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also be remiss not to mention that many of the ideas were sparked by conversations
between myself, Lane Gunderman, and Luca Dellantonio.

• Chapter 6 is a conclusion written in my own words, which contains no novel results
necessitating citations or contributions. The futures ideas which I present are the
result of ongoing conversations with many of the collaborators listed above.
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Abstract

Entering the NISQ era, the search for useful yet simple quantum algorithms is per-
haps of more importance now than it may ever be in the future. In place of quantum
walks, the quantum Fourier transform, and asymptotic results about far-term advantages
of quantum computation, the real-world applications of today involve nitty-gritty details
and optimizations which make the most use of our limited resources. These priorities per-
vade the research presented in this thesis, which focuses on combinatorial techniques for
optimizing NISQ algorithms.

With variational algorithms directing the discussion, we investigate methods for reduc-
ing Hamiltonians, reducing measurement errors, and reducing entangling gates. All three
of these reductions bring us ever closer to demonstrating the utility of quantum devices, by
improving some of the major bottlenecks of the NISQ era, and all of them do so while rarely
ever leaving the combinatorial framework provided by stabilizer states. The qubit tapering
approach to Hamiltonian simplification which we present was developed independently of
the work by Bravyi et al., who discovered how to reduce qubit counts by parallelizing the
computation of the ground state [1, 2]. The measurement scheme we describe, AEQuO, is
built upon years of research and dozens of articles detailing, comparing, and contrasting a
plethora of schemes [4]. The circuit optimization technique we introduce answers a ques-
tion posed by Adcock et al., and our ideas and proofs are fundamentally grounded in the
literature of isotropic systems and the graph-based results which have followed from it [5,
6].
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Chapter 1

Introduction and Motivation

Too late to be the first to break RSA encryption, yet too early to be certain which evolv-
ing quantum technology will be scalable, it is perhaps more difficult today for modern
researchers in quantum algorithms to find their niche. During my masters research, I was
introduced to the variational quantum eigensolver, which pairs a quantum device with
a classical optimizer in an effort to provide near-term quantum advantages. As a com-
binatorialist at heart, I found my niche when I first learned that one bottleneck of this
algorithm was the number of measurements required, and I wondered whether a graph-
theoretic viewpoint could help in designing a more efficient measurement scheme. This
positive experience led me to consider further applications of combinatorial techniques to
quantum algorithm design.

In Chapter 2, we discuss relevant prior work, and some concurrent results from the
many researchers who were simultaneously answering similar questions and related topics.

In Chapter 3, we begin by attempting to reduce the complexity of the input to the
problem. We will show how to leverage Pauli symmetries to provide an efficient algorithm
for parallelizing the calculation of the ground state of a local Hamiltonian. This work builds
upon the idea of tapering qubits [2], which provides a method for splitting the computation
of eigenstates of a Hamiltonian into the two eigenspaces of a commuting Pauli operator.
Here, we flesh out this idea and discuss when the exponential classical cost can be avoided,
as well as how to extend these results to non-Pauli symmetries.

In Chapter 4, we introduce AEQuO, a comprehensive measurement scheme for local
Hamiltonians which estimates the measurement error based on prior results and adap-
tively chooses future measurements to minimize the error. AEQuO is novel in how it uses
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Bayesian estimate of the variance and covariance of pairs of Pauli operators to allocate fu-
ture measurements. The ability to change between qubitwise and general commutation and
the ability to make use of overlapping measurements provides flexibility to those wishing to
implement the algorithm on disparate quantum devices. Similarly, the Bayesian estimate
of the total measurement error was more exact than the error obtained by repeating the
algorithm many times for all of the Hamiltonians we tested, which leads to a more efficient
method for comparing and contrasting future measurement schemes.

In Chapter 5, we investigate the problem of minimizing entangling gates in Clifford
circuits. In doing so, we delve into the graph state formalism and develop an A* search
algorithm for optimizing Clifford circuits. We provide novel insights into classes of graph
states that can be constructed using asymptotically fewer entangling gates than the worst
case graphs which require Ω(n2/ log n) gates, and we use an outstanding conjecture of Jim
Geelen to expand our class to cover a large family of graphs.

Finally, in Chapter 6, we conclude by providing insight into open questions and di-
rections for future work, with nodes towards ongoing research and interesting avenues for
other researchers.
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Chapter 2

Background and Definitions

The overwhelming majority of techniques used to prove the results presented in this thesis
make use of the fact that the q-dimensional Pauli group over n qubits, ignoring phases, is
isomorphic to (Z/qZ)2n. The symplectic representation of phase-less Pauli operators will
allow us to treat Pauli operators as vectors over a finite field, and the fact that Clifford
group is the normalizer of the Pauli group will allow us to view Clifford circuits, acting
by conjugation, as a permutation of these vectors. This provides the foundation for the
fact that such circuits can be efficiently simulated is well-known as the Gottesman-Knill
Theorem [7]. As such, it only seems right to begin our background and definitions here.

2.1 Paulis and Cliffords

For a thorough review of modern physics, quantum mechanics, and all such relevant back-
ground topics, nothing I could say, as a mathematician, could compete with the reviews
presented in the standard textbooks in this field [8, 9, 10]. The following definitions will
suffice for our purposes.

Definition 1 (Quantum State) Taking inspiration from John Watrous [10], since we
will not concern ourselves with infinite-dimensional states, it suffices to define quantum
states as vectors over a finite complex Euclidean space. Since we will restrict ourselves to
unitary transformations, it will also suffice to assume states are normalized.

3



Formally, a q-dimensional quantum state is a normalized vector in Cq.

|φ〉 =

q−1∑
i=0

φi |i〉 =

 φ0
...

φq−1

 ,

where φi ∈ C and
∑q−1

i=0 |φi|2 = 1. 2

Definition 2 (Unitary Operator) A unitary operator over Cq is an isometric linear
operator which maps Cq → Cq, which means that the operator preserves the 2-norm of the
vector. This is equivalent to the statement that

U is unitary ⇐⇒ UU † = U †U = 1q,

where U † is the complex conjugate of the transpose of U , also known as the Hermitian
conjugate or the adjoint. Moreover, since quantum algorithms map quantum states to one
another, every quantum algorithm can be written as a unitary operator. 2

Definition 3 (Hermitian Operator) A Hermitian operator over Cq is a linear operator
which satisfies

H is Hermitian ⇐⇒ H = H†.

For the purposes of quantum algorithms, it is important to mention that the eigenvalues

of Hermitian operators are real. It is likewise important that eiH
(
eiH
)†

=
(
eiH
)†
eiH =

e−iHeiH = e0q = 1q, which means that eiH is unitary. In fact, every unitary operator, U ,
can be written as U = eiH for some Hermitian operator, H. 2

Definition 4 (Qubit) In real-world quantum systems, multiple quantum states can be
prepared and acted upon independently, or entangled and acted upon jointly. We will refer
to each of these substates as a qubit, and we will assume that, in a given system, all of the
qubits are of the same dimension, 2. Therefore, an n-qubit state lives in C2n . 2

Definition 5 (k-Local Hamiltonian [11]) Working with 2n×2n complex matrices clas-
sically is infeasible, since reading each entry in the corresponding matrix would require an
exponential number of operations. Instead, we will often assume that a physical system of
interest, with a corresponding Hermitian Hamiltonian, can be represented efficiently. To
ensure this, we assume that our Hamiltonian can be written as a sum of poly(n) Hermitian
terms, where each term acts non-trivially on at most k qubits. Such a Hamiltonian is called
k-local. 2
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Definition 6 (Pauli Group [12]) Fortunately, there is a helpful basis over which the
2n×2n Hermitian operators form a real vector space. This basis is a group under multipli-
cation called the Pauli group, which we will denote by Pn2 . Each element of Pn2 is a tensor
product of the following matrices together with an overall phase of ±1 or ±i:

I =

(
1 0
0 1

)
X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
. 2

The Pauli group forms a basis for the set of Hermitian operators, and its elements
satisfy the following commutation relations:

I · I = I · I I · X = X · I I · Y = Y · I I · Z = Z · I
X · I = I · X X · X = X · X X · Y = −Y · X X · Z = −Z · X
Y · I = I · Y Y · X = −X · Y Y · Y = Y · Y Y · Z = −Z · Y
Z · I = I · Z Z · X = −X · Z Z · Y = −Y · Z Z · Z = Z · Z.

Since multiplication by a constant distributes over tensor products, it’s possible to effi-
ciently determine whether two elements of the Pauli group commute based on the parity
of the number of locations on which their terms “disagree.” In fact, this table of relations
and this notion of commutation give rise to a notation for Pauli operators as vectors over
(Z/2Z)n.

Definition 7 (Symplectic Formalism [12]) Ignoring phases, we can map qubit Paulis
to the following binary symplectic vectors in (Z/2Z)2

I ∝ X0Z0 7→
(
0
∣∣ 0 )

X ∝ X1Z0 7→
(
1
∣∣ 0 )

Y ∝ X1Z1 7→
(
1
∣∣ 1 )

Z ∝ X0Z1 7→
(
0
∣∣ 1 ) .

The X-part will always be on the left and the Z-part will always be on the right. We can
similarly map tensors of Paulis to vectors in (Z/2Z)2n in the natural way

I⊗ X⊗ Y⊗ Z 7→
(
0110

∣∣ 0011 ) . 2
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Definition 8 (Symplectic Inner Product [12]) In the language of these binary sym-
plectic vectors, the symplectic inner product, denoted by �, tells us whether two Pauli
operators, P and Q, commute by the formula PQ = (−1)P�QQP . This function is defined
as

(
x1, . . . , xn

∣∣ z1, . . . , zn
)
�
(
x′1, . . . , x

′
n

∣∣ z′1, . . . , z′n ) =
n∑
i=1

(xiz
′
i − zix′i) (mod 2).

When P and Q are one-qubit operators, it’s easy to verify that this formula reproduces
the table of commutation relations. 2

The above definition uses subtraction rather than addition inside the summation, which
is an odd choice when working modulo 2. However, this choice is actually important for a
generalization of the Pauli operators to prime dimensions, at which point subtraction and
addition are not equivalent operations. We will only briefly touch on generalizations of our
results to prime fields, but suffice it to say that most results which can be proved for qubit
Paulis and Cliffords can likewise be proved for generalized Paulis and generalized Cliffords.

In switching to the symplectic formalism, we have chosen to ignore overall phases.
These phases are not physically realizable (there is no measurement which can determine
the overall phase of a quantum state), but this does not mean they are useless. In fact,
keeping track of overall phases becomes crucial when translating many of these results to
practical purposes, since the Hamiltonian P +Q is not equivalent to P −Q, where P and
Q are two Paulis. We will make note of the situations in which this nuanced difference
becomes relevant.

Definition 9 (Clifford Group [12]) Last but certainly not least for this section of def-
initions, we turn our attention to the Clifford group, which is the normalizer of the set of
Pauli operators. Formally,

Cn2 = {g unitary : gPg† ∈ Pn2 , ∀ P ∈ Pn2 }.

There are multiple useful ways to define a basis for the Clifford group, so here we will
simply define some of the commonly used operators. Since these operators permute the
elements of the Pauli group when acting by conjugation, we will define them by their
actions on Paulis. There is a set of 2n Paulis which multiplicatively generate the n-qubit
Pauli group up to global phases, given by weight-1 X and Z Pauli operators. Therefore, it
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suffices to define the action of Clifford operators on these basis elements:

h :
X 7→ Z

Z 7→ X

s :
X 7→ Y

Z 7→ Z

cnot12 :

XI 7→ XX

IX 7→ IX

ZI 7→ ZI

IZ 7→ ZZ

cz12 :

XI 7→ XZ

IX 7→ ZX

ZI 7→ ZI

IZ 7→ IZ

The above gates are called Hadamard, Phase, Controlled-Not (with a control on the first
qubit and a target on the second qubit), and Controlled-Z, respectively. Importantly, these
definitions have ignored the overall phases that are needed to make the above mappings
formally correct. This will be discussed when it becomes relevant. 2

Combining the above facts together, it’s possible to see that we can simulate any circuit
composed of Clifford gates efficiently using classical techniques, simply by tracking a basis
of 2n Pauli operators. This was first formally proved by Gottesman and Knill, and the
result has come to be known as the Gottesman-Knill Theorem [7]. This fact is crucial
to most of the results in this thesis. Importantly, our restriction to Clifford circuits is
not the only reasonable choice for NISQ optimizations. In fact, the cnot and cz gates
above often prove more costly than some non-Clifford single-qubit gates on NISQ devices.
Applications of non-Clifford transformations to the chemistry problem we will introduce
in Section 2.2 have been considered [13, 14].

2.2 NISQ Applications

Here, we will discuss applications of the definitions in Section 2.1. As we enter the noisy
intermediate-scale quantum (NISQ) era [15], with access to tens or hundreds of error-prone
qubits, it is important to investigate the simplest algorithms to scour for minute speedups
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and gains in efficiency or robustness to leverage in our quest to obtain a useful quantum
advantage.

This process begins with identifying the problems which are especially suited to realiz-
ing quantum speedups. Quantum systems offer the prospect of accelerating computations
[16, 8, 17, 15] and simulations [18] within a wide range of applications, such as high-energy
physics [19, 20, 21] and chemistry [22]. In particular, before Peter Shor developed the
algorithm that would skyrocket the popularity of quantum computing by breaking RSA
encryption in polynomial time [16], Richard Feynman proposed the natural application of
simulating physics on quantum computers [23]. Physical phenomena, which are fundamen-
tally quantum in nature, lend themselves to quantum speedups.

One field which has embraced this fact is quantum chemistry, the study of molecu-
lar properties by understanding arrangements of electrons. Of particular interest is the
problem of determining the ground state energy, i.e. the lowest eigenvalue, of a molecu-
lar Hamiltonian. When we restrict to local Hamiltonians, which are efficient to represent
classically, this is often referred to as the local Hamiltonian problem. We will state the
decision version of the local Hamiltonian problem here.

Definition 10 (k-Local Hamiltonian Problem [11]) Given a k-local n-qubit Hamil-

tonian, H =
∑poly(n)

j=1 Hj, where each Hj has a bounded operator norm ‖Hj‖ ≤ poly(n),
and two constants, a, b ∈ R with a < b along with the promise that the lowest eigenvalue
of H is less than a or greater than b, determine which is true. 2

Unfortunately for quantum chemists, this problem is actually QMA-complete, which
is the quantum analogue of NP-complete [24]. Fortunately, though, there is still plenty of
hope for quantum devices to improve upon the best-known classical techniques, and this is
especially true for restricted classes of Hamiltonians. There are fault-tolerant approaches
[25] which will require fault-tolerant, large-scale quantum devices, but there are also clever
ways to use NISQ-era devices alongside classical optimizers to try to solve this problem.
This approach has become known as the variational quantum eigensolver, or VQE, and
since this algorithm has provided much of the motivation for the results in this thesis, it
is important to go over the VQE in some detail.

2.2.1 Variational Quantum Eigensolver

The goal of the variational quantum eigensolver (VQE) is to approximately solve the k-
local Hamiltonian problem. To do so, the VQE iteratively prepares states which approach
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the ground state of the Hamiltonian; that is, the eigenstate associated with the lowest
eigenvalue. As mentioned, this process is iterative, and the measurement outcomes in
initial steps inform the state preparation in successive steps. The VQE can fundamentally
be broken into three distinct steps:

• the ansatz,

• the measurement protocol,

• the classical optimizer [26].

The majority of this thesis will cover topics which relate to the measurement allocation
protocol, but it is important to give context for the many choices which can be made at
each step. Before doing so, we will go into a bit more detail on how these three steps are
chained together.

As mentioned in the definition, the VQE will attempt to prepare the ground state of
the Hamiltonian, which is a difficult task when the ground state is unknown. To tackle
this, the VQE uses a parameterized quantum algorithm to prepare a family of states which
may admit parameters which approximate the ground state to a sufficient error. This state
preparation algorithm is often referred to as an ansatz, and we will use the quantum state,
|ψ(θ)〉, to represent the output of such an algorithm with a vector of parameters, θ.

Given this prepared state, though, we must find a way to measure how close this state
is to the ground state, and eventually to be able to measure the ground state energy
itself. To do so, we use the fact that, if |φ1 〉 is the ground state of a Hamiltonian H with
corresponding ground state energy, λ1, then

〈φ1|H|φ1〉 = λ 〈φ1|φ1〉 = λ1.

In other words, measuring this expectation gives the ground state energy. For an arbitrary
state, |ψ 〉, if we write |ψ 〉 as a linear combination in the eigenbasis of H,

|ψ 〉 =
2n∑
i=1

αi |φi 〉 ,

then the expectation value of H with respect to |ψ 〉 is

2n∑
i=1

|αi|2 〈φi|H|φi〉 =
2n∑
i=1

|αi|2λi.

9



Since the |αi|2 terms sum to 1 whenever |ψ 〉 is normalized, this is just a weighted average
over the eigenvalues of H, which must be at least as large as the minimum eigenvalue. In
other words, the absolute minimum of 〈ψ|H|ψ〉 is achieved when |ψ 〉 is the ground state of
H. This will be our objective function, so the goal of our measurement protocol will be to
estimate 〈ψ(θ)|H|ψ(θ)〉 to the required accuracy using as few measurements as possible.

On that note, the required accuracy will be determined by the classical optimizer of
choice. While the task laid out above could be tackled with any optimization technique,
there are a few eccentricities particular to NISQ-era implementations of the VQE which
may influence the choice of optimizer. Since the number of runs of the ansatz and measure-
ment protocol will likely be the bottleneck, and since NISQ-era devices are liable to produce
measurement outcomes with larger variances, an optimizer which is robust against noise is
likely advisable. Moreover, most molecular Hamiltonians of interest are highly structured,
unlike random Hamiltonians, and thus the details of the problem, and the optimizer of
choice, will depend highly on the chosen molecule. The best choice which balances these
factors is generally unknown. A review of NISQ-era algorithms has discussed the pros and
cons of various techniques at lengths far greater than I would be capable of replicating here
[26].

Given a k-local Hamiltonian, an ansatz, a measurement protocol, and a classical op-
timizer, you are ready to run the VQE. Since the k-local Hamiltonian problem is QMA-
complete, though, there are no performance guarantees, regardless of the quality of your
quantum device. However, the ability to sample from the distribution of these expectation
values, which is thought to be difficult classically, is enough reason to believe that the VQE
might one day compete with the best known classical approaches to tackling this problem.

2.3 Background for Chapter 3

We will take this opportunity to cover relevant background specific to each of the following
chapters. In these sections, I will cover background in broad swaths so as to not overlap
with the more problem-specific background covered in the individual chapters.

First and most importantly for Chapters 3 and 4, it is important to note that the qubit
Hamiltonian we assume we are given is not the true starting place of a quantum chemistry
problem. In particular, to specify an electronic structure Hamiltonian in a given basis, one
constructs a Fermionic Hamiltonian in second quantized form

Ĥ =
∑
i,j

hija
†
iaj +

1

2

∑
i,j,k.l

hi,j,k,la
†
ia
†
jakal,
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where a†i and ai are the creation and annihilation operators on the ith basis orbital and hij
and hijkl are the Coulombic overlap and exchange integrals determined by the basis [27].

To map this Hamiltonian onto a quantum device, therefore, necessitates the use of
one of various transforms, including the Jordan-Wigner transformation [28, 25], the parity
transformation [29], or the Bravyi-Kitaev transformation [30, 29], among others. Each
of these results from a different mapping of basis orbitals and creation and annihilation
operators onto qubits.

The Jordan-Wigner transformation maps the ith basis orbital to the ith qubit in the
natural way, where an occupied (unoccupied) ith basis orbital corresponds to the ith qubit
in the state |1〉 ( |0〉). The resulting creation and annihilation operators are represented
by the Pauli operators

a†i =
1

2
(Xi − iYi)⊗j<i Zj ai =

1

2
(Xi + iYi)⊗j<i Zj.

Perhaps unfortunately, the Pauli operators corresponding to creation and annihilation
operators have weightO(n) [27]. Since a group of high-weight operators may, in some cases,
require more complicated methods to be diagonalized, it could be beneficial to define basis
orbitals differently to provide more flexibility. The parity transformation maps the parity
of the basis orbitals up to index i to the ith qubit. The resulting creation and annihilation
operators are

a†i =
1

2
(Zi−1 ⊗ Xi − iYi)⊗j>i Xj ai =

1

2
(Zi−1 ⊗ Xi + iYi)⊗j>i Xj.

These again have weight O(n), but the leading string of Zs have been traded for a
trailing string of Xs [29]. For specific Hamiltonians, one approach or the other might
prove more beneficial. In comparison to the above transformations, the Bravyi-Kitaev
transform manages to avoid the O(n) scaling with a more complicated mapping, where
the information stored by the ith qubit is determined by the binary expansion of i. In
particular, |i〉 stores the parity of the occupation number of orbital i plus the value of
|i− 2j 〉 for all j where the rightmost j digits of the binary expansion of i are all 1 [30].
This complicated mapping results in creation and annihilation operators given by

a†i =
1

2

(
XU(i) ⊗ Xi ⊗ ZP (i) − iXU(i) ⊗ Xi ⊗ ZP (i)

)
ai =

1

2

(
XU(i) ⊗ Xi ⊗ ZP (i) + iXU(i) ⊗ Xi ⊗ ZP (i)

)
,
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where U(i) is the “update set” of qubit i and P (i) is the “parity set” of qubit i. Important
for our purposes is the fact that the resulting sets have size at most O(log2 i), resulting in
lower-weight Pauli operators than those found in the Jordan-Wigner and parity transfor-
mations [27].

Regardless of which transformation is chosen, the output is a qubit Hamiltonian,

H =
N∑
i=1

ciPi,

where {Pi}Ni=1 are n-qubit Pauli operators and {ci}Ni=1 are real numbers. Since Pauli oper-
ators have eigenvalues ±1, this is indeed a k-local Hamiltonian, as given in Definition 10.

A clear first task might be to ask whether H can be simplified or reduced in any way.
Qubit counts on NISQ devices constrain the sizes of molecules that can be simulated using
the VQE, so minimizing the number of qubits required is an important first step. The
three transformations map n basis orbitals to n qubits, and in the absence of symmetries,
this is optimal. However, for structured Hamiltonians which satisfy symmetries, it should
be possible to reduce the number of qubits. This has been studied in the context of the
first and second quantization methods, and sparser1 Hamiltonians with small qubit savings
were produced [2].

In Chapter 3, we will expand upon the tapering method described in Ref. [2] and will
provide an analysis of the benefits of this expansion when applied to various classes of
Hamiltonians. In particular, we will describe instances in which the exponential classical
cost of splitting into two eigenspaces can be reduced, and we will discuss promising future
directions involving Clifford, rather than Pauli, symmetries.

2.4 Background for Chapter 4

Having simplified the qubit Hamiltonian, H, we are ready now to find the ground state
energy using the VQE. One bottleneck in the VQE is the number of measurements required.
As described in Definition 2.2.1, the goal of the measurement step is to approximate the
expectation value, 〈ψ(θ)|H|ψ(θ)〉 for some parameterized input state, |ψ(θ)〉.

Diagonalizing H, which would be necessary to measure this expectation value directly,
is often unfeasible on NISQ devices. If the set of Pauli operators do not all commute with

1Here, sparsity is measured by the number of qubitwise commuting parts in a partition of the Pauli
operators in the Hamiltonian.
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one another, then a non-Clifford circuit would be required. Therefore, we will make use of
the linearity of expectation values to rewrite this as

〈ψ(θ)|H|ψ(θ)〉 =

〈
ψ(θ)

∣∣∣∣∣∑
i

ciPi

∣∣∣∣∣ψ(θ)

〉
=
∑
i

ci 〈ψ(θ)|Pi|ψ(θ)〉 .

If a given Pauli, P, is a tensor product of only I and Z terms, then its matrix representation
is diagonal with entries in {±1}. In particular, the expectation value is given by the
expression

〈ψ(θ)|P|ψ(θ)〉 =
∑
k

(−1)f(k) 〈ψ(θ)|k〉〈k|ψ(θ)〉 ,

where f is a binary function which can be efficiently calculated based on the locations of
I and Z terms in P. The summands, 〈ψ(θ)|k〉〈k|ψ(θ)〉, form a probability distribution and
can be estimated by measuring |ψ(θ)〉 repeatedly in the computational basis. The same
measurements can also be used to estimate all diagonal Pauli operators simultaneously,
since the functions, f , can be determined efficiently classically for each individual diagonal
Pauli operator.

For non-diagonal operators, we can construct a Clifford circuit, C, such that C†PC is
diagonal. As a result, the state to measure is〈

ψ(θ)
∣∣C†PC†∣∣ψ(θ)

〉
= (C |ψ(θ)〉)† P (C |ψ(θ)〉) ,

which can be estimated by measuring C |ψ(θ)〉 repeatedly in the computational basis. A
single-qubit Clifford circuit can diagonalize a set of qubitwise-commuting2 Pauli operators.
A general Clifford circuit can diagonalize an entire commuting set of Pauli operators, and
this Clifford circuit can be efficiently constructed [31].

Therefore, a not-so-naive approach to measurement would be to partition the set of
Pauli operators into qubitwise-commuting or general-commuting parts and to measure the
parts one at a time. The benefit of using qubitwise commutation is that the measurement
circuit will not require entangling gates, the cost of which is discussed further in Chapter 5,
but the downside is that there will be more parts in the resulting partition [32].

Once a method of partition has been chosen, there is still plenty of work to be done,
since different groupings of Pauli operators and assignments of measurements will result in

2Two Pauli operators qubitwise commute if they do not “disagree” on any non-identity qubit. For
example, if you compute the symplectic inner product of XX and ZZ, you will find that they commute, but
they do not qubitwise commute.
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vastly different measurement errors. This has been studied in great detail, and some of their
approaches will be discussed in a bit more detail in Chapter 4 [31, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48]. Our result is a measurement scheme called AEQuO,
which builds upon much of this prior research, and expands upon it by incorporating a
model for efficiently estimating the current measurement error using Bayesian estimates.

2.5 Background for Chapter 5

As alluded to in the second to last paragraph above, the cost of entangling gates on NISQ
devices may be prohibitive, which might force researchers to use qubitwise commutation
rather than general commutation. In Ref. [32], I addressed this concern by noting an upper
bound on the number of entangling gates of O(n2/ log n), which is guaranteed by Aaronson
and Gottesman’s canonical form for a Clifford circuit. At the time, I did not know whether
this bound was tight.

In Chapter 5, we will prove a Θ(n2/ log n) bound for entangling gates in Clifford circuits,
proving that this upper bound is tight for some circuits. This will match the Θ(n2/ log n)
bound for classical reversible circuits, meaning that allowing for arbitrary single-qubit gates
in a cnot circuit does not necessarily result in asymptotically fewer cnots.

Asymptotics aside, this question opens the door for a much deeper investigation into the
question of finding the Clifford circuit with the fewest entangling gates. An efficient method
for doing so would open the door for all of the measurement schemes above which use
general commutation. If n2/ log n entangling gates is not thought feasible, but n or n log n
gates are, then investigating commuting sets of Cliffords which require asymptotically fewer
gates will prove beneficial.

To answer these questions, we will use the graph state formalism, which we will define in
Chapter 5. This formalism was first introduced in the use of cluster states for measurement-
based quantum computation (MBQC) [49]. MBQC is a promising avenue for near-term
quantum algorithms since, after the cluster state is prepared, only single-qubit measure-
ments are required for universality. Graph states provide a visual interpretation of the
entanglement contained in a group of commuting Pauli operators, and therefore are highly
relevant for our proposed goals. Ref. [50] provides an overview of graph states and their
many applications.

In particular, we will be interested in the local-complementation orbits of graph states,
which will also be defined in Chapter 5. Local-complementation orbits encompass all groups
of Paulis which are equivalent up to single-qubit Clifford circuits. Local complements
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were first studied in the context of isotropic systems [51]. Ref. [5] enumerates all local-
complementation orbits for small numbers of qubits and discusses some applications of
graph states to near-term quantum algorithms.
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Chapter 3

Hamiltonian Simplification

3.1 Introduction

At this moment, we are seeing tremendous efforts in enhancing quantum hardware while
lowering the complexity of the models to be simulated. For instance, approaches such as
the variational quantum eigensolver [52, 53, 54, 34, 45, 55, 56], defined in the background
section in Definition 2.2.1, rely on understanding and simplifying the Hamiltonian to design
tailored and minimal resources for the experiment (see, e.g., Refs. [57, 58, 59, 60, 61] and
Refs. [21, 20, 62, 63, 64, 65, 66] for chemistry and lattice gauge theories, respectively). But
the search for simplification has many applications besides the VQE, including (besides
countless others) quantum machine learning [67, 68, 69, 70], optimization tasks [71, 72, 73,
74], and tensor network techniques [75, 76, 77].

In this chapter, we will review one such simplification technique by the name of qubit
tapering [2]. This algorithm eliminates superfluous qubits by determining redundancies
and conserved charges of the model. Remarkably, these are found classically, efficiently,
and without any prior knowledge. Tapered qubits allow for the parallelization of quantum
simulations on both classical and quantum platforms, and individual study of independent
subsectors of the Hamiltonian. The techniques presented in this chapter were developed by
myself and my collaborators without knowledge of the cited 2017 article [1]. Therefore, the
presentation will differ from that given in Bravyi et al.’s article, and we will make special

This chapter closely follows the work presented in a preprint on which I am a first author [1]. Many
thanks are owed to my co-first author, Lane Gunderman, and my co-author Luca Dellantonio for their
collaboration.
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note of differences between our approach and the tapering qubits approach, as well as the
future directions which we have begun to explore.

3.2 Main Results

As shown in Figure 3.1(top), we consider an n-qubit system whose dynamics is governed
by the Hamiltonian

H =
N∑
i=1

ciPi, (3.1)

where {Pi}Ni=1 are n-qubit Pauli operators and {ci}Ni=1 are real numbers. To simplify H into
the desired form, the main tool we employ is the Clifford group, under the form of a circuit
C consisting of Hadamard h, phase s, and the entangling cnot gates (for an example,
see bottom panel in the figure).

As noted in Chapter 2, simulating Clifford circuits on classical computers requires only
polynomial resources with respect to the number of qubits [7, 78]. Thanks to this fact, our
algorithm has execution time O(n2N).

Furthermore, our method is equally applicable to simulations on classical or quantum
devices. Indeed, we both provide (see Section 3.3) the Hamiltonian in its simplified form
and the circuit C that can be readily implemented on every quantum setup.

Figure 3.1 illustrates the qubit tapering, with the top panel displaying the algorithmic
subroutines on which it is based. Their high-level explanation is outlined in this section,
alongside the example in the bottom panel. The main theoretical proofs demonstrating
the feasibility and the optimality of our formalism are given in Section 3.3.

We begin by reducing the number of qubits required for exactly representing the full
system dynamics. This is the “Redundancy Removal” (RR) in Figure 3.1 (green box),
which effectively eliminates the trivial portion of the n-qubits Hilbert space. With the scope
of lowering the complexity of a considered problem, similar ideas have been always utilized
in physics. For instance, in the case of Fermionic systems with a fixed number of excitations,
a minimal qubit representation was found in Ref. [81]. However, this and other works [57,
62, 82] either consider specific (classes of) Hamiltonians, instead of an arbitrary H as in
Eq. (3.1), or were not ensured to be (classically) efficient nor optimal. Qubit tapering
is general, efficient and optimal (see Theorem 1), implying that we deterministically find
the smallest possible subspace of the system Hilbert space to faithfully describe the whole
dynamics.
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Figure 3.1: (top): Underlying idea. From left to right, an input H is given, acting on n
qubits. RR first determines a minimal representation HR, equivalent to H but requiring
n− r qubits. Afterwards, CR finds all conserved charges {Zj}cj=1 of HR (equiv., H). Em-
ploying their eigenvectors |~z 〉, the problem is further simplified to the n− r− c qubits H|~z.
The whole process is well represented by the operators Pi, Ri and Si in the Hamiltonians
H, HR and H|~z, respectively. (bottom): Example from a modified J1 − J2 model with
XX (ZZ) interactions between (next) neighbouring spins [79, 80] and J1 = J2 = 1. Via
the Clifford circuit C consisting of h, cnot and a final swap gates, the input matrix is
both reduced dimensionally and made block-diagonal, with blocks describing n− r− c = 1
qubit. Qubits removed via RR and CR are indicated in C with the green cross and blue
circle, respectively.
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In more details, RR works as follows.1 As schematically represented in Figure 3.1,
we determine a Clifford circuit C such that CPiC† = (

⊗r
k=1 I) ⊗ Ri for all i = 1, . . . , N .

Consequently, the first r qubits become negligible and the system Hamiltonian in Eq. (3.1)

can be represented by H RR−−→ HR =
∑N

i=1 ωiRi.

An example of the RR subroutine is given in Figure 3.1(bottom). We consider H =
XXI+IXX+ZIZ on n = 3 qubits, and employ our protocol to determine the Clifford circuit
C in the figure. None of the terms in the resulting CHC† = IIX + IZX + IIZ acts on the
first r = 1 qubit, such that the whole system dynamics is described via the operator HR
defined on a reduced Hilbert space of n− r = 2 qubits.

Our second reduction, called “Conditional Removal” (CR), leverages conserved charges.
These, indicated with {Zj}cj=1 in Figure 3.1, are the c Pauli symmetries of the Hamiltonian
HR, meaning that for each j = 1, . . . , c, [Zj,HR] = 0 and Zj is a tensor product of n− r
Pauli operators. Importantly, tapering qubits ensures that these conserved charges fulfil
two properties. First, CR finds all of them, meaning that any Pauli symmetry of HR
can be written as a linear combination of the {Zj}cj=1. Second, that we can express the
conserved charges in the practical form

Zj = I⊗ I · · · ⊗
jth︷︸︸︷
Z ⊗ · · · ⊗ I︸ ︷︷ ︸

c qubits

n−r−c⊗
i=1

I, (3.2)

i.e., in terms of c diagonal, independent generators with a single Z operator each. This
form for the conserved charges can be chosen since they must commute with each other
and as such they can be efficiently diagonalized [31, 4].

Expressing the conserved charges Zj as in Eq. (3.2) is not necessary. To better under-
stand the symmetries {Z̃j}cj=1 of H in Eq. (3.1) one can revert the basis change character-

ized by C to find that [Z̃j,H] = 0 for Z̃j ≡ C†((
⊗r

i=1 I)⊗Zj)C.
Furthermore, an interesting question is whether it is feasible to lower the complexity

of simulating HR by changing the form of the conserved charges (e.g., concentrating the
system entanglement in the c qubits onto which they act).

In the context of this chapter and the CR subroutine specifically, we express the con-
served charges as in Eq. (3.2) for clarity and functionality. In fact, in this form the compu-
tational basis |~z 〉 with ~z = {0, 1}c (e.g., ~z = 0111001 for c = 7) contains all eigenvectors of
the conserved charges {Zj}cj=1, and therefore of the subset of corresponding c qubits of the
{Ri}Ni=1 operators withinHR (see Figure 3.1). Even better, we can determine the associated

1Note that a subroutine similar to RR was previously investigated in Ref. [3]
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charge eigenvalues (−1)~z·
~ζi and consequently divide HR into 2c separated, non-interacting

subsectors, each governed by its own Hamiltonian H|~z

HR =
∑
~z

|~z〉〈~z | ⊗

H|~z︷ ︸︸ ︷
N∑
i=1

(−1)~z·
~ζiωiSi, (3.3a)[

~ζi

]
j

= 1 if Zj ∈ Ri, 0 otherwise. (3.3b)

Here, “·” is the dot product modulo 2,
[
~ζi

]
j

is the j-th component of ~ζi and Zj ∈ Ri

indicates that Ri has nontrivial support from Zj. The Si are the last n− r− c Pauli terms
within Ri [see Figure 3.2(right)].

The physical intuition behind Eqs. (3.3) is the following. After RR and the removal of
r redundant qubits, the trivial dynamics has been fully eliminated. Yet, via CR, it is still
possible to efficiently analyze c out of the remaining n− r qubits via the conserved charges
{Zj}cj=1. Practically, this is done by collapsing the system dynamics onto their eigenvectors
|~z 〉 [hence the projectors in Eq. (3.3a)] and via the corresponding sub-Hamiltonians H|~z.
These are determined from HR by writing its constituents Ri as Ri =

∑
~z(−1)~z·

~ζi |~z〉〈~z |⊗Si.

Going back to the example in Figure 3.1, above we employed RR to describe the

system via the n − r = 2 qubits Hamiltonian H RR−−→ HR = IX + ZX + IZ. As shown
in the figure, our algorithm ensures (via the Clifford circuit C) that the matrix form of
HR is block diagonal. These blocks, each of size 2n−r−c = 2, encode the n − r − c = 1
qubit Hamiltonians H|~z corresponding to the eigenvectors |~z 〉 = |0〉 and |~z 〉 = |1〉 of

the single charge Z1 = Z ⊗ I. Therefore, the CR subroutines permits rewriting HR
CR−−→

|0〉〈0 | [X + X + Z] + |1〉〈1 | [X− X + Z], where the sign of each term in the square parentheses
depends on the charge eigenvalue of |~z 〉 and whether Z1 ∈ Ri.

Concluding, Eqs. (3.3) are the mathematical formulation of qubit tapering applied
to qubit-based physical models. They tell us that when conserved charges are present,
simulating the system as a whole is not necessary. We can restrict ourselves to smaller
subsectors that operate non-trivially on fewer qubits. Furthermore, knowing the conserved
charges allows the identification of the subsectors describing the dynamics of interest. For
instance, only the case of zero total electrical charge is usually investigated in Z2 models
of lattice gauge theory (see Section 3.5), making most of the Hilbert space irrelevant. Ta-
pering qubits allows determining the Hamiltonian describing the corresponding dynamics,
resulting in a significant reduction of the simulation complexity.
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Finally, even in the scenario in which all 2c subsectors must be studied, tapering qubits
allows for complexity reduction and/or parallelization of quantum processes, as each of
the H|~z Hamiltonians can be individually addressed. In the classical case, diagonalization
algorithms require runtimes O(2αn), with 2 ≤ α ≤ 3 [83, 84, 85]. Therefore, (without)
studying the 2c Hamiltonians H|~z in parallel, our method allows reducing the total time
from 2αn to 2α(n−r−c) (2c · 2α(n−r−c)), or by a factor of 2α(r+c) (2αr+(α−1)c). In the quantum
case, on the other hand, Eqs. (3.3) imply that all eigenstates of HR are such that the first c
qubits are in the computational basis. By taking the variational quantum eigensolver [52,
53, 54, 34, 45, 55] as an example, this means that these qubits only require local gates to
reach the groundstate, which provides likely reductions in circuit complexity and depth.

3.3 Algorithm

The algorithm is described in Figure 3.2. We represent H in Eq. (3.1) as an N ×n tableau
2 with entries I, X, Y and Z [see Figure 3.2(right)], where the i-th row corresponds to Pi
and the k-th column to the qubit. Therefore, the (i, k) element Pi|k is the Pauli operator
acting on the k-th qubit of Pi.

With H written as a tableau, one can identify the set of standard operations corre-
sponding to Clifford gates (see Section 3.4 and Ref. [78]). These, in turn, are employed in
the circuits Cz

k and Cx
k used in the k-th iteration of the algorithm to build C =

∏
k Cx

kCz
k [see

Figure 3.2(left)]. C is the Clifford circuit required by the RR subroutine to determine HR.
This is deduced from the two blue boxes in the figure, explaining that C is constructed
to ensure only identities act on the first r qubits, while X and Y are collected in the last
n− c− r, leaving the c in the middle with only I or Z 3.

Our algorithm in Figure 3.2(left) always ensures HR is block diagonal, as its first c
qubits are acted upon by diagonal operators. To find the form of the block H|~z, the CR
subroutine first determines the {Si}Ni=1 from the last n − r − c column of the tableau in
Figure 3.2(right). Then, depending on the chosen ~z, the corresponding signs are calculated
from the c columns with only I and Z.

With more details presented in Section 3.4, we demonstrate here the optimality of this

2 As better explained in Section 3.3 and in Section 3.4, our algorithm does not work with all N elements
of the input Hamiltonian H. Instead, it employs a generating subset that can be much smaller in practice,
such that the efficiency is enhanced.

3 Additional SWAP operations may be required. For clarity, we did not explicitly include those in the
algorithm.
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Figure 3.2: (left): An overview of the algorithm. From the input H and for each qubit
k = n, n− 1, . . . , 1, in the first [second] step we iteratively check (gray boxes with dashed
lines) whether all Pi acting on the k-th qubits are all I [I or Z]. If they are, we successfully
identified a redundant [conditional] qubit and proceed. If they are not, we pick a Pi such
that Pi|k 6= I [Pi|k 6= I, Z] and build (lightblue boxes) the Cz

k [Cx
k ] that ensures Pi|j = I

for all j = 1, . . . , k − 1, and Pi|k = Z [Pi|k = X]. The outputs of the algorithm are C and
HR. This process ensures that HR is as in the (right) panel, i.e., the first r qubits are
only acted upon by I and the next c by I or Z. The operators Si are determined from
the last n − r − c column of the tableau, + and ∗ are used to indicate I or Z, and any
Pauli operator, respectively. The coefficients (omitted for clarity) are tracked with their
associated Pauli operator.
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algorithm. I.e., both the reduction of r redundant qubits and the number c of conserved
charges are the maximal ones. This is stated by the following

Theorem 1 Let H be as in Eq. (3.1). For any basis of {Pi}Ni=1, let M be the corresponding
anticommutation matrix. Then, for any non-negative c ≤ dim(M) − rank(M), H can
be simulated using 1

2
rank(M) + [dim(M) − rank(M) − c] qubits and a maximum of 2c

subproblems. 2

A basis of {Pi}Ni=1 is a product-wise independent collection of elements such that any of
the Pi can be expressed as a product of elements in the collection. The element Mij of
M is one if [Pi, Pj] 6= 0, zero otherwise, and the 2c subproblems are (e.g.) the H|~z defined
above, that generally depend on the the chosen generating subset (albeit their size does
not). dim(M) and rank(M) are the dimension and the rank (computed over the field of
integers modulo 2) of M , respectively.

The detailed proofs of Theorem 1 and the optimality of the algorithm in Figure 3.2 are
extensions of the result presented in Bravyi et al.’s article [2]. Intuitively, the first relies
on symplectic linear algebraic subspaces, while the latter follows from the properties of the
resultingH|~z. Indeed, they saturate the bound c = dim(M)−rank(M) by construction, i.e.,
their size is the minimal possible one that is achieved via optimal RR and CR processes.
It is likewise true of the qubit tapering approach that all Pauli symmetries are found by
the row reduction algorithm, so here we extend the result by giving formulas based on the
anticommutation matrix to determine number of tapered qubits.

3.4 Proof of Optimality

We will use the symplectic representation of Pauli operators, given in Definition 7 [12,
8, 86, 87]. Here, we discuss how the commutation relations between a basis of the Pauli
operators can be used to identify the number of qubits which can be tapered off. The result
of transforming the matrix of commutation relations represents a set of Pauli operators
which are related to the original ones through a Clifford circuit, which is classically easy
to reproduce. The techniques used here are equivalent to those used in [3], however,
the conclusions are taken further here. Gunderman’s article only quantifies the number
redundant qubits as n− (dim(M)− 1

2
rank(M)). Here, we go on to quantify the number of

conserved charges as dim(M)−rank(M), resulting in sub-Hamiltonians on only 1
2

rank(M)
qubits.
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Let P be the given collection of Pauli operators. The elements of P can be generated by
compositions of generators, G, of the smallest subgroup of Pauli operators which contains
P . Then define the anticommutation matrix M(G) as:

M(G)ij = Gi � Gj, (3.4)

where � is the symplectic inner product given in Definition 8 [12, 88].

The anticommutation matrix itself is not invariant under the selection of the generators
in G. Replacing generator G1 with G1 ◦ G2 is equivalent to adding the row corresponding
to G2 to the row corresponding to G1, and likewise adding the same column. This forms
a symmetric Gaussian elimination technique and so the rank of M(G) is unaltered under
the selection of generators.4

Using this, there is a set of generators D such that:

M(D) =

dim(M)−rank(M)⊕
i=0

[0]

⊕ 1
2
rank(M)⊕
i=0

[
0 1
1 0

] . (3.5)

This can be satisfied by generators Zi for the first dim(M) − rank(M) qubits, and anti-
commuting pairs {Xi, Zi} for the remaining qubits. This means that to represent the com-
mutation relations for P , only dim(M(G))− 1

2
rank(M(G)) qubits are needed. It is not pos-

sible to use fewer qubits than this and still be Clifford equivalent to the original collection
P . This means that if the original collection P operated on n > dim(M(G))− 1

2
rank(M(G))

qubits, the surplus qubits can be turned into identity operators. We call these redundant
qubits.

While the above provides the number of qubits that are needed to represent the com-
mutation relations represented by P , while still retaining Clifford equivalence, it does not
immediately provide Clifford equivalent Pauli operators to those in P itself. For that,
select a generating set for P , G(P), then M(G(P)) will be a binary symmetric matrix of
commutation values of elements from P . Relating M(G(P)) to M(D) will then provide a
way to transform the minimal qubits from M(D) into ones that are Clifford equivalent to
P . As remarked before, composition of generators is equivalent to a simultaneous row and
column addition in the commutator matrix, which forms our elementary matrix operations
for a symmetric Gaussian elimination. Then there is a sequence of these operations, whose
product of row operations is L, such that:

M(G(P)) = LM(D)LT . (3.6)

4Formally the rank is computed for the matrix over the field of integers modulo 2
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This then provides a minimal qubit representation for the commutation relations expressed
in P itself. This technique is efficient as each step is simply Gaussian elimination. At the
end of the procedure some qubits are left as identity operators which may be dropped in
circuits. To determine the Clifford circuit mapping from the original Pauli operators to
these minimal qubit representations, one may apply the results of [7, 78]. The prior result
provides the solution to these methods, for which these methods then find a satisfying
Clifford circuits.

We may further extend the observations to condition on separably measurable qubits.
This leads to Theorem 1, which states that for simulating a given H only 1

2
rank(M) qubits

are required, although at a classical repetition cost. To prove this we approach the problem
through a broad symplectic linear algebraic perspective. In essence, we quotient out the
isotropic subspace, stratifying by possible measurement outcomes for that space, then re-
turn to a Pauli representation with updated weights. Each of the remaining subspaces may
have different coefficients, and so without further assumptions will need to be simulated.

Proof Let P be the group generated by {Pi} with d generators for P. Within P there is
an ordered list of generators such that the anticommutation matrix for this collection takes
the form of Equation 3.5. Let this set of generators with anticommutation matrix, D̃, be
given by g̃. Then the isotropic generators (those which contribute [0] terms to the direct
sum) are Clifford equivalent to Zi single qubit Paulis in the minimal qubit form. Upon
reconstructing minimal qubit versions for {Pi} from the generators {Zi} and {Xi, Zi}, these
Zi will still commute with these Pauli operators, and moreover qubit-wise commute. This
then means that we may measure these Pauli operators and update the Pi constructed by
quotienting out by Zi and updating the coefficient based on the measurement value. From
the direct sum decomposition, we will have (dim(M) − rank(M)) Zi terms which can be
replaced with their eigenvalues ±1 and 1

2
rank(M) pairs of generators which cannot. This

will require 1
2

rank(M) qubits to represent these Paulis, and one may select not to measure
all these Zi, so our result is shown. �

It’s worth noting that inherently the matrix M(G(P)), following the procedure, auto-
matically separates out the Z only qubits as these qubits only consist of Z operators from
the bases we selected for the matrix M(D). Above, we also describe this process from
an algorithmic Clifford group perspective. This reduction is represented by the following
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symplectic matrix representation:

1 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗

0 0
∗ ∗ 1 0 0 0 0 ∗ ∗ 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0
∗ ∗

0 0
∗ ∗ 0 0 0 0 0 ∗ ∗ 1 0 0 0 0
∗ ∗ 0 0 0 0 ∗ ∗ 1 0 0 0 0

∗
0

∗ ∗ 0 0 0 0 ∗ ∗ ∗ ∗ 1 0 0
∗ ∗ 0 0 0 0 ∗ ∗ ∗ ∗ 0 0

∗ ∗ 0 0 0 0 ∗ ∗ ∗ ∗ 0 0




Without further assumptions on the structure of the elements of P , no further reductions

in the number of qubits needed may be made without losing some of the non-commuting
properties.

3.5 Results

In Figure 3.3 we present the results from the qubit tapering algorithm applied to several
physical models. In the left, we consider chemistry Hamiltonians (equiv. in the JW, BK
or Parity encoding [22, 89, 90]) and empirically show that, albeit molecule dependent, the
number of conserved charges scales as a constant with respect to the molecule size. This
is unsurprising, as molecules generally have limited symmetries associated to conserved
charges [91]. These results align closely with those in Ref. [2], with slight variation due
to a difference in the chosen parameters defining the molecular Hamiltonians. In previous
works [59, 55, 92, 93, 94], some were employed to simulate small molecules on quantum
computers. Specifically, finding the reduced Hamiltonians of H2 [59] and LiH [55] required
significant efforts. The qubit tapering approach substitutes a general formula in place of
these problem-specific efforts.

In the right panels of the figure we investigate the Z2 [54, 53, 20] (violet), Hubbard
[89] (green), Kitaev (blue) and Kitaev with magnetic field [97, 98] (orange) models. The
smallest lattices we employed are at the bottom, where we indicate whether qubits lie on
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Figure 3.3: Values of c for (left) chemistry Hamiltonians in Refs. [95, 90] and (right)

the Z2 [54, 53, 20, 96], Hubbard [89] and Kitaev (with and without magnetic field ~B)
[97, 98] models – additional information in Appendix A. Below the table, we write the
conserved charges for H2 (sketch) in the 6-31G basis and JW encoding. For the other
molecules we employ the STO-3G basis. Below the plot, we draw the smallest instances
of the square and hexagonal lattices employed. Grey vertices indicate periodic boundary
conditions. See Table 3.1 for data. Models with higher n are obtained by scaling up the
plaquettes/hexagons in both dimension at the same time.
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vertices (Hubbard and Kitaev) or edges (Z2). Larger instances of the models are obtained
by increasing the number of plaquettes/hexagons in both dimensions at the same time (for
more details, see Appendix A).

From the plot we deduce that the Hubbard model has a constant number c = 2 of
conserved charges, corresponding to global properties (see Appendix A). For Z2, describing
(discretized) cavity electromechanics on a torus, our algorithm efficiently implements all
c = n/2 + 1 Gauss laws and determines the Hamiltonians with any configuration of static

charges [21]. For the Kitaev honeycomb lattice [97], when a magnetic field ~B is present,
we still find c = (

√
2n+ 1 + 1)/2 conserved charges that can be exploited to both better

understand the model and significantly enhance ongoing classical and quantum simulations
of the system [97]. Without ~B, an analytical solution of the Kitaev honeycomb lattice is
known [98], however our algorithm yields n − c 6= O(1). This is because not all the
symmetries correspond to conserved charges. As better discussed in Section 3.7, there is
a clear road map to extend our method to identify and exploit more symmetries and thus
further simplify input models.

3.6 Conclusions

In this chapter, we have presented our interpretation of the qubit tapering approach. Here
we will discuss the similarities and differences between our work and the work of Bravyi
et al.

Bravyi et al. described a method for computing conserved charges of a Hamiltonian.
Their work encompasses the CR subroutine, and they use a similar mapping of the sym-
plectic matrix to form similar to reduced row-echelon form. Bravyi et al. discuss how to
back-solve for a Clifford circuit, C, which maps H to their reduced form.

Left unsaid in Bravyi et al.’s description of the algorithm is the fact that, if two an-
ticommuting Pauli operators are both conserved charges of the state, then a qubit can
be entirely removed rather than conditioned upon. This is an important, though minor,
point, since the ability to simulate only a single sub-Hamiltonian halves the classical cost.
For molecular Hamiltonians and the other families of Hamiltonians we tested, though,
conserved charges did not appear in such anticommuting pairs.

Similarly, Bravyi et al. do not discuss the optimality of their approach. Though it
is strongly implied by the algorithmic reduction to a reduced row-echelon-like form, the
proof of optimality, which uses properties of the anticommutation matrix of the Paulis
operators in the Hamiltonian, provides a method for more efficiently computing the number
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of conserved charges without determining the Clifford circuit. We have similarly extended
their analysis of molecules to include larger families, and for the first time have found
families which benefit from a number of conserved charges which scales proportionally to
the number of qubits.

We used the efficient simulation of Clifford circuits provided by the Gottesman-Knill
theorem [7, 78] to find the Clifford equivalent Hamiltonian that requires the smallest num-
ber of qubits to simulate the full system dynamics. We showcased our method with chem-
ical molecules, Z2 cavity electrodynamics, the Hubbard and the Kitaev (with and without
a magnetic field) models. In all cases, we were able to find symmetries that could be
leveraged to lower the complexity of classical and quantum simulations.

From Figure 3.3, we deduce that the numbers of conserved charges in the Hubbard
and Kitaev (without ~B) models are less than the known symmetries of these systems. In
some cases (e.g., Ref. [98]), it is even possible to find an analytical solution. Generally, this
requires significant efforts that we want to eliminate via our automatized framework. To
do so, we hope to extend these results to include Clifford symmetries, which we describe
in a bit more detail in Section 3.7.

We would be remiss not to note, as we summarize the conclusions of this approach, that
classical and quantum simulations are not the only avenues where this method is appli-
cable. Minimizing the number of entangling gates for diagonalizing commuting operators
[31], efficient Trotterization [99, 100], optimal disentangling operations [50], measurement
protocols [4] and circuit synthesis [101, 102] will also benefit from this framework. To facil-
itate the advent of useful quantum computation, the theory must provide simplified models
that are adapted to the available hardware. The Clifford group allows for this adaptability,
yet there are exponentially many ways to build n-qubit Clifford circuits. This is a first
step towards understanding how to efficiently build these circuits, with a clear path to
improvement.

3.7 Clifford Symmetries

Without going into excruciating detail about ongoing work, we will discuss why we believe
simple Clifford symmetries to be a promising avenue for tapering off additional qubits.
Consider, for example, the Hamiltonian described by:

H = c1XX + c1ZX + c2XZ + c2ZZ + c3IX + c4IZ.

Applying the qubit tapering approach described in this chapter will result in no conserved
charges, so there are no Pauli symmetries to be found. However, if we map this Hamiltonian
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under conjugation by a Hadamard gate on the first qubit, the resulting Hamiltonian is:

h1Hh†1 = c1ZX + c1XX + c2ZZ + c2XZ + c3IX + c4IZ = H.

This condition implies that h1 commutes with H, so the eigenspaces of these operators
coincide. Rewriting the Hamiltonian in a way that makes this clear, we have:

H = c1(X + Z)⊗ X + c2(X + Z)⊗ Z + c3(I)⊗ X + c4(I)⊗ Z.

h1 has eigenvalues ±1, so the non-identity terms, (X+Z), will take (normalized) coefficients
±
√

2 in the reduced Hamiltonian. On the other hand, the identity terms are unchanged
by all operators, so they take the coefficient +1 for the reduced Hamiltonians. Therefore,
by mapping to the ±1 eigen-subspaces of the (X + Z) operator on the first qubit, we are
left with the following sub-Hamiltonians:

H+1
R = (

√
2c1 + c3)X + (

√
2c2 + c4)Z

H−1
R = (−

√
2c1 + c3)X + (−

√
2c2 + c4)Z.

It can be verified that the four eigenvalues of these two Hamiltonians, H+1
R and H−1

R , are
equal to the four eigenvalues of H. This appears to be a promising avenue, but there are
complications with our foray into non-Pauli conserved charges.

The first question to answer is how to efficiently determine all of the symmetries. For
Paulis, coefficients were irrelevant, since for a Pauli to commute with the Hamiltonian it is
sufficient and necessary for it to commute with every Pauli operator in the sum. For other
unitaries, this is most definitely not a necessary condition, and determining whether an
arbitrary unitary commutes with the Hamiltonian cannot be done easily. Staying within
the Clifford group, though, we at least have the promise that each Pauli operator in H is
mapped to exactly one operator in CHC†. Since Paulis form a basis, if C is to commute
with H, then it must be true that C is a permutation of the operators in H which respects
the coefficients. This certainly appears tractable in contrast to the general case.

The second question, though, is to determine the eigenvalues of the Clifford. For Pauli
symmetries, there were always two unique eigenvalues, ±1. For general Clifford circuits,
there is no such guarantee. On this point, we expect it to be impractical to work with
Clifford circuits of a sufficient depth, since it may be the case that the number of distinct
eigenvalues of C is almost as many as H, in which case there is not much to be gained
from this exercise. For sufficiently small Clifford circuits, or for families with predictable
eigenvalues, this is not an issue.

The last question with this approach is how to efficiently determine the reduced Hamil-
tonians. Once the eigenvalues of a commuting Clifford circuit, C, are known, each unique
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eigenvalue, ei will correspond to a reduced Hamiltonian, Hei
R. In some cases, such as the

entangling gates cnot and cz as well as the swap gate, the sub-Hamiltonians do not
even have dimension which is a power of 2. This will necessitate a mapping to a qudit5

Hamiltonian, and we will have to take carefully calculate the terms and coefficients in each
of the sub-Hamiltonians to ensure that the eigenvalues are accounted for correctly.

Having brought up all of these questions, there is reason to believe that this is both
tractable and valuable. For tractability, as we noted, we are simply trying to identity
permutations of the summands of the Hamiltonian which respect the coefficients. While
the restrictions on circuit depth and the mappings to non-qubit Hamiltonians may be
difficult, for many examples it should at least be feasible. If it is truly feasible as we hope,
then we believe this will be a valuable direction for future research. Not only are Cliffords
a larger, and therefore more powerful, class of symmetries to exploit, but there are also
physical reasons why some Clifford symmetries may be abundant. In particular, swap
symmetries are likely to correspond to real-world symmetries in which the structure of a
molecule or lattice are symmetric about some axes.

5A qudit is a d-dimensional quantum state, in contrast to a qubit.
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Maximal Reductions From Algorithm

Hamiltonian Qubits
a Priori

Separable
Measurements

Qubits
Required

H2 4 3 1
LiH 12 4 8
BeH2 14 5 9
Z2 LGT with Gaussian Perturbation: 2× 2 8 5 3
Z2 LGT with Gaussian Perturbation: 5× 5 50 26 24
Z2 LGT with Gaussian Perturbation: 6× 6 72 37 35
Z2 LGT with Gaussian Perturbation: 7× 7 98 50 48
Z2 LGT with Gaussian Perturbation: 10× 10 200 101 99
Z2 LGT with Gaussian Perturbation: 15× 15 450 226 224
Hubbard 2n 2 2(n− 1)
Kitaev Honeycomb: 1× 1 4 3 1
Kitaev Honeycomb: 2× 2 12 6 6
Kitaev Honeycomb: 5× 5 60 25 35
Kitaev Honeycomb: 10× 10 220 98 122
Kitaev Honeycomb: 15× 15 480 220 260
Kitaev Honeycomb with Jz and Jzz Perturbation:
1× 1

4 2 2

Kitaev Honeycomb with Jz and Jzz Perturbation:
2× 2

12 3 9

Kitaev Honeycomb with Jz and Jzz Perturbation:
5× 5

60 6 54

Kitaev Honeycomb with Jz and Jzz Perturbation:
10× 10

220 11 209

Kitaev Honeycomb with Jz and Jzz Perturbation:
15× 15

480 16 464

Kitaev Honeycomb with Jzz Perturbation: 1× 1 4 3 1
Kitaev Honeycomb with Jzz Perturbation: 2× 2 12 6 6
Kitaev Honeycomb with Jzz Perturbation: 5× 5 60 25 35
Kitaev Honeycomb with Jzz Perturbation: 10× 10 220 98 122
Kitaev Honeycomb with Jzz Perturbation: 15× 15 480 220 260

Table 3.1: Qubit requirement reductions by applying these methods. LGT with or without
Gaussian perturbation have the same requirements. More work is required to determine
which models benefit most from the techniques shown above. When restricting to Pauli
symmetries, these results are optimal.

32



Chapter 4

Adaptive Estimation of Quantum
Observables

4.1 Introduction

A large challenge with variational algorithms challenge is the statistical nature of quan-
tum mechanical measurements [103, 104, 105], requiring repeated measurements to esti-
mate a quantum observable. The measurement problem is particularly relevant in current
algorithms for NISQ devices that resort to an extensive sampling of the quantum system
[106, 54]. The last few years have therefore seen an increased effort to find better measure-
ment protocols that can lower the requirements on the quantum machine [31, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]. Even for the restricted setting which we
consider, namely partitioning the Hamiltonian into qubitwise or general commuting sets
of Pauli operators, determining an optimal measurement strategy is a difficult task.

In this work, we introduce a novel algorithm called AEQuO that maximizes the infor-
mation obtained from sampling the quantum system and learns from previous outcomes
to improve the allocation of the remaining measurement budget. Compared to previous
strategies, AEQuO is based on the ability of on-the-fly estimating not only the average of

This chapter closely follows the work presented in a published article on which I am a first author
[4]. Ariel Shlosberg, my co-first author, was integral to developing the ideas and writing the code for
the machine learning version of AEQuO, which outperforms the greedy bucket filling algorithm on large
Hamiltonians. Thanks are owed as well to my other co-authors.
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a given quantum observable, but also its error. This allows us to faithfully determine the
precision of the estimated quantity, without the requirement of deriving error bounds [35,
37, 41, 42]. Furthermore, instantaneous error knowledge also permits better allocation of
the measurement budget and is at the core of the learning capabilities of our algorithm.

We focus on the problem of accurately estimating a given observable O. This is a
typical challenge encountered for example in quantum-classical hybrid protocols such as
the variational quantum eigensolver [106, 54]. In particular, we want to estimate the
expectation value of

O =
N∑
i=1

ciPi, i.e. 〈O〉 =
N∑
i=1

ci〈Pi〉, (4.1)

using M repeated preparations of the quantum state. Here, all ci are real constants, the
Pauli operator Pi labels a tensor product of Pauli operators, and 〈Q〉 ≡ 〈Q〉ρ = tr(ρQ)
denotes the expectation value of an observable Q with respect to the quantum state ρ.

Devising a protocol that allocates the budget M to minimize the estimation error is
far from trivial. Several approaches have been proposed, including joint measurements
of pairwise commuting operators [33], randomized and derandomized measurements [35,
37, 41, 42], grouping by weights [36], neural networks [38], minimizing the number of
measurement groups [31, 34, 41, 43, 45, 46, 47, 48], and a method based on maximum
entropy and optimal transport [107]. In this work, we introduce a measurement scheme
for estimating observables that adaptively allocates the measurement budget based on
previously collected data, allows for both non-bitwise commutation between Pauli operators
and overlap in their grouping, and assesses both the average and variance of the observable
O in Eq. (4.1).

This chapter is structured as follows. In Section 4.2, we provide an overview of our main
results. In Section 4.3, we introduce the necessary background for observable estimation.
We explain in detail the process of encoding an observable as in Eq. (4.1) in a weighted
graph, and we discuss the connection between the estimation task and clique covers of a
weighted graph. We explain AEQuO’s subroutines in Section 4.4 and provide numerical
results using chemistry Hamiltonians as a benchmark in Section 4.5. We conclude in
Section 4.12 with some open problems and future directions of research. The appendices
contain additional information further explaining our methods and results.
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4.2 Overview of the main results

We introduce the Adaptive Estimator of Quantum Observables (AEQuO), a protocol de-
signed to allocate the measurement budget in order to minimize the error affecting the
estimate of an observable O as in Eq. (4.1). AEQuO iteratively changes the employed
estimator based on the continuous inflow of new measurement data, it allows for both
non-bitwise commutation relations between the Paulis and overlap in their grouping, and
it yields estimates for both the average value and the error of O. It also employs Bayesian
statistics, which permits the inclusion of prior knowledge and gives meaningful results even
for small sample sizes. As a benchmark, we use AEQuO to estimate chemistry Hamiltoni-
ans, obtaining error estimates that improve on all state-of-the-art methods of estimating
quantum observables.

A qualitative description of AEQuO’s subroutines is given below. First, an operator
O as in Eq. (4.1) is encoded in a (weighted) graph with vertex set {cjPj} [31]. An edge
is drawn between ciPi and cjPj whenever the two Paulis commute, and the corresponding
edge weight, representing their covariance, is initialized (see Eq. (4.2b) and Section 4.4).
An estimate of 〈O〉 and its error can be directly calculated from this graph by assigning the
vertices to groups of commuting operators that can be measured simultaneously. Crucially,
we allow for overlap among these groups, that is, the operators Pj in Eq. (4.1) can belong
to multiple groups, thus effectively increasing the amount of gathered information.

The second step of AEQuO consists in iteratively assigning a number of measurements
to each of these groups until the budget M is exhausted. Importantly, we develop a
method (see Section 4.3) to calculate the estimation error that AEQuO minimizes while
allocating the M shots. We provide two different subroutines for this assignment. One is a
greedy “bucket-filling” (BF) algorithm that assigns the M measurements one by one. This
algorithm gives a good estimation error in small problem instances, but performs poorly
for large problem sizes due to its greedy nature. To remedy this, we developed another
subroutine based on machine learning (ML) that requires fewer repetitions, as it allocates a
fraction of the total budget M to the most promising groups of commuting Pauli operators
in each iteration. As a result, the ML algorithm is faster for large values of M and N , the
latter being the number of Paulis in Eq. (4.1).

In a final step, we post-process the gathered data to obtain the estimator characterized
by the smallest error based on the performed measurements. The post-processing utilizes
the cumulative knowledge gathered during the measurement phase. It considers the con-
tribution to the estimation error from each Pauli operator in different commuting groups,
removing it if it is statistically likely to improve the error.
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4.3 Theory

The Pauli operators, Pi, in Eq. (4.1) acts on n qubits, Pi =
⊗n

i=1 W(ij)j. Here, W(ij) labels
the element of the Pauli operator, i.e. W(ij) ∈ {I, X, Y, Z}, and the subscript j indicates
the corresponding qubit on which a Pauli operator acts. A decomposition of an observable
into Pauli operators as in Eq. (4.1) has at most N ≤ 4n terms; however, in most physical
examples the number of Paulis with non-zero weight ci scales polynomially in n.

In an experiment, we collect mi measurement outcomes (“shots”) for each Pi and take
their average to obtain an estimate P̃i of 〈Pi〉, which subsequently allows us to estimate 〈O〉
through Õ =

∑
i ciP̃i. Considering that two commuting Pauli operators Pi and Pj can be

measured simultaneously (i.e., in the same shot), an estimate for the error (∆Õ)2 affecting
Õ is

(∆Õ)2 =
n∑

i,j=1

cicj C(P̃i ; P̃j), (4.2a)

C(P̃i ; P̃j) = Q̃ij
mij + δ(mij)δ(i− j)
mimj + δ(mi)δ(mj)

. (4.2b)

Here, Q̃ is the covariance matrix of all measured data, mij denotes the number of shots
where Pi and Pj have been sampled simultaneously, and δ is the Kronecker delta function
with δ(0) = 1 and δ(x) = 0 for x 6= 0. In the limit of many measurements,

Q̃ij → cov(Pi, Pj) ≡ 〈PiPj〉 − 〈Pi〉 〈Pj〉 .

Note that mii = mi, and that
∑

imi = M if and only if mij = 0 for all i 6= j. In this
special case, Eqs. (4.2) yield the well known result

(∆Õ)2 =
∑
i

c2
i (∆P̃i)

2

mi

,

where (∆P̃i)
2 ≡ Q̃ii.

To obtain Õ, there is no unique way to choose groups of Paulis that are pairwise
commuting, in particular if one allows these groups to have overlap. Every choice of
groups corresponds to a specific estimator in the form of Eqs. (4.2) characterized by the
values of mij and mj. In the following, we explain the aforementioned graph representation
used in our protocol, and the idea behind our algorithm for grouping Paulis.

As shown in Figure 4.1(a), we represent the operator O in Eq. (4.1) with a weighted
graph whose vertices correspond to ciP̃i. If Pi and Pj commute, their vertices are connected
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Figure 4.1: (a): Example of a graph. Vertices and edges are weighted with ciP̃i and
cicjC(P̃i ; P̃j), respectively. As shown by the grey circle, we include self-edges (omitted in
the rest of the graph) with variances c2

i (∆P̃i)
2. Two maximal cliques are highlighted in

green and violet. (b-e): Case study of the operator O = XX + ZZ + IZ using its graph
representation (top). The four non redundant covers are highlighted within plots (b-d),
along with the Q̃ij elements contributing to the associated error (∆Õ)2 (matrices with
red and green squares). Results from measurements of these covers are plotted in the
graphs. We considered 2 · 105 experiments where M = 104 experimental shots are used to
estimate Õ and (∆Õ)2 for pure states uniformly sampled on the Bloch sphere. For each
cover, measurement allocation is optimal and is determined with the full knowledge of Q̃.
As discussed in Section 4.3 and Section 4.6, for each state one cover gives the smallest
error (∆Õ)2

opt, to which the results obtained for the four plots are compared. Vertical lines
represent averages. In the bottom panel (e), we collect the results obtained by AEQuO
without prior knowledge of Q̃, and using the ML subroutine with L = 1.
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by an edge with weight cicj C(P̃i ; P̃j). Therefore, Õ is obtained by summing over all
vertices, while (∆Õ)2 is the sum of all edges (including self-edges). Different Pi can only
be measured simultaneously if they belong to the same clique of the graph, i.e., a fully
connected subset of vertices. A clique is called maximal if no further vertex can be added
to it [see Figure 4.1(a)]. Evidently, an estimator corresponds to a clique cover, i.e., a set
of cliques such that each vertex of the graph is included in at least one clique.

For illustrative purpose, let us consider the example O = XX+ZZ+IZ in Figure 4.1(b-e).
There are five cliques that can be arranged in four different, non-redundant covers1. The
particular choice of clique cover determines the terms C(P̃i ; P̃j) contributing to the error
(∆Õ)2, as can be seen in the pictorial representations of the matrices Q̃ in Figure 4.1(b-d).
For a given input state, the estimator Õ corresponding to the cover yielding the minimal
(∆Õ)2 for fixed M gives the most accurate estimation (since all estimators are unbiased).

We test the performances of the four estimators (viz. covers) in Figure 4.1(b-d) with
randomly chosen two-qubit pure states, and calculate the relative deviation of the error
estimate w.r.t. the best estimator. Here, we use the asymptotic values for Eq. (4.2b) that
are obtained for M → ∞. The results demonstrate that, as expected, measuring each
Pauli operator separately [Figure 4.1(b)] is never a good strategy, while the intuitively
best estimator [Figure 4.1(d)], corresponding to the cover made of maximal cliques only, is
optimal in only∼54% of the cases. More details about how the best estimator is determined
and the measurement budget is allocated can be found in Section 4.6.

In practice, the state to be measured is unknown and it is not possible to test all covers
beforehand to identify the best one. This motivates an adaptive approach in which the
clique cover is changed during the measurement process depending on former outcomes.
In our protocol, we update the vertex and edge weights of the graph after some (or each)
of the M shots. We then decide which clique is measured next, based on its contribution
to Eq. (4.2a).

Conveniently, the choice of the particular estimator can be relegated to a second post-
processing step; in the data acquisition phase we may restrict to considering maximal
cliques only. Changing the estimator (or equivalently, the clique cover) can then be done
subsequently by adjusting the measurement numbers mij and mi, and updating Q̃. For
example, if one removes Pi from a clique, then for all Pj in that clique one has to reduce mij

and mi by the number of shots allocated to that clique. Furthermore, all outcomes gathered
for Pi in the considered clique have to be discarded in order to avoid introducing biases

1In general, one can find more covers by nesting smaller cliques into bigger ones. However, these cases
are not relevant to us since only one of these nested cliques will yield minimal error. Therefore, without
loss of generality, we can limit ourselves to the study of the four covers in Figure 4.1.
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in the estimator. In the example in Figure 4.1(d), changing the estimator corresponds to
removing the Pauli operator ZZ from one of the two cliques.

The advantages of employing maximal cliques and post-processing are twofold. First,
restricting to maximal cliques reduces the number of choices in each shot. Second, poten-
tially available data is never neglected, resulting in a better knowledge of the vertex and
edge weights of the graph. This knowledge can then be used for more informed choices,
both of the maximal cliques to be measured at each shot, and in the post-processing stage
itself.

In the histograms of Figure 4.1(b-e), we plot the expected deviations from the minimal
error, which is derived by always identifying the best cover out of the four. The black
and red lines in the figures indicate the mean values of the associated histograms. A
comparison shows that AEQuO [in Figure 4.1(e)], based on maximal cliques and post-
processing, consistently provides near-minimal error and greatly outperforms the static
approaches [in Figure 4.1(b-d)] represented by the four covers in the figure. For more
details, see Section 4.6.

As a conclusive remark, we present two corollaries following from our graph represen-
tation of the observable O and Eqs. (4.2). Namely, we derive simple upper bounds on
both the error (∆Õ)2 and its scaling with respect to the number N of Paulis within O. To
bound the error, we observe that the maximum error contribution of two Paulis Pi and Pj
measured together is c2

i + c2
j + 2|cicj|, which can be obtained by setting all Q̃ij equal to

sgn(ci)sgn(cj) in Eq. (4.2b). This yields the tight upper bound

(∆Õ)2 ≤
n∑

i,j=1

|cicj|
mij

mimj

.

Here, we have omitted the delta functions for clarity. Given any measurement strategy, this
equation determines, beforehand, the maximum error that can possibly affect the resulting
estimator. The scaling of (∆Õ)2 in terms of N can be understood using graph theory.
Considering that it is always possible to find a graph’s cover of N cliques, one concludes
that in the worst-case scenario (∆Õ)2 grows linearly in N .

4.4 Algorithm

In the following, we present our algorithm AEQuO, which is outlined in the diagram in
Figure 4.2. First, the graph is constructed in time O(N2). At this stage, it is possible to
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choose whether or not to connect vertices whose associated Paulis are non-bitwise commut-
ing. As discussed below in Section 4.5, restricting to bitwise commuting Pauli operators
results in errors (∆Õ)2 that are higher. However, simultaneously measuring non-bitwise
commuting Paulis requires entangling gates, which in the context of NISQ devices are ex-
pensive. AEQuO includes a sub-routine for finding a suitable circuit that diagonalizes a
group of commuting Paulis [108, 31, 78]. This subroutine is classically efficient for large
values of the numbers N and n of Paulis and qubits, respectively, and the resulting circuit is
ensured to contain at most n(n− 1)/2 (zero) entangling gates when allowing (forbidding)
non-bitwise commutation. We note that this is slightly worse than the known optimal
bound, Θ(n2/ log n), given in Chapter 5, but for our classical simulations, extra entan-
gling gates does not introduce errors. For noisy simulations or real-world implementations,
Chapter 5 provides techniques for optimizing these values.

After the graph is built, AEQuO finds a desired number r of maximal cliques. We
prioritize cliques that are statistically likely to have bigger contributions to the error (∆Õ)2

in Eq. (4.2a) (see Section 4.9 and [108]) and only consider maximal ones for the reasons
explained above. However, our protocol may also operate on all cliques. The runtime
required to find the clique cover scales as O(r). Efficient algorithms for finding locally-
maximal cliques are known, e.g., the Bron-Kerbosch algorithm [109].

We now assign weights to the vertices and edges of the graph constructed from the
observable O. We resort to Bayesian estimation (see Section 4.7) for both the initialization
and all subsequent updates of the weights of the graph, which gives meaningful results with
scarce statistics or even in the absence of any data. This is crucial due to the adaptive
nature of our protocol, and allows us to initialize the graph without any pre-sampling.
Indeed, when no shots are taken, Bayesian estimation prescribes P̃i = 0 and Q̃ij = 2δ(i−
j)/3 for all i, j = 1, . . . , N .

Once the r cliques have been found and the graph has been initialized, the system can
be measured. In order to choose the clique to be probed at each shot, we propose two
possible subroutines whose objective is to minimize the cost function (∆Õ)2 in Eqs. (4.2)
(for a numerically efficient method to compute (∆Õ)2 see Section 4.8). The first choice is
a greedy “bucket-filling” (BF) algorithm [110] whose premise is to allocate measurements
one-by-one by evaluating the predicted cost function before each shot. After a certain
amount of measurements (the M shots are divided into L chunks of increasing sizes, as
explained below), the graph is updated and the BF algorithm is run again. This approach
works well for instances where r and M are small, since the number of cost function
evaluations increases linearly in these variables.

As an alternative to the BF method, my co-author, Ariel Shlosberg, developed and
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Figure 4.2: Schematic diagram of our protocol. From a given observable O, its graph
representation is derived and the maximal cliques are found. Depending on the number of
cliques r and the measurement budget M , the BF or the ML algorithm is chosen. After-
wards, the system is probed and vertices and edges of the graph are updated according to
the outcomes. If M shots have been taken, the post-processing resorts to the desired esti-
mates for the average and error. Otherwise, another round of allocation and measurements
is performed. Green and light blue boxes represents essential and optional subroutines, re-
spectively. In fact, the user is free to choose between the BF and the ML algorithm, while
post-processing can be turned off if desired.
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implemented an approach inspired by a recent structural optimization algorithm based
on machine learning (ML) [111]. We reparamterize the vector of clique measurements,
which are the set of optimization variables in the BF approach, in terms of the weights
and biases of a densely-connected neural network. The output of the network yields the
(locally) optimal measurement allocations after learning occurs. This approach alters the
optimization landscape by increasing the number of parameters.

In contrast to BF, the ML algorithm allocates a fraction of the total budget to the
most promising cliques. Subsequently, the graph is updated and the ML algorithm is run
again. We perform L iterations of the process, at each step updating the covariance matrix
Q̃ with the experimental outcomes and progressively increasing the available shots by a
factor l > 0 until all M measurements are exhausted. Thus, for large problem sizes the
ML subroutine scales more favorably compared to the BF algorithm, since it requires fewer
repetitions (L for ML versus M for BF), and is more efficient for large values of r.

The ML approach is based on minimizing the cost function, Eq. (4.2a), over the train-
able parameters of the neural network. We implement a variety of different optimizers to
determine the weights and activation biases [108], including stochastic gradient descent
[112], Adam [113], and a Limited-Memory BFGS method [114, 112, 115]. These different
optimizers yield similar performances; for instance, for Figs. 4.3 and 4.4 the stochastic
gradient descent and the Limited-Memory BFGS methods, respectively, were employed.

The architecture of the neural network we settled on is composed of three densely-
connected layers of width r, and with ReLU activation functions on hidden layers and
a softmax activation function on the output [116]. Such a structure yields a probability
distribution at the output corresponding to the ratio of times that each clique should be
measured. The output of the neural network is then converted to an integer measurement
allocation vector by first scaling by the number of measurements to be performed, then
flooring the entries, and finally by allocating excess measurements to the cliques with the
largest percentage change in budget due to the flooring operation [108]. Before the learning
phase, the network is initialized such that each clique is measured the same number of times
and so that measurements between various cliques are initially uncorrelated.

After completing all measurements, post-processing can be applied. In this step of the
protocol, we determine the estimator with the lowest variance that could be realized with
the available data. For each pair, Pi and Pj, such that mij 6= 0 and cicjC(P̃i ; P̃j) > 0,
we find all cliques where these strings have been simultaneously probed and consider all
possibilities of removing either of those or keeping the estimator as it is. Eventually, the
configuration minimizing the updated error function (∆Õ)2 is kept. The runtime of this
procedure scales exponentially in the size of the subset of cliques where Pi and Pj have been
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measured simultaneously. In practical examples, this number is small and post-processing
can be used for large values of N . For instance, post-processing has been used for all
numerical results presented in Figure 4.3, where we considered observables with up to
N = 1086 terms corresponding to the Hamiltonian of H2O.

4.5 Results

Our numerical results are reported in Figure 4.3. In panel (a), we list the standard de-
viations Σ (see caption and Section 4.9) affecting the estimated ground state energies for
chemistry Hamiltonians [22] of various molecules, choosing M = 1000 in each case. Val-

ues in square brackets are averages of
√

(∆Õ)2, calculated by AEQuO with the graph

representation described in Section 4.3. We compare AEQuO with an in-house developed
version (see below and Section 4.9) of the largest degree first (LDF) [31], the overlapped
grouping measurement (OGM) [43], the adaptive Pauli shadow (APS) [41, 42], and the
derandomized shadow (Derand) [37] methods.

In the first two, the goal is to minimize the number of cliques in the resulting cover, while
the latter two reconstruct the desired estimator from the outcomes of partially random as
well as deterministically allocated measurements. We choose these as representatives of
the variety of algorithms based on different grouping strategies [31, 33, 34, 35, 36, 117, 46,
47, 48] and the classical shadow technique [37, 38, 39, 40, 41, 42]. AEQuO is run both
for L = 1 and L = 2 (in this case l = 9) using the ML subroutine, and outperforms other
approaches in determining more precise estimates.

As discussed in more detail below, this improvement has two reasons. First, we allow for
both non-bitwise commutation relations between Pauli operators and overlapping cliques.
On the one hand, this allows us to gather more information from the same number of
shots. On the other hand, it increases the number of non-zero elements Q̃ij in Eqs. (4.2).
While these covariances can either lower or increase the error (∆Õ)2, the adaptive nature
of AEQuO (see next paragraphs) and the post-processing ensure that negative ones are
preferred. We remark that our version of the LDF protocol also allows for non-bitwise
commutation relations; as a result, it typically outperforms OGM, APS and Derand. As
shown in Section 4.10, when restricted to bitwise commutation relations, LDF yields errors
that are generally higher than all other protocols.

Second, AEQuO allocates the shots by directly minimizing the estimated error (∆Õ)2

in Eqs. (4.2) based on on the available experimental information. Provided the ML and/or
the BF subroutines find the global minimum of (∆Õ)2, this results in AEQuO finding
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10 2 ×
LDF
[16]

OGM
[27]

APS
[25,26]

Derand
[21]

AEQuO
L=1

AEQuO
L=2, l=9

H (8 JW) 3.5 5.1 5.2 6.2 2.8 [3.2(0)] 2.5 [2.4(1)]
H (8 BK) 4.5 5.0 5.0 4.8 3.1 [3.2(0)] 2.1 [2.4(1)]
H (8 Par) 3.8 4.1 4.8 5.3 3.4 [3.2(0)] 1.7 [2.4(1)]

LiH(12 JW) 3.0 2.2 3.8 4.5 2.0 [2.3(1)] 2.1 [2.2(1)]
LiH(12 BK) 3.8 2.7 4.2 3.6 2.2 [2.3(1)] 2.2 [2.2(1)]
LiH(12 Par) 4.6 2.6 3.8 3.9 2.6 [2.3(1)] 1.9 [2.2(1)]

BeH (14 JW) 5.8 5.4 6.5 10.3 3.8 [4.0(1)] 3.7 [3.6(1)]
BeH (14 BK) 6.5 7.4 6.9 10.3 4.4 [4.0(1)] 3.7 [3.6(1)]
BeH (14 Par) 4.6 4.7 6.9 8.4 3.3 [4.0(1)] 3.9 [3.7(1)]
H O(14 JW) 20.1 12.9 11.7 20.6 8.7 [8.4(2)] 6.2 [6.5(1)]
H O(14 BK) 22.1 14.7 10.8 29.9 6.2 [8.4(3)] 7.0 [6.5(1)]
H O(14 Par) 15.7 12.4 12.6 20.6 9.0 [8.4(3)] 5.8 [6.5(1)]

BeH (14 BK) BeH (14 BK)

Figure 4.3: (a): Errors obtained with LDF [31], OGM [43], APS [41, 42], Derand [37],
and AEQuO with the ML subroutine and L = 1 or L = 2 and l = 9. We consider chem-
istry Hamiltonians with different numbers of qubits (in parentheses), and three encodings:
Jordan-Wigner (JW), Bravyi-Kitaev (BK), and parity (Par) [30, 22]. Values (in bold the
lowest) are standard deviations Σ ≡ [

∑R
j=1(Õj−〈O〉)2/R]1/2, where Õj is the j-th estimated

average for O. In square brackets, we report averages of [(∆Õ)2]1/2 with their statistical
error. The input is the ground state, R = 40, M = 103, and values are rescaled by 10−2.
(b-c): Relative errors as a function of M obtained considering the BeH2 Hamiltonian with
BK encoding. In (b) we compare values of MΣ2/〈O〉2 for the approaches in the legend.
In (c), we report M(∆Õ)2/〈O〉2 calculated with the BF and ML subroutines of AEQuO
with different L and l. Error bars are statistical errors. In (b) and (c) we set R = 102 and
R = 40, respectively. Details in Section 4.9.
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the estimator Õ that, constrained by the used cliques and the transient knowledge about
Q̃, is characterized by the smallest possible error. This is supported by Figure 4.3(b-c),
where we plot the relative errors MΣ2/〈O〉2 and M(∆Õ)2/〈O〉2, respectively, of the BeH2

Hamiltonian in the Bravyi-Kitaev (BK) encoding. Despite statistical fluctuations, panel
(b) shows that AEQuO outperforms all other approaches. Similar to other methods, we
also see that AEQuO provides errors that scale as 1/M in the chosen range of M .

The adaptive features of AEQuO are evident in Figure 4.3(c), where we compare the
BF and ML subroutines for different values of L and l. For L = 1 there is no memory of
prior outcomes; in this case, the points obtained with either subroutine lie on a horizontal
line. However, for L = 3 and l = 4, AEQuO learns and uses the gathered information to
find better strategies for allocating the remaining shots.

For large M , asymptotes are recovered, which are considerably lower than the ones for
L = 1. Importantly, the advantage from the adaptive nature of AEQuO comes for free, in
the sense that it follows exclusively from a better allocation of the measurement budget
and does not require extra resources (such as entangling gates for the simultaneous diag-
onalization of the Paulis). We investigate the improvement resulting from the adaptivity
of AEQuO in more detail in Figure 4.4 and in Section 4.10, where we restrict all protocols
considered in this section to bitwise commutation relations.

While the BF and ML subroutines yield comparable results, Figure 4.3(c) indicates
that they outperform each other in different parameter regimes, depending on the problem
at hand. This is a consequence of several factors. By construction, the BF picks the clique
to be measured based on the gradient of (∆Õ)2. On the other hand, the ML subroutine (in
this context) follows a stochastic gradient descent algorithm [112] that allows for exploring
the error landscape. However, its performance depends on hyperparameters [108, 111, 113]
that, in Figure 4.3, have not been optimized to keep low computational requirements.

As explained above, our protocol has three distinctive features. Besides the ability to
monitor and determine the error (∆Õ)2 [see Eqs. (4.2)] that allows for better allocation of
the measurements and assessment of the precision of the estimator, AEQuO can also exploit
both non-bitwise commutation between Paulis2 and cliques’ overlaps, and it is adaptive.
In the remainder of this section, we investigate the advantages provided by these last two
features both with chemistry Hamiltonians and a family of 2D and 3D lattice models of
interacting spin 1/2 particles (for details, see Section 4.11).

In Figure 4.4(a), we list averaged errors (∆Õ)2 for several chemistry Hamiltonians3, with
M = 104 and the ground state as input [22]. AEQuO is run with different settings, namely

2This ability is native to our LDF protocol as well.
3We show results relative to the BK encoding; the JW and Parity ones are qualitatively identical.
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(not) allowing non-bitwise commutation relations between the Paulis, and with adaptive
allocation turned either on (L = 3, l = 4) or off (L = 1). As expected, the smallest errors
are obtained when AEQuO can learn from previous outcomes (L = 3, l = 4) and non-
bitwise commuting Pauli operators can be simultaneously measured [indicated by GC in
Figure 4.4(a)]. In the case of chemistry Hamiltonians with their ground state as input, the
advantage is remarkable. If we compare AEQuO when restricted to bitwise commutation
(BC) and L = 1 with the best results (bold numbers), we see that measurement budgets
are required to be up to 14.4 times bigger [see numbers in square brackets in Figure 4.4(a)]
in order to obtain the same estimator’s precision.

For comparison, up to statistical noise, the Derand [37] and OGM [43] protocols yield
results that are similar to AEQuO’s when we restrict it to bitwise commutation and turn
the adaptive allocation off (BC, L = 1). The direct comparison between the BC versions
of AEQuO and all other protocols considered in this section is presented in Section 4.10.

A similar analysis is made in Figure 4.4(b-e), where we considered a generalized Hub-
bard model [118] in which qubits are located on edges of the 2D [panels (b) and (d)] and
3D [panels (c) and (e)] lattices drawn at the bottom of the figure. As explained in Sec-
tion 4.11, they are allowed to hop with (many-body) flip-flop interactions, and we include
energy shifts that depend on the states of qubits on neighbouring edges. We use the ground
state as input, set M = 104, and run AEQuO with the same settings as in Figure 4.4(a):
allowing for (squares) or forbidding (circles) non-bitwise commutation, and turning the
adaptive allocation on (red and violet points) or off (blue and green points).

In panels (b-c), we show the relative increase of the error (∆Õ)2 if compared to (∆Õ)2
opt,

that is the value obtained by AEQuO when allowing for non-bitwise commutation and
providing prior knowledge of the input state. In practice, prior knowledge is given by
initializing the covariance matrix Q̃ij in Eq. (4.2b) with cov(Pi, Pj) for all i, j = 1, . . . , N .
Therefore, the data points in Figure 4.4(b-c) represent the relative increase of the mea-
surement budget M that is required for reaching the error (∆Õ)2

opt. Values for (∆Õ)2
opt

correspond to the black squares in panels (d-e), depicting the errors (∆Õ)2 determined by
AEQuO with prior knowledge of the state.

It is evident from Figure 4.4 that the advantages from the adaptive allocation and non-
bitwise commutation are consistent, yet vary considerably between data points. All red
squares in panels (b) and (d) are approximately zero, indicating that AEQuO learns in the
process and for sufficiently large M it allocates the measurements as if it knew the input
state beforehand. All other coloured data points lie above, suggesting that it is detrimental
not to exploit non-bitwise commutation and adaptive allocation.

How advantageous these features are highly depends on the considered observable and
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10 4 ×
GC

L=3, l=4
GC
L=1

BC
L=3, l=4

BC
L=1

H (8 BK) 0.47(4) 1.26(7) [2.7] 0.92(1) [2.0] 2.09(1) [4.4]
LiH(12 BK) 0.24(1) 0.81(6) [3.4] 1.12(1) [4.7] 1.78(2) [7.4]

BeH (14 BK) 1.0(1) 2.7(2) [2.7] 4.6(1) [4.6] 8.7(1) [8.7]
H O(14 BK) 4.4(2) 18.7(15) [4.3] 22.0(4) [5.0] 63.2(17) [14.4]

Figure 4.4: (a): Averaged errors (∆Õ)2 (standard deviations in brackets, bold indicates
lowest) obtained by AEQuO for chemistry Hamiltonians and different values of L and l.
BC (GC) refers to bitwise (general, i.e., non-bitwise) commutation. Relative overheads
compared to the GC with L = 3, l = 4 are in square brackets. (b-c): Averaged relative
errors (∆Õ)2/(∆Õ)2

opt − 1 as a function of the number of qubits n for different 2D (b)
and 3D (c) lattices (see main text and Section 4.11). Data are obtained with different
values of L and l, and resorting to BC or GC. (∆Õ)2

opt corresponds to the black squares

connected by dashed lines in panels (d-e), where we report averaged errors (∆Õ)2 obtained
with prior knowledge of the state. For (b-e), the considered lattices with the associated
N are at the bottom, error bars are standard deviations and we used the ground states of
the models. For all panels, M = 104 and values are obtained by averaging 25 independent
runs of AEQuO.
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state. Empirically, non-bitwise commutation is more beneficial if the Hamiltonian is dom-
inated by long-range many-qubits interactions, such that two commuting Paulis are more
likely to commute non-bitwise. Chemistry Hamiltonians fall within this category. On the
other hand, in most of the considered examples adaptive allocation resorted to precision
improvements varying between 25% and 400%, with the tendency of increasing with the
numbers of qubits n and Paulis N .

4.6 A minimal example

In this section we consider the example presented in Figure 4.1(b-e), consisting of an
operator

O = XX + ZZ + IZ = P1 + P2 + P3. (4.3)

For this operator O and a generic input state ρin, we are interested in finding the best
possible estimator (viz. a cliques’ cover), as well as the optimal allocation of the M mea-
surements. In order to do so, we assume that the three Pauli operators Pi (i = 1, 2, 3) have
been previously probed infinitely many times, such that the values of Q̃ij → TrρinPiPj −
TrρinPiTrρinPj are available beforehand. For the sake of clarity, we remark that this as-
sumption was not taken when using AEQuO [see Figure 4.1(e)]. This demonstrates that
our approach, for a generic input state, is more likely to provide lower errors (∆Õ)2 than
any of the possible covers associated to the operator O in Eq. (4.3), despite the disadvan-
tage of not knowing Q̃ beforehand.

For a generic input state ρin, one out of the four covers presented in Figure 4.1(b-d)
resorts to the smallest error (∆Õ)2

opt, provided the M measurements have been allocated

optimally. The idea is to find this (∆Õ)2
opt and compare it with the errors (∆Õ)2 determined

with the different covers in Figure 4.1(b-d) and AEQuO in Figure 4.1(e). The relative
difference [(∆Õ)2 − (∆Õ)2

opt]/(∆Õ)2
opt plotted in the histograms is thus representative of

how well the associated covers (or AEQuO) perform with respect to a wide variety of
random input states ρin. Specifically, ρin correspond to pure states uniformly distributed
on the Bloch sphere.

As a first step, we describe how to determine the optimal allocation of the M measure-
ments for any clique cover. We start by rewriting the errors (∆Õ)2 associated to the four
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different covers as a sum of the elements in the matrices (recall ci = 1 for all i = 1, 2, 3)

(∆Õ)2 =
∑

Q̃11

ξ1
0 0

0 Q̃22

ξ2
0

0 0 Q̃33

ξ3

 for Figure 4.1(b), (4.4)

(∆Õ)2 =



∑
Q̃11

ξ1

Q̃12

ξ1
0

Q̃12

ξ1

Q̃22

ξ1
0

0 0 Q̃33

ξ2


∑

Q̃11

ξ1
0 0

0 Q̃22

ξ2

Q̃23

ξ2

0 Q̃23

ξ2

Q̃33

ξ2


for Figure 4.1(c), (4.5)

(∆Õ)2 =
∑

Q̃11

ξ1

Q̃12

ξ1+ξ2
0

Q̃12

ξ1+ξ2

Q̃22

ξ1+ξ2

Q̃23

ξ1+ξ2

0 Q̃23

ξ1+ξ2

Q̃33

ξ2

 for Figure 4.1(d), (4.6)

where the two alternatives in the curly bracket in Eq. (4.5) are used to indicate the two
possible cases where one clique is maximal and the other is not, as depicted in Figure 4.1(c).
These matrices correspond to the ones pictorially represented in Figure 4.1(b-d), and fully
determine the expected error (∆Õ)2 for any choice of ξ1, ξ2 and (for the cover without
maximal cliques) ξ3 [see Eqs.(4.2)]. These last parameters represent the number of times
that the corresponding clique is measured, and can be obtained from mi and mij (and vice
versa, see Section 4.8). From Eqs. (4.4), (4.5) and (4.6) it is possible to determine the
cliques in which the Paulis are by looking at the subscripts of the parameters ξj in the
diagonal elements. If Q̃ii is divided by ξ1, ξ2 or ξ3, it means that the Pauli operator, Pi,
belongs to the first, second or third clique, respectively. Similarly, in Eq. (4.6), the element
Q̃22/(ξ1 + ξ2) indicates that the Pauli P2 is measured any time either clique is probed, in
agreement with Figure 4.1(d).

In order to determine the optimal allocation of the M measurements for any of the
covers in Figure 4.1(b-d), we minimize the corresponding error (∆Õ)2 in Eqs. (4.4), (4.5) or
(4.6) with the additional constraints that

∑
i ξi = M and that ξi are non-negative integers

for all i. We note that a similar problem (without allowing for an overlap of cliques)
has been studied in Ref. [119]. Since we are assuming that we know the exact values of
Q̃ij, the errors (∆Õ)2 derived with the optimal ξi are the minima of the associated cover
that can be achieved with the considered input state ρin and the measurement budget M .
Furthermore, the four covers presented in Figure 4.1(b-d) are all non-redundant covers that
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can be found for the operator O in Eq. (4.3), meaning that out of these four (∆Õ)2, the
smallest one is the minimal error (∆Õ)2

opt that can be generally obtained when measuring
O with M shots with respect to ρin.

Once the lowest possible errors associated to each cover have been determined, it is
possible to test whether there is one cover always resorting to the minimal error (∆Õ)2

opt.
One may think that the cover in Figure 4.1(d), consisting of maximal cliques only, always
outperforms the others, since it probes more Paulis per shot. However, this is not the case
due to possibly positive covariances Q̃ij (i 6= j) in the off-diagonal terms in Eq. (4.6)4. In
fact, it turns out that the error from the cover made of maximal cliques only equals the
minimal (∆Õ)2

opt ∼ 54% of the times. The other ∼ 46% of times (∆Õ)2
opt corresponds to

one of the two covers in Figure 4.1(c).

Despite not always being the optimal one, the cover made of maximal cliques does
outperform all other covers on average. This motivated the choice of using maximal cliques
only when probing the system, along with the post-processing unit afterwards for removing
vertices from the cliques based on their covariances and their contribution to (∆Õ)2 within
the considered clique. In fact, by comparing Figure 4.1(e) with Figure 4.1(b-d), we see that
on average AEQuO provides smaller errors if compared to the theoretical minima that can
be obtained with the four covers considered in the figure.

4.7 Bayesian estimation for the graph

In this section, we use Bayesian inference [120, 121] to estimate the averages, variances
and covariances of the Paulis spanning O. We consider a pair of Pauli operators, Pj and Pi,
whose measurements are collected in the dataset D. From D, it is possible to obtain the
following quantities. We denote by s±λ (with s+

λ + s−λ = mλ) the total number of times an
outcome ±1 is collected from measurements of Pλ for λ = i, j. The associated underlying
(but unknown) probability is denoted by θ±(λ), where the argument λ will be dropped for
clarity whenever it is clear from context. Similarly, s±±ij (with s++

ij +s+−
ij +s−+

ij +s+−
ij = mij)

is the number of times that Pi and Pj yielded the corresponding {±1,±1} outcome, which
is characterized by a probability θ±±. Finally, w±λ is the number of occurrences of ±1,
that refers to the cases where Pi and Pj have been probed independently. It follows that
w+
i + w−i = mi −mij and w+

j + w−j = mj −mij.

4We remark that, in general, the best measurement strategy is the one measuring all Pauli operators at
once. However, when some of the Paulis do not commute and as such their covariances cannot contribute
to (∆Õ)2, it is sometimes advantageous not to measure a Pauli for the reasons explained in Section 4.3.
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Using the collected data D, our goal is to estimate the posterior probability P (~θ|D)
that best describes the parameters

~θ = {θ+(j), θ−(j), θ+(i), θ−(i), θ++, θ+−, θ−+, θ−−}

in our measurement process. By Bayes’ Theorem,

P (~θ|D) =
P (D|~θ)P (~θ)

P (D)
, (4.7)

where the likelihood P (D|~θ) is the probability of obtaining the dataset D given ~θ. The

prior P (~θ) is the probability of ~θ before the current evidence or dataset D is observed. The
probability P (D) is also called the marginal likelihood.

Following standard procedures [120, 121], we consider P (~θ) = Dir(K,~a), where Dir
indicates the Dirichlet distribution of orderK and ~a = {a1, . . . , aK} are its hyperparameters

[120, 121]. Then P (~θ|D) = Dir(K,~c + ~a), where ~c = {c1, . . . , cK} is a vector giving the
number of occurrences of each category in the dataset D.

The Dirichlet distribution of order K has the following probability density function:

P (~θ) = P (~θ;~a) =
1

B(~a)

K∏
i=1

θai−1
i , (4.8a)

B(~a) =

∏K
i=1 Γ(ai)

Γ(
∑K

i=1 ai)
, (4.8b)

where Γ(z) =
∫∞

0
xz−1e−xdx is the gamma function. The likelyhood function P (D|~θ) then

takes the form

P (D|~θ) =
K∏
i=1

θcii , (4.9)

which leads to the posterior

P (~θ|D) =
1

B(~a+ ~c)

K∏
i=1

θci+ai−1
i . (4.10)

With the posterior probability P (~θ|D) in Eq. (4.10), we can determine the quantities
of interest for the measurement protocol considered in this work by marginalization. In
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more detail, assume we are interested in estimating a certain quantity f(~θ). We define its

estimator f̃(~θ) by

f̃(~θ) =

∫
f(~θ)P (~θ|D)d~θ. (4.11)

This equation is used for determining P̃i and the elements of the covariance matrix Q̃ (see
Section 4.3).

In the following, we explicitly derive P̃i and the variance Q̃ii of a single Pauli operator,
Pi, in Section 4.7.1. In Section 4.7.2, we consider the case in which two Paulis, Pi and Pj,
are measured together, and we estimate their covariance. As explained in Section 4.7.3,
this estimate for their covariance may lead to wrong errors (∆Õ)2 when M is small. Then,
we obtain a valid estimate for Q̃ij (i 6= j) by considering the case in which the Paulis may
also have been measured independently from each other. Finally, we summarize the results
and explain how Bayesian estimation is used in AEQuO in Section 4.7.4.

4.7.1 Single Pauli Operator

Whenever we measure a single Pauli operator, Pi, we obtain a datasetD which is a collection
of +1 and −1, from which s+

i and s−i can be found. In this case, K = 2, ~θ = {θ+, θ−}
with θ− = 1− θ+, and for simplicity we set D 7→ ~c = {s+

i , s
−
i }. From Eq. (4.10) we get the

posterior probability

P ({θ+, θ−}|{s+
i , s

−
i }) =

θ
s+i
+ (1− θ+)s

−
i

B({s+
i + 1, s−i + 1})

, (4.13)

where we set a1 = a2 = 1. This choice for ~a, corresponding to a uniformly distributed
prior, is generally taken when no information is available prior to the measurement.

The exact values 〈Pi〉 and (∆Pi)
2 of the average and variance of the Pauli, Pi, can be

expressed in terms of the probabilities ~θ as

〈Pi〉 = θ+ − θ− = 2θ+ − 1, (4.14a)

(∆Pi)
2 = 4θ+θ− = 4θ+(1− θ+). (4.14b)

Using these equations in place of f(~θ) in Eq. (4.11), we obtain the following estimates P̃i
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and Q̃ii:

P̃i =

∫ 1

0

〈Pi〉P ({θ+, θ−}|{s+
i , s

−
i })dθ+

=
s+
i − s−i

s+
i + s−i + 2

,

(4.15a)

Q̃ii =

∫ 1

0

(∆Pi)
2P ({θ+, θ−}|{s+

i , s
−
i })dθ+

= 4

(
s+
i + 1

) (
s−i + 1

)(
s+
i + s−i + 2

) (
s+
i + s−i + 3

) . (4.15b)

These relations are used by our algorithm to update vertices and self-edges in the graph
[see, e.g., Figure 4.1(a)].

4.7.2 Two Paulis always measured together

The procedure used in the previous section to determine P̃i and Q̃ii can be repeated here
for the covariance Q̃ij (i 6= j), provided we have meaningful likelihood and prior functions.
In this case, we deal with two Pauli operators, Pi and Pj, and as such we have four possible
outcomes described by the probabilities θ++, θ+−, θ−+ and θ−− = 1−θ++−θ+−−θ−+. Fur-
thermore, we assume here that Pi and Pj are always measured together; the generalization is

presented in Section 4.7.3. For the sake of clarity, we have K = 4, ~θ = {θ++, θ+−, θ−+, θ−−}
and D 7→ ~c = {s++

ij , s
+−
ij , s

−+
ij , s

−−
ij }. From Eq. (4.10) we have the following posterior prob-

ability,

P (~θ|D) = θ
s++
ij +a++−1

++ θ
s+−
ij +a+−−1

+− θ
s−+
ij +a−+−1

−+

× (1− θ++ − θ+− − θ−+)s
−−
ij +a−−−1 1

B(~a+ ~c)
,

(4.17)

where we left the parameters ~a = {a++, a+−, a−+, a−−} in their explicit form for reasons
that will become clear in the following Section 4.7.3. Here, we assume a++ = a+− =
a−+ = a−− = 1 similar to the single Pauli, since there is no information available prior the
measurements.

By expressing the exact covariance cov(Pi, Pj) in terms of the probabilities ~θ as

cov(Pi, Pj) = 4(θ++θ−− − θ+−θ−+)

= 4 [θ++(1− θ++ − θ+− − θ−+)− θ+−θ−+] ,
(4.19)
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and using Eqs. (4.11) and (4.17), we can determine a possible estimate Q̃ij (i 6= j),

Q̃ij =

∫ 1

0

dθ++

∫ 1−θ++

0

dθ+−

∫ 1−θ++−θ+−

0

dθ−+ cov(Pi, Pj)P (~θ|D)

= 4
(s++
ij + 1)(s−−ij + 1)− (s+−

ij + 1)(s−+
ij + 1)

(s++
ij + s+−

ij + s−+
ij + s−−ij + 4)(s++

ij + s+−
ij + s−+

ij + s−−ij + 5)
.

(4.20)

This equation, while representing a valid estimate for the covariance, is not used in
our algorithm to obtain Q̃ij. Indeed, since we allow for overlap among the cliques, there
are cases in which two Paulis are both measured individually and together, and Eq. (4.20)
disregards all outcomes in which Pi and Pj are uncorrelated. In the following section, we
study two possibilities on how to include these events into the estimation of Q̃ij, such that
we do not neglect any collected information on the system and always obtain a meaningful
estimate of the error (∆Õ)2.

4.7.3 Two Paulis measured together and individually

As anticipated at the end of the previous section, Eq. (4.20) ignores all events where Pi
and Pj were not measured together. This has two implications. First, we are discarding
available information that can be used for getting a more precise estimate for the covariance.
Second, and more importantly, in case of scarce statistics Eqs. (4.20) and (4.15) may lead to
a wrong estimate for the error (∆Õ)2. This is because the variances Q̃ii and the covariances
Q̃ij (i 6= j) are derived independently from each other, ignoring the fact that they are
correlated. In fact, it is possible to express the probabilities θ±± in terms of θ±(i), θ±(j),
and the exact cov(Pi, Pj):

θ++ = θ+(i)θ+(j) +
cov(Pi, Pj)

4
, (4.21a)

θ+− = θ+(i)θ−(j)− cov(Pi, Pj)

4
, (4.21b)

θ−+ = θ−(i)θ+(j)− cov(Pi, Pj)

4
, (4.21c)

θ−− = θ−(i)θ−(j) +
cov(Pi, Pj)

4
, (4.21d)

where we recall that the subscripts ± in θ±± refer to Pauli operators Pi and Pj, in this
order. Since the relations in Eqs. (4.21) are not always satisfied by Eqs. (4.20) and (4.15),
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it may happen that in measuring an observable we obtain an estimate resulting in a wrong
error (∆Õ)2. As an example, assume that we take 25 measurements of each of P1 and P2

independently, and always get +1 and −1 outcomes, respectively. Afterwards, we measure
these Paulis together twice and get the two pairs {−1,+1} and {+1,−1}. In this case,
our estimates for the variances will be small, while we would get a comparatively large
negative covariance. This leads to a negatively defined covariance matrix Q̃ such that
Q̃11 + Q̃22 + 2Q̃12 = −0.07, which is not physically allowed.

4.7.4 Summary

To summarize, we resorted to Bayesian theory to estimate averages, variances and covari-
ances of Paulis being measured together and/or individually. This is crucial for allocating
the measurement budget to different cliques, since our estimators yield valid results with
scarce or even no statistics.

Another feature of our algorithm is that, after all measurements have been allocated
and taken, it offers different options for calculating the estimator Õ and its error (∆Õ)2.
The user can substitute the Bayesian estimators for P̃i and Q̃ij in Eqs. (4.15), and the
sample averages, variance and covariance, respectively, at the end of the algorithm [122].
This is a reasonable choice since these sample quantities are known to converge faster if
compared to the Bayesian ones. We remark, however, that this substitution is reasonable
if and only if there is a sufficiently large dataset for correctly estimating all contributions
in Eq. (4.2b).

Yet another feature of our algorithm is that it allows, both when allocating the mea-
surement budget and/or when outputting the final value for estimate and error, to use the
exact values cov(Pi, Pj) for Q̃ij in Eq. (4.2b). On the one hand, this allows for investigating
the limits of our protocol. On the other hand, it is useful to determine the exact error (i.e.,
without statistical fluctuations) that is expected from a given measurement allocation, as
we did for the values in squared brackets in Figure 4.3(a) and the points in Figure 4.3(c).

4.8 An efficient method to compute (∆Õ)2

In this section, we explain a computationally efficient method to derive the error (∆Õ)2.
As evident from Eq. (4.2), this involves two objects, the matrix C (with elements cicjQ̃ij)
and the parameters mij (i, j = 1, . . . , n). The first one can be obtained by following the
procedure explained in Section 4.7. The latter one is found from the outputs of either the
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BF or the ML subroutine, as explained in Section 4.4. Indeed, these subroutines provide
an r-dimensional vector ~ξ whose elements ξj represent the number of times that the j-th

clique is measured. To derive mij from ~ξ, one may use the measurement characteristic
matrix E , which is an (n× r)-matrix whose elements Eij are equal to 1 if the Pauli string
i belongs to the clique j, and zero otherwise. It then follows that mij is the (i, j)-element

of the product EΞE>, where Ξ is a diagonal (r × r)-matrix with ~ξ as the diagonal entries,
and > indicates transposition.

Given mij, the error (∆Õ)2 can be rewritten as a function of matrix operations that can
be efficiently implemented numerically. Denoting the Hadamard product and Hadamard
division [123] with ◦ and �, respectively, we have

(∆Õ)2 = j>(C◦EΞE>�EΞJΞE>)j, (4.22)

where J is the all-ones matrix of size (r × r), and j is the (r × 1)-all-ones vector. Given

C and ~ξ, this equation is used in the BF and the ML subroutines of our algorithm to
efficiently compute the error function. Notice that, compared to Eq. (4.2), the Kronecker
delta does not appear in Eq. (4.22). This is not problematic since the BF [ML] subroutine

considers the elements in ~ξ to be positive integers [real numbers that are then rounded to
the nearest integer]. For the post-processing we directly use Eq. (4.2) to calculate (∆Õ)2.

4.9 Numerical results

In this section, we explain the numerical results in Figure 4.3 and 4.4. This includes
details on the LDF algorithm that we have used, and an extended explanation about how
the values in the tables, as well as the points in the plots, have been derived.

The numbers outside the square brackets in Figure 4.3(a) represent the standard devi-
ations

Σ ≡

√∑R
j=1(Õj − 〈O〉)2

R
, (4.23)

where Õj is the j-th estimated average of the observable O under consideration, 〈O〉 is the
exact average of O, and R is the total number of times the whole measurement procedure
is repeated [R = 40 in Figure 4.3(a)]. For the Derand [37] and the APS [41, 42] methods,
Õj are determined with the algorithms reported in the associated references. The same
holds for the OGM [43] method, where we resorted to version 2 of their algorithm and
followed their sampling procedure.
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As explained in Section 4.7.4 and in [108], one can choose different quantities to be
returned by AEQuO. The Õj in Eq. (4.23) for calculating the numbers outside the square
brackets are obtained with the sample average [122] for estimating all Paulis, P̃i, within
Õj. The numbers inside the square brackets in Figure 4.3(a), on the other side, are derived

by averaging the values
√

(∆Õ)2 obtained in the R iterations of the algorithm. The

associated errors in the parentheses are the sample root mean squares [122]. While AEQuO
performs the measurement allocation without prior knowledge of the covariance matrix Q̃,

the values for
√

(∆Õ)2 that are returned at each j-th iteration are calculated with the

exact Q̃ij → cov(Pi, Pj). This allows to have a very precise estimate of the real error
(hence the small uncertainties in the parentheses), even with only R = 40.

In panels (b) and (c) of Figure 4.3 we show the rescaled errorsMΣ2/〈O〉2 andM(∆Õ)2/〈O〉2,
respectively. In (b), MΣ2/〈O〉2 is chosen in order to compare AEQuO with other ap-
proaches that cannot directly estimate the variance of the considered observable O. In
(c), we report M(∆Õ)2/〈O〉2, where (∆Õ)2 and the associated error bars are calculated
in the same way as the values in the square brackets within Figure 4.3(a) (see previous
paragraph). We have chosen R = 100 to reduce statistical fluctuations affecting Σ in (b),
and R = 40 in (c). Furthermore, since the APS method and AEQuO with the BF subrou-
tine allocate the measurement shots one at the time, when M is large they require longer
runtimes than the other approaches. Therefore, they have been run up to M = 6400.
Every time AEQuO is used to determine the Q̃ used for measurement allocation, it resorts
to Bayesian estimation with β1 = 0 (see Section 4.7.4).

For observables characterized by small values of N , AEQuO can find all maximal cliques
and feed them into either the BF or the ML subroutines for measurement allocation. This
procedure led to the reported values in Figure 4.3(a) until (excluded) the LiH2 Hamiltonian.
Since the worst-case scaling of r is exponential in the number of vertices [124], resorting
to all maximal cliques is not an option when N is large. We thus developed an algorithm
that spans all vertices and, for each, finds a user-specified number of maximal cliques (see
Section 4.4 and [108] for more informations). When building each maximal clique, this
algorithm favours vertices with more edges and higher contributions to the cost function
(∆Õ)2 in Eq. (4.2b). This creates a bias towards larger cliques, that in the context of
measuring a quantum observable are highly desirable. In fact, we have tested AEQuO
when using either all, or a subset of r . N (large) maximal cliques. For the examples we
considered, the errors yielded in these cases differed by 15% at most.

The values reported in Figure 4.3(a-b) for the LDF method have been determined
with an algorithm based on Ref. [31] and integrated with the framework developed in this
work. We first find a cover of the graph such that each vertex is contained in exactly
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one clique. To find this cover, we also prioritise larger cliques and vertices with higher
(∆Õ)2 contributions, as we did for the maximal cliques’ algorithm described in the previous
paragraph. Once a cover is found, we use the BF subroutine to allocate all measurements,
without ever updating the covariance matrix Q̃, i.e., no adaptive features are used for the
LDF method. We then perform the measurements, and resorting to the sample average we
obtain R = 40 [R = 100] values Õj that are used in Eq. (4.23) to determine the numbers
reported in Figure 4.3(a) and 4.3(c) [Figure 4.3(b)].

The numerical results from the LDF method reported in Section 4.5 are lower if com-
pared to the ones reported in Refs. [31, 34, 41, 43, 37]. This is a consequence of two facts.
First, for each graph cover, our measurement allocation is optimal (as can be demonstrated
by following the procedure in Section 4.6). Second, we allow for general commutation rela-
tions between Paulis, i.e., we group together two Pauli operators that commute, but do not
necessarily bitwise commute. Indeed, when we restrict our LDF to bitwise commutation
relations (as in Section 4.10), it yields results that are similar to the ones reported for the
LDF algorithm in Refs. [31, 34, 41, 43, 37].

Our version of the LDF is representative of other measurement protocols (such as the
ones in Refs. [31, 46, 47, 48, 45]) that also allow for non-bitwise commuting relations
between Paulis. In fact, prior to this work two criteria were commonly used to collect
Paulis. First, the magnitude of their coefficients and second, the total number of resulting
groups. For building the groups of Paulis to be measured together, our LDF protocol
employs the expected contributions of the Paulis to the error, that is available via Eqs. (4.2)
and results in a strategy that is similar to the one used by AEQuO (described in Section 4.4
and [108]). Since having less groups and collecting together Paulis with large coefficients
are highly correlated with having lower estimation errors, we expect the algorithms in
Refs. [31, 46, 47, 48, 45] to achieve errors that are comparable to the numerical LDF
results reported in Section 4.5.

In all panels of Figure 4.4, we report averaged values of (∆Õ)2 with their statistical
errors [in parentheses in (a) and as error bars in (b-e)] and R = 25 [see above discussion
about Figure 4.3(c)]. The same chemistry Hamiltonians previously utilized in Figure 4.3
have been used in Figure 4.4(a), while we resorted to the family of lattice models introduced
in the main text and Section 4.11 for Figure 4.4(b-d). In (a), (b) and (d), the settings
chosen for estimating Q̃ are the same ones used in Figure 4.3. For (c) and (e) the covariance
matrix is initialized to the exact values, as explained at the bottom of Section 4.7.4.

For all numerical values in Figure 4.3 where the ML subroutine has been utilized, we
employed a stochastic gradient descent optimization algorithm [113] for the cost function
(∆Õ)2 minimization. This algorithm’s performance depends on hyperparameters [108,
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111, 113] – the learning rate in particular – that have not been optimized to keep low
computational requirements. On the other hand, the ML subroutine in Figure 4.4 employs
the Limited-memory BFGS optimizer [125] that, belonging to the family of quasi-Newton
methods [115], does not require choosing the learning rate.

4.10 Bitwise commutation comparison

In this section, we compare AEQuO and our LDF protocols both restricted to bitwise
commutation (BC) relations with the APS [41, 42], the Derand [37] and the OGM [43]
methods. In fact, as explained in Section 4.4, simultaneous measurements of non-bitwise
commuting Pauli operators require entangling gates that, in the context of NISQ devices,
generate errors that can jeopardize the result. As such, it is important to determine the
advantage resulting from the adaptive nature of AEQuO alone.

In Figure 4.5 we present analogous numerical results as in Figure 4.3(a-b), with the
additional constraint that all measurement schemes are restricted to bitwise commutation
relations. From panel (a), it is possible to conclude that for the considered chemistry Hamil-
tonians the adaptive nature of AEQuO does provide a consistent advantage over all other
schemes. Except for the water molecule, non-adaptive (L = 1, black dotted line) AEQuO,
the OGM, and the Derand protocols yield results that are within statistical fluctuations
of one another (in agreement with Figure 4.5(b) and Figs. 4.3 and 4.4). Furthermore,
while the LDF protocol in Figure 4.3(a-b) was yielding results that, in several instances,
were better than the OGM and the Derand, here the LDF always performs comparably or
worse. We thus conclude that its advantage came from non-bitwise commutation between
Paulis that, in this section, is not allowed.

The case of H2O in Figure 4.5(a) presents an interesting feature. The OGM, while
performing worse than adaptive (L = 3, l = 4) AEQuO, outperforms all other approaches.
After a careful analysis, we identified the reason of this advantage in the fact that the OGM
protocol, for small measurement budgets, does not measure the input observable. Instead,
it removes Paulis with small coefficients from the Hamiltonian [43]. These terms, that are
considered and measured by AEQuO, the LDF and the Derand protocols, introduce extra
statistical fluctuations that increase the error. This is supported by Figure 4.5(b), where
it is evident that the OGM (yellow downwards triangles) asymptotically reaches (within
statistical fluctuations) the Derand (red upwards triangles) and non-adaptive AEQuO (L =
1, black dotted line) for large values of M , when all Paulis are considered by OGM.

To confirm that the OGM’s enhanced performance for small M comes from neglecting
Paulis that bare extra statistical errors, we investigated the performances of all protocols
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×
LDF

BC [16]
OGM
[27]

APS
[25,26]

Derand
[21]

AEQuO
BC, L=1

AEQuO
BC, L=3, l=4

H (8 BK)
LiH(12 BK)

BeH (14 BK)
H O(14 BK)

BeH (14 BK)

Figure 4.5: (a): Errors obtained with LDF [31], OGM [43], APS [41, 42], Derand [37], and
AEQuO with the ML subroutine and L = 1 or L = 3 and l = 4. We consider chemistry
Hamiltonians in the BK encoding [22]. Values (in bold the lowest) are variances Σ2 with Σ
as in Eq. (4.23). In square brackets, we report averages of (∆Õ)2 with their statistical error.
The input is the ground state, R = 25, M = 104, and values are rescaled by 10−4. (b):
Relative errors MΣ2/〈O〉2 as a function of M obtained considering the BeH2 Hamiltonian
with BK encoding and R = 102. In both panels, AEQuO and the LDF [31] protocol are
restricted to bitwise commutation (BC) relations.
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Figure 4.6: (a): Example of a lattice used in Figure 4.4(b-d). Here, we have D = 2
dimensions and n = 16. Vertices are indicated by their coordinates with vectors v. Qubits
lie on edges (coloured ellipses), and are identified by v ± êi (i = 1, . . . , D) with êi being
unit versors defining the D-dimensional Cartesian plane. (b): All terms in the Hamiltonian
describing the D = 2 dimensions model with n = 4 qubits. Green squares indicate Z

interactions, while red/blue ones the flip-flop terms. We grouped together all interactions
characterized by the same coefficients [αk and β2k in Eq. (4.25)].

with different input states. For small values of M , we have found several instances in which
the OGM yields results that are comparable to the Derand and non-adaptive (L = 1)
AEQuO.

4.11 Lattice Hamiltonians

For deriving the data in Figure 4.4(b-d), we considered different 2- and 3-D lattice models
(see bottom of the figure), described by the Hamiltonians

H =
∑
v,i

[
2D∑
k=1

αk
2

|S|=k∏
S⊆{ê,−ê}

î∈S

σ̂z
v+î

+
D∑
k=1

β2k

|S|=k∏
S⊆{ê}
î∈S

(
σ̂+

v+î
σ̂−
v−î + σ̂−

v+î
σ̂+

v−î

)]
. (4.25)

To better explain this operator, we refer to Figure 4.6. In panel (a), we show an example
of a lattice in D = 2 dimensions with n = 16 qubits lying on the edges. Vertices are
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indicated by vectors v and the Cartesian coordinate frame is characterized by versors {ê} =
{ê1, . . . , êD}. It follows that each qubit can be identified by v±êj (j = 1, . . . , D), where v is
the vertex from which it can be reached by one of the versors (see Figure 4.1). In Eq. (4.25),
αk and β2k are real constants, and the products run over all possible combinations of versors
(S are subsets of k oriented versors). The raising and lowering operators are indicated
with σ̂± = (X± iY)/2. In Figure 4.6(b), all elements of the Hamiltonian in Eq. (4.25) are
represented for a D = 2 dimensional lattice with n = 4 qubits.

This class of physical models, describing many-body, next-neighbouring interacting
spin-1/2 particles on a lattice is a generalization of the Hubbard model [118] with hopping
multi-particle terms and energy shifts depending on the particles’ state. For determining
the data points in Figure 4.4(b-e), we set αk = 1/k and β2k = 1/(2k).

4.12 Conclusions and outlook

We introduced AEQuO, an adaptive algorithm to estimate quantum observables expressed
as a sum of Pauli operators. By allowing for both overlap between groups of Pauli op-
erators that are simultaneously measured and general commutation relations, we gather
more information per shot and introduce possibly negative covariances into Eqs. (4.2).
AEQuO is capable of allocating the remaining measurement budget depending on previ-
ous outcomes, it post-processes the estimator to lower its error, and it gives estimates both
for the average Õ and the variance (∆Õ)2 of the considered observable. Our protocol is
based on two routines which provide either near-optimal (BF) or computationally efficient
(ML) allocation of the measurement budget. For the observables considered here, both
subroutines result in similar errors (∆Õ)2.

We tested our algorithm on several Hamiltonians with different settings that include
allowing or forbidding non-bitwise commutation between Paulis, and turning the adaptive
allocation on (L > 1) or off (L = 1). Our protocol yields numerical results that outperform
state-of-the-art estimators based on various grouping techniques [31, 34, 41, 43] and the
classical shadow method [41, 37, 42]. We also studied the advantages our algorithm gains
from adaptive allocation as well as non-bitwise commutation. We found that, while being
highly problem dependent, these advantages are consistent.

There are different possibilities for improving our algorithm. Generating the list of all
maximal cliques of the graph is computationally demanding for large problem instances.
In this case, one could find better strategies to select a subset of (maximal) cliques, and
this subset can in principle be updated while measurements are taken. Designing a bet-
ter method of choosing suitable cliques could increase the performance of our algorithm
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without sacrificing the quality of the results. The ML-based subroutine could be further im-
proved by employing graph neural networks to leverage the graph structure of the problem
[117]. Another possibility is the extension of our adaptive algorithm to non-qubit-based
hardware and, in view of the Bayesian framework underlying our estimation, the direct
inclusion of the experimental characteristics of the considered platform via hierarchical
modelling [126].

The algorithms developed in this chapter were coded in Python for a custom-built VQE
measurement simulator and have been made available at [108].
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Chapter 5

Minimizing Entangling Gates in
Clifford Circuits

In the last chapter, we showed how to employ entangling Clifford gates to decrease the
number of measurements in the VQE. A natural question about the viability of such
approaches, though, is the problem of the fidelity of entangling gates on NISQ devices.
In general, on NISQ devices, entangling gates are likely to have significantly lower fidelity
than single-qubit gates. For this reason, it’s important to weigh the tradeoffs of requiring
fewer measurements against the errors introduced by using lower fidelity gates.

For any particular device and architecture, these tradeoffs will be weighed differently,
which makes it impossible to choose an approach which is optimal in all circumstances. An
approach which allows for a small number of entangling gates, limited by the architecture
of the device and the fidelity of the gates, could likely prove optimal. For at least one
error model and class of Hamiltonians, it has been shown that this tradeoff favors general
commutation [127]. To avoid delving into the specifics of any current devices in this
chapter, we will develop a framework for minimizing entangling gates in Clifford circuits
which will be applicable to a variety of architectures, and can be used to help assess the
aforementioned tradeoffs.

To begin, we will look at the theoretical question of the maximum number of entan-
gling gates required in an n-qubit Clifford circuit. After proving a matching upper and
lower bound for this result, we will develop a framework for constructing a Clifford circuit
mapping between two specified stabilizer states using the minimum possible number of
entangling gates. We will conclude with identifying a particularly interesting class of sta-
bilizer states which can be constructed from the ground state using O(n log n) entangling
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gates.

5.1 Matching Upper and Lower Bounds

The first direction we will consider is proving an upper bound on the number of entan-
gling gates required to implement a specified Clifford circuit. This question was already
considered and solved by Aaronson and Gottesman in their canonical form theorem.

Theorem 2 (Aaronson and Gottesman [78]) Any Clifford circuit admits an equiva-
lent Clifford circuit in canonical form. A Clifford circuit in canonical form consists of
successive layers containing only h, s, and cnot gates, which occur in the order:

h− cnot− s− cnot− s− cnot− h− s− cnot− s− cnot.
2

As noted in Aaronson and Gottesman’s article, a direct corollary of this is the upper
bound we are seeking when we combine this result with a result from the field of linear
reversible circuit synthesis.

Theorem 3 (Patel et al. [128]) Any n-qubit cnot circuit admits an equivalent cnot
circuit with at most O(n2/ log n) gates. 2

Since there are a constant number of cnot layers in Aaronson and Gottesman’s canon-
ical form, and each cnot layer can be synthesized using at most O(n2/ log n) cnot
gates, O(n2/ log n) serves as an upper bound on the number of entangling gates required
to implement an n-qubit Clifford circuit.

Having proved this upper bound, we move on to considering the lower bound. We will
first go back to Patel, Markov, and Hayes’s article on linear reversible circuit synthesis
which provides a hint that the upper bound might be tight. After seeing this, we will
prove this to be true

Theorem 4 (Patel et al. [128]) There are n-qubit cnot circuits which cannot be syn-
thesized using fewer than Ω(n2/ log n) cnot gates. 2

The proof for this theorem given by Patel, Markov, and Hayes is a counting argument
proving that the number of distinct linear reversible circuits is large enough that some
linear reversible circuits must require a large number of cnot gates to be constructed.
Moreover, Aaronson and Gottesman even remark on a similar counting argument showing
that there exist n-qubit Clifford circuits requiring Ω(n2/ log n) gates. Moreover, a minor
extension of the above statements directly bounds the number of entangling gates.
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Corollary 1 There are n-qubit Clifford circuits which cannot be synthesized using fewer
than Ω(n2/ log n) entangling gates1. 2

Proof First we will count the number of unique stabilizer states on n qubits. This can
be shown to be exactly

n−1∏
i=0

(2i + 1),

but for our purposes, it suffices to note that there are 2Θ(n2), as is likewise noted by
Aaronson and Gottesman.

On the other hand, we notice that there are a constant number of two-qubit Clifford
circuits, since Clifford circuits can be viewed as permutations of Pauli operators. Some of
these circuits are non-entangling (and one is the identity operation), which are included
nonetheless. On an n-qubit system, therefore, there are O(n2) unique two-qubit Clifford
entangling gates.

The above implies that there are at most O(n2T ) circuits with at most T entangling
gates. Comparing this to the number of unique stabilizer states forces us to recognize
that, in order for all stabilizer states to be realized by some (≤ T )-entangling gate Clifford
circuit, T must satisfy:

O(n2T ) ≥ 2Θ(n2),

or equivalently, T = Ω(n2/ log n). �

These matching upper and lower bounds tell us that there exist some Clifford circuits
for which the canonical form will achieve a near-optimal entangling gate count. Finding the
true optimal circuit remains open, and this search motivates our next section. Moreover,
having a tight bound now opens the door to investigating families of circuits which do not
saturate the bound, which will be investigated in Section 5.4.

5.2 Visualizing a True Optimum

For this section and the following one, we will re-focus our attention on the question of
improving NISQ algorithms. In particular, the measurement scheme discussed in Chap-
ter 4 required the repeated construction of Clifford circuits mapping a commuting Pauli

1During my thesis proposal, David Gosset outlined this proof.
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operators to diagonal Pauli operators. A commuting set of Paulis exists in the span of
a basis defining a stabilizer state, and diagonal Pauli operators exist in the span of the
basis defining the ground state. So, in other words, we are synthesizing circuits which map
specified stabilizer states to the ground state, |0〉⊗n.

With this goal in mind, we will use the graph state formalism rather than the stabilizer
formalism. The graph state formalism provides a visual representation of n-qubit stabilizer
states using n-vertex simple graphs.

Definition 11 (Graph State [50]) Given a simple graph, G = (V,E), the correspond-
ing graph state is the stabilizer state,

|G〉 =

 ∏
(i, j)∈E

CZij

 |+〉⊗|V | .
2

The set of Paulis which stabilize a given graph state admits a simple basis which can
be constructed from the adjacency matrix of the graph. In the symplectic formalism, the
X-part of the basis is the identity matrix and the Z-part of the basis is the adjacency matrix
of the graph, as shown in the following example.∣∣∣∣∣

1 2

34

〉
7→


1000

0100

0010

0001

∣∣∣∣∣∣∣∣
0111

1010

1100

1000

 =

XZZZ

ZXZI

ZZXI

ZIIX

It is not true that every stabilizer state is a graph state, but fortunately it is true that
every stabilizer state is local-Clifford equivalent to a graph state. This can be seen by
performing a modified Gaussian elimination algorithm on the symplectic form of a basis
for the stabilizer state, which is equivalent to composing operators to choose a new basis.
In this modified Gaussian elimination, if the ith column is a pivot column in the X-part,
then (n+ i)th column cannot be a pivot column in the Z-part. The fact that the generators
form a basis guarantees that either i or n+ i is a pivot column for all i = 1, . . . , n.

If the X-part is full rank, then the resulting generators will take the form described
above, where the fact that the Z-part is symmetric follows from commutation rules. Alter-
natively, if the X-part is not full rank, then Hadamard gates can map the pivot columns
from the Z-part to the X-part until the X-part is indeed full rank.

Using this formalism obscures the total number of single-qubit Clifford operations, but
since our goal is only to count entangling gates, the fact that many equivalent stabilizer
states are equivalent to the same graph state actually simplifies our task.
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v

∗v−−−→

v

Figure 5.1: A local complement on vertex v. The dark pink edges are those with one
endpoint at v. The light pink, dashed edges identify the clique on N(v) on which the edges
will be complemented.

To work within the graph state formalism, it is important to understand how Clifford
operations act on graph states. In particular, we can actually classify all Clifford operations
into three categories: swaps, single-qubit gates, and entangling gates. A sequence of
swap operations is a relabelling of the vertices of the graph state, i.e. a mapping to
an isomorphic graph. For the other two classes, we will see that there are simple graph
operations which correspond to each.

Definition 12 (Local Complement) Given a graph, G, and a vertex, v, the local com-
plement of G with respect to v (denoted G ∗ v) is the graph obtained by complementing
the edges of the subgraph of G induced by the neighborhood of v. An example is given in
Figure 5.1. 2

Definition 13 (Locally Equivalent) We say that two graphs, G and H, are locally
equivalent (written G ∼L H) if there exists a sequence of local complements mapping
G to H. Since local complements are involutory, this can be checked to be an equivalence
relation. 2

Proposition 1 (Van den Nest et al. [129]) Two stabilizer states, |φ〉 and |ψ 〉, with
corresponding graphs, Gφ and Gψ, are equivalent up to single-qubit Clifford gates if and
only if Gφ ∼L Gψ. 2
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The above proposition shows that there is a single graph operation, the local comple-
ment, which can be used to generate all local-Clifford equivalent graph states. Moving on
to entangling gates, we make use of the following proposition.

Proposition 2 (Grier and Schaeffer [130]) Any 2-qubit Clifford entangling gate is equiv-
alent up to local-Clifford gates to either a cz gate or an iswap gate. 2

Proof This is a corollary of the result proved in Appendix E of Grier and Schaeffer’s
“The Classification of Clifford Gates over Qubits.” An iswap gate is single-qubit Clifford
equivalent to a cz gate followed by a swap gate, and a cz gate is equivalent to their
generalized cnot gate up to conjugation by single-qubit Cliffords. Therefore, if the swap
is present, the circuit can be written as a collection of single-qubit Cliffords together with
an iswap, and if it is not present, then a cz is used instead. �

This proposition implies that there are two unique graph operations which can be used
to map graph states to one another. On a physical device, one might only have access to
a native entangling gate which is single-qubit Clifford equivalent to either a cz gate or
an iswap gate, or perhaps both. For simplicity, we focus on the case where cz gates
are native, though a similar analysis would provide similar results for devices with native
iswap gates (or even both). As a running example, we will look at a Clifford circuit with
native cz gates for generating the five-wheel graph, as shown in Figure 5.2

In their article, “Mapping graph state orbits under local complementation,” Adcock et
al. analyze local-complementation orbits (that is, sets of graphs which are locally equiv-
alent). In this article, they categorize all local complementation orbits for all graphs on
up to eight vertices. Adcock et al. note that the minimum number of edges in the local
complementation orbit of a graph represents an upper bound on the number of cz gates
required to build the graph. We can see the improvement from this analysis in Figure 5.3,
which constructs the five-wheel graph using one fewer cz gate than the naive approach.

In the discussion section of their article, Adcock et al. mention a direction for future
work in which one could draw a picture of the connections between orbits to help optimize
Clifford circuits. They write:

For a prescriptive method, the relationship between orbits by nonlocal cz gates must

be known. A complete map of this type would describe how all n-qubit graph states

are related to one another, and provide a look up table for optimal transformations

between them [5].
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2

34

5

6

|+〉 • • •
|+〉 • • •
|+〉 • • •
|+〉 • • •
|+〉 • • •
|+〉 • • • • •

Figure 5.2: A Clifford circuit constructing the five-wheel graph using only cz gates. All
qubits begin in the |+〉 state and cz gates are applied to every pair of qubits with an edge
in the graph, represented above the circuit. After each layer in the circuit, the current
graph state is drawn below.
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G 7→G∗2−−−−→

1

2

34

5

6

|+〉 • • • Z

|+〉 • • • X

|+〉 • • • Z

|+〉 • • •

|+〉 • • •

|+〉 • • • Z

Figure 5.3: A Clifford circuit constructing the five-wheel graph by first constructing the
graph in the local-complementation orbit with the fewest edges. The X and Z gates represent
the single-qubit operations,

√
−iX and

√
−iZ, which are, up to a constant, equivalent to

sequences of the Clifford h and s gates [5].
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Here, we will do just that, with the goal not just of creating a lookup table for small
numbers of qubits, but also for understanding how to use such a framework to traverse the
space of graph states to optimize larger circuits as well. To facilitate our investigation, we
will define a distance function corresponding to the minimum number of cz gates required
to map from one graph state to another.

Definition 14 (Entanglement Distance) Given two graphs, G and H, both on n ver-
tices, we define the entanglement distance between G and H (denoted e(G,H)) to be equal
to the minimum k such that there is a sequence of graphs

G = G0, G
′
0, G1, G

′
1, . . . , Gk, G

′
k = H

satisfying the following conditions:

• for each 0 ≤ i ≤ k, Gi is locally equivalent to G′i, and

• for each 1 ≤ i ≤ k, Gi is obtained from G′i−1 by adding or removing a single edge.

Since mapping to/from the empty graph is particularly motivated by the measurement
scheme presented in Chapter 4, we will define e(G) to be equal to the entanglement distance
between G and the n-vertex empty graph.

We have called this a “distance,” and we can notice that this does indeed satisfy the
triangle inequality: for three graphs, F,G,H, we have that e(F,H) ≤ e(F,G) + e(G,H).
In particular, we also have e(G,H) ≤ e(G) + e(H). 2

Now, we will introduce a visualization for understanding these distances. We begin with

a graph on 2(n
2) vertices, with each vertex labelled by a unique simple n-vertex graphs. For

native cz gates, we know that two graph states can be mapped to one another if and only
if they differ at a single edge. Adding an edge between such pairs of graphs results in the(
n
2

)
-dimensional hypercube graph, written as Q(n

2)
. While it is not the focus of this section,

it’s good to note that when considering a device with native iswap gates, the result is
similar to a hypercube since exactly one edge is added or deleted by each iswap gate, but
the swaps change which graphs are adjacent.2 Similarly, for a device with native cz and
iswap gates, the edges of the regular hypercube and twisted hypercube are both present.
A 3-qubit example for each of these cases is shown in Figure 5.4.

2In Figure 5.4, instead of iswap gates we have drawn the edges for a combined cz and swap
gate. This changes the initial graph, but does not change the graph after quotienting out by the local
equivalence relation.
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(a) cz (b) iswap (c) cz and iswap

Figure 5.4: Graph state adjacencies for the three native gate sets. cz gates produce a
hypercube graph, here the

(
3
2

)
= 3 dimensional one, which makes it simpler for algorithm

descriptions. Importantly, the iswap and cz + iswap cases are not more complicated
to work with, but the graph (before identifying vertices) eschews simple description.

Assuming that the native entangling gates of our hypothetical n-qubit NISQ device
are cz gates, Q(n

2)
captures the mappings between graph states. We will group all of the

vertices into classes based on the local equivalence relation, which we now know corresponds
to the single-qubit Clifford equivalence of graph states. Having determined this grouping,
we compute the quotient graph, Q(n

2)
/∼L, which reduces each class to a single vertex and

preserves edges between classes, as shown in Figure 5.5.

One way to think of this quotient graph is to imagine starting at a given stabilizer state.
Every stabilizer state which is equivalent up to single-qubit Clifford circuits is identified
to the same vertex in the graph. The native entangling gates are applied to every pair
of qubits on every stabilizer state identified by this vertex, and edges are added to the
classes of graph states which are reached in this way. If the native entangling gates are
all single-qubit Clifford equivalent to the cz gate, then the edges in the quotient graph
capture every possible mapping to a non-local-Clifford equivalent stabilizer state.

The shortest path between two graph states in the quotient graph corresponds to a Clif-
ford circuit mapping equivalent stabilizer states to one another using the minimal number
of entangling gates. This quotient graph captures exactly the information which Adcock et
al. alluded to. Applying this to our five-wheel example, the minimum number of required
cz gates is 7, which we provide an example of in Figure 5.6.
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(a) Grouping into ∼L classes (b) Q(32)
/∼L

Figure 5.5: Graph states in Q(3
2)

grouped into local equivalence classes. Each of the distinct

five colors represents a class of locally equivalent graphs. When constructing the quotient
graph, if there exists an edge between a vertex of one color and a vertex of another color,
then the quotient graph contains that edge.

|+〉 • Z • Z

|+〉 • • X • X

|+〉 • Z • Z

|+〉 • Z •

|+〉 • • X •

|+〉 • Z • Z

Figure 5.6: A Clifford circuit optimally constructing the five-wheel graph by interspersing
local complements and cz gates. Again, the X and Z gates represent the single-qubit
operations,

√
−iX and

√
−iZ, respectively.
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5.3 Traversing the Quotient Graph

Now that we have a framework for understanding these optimal Clifford circuits, we can
begin to ask questions about the structure of the graph and how to make use of it for
circuit synthesis.

The first task for the purposes of justifying allowing entangling gates in a measurement
protocol, is to determine the eccentricity of the empty graph vertex in the quotient graph.
Eccentricity is a measure of the maximum distance between a fixed vertex and any other
vertex in a graph, so the eccentricity of the empty graph is the maximum number of
entangling gates required to diagonalize an n-qubit stabilizer state, or similarly to prepare
an n-qubit graph state from the ground state. In other words, it is the maximum value of
e(G) over all n-vertex graphs, G.

Thanks to Theorem 1, we already have an asymptotic answer to this question: O(n2/ log n).
With the new framework, though, we can exactly calculate the eccentricity for small num-
bers of qubits. The eccentricities are included in the figures in Appendix B. Of particular
note is the highlighted vertex in Figure 2d, which corresponds to the five-wheel graph.
This is the smallest graph for which the minimum number of edges in every graph within
its local-complementation orbit (9) is strictly greater than the minimum number of cz
gates required to prepare it (7).

Changing direction from a theoretical question to a practical question, one might won-
der how to incorporate restricted architectures into this picture. For example, a physically-
motivated architecture which is considered for circuit synthesis tasks is a linear nearest
neighbor architecture, where entangling gates can only be applied on pairs of qubits which
are adjacent in a line. Any architecture can be accounted for using this framework by
simply deleting edges from the hypercube which correspond to qubits which cannot di-
rectly be entangled. We can similarly group classes of single-qubit equivalent stabilizer
states using the same equivalence relation, since all such operations are local, and again
compute the quotient graph. An example on 3 qubits is shown in Figure 5.7. For the sake
of completeness, we have also found the minimal number of entangling gates on a linear
nearest neighbor architecture for construction our running example of the five-wheel graph.
Figure 5.8 shows the optimal 9-entangling gate circuit.

Observing this figure, we notice a perhaps unintuitive result. Given the task of entan-
gling qubits 1 and 3 on a nearest neighbor architecture, it’s tempting to first swap qubits
1 and 2 before performing a cz gate on the new qubit 2 and 3. However, since non-native
swap operations require three entangling gates, this incurs a cost of four entangling gates.
Remarkably, we can actually entangle just qubits 1 and 3 using only three entangling gates
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(a) Nearest neighbor cz (b) Grouping into ∼L classes (c) Quotient graph

Figure 5.7: Graph states on a linear nearest neighbor architecture. Here, the bottom-left
qubit is 1, the top qubit is 2, and the bottom-right qubit is 3, so a cz gate can be performed
between qubits 1 and 2 as well as qubits 2 and 3, but not between qubits 1 and 3. For
any restricted architecture, the graph is the hypercube graph with edges removed along a
given dimension.
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|+〉 •
|+〉 • • •
|+〉 • • • • •
|+〉 • • • • •
|+〉 • • •
|+〉 •

Figure 5.8: A Clifford circuit optimally constructing the five-wheel graph by interspersing
local complements and cz gates on a linear nearest neighbor architecture. The empty
gates in the circuit represent sequences of single-qubit X and Z gates. The specific gates
were excluded for brevity, but they can be computed by calculating the sequence of local
complementations required to map the graph states to one another. Note that, on a
restricted architecture, the choice of vertex labels on the graph state impacts the number
of required cz gates, so isomorphic graphs may prove easier or more difficult to construct.
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by first creating the maximally entangled gate, applying single-qubit Clifford gates, and
then deleting an edge in the graph state with one more cz.

Restricted architectures result in disjoint hypercubes of lower dimensions, but the quo-
tient operation collapses the layers into a connected graph as long as the architecture is
fully connected. Using single-qubit Cliffords to jump between the disjoint hypercubes is a
unique and valuable way of understanding Clifford circuit synthesis on restricted architec-
tures. The eccentricities for a linear nearest neighbor architecture are shown in the figures
in Appendix C. Again, the five-wheel graph is highlighted in the 6-qubit graph.

There are a multitude of other uses for this framework.

• Weighted edges corresponding to gate fidelities on NISQ devices. By assigning higher
weights to the edges corresponding to lower-fidelity entangling gates, the quotient
graph can be tailored to a specific device.

• Adding edges in the hypercube with unique weights corresponding to native swap
gates. On devices with native swap operations, the cost might be more or less than a
native entangling gate. After adding weighted edges to the hypercube corresponding
to the allowed swaps on a device (so edges connecting certain isomorphic graphs),
the shortest paths in the quotient graph will use the native swap gates if they would
result in a more cost-efficient circuit.

• Expanding the equivalence relation to include graph isomorphisms. For the mea-
surement scheme of variational algorithms or for the preparation of graph states in
MBQC, since the initial or final state is the empty graph, permutations of the qubits
can be pulled to the beginning or end of the circuit and dealt with classically. Consid-
ering isomorphic graphs as being equivalent results in a significantly smaller quotient
graph, which is perhaps easier to traverse.

The above examples all represent promising avenues for applications of this framework
to real-world Clifford circuit synthesis problems, but none of them are realistic unless we
can say something about the efficiency of finding paths in this graph. Traversing the
graph, that is visiting every vertex, is clearly inefficient, as the number of vertices grows
exponentially in the number of qubits. However, perhaps we can construct paths efficiently
without ever building the graph in the first place.

The first question is whether we can efficiently recognize when we have already visited
a given vertex. For example,

cz13

∣∣∣∣
1

2

3

〉
=

∣∣∣∣
1

2

3

〉
and

1

2

3

∼L
1

2

3

,
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so applying a cz gates (or even multiple cz gates) does not necessarily map to a distinct
class of graph states. For this reason, any algorithm which hopes to efficiently traverse the
quotient graph must be able to compute equivalence efficiently. Fortunately, this is indeed
possible, and it was proved both in the language of graphs as well as graph states.

Proposition 3 (Bouchet, Van den Nest et al. [51, 131]) There exists an O(n4) clas-
sical algorithm to determine whether two graphs are locally equivalent. This implies an effi-
cient classical algorithm for determining whether two graph states are single-qubit Clifford
equivalent. 2

Applying this to the problem of traversing the graph, we can efficiently recognize when-
ever applying an entangling gate has mapped us to a distinct class of graph states. How-
ever, even this is not enough to guarantee efficient traversal of the graph if calculating the
neighborhood of a vertex in the quotient graph is inefficient.

At first glance, the fact that there exist local-complementation orbits with an exponen-
tial number of elements3 seems to complicate this task. It is inefficient to enumerate all
graphs in the local equivalence class and add/delete all

(
n
2

)
edges to each graph to visit all

its neighbors.

This perspective is a red herring, though, since we are not obliged to stay within the
graph state formalism. As noted in the proof of Theorem 1, there are a constant number
of 2-qubit Clifford circuits. Instead of adding/deleting edges to the graph, we can apply
each of the 2-qubit Clifford circuits to every pair of qubits in the stabilizer state before
mapping the results back to graph states to check for equivalence.

Using the above, we can traverse all vertices of the quotient graph for n-qubit graph
states in time at most O(n4|V |2). It has already been mentioned, though, that |V | is
exponential in n, so it would be better to find paths directly without first constructing the
graph. For this, we will employ the A* algorithm.

Definition 15 (A* Algorithm [132]) The A* algorithm is a path searching algorithm
defined as follows. Given a graph, G, a source vertex, vS and a target vertex, vT , A* seeks
to output the shortest path from vS to vT . To improve upon Dijkstra’s algorithm, A* uses
a heuristic function, which estimates the distance between each vertex to the target. At
each step, A* chooses the vertex in the neighborhood of the set of already-visited vertices
which minimizes the sum of the path length from the source together with the heuristic
function’s estimate for the remaining path length to the target. 2

3Take, for example, the disjoint union of triangles on 3n vertices. Each triangle has 4 elements in its
local-complementation orbit, so the orbit of the disjoint union of n triangles contains 4n elements.
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From this description of the A* algorithm, it’s not clear whether it produces a good or
even optimal result. Fortunately, there are conditions on the heuristic function which can
guarantee the efficiency and optimality of the algorithm [133].

Beginning with optimality, Dijkstra’s algorithm, a similar path searching algorithm
which does not use a heuristic function, is guaranteed to be optimal. Since Dijkstra’s
algorithm is essentially A* with a heuristic function which is constant 0, it’s clearly possible
to guarantee that the output of A* is optimal. The condition which guarantees optimality
is called admissibility, which means that the heuristic function always underestimates (or
correctly estimates) the distance remaining to the target. The proof of optimality is, if
A* returned a path of longer length, then the heuristic function on some vertex on the
true shortest path must have overestimated the distance remaining, since otherwise there
would’ve been a step at which it was chosen over a vertex on the longer path. This
contradicts admissibility, so the returned path must have the shortest length.

Of course, heuristic functions which severely underestimate the distance remaining have
a drawback, which is that they force the algorithm to explore more of the graph. Dijkstra’s
algorithm results in a breadth-first search for the target vertex, and given that there are
an exponential number of vertices in our quotient graph, this is undesirable.

For the purpose of mapping to or from the empty graph, the problem which we keep
coming back to, it is easy to imagine non-trivial heuristic functions which are admissible.
The first which comes to mind is that a given graph, G, is at most n − c(G) steps away
from the empty graph, where c(G) is the number of connected components of the graph
state. Each cz gate can split one component into at most two, so this is clearly admissible.
However, beyond n steps from the empty graph, this heuristic function is constant, and
the resulting algorithm will explore a large proportion of the graph, especially considering
that some graph states are O(n2/ log n) steps away.

An ideal heuristic function which returns the true distance to the empty graph, would
immediately lead to an efficient classical algorithm for optimally minimizing entangling
gates for diagonalizing stabilizer states and/or constructing graph states. While we search
for this (or until we prove that the computation of such a function is NP-hard), it is likely
best to instead use inadmissible heuristic functions.

A heuristic function which overestimates the distance to the empty graph might not
result in the shortest path, but it will guarantee that the algorithm terminates quickly if
desired. For example, using the number of edges in the graph as a heuristic function, we can
clearly always delete an edge and move one step closer to the empty graph, guaranteeing an
O(n2) worst-case runtime. By exploring the neighborhoods of the visited vertices, though,
we can ideally remove multiple edges in each step following the A* formula, and we are
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likely to achieve results significantly better than the naive approach.

We are considering a few different directions for investigating new and improved heuris-
tic functions, but as of now, the problem of using A* to find truly optimal Clifford circuits
is tantalizingly open.

5.4 An Efficient Class of Graphs

In the last section, we introduced ideas for an algorithm for finding the shortest path
between two vertices in the quotient graph. In this section, we will be investigating the
length of this shortest path, so we will call this the “entanglement distance” between G
and H, which is defined formally as follows.

Definition 16 (Induced Subgraph) Given a graph, G, and a subset of its vertices,
S ⊆ V (G), the induced subgraph of G on S (denoted G[S]) is the graph with vertex set S
and edge set {(u, v) ∈ E(G) : u ∈ S ∧ v ∈ S}. 2

Definition 17 (Vertex-Minor) A graph, H, is said to be a vertex-minor of a graph, G,
if it is an induced subgraph of some graph locally equivalent to G. 2

Circle graphs are the most fundamental vertex-minor-closed class of graphs and are
believed to play a role for vertex-minors that is analogous to that of planar graphs for
graph minors (see [134, 135]). One striking result is an analogue of Kuratowski’s theorem
chacterising circle graphs by a list of three forbidden vertex-minors [136]. Because of
this, circle graphs have been an active area of research for investigating properties of local
complements and vertex-minors.

In this section, we will prove the following theorems, which show that the entangle-
ment distance of circle graphs (and indeed a larger family of vertex-minor-closed classes of
graphs) is bounded above byO(n log n). Therefore, in contrast to the graphs with entangle-
ment distance Θ(n2/ log n), these classes of graphs require asymptotically fewer entangling
gates, which marks them as especially interesting classes to study for applications to NISQ
algorithms.

Theorem 5 Let G be an n-vertex circle graph. Then e(G) ≤ 2n log n+ 3n. 2

Theorem 6 Assuming Geelen’s weak vertex-minor structure conjecture, we have the fol-
lowing. Let F be a proper vertex-minor-closed class of graphs, and let G be an n-vertex
graph contained in F . Then e(G) = O(n log n). 2
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Although the weak vertex-minor structure theorem has not yet been proved, there has
been significant progress towards obtaining this and the general structure theorem for
vertex-minors (see [134, 135, 137]), and we are optimistic that it will be proved in the
coming years. For a recent survey on vertex-minors, see [138].

5.4.1 Preliminaries

We will often use the following key observation which can easily be verified.

Lemma 1 Let u, v be distinct vertices of a graph G, and let H = (((G ∗ v)∆{uv}) ∗
v)∆{uv}, then H is the graph obtained from G by removing all edges between u and
N(u)

⋂
N(v) and adding all edges between u and N(v)\(N(u)

⋃ {u}). As a consequence,
e(G,H) ≤ 2. An example of this operation is given in Figure 5.9 2

5.4.2 Circle graphs

For a graph, G, and two disjoint vertex sets, A,B ⊆ V (G), we let G[A,B] be the bipartite
subgraph of G on vertex set A

⋃
B where xy is an edge of G[A,B] if and only if xy is an

edge of G, and x ∈ A, y ∈ B.

Definition 18 (Circle Graph) Given a chord diagram, which is a finite set of chords of
a circle, the corresponding circle graph, G, is the graph with vertex set and edge set:

V (G) = {c : c is a chord}
E(G) = {(c1, c2) : c1 intersects c2} 2

Two intervals I1, I2 in R “overlap” if they intersect and neither is contained in the
other. For a collection of closed intervals I in R, the overlap graph, G(I), is the graph
with vertex set I and edge set being the pairs of overlapping intervals in I. It has been
shown that every circle graph is an overlap graph of a collection of intervals in R such that
no two share an endpoint [139].

Lemma 2 Let G be a n-vertex circle graph with an isolated vertex u, let A,B ⊆ V (G)\{u}
be disjoint, and let F be the edges between A and B in G. Let H be a graph on the same
vertex set as G, with u an isolated vertex. Then e(H,H∆F ) ≤ 2n− 2. 2
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Figure 5.9: An example of the operation described in Lemma 1. N(u) 7→ (N(u)∆N(v))\u.

83



Proof Let I be a collection of closed intervals in R with no two sharing an endpoint such
that G\{u} = G(I). Let x1 < · · · < x2n−2 be the endpoints of I, and for each xi, let I(xi)
be the interval of I that has xi as an endpoint. For I ∈ I, let `(I) be such that x`(I) is the
left endpoint of I, and let r(I) be such that xr(I) is the right endpoint of I.

Let H0 = H. Now, for each 1 ≤ i ≤ 2n− 2 in order,

• if I(xi) ∈ A, then let Hi = ((Hi−1 ∗ u)∆{uI(xi)}) ∗ u,

• if I(xi) ∈ B, then let Hi = Hi−1∆{uI(xi)}, and

• otherwise, let Hi = Hi−1.

Clearly for each i, we have that e(Hi, Hi−1) ≤ 1, so e(H2n−2, H) ≤ 2n − 2. It remains
to show that H2n−2 = H∆F . Observe that for each 0 ≤ i ≤ 2n − 2, we have that
NHi

(u) = {I ∈ A ⋃
B : xi ∈ I}. So, NH2n−2(u) = NH∆F (u).

By Lemma 1, we have that if I(xi) ∈ A, then Hi\{u} = (Hi−1∆{wI(xi) : w ∈
NHi−1

(u)})\{u}. Clearly if I(xi) ∈ B, then Hi\{u} = Hi−1\{u}, and otherwise if I(xi) 6∈
A

⋃
B, then Hi = Hi−1. It now follows that

H2n−2 = H∆I∈A

(
{Iw : w ∈ NH`(I)−1

(u)}∆{Iw : w ∈ NHr(I)−1
(u)}

)
= H∆I∈A

(
{IJ : x`(I)J ∈ A

⋃
B}∆{IJ : xr(I)J ∈ A

⋃
B}
)

= H∆I∈A{IJ : J ∈ A ⋃
B ∧ IJ ∈ G(I)}

= H∆I∈A{IJ : J ∈ B ∧ IJ ∈ G(I)}
= H∆F,

as desired. �

With a divide and conquer strategy, we can extend this further to circle graphs with
bounded chromatic number. A graph is k-colorable if there is an assignment of at most
k colors to its vertices so that no two adjacent vertices are assigned the same color. The
chromatic number, χ(G), of a graph, G, is equal to the minimum k such that G is k-
colorable.

Lemma 3 Let G be an n-vertex circle graph with chromatic number at most k and an
isolated vertex u. Then e(G) ≤ (2n− 2) dlog ke. 2
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Proof If k = 1, then the result is trivial, so we proceed inductively. Let A,B ⊆ V (G)\{u}
be a partition such that χ(G[A]) =

⌊
k
2

⌋
and χ(G[B]) =

⌈
k
2

⌉
.

By the inductive hypothesis, we have that

e(G[A]
⋃
G[B]

⋃
G[{u}]) ≤ e(G[A

⋃ {u}]) + e(G[B
⋃ {u}])

≤ 2|A|
⌈

log

⌊
k

2

⌋⌉
+ 2|B|

⌈
log

⌈
k

2

⌉⌉
= (2n− 2)(dlog ke − 1).

By Lemma 2, we have that e(G,G[A]
⋃
G[B]

⋃
G[{u}]) ≤ 2n − 2. Therefore, e(G) ≤

e(G[A]
⋃
G[B]

⋃
G[{u}]) + e(G,G[A]

⋃
G[B]

⋃
G[{u}]) ≤ (2n− 2) dlog ke, as desired. �

Corollary 2 Let G be an n-vertex circle graph with chromatic number at most k. Then
e(G) ≤ (2n− 2) dlog ke+ n− 1. 2

Proof Let u be a vertex of G. By Lemma 3, we have that e(G\δ(u)) ≤ (2n− 2) dlog ke.
Clearly e(G\δ(u), G) ≤ |δ(u)| ≤ n − 1. Therefore, e(G) ≤ e(G\δ(u)) + e(G\δ(u), G) ≤
(2n− 2) dlog ke+ n− 1, as desired. �

Since the chromatic number of an n-vertex graph is at most n, Theorem 5 follows from
from Corollary 2.

5.4.3 Perturbations

A rank-p perturbation of a graph, G, is a graph whose adjacency matrix can be obtained
from the adjancency matrix of G by adding (over the binary field) a symmetric matrix of
rank at most p and changing all diagonal entries to be 0. For a graph, G, and a subset
of its vertices, X ⊆ V (G), we say that complementing on X is the act of obtaining a new
graph H from G by replacing the induced subgraph of G on X by its complement.

Lemma 4 (Nguyen and Oum, McCarty [140, 135]) Let G be an n-vertex graph and
let H be a rank-p perturbation of G. Then G can be obtained from H by complementing
on at most 3

2
p sets of vertices. 2

Let us first examine the entanglement distance between one graph and the graph ob-
tained by complementing on a set of vertices.
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Lemma 5 Let G be an n-vertex graph, and let H be obtained by complementing on a set
X ⊆ V (G). Then e(G,H) ≤ 2n− 2. 2

Proof Let u be a vertex of G, and let G1 be the graph obtained from G by changing the
neighborhood of u to be X\{u}. Let G2 = G1 ∗ u. Then H is obtained from G2 by simply
changing the neighborhood of u. Therefore e(G,H) ≤ e(G,G1) + e(G1, G2) + e(G2, H) ≤
(n− 1) + 0 + (n− 1) = 2n− 2, as desired. �

Applying Lemma 4 and repeatedly applying Lemma 5 we now obtain the following.

Theorem 7 Let G be an n-vertex graph and let H be a rank-p perturbation of G. Then
e(G,H) ≤ 3pn− 3p. 2

An immediate corollary of Theorem 5 and Theorem 7 is the following.

Corollary 3 Let G be an n-vertex rank p-perturbation of a circle graph. Then e(G) ≤
2n log n+ (3p+ 3)n− 3p. 2

5.4.4 Vertex-minors

The cut-rank of a set X ⊆ V (G), denoted ρ(X), is the rank of the submatrix of the
adjacency matrix with rows X and columns V (G) − X. For k ∈ N, a graph G is k-
rank-connected if it has at least 2k vertices and ρ(X) ≥ min(|X|, |V (G) −X|, k) for each
X ⊆ V (G).

Geelen’s weak vertex-minor structure conjecture states that every graph in a proper
vertex-minor-closed class of graphs with sufficiently high rank-connectivity is a bounded
rank perturbation of a circle graph.

Conjecture 1 (Weak Structural Conjecture [135]) For any proper vertex-minor-closed
class of graphs F , there exist k, p ∈ N so that each k-rank-connected graph in F is a rank-p
perturbation of a circle graph.

There is also a stronger vertex-minor structure conjecture,[135] however we shall not
need this for our purposes. Assuming Conjecture 1 and by using Corollary 3, we can now
derive a O(n log n) bound for graphs forbidding a vertex-minor.

Theorem 8 Let F be a proper vertex-minor-closed class of graphs, and let G be an n-
vertex graph contained in F . Then e(G) = O(n log n). 2
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Proof Let k, p ∈ N be as in Conjecture 1. We shall argue inductively on n that e(G) ≤
12k2pn log n. We do not optimize the dependence on k and p, since they will likely be
large.

If G is a rank-p perturbation of a circle graph, then by Corollary 3,

e(G) ≤ 2n log n+ (3p+ 3)n− 3p

≤ 12pn log n

≤ 12k2pn log n.

So we may assume that G is not a rank-p perturbation of a circle graph. Therefore, G is
not k-rank-connected.

If n ≤ 2k, then clearly e(G) ≤ |E(G)| ≤
(
n
2

)
≤
(

2k
2

)
≤ 2k2 ≤ 12k2pn log n, so we may

assume that n > 2k. So, there exists some X ⊂ V (G) with ρ(X) < min(|X|, |V (G)−X|, k).
We may choose such aX so that |X| ≥ |V (G)\X|. Let a1, . . . , aρG(X) be vertices of V (G)\X
such that ρG(X) = ρG(V (G)\X) = ρG[X

⋃
A](A), where A = {a1, . . . , aρG(X)}. Let Y =

V (G)\(X ⋃
A). Then by the inductive hypothesis, e(G[X

⋃
A]) ≤ 12k2p|X ⋃

A| log |X ⋃
A|,

and e(G[Y ]) ≤ 12k2p|Y | log |Y |. Since |Y | ≤ n/2, we therefore get that

e(G[X
⋃
A]

⋃
G[Y ]) ≤ e(G[X

⋃
A]) + e(G[Y ])

≤ 12k2p|X ⋃
A| log |X ⋃

A|+ 12k2p|Y | log |Y |

≤ 12k2p|X ⋃
A| log n+ 12k2p|Y | log

n

2
= 12k2p|X ⋃

A| log n+ 12k2p|Y |(log n− 1)

= 12k2pn log n− 12k2p|Y |.

Let G0 be the graph obtained from G[X
⋃
A]

⋃
G[Y ] by removing all edges between the

vertices of A. Then, e(G0) ≤ e(G[X
⋃
A]

⋃
G[Y ])+ 1

2
k(k−1) ≤ 12k2pn log n−12k2p|Y |+ 1

2
k2

since |A| = ρG(X) ≤ k.

Let G1 be the graph obtained from G0 by adding edges between X and Y so that
EG1(X, Y ) = EG(X, Y ). For each vertex y ∈ Y , there exists some Ay ⊆ A such that
NG(b)

⋂
X = ∆a∈AyNG0(a). Note that |Ay| ≤ |A| ≤ k for each y ∈ Y . So, by repeatedly

applying Lemma 1 a total of |Ay| times for each vertex y ∈ Y , we have that

e(G0, G1) ≤
∑
y∈Y

2|Ay| ≤ 2k|Y |.

Therefore e(G1) ≤ 12k2pn log n− 12k2p|Y |+ 1
2
k2 + 2k|Y | ≤ 12k2pn log n− 1

2
k2.
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Now, G1 and G differ only on the edges between vertices of A. So, e(G1, G) ≤ 1
2
k(k −

1) ≤ 1
2
k2 since |A| = ρG(X) ≤ k. Therefore

e(G) ≤ e(G1) + e(G1, G) ≤ 12k2pn log n

as desired. �

5.4.5 Open Problems

We have obtained O(n log n) bounds for the entanglement distance of circle graphs and
more generally (assuming Geelen’s weak vertex-minor structure theorem) for any proper
vertex-minor-closed class of graphs. This is a near linear improvement on the best possible
bound of Θ(n2/ log n) for the class of all graphs. On the other hand, we have the lower
bound of e(G) ≥ n− 1 for any n-vertex connected graph G. Therefore, a logarithmic gap
still remains, leading to the following problem.

Problem Let F be a proper vertex-minor-closed class of graphs and let G be an n-vertex
graph contained in F . Is it true that e(G) = O(n)?

In response to this problem, we have the following conjecture.

Conjecture 2 There are n vertex circle graphs G with e(G) = Ω(n log n).

Unfortunately, we have been unsuccessful modifying counting arguments, similar to
those used in Theorem 4 and Theorem 1, to work in the case of circle graphs, so this
conjecture remains open.
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Chapter 6

Applications and Future Directions

Applications of the VQE were mentioned briefly in Chapter 4 during the discussion of
the AEQuO measurement scheme, but it’s important to note that physicists are, at this
moment, using these and similar techniques on NISQ devices. In particular, my first
proposed measurement scheme which derived from work in my masters thesis [31], was
used to accurately estimate the ground state energy of an H2 molecular Hamiltonian using
Rigetti’s Aspen-4-4Q-A quantum processing unit [32]. Similarly, the same measurement
techniques were proposed for a VQE-based protocol for the study of magnetic field effects
[21]. Later, we adapted the AEQuO measurement protocol and our simulation code to
work over prime-dimensional finite fields, which contributed to a VQE simulation on a
trapped-ion qudit quantum processor [141].

Finally, the combinatorial and graph-theoretic approaches described herewithin have a
plethora of applications outside of those listed. In particular, to efficiently prepare the qubit
coupled cluster Ansatz with involutory linear combinations of anticommuting Paulis, one
needs to construct a large anticommuting set of Paulis with problem-specific constraints,
which was solved using a similar graph partitioning approach [142]. Moreover, expanding
outside of the NISQ regime, one recent approach to the optimization of Clifford+t cir-
cuits proposed by Litinski considers t gates (as well as arbitrary rotations in the Z basis),
conjugated by Clifford circuits, as rotations in a specified Pauli basis [143]. The commuta-
tion relations between these Pauli bases determine the order in which the t gates can be
implemented, and commuting sets can be implemented in parallel (given access to ancilla
qubits).

Having gone over some past and present applications of our research, we can now discuss
future directions. In Chapter 3, we investigated techniques for reducing the number of
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qubits required to represent local Hamiltonians. The ability to parallelize the computation
of the ground state for any subset of the conditional qubits provides the ability to weigh
a space-time tradeoff. Being able to avoid the exponentially costly number of repetitions,
however, would make this technique significantly more valuable for real-world applications,
especially for larger Hamiltonians.

Doing so requires identifying which sub-matrix in a block-diagonal matrix contains
the lowest minimum eigenvalue, which is a difficult problem in general. However, for the
classes of Hamiltonians which are of interest to researchers, there may be insights which
make such a problem feasible. In particular, a deeper understanding of the symmetries of
the system which allow for the mapping to a block-diagonal form could give insight into
which block(s) could contain the ground state.

One key idea which underlies the results in Chapter 3 is the fact that commuting,
diagonalizable matrices are simultaneously diagonalizable, so their eigenspaces coincide.
Since non-identity Paulis have predictable eigenspaces in which the ±1 eigenvalues appear
with multiplicity 2n−1, finding a Pauli operator which commutes with the Hamiltonian
allows us to search for a ground state separately in each of these two eigenspaces. From this
point of view, while Pauli operators are the most obvious candidates to test for symmetries,
they need not be the only ones. In particular, we can ask what would happen if we expanded
our search to look for any other unitary symmetries with efficiently computable eigenspaces.

Even if we settle on a set of unitaries with that property, we still have to be able to
test whether the Hamiltonian commutes with a unitary from this set. The Pauli operators
commute if and only if they commute with each Pauli term in the local Hamiltonian, but
general unitaries do not satisfy this condition. Therefore, searching for another class of
symmetries greatly increases the difficulty of the problem.

We are having ongoing discussions about testing for Clifford symmetries for restricted
classes of Clifford with easily-computable eigenspaces. Even if successful, proofs of opti-
mality will not come easily with such an approach. Moreover, since it has been shown that
determining the joint eigenvalues of a collection of low-weight tensor products of s gates
is NP-complete, the sets of Clifford symmetries which allow for efficiently tapering qubits
may prove to be a very restricted class [144].

In Chapter 4, we introduced AEQuO, an algorithm for adaptively choosing measure-
ment bases in the VQE based on the collected measurement results. The error formula,
when the covariance matrix is known, provides a way to compare the results of measure-
ment schemes between different research groups without requiring hundreds or thousands
of runs. Since this is only feasible for small Hamiltonians, the estimated error formula
(which uses Bayesian estimates of the error) converged to the correct error using fewer
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repetitions than a statistical analysis on the outcomes would have provided.

However, we acknowledge that there are many areas where our algorithm falls short
of optimality, which opens plenty of room for future work. In particular, the task of
estimating a covariance matrix from measurement outcomes on subsets of the Paulis in
the Hamiltonian results presents a difficult dilemma. This problem is one of missing data,
and the fact that anticommuting Paulis cannot be measured simultaneously leads to likely
inevitable biases in the estimation of the true covariance matrix. Our Bayesian approach
converged on the expected result efficiently for the Hamiltonians we tested, but a proper
statistical analysis of the problem at hand could lead to a provably unbiased estimator.

Continuing to look at AEQuO, we have also used a simple greedy approach to allo-
cating measurements and a machine learning approach. While we were showed that these
approaches, when combined with the covariance estimates, produced better results than the
available literature on sample Hamiltonians, there is plenty of room for improvement. In
particular, an approach which looks forward to future measurements to intelligently assign
measurements in the next step would undoubtedly perform better than the greedy ap-
proach, as evidenced by the machine learning algorithm accompanying AEQuO. AEQuO
struck a balance between efficiency and accuracy, but there are certainly a plethora of
tradeoffs for future researchers to investigate.

In Chapter 5, we developed a framework for finding (near-)optimal Clifford circuits
with as few entangling gates as possible. The biggest open question from this section,
which was even pointed out within the text of the chapter, is the question of determining
a good heuristic function for the A* algorithm to traverse the quotient graph.

While investigating the quotient graphs on small numbers of qubits, a pattern emerged
in which well-known quantum error correcting codes, such as the perfect 5-qubit code
[145], appear as subsets of bases of stabilizers which are further from the empty graph.
The generators of the 5-qubit code combined with either of its logical operators forms
a basis for the unique stabilizer state at a distance of 5 away from the empty graph in
Figure 2c. Such a realization is perhaps not surprising, since quantum error correcting
codes must, by definition, be highly entangled and resistant to being disentangled (i.e.
mapped to the empty graph). This pattern has pushed us in the direction of investigating
the connections between the distance from the empty graph and the distance of some
underlying quantum error correcting code defined by the stabilizer state, and there are
certainly other connections to be made and directions to be pushed while searching for
this elusive heuristic function.

One avenue which was not explored in Chapter 5 comes from a reading Bouchet’s paper
in which he proved the efficient algorithm for recognizing locally equivalent graphs [51].
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In this work, Bouchet, a matroid theorist, proves the result using a notion of isotropic
systems, which he originally introduced a few year prior [6]. Decades later, Traldi defined
an isotropic matroid, which is a binary matroid constructed from the adjacency matrix of
a graph, and proved the following.

Proposition 4 ([146]) Let G1 and G2 be simple graphs.

G1 ∼L G2 (up to isomorphism) ⇐⇒ M [IAS(G1)] ∼= M [IAS(G2)].
2

Here, M [IAS(G)] is the “isotropic matroid” of the graph, G, and ∼= indicates a matroid
isomorphism. As mentioned in Chapter 5, when we are mapping to or from the empty
graph, swap operations can be handled classically. This, we noted, could allow us to
expand our definition of local equivalence to include graph isomorphisms, which would
result in smaller, easier to traverse graphs. Traldi’s isotropic matroids directly capture this
expanded equivalence relation.

Unfortunately, Traldi does not provide an algorithm for efficiently checking whether
isotropic matroids are isomorphic, nor does he indicate whether it should be expected to
be easy to check. Perhaps an isotropic matroid formalism for stabilizer states is the ideal
formalism to use when tackling such circuit synthesis tasks, but efficient algorithms for
identifying isomorphic isotropic matroids would have to be developed to run A*on these
reduced quotient graphs.

NISQ era quantum computing, with local Hamiltonians, Pauli basis measurements,
and Clifford circuits, provides fertile ground for applications of combinatorial techniques. I
consider myself lucky to have found friends who were asking the right questions at the right
time, which allowed us to uncover the novel results presented here. And considering the
plethora of open problems and tantalizing directions for future research mentioned above,
I eagerly look forward to our future investigations.
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Appendix A

In this appendix, we provide additional details about the physical models employed in
the plot of Fig. 3.3. We remark that the symmetries that our method finds is entirely
independent on the values of the coefficients within the following Hamiltonians.

Z2 model

The Z2 model [54, 53, 20, 96] is a pure (without matter) lattice gauge theory (LGT)
possessing a Z2 symmetry. As shown in Fig. 1, we consider an N × N lattice (2 × 2
in the figure) with qubits lying on edges. The electric field of the LGT is described by
individual Pauli operators Z acting over each edge. The magnetic field, on the other side,
is characterized by the electric field circulating into each plaquette (i.e., the smallest cell
of the lattice). The Hamiltonian is therefore

Ĥ = −
np∑
p=1

P̂p + ξ
n∑
q=1

Ẑq; P̂p =
∏
i∈�p

X̂i, (1)

where np is the number of plaquettes �p (np = 9 in Fig. 1) and ξ is the coupling constant
of the theory [21]. For clarity, we included suffices to the Pauli operators to indicate to
which qubit they act (e.g., X3 indicates X acts on the third qubit).

Kitaev honeycomb model

As shown in Fig. 1, the Kitaev honeycomb model employs a hexagonal lattice on a torus.
Following Ref. [97], the Hamiltonian of the system is

H =Jx

∑
〈i,j〉∈X

XiXj + Jy

∑
〈i,j〉∈Y

YiYj + Jz

∑
〈i,j〉∈Z

ZiZj +
n∑
i=1

hz,iZi, (3)

where X , Y , Z refer to edges aligned to the three defining directions of an hexagon: in
the figure, the orange, green and blue, respectively. The last term in Eq. (3) describes
~B, such that when all coefficients hz,i are equal to (different from) zero, the model is
with (without) magnetic field. The remaining coefficients Jx, Jy and Jz characterize the
neighbour-neighbour interactions of the model.

105



Figure 1: Physical models considered for the plot in Fig. 3.3. (top left): For the Z2 model
[54, 53, 20, 96] qubits lie on the edges of a square lattice. Each qubit individually is
acted upon a Z operator, and XXXX operators act on plaquettes, as indicated by the blue
circular arrows. (right): In the Kitaev hexagonal lattice [97, 98], qubits lie on vertices.
Depending on the direction of the connection with the neighbouring vertex, the interaction
is XX (orange), YY (green) or ZZ (blue). When the magnetic field ~B is present, additional
Z operators act on each individual qubit. (bottom left): In the Hubbard model [89], each
vertex I can host two fermions with opposite spin σ ∈ {↑, ↓}, that interact together via
ni,↑ni,↓. Furthermore, each fermionic species can jump between connected vertices via the
flip-flop interactions. As explained in Ref. [89] and in App. 6, to simulate the Hubbard
model with a quantum computer, fermions are encoded into qubits via the Jordan-Wigner
[28, 21] transformation, resulting in the Hamiltonian obtained from Eqs. (4) and (5) All
lattices presented here are the minimal instances considered in Sec. 3.2 Larger ones are
obtained by increasing both dimensions equally. Furthermore, gray dots indicated periodic
boundary condtions (as explicitly indicated in the Hubbard model).
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Hubbard model

As another concrete example we consider the Hubbard model on n/2 sites (such that the
number of qubits is n). In this case there is an analytic solution for the dimension of the
isotropic space, and hence the parallelization size. The Hamiltonian is given by

H = −
∑
〈i,j〉

σ∈{↑,↓}

(
a†iσajσ + a†jσaiσ

)
+ U

n/2∑
i=1

ni↑ni↓, (4)

where these operators describe two species (σ ∈ {↑, ↓}) of fermions residing at each lattice
site (see Fig. 1 and Ref. [89]). The first (second) summation describes interactions between
fermions of the same species residing on neighbouring vertices i, j (fermions of different
species residing on the same vertex I). U is a parameter describing the theory.

We will assume that there is a single connected lattice. If there is more than one lattice
then the savings will be the resultant amount for each lattice. Beyond this, there are no
restrictions placed on the connectivity of the spins. This Hamiltonian is translated into
qubit operators via the Jordan-Wigner transformation [28](

a†iσajσ + a†jσaiσ

)
7→ (XiXj + YiYj)

j−1⊗
k=i+1

Zk, (5a)

ni↑ni↓ 7→
(I− Zi↑)(I− Zi↓)

4
, (5b)

where the numbering follows the “snake pattern” shown in Fig. 1 and described in Ref. [89].
Since we only need a compositionally independent set the latter equation generates Z

operators on each qubit in the ↑ and ↓ lattices. Then the excitation preserving operators
may have their Z operator terms removed without changing our final result. Following this,
for each XiXj we may remove the corresponding YiYj operator since these only differ by Z

operators.

Next, we may cancel out some of the XiXj terms since they are not all independent. For
any loop the XiXj terms cancel out, and so we may remove a generator to break the loop
and all terms will then be independent. Since this holds for all loops, we may repeat this
process until the connectivity is a tree of n vertices, and so n − 1 independent XiXj Pauli
operators will exist for each of the spin lattices. The total number of independent Pauli
operators is then n− 2 + n.

To find the rank of the anticommutation matrix, we first note that the spin direction
lattices are uncoupled for this computation. The simplest way to find the rank in this case
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is then to note that for each Z Pauli operator there are a unique pair of XiXj operators
which do not commute with it, and the converse is also true. Then the anticommutation
matrix will be as full rank as possible, which given that the dimension is odd means that
the rank will be dim(M)− 1, and so the isotropic space is of size 1 for each of the two spin
direction lattices. Therefore the total isotropic subspace size is 2, meaning that 2 qubits
may be saved through this technique.
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Appendix B

q=3 v=5 eccentricity=2

(a) 3-qubit graph states

q=4 v=18 eccentricity=3

(b) 4-qubit graph states

q=5 v=93 eccentricity=5

(c) 5-qubit graph states

q=6 v=760 eccentricity=7

(d) 6-qubit graph states
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Appendix C

q=3 v=5 eccentricity=3

(a) Nearest neighbor 3-qubit graph states

q=4 v=18 eccentricity=5

(b) Nearest neighbor 4-qubit graph states

q=5 v=93 eccentricity=8

(c) Nearest neighbor 5-qubit graph states

q=6 v=760 eccentricity=12

(d) Nearest neighbor 6-qubit graph states
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