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Abstract 

Snow cover is one of the cryosphere's most critical components, representing a vital 

geophysical variable for climate and hydrology. Monitoring snow cover in Arctic regions has 

gained increasing significance, particularly considering recent climate warming. Given the 

complex spatiotemporal variability, inconvenience of transportation, and the remote locations 

of many snow-covered areas, remote sensing emerges as an ideal technique for data 

collection to monitor snow cover across various spatiotemporal scales. 

In contrast to optical remote sensing, passive microwave (PMW) and active 

microwave (AMW) satellite sensors remain unaffected by clouds and solar illumination, 

making them widely employed in snow detection.  PMW observations have lower spatial 

resolution and high temporal resolution than AMW, which are suitable for large-scale snow 

mapping. Integrating optical data and PMW data can significantly enhance the quality of 

snow cover information. Various machine learning (ML) methods have been pivotal in 

environmental remote-sensing research in recent years. With the surge in Earth observation 

big data and the rapid advancements in ML techniques, an array of innovative methods has 

emerged to facilitate environmental monitoring on a global scale. Thus, a snow-monitoring 

method has been proposed based on multi-source remote sensing data and ML. The 

brightness temperature (Tb) data derived from the Advanced Microwave Scanning 

Radiometer E/2 (AMSR-E/2) Level 3 product and Moderate Resolution Imaging 

Spectroradiometer (MODIS) snow product serves as the reference for snow cover area 

(SCA). This study predominantly selects Oct, Dec, Feb, and Apr from 2012 to 2022 as the 

study periods. The research uses three ML methods, Logistic Regression (LR), Random 

Forest (RF) and Support Vector Machine (SVM), for snow cover detection based on PMW 

and MODIS data in the Arctic. The overall accuracy (The ratio of correctly classified as 

snow plus correctly classified as non-snow points to the total number of points) of ML 

models in snow detection surpasses 80%, yet it exhibits regional and seasonal variations. 

Notably, distinctions in the distribution of MODIS snow and PMW snow become evident in 

two types of areas: regions where MODIS estimates exceed PMW and those where PMW 
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estimates surpass MODIS. ML-based estimation significantly enhances the accuracy of snow 

monitoring in the latter category, reducing misclassifications and augmenting the precision of 

snow cover assessment. When comparing the ML-derived SCA, PMW-derived SCA, and 

MODIS-derived SCA with the snow depth dataset-derived SCA, the ML method exhibited 

the highest consistency. 
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Chapter 1 

Introduction 

1.1 The importance of snow  

As outlined in the Intergovernmental Panel on Climate Change's (IPCC) Sixth 

Assessment Report for 2021 (AR6), substantial changes are evident in the cryosphere due to 

ongoing global warming. These transformations, including the Arctic amplification 

phenomenon, are anticipated to persist, influencing both human and physical dimensions 

(Callaghan et al., 2011b). These changes in the cryosphere hold the potential for severe 

consequences in many mountainous areas, such as flooding, landslides, and impacts on water 

availability, affecting humans, infrastructure, and economies (Beniston, 2003). Snow cover, a 

vital element of the cryosphere, exhibits wide distribution, strong seasonality, and heightened 

sensitivity to weather and climate fluctuations within Earth's climate system (Thackeray et al., 

2019). It serves as a significant feedback mechanism within the global climate system 

(Callaghan et al., 2011b; Derksen et al., 2012; Cohen et al., 2012). Moreover, snow cover plays 

a crucial role in groundwater and river runoff. When combined with melting glaciers, it can 

contribute to the occurrence of natural disasters such as avalanches, rain, and snow-induced 

flooding. Additionally, snow is instrumental in maintaining mountain forests and Arctic 

ecosystems. Its impact extends to Earth's energy budget by reflecting solar radiation (known 

as the snow-albedo effect) and influencing permafrost temperatures (Abram et al., 2019). Thus, 

ensuring precise monitoring of snow distribution is a fundamental prerequisite for examining 

pressing issues, including global climate change, hydrological cycles, human well-being, and 

economic stability. 

1.1.1 Global climate change 

As a crucial component of the cryosphere, snow cover ranks among the most responsive 

elements to climate change. Research has established that, within the context of global 

warming, the pivotal factor driving accelerated polar warming in polar regions is the positive 

feedback process (Masson-Delmotte et al., 2006). This feedback process encompasses several 
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mechanisms, with the snow albedo feedback being of particular significance (Screen & 

Simmonds, 2010). 

Snow albedo represents the ratio of solar radiation reflected by the snow surface to the 

total solar radiation received by it. While a blackbody has an albedo of 0 because it 

predominantly absorbs visible light, fresh snow exhibits a high albedo, reflecting more than 

80% of the incoming solar radiation (Dobos, 2020). As illustrated in Figure 1.1, the concept of 

snow albedo feedback involves an initial disturbance, such as an increase in greenhouse gases, 

leading to elevated surface temperatures, snowmelt, and a reduction in snow coverage. 

Consequently, surface albedo decreases as the snow cover diminishes. This decline results in 

increased absorption of solar radiation by the Earth's surface, further intensifying surface 

warming and exacerbating snowmelt (Thackeray & Fletcher, 2016). 

It is worth noting that surface albedo decreases by approximately 1% per degree of 

warming (Fletcher et al., 2012). In higher latitudes, the impact of snow albedo feedback is 

particularly noticeable during spring and could contribute to the declining trend in snow cover 

extent. The evolving surface air temperatures and shifts in precipitation patterns may further 

influence the trend in snow cover extent, contingent on factors such as latitude and elevation 

(Hernandez-Henriquez et al., 2015). 

 

Figure 1. 1 The feedback mechanism of snow albedo 
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1.1.2 Hydrological cycles 

In the context of global climate change, the diminished snowmelt, influenced by 

climate change, reduces the availability of frozen water resources by disrupting the natural 

replenishment of downstream water sources. This increasing meltwater gradually reshapes 

hydrological processes, exerting a profound influence on the hydrological function of snow 

cover. This influence primarily manifests in water conservation, runoff recharge, and water 

resource regulation (Ding et al., 2020). Snow acts as a vital component in the phase-change 

process, resembling a sitting water tower that facilitates the conversion of solid water into 

liquid water, releasing previously stored water. Consequently, snow continues to provide water 

even during periods of drought and low rainfall. Snowmelt events lead to the loss of snow 

water storage and advance the spring snow-free date. Furthermore, a transition towards 

increased winter rainfall can reduce overall river runoff (Berghuijs et al., 2014). In the Arctic, 

snowmelt runoff accounts for a substantial 65% of the annual runoff (Shi et al., 2015). The 

melting of snow also profoundly impacts frozen soil ecosystems, which serve a critical role in 

water conservation. These ecosystems are instrumental in stabilizing the water cycle and river 

runoff in the source regions of rivers. Compared to snow's water conservation and runoff 

recharge functions, its role in water resource regulation is of paramount importance. In basins 

without snow cover, rivers depend on precipitation for replenishment, resulting in significant 

annual runoff variations. In contrast, within snow-covered basins, the temperature in high 

mountain snow areas often remains lower due to increased precipitation during wet years. The 

reduced volume of glacier melting also diminishes the supply of snowmelt water to the rivers, 

weakening the increased watershed runoff resulting from augmented precipitation. Conversely, 

in basins with low precipitation, the relatively higher temperatures in glacier areas lead to 

increased glacial meltwater, compensating for river replenishment due to insufficient 

precipitation (Ding et al., 2020). 

1.1.3 Human welfare 

Approximately 100 million people depend on snowmelt water for their agricultural and 

domestic needs, as documented by Barnett et al. in 2005. Additionally, nearly the entire global 
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population benefits from the climate-related services provided by snow, as a significant portion 

of the world's annual precipitation comes in the form of snowfall (Sturm et al., 2017). In 

regions with high latitudes and altitudes, where the active layer of frozen soil remains intact, 

snowmelt often gives rise to floods and disasters, impacting both the social economy and 

human safety. Changes in winter precipitation and runoff patterns, leading to the loss of snow 

water, result in significant economic setbacks for areas reliant on snowmelt in industrial 

agriculture. The importance of snow in human life may not be fully recognized by those who 

live far from regions where snow is directly supplied. To convey the significance of snow to 

human economic well-being, Sturm et al. (2017) have made efforts to monetize its value. 

Taking the western United States as an example, the transition from snow to rain would result 

in annual losses ranging from $10.8 billion to $48.6 billion. 

1.2 The methods of snow detection  

1.2.1 In situ measurement  

The simplest method for snow detection involves using equipment to collect in-situ 

measurements. These devices are primarily categorized into two types: fixed and portable. 

Snow monitoring heavily relies on observational data from operational weather stations 

distributed across a wide area, serving the purpose of continuous monitoring to record the 

evolution of snow cover (Kinar & Pomeroy, 2015). In contrast, portable equipment is tailored 

to small-scale areas, requiring manual transportation of measuring devices into snowy terrain 

for data collection. Common equipment used for measuring snow depth and snow water 

equivalent includes rulers and snow tubes. For example, the Magnaprobe, a patented automatic 

snow depth probe commercially manufactured by Snow-Hydro LLC since 1999, has found 

extensive use in field validation campaigns. Its design includes a ski pole-like rod housing a 

magneto strictive device, accompanied by a floating basket and magnet assembly (Sturm & 

Holmgren, 2018). When measuring snow wetness or dielectric constant, electronic equipment 

is necessary for accurate assessment (Kinar & Pomeroy, 2015). 
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1.2.2 Remote sensing observations  

Due to the remoteness of some areas, weather station observations are limited in their 

representation of the region. Remote sensing technology provides a rapid, efficient, and 

extensive means of monitoring snow-covered area (SCA), snow depth, and other snow-related 

parameters. Currently, remote sensing methods employed for snow monitoring are primarily 

based on optical and microwave technologies, with microwave remote sensing further 

categorized into active microwave remote sensing (AMW) and PMW. 

1.2.2.1 Optical remote sensing 

Optical remote sensing data, from visible-infrared observations, are typically employed 

for estimating SCA, with the Normalized Differential Snow Cover Index (NDSI) serving as 

the primary tool for snow cover identification (Hall et al., 2002). Identifying snow in 

multispectral data relies on variations in snow reflectance across different spectral bands. Snow 

exhibits high reflectance in the visible spectrum and low reflectance in the short-wave infrared. 

NDSI, being a globally applicable algorithm, effectively facilitates snow mapping based on 

these characteristics. Other snow indices are also employed for snow cover measurement. For 

instance, Sharma et al. (2016) introduced the Water-Resistant Snow Index (WSI) for snow 

cover mapping, excluding water bodies. Alternatively, the relationship between NDSI and 

Fractional Snow Cover (FSC) is established using an empirical function (Gascoin et al., 2020). 

When it comes to data usage, the fusion of multi-source data has proven to be an effective 

approach for enhancing the accuracy of snow mapping. For example, Gascoin et al. (2019) 

developed a high-resolution SCA model based on Sentinel 2 and Landsat 8 data. 

Currently, optical remote sensing sensors are primarily employed for remote sensing 

monitoring of snow cover area and snow reflectance. However, they are less effective in 

estimating snow depth, snow water equivalent, and other related parameters due to the 

characteristics of snow and the limitations of optical wavelengths. Furthermore, optical remote 

sensing is susceptible to weather conditions, and cloud cover can significantly impact 

monitoring efforts. 
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1.2.2.2 Microwave remote sensing 

Compared to optical remote sensing, microwave remote sensing has proven to be a 

highly effective technique for monitoring and obtaining snow parameters. Microwaves can 

penetrate clouds and snow layers, allowing the detection of information about the surface 

beneath the snow cover. This technology is characterized by its all-weather capabilities and 

large-scale snow cover monitoring (Shi et al., 2016). 

AMW and PMW remote sensing methods effectively retrieve snow depth and snow 

water equivalent, offering advantages that optical remote sensing cannot match. The era of 

snow monitoring using AMW sensor data began with the launch of the first synthetic aperture 

radar (SAR) satellite, SeaSat, in 1978 (Pepe et al., 2005). SAR primarily relies on the 

backscattering coefficient, co-polarization and cross-polarization backscattering ratios, and 

polarization fraction (PF) values to distinguish between snow cover and non-snow cover areas 

(Singh et al., 2014). For example, Shi et al. (2000) utilized the co-polarization channels of 

multi-frequency L-band and C-band SAR data to achieve high-precision inversion in snow-

covered areas. Additionally, backscatter information can be combined with interference 

coherence to enhance snow identification accuracy (Strozzi et al., 1999). 

In contrast to AMW, PMW snow detection relies on the Tb value. Most PMW-based 

snow monitoring algorithms utilize decision tree classification methods. The primary criterion 

for identifying snow cover is the positive Tb gradient between low and high frequencies (e.g. 

18GHz and 36GHz) (Shi et al., 2016). Kunzi et al. (1982) mapped SCA by applying the 

condition 18GHz-37GHz > 3.8K. Grody and Basist (1996) introduced a decision tree algorithm 

based on snow cover measurements from the SSM/I, separating snow from precipitation, cold 

deserts, and frozen ground. Some algorithms identify SCA with different types of snow. Kelly 

(2009) developed a shallow snow detection algorithm using an 89 GHz channel to distinguish 

moderate to deep snow. 

However, the coarse resolution (e.g. 25km) of PMW remote sensing data introduces 

the issue of mixed pixels, potentially containing complex terrain or multiple land types. This 

may lead to inaccuracies when retrieving snow parameters based on PMW remote sensing 
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(Foster et al., 1997). The coarse spatial resolution of PMW remote sensing data will bring 

about the problem of mixed pixels (may contain complex terrain or multiple land types), which 

leads to the failure to accurately describe the real snow information on the surface when 

retrieving snow parameters based on PMW remote sensing (Foster et al., 1997). 

1.2.3 Artificial intelligence technique in snow detection  

Utilizing a linear empirical relationship for snow parameter calculation offers 

advantages such as simplicity, interpretability, computational efficiency, and stability. 

However, studies have shown that the relationship between microwave brightness temperature 

and snow cover parameters becomes complex and nonlinear, exhibiting a many-to-many 

functional relationship across diverse terrains (e.g., Liang et al., 2015). Consequently, 

developing an explicit inverse relationship for snow cover parameters is deemed unrealistic. 

To enhance the accuracy of estimating snow cover parameters, it becomes necessary to employ 

nonlinear techniques, such as Neural Networks (NNs), SVM, RF, and other ML algorithms 

(Gharaei-Manesh et al., 2016). These nonlinear methods have proven successful in the inverse 

estimation of snow depth and snow water equivalent to date (Kwon et al., 2019; Xiao et al., 

2018; Liang et al., 2015). Nonlinear inversion algorithms, built on prior knowledge, effectively 

capture the intricate relationship between microwave brightness parameters and snow cover, 

overcoming the limitations of linear algorithms when applied across various regions. Despite 

their widespread use and high inversion accuracy, these algorithms lack the detailed snow 

physical model processes found in the inversion process (Xue & Forman, 2015). 

1.3 Aim and Objectives 

Given the significance of large-scale snow mapping, the limitations of traditional 

remote sensing methods, and the relatively limited application of ML in snow classification, 

this study aims to assess the suitability of ML approaches for snow mapping in the Arctic using 

PMW Tb data and MODIS observations. To achieve this overarching goal, the following 

objectives are defined: 

1. Evaluate various ML models for snow detection.  
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Utilizing PMW Tb data and MODIS binary snow data as inputs, three commonly 

employed ML models, LR, RF and SVM classifiers, are assessed. The optimal models are 

determined through hyperparameter tuning and cross-validation. Subsequently, their 

effectiveness is examined on an evaluation dataset. 

2. Analyze the disparities between satellite-derived snow, ML-derived snow which combines 

optical and PMW observations, and station-measured snow.  

Satellite-derived snow encompasses data from both PMW and MODIS sources, with 

the expectation that ML-derived snow exhibits improved consistency with MODIS snow 

data. These variations can be analyzed from multiple perspectives, including Tb features, 

topographic characteristics, and detection algorithms. Furthermore, station-derived snow 

cover data can serve as a reference for comparing estimated snow data from ML, 

considering the differences in data sources and algorithms. 

1.4 Thesis structure 

Chapter 2 provides the background information of this research, which includes an 

introduction to the basis theory of snow detection and a review of the use of PWM, MODIS, 

and ML applications for snow cover detection. In Chapter 3, the study area and data source are 

introduced. Chapter 4 presents the whole methodology of this thesis. In Chapter 5, the analysis 

of ML models’ application on snow mapping is given. Chapter 6 gives the conclusions, 

limitations, main findings of this study, and recommendations for future research areas. 
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Chapter 2 

Research Context 

2.1 Passive microwave remote sensing of snow cover 

2.1.1 Theoretical basis 

As shown in Figure 2.1, the PMW radiation transmission model describes the radiation 

and scattering process between the microwave through the rough surface, inhomogeneous 

dense medium (such as snow), and the atmosphere (Ulaby et al., 1981), which is the basis of 

PMW snow inversion. Because the snow layer is a non-uniform medium, the microwave has 

to go through multiple scattering and absorption processes. The ascending and descending 

radiation of the snow layer interface can be expressed by Eq. 2-1 and 2-2(Ulaby et al., 1981):  

𝜇𝑠
𝑑𝑇+

𝑑𝑧
= −𝑘𝑒𝑇+ + 𝑘𝑎𝑇 + 𝐹+                                            (2-1) 

 𝜇𝑠
𝑑𝑇−

𝑑𝑧
= −𝑘𝑒𝑇− + 𝑘𝑎𝑇 + 𝐹−                                             (2-2) 

Where 𝜇𝑠 is the total upward radiation of the medium; 𝑧 is the depth; 𝑇+ and 𝑇− are 

the radiation intensity above and below the snow layer respectively; 𝑘𝑒 is the snow attenuation 

coefficient; 𝑇 is the temperature profile of snow layer; 𝑘𝑎 is the absorption coefficient of snow 

layer; 𝐹+  and 𝐹−  are the upward and downward scattering term of the snow particles, 

respectively. 

 

Figure 2. 1 Microwave emission from the surface and snow (Sun et al., 2015) where ε is the 

dielectric constant; θ is the incidence Angle; φ is the exit Angle.  
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Microwave radiation models of snow cover include scattering layer microwave 

emission model (England, 1975), the University of Helsinki's (HUT) snow emission model 

(Pulliainen et al., 1999), and the microwave emission model of layered snow snowpacks, 

MEMLS) (Wiesmann & Mätzler, 1999) and snow accumulation model based on dense medium 

radiative transfer (DMRT) theory (Tsang, 1992), and the Snow Microwave Radiative Transfer 

(SMRT) model (Picard et al., 2018). 

The satellite microwave radiometer finally records the microwave radiation energy 

from the ground in the form of antenna temperature (TA) and then converting to brightness 

temperature (Tb) through calibration (Armstrong et al., 1993), which comes from four parts, 

which can be expressed by formula 2-3 (Figure 2.2): 

                                        Tb=Tb1+Tb2+Tb3+Tb4                                           (2-3) 

Where Tb1 is the energy emitted by the surface under the snow layer, Tb2 is the energy emitted 

by the snow layer, Tb3 is the sky radiation reflected by the snow-surface interface, and Tb4 is 

the sky radiation reflected by the snow-air interface. The energy of microwave radiation from 

snow mainly comes from the surface beneath the snow layer (Tb1) and inside the snow layer 

(Tb2) (Chang et al., 1987).   

 

Figure 2. 2 Microwave radiation of the surface with snow cover 
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In the microwave radiation of snow, the bulk scattering of snow particles plays an 

important role, which can attenuate, and scatter part of the energy radiated from snow. The 

microwave radiation characteristics of snow will change with the changes in snow thickness, 

particle size (Hofer & Mätzler, 1980), snow density, snow temperature, moisture content 

(Hallikainen et al., 1987), snow structure, and underlying surface medium. The greater the 

depth of the dry snow cover, the more particles scattering microwave signals in the snow cover, 

and the more energy will be scattered in the process of penetrating the snow cover, resulting 

in less energy received by the satellite sensor and lower Tb (Chang et al., 1997). When the 

snow melts, due to the presence of liquid water in the snow layer, a large part of the microwave 

radiation energy of the snow is absorbed and cannot penetrate the snow layer. In the energy 

radiation of snow, the scattering effect is dominant, among which dry snow is a strong scatterer, 

and its scattering effect will be enhanced with the increase of microwave frequency (Ulaby et 

al., 1981). 

2.1.2 PMW remote sensing snow data 

Tb value provided by Satellite PMW sensors are used for snow detection. The widely 

used sensors include SMMR (Scanning Multichannel Microwave Radiometer) on Nimbus-7, 

SSM/I (Special Sensor Microwave Imager) and SSMIS (Special Sensor Microwave Imager 

Sounder) on DMSP (Defense Meteorological Satellites Program); AMSR-E (Advanced 

Microwave Scanning Radiometer-EOS) sensor on the Aqua satellite; AMSR2 (Advanced 

Microwave Scanning Radiometer 2) sensor on the GCOM-W1(Global Change Observation 

Mission-Water) satellite, and MWRI (Microwave Radiation Imager) on the FY-3 series 

satellite Sensors (Table 2.1). 
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Table 2. 1 Parameters summary of PMW sensors 

Sensor  Platform  Time  Frequency/GHz Polarization  Instantaneous field of view(km) 

 

 

SMMR 

 

 

Nimbus-

7 

 

 

1978.10-

1987.08 

6.6 

10.7 

18.0 

21.0 

37.0 

H, V 

H, V 

H, V 

H, V 

H, V 

136×89 

87×57 

54×35 

47×30 

47×30 

 

 

SSM/I 

 

 

DMSP 

 

 

1987.07-

2009.11 

19.35 

22.24 

37.0 

85.5 

H, V 

V 

H, V 

H, V 

70×45 

60×40 

38×30 

16×14 

 

 

SSMIS 

 

 

DMSP 

 

 

2006.12- 

19.35 

22.24 

37.0 

91.66 

H, V 

V 

H, V 

H, V 

70×45 

60×40 

38×30 

38×30 

 

 

AMSR-

E 

 

 

Aqua 

 

 

2002.06-

2011.10 

6.93 

10.65 

18.7 

23.8 

36.5 

89.0 

H, V 

H, V 

H, V 

H, V 

H, V 

H, V 

75×43 

51×39 

27×16 

32×18 

14×8 

6×3 

 

 

AMSR2 

 

 

GCOM-

W1 

 

 

2012.05- 

6.93 

7.3 

10.65 

18.7 

23.8 

36.5 

89.0 

H, V 

H, V 

H, V 

H, V 

H, V 

H, V 

H, V 

62×35 

62×35 

42×24 

22×14 

26×15 

12×75 

5×3 

 

 

MWRI 

 

 

FY-

3B/3C 

 

 

2010.11- 

10.65 

18.7 

23.8 

36.5 

89.0 

H, V 

H, V 

H, V 

H, V 

H, V 

51×85 

50×30 

27×45 

18×30 

9×15 
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Since the launch of PMW sensors on the Nimbus satellite in 1978 and the DMSP series 

satellites in 1987, research on snow based on PMW remote sensing has rapidly advanced. 

Compared with SSM/I and SSMIS, the AMSR-E and AMSR2 sensors on the Aqua satellite 

and GCOM-W1 offer higher spatial resolution and more frequency bands, ranging from 6.9 to 

89 GHz. The upcoming AMSR3, scheduled to launch in 2024, will have even more frequency 

bands, enhancing snow monitoring capabilities. The data from the five existing PMW sensors 

(SMMR, SSM/I, SSMIS, AMSR-E, and AMSR2) are available through the National Snow and 

Ice Data Center (NSIDC). To ensure maximum data consistency, all the data from these four 

sensors were sampled, and an Equal-Area Scalable Earth grid of 25 km × 25 km was used 

(EASE-Grid) for storage in the NSIDC (Armstrong & Brodzik, 1995). This allows the direct 

download of 25 km × 25 km data from NSIDC. The Equal-Area Polar Azimuth projection is 

used in the Arctic and Antarctic regions, while the Equal-Area Cylindrical projection is used 

for a global perspective. 

2.2 Optical remote sensing of snow cover 

2.2.1 Theoretical basis 

Optical remote sensing of snow is mainly based on the difference in spectral 

characteristics of snow in visible light, near-infrared, short-wave infrared, and thermal infrared 

bands. Figure 2.3 shows a comparison of the spectral features of snow and other Earth features 

based on the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) 

spectral library, the ASTER spectral Library (Baldridge et al. 2009). The low reflection (high 

absorption) coefficient of snow at 1.5μm and 2.0μm is the important characterization to 

separate snow with other earth features. Because snow has strong reflection properties in the 

visible part and strong absorption properties in the short-wave infrared, the NDSI effectively 

distinguishes snow from many other surfaces.  NDSI is defined as follows: 
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Figure 2. 3 Comparison of spectral signatures of snow and other earth features based on 

ASTER spectral library data (Baldridge et al. 2009) 

     𝑁𝐷𝑆𝐼 =
(𝑏4−𝑏6)

(𝑏4+𝑏6)
                                                     (2-4) 

Where, 𝑏4 and 𝑏6 represent the reflectance values of MODIS band 4 (Visible Green) and band 

6 (Shortwave Infrared Red, SWIR), respectively. In the process of utilizing NDSI for 

identifying snow pixels, the key factor to consider is establishing the detection threshold. The 

NDSI threshold of 0.4 serves as a commonly adopted global standard for distinguishing snow 

from non-snow in a binary manner (Zhang et al., 2019). The standard threshold of 0.4 needs 

to be adjusted on a local scale. For instance, the reflectance properties can vary on steep slopes 

or shaded areas, and the presence of a forested area can influence the way snow reflectance 

interacts with trees. However, since the study area is in the whole Arctic, 0.4 is still chosen as 

the threshold for snow identification. 

2.2.2 Optical remote sensing snow 

Optical remote sensing is a valuable tool for monitoring snow cover using visible and 

near-infrared bands. Various optical remote sensing products and sensors are employed for 

snow monitoring, including MODIS snow cover product, Landsat snow cover product, and 
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Sentinel-2, etc. MODIS offers lower spatial resolution (250-500 meters) compared to Sentinel 

(10-20 meters) and Landsat (30 meters). This makes MODIS more suitable for studies in larger 

scale. Also, MODIS has a higher temporal resolution, providing daily data, while Sentinel-2 

and Landsat offer data less frequently (e.g., every 5 to 16 days). So, MODIS data was selected 

in this research. MODIS offers several snow products, each with specific purposes., such as 

product MOD10A1/MYD10A1 provides information on fractional snow cover (Collection 5) 

and NDSI values (Collection 6). Also, since the cloud effects on the snow detection by optical 

remote sensing, the cloud gap filled snow product are developed for the snow mapping, such 

as MOD10A1F product.   

2.3 Machine learning applications - general principles 

The selection of ML classification methods involves considering various aspects such 

as sample size, data complexity, the balance between interpretation and accuracy, the trade-off 

between speed and accuracy, and outlier processing. Therefore, data curation is a crucial step 

to ensure the quality and reliability of the dataset, directly impacting the performance and 

interpretability of chosen ML models. In this study, the dataset is large, and potential outliers 

may exist. While the Maximum Likelihood Method (MLC) offers faster convergence suitable 

for large-scale and high-dimensional data, it often assumes specific data distributions, such as 

normal distributions, which may not hold for real-world data. LR is a suitable choice for binary 

classification problems, but if the relationship is highly non-linear or involves intricate 

interactions between features, more complex models like SVM and RF could be explored. RF 

and SVM demonstrate good accuracy on non-linear data, although SVM may run slowly on 

large datasets. Both models are highly robust and suitable for handling outliers. Therefore, this 

study applied three ML methods—LR, RF, and SVM—with the same input for snow cover 

estimation. 

2.3.1 Logistic Regression approach to ML 

LR is a robust statistical method primarily employed in binary classification tasks, 

where the outcome variable involves two distinct classes (Hosmer et al., 2013). LR utilizes a 
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logarithmic probability function, transforming the linear regression equation via the Sigmoid 

function, which effectively maps any real number to a bounded range between 0 and 1. This 

characteristic makes LR well-suited for modeling probabilities. As a member of generalized 

linear models, LR employs the logistic function as its core, and parameters are estimated 

through the maximum likelihood method (Musa, 2013). The significance of each parameter is 

subsequently evaluated using rigorous statistical tests. In practical applications, LR model 

predictions are derived by setting a threshold, commonly at 0.5, where predicted labels are 

assigned based on whether the calculated probability exceeds this threshold, as shown below: 

𝑖𝑓 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑜𝑓 (𝑦 = 1) ≥ 0.5, 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑙𝑎𝑠𝑠 (𝑦 = 1) 

𝑖𝑓 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑜𝑓 (𝑦 = 1) < 0.5, 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑙𝑎𝑠𝑠 (𝑦 = 0)                  (2-5) 

2.3.2 Random Forest approach to ML 

 The theory of RF shows in Figure 2.4. RF serves as a prominent ensemble learning 

technique extensively applied in the domains of classification and regression. The 

methodology entails the creation of multiple decision trees during the training phase, whereby 

each tree is constructed through an iterative process. Notably, the dataset denoted as T, 

encompassing N samples, undergoes bootstrapping, a resampling technique wherein N 

samples are randomly drawn with replacement. Subsequently, each decision tree is trained on 

its respective bootstrapped subset, employing a randomized selection of M attributes when 

nodes necessitate division, adhering to the condition m << M. The choice of the splitting 

attribute for a node is dictated by a specific strategy, such as information gain. This recursive 

partitioning continues until the nodes can no longer be split. The ensemble nature of RF is 

underscored by the independent generation of multiple decision trees through the bootstrapping 

process. Aggregating the predictions of these individual trees, the RF model derives its final 

prediction by discerning the category with the highest frequency of votes among the decision 

trees (Pavlov, 2000). 
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Figure 2. 4 Theory of RF Classifier (Source: https://gaussian37.github.io/ml-concept-

RandomForest/) 

2.3.3 Support Vector Machine approach to ML 

The fundamental principle underlying SVM learning is the identification of distinct 

hyperplanes that effectively partition the training dataset while simultaneously maximizing the 

geometric margin, a concept elucidated by Joachims in 1999. A hyperplane can be 

conceptualized as a multidimensional surface that acts as a decision boundary, demarcating 

different classes in the feature space. The goal is to find the hyperplane that maximizes the 

margin between classes, thereby enhancing the model's generalization capability. 

To address non-linear classification challenges inherent in the input space, SVMs 

leverage the concept of nonlinear transformations, allowing the conversion of non-linear 

problems into linear tasks within a higher-dimensional feature space. This process facilitates 

the establishment of linear SVM models, offering a powerful approach to complex 

classification scenarios. In the realm of high-dimensional remote sensing data analysis, the 

utilization of kernel functions becomes imperative (see Figure 2.5). Kernel functions play a 

pivotal role in SVMs by projecting the input dataset into a higher-dimensional feature space, 

where the training samples become linearly separable. These kernel functions, including 

Sigmoid, Radial Basis Function (RBF), Polynomial, and Linear, enable SVMs to address 

https://gaussian37.github.io/ml-concept-RandomForest/
https://gaussian37.github.io/ml-concept-RandomForest/
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intricate patterns in the data. Notably, in remote sensing applications, the RBF and Polynomial 

kernels are commonly employed owing to their efficacy in capturing complex relationships 

within spatial and spectral data (Cherkassky & Ma, 2004). 

 

Figure 2. 5 Theory of Support Vector Machine Classifier (Source: 

https://www.slidestalk.com/s/support_vector_machines_1rduvu) 

2.3.4 Application of ML to remote sensing of snow 

ML is increasingly being applied to snow mapping and snow parameter retrieval (snow 

depth (SD), snow water equivalent (SWE)). LR is commonly used for modeling a binary 

dependent variable. By using a simpler calculation, LR avoids the complications of 

multicollinearity that can arise with numerous variables (Whyte et al., 2018). RF is not 

sensitive to the misclassification of pixels although the presence of clouds and forests can affect 

snow cover detection (Luo et al., 2022). SVM is another commonly used classification 

algorithm. It is a powerful method in nonparametric classification and does not assume a 

known statistical distribution of the data to be classified (Chutia et al., 2016). Compared with 

RF, SVM has more classification applications in land use, agriculture, and cities and is mainly 

targeted at multispectral and hyperspectral remote sensing images (Sheykhmousa et al., 2020). 

LR seldom used in snow research, and in snow research, RF and SVM model usually used for 

estimate SD and SWE. For example, SD or SWE are estimated using SVM or RF based on 

microwave and optical data (Kwon et al., 2019; Xiao et al., 2018; Liang et al., 2015). In 
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addition, RF-based regression performs better than SVM in snow depth retrieval (Wei et al., 

2022).  

2.4 Considerations in combining PMW and optical data in ML for snow cover mapping 

Therefore, other high-resolution remote sensing image data or products, such as 

MODIS data, have been fused with PMW remote sensing data for processing so that the data 

after fusion can better express the heterogeneity within the coarse resolution pixels of PMW 

remote sensing data and improve the utilization of multi-source data, complementary 

advantages make up for the defects of respective sensor data. There has been research into 

snow mapping using PMW and optical imagery. For example, a blended visible (Moderate 

Resolution Imaging Spectroradiometer, MODIS), PMW (Advanced Microwave Scanning 

Radiometer for the Earth Observing System, AMSR-E), and Quick Scatterometer (QuikSCAT 

or QSCAT) global snow product was proposed by Foster (et al., 2011). The PMW data were 

used to fill the areas where MODIS data was under cloud or darkness, and AMSR-E snow 

product and QSCAT can detect the melting areas. Bergeron (et al., 2014) created a combined 

snow product by merging data from AMSR-E and MODIS. This study aimed to enhance the 

accuracy of streamflow predictions resulting from snowmelt in the spring season.  

The previous studies (e.g. Foster et al., 2011) aimed to develop a more accurate snow 

cover product by blending the multi-source data. In addition, the snow detection algorithms of 

PMW and optical data are generally used in a large scale. But the different elevations and 

surfaces beneath the snow also affect the detection accuracy. Those influences will reflect on 

the change of some parameters, e.g., Tb, and ML can learn the relationship between input and 

output from the amount of data. So, ML methods are expected to achieve better classification 

accuracy to a large extent with complex terrain. With the diversification and quantification of 

satellite remote sensing data, a major advantage of ML is that it can effectively cope with high-

dimensional and massive data for pattern recognition and classification, which can solve the 

limitation of traditional remote sensing on accuracy and efficiency. 
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There are few studies on SCA detection using ML based on PMW data. The reason is 

that ML performs better in parameter retrieval of regression models, binary snow detection is 

relatively simple compared with SWE and SD retrieval, and binary snow cannot provide deeper 

snow information except snow distribution. However, accurate snow cover mapping is the 

basis for further study of snow cover parameters. Snow mapping has always been an important 

work in studying the cryosphere. Since SCA is more straightforward to identify in optical than 

microwave, microwave-derived snow cover is commonly used to fill MODIS clouds and dark 

regions (Foster et al., 2011). Therefore, the combination of PMW and MODIS can improve 

the accuracy of snow mapping. Although various snow cover algorithms can get satisfactory 

classification results, using ML for PMW SCA detection can explore the ability of PMW in 

snow cover detection and promote the development of ML in remote sensing classification. 

Building on the foundation established by Xiao et al. (2021), who conducted research 

on estimating FSC from PMW data using ML techniques, this research is inspired by their 

achievements. While Xiao et al.'s (2021) work demonstrated the efficacy of utilizing enhanced 

Tb and MODIS snow product, this research aims to enhance this exploration by incorporating 

different PMW datasets alongside MODIS snow product, thereby improving the accuracy and 

robustness of snow mapping. By applying various ML approaches tailored to the unique 

characteristics of the datasets at my disposal, this research seeks to contribute novel insights 

and methodologies to the field of snow cover analysis. 

       Thus, this study aims to develop a feasible ML method utilizing the PMW Tb data and 

MODIS binary snow product data to estimate daily snow cover area at a 25 km resolution. 
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Chapter 3 

Study Area and date source 

3.1 Study Area 

To consider only those areas covered by snow on the land, the study area obtained over 

the Arctic is shown in Figure 3.1. Greenland and Iceland were excluded because the snow area 

of those regions is usually snow on ice and glaciers, but this study focus on snow on land. Also, 

areas with a high-water fraction affect the microwave response, which results in uncertainties 

in snow detection. Water fractions from the Global Lake and Wetland Database (GLWD) level 

1 product (Lehner & Doll, 2004) were also considered in this study. Water fraction data are 

12.5 km EASE-Grid 2 projection data created using the average of 1 km data in a 12.5 km 

EASE grid cell. 10% WF was selected for the water mask because the majority water body can 

be masked. 

 

Figure 3. 1 Study area (EASE grid 2.0 North) 
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3.2 Data Source 

3.2.1 PMW Tb data sources 

The Tb data used in this research is the AMSR-E/2 Unified L3 Daily 25 km Brightness 

Temperatures, obtained from the National Snow and Ice Data Center 

(https://nsidc.org/data/au_si25/versions/1). This dataset includes six frequencies of 6, 10, 18, 

23, 36, and 89 GHz, and each frequency has two horizontal and vertical polarization modes. 

The data has a spatial resolution of 25 km, projected NSIDC Sea Ice Polar Stereographic North 

and the data format is HDF-EOS5. The GCOM-W1 satellite has two transit times a day, the 

transit time of the orbit is 13:30 (±15 min), and the orbit is 01:30 (±15 min). Liquid water in 

the snow will absorb part of the microwave radiation energy (Sun et al., 2006). Therefore, the 

transit time of the ascending orbit is affected potentially by snowmelt. This study selects the 

descend data for the snow monitoring in the Northern Hemisphere. 

3.2.2 MODIS snow product 

MODIS Collection 6 product uses NDSI value instead of fractional-snow cover (FSC) 

to provide the snow information. This product remains globally and can also be applied to an 

algorithm to derive FSC from NDSI in a particular study area (Hall et al., 2019). Cloud cover 

is the significant factor affecting snow mapping accuracy using VNIR. The cloud issue can be 

mitigated by cloud-gap filling (CGF). Many methods have been developed to eliminate the 

snow cover in the MODIS snow cover suite.  

This study selected MODIS snow products as reference data because of their wide 

application and high accuracy. The data set (MOD10A1F) provides 500 m resolution daily 

cloud-free global snow cover derived from the MODIS/Terra Snow Cover Daily L3 Global 

500m SIN Grid data set (MOD10A1) (https://nsidc.org/data/mod10a1f/versions/61). This CGF 

daily map is generated by retaining a previous day's non-cloud observation when the current 

day has a cloud. A separate parameter is provided as cloud persistence count (CPC), which 

tracks the number of days in each cell since the last clear-sky observation. Another used band 

of this dataset is 'Basic_QA', which provides a general quality estimate for pixels processed 
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for snow. The advantage of this product is that a user can decide how far back in time they 

would like to use observation and use the CPC information to develop a unique CGF map 

appropriate for their application.  

MOD44B Vegetation Continuous Filled (VCF) product is also used in this research to 

provide a global representation of forest cover at 250 m pixel resolution. Snow mapping with 

PMW Tb data in forest region is always a key challenge because the forest canopy can attenuate 

microwave radiation from the underlying snow and create additional emissions, thereby 

influencing the accuracy of snow detection. This study will consider the snow mapping 

accuracy on a different forest fraction (FF) level. According to the previous study about the 

impact of FF on PMW measurements, even a minimal forest fraction (FF) of 0.2 can cause 

notable alterations in the PMW measurement, with deviations of up to 10 K, and when FF 

surpasses 0.6, it can obscure nearly all the microwave signals associated with snow (Vander 

Jagt et al., 2013). Figure 3.2 is an example of FF which in 2018, three classes of FF were 

applied: high (FF>60%), medium (20%<FF<=60%) and low (FF<=20%). 
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Figure 3. 2 The forest fraction map in 2018 (EASE grid 2.0 North) 

3.2.3 Seasonal snow classification data source 

The snow classification dataset serves as a vital reference source, offering valuable 

physical and climatological insights into snow. The physical characteristics of snow are closely 

related to its Tb values. When assessing snow mapping, seasonal snow classification is 

considered by developing retrieval models based on different snow classes obtained from 

seasonal snow classification data. The seasonal snow cover classification map was obtained 

from the NASA National Snow and Ice Data Center (NSIDC). This classification system, as 

proposed by Sturm et al. in 1995, and improved by Sturm & Liston, 2019, is founded on the 
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distinguishing features of various snow layers. The dataset is available at four spatial 

resolutions, approximately 300 meters, 1 kilometer, 5 kilometers, and 50 kilometers, with this 

study utilizing the 5-kilometer resolution data. The snow classes encompass tundra, taiga 

maritime, ephemeral, prairie, alpine, and ice (refer to Figure 3.3). For the purposes of this study, 

the focus is placed on the most prominent snow classes, including tundra, taiga, prairie, and 

alpine. 

 

Figure 3. 3 Seasonal snow classification from Sturm et al. (1995) presented in an EASE grid 

2.0 North projection. 
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3.2.4 Snow depth data source 

The Canadian Meteorological Centre's daily snow depth analysis data, archived at 

NSIDC (https://nsidc.org/data/nsidc-0447/versions/1), was chosen as the comparative dataset 

for evaluating the SCA map estimated through ML. This dataset was created by assimilating 

real-time, in-situ daily snow depth observations using optimal interpolation with a first-guess 

field, as described by Brown & Brasnett in 2010. The initial estimates are derived from a 

fundamental model that computes snow accumulation and melting. This model integrates 

analyzed temperature data and six-hour precipitation forecasts sourced from the CMC Global 

Environmental Multiscale (GEM) forecast model, as detailed in Brown & Brasnett's work from 

2011. The data is presented on a 24-kilometer polar stereographic grid, which aligns with the 

PMW data. The northern hemisphere coverage includes daily snow depth analysis, average 

snow depth, climatology, and estimates of snow water equivalent (SWE). It's important to note 

that sparse data coverage over Canada and Russia may introduce uncertainties, as the snow 

depth data in these areas is primarily generated from the background field. Additionally, 

specific snow depth measurements are conducted in exposed, uncovered locations. These areas 

typically receive and retain less snow, leading to more rapid snow cover diminishment 

compared to the surrounding terrain. However, these issues are more likely to result in a 

significant bias in snow depth rather than affecting the snow cover extent. The SCA map can 

be generated from CMC data by applying a defined snow depth threshold. A snow depth 

example is provided in Figure 3.4. 
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Figure 3. 4 The snow depth map from 2018 Oct.15 presented in an EASE grid 2.0 North 

projection. 
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Chapter 4 

Methodology 

4.1 Processing methods 

Figure 4.1 is the workflow of this research.  In this study, four different SCA datasets 

were generated using various data sources and methodologies. The SCA based on Tb data was 

derived using Grody and Basist's (1996) algorithm. The MODIS-SCA was obtained from the 

MOD10A1F snow product. The SCA obtained through ML was developed by utilizing Tb data 

and MODIS snow reference data as training variables. Additionally, the SCA based on CMC 

snow depth data was also included. Subsequently, an evaluation of ML's predictive capabilities 

for SCA was conducted by comparing PMW-SCA, MODIS-SCA, and ML-SCA. Furthermore, 

a performance assessment of the ML-SCA model was carried out by comparing it with CMC-

SCA. This comprehensive analysis aimed to assess the effectiveness of ML in predicting SCA 

and further validate the model's performance. 

 

Figure 4. 1 workflow of the research 

4.1.1 Preprocessing 

All the datasets used were converted into the GeoTIFF format and resampled to 25 km 

using nearest neighborhood method. The Tb data projection was changed from Polar 
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Stereographic projection to the EASE grid since the Polar Stereographic projection is more 

suitable for sea ice but has more distortion further south. MODIS data is initially provided in 

tile format, so these tiles were merged to cover the same extent as the Tb data. 

4.1.2 Snow cover identification 

4.1.2.1 Snow identification by Grody and Basist’s algorithm (1996) 

Through the analysis of microwave Tb data and known surface characteristics, 

classification criteria were established, and a decision classification tree was developed to 

identify and remove snow-free pixels. In a study conducted by Zschenderlein et al. (2023) to 

evaluate different dry snow detection algorithms in the Northern Hemisphere, the results 

indicated that Grody and Basist's decision tree algorithm (1996) performed the best when 

compared to in-situ data. Therefore, this snow detection algorithm was chosen for use in this 

study. Grody and Basist's algorithm was originally proposed based on SSM/I measurements, 

which used antenna temperature (Ta) data. Since this study employs Tb data from AMSR-E/2, 

it was necessary to adapt the decision tree from Ta values to Tb values. To derive brightness 

temperature (Tb), a correction is applied by adjusting the temperatures from different 

frequency channels using respective offsets. Specifically, corrections of approximately 7K, 6K, 

4K, and 3K are employed for the 18, 23, 36, and 89 GHz channels, respectively. Using this 

method, the extracted snow area was determined after filtering out non-scatterers, precipitation, 

cold desert areas, and frozen ground. Therefore, the revised snow cover decision tree of Grody 

and Basist’s algorithm (1996), was applied to AMSR-E/2 PMW Tb data over land (as shown 

in Table 4.1). Figure 4.2 displays the extent of snow cover as of April 25, 2016, obtained using 

Grody and Basist's algorithm (1996). 
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Table 4. 1 The description of the revised decision tree algorithm by Grody and Basist (1996). 

The unit is Kelvin (K) 

Scattering materials  Identification conditions 

Scattering signature  1. Tb18V-Tb36V>3 or Tb23V-Tb89V>3 

Precipitation  1. Tb23V>=265K or 260K<=Tb23V<=264K  

2. Tb18V-Tb36V<=5K) 

Cold deserts 1. Tb18V-Tb18H>=18K 

2.  Tb18V-Tb36V<=13K  

3. Tb36V-Tb89V<=11K 

Frozen ground 1. Tb18V-Tb18H>=8K  

2. Tb18V-Tb36V<=5K 

3.  Tb23V-Tb89V<=9K 
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Figure 4. 2 An example of SCA generated by Grody and Basist’s algorithm (1996) presented 

in an EASE grid 2.0 North projection. 
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4.1.2.2 Snow cover generation by MODIS 

Xiao et al. (2021) employed the MOD10C1 snow product in their study, necessitating 

a preprocessing step to eliminate clouds from the dataset. In this research, the adoption of the 

CGF snow product was motivated by its enhanced effectiveness in generating precise snow 

maps. The deliberate selection of a more robust snow product aligns with the objective of 

enhancing the quality and reliability of the input data for subsequent ML analyses, thereby 

contributing to a more accurate representation of snow cover in the study area. 

The parameters 'CFG NDSI Snow Cover,' 'Cloud Persistence,' and 'Basic_QA' were 

extracted to formulate the MODIS-SCA dataset. 'CFG NDSI Snow Cover' stores 8-bit 

unsigned integers, where values ranging from 0 to 1 denote fractional snow cover (ranging 

from no snow to completely snow-covered) (Figure 4.3a). A global reference of NDSI > 0.4 

was chosen as the threshold for identifying snow pixels (Riggs et al., 2016). The 'Cloud 

Persistence' parameter signifies the number of consecutive days with cloud cover preceding 

the current day (Figure 4.3b). Snow pixels with higher values of CPC may lead to 

misclassifications. Typically, a nearly cloud-free map can be generated in five to seven days, 

contingent on the season and location (Hall & Riggs, 2020). In this paper, a threshold of seven 

persistence days was employed to map snow cover from MODIS. Consequently, pixels with 

more than seven persistence days were excluded from the dataset for ML analysis. While this 

threshold can result in an almost cloud-free map, there remains some uncertainty to be 

acknowledged. For instance, if cloud cover persists for fewer than two days, the gap-filling 

product may be deemed to have a high level of confidence and accuracy. However, if cloud 

cover persists for over five days, the confidence level is considered to be low. Figure 4.3c 

illustrates the final snow map for April 25, 2016, where NDSI > 0.4 and CPC ≤ 7. 



 

 33 

  

 

Figure 4. 3 MODIS snow product. a: NDSI, b: CPC, c: Binary snow map (NDIS>0.4 and CPC<=7) 

presented in an EASE grid 2.0 North projection. 

c 

a b 
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4.1.3 ML application for snow detection 

Since the original decision tree snow detection algorithm by Grody and Basist (1996) 

was proposed based on the SSM/I dataset, the frequencies of the sensor are not consistent with 

those of AMSR-E/2. For instance, the 85GHz of SSM/I is 89GHz in AMSR-E/2. Therefore, 

using the Grody and Basist’s algorithm (1996) for snow detection may introduce uncertainties. 

In contrast, optical images can capture surface features more realistically and directly than 

PMW. MODIS snow products generally exhibit an estimated accuracy of over 90% worldwide 

(Hall & Riggs, 2007). For example, in a research study conducted by Klein and Barnett (2003), 

the MOD10A1 MODIS snow products demonstrated an accuracy rate of 94.2% when 

compared to data from 15 SNOpack TELemetry (SNOTEL) sites. Hence, there is an 

expectation that ML-based snow monitoring would outperform Grody and Basist's algorithm 

(1996). In the ML approach, Tb channels and the MODIS SCA were used as input data. The 

input data consisted of Tb values at six frequencies (6, 10, 18, 23, 36, 89 GHz) with both 

horizontal and vertical polarizations, along with the MODIS binary snow data. Each pair of 

datasets comprises 13 parameters, and the binary snow value, as shown below: 

Table 4. 2 The input variables and output variable for ML model 

Input variables Tb_06H, Tb_06V, Tb_10H, Tb_10V, 

Tb_18H, Tb_18V, Tb_23H, Tb_23V, 

Tb_36H, Tb_36V, Tb_89H, Tb_89V (in 

Kelvin) 

Output variable Snow (snow: 1 or non-snow: 0) 

By establishing the correlation between each pair of Tb values and their corresponding 

output (MODIS binary snow data), the model gains the ability to predict new datasets post-

training. This predictive capacity hinges on the utilization of solely Tb data as input, producing 

binary snow values as output. In contrast to Xiao et al.'s (2021) research, which employed Tb 

differences as input variables, our study incorporates all individual frequency Tb values. This 

selection is based on the autonomous learning capabilities inherent in ML algorithms, enabling 
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them to identify complex relationships among variables without explicit reliance on the 

physical information of input features. Two tasks were undertaken based on the training set: 

one utilized all individual frequencies as input variables, and the other incorporated frequency 

differences into the original variables. The results indicated negligible differences in the 

accuracy of these two models. The inclusion of all individual frequency Tb values in the model 

aims to maximize the information available for training, considering the possibility that the 

variable 18V-36V might become redundant if both 18V and 36V are already integrated as 

independent variables. This approach reflects a strategic consideration of optimizing the 

available information for robust model training. This approach is designed to exploit ML 

algorithms' inherent learning capabilities, facilitating the discernment of intricate patterns 

within the data and ultimately enhancing the model's proficiency in accurately mapping snow 

cover based on the provided input features. In Xiao et al.'s (2021) study, RF demonstrated 

superior performance among the ML methods investigated. So, in the current research, a 

deliberate decision has been made to include RF as one of the selected ML methods, given its 

proven efficacy in estimating fractional snow cover from PMW data. Additionally, this study 

uses LR and SVM, which were not explored in Xiao et al.'s (2021) research. The purpose of 

this expanded ML methodology is to assess the comparative effectiveness of RF alongside LR 

and SVM in the specific context of snow mapping using diverse input features. This 

diversification aims to contribute to a comprehensive understanding of the strengths and 

limitations of different ML approaches for the given research objectives. 

The dataset utilized in the ML approach spans the timeframes of Oct, Dec, Feb, and 

April, covering the years 2012 to 2022, with the dataset division detailed in Table 4.3. The 

rationale behind selecting these specific months is rooted in the intention to comprehensively 

encapsulate the entire snow evolution cycle. This strategic choice aligns with the typical 

progression of snow-related phenomena: frozen ground emerging in low latitudes around Sep, 

the onset of snow in Oct, the revelation of depth hoar in Dec, a stable period of snow 

accumulation in Feb, and the initiation of snowmelt by Apr. By incorporating these specific 

months, the dataset effectively spans the diverse stages of the snow evolution cycle. While 
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recognizing the similarities in features among adjacent months from Sep to Apr, the deliberate 

selection of representative months serves a crucial purpose. It ensures that the ML model 

receives enough information to discern the necessary patterns, facilitating effective model 

training and verification. In the subsequent phase, the model trained on data from Oct, Dec, 

Feb, and Apr will be applied to validate data from other months. This step serves as a robust 

evaluation, gauging the model's performance and adaptability across various timeframes. This 

meticulous approach not only enhances the model's predictive capabilities but also validates 

its reliability in accurately capturing snow cover dynamics throughout the entire year. Daily 

AMSR-E/2 PMW Tb data (nighttime orbit only), and MOD10A1F SCA data for each of these 

months was used in the training, testing and validation steps.  

Table 4. 3  Divide the dataset into training set, testing set and validation set 

Training set 2013,2014,2015,2016,2017, 2020, 2021 

Validation set 2012, 2022 

Testing set 2018, 2019 

 

4.1.3.1 Hyper parameter tunning and model comparison 

Hyperparameters are parameters that users can set before training an ML model. All 

the three models were hyperparameter tunned. GridSearchCV method was used to filter the 

parameters that performed best for each model. The GridSearchCV approach involves 

systematically tuning parameters within a specified range. It adjusts these parameters in 

increments and proceeds to train the ML model with the adjusted settings. The ultimate goal is 

to identify the parameter configuration that yields the highest accuracy when evaluated on the 

validation dataset. This process encompasses both training and testing models with various 

parameter combinations (Liashchynskyi, & Liashchynskyi, 2019). GridSearchCV ensures the 

discovery of the parameter configuration that delivers the highest accuracy within the 

predefined parameter range. However, this advantage comes with a drawback. It necessitates 

the examination of all feasible parameter combinations, which becomes quite time-intensive 
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when dealing with extensive datasets and multiple parameters. Therefore, a smaller dataset 

comprising 2000 samples from validation set was chosen for the reference, given the 

computational demands. 

The parameters need to be tuned for each model given in Table 4.4. For LR, the primary 

hyperparameter to fine-tune is the regularization strength, denoted by the parameter 'C.' The 

'C' parameter influences the regularization term, balancing the desire to closely fit the training 

data with the goal of avoiding overfitting. A smaller 'C' value increases the regularization 

strength, leading to a simpler model, while a larger 'C' allows the model to capture more 

intricate patterns in the training data. Tuning the 'C' parameter is crucial for achieving the right 

balance between bias and variance in the LR model, ensuring robust generalization to unseen 

data. Additionally, the choice of optimization solver, such as ‘newton_cg’,'lbfgs' or 'liblinear,' 

can impact the model's convergence and efficiency. 

For RF, the parameters that require adjustment are the number of decision trees 

(n_estimators) in the forest and the maximum depth of the tree. Generally, a small number of 

estimators may lead to underfitting, and the computational load increases as the n_estimators 

increase. Therefore, a moderate value is typically selected. The decision tree model first splits 

all the datasets and then continues the split process on the sub-datasets. The max_depth 

parameter limits the number of cycles and adding more splits to the trees can result in better 

classification, as long as the model does not overfit. 

Within the SVM classification model, there are two essential hyperparameters: the 

penalty coefficient 'C' and the coefficient γ associated with the Radial Basis Function (RBF) 

kernel function. The penalty coefficient 'C' serves as a relaxation variable. Larger values of 'C' 

increase the loss function, resulting in more complex models for support vectors and 

hyperplanes, making them prone to overfitting. Conversely, smaller values of 'C' designate 

fewer samples as support vectors, resulting in a simpler final support vector and hyperplane 

model. As for the coefficient γ, it governs the impact of an individual sample on the overall 

classification hyperplane. Higher values of γ increase the influence of each sample. The default 

value in scikit-learn is 
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1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
                                              (4-1) 

Table 4. 4 The parameters need to be tuned for each model. 

Model Parameter 

LR Penalty:defines penalization norms 

Solver: Provides options to choose solver 

algorithm for optimization. 

RF n_estimator = the number of decision trees 

max_depth=max depth of each decision tree 

SVM C: The penalty coefficient C of the objective 

function is used to balance the classification 

margin and misdivided samples, default C = 1.0 

γ: Kernel coefficients, default γ= 1 / n_features 

 

The choice of the size of the training set is an essential prerequisite for training the 

model, and therefore, the performance of the three models was tested on four different numbers 

of datasets: the number of training sets was set at 500, 5,000, 50,000, and 100,000. All data 

features were balanced, ensuring an equal number of snow pixels and non-snow pixels, 

effectively dividing the snow and non-snow samples equally. Exploring the sensitivity of the 

dataset size serves as a means to determine the most suitable dataset for optimizing the 

efficiency of the training process. 

K-fold cross-validation was utilized to examine the different performance when using 

different sample sizes, as shown in Figure 4.4. This approach is a common practice for 

evaluating models using validation data. It involves partitioning the training dataset into K 

groups, known as "k-folds." Each fold serves as a test fold, while the remaining K-1 folds are 

utilized as the training set. Consequently, K models are created and individually evaluated on 

their performance against the testing set. The outcomes, typically measured using the Mean 

Squared Error (MSE), are then averaged to calculate the cross-validation error. Cross-

validation is a strategic approach to maximize the use of limited data and provides evaluation 
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results closely resembling the model's performance on an independent test set (Chen et al., 

2023; Karaca et al., 2022). Hence, 10-fold cross-validation was employed for the preliminary 

assessment of ML models. 

 

Figure 4. 4 Theory of 10-fold validation (Image from Karl Rosaen Log 

http://karlrosaen.com/ml/learning-log/2016-06-20/) 

 The hyperparameter tunning and cross validation of LR, SVM and RF were 

implemented based on frequencies 6, 10, 18, 23, 36, 89 GHz in both horizontal and vertical 

polarizations. In addition, some ML can rank the importance of input variables such as RF, and 

then analyze which variables have the most influence on the model and explore how they relate 

to physical properties. The importance rank approach used was based on RF, named 

permutation feature importance. The theory of this algorithm lies in the concept of measuring 

the reduction in a model's performance score when a single feature value is randomly 

rearranged. This technique effectively severs the connection between the feature and the target 

variable. Consequently, the decline in the model's performance score provides insight into the 

extent to which the model relies on that particular feature. 

http://karlrosaen.com/ml/learning-log/2016-06-20/
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4.1.3.2 Evaluation of SCA 

The testing dataset from 2012 and 2022, was used to examine the model's prediction 

performance. The Tb data for those years were fed into the trained model to make predictions, 

and the predicted results were compared with the reference (MODIS) binary SCA values of 

those pixels. When evaluating the estimation performance of ML models on SCA, the 

confusion matrix shown in the table is used to define the accuracy of the predicted snow map. 

TP, FP, FN, and TN represent the number of snow-covered or snow-free pixels recorded under 

specific conditions. TP stands for true positives, which means both the reference data and 

predicted results are snow pixels. FP represents false positives, indicating that snow-free pixels 

were predicted as snow pixels. FN is for false negatives, indicating that both the reference data 

and predicted results are snow-free pixels, and TN represents true negatives, which represent 

that the snow pixels were predicted as snow-free pixels. Accuracy (the proportion of the total 

number of correct predictions), the recall rate (the proportion of snow that the model can 

capture), and precision (the proportion of all the estimated snow at all the real points) were 

used to calculate the F1 score (the harmonic average of precision and recall). The four 

parameters shown in Table 4.5 were calculated to validate the SCA. In addition, the ROC curve 

(Receiver Operating Characteristic Curve) and AUC (Area under the curve) value will be used 

for auxiliary analysis. The x-axis of the ROC curve presents FP, and the y-axis represents TP. 

The ROC curve illustrates how the classifier's performance evolves as the classifier's threshold 

is altered. An important feature of the ROC curve is its area (AUC), which is the area under 

the ROC curve. The larger the area, the better the performance of the classifier. 
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Table 4. 5  The confusion matrix quantifies the accuracy of the predicted snow cover map 

concerning the observed in situ snow cover. The terms TP, FP, FN, and TN denote the counts 

of snow-covered or snow-free observations under specific conditions. 

Ground Observation Prediction 

 Snow-covered (Positive) Snow-free (Negative) 

Snow-covered (Positive) TP (True Positive) FP (False Positive) 

Snow-free (Negative) FN (False Negative) TN (True Negative) 

Overall accuracy (OA)=(TP+TN)/(TP+TN+FN+FP) 

Recall=TP/(TP+FN) 

Precision = TP/(TP+FP) 

F1= (2*Precision *Recall)/ (Precision + Recall) 

 

4.1.3.3 Comparison with CMC analysis snow depth data 

The CMC-modeled snow depth data were utilized for comparison with the RF-derived 

SCA. In Kelly et al.'s (2003) study, they highlighted that PMW sensors can detect snow when 

the snow depth exceeds 3 cm, but it remains subject to uncertainties. Consequently, the 

sensitivity analysis incorporated thresholds spanning from 1 cm to 10 cm for the conversion of 

ground snow depth measurements into corresponding snow cover or no snow information. The 

assessment method also encompassed the calculation of the confusion matrix, as outlined in 

Table 4.5.  
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Chapter 5 

Result Analysis 

5.1 Pre-setting of ML models 

The validation data were used to examine the sensitivity of hyperparameters in different 

models. Subsequently, the parameters that resulted in the highest model accuracy were selected 

to optimize the models. Table 5.1 shows the final parameter selections obtained via 

GridSearchCV for each model. 

Table 5. 1 The parameter selection of each model 

Model Parameter 

LR Solver: 'newton-cg', C=10 

RF n_estimator = 100; max_depth=8 

SVM C=10, Gamma= 1 / number of features (1/12) 

Figure 5.1 illustrates the mean ROC curve and mean AUC values obtained through ten-

fold cross-validation across three machine learning methods. A higher AUC is indicative of 

superior performance. Notably, as the sample size increased, the AUC of SVM also increased, 

but it consistently performed worse compared to LR and RF. The superior performance of LR 

over SVM suggests a preference for linear models (LR) over hyperplane-based models (SVM) 

in this dataset. LR demonstrated a slight drop in performance with larger sample sizes but 

stabilized. Despite achieving the highest accuracy of 0.88 with a sample size of 500, it is 

essential to recognize that a small sample size can elevate the risk of overfitting. Overfitting 

occurs when a model becomes overly sensitive to noise in the training data, diminishing its 

ability to generalize to new and unseen data. Consequently, a larger sample size is often 

favored, acknowledging the trade-off between accuracy and the risk of overfitting. 

On the other hand, RF exhibited a mean AUC of 0.89 with a sample size of 50,000, 

maintaining this level with larger samples. Despite the strong performance of linear models, 

RF, as a highly flexible algorithm capable of capturing complex relationships and interactions 

between features, proved less prone to overfitting compared to LR. The comparison of ROC 

and AUC values across the three models favored RF, leading to its selection for further model 
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training. Considering the model's sensitivity to sample size and the need to balance accuracy 

with computational efficiency, the choice of 50,000 samples emerged as a judicious 

compromise. This decision aligns with the understanding that a moderately larger sample size 

enhances the model's ability to discern representative patterns without succumbing to 

computational challenges associated with excessively large datasets. Consequently, for the 

optimal balance between accuracy and computational efficiency, 50,000 samples were deemed 

suitable for subsequent model training. 

 

 

Figure 5. 1. Mean ROC and AUC for LR, RF and SVM models with varying sample sizes (a: 

sample size 500, b:sample size 5000, c: sample size:50000, d:sample size 10000) The graphs 

show the mean ROC curve for ten folds. Also shown is the line of chance. 

a b 

c d 
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Figure 5.2 is the visualization of the RF model, the maximum depth is 16 of the trained 

model, but since the tree is too crowd, so only display a DC with two depths as example. The 

decision tree begins with a root node splitting the dataset based on the condition (89V<=245.1), 

resulting in a relatively impure node (Gini impurity = 0.5) with 350 samples, roughly evenly 

distributed between the "Snow" and "Snow-Free" classes. The subsequent depth introduces 

two branches: the left branch (36H <=212.9)) with reduced impurity (Gini = 0.396) and a 

majority of 210 samples classified as "Snow-Free," and the right branch (36V <=254.05) with 

further reduced impurity (Gini = 0.255) and a majority of 140 samples classified as "Snow." 

The hierarchical arrangement of this tree signifies a systematic decision-making process 

designed to categorize instances according to particular conditions, enhancing the clarity of 

nodes with each subsequent division. Consequently, the classification of a given instance is 

established by tracing its route from the root to a distinct leaf node, guided by the fulfilled 

conditions. These leaf nodes serve as conclusive points for classification, and the class assigned 

to the designated leaf node serves as the predicted class for the instance. In the case of the RF 

classification model, it harnesses the combined decision-making of numerous trees via a 

majority voting mechanism, culminating in a robust and accurate prediction for each instance 

within the dataset. 

 

Figure 5. 2 The visualization of one decision tree example with tree depths=2 
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5.2 Evaluation results analysis 

5.2.1  RF with different combinations of channels 

To assess the varying performance of RF under different input channels, three 

combinations of channels were employed for AMSR-E/2 data: the first utilized all the relative 

channels and Tb differences specified in Grody & Basist's algorithm (1996) (18V-36V, 23V-

89V, 23V, 18V-18H, 36V-89V, totaling five channels); the second incorporated all channels 

from SSM/I (18H/V, 23V, 36H/V, and 89H/V, totaling eight channels); while the third 

encompassed all 12 available channels of AMSR-E/2 (6H/V, 10H/V, 23H/V, 36H/V, and 

89H/V). The results in Table 5.2 indicate that the RF model based on all channels outperforms 

those based on only five or eight channels. The addition of Tb differences to the model is found 

to be less effective than single-frequency Tb, as Tb differences provide relatively less 

information, and ML can extract more valuable information from individual Tb frequencies. 

By comparing the impact of different input channels on the accuracy of the RF model, it 

becomes evident that increasing the number of parameters enhances the model's ability to 

capture the relationship between snow cover and Tb values. The inclusion of 06H/V and 10H/V 

channels as input parameters leads to a slight improvement in model accuracy, suggesting that 

low-frequency bands play a role in snow identification. 

Table 5. 2. RF performance on evaluation dataset using three different channel combinations 

 Grody and Basist’s 

algorithm (1996) 

related channels 

All channels of 

SSM/I 

All channels of 

AMSR-E/2 

Accuracy 0.709 0.841 0.860 

 

The next step involves a more in-depth examination of the significance of these 12 

channels in the model's performance. Figure 5.3 illustrates the sorted feature importance 

(permutation) from the ML model. This approach was conducted with ten repetitions, so the 
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x-axis values represent average values divided by ten. High permutation importance indicates 

that variables have a more substantial impact on the model's performance. 

Among the frequencies, 36 GHz stood out prominently in the model, followed closely 

by 6 GHz and 89 GHz. Both 89 GHz and 36 GHz are crucial frequencies for snow identification, 

as outlined in Grody and Basist's algorithm (1996). Higher frequencies, like 89 GHz, exhibit 

sensitivity to volume scattering near the surface, making them suitable for detecting shallow 

snow cover with weaker scattering characteristics. However, 89 GHz is significantly affected 

by clouds and scatters more in rainy and non-snow conditions. Consequently, the utilization of 

36 GHz and 89 GHz is essential for global snow cover identification, explaining their 

significance in the figure. Compared to the SSM/I sensor, the AMSR-E/2 sensor includes two 

additional low-frequency bands, 6 GHz and 10 GHz. The figure reveals that 6 GHz is nearly 

as important as 36 GHz in the model, while 10 GHz horizontal didn't rank as high, though 10 

GHz vertical proved slightly more significant than 18 GHz. 10 GHz can provide more 

information about snow in forested areas (Tong et al., 2010). The low-frequency band can be 

valuable in determining snow conditions or the state of the ground surface under snow cover, 

with frozen soil influencing microwave radiation and introducing uncertainties in snow 

detection (Tsutsui & Koike, 2012). Thus, 06 GHz plays a crucial role in areas with snow cover 

and frozen soil. In terms of the 23 GHz channels, 23 GHz vertical ranked higher than 23 GHz 

horizontal, as 23 GHz vertical exhibits sensitivity to water vapor, which is useful for 

identifying precipitation. An additional empirical analysis was conducted, focusing on training 

the model exclusively using the first four frequencies considered crucial. The obtained results 

showed comparable performance to the comprehensive twelve-channel approach. Despite this 

similarity, the decision was made to opt for utilizing all twelve channels in the model training. 

This decision is grounded in the acknowledgment that each frequency contributes valuable 

information, and the inclusion of all channels augments the model's overall ability to capture 

intricate patterns associated with snow detection. This choice is aimed at providing a more 

comprehensive and robust approach to the task. 
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Overall, the above explanations regarding the importance rankings align with the facts 

of snow retrieval using PMW methods. Although ML approaches lack physical information 

and rely heavily on the quality of input datasets, the sorting of importance in the RF model 

demonstrates a correlation between data-driven and physically derived results, and such 

analyses enhance the interpretability of ML. 

 

Figure 5. 3 The permutation importance of input parameters 

5.2.2 General evaluation on snow detection 

Figure 5.4 displays the performance of RF on snow detection for different months using 

testing data. In Oct, the recall and F1 were the lowest, but accuracy was the highest. The high 

accuracy primarily resulted from the correct classification of non-snow pixels, as there was 

less snow presence in Oct. Generally, for both models, recall was consistently higher than 

precision in Dec and Feb, while Oct and Apr showed the opposite results. A high recall and 
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low precision mean that the snow cover area was more likely to be overestimated than 

underestimated. As a result, a low recall rate in these months suggests that much snow was 

missed by the RF model. In large datasets, recall and precision often have a trade-off 

relationship. Ideally, both indexes should be high, but in practice, when precision is high, recall 

tends to be low, and vice versa.  

The Arctic cold period can be categorized into five stages: early snow, early cold, deep 

cold, late cold, and thaw. In the context of this study, Oct marks the onset of snow cover, Dec 

represents the development of deep hoar, Feb still falls within the period of deep hoar 

development, and by Apr, the ground freezing has concluded, and the snow has melted. Dec 

and Feb exhibited lower precision, suggesting a prevalence of overestimations in predicted 

snow cover. Depth hoar emerges as the predominant factor contributing to these 

overestimations. Depth hoar is known to develop in high Arctic regions with shallow seasonal 

snowpacks exposed to extended cold temperatures, leading to a significant temperature 

differential between the relatively warm ground (Giddings & LaChapelle, 1962). The increase 

in depth hoar grain size leads to more significant scattering, subsequently resulting in reduced 

snowpack emissivity (Foster et al., 1984). Furthermore, microwave brightness temperature (Tb) 

decreases with increasing depth hoar thickness (Hall et al., 1986). 

Oct and Apr displayed lower recall compared to precision, implying a higher tendency 

for underestimating snow cover in these months. In Oct, the snow depth is shallow, which may 

not sufficiently reflect strong snow emission, contributing to the underestimations. In April, 

the already melted snow cover and increased water content may lead to elevated Tb values, 

causing underestimations. The evaluation results indicate that the performance of the RF model 

varies for estimating snow cover during different months due to the seasonal cycles of snow. 
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Figure 5. 4 Performance of RF model for four months. 

Snow in different environment has specific characteristic which could result in the 

different performance of RF. At the beginning of the accumulation, snow primarily consists of 

tundra snow at low latitudes, and it later appears as taiga snow, alpine snow, and a small 

amount of prairie snow. Figure 5.5 presents the results of two retrieval methods for four snow 

classes. These four snow classes were selected since this study focused on the areas with more 

snow, including tundra, taiga, prairie, and alpine. The retrieval models for the prairie class 

achieved the highest accuracy. This is because accuracy calculations depend on the number of 

snow pixels and non-snow pixels. The number of TP and FN, which are part of the calculation 

formula, significantly affects the overall accuracy. If the number of FN is predominant, higher 

accuracy can be achieved even if TP is small. The prairie snow region has the least snow among 

the analyzed snow environments. Therefore, in these four months, most of the prairie snow 
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was not observed under PMW and MODIS, resulting in higher overall accuracy compared to 

other snow environments. In contrast, the alpine type performed the worst in all four evaluation 

parameters. This is because alpine snow is complex terrain that is subjected to winds, leading 

to more complex snow stratigraphic structure and texture (Sturm et al., 1995). Tundra snow 

consistently showed the highest recall, precision, and F1, indicating that over 90% of snow 

pixels can be identified by the ML models, and over 80% of covered pixels exist in the 

predicted snow cover in the tundra area. Tundra snow is typically found above or north of the 

tree line and has rare melt features, resulting in stable snow cover over the four months 

compared to other snow classes. Taiga snow, although less accurate than tundra and prairie 

snow due to forest density, performed better than alpine snow. 

 

Figure 5. 5 Performance of RF model for four snow classes. 
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5.2.3 Estimating SCA map using PMW Tbs and MODIS SCA product trained model 

The above analysis aimed to detect the relationship between ML's ability in snow 

detection and the month and snow environment. The following assessment focused on how the 

distribution of the RF-SCA differs from that of MODIS-SCA and PMW-SCA. The daily SCA 

was estimated using the RF model and compared it to PMW-SCA and MODIS-SCA. Figures 

5.6-5.9 display the spatial distribution patterns of snow cover on the 15th of Oct 2018, Dec 

2018, Feb 2019, and Apr 2019, including PMW snow cover estimated by the Grody and 

Basist’s algorithm (1996), MODIS snow cover, and the snow cover estimated by the RF model. 

In the ML implementation, pixels with a CPC greater than seven days were removed to 

improve dataset accuracy. However, there was a classification of clouds in those maps to depict 

the day's appearance more accurately, and the night area was also marked. 

From the graphs, it is evident that the spatial distribution of PMW-SCA and MODIS-

SCA is relatively consistent. The primary differences between PMW-SCA and MODIS-SCA 

are concentrated in the northeastern Arctic (highlighted by the red circle) and in small parts of 

North America (highlighted by green circle 1), as well as the region of western Russia near 

Finland (highlighted by green circle 2). The marked regions are only presented in Figure 5.6a, 

but they are the common areas for analysis in Figures 5.6 to 5.8. 

In comparison to PMW-SCA and MODIS-SCA, the areas within the red circles are 

where PMW tends to overestimate snow cover. These regions, located in the high-altitude 

tundra, are strongly affected by depth hoar and frozen soil, causing PMW to detect lower Tb 

values and misidentify them as snow. The green circles are mainly situated in the densely 

forested taiga region, which obstructs the snow signal, resulting in the underestimation of 

PMW. Additionally, the topography of the taiga region exhibits significant variability 

contributing to errors. 

The RF-SCA, estimated by the trained model based on the reference MODIS-SCA, 

was expected to bring about two main improvements. Firstly, it was anticipated to reduce the 

number of pixels that overestimated SCA compared to MODIS, represented by 'POM' (PMW 

overestimated than MODIS, as indicated by the red circle). Secondly, it was expected to 
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increase the number of pixels that underestimated SCA compared to MODIS, labeled as 'PUM' 

(PMW underestimated than MODIS, represented by the green circle in the figures). As 

observed in these figures, the 'POM' area experienced a significant improvement with the RF 

model, whereas the 'PUM' area showed relatively less change. Furthermore, the RF-SCA 

effectively fills in the MODIS night area based on the Tb values provided by PMW." 
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Figure 5. 6. Spatial distribution of SCA of Oct. 15, 2018, derived from three algorithms. a) 

PMW derived SCA based on Grody and Basist’s algorithm (1996), b) MODIS derived SCA, 

c) RF derived SCA; Red circle: ‘POM’ area; Green circle: ‘PUM’ area 

a b 
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Figure 5. 7 Spatial distribution of SCA of Dec. 15, 2018, derived from three algorithms. a) 

PMW derived SCA based on Grody and Basist’s algorithm (1996), b) MODIS derived SCA, 

c) RF derived SCA 

a b 
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Figure 5. 8 Spatial distribution of SCA of Feb. 15, 2019, derived from three algorithms. a) 

PMW derived SCA based on Grody and Basist’s algorithm (1996), b) MODIS derived SCA, 

c) RF derived SCA 

a b 
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 Figure 5. 9 Spatial distribution of SCA of Apr. 15, 2019, derived from three algorithms. a) 

PMW derived SCA based on Grody and Basist’s algorithm (1996), b) MODIS derived SCA, 

c) RF derived SCA 

a b 

c 

1 
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Table 5.3 provides a detailed analysis of performance metrics in snow cover area 

estimation, contrasting MODIS-SCA reference data with two distinct methodologies—PMW-

SCA and RF-SCA—across different months (Oct, Dec, Feb, and Apr). The monthly means are 

also presented. Notably, the rise in precision signifies a reduction in the 'POM’ area, 

demonstrating an improved ability to precisely identify snow-covered regions. Conversely, a 

marginal decrease in recall indicates that the 'PUM' area remains relatively consistent. The 

mean results align with the spatial distribution analysis, revealing that RF-SCA leads to 

increased precision by refining the delineation of 'POM' areas, while 'PUM' areas show limited 

improvement. Across various metrics (overall accuracy, precision, and F1) and months, RF-

SCA consistently outperforms PMW SCA, emphasizing its effectiveness in snow cover 

estimation. This comprehensive examination affirms RF-SCA as a robust and preferable 

methodology for accurate snow cover assessments. 
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Table 5. 3 Comparative analysis of SCA estimation performance metrics between reference 

data (MODIS-SCA), and evaluation data (PMW-SCA, RF-SCA) for different months and their 

monthly averages. 

  Evaluation data   

  Oct Dec Feb Apr Mean 

 Reference 

data 

PMW-

SCA 

RF-

SCA 

PMW-

SCA 

RF-

SCA 

PMW-

SCA 

RF-

SCA 

PMW-

SCA 

RF-

SCA 

PMW-

SCA 

RF-

SCA 

Accuracy MODIS-

SCA 
0.838 0.881 0.717 0.758 0.721 0.785 0.824 0.868 0.775 0.823 

Recall MODIS-

SCA 
0.697 0.657 0.838 0.784 0.933 0.923 0.888 0.876 0.839 0.810 

Precision MODIS-

SCA 
0.601 0.762 0.66 0.743 0.706 0.77 0.782 0.857 0.687 0.783 

F1 MODIS-

SCA 
0.645 0.704 0.739 0.763 0.804 0.84 0.831 0.866 0.755 0.793 

5.2.4 Analysis of Tb character in ‘POM’ and ‘PUM’ area 

Building upon the results presented earlier, further analysis was conducted to 

investigate the factors contributing to RF's enhancement of the 'POM' and 'PUM' areas. Firstly, 

box plots depicting the Tb characteristics of each pixel type for each month were created (as 

shown in Figure 5.10). Using 18GHz_V, 23GHz_V, 36GHz_V, and 89GHz_V as examples, 

the four boxes represent Tb values for different conditions: both snow, both non-snow, ‘POM’ 

and ‘PUM’. The black line in the middle represents the median value of the data, and the width 

of the box encompasses the data falling between the 25th and 75th percentiles, indicating the 

range of values from lower to higher. 
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Generally, the relationships between the four types of pixels were similar across the 

four months. The Tb value of 'PUM' was consistently low and close to that of 'non-snow,' while 

'POM' was closer to the Tb values of 'snow.' As the frequency increased, the separability 

between the four classes also increased. Throughout each snow season, spanning from Oct to 

Apr of the following year, the snow underwent three stages: accumulation, stabilization, and 

ablation. The mean Tb value of 'non-snow' and 'PUM' remained relatively stable over the four 

months, while 'POM' exhibited a decrease in Tb value from Oct to Feb and a slight increase in 

Apr. 

A critical factor for snow detection based on Tb is the Tb difference between low 

frequency and high frequency. The purple box in the figure represents the Tb values of the 

'PUM' region, which is why the threshold values for low frequency and high frequency were 

relatively close, such as 18GHz_V and 36GHz_V, and 36GHz_V and 89GHz_V. Grody and 

Basist's algorithm (1996) cannot recognize points in the 'PUM' region as snow due to the 

minimal difference between low and high frequencies. However, for the 'POM' region, the Tb 

values of some non-snow points changed under the influence of the environment, causing them 

to meet the conditions for being recognized as snow. The results of RF-SCA showed that the 

'POM' area was more easily improved than the 'PUM' area. Subsequent sections will provide a 

more specific analysis of the reasons for this. 
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Figure 5. 10 Variability of Tb values by frequency for the four periods of study. 

5.2.5 Analysis of errors and improvements in ‘POM’ area 

Based on the previously described snow distribution, a detailed explanation was 

provided from several perspectives. In contrast to PMW-SCA and MODIS-SCA, the 'POM' 

region was consistently observed between 60°E and 140°E in Eurasia (highlighted by the red 

circle) throughout all four months. These areas encompass high plateaus such as Mongolia and 

southeastern Russia, although the Tibetan Plateau was not included in the study area. 

According to research conducted by Tsutsui & Koike (2012), biomass emissions under snow 

can influence microwave signals, leading to inaccuracies in snow estimates. In high-altitude 

plateau areas, frozen soil is often present beneath the snow cover, and the dielectric properties 

of frozen soil are similar to those of a dry snowpack. As a result, microwave satellite sensor 
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data from frozen ground can be erroneously interpreted as a dry snowpack, leading to 

overestimations of snow cover. 

ML redefines the categories of these points based on the MODIS reference data, 

enabling the discovery of new Tb features that yield improved results. This leads to a 

significant enhancement in RF-based snow estimates for this region, resulting in reduced snow 

cover compared to the original PMW SCA, making it more consistent with MODIS SCA.  

5.2.6 Analysis of errors and improvement in ‘PUM’ area 

The snow pixels that were underestimated ('PUM') by PMW compared to MODIS were 

classified in the algorithm as non-scatterers or other types of scatterers. PMW-SCA was 

underestimated compared to MODIS-SCA because it was identified as precipitation, frozen 

ground, or cold deserts in the decision tree algorithm. The daily count of these identified 

scatterers was accumulated and averaged over a month to obtain the 'PUM' attribute for each 

month over a ten-year period. To illustrate the complete temporal analysis, the entire dataset 

range was used. 

In Figure 5.11, the proportion of each scattering material for each month is depicted. 

Since scatterers were identified individually, and some Tb characteristics of a pixel could meet 

the conditions for more than one type of scatterer, such as when one pixel was identified as 

both precipitation and frozen ground, it was counted in both of these categories for that day. 

Consequently, the total percentage for these four types exceeded 100%. When examining the 

time series, the proportion fluctuation of non-scattering materials and frozen pixel amounts 

remained relatively stable, particularly when compared to precipitation and cold deserts. In 

Feb, precipitation and cold deserts displayed opposing changes (precipitation decreased while 

cold deserts increased) due to temperature influences. For each individual month, the 

percentage of precipitation was significantly higher than that of other scatterers, exceeding 90% 

in Apr. Therefore, the identification of precipitation stands out as the most significant factor 

contributing to the underestimation of snow by PMW compared to MODIS. 
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The areas where PMW was underestimated pose a challenge for improvement in the 

RF model, and most of the Tb characteristics of these points indicate precipitation. 

Distinguishing between precipitation and wet snow in PMW data is difficult. However, the 

presence of water in snow does not affect snow monitoring by optical satellites. Even when 

PMW data is acquired at night, it still cannot completely avoid the impact of snow melting. 

Figure 5. 11 The proportion of attributes of the average underestimated pixels for each month 

over the entire study period. Red vertical lines separate each year from the next. 

The 'PUM' areas highlighted within the green circle are typically located in alpine snow 

regions characterized by high FF. While alpine snow doesn't receive as much precipitation as 

prairie snow, some liquid water may be produced by the melting of icicles within the canopy, 

and occasional warm periods during winter may result in liquid water formation (Sturm & 

Liston, 2021). This liquid water can refreeze within the snowpack, causing discrepancies in 

PMW data. Additionally, as noted in Vander Jagt's research (et al., 2013), FF values greater 

than 60% can mask virtually all microwave signals attributed to snow, often leading to 

underestimations by PMW in regions with high FF. 

Nevertheless, in those regions, there was only a marginal improvement in accuracy 

after applying the RF model, or in some cases, a worsening of the results. This discrepancy 

could be attributed to incorrect data in the training set, such as inaccurate MODIS reference 

data in forested areas. Forests attenuate microwave signals from snow and affect snow's 

reflectivity. NDSI values decrease when other features are mixed in pixels or when snow is 
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shaded or under a forest canopy (Da Ronco et al., 2020). Consequently, in densely forested 

areas, lower NDSI values are typically observed, leading to the omission of snow pixels by 

MODIS (Poussin et al., 2023). Therefore, the accuracy of pixels in densely forested regions 

remains questionable, potentially resulting in limited improvement in the 'PUM' area. 

5.3 Comparison with snow depth data 

Previous research has indicated that PMW sensors can detect snow when the snow 

depth exceeds 3 cm (Kelly et al., 2003). The relationship between RF-SCA and CMC-SCA 

under different snow depth thresholds is illustrated in Figure 5.12, utilizing data from 2018 and 

2019. Except for precision in Oct, changes in other accuracy metrics were less than 20% with 

increasing snow depth. This is because, as snow depth increases, recall values also increase in 

all four months. Considering the balance between all the accuracy indicators, 3 cm is 

reasonable to be selected as the snow depth threshold to identify the snow cover.  

  

Figure 5. 12 Performance Evaluation of RF-SCA compared to CMC-SCA at various snow 

depths (a. Oct, b. Dec, c. Feb, d. Apr). The figure displays the accuracy metrics—overall 

accuracy, recall, precision, and F1 score—across different snow depth thresholds (1 to 10 cm). 
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The snow threshold of 3 cm is subsequently applied to the CMC snow depth dataset for 

each month to generate the corresponding snow map. Subsequently, the confusion matrix of 

PMW-SCA, MODIS-SCA, and RF-SCA is computed with the obtained CMC-SCA. The 

results presented in Table 5.4, reveal that the average precision between RF-SCA and CMC-

SCA is close to 90%, with both average overall accuracy and average F1 exceeding 80%, while 

the average recall rate is relatively low, standing at less than 80%. The diminished recall is 

attributed to MODIS-SCA, serving as the reference data, exhibiting the lowest recall value, 

thereby impacting the results of RF-SCA despite PMW-SCA displaying the highest recall 

value. This underscores a noteworthy aspect, indicating that MODIS-SCA is more likely to 

missing points in comparison to CMC-SCA. However, it may also stem from the fact that 

CMC-SCA tends to overestimate compared to MODIS-SCA in certain regions, a phenomenon 

linked to the inherent uncertainty in interpolation results due to limited site data in Russia, 

making CMC data reliant on in-situ measurements and interpolation techniques. In terms of 

the precision, MODIS-SCA consistently outperformed PMW-SCA over the four months, 

indicating that MODIS-SCA had a lower classification error rate, while PMW-SCA had a 

lower classification miss rate. Despite disparities in consistency between PMW-SCA, MODIS-

SCA, and CMC-SCA, the RF-SCA trained on Tb data and MODIS reference snow data, 

exhibited significant improvements compared to both MODIS-SCA and PMW-SCA. This 

observation underscores the advantages of leveraging machine learning models capable of 

integrating diverse input data sources and effectively discerning feature relationships.   
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Table 5. 4 Comparative analysis of SCA estimation performance metrics between reference 

data (CMC-SCA), and evaluation data (PMW-SCA, MODIS-SCA, RF-SCA) for different 

months and their monthly averages. 
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Chapter 6 

Discussion and Conclusion 

6.1 Main findings and limitations 

This thesis investigates the application of various ML models for snow mapping 

utilizing PMW Tb data and MODIS binary snow data. The results show SVM perform the 

worst, then is LR, and the best is RF. Although LR had the highest AUC when using sample 

size 500, but a larger sample size is preferred because it can capture more information. Thus, 

50000 was selected since RF had the highest AUC. Evaluation outcomes were influenced by 

different months and snow classes, revealing variations in snow characteristics across 

environments. PMW exhibited a tendency to detect more snow than MODIS in high-altitude, 

dry, and cold regions due to frozen ground influence, while densely forested areas experienced 

reduced snow detection. When estimating daily SCA, RF-SCA demonstrated improved 

precision but decreased recall, indicating reduced overestimation but minimal improvement in 

underestimation. Furthermore, RF-SCA exhibited better consistency compared to MODIS-

SCA and PMW-SCA against CMC-SCA. The study underscores the nuanced influence of 

environmental factors on snow mapping results and highlights the potential of RF for accurate 

SCA estimation in diverse conditions. 

While the application of the RF model for snow mapping based on Tb data and MODIS 

reference data has demonstrated success in capturing MODIS night areas and mitigating 

overestimation in high-altitude regions influenced by PMW, certain limitations should be 

acknowledged. Notably, the model exhibits less improvement in predicting SCA in ‘PUM’ 

areas, where misclassifications often arise due to precipitation interference. Addressing this 

challenge involves considering additional data to incorporate atmospheric state information, 

particularly for distinguishing between precipitation and wet snow in PMW data. The 

resampling of MODIS data to a coarser resolution, while necessary for compatibility with 

PMW data, poses a potential compromise to the accuracy of snow mapping. Furthermore, the 

dependency of MODIS SCA on NDSI and CPC thresholds poses a limitation, especially for 

local areas where snow identification criteria may require adjustment to align with specific 
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conditions. Additionally, the study recognizes the temporal disparities between MODIS 

daytime observations and Tb data acquired at night, further complicated by the temporal 

variability of the CGF product. The potential inconsistency in data acquisition times introduces 

uncertainties that may impact the precision of the analysis. Despite these limitations, the RF 

model has shown notable improvements, particularly in reducing overestimation in certain 

regions, contributing valuable insights to snow mapping methodologies. However, when 

considering the application of this technique to future PMW observations would require careful 

consideration of environmental similarities, potential adjustments for different sensor 

specifications, and continuous model adaptation to evolving technological advancements and 

observational capabilities. 

6.2 Discussion of alignment with aims, objectives, and previous studies 

In the assessment of ML models for snow detection utilizing PMW Tb data and MODIS 

observations, SVM was less effective than LR, which indicates the hyperplane-based model 

was not suitable for this dataset. SVM was the most time-consuming model among the three 

models. LR emerged as less effective than RF due to its assumptions of linearity and feature 

independence, which may inadequately capture the complexities of snow cover patterns. In 

contrast, RF provides computational efficiency and robustness, making it a practical preference 

for large-scale snow mapping applications. This observation aligns with the research findings, 

underscoring the importance of selecting models that balance computational efficiency and the 

intricacies of snow mapping datasets. The research further investigated disparities between 

satellite-derived snow, ML-derived snow combining optical and PMW observations, and 

station-measured snow. Results revealed that the ML-based approach, incorporating both 

PMW and MODIS data, outperformed methods relying solely on either data source for snow 

map generation. Notably, the RF model exhibited improved consistency with MODIS 

reference data, showcasing advancements over traditional methods like the Grody and Basist’s 

algorithm (1996). Moreover, when comparing RF-SCA, PMW-SCA, and MODIS-SCA with 

station-measured snow depth data, RF-SCA demonstrated slightly higher accuracy, 

emphasizing its value in overcoming challenges posed by cloud cover in MODIS data. The 
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study's commendable attempt to enhance snow mapping based on Tb data is underscored by 

the results of sensitivity tests and importance ranking of input parameters, indicating a realistic 

relationship learned by the ML model in a data-driven approach. This suggests that ML for 

snow monitoring based on brightness temperature is not only feasible but can yield superior 

results with the inclusion of more data.  

In Xiao et al.'s (2021) research, the accuracy in forested areas was notably low due to 

the vegetation effect, a result similarly observed in this study. The RF-SCA exhibited marginal 

improvement in densely forested alpine regions compared to PMW-SCA, and most 

underestimated points were attributed to precipitation. Aligning with Tsutsui and Koike's 

findings in 2012, the overestimation of PMW-SCA (‘POM’) was attributed to the frozen 

ground effect at low altitudes, where the dielectric properties of frozen soil resemble those of 

dry snow. In this context, RF-SCA demonstrated significant improvement in those regions, 

particularly owing to the lower frequency contributions. Comparing with traditional methods 

that blend snow maps from different sources, the commonality lies in overcoming individual 

dataset limitations and enhancing overall accuracy, ensuring robust performance under diverse 

weather conditions. However, the distinct advantage of employing a ML model becomes 

evident. ML models adept at learning intricate relationships between microwave signatures 

and optical features, enable enhanced discrimination of snow cover under varying conditions. 

The integration of both datasets empowers the model to capture the spatial and temporal 

dynamics of snow cover comprehensively. ML further allows flexibility in incorporating 

diverse features and parameters, considering external factors like vegetation cover, and terrain 

conditions, making it a more adaptable, resilient, and dynamic tool for snow monitoring. In 

contrast to previous studies that used Tb differences as input variables and overlooked low-

frequency bands like 6GHz and 10GHz, this research highlighted the significance of lower 

frequencies in snow detection. The importance ranking of frequencies revealed their crucial 

role and incorporating them into the ML model led to improved results. This emphasizes the 

innovation and effectiveness of considering a broader range of frequencies in microwave data 

for more accurate snow cover estimation. 
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6.3 Recommendation  

The performance of the ML model yielded satisfactory but not entirely optimal results. 

To further refine the accuracy of binary snow monitoring using ML, it is imperative to 

incorporate additional snow-related parameters, including topographic data, into the model. A 

critical consideration involves adjusting the thresholds for NDSI and CPC in MODIS data 

based on diverse terrains and seasonal variations. The robustness of the trained model can be 

rigorously tested by evaluating its performance on unseen datasets from Nov, Jan, and Mar, 

thereby assessing its capability for snow detection across different seasonal conditions. 

Furthermore, a comprehensive assessment can be achieved by comparing the model's outputs 

with ground measurement products, such as GlobSnow (https://www.globsnow.info/), 

providing valuable insights into the model's real-world applicability. Embarking on an 

exploration of deep learning (DL) techniques, particularly leveraging Convolutional Neural 

Networks (CNNs), represents a promising avenue for enhancing model training. CNNs, 

renowned for their capacity to analyze surrounding pixels and discern spatial patterns and 

latent features within data, offer a potent means to improve classification accuracy and uncover 

more intricate patterns. This multifaceted approach underscores a commitment to 

comprehensive model enhancement, contributing significantly to the advancement of ML in 

the domain of binary snow monitoring. 

6.4 Conclusion   

In conclusion, this research establishes a crucial foundation for advancing the field of 

ML in the development of automatic snow classification algorithms utilizing remote sensing 

data. By demonstrating the effectiveness of merging multiple remote sensing datasets, the 

study not only enhances the accuracy of snow mapping but also underscores the potential for 

future algorithmic refinement. The comprehensive integration of diverse datasets, such as 

PMW Tb and MODIS binary snow data, provides a comprehensive understanding of snow 

cover dynamics. This approach combining different sensor modalities and leveraging their 

unique strengths, opens avenues for more sophisticated ML/DL models capable of discerning 

intricate snow characteristics across various landscapes and environmental conditions. The 
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findings contribute significantly to the ongoing efforts in advancing remote sensing 

methodologies for snow monitoring, offering valuable insights for researchers and 

practitioners working on automated snow classification algorithms. The knowledge gained 

from this work lays the groundwork for the continued evolution of snow mapping techniques, 

aligning with the broader goal of enhancing our ability to monitor and understand snow cover 

on a global scale. 
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