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Abstract

Advancements in the field of Machine Learning (ML) have shown significant promise
in complementing the endeavors of healthcare professionals. However, the widespread
acceptance and trust in clinical applications necessitate the creation of state-of-the-art
algorithms characterized by superior accuracy and performance. Digital Pathology (DP)
and Whole Slide Image (WSI) technologies present an innovative pathway for image-based
diagnosis in the field of histopathology. DP’s advantages offer a unique opportunity to
delve into vast archives of medical images using Content-based Image Retrieval (CBIR).
CBIR, by enabling pathologists to access information from previously diagnosed cases, can
serve as a virtual second opinion, empowering physicians to make confident diagnoses.

The representation of whole slide images (WSIs) plays a pivotal role in various domains,
notably in pathology and medicine. However, this task is particularly challenging due to
the vast dimensions of WSIs, making comprehensive processing a formidable undertaking
within the constraints of existing hardware resources. To confront the complexities asso-
ciated with processing and searching within expansive repositories of gigapixel WSIs, akin
to numerous other substantial big-data challenges, there emerges a compelling need to
employ a fundamental computer science methodology known as the “Divide and Conquer”
strategy. It is employed to break down WSIs into smaller, meaningful patches. Accurate
representation of these patches is vital, especially in medical image analysis for tasks like
search and matching. In this thesis, I address these challenges by dividing WSIs into
significant patches and creating distinct representations for different tissue types.

Regarding the “divide” process, I have introduced an unsupervised method known as
the Selection of Distinct Morphologies (SDM). This approach aims to identify and select
all unique patches from the WSI, which we refer to as a “montage”. The creation of this
montage serves as a pivotal element essential for enabling a variety of applications, includ-
ing image search. The primary objective of this methodology is to construct a montage
consisting of a smaller number of patches that display diversity while retaining their mean-
ingfulness within the framework of the WSI. Furthermore, for the “conquer” aspect, a novel
method for learning representations that discriminate between different morphological fea-
tures has been developed, employing a ranking loss mechanism specifically designed for
image retrieval tasks. This metric learning strategy effectively attracts representations of
similar morphological attributes closer together in the latent space, while concurrently dis-
tancing those that are dissimilar by a predefined margin. The cumulative research efforts
during the Ph.D. program have culminated in a comprehensive and pragmatic framework.
This framework is designed to facilitate the acquisition of meaningful representations for
WSI in the field of DP, with a specific focus on applications related to image search.
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Chapter 1

Introduction

Pathologists examine tissue slides under a microscope on a regular basis and produce di-
agnostic and prognostic reports based on their visual inspection. Because of the growing
quantity of tissue slides and the relevance of this type of inspection in clinical care and bi-
ological research, this visual task has become monotonous and inefficient [8]. A biopsy is a
process in which biological samples are taken from the human body to study under a micro-
scope for the detection of abnormalities. It is the gold standard procedure for cancers and
tumour diagnosis [9, 10]. Figure 1.1 shows the biopsy sample collection up to the analysis
process. With the advancement in Digital Pathology (DP), glass slides with fixed tissue
can now be transformed into digital files called Whole Slide Image (WSI). Pathologists
can examine the digital slides using a range of image processing tools to improve disease
diagnosis [11]. Medical images are complex in nature and need specialized and trained
human experts for interpretation. Computerized pathology slides and automated meth-
ods, which are generally termed as Computer-aided Diagnosis (CAD) have the potential
to transform present pathology diagnosis and prognosis methods by assisting physicians in
making faster and more accurate diagnoses [12, 13].

Obtaining a second opinion in the context of cancer diagnosis is of paramount impor-
tance from a clinical and scientific perspective [13, 14, 15]. It serves as a vital mechanism
for validating the accuracy of the initial diagnosis, mitigating the potential for misdiagnosis
(variability among the pathologists), and ensuring the appropriateness of the chosen treat-
ment modality [16, 17]. Furthermore, seeking a second opinion permits the exploration
of diverse therapeutic approaches, which can include the consideration of emerging clin-
ical trials and experimental treatments, thereby broadening the spectrum of therapeutic
options available to patients [18]. In essence, a second opinion contributes significantly
to the scientific rigor and precision of cancer diagnosis and treatment by facilitating in-
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Figure 1.1: The steps from biopsy sample collection, slide preparation up to tissue analysis
under microscope (images taken from [1, 2] to create this figure).

formed, evidence-based decision-making and optimizing the patient’s overall quality of life
throughout their cancer care journey [19].

This Ph.D. research is founded on the hypothesis that the utilization of image search
technology has the potential to improve the pronounced variability observed both within
and between observers in the context of medical diagnosis. This improvement can be
achieved by enabling pathologists to conduct searches within a high-quality repository of
previously diagnosed cases, thereby harnessing the collective knowledge and expertise of
pathologists who have previously diagnosed cases exhibiting similar tissue patterns.

1.1 Histopathology

Histopathology is the study of disease manifestation by inspecting and interpreting varied
forms, sizes, and architectural patterns of cells and tissues, which can be paired with a
patient’s clinical records and other diagnostic modalities [20]. The term “histopathology”
is derived from the combining of two scientific disciplines: histology and pathology [21].
pathology is the identification of diseases through microscopic studies of tissue specimens
(acquired through different types of biopsy), whereas histology is the study of microscopic
structures of tissues [22, 23, 24]. One of the most important specialties in the healthcare
delivery systems is histopathology. Pathologists are the ones who study and practice it.
Pathologists’ primary clinical responsibility is to conduct microscopic analysis of glass slides
containing tissue specimens in order to generate pathology reports. Pathology reports
are used to make a variety of clinical decisions, including illness screening, formulating
diagnostic programs, monitoring disease development, and managing various medicines
and their prognosis [25, 9]. Before moving to microscopy, it is critical to comprehend
the pathology glass slide preparation process. Before glass slides are digitized or used
for diagnosis, there are four phases involved in their preparation which include collection,
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dehydration, embedding, sectioning, and staining [26, 27, 28]. First of all, in the collection,
tissue samples (specimens) are taken from a patient’s affected body area, e.g., via surgery
or needle biopsy, and placed in a fixative. The purpose of fixation is to prevent degradation
and stabilize the tissue and cell components in order to retain a cellular structure that is as
close to its natural condition as feasible. Formalin is the most often used fixative for light
microscopy and Immunohistochemistry (IHC). Secondly, The dehydration of a sample is
accomplished by adding ethanol. It removes water from the sample and hardens the tissue
even more in preparation for light microscopy. Following the application of ethanol and
the completion of tissue dehydration, the ethanol is removed with xylene. Thirdly, in
embedding, tissue samples are fixed in paraffin wax so that tiny slices can be taken out
for the details of the structures of the tissues and individual cells to be clearly visible
through the microscope (sometimes frozen sections are used, e.g., for surgical pathology).
Furthermore, in sectioning, A specific piece of equipment called a “microtome” is used
to cut embedded material into thin slices. Finally, in staining, to emphasize distinct
components of the “sectioned” tissue, different stains and dyes are utilized to colorize
tissue structures. Haematoxylin and Eosin (H&E) staining is the most prevalent form of
staining procedure [29].

The core of histopathology is the interpretation of high-resolution images of tissues and
cells. The light microscope, in various forms, has been the only device accessible for this
task for centuries, enabling live images at increasing resolution through ever-improving
optics [30]. The microscope revolutionized disease treatment by shifting the focus from
complete organs to cells; it permitted the practice of histopathology and created a slew of
technical advancements required for present practice [31]. Histopathology is leading the
way in using digital imaging technology as a “digital-age” alternative to conventional light
microscopy, as clinical practices become more digitized. Now, through a technology known
as WSI or virtual microscopy, robotic microscopic scanners are utilized to digitize glass
slides into gigapixel images. The gigapixel WSI are digital slides that can be displayed on
computer screens like any other digital image.

1.2 Digital Pathology & Whole Slide Images (WSIs)

For pathologists, digital slides simulate a light microscope: on computer screens, digital
slides combined with software programs provide the same capability as a microscope and
more [32]. The WSI scanner can digitize glass tissue slides, making image interpretation
in pathology much easier. DP is a branch of pathology that focuses on data management
and processing from digital specimen slides. Digital pathology employs virtual microscopy
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through the use of computer-based technology. Figure 1.2 shows a sample digital slide
obtained from a WSI scanner. In DP, digitizing specimens is one of the recent significant
achievements in the integration of modern computational practices within conventional
medicine [33]. With the advanced technology, digital slides and the impact of the COVID-
19 pandemic have sparked a revolution in diagnostic pathology [32]. Image analysis, which
uses computer techniques to interpret pathology images, is rapidly gaining traction as a
useful tool for investigating a wide range of pathology operations [9, 34, 32, 35, 36]. Nu-
merous studies have shown that high-throughput analysis can greatly reduce pathologists’
workload while reducing the inherent subjectivity of visual analysis [37, 38]. Due to ongoing
improvements in the capability and throughput of WSI scanners, the development of user-
friendly software systems for organizing and viewing digital slides, and vendor-supplied
storage options, WSI technology has grown quickly in recent years [9, 34].

The enormous dimensionality of images in DP makes their processing and storage diffi-
cult. For this reason, understanding regions of interest in images aids in quicker diagnosis
and detection when using digital-computing approaches [39]. Tissue attributes such as cell
nuclei, glands, and lymphocytes are discovered to have notable traits that serve as markers
for recognizing malignant cells, particularly in histopathology [9]. Researchers also believe
that pathologists will be able to connect histological patterns with protein and gene ex-
pressions, undertake exploratory histopathology image analysis, and perform CAD to help
them make better decisions [9]. The concept of using CAD to quantify spatial histopatho-
logical features has been investigated by a number of works since 1990s [40, 41, 42].

1.3 Motivation

The Institute of Medicine (IOM)1 released a report titled “To Err is Human: Building a
Safer Health System” which states that “...as many as 98,000 people die in any given year
from medical errors. that’s more than deaths from motor vehicle accidents, breast cancer,
or “AIDS” [43]. According to the report, “error” is the third leading cause of death in
the United States. Humans, by their very nature, make mistakes, and healthcare is no
exception. What matters most is that we learn from our mistakes and use the information
we have to avoid or minimize future misdiagnoses.

Physicians order a variety of diagnostic tests spanning many modalities to guide patients
through the diagnosis, therapy, and monitoring phases [44]. Although, histopathologic
examination is still considered the most reliable method for diagnosis. However, some

1Since 2015, it is known as National Academy of Medicine (NAM)
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Figure 1.2: A high-resolution histopathological digital slide with two highlighted parts at
various magnification levels; the low magnified region reveals several tissue types, while
the highly magnified area shows individual nuclei of a single tissue type.

diseases pose a diagnostic challenge due to their complexity, and discordance among experts
[45, 46]. Obtaining second opinions is a common practice when dealing with complex cases
that exhibit histopathological criteria bridging two or more taxonomic categories. These
additional assessments can be valuable in such borderline cases [47]. In a research study
involving 6,900 separate case assessments, pathologists indicated that they intended to seek
a second opinion, either as mandated by institutional policy or at their own discretion, in
70% of the cases, specifically 4,827 out of 6,900 cases [45]. Obtaining a second opinion from
fellow pathologists who may be in another hospital located in another part of the world is a
cumbersome, expensive, and time-consuming task. Utilizing machine learning, applied on
digital images, can enhance the consistency and objectivity of these evaluations via image
search. When searching for previously diagnosed cases that closely resemble a new case,
valuable insights regarding the factors influencing tumor progression may be gleaned by
pathologists.

In the domain of histopathology, Machine Learning (ML) training approaches encom-
pass fully-supervised, semi-supervised, and unsupervised methodologies, each offering dis-
tinct advantages [48]. Fully-supervised learning ensures precise diagnostic classification by
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training on labeled datasets. Semi-supervised learning, utilizing both labeled and unlabeled
data, proves advantageous in histopathology [48, 36], where obtaining labeled samples can
be resource-intensive. This approach enhances generalization and performance, particu-
larly when labeled data is limited. Unsupervised learning, on the other hand, allows the
algorithm to uncover inherent patterns within unlabeled data, potentially leading to the
discovery of novel insights and biomarkers. Collectively, these ML approaches contribute
to enhanced diagnostic accuracy, optimal resource utilization, and the potential discovery
of previously unrecognized patterns, thereby advancing efficient histopathological analysis.
The process of manual segmentation and annotation by experts introduces the potential
for intra-observer variability in diagnoses, highlighting the need for supervised learning
and its application in Content-based Image Retrieval (CBIR) within the scope of this PhD
study.

Another challenge that necessitates this Ph.D. research is to overcome the challenges
of processing and representing gigapixel histopathology images such that one can learn
the discrete representation of different tumour subtypes. Conventional methods for image
analysis relied on handcrafted, domain-specific features to describe attributes like color,
shape, and texture in images. Nonetheless, creating and adapting such features for new
images (i.e., various organs and diseases) proved challenging. Consequently, deep learning
has emerged as a dominant paradigm, particularly with the effectiveness of Deep Neural
Network (DNN) in image characterization. However, the majority of recent breakthroughs
have been focused on processing relatively small images, such as natural images, using Deep
Learning (DL) techniques (many cases using 224 by 224 pixel images [49, 50]). Extending
these methodologies is imperative to address the unique challenges posed by gigapixel
histopathology images and the subtle distinctions required for diagnostic interpretations
in this context.

1.4 Thesis Objectives and Contributions

The primary objective of this thesis is to establish representation learning frameworks
that can effectively extract distinguishing feature vectors for different tumour types for
entire digital pathology whole slide image. These representations are intended for the
development of specialized tools, such as image indexing and search systems, aimed at
aiding clinicians in image-based diagnosis. The experiments conducted in this research are
designed to quantitatively assess the efficacy of these representations in their capacity to
search through the archives of histopathology slides and retrieve slides with the correct
primary diagnosis. This thesis contributes to the overarching and persistent goal of the
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biomedical community, which aims to incorporate machine learning as a supportive tool
in the realm of medical image analysis. The thesis delivers two contributions:

1. A novel unsupervised approach to “divide & conquer” the WSI. The key contribution
is to capture all diverse aspects of the unlabeled WSI using a fewer number of patches
in an unsupervised fashion. The details are discussed in Chapter 3.

2. A Ranking loss to learn distinct subtype representation in a specific archive of cases
for image search. It is further discussed in detail in Chapter 4

1.5 Thesis Organization

The thesis is organized as follows: In Chapter 2, related works are discussed to introduce es-
sential definitions, fundamental concepts, and a review of existing literature, encompassing
different contemporary methods for applying machine learning in pathology. Furthermore,
in Chapter 3, and 4 the key contributions of this Ph.D. research will be discussed. Finally,
Chapter 5 concludes the thesis.
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Chapter 2

Related Work

This chapter presents an overview of the literature related to deep models & architectures,
metric learning, CBIR, tissue segmentation, and patching & WSI representation.

2.1 Deep Models & Architectures

The history of Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs)
illustrates the remarkable progress in computer vision since 2010. CNNs, which were orig-
inally developed in the late 1980s, saw a resurgence in the 2010s with groundbreaking
models like AlexNet [51], VGGNet [52], Inceptions [53], ResNet [54, 55], DenseNet [5],
MobileNet [56], EfficientNet [57], RegNet [58], and ConvNeXt [7]. These architectures
demonstrated the potency of deep learning for image analysis tasks and introduced inno-
vations such as skip connections to tackle the challenges of training very deep networks.
Meanwhile, Vision Transformers emerged as a more recent development, leveraging the dis-
ruptive Transformer architecture initially designed for natural language processing. Trans-
formers entered the computer vision scene with models like the Vision Transformer (ViT)
and have since gained momentum due to their adaptability and effectiveness in various
tasks [59, 60]. Advances in both CNNs and ViTs have continued, with the introduction
of efficient architectures and their application in diverse areas such as object detection,
semantic segmentation, generative image synthesis, and representation learning. These ad-
vancements have been further propelled by improvements in hardware, particularly GPUs,
enabling the training of increasingly complex models and reshaping the landscape of arti-
ficial intelligence and image processing.
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DenseNet [5] has gained popularity as a Convolutional Neural Network (CNN) archi-
tecture known for its efficiency and effectiveness. Unlike traditional CNNs where each
layer connects to the next, DenseNet introduces “dense connectivity”, where every layer
connects to all subsequent layers. This dense interconnection not only facilitates feature
reuse but also combats the vanishing gradient problem [5], making it easier to train very
deep networks. DenseNet has found widespread use in various computer vision applica-
tions, including image classification, object detection, and image segmentation, due to its
ability to extract rich and hierarchical features from images efficiently [5, 6]. Its archi-
tectural innovations have contributed significantly to the success of deep learning in the
field of Computer Vision (CV). Recent research considers the DenseNet architecture a de-
pendable choice for representing images in the field of histopathology [61]. Riasatian et
al. [6] also used DenseNet to fine-tune using the TCGA dataset for better representation
in histopathology and named as KimiaNet.

ViTs [59, 60] have become versatile tools in a wide range of computer vision applica-
tions. Initially introduced as an adaptation of the Transformer architecture from natural
language processing to image analysis tasks, ViTs have demonstrated their effectiveness
in image classification, object detection, image segmentation, and more. Their ability to
capture long-range dependencies in images and their scalability to handle both small and
large datasets has made ViTs a popular choice for various computer vision tasks. Addi-
tionally, ViTs have shown promise in handling tasks that require understanding context
and relationships within images, contributing to their broad adoption and potential for
future innovations in the field of computer vision. ViTs are generally computationally
more demanding than CNNs, and require more training data [50]. Caron et al. [50] and
Oquab et al. [62] have shown that training ViTs on large unlabeled datasets to predict
certain image transformations or context, ViTs can learn meaningful representations of
visual data. Swin Transformer represents a significant advancement in the field of deep
learning [49]. It introduces a hierarchical design with alternating stages of vision and shift
operations, allowing for an efficient and scalable approach to handling images of varying
resolutions. One of the standout features of the Swin Transformer is its ability to handle
large images with minimal computational cost. By using shifted windows instead of tra-
ditional non-overlapping patches, it reduces the memory requirements while maintaining
high accuracy.

Following the rapid proliferation of ViTs as a dominant paradigm in computer vision,
CNN named ConvNeXt [7] have experienced a resurgence marked by substantial advance-
ments. ViTs initially gained prominence for their remarkable ability to capture long-range
dependencies and effectively process visual data. However, CNNs, which were once con-
sidered the standard, have reentered the research landscape with renewed vigor. This
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resurgence can be attributed to several factors, including architectural innovations, more
efficient training techniques, and the adaptability of CNNs to various vision tasks (in-
spired by swin transformer). Consequently, the competition and synergy between ViTs
and CNNs have spurred significant progress in the field of computer vision, offering diverse
and powerful tools to address complex visual recognition challenges.

2.2 Metric Learning

Metric learning is a crucial subfield within machine learning that focuses on the develop-
ment of algorithms and techniques to learn effective distance metrics or similarity measures
between data points [63]. In essence, it aims to teach a model how to quantify the simi-
larity or dissimilarity between pairs of samples in a dataset. This learned distance metric
is valuable for various ML tasks, including classification, clustering, and recommendation
systems [63]. By optimizing the metric, machine learning models can better distinguish
between similar and dissimilar instances, leading to improved performance in tasks that
rely on measuring similarity or dissimilarity between data points. Metric learning finds
applications in image retrieval, face recognition, recommendation engines, and other tasks,
where the quality of the learned metric directly impacts the system’s accuracy and effec-
tiveness [64]. Numerous contemporary deep metric learning techniques rely on pairs of
data samples. To elaborate formally, their loss functions are formulated based on the pair-
wise similarities observed within the embedding space. Pair-based deep metric learning
approaches include contrastive loss [65], triplet loss [66], triplet-center loss [67], quadruplet
loss [68], lifted structure loss [69], N-pairs loss [70], histogram loss [71], angular loss [72],
distance weighted margin-based loss [73], and hierarchical triplet loss (HTL) [74]. Every
dataset presents unique challenges regarding both classification and clustering tasks. Dis-
tance metrics that lack the capacity to adapt well to various problems are unlikely to yield
effective outcomes in data classification. Consequently, the attainment of successful results
with input data hinges upon the utilization of a robust distance metric.

A triplet network [66, 75], drawing inspiration from the Siamese network architec-
ture [75], comprises three entities: positive, negative, and anchor samples. These triplet
networks employ Euclidean space for the comparative analysis of these entities during the
pattern recognition process, and this methodology is intrinsically tied to the principles
of metric learning [66]. The triplet loss initially places emphasis on evaluating the like-
ness between pairs of samples from the same and distinct classes while leveraging shared
weights. Triplet networks enhance discriminative capabilities by considering relationships
within the same class as well as across different classes.
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Cakir et al. [76] present an innovative deep metric learning methodology, drawing in-
spiration from the “learning to rank” paradigm, which is termed FastAP. This technique
specifically seeks to optimize the rank-based Average Precision metric by employing an
approximation rooted in distance quantization. Notably, this approach is meticulously
adapted to be compatible with the nuances of stochastic gradient descent, ensuring effi-
cient and effective learning dynamics.

Ranking loss and metric learning are interconnected in their pursuit of optimizing
similarity metrics. Ranking loss defines how pairs or triplets of data should be ranked in
terms of similarity, aligning the model’s objective with similarity measurement. Recently,
Kemertas et al. [77] present an information-theoretic loss function termed “RankMI” along
with a corresponding training algorithm designed for deep representation learning in the
context of image retrieval. The proposed framework involves iterative updates to a network,
which estimates the divergence between distance distributions for pairs of embeddings
corresponding to matching and non-matching instances. Simultaneously, they optimize an
embedding network to maximize this estimate using sampled negative examples.

Recently Mazaheri et al. [78] introduced a ranking loss to overcome the image search
bias in histopathology. In this research paper, two innovative approaches are presented to
enhance the performance of image retrieval. Firstly, a ranking loss function is employed
to steer the feature extraction process towards a focus on the matching aspects of the
search. This involves training the model to rank matched outputs, thereby tailoring the
representation learning specifically for image retrieval purposes rather than traditional class
label learning. Secondly, the concept of “sequestering learning” is introduced, aiming to
improve the generalization capabilities of the feature extraction process.

2.3 Content-Based Image Retrieval (CBIR)

Since the last decade, CBIR has been one of the most important fields in computer vi-
sion [79]. It allows a user to search for photographs that are similar to one another from a
large database of images. CBIR has numerous real-world applications, but it is especially
valuable for medical images, as linguistic features collected from medical reports are fre-
quently insufficient representations of the content of the related medical images [80, 81, 82].
The enormous medical image archives have traditionally been bundled with textual an-
notations classified by professionals; however, this technique does not scale well with the
ever-increasing demands of digital pathology. While CBIR systems for histopathology have
received a lot of attention [83], image search and analysis for histopathological images has
just recently become a focus of research, due to the rise of DP and DL [34, 3, 84, 85, 86, 15].
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Figure 2.1: CBIR in digital pathology (image re-created using idea from [3]).

The general approach for searching in a medical image database is CBIR is shown in
Fig. 2.1.

2.3.1 Opportunities

CBIR systems offer various opportunities for both pathologists and ML researchers which
include virtual peer review, transfer learning, and unsupervised learning. CBIR provides
pathologists with a virtual second opinion by allowing them to access information from
evidently diagnosed cases from the past. Pathologists can diagnose more confidently and
rapidly by retrieving similar cases from a large and well-curated database [87]. Using
the knowledge contained in a big archive can reduce the overall rate of misdiagnosis, im-
prove diagnosis efficiency by triaging, and reduce the burden on pathology labs [79, 38].
Pathologists can compare new cases with past cases regardless of geographic limitations,
thus this technology can be life-saving in remote areas where pathologists are not avail-
able [38, 88, 89].

Transfer learning has become quite popular in a CBIR system. It entails applying
what a deep network has learned in a field to a different one [90]. In the context of
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histopathology, a deep neural network was successfully employed to extract visual infor-
mation from histopathological slides even though it was trained on a million of natural
images [38, 3, 91, 84]. While fine-tuning a pre-trained network improves generalization
and saves computational and Graphical Processing Unit (GPU) resources [91].

There is a scarcity of labeled datasets in the pathology domain mainly due to the depen-
dency to highly specialized pathologists and the large size of images. On the other hand,
all of the most effective deep neural networks use supervised algorithms that necessitate a
large amount of labeled data. Hence, unsupervised learning and clustering may be more
useful for the processing of histopathology images. In the literature, Tizhoosh et al. [38]
have included some important methods in computational pathology, such as hierarchical
clustering. Similarly, “Yottixel” developed a CBIR system for histology archives using a
series of unsupervised clustering and feature extraction approaches [3].

CBIR solutions offer substantial utility in augmenting pathologist education by pro-
viding an innovative approach to image analysis and interpretation. Leveraging advanced
algorithms, CBIR facilitates comparison of medical images based on content, i.e., fea-
tures [92]. Pathologists can benefit from interactive and dynamic learning experiences,
as CBIR enables the exploration of diverse cases, aiding in pattern recognition and di-
agnostic proficiency [92]. Additionally, the integration of CBIR in educational settings
promotes a comprehensive understanding of pathology, enhancing the knowledge base and
decision-making skills of pathologists-in-training.

2.3.2 Challenges

Despite the efficiency and intelligence that DP and CBIR technologies bring to the pathol-
ogy domain, there are a few challenges which include insufficient labeled data, complex
diagnostic language, high dimensionality, computational power, demand for storage, and
clinical validation.

Large datasets are required to develop a CBIR system based on ML techniques, espe-
cially DL models. Curating a large high-quality labeled dataset is not a straightforward
task in the medical field, especially for histopathology. The manual annotation of a large
number of histopathological images is a time-consuming task that requires domain experts,
i.e., pathologists. Moreover, the majority of histopathological slides are only annotated at
slide level, making pixel-by-pixel delineations necessary for supervised schemes [38]. Pub-
lic data banks of labeled histopathology slides can speed up research and standardize field
performance evaluation. However, there are just a few public datasets available.
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ML techniques are not well suited to the highly complicated and intricate nature of
histopathology’s diagnosis procedure [93]. Pathologists, on the other hand, utilize highly
complicated and evolved vocabulary to express a medical diagnosis, whereas ML meth-
ods normally classify images in some discrete set of classes. Therefore, it is difficult to
transcribe a diagnostic language to labels that can be effectively used for training a ML
model. Pathologists are occasionally unable to classify some challenging cases precisely [94].
Moreover, suspicious and complex cases with confusing patterns can also be divided into
subtypes until a more advanced technique can be used to make a final diagnosis.

histopathology WSIs are large images that can reach 100,000 × 100,000 pixels or even
more [95]. In fact, a single prostate biopsy can contain anywhere from 12 to 20 biopsy
samples, resulting in 2.5–4 billion pixels of data per case (patient) [96, 9]. As a result,
analyzing these high-resolution images necessitates resizing or down-sampling operations.
Resizing images to a manageable size, on the other hand, can result in the loss of key
diagnostic information [97]. Another way to avoid this problem is to pick a few patches
(tiles) and process each one separately. While this method keeps all features, the spatial
layout of the patches may not be well captured. In most cases, even a single patch is
down-sampled before being fed into a deep network [38].

In terms of computational power and memory capacity, processing histopathological
slides certainly presents challenges. Using such images to train a deep network will almost
certainly require the use of GPU, a specialized processor designed to speed up visual
operations [98, 99]. Moreover, a reliable data storage server may also be required to handle
large images. The requirement of highly sophisticated GPUs, Central Processing Unit
(CPU)s, and storage resources for a CBIR system in histopathology images, makes them
impractical within real-life clinical settings.

The most challenging part in developing an intelligent real-world image search system
is the validation phase [100]. Conducting thorough external validation with enough data
(in terms of size and variety) from several hospitals is a key roadblock in the deployment
of many ML systems in a real clinical context. In a recent study, ML algorithms that
give diagnostic analysis utilizing medical images were evaluated [101]. According to the
study, only 6% of 516 published algorithms that were suitable for validation performed
well enough. In the medical profession, a broad evaluation is especially important because
algorithms may have a higher specificity of a given data-set and may not have generalized
well throughout.
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2.3.3 CBIR in Digital Pathology

With the improvement in computational resources and DP algorithms, image search was
in the spotlight of researchers during the last decade. There is a considerable literature
on CBIR in digital pathology [102, 34, 103, 104, 105]. Zheng et al. [106] created an online
CBIR system in 2003, in which the client sends the query image and search parameters
to the server. The server then conducts similarity searches using vector dot-product as
a distance metric, using feature types such as color histogram, image texture, Fourier
coefficients, and wavelet coefficients. The server then delivers similar photos, together
with similarity scores and feature descriptors, to the query image. On the other hand,
Mehta et al. [107] proposed an offline CBIR system that uses sub-images rather than the
complete digital slide. When compared to manual search, experimental results suggested
that using Scale-invariant Feature Transform (SIFT) [108] to search for similar structures
by indexing each sub-image yielded 80 percent accuracy for the top-5 results retrieved
from a database containing 50 IHC stained pathology images (IHC) with 8 resolution
levels. Akakin and Gurcan created a multi-tiered CBIR system based on WSI in 2012
that can classify and retrieve digital slides using both multi-image queries and images at
the slide level [109]. Zhang et al. [110] created a scalable CBIR method to deal with WSI
by employing supervised kernel hashing, which compresses a 10,000-dimensional feature
vector into only ten binary bits, preserving the image’s simple representation.

Most recently, a team from Google AI healthcare department introduced Similar Image
Search for Histopathology (SMILY) [84]. Based on both large-scale quantitative analysis
using annotated tissue regions and prospective investigations with pathologists blinded
to the source of the search results, SMILY retrieves image search results with similar
histologic traits, organ site, and cancer grades. An input image is condensed into a feature
vector by a pre-trained network. SMILY’s network is a deep-ranking network that was pre-
trained on 5,000,000 natural photos from 18,000 different classifications. By computing and
comparing the embeddings of input images, our network learns to extract discriminative
characteristics. SMILY used a dataset manually annotated by pathologists to test the
search performance in finding patches with the same histologic features. At 40×, 20×,
10×, and 5×magnification levels, top-5 scores for patch-based searches have been reported.
Google employed 400 processors with 10 compute threads to build SMILY as a web-based
utility. However, SMILY does not provide a “divide” approach to process WSIs. Given the
rapid development of histopathological images, this level of processing cost, namely brute
force patch processing of a WSI, is unsustainable for future applications, and a better level
of efficiency is required.

In another recent study, Kalra et al. [3] introduced a state-of-the-art search engine
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for real-time WSI retrieval in histopathology that for the first time offered a complete
“divide & conquer” solution for WSI search. The authors extracted a series of images at
20× magnification from each WSI using an unsupervised color-based and spatial proximity
clustering technique. Mosaic was the name given to a group of patches that encompassed
around 5% of the tissue samples. The Mosaic was then sent to deep CNNs that had
already been trained to extract deep features. The feature vectors were then barcoded, i.e.,
binarized, in order to speed up the indexing of WSIs. The capacity of Yottixel to represent
WSI in a compact manner is its most striking feature. The most important performance
enabler of Yottixel is the “Bunch of Barcodes” (BoB), a very efficient indexing technique
capable of describing WSIs with a mosaic of patches that are subsequently transformed
into barcodes.

In 2021, KimiaNet [6] was developed and reported applications for image representation
for DP search engines. The DenseNet topology was re-trained in numerous configurations
during their research. Without any pathologist annotation or hand designation of regions
of interest, the training data were used from a publicly available The Cancer Genome Atlas
(TCGA) dataset without any pathologist annotation or manual delineation of regions of
interest. Histopathology images at 20× magnification were chosen using a clustering-
based approach based on a high-cellularity score. Then, to fine-tune DenseNet, the type
of malignancy linked with the WSI was used as the soft label for all extracted images from
that WSI. Around 240,000 histopathology images with the size of 1000 × 1000 pixels from
more than 7,000 WSIs were selected for training the DenseNet at four different stages. To
improve the effectiveness of image search, feature vectors were transformed to binary codes
using the Min-Max barcoding approach [111, 112, 113] after training the feature extractor
and during the test phase [3]. For multi-organ WSI search, KimiaNet was evaluated for
image search on three public histopathology datasets.

For H&E-stained histopathology images of malignant lymphoma, Hashimoto et al. [114]
offer a novel case-based similar image retrieval method. They apply attention-based
multiple-instance learning to compute case similarity while focusing on tumor-specific re-
gions. Additionally, they employ contrastive distance metric learning to incorporate IHC-
stain image patterns as supervised data for determining acceptable similarity between
various malignant lymphoma cases. In this study, comprising 249 malignant lymphoma
patients, they discovered that their proposed method had higher assessment measures
than baseline case-based image retrieval systems. Furthermore, subjective examination by
pathologists verified that the similarity measure based on IHC staining patterns is appro-
priate for expressing the similarity of H&E-stained tissue images for malignant lymphoma.

In 2022, Chen et al. [115] published a search method called self-supervised image
search for histology (short SISH) based on Yottixel’s [3] idea with an additional VQ-VAE-
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based [116] as a feature extractor. SISH also incorporates the vEB tree-based [117] index-
ing and a post-search ranking algorithms. This approach aims to improve the speed and
scalability of image retrieval. SISH uses the Yottixel’s chain entirely: mosaic, DenseNet
and barcoding. However, SISH, as a derivative of Yottixel [118], has several shortcom-
ings: 1) it is not fast because the ranking makes it slow, 2) it is not scalable because it
needs much more indexing storage than Yottixel due to additional endcoding, 3) it is not
self-supervised, 4) ranking after search makes SISH a patch classifier, hence SISH cannot
perform WSI-2-WSI matching. Sikaroudi et al. [118] argue that Chen et al.’s work [115]
should not have been babptized as a new method with a new name since it is a mere
modification of Yottixel.

In 2023, Wang et al. [119] introduced RetCCL. This approach introduces a novel net-
work for inedxing whole-slide image. RetCCL combines clustering guidance with con-
trastive learning techniques to improve the retrieval accuracy of whole-slide pathology
images. By leveraging cluster information, RetCCL effectively captures image represen-
tations that are semantically meaningful, leading to more precise and efficient retrieval of
relevant images in digital pathology archives. One has to point to the fact that RetCCL
uses Yottixel’s mosaic to extract patches. However, as it employs deep features for patch
selection - instead of color histogram - RetCCL is very slow. As well, RetCCL uses the
post-search ranking proposed by SISH, which makes it, like SISH, a mere pacth classifier
that cannot perform true WSI macthing.

2.4 Tissue Segmentation

Medical experts can easily determine the boundaries of the tissue in the WSI. However,
because of the presence of color fluctuations, fatty tissues, debris and artefacts, computers
may have difficulty identifying tissue regions in WSIs [120, 121]. For the automatic back-
ground removal of histopathology images two methods are mainly in focus including Otsu
thresholding [122], and pre-trained U-Net [4]. Otsu and U-Net are briefly explained below.

Otsu Thresholding – The Otsu binarization method is a widely used conventional
algorithm for separating pixels into foreground and background [4, 122]. For images with
only two distinct histogram modes, this hand-crafted image thresholding algorithm per-
forms well. Because an image histogram with only two different modes will only have two
peaks, a good threshold will be in the middle of those two values. The Otsu method selects
an ideal global threshold value in this fashion, and the same threshold value is applied to
each pixel to construct the matching binary mask.
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Figure 2.2: U-Net for tissue segmentation (image copied from [4]).

U-Net Segmentation – The U-Net is a fully convolutional network with a U-shape
architecture that is divided into two sections, the encoder and the decoder [4, 123]. The
tissue segmentation was done using the U-Net architecture with the MobileNet back-
bone [124]. U-Net has been trained to partition input thumbnail WSI, i.e., WSI at one of
its low magnifications, into tissue and non-tissue regions using the MobileNet backbone.
The blank background and artifacts such as bubbles, tissue folds, excessive stains, shat-
tered glass, detritus, and marker traces are all non-tissue regions. Figure 2.2 demonstrates
U-Net’s approach to generating the tissue segmentation.

2.5 Patching & WSI Representation

Searching within gigapixel WSI archives, like many other big-data challenges, necessitates
the application of a fundamental computer science approach: the “Divide & Conquer”
strategy [118]. The splitting of a WSI into many small patches, i.e., sub-images, is a piv-
otal step in image analysis and understanding. It plays a crucial role in representing each
distinct aspect, feature, or region within the WSI accurately. By breaking down the WSI
into meaningful segments or patches, it becomes feasible to analyze and process. Although
working with fully-annotated WSIs is desirable, having pixel-level annotations for a large
number of WSIs is excessively time-consuming, if not impossible. Therefore, “patching”
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Figure 2.3: Patching from the binary mask and grid.

WSI must be unsupervised. The WSI binary mask is used to differentiate between tissue
and the background, which then is used to divide the WSI into a grid to generate patches.
In the literature, the Yottixel’s mosaic appears to be the only unsupervised patching algo-
rithm. With respect to its significance, it is not clear why there not any other alternative
for selecting a small set of representative patches from a WSI. Figure 2.3 shows the generic
example to sample patches from a given WSI.

In 2020, Kalra et al. [3] introduced an unsupervised patch extraction scheme “mosaic”
in which patches extracted from the WSI are organized into a predetermined number of cat-
egories or classes through the utilization of a clustering technique, specifically the k-means
algorithm. This clustering algorithm operates in an unsupervised manner, autonomously
grouping WSI patches into clusters characterized by shared tissue patterns. Subsequently,
a fractional subset, typically ranging from 5% to 20%, of patches from each cluster is uni-
formly selected to construct a mosaic. This mosaic effectively serves as a representative
depiction of the entire tissue area within the WSI. The Yottixel’s mosaic approach is be-
ing used as an unsupervised patch extractor for the WSI search and matching framework
proposed by Chen et al. [115] in SISH and Wang et al. [119] in RetCCL. However, Yottixel
necessitates predefined empirical parameters, a requirement that may diminish efficiency
and elevate redundancy.

2.6 Summary

The review of literature for WSI search and retrieval shows two key issues: 1) we need
innovation to address the patching challenge, and 2) we still need to represent the patches
with more expressive representations. This research, therefore, attempted to contribute
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to both issues. The thesis first introduces Selection of Distinct Morphologies (SDM) algo-
rithm as an alternative for Yottixel’s mosaic. To offer a complete solution, the last chapter
also introduces a new fine-tuning to generate better deep features for image retrieval ap-
plications.
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Chapter 3

Selection of Distinct Morphologies
to Divide & Conquer
the Whole Slide Images

3.1 Introduction

Progress in ML has demonstrated considerable potential in augmenting the efforts of
healthcare practitioners [125]. Nevertheless, the adoption and confidence in clinical ap-
plications require the development of cutting-edge algorithms that exhibit high accuracy
and performance [34]. The emergence of digital pathology has opened new horizons for
histopathology [126]. ML algorithms are able to operate on digitized slides to assist pathol-
ogists with different tasks. Diverse repositories of digital pathology scans are progressively
transitioning from conceptualization to actualization. The volume of data encompassed
within these archives is both remarkable and daunting in its scale [3].

The representation of WSIs holds immense importance across a wide spectrum of ap-
plications within the fields of pathology, medicine, and beyond. WSIs are essentially high-
resolution digital images that capture the entirety of a histopathology glass slide, provid-
ing a comprehensive view of tissue specimens under examination. Deep models, such as
CNNs, ViTs, and other sophisticated architectures, have been instrumental in extracting
meaningful and interpretable features from WSIs, leading to advanced applications. DL
representation of WSIs involves the use of neural networks to automatically learn hierar-
chical and abstract features from the vast amount of visual information contained in these
high-resolution images. These learned representations enable computers to understand and
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interpret the complex structures and patterns present in histopathological slides. With the
DL and meaningful representation of the WSI, the applications are diverse, ranging from
automated disease diagnosis and prognosis prediction to drug discovery, telepathology con-
sultations, and search and matching techniques in CBIR.

Second opinions (or consultations) in histopathology are of paramount importance as
they serve as a crucial quality control measure, enhancing diagnostic accuracy and reducing
the risk of misdiagnosis, especially for complex or ambiguous cases [15]. WSI search offers
a valuable avenue for obtaining a virtual or computational second opinion. By leveraging
advanced CBIR techniques, pathologists can compare a patient’s WSI with a database of
evidently diagnosed cases, aiding in the identification of similar patterns and anomalies.
This approach provides a data-driven, objective perspective that complements the pathol-
ogist’s evaluation, contributing to more reliable diagnoses and fostering a collaborative
and evidence-based approach to pathology. The endeavor of conducting searches within
extensive archives of gigapixel WSIs, akin to addressing large-scale big-data challenges, ne-
cessitates the implementation of a well-defined computational methodology characterized
by the principle of “Divide and Conquer”.

Despite the critical role of patch selection as an initial step in the analysis of WSI, this
phase has not been extensively investigated. The predominant methods in the literature use
brute force patching where the entire WSI is tiled into thousands of patches [127, 128, 129].
Leveraging the entirety of patches extracted from the WSI for retrieval tasks is computa-
tionally prohibitive for clinical utility due to the substantial processing resources required.
In the literature, a search engine was introduced in 2020 that proposed a sophisticated
patching technique called mosaic [3]. Yottixel’s mosaic functions as a pivotal component
during the primary “Divide” stage, effectively partitioning the formidable task of process-
ing WSIs into discrete, manageable parts, with each part symbolized by an individual
patch within the mosaic [3]. In the realm of scientific literature, subsequent to Yottixel,
two additional search engines, denoted as SISH [115, 118] and RetCCL [119], were intro-
duced in the years 2022 and 2023, respectively. However, both of these search engines used
Yottixel’s patching scheme to divide the WSI whereas SISH is a slightly modified version
of Yottixel [118].

While Yottixel’s mosaic method stands as a cutting-edge unsupervised approach for
patch selection in the existing scientific literature, it does incorporate certain empirical
parameters, including the utilization of 9 clusters for k-means clustering and the selection
of 5% to 20% of the total patches within each of the k=9 clusters. These parameters,
however, may not comprehensively encompass all the diverse facets and characteristics
inherent in the complex tissue morphology of a WSI. Given the intricate nature of tissue
morphology in such images, it is plausible that there exist more than nine distinct features
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Figure 3.1: Conceptual Overview. The overall process to generate a montage from the
WSI using SDM.

and aspects that merit consideration. As well, determining the proper level of cluster
sampling may not be straightforward. All these considerations underscore the urgent need
for the development of a more advanced unsupervised patch selection methodology capable
of comprehensively capturing and representing all the diverse aspects and characteristics
inherent in a WSI for all types of biopsy.

In this chapter, the initial contribution of this Ph.D. research is introduced — a novel
unsupervised patch selection methodology that comprehensively captures the discrete at-
tributes of a WSI without necessitating any empirical input from the user. This method-
ology is designated as the “Selection of Distinct Morphologies (SDM)”, which is further
explained in the methods Section. 3.2. Furthermore, the evaluation of the proposed method
is described in Section. 3.3 followed by the discussion and conclusion Section. 3.4.

3.2 Methodology

Although it is important to have comprehensive annotations for the WSIs, manual delin-
eations for a large number of WSIs are prohibitively time-consuming or even infeasible.
Therefore, in most scenarios, the utilization of unsupervised patching becomes inevitable.
For this reason, an unsupervised technique is introduced to represent all distinct features
of a WSI using fewer patches, termed a “montage”. Building such montages serves as
a fundamental component crucial for facilitating numerous downstream WSI operations,
image search being just one of them. Figure 3.1 shows the steps for producing a montage
from a WSI using the proposed SDM method.
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Figure 3.2: The overall SDM process. Commencing with the extraction of all patches
from the WSI at low magnification (say at 2.5x), these patches subsequently undergo
processing through a deep network (say DenseNet [5]), resulting in the generation of em-
beddings for each patch. After obtaining all embeddings, k-means clustering is applied
around a single centroid, resulting in the calculation of the Euclidean distance of each
patch from the centroid. Patches exhibiting similar Euclidean distances are organized into
distinct Euclidean bins. Finally, one patch is selected from each bin to build the montage.

3.2.1 Selection of Distinct Morphologies (SDM)

Patch selection is a fundamental step in digital pathology for many CAD techniques, lead-
ing to enhanced diagnostic capabilities and improved patient care. To obtain representative
patches that effectively capture the content of a WSI, the SDM framework is introduced in
this work. This framework aims to create a “montage” comprising a rather small number
of patches that exhibit diversity while maintaining their meaningfulness within the context
of the WSI (see Figure 3.1). The algorithm for creating a montage using SDM is outlined
in Algorithm 1, and also illustrated in Figure 3.2.
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Algorithm 1 Creation of the Montage using SDM

Require: WSI Image
Ensure: Set of selected patches Ps as output
1: m ← Set the lower magnification for patching
2: s ← Set the patch size at low magnification
3: t ← Set a minimum tissue threshold for each patch
4: o ← Set the overlap percentage between each adjacent patch
5: Procedure
6: Im ← OpenWSI(m) ▷ Open the WSI at lower magnification (m)
7: Mm ← TissueSegmentation (Im) ▷ Extract the tissue regions
8: T ← Patching (Im, Mm, s, o) ▷ Perform dense patching with s size and o overlap
9: for each T do
10: G ← TissuePercentage (T ) ▷ Calculate tissue percentage for each patch
11: P ← T if G > t ▷ Get the patches with tissue percentage over threshold
12: end for
13: E ← GetEmbeddings(P ) ▷ Push the patches Pt through a deep network
14: C,D ← k-means(E) ▷ Get the centroid and the Euclidean distances for all the

patches
15: Dr ← Roundoff(D) ▷ Round off the distances to the nearest integer
16: B ← Binned(Dr) ▷ Generate the bin for each integer distance
17: Ps ← B ▷ Select a patch from each bin
18: Return Ps ▷ Return the final selection of distinct patches
19: End Procedure

Initially, we process the WSI Im at a low magnification level m, e.g., m = 2.5×. Tissue
segmentation is performed to generate a binary tissue mask Mm, for instance using U-Net
segmentation [4]. Here, it is presumed that the WSIs that are being processed have been
through quality control. Hence, it can be assumed that they are free from artifacts like
bubbles, tissue folds, ink markers, and similar imperfections. According to the findings in
the literature, a magnification of 2.5× represents the minimum level at which it remains
feasible to differentiate between tissue components and artifacts while also retaining some
intricate details [4]. Using the tissue mask Mm, dense patching is performed all over the
tissue region to extract all the patches with patch size sl× sl, and patch overlap o at 2.5×.
Empirically, we use sl = 128, 2.5× magnification, and o = 5%.

In the literature [3, 34], the patch size of 1024×1024 at 20× magnification is used and
thus we use the same. Once a WSI entirely tiled, a subset of patches P = {p1, p2, . . . , pN}
with tissue threshold ≥ t (i.e., 70%) are selected (here, N is the total number of patches
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in subset P ). Subsequently, these selected patches P are fed into a deep neural network
f(·) to extract the corresponding set of embeddings E = {e1, e2, . . . , eN}. Empirically, we
use DenseNet-121 [5] pre-trained on natural images of ImageNet [130].

Here, the selection of DenseNet [5] is a choice to mitigate any potential bias towards
specific histological features (i.e., any properly trained network can be used). The pri-
mary goal is to identify various structural elements and edges within the WSI in order to
effectively distinguish and capture the multitude of intricate tissue details.

All embedding vectors in E are then used to get one centroid c embedding vector
computed as the mean of embedding vectors ei, where ei ∈ E, and i = {1, 2, . . . , N}. c is
computed as

c =
1

|N |

N∑
i=0

ei. (3.1)

Calculating the mean of the entire dataset, notably in techniques like Principal Com-
ponent Analysis (PCA) [131], proves advantageous for evaluating variance within the
data. Once, we calculated the centroid of the WSI, the set of Euclidean distances D =
{d1, d2, . . . , dN} from the centroid is computed for each patch in P . Euclidean distance is
measured to quantify the degree of dissimilarity between patches. Individual distances di
are computed as

di = ∥ei − c∥2, (3.2)

where di ∈ D, and here i = {1, 2, . . . , N}.

To compute the centroid c, we used the k-means algorithm with only one centroid.
Subsequently, these distances D are discretized by rounding them to the nearest integer
r(di).

Discretized patches that exhibit similar Euclidean distances are grouped together in the
set Euclidean bins B = {b1, b2, . . . , bK} since their proximity in terms of Euclidean distance
suggests similarity (here, K is the number of Euclidean bins which in turn represents the
final number of selected patches). In this process, it is not required to manually specify
the number of bins as this is the case for Yottixel’s mosaic when it defines the number
of clusters. By contrast, K is dynamically determined based on the variability in the
Euclidean distances among the patches. This adaptability allows the proposed method
to effectively capture diverse numbers of distinct tissue regions within the WSI. Finally,
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a single patch is randomly chosen from each Euclidean bin, considering that all patches
within the same bin are regarded as similar. Figure 3.3 shows the discrete Euclidean bins
and selected patches from each bin. These selected set of patches Ps = {ps1, ps2, . . . , psK}
constitute distinct patches called WSI’s montage.

Figure 3.3: Discrete Euclidean bins within SDM. The bar chart visually represents
the distribution of patches from the WSI across various Euclidean bins. Patches grouped
within the same Euclidean bin exhibit similarity. Randomly selected patches (displayed at
the top of each bin) represent the montage.

3.2.2 Atlas for WSI Matching

After identifying a unique set of patches from the WSI at a lower magnification level
(say 2.5×), these patches are subsequently extracted at higher magnification (say 20×)
with a patch size of 1024 × 1024 pixels. This process generates a montage that contains
fewer patches than contained in WSI. This approach enhances computational efficiency
and minimizes storage space requirements for subsequent processing without compromising
the distinct information in the WSI. The patches in a montage are converted to a set of

27



barcodes using the MinMax algorithm [112, 3]. To achieve this, the patches are initially
converted into feature vectors using KimiaNet [6], which is a DenseNet-121 [5] model
trained on histological data from TCGA. Global average pooling is applied to the feature
maps obtained from this last convolutional layer, resulting in a feature vector with a
dimension of 1024. Following feature extraction, we employ the discrete differentiation of
the MinMax algorithm [112, 3], to convert the feature vectors into binary representations
known as a “barcode”. This barcode is lightweight and enables rapid Hamming distance-
based searches [3]. While it’s possible to directly assess image similarity using deep features
and metrics like the Euclidean distance, there is a notable concern regarding computational
and storage efficiency, particularly when conducting searches within a large databases
spanning various primary sites. While the utilization of Hamming distance for barcodes
is acknowledged here, it is noteworthy to consider exploring alternative approaches such
as data compression techniques, including but not limited to Huffman encoding or Vector
Quantization [132]. Following the processing and binarization of all WSIs using the SDM
method, the resulting barcodes are preserved as a reference “atlas” (structured database of
patients with known outcomes). This atlas can subsequently be employed for the matching
process when handling new patients, enabling efficient search applications.

Matching WSI to one another poses significant challenges due to various factors. One
key challenge arises from the inherent variability in the number of patches extracted from
different WSIs. Since WSIs can vary in size and complexity, the number of patches de-
rived from them can differ substantially. Additionally, factors such as variations in tissue
preparation, staining quality, and imaging conditions can introduce further complexity.
All these factors make it challenging to establish WSI-to-WSI matching, requiring sophis-
ticated computational methods to address these variations and ensure robust matching
in histopathological analysis. To overcome this challenge, Kalra et al. [3] introduced a
novel approach called the “median of minimum” distances within the search engine Yot-
tixel. This technique aims to enhance the robustness of WSI-to-WSI matching. It does
so by considering the minimum distances between patches in two WSIs and then select-
ing the median of these minimum values as a cumulative measure of WSI similarity (see
Figure 3.4). In this study, the median-of-minimum method has been adopted to perform
WSI-to-WSI matching within the atlas.

3.3 Evaluation & Results

The verification and validation of histological similarity represent formidable challenges.
A comprehensive validation scenario would ideally entail the comparison of numerous pa-

28



Figure 3.4: WSI-Level Search. The process involves matching one WSI to another using
the median of minimum distances [3]. For each query WSI, its patch embeddings are
compared with the patch embeddings of every WSI in the archive.

tients across diverse healthcare institutions, involving multiple pathologists conducting
visual inspections over an extended timeframe. In this research, the performance of the
search task was quantified by approaching it as a classification problem for simplification
purposes. One of the primary advantages of employing classification methodologies lies
in their ease of validation; each image can be categorized as either belonging to a specific
class or not, a binary concept that allows for performance quantification through tally-
ing misclassified instances. Nonetheless, it’s essential to acknowledge that the notion of
similarity in image search is a fundamentally continuous subject matter (in many cases,
a straightforward yes/no answer may not suffice) and predominantly a matter of degree
(ranging from almost identical to utterly dissimilar). Moreover, distance measures, such
as Euclidean distance, which assesses dissimilarity between two feature vectors represent-
ing images, are typically used to gauge the extent of similarity (or dissimilarity) between
images. The classification-based assessments we employ may tend to be overly cautious
when evaluating search outcomes and hence may overlook shared anatomical traits among
various tumor types.

SDM montage has been extensively evaluated on various public and private histopathol-
ogy datasets using a “leave-one-out” WSI search and matching as a downstream task on
each dataset and compared with the state-of-the-art Yottixel’s mosaic. For public dataset
evaluation, the following datasets have been used: TCGA [133], BReAst Carcinoma Sub-
typing (BRACS) [134], and Prostate cANcer graDe Assessment (PANDA) (PANDA) [135].
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Figure 3.5: Feature extraction to generate the atlas (indexed archive) after pushing the
selected patches (Yottixel’s Mosaic and SDM’s Montage) through the KimiaNet [6].

On the other hand, for the private dataset evaluation, we have used Breast Cancer (BC),
Alcoholic Steatohepatitis (ASH) and Non-alcoholic Steatohepatitis (NASH) Liver, and
Colorectal Cancer (CRC) datasets from Mayo Clinic, Rochester, USA.

All experiments have been conducted on Dell PowerEdge XE8545 with 2× AMD EPYC
7413 CPUs, 1023 GB RAM, and 4× NVIDIA A100-SXM4-80GB using TensorFlow (TF)
version of DenseNet and KimiaNet. We used TF 2.12.0, python 3.9.16, CUDA 11.8, and
CuDNN 8.6 on a Linux operating system. In all experimental procedures, two distinct
patch selection methodologies were employed: Yottixel’s mosaic and SDM’s montage. Sub-
sequently, patches were extracted at a 20× magnification, with dimensions measuring 1000
× 1000 for the mosaic and 1024 × 1024 for the montage. Here, a patch size of 1024
for montage is selected due to its favorable memory management properties, originating
from its status as a power of 2 and its divisibility by 16. This particular size facilitates
computational efficiency and aligns with architectural requirements, particularly for Vi-
sion Transformers (ViTs), thereby ensuring future compatibility and optimized processing.
Following patching, feature extraction was executed using KimiaNet (DenseNet121 trained
on TCGA data) [6]. These features were subsequently transformed into barcodes, charac-
terized by their lightweight nature and ability to facilitate swift Hamming distance-based
searches [112, 3]. Figure 3.5 depicts the comprehensive sequence of operations encompass-
ing feature extraction and the subsequent creation of an atlas. This atlas functions as a
fundamental asset, tested via a “leave-one-out” search and matching experiment, a notably
rigorous method particularly suited for datasets of small to medium size, with the aim of
retrieving the highest-ranking matching WSIs. The computer vision literature typically
emphasizes top-n accuracy, where success is determined if any one of the top-n search
results is accurate. In contrast, our approach relies on “majority-n accuracy”, which we
find to be a significantly more dependable validation scheme for medical imaging [3, 34].
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Under this scheme, a search is deemed correct only when the majority of the top-n search
results are accurate. The advantage of a search process lies in its capability to retrieve mul-
tiple top-matching results, enabling the opportunity to examine these foremost matches to
explain the required decision.

Once, the top matching results (through majority voting) are compiled, then the most
commonly used evaluation metrics for verifying the performance of image search and CBIR
algorithms are precision, recall, and F1-score [136, 3, 6, 137]. The harmonic mean of
precision and recall is the F1-score. The F1-score is considered more reliable than accuracy,
especially in scenarios where there is an imbalance between the classes. Accuracy, which
measures the overall correctness of predictions, may be misleading when dealing with
imbalanced datasets, where one class significantly outweighs the other. The F1-score, on
the other hand, combines precision and recall, providing a balanced measure that considers
both false positives and false negatives. F1-score is defined as:

F1-score =
2× Precision× Recall

Precision + Recall
. (3.3)

Here, a concise overview of the performance of the proposed method is provided using
results from three datasets: TCGA 3.3.1, CRC - Mayo Clinic 3.3.2, and Breast Can-
caer - Mayo Clinic 3.3.3. Detailed results from the other three datasets (BRACS A.1.2,
PANDA A.1.3, and Liver - Mayo Clinic A.1.5) are included in the Appendix A.

3.3.1 Public – The Cancer Genome Atlas (TCGA)

TCGA is a public and comprehensive repository in the field of cancer research. Established
by the National Institutes of Health (NIH) and the National Cancer Institute (NCI), TCGA
represents a collaborative effort involving numerous research institutions. Its primary
mission is to analyze and catalog genomic and clinical data from a wide spectrum of
cancer types. It is the largest publicly available dataset for cancer research. The dataset
contains 25 anatomic sites with 32 cancer subtypes of almost 33,000 patients.

The KimiaNet [4] underwent a training process utilizing the TCGA dataset, using the
ImageNet weights from DenseNet as initial values. This process involved the utilization
of 7,375 diagnostic H&E slides to extract a substantial dataset of over 240,000 patches,
each with dimensions measuring 1000 × 1000, for training KimiaNet. Additionally, a set
of 1553 slides was set aside for evaluation purposes, comprising a test dataset consisting of
777 slides and a validation dataset encompassing 776 slides.
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Figure 3.6: Accuracy, macro average of F1-scores, and weighted average of F1-scores are
shown from Yottixel mosaic, and SDM montage. The evaluations are based on the top
1 retrieval, the majority among the top 3 retrievals, and the majority among the top 5
retrievals using the TCGA dataset. The diagram shows comparable performance of SDM
montage against Yottixel when comparing top-1 and MV@3 retrievals. Hoverver, SDM
performs marginally better than Yottixel when comparing MV@5 retrievals.

From 1553 evaluation slides that were not involved in the fine-tuning of KimiaNet [6],
1466 were used in the evaluation of this study (see Table. 3.1 for a detailed breakdown of
the dataset).

To assess how the performance of SDM montage compares to Yottixel’s mosaic, a
leave-one-out evaluation was conducted to retrieve the most similar cases. The evaluation
involved multiple retrieval criteria, including the top-1 retrieval, the majority agreement
among the top 3 retrievals (MV@3), and the majority agreement among the top 5 retrievals
(MV@5). The accuracy, macro average, and weighted average at top-1, MV@3, and MV@5
are reported in Figure 3.6. Moreover, confusion matrices and chord diagrams at MV@5
are illustrated in Figure 3.7. Additional confusion matrices and chord diagrams of top-1,
and MV@3 retrievals are provided in Appendix A (see Figure A.1, and A.2, respectively).
A chord diagram serves as a graphical depiction presenting the interrelations and con-
nections among data points arranged in a circular layout. Notably, its structure bears
resemblance to that of confusion matrices, with the distinction that confusion matrices
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adopt a square layout. It is particularly effective in illustrating the connections or flows
between entities or categories. The diagram consists of arcs, or “chords”, that connect
pairs of points, with the width of each chord representing the strength or frequency of the
connection. In our evaluation, chords that are matching with another subtype represents
the mismatch of of the subtype. Ideally we should not have any cross connections to say
that our search results match completely with the query. However, tissue similarity may
create cross connections that are anatomically correct. Table 3.2 and 3.3 show the detailed
results including precision, recall, and F1-score for Yottixel’s mosaic and SDM’s montage,
respectively. In addition to conventional accuracy metrics, we also conducted a compara-
tive analysis of the number of patches extracted per WSI by each method (see the boxplots
in Figure 3.8 for the depiction of the patch distribution per WSI). To visually represent
the extracted patches, t-distributed Stochastic Neighbor Embedding (t-SNE) projections
of these patches are also provided in Figure 3.9.

Through this experiment, we observed that SDM exhibited comparable performance
to the Yottixel mosaic concerning top-1 retrieval and the majority agreement among the
top 3 retrievals. However, notably, the SDM montage demonstrated marginally superior
performance by +2% in macro avg. of F1-scores, and +1% in accuracy and weighted avg.
of F1-scores as compared to the Yottixel mosaic when it came to the majority agreement
among the top 5 retrievals, highlighting its effectiveness in capturing relevant information in
this specific retrieval context (see Figure 3.6). Another notable advantage of employing the
SDM montage method becomes evident when examining Figure 3.8, which illustrates the
number of patches selected. In comparison to the Yottixel mosaic, SDM proves to be more
efficient by selecting a fewer number of patches while having comparable performance.
This not only conserves storage space but also eliminates the redundancy & need for
empirical determination of the ideal number of patches to select. Additionally, it has come
to our attention that Yottixel is more prone to overlooking WSIs in comparison to SDM.
Specifically, our observations reveal that Yottixel processed 1462 WSIs, whereas SDM
successfully processed the entirety of 1466 WSIs. Finally, the t-SNE map, in Figure 3.9,
shows that SDM have more discernible pattern than the Yottixel’s extracted patches.
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Primary Diagnoses Acronym Slides
Adrenocortical Carcinoma ACC 11
Bladder Urothelial Carcinoma BLCA 68
Brain Lower Grade Glioma BLGG 79
Breast Invasive Carcinoma BRCA 178
Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma CESC 39
Cholangiocarcinoma CHOL 8
Colon Adenocarcinoma COAD 62
Esophageal Carcinoma ESCA 28
Glioblastoma Multiforme GBM 70
Head and Neck Squamous Cell Carcinoma HNSC 63
Kidney Chromophobe KICH 22
Kidney Renal Clear Cell Carcinoma KIRC 99
Kidney Renal Papillary Cell Carcinoma KIRP 53
Liver Hepatocellular Carcinoma LIHC 70
Lung Adenocarcinoma LUAD 74
Lung Squamous Cell Carcinoma LUSC 84
Mesothelioma MESO 9
Ovarian Serous Cystadenocarcinoma OV 20
Pancreatic Adenocarcinoma PAAD 24
Pheochromocytoma and Paraganglioma PCPG 30
Prostate Adenocarcinoma PRAD 77
Rectum Adenocarcinoma READ 21
Sarcoma SARC 26
Skin Cutaneous Melanoma SKCM 49
Stomach Adenocarcinoma STAD 55
Testicular Germ Cell Tumors TGCT 26
Thymoma THYM 6
Thyroid Carcinoma THCA 101
Uterine Carcinosarcoma UCS 6
Uveal Melanoma UVM 8

Table 3.1: Comprehensive details regarding the TCGA dataset utilized in this study, en-
compassing the corresponding acronyms and the number of slides attributed to each pri-
mary diagnosis.
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Yottixel Mosaic
Top-1 MV@3 MV@5

Primary
Diagnoses

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Slides

ACC 0.86 0.55 0.67 0.83 0.45 0.59 0.80 0.36 0.50 11
BLCA 0.68 0.85 0.76 0.63 0.84 0.72 0.61 0.84 0.70 68
BLGG 0.90 0.87 0.88 0.88 0.87 0.88 0.86 0.85 0.85 79
BRCA 0.91 0.94 0.93 0.92 0.93 0.92 0.88 0.96 0.92 178
CESC 0.78 0.46 0.58 0.87 0.51 0.65 0.88 0.59 0.71 39
CHOL 0.45 0.62 0.53 0.50 0.50 0.50 0.33 0.12 0.18 8
COAD 0.64 0.68 0.66 0.70 0.73 0.71 0.71 0.79 0.75 62
ESCA 0.45 0.50 0.47 0.52 0.43 0.47 0.44 0.39 0.42 28
GBM 0.84 0.88 0.86 0.84 0.86 0.85 0.80 0.83 0.81 66
HNSC 0.79 0.71 0.75 0.84 0.78 0.81 0.82 0.73 0.77 63
KICH 0.90 0.86 0.88 1.00 0.86 0.93 1.00 0.82 0.90 22
KIRC 0.87 0.90 0.89 0.89 0.95 0.92 0.85 0.95 0.90 99
KIRP 0.78 0.79 0.79 0.84 0.81 0.83 0.83 0.74 0.78 53
LIHC 0.90 0.81 0.86 0.85 0.83 0.84 0.85 0.83 0.84 70
LUAD 0.75 0.72 0.73 0.77 0.72 0.74 0.78 0.68 0.72 74
LUSC 0.72 0.76 0.74 0.73 0.86 0.79 0.70 0.85 0.77 84
MESO 0.40 0.22 0.29 0.50 0.11 0.18 0.00 0.00 0.00 9
OV 0.80 0.80 0.80 0.80 0.80 0.80 0.84 0.80 0.82 20
PAAD 0.60 0.62 0.61 0.62 0.62 0.62 0.61 0.58 0.60 24
PCPG 0.93 0.90 0.92 0.93 0.90 0.92 0.82 0.90 0.86 30
PRAD 0.92 0.95 0.94 0.94 0.95 0.94 0.94 0.95 0.94 77
READ 0.18 0.19 0.19 0.32 0.29 0.30 0.30 0.14 0.19 21
SARC 0.77 0.77 0.77 0.77 0.77 0.77 0.80 0.77 0.78 26
SKCM 0.95 0.78 0.85 0.88 0.76 0.81 0.83 0.71 0.77 49
STAD 0.66 0.71 0.68 0.68 0.78 0.73 0.69 0.78 0.74 55
TGCT 0.95 0.81 0.88 0.96 0.85 0.90 0.95 0.81 0.88 26
THYM 1.00 0.67 0.80 1.00 0.67 0.80 1.00 0.50 0.67 6
THCA 0.94 0.97 0.96 0.94 0.98 0.96 0.97 0.99 0.98 101
UCS 0.67 1.00 0.80 0.67 1.00 0.80 0.67 1.00 0.80 6
UVM 1.00 0.88 0.93 1.00 0.88 0.93 1.00 0.88 0.93 8
Total Slides 1462

Table 3.2: Detailed precision, recall, F1-score, and the number of slides processed for each
subtype are shown in this table using the Yottixel mosaic. The evaluations are based on
the top 1 retrieval, the majority among the top 3 retrievals, and the majority among the
top 5 retrievals using the TCGA dataset.
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SDM Montage
Top-1 MV@3 MV@5

Primary
Diagnoses

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Slides

ACC 0.89 0.73 0.80 0.80 0.73 0.76 0.80 0.73 0.76 11
BLCA 0.74 0.79 0.77 0.68 0.82 0.75 0.66 0.87 0.75 68
BLGG 0.82 0.82 0.82 0.86 0.87 0.87 0.83 0.85 0.84 79
BRCA 0.89 0.96 0.92 0.88 0.98 0.93 0.84 0.99 0.91 178
CESC 0.80 0.62 0.70 0.66 0.54 0.59 0.75 0.62 0.68 39
CHOL 0.50 0.25 0.33 0.67 0.25 0.36 0.00 0.00 0.00 8
COAD 0.71 0.79 0.75 0.70 0.77 0.73 0.71 0.84 0.77 62
ESCA 0.43 0.43 0.43 0.54 0.50 0.52 0.58 0.54 0.56 28
GBM 0.80 0.81 0.81 0.86 0.84 0.85 0.81 0.80 0.81 70
HNSC 0.82 0.78 0.80 0.83 0.76 0.79 0.88 0.79 0.83 63
KICH 0.95 0.82 0.88 0.95 0.91 0.93 1.00 0.86 0.93 22
KIRC 0.91 0.90 0.90 0.93 0.94 0.93 0.88 0.95 0.91 99
KIRP 0.75 0.83 0.79 0.79 0.83 0.81 0.84 0.79 0.82 53
LIHC 0.82 0.80 0.81 0.84 0.81 0.83 0.84 0.84 0.84 70
LUAD 0.76 0.73 0.74 0.71 0.74 0.73 0.75 0.74 0.75 74
LUSC 0.72 0.75 0.74 0.77 0.76 0.77 0.78 0.77 0.78 84
MESO 0.67 0.22 0.33 1.00 0.11 0.20 1.00 0.11 0.20 9
OV 0.88 0.75 0.81 0.84 0.80 0.82 0.83 0.75 0.79 20
PAAD 0.64 0.58 0.61 0.60 0.50 0.55 0.68 0.54 0.60 24
PCPG 0.90 0.87 0.88 0.93 0.83 0.88 0.96 0.83 0.89 30
PRAD 0.93 0.96 0.94 0.95 0.96 0.95 0.94 0.96 0.95 77
READ 0.31 0.24 0.27 0.31 0.19 0.24 0.33 0.19 0.24 21
SARC 0.83 0.73 0.78 0.86 0.69 0.77 0.90 0.73 0.81 26
SKCM 0.80 0.82 0.81 0.86 0.76 0.80 0.87 0.67 0.76 49
STAD 0.74 0.84 0.79 0.72 0.84 0.77 0.74 0.82 0.78 55
TGCT 0.81 0.81 0.81 0.85 0.85 0.85 0.88 0.85 0.86 26
THYM 0.80 0.67 0.73 1.00 0.67 0.80 1.00 0.33 0.50 6
THCA 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 101
UCS 0.75 1.00 0.86 0.75 1.00 0.86 0.75 1.00 0.86 6
UVM 1.00 0.88 0.93 1.00 0.88 0.93 1.00 0.88 0.93 8
Total Slides 1466

Table 3.3: Detailed precision, recall, F1-score, and the number of slides processed for each
subtype are shown in this table using the SDM Montage. The evaluations are based on the
top 1 retrieval (Top-1), the majority among the top 3 retrievals (MV@3), and the majority
among the top 5 retrievals (MV@5) using the TCGA dataset.
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Figure 3.7: Confusion matrices and chord diagrams from Yottixel mosaic (left column),
and SDM montage (right column). The evaluations are based on the majority of the top
5 retrievals when evaluating the TCGA dataset.
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Figure 3.8: The boxplot illustrates the distribution of patches selected for each WSI in
the TCGA dataset from both the Yottixel Mosaic and SDM Montage. Additionally, it
provides statistical measures for these distributions. Specifically, for the Yottixel Mosaic,
the median number of selected patches is 33± 21. Conversely, for the SDM Montage, the
median number of selected patches is 24±4. Here, SDM selects significantly fewer patches
than Yottixel.

Figure 3.9: The t-SNE projection displays the embeddings of all patches extracted from
the TCGA dataset using Yottixel’s mosaic (left) and SDM’s montage (right).
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3.3.2 Private – Colorectal Cancer (CRC)

The Colorectal Cancer (CRC) dataset, sourced from Mayo Clinic, Rochester, USA, en-
compasses a collection of 209 WSIs, with a primary focus on colorectal histopathology.
This dataset is categorized into three distinct groups, specifically Cancer Adjacent polyps
(CAP), Non-recurrent polyps (POP-NR), and Recurrent polyps (POP-R), all of which
pertain to colorectal pathology. Importantly, all the slides in this dataset were subjected
to scanning at a magnification level of 40x (see Table 3.4 for more details).

Primary Diagnoses Acronyms Slides
Cancer Adjacent Polyps CAP 63
Non-recurrent Polyps POP-NR 63
Recurrent Polyps POP-R 83

Table 3.4: Comprehensive dataset particulars pertaining to the Colorectal Cancer dataset
utilized in this experiment, encompassing relevant acronyms and the number of slides
attributed to each primary diagnosis.

To assess the effectiveness of the SDM montage in comparison to Yottixel’s mosaic,
we conducted a leave-one-out evaluation to retrieve the most similar cases using the CRC
dataset. The evaluation criteria encompass multiple retrieval scenarios, including the top-1
retrieval, the majority consensus among the top 3 retrievals (MV@3), and the majority
consensus among the top 5 retrievals (MV@5). The results, including accuracy, macro
average, and weighted average scores at the top-1, MV@3, and MV@5 levels, are presented
in Figure 3.10. Table 3.5 shows the detailed statistical results including precision, recall,
and F1-score. Moreover, confusion matrices and chord diagrams at MV@5 are shown
in Figure 3.11. Additional confusion matrices and chord diagrams of Top-1, and MV@3
retrievals are provided in Appendix A (see Figure A.15, and A.16 respectively). In addition
to the traditional accuracy metrics, we conducted a comparative examination of the number
of patches extracted per WSI by each individual method. For a visual depiction of this
distribution across the complete dataset, we refer to the boxplots provided in Figure 3.12.
To visually illustrate the extracted patches, we used t-SNE projections, as demonstrated
in Figure 3.13.
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Figure 3.10: Accuracy, macro average of F1-scores, and weighted average of F1-scores are
shown from Yottixel mosaic, and SDM montage. The evaluations are based on the top
1 retrieval, the majority among the top 3 retrievals, and the majority among the top 5
retrievals using the CRC dataset. The diagram shows that SDM montage significantly
outperforms Yottixel’s mosaic.

Top-1 MV@3 MV@5
Primary
Diagnoses

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Slides

Yottixel
Mosaic

CAP 0.75 0.71 0.73 0.72 0.70 0.71 0.77 0.79 0.78 63
POP-NR 0.52 0.81 0.63 0.53 0.78 0.63 0.51 0.76 0.61 63
POP-R 0.58 0.35 0.44 0.59 0.40 0.47 0.56 0.34 0.42 83

Total Slides 209

SDM
Montage

CAP 0.77 0.70 0.73 0.81 0.79 0.80 0.81 0.79 0.80 63
POP-NR 0.64 0.68 0.66 0.67 0.67 0.67 0.67 0.65 0.66 63
POP-R 0.59 0.60 0.60 0.64 0.65 0.65 0.60 0.63 0.62 83

Total Slides 209

Table 3.5: Precision, recall, F1-score, and the number of slides processed for each sub-type
are shown in this table using Yottixel mosaic, and SDM montage. The evaluations are
based on the top 1 retrieval, the majority among the top 3 retrievals, and the majority
among the top 5 retrievals using the CRC dataset.

During our experimentation, the SDM montage manifested a marked performance su-
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periority over the Yottixel mosaic. Specifically, we observed enhancements in the macro-
average of F1-scores by +6%, +9%, and +9% for top-1 retrieval (top-1), majority consensus
within the top 3 retrievals (MV@3), and majority consensus within the top 5 retrievals
(MV@5), respectively. From an accuracy perspective, the SDM method demonstrated
increments of +6%, +10%, and +8% for the top-1, MV@3, and MV@5 retrievals, re-
spectively. These results emphasize the SDM method’s adeptness in assimilating and
representing critical data effectively within the retrieval paradigm, as delineated in the
referenced Figure 3.10. Furthermore, an additional noteworthy benefit of implementing
the SDM montage method comes to the forefront when examining Figure 3.12, which de-
picts the number of selected patches. In contrast to the Yottixel mosaic, SDM proves to
be more resource-efficient by opting for a smaller patch selection. This not only leads to
storage conservation but also eliminates the redundancy and the necessity for an empirical
determination of the optimal patch count to select.

Figure 3.11: Confusion matrices and chord diagrams from Yottixel mosaic (left column),
and SDM montage (right column). The evaluations are based on the majority of the top
5 retrievals when evaluating the CRC dataset.
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Figure 3.12: The boxplot illustrates the distribution of patches selected for each WSI
in the CRC dataset from both the Yottixel Mosaic and SDM Montage. Additionally, it
provides statistical measures for these distributions. Specifically, for the Yottixel Mosaic,
the median number of selected patches is 17±15. On the other hand, for the SDM Montage,
the median number of selected patches is 21 ± 4. Here, SDM selects significantly fewer
patches than Yottixel.
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Figure 3.13: The t-SNE projection displays the embeddings of all patches extracted from
the CRC dataset using Yottixel’s mosaic (left) and SDM’s montage (right).
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3.3.3 Private – Breast Cancer (BC)

Breast tumor slides were acquired from patients at Mayo Clinic, Rochester, USA. There
are 16 different subtypes of breast tumors were employed in this experiment. All of the
biopsy slides were digitized at 40× magnification and linked to their respective diagnoses
at the WSI level (see Table 3.6 for more details).

Primary Diagnoses Acronyms Slides
Adenoid Cystic Carcinoma ACC 3
Adenomyoepthelioma AME 4
Ductal Carcinoma In Situ DCIS 10
Ductal Carcinoma In Situ, -
Columnar Cell Lesions Including -
Flat Epithelial Atypia, -
Atypical Ductal Hyperplasia

DCIS, CCLIFEA, ADH 3

Intraductal Papilloma, Columnar Cell Lesions IP, CCL 3
Invasive Breast Carcinoma of No Special Type IBC NST 3
Invasive Lobular Carcinoma ILC 3
Lobular Carcinoma In Situ +
Atypical Lobular Hyperplasia

LCIS + ALH 2

Lobular Carcinoma In Situ, -
Flat Epithelial Atypia, -
Atypical Lobular Hyperplasia

LCIS, FEA, ALH 2

Malignant Adenomyoepithelioma MAE 4
Metaplastic Carcinoma MC 5
Microglandular Adenosis MGA 2
Microinvasive Carcinoma MIC 2
Mucinous Cystadenocarcinoma MCC 5
Normal Breast Normal 21
Radial Scar Complex Sclerosing Lesion RSCSL 2

Table 3.6: Detailed information related to the BC dataset, inclusive of the respective
acronyms and the number of slides associated with each primary diagnosis.

To assess the performance of the SDM’s montage against Yottixel’s mosaic, we con-
ducted a leave-one-out evaluation to retrieve the most similar cases using the BC dataset.
The evaluation criteria encompass the top-1 retrieval. The results, including accuracy,
macro average, and weighted average scores at the top-1 are presented in Figure 3.14.
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Figure 3.14: Accuracy, macro average of F1-scores, and weighted average of F1-scores are
shown from Yottixel mosaic, and SDM montage. The evaluations are based on the top 1
retrieval in the Breast Cancer dataset. The diagram shows that SDM montage significantly
outperforms Yottixel’s mosaic.

Table 3.7 shows the detailed statistical results including precision, recall, and F1-score.
Moreover, Confusion matrices and chord diagram at top-1 are shown in Figure 3.15. In
addition to these accuracy metrics, a comparative analysis of the number of patches ex-
tracted per WSI by each respective method is also presented in Figure 3.16 for a visual
representation of the distribution over the entire dataset. To visually illustrate the ex-
tracted patches, we used t-SNE projections, as demonstrated in Figure 3.17.

Our experimental findings showcased the superior performance of SDM, particularly
evident in the top-1 retrieval result by +9% in accuracy, +4% in macro avg. of F1-scores,
and +7% in weighted average as illustrated in Figure 3.14. Furthermore, our observations
shed light on an intriguing aspect of Yottixel’s behavior in comparison to SDM. Specifically,
it has come to our attention that Yottixel displays a proclivity for overlooking certain WSIs
within the dataset. To elaborate, our analysis reveals that Yottixel processed a total of
73 WSIs, whereas SDM demonstrated a more comprehensive approach by successfully
processing all 74 WSIs. This observation underscores the robustness and completeness of
the SDM method in handling the entire dataset, further emphasizing its merits in WSI
analysis and retrieval applications.
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Yottixel Mosaic SDM Montage
Top-1 Top-1

Primary Diagnoses Precision Recall F1-score Slides Precision Recall F1-score Slides
ACC 0.00 0.00 0.00 3 0.00 0.00 0.00 3
AME 0.50 0.25 0.33 4 0.33 0.25 0.29 4
DCIS 0.67 0.20 0.31 10 0.50 0.60 0.55 10
DCIS, CCLIFEA, ADH 0.75 1.00 0.86 3 0.75 1.00 0.86 3
IP, CCL 1.00 0.33 0.50 3 1.00 1.00 1.00 3
IBC NST 0.00 0.00 0.00 3 0.00 0.00 0.00 3
ILC 0.38 1.00 0.55 3 0.00 0.00 0.00 3
LCIS + ALH 0.50 1.00 0.67 2 0.67 1.00 0.80 2
LCIS, FEA, ALH 0.67 1.00 0.80 2 1.00 1.00 1.00 2
MAE 0.80 1.00 0.89 4 1.00 1.00 1.00 4
MC 0.75 0.75 0.75 4 1.00 0.80 0.89 5
MGA 0.33 1.00 0.50 2 0.00 0.00 0.00 2
MIC 0.00 0.00 0.00 5 0.00 0.00 0.00 5
MCC 1.00 1.00 1.00 2 1.00 1.00 1.00 2
Normal 0.74 0.67 0.70 21 0.66 0.90 0.76 21
RSCSL 0.20 0.50 0.29 2 1.00 0.50 0.67 2
Total Slides 73 74

Table 3.7: Precision, recall, F1-score, and the number of slides processed for each sub-type
are shown in this table using Yottixel mosaic, and SDM montage. The evaluations are
based on the top 1 retrieval in the Breast Cancer dataset.
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Figure 3.15: Confusion matrices and chord diagrams from Yottixel mosaic (left column),
and SDM montage (right column). The evaluations are based on the top 1 retrieval from
the BC dataset.
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Figure 3.16: The boxplot illustrates the distribution of patches selected for each WSI
in the Breast Cancer (BC) dataset from both the Yottixel Mosaic and SDM Montage.
Additionally, it provides statistical measures for these distributions. Specifically, for the
Yottixel Mosaic, the median number of selected patches is 11±9. Conversely, for the SDM
Montage, the median number of selected patches is 27±5. Here, SDM selects slightly more
patches than Yottixel’s mosaic.

Figure 3.17: The t-SNE projection displays the embeddings of all patches extracted from
the BC dataset using Yottixel’s mosaic (left) and SDM’s montage (right).
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3.4 Discussion & Conclusion

Unsupervised WSI-to-WSI search holds significant importance, particularly when search-
ing through extensive archives of medical images. It offers the invaluable capability of
generating a virtual second opinion based on previously established and confidently di-
agnosed cases. By leveraging unsupervised search techniques, medical practitioners can
efficiently compare a new WSI to a repository of historical cases without requiring pre-
labeled data. This not only aids in confirming diagnoses but also enhances the potential
for discovering similar cases, patterns, or treatment insights, ultimately advancing the
quality and accuracy of medical decision-making in histopathology and other fields of
medicine. To execute WSI-to-WSI search effectively, it is imperative to employ a sophisti-
cated divide-and-conquer strategy. WSIs are typically gigapixel and intricate images that
are impractical to process in their entirety due to their size and complexity. Therefore, the
divide-and-conquer approach involves breaking down the WSI into smaller, more manage-
able patches. These sections can be systematically analyzed and compared to other WSIs
or reference images. Relying on a small number of meaningful patches is a crucial aspect
of WSI-to-WSI matching. Incorporating a diverse range of patches from Whole WSIs is
critical for capturing the rich and varied information contained within tissue samples. This
diversity not only helps mitigate bias and enhances the robustness of matching algorithms
but also ensures a comprehensive assessment of tissue features and anomalies. By accom-
modating the inherent diversity within WSIs, utilizing a varied set of patches can boost
diagnostic accuracy. This approach not only refines the quality of research insights but
also strengthens the ability to generalize findings across a wider array of cases.

For the specific objective at hand, we have introduced a methodology referred to as
“SDM”, which stands for Selection of Distinct Morphologies (presented in Section 3.2).
The primary aim of SDM is to systematically choose a set of patches from a larger pool,
with the intention of encompassing all diverse and unique morphological characteristics
present within a given WSI. These meticulously selected patches collectively constitute
what we term a “montage.” The proposed methodology has undergone rigorous testing
across six distinct datasets, comprising three publicly available datasets and three privately
acquired datasets. In the evaluation process, we conducted a comprehensive comparative
analysis with the Yottixel mosaic [3], which is the sole existing patch selection method doc-
umented in the literature. This extensive testing thoroughly assesses the effectiveness and
performance of our approach in relation to the established benchmark provided by Yot-
tixel mosaic [3]. In Figure 3.18, a systematic ranking methodology is presented to assess
the efficacy of two distinct methods: Yottixel mosaic and SDM montage, across multi-
ple datasets, employing a range of evaluation metrics. The criteria employed to evaluate
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Figure 3.18: A comprehensive ranking scheme was devised to evaluate the performance
of the two methods: Yottixel mosaic and SDM montage, across multiple datasets using
various metrics. In this scheme, a rank of ‘1’ signifies superior performance of a method
relative to the other, a rank of ‘2’ indicates inferior performance, and identical ranks of ‘1’
for both methods denote comparable performance. After aggregating the results across all
metrics, Yottixel mosaic achieved an average rank of 1.64, while SDM montage recorded a
more favorable score of 1.09.

and rank the algorithms encompass various metrics, including accuracies, macro averages,
weighted averages, the number of WSIs successfully processed per dataset, the number of
patches extracted for each dataset, and the cumulative number of parameters essential for
the algorithm’s operation. Within this ranking paradigm, a designation of ‘1’ denotes that
a method exhibits a performance edge over its counterpart, while a ‘2’ suggests subpar
performance. Receiving identical rankings of ‘1’ for both methods suggests they exhibit
parity in their performance outcomes. Notably, the method is considered superior even
when its performance exceeds the other method by a mere 1%. Upon consolidating the
rankings overall metrics, Yottixel mosaic registered an average ranking of 1.64, in contrast
to the SDM montage which secured a more commendable average of 1.09. An inspection
of the figure clearly illustrates the SDM montage consistently achieving a ‘1’ rank more
often than the Yottixel mosaic. The proximity of its average rank to ‘1’ further accen-
tuates that, in an overarching assessment, SDM montage markedly outperforms Yottixel
mosaic. Additionally, Figure 3.19 shows an overall comparison of accuracy, macro average,
and weighted average at top-1, MV@3, and MV@5 using both Yottixel mosaic and SDM
montage methods across all datasets used in this experiment.

The investigation underscores the paramount significance of an adept patch selection
strategy in the context of WSI search and matching applications. The robustness and pre-
cision of such applications hinge on the ability to meticulously curate informative patches
from the vast and intricate WSIs. In this regard, our proposed approach, SDM has demon-
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strated remarkable efficacy through extensive experimentation on diverse datasets, includ-
ing both publicly available and privately acquired ones. Throughout our evaluations, it
has been consistently discerned that the proposed methodology outperforms the prevailing
state-of-the-art patch selection technique, as epitomized by the Yottixel mosaic. The Yot-
tixel approach necessitates the specification of certain empirical parameters, such as the
percentage of patch selection and the number of color clusters, which poses challenges in
determining optimal values across diverse datasets given the non-universal applicability of
any single configuration. In contrast, the SDM approach obviates the need for such em-
pirical parameterizations, inherently optimizing the selection to capture the distinct mor-
phological features present in the WSI. Taken together, our findings affirm that a robust
patch selection strategy is indispensable for enhancing the effectiveness of WSI search and
matching applications, with our proposed method showcasing substantial advancements in
this critical domain.

For future work, subsequent to a thorough evaluation across diverse datasets, one should
assess the proposed methodology by engaging pathologists. This evaluation aims to solicit
visual assessments from the pathologists, specifically focusing on the search and matching
performance of the proposed algorithm.
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Figure 3.19: The collective accuracy, both macro and weighted averages, at top-1, MV@3,
and MV@5 using both Yottixel mosaic and SDM montage methods across all datasets
employed for evaluation.
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Chapter 4

NeXtPath – Representation Learning
for Image Search

In this chapter, the second contribution of this thesis is introduced — a novel representation
learning methodology that can distinguish between different tissue types specialized for
image search in the latent space. This methodology is further explained in the methods
Section 4.1. Furthermore, the evaluation of the proposed method is described in Section 4.2
followed by the discussion and conclusion in Section 4.3.

4.1 Methodology

In DL, representation learning is often achieved through deep neural networks that learn to
encode input data into a series of layers of increasing abstraction. Learning discriminative
representations of raw data is crucial for the efficacy of image retrieval systems. In the
domain of image retrieval, the objective is to transform raw image pixels into a feature
space where the pertinent characteristics that differentiate one image from another are
emphasized. To enhance the discriminative power of these representations, techniques
such as metric learning can be employed. For this reason, the second major contribution
of this doctoral research pertains to learning discriminative representations by utilizing
metric learning approaches. This method works by optimizing the feature space to ensure
that similar images are closer together while dissimilar images are further apart, thereby
streamlining the retrieval process.

53



Figure 4.1: ConvNeXt-tiny [7] architecture for NeXtPath.

In this chapter, a new ranking loss function is introduced, specifically designed to
enhance image retrieval tasks. This function aids the model in learning distinctive rep-
resentations. Additionally, this chapter details the implementation of cutting-edge CNN
architectures and validates that the process of learning discriminative representations can
be effectively refined using various network structures.

4.1.1 NeXtPath: Fine-Tuned ConvNeXt on TCGA FFPE Slides

Recently, the emergence of ConvNeXt [7] has demonstrated competitive performance and
scalability with state-of-the-art vision transformers. Notably, ConvNeXt, being a CNN,
possesses the distinct advantage of requiring relatively smaller amounts of data for fine-
tuning while still achieving commendable results. This attribute sets it apart from ViTs,
as it enables ConvNeXt to perform effectively in scenarios where data availability may be
limited, further underscoring its practical utility in various applications.

Riasatian et al. [6] used the TCGA dataset, the largest publicly available repository for
diagnostic slides, to fine-tune a DenseNet [5]. The data (a total of 8,611 Formalin-fixed
Paraffin-embedded Tissue (FFPE) WSIs, 7,126 training slides, 741 validation slides, and
744 test slides) were processed based on cellularity, and the processed data is publicly avail-
able. FFPE tissue samples represent a gold standard in both clinical and research settings
for the preservation and preparation of biopsy materials. The patches were extracted from
30 primary diagnoses at 20× magnification with a patch size of 1000× 1000 pixels.

For the fine-tuning of NeXtPath (ConvNeXt-tiny [7] fine-tuned on the diagnostic slides
of TCGA, see Figure 4.1 for the architecture), a publicly available high-quality dataset from
Riasatian et al. [6] was used. Based on the findings in the literature, the optimal results are
achieved when fine-tuning the entire network. Consequently, we conducted fine-tuning in a
single configuration using the PyTorch, wherein the entire network was fine-tuned using a
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Figure 4.2: (left) Training and validation accuracy for the NeXtPath (ConvNeXt fine-tuned
with TCGA diagnostic slides over a span of 20 epochs), exhibited a peak training accuracy
of 99.99% and a maximum validation accuracy of 81.45%. (right) Training loss over a span
of 20 epochs using cross-entropy loss function.

dataset comprising 240,527 high-cellular patches for training and 24,492 validation patches
originating from 30 primary diagnostic categories. The NeXtPath was fine-tuned for 20
epochs with AdamW optimizer with 0.0001 as the initial learning rate with 0.01 weight
decay. Cross-entropy was selected as the loss function to gauge the classification model’s
performance. For initializing the model weights, we employed a pre-trained model, trained
on 21,8411 classes from the ImageNet dataset. For data augmentation, random rotation
(90, 270, and -90 degrees only) was used with 50% probability, random verticle flip with
50% probability, random horizontal flip with 50% probability, random crop (with sizes
224, 384, 512, and 786) with 20% probability and then resized back to 1000 × 1000, and
random color jitter (brightness 0.2, contrast 0.2, saturation 0.1 and hue 0.05) with 20%
probability. During the training process, the weights were saved for the highest validation
accuracy. Figure 4.2 shows the convergence behavior of NeXtPath with training accuracy
and loss curve using cross-entropy. The highest training and validation accuracy is 99.99%
and 81.45%, respectively.
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Figure 4.3: Triplet-loss is a loss function used primarily in metric learning. The goal of
this loss function is to ensure that an anchor (query) pulls the positive (similar) sample
closer and pushes away the negative (dissimilar) sample by some margin.

4.1.2 Metric Learning for Image Search

Triplet loss is a powerful loss function commonly used in the domain of metric learning.
By focusing on relative distances between sets of three data points anchor, positive, and
negative, it provides a framework to learn embeddings or representations where similar
items are pulled closer and dissimilar items are pushed apart in the embedded space (see
Figure 4.3 and Equation 4.1) [138]. This inherently tailors the learned metric to emphasize
relationships between data instances, ensuring that the metric reflects the underlying struc-
ture and similarities within the data. As such, triplet loss provides a direct and effective
mechanism to drive metric learning, optimizing the representation of data in a way that
meaningful distances are preserved. Typically, triplet loss is employed by utilizing three
neural networks that share identical weights [66], processing three distinct inputs: an an-
chor, a positive sample, and a negative sample. This shared-weight architecture ensures
consistent feature transformation across all three inputs. The objective is to refine the em-
bedded feature space such that the anchor’s representation is closer to the positive sample
than to the negative sample. This tailored feature space optimization enhances tasks like
similarity search and clustering by emphasizing discriminative characteristics inherent to
the data.

L(a, p, n) = max (0, d(f(a)− f(p))− d(f(a)− f(n)) + α) (4.1)

where L is the triplet loss with anchor a, positive p, and negative n as inputs to the loss
function. f(a), f(p), and f(n) are the embeddings from the network when using a, p,

1An extended version of the ImageNet-1K dataset, which originally has 1,000 classes, now includes
approximately 14 million images spread across 21,841 distinct classes.
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Figure 4.4: Ranking loss for image search algorithm is illustrated in this image. It is an
iterative process with batch embeddings as an input. Within each iteration, a point from
the batch is designated as the anchor, and distances to all other points are computed and
subsequently arranged in ascending order. From this order, the first dissimilar embedding
from the anchor is chosen as a negative embedding, and the last similar embedding as the
anchor is chosen as a positive embedding. Subsequently, generating anchor-positive, and
anchor-negative pairs. This procedure progresses iteratively until the final anchor point is
paired with both its positive and negative counterparts.

and n as inputs. d(f(a), f(p)) and d(f(a), f(n)) denote the Euclidean distances between
the anchor and the positive vectors, and between the anchor and the negative vectors,
respectively. α is the margin, and the max(0, ·) function ensures that the loss is non-
negative.

The absence of deep learning models tailored specifically for the image search is a
real challenge. To address this gap, this thesis introduces an advanced learning guidance
strategy termed “ranking loss for image search”. This novel mechanism facilitates training
a DNN that is optimized for the nuanced demands of image search in histopathology.
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Figure 4.5: Multi-class learning process using “ranking loss for image search” to pull the
similar class embeddings closer and push the dissimilar embeddings away.

Ranking loss for image search is a modified triplet loss function designed specifically
for image search and matching. The fundamental concept behind ranking loss is to increase
the number of accurately retrieved instances, emphasizing the importance of prioritizing
relevant items during the retrieval process. The algorithm to find the anchor-positive and
anchor-negative pairs is outlined in Algorithm 2 and depicted in Figure 4.4. This algo-
rithm is designed for a single network instead of a triple network setup to pull similar
class instances together and push the dissimilar instances far apart with some margin.
The search mechanism hinges on distance-based matching, ranking entities by proximity.
Drawing inspiration from this, a batch of embeddings, Eb, was probed to identify positive
(p) and negative (n) pairs corresponding to a given anchor (a), which acts as the query.
Initially, inputs are quantized based on instances per class (C), serving both as an accuracy
metric and a filter. Classes with fewer than two instances are excluded from subsequent
steps. At the same time, those with more than two are eligible for pair matching, given
that a minimum of two instances is requisite for effective querying. For a given anchor,
each point within the batch is compared based on their distances, denoted as (D), utilizing
the Hamming distance in this study as the embeddings are converted into the barcodes
using Min-Max algorithm [112, 113, 3] to speed up the process. Subsequently, the batch
undergoes an ascending sort operation, S, anchored on the derived distances D. Navi-
gating through sorted batch S, the initial embedding from a disparate class is selected
as the negative pair, while the most distant corresponding class embedding is chosen as
the positive pair. The rationale behind this approach is to distance the near-dissimilar
class from the anchor while drawing the far-similar class embeddings closer, ensuring the
proximity of similar entities. During the training phase, the network contracts the distance
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Algorithm 2 Ranking Loss for Image Search

Require: Input Batch Embeddings
Require: Input Batch size must be at least 3× number of classes
Ensure: a Set of anchor-positive and anchor-negative pairs as output
1: Eb ← get the batch embeddings as input
2: Procedure
3: C ← quantification(Eb) ▷ count the number of instances per class
4: for each Eb > 2 do
5: a ← getAnchor (Eb) ▷ iteratively set as anchor each embedding in Eb

6: D ← DistanceCalculations(a,Eb) ▷ distance calculation from anchor a to every
point in Eb

7: S ← SortDistances(D) ▷ sort the distances in ascending order
8: p ← findPositive(a, S) ▷ find the last instance of similar class as anchor a in S
9: n ← findNegative(a, S) ▷ find the first instance of dissimilar class as anchor a in S
10: A ← calculateAccuracy(a, S, C) ▷ how many instances of same class as anchor a

are in top S out of total number of instances C
11: end for
12: (ab, pb, nb) ← makePairs(a, p, n) ▷ make anchor-positive and anchor-negative pairs for

whole batch
13: Ab ← mean(A) ▷ calculate mean accuracy of the batch
14: Return (ab, pb, nb), Ab ▷ return the final pairs and mean accuracy for the input batch
15: End Procedure

between embeddings of identical classes and expand the separation between those of dis-
similar classes. This promotes an optimized representational learning specifically tailored
for image retrieval (see Figure 4.5 for pictorial representation of this process). Addition-
ally, class-specific accuracy A is computed based on the ratio of correct nearest matches
to the total occurrences of that specific class. For instance, if an input batch contains ten
samples of a given class and, post-matching and sorting, 5 samples from that class appear
within the top nine matches, the resulting accuracy for that class is determined to be
55.56%. Conclusively, the average accuracy across all classes is computed and presented,
representing the aggregated accuracy Ab for the entire batch.
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4.2 Evaluation & Results

In evaluating the representations procured from the neural networks, the search was treated
as a classifier to streamline the evaluation process. The inherent benefit of leveraging
classification approaches is their straightforward validation mechanics. Specifically, each
image is delineated into a categorical context, affirming its affiliation to a predetermined
class or negating it. Such a binary demarcation facilitates performance metric extraction
by enumerating instances of misclassification. Complementing this, metrics grounded in
distance calculations, like the Hamming distance, play an instrumental role. This measure
quantifies the divergence between two feature vectors representing images. This dual-
pronged approach, combining classification and distance metrics, provides a comprehensive
framework for evaluating the efficacy of the neural networks in extracting and representing
salient features from the histopathology patches.

All experiments have been conducted on a Dell PowerEdge XE8545 with 2× AMD
EPYC 7413 CPUs, 1023 GB RAM, and 4× NVIDIA A100-SXM4-80GB using PyTorch
deep learning framework. We used PyTorch 2.0.0, Python 3.9.16, and CUDA 11.7 on a
Linux operating system. Two state-of-the-art CNNs were used, namely KimiaNet (a fine-
tuned version of DenseNet121 tailored for histological applications) [6] and NeXtPath (a
contemporary CNN developed for the 2020s [7], fine-tuned for histopathology). For training
and validation, publicly accessible datasets, specifically TCGA and BRACS [134], were
utilized. This chapter evaluates the representations obtained from the afore-mentioned
two neural networks. These networks were initially trained using the prevalent cross-
entropy loss function, followed by the application of a proposed ranking loss, specifically
designed for representation learning in image search applications. The evaluation criterion
uses the Hamming distance. We conducted an evaluation for the patch retrievals. In this
methodology, a query patch representation is compared against the entire reference atlas
to identify the closest histological match. A distinct advantage of the search and matching
is the ability to retrieve multiple closely matching representations, enabling the formation
of a consensus based on the top n retrievals (here n = 1, 3, and 5).

4.2.1 The Cancer Genome Atlas (TCGA)

TCGA repository covers 25 anatomical sites, featuring 32 cancer subtypes and data from
nearly 33,000 WSIs [6, 133]. For retrieval evaluation, we constructed a digital atlas compris-
ing 110,032 high-cellular test patches, representing an extensive spectrum of over 30 distinct
tumor types. This atlas was derived from the 744 TCGA Test WSIs which were not used in
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Figure 4.6: (left) Training and validation accuracy for the KimiaNet + Ranking (fine-
tuned with the proposed ranking loss), exhibited a peak training accuracy of 94.25% and
a maximum validation accuracy of 68.88%. (right) Training loss over a span of 10 epochs
using the proposed ranking loss function tailored specifically for search and matching.

the training process. In our evaluation phase, a total of 24,492 high-cellular patches from
722 TCGA validation WSIs, served as the query set for histological comparisons against
the reference atlas. The overarching objective was to facilitate precise histological match-
ing by leveraging the comprehensive representations encapsulated within our digital atlas.
Feature vectors for the atlas and query cohorts were derived using two specific models:
KimiaNet and NeXtPath. Both models were trained initially with cross-entropy loss
and subsequently with the proposed ranking loss for comparison. The adoption of these
two networks aimed to enable a systematic comparison of their effectiveness in feature
representation learning.

KimiaNet

KimiaNet [6] represents a leading-edge DNN specifically tailored for histopathological anal-
yses and is publicly available. Distinguishingly, it is among the few networks trained on
an extensive field of view, accommodating patch sizes of 1000×1000. The network under-
went training on over 240,000 histological patches of this dimension, sourced from publicly
available diagnostic WSIs in the TCGA dataset. For the purposes of this evaluation, we
employed the official version of KimiaNet, which was trained using the PyTorch framework,
ensuring an equitable comparison.
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To assess the efficacy of representations produced by the baseline KimiaNet (previously
fine-tuned with the cross-entropy loss function), I subsequently fine-tuned the same network
employing the novel Ranking loss, a method I introduced. This loss is specially designed
to optimize the learning of representations for histological matching tasks. In this study, a
uniform dataset was employed for both training and validation stages, encompassing over
240,000 training patches and exceeding 24,000 validation patches. Building on the founda-
tional architecture of DenseNet-121, the terminal three dense blocks were subjected to a
fine-tuning process spanning 10 epochs. This was conducted with a predetermined learning
rate of 0.00001, accompanied by a decay parameter of 0.01. The optimization procedure
was orchestrated using the AdamW optimizer, leveraging the weights from KimiaNet as the
initial weight configuration. To enhance model robustness and generalizability, a compre-
hensive set of data augmentation techniques were integrated. These encompassed random
rotations restricted to angles of 90, 270, and -90 degrees, applied with a 50% probability;
random vertical and horizontal flips, each with a probability of 50%; random cropping, with
potential sizes being 224, 384, 512, and 786, and a 20% probability, subsequently resized to
the dimensions of 1000×1000. Additionally, the dataset underwent random color jittering,
characterized by variations in brightness (0.2), contrast (0.2), saturation (0.1), and hue
(0.05), with each adjustment bearing a 20% probability of application. Figure 4.6 depicts
the convergence trajectory of KimiaNet over the training period, illustrating the training
& validation accuracy and the associated loss curve when using the proposed ranking loss
function. Throughout the training progression, the peak training accuracy achieved was
94.25%, while the maximum validation accuracy recorded was 68.88%. To ensure optimal
generalization capabilities, the model’s weights were preserved based on the peak valida-
tion performance, given that the validation set remains external to the training process.
In this context, the most favorable model weights corresponded to a validation accuracy of
68.88%. In subsequent sections of this analysis, the KimiaNet model, which was fine-tuned
using the proposed ranking loss, will be referred to as “KimiaNet + Ranking”. Figure 4.7
presents a visualization of the latent space representations of the training, validation, and
testing datasets derived from KimiaNet and KimiaNet + Ranking.
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Figure 4.7: t-SNE projections for all the embeddings of 240,527 training patches, 24,492
validation patches, and 110,032 test patches from KimiaNet and KimiaNet + Ranking.
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Figure 4.8: Accuracy, macro average of f1-scores, and weighted average of F1-scores are
shown for the patch matching when using features from KimiaNet (fine-tuned using cross-
entropy loss) [6], and KimiaNet + Ranking (fine-tuned using the proposed ranking loss).
The evaluations are based on the top 1 retrieval (Top-1), the majority among the top 3
retrievals (MV@3), and the majority among the top 5 retrievals (MV@5) using the TCGA
validation patches used as query and test patches as a reference atlas. KimiaNet trained
with the proposed ranking loss performs slightly better than the KimiaNet trained with
cross-entropy loss.

A retrieval-based analysis was executed to evaluate the efficacy of KimiaNet (fine-tuned
using cross-entropy loss) in comparison with KimiaNet + Ranking (fine-tuned using the
proposed ranking loss). Leveraging both query and atlas cohorts, the objective was to
identify and retrieve the cases that bore the highest similarity, thereby gauging the rel-
ative performance of the model in such a matching paradigm. The evaluation involved
multiple retrieval criteria, including the top-1 retrieval (Top-1), the majority agreement
among the top 3 retrievals (MV@3), and the majority agreement among the top 5 retrievals
(MV@5). The accuracy, macro average, and weighted average at Top-1, MV@3, and MV@5
are reported in Figure 4.8. Moreover, confusion matrices and chord diagrams at MV@5
are illustrated in Figure 4.9. Additional confusion matrices and chord diagrams of Top-1,
and MV@3 retrievals are provided in Appendix B (see Figure B.1, and B.2, respectively).
Table 4.1 and 4.2 show the detailed results including precision, recall, and f1-score for the
representations generated using KimiaNet and KimiaNet + Ranking, respectively. Fur-
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thermore, the t-SNE visualizations of the feature vectors from KimiaNet and KimiaNet +
Ranking are shown in Figure 4.7.

In our research, we observed that the performance of representations (also referred
to as embeddings) obtained from KimiaNet + Ranking surpassed that of the conventional
state-of-the-art KimiaNet. In terms of model accuracy, KimiaNet + Ranking demonstrated
consistently higher performance. For Top-1, MV@3, and MV@5 retrievals, we observed
performance enhancements of +1%, +2%, and +1%, respectively. However, in terms of
the macro-average F1-scores, KimiaNet + Ranking exhibited superior performance, sur-
passing the baseline by +1% and +2% for MV@3 and MV@5 retrievals, respectively. This
performance was consistent during Top-1 retrieval. Additionally, for the weighted average
of f1-scores, similar to the accuracy, KimiaNet + Ranking shows the performance en-
hancement by +1%, +2%, and +1% when retrieving Top-1, MV@3, and MV@5 retrievals,
respectively (see Figure. 4.8).
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KimiaNet
Top-1 MV@3 MV@5

Primary
Diagnoses

Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score Patches

ACC 0.64 0.81 0.71 0.63 0.82 0.71 0.65 0.85 0.74 264
BLCA 0.66 0.71 0.68 0.67 0.72 0.70 0.67 0.73 0.70 1383
BLGG 0.90 0.81 0.85 0.91 0.82 0.86 0.91 0.83 0.87 1030
BRCA 0.84 0.89 0.87 0.84 0.91 0.88 0.84 0.92 0.88 2113
CESC 0.45 0.32 0.37 0.46 0.29 0.36 0.51 0.30 0.38 457
CHOL 0.38 0.66 0.48 0.38 0.56 0.46 0.40 0.58 0.48 200
COAD 0.50 0.50 0.50 0.51 0.50 0.50 0.50 0.50 0.50 925
ESCA 0.39 0.32 0.35 0.41 0.33 0.36 0.42 0.32 0.36 552
GBM 0.77 0.81 0.79 0.77 0.82 0.80 0.78 0.83 0.80 800
HNSC 0.67 0.75 0.71 0.68 0.77 0.72 0.68 0.78 0.73 809
KICH 0.96 0.82 0.88 0.96 0.83 0.89 0.96 0.83 0.89 489
KIRC 0.89 0.87 0.88 0.89 0.88 0.89 0.90 0.88 0.89 2105
KIRP 0.70 0.85 0.77 0.70 0.84 0.77 0.72 0.85 0.78 821
LIHC 0.80 0.72 0.76 0.81 0.75 0.78 0.82 0.75 0.78 1312
LUAD 0.72 0.55 0.62 0.75 0.57 0.65 0.75 0.57 0.64 1028
LUSC 0.73 0.69 0.71 0.74 0.71 0.73 0.74 0.71 0.72 1510
MESO 0.63 0.25 0.36 0.66 0.26 0.38 0.74 0.28 0.41 163
OV 0.83 0.86 0.85 0.84 0.87 0.85 0.85 0.87 0.86 447
PAAD 0.62 0.67 0.64 0.62 0.66 0.64 0.62 0.67 0.64 358
PCPG 0.89 0.92 0.90 0.90 0.93 0.91 0.90 0.93 0.92 630
PRAD 0.95 0.90 0.92 0.95 0.91 0.93 0.95 0.91 0.93 1347
READ 0.12 0.18 0.14 0.10 0.14 0.12 0.10 0.14 0.11 324
SARC 0.85 0.76 0.80 0.85 0.77 0.80 0.86 0.77 0.81 703
SKCM 0.77 0.70 0.73 0.80 0.73 0.77 0.81 0.75 0.78 799
STAD 0.59 0.67 0.63 0.61 0.70 0.65 0.61 0.70 0.65 1031
TGCT 0.91 0.93 0.92 0.92 0.93 0.92 0.93 0.93 0.93 671
THCA 0.88 0.93 0.90 0.89 0.93 0.91 0.89 0.94 0.91 1859
THYM 0.93 0.58 0.71 0.95 0.60 0.73 0.95 0.60 0.73 131
UCS 0.64 0.72 0.68 0.66 0.74 0.70 0.67 0.74 0.70 141
UVM 0.90 0.94 0.92 0.89 0.92 0.91 0.89 0.93 0.91 90
Total
Patches

24492

Table 4.1: Detailed precision, recall, f1-score, and the number of patches processed for
each subtype are shown in this table using the validation patches when matched against
the test patches using KimiaNet for feature extraction. The evaluations are based on the
top 1 retrieval (Top-1), the majority among the top 3 retrievals (MV@3), and the majority
among the top 5 retrievals (MV@5) using the TCGA Patch dataset.
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KimiaNet + Ranking
Top-1 MV@3 MV@5

Primary
Diagnoses

Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score Patches

ACC 0.59 0.60 0.59 0.63 0.62 0.62 0.62 0.67 0.64 264
BLCA 0.66 0.65 0.66 0.67 0.67 0.67 0.69 0.67 0.68 1383
BLGG 0.94 0.80 0.86 0.94 0.84 0.88 0.91 0.86 0.88 1030
BRCA 0.84 0.90 0.87 0.85 0.91 0.88 0.88 0.91 0.90 2113
CESC 0.42 0.34 0.38 0.45 0.35 0.39 0.53 0.40 0.46 457
CHOL 0.37 0.65 0.47 0.39 0.66 0.49 0.42 0.74 0.54 200
COAD 0.49 0.54 0.51 0.51 0.55 0.53 0.54 0.61 0.58 925
ESCA 0.51 0.35 0.42 0.51 0.36 0.42 0.48 0.46 0.47 552
GBM 0.74 0.83 0.78 0.77 0.84 0.80 0.78 0.74 0.76 800
HNSC 0.64 0.81 0.71 0.66 0.82 0.73 0.66 0.86 0.75 809
KICH 0.94 0.74 0.83 0.94 0.76 0.84 0.91 0.79 0.84 489
KIRC 0.92 0.89 0.90 0.92 0.90 0.91 0.93 0.89 0.91 2105
KIRP 0.73 0.85 0.78 0.75 0.85 0.79 0.73 0.85 0.78 821
LIHC 0.80 0.73 0.77 0.81 0.74 0.77 0.83 0.72 0.77 1312
LUAD 0.72 0.63 0.67 0.73 0.65 0.69 0.73 0.69 0.71 1028
LUSC 0.72 0.70 0.71 0.73 0.70 0.72 0.76 0.73 0.74 1510
MESO 0.49 0.30 0.37 0.57 0.31 0.40 0.40 0.40 0.40 163
OV 0.80 0.82 0.81 0.81 0.82 0.81 0.81 0.82 0.82 447
PAAD 0.73 0.72 0.73 0.76 0.74 0.75 0.79 0.77 0.78 358
PCPG 0.88 0.94 0.91 0.89 0.95 0.92 0.91 0.95 0.93 630
PRAD 0.97 0.90 0.93 0.97 0.90 0.93 0.97 0.88 0.92 1347
READ 0.14 0.21 0.17 0.16 0.24 0.19 0.16 0.16 0.16 324
SARC 0.88 0.80 0.84 0.88 0.81 0.84 0.87 0.78 0.82 703
SKCM 0.76 0.69 0.72 0.75 0.73 0.74 0.78 0.73 0.75 799
STAD 0.69 0.67 0.68 0.70 0.69 0.70 0.70 0.64 0.67 1031
TGCT 0.87 0.90 0.89 0.88 0.91 0.90 0.80 0.93 0.86 671
THCA 0.92 0.95 0.93 0.92 0.95 0.94 0.91 0.96 0.93 1859
THYM 0.90 0.62 0.73 0.90 0.62 0.73 0.88 0.69 0.77 131
UCS 0.52 0.78 0.63 0.53 0.80 0.64 0.53 0.83 0.65 141
UVM 0.82 0.92 0.87 0.89 0.92 0.91 0.89 0.91 0.90 90
Total
Patches

24492

Table 4.2: Detailed precision, recall, f1-score, and the number of patches processed for each
subtype are shown in this table using the validation patches when matched against the test
patches using KimiaNet (trained with the proposed ranking loss) for feature extraction.
The evaluations are based on the top 1 retrieval (Top-1), the majority among the top 3
retrievals (MV@3), and the majority among the top 5 retrievals (MV@5) using the TCGA
Patch dataset.
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Figure 4.9: Confusion matrices and chord diagrams from KimiaNet (left column), and
KimiaNet + Ranking (right column). The evaluations are based on the majority of the
top 5 retrievals when evaluating the TCGA Patch dataset.

NeXtPath

Relative to KimiaNet [6], NeXtPath was also trained using the cross-entropy loss function
on more than 240,000 high-cellularity patches (prepared by Riasatin et al. [6]) of dimen-
sions 1000x1000. This suggests that NeXtPath, like KimiaNet, operates with a broader
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Figure 4.10: (left) Training and validation accuracy for the NeXtPath + Ranking (fine-
tuned with the proposed ranking loss), exhibited a peak training accuracy of 99.25% and
a maximum validation accuracy of 68.95%. (right) Training loss over a span of 10 epochs
using the proposed ranking loss function tailored specifically for search and matching.

field of view. The initial training process with cross-entropy loss has been explained in
Section 4.1.1. In the context of top 1 retrieval (Top-1) accuracy, NeXtPath demonstrates a
modest advantage of +1% over KimiaNet. However, the performances converge when eval-
uating the majority accuracy among the top 3 retrievals (MV@3) and the top 5 retrievals
(MV@5). In a deeper dive into the macro averages of F1-scores, KimiaNet consistently
outpaces NeXtPath by +1% across Top-1, MV@3, and MV@5 retrievals. In contrast, while
assessing the weighted average of F1-scores, both models showcase comparable results for
Top-1 and MV@3 retrievals. Nevertheless, in the MV@5 retrieval, KimiaNet secures a lead
of +1% over NeXtPath. The results can be compared in Figure 4.8 and Figure 4.12.

In this research, we endeavored to assess the quality of representations generated by the
baseline NeXtPath, previously adapted using the cross-entropy loss function. To this end,
I further refined the same network with the introduction of a newly proposed Ranking loss.
This loss mechanism, a novel contribution, has been meticulously crafted to optimize repre-
sentation learning tailored to histological matching tasks. For the training and validation
phases, a consistent dataset was utilized, comprising over 240,000 training samples and
more than 24,000 validation samples. Utilizing ConvNeXt-Tiny [7] core architecture, the
last two stages underwent a ten-epoch fine-tuning regimen. The process was orchestrated
with an initial learning rate of 0.00001, complemented by a decay rate of 0.01. The AdamW
optimizer drove the optimization, with the NeXtPath’s weights serving as the foundational
weight setup. In an effort to foster model resilience and broader applicability, an array of
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data augmentation techniques was deployed. Specifically, these involved random rotations
limited to 90, 270, and -90 degrees with a 50% probability, vertical and horizontal flips
(each with a 50% probability), and random cropping with potential sizes being 224, 384,
512, and 786, and a 20% probability, subsequently resized to the dimensions of 1000×1000.
The dataset also underwent color variations, characterized by variations in brightness (0.2),
contrast (0.2), saturation (0.1), and hue (0.05), with each adjustment bearing a 20% prob-
ability. Figure 4.10 visualizes NeXtPath’s convergence patterns throughout the training
duration, delineating both the training and validation accuracy curves, alongside the cor-
responding loss curve when leveraging the proposed ranking loss. Within this training
spectrum, the apex of training accuracy was registered at 99.25%, with the validation ac-
curacy peaking at 68.95%. To ascertain maximum generalizability, model weights were
retained based on the zenith of validation performance, emphasizing the separation of vali-
dation data from the training phase. This best model coincided with a validation accuracy
of 68.95%. In the following sections of this analysis, the version of the NeXtPath model
that has been fine-tuned using the proposed ranking loss will be denoted as “NeXtPath +
Ranking”. Figure 4.11 provides a visual representation of the latent space mappings for
the training, validation, and testing datasets as procured from both the original NeXtPath
and its NeXtPath + Ranking counterpart.
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Figure 4.11: t-SNE projections for all the embeddings of 240,527 training patches, 24,492
validation patches, and 110,032 test patches from NeXtPath and NeXtPath + Ranking.
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Figure 4.12: Accuracy, macro average of f1-scores, and weighted average of f1-scores are
shown for the patch matching when using features from NeXtPath (fine-tuned using cross-
entropy loss), and NeXtPath + Ranking (fine-tuned with the proposed ranking loss). The
evaluations are based on the top 1 retrieval (Top-1), the majority among the top 3 retrievals
(MV@3), and the majority among the top 5 retrievals (MV@5) using the TCGA test
and validation patches combined when used as query and training patches as a reference
atlas. NeXtPath trained with the proposed ranking loss performs slightly better than the
NeXtPath trained with cross-entropy loss.

A retrieval-based analysis was executed to evaluate the efficacy of NeXtPath (fine-
tuned using cross-entropy loss) in comparison with NeXtPath + Ranking (fine-tuned using
the proposed ranking loss). Leveraging both query and atlas cohorts, the objective was to
identify and retrieve the cases that bore the highest similarity, thereby gauging the relative
performance of the model in such a matching paradigm. The evaluation involved multiple
retrieval criteria, including the top-1 retrieval (Top-1), the majority agreement among the
top 3 retrievals (MV@3), and the majority agreement among the top 5 retrievals (MV@5).
The accuracy, macro average, and weighted average at Top-1, MV@3, and MV@5 are
reported in Figure 4.12. Moreover, confusion matrices and chord diagrams at MV@5 are
illustrated in Figure 4.13. Additional confusion matrices and chord diagrams of Top-1,
and MV@3 retrievals are provided in Appendix B (see Figure B.3, and B.4, respectively).
Table 4.3 and 4.4 show the detailed results including precision, recall, and f1-score for
the representations generated using NeXtPath and NeXtPath + Ranking, respectively.
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Furthermore, the t-SNE visualizations of the feature vectors from NeXtPath and NeXtPath
+ Ranking are shown in Figure 4.11.

In our analysis, we observed that the performance of representations (also referred to as
embeddings) obtained from NeXtPath + Ranking surpassed that of the conventional state-
of-the-art NeXtPath. In terms of model accuracy, NeXtPath + Ranking demonstrated
consistently higher performance. For Top-1, MV@3, and MV@5 retrievals, we observed
performance enhancements of +1%, +2%, and +2%, respectively. However, in terms
of the macro-average F1-scores, NeXtPath + Ranking exhibited superior performance,
surpassing the baseline by +1%, +2%, and +3% for Top-1, MV@3 and MV@5 retrievals,
respectively. Additionally, for the weighted average of f1-scores, NeXtPath + Ranking
shows the performance enhancement by +2%, +2%, and +3% when retrieving Top-1,
MV@3, and MV@5 retrievals, respectively (see Figure. 4.12).
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NeXtPath
Top-1 MV@3 MV@5

Primary
Diagnoses

Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score Patches

ACC 0.65 0.72 0.68 0.67 0.73 0.70 0.65 0.73 0.69 264
BLCA 0.64 0.67 0.66 0.65 0.68 0.66 0.65 0.69 0.67 1383
BLGG 0.91 0.81 0.86 0.92 0.83 0.87 0.92 0.83 0.87 1030
BRCA 0.84 0.92 0.88 0.85 0.92 0.89 0.85 0.93 0.89 2113
CESC 0.44 0.25 0.32 0.48 0.25 0.33 0.47 0.24 0.32 457
CHOL 0.31 0.50 0.38 0.36 0.56 0.43 0.38 0.58 0.46 200
COAD 0.52 0.61 0.56 0.53 0.63 0.58 0.53 0.63 0.58 925
ESCA 0.38 0.31 0.34 0.38 0.29 0.33 0.37 0.29 0.32 552
GBM 0.74 0.80 0.77 0.75 0.81 0.78 0.76 0.82 0.79 800
HNSC 0.65 0.76 0.70 0.65 0.78 0.71 0.65 0.78 0.71 809
KICH 0.95 0.70 0.80 0.94 0.70 0.80 0.94 0.69 0.80 489
KIRC 0.90 0.91 0.91 0.90 0.92 0.91 0.90 0.92 0.91 2105
KIRP 0.81 0.84 0.83 0.83 0.85 0.84 0.83 0.84 0.84 821
LIHC 0.79 0.68 0.73 0.82 0.70 0.75 0.83 0.70 0.76 1312
LUAD 0.68 0.63 0.65 0.69 0.64 0.66 0.69 0.64 0.66 1028
LUSC 0.71 0.66 0.68 0.71 0.67 0.69 0.72 0.67 0.70 1510
MESO 0.58 0.18 0.27 0.54 0.17 0.25 0.60 0.16 0.25 163
OV 0.72 0.81 0.76 0.74 0.82 0.77 0.73 0.82 0.77 447
PAAD 0.67 0.72 0.69 0.67 0.72 0.69 0.70 0.72 0.71 358
PCPG 0.89 0.95 0.92 0.89 0.95 0.92 0.88 0.94 0.91 630
PRAD 0.95 0.90 0.92 0.95 0.90 0.93 0.95 0.91 0.93 1347
READ 0.10 0.11 0.11 0.10 0.11 0.11 0.10 0.10 0.10 324
SARC 0.82 0.79 0.81 0.83 0.81 0.82 0.83 0.81 0.82 703
SKCM 0.71 0.70 0.70 0.72 0.72 0.72 0.73 0.72 0.72 799
STAD 0.60 0.63 0.62 0.61 0.65 0.63 0.62 0.66 0.64 1031
TGCT 0.95 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 671
THCA 0.90 0.96 0.93 0.90 0.96 0.93 0.90 0.96 0.93 1859
THYM 0.93 0.53 0.68 0.93 0.53 0.68 0.90 0.55 0.68 131
UCS 0.70 0.67 0.69 0.69 0.75 0.72 0.64 0.74 0.69 141
UVM 0.83 0.97 0.89 0.89 0.94 0.92 0.91 0.93 0.92 90
Total
Patches

24492

Table 4.3: Detailed precision, recall, f1-score, and the number of patches processed for
each subtype are shown in this table using the validation patches when matched against
the test patches using NeXtPath for feature extraction. The evaluations are based on the
top 1 retrieval (Top-1), the majority among the top 3 retrievals (MV@3), and the majority
among the top 5 retrievals (MV@5) using the TCGA Patch dataset.
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NeXtPath + Ranking
Top-1 MV@3 MV@5

Primary
Diagnoses

Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score Patches

ACC 0.63 0.73 0.68 0.64 0.74 0.68 0.65 0.75 0.70 264
BLCA 0.69 0.69 0.69 0.69 0.72 0.70 0.69 0.73 0.71 1383
BLGG 0.90 0.85 0.87 0.90 0.86 0.88 0.91 0.87 0.89 1030
BRCA 0.87 0.93 0.90 0.87 0.93 0.90 0.87 0.94 0.90 2113
CESC 0.54 0.35 0.43 0.60 0.40 0.48 0.63 0.44 0.52 457
CHOL 0.37 0.57 0.45 0.42 0.62 0.50 0.42 0.64 0.51 200
COAD 0.54 0.59 0.56 0.56 0.60 0.58 0.57 0.61 0.59 925
ESCA 0.51 0.37 0.43 0.54 0.37 0.44 0.57 0.41 0.48 552
GBM 0.76 0.75 0.76 0.78 0.77 0.77 0.78 0.78 0.78 800
HNSC 0.67 0.78 0.72 0.69 0.79 0.74 0.70 0.79 0.74 809
KICH 0.92 0.69 0.79 0.93 0.70 0.80 0.93 0.72 0.81 489
KIRC 0.92 0.91 0.91 0.92 0.91 0.92 0.92 0.92 0.92 2105
KIRP 0.74 0.85 0.79 0.76 0.85 0.80 0.77 0.85 0.81 821
LIHC 0.83 0.72 0.77 0.85 0.75 0.79 0.86 0.75 0.80 1312
LUAD 0.70 0.66 0.68 0.71 0.67 0.69 0.72 0.68 0.70 1028
LUSC 0.70 0.69 0.69 0.73 0.69 0.71 0.74 0.70 0.72 1510
MESO 0.48 0.14 0.22 0.60 0.18 0.28 0.63 0.20 0.30 163
OV 0.72 0.80 0.76 0.72 0.81 0.76 0.72 0.80 0.76 447
PAAD 0.74 0.74 0.74 0.78 0.74 0.76 0.81 0.73 0.77 358
PCPG 0.90 0.95 0.93 0.89 0.95 0.92 0.91 0.96 0.93 630
PRAD 0.97 0.92 0.95 0.97 0.93 0.95 0.97 0.93 0.95 1347
READ 0.07 0.08 0.07 0.09 0.10 0.09 0.09 0.09 0.09 324
SARC 0.86 0.82 0.84 0.85 0.83 0.84 0.85 0.84 0.84 703
SKCM 0.71 0.71 0.71 0.71 0.73 0.72 0.72 0.73 0.73 799
STAD 0.62 0.67 0.64 0.63 0.69 0.66 0.64 0.70 0.67 1031
TGCT 0.88 0.96 0.92 0.91 0.96 0.94 0.92 0.97 0.94 671
THCA 0.90 0.96 0.93 0.91 0.96 0.93 0.91 0.96 0.93 1859
THYM 0.84 0.55 0.66 0.91 0.56 0.70 0.89 0.56 0.69 131
UCS 0.67 0.79 0.73 0.69 0.82 0.75 0.70 0.83 0.76 141
UVM 0.94 0.92 0.93 0.95 0.92 0.94 0.95 0.92 0.94 90
Total
Patches

24492

Table 4.4: Detailed precision, recall, f1-score, and the number of patches processed for each
subtype are shown in this table using the validation patches when matched against the test
patches using NeXtPath (trained with the proposed ranking loss) for feature extraction.
The evaluations are based on the top 1 retrieval (Top-1), the majority among the top 3
retrievals (MV@3), and the majority among the top 5 retrievals (MV@5) using the TCGA
Patch dataset.
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Figure 4.13: Confusion matrices and chord diagrams from KimiaNet (left column), and
NeXtPath (right column) trained with the proposed ranking loss. The evaluations are
based on the majority of the top 5 retrievals when evaluating the TCGA Patch dataset.

4.2.2 BReAst Carcinoma Subtyping (BRACS)

Another dataset, BRACS, was also used to evaluate the representation learning to dif-
ferentiate between different subtypes of the tumors. The BRACS dataset comprises a
total of 547 WSIs derived from 189 distinct patients [134]. Brancati et al. [134] provided
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Figure 4.14: (left) Training and validation accuracy for the NeXtPath fine-tuned with
BRACS ROI images over a span of 10 epochs, exhibited a peak training accuracy of
96.71% and a maximum validation accuracy of 65.06%. (right) Training loss over a span
of 10 epochs using cross-entropy loss function.

the images of seven different subtypes of breast tumors extracted from these 547 WSIs.
Notably, all slides have been scanned utilizing an Aperio AT2 scanner, with a resolution
of 0.25 µm per pixel and a magnification factor of 40×. The dataset is categorized into
two main subsets: WSI and Region of Interest (ROI). Within the WSI subset, there are
three primary tumor groups [134], whereas, the ROI subset is divided into seven distinct
tumor types [134]. For this study, since we are conducting a WSI-to-WSI matching, we
utilized the WSI subset to perform histological matching. Table 4.5 shows more details
about the data used in this experiment. In the conducted experiment, ROIs extracted
from seven distinct subtypes were employed for the purpose of downstream representation
learning. The NeXtPath model was harnessed for training, with fine-tuning restricted to
the last stage (stage 4) of the architecture (stages can be seen in Figure. 4.1 for reference).
It is noteworthy that the publicly available ROIs possess varied dimensions, a decision
justified by the original authors to encompass the complete morphological patterns char-
acteristic of each specific tumor type. Consequently, the training was executed with a
batch size of one, utilizing the cross-entropy loss function. For the training, a learning rate
of 0.0001, with a decay parameter of 0.01 is used with AdamW optimizer. The weights
from NeXtPath (ConvNeXt-tiny fine-tuned using TCGA dataset) were used as the initial
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Primary Diagnoses Acronyms Slides
Atypical Ductal Hyperplasia ADH 48
Flat Epithelial Atypia FEA 41
Normal N 44
Pathological Benign PB 147
Usual Ductal Hyperplasia UDH 74
Ductal Carcinoma in Situ DCIS 61
Invasive Carcinoma IC 132

Table 4.5: Information concerning the BRACS dataset employed in this experiment, in-
clusive of the respective acronyms and the number of slides associated with each primary
diagnosis.

weights. To enhance model robustness and generalizability, a comprehensive set of data
augmentation techniques were integrated. These encompassed random rotations restricted
to angles of 90, 270, and -90 degrees, applied with a 50% probability. Furthermore, vertical
and horizontal flips (each with a 50% probability) were also used. Additionally, the dataset
underwent random color jittering, characterized by variations in brightness (0.2), contrast
(0.2), saturation (0.1), and hue (0.05), with each adjustment bearing a 20% probability
of application. Figure 4.14 shows the convergence behavior of NeXtPath with training
accuracy and loss curve using cross-entropy. The highest training and validation accuracy
is 96.71% and 65.06%, respectively recorded during the training process.
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Figure 4.15: (left) Training and validation accuracy for the autoencoder fine-tuned with
BRACS ROI embeddings from NeXtPath over a span of 50 epochs, exhibited a peak train-
ing accuracy of 92.00% and a maximum validation accuracy of 47.81%. (right) Training
loss over a span of 50 epochs using the proposed ranking loss function.

Figure 4.16: Accuracy, macro average of f1-scores, and weighted average of f1-scores are
shown for the patch matching when using features from NeXtPath, and NeXtPath trained
with the proposed ranking loss. The evaluations are based on the top 1 retrieval (Top-
1), the majority among the top 3 retrievals (MV@3), and the majority among the top
5 retrievals (MV@5) using the BRACS test and validation patches combined when used
as query and training patches as a reference atlas. NeXtPath trained with the proposed
ranking loss performs slightly better than the NeXtPath trained with cross-entropy loss.
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Figure 4.17: The architecture of the autoencoder used to learn distinct representations. In
this study, RELU is used as the activation function

Following the preliminary training phase, feature representations were extracted using
the NeXtPath model trained on BRACS ROIs. These extracted features were subsequently
employed for the histological matching evaluation. A total of 3,657 training ROIs served as
our reference (or atlas), while a combined set of 882 test and validation ROIs were desig-
nated as the query dataset. As a benchmark, the accuracy values obtained were 57%, 59%,
and 60% for the Top-1, MV@3, and MV@5 retrieval metrics, respectively (see Figure 4.16).
To optimize representation learning through the proposed ranking loss function, it neces-
sitated training with a significantly larger batch size, ideally thrice the count of distinct
subtypes. However, this was rendered impractical owing to the non-uniform patch sizes
present within the dataset. Consequently, we opted to employ an autoencoder (see Fig-
ure 4.17 for autoencoder architecture), leveraging the feature representations derived from
the NeXtPath model. The autoencoder’s structural design incorporates linear layers, com-
plemented by batch normalization processes and ReLU activation functions. These same
representations were previously used to establish the initial histological matching base-
line. Autoencoding is a well-established technique for representation learning. It employs
an encoder that translates an input into a latent space, and a decoder that subsequently
reconstructs the original input from this latent representation [139].

For the training, the proposed ranking loss used feature embeddings obtained from
the output layer of the autoencoder for metric learning. Notably, the most generalized
and compact representation from an autoencoder is typically procured from the bottleneck
region of the autoencoder (output of the encoder). As an initial step, the autoencoder

80



was trained to replicate its input embeddings as output, utilizing the mean squared error
loss function. This was facilitated through the AdamW optimizer, set at a learning rate
of 0.0001 and accompanied by a decay rate of 0.01. Over a duration of 500 epochs, the
autoencoder was trained to accurately reconstruct its input with a batch size of 256. Subse-
quent to this phase, the autoencoder underwent further refinement using our proposed loss
function, with the objective of discerning and distinguishing the representations of varied
subtypes. The autoencoder was trained for 50 epochs with a batch size of 256 and retained
the AdamW optimizer, albeit at a reduced learning rate of 0.00001 and a decay of 0.01.
Figure 4.15 shows the convergence behavior of the autoencoder with training accuracy and
loss curve using the proposed ranking loss. The highest training and validation accuracy is
92.00% and 47.81%, respectively recorded during the training process. The weights of the
autoencoder were saved at the highest validation accuracy for better generalization, in our
case, the weights of the autoencoder were saved at 47.81% validation accuracy. Figure 4.18
provides a visual representation of the latent space mappings for the training set, and test
& validation set combined as procured from both the NeXtPath and NeXtPath + Ranking
(bottleneck of the autoencoder).

A retrieval-based analysis was executed to evaluate the efficacy of NeXtPath (fine-tuned
using cross-entropy loss) in comparison with NeXtPath + Ranking (fine-tuned autoencoder
using the proposed ranking loss). Leveraging both query and atlas cohorts, the objective
was to identify and retrieve the cases that bore the highest similarity, thereby gauging the
relative performance of the model in such a matching paradigm. The evaluation involved
multiple retrieval criteria, including the top-1 retrieval (Top-1), the majority agreement
among the top 3 retrievals (MV@3), and the majority agreement among the top 5 re-
trievals (MV@5). The accuracy, macro average, and weighted average of F1-scores at
Top-1, MV@3, and MV@5 are reported in Figure 4.16. Moreover, confusion matrices and
chord diagrams at MV@5 are illustrated in Figure 4.19. Additional confusion matrices
and chord diagrams of Top-1, and MV@3 retrievals are provided in Appendix B (see Fig-
ure B.5, and B.6, respectively). Table 4.6 shows the detailed results including precision,
recall, and f1-score for the representations generated using NeXtPath and NeXtPath +
Ranking, respectively. Furthermore, the t-SNE visualizations of the feature vectors from
NeXtPath and NeXtPath + Ranking are shown in Figure 4.18.
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Figure 4.18: t-SNE projections for all the embeddings of 3657 training patches, and 882
test & validation patches combined from NeXtPath and NeXtPath + Ranking (bottleneck
of autoencoder trained using the proposed ranking loss).

In our analysis, we observed that the performance of embeddings obtained from NeXtPath
+ Ranking (bottleneck of the autoencoder) surpassed that of the conventional state-of-the-
art NeXtPath. In terms of model accuracy, NeXtPath + Ranking demonstrated consis-
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tently higher performance. For Top-1, MV@3, and MV@5 retrievals, we observed per-
formance enhancements of +3%, +2%, and +2%, respectively. However, in terms of the
macro-average F1-scores, NeXtPath + Ranking exhibited superior performance, surpassing
the baseline by +1%, +2%, and +1% for Top-1, MV@3 and MV@5 retrievals, respectively.
Additionally, for the weighted average of f1-scores, NeXtPath + Ranking shows the perfor-
mance enhancement by +2%, +1%, and +2% when retrieving Top-1, MV@3, and MV@5
retrievals, respectively (see Figure. 4.16).

Top-1 MV@3 MV@5
Primary
Diagnoses

Precision Recall f1-score Precision Recall f1-score Precision Recall f1-score ROIs

NeXtPath

N 0.61 0.65 0.63 0.64 0.72 0.68 0.64 0.71 0.67 127
PB 0.43 0.49 0.46 0.43 0.49 0.46 0.43 0.50 0.46 122
UDH 0.40 0.34 0.37 0.42 0.34 0.37 0.44 0.35 0.39 128
FEA 0.72 0.79 0.75 0.70 0.80 0.75 0.70 0.80 0.74 132
ADH 0.38 0.33 0.35 0.41 0.33 0.37 0.43 0.33 0.37 120
DCIS 0.53 0.55 0.54 0.56 0.59 0.58 0.54 0.59 0.56 125
IC 0.89 0.86 0.88 0.91 0.87 0.89 0.93 0.87 0.90 128

Total
ROIs

882

NeXtPath
+

Ranking

N 0.66 0.72 0.69 0.67 0.75 0.71 0.70 0.80 0.74 127
PB 0.42 0.52 0.46 0.44 0.52 0.48 0.47 0.50 0.49 122
UDH 0.46 0.34 0.39 0.47 0.34 0.40 0.47 0.37 0.41 128
FEA 0.67 0.83 0.74 0.67 0.86 0.75 0.65 0.85 0.74 132
ADH 0.40 0.31 0.35 0.41 0.30 0.35 0.42 0.31 0.36 120
DCIS 0.58 0.57 0.57 0.58 0.60 0.59 0.59 0.62 0.60 125
IC 0.91 0.86 0.88 0.93 0.87 0.90 0.93 0.86 0.89 128

Total
ROIs

882

Table 4.6: Precision, recall, F1-score, and the number of slides processed for each subtype
are reported in this table using Yottixel mosaic, and SDM montage. The evaluations are
based on the top 1 retrieval, the majority among the top 3 retrievals, and the majority
among the top 5 retrievals using the BRACS dataset.
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Figure 4.19: Confusion matrices and chord diagrams from NeXtPath (left column), and
NeXtPath + Ranking (right column) autoencoder trained with the proposed ranking loss.
The evaluations are based on the majority of the top 5 retrievals when evaluating the
BRACS ROI dataset.

4.3 Discussion & Conclusion

Precise image retrieval is crucial in the context of histopathology, where the subtleties of
tissue morphology can be indicative of diverse pathologies. Discriminative representation
learning ensures that the nuanced patterns within the histological images are captured and
emphasized, allowing for a nuanced and sophisticated search through the archives. Conse-
quently, this facilitates a more informed and reliable virtual second opinion, grounding it

84



in a vast database of historical antecedents.

To address the targeted objective, this study presented a modified ranking loss function.
This tailored loss function is specifically optimized for image retrieval tasks within the realm
of histopathology. Histopathological image analysis presents a greater level of complexity
compared to the analysis of natural images, due to the intricate cellular patterns and the
subtle variations in tissue structure that are characteristic of such medical imagery. The
representation learning methodology proposed in this study was rigorously tested using
diagnostic slides from TCGA, encompassing 30 distinct types of tumors. This evalua-
tion was conducted using two separate architectural models (KimiaNet and NeXtPath).
Across both principal experimental conditions, the networks fine-tuned with the novel
proposed ranking loss demonstrated superior performance when compared to their coun-
terparts trained with the widely used cross-entropy loss. Subsequent experimentation was
conducted to corroborate the results obtained from the TCGA dataset analysis. For this
purpose, the BRACS [134] dataset, which includes seven distinct breast tumor categories,
was utilized. The heterogeneity of image dimensions within this dataset presented a signif-
icant challenge for batch processing during training. As a result, training sessions had to
be conducted with a batch size of one while fine-tuning with the cross-entropy loss. Con-
versely, when fine-tuning with the proposed ranking loss, an autoencoder was implemented
to facilitate training on feature vectors. These vectors were initially extracted using the
NeXtPath model, which had been previously fine-tuned with Regions of Interest (ROIs)
from the BRACS [134] dataset. The outcomes of this additional experiment reinforced the
initial findings; the representations derived post-training with the proposed ranking loss
consistently outperformed those obtained through the traditional cross-entropy loss. This
underscores the ranking loss’s efficacy in yielding more discriminative feature representa-
tions, thereby enhancing the system’s capability for precise histological matching within
the complex milieu of breast tumor histopathology.

Comprehending both spatial and temporal components within the feature vector is
crucial for a thorough analysis of the representations produced by the neural network. In
this study, two distinct CNN frameworks have been used, specifically DenseNet-121 [5],
under the adaptation KimiaNet [6] tailored for histopathological analysis, and ConvNeXt-
tiny [7], modified into NeXtPath, also specialized for histological applications. Following
the training regimen of NeXtpath with cross-entropy loss (similar to the KimiaNet [6] for
fair comparison), we proceeded to an analytical assessment of its derived feature repre-
sentations. These were benchmarked against KimiaNet’s representations, given that both
models were trained using a congruent dataset. To delve deeper into the intricacies of
the representation vectors of the histopathological images, principal component analysis
was employed. Further insight was achieved by visualizing these vectors using the t-SNE
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Figure 4.20: 85% of the variance explained by the top principle components (PCs). Left:
The top 26 PCs from the KimiaNet embeddings. Right: The top 138 PCs from the
NeXtPath embeddings contributed 85% of the variance.

embedding projections. Figure 4.20 shows the variance of the top principle components
(PCs) of the feature vectors from KimiaNet and NextPath (fine-tuned using prevalWent
cross-entropy loss), respectively. Only 26 top PCs out of 1024, which is approx. 2.5% of
the total vector, explains 85% of the variance, whereas, on the other hand, 138 top PCs
out of 786, which is approx. 18% of the total vector, explains 85% of the total variance
of the representations acquired from the KimiaNet and NeXtPath, respectively. This vari-
ance from the KimiaNet shows that fewer number of PC contribute to the representation
whereas more PCs contribute to the representation of NeXtPath. Furthermore, the train-
ing and testing with validation patch embeddings from both the networks, KimiaNet and
NeXtPath, are visualized after training using t-SNE in Figure 4.7 and 4.11.

In conclusion, the research presented in this thesis highlights the critical importance
of employing a specialized loss function to enable models to learn representations that are
particularly discriminative for image retrieval applications. The ranking loss devised for
image search purposes within this study has shown exceptional effectiveness, as evidenced
by thorough experimental validation across two distinct publicly accessible datasets. The
enhancement in performance relative to cross-entropy loss, conventionally used for classifi-
cation endeavors, suggests the capability of the ranking loss to refine the accuracy of image
retrieval frameworks within the intricate landscape of multi-class medical imaging. This
augmentation is instrumental in supporting virtual second opinions, an essential compo-
nent in the diagnostic process of intricate cancer cases.
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In the context of future endeavors, subsequent to thorough assessments on two down-
stream tasks, one has to aim to subject the proposed method to evaluation by pathologists.
This evaluation will involve a visual assessment of the search and matching performance of
the algorithm, seeking additional insights and validation from domain experts to further
enhance the robustness and applicability of the proposed approach.
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Chapter 5

Summary and Conclusions

Advances in ML have shown great promise for assisting healthcare professionals. How-
ever, innovative algorithms with accurate performance are still necessary to gain trust and
adoption in clinical settings. Histopathology remains the definitive modality for cancer di-
agnosis. The rapid incorporation of digital pathology into clinical practice underscores the
potential intersections between histopathology and ML advancements. In the diagnostic
process, particularly among novice pathologists or when confronting complex cases, it is
not uncommon for pathologists to seek to characterize specific regions or patches within
a slide. Historically, this would entail consulting experienced colleagues or engaging in
a meticulous examination of specialized reference materials, in the quest for comparable
visual representations. In the realm of computer vision, such challenges are addressed
through CBIR. Within the medical context, and provided semantic equivalence between
human and computerized assessments, this approach essentially serves as a mechanism
to obtain a “virtual second opinion”, offering a virtual perspective to support diagnos-
tic decisions. In the realm of histopathology and cancer diagnosis, obtaining a second
opinion stands as a critical component to reduce variability. Given the intricate and multi-
faceted nature of histopathological slides, interpretations can sometimes be subjective and
vary among pathologists. Discrepancies in diagnoses, particularly in borderline or complex
cases, can significantly impact treatment decisions and patient prognoses. A ‘computa-
tional’ second opinion acts as an additional safeguard, mitigating the risks of oversight or
misinterpretation. It not only augments the confidence in the diagnostic process but also
underscores the commitment to patient-centered care, ensuring that therapeutic decisions
are grounded in a consensus of expert evaluations.

WSI search presents a pivotal mechanism for procuring a virtual second opinion. Through
the integration of sophisticated CBIR methodologies, pathologists have the capability to
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compare a patient’s WSI against an atlas (repository) of previously diagnosed cases (em-
pirical evidence). This facilitates the discernment of congruent histological patterns and
irregularities. Such a methodology introduces an objective, data-informed lens that syner-
gizes with the pathologist’s clinical judgment, fortifying diagnostic accuracy and fostering
an evidence-backed, collaborative paradigm in pathology. The task of executing searches
amidst small or large repositories of gigapixel WSIs, mirroring the complexities inherent to
large-scale data analytics, mandates the adoption of a structured computational strategy,
epitomized by the “Divide & Conquer” principle.

In the context of the “divide” procedure, this thesis has put forward a novel unsuper-
vised technique termed the Selection of Distinct Morphology (SDM). The core intent
of SDM is to meticulously discern and collate distinct patches from a WSI, culminating
in what we designate as a “montage”. This constructed montage, based on one-class clus-
tering, not only encapsulates the heterogeneity inherent within the WSI but also serves
as a foundational component, instrumental for facilitating an array of advanced applica-
tions, prominently inclusive of image search. The overarching aim of SDM is to engineer a
montage characterized by a reduced quantity of patches. Yet, it’s vital that these selected
patches encapsulate a broad morphological spectrum, ensuring they are both representative
and meaningful in the broader context of the WSI. Through this approach, the montage
becomes a condensed yet comprehensive visual summary, like Yottixel’s mosaic, providing
a streamlined perspective that retains the essential diagnostic information of the WSI.

Expounding on the “conquer” part, this thesis elucidated a cutting-edge methodology
tailored for representation learning, aimed at discerning and differentiating varied morpho-
logical nuances via unique representations, leveraging ranking loss as the guiding metric.
Training with the proposed ranking loss showcases proficiency in distinguishing these
characteristics from those of alternate classes as it is tailored for the histological search
and matching application in the latent space. Such a refined model not only fosters the
in-depth comprehension of intricate histological patterns within a class but also ensures ro-
bust discriminative power across multiple classes, augmenting the accuracy and reliability
of subsequent analyses and applications in the histopathological domain.

In conclusion, the collective research endeavors undertaken throughout the course of
the Ph.D. program have coalesced into an exhaustive and application-oriented architectural
framework. Explicitly tailored, this framework seeks to optimize the extraction of seman-
tically rich representations from WSI within the domain of DP. A salient thrust of this
structure is its emphasis on facilitating applications predominantly centered around image
retrieval and histological matching search. This holistic approach not only advances the
current methodologies in DP but also sets the stage for potential future innovations, paving
the way for enhanced diagnostic accuracy and efficiency in histopathological evaluations.
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Appendix A

Additional Content for Chapter 3

A.1 Extended Results for the Proposed

SDM Framework

A.1.1 Public – The Cancer Genome Atlas (TCGA)

Additional confusion matrices and chord diagrams of Top-1, and MV@3 retrievals are
shown in fig. A.1, and A.2 when evaluating the TCGA dataset.
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Figure A.1: Confusion matrices and chord diagrams from Yottixel mosaic (left column),
and SDM montage (right column). The evaluations are based on the top 1 retrieval when
evaluating the TCGA dataset.
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Figure A.2: Confusion matrices and chord diagrams from Yottixel mosaic (left column),
and SDM montage (right column). The evaluations are based on the majority of the top
3 retrievals when evaluating the TCGA dataset.
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A.1.2 Public – BReAst Carcinoma Subtyping (BRACS)

The BRACS dataset comprises a total of 547 WSIs derived from 189 distinct patients [134].
In the context of the leave-one-out search and matching experiment, all 547 WSIs were
employed from the dataset. Notably, all slides have been scanned utilizing an Aperio AT2
scanner, with a resolution of 0.25 µm per pixel and a magnification factor of 40×. The
dataset is categorized into two main subsets: WSI and Region of Interest (ROI). Within
the WSI subset, there are three primary tumor Groups [134]. Whereas, the ROI subset
is divided into seven distinct tumor types [134]. For this study, since we are conducting
a WSI-to-WSI matching, we utilized the WSI subset to perform histological matching.
Table A.1 shows more details about the data used in this experiment.

Primary Diagnoses Acronyms Slides Group
Group

Acronyms
Slides

Atypical Ductal Hyperplasia ADH 48 Atypical
Tumours

AT 89
Flat Epithelial Atypia FEA 41
Normal N 44

Benign
Tumours

BT 265Pathological Benign PB 147
Usual Ductal Hyperplasia UDH 74
Ductal Carcinoma in Situ DCIS 61 Malignant

Tumours
MT 193

Invasive Carcinoma IC 132

Table A.1: Information concerning the BRACS dataset employed in this experiment, in-
clusive of the respective acronyms and the number of slides associated with each primary
diagnosis and group.

To evaluate the performance of the SDM montage against Yottixel’s mosaic, we re-
trieved the top similar cases using leave-one-out evaluation. The assessments rely on sev-
eral retrieval criteria, including the top-1 retrieval, the majority agreement among the top
3 retrievals (MV@3), and the majority agreement among the top 5 retrievals (MV@5). The
accuracy, macro average, and weighted average at top-1, MV@3, and MV@5 are shown
in Figure A.3. Table A.2 shows the detailed results including precision, recall, and F1-
score. Moreover, confusion matrices and chord diagrams at Top-1, MV@3, and MV@5 are
shown in Figure A.4, A.5, and A.6, respectively. In addition to these accuracy metrics,
a comparative analysis of the number of patches extracted per WSI by each respective
method is also presented in Figure A.7 for a visual representation of the distribution over
the entire dataset. To visually illustrate the extracted patches, we used t-SNE projections,
as demonstrated in Figure A.8.

109



Figure A.3: Accuracy, macro average of F1-scores, and weighted average of F1-scores are
reported from Yottixel mosaic, and SDM montage. The evaluations are based on the top
1 retrieval, the majority among the top 3 retrievals, and the majority among the top 5
retrievals using the BRACS dataset.

Top-1 MV@3 MV@5
Groups Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Slides

Yottixel
Mosaic

AT 0.26 0.26 0.26 0.32 0.27 0.29 0.36 0.27 0.31 86
BT 0.66 0.74 0.69 0.66 0.80 0.72 0.65 0.81 0.72 248
MT 0.74 0.62 0.68 0.79 0.63 0.70 0.76 0.62 0.69 193

Total Slides 527

SDM
Montage

AT 0.30 0.35 0.32 0.34 0.34 0.34 0.34 0.31 0.33 89
BT 0.70 0.69 0.69 0.72 0.79 0.75 0.70 0.83 0.76 265
MT 0.65 0.62 0.64 0.73 0.63 0.68 0.76 0.59 0.66 193

Total Slides 547

Table A.2: Precision, recall, F1-score, and the number of slides processed for each subtype
are reported in this table using Yottixel mosaic, and SDM montage. The evaluations are
based on the top 1 retrieval, the majority among the top 3 retrievals, and the majority
among the top 5 retrievals using the BRACS dataset.

In the course of this experiment, the SDM montage demonstrated the performance
advantage over the Yottixel mosaic. Notably, it exhibited improvements of +1%, +2%,
and +1% in the macro average of F1-scores concerning top-1 retrieval, majority agreement
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among the top 3 retrievals, and majority agreement among the top 5 retrievals, respectively.
In terms of accuracy, SDM underperforms at top-1 retrieval by one percent whereas it
outperforms at MV@3 and MV@5 retrievals by one percent. These findings underscore
the method’s effectiveness in capturing relevant information within the specific context
of retrieval, as visualized in Figure A.3. Furthermore, our analysis unveiled an important
aspect of Yottixel’s behavior in comparison to SDM. Specifically, our investigation revealed
that Yottixel failed to process some WSIs and it processed a total of 527 WSIs, whereas
SDM demonstrated a more comprehensive approach by successfully processing all 547
WSIs as shown in Table A.2. This observation highlights the robustness and completeness
of the SDM method in managing the entire dataset, further emphasizing its advantages
in applications related to the analysis and retrieval of WSIs. In contrast to the Yottixel
mosaic, SDM exhibits reduced variability in the number of patches per WSI as seen in
Figure A.7. This is attributed to the absence of an empirical parameter dictating patch
selection, as opposed to Yottixel’s approach of utilizing 5% of the total patches. Such a
methodological shift not only optimizes storage utilization but also curtails redundancy
and obviates the necessity for empirical determination of an optimal patch count.
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Figure A.4: Confusion matrices and chord diagrams from Yottixel mosaic (left column),
and SDM montage (right column). The evaluations are based on the top 1 retrieval when
evaluating the BRACS dataset.
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Figure A.5: Confusion matrices and chord diagrams from Yottixel mosaic (left column),
and SDM montage (right column). The evaluations are based on the majority of the top
3 retrievals when evaluating the BRACS dataset.
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Figure A.6: Confusion matrices and chord diagrams from Yottixel mosaic (left column),
and SDM montage (right column). The evaluations are based on the majority of the top
5 retrievals when evaluating the BRACS dataset.
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Figure A.7: The boxplot illustrates the distribution of patches selected for each WSI in
the BRACS dataset from both the Yottixel Mosaic and SDM Montage. Additionally, it
provides statistical measures for these distributions. Specifically, for the Yottixel Mosaic,
the median number of selected patches is 21±16. On the other hand, for the SDM Montage,
the median number of selected patches is 30± 5.

Figure A.8: The t-SNE projection displays the embeddings of all patches extracted from
the BRACS dataset using Yottixel’s mosaic (left) and SDM’s montage (right).

115



A.1.3 Public – Prostate cANcer graDe Assessment (PANDA)

PANDA is the largest publicly available dataset of prostate biopsies, put together for a
global AI competition [135]. The data is provided by Karolinska Institute, Solna, Sweden,
and Radboud University Medical Center (RUMC), Nijmegen, Netherlands. All slides from
RUMC were scanned at 20× using a 3DHistech Pannoramic Flash II 250 scan. On the other
hand, all the WSIs from Karolinska Institute were digitized at 20× using a Hamamatsu
C9600-12 scanner, and an Aperio ScanScope AT2 scanner. In entirety, a dataset comprising
12,625 whole slide images (WSIs) of prostate biopsies was amassed and partitioned into
10,616 WSIs for training and 2,009 WSIs for evaluation purposes. In our experiment, we
used the publicly available training cohort of 10,616 WSIs with their International Society
of Urological Pathology (ISUP) scores for an extensive leave-one-out search and matching
experiment (see Table. A.3 for more details).

In recent years, there have been significant advancements in both the diagnosis and
treatment of prostate cancer. As we entered the new millennium, there was a significant
effort to update and modernize the Gleason system. In 2005, the ISUP organized a con-
sensus conference. The gathering attempted to provide a clearer understanding of the
patterns that make up different Gleason grades. It also established practical guidelines for
how to apply these patterns and introduced what is now known as the ISUP score from
zero to five based on the severity of the cancer [141, 135].

ISUP Grade Slides
0 2889
1 2665
2 1343
3 1242
4 1246
5 1223

Table A.3: Comprehensive dataset particulars pertaining to the Prostate cANcer graDe
Assessment (PANDA) dataset, encompassing relevant ISUP grade and the number of slides
attributed to each grade.

To assess the performance of the SDM montage in comparison to Yottixel’s mosaic, we
conducted a leave-one-out evaluation to retrieve the most similar cases. This evaluation
involves multiple criteria for retrieval assessment, including the top-1 retrieval, as well
as evaluating the majority consensus among the top 3 retrievals (MV@3), and the top 5
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retrievals (MV@5). The results include accuracy, macro average, and weighted average
scores for each of these criteria, as depicted in Figure A.9. Table A.4 shows the detailed
statistical results including precision, recall, and F1-score. Moreover, confusion matrices
and chord diagrams at Top-1, MV@3, and MV@5 are shown in Figure A.10, A.11, and
A.12, respectively. In addition to these accuracy metrics, a comparative analysis of the
number of patches extracted per WSI by each respective method is also presented in
Figure A.13 for a visual representation of the distribution over the entire dataset. To
visually illustrate the extracted patches, we used t-SNE projections, as demonstrated in
Figure A.14.

Figure A.9: Accuracy, macro average of F1-scores, and weighted average of F1-scores are
shown from Yottixel mosaic, and SDM montage. The evaluations are based on the top
1 retrieval, the majority among the top 3 retrievals, and the majority among the top 5
retrievals in the PANDA dataset.
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Top-1 MV@3 MV@5
ISUP Grade Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Slides

Yottixel
Mosaic

0 0.60 0.60 0.60 0.60 0.64 0.62 0.60 0.68 0.63 2853
1 0.50 0.57 0.53 0.49 0.60 0.54 0.48 0.62 0.54 2655
2 0.50 0.48 0.49 0.49 0.42 0.46 0.51 0.37 0.43 1332
3 0.62 0.58 0.60 0.62 0.54 0.57 0.60 0.50 0.55 1230
4 0.61 0.54 0.57 0.62 0.49 0.55 0.62 0.43 0.51 1225
5 0.77 0.68 0.72 0.77 0.65 0.71 0.80 0.61 0.69 1201

Total Slides 10496

SDM
Montage

0 0.63 0.63 0.63 0.62 0.67 0.64 0.61 0.70 0.65 2889
1 0.51 0.57 0.54 0.50 0.58 0.53 0.48 0.60 0.53 2665
2 0.48 0.47 0.48 0.50 0.43 0.46 0.49 0.38 0.43 1343
3 0.64 0.59 0.62 0.62 0.55 0.58 0.60 0.49 0.54 1242
4 0.60 0.58 0.59 0.60 0.52 0.56 0.60 0.45 0.52 1246
5 0.77 0.68 0.72 0.77 0.64 0.70 0.78 0.61 0.68 1223

Total Slides 10608

Table A.4: Precision, recall, F1-score, and the number of slides processed for each sub-
type are shown in this table using Yottixel mosaic, and SDM montage. The evaluations
are based on the top 1 retrieval, the majority among the top 3 retrievals, and the majority
among the top 5 retrievals in the PANDA dataset.

PANDA is one of the most extensive publicly available datasets for prostate cancer anal-
ysis. In this research, our empirical findings shed light on the comparative efficacy of our
proposed method when compared to the Yottixel mosaic. Specifically, our findings indicate
that SDM exhibited comparable performance to the Yottixel mosaic concerning accuracy
with majority agreement among the top 5 retrievals. However, a noteworthy distinction
emerged when considering accuracy at top-1 and the majority agreement among the top 3
retrievals. Regarding the macro-averaged F1-scores, both top-1 and MV@5 exhibit analo-
gous outcomes. However, for MV@3, the SDM method demonstrates a 1% enhancement,
as depicted in the Figure A.9. This highlights the proficiency of the SDM method in
assimilating pertinent information for retrieval tasks without the reliance on empirical pa-
rameters, a contrast to the Yottixel approach. Specifically, Yottixel necessitates predefined
settings for both cluster count and patch selection percentage. Moreover, our analysis re-
vealed an intriguing facet of Yottixel’s behavior in comparison to SDM. Specifically, it has
come to our attention that Yottixel exhibits a tendency to overlook certain WSIs within
the dataset. Our observations indicate that Yottixel processed a total of 10,496 WSIs,
while SDM demonstrated a more comprehensive approach, successfully processing 10,608
WSIs out of the 10,616 WSIs as shown in Table A.4. This observation underscores the
robustness and completeness of the SDM method in managing the entire dataset, further
emphasizing its advantages in applications related to the analysis and retrieval of WSIs in
the context of prostate cancer research. A notable inference from the box plot depicted in
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Figure A.13reveals that for fine needle biopsies (which constitute a significant portion of
the PANDA dataset), the Yottixel 5% methodology selects a reduced number of patches
in comparison to the SDM approach.

Figure A.10: Confusion matrices and chord diagrams from Yottixel mosaic (left column),
and SDM montage (right column). The evaluations are based on the top 1 retrieval when
evaluating the PANDA dataset.
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Figure A.11: Confusion matrices and chord diagrams from Yottixel mosaic (left column),
and SDM montage (right column). The evaluations are based on the majority of the top
3 retrievals when evaluating the PANDA dataset.
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Figure A.12: Confusion matrices and chord diagrams from Yottixel mosaic (left column),
and SDM montage (right column). The evaluations are based on the majority of the top
5 retrievals when evaluating the PANDA dataset.
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Figure A.13: The boxplot illustrates the distribution of patches selected for each WSI in
the PANDA dataset from both the Yottixel Mosaic and SDM Montage. Additionally, it
provides statistical measures for these distributions. Specifically, for the Yottixel Mosaic,
the median number of selected patches is 9±2. On the other hand, for the SDM Montage,
the median number of selected patches is 12± 3.

Figure A.14: The t-SNE projection displays the embeddings of all patches extracted from
the PANDA dataset using Yottixel’s mosaic (left) and SDM’s montage (right).
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A.1.4 Private – Colorectal Cancer (CRC)

Additional confusion matrices and chord diagrams of Top-1, and MV@3 retrievals are
shown in fig. A.15, and A.16 when evaluating the CRC dataset.

Figure A.15: Confusion matrices and chord diagrams from Yottixel mosaic (left column),
and SDM montage (right column). The evaluations are based on the top 1 retrieval when
evaluating the CRC dataset.

123



Figure A.16: Confusion matrices and chord diagrams from Yottixel mosaic (left column),
and SDM montage (right column). The evaluations are based on the majority of the top
3 retrievals when evaluating the CRC dataset.
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A.1.5 Private – Liver ASH vs. NASH

Liver biopsy slides were acquired from patients who had been diagnosed with either Al-
coholic Steatohepatitis (ASH) or Non-Alcoholic Steatohepatitis (NASH) at Mayo Clinic,
Rochester, USA. The ASH diagnosis was established through a comprehensive review of
patient records and expert assessments that considered medical history, clinical presenta-
tion, and laboratory findings. For the NASH group, liver biopsies were selected from a
cohort of morbidly obese patients undergoing bariatric surgery. All of the biopsy slides
were digitized at 40× magnification and linked to their respective diagnoses at the WSI
level (see Table A.5 for more details).

Primary Diagnoses Acronyms Slides
Alcoholic Steatohepatitis ASH 150
Non-alcoholic Steatohepatitis NASH 158
Normal Normal 18

Table A.5: Information related to the Liver dataset, inclusive of the respective acronyms
and the number of slides associated with each primary diagnosis.

To assess the effectiveness of the SDM montage in comparison to Yottixel’s mosaic,
we conducted a leave-one-out evaluation to retrieve the most similar cases using the Liver
dataset. The evaluation criteria encompass multiple retrieval scenarios, including the top-1
retrieval, the majority consensus among the top 3 retrievals (MV@3), and the majority
consensus among the top 5 retrievals (MV@5). The results, including accuracy, macro
average, and weighted average scores at the top-1, MV@3, and MV@5 levels, are presented
in Figure A.17. Table A.6 shows the detailed statistical results including precision, re-
call, and F1-score. Moreover, Confusion matrices and chord diagrams at Top-1, MV@3,
and MV@5 are shown in Figure A.18, A.19and A.20, respectively. In addition to these
accuracy metrics, a comparative analysis of the number of patches extracted per WSI by
each respective method is also presented in Figure A.21 for a visual representation of the
distribution over the entire dataset. To visually illustrate the extracted patches, we used
t-SNE projections, as demonstrated in Figure A.22.
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Figure A.17: Accuracy, macro average of F1-scores, and weighted average of F1-scores are
shown from Yottixel mosaic, and SDM montage. The evaluations are based on the top
1 retrieval, the majority among the top 3 retrievals, and the majority among the top 5
retrievals in the Liver dataset.

Top-1 MV@3 MV@5
Primary
Diagnoses

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Slides

Yottixel
Mosaic

Ash 0.81 0.73 0.76 0.87 0.73 0.80 0.89 0.73 0.81 150
Nash 0.72 0.85 0.78 0.74 0.91 0.81 0.74 0.93 0.83 158
Normal 0.75 0.19 0.30 1.00 0.25 0.40 1.00 0.19 0.32 16

Total Slides 324

SDM
Montage

Ash 0.84 0.72 0.78 0.87 0.73 0.79 0.87 0.76 0.81 150
Nash 0.71 0.88 0.79 0.73 0.90 0.81 0.75 0.91 0.82 158
Normal 1.00 0.17 0.29 1.00 0.28 0.43 1.00 0.22 0.36 18

Total Slides 326

Table A.6: Precision, recall, F1-score, and the number of slides processed for each sub-
type are shown in this table using Yottixel mosaic, and SDM montage. The evaluations
are based on the top 1 retrieval, the majority among the top 3 retrievals, and the majority
among the top 5 retrievals in the Liver dataset.

In our empirical assessments, the SDM approach displayed performance metrics closely
aligned with the Yottixel mosaic. This similarity in performance was especially pronounced
in the MV@-3 and MV@-5 retrieval outcomes. Notably, there was an enhancement of +1%
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in the macro-average of F1-scores when employing the SDM technique. The nuanced dif-
ferences and advantages of the SDM approach over the Yottixel mosaic in specific retrieval
scenarios are further elucidated in the referenced Figure A.17. From an accuracy stand-
point, the SDM method exhibited a marginal improvement of one percentage point for top-1
retrieval. Nonetheless, its performance remained largely analogous to that of the Yottixel
mosaic when evaluated at MV@3 and MV@5 retrieval metrics as seen in Figure A.17.
Moreover, our observations have unveiled an intriguing aspect of Yottixel’s behavior in
contrast to SDM. It shows that Yottixel processed a total of 324 WSIs, while SDM suc-
cessfully processed all 326 WSIs. From a detailed examination of the box plot presented
in Figure A.21, it becomes evident that for fine needle biopsies — a predominant category
within the Liver dataset — the Yottixel 5% strategy tends to opt for fewer patches relative
to the SDM method.

Figure A.18: Confusion matrices and chord diagrams from Yottixel mosaic (left column),
and SDM montage (right column). The evaluations are based on the top 1 retrieval when
evaluating the Liver dataset.
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Figure A.19: Confusion matrices and chord diagrams from Yottixel mosaic (left column),
and SDM montage (right column). The evaluations are based on the majority of the top
3 retrievals when evaluating the Liver dataset.
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Figure A.20: Confusion matrices and chord diagrams from Yottixel mosaic (left column),
and SDM montage (right column). The evaluations are based on the majority of the top
5 retrievals when evaluating the Liver dataset.
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Figure A.21: The boxplot illustrates the distribution of patches selected for each WSI
in the Liver dataset from both the Yottixel Mosaic and SDM Montage. Additionally, it
provides statistical measures for these distributions. Specifically, for the Yottixel Mosaic,
the median number of selected patches is 9 ± 3. Conversely, for the SDM Montage, the
median number of selected patches is 17± 4.

Figure A.22: The t-SNE projection displays the embeddings of all patches extracted from
the Liver dataset using Yottixel’s mosaic (left) and SDM’s montage (right).
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Appendix B

Additional Content for Chapter 4

B.1 Extended Results for TCGA

Retrieval Evaluation

B.1.1 KimiaNet

Additional confusion matrices and chord diagrams of Top-1, and MV@3 retrievals are
shown in fig. B.1, and B.2 when evaluating the TCGA Patch-Level dataset.
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Figure B.1: Confusion matrices and chord diagrams from KimiaNet (left column), and
KimiaNet + Ranking (right column). The evaluations are based on the top 1 retrieval
when evaluating the TCGA Patch dataset.
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Figure B.2: Confusion matrices and chord diagrams from KimiaNet (left column), and
KimiaNet + Ranking (right column). The evaluations are based on the majority of the
top 3 retrievals when evaluating the TCGA Patch dataset.

B.1.2 NeXtPath

Additional confusion matrices and chord diagrams of Top-1, and MV@3 retrievals are
shown in fig. B.3, and B.4 when evaluating the TCGA Patch-Level dataset from the models
trained using the proposed ranking loss.

133



Figure B.3: Confusion matrices and chord diagrams from NeXtPath (left column), and
NeXtPath + Ranking (right column) trained with the proposed ranking loss. The evalua-
tions are based on the top 1 retrieval when evaluating the TCGA Patch dataset.
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Figure B.4: Confusion matrices and chord diagrams from NeXtPath (left column), and
NeXtPath + Ranking (right column) trained with the proposed ranking loss. The evalua-
tions are based on the majority of the top 3 retrievals when evaluating the TCGA Patch
dataset.
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B.2 Extended Results for BRACS

Retrieval Evaluation

Additional confusion matrices and chord diagrams of Top-1, and MV@3 retrievals are
shown in fig. B.5, and B.6 when evaluating the BRACS Patch-Level dataset from the
model trained using the cross-entropy loss and the proposed ranking loss.

Figure B.5: Confusion matrices and chord diagrams from NeXtPath (left column), and
NeXtPath + Ranking (right column) trained with the proposed ranking loss. The evalua-
tions are based on the top 1 retrieval when evaluating the BRACS ROI dataset.
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Figure B.6: Confusion matrices and chord diagrams from NeXtPath (left column), and
NeXtPath + Ranking (right column) trained with the proposed ranking loss. The evalu-
ations are based on the majority of the top 3 retrievals when evaluating the BRACS ROI
dataset.
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Glossary

histopathology Histopathology is the diagnosis and study of diseases of the tissues, and
involves examining tissues and/or cells under a microscope. 2–4, 11, 13, 14, 16, 17

pathology Pathology is a branch of medical science that involves the study and diagnosis
of disease through the examination of surgically removed organs, tissues (biopsy
samples), bodily fluids, and in some cases the whole body (autopsy). 1–4
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