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Abstract
A number of questions which have been solved over the years in the theory of single
operators acting on Hilbert space have interesting analogues when recast in the setting
of elements ofC∗-algebras.We list five of these, aswell as a number of “sub-problems”
arising from them.
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Introduction

Those of us who grew up (at least in the mathematical sense) meandering through the
green pleasant fields of single operator theory recall the years between 1960 and 1990
as a period of particularly intense activity, accompanied by exciting and important
discoveries – including (but definitely not limited to) Lomonosov’s Theorem [30],
Voiculescu’s non-commutative Weyl-von Neumann Theorem [50], Brown-Douglas-
Fillmore (BDF) Theory [7], and the classification of the norm-closures of similarity-
invariant sets by Apostol et al. [2]. Granted, Voiculescu’s non-commutative Weyl-
von Neumann Theorem is a result about C∗-algebras, while the BDF machinery was
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inspired in part by techniques from homology theory – but the former result is a
crucial tool in the theory of approximation of Hilbert space operators, while the latter
was borne of the desire to classify unitary orbits of normal elements of the Calkin
algebra, a very “single operator theoretic” concept. That Banach algebra (and C∗-
algebra) techniques should be used to resolve questions in operator theory is a concept
so fundamental as to merit appearing as the title of the well-known monograph of
Douglas [15].

In 1970, Paul Halmos published his famous Ten problems in Hilbert space [22],
which inspired and helped focus a great deal of the research done in single operator
theory for the subsequent twenty years (see also [23]). We modestly propose a list
of five questions (plus a host of sub-questions) of our own, framing questions which
appeared in Halmos’ paper and elsewhere in the context of elements of C∗-algebras.
We do not pretend that the questions we list below will shape the future of research
in this area, though we do believe that they are non-trivial and interesting. We hope
that at least some of the questions we ask will prove of interest to readers of the
younger generation who may have more time on their hands than we have, and that
they will lead to the development of techniques and solutions which will broaden our
understanding of the internal structure ofC∗-algebras. Of course, we particularly hope
that the questions will appeal to those with an interest in single operator theory, and
conversely, that they may generate a greater interest in single operator theory amongst
those specialising in operator algebras. In the best of worlds, they would lead to even
more questions and interplay between these two areas.

The choice of questions listed below is strictly personal: we have chosen questions
to which we would like to know the answer.

Throughout this paper, H will denote an infinite-dimensional, complex, separable
Hilbert space, B(H) will denote the set of bounded linear operators acting onH, and
K(H) will denote the closed, two-sided ideal of compact operators in B(H).

Most of the questions we pose may be asked in full generality in Banach algebras.
Since this is not our area of specialty, we shall restrict our attention to (general) C∗-
algebras, though in many cases a more useful starting point might be unital, simple
C∗-algebras. An abundance of projections in the C∗-algebra A under investigation
may often be useful as well (e.g. one might assume that A has real rank zero) and
even supposing that A has stable rank one may be reasonable in some cases. In many,
if not most instances, UHF C∗-algebras may serve as a prime candidate in which to
first attempt a solution, though it may also be fruitful to consider the full panoply of
“the extraordinary league of well-appreciated” C∗-algebras – AF C∗-algebras, Cuntz
algebras, Bunce-Deddens algebras, irrational rotation algebras, group C∗-algebras,
graph C∗-algebras, purely infinite C∗-algebras, etc. – a description of most of which
may be found in the monograph of Davidson [9].

It might help to consider these problems in the setting of von Neumann algebras
(e.g. a type II1 or II∞ factor), where the extra structure often present in these (e.g. the
ubiquitousness of projections, polar decomposition, etc.) may provide extra tools. In
short - there is no shortage of starting points for these journeys.
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1 Limits of Nilpotents

The seventh of Halmos’ problems from his 1970 paper [22] serves as the inspiration
for our first question.

Recall that an element q of a Banach algebra A is said to be quasinilpotent if its
spectral radius spr(q) = 0, or equivalently, if its spectrum satisfies σ(q) = {0}. We
say thatm ∈ A is nilpotent of index k ≥ 1 ifmk = 0 �= mk−1. Clearly every nilpotent
element of A is quasinilpotent, though the converse typically fails. For example, the
Volterra operator V f (x) := ∫ 1

x f (t)dt is quasinilpotent but not nilpotent in the algebra
of bounded linear operators acting on the Banach space C([0, 1],C) of continuous,
complex-valued functions on [0, 1], equipped with the uniform norm. We denote by
Nil(A) the set of nilpotent elements of A.

Problem 7 of Halmos’ paper asked: is every quasinilpotent operator in B(H) a
norm-limit of nilpotent operators?

Even at the time of asking this question, Halmos acknowledged that it was in
some sense “the wrong question” to ask.1 Indeed, Kakutani [41, p. 282] had already
exhibited an example of a non-quasinilpotent operator which is a limit of nilpotents
(an operator now known as a Kakutani shift). As such, the “better" question to ask
was: which operators are limits of nilpotent operators?

The question itself is interesting, but it is the scope and depth of the machinery that
was developed to answer it that elevates it to one of extreme importance. It is beyond the
reach of this article to give a complete history of the contributions which eventually
led to the complete solution to this problem, and we shall constrain ourselves to a
minimal set of salient observations.

An operator T ∈ B(H) is said to be triangular if there exists an orthonormal
basis {en}∞n=1 for H relative to which the operator-matrix [T ] = [ti j ] for T is upper-
triangular; i.e. ti j := 〈T e j , ei 〉 = 0 for all i > j ≥ 1.We say that T isquasitriangular
if T = T0+K , where T0 ∈ B(H) is triangular and K is compact – we write T ∈ (QT)

– and that T is biquasitriangular if both T and T ∗ are quasitriangular, in which case
we write T ∈ (BQT). The orthonormal bases which “quasitriangularise” T and T ∗
need not be the same!

Let us recall that an operator T ∈ B(H) is said to be semi-Fredholm if its range is
closed, and at least one of nul T (the nullity of T ) and nul T ∗ (the nullity of T ∗) is
finite, in which case we define the semi-Fredholm index

ind T := nul T − nul T ∗ ∈ Z ∪ {−∞,∞}.

(It is understood that m − ∞ := −∞ and ∞ − m := ∞ for all m ∈ N.) This
generalises the notion of a Fredholm operator, which may be defined as a semi-
Fredholm operator with finite index. Whereas an operator R ∈ B(H) is Fredholm if
and only if its image π(R) in the Calkin algebra under the canonical quotient map
π : B(H) → B(H)/K(H) is invertible, it can be shown that an operator T ∈ B(H)

is semi-Fredholm if and only if π(T ) is either left- or right-invertible (or both). The

1 Halmos explains that his motivation in asking the question in this form was his desire to express all of
his questions in such a way as to require a “yes” or “no” answer.
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semi-Fredholm domain of an operator T ∈ B(H) is the set ρsF (T ) := {α ∈ C :
T −α I is semi-Fredholm}. We refer the reader to the monograph of Caradus et al. [8]
for more information regarding semi-Fredholm operators.

It was Douglas and Pearcy [16] who first observed that the semi-Fredholm
index provided an obstruction to membership in (QT); indeed, they observed that
the unilateral forward shift S could not be a limit of triangular operators because
ind S := nul S − nul S∗ = −1. A fortiori, they observed that if there exists λ ∈ C

such that ind (T − λI ) < 0, then T /∈ (QT). Shortly thereafter, Pearcy conjectured
that index was the only obstruction to membership in (QT). He would eventually be
proven correct by Apostol et al. [3] (see also [17]).

The relevance of quasitriangularity to Halmos’ seventh problem is that every nilpo-
tent operator is quasitriangular, and that the set (QT) of quasitriangular operators is
norm-closed. Furthermore, the set Nil(B(H)) of nilpotent operators in B(H) is self-
adjoint, and as a consequence we see that if T ∈ Nil(B(H)), then ind(T − λ) = 0
whenever T − λI is semi-Fredholm.

Two other necessary conditions formembership inNil(B(H)) arise from the upper-
semicontinuity of the spectrumand the fact that the invertible elements formanopen set
in any unital Banach algebraA; if t ∈ Nil(A) andK�A is any closed, two-sided ideal
ofA, then σA/K(πK(t)) is connected and contains the origin, where πK : A → A/K
denotes the canonical quotient map.

Six years after the question was originally raised by Halmos, as part of a seemingly
infinite series of papers by an uncountable number of authors, Apostol, Foiaş and
Voiculescu [4] proved that the above necessary conditions were also sufficient:

Theorem (Apostol, Foiaş andVoiculescu)Anoperator T ∈ B(H) is a limit of nilpotent
operators if and only if

(i) the spectrum σ(T ) of T is connected and contains the origin;
(ii) the essential spectrum σe(T ) := σB(H)/K(H)(πK(H)(T )) of T is connected and

contains the origin; and
(iii) ind (T −λI ) = 0 for all λ ∈ C for which T −λI is semi-Fredholm; equivalently,

T is biquasitriangular.

One of the key steps along the way to this general solution was earlier provided
by D.A. Herrero [24], who proved that if N ∈ B(H) is a normal operator, then
N ∈ Nil(B(H)) if and only if σ(N ) is connected and contains the origin.

Of course, Halmos’ question makes sense in any Banach algebra, and more specif-
ically in any C∗-algebra, which leads us to ask the following questions. (Since the
only quasinilpotent element of a commutative C∗-algebra is 0, the questions below
are only interesting when A is non-commutative.)

Problem 1 LetA be a C∗-algebra. Characterise the norm-closure of the setNil(A) of
nilpotent elements of A.

It is to be expected that the solution to the problem will depend upon the nature
of the C∗-algebra in question, meaning that it is in effect a collection of questions.
As always, specific examples worth investigation might include UHF C∗-algebras,
simple AF C∗-algebras, the Cuntz algebras On , etc..
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Naturally, Halmos’ original question also makes sense in this context.

Problem 1.1 Let A be a C∗-algebra, and q ∈ A be quasinilpotent. Is q a limit of
nilpotent elements of A?

Phrased differently: does there exist a C∗-algebra A and a quasinilpotent element
q ∈ A that is not a limit of nilpotent elements of A? If so, can we characterise the
C∗-algebras for which this can happen?

In the hope that Herrero’s characterisation of normal operators lying in the closure
ofNil(B(H)) has an extension to the C∗-algebra setting which proves as useful as the
original result did in the Hilbert space setting, we are led to ask the following.

Problem 1.2 Let A be a C∗-algebra. Characterise the normal elements of A which lie
in the closure of Nil(A).

The presence of a (faithful) tracial state τ acting on theC∗-algebra makes life more
interesting, and potentially more difficult. For example, if N ∈ B(H) is an hermitian
operator whose spectrum is [0, 1], then N ∈ Nil(B(H)) by Herrero’s result. If A
is a UHF C∗-algebra with tracial state τ , for example, and h = h∗ ∈ A satisfies
σ(h) = [0, 1], then – by the faithfulness of the trace – τ(h) > 0, and so (by the
continuity of τ ) we find that h /∈ Nil(A). It gets worse. If h = h∗, σ(h) = [−1, 1]
and even if τ(h) = 0, then σ(h2) = [0, 1], and so h2 /∈ Nil(A), from which we again
conclude that h /∈ Nil(A). More generally, if p ∈ C[z] is a polynomials satisfying
p(0) = 0 and if n ∈ A is normal, then τ(p(n)) �= 0 implies that p(n) /∈ Nil(A),
whence n /∈ Nil(A).

ByGelfandTheory, the trace τ onA corresponds to a positive, regularBorelmeasure
μτ on C∗(n) � C(σ (n)), in that for all f ∈ C(σ (n)),

τ( f (n)) =
∫

σ(n)

f (z)dμτ .

In effect, the question may be measure-theoretic in that we are looking for measures
on σ(n) which annihilate the polynomials which vanish at zero. This may not be the
only property of the measure we require, but it does suggest that perhaps (an analogue
of) a certain theorem of F. Riesz and M. Riesz [26] may have a role to play here. The
interested reader should also see the paper of Skoufranis [45, Question 5.9].

Our next question is the restriction of the previous question to a specificC∗-algebra,
but may prove to be the litmus test for any conjectures for more general C∗-algebras
equipped with one or more tracial states.

Problem 1.3 Let A be a simple, unital AF C∗-algebra with a unique tracial state.
Characterise the normal elements of A which lie in closure of Nil(A).

Paul Skoufranis [46, Theorem 3.5] has shown that there exists a non-simple, AF-
embeddable C∗-algebra A such that Nil(A) contains a positive element. Of course,
such a C∗-algebra fails to admit a faithful tracial state.

At the other end of the spectrum (metaphorically speaking) are C∗-algebras which
do not admit a trace. Again, we refer the reader to the same very interesting paper of
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Skoufranis [46] who proved (Theorem 2.6 of that paper) that ifA is unital, simple and
purely infinite, then a normal element n ∈ A is a limit of nilpotent elements ofA if and
only if σ(n) is connected and contains the origin, and λ1A − n lies in the connected
component of the identity in the set of invertible elements ofA for all λ ∈ C\σ(n). The
latter condition may be viewed as the C∗-analogue of the index obstruction observed
in the B(H) setting.

Theremay prove to bemore “room” towork in the setting of vonNeumann algebras.
Again, we refer to Skoufranis [45] for more information here. It would be interesting
to know the answers to the following subquestions.

Problem 1.4 (a) Let M be a type II1 factor. Characterise the set Nil(M), as well as
the set of normal elements of that set.

(b) Let N be a type II∞ factor. Characterise the set Nil(M), as well as the set of
normal elements of that set.

2 Algebraic Elements of C∗-algebras

As mentioned above, the notion of biquasitriangularity plays a pivotal role in the
characterisation of the closure of the set of nilpotent operators in B(H). The char-
acterisation of biquasitriangularity in terms of index provides a simple and effective
way of determining whether or not a given operator lies in the set (BQT). There is,
however, a third characterisation, due to Voiculescu [49], which is easily expressed
in a more general setting. We shall say that an element a of a Banach algebra A is
algebraic if there exists a non-zero polynomial p such that p(a) = 0. We denote by
Alg(A) the set of algebraic elements of A.

Theorem (Voiculescu) Let H be an infinite-dimensional, complex, separable Hilbert
space. An operator T ∈ B(H) is biquasitriangular if and only if T is a limit of
algebraic operators.

This invites the question:

Problem 2 Let A be a unital C∗-algebra. Characterise the closure of the set Alg(A)

of algebraic elements of A.

Let T ∈ B(H) be arbitrary, and let N ∈ B(H) be a normal operator such that
σ(N ) = σe(N ) = σ(T ). It is not hard to verify that the semi-Fredholm domain of N⊕
T is exactly the common resolvent ρ(T ) = ρ(N ) of T and N , and as a consequence,
(N ⊕ T ) − λI is invertible (and thus has index zero) for all λ ∈ ρsF (N ⊕ T ). In
other words, N ⊕ T ∈ (BQT). By Voiculescu’s Theorem above, N ⊕ T is a limit of
algebraic operators.

Problem 2.1 Let A be a simple, unital C∗-algebra. Suppose that t, n ∈ A, n is normal
and σ(n) ⊇ σ(t). Is t ⊕ n a limit of algebraic elements inM2(A) (or, given k ≥ 3 and
a normal element m ∈ Mk−1(A), is t ⊕ m a limit of algebraic elements inMk(A))?

(In the case where A is not simple, one may have to modify the above question
to ensure that the spectrum of n should agree with the spectrum of its image in any
quotient of A modulo a maximal ideal.)
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3 Commutators in C∗-algebras

IfA is any algebra and a, b ∈ A, we shall refer to [a, b] := ab−ba as the commutator
of a and b. We denote the set of all commutators of elements ofA by C(A) := {[a, b] :
a, b ∈ A}.

Let n ∈ N. It is a standard Theorem of Shoda [43] (see also [1]) that

C(Mn(C)) = {T ∈ Mn(C) : Tr(T ) = 0}.

Of course, Mn(C) � B(Cn). Let H be an infinite-dimensional, separable Hilbert
space. We recall the following remarkable extension of Shoda’s result by Brown and
Pearcy [6].

Theorem (Brown and Pearcy) If H is infinite-dimensional, separable Hilbert space.
Then

C(B(H)) := {T ∈ B(H) : T /∈ {α I + K : 0 �= α ∈ C, K ∈ K(H)}}.

Once again, the necessity of this condition is relatively simple to demonstrate. A
standard result in Banach algebra theory states that if A is a unital Banach algebra
and x, y ∈ A, then σ(xy) ∪ {0} = σ(yx) ∪ {0}. Using this, we see that the equation
xy − yx = α1 implies that σ(xy) = α + σ(yx), which contradicts the compactness
of the spectrum of σ(xy) if α �= 0.

In particular, if T ∈ C(B(H)) and π : B(H) → B(H)/K(H) is the quotient map,
then π(T ) �= α π(I ) for any α �= 0, which implies that T /∈ {α I + K : 0 �= α ∈
C, K ∈ K(H)}. All of the work of Brown and Pearcy therefore goes into proving the
sufficiency of this condition.

Problem 3 Let A be a C∗-algebra. Characterise C(A) := {[a, b] : a, b ∈ A}.
We stake no claim to authorship of this question, as it has been examined by a

number of people in various specific C∗-algebras and algebras of (Hilbert and Banach
space) operators. For example, Dykema and Skripka have investigated commutators
in type II1 factors; Dykema, Figiel, Weiss and Wodzicki have done a detailed study of
commutators in operator ideals [18]; and Dykema and Krishnaswamy-Usha [19] have
studied nilpotent compact operators as commutators of compact operators. Recently,
Dosev [10] and Dosev and Johnson [11] have classified commutators in B(�1) and in
B(�∞) respectively (see also the work of Dosev et al. [12]).

Again, there is a dichotomy of strategies depending upon whether or not the algebra
A admits a faithful tracial state τ . If it does, then clearlyC(A) ∈ ker τ . This is the case,
therefore, when A is a UHF C∗-algebra. In that case, ker τ has co-dimension 1, and
it is not hard to show that every element of trace zero in A is a limit of commutators.
(Indeed, if z ∈ ker τ , then z = limn an , where an ∈ An � Mk(n)(C) for some
k(n) ∈ N. The continuity of the trace implies that αn := τ(zn) converges to 0 as n
tends to infinity, and thus an − αn1 ∈ ker τ converges to z.)

Furthemore, we have shown that every element of A is a sum of at most two
commutators [32]. Despite this, the question of characterising the class C(A) has
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eluded us. (That C(A) consists of sums of two commutators in A happens in quite a
few (simple) C∗-algebras. We direct the reader to [32, 33] for further details.) Also,
P.W. Ng has shown that every trace zero element in the reduced C∗-algebra C∗

r (F∞)

of the free group in infinitely many generators is a sum of three commutators [37],
and that every trace zero element of the Jiang-Su algebra is a sum of at most five
commutators [36].

The question of whether or not an operator in a C∗-algebra is a commutator may
be easier to solve for certain specific subclasses of operators. Consider, for example,
the following question.

Problem 3.1 Let A be a C∗-algebra. Which normal (or nilpotent) operators in A are
commutators?

The next question stems from the seminal work of Fack [20] and Thomsen [48]
on spans of commutators in C∗-algebras. Fack showed that if A is a simple, unital
AF C∗-algebra with unique trace (or if A is a simple, unital, infinite C∗-algebra),
then every trace zero element is a sum of no more than 14 commutators in A, while
Thomsen extended Fack’s first theorem to certain unital, simple, homogeneous C∗-
algebras (with a bound on the number of commutators required which depends upon
the covering dimension of the spaces involved). As a consequence of their results, the
linear span of the commutators in the C∗-algebras they consider is closed.

Problem 3.2 Characterise thoseC∗-algebrasA for which the set [A,A] := spanC(A)

is closed.

If T ∈ Mn(C) has trace zero (equivalently, if T ∈ C(Mn(C))), then there exists an
orthonormal basis {ek}nk=1 relative to which the diagonal of the matrix of T is zero;
i.e. 〈T ek, ek〉 = 0, 1 ≤ k ≤ n.

Problem 3.3 Let a ∈ C(A). Does there exist a masaM (which depends upon a) in A
and a conditional expectation ϕ ofA ontoM such that ϕ(a) = 0? IfA admits a unique
tracial state τ and b ∈ A satisfies τ(b) = 0, do such a masa (again, dependent upon
b) and conditional expectation exist? (In this last question, we do not assume that b is
itself a commutator.)

There is an strong connection between commutators, nilpotents, idempotents and
projections in C∗-algebras [33]. For example, using the fact that every trace-zero
element of certain simple, unital C∗-algebras A of real rank zero is a sum of two
commutators in the algebra, we were able to show [32] that every every element of A
is a linear combination of at most 113 projections in A. This estimate has virtually no
chance of being sharp. Can we do better?

In his paper [5], Blackadar introduced several notions of comparability of projec-
tions in simple, unital C∗-algebras possessing a trace. To state our next question, we
require the notion he refers to as the “Fundamental Comparability Question 2”: a
simple, unital C∗-algebra A is said to satisfy FCQ2 if for all projections p, q ∈ A, we
have that p ≺ q if τ(p) < τ(q) for all traces τ on A. As usual, p ≺ q means that
there exists a partial isometry v ∈ A such that p = v∗v, and q − vv∗ > 0.
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Problem 3.4 Let A be a simple, unital C∗-algebra A of real rank zero, satisfying
Blackadar’s FCQ2 and admitting a unique tracial state. Find the minimum positive
integer n such that every element of A may be written as a linear combination of at
most n projections in A.

We digress temporarily to mention that Paskiewicz [38] has shown that every self-
adjoint element of B(H) is a linear combination of at most five projections, from
which it trivially follows that every T ∈ B(H) is a linear combination of at most ten.
It would be interesting to know what the minimum number of projections required for
an arbitrary T ∈ B(H) setting really is.

4 Specht’s Theorem in C∗-algebras

Let n ≥ 1. The two most important equivalence relations on B(Cn) � Mn(C) are uni-
tary equivalence and similarity. Of course, two operators A, B ∈ B(Cn) are unitarily
equivalent (and we write A � B), if there exists a unitary operator U ∈ B(Cn) such
that B = U∗AU , while A and B are similar (and we write A ∼ B) if there exists an
invertible operator S ∈ B(Cn) such that B = S−1AS.

A standard and elementary result from linear algebra shows that two matrices
A, B ∈ B(Cn) are similar if and only if they admit the same Jordan canonical form.
Less well known, but equally important, is the following result of Specht [47]:

Theorem (Specht) Two operators A, B ∈ B(Cn) are unitarily equivalent if and only
if

Tr(w(A, A∗)) = Tr(w(B, B∗))

whenever w(x, y) is a word in two non-commuting variables.

We shall refer to the “only if” half of this theorem as “Specht’s trace condition”. It
is interesting to note that Pearcy [39] has shown that one need only consider words of
length at most 2n2.

Observe that the group of unitary operators in B(Cn) is compact, which is easily
seen to imply that the unitary orbit U(T ) := {U∗TU : U ∈ Mn(C) unitary} of an
element T ∈ Mn(C) is closed. If A is a C∗-algebra which admits a tracial state τ , and
w(x, y) is a word in two non-commuting variables, then a routine calculation shows
that

τ(w(a, a∗)) = τ(w(b, b∗))

whenever b belongs to the closure of U(a) := {u∗au : u ∈ A unitary}. In fact, the
notion that b ∈ U(a) defines an equivalence relation on A referred to as approximate
unitary equivalence of a and b, and is denoted by writing a �a b.

In light of this, if one were to try to extend Specht’s Theorem to more general
C∗-algebras A (which admit a tracial state), then the best one could hope for is a
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result along the lines of: a, b ∈ A are approximately unitarily equivalent if and only
if τ(w(a, a∗)) = τ(w(b, b∗)) for all words w(x, y) in two non-commuting variables.

A natural first candidate to consider in extending Specht’s Theorem to the setting
of C∗-algebras is a UHF C∗-algebra. Since any such algebra A = ∪nAn is the norm-
closure of an increasing union of algebras An , each ∗-isomorphic to a full matrix
algebra, it is clear that Specht’s Theorem hold for pairs a, b in the dense subset of
∪nAn of A.

Modulo a technical assumption (required to enable us to use a powerful result due
to Schafhauser [42]), Y. Zhang and the present author [35] obtained a positive answer
in the universal UHF C∗-algebra Q. (The universal UHF C∗-algebra Q is the one
whose supernatural number is divisible by any positive integer.)

Theorem (Marcoux and Zhang) LetQ be the universal UHF C∗-algebra with tracial
state τ , and let a, b ∈ Q. Suppose furthermore that C∗(a) satisfies the universal
coefficient theorem (UCT). Then a and b are approximately unitarily equivalent if
and only if

τ(w(a, a∗)) = τ(w(b, b∗))

whenever w(x, y) is a word in two non-commuting variables.

Perhaps surprisingly, there is a K -theoretic obstruction which prevents this gener-
alisation of Specht’s Theorem from holding in all UHF C∗-algebras. In fact, one can
find a, b in the CAR algebraM2∞ such that C∗(a) and C∗(b) both satisfy the UCT, a
and b satisfy Specht’s trace condition, and yet a and b are not approximately unitarily
equivalent inM2∞ .

Hence we are left with the following question:

Problem 4 Determine necessary and sufficient conditions on aC∗-algebraA admitting
a tracial state τ so that if a, b ∈ A satisfy τ(w(a, a∗)) = τ(w(b, b∗)) for all words
w(x, y) in two non-commuting variables, then a and b are approximately unitarily
equivalent.

If A admits multiple tracial states, we require that Specht’s trace condition should
hold for each of them.

In the case where A is an arbitrary UHF C∗-algebra and a ∈ A is normal, the
hypothesis that C∗(a) satisfies the UCT is automatic, and the K -theoretic obstruction
vanishes. Indeed, if b ∈ A and a, b satisfies Specht’s trace condition, then a �a b.

Problem 4.1 Determine necessary and sufficient conditions on a C∗-algebraA admit-
ting a tracial state τ so that if m, n ∈ A are normal and satisfy τ(w(m,m∗)) =
τ(w(n, n∗)) for all words w(x, y) in two non-commuting variables, then m and n are
approximately unitarily equivalent.

In the paper [34] of Mastnak, Radjavi and the present author, it was shown that two
matrices A and B ∈ Mn(C) are unitarily equivalent if and only if

Tr(|p(A, A∗)|) = Tr(|p(B, B∗)|)
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for all polynomials p in two non-commuting variables. (That absolute values of words
w(x, y) in two non-commuting variables is not sufficient is easily seen by taking
A = In and B any other unitary operator.)

More generally, given aC∗-algebraA and a, b ∈ A, we shall say that a and b satisfy
the approximate absolute value condition (AAVC) if |p(a, a∗)| is approximately uni-
tarily equivalent to |p(b, b∗)| for all polynomials p in two non-commuting variables.
Proposition 4.3 of [35] asserts that if A admits a tracial state and a, b ∈ A satisfy the
AAVC, then a and b satisfy Specht’s tracial condition. In this sense, we may view
the AAVC as an extension of Specht’s tracial condition to C∗-algebras which do not
necessarily admit a tracial state. This allows us to reformulate Problem 3 above to a
much larger class of C∗-algebras:

Problem 4.2 Determine necessary and sufficient conditions on a C∗-algebra A such
that if a, b ∈ A satisfy theAAVC, then a and b are approximately unitarily equivalent.

It is worth noting that two operators A, B ∈ B(H) satisfy the AAVC if and only if
they are approximately unitarily equivalent [35, Theorem 4.7].

Problem 4.3 Determine necessary and sufficient conditions on a C∗-algebraA so that
if a, b ∈ A satisfy the AAVC and a is normal, then a and b are approximately
unitarily equivalent.

We conclude this section by mentioning that the question of extending Specht’s
Theorem to the von Neumann algebra setting has been considered before; for the sake
of brevity, we cite only the papers of Pearcy [39] and of Pearcy and Ringrose [40].

5 Closures of Intermediate Similarity Orbits in C∗-algebras

The monumental task of describing the closure of the similarity orbit S(T ) :=
{R−1T R : R ∈ B(H) invertible} of (virtually) every Hilbert space operator T was
undertaken by (amongst others) Apostol et al. [2], and in that volume they also explore
the characterisation of other sets of operators invariant under similarity conjugation.

The closure of similarity-invariant subsets of B(H) is typically described in terms
of spectral conditions (spectrum, essential spectrum, dimensions of Riesz subspaces,
index), and in the infinite-dimensional setting, is usually far more tractable than a
characterisation of the sets themselves. We are led to the following question.

Problem 5 Let A be a C∗-algebra and a ∈ A. Characterise S(a). More generally, if

 ⊆ A is a set which is invariant under conjugation by similarities, characterise 
.

As in the B(H) setting, this lends itself to a multitude of subproblems.

Problem 5.1 Let A be a unital C∗-algebra. Characterise the norm-closure of each of
the following sets:

(a) Kσ := {a ∈ A : σ(a) = K }, where K ⊆ C is a fixed, non-empty compact set.
(b) C(A) := {[a, b] := ab − ba : a, b ∈ A};
(c) CE(A) := {[e, f ] := e f − f e : e, f ∈ A, e = e2, f = f 2}.
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(d) Neg(A) := {a ∈ A : a ∼ −a}.
(e) SimNor(A) := {a ∈ A : a ∼ n for some normal element n ∈ A}.

The perspicacious reader (hopefully you) will have noticed that there is non-trivial
intersection between this general problem and some of the problems we have men-
tioned earlier. In particular, by choosing Kσ = {0} in part (a), we are looking for
a characterisation of the norm-closure of the quasinilpotent elements of A. The set
CE(A) actually lies in Neg(A), and one question is whether or not their closures are
equal.

Our interest in SimNor(A) stems from the fact that when A = B(H), it is known
[25] that the norm-closures of SimNor(B(H)) and Alg(B(H)) coincide. Is this a
general phenomenon?

In connection with the question of determining the closure of the block-diagonal
nilpotent operators (as first raised by L.R. Williams [51]), Herrero introduced a new
orbit which he referred to as the (U + K)-orbit of T , defined as:

(U + K)(T ) := {R−1T R : R = U + K invertible U ∈ U(H), K ∈ K(H)}.

This provides us with a host of corresponding problems in the C∗-algebra setting.

Problem 5.2 Let A be a unital C∗-algebra and J � A be a closed, two-sided ideal of
A. Given a ∈ A, characterise (U + J )(a), where

(U + J )(a) := {r−1ar : r ∈ A invertible and r = u + j, u ∈ U(A), j ∈ J }.

When J = {0}, we are asking for a characterisation of the closure of the unitary
orbit of a. At the other extreme, when J = A, we are asking for a characterisation of
the closure of the similarity orbit of a. The (U + K)(T )-orbit of T ∈ B(H) has been
characterised in a small number of cases:

• T is normal [21];
• T is the unilateral shift [21];
• T is “shift-like”, meaning that it has the same spectral picture as the shift [31];
• T is an “essentially normal model” [13, 14, 27–29, 52–54].

Each casementioned above consists of essentially normal operators. The decision to
restrict to this class results from the desire to take advantage of the fact that conjugating
by an invertible operator of the form R = U +K in B(H) translates to conjugating by
the unitary π(U ) in the Calkin algebra, and unitary equivalence in the Calkin algebra
is best understood for normal elements there.

This suggests that one might study the question:

Problem 5.3 Let A be a unital C∗-algebra and n ∈ A be normal. Characterise
(U + J )(n).

The work of Skoufranis [44] investigating the norm-closures of unitary and sim-
ilarity orbits of normal operators in purely infinite C∗-algebras is relevant here. For
example, Skoufranis characterises which normal operators sitting in a unital, simple,
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purely infinite C∗-algebra A lie in the norm-closure of the similarity orbit of a second
normal operator in A. Can one extend such a result to the setting of the more general
orbits described above?

While the number of operators T ∈ B(H) forwhich (U + K)(T ) has been classified
is rather small, the evidence nonetheless supports the conjecture that

(U + K)(T ) = S(T ) ∩ U(T ) + K(H).

We finish with the following problem.

Problem 5.4 Let A be a unital C∗-algebra. If J �A is a closed, two-sided ideal of A
and a ∈ A, is

(U + J )(a) = S(a) ∩ U(a) + J ?

We would like to thank the referee for a careful reading of the paper, and for a
number of helpful suggestions.

References

1. Albert, A.A., Muckenhoupt, B.: On matrices of trace zero. Michigan Math. J. 3, 1–3 (1957)
2. Apostol, C., Fialkow, L.A., Herrero, D.A., Voiculescu, D.: Approximation of Hilbert space operators

II, volume 102 of Research Notes in Math. Pitman Advanced Publishing Program, Boston (1984)
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