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On ∗-similarity in C∗-algebras

by

L. W. Marcoux (Waterloo, ON), H. Radjavi (Waterloo, ON)
and B. R. Yahaghi (Gorgan)

Abstract. Two subsets X and Y of a unital C∗-algebra A are said to be ∗-similar via
s ∈ A−1 if Y = s−1X s and Y∗ = s−1X ∗s. We show that this relation imposes a certain
structure on the sets X and Y, and that under certain natural conditions (for example, if
X is bounded), ∗-similar sets must be unitarily equivalent. As a consequence of our main
results, we present a generalized version of a well-known theorem of W. Specht.

1. Introduction

1.1. Let H be a finite- or infinite-dimensional complex Hilbert space
and let B(H) denote the algebra of bounded linear operators acting on H.
A standard fact is that if A,B ∈ B(H) are normal and A is similar to B,
i.e. there exists an invertible operator S ∈ B(H) such that B = S−1AS,
then B is unitarily equivalent to A, i.e. S may be taken to be unitary. (See
Proposition 1.2 below.) We are interested in extensions of this fact to sets
of (not necessarily normal) operators.

More precisely, let X and Y be two subsets of B(H) that are (simulta-
neously) similar, i.e. there exists an invertible operator S ∈ B(H) such that
Y = {S−1XS : X ∈ X}.

Under what conditions can S be replaced by a unitary operator U?
Clearly, when this is the case, the same operator U will also implement the
unitary equivalence of the sets X ∗ = {X∗ : X ∈ X} and Y∗ = {Y ∗ : Y ∈ Y}.
In light of this, we investigate the case where the operator S which imple-
ments the similarity of X and Y coincides with that which implements the
similarity of X ∗ and Y∗. We refer to this concept as ∗-similarity of X and Y.
We show that under certain additional hypotheses (e.g. when X and Y are
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bounded), ∗-similarity of X and Y is sufficient for unitary equivalence of X
and Y.

As a consequence of our results, we are able to generalize a theorem of
Specht regarding unitary equivalence of two n×n complex matrices, namely
that A,B ∈Mn(C) are unitarily equivalent if and only if

tr(w(A,A∗)) = tr(w(B,B∗))

for all words w in two non-commuting variables. The generalization (Theo-
rem 2.21) extends this to arbitrary families X = {Xλ}λ and Y = {Yλ}λ in
Mn(C), by requiring that

tr(w(Xλ1 , . . . , Xλm , X
∗
λ1 , . . . , X

∗
λm)) = tr(w(Yλ1 , . . . , Yλm , Y

∗
λ1 , . . . , Y

∗
λm))

for all words w in 2m non-commuting variables.
We state our main results in the context of C∗-algebras.
The following result appears as an exercise in textbooks on operator

theory (see, for example, [H82, Problem 192]).

1.2. Proposition. Let A be a unital C∗-algebra andm,n ∈ A be normal
elements. Suppose that s ∈ A is invertible with polar decomposition s = u|s|.
If m = s−1ns, then m = u∗nu.

1.3. In this paper we shall examine to what extent Proposition 1.2 can
be generalized. Given a subset X of a unital C∗-algebra A and an element s
in A−1, the invertible group of A, we note that if Y := s−1X s is similar
to X , then obviously Y∗ is similar to X ∗, as Y∗ = s∗X ∗(s∗)−1.

We introduce a stronger form of similarity, which we call ∗-similarity, that
asks that Y = s−1X s and Y∗ = s−1X ∗s, and we investigate the consequences
of this relation on the structure of X and Y.

2. ∗-similarity. Throughout the remainder of this paper, A will denote
a unital C∗-algebra. By A−1 we denote the set of invertible elements in A.
We begin with the following definition.

2.1. Definition. Let ∅ 6= X ,Y ⊆ A. We say that X and Y are ∗-similar
via s ∈ A−1 if Y = s−1X s := {s−1xs : x ∈ X} and

Y∗ = {y∗ : y ∈ Y} = s−1X ∗s := {s−1x∗s : x ∈ X}.
It is clear that if X and Y are selfadjoint sets, then ∗-similarity of X

and Y coincides with similarity.

2.2. Notation. When considering ∗-similar subsets X and Y of A, un-
less explicitly stated otherwise, we shall assume that the similarity which
implements the ∗-similarity is denoted by s, and has polar decomposition
s = u|s|. We shall also assume that X = {xλ : λ ∈ Λ} is indexed by a
non-empty set Λ and that Y = {yλ : λ ∈ Λ}, where yλ = s−1xλs for all λ.
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The condition Y∗ = s−1X ∗s implies that there exists a bijection θ : Λ → Λ
such that y∗λ = s−1x∗θ(λ)s for all λ ∈ Λ.

We emphasize that if yλ = s−1xλs for some λ ∈ Λ, then there is no
reason why y∗λ should equal s−1x∗λs.

2.3. Definition. We say that two non-empty sets X and Y ⊆ A are
strongly ∗-similar via s ∈ A−1 if they are ∗-similar via s, and if y = s−1xs
implies that y∗ = s−1x∗s for all x ∈ X .

In other words, X and Y are strongly ∗-similar via s if the corresponding
bijection θ : Λ→ Λ above is the identity map.

2.4. Proposition. Let X and Y be non-empty subsets of A and suppose
that X is strongly ∗-similar to Y via s ∈ A−1. Then X and Y are unitarily
equivalent.

Proof. Write X = {xλ : λ ∈ Λ}, Y = {yλ : λ ∈ Λ} and s = u|s| as above.
The hypothesis that yλ = s−1xλs and y∗λ = s−1x∗λs for each λ implies that

Re yλ =
yλ + y∗λ

2
= s−1

xλ + x∗λ
2

s = s−1Rexλ s,

and similarly
Im yλ = s−1 Imxλ s.

By Proposition 1.2, Re yλ = u∗Rexλ u and Im y = u∗ Imxλ u, whence

yλ = u∗xλu for all λ ∈ Λ.
That is, Y = u∗Xu.

Again, it is worth noting that the unitary operator that implements the
unitary equivalence of X and Y is the unitary u arising from the polar
decomposition of s = u|s|.

2.5. We next establish an interesting and useful structure theorem for
∗-similar sets. For x ∈ A and 0 ≤ k ∈ A−1, we define the (two-sided) orbit
of x under k to be

O(x) := {k−mxkm : m ∈ Z}.
Clearly, any two elements of O(x) are similar to each other in A.

2.6. Proposition. Let X ,Y be non-empty subsets of A and suppose
that there exists an invertible operator s = u|s| ∈ B(H) such that

• Y = s−1X s, and
• Y∗ = s−1X ∗s.
Let k := ss∗. Then the orbits O(x) for x ∈ X are each contained in X and
they partition X , i.e.

X =
⋃̇
x∈X
O(x).
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Furthermore, the sets Q(x) := s−1O(x)s for x ∈ X partition Y:

Y :=
⋃̇
x∈X
Q(x).

Finally, Q(x)∗ = s−1O(x)∗s for all x ∈ X , so that each O(x) is ∗-similar to
Q(x) via s.

Proof. Fix x0 ∈ X . Set y0 := s−1x0s ∈ Y, and choose x1 ∈ X such that
y∗0 = s−1x∗1s. Equivalently, sy0 = x0s and y0s∗ = s∗x1. Let k = ss∗.

It easily follows that

kx1 = s(s∗x1) = s(y0s
∗) = (sy0)s

∗ = (x0s)s
∗ = x0k.

As s is invertible, so is k. Hence

x1 = k−1x0k.

By applying the same procedure, setting y1 := s−1x1s ∈ Y, we can find
x2 ∈ X such that y∗1 = s−1x∗2s, and the above computation shows that

x2 = k−1x1k.

More generally, for each m ≥ 1, having chosen x0, x1, . . . , xm and yk =
s−1xks, 0 ≤ k ≤ m, we can find xm+1 ∈ X for which y∗m = s−1x∗m+1s, and

xm+1 = k−1xmk.

This process is reversible as well. If we set y∗−1 := s−1x∗0s, then y∗−1 ∈ Y∗,
and so there exists x−1 ∈ X such that y−1 = s−1x−1s. Computing as before,
we find that

x0 = k−1x−1k,

and indeed for all m ≤ 0, we have

xm = k−1xm−1k.

We have shown that the orbit O(x0) of each x0 ∈ X lies in X .
If z ∈ X and O(z) ∩ O(x0) 6= ∅, then it is routine to verify that O(z) =

O(x0) and thus these orbits partition X .
Moreover, given an orbit O(x0) := {xm := k−mx0k

m : m ∈ Z}, set
ym := s−1xms for m ∈ Z. Observe that Q(x0) = {ym : m ∈ Z} and that

y∗m = s∗x∗m(s
−1)∗ = s∗(ss∗)mx∗0(ss

∗)−m(s−1)∗

= s−1(ss∗)m+1x∗0(ss
∗)−(m+1)s = s−1x∗m+1s, m ∈ Z.

From this it follows that Q(x)∗ = (s−1O(x0)s)∗ = s−1O(x∗0)s = s−1O(x0)∗s,
so that Q(x0) and O(x0) are ∗-similar via s.

For a selfadjoint operator X ∈ B(H) and a Borel set Ω ⊆ R, we write
EΩ(X) to denote the spectral projection for X corresponding to Ω.
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2.7. Lemma. Let 0 ≤ K ∈ B(H) be an invertible operator, X ∈ B(H)
and suppose that the orbit O(X) := {K−mXKm : m ∈ Z} of X under K is
bounded. Then X commutes with K, and O(X) = {X}.

Proof. Once we show that X commutes with K, the fact that O(X) =
{X} is obvious.

We shall prove the contrapositive of our claim. Suppose that X does not
commute with K. Then there must exist α > 0 and a spectral projection
E[0,α](K) for K corresponding to the interval [0, α] which does not commute
with X.

Write H = H1 ⊕ H2, where H1 = E[0,α](K)H, and H2 = H⊥1 . Relative
to this decomposition, we may write

X =

[
X1 X2

X3 X4

]
and E[0,α](K) =

[
I 0

0 0

]
.

The fact that X does not commute with E[0,α](K) means that either X2 6= 0
or X3 6= 0.

Suppose for example that X2 is non-zero. For each n ≥ 1, set Pn :=
E[α+1/n,‖K‖](K)H. Then (Pn)

∞
n=1 is an increasing sequence of orthogonal

projections converging strongly to E(α,‖K‖](K). Since X2 = X2E(α,‖K‖](K),
we see that (X2Pn)

∞
n=1 converges strongly to X2.

Since X2 6= 0, there must exist n0 ≥ 1 such that X2Pn0 6= 0. Consider
next the decomposition H = H1 ⊕ (H2 	 Pn0H2)⊕ Pn0H2, and write

X =

X1 X21 X22

X31 X41 X42

X32 X43 X44

 .
Observe that relative to this decomposition, K = K1 ⊕ K2 ⊕ K3, where
K1 = KE[0,α](K) has spectrum in [0, α], K2 has spectrum in [α, α + 1/n0],
and K3 = KPn0 has spectrum in [α+ 1/n0, ‖K‖].

Note that

K−mXKm =

∗ ∗ K−m1 X22K
m
3

∗ ∗ ∗
∗ ∗ ∗

 .
(The starred entries are irrelevant here.) Now X22 = X2Pn0 6= 0, and we
are multiplying it on the left by the inverse of a positive operator bounded
above by αmI, and multiplying it on the right by a positive operator bounded
below by (α+ 1/n0)

mI. It follows that

lim
m→∞

‖K−m1 X22K
m
3 ‖ =∞,
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whence O(X) is not bounded in norm. This completes the proof of the
contrapositive of our statement.

The proof for X3 6= 0 is similar.

2.8. Remark. We point out that there is a rather simpler proof of this
result when there exist m < n ∈ Z such that

K−mXKm = K−nXKn.

Then Kn−mX = XKn−m, so that X commutes with the positive operator
Kn−m, so by the functional calculus, X commutes with K.

2.9. Corollary. Let 0 ≤ k ∈ A−1, x ∈ A and suppose that the orbit
O(x) of x under k is bounded. Then x commutes with k, and O(x) = {x}.

Proof. Let π : A → B(H) be a non-degenerate, isometric representation
of A, X = π(x) and K = π(k). The result now follows from Lemma 2.7.

2.10. Theorem. Let A be a unital C∗-algebra and X ,Y be non-empty
subsets of A. Suppose that there exists an invertible element s = u|s| ∈ A
such that

• Y = s−1X s, and
• Y∗ = s−1X ∗ s.

If X is bounded, then Y = u∗Xu. In particular, if X (and therefore Y) is
finite, then Y = u∗Xu.

Proof. By Proposition 2.6, we may partition X as the disjoint union of
distinct orbits O(x) = {k−mxkm : m ∈ Z}, where k = ss∗. Moreover, this
partitions Y as a disjoint union of the corresponding sets Q(x) = s−1O(x)s,
with Q(x)∗ = s−1O(x)∗s.

By Lemma 2.7, the boundedness of X and therefore of each orbit O(x)
implies that each O(x) = {x} is a singleton set.

In light of Proposition 2.6, we see that X and Y must be strongly ∗-
similar, and thus by Proposition 2.4, Y = u∗Xu.

2.11. Example. The hypothesis that X be bounded cannot, in general,
be removed, even when X is a semigroup. For example, consider

X =

{[
3m 0

0 3−m

]
,

[
0 3n

3−n 0

]
: m,n ∈ Z

}
⊆M2(C) = B(C2).

Set

S =

[
3−1/4 0

0 31/4

]
.

Then
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Y = S−1XS =

{[
3m 0

0 3−m

]
,

[
0 3n+1/2

3−n−1/2 0

]
: m,n ∈ Z

}
.

It is routine to verify that X = X ∗ and Y = Y∗, so that X and Y are
∗-similar groups.

Nevertheless, that Y :=
[ 0

√
3

1/
√
3 0

]
∈ Y, and ‖Y ‖ =

√
3, while X ∈ X

implies that ‖X‖ = 3k for some 0 ≤ k ∈ Z. Thus Y cannot be unitarily
equivalent to X .

In fact, if we set Xh = CX and Yh = CY, then Xh = X ∗h and Yh =
S−1XhS = Y∗h. (We refer to Xh and to Yh as the homogenizations of X and
of Y respectively.)

The matrix Y :=
[ 0

√
3

1/
√
3 0

]
is in Y ⊆ Yh, and ‖Y ‖ =

√
3 and detY = −1.

If Yh is to be unitarily equivalent to Xh, then there must exist X0 ∈ X with
‖X0‖ =

√
3 and detX0 = −1. Note that if X ∈ Xh, then either X =[

λ3m 0
0 λ3−m

]
or X =

[
0 λ3m

λ3−m 0

]
for some λ ∈ C and some m ∈ Z, in which

case the condition detX = −1 implies that |λ| = 1, from which we deduce
that ‖X‖ = 3|m| 6=

√
3.

Hence Xh and Yh are not unitarily equivalent. However, we shall see later
(in Example 2.17) that if K = spanX and L = spanY, then K and L are
unitarily equivalent!

The hypothesis of Theorem 2.10 that X (and hence Y) be bounded is
not necessary when X consists of normal elements. The following may be
viewed as a generalization of Proposition 1.2 above.

2.12. Theorem. Let A be a unital C∗-algebra, N ⊆ A be a non-empty
collection of normal elements, and M ⊆ A. If M and N are ∗-similar via
s = u|s| ∈ A−1, then they are unitarily equivalent via u. In particular,
M consists of normal elements of A as well.

Proof. Write N = {nλ : λ ∈ Λ} and M = {mλ : λ ∈ Λ}, where mλ =
s−1nλs for all λ ∈ Λ.

By Proposition 2.6, letting k = ss∗, we may partition N as

N =
⋃̇
n∈N
O(n),

where O(n) = {k−pnkp : p ∈ Z}. Note that for each p ∈ Z, k−pnkp ∈ O(n)
is similar to n, and it is normal (as O(n) ⊆ N ). By Proposition 1.2 above, it
is unitarily equivalent to n, and so has the same norm. It follows that O(n)
is bounded. By Corollary 2.9, O(n) = {n}.

By Proposition 2.6, we also find that each O(n) is ∗-similar to Q(n) =
{s−1ns}. It follows that N andM are strongly ∗-similar via s, and by Propo-
sition 2.4 they are unitarily equivalent via u.

The last statement is obvious.
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We now wish to consider ∗-similarity of norm-closed linear subspaces of
the unital C∗-algebra A. We begin with the following remarkable result due
to Gardner [G64].

2.13. Theorem (Gardner). Let L be a norm-closed linear subspace of
B(H), and R ∈ B(H) be a positive, invertible operator. If R−1LR ⊆ L, then
R−αLRα ⊆ L for all α ∈ R.

That Gardner’s theorem holds in a unital C∗-algebra A can be easily
seen by simply representing this algebra faithfully on a Hilbert space. Thus
we have

2.14. Corollary. Let L be a norm-closed linear subspace of a unital
C∗-algebra A, and r ∈ A−1 be a positive, invertible element. If r−1Lr ⊆ L,
then r−αLrα ⊆ L for all α ∈ R.

As an immediate consequence, one obtains the following. (We note that
Gardner stated the result below for the case where L and M are C∗-
subalgebras of B(H); his proof—essentially reproduced below—works just
as well for any norm-closed, selfadjoint subspaces of a unital C∗-algebra A.)
Recall that an operator system is a selfadjoint, unital linear subspace of a
unital C∗-algebra. These need not be norm-closed.

2.15. Corollary. Let L and M be selfadjoint, norm-closed subspaces
of a unital C∗-algebra A and suppose that s ∈ A−1 is an element for which

M = s−1Ls.

If s = u|s| denotes the polar decomposition of s, then

M = u∗Lu.

In particular, similar norm-closed operator systems are unitarily equivalent.

Proof. Since L andM are selfadjoint, the relation sM = Ls implies that
Ms∗ = s∗L, and therefore

|s|2M = (s∗s)M = s∗(sM) = s∗(Ls) = (s∗L)s = (Ms∗)s =M|s|2,

or equivalently,
|s|2M|s|−2 =M.

By Gardner’s theorem,
|s|M|s|−1 =M,

and thus L = sMs−1 = u|s|M|s|−1u∗ = uMu∗, which is equivalent to our
claim.

Turning our attention to ∗-similarity, we have
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2.16. Theorem. Let L andM be closed subspaces of a unital C∗-algebra
A and suppose that L andM are ∗-similar via s = u|s| ∈ A−1. Then L and
M are unitarily equivalent via u.

Proof. By hypothesis, M = s−1Ls and M∗ = s−1L∗s. Thus sM = Ls
and Ms∗ = s∗L. The rest of the argument follows the proof of Corol-
lary 2.15.

2.17. Example. Let X , Y, and S be as in Example 2.11. As we saw
there, X and Y are ∗-similar subgroups of M2(C), but X is not unitarily
equivalent to Y. If L = spanX and M = spanY, then it is routine to
verify that L andM are ∗-similar, and thus by Theorem 2.16, L andM are
unitarily equivalent.

Let us now consider a couple of applications of ∗-similarity.

2.18. Proposition. Let A be a unital C∗-subalgebra of the unital C∗-al-
gebra B, and denote by A1 the closed unit ball {a ∈ A : ‖a‖ ≤ 1}. Let
s = u|s| ∈ B−1. If s−1A1s is selfadjoint, then it is unitarily equivalent to A1.

Proof. Let Y := s−1A1s. Note that A1 is obviously selfadjoint, while Y
is selfadjoint by hypothesis. Thus A1 and Y ⊆ B are ∗-similar via s. Since
A1 is bounded, we may apply Theorem 2.10 to conclude that Y = u∗A1u.

A theorem of Specht [S40] asserts that if n ≥ 1 is an integer and A,B ∈
Mn(C), then A is unitarily equivalent to B if and only if

tr(w(A,A∗)) = tr(w(B,B∗))

for all words w(x, y) in two non-commuting variables x and y.
In [MMR07], while studying approximate multi-variable versions of this

theorem for semigroups of matrices, the first two authors—in collaboration
with M. Mastnak—obtained the following result:

2.19. Proposition ([MMR07, Corollary 3.10]). Suppose that A =
{Aα}α∈Λ and B = {Bα}α∈Λ are two families of invertible matrices in Mn(C)
such that

(a) if A ∈ A then A−1 ∈ A, and similarly if B ∈ B then B−1 ∈ B; and
(b) the algebras generated by A and B are semisimple.

If for every m ≥ 1, every word w in m non-commuting variables, and every
choice of {λ1, . . . , λm} ⊆ Λ we have

| tr(w(Aλ1 , . . . , Aλm))− tr(w(Bλ1 , . . . , Bλm))| < 1,

then there exists R ∈Mn(C) invertible such that

Aα = R−1BαR for all α ∈ Λ.
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Thanks to the following result of Freedman, Gupta and Guralnick
[FGG97], we can extend the multi-variable version to more general sets of
not necessarily invertible matrices, and also deduce that R above must be
unitary, providing that we ask that the traces of words in the matrices agree.
The result we quote now is actually a special case of [FGG97, Corollary 2.7].

2.20. Theorem (Freedman, Gupta and Guralnick). Suppose that X =
{X1, . . . , Xm} and Y = {Y1, . . . , Ym} are non-empty subsets of Mn(C), and
the algebras generated by X and by Y are semisimple. Suppose furthermore
that for each word w in m non-commuting variables we have

tr(w(X1, . . . , Xm)) = tr(w(Y1, . . . , Ym)).

Then there exists S ∈Mn(C) invertible such that Yj = S−1XjS, 1 ≤ j ≤ m.

2.21. Theorem (A generalized version of Specht’s theorem). Suppose
that X := {Xλ : λ ∈ Λ} and Y := {Yλ : λ ∈ Λ} are non-empty subsets of
MN (C). Suppose that for every m ≥ 1, every word w in 2m variables, and
every choice {λ1, . . . , λm} ⊆ Λ we have
tr(w(Xλ1 , . . . , Xλm , X

∗
λ1 , . . . , X

∗
λm)) = tr(w(Yλ1 , . . . , Yλm , Y

∗
λ1 , . . . , Y

∗
λm)).

Then there exists a unitary matrix U ∈ MN (C) such that Yλ = U∗XλU for
all λ ∈ Λ.

Proof. Let F = {λ1, . . . , λm} ⊆ Λ be a finite set, and consider XF :=
{Xλ : λ ∈ F} and YF := {Yλ : λ ∈ F}. The algebras generated by XF ∪ X ∗F
and YF ∪ Y∗F are C∗-algebras, and are therefore semisimple.

By the result of Freedman, Gupta and Guralnick applied to the sets
XF ∪ X ∗F and YF ∪ Y∗F , there exists SF ∈ Mn(C) such that Yλ = S−1F XλSF
and Y ∗λ = S−1F X∗λSF , for λ ∈ F . This implies that XF ∪ X ∗F is ∗-similar
to YF ∪ Y∗F , and thus by Theorem 2.10, Yλ = U∗FXλUF for λ ∈ F , where
SF = UF |SF | is the polar decomposition of SF .

Let F = {F ⊆ Λ : F is finite}, partially ordered by inclusion. Then
(UF )F∈F is a net of unitary operators in MN (C). Since the set of unitary
matrices in MN (C) is compact, we can find a subnet (UFγ )γ∈Γ which con-
verges in norm to a unitary matrix U .

Let λ ∈ Λ. The argument of the previous paragraphs shows that Yλ =
U∗FXλUF for all F ∈ F for which λ ∈ F . Since (UFγ )γ∈Γ is a subnet of
(UF )F∈F , there exists γ0 ∈ Γ such that {λ} ⊆ Fγ0 . But then γ ≥ γ0 implies
thatFγ ⊇ {λ}.HenceYλ = U∗FγXλUFγ for allγ ≥ γ0, and thusYλ = U∗XλU .

2.22. We conclude with a question which we have been unable to answer
so far.

Let A be a unital C∗-algebra and suppose that K,L ⊆ A are closed,
convex sets in A. If K is ∗-similar to L via s ∈ A−1, are K and L unitarily
equivalent?
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(Of course, if K or L is bounded, then the answer is yes, as an immediate
consequence of Theorem 2.10.)
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