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Abstract

Over the last ten years, novel Artificial Intelligence (AI) based structure assessment
methods and tools have been proposed to identify and quantify structural damage indica-
tors (e.g., cracking, spalling, corrosion, etc.) from visual data (e.g., images, LiDAR). How-
ever, despite an urgent need for such technology in managing infrastructure, widespread
adoption of these technologies in the field has been quite limited. One of the main obstacles
is the lack of real-time communication and interaction between the human inspectors, on-
and off-site, and the technologies being deployed to support data collection, processing, and
decision-making. This thesis focuses on enabling real-time remote collaborative structural
inspections by integrating on-site inspectors, remote experts (e.g., engineers, stakeholders,
etc.) responsible for making critical decisions, advanced data collection platforms (e.g.,
ground robots, drones, etc.), and AI algorithms that can rapidly interpret data, into an
automated inspection system that supports human-machine collaboration. The motiva-
tion is to solve the technical and scientific challenges that prevent real-time collaboration
between human users (on-site inspectors, remote experts) and machine agents (robots, AI).

This thesis proposes a system called the Smart Infrastructure Metaverse (SIM) to en-
able human users and machine agents to collaborate in real-time by utilizing Mixed Reality
(MR) and Virtual Reality (VR) headsets which enable humans to interact with each other
and with machine agents remotely in an immersive environment. The SIM system in-
tegrates robotic data collection platforms to collect visual data of the site, with critical
guidance from human users on how to collect the best data. The data is then analyzed
in real-time by AI computer vision algorithms that utilize input from the human users to
localize and quantify structural damage. The on-site inspectors and remote experts are
then able to collaborate on reviewing the results in a spatially aware context through an
immersive environment supported by MR/VR technology, and can utilize machine agents
to collect more data from the site and/or re-analyze previous data based on the human
users’ expert judgement.

Several scientific challenges are addressed in this thesis as part of the process of cre-
ating SIM. Each challenge deals with facilitating collaboration between human users and
machine agents for a different component of the SIM system. First, input from the on-site
inspector must be incorporated into the data analysis step to minimize the gap between
data analysis and verification by humans and ensure the high quality of results. The ap-
proach is to utilize human-AI collaboration for quantifying the sizes of structural damage
regions. This is accomplished by integrating an AI-based interactive image segmentation
algorithm with the MR headset which allows for refining the segmentation results inter-
actively through user feedback. Second, accurate spatial alignment between separated
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devices with heterogeneous sensing and processing capabilities (e.g., MR headsets, robots)
is still an open problem that is critical for spatially-aware human-robot collaboration. The
approach utilized was to develop an image-based localization algorithm to spatially align
the MR headset and robot in real-time, which facilitates human-robot collaboration to
enhance the reliability of the data collection process by engaging the MR-equipped human
inspector with the data collection platform. Third, seamless integration of VR users into
SIM is required for distributed collaboration between remote VR users and on-site MR
users. This includes solving the technical challenges related to spatial alignment between
VR and MR users, as well as how VR users can interact with other components of SIM
such as robots and AI. The approach is to utilize panoramic images to allow VR users to
remotely inspect the site, and a novel image-based localization algorithm was developed
to spatially align panoramic images with their real locations on-site. Distributed collab-
oration also includes integrating all of these components into a unified system as part of
SIM, with the goal of enabling on-site and remote inspectors to collaborate with each other
and with robots and AI through MR/VR. Experimental results are presented for evaluat-
ing each component of SIM individually, including lab and field results for evaluating the
accuracy of the proposed systems for MR/VR and robotic implementations.
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Chapter 1

Introduction

1.1 Background

In North America and many regions around the world, vital critical infrastructure that was
built in the 20th century such as bridges, airports, treatment facilities, power plants, etc.
are nearing, or have already reached, the end of their design service life. For example, the
2016 Canadian Infrastructure Report Card estimates the cost of replacing infrastructure in
poor and very poor conditions at $141 billion ($10,000/household) [1]. In the United States
alone, 42% of all bridges were built 50 years ago, and 7.5% are classified as structurally
deficient [2]. The potential failure of engineered structural components which comprise
nearly all such infrastructures poses significantly increased risks to public safety, while
simultaneously exacerbated by the effects of climate change. There is a clear need to
leverage new technologies that can cost-effectively and reliably assess the conditions of
built structures and complement the experience of trained inspectors to evaluate their
state objectively and guide repair and prioritization decisions.

Currently, the most common inspection method is the visual inspection. This method
involves inspectors first surveying the site and visually observing the structure to identify
defects, document their types (e.g., spalling, cracks, corrosion, etc.), and measure their
sizes [3, 4]. However, such manual inspection has certain limitations as structures become
larger, have more complex geometry, and are built in harsher environments. New inspection
guidelines are also beginning to adopt quantitative assessment criteria that require the sizes
of the defects to be measured precisely [5]. Repeatability also suffers due to the qualitative
nature of visual inspections. Multiple assessments of the same structure have been shown to
vary significantly when performed by inspectors with different skill levels or under different
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field conditions [6]. Therefore, the limitations of visual inspection necessitate the shift
to technological solutions to achieve the desired inspection outcomes such as increased
accuracy, safety, and efficiency.

Recent advances in Artificial Intelligence (AI) focused on new vision sensors and sensing
platforms have helped in a technologically driven transformation of visual inspection. The
process of visual inspection using visual data collected and analyzed from advanced sensing
platforms and algorithms is often called vision-based inspection. Over the past several
years, various vision-based inspection techniques have been proposed for assessing civil
infrastructure using image-based methods [7, 8, 9, 10, 11]. Robotic platforms such as
drones and ground robots can remotely collect condition data of structures through vision,
infrared, and LiDAR sensors [12, 13, 14, 15, 16]. Harnessing the power of computer vision
and deep learning algorithms allows automation of interpretation rapidly and reliably to
localize and quantify the size and severity of defects using images [17, 18, 19, 20, 21, 22, 23].

Significant literature exists on the topic of alleviating access through the use of aerial
drones and terrestrial mobile platforms equipped with vision cameras [24, 12, 15, 13, 14].
Similarly, automated detection of damaged areas from large volumes of images using Deep
Convolutional Neural Networks (DCNNs) have also been studied extensively in the con-
text of computer vision applications to this problem [17, 25, 20, 19, 21, 26]. Simultaneous
Localization and Mapping (SLAM) algorithms [27, 28, 29, 30] enable inspectors to recon-
struct digital 3D point cloud models of the environment to localize and quantify damage
in structural elements [31, 32, 33]. However, a majority of these works do not address the
human-machine collaborative aspect.

While vision-based methods for structural inspections have shown significant promise,
several challenges still exist. Much of the research in the field of vision-based inspections
has evolved toward automated processes that aimed at minimizing the intervention of the
human in the loop [34, 35, 36, 37, 38]. However, such autonomous systems are unable to
contextualize information and reason with the environmental data to the same degree as
humans, and they often lack spatial and temporal context when it comes to identifying the
most important regions to the structure’s integrity and health. They could cause uncer-
tain and unreliable inspection results and may produce false positives. For example, under
challenging situations (e.g., poor lighting, shadows, etc.), sensors cannot expect to collect
enough high-quality data to ensure reliable outcomes, and inference from the automated
system alone may be unsatisfactory. Another issue is that not all damage or changes are
meaningful and useful to be considered, and their significance varies depending on their
context including visual appearance, damage history, and locations on structures. Hence,
the meaningful adoption of new technology in visual inspection should involve and take
advantage of domain experts (e.g., inspector, engineer) in both the data collection and
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analysis phases. Thus, the expertise and intelligence of the inspector should be incorpo-
rated into the process by adopting interactive processes (e.g., checking data quality and
refining processed data).

Current research has mainly focused on systems that are unable to leverage the best
parts of human inspectors and data collection capabilities of these platforms. This is where
immersive environments come in, as they form a vital and as yet missing link between
humans and robots to enable collaborative environments for visual inspections. Engaging
human inspector judgment during the inspection process via Mixed Reality (MR) and/or
Virtual Reality (VR) technologies has generated significant interest recently. The idea is to
use immersive visualization capabilities in MR and VR (MR/VR) so that inspection results
or records can be overlaid on a physical/virtual structure. MR headsets enable users to see
and interact with virtual content overlaid and blended on the real scene as holograms. On
the other hand, a VR headset immerses users in a fully virtual environment. The concept
of multiple MR/VR users interacting synchronously together and/or with machine agents
within a 3D virtual environment, often referred to as the Metaverse, has been actively
researched recently [39]. Beyond traditional 1D and 2D communication modes such as
voice and video calls, the metaverse can provide users with immersive 3D awareness and
co-presence. These features have gained interest from the industry for engaging remote
experts for collaboration and training [40, 41, 42, 43, 44]. The term “Industrial Metaverse”
was coined in the literature to define a metaverse where industrial/built environments (e.g.,
facilities, bridges, construction sites, etc.) are digitally reconstructed in virtual space so
that users and experts can better collaborate to solve real-world industrial problems both
remotely and on-site [45].

Such technological developments can be adopted in the field of vision-based inspections
for aiding on-site inspectors by improving documentation, facilitating communication with
remote domain experts to improve the quality of results, reducing the barrier of entry to
interacting with robots and AI, and assisting with training new inspectors. This thesis aims
to address these crucial aspects by integrating superior data collection, spatial mapping,
and human-informed computer vision algorithms so that a human-machine collaborative
inspection system can be established.

1.2 Objective and contribution

The primary contribution of this thesis is the development of the Smart Infrastructure
Metaverse (SIM) system to engage inspectors/engineers, data collection robots, and AI
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in visual inspection tasks by facilitating collaboration through immersive virtual environ-
ments supported by MR/VR. MR headsets enable on-site inspectors to see and interact
with digital information (e.g., inspection records) that are overlaid on the physical scene.
On the other hand, VR headsets immerse the remote users in a virtual environment repli-
cating the real scene. They can see the real scene using registered photos and perform
the same inspection alongside the MR inspector. Robotic data collection platforms such
as ground robots and drones are integrated into this system by allowing the on-site and
remote inspectors to supervise the collection of high-quality data (images, LiDAR) using
MR/VR. The large volume of the data gathered by the robots’ equipped sensors is then
analyzed using vision-based AI algorithms that rely on inputs provided by the MR/VR
users to obtain high-quality results. This human-in-the-loop AI approach for analyzing
data is deployed to overcome the limitations of fully automated vision-based algorithms
and improve the reliability of inspection results. Fig. 1.1 shows a network diagram of
the SIM system, which includes all of the components (MR/VR users, robots, AI server)
interacting and collaborating with each other.

Figure 1.1: Network diagram for the SIM collaborative inspection system.

The novelty of the SIM system is that it combines and integrates many of the inspection
steps such as data collection, processing, and decision-making into a single real-time process
which is distributed across human inspectors and powered by machine agents (robots,
AI) who perform rapid data collection and analysis. Thus, bridging the existing spatial-
temporal gaps in the inspection process and providing a new way of inspecting structures.
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SIM solves the issues with existing inspection workflows which are mostly asynchronous
and are often not trustworthy. For example, in existing workflows remote experts can
review the data (e.g., videos or images) collected by other on-site inspectors only after the
data has already been collected. Therefore, they do not have the option to observe any
regions that were potentially not captured, or were captured poorly, by the inspector during
data collection. Processing of the data also happens asynchronously, so the issues in data
collection could only be noticed much later after data collection. On the other hand, SIM
allows real-time communication between on-site inspectors and remote experts
who can check that the data was collected properly and can collaborate with
robots to gather high-quality data to reduce inspection time. Collaboration
between humans and AI also ensures that data collection and analysis are
integrated into a single synchronous on-site process so that human experts are
able to determine if they need to collect more data and reduce unnecessary
revisits to the site. Such new modes of interaction between humans and machines
provide more seamless informative engagement and collaboration during infrastructure
inspections.

This thesis also introduces methodological contributions based on the algorithms that
were developed as part of creating SIM, which are the following:

(i) A novel procedure was devised and deployed to create an interactive visual inspec-
tion system by involving the expert user to obtain and refine real-time quantitative
damage measurements. This is done by taking the 2D boundary of the binary mask
produced by the interactive segmentation algorithm and spatially matching 2D im-
age pixels to the 3D scene using a ray-casting algorithm, followed by estimating the
physical size of the damage.

(ii) A novel image-based localization algorithm called Single-Shot Localization (SSL)
was developed to spatially align perspective images without requiring a pre-built
3D map. SSL can work on locally consistent sub-maps, thereby enabling real-time
spatial alignment between data collection robots and MR-assisted human inspectors
to maximize collaboration and reduce inspection time.

(iii) A novel image-based localization algorithm called Multi-Shot Localization (MSL) was
developed to spatially align panoramic images in a 3D pre-built map to provide an
all-around view of the infrastructure site to the VR users. MSL can be used to localize
an image from any camera model (pinhole, panorama, etc.), and can be used with
standard learning-based features detectors and matchers. Thus, providing enhanced
flexibility for many general use applications such as panoramic image localization.
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1.3 Scope of work

In this thesis, several algorithms and methods were developed and incorporated to support
the SIM inspection system. These techniques fall under the larger umbrella of human-
machine collaboration and can be divided into human-AI collaboration, human-robot col-
laboration, and distributed collaboration. Various configurations and interaction methods
between humans and machine agents were developed as new contributions to the litera-
ture. These include collaboration between MR/VR users and AI, collaboration between
MR/VR users and robots, and collaboration between multiple remote MR/VR users, as
outlined in Table 1.1. The scope of the completed works includes the tasks of developing
these methods/algorithms, experimentally validating them, and integrating them into the
unified SIM system.

Table 1.1: A summary of human-machine collaboration types studied in this thesis.

For human-AI collaboration, covered in Chapter 3, a novel damage quantification
method using MR and interactive image segmentation was developed to improve the qual-
ity of results obtained from automated defect segmentation algorithms [46]. The proposed
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system improves analysis results by leveraging human input in MR for interactive seg-
mentation. The system’s performance of was experimentally demonstrated by measuring
surface structural damage of an in-service concrete bridge. The proposed human-AI sys-
tem underscores the advantages of real-time interaction between expert users and the MR
device through immersive visualization to obtain better inspection outcomes in terms of
accuracy and robustness.

For human-robot collaboration, covered in Chapter 4, the proposed system developed
enables on-site inspectors to collaborate with data collection robots by automatically vi-
sualizing the results of defects captured by the robot in MR [47]. The proposed system
improves the quality of the data by ensuring that all defects are captured during the data
collection session through real-time human supervision. A technique called SSL was devel-
oped to create spatial anchors for real-time spatial alignment between the robot and the
MR headset. A method was also developed for MR-equipped inspectors to control robots
using the MR interface without requiring expert knowledge of how to control the robot.
An experimental study was conducted in a lab environment to demonstrate the proposed
human-robot system using a MR headset and a robot. Several fiducial markers were used
to simulate structural damage for the robot to scan along a predefined inspection path.
Then, regions of interest are successfully anchored to the real scene and visualized through
the MR headset to measure the accuracy of the spatial alignment.

In Chapter 5, a distributed collaborative system was developed to enable multiple on-
site MR-equipped inspectors to collaborate with remote VR-equipped experts, allowing
multiple users to leverage co-presence for spatially aware collaboration and improve in-
spection outcomes. Distributed collaboration also enables all of the previously proposed
components of SIM to work together because it allows VR users to leverage the support of
robots and AI. A novel algorithm called MSL was developed for localizing 360° panoramic
images and aligning them with a pre-built 3D map to facilitate co-presence between MR
and VR users and allow VR users to collaborate with robots and AI. Panoramic images
are also utilized for allowing VR users to control robots remotely, as well as leveraging
the power of AI for interactive image segmentation to support synchronous data collec-
tion and analysis. An experimental study was performed to demonstrate the feasibility of
the distributed collaborative system for remote MR/VR collaboration by testing it on a
railroad bridge where two on-site MR inspectors and one remote VR inspector perform a
visual inspection. The accuracy of MSL for panoramic image localization was evaluated
to confirm its viability for remote collaboration.
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Chapter 2

Literature Review

2.1 Autonomous vision-based inspections

Much of the research in the vision-based inspection field has focused on creating au-
tonomous robotic platforms (e.g., ground robots, drones) that can navigate and scan struc-
tures to locate structural defects with minimal intervention from human inspectors. These
workflows often start with the inspector planning a route for the robot to collect visual
data that maximizes coverage of the site, then the robot navigates this route using path-
planning algorithms. The most common approach is for the inspector to plan the data
collection mission using aerial or satellite images of the site [48]. However, this approach
cannot account for complex geometries of the structure which may require navigation in
the vertical direction [49]. GPS-based path-planning algorithms also cannot work in areas
with limited coverage such as under bridges, but this issue could be mitigated through
SLAM-based path-planning if the robot can be localized to an existing 3D map of the
site [36]. After collecting the data, a 3D map is reconstructed from images and/or LiDAR,
and automated detection algorithms are applied to the images to localize defects on the
structure. To account for false positives in the detection results, a common approach is
for the inspector to perform a “virtual walk” of the reconstructed site to verify the defect
detection results [50]. However, this approach cannot deal with incomplete data in cases
where the robot did not scan the entire site, or if the quality of the data is insufficient,
which may require multiple iterations of data collection sessions. The introduction of im-
mersive environments promises to reduce the gap between automated data collection and
human data verification by combining the two steps to allow inspectors to better reason
with environmental data captured in real-time from robots.
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2.2 MR/VR technology

The term eXtended Reality (XR) encompasses Augmented Reality (AR), VR, and MR [51].
AR enables the visualization of virtual objects on video streams of real scenes and is widely
used in handheld digital devices such as smartphones or tablets. However, interactivity
between virtual objects, users, and the physical scene is limited because, in most cases,
these devices do not have a depth perspective, and thus they cannot create a detailed
spatial map of the real scene. Users also have no way to directly interact with 3D virtual
objects, since most interactions in AR are often mediated through 2D touch screens. On
the other hand, VR fully supports interactive environments between virtual objects and
users through controllers or hand gestures, but this can only run in the virtual world
and there is no interaction with the real-world scene. MR combines key elements of AR
and VR to let users see and interact with virtual objects that are overlaid on the real
environment and can enable immersive visualization of information as well as human-
machine interaction [52, 53]. A key component of MR is the ability to digitize the user’s
environment by creating a spatial map of the scene to facilitate interaction between real
and virtual objects and to replicate immersive visual effects such as occlusion or collision
between virtual objects and the real scene. Examples of MR devices that are currently
available include Microsoft’s HoloLens 1 (HL1), HoloLens 2 (HL2), Magic Leap 2, and
Varjo XR-3. On the other hand, commercial VR devices include Oculus Quest 2, HTC
Vive Pro 2, and Varjo VR-3.

2.3 MR for vision-based inspections

MR technologies have seen applications in medical, construction, manufacturing, educa-
tion, entertainment, aerospace, and other fields [54, 55, 56, 57]. However, their use in
vision-based infrastructure inspection and structural health monitoring is relatively lim-
ited. In one of the early works on the subject, AR was proposed for the rapid assessment
of earthquake-induced building damage [58]. AR was also studied as a means to annotate,
organize and visualize images and metadata during inspections here [59]. Another research
work [60] demonstrated the application of Microsoft’s HL1 for bridge inspections by allow-
ing users to measure physical distances between any two points on the structure. The HL1
headset has also been used to develop a human-infrastructure interface for inspectors to
visualize and interact with real-time data received from low-cost smart sensors mounted
on structures [61]. In a related work, a framework for MR enabled inspection system us-
ing AR/MR devices was recently presented in [62]. Their system can detect and segment
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damage using a semi-supervised SegNet-based DCNN.

However, all of the previously discussed studies did not harness the spatial mapping
or 3D sensing capabilities of MR devices for quantitative evaluation. This is because MR
devices such as the HL2 or Magic Leap typically have limited spatial mapping capability
due to the short range of their depth sensors (<5m). This issue limits their effectiveness
for the localization of damages in the real scene beyond this short range, which can limit
the potential usage of MR devices in the actual inspection process.

2.4 MR for human-robot collaboration

To address the limitations of using MR headsets for visual inspections, there have been
attempts to integrate external sensing platforms equipped with mobile robots for data col-
lection. These sensors complement the MR headsets to increase their sensing capabilities.
Thus, human-robot collaboration between the MR inspector and the data collection robot
is investigated in the literature.

A human-infrastructure interface was developed to allow inspectors to visualize and in-
teract with real-time data received from low-cost smart sensors attached to structures [61].
The data received from the embedded sensors are then localized to the user’s environment
using QR codes on physical assets. However, such fiducial markers are often not practical
because they require manual setup and can be damaged over time. Thus, marker-less pose
estimation and spatial alignment techniques have been proposed to enable MR headsets to
be localized relative to prior 3D maps generated by external sensors. A joint point cloud
registration/image-based localization technique was proposed to allow a HL2 headset to
be localized relative to a prior 3D map generated by a terrestrial laser scanner, which
uses visual and depth data generated from the HL2’s onboard sensors for localization [63].
This technique allows data annotated in the 3D map to be visualized to the HL2 user by
localizing the HL2 headset to the 3D map, and then projecting the positional data in the
HL2 headset’s camera frame.

However, these technique, as well as other state-of-the-art image-based localization
techniques found in the literature, require that the prior 3D map be globally consistent
and complete before the MR headset’s position can be localized relative to the map, which
limits the applicability of these methods for real-time applications where mapping and
spatial alignment must be performed simultaneously [64, 65, 66, 67]. Thus, the inspector
must wait until the 3D scanning procedure is complete before visualizing any detected ROIs
on the structure, and thus, with this system, real-time collaboration is limited because
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localization cannot be performed synchronously during data collection. Such processes
incur a long delay in the interaction between the robot and the MR headset and cannot
support real-time supervision of data collection through MR.

2.5 Distributed collaboration through MR/VR

Another component to build SIM is distributed collaboration between multiple MR/VR
users to engage remote experts in the inspection process in real-time. Thus, studies that
discuss multi-user VR and MR collaboration are investigated in this section.

In the initial phases of XR technology, research focused on using VR headsets to en-
able multiple users to collaborate together in a shared virtual environment [68, 69]. The
virtual environment could be based on either BIM models or 3D maps reconstructed using
Structure-from-Motion (SfM) or LiDAR scans of the real sites, so that they resemble the
as-built states of the site [70, 71, 72, 73]. VR-based collaboration is the first logical step
of creating the metaverse since it does not require the implementation of a spatial align-
ment algorithm to align the coordinate systems of multiple users. However, a VR-based
metaverse cannot allow users to be on-site because VR headsets completely block out the
real world. Thus, to facilitate collaboration between on-site and remote users, on-site users
equipped with MR headsets must be incorporated into the metaverse.

The next step was to incorporate the remote VR users with on-site MR users by using
a front-facing camera carried by the MR user. The MR user attaches the camera to
their MR headset which captures images or videos that are streamed to the VR user in
real-time [74, 75, 76, 77, 78, 79]. The VR user can then visualize the on-site physical
environment and collaborate with the MR user. However, using a camera that is fixed to
the MR headset means that the VR user can only see what the MR user is seeing and
cannot independently look in any other directions. Thus, another approach was to use a
panoramic camera to capture a 360◦view of the scene, which allows the VR user to look at
other directions that the MR user may not be currently looking at [80, 81, 82]. However,
both of these approaches require manual spatial alignment of the camera so that it is fixed
to MR headset. Strictly speaking, this application is to utilize the MR headset as a mobile
head mount display, and does not leverage real-time pose estimation in MR. This limitation
does not allow the VR user any freedom to move around the scene or away from the MR
user and can only support one MR and one VR users in the same session.

To fix this issue, another approach was combining the panoramic camera and a pre-
built 3D map to allow the VR user to be able to move around the reconstructed scene [83].
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A 6 DOF motion tracker was attached to the panoramic camera to track its pose, which
automatically performs the spatial alignment between the MR headset, panoramic camera,
and VR user [84]. However, motion trackers require extensive setup and have a limited
range, which is not suitable for outdoor applications [85]. All of the previously mentioned
approaches have also not been demonstrated to support multiple MR and/or multiple
VR users. So, if multiple MR users are present on-site, then spatial alignment between
the multiple MR users must also be considered. Unfortunately, spatially aligned MR-
based collaboration is much more technically challenging to implement than just VR-based
collaboration, since all MR users must be spatially aligned relative to each other so that
they are all using the same coordinate system relative to the physical environment. Early
forms of MR-based collaboration did not incorporate spatial alignment, which greatly
limited their utility [86].

However, spatial alignment is necessary for MR-based collaboration so that all anno-
tations are anchored to the same location in the physical environment and all MR users
can visualize them in the same location. The most common method to perform spatial
alignment is to use QR or ArUco markers that are viewed by all the MR headsets’ on-
board cameras, which is then used to calculate the pose of each MR headset relative to the
physical environment. Markers have been demonstrated to work well for MR-based collab-
oration in small indoor environments such as building facilities or medical settings [87, 88].
However, markers are not practical for larger environments, since many markers would
have to be placed in the scene to avoid drift, and is not practical for civil engineering
structures such as bridges. Markers would also not be useful for spatially aligning MR
headsets relative to pre-built 3D maps since they cannot be placed on the structure for
long periods because they might get damaged.

To address these issues, non-marker-based localization techniques have been proposed
which utilize natural visual features in the scene [89]. An example is Microsoft’s Azure
Spatial Anchors (ASA). ASA allows users to create anchors that automatically encode
visual and spatial data from a physical space into a set of 2D feature points [90]. The
anchor can be shared with multiple devices to track their poses by registering images cap-
tured from the headsets’ cameras. ASA has been utilized in multiple studies for multi-user
MR/VR collaboration because it supports cross-platform compatibility and ease of devel-
opment [91]. While the technical details of ASA have not been disclosed, the available
information suggests that ASA relies entirely on visual features extracted from 2D images
for spatial alignment. This approach functions effectively in small-scale indoor environ-
ments where conditions are largely static and unaffected by lighting alterations due to
weather or the time of day. However, when it comes to outdoor applications, 2D feature-
based spatial alignment is not sufficient to provide robust and precise localization. Hence,
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the development and integration of a more sophisticated spatial alignment strategy into
the system are essential for broader, outdoor applications, which are the proposed target
applications.

2.6 Gaps

Several gaps were identified in the literature review. There have been very few studies
that have tried to embrace the individual strengths of automated systems and humans
into a unified system which can deal with complex tasks and under situations where each
one on their own cannot solve. First, the previous MR-based methods for performing
vision-based inspections do not utilize a framework for incorporating input from the user
to modify/improve analysis results. Thus, they are not able to quantify the sizes of defects
accurately, especially for classes of defects that have insufficient training data. MR headsets
provide the opportunity for visualizing and interacting with results in real time, which must
be utilized in the proposed SIM system for human-AI collaboration.

The methods investigated in the literature also were not able to effectively integrate
external sensors with MR headsets because of the difficulty of the spatial alignment prob-
lem. The spatial alignment techniques presented in the literature to align MR headsets
and external sensors have been shown to be impractical due to the inadequacy of fidu-
cial markers in civil engineering environments, or because of algorithmic limitations that
prevent real-time use cases. Therefore, these spatial alignment issues prevent effective
collaboration between MR users and robots equipped with external sensors. Thus, the
proposed SIM system must utilize a marker-less spatial alignment method that overcomes
these limitations through image-based localization.

Unfortunately, there is also limited work in the literature on spatially aware MR/VR
collaboration, since spatially aligned MR/VR-based collaboration is more technically chal-
lenging than VR-based collaboration. The works discussed in the literature utilize either
motion trackers or physical markers to perform spatial alignment between MR and VR
users, which have only been demonstrated to work in small indoor spaces or outdoor spaces
under ideal conditions. Thus, none of the existing approaches are feasible for aligning mul-
tiple MR/VR users in large outdoor spaces often found in civil engineering structures.

The contributions of this thesis address each of the previously stated gaps, with the
goal of supporting human-machine collaboration by relying on the individual strengths
of each component in the SIM system. First, interactive image segmentation through
MR is proposed for improving analysis results through human-AI collaboration. Second,
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spatial integration of multiple external sensors and headsets for human-robot collaboration
is enabled by the proposed image-based SSL algorithm. Third, spatially aware MR/VR
collaboration is enabled through 360° panoramic images that allow the VR user view the
site remotely and facilitate co-presence between MR and VR users. The MSL algorithm was
developed for localizing 360° panoramic images to facilitate spatially-aware collaboration
between MR/VR users.
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Chapter 3

Interactive Defect Quantification
Through Mixed Reality

3.1 Overview

In this chapter, a novel real-time visual interactive inspection system is proposed as a
component of SIM, which can detect and measure the area of surface damage enabled
through MR (HL2), called eXtended Reality-based Inspection and Visualization (XRIV).
This chapter presents a summarized version of the work submitted to a journal paper [46].
Throughout this chapter the terms XR and MR will be used interchangeably. This is
because the technique developed here is applicable for both MR and VR headsets. This
chapter will focus mainly on its implementation in MR, while Chapter 5 discusses its VR
implementation briefly.

3.2 Approach and contribution

XRIV allows inspectors to capture images of a structure, detect visual damage on a surface,
estimate its area, and then visualize them as holographic objects overlaid on the scene.
Data collection and analysis are integrated into a single synchronous on-site process. A
DCNN-based interactive segmentation algorithm called feature Back-propagating Refine-
ment Scheme (f-BRS) is utilized to segment the damage region on an image and refine
the results interactively through user feedback. Once the damage region is segmented
interactively, the 3D world coordinates of this region’s boundary are estimated through
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back-projection using the pose of the camera and the spatial map created by the device,
followed by area estimation.

The main novelty of this work is to show how discrete hardware and software compo-
nents within XR, and advanced computer vision algorithms such as interactive segmenta-
tion, are customized and integrated into a single, end-to-end workflow to create an inter-
active visual inspection system by involving the expert user to obtain and refine real-time
quantitative damage measurements. Integration toward enhancing interactivity between
users and the system results in more accurate and efficient visual inspection in the field.
Also, a novel procedure was devised and deployed to spatially match 2D image pixels to
the 3D scene using a ray-casting algorithm, followed by estimating the physical size of the
damage. Fig. 3.1a shows the user’s point-of-view when using XRIV implemented on HL2,
while Fig. 3.1b shows the same scene from a third-person view through a two-way interface
on a connected Android smartphone.

(a) (b)

Figure 3.1: The proposed XRIV system for damage area measurement enabled through the
HoloLens 2. Image (a) was captured using the HoloLens 2, while image (b) was captured
using Spectator View.

3.3 Interactive Segmentation

Most vision-based methods for detecting and quantifying damage have utilized automated
DCNN-based methods to classify images when damage may be present [17, 25, 26], or to
perform automatic pixel-wise segmentation of the damage region [19, 21, 92]. Although the
accuracy of these methods has dramatically improved over the years, there are still some
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challenges. For example, automated algorithms do not provide the user with a direct way to
refine incorrect segmentation results. Any segmentation algorithm, no matter how accurate
it is, will inevitably encounter ambiguous situations where its performance degrades. Even
in routine settings, the boundary of damage is not always clear and varies depending on how
damage is defined (e.g., concrete flaking vs. spalling). In such cases, human judgment and
expertise can significantly improve the outcome and leverage input from users to remove
false detection and to enhance the performance of segmentation algorithms. Therefore,
XRIV leverages a state-of-the-art interactive segmentation algorithm, called f-BRS [93],
to detect and segment damage in images captured using an XR headset. The proposed
XRIV framework utilizes the holographic user interface and f-BRS to enable inspectors to
be involved in the detection and segmentation process by being able to correct inaccurate
results with minimal user interaction.

DCNN-based interactive segmentation algorithms fall under the umbrella of semi-
supervised learning, which are machine learning algorithms that use a combination of
labelled and unlabelled data for training or to perform predictions [94]. With prior train-
ing on unlabelled data, and with some limited labelling provided by the user, interactive
segmentation can segment object classes without being trained on those classes. Users first
select multiple points on the image, called seed points, inside (positive) and outside (nega-
tive) a target region of interest [95]. Seed points provide the DCNN with initial conditions
to separate the foreground (damage region in this case) from the background. The seed
points are used to produce positive and negative distance maps that encode information
about where the points were selected and placed on the image. These maps are then con-
catenated to the image array and fed to the DCNN as multi-layered inputs. The output of
the DCNN is a prediction map with confidence values ranging from 0 to 1 for every pixel
in the input image. The confidence values represent the probability of how likely each of
the pixels is included in the foreground, such as structural damage. The prediction map
is then converted to a binary segmentation mask by thresholding the confidence values to
become either 0 or 1.

An issue with DCNN-based interactive segmentation is that user-provided seed points
are not always entirely consistent with output prediction maps. This is because a simple
feed-forward DCNN model uses back-propagation to train the network to minimize overall
segmentation error but does not constrain the prediction map to be consistent with seed
points during the training phase [95]. For example, when the user selects a positive seed
point at a certain location in the foreground of the image, the value of the prediction map
at that location may be slightly less than 1, even though the user is confident that this
location is part of the foreground. These small inconsistencies accumulate and increase the
overall error of the segmentation, resulting in inaccurate boundary detection regardless of
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the number of seed points. A Back-propagating Refinement Scheme (BRS) solves this issue
by running a backward pass through the network for each selected seed point to update the
input distance maps and enforce an additional constraint to make the output prediction
map consistent with the selected seed points’ locations [96]. BRS produces prediction maps
that are consistent with user-selected seed points, producing higher overall accuracy for
segmentation masks with fewer seed points. However, BRS is a computationally expensive
algorithm and may produce significant delay because it requires running a backward pass
through the DCNN for every selected seed point.

To address this issue, f-BRS builds upon the concept of back-propagation refinement
but utilizes backward passes to modify the values of feature maps of selected intermediate
layers instead of modifying the inputs of the network. This means that f-BRS requires
running backward passes from the output of the DCNN to the intermediate layers while
skipping the initial layers for each pass. Thus, f-BRS can achieve the same level of accuracy
as BRS but reduce computational cost per seed point because each backward pass is shorter.
This makes f-BRS ideal for real-time interactive segmentation applications.

The segmentation model in XRIV builds on a pretrained f-BRS model that utilizes a
ResNet-34 backbone pretrained on ImageNet, and a DeepLabV3+ decoder [97] containing
the two intermediate convolutions layers that were trained on the benchmark Semantic
Boundaries Dataset (SBD) [98]. Three f-BRS configurations are considered in this study
(labeled A, B, and C), which differ based on the intermediate layers to which the back-
propagation refinement is applied in the network. f-BRS-A applies the refinement scheme
to the output from the ResNet backbone, f-BRS-B applies it inside the DeepLabV3+
decoder but before the first convolution layer, and f-BRS-C applies it before the second
convolution layer. The performance of each configuration was experimentally compared in
Section 3.5.1.

In addition to the variation in the network configuration, a key difference between the
proposed and the original implementation [93] is in how seed points are used for segmenta-
tion. The original implementation was designed to be used on a static image to allow users
to select one seed at a time by successively placing points on incorrectly segmented regions
to improve the result. However, direct implementation of this process is not suitable for
XR applications because processing each seed point is computationally inefficient, and the
user would need to wait for the previous seed point to be processed before selecting the
next seed point, which can become time-consuming if many seed points need to be selected
to obtain a reasonably accurate result. Instead, the f-BRS algorithm was customized for
real-time implementation in XRIV to allow users to select multiple seed points and then
capture an image for conducting segmentation at once, instead of processing each seed point
individually. This can speed up the process considerably without an associated penalty in
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the accuracy because image segmentation would only need to be run once unless the user
decides to modify the segmentation result.

3.3.1 Spatial Computation

Figure 3.2: Pinhole camera geometry.

A key component of XRIV is spatial computation, which is the process of computing
how points in the 3D world coordinate system are projected to the 2D pixel coordinate
system of the built-in camera and vice versa, as shown in Fig. 3.2. The XR headset’s built-
in camera follows a pinhole camera geometry model and stores a 3× 4 camera projection
matrix (P ) for each image or video. P contains camera intrinsics and the pose of the
camera (obtained from SLAM in the device) synchronized to the time of image capture.
Since the camera parameters are known (provided by the manufacturer), the estimation
is limited to the 6 DOF pose of the camera associated with an image, which includes 3D
translation and rotation parameters. P can then be constructed using a known 3 × 3
camera intrinsic matrix (K), a 3 × 3 camera rotation matrix (R), and a 3 × 1 camera
translation vector (t), as presented in Eq. 3.1.

P = K
[
R t

]
(3.1)
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The 2D pixel coordinates (xs) of points along the boundary of the segmented damage
region on the image plane and the corresponding 3D points (Xs) in the world coordinates
are related through the projective transformation in Eq. 3.2:

xs = PXs (3.2)

Here, the 2D pixel coordinates and 3D world coordinates are represented in the homoge-
neous coordinate system as 3 × 1 vectors (u, v, 1)T and 4 × 1 vectors (x, y, z, 1)T , respec-
tively. This transformation is also used to project the world coordinates of user-selected
seed points (Xp) onto the image plane to obtain their image pixel coordinates (xp).

The projective transformation in Eq. 3.2 allows Xs to be directly mapped to pixel
coordinates on the image plane. However, since P is a non-square non-singular matrix,
inverting this transformation yields non-unique solutions for Xs that correspond to xs.
A unique solution for Xs is obtained through back-projection, where image pixels are
extended into the 3D world coordinates as vectors to determine associations, a process
known as ray-casting. This process is used to anchor points on the spatial mesh of the 3D
environment and to obtain the physical scale of the damage region for area computations.

The details of the ray-casting algorithm implemented in this study are described in
Algorithm 1. With reference to Fig. 3.2, the process of ray-casting locates the intersection
point of the ray extended from the camera optical center (C) from a point on the image
plane with the spatial mesh (Ms) constructed by the XR device. Suppose that the ray has
an origin point at C along a certain ray direction vector (V ) specified by an image point
(x) and with an unknown distance parameter (λ), then the points on the ray (X) can be
represented as a parametric line equation in Eq. 3.3 [99]:

X(λ) = C + λV where V = P+x (3.3)

where P+ is the pseudo-inverse of P . Ms consists of a set of triangles in the world coordi-
nates that are joined along their edges, as seen in Fig. 3.2.

The ray-casting algorithm takes C, V , and Ms as inputs and iterates over every triangle
in Ms to determine an intersection point (Xi) between the ray and each triangle using a
ray-plane intersection equation. Then, each Xi is checked to determine if it lies inside
the triangle using a point-in-triangle test [100]. The point Xi is first converted to 2D
barycentric coordinates (α, β) that indicate where the point is relative to the triangle’s
vertices, denoted as Ai, Bi and Ci. If α, β, and their sum value are between 0 and 1,
then Xi is determined to be inside the triangle, which is the intersection point. However, a
ray can intersect with Ms at multiple points since the real scene of Ms could be complex.
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In order to select a single output intersection point (X) while removing all other points
that are either occluded or behind the camera, the Xi associated with the minimum λ
(λmin) greater than 0 is retained as the output. Therefore, every 2D image point (x) can
be mapped to a unique 3D world coordinates point (X) on Ms using ray-casting.

Algorithm 1 is used to determine the world coordinates of each point along the seg-
mented damage boundary by setting x = xs and X = Xs for every image point of the
boundary. Ray-casting is also used to determine the world coordinates of seed points (Xp)
selected by the user through hand gestures using the XR interface. In this case, V in
Algorithm 1 is determined through hand gesture, while C denotes the world coordinates
of the wrist where the ray is assumed to originate.
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Algorithm 1 Ray-casting
Input

C: Ray origin point (Camera Optical Center)
V : Ray direction unit vector (P+x)
Ms: Set of m triangles in spatial mesh

Output
X: Intersection point between ray and spatial mesh

1: λmin ← empty ▷ Initialize λmin as a placeholder value
2: for triangle i = 1, 2, . . . ,m in Ms do ▷ Iterate over triangle i joined by points Ai, Bi,

Ci with normal Ni

3: λi ←
(C − Ai) ·Ni

V ·Ni

▷ Find λi using ray-plane intersection equation

4: if λi > 0 then ▷ Check if the intersection is in front of the camera
5: Xi ← C + λiV ▷ Assign candidate intersection point Xi

6: v0 ← Ci − Ai

7: v1 ← Bi − Ai

8: v2 ← Xi − Ai

9:

[
α
β

]
←

[
v0 · v0 v1 · v0
v0 · v1 v1 · v1

]−1 [
v2 · v0
v2 · v1

]
▷ Find barycentric coordinates α, β of Xi

on triangle surface
10:

11: if 0 <= α <= 1 and 0 <= β <= 1 and 0 <= α + β <= 1 then ▷ Check if Xi

is inside triangle
12: if λi < λmin then
13: λmin ← λi ▷ Assign λi to λmin if it is the lowest calculated value yet
14: end if
15: end if
16: end if
17: end for
18: X ← C + λminV ▷ Calculate intersection point closest to origin point using λmin

3.3.2 Area Computation

Once the 3D world coordinates of the damage region boundary have been determined,
the physical area of the bounded region is computed. To compute the areas in world
coordinates, the general assumption is that the boundary lies on a planar surface with a
single normal vector (Ns). However, due to the non-flatness of the mesh surface being
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analyzed as well as errors that are present in spatial mesh, the boundary points are not
always placed on the same plane.

To overcome this issue, a best-fit reference plane is first determined by minimizing the
least-squares error of the boundary points. The world coordinates of the boundary (Xs)
are projected onto the reference plane with normal vector Ns to obtain a set of 2D planar
coordinates (ys) using a projective geometric transformation (T ) by making one of three
dimensions as zero. The points are first shifted to the centroid of the region by subtracting
the average of the boundary points (X̄s) before pre-multiplying them by T in Eq. 3.4.
The transformation is constructed by concatenating any two ortho-normal column vectors,
denoted as nu and nv, that lie on the reference plane and are perpendicular to Ns.

ys = T (Xs − X̄s) where T =
[
nu nv

]T
(3.4)

The set of 2D planar boundary coordinates, denoted as ys, describe a closed polygon
joined by k number of points. The area of this polygon (As) is then calculated using the
Shoelace formula [101] in Eq. 3.5, which is used to subdivide the polygon into k triangles
and add up the areas of all of them. For every point (ui, vi) connected to the next point
(ui+1, vi+1) in ys, the area of a triangle connecting both points to the origin is calculated
using a matrix determinant. As is then calculated by summing up the areas of all the
triangles,

As =
1

2

k∑
i=1

∣∣∣∣ui ui+1

vi vi+1

∣∣∣∣ (3.5)

3.4 System Implementation

The implementation schema of XRIV includes component subsystems where tasks are ap-
portioned between the XR device and a computation server to allow for efficient use of
available computing resources to enable real-time analysis. The user input/output inter-
action systems enabled through the XR interface allow users to interact with holographic
objects such as the UI menu (shown in Fig. 3.1) using hand gestures and to visualize the
segmented damage region and its area information through holographic overlays. Spatial
computation using SLAM is executed on the XR device and the remaining heavy compu-
tational tasks including DCNN-based interactive segmentation and area computation are
offloaded to a remote computational server. Here, the computational server can include, for
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Figure 3.3: Real-time XRIV pipeline using XR device and computational server.

example, cloud computing or a physical device such as a smartphone or a mobile computer.
The detailed implementation pipeline of XRIV is described in Fig. 3.3. The interactive
components of XRIV, namely locating damaged regions, the selection of the seed points,
and interactively refining segmentation results to quantify damaged regions are illustrated
in Fig. 3.4.

One of the key inputs for interaction is actualized in the component Input User In-
teraction in Fig. 3.3, namely selecting input seed points to detect damage on structures
using interactive segmentation and to refine their results. First, the user selects positive
and negative seed points from inside and outside the target region, respectively (Step 1
in Fig. 3.4a), to assist the DCNN with separating the foreground (damage region) from
the background. Hand gesture recognition in the XR device allows the user to place the
virtual seed points by interacting with the XR device’s UI features. Upon receiving this
input, the XR device then calculates the 3D world coordinates (Xp) of the seed points
using a ray-casting algorithm, denoted rayCast, to anchor the points to the spatial mesh
(Ms) (Algorithm 1). Then, the user captures an image (I) using the XR device’s built-in
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(a) (b)

(c) (d)

Figure 3.4: XR interface for interactive damage segmentation, demonstrated on the
HoloLens 2: (a) Step 1: select positive and negative seed points inside and outside damage
region, (b) Step 2: apply interactive segmentation algorithm to the captured image, (c)
Step 3: add seed points to refine segmentation results, and (d) Step 4: calculate the area
of the refined segmented region.

camera that must show the full target damage region as well as all the seed points selected,
initiating Step 2 in Fig. 3.4b. The 2D pixel coordinates (xp) in I corresponding to Xp are
then obtained by multiplying Xp by the corresponding projection matrix (P ) (see Eq. 3.2
in Section 3.3.1).

Next, the XR device sends I and xp to the computational server to segment the dam-
age region using the f-BRS segmentation algorithm, denoted as Segment in Fig. 3.3 (Sec-
tion 3.3). Segment takes xp as input seed points to segment I and produces a binary mask
(B) that indicates where the damage is present in I. A topological structural analysis
algorithm, denoted as findContours, is used to extract contours from B to obtain the 2D
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pixel coordinates of the boundary (xs) of the segmented region [102]. The 2D pixel coordi-
nates, xs, of the damage boundary extracted from I are then sent back to the XR device.
Note that the computational offloading of Segment and findContours through the remote
computation server in XRIV enables computationally expensive tasks to be undertaken
in a remote machine rather than on a wearable device with limited computing and power
resources.

The pseudo-inverse P+ calculation and the back-projection of xs as a set of continuous
rays originating from the camera optical center (C) of I are executed on the XR device
(denoted by rayCast in Fig. 3.3) to obtain a set of 3D world coordinates of the damage
region boundary (Xs) corresponding to xs. The XR interface then displays a holographic
overlay of the target damage region and anchors it to Ms (red colored region in Fig. 3.4b).

In User Output Interaction in Fig. 3.3, the user evaluates whether the target damage
region is properly segmented based on the holographic overlay. In some cases, damage
regions might be over-or underestimated such as the one shown in Fig. 3.4b. This compo-
nent allows the user to interactively improve the quality of segmentation, by adding more
positive or negative seed points and then repeating the segmentation process (Step 3 in
Fig. 3.4c). After obtaining a satisfactory segmented damage region, the user presses a but-
ton on the holographic menu (shown in Fig. 3.1) to obtain the physical area (As), which
is mathematically represented as a closed polygon connected by Xs (see Section 3.3.2).
Finally, a holographic text of the physical area of the target damage region is displayed in
the XR interface and anchored to the target damage region (see Step 4 in Fig. 3.4d).
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3.5 Experimental Results

3.5.1 f-BRS Segmentation Evaluation

(a) 2 pairs (b) 5 pairs (c) 7 pairs

Figure 3.5: Sample f-BRS-B damage image segmentation results when area measurement
accuracy is above 80%, for 2, 5, or 7 pairs of positive (inside spalling region) and negative
(outside spalling region) seed points pairs.

To evaluate the performance of f-BRS for damage (spalling) segmentation, different im-
plementations were tested by varying the seed points provided by the user. A total of 91
images of spalling damage were collected from in-service bridges in Southern Ontario and
the boundary of the spalling damage was manually annotated. Three implementations
of f-BRS and the original BRS were first compared. The original f-BRS study uses the
evaluation metric of Intersection-over-Union (IoU) to measure segmentation error between
the predicted and the ground-truth regions [93]. However, since the area measurement
accuracy is a major concern rather than IoU in this study, the evaluation metric chosen
here is the area measurement accuracy, which is defined as the predicted area (AP ) as a
percentage of the ground-truth area (AG).

The first step was to randomly select a pair of positive and negative seed points which
were placed inside and outside the ground-truth region, respectively. With these seed
points, a predicted mask was generated and compared with the ground-truth region to
determine the area measurement accuracy. In the next iteration, the set of positive and
negative seed points were randomly selected in locations that were incorrectly segmented to
generate a more accurate segmentation mask. This process was repeated for up to 12 pairs
of seed points to incrementally refine the segmentation results. Fig. 3.5 presents sample
segmentation results when the area measurement accuracy using f-BRS-B is over 80%. The

27



positive (inside spalling region) and negative (outside spalling region) seed points used for
the segmentation of each image are displayed over the segmentation masks.

The results of the experiment, presented in Fig. 3.6 show the average area measure-
ment accuracy of all damage in images, and are computed depending on the number of seed
points pairs. Overall, all implementations of f-BRS, as well as BRS, can segment spalling-
type damage with 80% accuracy on average if five or more seed point pairs (10 seed points
in total) are selected, which is satisfactory for vision-based inspection applications [4, 3].
Overall, f-BRS-B achieves slightly better accuracy among the f-BRS implementations and

Figure 3.6: Evaluating area measurement accuracy as a function of the number of seed
point pairs used for the segmentation models: f-BRS-A, f-BRS-B, f-BRS-C and BRS.

approaches a similar level of accuracy as BRS. Note that f-BRS was designed to improve
the speed of the segmentation in BRS without significantly sacrificing accuracy. Therefore,
the accuracy of BRS becomes an upper limit for f-BRS. For this experiment—performed
on a computer equipped with a GPU: NVIDIA GeForce RTX 2060—f-BRS-B took ap-
proximately 0.73s on average per seed points pair to segment each image (1296×864 image
resolution) in the dataset, while BRS took 3.32s. This means that f-BRS-B is approxi-
mately 4.5 times faster than BRS while still maintaining a similar level of accuracy, which
conformed to the findings of the original study [93]. This makes f-BRS-B the ideal im-
plementation to choose for XRIV. Although f-BRS was developed to segment any visually
distinct regions and its pretrained models were not trained on images having spalling-type
damage, it can produce a reasonable performance for segmenting defects like spalling while
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maintaining a reasonable computation time. Note that since this experiment was per-
formed using automated seed point selection, the accuracy of segmentation is lower than
if I used human input to correct inaccurate segmentation results.

It should be noted that the number of seed points required depends on the unique
situations, e.g., locations, shapes of damage regions, surface texture variation between
damage and background, and ambiguous damage boundary (e.g., concrete spalling with
flaking). This can be seen in Fig. 3.5. Thus, although I obtain over 80% accuracy using
five pairs of seed points on average in this experiment, the ideal number of seed points
required to obtain a satisfactory accuracy may vary depending on these conditions and the
user’s judgment.

3.5.2 HoloLens 2 Performance Evaluation

HL2, used as the XR device in this study, uses a SLAM algorithm to simultaneously build
a spatial mesh of the user’s environment while localizing the built-in camera’s pose relative
to the spatial mesh in real-time. The spatial computation component of XRIV, outlined in
Section 3.3.1, relies on the XR device’s SLAM system as an input to compute the physical
size of segmented damage regions. Therefore, an experiment was designed and conducted
to evaluate the performance limits of HL2, which is directly related to the performance of
XRIV.

Most of the SLAM algorithms utilize either pure visual feature matching and tracking,
or a fusion of visual features and 3D depth/point cloud information. For a comprehensive
survey of SLAM algorithms, readers are referred to [27, 28, 29, 30] and SLAM applications
for infrastructure [24, 31, 12, 13, 32]. Due to the proprietary nature of HL2, details of the
SLAM algorithm are not available in the public domain or in their documentation.

In general, all SLAM algorithms suffer to some degree from localization and mapping
errors which accumulate over time due to uncertainties in the sensor measurements [103].
Localization error is the error associated with the position of the sensor within the global
map and the mapping error is the error in the map features compared to the real scene. Due
to the tightly coupled nature of SLAM, disambiguation of these two sources of errors can
be challenging and these sources contribute to each other. Hence, both these errors affect
the overall performance of XRIV and in lieu of such previous documentation regarding its
accuracy, a separate experimental validation of HL2’s performance was necessary.

The experiment was designed to evaluate the measurement error of HL2 as a function
of the working distance (distance between the camera and measurement target). Different
scene lighting conditions were also evaluated. Two 12 cm x 12 cm fiducial (ArUco) markers
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with a 15 cm center-to-center distance were attached on indoor (Fig. 3.7a) and outdoor
(Fig. 3.7b) walls to investigate the effect of illumination [104]. The measurements are made
possible using the built-in infrared-based depth sensor (Microsoft Azure Kinect), whose
performance is known to degrade under direct sunlight due to infrared interference [105].

(a) (b)

Figure 3.7: Evaluating the measurement accuracy of HL2 depending on a working distance
under (a) indoor and (b) outdoor setting. Note that fiducial markers are used for automated
detection.

The procedure was to capture images using HL2 at various distances from the wall.
Here, the working distance is defined as the distance between the headset’s built-in camera
and the markers. The markers were positioned on the wall so that they match the same
height as the headset’s camera. Experiments were conducted at working distances ranging
from 0.5 m to 7.5 m (device specifications limit this to a maximum of 10 m). An ArUco
marker detector implemented in OpenCV [104] was applied to each image to detect the four
corners of each marker in the images. The 3D world coordinates of the corner points were
obtained by ray-casting to the spatial mesh, as described in Section 3.3.1, and the center
of each marker was computed from its four corner locations. Finally, the distance between
the center points was computed, and the measurement error was obtained by subtracting
the true distance, 15 cm. The working distance was computed from the average distance
between the camera center (obtained from its camera pose) and the centers of the two
markers. This test was repeated both indoor and outdoor.

Results of 236 trials are shown in Fig. 3.8 as a scatter plot, where each point represents
the distance measurement error at a certain working distance in either indoor or outdoor
lighting conditions. The gray area indicates a 95% confidence interval (computed using a
sliding window with a 2 m working distance).
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Figure 3.8: Scatter plot of distance measurement errors at different working distances
between 0.5 m and 7.5 m under indoor and outdoor scene lighting conditions. Note that
the gray area shows the 95% confidence interval (sliding window = 2 m).

In Fig. 3.8, the graph shows that the average measurement errors and their spread
increase as the working distances increase. I can qualitatively observe that the confidence
interval of the data at the same confidence level widens when the working distance exceeds 3
m. This indicates that the sample variance of the data is dependent on the working distance
and that the data may be heteroskedastic. A Breusch–Pagan test [106] is performed to
check the null hypothesis that variance is independent of working distance. As a result, the
null hypothesis was rejected with a p-value of 2.11 ×10−7, which means that the variance
increases as a function of working distance, which translates to the measurement accuracy
dependence on working distance. This is not surprising because, as the working distances
increase, the small-angle estimation errors in the camera matrix and/or the small offset
of the spatial mesh can increase measurement errors, and the marker detection errors in
pixels contribute to larger measurement errors. Table 3.1 shows the mean error and spread
at 95% confidence for both indoor and outdoor measurements, as well the aggregate of
both cases.

The mean errors for indoor and outdoor cases are very small (below 1 mm), which
indicates that HL2’s SLAM tracking system does not suffer from any significant drift re-
gardless of brightness conditions and depth sensor interference from direct sunlight is not
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Table 3.1: Aggregate statistics of distance measurement error under indoor and outdoor
settings (95% confidence interval).

Location Mean error ± spread
Indoor 0.2 ± 1.8 mm
Outdoor 0.8 ± 1.3 mm
Indoor & Outdoor 0.4 ± 1.7 mm

a significant factor for SLAM accuracy. The spread for both conditions is also relatively
low (<2 mm), allowing consistent measurements. These experiments show that HL2 can
produce sub-centimeter accuracy for both indoor and outdoor lighting conditions at work-
ing distances below 7.5 m. This level of accuracy is generally acceptable and sufficient for
vision-based inspection applications [4, 3].

In this experiment, the difference in brightness between indoor and outdoor settings
was compared qualitatively for the purpose of demonstrating that HL2 performs with rea-
sonable accuracy under direct sunlight. Future studies can quantitatively measure the
minimum and maximum amounts of brightness (measured in lumens) required to use HL2
with sufficient accuracy for common inspection scenarios where there may be either insuf-
ficient or excess amount of lighting.

3.5.3 Field Test

XRIV was tested at an in-service bridge in Southern Ontario, Canada. In this experiment,
two spalling locations on the bridge were chosen from the abutment at inside (Fig. 3.9a)
and outside (Fig. 3.9b) the testing bridge. Two spalling regions, labeled as SA and SB, have
different sizes and approximately 0.5 m and 2 m in a vertical length, respectively. Both
regions are present in locations that typically experience different lighting conditions. The
working distance for each region was selected so that the entire region can be fit in a single
image frame. SA and SB were captured from 1 m and 5 m away from the abutment,
respectively.

The ground-truth areas of SA and SB were obtained first to be compared with the
measurements using XRIV. Since the spalling regions have irregular shapes and are often
placed at inaccessible locations, like SB, an image-based approach was implemented to
obtain their areas, instead of using other tools such as measuring tape. Fiducial markers
with a known size were placed near the spalling region, and the entire view of the spalling
region with the marker was captured as an image, shown in Fig. 3.10. Then, using a 4-
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(a) (b)

Figure 3.9: Overview of test spalling regions at a bridge abutment (a) underneath bridge
(SA) and (b) outside bridge (SB).

point homography algorithm, a transformation matrix was obtained to transform all image
pixel coordinates to corresponding physical coordinates [99]. The boundary of spalling
on the images was manually segmented, which is shown as an outline in Fig. 3.10a and
Fig. 3.10b for SA and SB, respectively. Then, the pixel coordinates of the boundary in the
images were transformed to the physical scale coordinates, and then these coordinates were
used to calculate the area of each spalling region using the Shoelace formula explained in
Section 3.3.2. The ground-truth areas of SA and SB are presented in Table 3.2.

The performance of XRIV was tested in its real-time mode. Seed points were selected
and fed as inputs into the XR interface for interactive segmentation of spalling boundary
(see Section 3.4). As discussed in Section 3.5.1, the number of initial seed points required
to obtain a satisfactory result is variable and is based on how difficult it is to distinguish the
damage region from the background, so it is up to the user to decide how many seed points
are needed until a visually satisfactory result was obtained. Fig. 3.11 shows the scenes of
the XR interface after selecting seed points from SA in Fig. 3.11a and SB in Fig. 3.11b.
Then, the images including a full view of the spalling regions and the selected seed points
were captured and sent to a mobile computer (equipped with a GPU: NVIDIA GeForce
RTX 2060, which is the computational server outlined in Fig. 3.3) to segment the spalling.
In XRIV, the user can adjust the placement and number of seed points through trial
and error to obtain the best segmentation results. However, in this experiment, accurate
boundaries for SA and SB could be obtained using six seed points (four inside and two
outside spalling regions) without refining the process. Lastly, the areas of the segmented
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(a) (b)

Figure 3.10: Measurement of ground-truth spalling areas for (a) SA and (b) SB.

regions for SA and SB were computed, and a holographic overlay of the segmented region
with a text overlay of the area was displayed to the XR interface, as shown for both spalling
regions in Fig. 3.12. Note that the XR interface determines the shapes and positions of the
graphic objects based on the user’s headset position and eye gaze relative to the spatial
mesh. Thus, the holograms including the color-filled region and the text look as if they
are stationary and are part of the real scene.

In this experiment, HL2 was connected to the computer using a Wi-Fi hotspot. It
took around 2-3 seconds (or 0.5s per seed) to run the GPU-accelerated f-BRS image seg-
mentation on an image with 908×511 resolution when six seed points were provided. The
speed of the segmentation in XRIV is comparable to the one reported in the original f-BRS
study, which can be as fast as 0.32 seconds per seed point when a GTX 1080 Ti GPU was
used [93]. Also, it took around 5-10 seconds for the user to select six seed points through
the XR interface. The area computation runs in real-time, excluding the time taken to
operate the holographic interface, which is around 1 second. Thus, it takes approximately
a total of 8-14 seconds to measure the area of a single defect region in the real-time mode,
unless the user refines the segmented region which may add a couple of seconds.

The measurement accuracy of XRIV was ascertained from this testing to evaluate the
error resulting from the interactive segmentation, assuming manual segmentation is the
ground-truth. Finally, the areas of SA and SB were computed based on the procedure
described in Section 3.3.2. The results of the experiment are presented in Table 3.2, which
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(a) (b)

Figure 3.11: Seed points selected on SA in (a) and SB in (b): The points inside and outside
spalling regions indicate positive and negative seed points, respectively. These images were
captured on the HoloLens 2.

shows the damage size measurements compared to ground-truth measurements.

Table 3.2: Damage size measurements for tested spalling regions using XRIV in real-time
compared to ground-truth measurements.

Target damage SA SB

XRIV 0.15 m2 1.25 m2

Ground-truth 0.14 m2 1.14 m2

Error 4.2% 8.9%

The results show that the error for SB is larger than SA, which is likely because the
working distance for SB is larger than SA, which are approximately 5 m and 1 m, re-
spectively. These results are consistent with HL2’s performance evaluation experiment in
Section 3.5.2 that shows that distance measurement is dependent on working distance.
This experiment also shows that XRIV generally produces errors that are within 10% of
the ground-truth which makes it suitable for vision-based inspection applications [4, 3].
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(a)

(b)

Figure 3.12: Visualization of the segmented regions for SA in (a) and SB in (b) and their
areas, captured on the HoloLens 2. Since graphic objects are anchored to a spatial mesh
of the scenes, the holographic objects are rendered based on the user’s viewpoints.

36



Chapter 4

Enabling Human-Machine
Collaboration in Infrastructure
Inspections through Mixed Reality

4.1 Overview

In this chapter, a Human-Machine Collaborative Inspection system (HMCI) is proposed
as a component of SIM to enable the MR-equipped inspector to visualize, supervise, and
improve results gathered by a robotic data collection platform in near real-time. This
chapter presents a summarized version of the work submitted to a journal paper [47].

4.2 Approach and contribution

The novelty of HMCI is to spatially align the MR headset and the robot in real-time
to enable an interactive and immersive environment for the user to perform the tasks
of visual inspection with the aid of robotic platforms equipped with non-wearable and
powerful visual and range sensors. A new image-based localization technique called SSL is
proposed, which enables the robot and the MR headset to achieve locally consistent spatial
alignment in real-time using only one image from each device and depth information from
a depth scan captured using the robot. While this workflow utilized one robot and one
MR headset, the methodology proposed here is scalable to multiple robots and devices.
The main contributions are the following:
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(i) HMCI fuses state-of-the-art computer vision, Simultaneous Localization and Map-
ping (SLAM), and mixed reality technologies to enable human and robot collabora-
tion to enhance infrastructure inspection quality, reliability, and safety.

(ii) A novel SSL algorithm that can work on locally consistent sub-maps, thereby en-
abling real-time simultaneous data collection and MR-assisted human inspection to
maximize collaboration and reduce inspection time.

A general workflow of HMCI is described here: The robot collects data from a target
structure using its equipped 2D sensors including visual cameras, thermal cameras, or
stereo cameras, and 3D sensors such as LiDAR. A large volume of the data gathered by
the equipped sensors is transmitted to a remote computer server and then vision-based
visual inspection algorithms are applied to those data to detect and localize defects on the
structure. A 3D map of the structure and its surroundings is reconstructed from the scene
using SLAM. SLAM also estimates the poses of the equipped sensors in the reconstructed
3D map. The MR headset is equipped with its own visual and depth sensors that allow it to
spatially track its position. SSL is then deployed to spatially align the MR headset relative
to the 3D map generated by the robot. Once the defect is detected, this information is then
sent to the MR headset, which then renders holograms of the defect regions and anchors
them on top of the actual location of the defects, along with the associated information
such as the type of defects, estimated sizes, date of the inspection session, notes from
previous inspections, etc, as illustrated in Fig. 4.1. This information can be also saved to
the reconstructed 3D map and inspectors can re-localize their MR headsets when revisiting
the site in future inspections and view the saved annotations from previous sessions.

The novelty of this image-based localization technique, SSL, is that it does not require
the 3D map to be globally consistent or complete before localization can start, since users
only require the locally consistent 3D map in their immediate vicinity to visualize a Region-
of-Interest (ROI) on the MR headset. Thus, both the robotic data collection and MR-
assisted human inspection are performed simultaneously to maximize collaboration and
reduce inspection time.
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Figure 4.1: Illustration of HMCI for bridge inspection: The detected defect (spalling here)
information is visualized to the inspector using the holographic MR display.

4.3 Spatial Alignment

Spatial alignment between multiple devices using visual sensors is a common challenge
in computer vision [107, 108, 109]. For the alignment of data from the multiple devices,
the coordinate system of each non-stationary sensor (sensor frame) should be linked to a
stationary frame anchored in the physical environment (map frame). Spatial alignment
is the process of localizing the sensor frames of multiple devices into a single common
reference map frame of the physical environment. Spatial alignment is a crucial step to
share and localize the data from multiple devices and analyze them with spatial context.
In the context of spatial alignment in this paper, a reference data collection device (robot)
gathers visual data and builds a 3D map of the scene, while a query device (MR headset)
aims to localize its pose relative to the map frame.

In this study, a marker-less spatial alignment method is proposed, which utilizes natural
visual features in the scene instead of fiducial markers to perform image-based localiza-
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tion [110, 89, 111]. To start, multiple (m) reference images of the scene are obtained
from the reference device’s calibrated camera (reference camera, r), and then stored in a
database (Ir1, Ir2,. . . Irm). The poses (T r

1 ,T
r
2 ,. . . T r

m) of the reference camera relative
to the map frame are computed when each image is captured after processing them using
SLAM. The reference device’s onboard 3D sensors also capture 3D depth scans (Dr

1, D
r
2,. . .

Dr
m) obtained from RGB-D cameras or LiDAR synchronized with each reference image to

estimate real distances in the scene. A query device’s calibrated camera (query camera, q)
then captures an image (Iq) as input. A generalized image-based localization algorithm
then uses the data gathered by the reference device as a prior and Iq gathered by the
query camera to estimate the pose of the query camera (T q) in the map frame. There
are two types of image-based localization methods: 2D-2D methods [112, 113] and 2D-3D
methods [114, 64]. Both are using a set of unique features and their descriptors (xr

i , d
r
i )

for the reference image (Iri) and (xq, dq) for the query image (Iq).

In 2D-2D methods, an image retrieval algorithm is first performed to find the reference
image (Irk) among an image database (Ir1, Ir2,. . . Irm), which exhibits the largest overlap
with Iq when viewing the scene. This is performed by clustering the descriptors of the
reference images (dr1, dr2,. . . drm) using bag-of-visual-words [115] or a vector of locally
aggregated descriptors [116], to encode the descriptors of every reference image into a
searchable indexed vector. Irk can then be identified based on the closest matching (e.g.,
L1, L2 distance) index vector obtained from drk and dq. Then, features from the query
image (xq, dq) and the closest reference image (xr

k, d
r
k) are matched to estimate the relative

pose between Irk and Iq, which can be transformed into the map frame. An essential
matrix (E) is computed from epiploar geometry and internal matrices of both reference
and query cameras. The relative pose (extrinsic transformation) between the query and
reference images are computed from E [99]. The advantage of 2D-2D image localization
methods is that they do not require a globally consistent 3D map of the scene which can be
computationally expensive to create. However, pose estimation often produces unreliable
results when the scene overlap is small or the features are present in a single dominant
plane (degenerate configuration) [117].

In 2D-3D methods, the database reference images (Ir1, Ir2,. . . Irm) and corresponding
depth scans (Dr

1, D
r
2,. . . Dr

m) are used to construct a 3D map of the scene (M) using
either standard Structure-from-Motion (SfM) or SLAM procedures. All feature points (xr

i ,
dri ) extracted from Iri are then back-projected to M to compute 3D points (Xi) corre-
sponding to xr

i . Xi is not denoted with r or q because its coordinates are defined in the
stationary map frame, and not associated with sensor frames. Xi is estimated by trian-
gulating co-visible features in at least two reference images, which is a part of the SLAM
or SfM procedures [118, 103]. Depth constraints from (Dr

1, D
r
2,. . . Dr

m) can be applied to
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improve the accuracy of triangulation by bounding the triangulation error within a range
obtained from the depth values [119]. Thus, a visual 3D features map of the scene (Mf )
is obtained by triangulating co-visible 3D points (X1, X2,... Xm) and storing their associ-
ated descriptors (dr1, d

r
2,. . . drm). Correspondences between (xq, dq) and Mf including (Xi,

dri ) can then be obtained using “direct” 2D-3D features matching, where dq are directly
compared with Mf to find matching features to build 2D-3D correspondences between xq

and (X1, X2,... Xm) [64]. Indirect 2D-3D localization can also be used, where the clos-
est matching reference image (Irk) viewing the same scene as Iq is located through image
retrieval. This type of method is called “indirect” because the set of potential 2D-3D
features correspondences between query and a smaller set of reference images, which are
narrowed down significantly by limiting the feature correspondence from the closest match-
ing reference image (Irk) after the image retrieval. Generally, indirect 2D-3D localization
methods have been proven to be more efficient and accurate compared to direct 2D-3D
localization methods because the image retrieval step eliminates 2D-3D correspondences
from irrelevant reference images [120, 67].

In 2D-2D methods, the epipolar geometry between Irk and Iq and matched features in
2D are used to compute E, followed by pose estimation. However, in the 2D-3D methods,
I can compute the pose from 3D coordinates (Xn) in the map frame corresponding to each
2D feature point (xq

n) in Iq. The closest matching reference image (Irk) is first located
using image retrieval, and then a feature matching algorithm is used to locate matches
between Irk and Iq, like 2D-2D methods.

A set of correspondences (n) is established between 3D reference feature points (Xn)
and 2D query feature points (xq

n) through direct or indirect matching. Since Xn and xq
n

describe the same set of points in the physical environment, Xn can then be projected
onto the query camera’s image (Iq) to obtain xq

n using a projection matrix (Pq) encoding
T q and the query camera matrix (Kq), as seen in Eq. 4.1:

xq
n = PqXn (4.1)

Computing T q that satisfies Eq. 4.1 using n 2D-3D correspondent points is called the
perspective-n-point problem (PnP) [99]. There are several methods to solve the PnP
problem, depending on a set of conditions. For n = 3, the problem is reduced to P3P, which
can be solved using trigonometry to obtain up to four valid closed-form solutions [121].
A unique solution can be obtained if four or more points are available. For n ≥ 4, the
Efficient PnP (EPnP) algorithm formulates the general PnP as an optimization problem,
where the goal is to estimate the best T q that minimizes the re-projection error for n 2D-
3D correspondent points [122]. However, EPnP performs poorly when there are outlier
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points. Thus, it has been shown that P3P used alongside RANdom SAmple Consensus
(RANSAC) provides better performance in the PnP problem with n ≥ 4 to obtain robust
results when outliers are present compared to EPnP [123]. Therefore, P3P RANSAC is
often used in 2D-3D image-based localization methods to estimate T q.

Figure 4.2: Frame diagram for spatial alignment between the robot and MR headset using
SSL: Solid lines in red indicate known transformations between frames, while dashed lines
in purple indicate unknown transformations that are estimated using SSL. The spatial
anchor (A) created by the data from the robot consists of unique visual features detected
in the reference image (plotted as orange dots) that are directly back-projected to the
depth map to estimate their 3D points. The MR headset uses its 2D-3D correspondences
for localization.

The advantage of 2D-3D image localization methods is that they are more accurate
and robust than 2D-2D methods in general [64]. However, one of the major drawbacks
is that the 3D map (M), 3D features map (Mf ), and reference camera poses (T r

1 , T
r
2 ,. . .
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T r
m) must all be globally consistent before the process of localization can start. Otherwise,

large deformations to the map such as bundle adjustments or loop closures during the
3D map generation will interfere with previously obtained localization results. Current
localization methods do not address this issue because they assume that 3D mapping
and spatial alignment are not performed simultaneously and that the reference and query
devices operate during different sessions. They require the 3D map to be available before
localization starts.

Therefore, traditional 2D-3D image-based localization approaches are not suitable for
HMCI because they are not designed to co-register multiple devices to collect data simul-
taneously. With such traditional methods, the robot (reference device) is first required to
collect as many images as possible of the scene to build Mf by detecting, tracking, and
triangulating co-visible feature points from multiple images while performing SLAM. Such
processes incur a long delay in the interaction between the robot and the MR headset.

The MR headset (query device) also remains long idle until the robot captures sufficient
images of the scene to start localization, to ensure that loop closures or bundle adjustments
do not affect localization results. Thus, the inspector with the MR headset must wait
until the 3D scanning procedure is complete before visualizing any detected ROIs on the
structure, and thus, real-time collaboration is limited and could be lagging.

To address this issue, I propose a new method, SSL, to enable spatial alignment between
the reference and query devices in near real-time. SSL needs only a single image from each
of the device’s cameras and a depth scan (Dcr) obtained from the robot’s 3D sensor in the
robot camera’s frame (cr). The robot creates a “spatial anchor” (A) consisting of unique
visual features found in the scene and anchored to the 3D space, and the MR headset
utilizes the spatial anchor to localize its camera frame (cq) relative to cr. The spatial
relationship of these components is described in Fig. 4.2.

SSL starts by using feature detection to find 2D reference features (xr, dr) in the
reference image Ir captured by the robot’s camera. The 2D points in xr are then back-
projected to Dcr to obtain the 3D coordinates of the reference feature points (Xcr) in the
cr frame. The quantities Xcr , dr, and Tmr

cr are then bundled together into what I call a
spatial anchor (A), that can be shared between any number of query devices. The process
of creating A is labeled as SSLA in Eq. 4.2:

A = SSLA(Ir, D
cr , Tmr

cr ) (4.2)

When the MR headset is close to A, the query features (xq, dq) are then detected
from the query image (Iq). Feature matching is then performed to find corresponding
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points between xr and xq by comparing their descriptors, dr and dq. I then deploy P3P
RANSAC to match the points in xq and Xcr and obtain the relative pose (T cr

cq ) from cq to
cr. The 4×4 transformation matrix (Tmq

mr
) that is used to convert the 3D points from the

robot map frame (MR) to the MR map frame (mq) is then estimated using intermediate
transformations from the relative poses of each device using Eq. 4.3:

Tmq
mr

= Tmq
cq T cq

cr T
cr
mr

= Tmq
cq (T cr

cq )
−1(Tmr

cr )−1 (4.3)

The three transformations on the right-hand side of Eq. 4.3 are known: T
mq
cq results

from SLAM onboard the MR headset, T cr
cq is obtained from P3P RANSAC, and Tmr

cr is

computed from SLAM in the robot. The process of estimating T
mq
mr using Iq and T

mq
cq , given

A obtained from the reference device, is defined in Eq. 4.4 as SSLQ:

Tmq
mr

= SSLQ(Iq, T
mq
cq , A) (4.4)

SSL algorithm combines the advantages of 2D-2D and 2D-3D localization methods
while overcoming key shortcomings in each method. First, the laborious triangulation step
in most 2D-3D algorithms is replaced with back-projection using a depth map obtained
from the robot perception kit. Thus, the robot does not need to collect multiple reference
images from the scene to start spatial alignment. This approach brings faster localization by
minimizing complexity and computational costs. 2D-2D image feature detection algorithms
are directly deployed to find corresponding features instead of building a visual features
map (Mf ) through triangulation, which means that SSL can be deployed while the robot is
collecting data without waiting for the global map completion and can work with at least
one reference and one query images.

Note that since robotic 3D mapping and MR spatial alignment are performed concur-
rently, post-processing steps such as bundle adjustments or loop closures may cause large
deformations to the global map as well as refinement of the robot’s camera poses (Tmr

cr )
computed from SLAM. This issue may affect localization results (T

mq
mr ) computed before

post-processing is applied but would not negatively impact SSL because it relies on locally
consistent maps. In SSL, spatial alignment results are re-computed by identifying which
quantities in the localization process are affected by post-processing and isolating them to
re-compute T

mq
mr , instead of re-performing all the localization steps after refining the map

through post-processing. In Eq. 4.3, T cr
cq and T

mq
cq are invariant to bundle adjustments and

loop closures because they are local transformations relative to cr, and are independent
of Tmr

cr and the global map. Thus, T cr
cq and T

mq
cq are not changed by the post-processing,

and the processes such as P3P RANSAC and feature matching, which are computationally
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demanding, do not need to be re-performed. When post-processing is applied, a new value
for T

mq
mr is computed using Eq. 4.3 by updating Tmr

cr only.

At each robot location, all the information needed to perform localization (Xcr , dr,
Tmr
cr ) can be stored as a spatial anchor (A). The spatial anchor can also be used for

localization when the MR-equipped inspector revisits the site in future sessions to visualize
prior inspection records, and for co-localization of multiple MR headsets. When the users
utilize spatial anchors for these applications, the image retrieval process is not required
because only a single A is stored per ROI detected by the robot. To localize relative to
previously created anchors, I only iterate through previous anchors to find the A with the
highest number of matched 2D feature points compared to Iq.

In sum, SSL can streamline the workflow in the proposed HMCI by speeding up the
spatial alignment process to support real-time collaboration between the robot and the MR
headset. Once the spatial alignment procedure is complete and the location of the anchor
is known in both devices, I can then convert the coordinates of any point from the robot
map frame (mr) to the MR map frame (mq) using T

mq
mr so that the MR headset can then

render ROIs or segmentation masks detected by the robot into the MR user’s perspective.

4.4 System Overview

The detailed workflow of HMCI is described in Fig. 4.3. An inspector with the MR headset,
robot, and computation server can interact with each other to perform collaborative visual
inspection tasks. The proposed system is designed to integrate all the core processes such
as data collection, analysis, visualization, and interactive supervision conducted in these
three components. In Fig. 4.3, the onboard communications in each component are marked
as black solid arrows, and wireless communications are marked as red arrows. The phrases
‘server request ’ and ‘server response’ indicate inputs and outputs to/from the computa-
tional server, respectively, that are sent/received by either the robot or MR headset. All
the processes in this workflow are automated, except for machine-aided interactive dam-
age refinement (marked as a parallelogram), which requires input from an inspector [46].
The detailed description and process for each component including the prerequisite for
operating HMCI are provided in the following paragraphs:

Robot: The robot first collects an image (Ir) from the scene using its onboard visual
camera (cr), as well a 3D depth scan (Dcr) in the cr frame from a LiDAR or RGB-D camera
with known external calibration to cr. The robot also runs a SLAM algorithm to obtain
the pose (Tmr

cr ) of the camera relative to mr when Ir is captured, while simultaneously
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Figure 4.3: Process pipeline of the proposed human-robot collaboration.

building a 3D map of the scene (M). For this step, the SLAM algorithm must incorporate
depth information from the 3D sensor, such as RGB-D SLAM [103, 124] or visual-LiDAR
SLAM [125, 126]. The output of the SLAM algorithm provides the camera pose (Tmr

cr ) in
an absolute scale relative to mr. The robot then uses these reference data (Ir, D

cr , Tmr
cr )

to create a spatial anchor (A) using SSL described in Section 4.3, which is labeled as SSLA

in Fig. 4.3. The dense point cloud map (M), which is the output from SLAM is also stored
for future inspection sessions.

Computational Server: The data collected from and processed in the robot such
as Ir, T

mr
cr , A, and M are then sent to the server, shown as server request in Fig. 4.3, to
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start the analysis process. A pre-trained deep learning model (f) analyses Ir to locate
defects in the image using an image-based semantic segmentation model. In this frame-
work, f can be a supervised model (e.g. SegNet) that provides a boundary of a damage
region automatically [127]. Alternatively, a semi-supervised model can be implemented to
interactively improve its boundary, developed by the myself [46]. For interactive segmen-
tation, users select seed points, si, that segment the entire image to extract the pixel-wise
boundary (ROI) of the defect. f then outputs the 2D pixel coordinates (xi) representing
the defect boundary in the image and produces its class label (Li) representing the type of
defect (spalling, crack, etc.). The server then computes the 3D coordinates of the defect by
back-projecting xi to M using ray-casting. In this instance, ray-casting uses the projection
matrix of the robot’s camera, Pcr , to produce a set of rays that start from the camera center
of cr and with direction vectors specified by xi. The 3D coordinates of the defect’s ROI
(Xmr

i ) in mr are then computed by determining where the rays intersect with M . Both
Xmr

i and Li are then stored in a cloud database along with M and A so that inspectors
can re-localize their MR headsets when revisiting the site in future inspections.

MR Headset: The server then sends Xmr
i and Li to the MR headset, indicated as

server response in Fig. 4.3, to allow the inspector to view the detected region and be
able to check the results in real-time through visualization in the MR headset. The MR
headset also receives the spatial anchor, A, to enable spatial alignment through image-based
localization. The MR headset first captures a query image (Iq) for spatial alignment. The
MR headset’s internal visual-spatial tracking function also automatically provides the pose
of the MR headset’s camera (T

mq
cq ) relative to the MR map frame (mq) when Iq is captured.

SSLQ then uses Iq and T
mq
cq with the prior spatial anchor, A, created by the robot to obtain

the transformation T
mq
mr using Eq. 4.4. Once T

mq
mr is obtained, I consider the MR headset’s

map frame (mq) to be localized relative to the robot’s map frame (mr). Thus, 3D points
(Xmr

i ) indicating defect boundary can be transformed from the robot map frame (mr) to
the MR map frame (mq), so that any detected ROI can be visualized by the MR headset
directly. Xmr

i is then multiplied with T
mq
mr to obtain the 3D coordinates (Xm2

i ) of the
defect’s ROI in the MR map frame (mq). The MR headset then renders a holographic
overlay over the location of the defect with the ROI specified by X

mq

i . A holographic text
overlay specified by Li is also placed beside the hologram to inform the inspector about the
type of defect. This process is repeated for every defect present in Ir, and defects present
in other images captured by the robot’s camera at different locations on-site.

However, in cases where the automated detection model does not produce an accurate
boundary for the defect, like Fig. 4.4b, the inspector can fix the segmentation result using
interactive segmentation enabled through the MR interface (Yes/No in the parallelogram
in Fig. 4.3) [46]. Suppose that the robot captures the image presented in Fig. 4.4a and gets
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incomplete segmented results (red transparent region) like Fig. 4.4b from the automated
method. Then, the inspector places virtual seed points by using the headset’s hand gesture
control inside (green) and outside (blue) the defect region, as shown in Fig. 4.4c. Finally,
the algorithm automatically improves the segmentation accuracy and improves the quality
of the segmentation results, as shown in Fig. 4.4d.

(a) (b)

(c) (d)

Figure 4.4: Interactive damage segmentation: An inspector with the MR headset can refine
incorrect defect segmentation boundary in (b) processed by automated algorithms (applied
to (a)) in the robot. The inspector selects the seed points inside (green) and outside (blue)
the defect in (c) and segmentation with points can improve segmentation results in (d).

To perform interactive segmentation, the inspector first selects the 3D locations of the
seed points (S

mq

i ), which are then anchored in the scene (M) to the defect region in the
MR map frame (mq) coordinate system (as seen in Fig. 4.4c). S

mq

i is then multiplied with
Tmr
mq

(inverse of T
mq
mr ) to transform the seed points’ locations from the MR map frame (mq)

to the robot map frame (mr). The seed points (Smr
i ) are then projected to the image

plane of the original image captured by the robot, Ir, using Pcr , to obtain the 2D image
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pixel coordinates of the seed points (si) in Ir. The seed points, si, are then sent to the
computational server, indicated as server request in Fig. 4.3, to start the segmentation
process again. This process is iterative until the inspector decides that the segmented
mask of the defect region is sufficiently accurate like Fig. 4.4d. With this process, the
inspector can refine the results of the analysis and confirm the quality of the inspection
results on-site.

Note that HMCI in this study is mainly designed for in-situ visual inspection where both
the robot and MR headset are working in the same session and interacting in real-time.
However, thisframework also allows inspectors to revisit the site and compare changes from
previous inspections using the MR headset. Once the initial data collection is completed
and the inspection data is collected and uploaded to the cloud, inspectors can re-load
the data to their MR headset to locate the closest spatial anchor (A) from the database
created in the previous sessions. Once A is located, the MR headset is then re-localized
relative to the 3D map (M) created by the robot from the previous session, and all the
stored annotations can then be visualized and overlayed in their original locations. This
framework can also be expanded to multiple users with MR headsets to collaborate during
the inspection once they are all localized relative to M .

4.5 Mixed Reality Interface for Robot Control

Another component of human-machine interaction between the MR user and the robot
is the ability to directly control the robot in real-time using the MR interface. Once the
MR headset and the robot are co-localized, spatial data can be sent between them in
either direction. This also includes the MR user sending spatial data to the robot so that
it execute certain tasks such as navigating to a desired location in the scene. Thus, a
MR interface was developed for the user to be able to control the robot by selecting a
target pose (Y mq) indicating where the user would want the robot to be positioned. In
this interface, the user selects Y mq by placing a MR hologram of the robot in the desired
position. This is illustrated in Fig. 4.5. The implementation of this approach is shown in
Fig. 4.6.

After the user selects Y mq , it is then sent to the computational server where the pose
is multiplied by T

mq
mr to obtain Y mr , which transforms it from the mq frame to the mr

frame. The robot will then navigate itself in mr to attempt to match its current pose with
Y mr . This method is compatible with ground robots where there are 3 Degrees of Freedom
(DOF) and drones where there are 6 DOF.
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Figure 4.5: Illustration of MR interface for controlling the robot. The user places a holo-
gram of the robot (drone in this case) in the specified pose, and the robot will try to match
that pose in the real environment.

Figure 4.6: Implementation of MR interface for controlling the robot. The MR user
(equipped with HL2) places the hologram in the desired pose, and the robot (DJI Tello
drone) navigates the scene to match its current pose with the hologram.
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4.6 Experimental Validation

4.6.1 Experimental setup

(a) (b)

Figure 4.7: Test site (Structures Lab at the University of Waterloo): (a) site photo and
(b) floor plan with a data collection path: A total of six markers are placed as ROIs as
shown in Fig. 4.8.

Experiment validation of HMCI and the spatial alignment algorithm was conducted
in the Structures Laboratory at the University of Waterloo (Structures Lab), shown in
Fig. 4.7a. The size of the Structures Lab is 83 ft (25.3 m) × 68 ft (20.75 m) and its layout
is present in Fig. 4.7b. The scene of the Structures Lab provides rich visual features in
the scene which are necessary for spatial alignment. In Fig. 4.7b, the robot followed a
pre-planned path and detected six targets (a)-(d) that are located at different locations
across the test area. The robot traveled along the direction of the arrows from “Start,” to
“End” in Fig. 4.7b. Six fiducial (ArUco) markers of size 12 cm × 12 cm in Fig. 4.8 were
placed as ROIs [128]. These markers constitute proxies for structural defects that can be
automatically detected using computer vision algorithms. These six markers were taped
to flat surfaces on walls or columns, as shown in Fig. 4.8, at various heights ranging from
40 cm to 180 cm above the ground.

Note that I would like to clarify the scope of the proposed experimental study. In fact,
marker detection is not computationally expensive and can be conducted in the MR headset
onboard. This means markers could be detected and localized without the integration
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Figure 4.8: Fiducial markers (a)-(f) taped on various locations at the Structures Lab: Note
that these markers are proxies for structural defects in real-world applications envisioned
for HMCI.

of the robot and computational server. However, this experimental demonstration is to
show how the robot and computational server off-site can support the inspection process
of the human engineer with the MR headset. In an actual scenario, damage detection
and segmentation are conducted using large computer vision models (e.g., convolutional
neural network), which are computationally expensive processes and cannot be conducted
in the MR headset rapidly and efficiently. In addition, typical MR headsets (e.g., HL2)
support only a limited range for data collection and pose estimation (<5m), so LiDAR,
which has a maximum 3D sensing range of 450 m, and high-resolution cameras might
need to be deployed onboard the robot to conduct long-range inspections for real-world
structures [105, 129, 130]. High-quality sensors also require higher computational power
for data analysis, which means a higher-cost system. In this experiment, I have focused on
demonstrating the entire workflow of the HMCI system and its scalability and efficiency.
Regions-of-interest in actual inspections are represented by fiducial markers as a case study.
The proposed system can be used in conjunction with any damage quantification algorithm,
such as the interactive defect quantification tool developed by the myself [46].

4.6.2 Implementation of HMCI

A Turtlebot2 [131] equipped with an Azure Kinect RGB-D [132] sensor was used as the
robot for data collection, while the HL2 was used as the MR headset for the experiment.
The Azure Kinect can capture color images with a resolution of 1,280 × 720 pixels, while
the HL2’s camera can capture color images with a resolution of 2,272 × 1,278 pixels in the
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(a) (b)

Figure 4.9: Hardware used in the experiment: (a) robotic data collection platform and (b)
a user (inspector) with the MR headset (HL2).

video mode. The Azure Kinect’s depth sensor has a resolution of 512 × 512 pixels, and the
operating range is between 0.25m to 2.88 m [132]. Since the depth resolution is lower than
the image resolutions, the depth images were upscaled by interpolating the depth values
for the missing pixels. The Azure Kinect was attached to the Turtlebot2 at the height
of 1 m above the top plate of Turtlebot2 to secure sufficient field-of-view for inspections.
In this setup, a laptop (ROG Strix G17, equipped with an NVIDIA GeForce RTX 2060
GPU and an Intel Core i7 processor) functioned as both the processing unit on the robot
and the computational server to analyze data. All the hardware used in the experiment
is present in Fig. 4.9a, and a user (inspector) wearing HL2 standing beside the robot is
shown in Fig. 4.9b.

The laptop was connected through USB cables to the Turtlebot2 and Azure Kinect
camera. The computational server running on the laptop was wirelessly connected to the
HL2 through a shared Wi-Fi network. For a field inspection scenario, either 4G LTE or
5G should be available to allow the robot, MR headset, and remote server to be connected
remotely. This setup facilitated the two-way transfer of data between the two devices
(as described in Fig. 4.3). A Rosbridge server was chosen to be the edge server in this
configuration because it allows devices that do not support Robot Operating System (ROS)
(e.g., HL2) to communicate with ROS-based robots [133]. To develop the MR application,
the Unity game engine, and the Mixed Reality Toolkit (MRTK) were selected because of
their compatibility with other popular MR headsets, including Microsoft’s HoloLens series,
and Magic Leap [134, 135, 136]. The Unity-based application running on the HL2 sends
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and receives messages from the Rosbridge server over a local network using the ROS-sharp
package [137]. The Rosbridge server used persistent TCP/IP connections to transport
JSON messages that encode texts, images, and point cloud streams.

In the HMCI workflow described in Section 4.4, the TurtleBot2 first gathered color
(Ir) and depth (Dcr) images of the scene using the Azure Kinect sensor and performed
RGB-D SLAM, RTAB-MAP, to continuously track the pose of the camera (cr) relative
to the robot map frame (mr) and to create spatial anchors (A) [124]. At the same time,
the HL2 performed localization by capturing query images (Iq) from its equipped camera
(cq) by automatically finding nearby anchors and localizing itself relative to mr. For the
detection of ROIs, a lightweight ArUco marker detection algorithm was running onboard
the laptop, which is implemented in OpenCV to continuously analyze every image frame
produced by the robot’s camera [104].

In thisimplementation of SSL, the TurtleBot2 and HL2 automatically initiate the co-
registration process whenever a target defect is located. The HL2 then automatically
searches through all previously created spatial anchors in the same session to localize itself
relative to the Turtlebot2 using SSL. Robust feature detection and matching algorithms
are required for accurate pose estimation of the HL2 headset using spatial anchors. In this
experiment, I first evaluate four different feature detection algorithms including ORB [138],
SIFT [139], R2D2 [140], and SuperPoint [141] in the SSL framework. The performance
of the localization is directly related to the accuracy of ROI visualization in the HL2
headset. Next, for the feature matching, I tested two algorithms, the nearest neighbor
search (NN) [142] and SuperGlue [143]. For NN, the number of classes (k) is set to k=2
to find the best matches through brute force. For ORB, SIFT, and R2D2 feature types,
a distance ratio test with the threshold of 0.75 (ORB, SIFT) and 0.8 (R2D2) was used to
filter out incorrect matches. For SuperPoint, a distance threshold of 0.7 was used instead
of a ratio test. SuperGlue uses a pre-trained graph neural network (outdoors pre-trained
model) to match SuperPoint features [144]. Thus, SuperGlue is only used for matching
SuperPoint features. These feature detection and matching algorithms are all implemented
in the Hierarchical Localization toolbox, while parameters other than thresholds are set
to default values [67]. Lastly, I set the minimum allowable number of feature matches
between the Iq and Ir to 10. The function in OpenCV, solvePnPRansac was deployed to
conduct P3P RANSAC where the maximum iterations and allowable re-projection error
are set to 100 guesses and 0.8 pixels, respectively [104].
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4.6.3 Spatial alignment error measurement

I evaluated feature detection and matching algorithms for spatial alignment by measuring
the 3D physical offset distance (e) of the marker’s visualized location (XM) compared to
the marker’s ground-truth location (Y M). Ideally, if the HL2 is precisely aligned with the
TurteBot2 spatially, then e should be zero. However, depending on the background textures
of the scene, the performance of feature detection and matching algorithms varies, followed
by varying ROI localization accuracy. In this experiment, I quantitatively evaluated the
spatial alignment errors (e) depending on feature detection and matching algorithms that
I used for SSL. The evaluation process of the spatial alignment is illustrated in Fig. 4.10.

Figure 4.10: Illustration of spatial alignment error (e) measurement process: XM is the
visualized ROI (marker boundary) measured from the robot’s sensors (cr) and visualized
by the MR user when a defect is located. Y M is the ground-truth marker location obtained
from Iq for directly localizing the marker’s ROI. Note that XM and Y M are in the robot
map frame and represented by a physical unit.

Once the marker ROI is visualized in the HL2, the 3D locations of the marker detected
by the Turtlebot2 (Xmr) are projected on the HL2 image (Iq) to get their 2D image pixel
locations (xM) in Iq using the pose of the HL2 (projection matrix) estimated through SSL.
The ground-truth ROI (yM) is then computed directly from Iq using the marker detector
so that it can be compared against xM . To convert xM and yM to physical coordinates,
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a four-point homography algorithm was used to calculate the homography matrix (H)
using marker dimensions (12 cm × 12 cm). xMand yM were then transformed using H to
their real physical coordinates, XM and Y M , respectively. Homography was used in this
procedure to get an image scale and evaluate e in a physical unit (e.g., cm, inch). e was
then computed by subtracting XM from Y M to calculate the Euclidean distance between
them and average those error values from multiple test images (Iq). Five sample query
images from each marker were captured from a 1-2 m standoff distance, which becomes a
total of 30 images (six markers) collected from the HL2 in each test.

4.6.4 Experimental results

HMCI demonstration

Major steps of HMCI in Section 4.4 are experimentally demonstrated in this subsection
including reconstructing the 3D map of the site, localizing defects onto the map, localizing
the MR headset relative to the map using the SSL, and then visualizing the defect ROIs
on the MR headset.

The process of scanning the Structures Lab using the TurtleBot and Azure Kinect
took approximately 10 minutes. The robot was remotely controlled by the MR-equipped
inspector using a handheld controller to follow the path shown in Fig. 4.7b All defects
(markers) were automatically localized once they were in the field-of-view of the camera,
and the resulting 3D map was reconstructed in real-time. The map was built by fusing
the camera images and depth scans obtained from the Azure Kinect, and the camera poses
were estimated using RTAB-MAP. These scans were then combined using the estimated
camera poses and colorized using the color images, to produce a full point cloud map of
the Structures Lab. Fig. 4.11 shows the colorized point cloud of the Structures Lab and
the dotted line in light blue indicates the robot’s trajectory.

The ROIs (markers in this experiment) were then detected from the 2D images collected
from the robot, and associated with their labels (fiducial marker ID). The 2D corners
detected were then projected onto the 3D maps using the ray-casting process described in
Section 4.4 to obtain the 3D coordinates of the ROIs. Fig. 4.12 visualizes ROIs and marker
IDs which are overlaid onto the 3D maps. In the actual scenario, equivalently, the damage
boundaries and their classes will be detected.

Once the spatial alignment is completed between the robot and HL2, the HL2 receives
the information about the 3D coordinates of the ROIs and their labels. The HL2 then
displays a hologram on the real scene for the inspector to visualize the location of the
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Figure 4.11: A colorized point cloud map of the Structure Lab: Images and depth scans
were collected from the Azure Kinect RGB-D camera and RTAB-MAP SLAM was used to
produce this 3D map. The light blue dotted line indicates the robot’s data collection path.

defects and their labels. The images in Fig. 4.13 were captured from each ROI where the
boundary and its ID are overlaid.

Fig. 4.14 shows the scene of how the inspector interacts with the graphic overlay through
hand gestures. This scene was captured from a secondary device that is spatially aligned
using Spectator View [145]. The inspector can select the ROI and modify its size and
location in case this information is not accurate. Also, the inspector can correct and add
text overlay for documentation.

Performance of feature detection and matching for spatial alignment

Table 4.1 presents the experimental results of the spatial alignment error (e) evaluation for
each of the feature detection and matching configurations for SSL. The first column shows
the mean spatial alignment errors and their standard deviation in a physical unit. The
mean time per query is the time to process a query image and localize the HL2 relative
to the robot. This statistic is important for processing more queries and staying aligned
with the robot’s map frame. I also evaluate the performance of feature matching because
it is directly related to spatial alignment. The third column shows the mean number of
matched features per query image in the test. When the number of matched features is
small (10 in this experiment), the alignment likely fails so I excluded those cases for error
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Figure 4.12: Visualization of the detected ROI in the 3D maps from the robot: The
boundary (ROI) of each marker in green is displayed on the 3D map. The text overlay
shows the type of defect (fiducial marker ID).

measurement in the first column. Instead, I evaluate them as pass/fail ratio in the fourth
column.

In Table 4.1, experiment results show that all the feature detection and matching algo-
rithms produced spatial alignment errors of around 1 cm. The R2D2 + NN configuration
produced the best overall accuracy results of 1.08 cm. However, only the SIFT + NN
and SuperPoint + SuperGlue strategies managed to perform successful localization of the
HL2 for all 30 sample query images with no failure requests and with standard deviations
less than 1 cm, making them the most consistent and reliable implementations. Also, Su-
perPoint + SuperGlue managed to produce the most matched feature points on average
(371 matches) between query and reference images. This is because CNN-based methods
such as SuperPoint and R2D2 can detect more features even in low or repeating texture
environments such as flat surface walls. They use the full image as input for their CNN
backbone, which is compared to patch-based methods such as SIFT or ORB. Thus, both
SuperPoint and R2D2 can better contextualize the locations of low texture regions in the
image. However, SuperGlue outperforms R2D2 overall because R2D2 prioritizes the qual-
ity of detected features over the number of features, which can be detrimental if not enough
features are detected and matched with other images. This is evident in the fact that 7%
of query images found less than 10 matches between reference and query image for the
R2D2 + NN configuration, and thus, localization could not be performed for those cases.
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Figure 4.13: Overlaying the ROI of each defect in the scene of the HL2: These images
show that all six defects detected by the TurtleBot2 are successfully localized in both the
robot and MR map frame.

SuperGlue matching has been shown to produce the largest number of feature point
matches as can be seen in Fig. 4.15. This is because SuperGlue uses graph neural networks
to attempt to learn the underlying 3D scene when matching two sets of features points.
Thus, it outperforms traditional purely descriptor-based methods such as Nearest Neigh-
bour which may be too strict when rejecting potential matches. However, since SuperGlue
uses CNN networks to compute matches, it has a longer lead time compared to Nearest
Neighbour. Nevertheless, in civil engineering applications, bridges or walls that were built
using concrete or bricks often have insufficient unique features due to repeating textures.
In this sense, the configuration of SuperPoint + SuperGlue is optimal for detecting and
matching feature points when performing image-based localization in these challenging
environments. Note that sample scenes from the HL2 in Fig. 4.15a were captured after
estimating its pose using SuperPoint + SuperGlue.
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Figure 4.14: The scene of the HMCI demonstration was captured by a secondary device,
which is spatially aligned with the scene.

Table 4.1: Comparison of the spatial alignment errors depending on feature detection and
matching algorithms implemented in SSL.

Feature detector +
matcher

Mean spatial
alignment error ±
standard deviation

Mean process
time per query

Mean # of matches
per query

Ratio of successful
queries

ORB + NN 1.5 ± 1.7 cm 0.44 s 35 77%
SIFT + NN 1.2 ± 0.9 cm 1.70 s 81 100%
R2D2 + NN 1.1 ± 1.1 cm 1.17 s 78 93%

SuperPoint + NN 1.1 ± 0.9 cm 0.65 s 239 90%
SuperPoint + SuperGlue 1.1 ± 0.9 cm 2.23 s 371 100%
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(a)

(b)

Figure 4.15: Sample feature detection and matching results using (a) SuperPoint + Super-
Glue and (b) SIFT + NN: 2D feature points from the robot’s camera (left) are matched
with the ones from the query image from the HL2’s camera (right) used for SSL. Each pair
of feature point matches is shown as a line between the two images.
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Chapter 5

Distributed Collaboration through
Mixed/Virtual Reality

5.1 Overview

In this chapter, a novel real-time distributed collaborative system where on- and off-site in-
spectors perform synchronous structural inspections through remote MR/VR collaboration
is proposed as a component of SIM. This chapter also discusses integrating the previously
discussed components of SIM such as human-AI and human-robot collaboration into a
unified SIM system. This is accomplished by extending the methods already developed
for MR users such as XRIV and HMCI to the VR user so that they can also interact and
collaborate with robots and AI remotely. This chapter presents a summarized version of
the work submitted to a journal paper [146].

5.2 Approach and contribution

In this chapter, distributed collaboration through SIM provides an advanced platform to
perform collaborative inspections between multiple on-site MR-equipped inspectors and
remote VR-equipped experts. The proposed system allows inspectors to interact with each
other remotely and share information such as defect annotations in a spatially aware vir-
tual environment. SIM is scalable and designed to support multiple MR/VR users present
in physical or virtual environments. Also, I propose a novel multi-image-based spatial lo-
calization algorithm called MSL to determine the positions of multiple images with known
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relative poses. The proposed MSL can be used for localizing panoramic images by decom-
posing them into multiple perspective images. Panoramic images localized in the pre-built
map provide the VR users with a 360° view of the site for making measurements of defect
regions or changes in structural components. Fig. 5.1 shows screenshots of an experimental
demonstration of distributed collaboration in this study. Two MR on-site inspectors (HL2)
and one VR remote inspector (Oculus Quest 2) conduct a bridge inspection remotely using
SIM. User locations are registered to the pre-built map and shared with other users, and
all users are aware of what other users are doing and can view annotations or comments
anchored on the structure or virtual environment.

Figure 5.1: Proposed system to support distributed collaboration between on-site MR and
remote VR users.

The idea of enabling structural inspections through the industrial metaverse, wherein
on- and off-site users can concurrently and collaboratively execute inspection tasks is an
innovative concept not yet covered in the literature. Current teleoperation systems pri-
marily enable remote engineers to stream a video that the on-site inspector is looking
at [78]. However, in such cases, remote engineers only rely on the image/video data cap-
tured by the inspector, posing a potential risk of overlooking crucial areas, mispositioning,
or encountering low-quality data, not suitable for thorough inspection. Additionally, their
communication relies solely on 2D video/image frames, restricting the information needed
for interaction. On the other hand, SIM allows real-time communication between on-site
inspectors and remote experts. These remote experts can ensure that the data is collected
correctly and can share their comments and annotations with all inspectors in a shared
environment. This novel 3D mode of communication in SIM offers more seamless and
information-rich engagement and collaboration for infrastructure inspections.
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5.3 Multi-shot localization

SSL has certain limitations when applied to SIM. SIM utilizes a panoramic camera to
facilitate collaboration between MR and VR users. The issue with SSL is that it cannot
be directly used to localize panoramic images because they do not follow a pinhole camera
geometry. A panoramic image could be decomposed into multiple perspective images
by converting the equirectangular projection to a cubemap projection, resulting in six
perspective images with pinhole geometries [147]. However, SSL was designed to employ
only a single query image to estimate the camera’s pose. In fact, the accuracy of the spatial
alignment requires multiple trustworthy feature matches between the query image and the
anchor, followed by accurate pose estimates from the query device. Thus, SSL can only
localize a single image out of the six perspective images at a time and cannot provide an
accurate localization result that aligns the entire panoramic image with M . This means
that other regions of the panoramic image would not be aligned correctly with M . Thus,
an improved spatial alignment method is needed by incorporating multiple query images
to localize panoramic images.

This study proposes a new image-based spatial alignment algorithm called MSL, which
incorporates multiple query images with known relative poses for spatial localization. The
main advantage of MSL is to use multiple query images and spatial anchors to estimate a
coordinate transformation to minimize the overall re-projection error across all the query
images and obtain a globally consistent spatial alignment result. In MSL, a reference
device (r) equipped with a calibrated camera and a 3D sensor (e.g., LiDAR) captures
N images (Irj) of the scene, denoted with index j for each reference image. I assume
that all the images were captured with the same reference camera with identical intrinsic
camera parameters (e.g., principal points, focal length), and the camera was preliminarily
calibrated to obtain the camera intrinsic matrix (Kr). Each reference image has its camera
coordinate system (reference camera frame) denoted as crj . The reference device is also
able to localize itself (using SLAM) to simultaneously build M and track its pose relative
to its map frame (mr). The pose of the camera is calculated using the 4×4 coordinate
transformation matrix (T

crj
mr ) that relates to the crj to mr for each Irj.

Next, a spatial anchor from Irj is created. The process of creating spatial anchors in
MSL is the same as SSL. First, an image retrieval algorithm decomposes Irj into a bag-of-
visual-words vector (Vrj) for performing image retrieval. A feature detection algorithm is
then used to find unique 2D features (xrj

k ) and descriptors (Drj
k ) in Irj, denoted with index

k for each feature point extracted from Irj. These reference features and descriptors are
matched with features and descriptors in query images during the localization process. The
2D pixel coordinates of xrj

k are then back projected from Irj to 3D coordinates (X
crj
k ) in the
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crj frame. This is done by using the 3D sensor on-board of the reference device to obtain
corresponding 3D points. Therefore, I can map every 2D point in xrj

k to a corresponding
3D point in X

crj
k . The 3D points, Xmr

k , corresponding to X
crj
k in the mr frame is computed

from pre-multiplying X
crj
k by Tmr

crj
, which is the inverse coordinate transformation of T

crj
mr .

The points in Xmr
k denote the 3D locations of visual feature points in mr. In MSL, a

spatial anchor (Aj) in Eq. 5.1 is encoded by a set of data computed from Irj , which stores
Vrj, X

mr
k , and Drj

k .

Aj = {(Xmr

k , Drj
k )k=1, Vrj} (5.1)

In the process of scanning the structure, the reference device creates many spatial anchors
from the images that it collects so that it can encode visual information about different
parts of the scene. A database is then constructed to store the spatial anchors (A1, A2, . . .
AN).

Once I create spatial anchors as pre-processing, I am ready to align the query devices.
The query device (q) captures multiple query images (Iqi) of the scene, where each query
image is denoted with index i. Each query image also has its camera frame denoted as cqi.
In MSL, the query images do not have to be captured with the same camera and can have
different intrinsic parameters such as a different camera matrix (Kqi) per query image.
The query device also tracks its position relative to a local stationary frame, denoted as
mq. The pose of the query device relative to mq is represented using the transformation
T

cqi
mq that is recorded for when each Iqi was captured.

In MSL, image retrieval is first used to obtain a set of spatial anchors that have the
same visual features from Iqi. A bag-of-words vector (Vqi) for Iqi is computed, and Vqi is
then compared to Vrj for every Aj in the database to compute similarity scores. The set of
spatial anchors with high similarity scores is then used to perform the localization process.
A predefined minimum similarity score is chosen to determine the number of spatial an-
chors retrieved for each query image. The specific value of this minimum similarity score
can be determined through experiment, considering the desired robustness of the localiza-
tion outcome. A higher number of retrieved spatial anchors can improve the localization
result in cases where visual features in Iqi overlap with multiple spatial anchors, increasing
the number of feature matches. However, retrieving too many spatial anchors may lead to
situations where not all of the anchors have visual overlap with Iqi. This could potentially
introduce false positive matches that can lower localization accuracy. Therefore, deter-
mining the optimal number of anchors retrieved per query image requires a pre-selection
process.

Feature detection is then applied to Iqi to obtain 2D feature points (xqi
k ) and descriptors
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(Dqi
k ) for each query image. This process compares the visual descriptors of Dqi

k and Drj
k

to find correspondence (pik, pjk) between xqi
k and xrj

k . Here, pjk represents the index of
matched feature point k in Irj to refer to the point coordinates in xrj

k , while pik represents
the index of matched feature point k in Iqi. Thus, the 2D points in xqi

pik
and xrj

pjk
represent

the 3D point in the scene but viewed from different images Iqi and Irj, respectively.

A set of 2D-3D correspondences is then established by linking the 2D points in xqi
pik

with
the 3D points in Xmr

pjk
, since both sets of points represent the same locations in the 3D

scene. Xmr
pjk

can be projected onto the image plane of Iqi to obtain a projected set of 2D

points, denoted as x̃qi
pik

, using Eq. 5.2:

x̃qi
pjk

= Kqi T cqi
mq

Tmq
mr

Xmr
pjk

(5.2)

In Eq. 5.2, Xmr
pjk

in the mr frame are first transformed to the points in the cqi frame

using the coordinate transformations of T
mq
mr and T

cqi
mq . Kqi is then used to project those

3D points in the cqi frame to Iqi to obtain x̃qi
pjk

. Spatial alignment is the process of

computing the transformation between mq and mr, denoted as T
mq
mr by minimizing the

distance betweenxqi
pik

and x̃qi
pjk

, which indicates the same 3D point, Xmr
pjk

. Some of these
variables and their geometric relations to each other are graphically represented as a frames
diagram in Fig. 5.2:

In Fig. 5.2, the solid red lines represent known transformations, while the dashed line
represents the unknown spatial alignment transformation (T

mq
mr ). The query images are

shown from left to right (qi = q1, q2, . . .). Some query images may either include a single
anchor, or multiple anchors at the same time. The re-projection errors (esum) between
each pair of points in xqi

pik
and x̃qi

pjk
from all query images and anchors are calculated

in Eq. 5.3. The objective of MSL is to solve the optimization problem to estimate T
mq
mr

that can minimize the re-projection error between xqi
pik

and x̃qi
pjk

across all combinations

of i (query image), j (anchor), and k (correspondence). This problem can be formulated
mathematically as a convex optimization problem in Eq. 5.3 to minimize esum by varying
T

mq
mr :

esum =
∑
i

∑
j

∑
k

∣∣∣ xqi
pik
−Kqi T cqi

mq
Tmq
mr

Xmr
pjk

∣∣∣ (5.3)

This formulation is similar to the PnP problem [148]. Thus, the RANdom SAmple
Consensus (RANSAC) algorithm is used to solve for T

mq
mr [149]. In RANSAC, the problem

is re-formulated to maximize the number of inlier points (Ninliers) that have re-projection
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Figure 5.2: Geometric relationship between query images and anchors: Each spatial anchor
(Aj) is visually represented as a set of colored 3D points anchored to the 3D map (M).
The spatial alignment is to compute a transformation between the query device map frame
(mq) and the reference map frame (mr). Note that adjacent camera transformations are
obtained through SLAM for a single camera, or a camera calibration process for multiple
cameras.

errors below a predefined threshold (etol). In MSL, first, four random feature points are
picked in a random query image to obtain a solution for T

cqi
mr that satisfies a P3P condi-

tion [121]. T
mq
cqi is then multiplied with T

cqi
mr to obtain an initial solution for T

mq
mr . The

re-projection error is then calculated for all feature points and then compared with etol
to calculate Ninliers. After a certain number of iterations, T

mq
mr with the highest Ninliers

is selected that can minimize the re-projection error for the majority of matched feature
points across all query images.

A major assumption of MSL is that the T
cqi
mq transformations are highly accurate and

have almost no drift. This assumption is required to guarantee that T
mq
mr is accurate enough

to align all of the query images simultaneously relative to mr. Otherwise, drift errors in
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T
cqi
mq would cause only one query image at most to be localized accurately, while the re-

projection error in the rest of the query images would be above etol. In such a case, MSL
would have a similar level of accuracy as SSL.

There are two promising applications for MSL. In the first case, multiple query images
are captured from a single camera, but at different time instances. In this case, the query
device uses the SLAM algorithm to track its camera poses relative to mq for each image.
The accuracy of T

cqi
mq must be maintained by using a highly accurate SLAM algorithm or

other external sensors to track the camera’s pose. The camera also has the same camera
matrix (Kqi) for all the query images since the camera’s intrinsic parameters do not change.
In this case, MSL is used to spatially align the local SLAM stationary frame (mq) to mr.

For the second application case, there can be multiple cameras that are attached to
a fixed rig. All cameras capture one image individually at precisely the same time. The
images from these cameras in the rig are then used as query images for localization in
MSL. In this case, the local camera poses required for MSL are obtained from extrinsically
calibrating the cameras. In other words, the extrinsic transformations (T

cqi
mq ) are known

between each camera frame (cqi) relative to an arbitrary stationary camera rig frame, which
is assumed as mq. Thus, MSL is used to spatially align the camera rig frame (mq) to mr.
The cameras can also have different Kqi values since not all cameras are associated with
the same intrinsic parameters.

Comparing the proposed MSL with SSL, MSL improves upon the SSL algorithm be-
cause it accounts for multiple query images and spatial anchors and provides an optimal
solution that minimizes error for all of the query images simultaneously. As a result, the
estimation of T

mq
mr is more robust and accurate. It is noteworthy that MSL is not a process

of simply repeating SSL multiple times. If SSL was simply applied to all the query images
independently, then any error in the localization results would mean that T

mq
mr would not

be consistent with T
cqi
mq for every other query image. This is because in SSL the result form

T
mq
mr is only valid for one query image at a time. Therefore, SSL does not allow for finding

the optimal T
mq
mr that aligns all of the query images simultaneously. SSL cannot guarantee

that all of the query images will be successfully localized if some of them do not have visual
overlap with spatial anchors. In contrast, MSL can still find a localization solution if at
least some of the query images have visual overlap with spatial anchors.

One of the key advantages of MSL within the proposed SIM system is its adaptability to
various camera models. For instance, it can handle a generalized camera model decomposed
into a rig of multiple pinhole cameras with known transformations between them. These
transformed images can then serve as input for MSL, enabling the localization of panoramic
images to mr.
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5.3.1 MSL application: panoramic image localization

In the proposed SIM system, panoramic images are sent to the remote VR user with an all-
around view of the site in real-time. These images serve multiple purposes, not limited to
mere observation; they facilitate making measurements and annotating inspection items
for the VR user. Thus, it is necessary to localize each panoramic image relative to the
pre-built map so that annotations placed on the panoramic images are anchored to the
pre-built map and shared with other users with spatial context.

To address this issue, MSL is used for localizing panoramic images. The panoramic
images are decomposed into multiple perspective images and these images become query
images in MSL. A panoramic image (Iq) is decomposed into a set of four non-overlapping,
undistorted, square, perspective images (Iqi) using the cubemap projection [147]. Each
image in Iqi is viewing the left, right, forwards, and backwards directions of the panoramic
image. For this study, the up and down perspectives direct to sky and ground so they are
not included as query images due to lack of unique features. An example of the cubemap
projection can be seen in Fig. 5.3:
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Figure 5.3: Converting panoramic image (Iq) to the cubemap projection to produce four
square perspective query images (Iqi) for MSL for spatial alignment.

Assume that there exists a camera rig consisting of four cameras capturing each image
in Iqi simultaneously. MSL is used to spatially align the camera rig frame (mq) to mr,
where mq is the center of the panoramic sphere facing the local forward direction. The
extrinsic transformations (T

cqi
mq ) are known between each camera frame (cqi) relative to mq

from the cubemap projection. In the cubemap projection, each of the four perspective
images is captured from the center of the panoramic sphere and the directions of the
principal axis are placed at 0º, 90º, 180º, and 270º with respect to the local y axis of
the panoramic sphere. Thus, each T

cqi
mq matrix is represented by a rotation matrix with a

specific rotating angle for each Iqi. MSL uses a calibrated camera matrix for the query
images. In the cubemap projection, Kqi is computed for an equivalent pinhole camera for
each Iqi, where the camera center is placed at the center of the panoramic sphere. The
focal length value in Kqi is calculated from the field-of-view (fov) of Iqi, which is set to 90º
for the cubemap projection [150]. After computing all the required query inputs for MSL
from the panoramic image such as Iqi, K

qi, and T
cqi
mq , MSL can then be used to localize the

panoramic image relative to mr and finally estimate T
mq
mr .
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5.4 SIM Components and System

This section describes various components that constitute the SIM system and how these
individual components work together to enable collaboration between multiple MR and
VR users in real-time, which can perform common inspection tasks such as annotation
and co-visualization. Other components of SIM such as interactive segmentation and data
collection robots are incorporated here and are modified to work for VR users as well as
MR users. Fig. 5.4 shows the workflow of the SIM system. The components in SIM include
MR/VR devices, panoramic camera, data collection robots, and a computational server
that performs localization, interactive segmentation, and synchronization between multiple
devices. All the tasks in this workflow are automated, except for annotating defects by
MR/VR users, which require input from an inspector, such as XRIV [46]. All computa-
tional tasks regarding spatial alignments, interactive segmentation, and synchronization
are performed on a single, centralized server.

Pre-requisites: A pre-requisite for the SIM is to create a colorized 3D point cloud
map of the site using a 3D scanning system equipped with an RGB camera and LiDAR.
This can be done either during or prior to the inspection, and the scanning procedure
could be performed by either a ground robot, drone, or a handheld scanner. The camera
must first be intrinsically calibrated using a checkerboard procedure to obtain the camera
matrix and distortion parameters [151]. The on-board cameras of the MR headsets may
also be calibrated in the same way. The camera and LiDAR must also be extrinsically
calibrated to obtain fixed relative poses between the camera and LiDAR sensors [152, 153].

Robot (r): The integration of the robot into SIM is similar to how it was discussed in
Chapter 4. After the collecting visual and LiDAR data of the site, a SLAM algorithm is
used to fuse the data to generate the pre-built map (M) and output the poses of the sensors
relative to the map frame (mr) from each time-step [154, 125, 126]. M and the data used
to construct it such as reference images (Irj), camera poses (T

crj
mr ), and camera intrinsic

parameters (Kr) are then used to create a database of N spatial anchors (A1, A2, . . . AN).
This database is stored in the server to perform localization requests. During the scanning
procedure, the robot may be controlled by the VR or MR inspectors by specifying the
desired pose for a target pose (Pmr) for the robot to follow in the mr frame. SIM allows
for this scanning procedure to be performed concurrently while the MR/VR inspectors
perform the inspection.

MR headset (i): Once the inspection starts, each MR headset (designated as i in
Fig. 5.4) automatically captures a query image (Ii) through its on-board camera (ci) with
camera intrinsic matrix (Ki). Ii and Ki are then sent to the server to perform image-based
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localization to spatially align the MR headset with M . The MR headset also records
the local pose (T ci

mi
) of ci relative to the MR stationary frame (mi) using the headset’s

on-board head-tracking SLAM system. The server then computes the spatial alignment
transformation (Tmr

mi
) of mi relative to mr. The MR users can add annotations of defect

regions, such as text, bounding boxes, and/or area measurements, which are designated
as Xmi and placed in the mi frame. Annotations received from other MR/VR users,
designated as Y mi , are visible to the MR users and are also placed in the mi frame.

Panoramic camera (p): The panoramic camera enables the VR users to see a real-
time all-around view of the infrastructure site through panoramic images. The camera
will be carried by the on-site MR user or attached to a robot or drone. Once the camera
captures an image (Ip), it is then sent to the localization server to estimate the pose (T

mp
mr )

of the panoramic camera frame (mp) relative to mr. Then, Ip will be anchored in M .

VR headset (j): The VR headset (designated as j in Fig. 5.4) first receives the pre-
built map (M) and positions it into Mas the start of the inspection session to visualize
the site as it was scanned. The VR headset also receives Ip and T

mp
mr from the server after

completing the localization of Ip to mr. The VR users then perform the inspection using
Ip and make annotations. These annotations are anchored to a 3D location (Y mr) in mr

through ray-casting. The ray-casting algorithm searches for the closest 3D point in M
that corresponds to any 2D point on Ip that is selected by the VR user [13]. The VR user
can also use interactive segmentation for area measurements, where the input image is Ip.
Annotations that are added by other users (Xmr) are also placed in the mr frame and
visualized to the VR user.

Localization module: The localization module is to spatially align all MR/VR head-
sets and panoramic images intomr using image-based localization. The server first accesses
the database of spatial anchors for the site, which were created in previous sessions. Any
device can send a localization request to the server, comprising a query image (Iq) cap-
tured by the query device’s camera (q). The localization module then determines if Iq was
captured from a MR headset (a single perspective image) or a panoramic image. If Iq is
captured by the MR headset, then supplementary calibration data including the camera
matrix (Kq) and local pose (T

cq
mq) should be provided. For such a case, the SSL algorithm

can be used for localizing the image relative to mr [47]. Otherwise, the MSL algorithm
is executed to localize the panoramic images into mr. Once T

mq
mr is estimated, it is then

stored alongside with Iq for the duration of the session.

Synchronization module: The synchronization module in the server is to synchronize
the spatial information (e.g., defect annotations, user head/hand poses, etc.) between
multiple MR/VR users in the same session. Any spatial data such as 3D locations of
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annotations that are generated by each device will be anchored in M and synchronously
visualized to other devices. The synchronization module first receives the spatial data
such as annotations and head/hand poses and converts them to the mr frame. These data
are then converted to each device’s local frame before sending them to that device. For
example, when the MR user places an annotation (Xmi), it is created in the mi frame,
the local frame of the MR headset. The synchronization module then retrieves Tmr

mi
from

the localization module and transforms Xmi to Xmr so that the annotations are aligned
in the mr frame and can be shared with the VR users. Similarly, VR users’ annotation in
the mr frame (Y mr) can be shared with the MR user. As a result, each user can show the
data, which is shared by other MR/VR users. Once the inspection is over, all annotations
produced by the MR/VR inspectors which were already converted to the mr frame are
then stored in the database for future sessions.

Interactive segmentation module: The interactive segmentation module, discussed
in Chapter 3 is also integrated in SIM here so that human inspectors can perform defect
area measurements with the aid of AI. f-BRS is deployed to the server to receive captured
images and seed points selected by the human users through MR/VR. The image is first
segmented by f-BRS and then the segmentation mask is refined based on the judgement
of the human user who can modify the seed point selection to improve the quality of the
results. The resulting boundary mask is then ray-casted into M to get the 3D locations of
the boundary points, which are then used to calculate the segmented area of the defect.
This area measurement is then displayed to all users as an annotation in the mr frame.
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5.5 Experimental Validation

5.5.1 Details of the inspection site

The feasibility of SIM has been tested and evaluated from an in-service reinforced concrete
railway bridge located in Waterloo, Ontario, shown in Fig. 5.5. The main span of the
bridge is 20 m, and 3.4 m high, with two large spalling regions (approximately 0.5m width
each) located at the deck and pier of the bridge, respectively, shown in Fig. 5.5b.

(a) (b)

Figure 5.5: Test bridge structure: (a) a path for collecting panoramic images and (b) two
spalling regions at the side and top of the bridge abutment.

The experiment was designed to demonstrate real-time collaborative annotation and
sharing capability in SIM. During the experiments, two MR users inspected the bridge on-
site while one VR user inspected the bridge remotely. One MR user carried a panoramic
camera to capture all-around views of the site and share them with the remote VR user,
while the second MR user assisted with labeling the spalling annotations. The MR user
carrying the panoramic camera traversed the path shown in Fig. 5.5a. The VR user an-
notated spalling regions 1 and 2 on the panoramic images. The annotations were then
visualized in real-time by both the MR users on-site, which are anchored to the real lo-
cations of the defects. The accuracy of MSL for the panoramic image localization was
then tested to demonstrate that the annotations placed by the VR user were accurately
anchored to their correct physical defect locations on the structure.
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5.5.2 Mapping of the bridge

SIM requires a prebuilt 3D map of the test bridge site. I utilized a custom handheld scan-
ner built by myself, equipped with an Intel Realsense D455 RGB camera and a Livox Avia
LiDAR in Fig. 5.6. The Intel Realsense D455 camera captures color images with a resolu-
tion of 1,280 × 720 and a field of view of 90º [155]. A Livox Avia is a solid-state LiDAR
and collects 3D point clouds, at the rate of 240,000 points per second and a maximum
range of 200 m with an average error within 2 cm [156]. The Livox Avia also contains
an integrated Inertial Measurement Unit (IMU) to improve tracking performance through
pre-integration between lidar frames. The camera and LiDAR sensors were combined using
a 3D printed component, allowing me to use fixed external calibration parameters. For
outdoor applications, a Neutral Density (ND) filter was attached to the front of the camera
lens to reduce infrared interference in the RGB sensors from sunlight. An Intel NUC mobile
computer was used for data collection from the sensor. The camera and LiDAR sensors
were calibrated to obtain the intrinsic camera matrix and the extrinsic camera-LiDAR
transformation.

Figure 5.6: Custom-built handheld scanner equipped with Intel Realsense D455 camera
and Livox Avia LiDAR for creating pre-built 3D maps for SIM.

In this study, a SLAM algorithm called R3Live was used to process the LiDAR scans,
images, and IMU measurements to produce the sensor trajectory and the 3D map of
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(a) (b)

Figure 5.7: Colorized pre-built map of bridge site generated from data captured using
custom-built LiDAR scanner: (a) full map of bridge site and (b) close-up view of spalling
regions.

the bridge [126]. The 3D map reconstructed in Fig. 5.7a, was then used as the virtual
environment for the VR user in SIM to explore various regions of the site and measure
the sizes of defect regions. In terms of overall accuracy, the R3Live algorithm produces
point cloud maps that are accurate up to 5 cm in terms of drift on average, as claimed in
their study [126]. However, still, fine details such as the spalling regions in Fig. 5.7b are
not visible because of the noise in the LiDAR measurements and insufficient resolutions of
the point cloud reconstructed. Also, there is a noise range of 1-2 cm in the map, which
leads to obscuring details of the map such as spalling, making them difficult to discern.
Thus, the 3D map had to be down-sampled using a voxel size of 1cm to mitigate LiDAR
noise, despite the cost of reducing spatial resolution. Although point cloud maps serve as
useful tools to navigate the structure and identify inspection regions, they are not suitable
for conducting detailed examinations. Hence, the panoramic images were captured and
provided on the map to inspect the bridge structure in VR.
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5.5.3 Implementation of SIM

Hardware configuration

The two on-site users were equipped with HL2 as the MR headsets. HL2 has on-board front
cameras with a resolution of 3,904 × 2,196 pixels during the photo capture mode [129]. The
intrinsic camera calibration parameters of the HL2 were provided by the manufacturer. One
of the MR users was also equipped with a Ricoh Theta X camera attached to a backpack
for collecting panoramic images, as shown in Fig. 5.8a. The Ricoh Theta X automatically
produced stitched panoramic images in the equirectangular projection with a resolution
of 11,008 × 5,504 pixels [157]. The images were then sent through a USB 3.0 cable to an
Intel NUC computer placed inside the backpack. The camera is triggered every second to
capture the panoramic image. The HL2 and Intel NUC were wirelessly connected to a 5G
router in the backpack, which provided connectivity to both MR users on-site through a
Wi-Fi hotspot.

(a) (b)

Figure 5.8: Hardware implementation for SIM: (a) on-site MR user equipped with
panoramic camera and (b) remote VR user.

For the remote VR user, an Oculus Quest 2 was used as the VR headset for my imple-
mentation [158] in Fig. 5.8b. The Oculus Quest 2 was connected to a desktop computer
equipped with an AMD Ryzen 5 3600 CPU and a NVIDIA GeForce GTX 1660 Ti GPU to
run the VR application, which was necessary for rendering large point clouds such as the
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pre-built 3D map in SIM. The desktop computer then sends the rendered frames (scenes)
to the Oculus Quest 2 through a USB 3.0 cable with minimal latency.

The server, which performed the localization and synchronization, was configured on a
personal laptop. This laptop was an ROG Strix G17, equipped with an NVIDIA GeForce
RTX 2060 GPU and an Intel Core i7 processor. The laptop was placed in the office next to
the VR user, as depicted in Fig 8b. The server was wirelessly connected to the VR user’s
desktop through Wi-Fi, and the on-site MR users were remotely connected to the server
through a 5G internet connection. The server used TCP sockets to establish persistent
two-way connections to all MR/VR devices and the panoramic camera. The TCP sockets
allow these devices to send and receive data (e.g., images, annotations, user poses, etc.) to
and from the server.

User interaction

SIM facilitates the telepresence of MR/VR users, allowing them to visualize and engage
with each other remotely. This interaction is achieved through the use of 3D avatars,
enhancing spatially aware collaboration. The Oculus Quest 2 and HL2 support the function
of tracking the users’ head and hand movements. For the Oculus Quest 2, a controller was
used to track hand positions and angles, while the HL2 can track the user’s hands through
its built-in cameras when they are visible to the camera. The head and hand positions of the
MR/VR users were then spatially aligned and synchronized with other users through the
server. The positions of other users’ heads and hands were mapped onto avatar models.
For example, in Fig. 5.9a the MR user is viewing a remote VR user (User 1), while in
Fig. 5.9b the VR user is viewing an on-site MR user (User 2). Note that the hands are
visualized with Oculus controller icons.
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(a) (b)

Figure 5.9: Spatially aware collaboration in MR/VR using 3D avatars: Each user perceives
other users as being present in their environment through avatars, allowing them to monitor
hand and head positions. Screenshots in (a) and (b) illustrate the perspective of an on-site
MR user and a remote VR user, respectively.

Implementation of MSL for panoramic image localization

In the experiment, MSL was implemented for spatial alignment of panoramic images rela-
tive to the pre-built map. First, the handheld scanner was used to collect 2,890 images and
1,957 LiDAR scans (approximately 47 million points total) during the scanning procedure,
while R3Live SLAM was used to obtain the camera poses for each image. For each RGB
image, the previous 5 seconds of LiDAR scans were first concatenated and then projected
onto the image plane to produce a corresponding sparse depth image. This is the same
methodology for producing depth images as the KITTI dataset, which is the standard
way for converting LiDAR scans to depth images [159]. The purpose of generating these
depth images was to back-project the locations of 2D points in the RGB image onto 3D
coordinates in the mr frame. The RGB and depth images were then sampled uniformly to
create 250 spatial anchors.

Once a panoramic image was captured, it was then converted to four perspective images
using the cubemap projection using the OmniCV package [147]. MSL was used to localize
the panoramic images into the prebuilt map using the procedure described in Fig. 5.3.
In the MSL process, accurate image retrieval and precise feature detection and matching
algorithms were deployed using the hierarchical localization toolbox, which is a library that
implements all the feature detection, matching, and image retrieval algorithms used in my
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study [67].

For image retrieval, the learning-based place recognition algorithm, NetVLAD, was
used to retrieve the top 5 most similar spatial anchors to each query image [116]. I then
evaluated the accuracy of several feature detection algorithms including ORB, SIFT, and
SuperPoint [139, 138, 141]. For feature matching, I tested Nearest Neighbor search (NN)
with the number of classes (k) set to k=2 for SIFT and ORB, as well as dense feature
matching algorithms including SuperGlue for SuperPoint features and detector-free match-
ing with LoFTR [143, 160]. For SuperGlue and LoFTR, pre-trained models were provided
by the original authors, which were trained on images in outdoors environments. These
models were then deployed in my study for feature matching. For RANSAC, several pa-
rameters were selected to optimize the PnP solver’s performance. For example, for each
image, the allowable re-projection error was selected to be 10 pixels, the maximum num-
ber of iterations was selected to be 10,000, and the minimum number of inlier points for
accepting localization results as valid was set to at least 50 points.

Panoramic image rendering

The set of panoramic images was overlaid as spheres on the 3D map in the virtual en-
vironment for remote VR users, in Fig. 5.10a. The location of each panoramic sphere is
computed from the pose of the panoramic image obtained from the MSL. The VR user can
navigate the map and select the sphere to see the surrounding view of the current state
of the site on the selected location. Fig. 5.10b shows a sample panoramic image. The VR
user is then able to add annotations to the panoramic image, which are then projected
and anchored to the underlying 3D map. The annotations added by the VR user are then
anchored to their corresponding locations in the real or virtual scenes and shared with
other users in the session in real-time. In my implementation, the 3D pre-built map and
the panoramic images were rendered using the Unity game engine [161].
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(a) (b)

Figure 5.10: Panoramic image rendering in the VR environment: Panoramic images cap-
tured by on-site inspectors are spatially aligned with the pre-built map using MSL, allowing
users to share annotations for inspection. (a) shows a 3D map in a virtual environment
with localized panoramic images and if VR users click one of the panoramic images, the
surrounding view on the selected location can be seen like the one in (b).

Spalling damage inspection

In this experiment, the goal is to inspect spalling damage on the bridge. During the
inspection session, the VR user annotated both spalling regions 1 and 2 on the localized
panoramic images and the annotated information includes the bounding box, defect type,
and damage area measurement. The annotations were then anchored to the prebuilt maps
and were shared with the virtual and the real scenes so that they were visible to the two
MR users and one VR user. From the MR users’ perspective, the annotations are projected
as holograms that are anchored to the real scene, as seen in Fig. 5.11a. For the VR user,
the annotations are shown to be anchored to the same location on the 3D map, as seen
in Fig. 5.11c. The first and second images in Fig. 5.11 indicate the annotation of spalling
regions 1 and 2, respectively.

Note that in this experiment, the accuracy of the area measurement for spalling regions
was not measured because the performance of damage segmentation and quantification
using the prebuilt maps have been evaluated in chapter 3. This experiment aims to
demonstrate how interactive segmentation of damage regions developed by the myself or
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(a) (b)

(c) (d)

Figure 5.11: Spalling region annotations including damage type, bounding box, segmented
region, and area measurement: The annotations are spatially aligned to the 3D map and
simultaneously shown to (a) on-site MR users on real-scenes and (b) remote VR users on
virtual scenes.

others can be integrated into the SIM framework for collaboratively performing the in-
spection, and how spatial alignment enables annotations to be co-visible to MR/VR users
simultaneously in a spatially aware context. However, in the next section, I will test the
performance of MSL for panoramic image localization, which will affect annotation local-
ization.
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5.5.4 Spatial alignment evaluation

Most existing panoramic image localization algorithms use either the equirectangular or
omnidirectional image projection models [162, 108, 163, 164, 165, 166]. These techniques
perform feature detection on the entire image at once so that visual features can be ex-
tracted from images. However, this approach does not consider the high degree of distortion
in panoramic images outside of the image center, which may negatively affect the quality
of the features and cause failing or inadequate feature matching [167]. Some feature detec-
tors such as SIFT have been modified to work for highly distorted images [168]. However,
hand-crafted features such as SIFT and ORB have been shown to underperform when
compared to state-of-the-art learning-based feature detectors and matchers such as Super-
Point, SuperGlue, R2D2, and LoFTR, in terms of both the quality and quantity of features
extraction and matching [141, 143, 160]. This issue becomes apparent in civil engineer-
ing structures which often have low features textures (e.g., concrete, steel), or textures
with repeating patterns (e.g., bricks), which makes detecting and matching features very
difficult. Hand-crafted features have been shown to underperform for localization in civil
engineering structures compared to learning-based features that are more robust in these
environments [47].

However, learning-based features have still been only tested on perspective images with
a low degree of distortion. This can be attributed to two main factors: the limited availabil-
ity of adequate training data for different image projection models, such as equirectangular
or omnidirectional images. Next, many DNNs rely on minimal distortion in local regions to
effectively match corresponding features across multiple images. Thus, current approaches
which only utilize hand-crafted features cannot be used to reliably localize panoramic im-
ages in civil engineering structures.

In this context, I evaluate the performance of the hand craft and learning-based feature
extraction and matching methods in achieving spatial alignment. I gauge the spatial
alignment accuracy of MSL for anchoring panoramic images by quantifying the spatial
deviation between objects in the image and the 3D map. If the localization is accurate,
then the offset would be zero and the panoramic images could be perfectly overlayed over
the 3D map. To do this evaluation, a fiducial marker attached to the structure was used
to measure the offset because it is visually distinctive, has visible corners, and has known
dimensions. The marker has square sides of 20 cm and was taped to the bridge abutment
near spalling region 1, shown in Fig. 5.12.

This method of measuring error is different than measuring the localization error of the
estimated pose directly. However, both spatial alignment and localization error measure
the absolute deviation between the images and 3D map. Unfortunately, it is not possible
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Figure 5.12: Fiducial marker taped to bridge’s surface near spalling region 1 to quantify
spatial alignment error in MSL for panoramic image localization.

to directly measure the precise locations of the 3D coordinates of the panoramic images.
I assume that manual measurement from the 3D map is considered as the ground-truth,
although, strictly speaking, this might not be entirely accurate. Without using beacon
tracking system, the accurate location cannot be measured.

After attaching the fiducial marker, the structure was scanned to create the pre-built
3D map so that the four corners of the marker were visible in the 3D map. The corners were
then manually selected using CloudCompare to obtain their 3D coordinates in mr [169].
Once a panoramic image is captured and localized using MSL, the 3D corners are then
projected onto the panoramic image to see where the marker would be in the image based
on the localization result. Ideally, the projected corner points obtained from the 3D map
would match the corners of the marker seen in the image.

The projected corners of the marker are then compared with the results of an ArUco
marker detection algorithm implemented in OpenCV to automatically detect the corners
of the marker in the panoramic images [128]. The pixel coordinates of the marker were
then converted to physical coordinates using a four-point homography algorithm which also
fixed perspective distortion [99]. The homography matrix was estimated by transforming
the pixel coordinates of the corners to physical coordinates parallel to the marker’s sides
(20 cm × 20 cm). The spatial alignment error was then defined as the L2 distance in
centimeters between the centers of the projected marker location and the marker location
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obtained from the detection algorithm.

For this experiment, 48 panoramic images were collected along the data collection path,
and the marker was visible in each image. Two classic feature detectors (ORB, SIFT) and
two learning-based feature detectors and matchers (LoFTR, SuperPoint+SuperGlue) were
evaluated. After running the MSL panoramic image localization algorithm for each of the
test images multiple times using different feature detectors and matchers, the results for
panoramic image localization were tabulated in Table 5.1.

Table 5.1: Comparison of the spatial alignment errors using different feature detectors and
matchers implemented in MSL for panoramic image localization.

Feature detector +
matcher

Mean spatial
alignment error ±
standard deviation

Mean number of inlier matches / total matches

LoFTR 5.1 ± 2.9 cm 7416 / 18889
SuperPoint + SuperGlue 8.1 ± 7.6 cm 1230 / 4640

SIFT + NN 12.0 ± 12.3 cm 335 / 920
ORB + NN 920 ± 2,300 cm 25 / 358

The first column in Table 1 is presented as the mean error in centimeters, plus the
standard deviation value for the images that were evaluated. The second column shows
the mean number of inlier feature matches divided by the total number of feature matches
per image. When the number of inlier-matched feature points is low (50 in this experiment),
then I consider the result to be unreliable due to the low inlier ratio, so I excluded those
cases from the first column.

Among the feature detectors and matchers that were evaluated, LoFTR produced the
smallest mean error and standard deviation results. In comparison, the ORB did not
produce enough inlier feature matches for a reliable result, so the mean error and stan-
dard deviation are very high. The difference in accuracy can be explained as follows:
LoFTR produced the most inlier and total feature matches on average compared to Super-
Point+SuperGlue, SIFT, and ORB per panoramic image. Thus, MSL had a higher chance
of producing a geometrically correct pose estimate when using LoFTR due to the large
number of total and inlier feature matches that it produced. Another metric to consider
is the ratio of inlier matches to total matches, which is indicative of the reliability of each
feature detector and matcher. LoFTR (39.26%) has the highest inlier ratio, compared to
SuperPoint+SuperGlue (26.52%), SIFT (36.39%), and ORB (7.06%), which makes it the
most reliable feature matcher. SIFT also has a relatively high inlier ratio which indicates
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that it can detect and match features reliably. However, the low number of total fea-
tures reduces the overall accuracy of MSL. This experiment also shows that learning-based
feature detectors and matchers such as LoFTR and SuperPoint+SuperGlue significantly
outperform hand-crafted methods such as SIFT and ORB in civil engineering structures
with low brightness (underneath the bridge deck) and low-feature surfaces (concrete sur-
faces). Overall, LoFTR produced the best overall result for this study because it produced
a large number of inlier feature matches, and it produced a spatial alignment accuracy of
around 5 cm which is sufficient for bridge inspection applications.

It is important to highlight that some sources of error may have influenced the accuracy
of the spatial alignment result. These sources of error are related to how the spatial anchors
were created, so they do not affect the comparison between different feature detectors and
matchers. First, there was some drift error from SLAM when constructing the pre-built 3D
map. This drift error must have accumulated when creating the spatial anchors because
they rely on the poses of the reference camera obtained from SLAM. Second, random
noise error from the LiDAR sensor (1-2 cm) also influenced the creation of the spatial
anchors because they rely on 3D data from the LiDAR. Thus, the combination of these
two sources of errors when creating the spatial anchors can also affect the spatial alignment
result, which is not related to either MSL or the feature detectors and matchers. Future
studies should prioritize the reduction of the error sources associated with constructing the
anchors. This could be achieved through the adoption of higher precision 3D sensors or
the implementation of more robust SLAM algorithms.
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Chapter 6

Summary and Conclusion

The research presented in this thesis addresses the critical need for enabling real-time re-
mote collaborative structural inspections that can integrate human inspectors, advanced
data collection platforms, and AI. The key motivation behind this work is to overcome the
technical challenges that have hindered real-time collaboration between human users and
machine agents so that human inspectors can make more informed decisions by leveraging
precise inspection data and facilitating their real-time discussions. The SIM system pro-
posed in this study facilitates seamless collaboration between human users and machine
agents. New technological developments in the field of immersive environments enabled
through MR/VR are adopted to support this type of collaboration and advance the field
of vision-based inspections. MR/VR are utilized for aiding on-site inspectors by improv-
ing documentation, allowing communication with remote domain experts to improve the
quality of data, and reducing the barrier of entry to interacting with robots and AI.

This concluding section summarizes the key findings and contributions of this work:

1. Development of the SIM System: The SIM system was created as a novel
approach to infrastructure inspection. It integrates multiple components, including
MR/VR-equipped inspectors, data collection robots, and AI algorithms, into a unified
framework. SIM ensures that inspections are performed as a single synchronous
process that combines data collection, analysis, and decision-making. Thus, ensuring
that human users and machine agents collaborate to collect high quality data, process
it, and make decisions on-site to support robust and efficient inspection.

2. Algorithmic Contributions: This thesis also introduces methodological contribu-
tions based on the algorithms that were developed as part of creating SIM. First, a
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novel procedure was developed for refining real-time quantitative damage measure-
ments from interactive segmentation. This is done by taking the 2D boundary of
the binary mask produced by the interactive segmentation algorithm and spatially
matching 2D image pixels to the 3D scene. Second, the SSL image-based localization
algorithm was introduced to create spatial anchors for spatial alignment between
robots and MR headsets, facilitating real-time supervision and control of robots by
humans. Third, the MSL algorithm was developed to localize panoramic images
and align them with a pre-built 3D map of the site, enabling seamless collaboration
between MR and VR users in an immersive virtual environment.

3. Human-AI Collaboration: A novel damage quantification method called XRIV
was developed to enhance the accuracy and robustness of automated vision-based
visual inspection algorithms by incorporating human interactivity through MR. This
approach improves the segmentation results and underscores the advantages of real-
time interaction between expert users equipped with MR devices and AI. Experi-
mental results showed that XRIV produces accurate spalling damage segmentation
results (<10% error) that are suitable for vision-based inspection applications.

4. Human-Robot Collaboration: A system called HMCI was developed to enable
on-site MR-equipped inspectors to collaborate with data collection robots, ensuring
that defects are not missed during data collection. SSL was quantitatively tested
in a lab environment using multiple feature detection and matching algorithms to
achieve the best spatial alignment results. SuperPoint + SuperGlue were used to
feature extraction and matching, which produced the lowest error (≤1cm error).
The experiment demonstrated how the MR-equipped inspector and robot are able to
collaborate together to inspect the test environment and locate all sturctural defects,
and that SSL achieves sufficient accuracy for real-time human-robot collaboration.

5. Distributed Collaboration: A distributed collaborative system was developed
to enable multiple on-site MR-equipped inspectors to collaborate with remote VR-
equipped experts. This approach enhances spatial awareness, co-presence, and syn-
chronous decision-making between on-site and remote users. An experiment was
conducted to demonstrate how multiple MR/VR inspectors collaborate remotely to
perform a bridge inspection. The experiment also showed that MSL produced suf-
ficient spatial alignment accuracy (≤5cm error) for vision-based inspections when
using the LoFTR feature matching algorithm.

These research outcomes can be integrated into the SIM system to transform traditional
infrastructure inspection workflow that suffer from asynchronicity and lack of real-time
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collaboration, which can negatively affect data quality, accuracy, and may lead to costly
re-inspections. The SIM system offers a solution that reduces spatial-temporal gaps in
the inspection process, leading to more reliable and efficient inspections. Through the
utilization of SIM, it is anticipated that engineers will be empowered to perform rapid and
reliable real-time inspections across diverse scenarios and having no restriction on their
locations.

It is worth noting that the SIM system has some limitations related to the proposed
framework in this thesis. First, SIM requires a consistent internet connection to ensure
that on-site and remote inspectors can always communicate with each other, the robots,
and with the computational server to exchange data. Therefore, it is not possible to use
SIM in remote regions with limited internet connectivity. Second, the entire structure must
be scanned before the inspection session starts to ensure that MSL can localize panoramic
images successfully and the digitized the models are shared with the remote VR users to be
involved in the inspection session. Complete coverage of the structure’s surface with enough
overlap is recommended. However, SIM can still be utilized without a pre-built map if the
configuration only involves the MR users, robots, and AI, and if the MR users are within
close proximity to the robots. This is because SSL does not require a pre-built map to align
multiple devices together locally. Third, the specific configuration of SIM (number of MR
users, VR users, robots, and AI) would depend on many factors (e.g., domain, inspection
application, structure size/complexity, etc.) that are not accounted for in this thesis.
Although SIM is theoretically able to allow any number of MR/VR inspectors and robots
to collaborate simultaneously, this thesis only tested some limited configurations designed
to test the accuracy of specific components of the system (e.g., interactive segmentation,
SSL, MSL). More research is needed to determine which configurations of SIM are practical
for real inspection applications.

While this research has made significant strides in advancing infrastructure inspec-
tion, several avenues for future research remain open. These include further refinements
and optimizations of the SIM system through the integration of emerging technologies for
real-time data analysis and decision-making, and exploring additional interaction modes
provided by MR/VR headsets. First, emerging technologies such as 5G connectivity and
edge computing promise to reduce the latency of inference of AI models for data process-
ing tasks. This is supported by increasing the bandwidth to send larger quantities of data
for computing tasks and should allow utilizing AI for tasks such as defect detection with
lower latency. Second, newer MR/VR headsets support novel modes of interaction such
as eye-gaze and voice commands for interacting with robots and AI. Research should be
conducted to determine how to utilize these modes of interaction to facilitate interaction
and collaboration within the SIM system.
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Emerging technological developments in generative AI such as Large Language Models
(LLMs) allow for the potential of robot-AI collaboration, which is outside of the scope of
this thesis. Potential uses could include robot path planning through generative AI and
the analysis of text-based inspection reports. Aforementioned avenues of research such
as 5G edge computing and MR/VR-based voice commands could support these efforts by
allowing faster inference times and the issuing of speech-based commands by humans. This
type of collaboration would imbue data collection robots with some autonomy to collect
data with very limited supervision from human inspectors, allowing human inspectors to
focus more on decision-making tasks.

In conclusion, this thesis has contributed to advancing the field of civil infrastructure
inspection through the development of the SIM system to transform traditional inspection
workflows. The contributions made in the areas of human-AI collaboration, human-robot
collaboration, and distributed collaboration have the potential to transform inspection
methodologies and enhance safety and quality in critical infrastructure management. This
research not only showcases the power of collaboration between humans and machines
but also paves the way for future innovations in the domain of inspection by embracing
technological innovations such as the industrial metaverse. The SIM system represents
a significant step forward in addressing the challenges posed by aging infrastructure and
the need for more advanced inspection methodologies in an ever-evolving technological
landscape.
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[88] Laura Pérez-Pachón, Parivrudh Sharma, Helena Brech, Jenny Gregory, Terry Lowe,
Matthieu Poyade, and Flora Gröning. Effect of marker position and size on the
registration accuracy of hololens in a non-clinical setting with implications for high-
precision surgical tasks. International journal of computer assisted radiology and
surgery, 16(6):955–966, 2021.

[89] Yihong Wu, Fulin Tang, and Heping Li. Image-based camera localization: an
overview. Visual Computing for Industry, Biomedicine, and Art, 1(1):8, Sep 2018.

[90] Sean Ong and Varun Kumar Siddaraju. ”Azure Spatial Anchors”, page 175–188.
Apress, Berkeley, CA, 2021.

[91] Microsoft. ”microsoft mesh”, 2021.

[92] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks
for semantic segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3431–3440, 2015.

[93] Konstantin Sofiiuk, Ilia Petrov, Olga Barinova, and Anton Konushin. f-brs: Re-
thinking backpropagating refinement for interactive segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
8623–8632, 2020.

[94] Jesper E. van Engelen and Holger H. Hoos. A survey on semi-supervised learning.
Machine Learning, 109(2):373–440, February 2020.

[95] Ning Xu, Brian Price, Scott Cohen, Jimei Yang, and Thomas S Huang. Deep inter-
active object selection. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 373–381, 2016.

[96] Won-Dong Jang and Chang-Su Kim. Interactive image segmentation via backprop-
agating refinement scheme. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5297–5306, 2019.

[97] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig
Adam. Encoder-decoder with atrous separable convolution for semantic image seg-
mentation. In Proceedings of the European conference on computer vision (ECCV),
pages 801–818, 2018.

101
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Matthieu Poyade, and Flora Gröning. ”effect of marker position and size on the
registration accuracy of hololens in a non-clinical setting with implications for high-
precision surgical tasks”. International Journal of Computer Assisted Radiology and
Surgery, 16(6):955–966, Jun 2021.
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Appendix A

Camera Calibration

Before the start of the inspection session, visual cameras used in the robot and the MR
headset must be intrinsically calibrated using a checkerboard procedure unless calibration
parameters are provided by the manufacturer [178, 151]. This procedure involves capturing
many images (50-100 images) of the checkerboard in many different angles and distances.
The 3×3 camera intrinsics matrix (K) and distortion parameters are then computed that
minimize the re-projection error of the checkerboard corners. Fig. A.1 shows the checker-
board calibration board used for calibrating the robot’s camera.

The camera intrinsics matrix for the robot’s camera (Kr) and the MR headset’s camera
(Kq) must be computed or known in advance. If lens distortion is present, the images must
be undistorted using the calibration parameters obtained from the checkerboard procedure.

The robot’s LiDAR sensor is also calibrated extrinsically to its main visual camera
(cr) using a camera-LiDAR calibration process [180, 152, 153]. This procedure involves
capturing at least one image and one LiDAR scan, registering the matching points (e.g.,
checkerboard corners) between the image and the 3D scan, and then using those 2D-3D
correspondences to solve for the relative rotation matrix (R) and translation vector (t)
using the PnP algorithm. Fig. A.2 shows an example of a LiDAR scan captured from the
Livox LiDAR scanner for the calibration checkerboard.

Unfortunately, standard software packages such as MATLAB were not able to auto-
matically register the corners of the checkerboard in the LiDAR scan due to the unique
non-repeating scanning pattern of the Livox scanner. Therefore, I developed a new pack-
age called Easy Camera-LiDAR Calibration to allow users to manually select matching
points between the image and 3D LiDAR scan, in cases where these points cannot be
automatically detected by software. I published this package on GitHub [190].
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Figure A.1: Calibration checkerboard used for intrinsic camera calibration of robot’s cam-
era to obtain Kr.

Figure A.2: LiDAR scan captured from Livox LiDAR scanner of calibration checkerboard.
Overlapping regions between the image and LiDAR scan are used for extrinsic calibration
for registering the camera and LiDAR sensors.
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