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ABSTRACT. It is still an open question to know whether or not every quasidi-
agonal operator can be expressed as a norm-limit of algebraic quasidiagonal
operators. In this note, we provide an alternative characterization of those op-
erators which may be expressed as such limits, in the hope that this may lead
to a solution of this problem.
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1. INTRODUCTION

1.1. A standard and elementary result in linear algebra asserts that if T ∈Mn(C)
is an n × n complex matrix with n distinct eigenvalues, then there exists a basis
{vk}n

k=1 for Cn with respect to which the matrix for T is diagonal. In other words,
there exists an invertible matrix S ∈ Mn(C) such that S−1TS is a diagonal ma-
trix. It is an easy exercise to see that every matrix A ∈ Mn(C) may be approx-
imated (say, in the operator norm ‖ · ‖ on Mn(C), thinking of the latter as the
algebra of operators on the Hilbert space Cn) arbitrarily well by a matrix with n
distinct eigenvalues; indeed, one simply upper triangularizes A with respect to
some orthonormal basis, and then perturbs the diagonal entries ever so slightly
to produce n distinct eigenvalues. From this it immediately follows that every
matrix A ∈ Mn(C) may be approximated by matrices of the form S−1DS where
D is diagonal and S is invertible. Moreover, this notion extends to sequences of
matrices: if (An)n is a sequence with An ∈ Mkn(C) for some kn > 1, and if ε > 0,
then we can find sequences (Sn)n with Sn ∈ Mkn(C) invertible and (Dn)n with
Dn ∈Mkn(C) invertible for all n > 1 such that ‖An − S−1

n DnSn‖ < ε for all n > 1.
What is far less clear, however, is how well such approximations work if we

start to impose restrictions on, say, the spectra of the Dn’s, or on the condition
numbers ‖S−1

n ‖ ‖Sn‖ of the Sn’s. That is, what can we say if we insist that there
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exists a µ > 0 such that ‖S−1
n ‖ ‖Sn‖ 6 µ for all n > 1? It will be crucial in the

problem that we examine below that our answer not depend upon the dimen-
sions kn, n > 1 of the underlying spaces. We shall demonstrate that if all of the
An’s satisfy a single, fixed (non-zero) polynomial equation p(z) = 0, then we can
find such approximations with control over both the spectra of the Dn’s and the
condition numbers of the Sn’s.

Our motivation for examining such questions stems from a problem in oper-
ator theory regarding so-called quasidiagonal operators. Before stating the question,
we first require some definitions and some background.

Let H be a complex, separable, infinite-dimensional Hilbert space. We de-
note by B(H) the C∗-algebra of all bounded linear operators acting onH, and by
K(H) the closed, two-sided ideal of all compact operators in B(H). We write π to
denote the canonical map π : B(H) → B(H)/K(H) from B(H) into the Calkin
algebra. An element T ∈ B(H) is said to be block-diagonal (respectively quasidiag-
onal) if there exists an increasing sequence (Pn)∞

n=1 of finite-rank orthogonal pro-
jections in B(H) tending strongly to the identity operator I for which PnT = TPn
(respectively lim

n→∞
‖PnT− TPn‖ = 0). We write T ∈ (BD) (respectively T ∈ (QD))

to mean that T is block-diagonal (respectively T is quasidiagonal). By a result of
Halmos [10], T ∈ (QD) if and only if there exist T0 ∈ (BD), K0 ∈ K(H) such that
T = T0 + K0. What is more, if ε > 0 is specified in advance, then T0 and K0 can be
chosen such that ‖K0‖ < ε. Thus

(QD) = (BD) = (BD) +K(H).

The set of quasidiagonal operators has been the focus of much study over
the past forty years [14], [15], [16], [19] — indeed the notion of quasidiagonality
was extended to sets of operators — for example, if S ⊆ B(H) is a norm separa-
ble set of operators acting on a separable Hilbert space as above, we require the
existence of a single increasing sequence (Pn)∞

n=1 of projections tending strongly
to the identity as above for which lim

n→∞
‖PnS − SPn‖ = 0 for all S ∈ S — and

there has been a great deal of interest in understanding C∗-algebras admitting
(sometimes special) quasidiagonal representations [3], [4], [8], [9], [21].

In the article [10] cited above, Halmos also introduced the notion of quasi-
triangular operators. An operator T is said to be triangular and we write T ∈ (∆)
(respectively quasitriangular and we write T ∈ (QT)) if there exists an increas-
ing sequence (Pn)n=1 of finite-rank orthogonal projections tending strongly to
the identity operator I such that TPn − PnTPn = 0 for all n > 1 (respectively
lim

n
‖TPn − PnTPn‖ = 0). Equivalently, T is triangular if there exists an orthonor-

mal basis {en}∞
n=1 for H with respect to which the matrix of T, [T] = [tij] is up-

per triangular, i.e. tij = 〈Tej, ei〉 = 0 if i > j. It is a deep and extremely useful
result due to Apostol, Foiaş and Voiculescu [1] that an operator T is quasitrian-
gular if and only if the semi-Fredholm index of T − λI, namely ind (T − λI) :=
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nul(T− λI)− nul (T− λI)∗ is greater than or equal to zero whenever π(T− λI)
is either left or right invertible in the Calkin algebra.

Paralleling the results for quasidiagonality, we have that T ∈ (QT) if and
only if T = T0 + K0, where T0 is triangular and K0 is compact, and if ε > 0 is
given, then we can choose T0 triangular and K0 compact with ‖K0‖ < ε. Oper-
ators in the set (BQT) := (QT) ∩ (QT)∗ are said to be biquasitriangular. (From
the result of Apostol, Foiaş and Voiculescu cited above, we see that T is biqua-
sitriangular if and only if ind(T − λI) = 0 whenever π(T − λI) is either left or
right invertible in the Calkin algebra.) We emphasize the fact that the sequence of
projections implementing the quasitriangularity of a biquasitriangular operator
T need not have anything to do with the sequence of projections implementing
the quasitriangularity of T∗.

1.2. The study of quasitriangular operators took on special importance in rela-
tion to Halmos’ seventh problem from [10], which asked for a characterization
of those operators on H which can be expressed as limits of nilpotent opera-
tors. (Recall that an operator T ∈ B(H) is said to be nilpotent of index k > 1
if Tk = 0 6= Tk−1.) Along the way to solving Halmos’ seventh problem, two
alternative descriptions of (BQT) were formulated. Let

(ALG) = {T ∈ B(H) : p(T) = 0 for some 0 6= p ∈ C[z]}, and

(SN)={T∈B(H) : T=S−1NS for some N∈B(H) normal and S∈B(H) invertible}.
The acronyms (ALG) and (SN) refer to “algebraic” operators and to operators
“similar to normal” operators, respectively. Combining the work of Voiculescu
[22] and of Herrero [12], [13], we have that

(ALG) = (SN) = (BQT).

Since, as is easily seen, (QD) ⊆ (BQT), it follows that (QD) ⊆ (ALG),
whence (QD) = (BD) = (BD) ∩ (ALG). This led Davidson, Herrero and Salinas
([8], Problem 1.1) to ask: is it true that

(QD) = (ALGQD),

where (ALGQD) = (ALG) ∩ (QD)? As pointed out in [8], it follows from the
work of Campbell and Gellar [5] that (ALGQD) = (ALGBD), where (ALGBD) =
(ALG) ∩ (BD). Thus the question may be rephrased as: is (QD) = (ALGBD)? At
this time, one of the best results along these lines is Theorem 2.4 of [8].

THEOREM 1.1 (Davidson–Herrero–Salinas). Let T∈(QD) and let $ : C∗(π(T))
→ B(H$) be a unital ∗-representation onto a separable Hilbert space H$. Suppose fur-
thermore that:

(i) $(π(T)) ∈ B(H$) is quasidiagonal;
(ii) σ(π(T)) = σ($(π(T))); and

(iii) σ(π(T)) does not disconnect the plane.
Then T ∈ (ALGBD).
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The hypothesis that $(π(T)) be quasidiagonal nevertheless appears to be a
rather strong one. As shown in [8], it implies the following: for each ε > 0 there
exists an operator Tε ' Rε ⊕ B(∞)

ε with Rε block-diagonal and Bε acting upon a
finite-dimensional space such that ‖T − Tε‖ < ε. We propose the following as a
candidate for a quasidiagonal operator for which such approximations may fail to
exist.

Herrero and Szarek [17] have demonstrated the existence of a universal con-
stant κ > 0 and of a sequence Mj ∈Mmj(C), j > 1 satisfying:

(i) mj < mj+1 for all j > 1;
(ii) ‖Mj‖ = 1 and M6

j = 0 for all j > 1; and
(iii) for all j > 1, dist(Mj, Red(Cmj)) > κ.

Here, Red(Cmj) denotes the set of orthogonally reducible operators on Cmj , that is,
those operators A ∈Mmj(C) which can be expressed as an orthogonal direct sum
A = B⊕C of two operators B and C, each acting on a non-trivial subspace of Cmj .

Observe that condition (ii) implies that M :=
∞⊕

j=1
Mj ∈ (ALGBD). Indeed,

M6 = 0. We suspect that there does not exist a unital ∗-representation $ of
C∗(π(M)) onto a separable Hilbert space such that $(π(M)) is quasidiagonal,
though we have not yet been able to prove it. Regardless, the reader will observe
that the potential non-existence of such a representation is not an impediment to
M belonging to (ALGBD).

1.3. In the next section, we shall prove an analogue for quasidiagonal operators
of the results of Herrero and Voiculescu to the effect that (ALG) = (SN), namely:
setting

(DSSN) =
{

T =
∞⊕

n=1

Tn ∈ (BD) : T = S−1DS for some

S =
⊕

n
Sn invertible and D =

⊕
n

Dn diagonal
}

,

we shall prove that
(ALGBD) = (DSSN).

Thus T ∈ (DSSN) implies that T =
∞⊕

n=1
Tn with Tn = S−1

n DnSn for all n >

1, subject to the condition that each Dn be normal and sup
n>1
‖Sn‖‖S−1

n ‖ < ∞.

(The acronym (DSSN) is meant to refer to operators which are “Direct Sums of
matrices Similar to Normal” matrices.) This opens a new approach to resolv-
ing the Davidson–Herrero–Salinas question which does not rely upon exhibiting
quasidiagonal representations of the C∗-algebra generated by image of a qua-
sidiagonal operator in the Calkin algebra. (We point out the fact that Wasser-
mann [24] has proven that there exists a quasidiagonal C∗-algebra whose image
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in the Calkin algebra does not admit a faithful, quasidiagonal representation.) In
light of this, the Davidson–Herrero–Salinas question becomes: is (QD) equal to
(DSSN)?

In Section 3, we develop a few consequences of our results insofar as limits
of block-diagonal nilpotent operators are concerned.

2. ALGEBRAIC QUASIDIAGONAL OPERATORS

2.1. NOTATION AND TERMINOLOGY. In order to improve the readability of the
paper, we shall resort to a minor but common abuse of notation: given any com-
plex Hilbert spaceH and α ∈ C, we shall also write α to denote the scalar operator
αI, where I ∈ B(H) is the identity operator. Thus, for example, if H = H1 ⊕H2
is the direct sum of two complex Hilbert spaces and α, β ∈ C, then α⊕ β ∈ B(H)
denotes the operator αI1⊕ βI2, where Ik ∈ B(Hk) is the identity operator, k = 1, 2.

Given a non-zero polynomial p = p(z) =
r

∏
s=1

(z− βs)ks ∈ C[z], we shall say

that p is in standard form if 1 6 s 6= t 6 r implies that βs 6= βt, and ks > 1, 1 6 s 6

r. We then denote the degree of p by deg(p(z)) =
r
∑

s=1
ks, the maximum multiplicity

of p by κ(p(z)) := max(k1, k2, . . . , kr), and the zeros of p by Zp = {β1, β2, . . . , βr}.
If ∅ 6= F ⊆ C is a finite set, we define DISP(F) = min{|x− y| : x, y ∈ F, x 6=

y}, and we shall refer to this as the dispersion of F.
Suppose thatH is a complex Hilbert space, and that 0 6= T ∈ B(H) satisfies

p(T) = 0. The minimal polynomial p0 of T then divides p. We can (and will)
assume without loss of generality (by reindexing the set Zp if necessary) that

p0(z) =
r0
∏

s=1
(z− βs)ms is in standard form, and note that 1 6 r0 6 r and 1 6 ms 6

ks for each 1 6 s 6 r0.
Finally, for w ∈ C and ε > 0, we denote the open ball of radius ε centred at

w by

B(w, ε) := {z ∈ C : |z− w| < ε}.

2.2. We begin with a small technical lemma, whose purpose is as follows: sup-

pose that p(z) =
r

∏
s=1

(z − βs)ks ∈ C[z], where i 6= j implies that βi 6= β j. We

wish to approximate p(z) by a polynomial q(z) of the same degree, whose roots

α1, α2, . . . , αd (d = deg(p(z)) =
r
∑

s=1
ks) are all simple. Furthermore, we wish to do

this in a manner that allows us to keep some control over the minimum distance
between any two αi’s — that is, over the dispersion of the set {α1, α2, . . . , αd}. The
usefulness of this will soon become apparent.
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We mention in passing that there is a slight technicality that we must deal
with in the case where r = 1, since in this case the dispersion of the set of roots of
p has not been defined.

For this section of the paper, the connected set Γ introduced in Lemma 2.1
below may be taken to be Γ = C. It will, however, become a useful technical
device in the next section, when we will consider direct sums of algebraic qua-
sidiagonal operators with normal operators.

LEMMA 2.1. Let Γ ⊆ C be a connected set, r > 1 be an integer, and suppose that
β1, β2, . . . , βr are distinct elements of Γ. (If r = 1, we assume that Γ includes at least
one point — any thus infinitely many points — not equal to β1.) Suppose furthermore
that k1, k2, . . . , kr > 1 are integers and set κ := max(k1, k2, . . . , kr). Finally,

(i) if r = 1, choose γ1 ∈ Γ \ {β1} arbitrarily and define δ = |γ1 − β1| > 0;
(ii) if r > 2, define δ = DISP({β1, β2, . . . , βr}) > 0.

Given 0 < ε < δ
3 , there exists a set Aε := {αs(t) : 1 6 t 6 ks, 1 6 s 6 r} ⊆ Γ of

cardinality d :=
r
∑

s=1
ks so that:

(a) |αs(t)− βs| < ε for all 1 6 t 6 ks, 1 6 s 6 r, and
(b) DISP(Aε) > ε

2κ .

Proof. Suppose that 0 < ε < δ
3 . Observe that if 1 6 s 6 r, and 2 6 t 6 2κ,

then (
B(βs,

t
2κ

ε) \ B(βs,
t− 1

2κ
ε)
)
∩ Γ 6= ∅.

(Suppose otherwise for some 1 6 s 6 r and 2 6 t 6 κ. Consider the disjoint
open sets B(βs, t−1

2κ ε) and C \ B(βs, t−1
2κ ε). If r = 1, we see that β1 lies in the first

set, while γ1 lies in the second, while for r > 2, we see that βs lies in the first set,
while βs1 lies in the second for any 1 6 s1 6= s 6 r. Either way, this contradicts
the connectedness of Γ.)

For 1 6 t 6 ks, choose

αs(t) ∈
(

B(βs,
2t
2κ

ε) \ B(βs,
2t− 1

2κ
ε)
)
∩ Γ.

Clearly |αs(t)− βs| < 2t
2κ ε 6 ε, 1 6 s 6 r, 1 6 t 6 ks.

If 1 6 s 6 r and 1 6 t1 < t2 6 ks, then

|αs(t2)− αs(t1)| > ||αs(t2)| − |αs(t1)|| >
2t2 − 1

2κ
ε− 2t1

2κ
ε >

ε

2κ
.

If 1 6 s1 6= s2 6 r, 1 6 t1 6 ks1 , 1 6 t2 6 ks2 , then

|αs1(t1)−αs2(t2)|> |βs1−βs2 |−|βs1−αs1(t1)|−|βs2−αs2(t2)|> |βs1−βs2 |−2ε> ε.

Hence DISP(Aε) > ε
2κ .

REMARK 2.2. In the following lemma, we shall require a function f of three
positive parameters. The important thing for our purposes will not be the growth
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properties of this function, but rather the fact that it depends only upon these
three parameters. Let M, δ > 0 be positive numbers and d > 1 be an integer. If
d = 1, we set f (M, δ, 1) = 1.

Next, set f (M, δ, 2) = (1 + δ−1M), and for d > 2, define

f (M, δ, d + 1) = (1 + f (M, δ, d))(1 + (δ−1M)(1 + f (M, δ, d))).

It is clear that f (M, δ, d + 1) > f (M, δ, d) for all d > 2, and that M2 > M1
implies that f (M2, δ, d) > f (M1, δ, d).

LEMMA 2.3. Suppose that A = {α1, α2, . . . , αd} ⊆ C is a set of cardinality d so
that δ := DISP(A) > 0. Let H be a complex Hilbert space, and suppose that T ∈ B(H)
is an algebraic operator which has

q(z) =
d

∏
s=1

(z− αs)

as its minimal polynomial. Then there exists a normal operator D ∈ B(H) with σ(D) =
A and an invertible operator S ∈ B(H) satisfying

max (‖S‖, ‖S−1‖) 6 f (‖T‖, δ, d)

for which T = S−1DS.

Proof. The fact that q is the minimal polynomial for T implies thatH admits
a decompositionH = H1 ⊕H2 ⊕ · · · ⊕Hd with respect to which

T =


α1 T12 T13 . . . T1d

α2 T23 . . . T2d
α3 . . . T3d

. . .
...

αd

 .

We shall argue by induction on d. If d = 1, we set D = T = α1 I and S = I.
There is nothing to prove.

Case 1. Let d = 2. Write T =

[
α1 T12

α2

]
relative to the decomposition

H = H1 ⊕H2. Let D =

[
α1 0

α2

]
relative to this same decomposition ofH.

Next, set

S =

[
I (α1 − α2)

−1T12
I

]
,

so that ‖S‖ 6 1 + |α1 − α2|−1‖T12‖ 6 1 + δ−1‖T‖ = f (‖T‖, δ, 2). Note also that

S−1 =

[
I −(α1 − α2)

−1T12
I

]
,

and thus a similar calculation to that above shows that

‖S−1‖ 6 f (‖T‖, δ, 2).
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A routine computation shows the following which completes the proof of this
case:

T = S−1DS.

Case 2. Let d0 > 2 be an integer and suppose that the result holds for d =
1, 2, . . . , d0. We prove that it holds for d = d0 + 1.

As we have seen, the hypothesis implies that there exists a decomposition
H = H1 ⊕H2 ⊕ · · · ⊕Hd0+1 so that

T =



α1 T12 T13 . . . . . . T1d0+1
α2 T23 . . . . . . T2d0+1

α3 . . . . . . T3d0+1
. . .

...
αd0 Td0d0+1

αd0+1


.

Let D = α1 ⊕ α2 ⊕ · · · ⊕ αd0+1 ∈ B(H) relative to the above decomposition.
Futhermore, set H0 := H1 ⊕H2 ⊕ · · · ⊕ Hd0 , and let D0 = α1 ⊕ α2 ⊕ · · · ⊕ αd0 ∈
B(H0), so that

D =

[
D0 0
0 αd0+1

]
, T =

[
T0 W
0 αd0+1

]
relative toH = H0 ⊕Hd0+1.

Our induction hypothesis guarantees the existence of an invertible operator
S0 ∈ B(H0) with max (‖S0‖, ‖S−1

0 ‖) 6 f (‖T‖, δ, d0) so that T0 = S−1
0 D0S0.

Set Z = (D0 − αd0+1 IH0)
−1S0W ∈ B(Hd0+1,H0), and observe that

‖Z‖ 6 ‖(D0 − αd0+1 IH0)
−1‖ ‖S0‖ ‖W‖ 6 (δ−1‖T‖) f (‖T‖, δ, d0).

Define R =

[
I Z
0 I

]
relative toH = H0 ⊕Hd0+1, and let

S = R
[

S0
I

]
=

[
S0 Z
0 I

]
relative to the same decomposition, so that

S−1 =

[
S−1

0
I

] [
I −Z
0 I

]
=

[
S−1

0 −S−1
0 Z

0 I

]
.

It follows that

‖S‖ 6 ‖R‖ ‖S0 ⊕ I‖ 6 (1 + ‖Z‖)(1 + ‖S0‖)

6 (1 + (δ−1‖T‖) f (‖T‖, δ, d0))(1 + f (‖T‖, δ, d0)) = f (‖T‖, δ, d0 + 1).

Similarly, ‖S−1‖ 6 ‖R−1‖ ‖S−1
0 ⊕ I‖ 6 f (‖T‖, δ, d0 + 1).

Again, a routine computation shows that T = S−1DS, completing the in-
duction step and the proof.
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REMARK 2.4. It is obvious that we have made no attempt to be efficient
in estimating an upper bound for ‖S‖ above. What is interesting and will prove
useful, however, is that it does not depend upon the dimensions (finite or infinite)
of the spaces Hk, 1 6 k 6 d, nor upon the choice of Tij, 1 6 i < j 6 d, so long as
‖T‖ 6 M.

LEMMA 2.5. Let p = p(z) =
r

∏
s=1

(z− βs)ks ∈ C[z] be a polynomial in standard

form, and Γ ⊆ C be an infinite, connected set containing Zp. Let κ = κ(p(z)).
If r = 1, choose γ1 ∈ Γ \ {β1} and set δ := |β1 − γ1| > 0. If r > 2, set

δ := DISP(Zp).
Given 0 < ε < δ

3 , there exists a finite set Aε = {αs(t) : 1 6 t 6 ks, 1 6 s 6
r} ⊆ Γ of cardinality d := deg(p(z)) with the following properties:

(i) |αs(t)− βs| < ε, 1 6 t 6 ks, 1 6 s 6 r;
(ii) DISP(Aε) > ε

2κ ; and
(iii) if H is a Hilbert space and T ∈ B(H) satisfies p(T) = 0, and if p0(z) =

r0
∏

s=1
(z− βs)ms is the minimal polynomial of T, then there exists T0 ∈ B(H) so that:

(a) ‖T − T0‖ < ε, and

(b) q(z) =
r0
∏

s=1

ms
∏

t=1
(z− αs(t)) is the minimal polynomial of T0.

Proof. Let 0 < ε < δ
3 . The existence of a finite set Aε = {αs(t) : 1 6 t 6

ks, 1 6 s 6 r} ⊆ Γ satisfying (i) and (ii) is the conclusion of Lemma 2.1.
Next, for 1 6 t 6 ms, 1 6 s 6 r0, set

Hm1+m2+···+ms−1+t =ker (T − β1)
m1(T − β2)

m2 · · · (T − βs−1)
ms−1(T − βs)

t

	 ker (T−β1)
m1(T−β2)

m2 · · · (T−βs−1)
ms−1(T−βs)

t−1,

so that relative to the decomposition H = H1 ⊕ H2 ⊕ · · · ⊕ Hd0 , where d0 :=
deg(q(z)), we have

T =



β1 T12 . . . . . . T1 d0

β1
. . . . . .

...
. . . Tij

β1
. . .

β2
. . .

βr0
. . . Td0−1,d0

βr0



.
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In the matrix above, the diagonal scalar operator βs appears exactly ms times,
1 6 s 6 r0.

Let T0 be the operator obtained from T by replacing the ms occurrences of
βs along the diagonal by the distinct elements αs(t), 1 6 t 6 ms. Thus

T0 =



α1(1) T12 . . . T1 d0

α1(2)
. . . . . .

...
. . . Tij

α1(m1)
. . .

α2(1)
. . .

αr0(1)
. . .

αr0(mr0)



.

It is readily verified that q is the minimal polynomial for T0. Furthermore,

‖T − T0‖ = max{|α(t)s − βs| : 1 6 s 6 r0, 1 6 t 6 ms} < ε.

REMARK 2.6. Once again, the important issue to note here is that with Γ

fixed, the choice of the elements α
(t)
s , 1 6 t 6 ks, 1 6 s 6 r was made to de-

pend only upon the choice of ε > 0 and the choice of the polynomial p; more
specifically, the values of β1, β2, . . . , βr and their multiplicities. In particular, this
choice is independent of the choice of the polynomial p0 (subject to the condition
that it divides p), of Tij, 1 6 i < j 6 d, and of the dimensions of the spaces Hk,
1 6 k 6 d0 in the above decomposition.

PROPOSITION 2.7. Let p(z) =
r

∏
s=1

(z− βs)ks ∈ C[z] be a polynomial in standard

form, and suppose that Γ ⊆ C is an infinite, connected set with Zp ⊆ Γ. Let κ =
max(k1, k2, . . . , kr).

If r = 1, choose γ1 ∈ Γ \ {β1} and set δ := |γ1 − β1| > 0. If r > 2, set
δ := DISP(Zp).

Let 0 < ε < min(1, δ
3 ), and as in Lemma 2.1, choose a finite set Aε = {αs(t) :

1 6 t 6 ks, 1 6 s 6 r} ⊆ Γ of cardinality d = deg(p(z)) so that:
(i) |αs(t)− βs| < ε for all 1 6 t 6 ks, 1 6 s 6 r, and

(ii) DISP(Aε) > ε
2κ .

Then for every complex Hilbert spaceH and T ∈ B(H) satisfying p(T) = 0, there
exists

(a) a normal operator D ∈ B(H) with σ(D) ⊆ Aε, and
(b) an invertible operator S ∈ B(H) satisfying

max(‖S‖, ‖S−1‖) 6 f
(
‖T‖+ 1,

ε

2κ
, d
)
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for which

‖T − S−1DS‖ < ε.

Proof. Having chosen 0 < ε < min(1, δ
3 ), and Aε as above, suppose that H

is a Hilbert space, T ∈ B(H) and p(T) = 0. Let p0(z) =
r0
∏

s=1
(z − βs)ms be the

minimal polynomial for T, written in standard form.
By Lemma 2.5, there exists an operator T0 ∈ B(H) satisfying ‖T − T0‖ < ε

for which q(z) =
r0
∏

s=1

ms
∏

t=1
(z − αs(t)) is the minimal polynomial of T0. Clearly

‖T0‖ 6 ‖T‖+ ε 6 ‖T‖+ 1. Furthermore, σ(T0) = {αs(t) : 1 6 t 6 ms, 1 6 s 6
r0} ⊆ Aε.

It then follows from Lemma 2.3 that there exists a normal operator D ∈
B(H) with σ(D) = σ(T0) ⊆ Aε and an invertible S ∈ B(H) for which

max(‖S‖, ‖S−1‖) 6 f (‖T0‖, δ(Aε), d) 6 f
(
‖T‖+ 1,

ε

2κ
, d
)

,

and T0 = S−1DS. From this we see that ‖T − S−1DS‖ = ‖T − T0‖ < ε.

THEOREM 2.8. Let p(z) =
r

∏
s=1

(z − βs)ks ∈ C[z] be a polynomial in standard

form, and suppose that Γ ⊆ C is an infinite, connected set with Zp ⊆ Γ. Let κ =
κ(p(z)).

If r = 1, choose γ1 ∈ Γ \ {β1} and set δ := |γ1 − β1| > 0. If r > 2, set
δ := DISP(Zp).

Let (Hλ)λ be a family of complex Hilbert spaces, and H =
⊕
λ
Hλ. Suppose that

T ∈ B(H) admits a diagonal decomposition T =
⊕
λ

Tλ relative to this decomposition of

H, and that p(T) = 0.
If 0 < ε < δ

3 , then there exists a normal operator D =
⊕
λ

Dλ in B(H) with finite

spectrum contained in Γ and an invertible operator S =
⊕
λ

Sλ ∈ B(H) satisfying

max(‖S‖, ‖S−1‖) 6 f
(
‖T‖+ 1,

ε

2κ
, d
)

,

such that

‖T − S−1DS‖ 6 ε.

Proof. Having chosen 0 < ε < δ
3 , choose Aε = {αs(t) : 1 6 t 6 ks, 1 6 s 6

r} ⊆ Γ of cardinality d := deg(p(z)) so that
(i) |αs(t)− βs| < ε for all 1 6 t 6 ks, 1 6 s 6 r, and

(ii) δ(Aε) > ε
2κ .

Observe that p(T) = 0 implies that p(Tλ) = 0 for all λ.
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By Proposition 2.7 above, for each λ, we can find a normal operator Dλ ∈
B(Hλ) with σ(Dλ) ⊆ Aε and an invertible operator Sλ ∈ B(Hλ) satisfying

max(‖Sλ‖, ‖S−1
λ ‖) 6 f

(
‖Tλ‖+ 1,

ε

2κ
, d
)

,

for which ‖Tλ − S−1
λ DλSλ‖ < ε. Let D =

⊕
λ

Dλ and S =
⊕
λ

Sλ. It is clear that D

and S are bounded, as is S−1 =
⊕
λ

S−1
λ . Furthermore, σ(D) =

⋃
λ

σ(Dλ) ⊆ Aε ⊆ Γ,

and

max(‖S‖, ‖S−1‖) 6 sup
λ

max(‖Sλ‖, ‖S−1
λ ‖) 6 f

(
‖T‖+ 1,

ε

2κ
, d
)

.

Finally,
‖T − S−1DS‖ = sup

λ

‖Tλ − S−1
λ DλSλ‖ 6 ε.

THEOREM 2.9. (ALGQD) = (DSSN).

Proof. First we show that (ALGQD) ⊆ (DSSN). As noted in the introduc-
tion, it follows from a result of S.L. Campbell and R. Gellar [5] that (ALGBD) :=
(ALG) ∩ (BD) is norm-dense in (ALGQD). As such, it suffices to show that
(ALGBD) ⊆ (DSSN).

Let T =
⊕
n

Tn ∈ (ALGBD) be the decomposition of T relative to the decom-

positionH =
⊕
n
Hn, where dim Hn < ∞ for all n > 1. Let p(z) =

r
∏

s=1
(z− βs)ks ∈

C[z] be the minimal polynomial of T, written in standard form, and suppose that
Γ = C. If r = 1, set δ = 1, while if r > 2, set δ = DISP(Zp).

By Theorem 2.8, for each 0 < ε < δ
3 , there exist a normal operator D =

⊕
Dn

with finite spectrum and an invertible operator S =
⊕
n

Sn so that

‖T − S−1DS‖ 6 ε.

Since S−1DS =
⊕
n

S−1
n DnSn ∈ (DSSN) and ε > 0 can be made arbitrarily small,

the proof of this containment is complete.
Conversely, suppose that T =

⊕
n

S−1
n DnSn ∈ (DSSN), where D =

⊕
n

Dn ∈

B(H) is normal, S =
⊕
n

Sn is invertible, and

M := sup
n

max(‖Sn‖, ‖S−1
n ‖) < ∞.

Let ε > 0. Now σ(D) is compact, and so we can find a finite subset A =

{α1, α2, . . . , αd} so that σ(D) ⊆
d⋃

i=1
B(αi, ε

M2 ).

For each n > 1, we can choose a basis forHn 'Mmn(C) which diagonalizes
Dn; i.e. Dn = diag(β1(n), β2(n), . . . , βmn(n)). Relative to this basis, define a new
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diagonal operator

En = diag(γ1(n), γ2(n), . . . , γmn(n)),

where for each 1 6 t 6 mn, we have that γt(n) ∈ A and |γt(n)− βt(n)| < ε
M2 .

Letting E =
⊕
n

En, we easily see that E is a bounded, normal operator with

σ(E) ⊆ A. Thus E satisfies the polynomial q(z) =
d

∏
s=1

(z − αs). It follows that

R := SES−1 =
⊕
n

S−1
n ESn ∈ (BD) also satisfies q(R) = 0, so that R ∈ (ALGBD).

Finally, ‖T − R‖ = sup
n
‖S−1

n (Dn − En)Sn‖ 6 sup
n

ε
M2 ‖S−1

n ‖‖Sn‖ 6 ε. Since

ε > 0 was arbitrary, we conclude that T ∈ (ALGBD). It follows that (DSSN) ⊆
(ALGBD) = (ALGQD), which provides the reverse inclusion and completes the
proof.

2.3. We suspect, but we have been so far unable to prove, that (QD) 6= (DSSN)
(and therefore that (QD) 6= (ALGQD)). We now wish to propose a candidate for
an operator R which we think may lie in (QD) \ (ALGQD).

Let n > 1 be an integer. Recall first that an operator T ∈ B(H) is said to
be n-normal if T ' [Tij]

n
i,j=1, where {Tij : 1 6 i, j 6 n} is a commuting family of

normal operators. We say that T is algebraically n-normal if T '
n⊕

m=1
Tm, where

each Tm is m-normal, 1 6 m 6 n. (This definition allows for some of the Tm’s to
act upon a trivial (i.e. 0-dimensional) Hilbert space.) It is well-known that if T is
algebraically n-normal, then T can be approximated by block-diagonal operators
(Bk)

∞
k=1 with the property that each of the summands of each Bk, k > 1 acts upon

a space of dimension at most n. It is a routine exercise to show that any such Bk
is then a limit of algebraic, block-diagonal operators, and thus T itself is a limit of
algebraic, block-diagonal operators.

It was shown by Voiculescu [23] that if a quasidiagonal operator T = lim
k

Bk

is a limit of algebraically nk-normal operators (meaning that each approximat-
ing operator Bk is algebraically nk-normal for some nk > 1 depending upon k),
then C∗(T) must be exact; that is, the inclusion map ι : C∗(T) → B(H) must
be a nuclear map. An equivalent formulation says that if T = lim

k
Bk, where

dim C∗(Bk) < ∞ for all k > 1, then C∗(T) must be exact. (See [4] for a develop-
ment of the theory of nuclear and exact C∗-algebras.) Brown [3] then proved that
given T ∈ (QD), this is the only possible obstruction; more precisely, a quasidi-
agonal operator T is a limit of operators Bk with dim C∗(Bk) < ∞ for all k > 1 if
and only if C∗(T) is exact.

Arguing as in Example 2.3 of [3], suppose that T ∈ (QD) and that there
exists an orthonormal basis {en}n∈Z forH with respect to which the matrix [T] =
[tij] of T has finite band-width; that is, there exists and integer ν > 1 such that
|i − j| > ν implies that tij = 0. Then C∗(T) is contained in the crossed product
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algebra `∞(Z)oγ Z, where the action γ of Z upon `∞(Z) arises from the action
of the bilateral shift Uen = en+1, n ∈ Z on `2(Z). Since the crossed product C∗-
algebra `∞(Z)oγ Z is known to be nuclear, C∗(T) is exact and thus T is a limit of
algebraically nk-normal operators Bk, k > 1. A fortiori, T ∈ (ALGQD).

We have argued that any candidate for an operator lying in (QD) \ (ALGQD)
should not have finite band-width, or loosely speaking, should be far from “liv-
ing close to the diagonal”. With this in mind, for each n > 1, choose ωn ∈ (0, 1)
such that if Rn = [rij(n)] ∈Mn(C) is defined by

rij(n) =

{
ωn if i < j,
0 otherwise,

then ‖Rn‖ = 1. Our proposed candidate for an operator in (QD) \ (ALGQD)
is the operator R =

⊕
n

Rn. (A first step would be to show that C∗(R) fails to

be exact. Although it does not have finite band-width with respect to the given
orthonormal basis, it is not entirely obvious that there does not exist another or-
thonormal basis with respect to which it might have — or at least be the limit of
operators which have — finite band-width.)

We finish this section by showing that (ALGQD) is at least large enough to
remain invariant under compact perturbations.

PROPOSITION 2.10. (ALGQD) = (ALGQD) + K(H). In particular, the fol-
lowing is norm-closed:

(ALGQD) +K(H).

Proof. That (ALGQD) ⊆ (ALGQD) +K(H) is obvious.
Suppose that T =

⊕
n

Tn ∈ (ALGBD), where Tn ∈ B(Hn), n > 1 and K ∈

K(H). Let pT(z) ∈ C[z] be a non-zero polynomial such that pT(T) = 0. Observe
that pT(Tn) = 0 for all n > 1.

Let Pn denote the orthogonal projection of H onto Hn, n > 1, and let RN =
N
∑

n=1
Pn, N > 1. Then (RN)N is a sequence of projections tending strongly to the

identity operator, and so

lim
N
‖RNKRN − K‖ = 0.

Now T+RNKRN = BN⊕
( ∞⊕

n=N+1
Tn

)
∈ (BD), where BN =

( N⊕
n=1

Tn

)
+RNKRN .

Since BN is finite-rank, there exists a polynomial pN(z) ∈ C[z] such that
pN(BN) = 0. Set qN(z) = pN(z)pT(z). Then

qN(T + RNKRN) = pN(BN)pT(BN)⊕
( ∞⊕

n=N+1

pN(Tn)pT(Tn)
)
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= 0 pT(BN)⊕
( ∞⊕

n=N+1

pN(Tn) 0
)
= 0,

so that T + RNKRN ∈ (ALGBD). But then T + K ∈ (ALGBD) = (ALGQD).
That is, (ALGQD) +K(H) ⊆ (ALGQD), completing the proof.

3. LIMITS OF BLOCK-DIAGONAL NILPOTENTS

3.1. As mentioned in the introduction, Halmos’ seventh problem from the pa-
per [10] asks for a characterization of the norm-closure in B(H) of the set

(NIL) = {T ∈ B(H) : there exists k > 1 for which Tk = 0}.
After a great deal of work on this problem by a great many authors over a pe-
riod of roughly five years, the problem was finally solved by Apostol, Foiaş, and
Voiculescu [2]. One of the key steps along the way to a complete solution was
the characterization of those normal operators which belong to (NIL), obtained
by Herrero [11]. (We remind the reader that π(T) ∈ B(H)/K(H) refers to the
image of T ∈ B(H) in the Calkin algebra.)

THEOREM 3.1 (Herrero). A normal operator N ∈ B(H) lies in (NIL) if and only
if the spectrum of N is connected and contains {0}.

THEOREM 3.2 (Apostol–Foiaş–Voiculescu). The operator T ∈ B(H) lies in
(NIL) if and only if T satisfies the following three conditions:

(i) σ(T) is connected and 0 ∈ σ(T);
(ii) σ(π(T)) is connected and 0 ∈ σ(π(T)); and

(iii) T ∈ (BQT).

It is worth noting that the necessity of these three conditions is relatively
straightforward: the necessity of conditions (i) and (ii) follows from the upper-
semicontinuity of the spectrum combined with the fact that the set of invertible
elements of a Banach algebra form an open set. The necessity of condition (iii) is
a consequence of Voiculescu’s result [22] that (ALG) = (BQT).

3.2. In his thesis, Williams [25] posed the question of characterizing the norm-
closure of the set (BDN), where (BDN) = (BD) ∩ (NIL). In particular, he asked
whether or not (BDN) = (BD) ∩ (NIL) = (QD) ∩ (NIL). That this is in fact
not the case was shown by Herrero [16]. Nevertheless, Herrero established that
a normal operator N (which always lies in (QD)) belongs to (NIL) if and only if
N ∈ (BDN) [14]. Thus a normal operator N belongs to (BDN) if and only if σ(N)
is connected and 0 ∈ σ(N).

Conjecture 1 from Herrero’s paper [15] states that if T ∈ (QD) and N ∈
(BDN) is a normal operator satisfying σ(T) ⊆ σ(N), then N⊕T ∈ (BDN). Below
we shall verify this conjecture in the case where σ(π(T)) does not disconnect the
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plane. Recall that two operators A, B ∈ B(H) are said to be approximately unitarily
equivalent, and we write A 'a B, if there exists a sequence (Un)∞

n=1 of unitary
operators such that A = lim

n→∞
U∗n BUn. It is known (see, for example [7]) that two

normal operators N and M with connected spectra are approximately unitarily
equivalent if and only if σ(N) = σ(M). (More is true, but this suffices for our
current purposes.)

PROPOSITION 3.3. Let T ∈ (ALGBD), and suppose that N ∈ (BDN) is normal.
If σ(T) ⊆ σ(N), then N ⊕ T ∈ (BDN).

Proof. First observe that if σ(N) is a singleton set, then σ(N) = {0} (since
we know that it must be a connected set containing the origin), which in turn
forces σ(T) = {0}. The result then follows from Theorem 5.5 of [16]. We suppose,
therefore, that σ(N) contains at least two (and therefore infinitely many) points,
by virtue of its being connected.

We write T =
⊕
n

Tn relative to the decompositionH =
⊕
n
Hn, where dim Hn

< ∞ for all n > 1. Let p(z) =
r

∏
s=1

(z− βs)ks denote the minimal polynomial of T,

written in standard form. Let d = deg(p(z)) and κ = κ(p(z)) denote the maxi-
mum multiplicity of any root. Let 0 < ε < δ

3 , and choose Aε = {αs(t) : 1 6 t 6
ks, 1 6 s 6 r} ⊆ σ(N) so that

(i) |αs(t)− βs| < ε, 1 6 t 6 ks, 1 6 s 6 r; and
(ii) DISP(Aε) > ε

2κ .

Note that p(T) = 0 implies that p(Tn) = 0 for all n > 1. Hence, by
Proposition 2.7, for each n > 1, there exists a diagonal normal matrix Dn with
σ(Dn) ⊆ Aε ⊆ σ(N), and an invertible matrix Sn ∈ B(Hn) satisfying

max(‖Sn‖, ‖S−1
n ‖) 6 f

(
‖T‖+ 1,

ε

2κ
, d
)

so that
‖Tn − S−1

n DnSn‖ < ε.

Observe that since each Dn is normal with σ(Dn) ⊆ σ(N), and since σ(N)
connected implies that σ(N) = σ(π(N)), we have that N 'a

⊕
n
(N ⊕ Dn), as

argued above. Fix Un unitary so that ‖(N ⊕ Dn) −U∗n NUn‖ < ε. Also, choose
B ∈ (BDN) so that ‖N − B‖ < ε, and observe that ‖(N ⊕ Dn)−U∗n BUn‖ < 2ε.
Furthermore, if Bq = 0, then (U∗n BUn)q = 0, and of course U∗n BUn ∈ (BD).

Let Rn := (I ⊕ Sn)−1U∗n BUn(I ⊕ Sn), so that Rn ∈ (QD) and Rq
n = 0 for all

n > 1. By [15], we can find Xn ∈ (BDN), so that Xq
n = 0 and ‖Rn − Xn‖ < ε,

n > 1. Now, setting Wn = I ⊕ Sn, n > 1, we find that

‖Xn − Tn‖ 6 ‖Xn − Rn‖+ ‖Rn − (N ⊕ Tn)‖

6 ε + ‖Rn −W−1
n (N ⊕ Dn)Wn‖+ ‖W−1

n (N ⊕ Dn)Wn − N ⊕ Tn‖
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< ε + ‖W−1
n ‖ ‖Wn‖ ‖(N ⊕ Dn)−U∗n BUn‖+ ‖0⊕ (S−1

n DnSn − Tn)‖
< ε + ε + ε = 3ε.

Let X =
⊕
n

Xn ∈ (BD). Then Xq = 0 and
∥∥∥X−⊕

n
(N ⊕ Tn)

∥∥∥ 6 3ε.

But ε > 0 can be made arbitrarily small, so N ⊕ T 'a
⊕
n
(N ⊕ Tn) ∈

(BDN).

COROLLARY 3.4. Let T ∈ (ALGQD) and suppose that N ∈ (BDN) is normal
with σ(T) ⊆ σ(N). Then

N ⊕ T ∈ (BDN).

Proof. Let ε > 0. By the upper semicontinuity of the spectrum, there exists
0 < δ < ε so that ‖X − T‖ < δ implies that σ(X) ⊆ (σ(T))ε = {z ∈ C :
there exists w ∈ σ(T) such that |z− w| < ε}.

For this choice of δ, choose R ∈ (ALGBD) so that

‖R− T‖ < δ.

Since R is algebraic, σ(R) = {β1, β2, . . . , βr} is a finite set and dist(βs, σ(N)) <
ε, 1 6 s 6 r. Since σ(N) is connected, we can easily find distinct elements
{α1, α2, . . . , αr} ⊆ σ(N) such that |βs − αs| < ε, 1 6 s 6 r.

Let p(z) =
r

∏
s=1

(z− βs)ks denote the minimal polynomial of R.

Write R =
⊕
n

Rn with Rn in upper triangular form, and for each n > 1, let

Bn ∈ B(Hn) be the matrix obtained from Rn by changing each diagonal occur-

rence of βs to αs, 1 6 s 6 r. If q(z) =
r

∏
s=1

(z− αs)ks , then it is not hard to see that

each q(Bn) = 0, whence q(B) = 0. Clearly B =
⊕
n

Bn ∈ (BD), and

‖T − B‖ 6 ‖T − R‖+ ‖R− B‖ < δ + sup
n>1
‖Rn − Bn‖

6 δ + max{|βs − αs| : 1 6 s 6 r} 6 ε + ε = 2ε.

By Proposition 3.3, N ⊕ B ∈ (BDN), and so dist(N ⊕ T, (BDN)) 6 2ε. But
ε > 0 can be made arbitrarily small, so N ⊕ T ∈ (BDN).

Given a subset Ω ⊆ C, we denote by

Ω̂ =
{

z ∈ C : |p(z)| 6 max
ξ∈Ω
|p(ξ)| for all polynomials p

}
the polynomially convex hull of L (see [6] for more details).

COROLLARY 3.5. Let T ∈ (QD), N ∈ (BDN) be a normal operator, and suppose
that σ(T) ∪ ̂σ(π(T)) ⊆ σ(N). Then N ⊕ T ∈ (BDN).
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Proof. Observe that N ∈ (BDN) implies that σ(N) is connected, and thus
σ(N) = σ(π(N)). By Corollary 2.6 of [8], N ⊕ T ∈ (ALGQD). Also, the fact that
σ(T) ⊆ σ(N) by hypothesis implies that σ(N ⊕ T) ⊆ σ(N), and so by Corol-
lary 3.4,

N ⊕ (N ⊕ T) ∈ (BDN).

But σ(N) = σ(π(N)) implies that N 'a N⊕ N by the Weyl–von Neumann–Berg
theorem (see, for example Theorem II.4.4 of [7]) whence

N ⊕ T 'a N ⊕ (N ⊕ T) ∈ (BDN).

COROLLARY 3.6. Let T ∈ B(H), spr (T) 6 1 and N ∈ B(H) be a normal
operator with σ(N) = D. If N ⊕ T ∈ (QD), then N ⊕ T ∈ (BDN).

Proof. The hypothesis that N⊕T ∈ (QD), combined with the fact that σ(N⊕
T) ⊆ D = σ(N) implies by Corollary 3.5 that N ⊕ (N ⊕ T) ∈ (BDN). But N ⊕
T 'a N ⊕ (N ⊕ T), from which the result follows.

REMARK 3.7. It is an interesting question to determine for which T ∈ B(H),
‖T‖ 6 1 we have that N ⊕ T ∈ (QD), where N is the normal operator from
Corollary 3.6 above. In the case where T is a weighted shift operator, it was shown
in [18] that this happens if and only if there exists a compact perturbation of T
which is a direct sum of an essentially normal contraction and a block-diagonal
operator. We conjecture that this characterization holds more generally.

EXAMPLE 3.8. Let W ∈ B(H) be a bilateral weighted shift operator with
weight sequence {

. . . ,
1
2

, 1,
1
2

, 1,
1
2

, 1, . . .
}

.

Then W is periodic with period of length two. By a theorem of Smucker [20],
W ∈ (QD). Furthermore, ‖W‖ = 1, and so spr (W) 6 1. If N ∈ B(H) is normal
with σ(N) = D, then by Corollary 3.6 above, N ⊕W ∈ (BDN).
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ference, Timişoara and Herculane/Romania 1980, Oper. Theory Adv. Appl., vol. 2,
Birkhäuser-Verlag, Berlin 1981, p. 171–210.

[16] D.A. HERRERO, A trace obstruction to approximation by block-diagonal nilpotents,
Amer. J. Math. 108(1986), 451–484.

[17] D.A. HERRERO, S.J. SZAREK, How well can an n × n matrix be approximated by
reducible ones? Duke Math. J. 53(1986), 233–248.

[18] L.W. MARCOUX, On the quasidiagonality of direct sums of normal operators and
shifts, Michigan Math. J. 37(1990), 459–467.

[19] L.W. MARCOUX, Sums and products of weighted shifts, Canad. Math. Bull. 44(2001),
469–481.

[20] R.A. SMUCKER, Quasidiagonal weighted shifts, Pacific J. Math. 98(1982), 173–182.

[21] F.J. THAYER, Quasidiagonal C∗-algebras, J. Funct. Anal. 25(1977), 50–57.

[22] D. VOICULESCU, Norm-limits of algebraic operators, Rev. Roumaine Math. Pures Appl.
19(1974), 371–378.

[23] D. VOICULESCU, Around quasidiagonal operators, Integral Equations Operator Theory
17(1993), 137–149.

[24] S. WASSERMANN, A separable quasidiagonal C∗-algebra with a non-quasidiagonal
quotient by the compact operators, Math. Proc. Cambridge Philos. Soc. 110(1991), 143–
145.



494 LAURENT W. MARCOUX

[25] L.R. WILLIAMS, On quasisimilarity of operators on Hilbert space, Ph.D. Dissertation,
Unive. of Michigan, Michigan 1976.

LAURENT W. MARCOUX, DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY

OF WATERLOO, WATERLOO, ONTARIO, N2L 3G1, CANADA

E-mail address: LWMarcoux@uwaterloo.ca

Received November 7, 2018; revised June 7, 2019.


	1. INTRODUCTION
	1.1. 
	1.2. 
	1.3. 

	2. ALGEBRAIC QUASIDIAGONAL OPERATORS
	2.1. Notation and terminology
	2.2. 
	2.3. 

	3. LIMITS OF BLOCK-DIAGONAL NILPOTENTS
	3.1. 
	3.2. 

	REFERENCES

