training, similar to our pre-
vious testing, we turn the testing signal on, cutting off the observations to the
filter. Now when the estimator recursively predicts the position of the pendu-
lum, we control the pendulum by applying torques depending upon this recursive
estimate. From figure 6.9, the pendulum is driven along the minimum jerk for
most of the reaches. The threshold of the pendulum was chosen as 0.1, and
IAEttt metric for the pendulum is on average 1.713 seconds for q and 1.972s for
q̇ [std dev σq= 0.471s, σq̇ = 0.255s]. From the Figure 6.9, we can also see that
the estimates lie within close range of the ground truth well into the testing
phase. What is more interesting is that the estimate, even after diverging, has a
similar structure and trend to the ground truth. This further bolsters the claim
that the filter has indeed learnt to capture the system dynamics based on the
control input and the state space. Upon reintroducing the observation, it only
takes a few seconds to make the estimate follow the ground truth.

Now we have tested the performance of the filter using a nonlinear system
that is a pendulum model, with torque control, we can increase the complexity
of the system to further test the filter’s performance.

6.3.3 Two-link Arm

As a way to increase the complexity of the system dynamics and a step towards
implementation of the sensory motor control system, we now test the working
of the NAF with a two link arm model. We test the control of the arm by
observing the the end effector in the Cartesian coordinates and controlling the
arm by applying torques.

91

Figure 6.9: Pendulum states across time: The top panel shows the angular
position q rad, the middle panel shows the angular velocity (q̇) rad/s and the
bottom panel shows the control torque u Nm. The solid grey line shows the
final target and the dotted grey line shows the reference minimum-jerk trajec-
tory. The solid black line represents the actual state of the pendulum and the
green line represents position estimate and blue, the velocity estimate. The red
line shows the ‘testing’ signal when the observation is gradually turned off and
estimation occurs recursively.

92

Figure 6.10: Pendulum States Estimation Error: The figure illustrates the
propagation of error through time. The top panel (green) shows the error in
angular position estimation and the bottom panel shows the angular velocity
estimation error. The increased error in the beginning starts out with inaccu-
rate estimation and control and gradually the filter learns to estimate the state
accurately moving the pendulum along the desired trajectory.

93

Figure 6.11: Two-link arm dynamics: The above diagram illustrates the
dynamics of a two-link arm. The arm consists of masses m1 and m2 for upper
arm and forearm of link lengths l1 and l2 from the shoulder at (0,0). The angle
q1 and q2 represents the angle at shoulder and elbow respectively. The end-
effector location is given by (x, y), measure with respect to the shoulder.

Methods

The dynamics of a two-link arm involves moving a double pendulum by applying
joint torques to move on the horizontal plane by making reaching movements
in the task space.

Mq̈ − C(q̇, q)−G(q) = τ (6.30)

where M is the inertial matrix, C is the Coriolis and the centrifugal matrix and
G is the gravitational term. The masses of both lower and upper arms are each
0.1 kg, the lengths l1, and l2 are 1 m. Since these are planar reaches on the
horizontal plane, gravity is set to 0. The τ corresponds to the torque applied
on the joints.

The position and the velocity of the end-effector i.e., the tip of the second
link in the plane is given by (see figure 6.11):

x = l1 cos(q1) + l2 cos(q1 + q2)

y = l1 sin(q1) + l2 sin(q1 + q2)

Considering the previous problem of pendulum, this system is more difficult
to control since moving in task space needs both the Cartesian coordinates of the
end-effector and the joint coordinates of the arm need to be taken into account.
Hence, while testing of the Cartesian estimator, the ground truth joint angles
are fed to the controller. Targets appear in pseudo random order to 8 different

94

directions along a circle of radius 0.5m. A minimum jerk trajectory is generated
to move for the target in 1s. A position and velocity threshold is set to 0.01
and 0.05 respectively. Similar to the previous pendulum control we also employ
a progressive target range increase to avoid instability during the initial stages.

The controller is a simple PD controller with Kp = 200 and Kd =50. Given
the joint states and the end effector states, the controller calculates the Jacobian
and moves the arm accordingly. In addition to the typical controller, an adaptive
controller was used in parallel to increase stability during the initial control.
This adaptive control learnt the control as a function of the estimated Cartesian
coordinates, to follow the minimum jerk trajectory. The observations are fed
to the estimator and a θs = 0.02s and qs = 3 is chosen. For the control, θu =
0.05s and qu = 5, the window size and the number of polynomials respectively.
A population of 2000 neurons was used to learn the estimation.

Results

The simulation is run in Python with a simulation timestep of 1ms. Figure 6.12
shows the estimation control results of the two-link arm. When controlling the
arm by estimating the end-effector Cartesian coordinates, the control is initially
unstable, hitting high velocities to reach for the target. As more observations
are obtained, the estimate gradually becomes less noisy catching up with the
observations and providing a more stable control of the arm. As the control
grows more stable, the targets are reached well within the position and velocity
thresholds before the wait time and the target range was increased to hit the
maximum of 0.8 units radius.

After 1000s, the filter is able to discern the interaction of the states and
better control the two link arm with precision (see Figure 6.13. As soon as
the testing signal is turned on, the estimation continued to stay close for a
considerable amount of time well within the testing phase. The threshold for
the metric was set at 0.1 and the IAEttt metric for the position was hit at 1.38
seconds and the velocity at 1.31 seconds.

6.4 Benchmark comparison

Having discussed the workings and performance of the Neural Adaptive Filter
(NAF) across various dynamic systems, it is crucial to juxtapose its capabilities
against other nonlinear estimation that incorporates system identification. This
section aims to provide a comparative analysis of the NAF, highlighting its
strengths, potential areas of improvement, and overall efficiency. Before delving
into the comparative analysis, it is essential to understand the context and select
an appropriate model for comparison.

Prominent models in nonlinear filtering, such as the Extended Kalman Filter
(EKF) and Particle Filters, initially appear as suitable benchmarks. The EKF
linearizes the model around its current estimate, offering a Gaussian approxi-
mation of the posterior distribution, whereas the Particle Filter uses stochastic

95

Figure 6.12: Two-link arm states across time: The figure illustrates the
performance of the estimation driven control of the two-link arm. The top panel
shows the Cartesian position x, y, the middle panel shows the Cartesian velocity
(ẋ, ẏ) and the bottom panel shows the control torque u1, u2. The solid grey line
shows the final target and the dotted grey line shows the reference minimum-
jerk trajectory. The solid black line represents the actual state of the arm and
the green line represents position estimate and blue, the velocity estimate. The
red line shows the ‘testing’ signal when the observation is gradually turned off
and estimation occurs recursively.

96

Figure 6.13: Two-link arm Estimation Error: The top panel (green) shows
the error in position estimation and the bottom panel shows the velocity esti-
mation error. The increased error in the beginning starts out with inaccurate
estimation and control and gradually the filter learns to estimate the state ac-
curately moving the pendulum along the desired trajectory.

97

weighted samples or ‘particles’ for this purpose. Aside from the limitations on
the specifics of the working of each of these methods, both methods pose an
inherent challenge. Both EKF and Particle Filter require intrinsic knowledge of
the system they operate upon.

Unlike these traditional methods, NAF operates by learning and predict-
ing the behaviour of any given dynamical system based solely on observations,
devoid of any prior knowledge of the system’s underlying mechanics. The model-
centric nature of these traditional methods, not only limits their applicability
but also renders comparisons with a system like NAF irrelevant, where the
dynamics of the system is learnt.

Dynamical systems identification methods offer an alternative avenue for
comparison with the NAF. These methods analyze system interactions based
on observation sequences, aiming to determine the underlying dynamics without
a preset model. A recent and notable method in this category is SINDy-c. Using
sparse regression techniques, the Sparse Identification of Nonlinear Dynamics
with Control (SINDy-c) [Budǐsić et al., 2012; Kaiser et al., 2018] approximates
the equations of the dynamic system. By regressing over a function library,
which includes polynomials and trigonometric functions, it derives system dy-
namics from a minimal set of state observations. However, even SINDy-C,
with its advanced approach, differs fundamentally from our filtering method. It
conducts regression offline, separating estimation from control. The system’s
deductions rely on observations made with ground truth control, without real-
time feedback. Moreover, the current SINDy-c formulation does not support
closed-loop control. When evaluated, SINDy-c typically uses ODE solvers, such
as Runge Kutta, for recursive predictions. This approach contrasts with NAF’s
simpler integration techniques.

This leaves us in a unique position. Traditional filters are challenging bench-
marks due to their intrinsic differences from the NAF. Conversely, comparing
NAF with dynamical discovery systems seems inequitable, given their focus
on identification and absence of other constraints. The comparison has to be
made to a unique operational mechanism. Without prior system knowledge,
the expected system has to learn to approximate dynamics online, can adapt
to changes, and can control the system in a closed-loop manner. A contempo-
rary estimation technique we compare our model against is the Feedback-based
Online Local Learning Of Weights (FOLLOW) mechanism we discussed in Sec.
2.5.2. This mechanism is an apt comparison for a filter that works online, con-
trols the plant, and estimates the system propagation of the unknown dynamics.
Furthermore, though not a primary comparison point, the NAF’s constraints
stem from biological plausibility, which is also something that is discussed in
FOLLOW, making it an ideal comparison.

To draw a more apt comparison between NAF and SINDy-c, we have modi-
fied the evaluation method for SINDy-c. Specifically we have adjusted it to rely
purely on simple numerical integration, moving away from any sophisticated nu-
merical interpolations. We test the performance within the scope of stationary
dynamics at a given time. Distinctly, both the NAF and the modified SINDy-c
are trained on ground truth control, differing from earlier sections where metrics

98

were based on estimation control. It is important to note that the regression,
and system identification from the original SINDy-c’s working are still preserved
but the numerical integration is simplified to match the working of NAF for
better comparison. In addition to this, another aspect of SINDy-c is that the
regression is also performed on a carefully selected choice of polynomials and
with numerically obtained derivatives. In contrast, NAF uses neuronal bases to
approximate system dynamics and computes its derivatives from observations.
Hence we can expect the SINDy-c to exactly capture the system dynamics and
predict the system better. However SINDy-c remains a better comparison to
benchmark NAF against, than any other contemporary standards.

As far as the comparison to FOLLOW, the dynamics were seeded similarly
and the training time, neuron type and number are kept identical. For all our
tests, we ensured identical training settings. While SINDy-c is given the ground
truth state propagation of the NAF, since closed loop control was not available,
FOLLOW was made to control the plant from its estimate. In all the cases,
we normalized the states and control. While not essential (more neurons could
represent a broader value spectrum), this normalization simplifies the process
and reduces computational demands. Such scaling should not significantly alter
SINDy’s predictions, as normalized states correspond to proportionally scaled
dynamics, rather than presenting a completely different system. Following the
supplementary code provided, the simulations are run and the results are re-
ported below.

From Table 6.14, we have the IAEttt values for the Lorenz attractor, the
pendulum and the two-link arm. It can be seen that the NAF’s performance is
comparable to a direct regression method such as SINDy-C and FOLLOW.

As expected, SINDy-c often better capture the system dynamics since it
performs a regression over the ground truth states offline with numerical deriva-
tives. Despite this, the NAF produces comparative predictions after training
online. In both scenarios, the predictions diverged from the original ground
truth within 2secs of unavailability of the observation. This indicates the dif-
ficult nature of predicting system states of a chaotic nonlinear system in the
absence of observations.

For the comparison of FOLLOW with NAF, in the Lorentz and pendulum
system the metrics are quiet comparable. The differences in IAEttt was mostly
from the state of the system during the transition from training to testing and
the amplitude of the control signal. Irrespective of the slight changes, both the
systems while handling a chaotic system were only able to control the system
effectively to only a few seconds in the absence of observations, being different
techniques mechanistically. Interestingly, the difference in metrics from FOL-
LOW and NAF are also close compared to the differences between the offline
and the online methods (seen both better and worse performances in Lorenz
and Pendulum System).

The qualitative observations can further be reinforced from a pairwise t-
test performed for the three systems and the three models. For the Lorenz
attractor, the t-test results indicate significant differences in prediction errors
between the SINDy and NAF models for x (t = 4.106, p = 0.003), y (t = 4.489,

99

Figure 6.14: Benchmark comparison for SINDy-c vs FOLLOW vs NAF:
The three panels show the performance of the three methods in capturing the
dynamic propagation of (a) Lorenz attractor (b) Forced damped pendulum (c)
Two-link arm model. The IAEttt metric is the time for the prediction error to
hit a threshold, hence longer times implies better model at prediction.

p = 0.002), and z coordinates (t = 4.131, p = 0.003). Similarly, SINDy and
FOLLOW models show significant differences in errors across all coordinates,
with the most pronounced difference in z-coordinate (t = 4.695, p = 0.002). In
contrast, there are no significant differences between the NAF and FOLLOW
models for any of the coordinates, as evidenced by higher p-values (x: p =
0.671, y: p = 0.785, z: p = 0.127). As for the pendulum system, the IAEttt

show significant differences between the SINDy and NAF models for both q
(t = -5.822, p = 0.000) and q̇ (t = -6.115, p = 0.000). Similarly, significant
differences are observed between the SINDy and FOLLOW models for q (t =
-3.059, p = 0.016) and q̇ (t = -4.663, p = 0.002). However, no significant
differences are found between the NAF and FOLLOW models for either q (t =
-0.861, p = 0.414) or q̇ (t = -1.116, p = 0.297), indicating similar performance
on these metrics. A t-test on two-link arm model show significant differences
between the SINDy and NAF models for both position (t = 2.705, p = 0.027)
and velocity (t = 6.643, p = 0.000). The SINDy and FOLLOW models differ
significantly in velocity (t = 4.257, p = 0.003), but not in position (t = 0.695,
p = 0.507). While, there are also significant differences between the NAF and
FOLLOW models in both position (t = -3.127, p = 0.014) and velocity (t =
-2.301, p = 0.050), they are marginal compared to the difference between the
combined online prediction to the SINdy offline model .The model performance
tests reveal that SINDy while consistently differs in its predictions compared to
both NAF and FOLLOW, both NAF and Follow exhibit similar performance
characteristics across various scenarios.

The SINDy-c model works with the careful selection of polynomial basis. F

100

provided the polynomials are chosen appropriately in the dynamic system can
be approximated with better accuracy and this is demonstrated in the case of
the Lorenz attractor and two-link arm. To demonstrate this, we choose the pen-
dulum dynamics with a specific nonlinear function for the damping coefficient
(|x|) which is not a part of the typical choice of polynomials. While capturing
this dynamics using SINDy-c, the metrics shows inadequacy in the performance.
On the other hand, the prediction accuracy remain consistent for NAF across
different systems. This indicates robustness in the working of NAF.

Given that we have a predicting mechanism capable of estimating the system
states, we shall implement this in our linear model to upgrade our model of the
motor control system.

101

Chapter 7

Sensorimotor Control
Model

In this chapter a biologically plausible sensorimotor control model is presented.
Compared to the previous Kalman filter version, this model is built with a
nonlinear prediction system driving the perceptual system.

7.1 Model description

In this section, we present a detailed description of the sensorimotor control
model and how each of the components in our model maps to different anatom-
ical organizations responsible for the overall adaptive behaviour. The model is
described in Figure 7.2. The components and the organization of this nonlinear
version are very similar to the previous linear sensorimotor control model (see
Section 5.4.3 Figure 5.9). In contrast to the linear version, where the arm was
modelled as a unit mass system, we here update the dynamics to a nonlinear
two-link arm model (see Figure7.1) controlled through the application of joint
torques.

The environment for our experiments consists of a two-link arm model that
moves on a frictionless 2D surface, along the transverse plane and perpendic-
ular to gravity. As this experiment is conducted on a tabletop, gravity is not
made to affect the system. The arm is made to move along the surface by
applying torques to each of the joints to reach for the provided targets (see
Figure 7.1). The forearm and upper-arm are of equal unit length and of mass
0.1kg. Although gravity is neglected, Coriolis and centripetal components of
the dynamics are kept intact.

The overall framework of the model can be seen in Figure 7.2. There are
two modalities of observation, namely vision and proprioception. The visual
observations (also referred to as the ‘cursor’), zvision, contain the end-effector
Cartesian coordinate position and velocity [x, y, ẋ, ẏ]. On the hand, the propri-
oceptive observations, contain the joint angle coordinate position and velocity

102

Figure 7.1: Experimental and Model Setup: The arm is modeled by a
two-link arm centered at an origin aligned with the shoulder. There 8 targets
distributed around the origin that appear pseudo randomly. The circular shaded
region around the origin is the opaque zone where the end-effector feedback
(cursor) is not provided during an outward reach.

zprop = [q1, q2, q̇1, q̇2] of the upper and forearm respectively (see Figure 7.1).
From our literature (see Section 3.1), it is evident that we have individual per-
ceptual system for each of our modalities that predict the arm states in its own
coordinate frames of reference. Hence, for each perceptual system, we employ a
Neural Adaptive Filter to estimate the state, given the previous state and a copy
of our control inputs [u1, u2]. The ‘Visual Estimator’ predicts the cursor loca-
tion in Cartesian coordinates x+

vision in figure and the ‘Proprioceptive Estimator’
predicts the joint angle location of the arm (q+prop). Both of these components
that are subjected to learning on-the-fly from the observations. These estimator
components learn by comparing the predictions and the observations. Both of
these estimators have a fast learning rate of 1 × 10−4, owing to quick recovery
and convergence of the estimates to the observations. If observations are either
uncertain, or unavailable, the learning is inhibited and these system recursively
predict from the previous prediction.

To obtain the end-effector estimate from joint angle location, we have the
Angular End-effector Estimator. This component learns the forward kinematics
as a function of the joint angles from the visual cursor estimate. Any changes
to link lengths, or kinematic transformation is captured here and component
has a learning of 5 × 10−6. The errors here correspond to misalignment of
proprioceptive and visual end-effector estimates. When the visual observations
are uncertain, or unavailable, this learning is mitigated to avoid learning from
the recurrent predictions. Now we have the Cartesian estimate of our hand from

103

Figure 7.2: Sensorimotor control model: From the two noisy observation of
the hand, vision and proprioception and the efference copy from the controller
two estimates are obtained using the Kalman filters. These are further fused
together to know the estimate of the hand position and velocity. A combined
movement vector is learned from the hand heading direction and correction
realized from the end point error.

proprioception, which is available even when visual observation is absent. The
Hand Estimator component fuses these two estimates to provide a combined
estimate. This uses a gain ‘α’ to manipulate reliance on one modality over the
other.

The Trajectory Generator produces a minimum-jerk trajectory from the cur-
rent location of the cursor and target location. The time required to reach for
the target can be modified and there are no learning elements in this component.
The Adaptive Controller uses the combined Hand estimate and joint angles to
generate movement vectors to control the arm’s end effector to move along the
desired trajectory. It also compares the cursor’s location and learns to map
an added adaptive component that learns the new ‘vector-to-aim-differently’
if the current control torques are insufficient to follow the desired trajectory.
The learning rate for this component is 1 × 10−5. These movement vectors in
Cartesian coordinate are transformed to control torques and are applied to the

104

shoulder and elbow of the arm.

7.2 Anatomical parallels

When comparing our current architecture with the neuroscience literature pre-
viously discussed in Section 3.1, we can draw parallels between the model’s
components and specific brain regions.

1. Visual Cortex and S1: The Visual Cortex is vital for processing visual
cues [Grill-Spector and Malach, 2004]. In contrast, S1 is pivotal for pro-
cessing touch, spatial orientation, and proprioception[Hsiao et al., 2002].
While we do not directly replicate this in our model, we operate under the
assumption that such processed information is accessible to it.

2. Dorsal Premotor Cortex (PMd): PMd plays an instrumental role in
preparing for movement, particularly those movements guided by external
cues [Wise et al., 1997]. This aligns with the functionality of our Trajectory
Generator.

3. Parietal Cortex (PPC): Sensory consequence prediction, especially in
the visual stream, is primarily associated with PPC [Colby et al., 1992;
Haarmeier et al., 1997]. PPC estimates the arm’s current state during
movement, inclusive of its position, velocity, and orientation [Buneo and
Andersen, 2006]. Although, the Middle Temporal Area is implicated in
the brain’s capacity to infer and project motion paths from prior observa-
tions [new, 1988], it is mostly the PPC that is involved in sensory conse-
quence prediction. Especially the Inferior Parietal Lobule (IPL) and
Superior Parietal Lobule (SPL). Both are engaged in visual and pro-
prioceptive estimates of limb positions (see Section 3.1). Specifically, IPL
facilitates the transformation of visual data into diverse reference frames,
allowing for multi-sensory information integration [Buneo and Andersen,
2006]. Consequently, our Angular End-effector Estimator and Hand Esti-
mator mirror functionalities found within the PPC region.

4. Cerebellum: The cerebellum is responsible for generating error signals
during movement control to regulate trajectories. It receives feedback
from the sensory systems about the actual movement and compares it to
the intended movement. Any discrepancies between the two generate an
error signal that is used to adjust future movements. [Wolpert et al., 1995]
[Miall and Wolpert, 1996]. Many of the error generation, forward models
and efference copies replicates the Cerebellum’s functionality.

5. Primary Motor Cortex (M1): As highlighted in various studies, M1’s
primary role is akin to a controller [Penfield and Boldrey, 1937; Geor-
gopoulos et al., 1989; Sanes and Donoghue, 2000]. Further, the cerebellum
aids in rectifying intended movements. Our Adaptive Controller mirrors

105

the M1 and the cerebellar subsections responsible for error generation and
corrections.

Collectively from the functionality and evidence of different error generation
and the working of the individual components, we can draw parallels to the
well defined and specific cortical structures. The entirety of the model is repro-
duced to avail biologically plausibility. For the sake of simulation, majority of
the predictive, perceptual and the adaptive control are reproduced in spiking
neurons, while the arm dynamics, trajectory and the conventional controller are
simulated numerically.

7.3 Experimental Setup

7.3.1 Single trial

The simulation is run with a dt of 1ms. The targets appear in a pseudo random
order in 8 directions distributed at 45°along a unit circle centered at a home lo-
cation or ‘origin’ chosen at arbitrary distance in front of the shoulder (see Figure
7.1). The visual information provides the end-effector states with respect to the
origin and the proprioceptive information relays the joint angle information. A
single trial is defined as the movement of the cursor, that represents the visual
feedback, from the origin to the target. Only a cursor, representing the hand, is
provided. The arm itself is hidden from view in the experiments performed on
humans and animals that is being reproduced. The next trial begins when the
hand is moved back to the home location and the new target appears. A tar-
get is made to appear when the hand falls within a given velocity and position
threshold or after 2s of wait period.

7.3.2 Rotation

The overall setup during rotation is preserved from before (see Section 5.4.2).
As a recap, the proprioceptive observation is measured unperturbed while the
visual observations are rotated during the rotation trials. The rotation is made
at a chosen angle in a counter clockwise direction with respect to the origin.
Once the rotation is introduced, the visual feedback is provided only at the
beginning and the end of the reach and is made invisible during the majority
duration of the reach.

To recall the experimental setup, there are three stages, namely: (a) Base-
line Stage(16 trials) where all feedbacks remain undistorted; (b) Rotation Stage
(80 trials) where the visual feedback is rotated with respect to the origin; (c)
Washout Stage (80 trials) where the feedback is returned to its original unper-
turbed nature. The time course of the change of heading direction for each of
the reaches is monitored across the stages to study the extent of adaptation.

106

7.4 Results

The system undergoes simulation in the specified environment, progressing
through the baseline, exposure, and washout stages. This progression allows
for the testing of adaptation when rotation is introduced.

7.4.1 Baseline Stage

For a single reach out trial to the target in the baseline condition, the arm’s
end effector follows the minimum jerk trajectory. The perception systems esti-
mate the propagation of the visual cursor, the joint angles and the hand states
with great accuracy (see Fig.7.3a). When the visual observation is unaltered,
the ground truth, the visual cursor, and the hand location coincide with each
other. Upon making consistent reaches, no learning occurs during this phase,
since the predictions are accurate and no error is generated. The estimates
are continuously compared with the observations and reaches are made to the
targets.

7.4.2 Rotation Stage

Single trial

When the counterclockwise (CCW) rotation is introduced, adaptation kicks
in, because of the generation of multiple error signals. The visual feedback
representing the end effector is turned off during the beginning of the reach. It
is is restored only at the end of the reach, but it is now rotated about the origin
to be misaligned from the ground truth. Hence, this observation is different from
the visual estimate that has been learned. The resulting trajectories can be seen
in Figure 7.3b. During the reach where the visual feedback is unavailable, the
estimation system completely relies on the recursive prediction until the cursor
is observed again. Once the feedback is provided again, the visual perceptual
system updates its estimate to coincide with the observation. The error referred
to here as the ‘visual estimation error’ helps in learning to better predict the new
dynamics of the visual feedback. It is important to note that this is not a linear
transformation for the perceptual system, but rather a change in dynamics, that
has to be captured to better predict the visual cursor’s movement.

In addition, there is a hand estimation error. The predicted hand location is
learned as a function of the proprioceptive estimate being mapped to the visual
estimate. This perceived hand location is now offset from the visual cursor
feedback, resulting in hand estimation learning. In other words, this is the
error pointing towards the mismatch of visual and proprioceptive sensation of
the hand. This adaptation process helps in updating the estimate of the hand
position, given available information. Notably, the visual estimate has caught up
with the new observation, and yet the combined hand location estimate remains
closer to the previously learned and expected hand location. This is because
the learning rates of the combined hand estimator and the visual estimator

107

Figure 7.3: Trajectory comparison: Experimental data from [Perich et al.,
2018] (top) and model (bottom) during visuomotor rotation: (a) the initial
baseline trials without any rotation (b) early adaptation with onset of rotation
at 30o CCW direction (c) later stage of adaptation to rotation (d) washout trials
when the rotation is returned to 0o

are different. The objective of the prediction system is to estimate the states
that are being observed, while the hand perceptual system is attempting to get
an optimal inference from multiple modalities and to keep track of where the
hand is. In this scenario, this can be understood as the estimator trusting the
proprioceptive information more than the uncertain visual feedback.

Since the goal of the task is to land the cursor on the target location, a third
error is generated that creates a need to change the overall movement vector
to now compensate for the visual task error. While the primary controller
has maintained the end-effector along the minimum-jerk trajectory, its control
inputs are no longer adequate to complete the task goal. Thus, the visual
adaptive control overrides the movement vector so as to bring the cursor to the
target. This error correction can be seen in action from the curved trajectories
made closer to the target (see Figure 7.3 b and c) as soon as the visual feedback is
made available. During the reach back to the origin between trials, the feedback
is made available throughout the reach to start the next reach from the origin.

Across trials

As the various errors drive adaptations, the reaching behaviour changes too.
Initially, when the perceptual systems are introduced to the rotation, high di-
rectional errors are made by the subject. This is also true for the model, as
indicated by the typical curved trajectories and the incorrect heading direc-
tion (see Figure 7.3b). With multiple trials of rotational exposure, the model
compensates for directional error by changing the trajectory and learning the
additional movement vector as a function of the hand location estimate(see Fig-

108

Figure 7.4: Behaviour comparison: Time course of directional error at
threshold of the model’s reaches (red) compared against experimental data
(blue) (reproduced from the graphs from [Mazzoni and Krakauer, 2006]. The
grey dashed line shows the angle of rotation of the cursor with respect to the
hand location.

ure 7.3c). From Figure 7.4, we can see that the rate of adaptation is also similar
to the behavioural data seen in the experiment. By the end of the rotation
stage, the reaches have marginal directional error and the reaches become less
curved compared to the earlier reaches.

7.4.3 Washout Stage

Following the rotational exposure phase, the washout stage is initiated. In
this phase, the rotational perturbation is eliminated, and the visual feedback is
realigned with the ground truth. Although the observations mirror the original
feedback congruence observed in the baseline phase, subjects make directional
errors opposite to the current perturbation (see Figure 7.3 d). Some trajectories
along a few directions, have a loop towards the end of the reach in the model.
This is a result of added noise from the combined hand location estimate and
a harsh correction from the model. Although this makes the reaches slightly
different to the experimental data in Figure 7.3d, the angular error remains
consistent across trials.

Given that the experimental data is for one monkey, it is not uncommon
to see such reaches in reaching studies. This modelled behaviour suggests that
the sensorimotor system has adjusted to the previous transformation, and the
controller has adapted to the perturbations. The model also exhibit the same
behaviour and resembles experimental data across time. By the end of the
washout phase, the model has fully adapted to the rotation, producing trajec-
tories consistent with baseline trials.

109

7.5 Discussion

We have presented a biologically plausible model of the primate sensorimotor
control system that begins to unravel the intricacies of sensorimotor mechanisms
through the lens of adaptation to visuomotor rotation. The updated NAF sen-
sorimotor control model successfully consolidated many features of the system
that were previously unaccounted for by the linear model.

Firstly, the plant that approximates the limb uses two link arm dynamics.
This introduces nonlinearity in the dynamics similar to what is observed in
primate arm, and unlike a unit mass system. Owing to this change, the control
and estimation systems are also moved to the nonlinear realm. The perceptual
systems can now predict the propagation of the system states of the nonlinear
system in multiple coordinates even in the absence of observations. Previously,
the hand estimate was a linear combination of vision and proprioception. The
current model learns this forward mapping on-the-fly. As supported by evidence,
over time, subjects come to believe that the actual location of the end-effector
closely aligns with the visual feedback, as reflected in the model. Furthermore,
this shift into nonlinearity is justified by the task-specific goals that individuals
encounter in everyday settings. The mapping from proprioceptive joint angles to
the end-effector states are nonlinear. Overall, the nonlinear implementation has
solely added details to many of the model components, underwriting appropriate
behaviours where linear approximation would fail.

Another important aspect of the sensorimotor control model is plasticity.
When the predictive systems observed the visual cursor to be present in a loca-
tion farther from the estimated state, the previous Kalman filter though updated
the state when observations were present, was not able to predict differently as
trials progressed. However the NAF system is able to actively change the pre-
diction of the visual estimate with every trial. This can be seen in Figure 7.5,
where the visual estimates predict differently before and after adaptation. This
is faithful to the experimental findings where the cortex adaptively updates its
predictions for the visual estimates as trials progress.

In combining the various system state estimates, and the motor pathways
responsible, we were also able to identify the different error signals that drive
the adaptations. There are multiple mechanisms adaptively orchestrating stable
control of the arm. Our model was able to reproduce the behaviour and the
timeline of the overall adaptation, as well as propose the mechanisms involved in
each pathway, various errors involved and capture the learning that dictates the
behaviours consistent with the experimental observations. For example, when
the contradiction between visual and proprioceptive observations is first seen,
the adaptive controller learns to change the movement vector as a function of the
hand location. This control adaptation kicks in at a faster rate than the correct
prediction of hand location. If the hand location prediction updated faster
than the control, then it would result in conflicting controls. Essentially, the
adaptive controller would be providing obsolete additive torques that worked for
the previous hand-location estimation when it was not aligned with the cursor.
This can result in unstable control of the arm. In addition, comparing the

110

Figure 7.5: Demonstration of online adaptation: The figure shows the
prediction of different systems (a) before and (b) after adaptation. With the
introduction of rotation and the absence of visual feedback, the visual prediction,
and hand estimate align with the ground truth location of the hand. After
adaptation, the visual prediction captures the cursor location better. Also, the
hand estimate is now in between the ground truth and the visual estimate

working of each mechanism and the biological evidence also helps us in drawing
parallels to the cortical structures and how they are organized in producing the
observed behaviour. This model successfully predicts and be tested for many of
the behaviours ranging from neuronal representation of movement vectors and
system states to different behavioural aspects that shed light into the working
of the motor control system.

Many studies point towards the presence of internal models and that the
brain updates them (see Section 3.1). In addition, many studies show that
in the absence of sensory feedback, the prediction diverges quickly from the
ground truth and controlling the arm becomes difficult. In [Cole and Sedg-
wick, 1992], the authors discuss a case study where the subject who lost almost
all proprioceptive and tactile feedback below the neck due to a rare condi-
tion, learned to move with visual guidance. However, in the absence of visual
feedback, his movement became very imprecise, highlighting the crucial role
of sensory feedback in refining motor control and how the predictive system
can quickly from the ground truth. A similar study is also found in [Taub
et al., 1966], where de-afferented monkeys had significant difficulty in modu-
lating grasp forces appropriately in the absence of sensory feedback. Observa-
tions like these are evident from the model. The reach performance and stable
movement was only guaranteed when prediction were modulated by the sensory
observations. Without these signals, the plant control becomes significantly

111

Figure 7.6: Unstable control in the absence of observations: The control
starts with maintaining the arm at origin with minimal velocity. As soon as both
the observations are cut-off, the estimations drift, driving the system unstable,
out of the task-space.

more difficult and typically fail within a few seconds in the absence of any feed-
back (see Figure 7.6). The code for reproducing the work can be found at:
https: // github. com/ nvaidyan1/ phd_ thesis

112

https://github.com/nvaidyan1/phd_thesis

Chapter 8

Conclusions

8.1 Thesis Contributions

Unlike linear systems, which adhere to principles of superposition and homo-
geneity, nonlinear systems exhibit a plethora of behaviors that are complex and
less predictable. With the study and control of nonlinear systems being highly
ubiquitous, the estimation of such systems has become highly relevant. On top
of this, evolving system dynamics or dealing with unknown systems only adds
to the complexity. Currently there are several system identification techniques
[Sussillo and Abbott, 2009; Brunton et al., 2016; Raissi et al., 2018; Lusch et al.,
2018; Dong et al., 2023; Meidani and Farimani, 2023]. These methods are system
identification methods, which collects state propagation data and employ statis-
tical methods such a regression or use neural networks to capture the equations
governing the dynamics. But, this involves separate offline training regimes to
deduce the dynamics interactions. There are also episodic techniques [Fraccaro
et al., 2017; Yu et al., 2017; Murray, 2019], which use reinforcement learning
methods. These also do not fall under the online category since the training
happens offline between episodes. Unlike these methods, the NAF performs
system estimation online as the observations manifest and controlling the plant
using the estimates. If there are additional disturbances, changes in the dynam-
ics evolution, then these systems would fails and simply they are not designed
for simultaneous learning and estimation.

There are very few online estimation techniques that handle both nonlinear-
ities and unknown system dynamics, where [Alemi et al., 2018] and [Gilra and
Gerstner, 2017] are two examples of these contemporary methods, which belong
to a new bio-inspired approach for control and estimation engineering. Though
these methods are online methods, these vary in the basic working operation
compared to the working of NAF. Alemi et al. implement this online learning
of the plant, using a teacher-student recurrent network. This network uses a
feedforward connection for the input signal, and fast connections for efficient dis-
tribution of spikes and slow connections for learning the student network. While

113

they implement this method to instill spike efficiency, they also use dendritic
nonlinearities, and use multiple connections to realize this estimation. As for
Gilra et al., although they were able to estimate the system propagation, they
have learning connections both in the forward connection of the input signal and
another recurrent learning in the state representation as well. In contrast to the
two online methods, the NAF implements this prediction scheme by capturing
the windowed time representation of the input and state variables. Thus the
learning of system dynamics happen at a single layer where the system states
are linearly decoded from the neuronal space, additionally with recurrence at
the level of feedback and Legendre representation whose recurrence dynamics is
fixed. By capturing the entire window of the state space this potentially also is
helpful for learning systems that are more complex with high time dependencies
or even when the system dynamics information is not readily aligned in time.
For the case of Gilra et al. (FOLLOW) we have also seen that the benchmarks
(see Sec. 6.4) shows comparable performance of the two filter under similar
environments. Furthermore, to the best of our knowledge these other online
methods have only been tested on toy problems.

With modern control challenges, more often than not we see solutions for
this problem come from biological inspirations. Along similar lines, the NAF
proposed here is a novel prediction technique, that adds to this particular niche.
Unlike the past methods, the NAF has been employed to model a subtle learning
paradigm in motor control (see Sec. 7.1). While this mechanism is setup to work
in a biologically realistic spiking neuron implementation, the framework can be
broadly applied numerically to estimate the given system as manifests in real-
time. The NAF helps in tackling the estimation of unknown nonlinear systems
while controlling the plant simultaneously. It does so by representing the signal
through time, and learning the dynamics by continuously updating through
a learning mechanism similar to gradient descent with every new observation.
Hence, for control engineering tasks of complex changing dynamics, unknown
kinematics or sensory uncertainties, NAF’s performance has shown that it is an
strong candidate in the application of close loop online estimation and control
of an unknown plant.

When delving into the realm of sensorimotor control, various models are
mostly fragmented in nature (see Sec. 4) in offering explanations for the un-
derlying dynamics. While many cater to specific functionalities (see Sec. 4.1,
a comprehensive, unified model remains elusive. The NAF-based sensorimotor
control model suggests a new direction that may a change this scenario. It not
only encapsulates a multitude of mechanisms but also does so in a manner that
aligns with biological plausibility. It is one of the first large scale functional
models that involves an adaptive forward estimation systems combined with
sensory feedback, in contrast to many of the current models that solely work
on feedback control. The model was able to explain how the prediction and
adaptation happens at multiple levels (joint estimation, end-effector estimation
and jacobian learning). It was able to explain prediction, perceptual and adap-
tations at visual and proprioceptive levels and also explored how these would
interact to explain higher level behaviors such as visuomotor rotations. Further-

114

more, similar to how a visual decorrelation study was conducted, this model can
be used to simulate other behaviors that work with visual and proprioceptive
alterations, ablations or inhibitions even at the spiking level of the model. Such
a comprehensive model encompassing different parts of the sensorimotor sys-
tem on its own adds substantial ability to glean deeper insights into inherent
biological mechanisms, paving the way for the further development and offers
better explanation of motor control pathways involved in the primate movement
execution.

8.2 Future work

In the prevailing landscape of filtering methods, we observe a plethora of special-
ized techniques, each optimized for a singular purpose. On one hand, we have
nonlinear filters designed to estimate system states, leveraging detailed knowl-
edge of system dynamics. On the other, we see system identification methods
that focus primarily on extracting the underlying system interaction solely from
observable data. The introduction of the Neural Adaptive Filter (NAF) has
bridged this dichotomy. The NAF, when fed an online stream of observations,
is adept at estimating the system’s state and subsequently helping to control it
in real-time. What sets the NAF apart is its resilience; it continues to guide con-
trol even in the absence of observations, and is agile enough to adapt online to
shifts in dynamic interaction. This inherent flexibility propels its applicability
beyond just biological realms. Systems characterized by frequent uncertainties
or those prone to non-stationarity stand to benefit significantly from the NAF’s
capabilities.

However, it is important to note the limitations of the NAF. Its efficacy is
determined by the spectrum of functions that the neuronal subspace can approx-
imate. Furthermore, as the system’s order elevates, there’s an increased demand
for polynomials, which can inadvertently compromise the filter’s accuracy and
convergence speed. In tandem, the efficacy of the NAF is sensitive to hyper-
parameter selection, necessitating tuning for optimal performance. Looking
ahead, there is potential in leveraging the Legendre network. By implementing
the Legendre network to compare trajectories, and aligning error signals in time,
it might be possible to capture systems with inherent delays, thereby extending
the reach and applicability of the NAF.

By modelling the sensorimotor control, we were able to explain many of the
behaviors and also put together a comprehensive biologically plausible model
of a good chunk of the primate sensory motor control systems. Yet, as with
any early endeavor, this model is nowhere close to complete. For instance, the
dynamics, in its current form, are approximated using a two-link arm system.
To enrich the model’s depth and realism, there is scope to integrate more layers
of complexity both in terms of muscular interaction and synaptic interactions.
Additionally, sensorimotor delays are deemed negligible in the current model.
Integrating observational and control delays could significantly augment the
realism and utility of the sensorimotor control framework and can potentially

115

help in extrapolating it to engineering solutions.
Another important aspect that could be expanded is the error source attri-

bution. Error source attribution refers to the process by which the brain contin-
uously compares our intended movement to the actual movement and attributes
the cause for the observed error. The anterior cingulate cortex (ACC) is largely
responsible for this and plays a pivotal role in motor adaptation [Brockett et al.,
2020]. For instance, if you are throwing a dart and you miss the target, knowing
whether the error was due to your arm’s motion or a gust of wind will determine
how you adjust your next throw. The current model is primed for pursuing this
line of work with multiple errors driving adaptation and gain terms that are cur-
rently tuned for availability of observation. The ability to perform error source
attribution has important ramifications for unraveling how the motor system
helps in skill acquisition and getting cognitive feedback about the working of
the environment we live in to comprehend physics more generally.

In conclusion, the Neural Adaptive Filter and the NAF-based sensorimotor
control model, with their unique attributes and capabilities, mark a significant
step forward in our desire to understand the sensorimotor control systems. As
we navigate the landscape of system dynamics and sensorimotor control, these
tools not only offer a nuanced understanding but also highlight the how much
remains for future exploration.

116

Bibliography

(1988). A selective impairment of motion perception following lesions of the
middle temporal visual area (mt). Journal of Neuroscience, 8(6):2201–2211.

Akaike, H. (1969). Fitting autoregressive models for prediction. Annals of the
institute of Statistical Mathematics, 21(1):243–247.

Alemi, A., Machens, C., Deneve, S., and Slotine, J.-J. (2018). Learning nonlinear
dynamics in efficient, balanced spiking networks using local plasticity rules.
In Proceedings of the AAAI conference on artificial intelligence, volume 32.

Alexander, R. M. (1997). A minimum energy cost hypothesis for human arm
trajectories. Biological cybernetics, 76(2):97–105.

Bedford, F. L. (1993). Perceptual and cognitive spatial learning. Journal of
experimental psychology: Human perception and performance, 19(3):517.

Bekolay, T., Kolbeck, C., and Eliasmith, C. (2013). Simultaneous unsupervised
and supervised learning of cognitive functions in biologically plausible spiking
neural networks. In Proceedings of the annual meeting of the cognitive science
society, volume 35.

Berniker, M. and Kording, K. (2008). Estimating the sources of motor errors
for adaptation and generalization. Nature neuroscience, 11(12):1454–1461.

Berniker, M. and Penny, S. (2019). A normative approach to neuromotor control.
Biological cybernetics, 113:83–92.

Bhattacharyya, S. P., Datta, A., and Keel, L. H. (2018). Linear control theory:
structure, robustness, and optimization. CRC press.

Bliss, T. V. and Collingridge, G. L. (1993). A synaptic model of memory:
long-term potentiation in the hippocampus. Nature, 361(6407):31–39.

Brockett, A. T., Tennyson, S. S., deBettencourt, C. A., Gaye, F., and Roesch,
M. R. (2020). Anterior cingulate cortex is necessary for adaptation of action
plans. Proceedings of the National Academy of Sciences, 117(11):6196–6204.

117

Brunton, S. L., Proctor, J. L., and Kutz, J. N. (2016). Discovering governing
equations from data by sparse identification of nonlinear dynamical systems.
Proceedings of the national academy of sciences, 113(15):3932–3937.

Budǐsić, M., Mohr, R., and Mezić, I. (2012). Applied koopmanism. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 22(4):047510.

Buneo, C. A. and Andersen, R. A. (2006). The posterior parietal cortex: sen-
sorimotor interface for the planning and online control of visually guided
movements. Neuropsychologia, 44(13):2594–2606.

Churchland, M. M., Afshar, A., and Shenoy, K. V. (2006). A central source of
movement variability. Neuron, 52(6):1085–1096.

Colby, C., Goldberg, M., et al. (1992). The updating of the representation
of visual space in parietal cortex by intended eye movements. Science,
255(5040):90–92.

Cole, J. and Sedgwick, E. (1992). The perceptions of force and of movement in a
man without large myelinated sensory afferents below the neck. The Journal
of physiology, 449(1):503–515.

Conditt, M. A., Gandolfo, F., and Mussa-Ivaldi, F. A. (1997). The motor
system does not learn the dynamics of the arm by rote memorization of past
experience. Journal of Neurophysiology, 78(1):554–560.

Cueva, C. J. and Wei, X.-X. (2018). Emergence of grid-like representations
by training recurrent neural networks to perform spatial localization. arXiv
preprint arXiv:1803.07770.

Danziger, Z. and Mussa-Ivaldi, F. A. (2012). The influence of visual motion on
motor learning. Journal of Neuroscience, 32(29):9859–9869.

Denève, S., Alemi, A., and Bourdoukan, R. (2017). The brain as an efficient
and robust adaptive learner. Neuron, 94(5):969–977.

DeWolf, T., Jaworski, P., and Eliasmith, C. (2020). Nengo and low-power ai
hardware for robust, embedded neurorobotics. Frontiers in Neurorobotics,
14:568359.

DeWolf, T., Patel, K., Jaworski, P., Leontie, R., Hays, J., and Eliasmith, C.
(2023). Neuromorphic control of a simulated 7-dof arm using loihi. Neuro-
morphic Computing and Engineering, 3(1):014007.

DeWolf, T., Stewart, T. C., Slotine, J.-J., and Eliasmith, C. (2016). A spiking
neural model of adaptive arm control. Proceedings of the Royal Society B:
Biological Sciences, 283(1843):20162134.

Dong, A., Starr, A., and Zhao, Y. (2023). Neural network-based parametric
system identification: a review. International Journal of Systems Science,
54(13):2676–2688.

118

Eliasmith, C. and Anderson, C. H. (2003). Neural engineering: Computation,
representation, and dynamics in neurobiological systems. MIT press.

Fishbach, A., Roy, S. A., Bastianen, C., Miller, L. E., and Houk, J. C. (2007).
Deciding when and how to correct a movement: discrete submovements as a
decision making process. Experimental brain research, 177:45–63.

Flash, T. and Hogan, N. (1985). The coordination of arm movements: an experi-
mentally confirmed mathematical model. Journal of neuroscience, 5(7):1688–
1703.

Flash, T. and Sejnowski, T. J. (2001). Computational approaches to motor
control. Current opinion in neurobiology, 11(6):655–662.

Fraccaro, M., Kamronn, S., Paquet, U., and Winther, O. (2017). A disentan-
gled recognition and nonlinear dynamics model for unsupervised learning.
Advances in neural information processing systems, 30.

Gandolfo, F., Li, C.-S., Benda, B., Schioppa, C. P., and Bizzi, E. (2000). Cortical
correlates of learning in monkeys adapting to a new dynamical environment.
Proceedings of the National Academy of Sciences, 97(5):2259–2263.

Georgopoulos, A. P., Lurito, J. T., Petrides, M., Schwartz, A. B., and Massey,
J. T. (1989). Mental rotation of the neuronal population vector. Science,
243(4888):234–236.

Gilra, A. and Gerstner, W. (2017). Predicting non-linear dynamics by stable
local learning in a recurrent spiking neural network. Elife, 6:e28295.

Goodbody, S. J. and Wolpert, D. M. (1998). Temporal and amplitude general-
ization in motor learning. Journal of Neurophysiology, 79(4):1825–1838.

Grill-Spector, K. and Malach, R. (2004). The human visual cortex. Annu. Rev.
Neurosci., 27:649–677.

Haarmeier, T., Thier, P., Repnow, M., and Petersen, D. (1997). False perception
of motion in a patient who cannot compensate for eye movements. Nature,
389(6653):849–852.

Haith, A., Jackson, C., Miall, C., and Vijayakumar, S. (2008). Interactions
between sensory and motor components of adaptation predicted by a bayesian
model. Workshop on Advances in Computational Motor Control (ACMC
2008).

Heuer, H. and Hegele, M. (2008). Adaptation to a nonlinear visuomotor ampli-
tude transformation with continuous and terminal visual feedback. Journal
of Motor Behavior, 40(5):368–379.

Hsiao, S. S., Lane, J., and Fitzgerald, P. (2002). Representation of orientation
in the somatosensory system. Behavioural brain research, 135(1-2):93–103.

119

Huang, V. S. and Shadmehr, R. (2007). Evolution of motor memory during
the seconds after observation of motor error. Journal of neurophysiology,
97(6):3976–3985.

Imamizu, H. and Kawato, M. (2009). Brain mechanisms for predictive control by
switching internal models: implications for higher-order cognitive functions.
Psychological Research PRPF, 73:527–544.

Inoue, M. and Kitazawa, S. (2018). Motor error in parietal area 5 and target
error in area 7 drive distinctive adaptation in reaching. Current Biology,
28(14):2250–2262.

Ivry, R. B. and Keele, S. W. (1989). Timing functions of the cerebellum. Journal
of cognitive neuroscience, 1(2):136–152.

Izawa, J. and Shadmehr, R. (2008). On-line processing of uncertain information
in visuomotor control. Journal of Neuroscience, 28(44):11360–11368.

Johnson, K. O. (2001). The roles and functions of cutaneous mechanoreceptors.
Current opinion in neurobiology, 11(4):455–461.

Kaiser, E., Kutz, J. N., and Brunton, S. L. (2018). Sparse identification of non-
linear dynamics for model predictive control in the low-data limit. Proceedings
of the Royal Society A, 474(2219):20180335.

Kang, T., He, J., and Tillery, S. I. H. (2005). Determining natural arm configu-
ration along a reaching trajectory. Experimental brain research, 167:352–361.

Kirk, D. E. (2004). Optimal control theory: an introduction. Courier Corpora-
tion.

Koch, C. and Segev, I. (1998). Methods in neuronal modeling: from ions to
networks. MIT press.

Körding, K. P. and Wolpert, D. M. (2004). Bayesian integration in sensorimotor
learning. Nature, 427(6971):244–247.

Krakauer, J. W. (2009). Motor learning and consolidation: the case of visuo-
motor rotation. In Progress in motor control, pages 405–421. Springer.

Krakauer, J. W., Pine, Z. M., Ghilardi, M.-F., and Ghez, C. (2000). Learning
of visuomotor transformations for vectorial planning of reaching trajectories.
Journal of neuroscience, 20(23):8916–8924.

Lackner, J. R. and Dizio, P. (1994). Rapid adaptation to coriolis force pertur-
bations of arm trajectory. Journal of neurophysiology, 72(1):299–313.

Lee, C.-H. L., Liu, A., and Chen, W.-S. (2006). Pattern discovery of fuzzy time
series for financial prediction. IEEE Transactions on Knowledge and data
Engineering, 18(5):613–625.

120

Li, C.-S. R., Padoa-Schioppa, C., and Bizzi, E. (2001). Neuronal correlates
of motor performance and motor learning in the primary motor cortex of
monkeys adapting to an external force field. Neuron, 30(2):593–607.

Liepelt, R., Cramon, D., and Brass, M. (2008). What is matched in direct
matching? intention attribution modulates motor priming. Journal of Exper-
imental Psychology: human perception and performance, 34(3):578.

Lim, B. and Zohren, S. (2021). Time-series forecasting with deep learning: a sur-
vey. Philosophical Transactions of the Royal Society A, 379(2194):20200209.

Lu, D. and Weng, Q. (2007). A survey of image classification methods and
techniques for improving classification performance. International journal of
Remote sensing, 28(5):823–870.

Lu, L., Meng, X., Mao, Z., and Karniadakis, G. E. (2021). Deepxde: A deep
learning library for solving differential equations. SIAM review, 63(1):208–
228.

Lundquist, C., Sjanic, Z., and Gustafsson, F. (2015). Statistical Sensor Fusion:
Exercises. Studentlitteratur AB.

Lusch, B., Kutz, J. N., and Brunton, S. L. (2018). Deep learning for universal
linear embeddings of nonlinear dynamics. Nature communications, 9(1):4950.

MacNeil, J. B., Kearney, R., and Hunter, I. (1992). Identification of time-
varying biological systems from ensemble data (joint dynamics application).
IEEE Transactions on Biomedical Engineering, 39(12):1213–1225.

Mante, V., Sussillo, D., Shenoy, K. V., and Newsome, W. T. (2013). Context-
dependent computation by recurrent dynamics in prefrontal cortex. nature,
503(7474):78–84.

Manto, M., Bower, J. M., Conforto, A. B., Delgado-Garćıa, J. M., Da Guarda, S.
N. F., Gerwig, M., Habas, C., Hagura, N., Ivry, R. B., Mariën, P., et al. (2012).
Consensus paper: roles of the cerebellum in motor control—the diversity of
ideas on cerebellar involvement in movement. The Cerebellum, 11:457–487.

Masetty, B., Mirsky, R., Deshpande, A., Mauk, M., and Stone, P. (1989). Is the
cerebellum a model-based reinforcement learning agent?

Mazzoni, P. and Krakauer, J. W. (2006). An implicit plan overrides an explicit
strategy during visuomotor adaptation. Journal of neuroscience, 26(14):3642–
3645.

Meidani, K. and Farimani, A. B. (2023). Identification of parametric dynam-
ical systems using integer programming. Expert Systems with Applications,
219:119622.

Miall, R., Weir, D. J., Wolpert, D. M., and Stein, J. (1993). Is the cerebellum
a smith predictor? Journal of motor behavior, 25(3):203–216.

121

Miall, R. C., Christensen, L. O., and Owen Cain, J. S. (2007). Disruption of
state estimation in the human lateral cerebellum. PLoS biology, 5(11).

Miall, R. C. and Wolpert, D. M. (1996). Forward models for physiological motor
control. Neural networks, 9(8):1265–1279.

Morgan, R. (2015). Linearization and stability analysis of nonlinear problems.
Rose-Hulman Undergraduate Mathematics Journal, 16(2):5.

Murray, J. M. (2019). Local online learning in recurrent networks with random
feedback. Elife, 8:e43299.

Nichols, T. and Houk, J. (1976). Improvement in linearity and regulation of
stiffness that results from actions of stretch reflex. journal of Neurophysiology,
39(1):119–142.

Ohyama, T., Nores, W. L., Murphy, M., and Mauk, M. D. (2003). What the
cerebellum computes. Trends in neurosciences, 26(4):222–227.

Olberg, R. M., Worthington, A. H., Fox, J. L., Bessette, C., and Loosemore,
M. P. (2005). Prey size selection and distance estimation in foraging adult
dragonflies. Journal of comparative physiology A, 191:791–797.

Padé, H. (1892). Sur la représentation approchée d’une fonction par des fractions
rationnelles. In Annales scientifiques de l’Ecole normale supérieure, volume 9,
pages 3–93.

Penfield, W. and Boldrey, E. (1937). Somatic motor and sensory representation
in the cerebral cortex of man as studied by electrical stimulation. Brain,
60(4):389–443.

Perich, M. G., Gallego, J. A., and Miller, L. E. (2018). A neural population
mechanism for rapid learning. Neuron, 100(4):964–976.

Prilutsky, B. I. and Zatsiorsky, V. M. (2002). Optimization-based models of
muscle coordination. Exercise and sport sciences reviews, 30(1):32.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2018). Multistep neural
networks for data-driven discovery of nonlinear dynamical systems. arXiv
preprint arXiv:1801.01236.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019). Physics-informed
neural networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations. Journal of Com-
putational physics, 378:686–707.

Reuschel, J., Drewing, K., Henriques, D. Y., Rösler, F., and Fiehler, K.
(2010). Optimal integration of visual and proprioceptive movement informa-
tion for the perception of trajectory geometry. Experimental brain research,
201(4):853–862.

122

RobertC, M., Nicoll, and A, R. (1999). Long-term potentiation–a decade of
progress? Science, 285(5435):1870–1874.

Rushworth, M., Nixon, P., and Passingham, R. (1997). Parietal cortex and
movement i. movement selection and reaching. Experimental brain research,
117(2):292–310.

Sadtler, P. T., Quick, K. M., Golub, M. D., Chase, S. M., Ryu, S. I., Tyler-
Kabara, E. C., Yu, B. M., and Batista, A. P. (2014). Neural constraints on
learning. Nature, 512(7515):423–426.

Sanes, J. N. and Donoghue, J. P. (2000). Plasticity and primary motor cortex.
Annual review of neuroscience, 23(1):393–415.

Saunders, J. A. and Knill, D. C. (2003). Humans use continuous visual feed-
back from the hand to control fast reaching movements. Experimental brain
research, 152(3):341–352.

Scellier, B. and Bengio, Y. (2017). Equilibrium propagation: Bridging the gap
between energy-based models and backpropagation. Frontiers in computa-
tional neuroscience, 11:24.

Schaeffer, R., Khona, M., and Fiete, I. (2022). No free lunch from deep learning
in neuroscience: A case study through models of the entorhinal-hippocampal
circuit. bioRxiv, pages 2022–08.

Schmid, P. J. (2010). Dynamic mode decomposition of numerical and experi-
mental data. Journal of fluid mechanics, 656:5–28.

Scott, S. H. (2004). Optimal feedback control and the neural basis of volitional
motor control. Nature Reviews Neuroscience, 5(7):532–545.

Sejnowski, T. J., Churchland, P. S., and Movshon, J. A. (2014). Putting big
data to good use in neuroscience. Nature neuroscience, 17(11):1440–1441.

Shadmehr, R. and Mussa-Ivaldi, F. A. (1994). Adaptive representation of dy-
namics during learning of a motor task. Journal of neuroscience, 14(5):3208–
3224.

Shadmehr, R. and Wise, S. P. (2004). The computational neurobiology of reach-
ing and pointing: a foundation for motor learning. MIT press.

Slotine, J.-J. E. and Li, W. (1987). On the adaptive control of robot manipula-
tors. The international journal of robotics research, 6(3):49–59.

Stengel, R. F. (1994). Optimal control and estimation. Courier Corporation.

Sussillo, D. and Abbott, L. F. (2009). Generating coherent patterns of activity
from chaotic neural networks. Neuron, 63(4):544–557.

123

Taub, E., Ellman, S. J., and Berman, A. (1966). Deafferentation in monkeys:
effect on conditioned grasp response. Science, 151(3710):593–594.

Taylor, J. A. and Ivry, R. B. (2011). Flexible cognitive strategies during motor
learning. PLoS computational biology, 7(3):e1001096.

Telgen, S., Parvin, D., and Diedrichsen, J. (2014). Mirror reversal and visual
rotation are learned and consolidated via separate mechanisms: recalibrating
or learning de novo? Journal of Neuroscience, 34(41):13768–13779.

Thrun, S. (2002). Probabilistic robotics. Communications of the ACM,
45(3):52–57.

Todorov, E. and Jordan, M. I. (2002). Optimal feedback control as a theory of
motor coordination. Nature neuroscience, 5(11):1226–1235.

Uno, Y., Kawato, M., and Suzuki, R. (1989). Formation and control of opti-
mal trajectory in human multijoint arm movement. Biological cybernetics,
61(2):89–101.

Vaidyanathan, N., Penny, S., and Berniker, M. (2020). Planned straight or
biased to be so? the influence of visual feedback on reaching movements.
Journal of Motor Behavior, 52(2):236–248.

van Beers, R. J., Wolpert, D. M., and Haggard, P. (2002). When feeling is
more important than seeing in sensorimotor adaptation. Current biology,
12(10):834–837.

Vaziri, S., Diedrichsen, J., and Shadmehr, R. (2006). Why does the brain
predict sensory consequences of oculomotor commands? optimal integration
of the predicted and the actual sensory feedback. Journal of Neuroscience,
26(16):4188–4197.

Victor, J. D. and Purpura, K. P. (1996). Nature and precision of temporal
coding in visual cortex: a metric-space analysis. Journal of neurophysiology,
76(2):1310–1326.

Voelker, A., Kajić, I., and Eliasmith, C. (2019). Legendre memory units:
Continuous-time representation in recurrent neural networks. Advances in
neural information processing systems, 32.

Von Helmholtz, H. (1867). Handbuch der physiologischen Optik, volume 9. Voss.

Wang, J. and Sainburg, R. L. (2004). Interlimb transfer of novel inertial dy-
namics is asymmetrical. Journal of Neurophysiology, 92(1):349–360.

Warrant, E. (2004). Vision in the dimmest habitats on earth. Journal of Com-
parative Physiology A, 190:765–789.

124

Wehmeyer, C. and Noé, F. (2018). Time-lagged autoencoders: Deep learning
of slow collective variables for molecular kinetics. The Journal of chemical
physics, 148(24):241703.

Williams, M. O., Kevrekidis, I. G., and Rowley, C. W. (2015). A data–driven
approximation of the koopman operator: Extending dynamic mode decom-
position. Journal of Nonlinear Science, 25:1307–1346.

Wise, S., Moody, S., Blomstrom, K., and Mitz, A. (1998). Changes in motor
cortical activity during visuomotor adaptation. Experimental Brain Research,
121(3):285–299.

Wise, S. P., Boussaoud, D., Johnson, P. B., and Caminiti, R. (1997). Premotor
and parietal cortex: corticocortical connectivity and combinatorial computa-
tions. Annual review of neuroscience, 20(1):25–42.

Wolpert, D. M., Ghahramani, Z., and Jordan, M. I. (1995). An internal model
for sensorimotor integration. Science, 269(5232):1880–1882.

Wolpert, D. M., Goodbody, S. J., and Husain, M. (1998a). Maintaining in-
ternal representations: the role of the human superior parietal lobe. Nature
neuroscience, 1(6):529–533.

Wolpert, D. M., Miall, R. C., and Kawato, M. (1998b). Internal models in the
cerebellum. Trends in cognitive sciences, 2(9):338–347.

Yu, W., Tan, J., Liu, C. K., and Turk, G. (2017). Preparing for the unknown:
Learning a universal policy with online system identification. arXiv preprint
arXiv:1702.02453.

125

	List of Figures
	Introduction
	Engineering Background
	Linear control
	Linear filter
	The Kalman filter

	Nonlinear control
	Lyapunov's direct method
	Adaptive nonlinear control

	Nonlinear filter
	Extended Kalman filter
	Particle filter

	System identification methods
	Sparse Identification of Nonlinear Dynamics with control - SINDy-c
	Feedback-based Online Local Learning Of Weights (FOLLOW)

	Neuroscience background
	The brain: a powerful controller
	Prediction
	Perception
	Generalization
	Adaptation

	Motor control modelling
	Current state of motor control models
	The Neural Engineering Framework
	Representation
	Transformation
	Dynamics
	The Legendre Memory Unit (LMU)
	Learning

	Recurrent Error-driven Adaptive Control Hierarchy - REACH

	A Linear Model
	Linear prediction model
	Neural implementation of a Kalman Filter
	Linear Filter Results
	Performance while varying measurement uncertainties

	Linear Sensorimotor control model
	The Visuomotor Rotation paradigm
	Experimental setup
	Model description and function
	Results

	Limitations of a linear system model

	Neural Adaptive Filter
	Method
	Moving to the Legendre space
	Neural Implementation

	Architecture of the Neural Adaptive Filter (NAF)
	NAF Performance
	Lorenz Attractor
	Forced Damped Pendulum
	Two-link Arm

	Benchmark comparison

	Sensorimotor Control Model
	Model description
	Anatomical parallels
	Experimental Setup
	Single trial
	Rotation

	Results
	Baseline Stage
	Rotation Stage
	Washout Stage

	Discussion

	Conclusions
	Thesis Contributions
	Future work

	Bibliography

