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Abstract

Large-scale machine learning systems such as ChatGPT rapidly transform how we
interact with and trust digital media. However, the emergence of such a powerful technology
faces a dual-use dilemma. While it can have many positive societal impacts in providing
equitable access to information, ML systems can also be misused by untrustworthy entities
to cause intentional harm. For example, a system could unintentionally disclose private
information about its training data and jeopardize the privacy of individuals in the training
data. The system’s generated content could also be misused for unethical purposes, such
as eroding trust in digital media by misrepresenting generating content as authentic.
Providing untrustworthy users with these new capabilities could amplify potential negative
consequences emerging through this technology, such as a proliferation of deep fakes or
disinformation. I analyze these threats from two perspectives: (i) Data leakage, when the
model cannot be trusted because it has memorized private information during training, and
(ii) Misuse when users cannot be trusted to use the system for its intended purposes. This
thesis presents five projects to assess these risks to the privacy and security of ML systems
and evaluates the reliability of known countermeasures. To do so, I assess the privacy
risks of extracting Personally Identifiable Information from language models trained with
differential privacy. As a method of controlling unintended use, I study the effectiveness
and robustness of fingerprinting and watermarking methods to detect the provenance of
models and their generated content.
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Chapter 1

Introduction

Large machine learning (ML) systems, such as ChatGPT, fundamentally shape how we
interact with and trust digital media. Training ML models can require vast resources in
terms of computation and data (collection, curation, and validation), which means that there
are few model providers and many users. If used responsibly, providing many with access
to ML models can have numerous positive societal impacts in areas such as education [9],
healthcare [71, 106] or scientific research [72, 40]. However, the emergence of such a powerful
technology also faces a dual-use dilemma. A few untrustworthy users could attempt to
use the provided model for unintended purposes and amplify its potential negative impact.
For example, the ability of ML systems to process large datasets can provide users with
access to information. However, if the model lacks privacy, it could inadvertently disclose
sensitive information from the training data to unauthorized users [27]. Privacy concerns
have already led to a temporary ban on ChatGPT in Italy [154] and at corporations such
as Apple and Samsung [80, 221] over fears of leaking personal or proprietary information.
Attacks have been demonstrated to extract at least 1% of the training data [27]. The use
of ML systems in industries like healthcare [115] or finance [203] is restricted due to a lack
of privacy. Instead of attacking the dataset, users could also use the model for unintended
purposes that violate fair use or are unethical. For example, the ability to generate realistic
content can also be used to create online spam [12, 206], disinformation [12], or deceptive
personalized attacks [64]. The single largest reported online fraud in 2021 involving voice
deepfakes already caused US$35 million in damages [15]. This thesis analyzes three risks
an ML model provider faces with untrustworthy users: (i) data privacy, when access to the
model reveals sensitive information about its training data [150], (ii) model stealing, where a
usage agreement limits unauthorized redistribution [146, 148] and (iii) model misuse, where
the model’s capabilities are used unethically to manipulate or deceive others [145, 149].
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Figure 1.1: Threats when deploying ML models to (i) prevent leaking private information,
(ii) deter model stealing, and (iii) control misuse of the model’s generated content.

Problem Statement. Responsible ML model providers must integrate privacy and
security mechanisms to control these threats in compliance with the “AI Executive Or-
der” [65] and the “EU AI Act” [60]. Defenses have two objectives: (i) they must preserve
the model’s capabilities for trustworthy users and (ii) reliably control potential threats from
untrustworthy users. However, assessing a defense’s reliability can be notoriously difficult
due to the complexity of ML models. Defenses with certifiable guarantees are provably
secure within their threat model but often substantially degrade the model’s utility or
assume unrealistic threat models. Empirical defenses better preserve utility but can lack
reliability when stronger attacks that were previously unknown are discovered. This raises
the following research question that I will investigate in this thesis.

How can security mechanisms be designed and tested to control unintended
use of a provided model in the presence of untrustworthy users?

This thesis focuses on advancing the theory and practice of designing defenses and testing
their reliability when providing ML models to many users where a few are untrustworthy.
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1.1 Contributions

To answer this question, I explore several key research questions. These questions are
connected, as findings from one project often inform the next. Below are the main questions
investigated in this thesis.

(a) Can differential private training prevent leaking personal data in language models?

(b) How robust is watermarking for deep image classifiers against handcrafted attacks?

(c) Do deep classifiers have identifying codes that enable the detection of stolen models?

(d) Are learnable image watermarking methods more robust than handcrafted methods at
controlling misuse with generative machine learning models?

(e) How robust are image watermarks against adaptive, learnable attacks?

Below, I summarize the steps I took to address these research questions.

1. To answer (a), I fine-tune language models with differential privacy on datasets that
contain personally identifiable information (PII). Then, I design three attacks to
measure the leakage of PII empirically.

2. To answer (b), I systematically study on the robustness of existing watermarking
methods for image classifiers. I propose taxonomies and tests that measure a method’s
robustness and handcraft adaptive attacks.

3. Results from (c) show that an attacker can handcraft adaptive attacks to evade
detection. I formulate fingerprinting as an objective function and show that robust
fingerprints exist against known attacks. The fingerprint consists of a new subclass of
transferable adversarial examples that uniquely identify a classifier and its surrogates.

4. (b) and (c) investigate black-box watermarking to deter model stealing, but misuse
with deepfakes operates under a threat model I term as no-box. I improve the
robustness of watermarks in (d) by designing a learnable watermark that can be
optimized efficiently and show its robustness against state-of-the-art attacks.

5. From (d), I found that the ability to optimize can enhance a watermark’s effectiveness
and robustness. This motivated (e) the design of an adaptive attack that can be
optimized against a watermarking method when only the algorithm is known. I show
that such attacks break all existing watermarks, and I believe they are a good method
of assessing a watermark’s robustness in the future.
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1.2 Overview

Five projects explore three threats when providing ML systems to untrustworthy users.
Chapter 2 summarizes background on machine learning, watermarking, and differential
privacy.

• Privacy: Chapter 3 presents the threats related to leaking Personally Identifiable
Information (PII) with fine-tuned language models, proposes attacks to measure
leakage, and shows that existing defenses can limit but not prevent PII leakage.

• Model Stealing: Chapter 5 introduces the threat of model stealing and proposes
a fingerprinting method for deep neural network classifiers that withstands model
extraction attacks. I propose a new subclass of transferable adversarial examples,
called conferrable examples, and generate conferrable examples for fingerprinting. In
Chapter 4, I systematically investigate the reliability of watermarking to detect stolen
models against adaptive attackers who design specific attacks against known defenses.

• Model Misuse: Chapter 6 describes a learnable watermarking method for pre-
trained deep image generators with higher efficiency and robustness than existing
methods. Chapter 7 proposes a framework to test the robustness of image watermarks
against learnable attacks that require only the watermarking method’s algorithmic
description.

Chapter 8 summarizes the contributions from this thesis and outlines directions for future
work.
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Chapter 2

Background

This section provides an overview of training machine learning models for tasks such as
image classification, image generation, and causal language modeling. Chapter 3 uses
language models, Chapters 4 and 5 use deep image classifiers, and Chapters 6 and 7 use
deep image generators. I review key concepts in differential privacy, including membership
inference [244], and introduce watermarking and fingerprinting.

2.1 Machine Learning

In this thesis, I study machine learning (ML) models and analyze threats posed by these
models when deployed to potentially untrusted users as part of an ML system.

Definition 1 (Machine Learning System). An integrated framework that includes data
processing, model training, evaluation, deployment infrastructure, and security and privacy
mechanisms to facilitate the deployment of machine learning models to its users.

2.1.1 Image Classification

Deep image classifiers are trained using a set of labeled images, typically denoted as
(x, y) ∈ D×Y , where x represents an image and y is its corresponding label. By O : D → Y ,
we denote an oracle labeling function that returns the ground-truth label of an image. The
goal of training deep image classifiers involves fine-tuning the parameters θ of the classifier
fθ to imitate the ground-truth labeling function on unseen data accurately.
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Loss Function. The training process involves minimizing a loss function, L(fθ(x), y),
which measures the difference between the predicted and actual labels. A common choice is
the cross-entropy loss.

L(fθ(x), y) = −
K∑
k=1

yk log(fθ(xk)) (2.1)

Optimization The classifier’s parameters, θ, can be optimized using Stochastic Gradient
Descent (SGD). The update rule in SGD is:

θ ← θ − α · ∇θL(fθ(x), y) (2.2)

where α is the learning rate. Training occurs in epochs, each involving a pass through
the entire dataset. For efficiency, the data is divided into batches, and θ is updated after
computing the loss for each batch. After training, we measure the accuracy of a classifier
on an unseen test set.

2.1.2 Image Generation

We summarize two types of image generation models: Generative Adversarial Networks
used in Chapter 6 and Latent Diffusion Models used in Chapter 7.

Generative Adversarial Network

Generative Adversarial Network (GANs) [75] define a generator G : Z → D that maps
from a latent space Z to images D and a discriminator F : D → {0, 1} that maps images to
binary labels. The labels represent real and fake images. Let D ⊆ D be an image dataset
and let θF, θG be parameters for a discriminator and generator. The unsaturated logistic
loss for GANs is written as follows.

LGAN = E
x∼D

[logF (θF , x)] + E
z∼N (0,Id)

[log(1− F (θF , G(θG, z))] (2.3)

During training, the discriminator learns to classify real and fake images, and the generator
learns to fool the discriminator.

StyleGAN [112]. StyleGAN is a specific GAN architecture that introduces a mapper
f : Z → W , which maps latent codes into an intermediate latent spaceW . This intermediate
latent space consists of so-called styles that enable fine-grained control over the synthesized
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image. Since its inception, the basic StyleGAN [112] has been revised many times leading
to the development of StyleGAN2 [113], StyleGAN3 [114] and recently StyleGAN-XL [198].
These generators have achieved state-of-the-art1 performance on many image generation
datasets, including ImageNet [47].

Latent Diffusion Models

Latent Diffusion Models (LDMs) are state-of-the-art generative models for image synthe-
sis [190]. Compared to Diffusion Models [209], LDMs operate in a latent space using fixed,
pre-trained autoencoder consisting of an image encoder E and a decoder D. LDMs use a
forward and reverse diffusion process across T steps. In the forward pass, real data point
x0 is encoded into a latent point z0 = E(x0) and is progressively corrupted into noise via
Gaussian perturbations.

q(zt|zt−1) = N
(
zt;
√
1− βtzt−1, βtI

)
, t ∈ {0, 1, . . . , T − 1},

where βt is the scheduled variance. In the reverse process, a neural network fθ guides the
denoising, taking zt and time-step t as inputs to predict zt−1 as fθ(xt, t). The model is
trained to minimize the mean squared error between the predicted and actual zt−1. The
outcome is a latent ẑ0 resembling z0 that can be decoded into x̂0 = D(z0). Synthesis in
LDMs can be conditioned with data from different modalities, such as textual prompts.

2.1.3 Language Modeling

Language models (LMs) learn the conditional probability distribution Pr(wi|w1, .., wi−1)
over sequences of tokens w1, .., wi from a vocabulary V . By applying the chain rule, we can
obtain the probability that an LM θ assigns to a sequence w1, .., wn:

Pr(w1, .., wn; θ) =
n∏

i=1

Pr(wi|w1, .., wi−1; θ) (2.4)

State-of-the-art LMs are based on the Transformer neural network architecture [230]. During
training, one objective is to maximize the negative log-likelihood of the LM predicting the
next token in training sentences given a prefix.

Equation (2.4) gives a probability distribution over all tokens in the vocabulary V and
can be represented as a tree with |V| branches on each level. Text is generated iteratively by

1https://paperswithcode.com/dataset/ffhq
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traversing the tree using greedy decoding, top-k sampling [62], or a beam search algorithm
while conditioning the LM on all preceding tokens. Autoregressive LMs, such as GPT-2,
only allow sampling the conditional probability of the next token based on a prefix, whereas
masked LMs, such as BERT [48] also consider a sample’s suffix in the query.

Perplexity. The “optimal” solution to the training objective is to memorize each
record [27]. This is both intractable and undesirable, as the goal is for LMs to generalize
beyond their training dataset. In practice, learning means that only a fraction of the
training dataset is memorized [102] and that some memorization is likely necessary to
achieve high utility [67]. The model’s utility is evaluated by its perplexity on an unseen
test set of sentences. A low perplexity implies a high utility on the dataset.

PPL(w1, .., wn; θ)=exp

(
− 1

n

n∑
i=1

log Pr(wi|w1, .., wi−1; θ)

)

2.2 Privacy

2.2.1 Differential Privacy

Differential Privacy (DP) has become a popular notion of privacy. Recall its definition:

Definition 2 (Approximate Differential Privacy [55]). Let ε > 0 and δ ∈ [0, 1]. A
mechanismM : X → Y is (ε, δ)-differentially private if for any pair of adjacent datasets
(D,D′) and measurable set of outputs O ⊆ Y ,

Pr(M(D) ∈ O) ≤ eε Pr(M(D′) ∈ O) + δ .

Contrary to many other definitions of privacy, such as k-anonymity [196], DP is a worst-
case guarantee that must hold for all possible datasets. The scope of privacy protection
enters the definition via the notion of adjacency and is independent of the data distribution.
For instance, one may consider datasets adjacent when they differ only in one record or in
the data pertaining to one user. Many desirable properties of DP, such as robustness to
postprocessing and composition, derive from this independence.

However, the data independence of DP can also be a limitation e.g., when sensitive
content is shared within groups of users of unknown size. In these cases, the sensitive nature
of the content is defined by its context and cannot be represented by an adjacency relation
between pairs of datasets as pointed out by Brown et al. [18]. Nevertheless, DP enjoys
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increasing popularity, and Differentially Private SGD [1] has been successfully applied to
training large LMs by exploiting the transfer learning setup that is common among most
state-of-the-art NLP models [247, 132].

2.2.2 Membership Inference

In membership inference attacks [244, 28, 205], an adversary seeks to determine whether
a particular data record was used in the training dataset of a machine learning model.
Successfully inferring that a particular data point was used to train a model could reveal
sensitive information about an individual [259], for example, if someone participated in
a study related to a particular disease [137]. A membership inference attack is based on
the observation that machine learning models often behave differently on data they have
seen during training than unseen data [37]. Algorithm 1 shows the security game for a
membership inference attack according to Yeom et al. [244], where an attacker wants to
predict membership for a challenge point x given access to x, a model with parameters θ,
the size of its training dataset n, the data distribution D and the training algorithm T .

Algorithm 1 Membership Experiment (Yeom et al. [244])

1: Input: Adversary A, Dataset size n, Data distribution D, Training algorithm T
2: D ∼ Dn ▷ sample training data
3: θ ← T (D)
4: b ∼ {0, 1} ▷ flip a fair coin

5: x←
{

x ∼ D if b = 0
x ∼ D1 otherwise

}
▷ sample the challenge point

6: b̂← A(x, θ, n,D, T ) ▷ predict membership
7: return [[b̂ = b]] ▷ evaluate correctness

Algorithm 1 first draws n i.i.d. samples from the data distribution and trains a model
using the training algorithm T (lines 2-3). Depending on the outcome of an unbiased
coin flip b (line 4), a challenge point z is sampled from the training data D or the data
distribution (line 5). Then, the adversary is asked to predict the coin flip, given access to
the challenge point, model, training size, data distribution, and the training algorithm. An
attacker’s success is the adversary’s advantage over a random guessing baseline. We refer
to Salem et al. [195], Humphries et al. [98] for variations of the membership experiment
security games and related privacy threats.
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2.3 Provenance Verification

This section describes methods to verify the provenance of (i) models or (ii) their generated
content to detect unintended use not specified in the usage agreement, such as the model’s
unauthorized redistribution (Chapters 4 and 5) and misusing the model’s generated content
to manipulate others (Chapters 6 and 7). We consider one model provider, such as OpenAI
or Google, who develops a model through data collection, curation, model training, and
validation and provides this model to potentially untrustworthy users.

2.3.1 Watermarking

Watermarking methods embed a hidden message into content that is later extractable using
a secret watermarking key. We study watermarking methods that can extract messages
from (i) access to the model or (ii) the model’s generated content. Watermarking cannot
prevent unintended use but can monitor and deter it by enabling its detection.

Definition 3 (Source Model). One entity (the model provider) develops a source model
independently by training it locally on a dataset with ground-truth labels. A surrogate relative
to the source model is any model that uses its outputs during training; otherwise, it is a
reference model if it does not use the source model’s outputs during training.

Definition 4 (Suspect Model). A suspect model is a model for which it is unknown whether
it is a surrogate or a reference model relative to a source model.

Definition 5 (Watermarking Method). A watermarking method defines a key generation,
an embedding, and a detection algorithm.

τ ← KeyGen(λ; θ,D): A randomized function to generate a watermarking key τ
given a security parameter λ and optionally a source model θ and a dataset D.

θ̂ ← Embed(θ, τ,m): Given a watermarking key τ , a message m ⊆M and a source
model θ and outputs a marked model θ̂ embedded with a message m.

p← Verify(O(θ̂), τ,m; D̃): Given access to a suspect model θ̂, denoted by O(θ̂), this
function returns a p-value p ∈ [0, 1] to reject the null hypothesis that the extracted
message and m are similar by random chance. D̃ is an optional input to Verify that
contains auxiliary information, such as the content generated by the model during
inference. Verify uses a sub-procedure Extract(O(θ̂)) that extracts a message
from access to the model or its generated content O(θ̂).
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A verifier is an entity with access to the secret key and embedded message whose goal
is to determine the presence of the message by invoking Verify. Throughout this thesis,
we use a decision threshold κ = 0.05 to detect the presence of a watermark. A watermark
is retained if Verify returns p < κ; otherwise, it is removed. Watermarking methods can
be categorized by the verifier’s access O(θ̂) to the suspect model during verification.

• White-box watermarking methods require access to the suspect model’s parameters
to detect the presence of a watermark, which includes access to intermediate activations
and the model’s outputs on verifier-chosen inputs.

• Black-box watermarking methods have only API access to the suspect model. With
API access, the verifier can choose an input x (e.g., an image or a textual prompt) and
observe the generated final output y, but not any intermediate outputs or parameters.

• No-Box watermarking methods can access only generated outputs of the suspect
model on attacker-chosen inputs. For instance, a watermark for image generation
models must be detectable in any high-quality image generated by the model.

We refer to the watermarked content as the medium that a verifier can access to detect the
presence of the watermark. In the no-box setting, this refers to the content generated by
the watermarked model on attacker-chosen inputs. In a black-box setting, the watermarked
content is the model’s input-output functionality, and in the white-box setting, it refers
to access to the model’s parameters. White-box watermarking methods assume the most
capable verifier, who can also verify black-box and no-box watermarks. Similarly, a no-box
watermark can be verified with white-box or black-box access to the model.

Watermarking Method Properties

We describe three properties of watermarking methods depending on the access of the
KeyGen algorithm to the source model parameters θ and dataset D and of the Verify
algorithm to the content D̃ generated by the source model during inference.

1. Model-Independent [3, 255]: Model-independent watermarking methods generate
a watermarking key without access to the source model, e.g., by modifying the source
model’s training data before training it from scratch.

2. Model-Dependent [127, 34, 109]: The key generation procedure depends on the
source model, which is used, for example, to generate adversarial examples [213]
specific to the source model [127, 34] or use bi-level optimization to jointly optimize
over the source model and the watermarking key [109].
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Requirements Description

Fidelity The impact on the source model’s task accuracy is small.
Robustness Any accurate surrogate models should retain the watermark.
Integrity Models trained without access to the source model do not retain the

watermark.
Capacity The watermark allows encoding large message sizes.
Efficiency Generating keys, embedding, and verifying the watermark is efficient.
Undetectability An adversary cannot detect the watermark efficiently without access

to the secret watermarking key.

Table 2.1: Requirements for ideal watermarking.

3. Active [216]: An active method means that the provider controls the model during
inference, which allows the storage of all incoming queries D̃ to the source model.
For example, the provider can modify the model’s response to some challenge points
during inference and test the suspect model’s response to these challenge points during
verification.

Watermarking Requirements

Table 2.1 specifies the requirements for ideal watermarking. We formalize two security
properties that we focus on in this thesis: robustness and integrity. Any modification
to the watermarked content has the potential to corrupt the message, thus requiring a
statistical test to determine the similarity between the extracted and embedded messages.
Watermarks can always be removed by substantially degrading the content’s quality, such as
deriving inaccurate surrogate models or introducing strong noise to a watermarked image. A
watermark is robust if its presence can be correctly verified with high confidence (i.e., with
low p-values) unless the watermarked content’s quality has been degraded substantially.

Let θ ← T (D) and θ0 ← T (D) be a source and a reference model trained on the same
dataset. Given a watermarking key τ ← KeyGen(λ, θ) generated using security parameter
λ and source model parameters θ, let θ̂ ← Embed(θ, τ,m) be the model watermarked with
a key-message pair τ,m. We define a quality function Q that evaluates the quality of the
watermarked content. Without loss of generality, let Q return 1 for high-quality content
and 0 otherwise. Let A be a randomized removal attack with white-box or black-box access
to the watermarked content and let GW ← A(θ̂) be the output of the attack.

Definition 6 (Robustness). We call a watermark robust if, for any randomized removal
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attack A, the following condition holds for some ϵ1 > 0.

Pr [Verify(O(GW ), τ,m) > κ and Q(GW ) = 1] < ϵ1 (2.5)

Definition 7 (Integrity). We say that a watermarking method has integrity if the watermark
is not falsely detected in independently trained reference models for some ϵ2 > 0.

Pr [Verify(O(θ0), τ,m) < κ] < ϵ2 (2.6)

These two parameters are the false negative rate ϵ1 and the false positive rate ϵ2.

Hypothesis Testing

The hypothesis test used by Verify to determine the presence of a multi-bit message m
given access O(θ) to the watermarked content can be described as follows. After extracting
m′ ← Extract(O(θ)), we calculate the p-value to reject the following null hypothesis.

H0 : m and m′ match by random chance.

Let m,m′ be bit-strings of length n, and k is the number of matching bits. The expected
number of matches by random chance follows a binomial distribution with parameters n
and expected value 0.5. The p-value for observing at least k matches is given by:

p = 1− CDF(k − 1;n, 0.5) (2.7)

Where CDF represents the cumulative distribution function of the binomial distribution.
Different hypothesis tests [110] can be applied, for example, when the message space does
not consist of bits [236].

Watermark Removal Attacks

We consider an attacker with black-box API or white-box access to the watermarked model.
Then, we identify the following four attack categories.

• Input Preprocessing attacks preprocesses inputs before passing them to the (stolen)
surrogate model (e.g., to detect whether the query was made to verify a watermark).

• Model Modification attacks modify the surrogate model’s parameters, for example,
by fine-tuning [227] it on a different dataset or pruning [264] its weights.
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• Model Extraction attacks train a surrogate model from scratch using the source
model’s outputs [224] on data provided by the adversary.

• Content Postprocessing attacks modify the content generated by a model to
remove a watermark while preserving the content’s quality.

Model extraction and content postprocessing attacks require only black-box access to the
watermarked model, whereas Model modification and Input Preprocessing attacks require
white-box access to the source model. It is possible to create combined attacks belonging to
multiple categories, e.g., extracting a surrogate model through a black-box API and then
adding a postprocessor to its generated outputs.

2.3.2 Fingerprinting

Fingerprinting is a method that extracts an identifying code from an already trained source
model. It does not require modifying the source model; thus, it always satisfies the fidelity
requirement from Table 2.1.

Definition 8 (Fingerprinting). A fingerprinting method defines two algorithms to generate
a fingerprinting key and verify a fingerprint.

• τ ← KeyGen(θ): A randomized algorithm to generate a fingerprinting key τ given
the parameters of a source model θ.

• p← Verify(O(θ̂), τ): Given access to a suspect model O(θ̂) and a fingerprinting key
τ , this algorithm extracts a fingerprint using a subprocedure Extract and outputs a
p-value p ∈ [0, 1] to reject the null hypothesis that the extracted and given fingerprint
match by random chance.

We focus on black-box fingerprinting methods for image classifiers, where the finger-
printing key consists of a set of image-label pairs τ ⊆ {(x,m)} and (x,m) ∈ D × Y. The
verification algorithm first extracts the predicted labels for each image in the fingerprinting
key and computes an error rate to the expected labels in the key. We use a statistical test
from this error rate to calculate a p-value that the fingerprint is retained.
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2.3.3 Convincing a Third Party

Watermarking can be used to protect the Intellectual Property of ML models, where the
goal is to convince a third party of the presence of a watermark in a model. However,
an attacker could attempt to forge watermarking keys to falsely claim ownership over a
model [168, 63, 133]. Adi et al. [3] and Liu et al. [138] describe the need for timestamped
commitments necessary to implement watermarking or fingerprinting for purposes such
as model ownership verification. For example, the model provider needs to commit to
the watermarking keys before the model becomes available; otherwise, the attacker could
generate their own keys for the model [138]. Preventing these attacks requires using
an append-only board to store the commitment and a binding and statistically hiding
commitment scheme such as a cryptographic hash function (as the key must remain secret).
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Chapter 3

Analyzing Leakage of Personally
Identifiable Information in Language
Models

This chapter is adapted from work [150] that was published at the 2023 IEEE Security and
Security Symposium. It studies the privacy of personally identifiable information, such
as names and addresses, when an attacker has black-box API access to a language model
fine-tuned on sensitive training data. Our main contributions are novel attacks that can
extract up to 10× more PII sequences than existing attacks, showing that sentence-level
differential privacy reduces the risk of PII disclosure but still leaks about 3% of PII sequences
and a subtle connection between record-level membership inference and PII reconstruction.

3.1 Motivation

Language Models (LMs) are fundamental to many natural language processing tasks [89, 164].
State-of-the-art LMs scale to trillions of parameters [66] and are pre-trained on large text
corpora (e.g., 700GB [186]). Pre-trained LMs are adapted to downstream tasks by fine-
tuning on domain-specific datasets such as human dialogs [20] or clinical health data [229]
which may contain private information.

Memorization has been demonstrated to be a privacy concern in LMs [27]. The threat
is that an attacker learns by whom the training data was provided, known as membership
inference [205, 103, 159, 160] and about whom it contains information, known as data
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Figure 3.1: An illustration of PII extraction, reconstruction, and inference attacks.

extraction [27, 212, 258, 29, 102]. These two categories can be disjoint but associations in
the latter can be used to infer information about the former. For LMs, data extraction is a
significant threat in practice since attackers with black-box API access have been shown to
extract at least 1% of the training data [29].

Existing work focuses on finding a lower bound on any kind of memorization but does not
differentiate public and private leaked information. For example, leaking highly duplicated
common phrases is not a privacy violation according to the GDPR [61] as opposed to leaking
Personally Identifiable Information (PII). In practice, any LM trained on real, sensitive
data has to protect PII, but memorization of PII is not well understood. We believe that a
comprehensive study on the risk of PII memorization in LMs is missing.

Consider a service provider who wants to deploy a next-word prediction LM for composing
e-mails, such as Google’s Smart Compose [35]. Their goal is to train an LM with high
utility that does not leak PII and make it available as a black-box API. The threat is an
attacker who learns PII, such as names, addresses or other sensitive information through
the LM. Extracting any PII by itself, such as a personal address, can already pose a privacy
threat. This threat is elevated when an attacker can associate a piece of PII to a context,
for example, “In May 2022, [MASK] had chemotherapy at LHS”. As a part of this chapter,
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we study the feasibility of such attacks on LMs in practice. Figure 3.1 illustrates the type
of PII attacks proposed in this work.

Defenses against memorization are based on dataset curation and algorithmic defenses.
PII scrubbing is a dataset curation technique that removes PII from text, relying on Named
Entity Recognition (NER) [126] to tag PII. Modern NER is based on the Transformer
architecture [230] and has mixed recall of 97% (for names) and 80% (for care unit numbers)
on clinical health data, meaning that much PII is retained after scrubbing [229]. Machine
learning pipelines incorporate algorithmic defenses such as differentially-private training
algorithms [56, 1] to ensure record- or user-level provable privacy guarantees.

Problem. Scrubbing and Differential Privacy (DP) protect the privacy of training data
at the cost of degrading model utility. Aggressively scrubbing for better privacy drastically
harms utility. Similarly, with DP training, utility reduction is inversely proportional to the
privacy budget spent, determining the noise added. Figure 3.2 illustrates how scrubbing
and DP on their own and, when combined together, degrade utility (increase perplexity)
of LMs of different sizes compared to a completely undefended model. We observe that
scrubbing results in similar perplexities as when training with DP. Although the privacy
guarantees offered by a DP model are well-studied, the contribution of DP guarantees,
when applied at record- or user-level, towards mitigating PII disclosure is unclear.

Differential privacy provides guarantees under the assumption that records are unlikely
to be duplicated, which may not be the case for realistic datasets [97]. PII is often duplicated
across multiple records and users. Consider the example of an e-mail dataset, where a
person’s address circulates within a group of users. In this case, even though the address is
known by many, it cannot be considered public information [19]. However, a differentially
private LM may still leak it. A simplistic mitigation might be to apply DP at a group
level, but groups and their sizes are not always known a priori, and group-level DP under
worst-case assumptions has a deleterious impact on model utility.

Quantitatively measuring the protection offered by PII scrubbing or DP is an open
problem. There are no existing metrics to analyze the risk of PII leakage in an end-to-end
machine learning pipeline where defenses such as DP and PII scrubbing are at interplay.
To this end, we focus on empirically measuring PII leakage to enable practitioners to make
informed decisions and tune their privacy mitigations for a desired privacy/utility trade-off.

Overview. We address this problem with novel attacks and metrics that allow quanti-
tatively assessing leakage of PII. We identify three threats for PII leakage: (i) extraction,
(ii) reconstruction, and (iii) inference, and provide game-based definitions for them.

PII extraction measures the fraction of PII sequences that an attacker can discover from
an LM without knowing about the model’s training dataset. Some PII, such as addresses
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or names, can directly re-identify (and harm) an individual even if the attacker cannot
reconstruct the context. For example, consider a health dataset with notes from cancer
patients. Leakage of a user’s PII indicates that they had cancer, which is revealed to an
uninformed attacker.

PII reconstruction and inference assume a more informed attacker, similar to that of
membership inference, who has some knowledge about the dataset. For example, when
an attacker wants to learn more PII about a user, they can form masked queries (e.g.,
“John Doe lives in [MASK] , England”) to the LM and attempt to reconstruct the missing
PII. In PII inference, the attacker additionally knows a set of candidates (e.g., London,
Liverpool), and their goal is to infer the PII from that set. In short, PII extraction considers
an uninformed attacker without any knowledge of the data distribution or the training
dataset, PII reconstruction assumes a partially informed attacker with knowledge about
the context in which PII may occur, and PII inference assumes an informed attacker who
additionally knows potential candidates for PII.

For these attacks, we formalize how leakage can be measured exactly and show that
these formulas are intractable. For this reason, we propose concrete attack algorithms that
approximate this ideal leakage which is confirmed in our evaluation. Our attacks can be
applied to any LM. We focus on generative LMs as they are deployed in practice to generate
large amounts of text. We evaluate our attacks on 4 variants of the GPT-2 model [184]
released by OpenAI fine-tuned on 3 domains: (i) law cases, (ii) corporate e-mails, and
(iii) reviews of healthcare facilities.

Our attacks can extract PII with a precision approximately twice as high as that from
related work, even when the model has been trained with differential privacy. We identify
factors that increase the risk of PII leakage. Additionally, we discover new insights about
the connection between record-level membership inference and PII reconstruction attacks.
Using our metrics for the first time, we measure the effect of DP on protecting PII leakage.
We empirically demonstrate that record-level DP limits the threat of PII leakage to a large
extent but does not eliminate it completely. These results are a positive motivation for
future research to design defenses that improve the privacy/utility trade-off. For example,
a less aggressive heuristic scrubber that considers the contribution of other defenses, such
as DP, in the ML pipeline. To enable such research, we make our code publicly available.
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Figure 3.2: Utilities of LMs trained (i) undefended, (ii) with scrubbing, (iii) with DP
(ε = 8), (iv) with scrubbing + DP, and (v) with masked outputs in an ablation study over
the LM’s size on the ECHR dataset (see Section 3.5 for details).

3.2 Background

3.2.1 PII and NER

Personally Identifiable Information (PII). PII in natural language is data that can
re-identify an individual. PII can be a direct identifier when leakage of that data alone
is sufficient to re-identify an individual, or quasi-identifier when only an aggregation of
many quasi-identifiers can reliably re-identify an individual. Examples of direct identifiers
are names, phone numbers, or addresses, whereas quasi-identifiers are a person’s gender or
description of their physical appearance. We use the same definition as Pilán et al. [177]
and provide more details on the definition of PII in Appendix B.5.1. The combination of
quasi-identifiers ‘gender’, ‘birth date’, and ‘postal code’ re-identify between 63 and 87% of
the U.S. population [74].

Named Entity Recognition (NER). In practice, accurately tagging PII in a text
corpus is challenging without human curators [177]. When datasets are large, it is necessary
to rely on Named Entity Recognition (NER) [162]. State-of-the-art NER, such as Flair [6],
NLTK [13] or spaCy [91], are based on Transformer neural networks trained in a supervised
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Figure 3.3: A training pipeline to mitigate leakage of personally identifiable information
and membership inference.

manner to classify sequences of tokens as PII. In practice, training NER models is challenging
because defining what constitutes PII can change over time and is dependent on the
surrounding context [18]. Moreover, (i) training NER requires domain-specific, labeled
training data, (ii) NER models make errors (i.e. a subset of PII remain unrecognized),
and (iii) existing, publicly available NER models only aim for de-identification but not
anonymization [177]. This means that complex PII, whose detection requires natural
language understanding, such as a description of a person’s appearance, is not tagged by
any publicly available NER.

PII Scrubbing. Data curation techniques used in machine learning training pipelines,
such as the one illustrated in Figure 3.3, apply scrubbing as a method to de-identify
textual data [177]. The key idea is to tag known classes of PII using pre-trained NER
modules such as Flair [6] or spaCy to remove or replace all tagged PII. In this chapter,
we use the common technique of scrubbing PII by replacing them with a [MASK] token.
Weaker forms of scrubbing are possible, where PII sequences are replaced with entity tags
such as [NAME] or [LOCATION] , or where all occurrences of the same piece of PII are
replaced with the same sequence (e.g., using a salted hash function). These scrubbers retain
relations between pieces of PII and trade privacy for utility. For example, an attacker who
reconstructs a pseudonym in many sentences is more likely to re-identify the person by
linking auxiliary information about the person contained in the sentences. Our method of
scrubbing maximizes privacy at the expense of (some) utility.

Formalism. Studying leakage of PII in LMs requires labelled data, which is difficult to
obtain due to the elevated measures to protect PII. We study leakage of PII in undefended
and DP models by using existing NER taggers. For any given candidate PII C ∈ V∗
appearing in a sequence S, we call all tokens preceding the PII the prefix and tokens
following the PII the suffix. Given a token sequence S = w1, .., wn ∈ V∗, we define the
following functions:
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• Extract(S): For a sequence S ∈ V∗, return all PII sequences identified, C =
{C1, .., Ck|Ci ⊆ S}.

• Sample(S,N, θ): Given a prompt S, a number N ∈ N and an LM θ, this probabilistic
function generates N sentences from θ, for example using a randomized beam search.
This necessitates only black-box access to the conditional probability distribution in
Equation (2.4).

• Split(S,C): Given a sentence S containing C, this function returns a prefix S0 and
suffix S1 such that S = S0CS1. We assume that C occurs exactly once or if not, that
C uniquely identifies an occurrence.

• Fill-Masks(S): Given a sentence S containing [MASK] tokens, this function uses
a public masked language model to fill each mask with the top predicted token.
Appendix B.6 describes an implementation.

Algorithm 2 shows the scrubbing algorithm we use in this chapter. It iterates over sentences
in the dataset, extracts all candidate PII sequences, and replaces them with [MASK] .

Algorithm 2 PII Scrubbing

1: procedure Scrub(D)
2: D′ ← ∅
3: for S ∈ D do
4: C ← Extract(S) ▷ Tag PII with NER
5: for C ∈ C do
6: S0, S1 ← Split(S,C)
7: S ← S0 [MASK] S1
8: D′ ← D′ ∪ {S}
9: return D′

3.2.2 Problem Setting

We study the problem of PII leakage through fine-tuned LMs, where pre-trained publicly
available LMs are fine-tuned on private data. Figure 3.3 shows the training pipeline that
we consider. Given a set of uncurated training data, the first step consists of data curation,
such as PII scrubbing or record-level de-duplication. The second step consists of algorithmic
defenses, such as training with differential privacy. Finally, the trained model is deployed
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Model Access Masked Training Data Candidate PII

Extraction

Reconstruction

Inference

Table 3.1: A summary of the difference in threat models between our three PII attacks.
( black-box access, not available, available)

through a black-box API exposing only the prediction vector for the next token. Model
parameters and intermediate features are kept behind the API boundary.

Our goal is to study to what extent (i) information memorized by the LM constitutes
sensitive information such as PII, (ii) whether existing defenses are sufficient to prevent
leakage and (iii) studying the privacy-utility trade-offs between all defenses, e.g., whether
less aggressive scrubbing can potentially be utilized when the LM is trained with DP.

Why DP cannot (always) mitigate PII leakage? We emphasize that although
both PII scrubbing and DP mitigate privacy risks, they protect against a different kind
of leakage. Differential privacy protects against singling out individual records or users.
It implicitly assigns a privacy cost to using information in the training dataset which is
oblivious to different occurrences of the same information across multiple records or users.
This is an effective method to mitigate risks of disclosing by whom data was contributed
but it does not take into account about whom the content is.

However, in real-world datasets, the nature of sensitive content—i.e. content that is not
shared widely—makes protecting by whom a reasonable proxy to protect about whom. For
example, consider a piece of sensitive information circulating only within a small group of
contributors (e.g., “Jane Doe was diagnosed with cancer”). DP protects each contributor’s
authorship from disclosure, but the information itself is leaked through the LM. Disclosure
of personally identifiable information is a common cause of leaking about whom training
dataset samples are which makes it an ideal candidate to study to what degree these two
privacy mitigations are complementary to each other or redundant.

3.3 Threat Model

Adversary’s Capabilities. We consider an adversary with black-box API access to an
LM. Our adversary can query the entire probability vector of the next most probable token
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on any given prompt. Table 3.1 summarizes variations in the threat model for the three
PII-related attacks proposed in our work: Extraction, Reconstruction, and Inference.

When the adversary has access to scrubbed training data, it can observe a sentence
such as “On May 23rd, [MASK] was admitted to the hospital”, where [MASK] is the
placeholder for PII that has been redacted. Additionally, we consider an attacker with
auxiliary information about candidates for the masked PII. In that case, we assume that
the correct, masked PII is in the set of candidate PII. We refer to these attacks as PII
“reconstruction” and “inference”, respectively.

Querying LMs behind APIs typically has a monetary cost. For example, existing service
providers charge a base rate of 0.40$-60$ USD per million tokens queried, depending on the
LM’s size.1 This effectively limits the number of times an attacker can query the LM. The
threat model we consider is relevant in practice since next-word prediction APIs powered
by LMs trained on sensitive data (with privacy mitigations) are publicly deployed [35].

Adversary’s Objective. The common goal of an adversary in the three PII-related
attacks that we consider is to extract sensitive information about a user from an LM.
Existing work on memorization extracts training data indiscriminately [27], whereas we, in
addition, focus on targeted attacks against a user with the potential for more severe privacy
implications. The goal of an extraction attack is to extract any piece of PII that the model
saw during training. An attacker who can extract direct or quasi-identifying information
from the LM has a high chance to re-identify users who contribute data to the training set.
The goal of reconstruction and inference is to associate a piece of PII with a given context,
allowing an attacker to learn attributes about a user.

3.4 Conceptual Approach

This section describes our taxonomy and corresponding game-based definitions for PII
leakage.

3.4.1 PII Extraction

In PII extraction, the attacker’s goal is to extract as much PII from the training dataset of
a model as possible.

1https://openai.com/api/pricing/
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Algorithm 3 PII Extraction

1: experiment Extraction(T ,D, n,A)
2: D ∼ Dn

3: θ ← T (D)
4: C ←

⋃
S∈D Extract(S)

5: C̃ ← A(T ,D, n,Oθ(·), |C|)
1: procedure Oθ(S)
2: return {w 7→ Pr(w|S; θ)}w∈V

Algorithm 3 encodes this as a game parameterized by a training algorithm T , a data
distribution D, and a training dataset size n. The challenger samples n i.i.d. records from D
to construct a training dataset D to train a model θ. In a black-box setting, the adversary
is given access to an oracle that returns the probability vector output by θ conditioned on
arbitrary prefixes of their choosing. The adversary is assumed to know the training pipeline
and the data distribution, but they only observe information about the sampled training
dataset via Oθ(·) (and |C|). Knowing the number of unique PII sequences |C| in D, the
adversary must produce a set of PII sequences C̃ of at most size |C| (line 5). The success of
the adversary is its recall:

SuccExtraction(T ,D, n,A) = E

[
|C ∩ C̃|
|C|

]
. (3.1)

The advantage of an adversary is the difference between its success and the supremum of
the success of adversaries without access to Oθ(·).

PII that appears more frequently in the training dataset is expected to have a higher
likelihood of being generated by the model. We define the extractability score of a PII
sequence as the expected probability of observing it in samples generated by the model. PII
sequences more likely to be generated are at a higher risk of extraction. The model may
have memorized some PII sequences, but these may not be extractable unless the attacker
queries the model with a specific prompt. These sequences are at low risk of extraction
against an uninformed attacker when the prompt itself is unlikely to be generated. Formally,
we define the extractability of C ∈ V∗ as follows:

Extractability(C; θ) =
∑
S∈V∗

Pr(S; θ) Pr(C|S; θ) (3.2)

=
∑
S∈V∗

Pr(S C; θ) . (3.3)
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Equation (3.2) requires summing over all possible sequences, which is intractable even when
we limit the length of said sequences. We can approximate Equation (3.2) by computing the
sum over sentences sampled from the model. A simple baseline is captured in Algorithm 4,
which counts the number of times C occurs in generated sentences.

The problem with using samples is that the probability of observing a target PII depends
on a language’s grammar rules and may be very low. For instance, proper names may only
be generated at specific locations so that the frequency of names in the generated text may
be low, and many samples must be drawn to obtain a good lower bound.

Algorithm 4 Observed PII Extractability

1: procedure ObservedExtractability(C, θ,N)
2: Sgen ← Sample(∅, N, θ)
3: k ← 0
4: for S ∈ Sgen do
5: C ← Extract(S) ▷ Tag PII in same class as C
6: if C ∈ C then k ← k + 1
7: return k/|Sgen|

Lazy Estimation. We propose a sample-efficient estimation of PII extractability by
making two assumptions: (1) PII follows grammatical rules, and (2) PII of the same class
are interchangeable. From (1), Pr(C|S; θ) = 0 when grammatical rules of the language do
not allow PII to be generated after S. From (2), it follows that a piece of PII has a non-zero
probability of being generated in place of another piece of PII from the same class.

From these two assumptions, we derive Algorithm 5 for approximating the extractability
of PII. We (1) sample N sentences from the LM, (2) use a NER to tag PII in these sentences
that is in the same class as the target PII sequence, (3) iteratively replace tagged PII with
the target PII sequence and accumulate the probability the model assigns to it, (4) average
the accumulated probability to estimate Equation (3.2). We compare our estimations with
the observed leakage after repeatedly sampling from the model in Section 3.5.5. Efficient
estimation allows practitioners to assess leakage of PII without exhaustively sampling the
model and having to run NER models over large amounts of generated text.

3.4.2 PII Reconstruction

In PII reconstruction, the adversary goal is to associate PII with a context. The attacker is
given a sentence with multiple masked pieces of PII (e.g., “A murder has been committed
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Algorithm 5 Estimated PII Extractability

1: procedure EstimatedExtractability(C, θ,N)
2: Sgen ← Sample(∅, N, θ)
3: p← 0;m← 0
4: for S ∈ Sgen do
5: C ← Extract(S) ▷ Tag PII in same class as C
6: for C ′ ∈ C do
7: m← m+ 1
8: S0, S1 ← Split(S,C ′)
9: p← p+ Pr(C|S0; θ)

10: return p/m

by [MASK] and [MASK] in a bar.”) and is asked to reconstruct one of them. Algorithm 6
encodes this as a game where the challenger randomly samples a sentence S from the
training dataset that contains at least one piece of PII and then selects one piece of PII in
S as a target at random. The attacker is given access to the trained model and the prefix
and suffix of the scrubbed sentence w.r.t. the target PII sequence C. The success SuccRecon

of the adversary is the probability of correctly guessing C, i.e., Pr(C̃ = C).

Algorithm 6 PII Reconstruction Game

1: experiment Reconstruction(T ,D, n,A)
2: D ∼ Dn

3: θ ← T (D)
4: S ∼ {S ∈ D|Extract(S) ̸= ∅}
5: C ∼ Extract(S)
6: C̃ ← A(T ,D, n,Oθ(·),Scrub(Split(S,C)))

Existing work on PII reconstruction [101] takes the query’s prefix (i.e., “A murder
has been committed by”) and greedily decodes the next set of tokens from the LM. This
attack, dubbed as the “TAB” attack, is inspired by hitting the TAB button on a predictive
keyboard. We improve this attack by incorporating information from the sample’s suffix,
similar to how reconstruction attacks may be performed in masked LMs such as BERT [48].
Given a prefix and suffix S0, S1, we want to reconstruct the most likely PII C,

argmax
C∈V∗

Pr(S0C S1; θ) . (3.4)

Computing Equation (3.4) is intractable. It is an instance of constrained beam search [157],
in which one searches for a sentence containing a piece of PII within the specified context

27



Algorithm 7 PII Reconstruction Attack

1: procedure ARecon(N, T ,D, n,Oθ(·), S0, S1, C)
2: S0 ← Fill-Masks(S0) ▷ Fill residual masks
3: S1 ← Fill-Masks(S1)

4: if C = ∅ then ▷ Reconstruction case
5: Sgen ← Sample(S0, N, θ) ▷ Using Oθ(·)
6: C ←

⋃
S∈Sgen Extract(S)

7: C̃ ← arg min
C∈C

PPL(S0C S1; θ)

8: return C̃

A murder has been committed  
by John D. and the suspect Ana Jaksic

A murder has been committed  
by John D. and Teo Peric 

Teo Peric 

Ana Jaksic 

A murder has been  
committed by John D. and  

Teo Peric in a bar close  
to the Rhine.  

A murder has been  
committed by John D. and  

Teo Peric in a bar close  
to the Rhine.  

A murder has been  
committed by John D. and 
Ana Jaksic in a bar close 

 to the Rhine.  
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committed by John D. and 
Ana Jaksic in a bar close 

 to the Rhine.  

A murder has been committed  
by John D. and an unknown person 

1.) Obtain Target Sample 3.) Sample Target Model 4.) Extract Candidates 5.) Insert Candidates 6.) Rank by Perplexity2.) Fill Residual Masks

 PII Scrubbing Model Training

Training Data Black-Box API  

Deployment

DP-SGD

Microsoft  
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NER Analyzer

A murder has been  
committed by John D. and  

[MASK] in a bar close to  
the Rhine.  

A murder has been  
committed by [MASK] and  
[MASK] in a bar close to  

the Rhine.  

Ana Jaksic

Figure 3.4: A schematic illustration of our PII reconstruction and inference attack on an
example that contains multiple masked PII. The attack, formalized in Algorithm 7, uses a
public RoBERTa model [142] to fill residual masks. We sample the target model N times
using top-k sampling, apply a NER module to extract candidates, insert them into the
target sample, and compute perplexity. The sample with the lowest perplexity is returned.

that maximizes some constraint (i.e., the generation probability). Without any knowledge
about the target PII, e.g., its length in tokens, an attacker has to exhaustively search the
entire space of valid PII for an optimal solution. A similar problem has been encountered
in measuring stereotype bias in LMs [163]. For this reason, we propose the attack in
Algorithm 7 for approximating Equation (3.4). Figure 3.4 illustrates this attack for an
exemplary sentence containing two masked PII sequences and where the target corresponds
to the second one. First, we use a public masked language model to fill residual masks, if
any, in the query (lines 2–3). In a reconstruction attack, when no candidates C for C in
Equation (3.4) are given, we generate candidates by top-k sampling N sentences from the
target model and gathering all generated pieces of PII (lines 4–6). Next, we replace the
target mask with each candidate, rank candidates by the model’s perplexity on the entire
sequence, and return the best candidate (lines 7–8).
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3.4.3 PII Inference

PII inference is similar to reconstruction, except that the adversary knows a set of candidate
PII sequences (assumed to include the target one). Algorithm 8 encodes this as a game.
We denote by E the distribution over PII sequences obtained by sampling a sentence S
from D such that Extract(S) ̸= ∅ and choosing uniformly a PII sequence in it.

Algorithm 8 PII Inference Game

1: experiment Inference(T ,D, n,m,A)
2: D ∼ Dn

3: θ ← T (D)
4: S ∼ {S ∈ D|Extract(S) ̸= ∅}
5: C ∼ Extract(S)
6: C ∼ Em
7: C ← C ∪ {C}
8: C̃ ← A(T ,D, n,Oθ(·),Scrub(Split(S,C)), C)

We use the reconstruction attack in Algorithm 7 to approximate Equation (3.4) con-
strained to a given set of candidate PII sequences C. We observe that an attacker who only
needs to infer the correct candidate is significantly more powerful and demonstrate leakage
in DP models trained with ε = 8 in our evaluation in Section 3.5.

3.4.4 Baseline Leakage

Our goal is to study PII leakage in LMs fine-tuned on a private dataset. However, the
public, pre-trained LM that has already seen a piece of PII, such as a famous person’s
name, may reproduce that PII without having seen the private dataset, which cannot be
considered a privacy violation. Similarly, prompting the LM with a sequence that contains
explicit information about the PII may be exploited by the model to produce that PII.
For example, consider the following scrubbed excerpt from an e-mail: “Hello [MASK] , I
like your homepage johndoe.com”. The LM before and after fine-tuning both assign a
high probability to the name “John Doe”. We work around this issue by excluding all
cases in which (i) the PII can be extracted from the LM before fine-tuning or (ii) the LM
before fine-tuning correctly predicts the PII (in case of reconstruction and inference). After
removing PII that is part of the baseline leakage, we argue that leakage of any remaining
PII is significant and stems from the LM’s observation of the private data.

Appropriately dealing with baseline leakage is challenging without real-world context.
Our approach may undercount instances of sensitive information leakage. For example,
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“Barack Obama was diagnosed with Alzheimer’s” might be sensitive leakage even if he is
a public person. Likewise, “Ohio resident Jim Carrey was convicted of embezzlement.”
undercounts due to the naming collision with the famous actor.

3.5 Evaluation

This Section describes our evaluation setups, including the datasets, NER modules, models,
and training details. Then we show our results for PII extraction, reconstruction, and
inference. We ablate over three datasets and four variants of GPT-2 (small, medium, large,
and XL). Finally, we study risk factors for PII leakage, motivating the development of
heuristic scrubbers that are aware of other defenses, such as DP.

3.5.1 Datasets

Our evaluation spans datasets from three domains. Table B.1 shows statistics about each
dataset, such as their size and the number of PII sequences. We refer to Appendix B.5 for
more information about the datasets.

• ECHR [31] contains information from law cases dealt with by the European Court
of Human Rights containing full descriptions of defendants’ personal information.

• Enron [117] consists of corporate e-mails by employees placed into the public domain
after the Enron scandal.

• Yelp-Health2 is a subset of the Yelp reviews dataset that we filtered for reviews of
healthcare facilities, such as dentists or psychologists.

We chose three datasets from different domains to generalize our findings. All datasets are
from realistic domains. ECHR contains data created by experts, and Enron and Yelp-Health
consist of user-generated data containing many authentic PII. We split the private dataset
into equally large train and validation sets and a smaller test set.

2https://www.yelp.com/dataset
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3.5.2 Named Entity Recognition

We tag and scrub PII from 21 entity classes listed in Appendix B.5. Our scrubber combines
two NER taggers from Flair3 and the default tagger defined in Presidio4 which is based on
spaCy5. The Flair tagger reports an F1-score of 90.93 on OntoNotes [235].

3.5.3 Fine-Tuned Language Models

GPT-2. Similar to related work [27], we experiment with publicly available, pre-trained
checkpoints of GPT-2 [184] available at the Huggingface Model Hub6. Our experiments
are conducted on LMs trained on the next-word prediction task and pre-trained on the
WebText [184] dataset, which consists of 40GB of English text scraped from the Internet.
GPT-2 uses a byte-pair encoder [200] for tokenization.

Model Size. We ablate over various LM model sizes. Larger models have been shown
to be more sample-efficient after fine-tuning [90], achieve a higher utility when trained with
DP [247], but are expected to exhibit more memorization [29]. We experiment with GPT-2
small (124m parameters), medium (355m), large (774m), and XL (1 557m).

Training Details. We fine-tune (i) undefended, (ii) differentially private (DP), (iii)
scrubbed, and (iv) DP and scrubbed models. The training uses a batch size of 64 using
an AdamW optimizer [143] and a linear learning rate decay. We train undefended and
scrubbed models until the validation perplexity stops improving. For DP training, we
utilize the dp-transformers [240] library, which is a wrapper around Opacus [246]. We
use a maximum per-sample gradient norm of 1.0 and train DP models for 4 epochs using
(ε, δ) = (8, 1

N
) where N is the size of the training dataset.

These privacy values are similar to established DP deployments such as Apple’s Quick-
Type which uses two daily releases of ε = 8 [10] and Google’s models which use the
equivalent of ε = 8.9 and δ = 10−10 [156].

3.5.4 Metrics

We report the following metrics for measuring (i) model utility, (ii) vulnerability to mem-
bership inference (MI), and (iii) PII leakage.

3https://huggingface.co/flair/ner-english-ontonotes-large
4https://github.com/microsoft/presidio
5https://spacy.io
6https://huggingface.co/gpt2
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Figure 3.5: A study of PII that can be extracted with our attack after sampling 4m tokens.
Figure 3.5a shows that PII duplication strongly predicts leakage. Figure 3.5b shows that
DP protects PII consisting of many tokens against extraction. The “Real PII” represents all
raw PII from the same class in the training data. Figure 3.5c shows precision and recall as
a function of the number of tokens sampled for DP and non-DP models. Table 3.2 details
these results for different model sizes. Figure 3.5d shows the intersection of extracted PII
between models. The diagonal shows the number of extracted PII for each model.
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• Utility: We measure perplexity over a test set, similar to related works [29, 18, 101].

• Membership Inference (MI): We report the area under the receiver operating
characteristic (ROC AUC) to measure sentence-level membership inference.

• PII Extractability: We report precision and recall on the set of extractable PII.
Recall measures (i) how much PII is at risk of extraction and precision measures (ii)
an attacker’s confidence that a generated PII appears in the training dataset.

• PII Reconstruction and Inference: We report the top-1 accuracy of correctly
predicting a PII for a context.

We refer to Appendix B.5.4 for formal definitions of these metrics.

3.5.5 PII Extraction

We first extract PII from LMs trained with and without DP using Algorithm 4. Then, we
show that the estimated leakage (from Algorithm 5) matches the observed leakage, which
allows an attacker to point-wise verify the extractability of a PII without sampling the
model exhaustively (making our attack more efficient). We analyze different factors such as
duplication rate, token length, and sample size for their effect on PII leakage.

Table 3.2 shows the measured precision and recall with an ablation over the LM’s size.
We sample on the order of 4m tokens from each target LM by issuing 15k queries requesting
the LM to generate sequences with a length of 256 tokens from an empty prompt using
top-k sampling with k = 40. We account for baseline leakage by excluding all PII occurring
in a random sample of 13m tokens in 50k queries from a public model (see Section 3.4.4).

Model Size. We observe that GPT-2-Large recalls 23% of PII in the ECHR dataset
with a precision of 30%. We conclude that in practice, an attacker can be confident that a
generated PII is contained in the training dataset. The precision and recall decrease with
the model’s size. The smallest model (GPT-2-Small) has a significantly lower recall (only
about 9%) at a similar precision as the large models (25%). In models trained with DP
on ECHR, the precision and recall are similar for all model architectures, where we can
extract about 3% of PII with a precision of 3%.

Duplication. Figure 3.5a shows that duplication of PII has a strong impact on their
intractability. We group all PII with equal duplication counts in the training dataset and
compute the frequency with which the model generates them. On all datasets, we observe
a linear relationship between the number of occurrences of a piece of PII and the frequency
with which they are leaked, i.e., PII occurring twice as often is expected to also leak twice
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GPT2-Small GPT2-Medium GPT2-Large

No DP ε = 8 No DP ε = 8 No DP ε = 8

ECHR
Prec 24.91% 2.90% 28.05% 3.02% 29.56% 2.92%
Recall 9.44% 2.98% 12.97% 3.21% 22.96% 2.98%

Enron
Prec 33.86 % 9.37% 27.06% 12.05% 35.36% 11.57%
Recall 6.26% 2.29% 6.56% 2.07% 7.23% 2.31%

Yelp-Health
Prec 13.86% 8.31% 14.87% 6.32% 14.28% 7.67%
Recall 11.31% 5.02% 11.23% 5.22% 13.63% 6.51%

Table 3.2: Results for the observed PII extraction on ECHR (top rows), Enron (middle
rows), and Yelp-Health (bottom rows) after sampling around 4m tokens across 15k queries.

as often. Our finding contrasts with the superlinear effect in sequence-level memorization
observed by Kandpal et al. [111]. We note that Kandpal et al. [111] study models trained
from scratch and arbitrary sequences, whereas our study focuses on fine-tuned models and
PII. Further examination is necessary to fully comprehend the relationship between both
findings. In DP models, we observe that the extractability of PII is consistently about an
order of magnitude lower than in undefended models.

Token Length. We compare leaked PII by token length to evaluate whether longer
PII sequences are less prone to extraction. In Figure 3.5b, we group all leaked PII by their
token length and compute a mean count from the generated dataset. We observe that
undefended models leak PII sequences containing many tokens, whereas long sequences are
not leaked in DP models. In the range between 3-6 tokens, we observe that DP models
leak about an order of magnitude fewer pieces of PII than undefended models.

Sample Size. Figure 3.5c shows precision and recall as a function of the number of
sampled tokens on ECHR. The recall increases to 23%, whereas the precision consistently
decreases from 50% at 500k tokens to 30% at 4m tokens. This indicates that PII with a
high probability of generation by the LM is likely pieces of real PII from the dataset and,
thus, vulnerable to extraction. An attacker who samples larger sets from the model can
generate more PII, but at a lower precision which makes the attack less impactful.

Similarities between Generated PII. Figure 3.5d shows the intersection between
sets of extracted PII across all LMs in a heatmap. We observe that (i) a subset of the most
duplicated PII occurs in almost all and (ii) there is little similarity between which PII was
leaked between models. In undefended models, we observe that PII, which occurs a single
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Figure 3.6: Figure 3.6a shows the correlation between the observed and estimated leakage.
Figure 3.6b shows the precision and recall for other entity classes on the ECHR dataset.
Figure 3.6c shows the mean inference accuracy relative to the context length, which is the
length of the combined prefix and suffix for a masked query.

time, can leak, which we never observe for DP models.

Estimated Extractability. Figure 3.6a shows that lazily estimated extractability
correlates with observed leakage (i.e., the number of times a model generates the PII). This
allows computing point-wise estimates for a target PII without searching through massive
amounts of generated text. Our metric is imperfect, as some false negative outliers are
incorrectly predicted as non-extractable despite appearing in the generated dataset.

Extraction of other PII Classes. We measure the PII extractability for other classes
of PII, such as e-mails and phone numbers. The attacker can extract about 14.1% of
law case numbers and 16.3% of mentioned organization names from an undefended model
(shown in Figure 3.6b). In the DP model, we observe that an attacker can only extract
2.8% of law cases and 4.1% of organizations. For the Enron dataset, which contains long
phone numbers, we never observe a single leaked real phone number in the DP model.
However, we observe leakage of e-mail addresses (consisting of equally many tokens) that
are typically correlated with a person’s name.

3.5.6 PII Reconstruction

We compare our PII reconstruction attack from Algorithm 7 with the TAB attack [101].
Table 3.3 shows the results on ECHR, Enron, and Yelp-Health for the entity class ‘person’.
We sample 64 candidates and decode from the model using top-k sampling with k = 40.
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GPT2-Small GPT2-Medium GPT2-Large GPT2-XL

No DP ε = 8 No DP ε = 8 No DP ε = 8 No DP ε = 8

ECHR(TAB) 0.78% 0.24% 1.21% 0.32% 5.81% 0.48% 4.30% 0.39%
ECHR (Ours 2.25% 0.44% 3.36% 0.87% 18.27% 0.55% 13.11% 0.41%
Enron (TAB) 0.59% 0.04% 0.67% 0.04% 1.75% 0.04% 2.19% 0.19%
Enron (Ours 6.29% 0.49% 7.26% 0.52% 12.68% 0.55% 15.25% 0.53%
Yelp-Health (TAB) 0.33% 0.24% 0.37% 0.14% 0.65% 0.12% 1.99% 0.12%
Yelp-Health (Ours 0.42% 0.32% 1.31% 0.32% 1.69% 0.35% 6.40% 0.36%

Table 3.3: Results of PII reconstruction attacks on the entity class “person”. Bold numbers
represent the best attack per dataset and LM. We compare our results with the TAB
attack [101] on three datasets.

We observe that our reconstruction attack significantly outperforms the TAB attack on
undefended models enabling the reconstruction of up to 10× more PII (in the GPT-2-
Medium case on Enron).

Model Size. On ECHR and GPT-2-Large, TAB correctly reconstructs at least 5.81% of
PII whereas our attack achieves 18.27%. This observation demonstrates that information in
a sample’s suffix provides a strong signal to reconstruct PII. On ECHR, our attack improves
the baseline by at least 2.5×, on Enron we observe an improvement of at least 7.5× and
on Yelp-Health our attack is at least about 3× more successful (except for GPT-2-Small
where our attack improves only from 0.33% to 0.42%). The risk of reconstruction is much
smaller in DP models (≤ 1%), where our attack still improves the baseline in all cases,
but we believe the leakage is too small for a practical attack. We observe that across all
datasets, larger models are more vulnerable to PII reconstruction.

Context Size. On Enron, the advantage of our attack compared to TAB becomes
more evident. E-mails in the Enron dataset typically mention the receiver of the e-mail at
the beginning before any PII. For this reason, the TAB attack has only a small prefix to
predict PII and cannot leverage the information contained in the e-mail’s body. We observe
that when the PII is in the set of candidates, it is predicted correctly about 70% of the time.
However, our reconstruction attack often does not sample the correct candidate, which
effectively limits our attack’s success rate. We believe a method that samples candidates by
incorporating information from the sample’s suffix could improve our attack even further.
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ECHR Enron Yelp-Health

No DP ε = 8 No DP ε = 8 No DP ε = 8

|C| = 100 70.11% 8.32% 50.50% 3.78% 28.31% 4.29%
|C| = 500 51.03% 3.71% 34.14% 1.92% 15.55% 1.86%

Table 3.4: Results of our PII inference attack on fine-tuned versions of GPT-2-Large. The
values represent the attack’s accuracy at inferring the correct PII out of |C| candidates.

3.5.7 PII Inference

In PII inference, our attacker has access to (i) the anonymized training dataset and (ii) a
list of candidate PII that also appear in the training dataset. For PII inference, we evaluate
our attacks against the GPT-2-Large model on all three surveyed datasets with and without
DP. Table 3.4 summarizes the results from our attack.

Results. We observe that in the undefended setting, an attacker can infer PII with an
accuracy of 70% out of 100 candidates on ECHR, 50% on Enron, and 28% on Yelp-Health.
We observe higher leakage on ECHR and Enron, which is likely because they have more
structure than Yelp reviews. Pieces of PII are mentioned repeatedly in similarly structured
sentences, which causes higher PII leakage. The undefended setting enables practical attacks
where the attacker can be confident about the results. In the DP setting, an attacker can
achieve an accuracy of about 8% given 100 candidates and about 4% in 500 candidates on
ECHR. Although leakage in DP models is small, we believe our experiments demonstrate
that DP does not fully protect against PII leakage in a practical setting against an informed
attacker. Figure 3.6c shows that inferring PII in very large contexts slightly worsens the
accuracy. This is likely because the expected memorization per token is lower in samples
containing many tokens.

3.5.8 Membership Inference and PII Leakage

We employ a shadow model membership inference attack [205] to empirically evaluate the
relationship between sentence-level membership inference and PII leakage. In this attack,
the adversary trains shadow models on datasets sampled from the same data distribution
as the target model. The adversary then calculates the difference between the perplexity
(i.e., PPL) of the target sentence w.r.t. the target and shadow models and uses this as a
score to decide if the sentence was a training member or not.
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Figure 3.7: Connecting sentence-level membership inference with PII reconstruction in
GPT-2-Large. 3.7a shows the ROC curve against our fine-tuned model using a shadow
model attack on ECHR. 3.7b shows that the memorization score of generated sequences is
nearly zero, and 3.7c shows that the memorization score correlates with the probability of
correct PII reconstruction.

Figure 3.7a shows the ROC curve of this MI attack against an undefended model, a
model trained after scrubbing, and a model trained with differential privacy after scrubbing.
Expectedly, we observe that scrubbing PII mitigates membership inference but is nowhere
as effective as DP. The attack achieves an AUC score of 0.96, 0.82, and 0.51 against
undefended, scrubbed, and DP & scrubbed models, respectively.

Connection between MI and PII Leakage. Algorithm 9 shows the sentence-level
MI game of Yeom et al. [244] alongside an indistinguishability variant of the PII Inference
game in Algorithm 8. This corresponds to the case m = 1 when the adversary would be
given a pair of candidates for the target PII, with the only exception that in Algorithm 9,
the adversary is given just one of the candidates, depending on a Bernoulli random variable
b. The difference between one or two candidates is inessential and analogous variants of
sentence-level MI have been considered before [97]. The essential difference between the MI
and PII Inference games is that in the former, the adversary has to distinguish between two
sentences sampled from D, while in the PII Inference game, it has to distinguish between
two sentences differing only on a piece of PII. This means that to leverage an MI attack for
PII reconstruction or inference, it has to be strong enough to distinguish between member
and non-member sentences differing in a few tokens. In contrast, a PII Inference attack can
be directly turned into an MI attack against sentences containing a piece of PII.

PII Reconstruction is similarly analogous to attribute inference (where the target
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Algorithm 9 Sentence-level MI (lines enclosed in solid box) vs. PII Inference (lines enclosed
in dashed box).

1: experiment Ind-Inference(T ,D, n,A)
2: b ∼ {0, 1}
3: D ∼ Dn

4: θ ← T (D)
5: S0 ∼ D
6: S1 ∼ D
7: b̃← A(T ,D, n,Oθ(·), Sb)
8: S ∼ {S ∈ D|Extract(S) ̸= ∅}
9: C0 ∼ Extract(S)

10: C1 ∼ E
11: b̃← A(T ,D, n,Oθ(·),Scrub(Split(S,C0)), Cb)

attribute is the missing piece of PII). PII Reconstruction can be linked to MI the same way
as attribute inference was linked to MI by Yeom et al. [244]. Our empirical results show
that they are indeed correlated. For instance, Figures 3.7b and 3.7c respectively contrast
MI with PII extractability and reconstruction attacks. Figure 3.7b shows the likelihood of
the model producing a member on the x-axis versus the memorization score on the y-axis.
We observe that samples generated from empty prompts are not memorized, meaning
that they likely contain few useful signals for MI. Figure 3.7c shows the memorization
score relative to our reconstruction attack. We observe a positive correlation between a
sentence’s memorization score and the success rate of our PII reconstruction attack. This
means that sentences that are vulnerable to the MI attack are usually vulnerable to the
PII reconstruction attack and vice-versa.

3.5.9 Summary of Results

Table 3.5 summarizes the privacy-utility trade-off for GPT-2-Large model when fine-tuned
on ECHR dataset. We enumerate our key results below:

• Undefended models are highly vulnerable to all privacy attacks, including membership
inference and PII extraction, reconstruction, and inference. For PII risks, larger model
sizes and higher duplication counts increase the risk of leakage.

• Our results show that the threat of reconstructing PII has been underestimated, and
we demonstrate up to an order of magnitude higher leakage than prior work.
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Undefended DP Scrub DP + Scrub

Test Perplexity 9 14 16 16
Extract Precision 30% 3% 0% 0%
Extract Recall 23% 3% 0% 0%
Reconstruction Acc. 18% 1% 0% 0%
Inference Acc. (|C| = 100) 70% 8% 1% 1%
MI AUC 0.96 0.5 0.82 0.5

Table 3.5: Our results on ECHR for GPT-2-Large summarize the privacy-utility trade-off.
We show the undefended model’s perplexity with/without masking generated PII. The
undefended model has the lowest perplexity but the highest leakage. DP with ϵ = 8
mitigates MI and (partially) PII leakage. Scrubbing only prevents PII leakage. DP with
scrubbing mitigates all the privacy attacks but suffers from utility degradation.

• Empirically, we observe that differential privacy significantly bounds leakage from PII
reconstructions relative to undefended models.

• DP does not completely eliminate leakage from PII inference and PII extraction.
We demonstrate that an attacker can infer PII with up to 10% accuracy (given 100
candidates) in a practical setting.

• We find that DP and (aggressive) PII scrubbing limit the LM’s utility, motivating the
search for defenses with better empirical privacy/utility trade-offs.

3.6 Discussion and Limitations

Below, we discuss our methodology and identify further research motivated by our findings. We
first discuss the applicability of our methodology to sensitive information other than PII and
potential extensions to our attacks exploiting semantic similarity and associations in the training
dataset. We then describe how masked language models fare compared to autoregressive models
and identify further research motivated by our findings: best combining DP training and scrubbing,
optimizing attacks for other leakage metrics, and the need for better benchmarks.

General Applicability. We focus on defining metrics, game-based definitions, and tractable
formulas for evaluating the leakage of sensitive sequences of tokens categorized as PII. That said,
we emphasize that our methodology generally applies to any notion of sensitive input. As long as
one has an effective method to correctly identify inputs deemed sensitive, our methodology can
be adapted to measure the protection offered by existing ML pipelines in mitigating the leakage
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of any sensitive information. In practice, it is often hard to draw a clear boundary around what
constitutes sensitive information, which is an important but orthogonal problem.

Semantic Similarity. We consider verbatim matches of PII tokens as leakage; however, our
methods can be adapted to account for both syntactic and semantic similarity. For example,
“John Doe” and “J. Doe” could be inferred to be the same person. Similarly, PII reconstruction
and PII inference attacks can employ contexts with similar meanings to improve attack results.

Advanced Attacks. We consider leakage of PII sequences in isolation, irrespective of
the context where it appears and other extracted PII. Extracted PII sequences can be further
leveraged in advanced attacks that explore associations among them and reveal additional private
information about the training dataset, thereby enabling linkability attacks.

Utility-preserving Scrubbing. Our empirical evaluation demonstrates that differential
privacy is partially effective in mitigating leakage of PII. Based on this observation, existing
scrubbing techniques can be adapted to consider the partial protection offered by DP and
heuristically scrub only PII that remains unprotected (e.g., because it occurs many times). Such a
DP-informed scrubbing would improve model utility while maintaining a privacy level equivalent
to a naive combination of DP training and scrubbing.

Comparison to Masked Language Models. Prior work has explored PII reconstruction
in the clinical health setting [130, 228] with masked language models (MLMs) based on the BERT
architecture [48]. MLMs are trained to reconstruct a word in a masked query, which is equivalent to
the PII reconstruction task in Equation (3.4). During training, MLMs optimize the masked word’s
probability conditioned on the prefix and suffix, compared to GPT-2, which is auto-regressive and
can only be conditioned on the prefix. A service deploying an MLM enables trivial attacks to
query the most likely replacement for a single mask conditioned on the entire sentence, unlike
GPT-2 models. Our attacks imitate this functionality in GPT-2 models to reconstruct PII.

Attacks on GPT-2 and similar models employed for text generation are potentially a greater
threat. Autoregressive models typically expose a next-word prediction API, whereas BERT-like
models are often used for downstream tasks, such as text classification, with less revealing APIs.
We state that Equation (3.4) is intractable, which is also true for existing MLMs since an attacker
does not know the number of tokens in the PII and has to perform a general constrained search.

Need for Better Benchmarks. In conducting this research, we realized the shortage of good
benchmark datasets for measuring PII leakage. A notable exception is the Text Anonymization
Benchmark of Pilán et al. [177] with human-annotated PII. However, we found this dataset to be
too small for fine-tuning models with DP-SGD: the dataset contains a subset of 1, 268 out of the
estimated 11 500 cases from the original ECHR dataset [31]. With such few records, we could not
fine-tune models with both reasonable privacy (i.e., low ε) and utility (low perplexity).

Our work motivates the need for better benchmarks for evaluating attacks and mitigations
against PII leakage in trained models, in addition to evaluating text anonymization techniques
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at a dataset level. In performing our evaluation, we rely on off-the-shelf text anonymization
tools powered by NER models to tag PII in generated sentences and leverage them in computing
our leakage metrics. As a consequence of this approach, our metrics can capture leakage that is
dependent on the quality of the tools we use. Assuming that NER models and other techniques
used in these tools are prone to error, our results provide a lower bound on the leakage.

High-Precison/Low-Recall Attacks. Our attacks evaluate PII leakage using average-case
metrics and provide an overview of the threat of PII leakage in LMs. We did not consider
high-precision/low-recall attacks [28], and further research is needed to explore their effectiveness.

Limitations. Due to the lack of extensive, annotated datasets for studying PII leakage in
LMs, we employ the same NER model for both scrubbing and measuring PII leakage. Pilán et al.
[177] demonstrate that a fine-tuned NER model with ground-truth PII annotations achieves recall
rates between 84-93%, decreasing to 77% without annotations. Since scrubbing cannot remove all
PII and we show PII leakage empirically, we conclude that scrubbing cannot fully prevent PII
leakage. Further research is required to expand our findings to other LMs and datasets.

3.7 Related Work

We discuss prior work on attacks inferring private data and defenses to mitigate the leakage.

Extraction of Training Data. There is extensive work studying how large language
models memorize training data and attacks inferring information under various threat models.
Research has shown the feasibility of extracting different types of information, including individual
sentences [27, 101], inserted canaries [26, 172, 252] as well as n-grams [155]. Prior work studied
the leakage of PII in masked language models [129, 228], large language models [95, 188] and
Smart Reply classification models [107]. In addition to demonstrating that language models leak
training data, other efforts focus on understanding the causes of such leakage. Jagielski et al. [105]
explore the causes of memorization such as training data ordering, i.e., samples can have different
privacy risks independent of their content. Tirumala et al. [222] study the effect of memorization
across variables such as dataset size, learning rate, and model size.

Related work focuses mainly on understanding the leakage in the absence of mitigations. In
contrast, we are the first to evaluate the interplay of defenses such as PII scrubbing and differential
privacy in an end-to-end training pipeline. Existing work on training data extraction focuses on
any type of memorization [27] in public pre-trained LMs or models trained from scratch [111],
whereas we focus on leakage of PII on fine-tuned LMs given the context where it appears (prefix
and suffix), no context, or a list of PII candidates.

Mitigations. Several works have proposed solutions to mitigate the leakage of private
information, mainly based on differential privacy (DP) guarantees in the training pipeline. Yu
et al. [247] and Li et al. [132] propose an efficient method for differential-privately fine-tuning
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LMs on private data. Shi et al. [204] propose selective DP—where DP is only applied to samples
containing sensitive information to limit utility degradation. Stock et al. [212] study canary
extraction attacks against models fine-tuned from GPT-2 using DP-SGD. Closer to our work, Zhao
et al. [260] propose combining de-duplication, redaction, and DP-SGD to mitigate PII leakage. It
would be interesting to study how this fares with respect to the risks and metrics we present.

3.8 Conclusion

Our work explores privacy/utility trade-offs of using defenses such as PII scrubbing and Differen-
tially Private training when fine-tuning language models. We focus on measuring PII leakage from
the training data with respect to three different adversary goals: PII extraction, reconstruction,
and inference, and provide game-based definitions and leakage metrics for them. Our findings
show that differential privacy is useful in mitigating PII leakage by a large extent but cannot
completely eliminate it on its own. Traditional data curation approaches such as PII scrubbing
are a crucial part of the training pipeline and are still necessary to achieve an appropriate level of
protection. We advocate for the design of less aggressive PII scrubbing techniques that consider
the protection afforded by DP and achieve a better privacy/utility trade-off.
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Chapter 4

SoK: How Robust is Watermarking
for Deep Image Classification?

This chapter is based on work that appeared at the 2022 IEEE Symposium on Security and
Privacy (S&P) [148]. We systematically evaluate the robustness of eleven proposed white-box
and black-box watermarking methods to monitor and control unauthorized model redistribution.
Our results highlight that the known watermarking methods have only limited robustness against
handcrafted adaptive attacks and that it is possible to combine adaptive attacks and create
dominant attacks that remove any surveyed watermark. We propose guidelines to assess the
robustness of watermarking methods more comprehensively in the future.

4.1 Motivation

DNN watermarking [227] is a method designed to detect surrogate models given black-box API
query access. Watermarking embeds a message into a model that is later extractable using a
secret key. Developing DNN watermarking methods is an active area of research studied by large
corporations such as Microsoft [192], Google [3] and IBM [255]. Robustness is a core security
property of watermarking, which states that an attacker cannot derive accurate surrogate models
from access to the source model without a watermark. Watermarking methods that are robust
against such watermark evasion attacks are needed to deter redistribution by adversaries. Claimed
security properties of some existing watermarking methods [3, 255] had been broken by novel
attacks [202, 140, 233], but it is unclear how these attacks generalize to other watermarks.

We survey 29 methods from the literature that (i) are known evasion attacks, such as weight
pruning [264] or knowledge distillation [86], (ii) derive surrogate models but have not been evaluated
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as evasion attacks, and (iii) novel evasion attacks. An evasion attack is effective if the surrogate
model has a high test accuracy and does not retain the watermark. It is efficient if resources
required to run the attack, such as its runtime, are small compared to retraining a model from
scratch. We measure both effectiveness and efficiency. In our taxonomy, we categorize attacks into
(i) model modification, (ii) input preprocessing, and (iii) model extraction. Model modification
and input preprocessing modify the source model or its input, whereas model extraction trains a
different surrogate model by distilling knowledge from the source model.

We survey eleven1 recently proposed watermarking methods [227, 3, 33, 34, 109, 127, 192, 216,
255] from the literature that claim robustness. Most of these methods do not specify whether their
definition of robustness includes model extraction [255, 227, 192, 33, 34], one method restricts
the runtime of the attacker [3] and the remaining methods claim robustness against any evasion
attack [127, 109, 216]. In this chapter, we evaluate robustness against any evasion attack and
demonstrate whether an attack is efficient by showing its runtime. Our taxonomy categorizes
these watermarking methods into (i) model-independent, (ii) model-dependent, (iii) parameter
encoding, and (iv) active watermarking methods.

Our new Watermark-Robustness-Toolbox (WRT) implements all watermarking methods and
evasion attacks evaluated in this chapter. We validate the robustness of each method against
each evasion attack. Our evaluation includes an ablation study over multiple sets of parameters
for each watermarking method and evasion attack. The defender and attacker use a zero-sum
game to choose the best parameter set for their method, constituting the Nash equilibrium. We
call a method robust if the defender can choose a set of parameters so that no evasion attack is
effective. Our study analyzes the robustness of watermarking methods and the effectiveness and
efficiency of evasion attacks. We also study the robustness of watermarking method categories
against categories of evasion attacks to identify the most effective category of attacks that should
be used to evaluate the robustness of watermarking methods from a given category in the future.

Our empirical evaluations are performed on large datasets to emphasize the practical rele-
vance of our work. The experiments span the image classification datasets CIFAR-10 [121] and
ImageNet [47]. ImageNet contains over 1.2 million training images from 1k classes and is a widely
accepted benchmark to measure the performance of machine learning models [183].

Our study shows that none of the surveyed watermarking methods is robust against all evasion
attacks. However, we also find that none of the attacks from the literature removes all watermarks.
We propose new combined attacks that evade all investigated watermarks while preserving a high
test accuracy in surrogate models. Our study also shows that robustness should be verified against
a more extensive set of attacks and on a larger number of datasets. Open-source implementations
of watermarking methods and evasion attacks enhance the scientific study of a method’s robustness.
Towards this goal, we make our new Watermark-Robustness-Toolbox (WRT)2 and a complete

1Zhang et al. [255] propose three different methods.
2https://github.com/dnn-security/Watermark-Robustness-Toolbox
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Defense Category Verification

Adi [3] Model Independent Black-Box
Content [255], Noise [255], Unrelated [255] Model Independent Black-Box
Jia [109], Frontier Stitching [127] Model Dependent Black-box
Blackmarks [34] Model Dependent Black-box
Uchida [227], Deepsigns [192], DeepMarks [33] Parameter Encoding White-box
DAWN [216] Active Black-box

Table 4.1: All surveyed watermarking methods (see Section 4.2 for full descriptions).

dataset of evaluation results publicly available with documentation, which allows to independently
verify our conclusions.

4.2 Watermarking Methods

This section describes the eleven surveyed watermarking methods and the parameters used for
our ablation study to test their robustness. For simplicity, we refer to a watermarking method by
the first author’s name unless it is already known under a different name.

Adi [3] uses a secret watermarking key consisting of abstract, out-of-distribution images. A
label for an image is randomly sampled over all classes, excluding the image’s true label. The
embedding consists of fine-tuning the model on the watermarking key. A message is extracted
from a surrogate model by requesting labels for the watermarking key images.

Zhang et al. [255] proposes three different methods, referred to as Content, Noise and Unrelated.
These three methods differ only in their selection of the watermarking keys. The watermarking
keys are selected as follows.

• Content: The secret watermarking key is images sampled from one source class that is
perturbed by a secret, additive mask (e.g., a white square covering part of the image). The
same mask is used for all watermarking keys.

• Noise: Gaussian noise is added to images from the source class during training.

• Unrelated: The watermarking key is images sampled from a different domain that is
unrelated to the source model’s domain. For example, if a model is trained to classify
animal species, the watermarking key could contain images of automobiles.

All watermarking key images are labeled with the same target class that is sampled randomly.
The embedding and extraction are the same as Adi et al. [3] for all three methods.
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4.2.1 Model Dependent

Frontier-Stitching [127] uses a watermarking key consisting of adversarial examples [213].
Adversarial examples are images that have been modified (often imperceptibly) to trigger a
misclassification when a DNN predicts the image’s label. The authors generate these adversarial
examples using the Fast Gradient Method (FGM) [77] and the pre-trained source model. This
method has a given probability of failure, meaning that its output is not adversarial and is correctly
classified by the DNN. The watermarking key is composed of such false adversarial examples and
equally many true adversarial examples. All adversarial examples are labeled by the ground-truth
label in the watermarking key. The embedding and extraction process is the same as Adi.

Blackmarks [34] also relies on adversarial examples, similar to Frontier-Stitching. The
authors propose a pre-processing step that clusters all class labels into two groups using k-means
clustering on the pre-trained source model’s logit activations. These clusters will be used to
encode bits. The idea is to randomly select images from one cluster and use a targeted adversarial
attack so that the source model predicts any class from the other cluster. During embedding, an
additional loss term is introduced that minimizes the bit error rate between the predicted cluster
and the assigned cluster of the trigger. The authors also present a method to mitigate unintended
transferability of the watermarking key images. An adversarial example is transferable if it is
adversarial to many models, i.e., it is not only adversarial to the source model for which it has
been generated. The embedding and extraction is similar to Adi, except that a new loss term is
added during embedding as described above.

Jia [109] proposes using the soft nearest neighbor loss (SNNL) [119, 194] as an additional
loss during training to entangle feature representations of the watermark with the training data.
Two groups of size N are entangled if the average distance between their elements is lower than
the average distance within each group, which the SNNL measures. A temperature parameter T
controls the weight of short and long distances between two points for the total loss and can be
tuned during training.

LSNNL(x, y, T ) = − 1

N

N∑
i=1

log

∑N
j=1,j ̸=i,yi=yj

exp(
−||xi−xj ||2)

T )∑N
k=1,k ̸=i exp −||xi−xk||2

T

 (4.1)

The watermark generation defines two groups of elements belonging to a source and a target
class. These classes are chosen by computing two classes with the highest similarity using the
pre-trained source model’s hidden activations. All elements from a source class are modified
by adding a (secret) trigger pattern and changing their label to the target class, similar to the
Content watermark described earlier. The trigger is added at the location where the gradient
(through the source model) with respect to the SNNL is highest.
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4.2.2 Active

DAWN [216] proposes a method where a low proportion r of all predictions is randomly relabeled
and added to the watermarking key. The authors implement a method that recognizes similar
samples (as perceived by the source model) and returns the same label when the attacker tries to
query a sample twice. This similarity detection is implemented by using the activation of some
target layer of the source model. The watermarking key consists of images from the attacker’s
dataset, and labels are assigned randomly.

4.2.3 Parameter Encoding

Uchida [227] propose embedding a message into the weights of some target convolutional layer.
The idea is to add an embedding loss during training that regularizes the model and is minimized
when the message can be extracted successfully and with a large margin. Let W ∈ Rn×c×w× be
the convolutional filters of a target layer, where n is the number of filters, c are the number of
channels, and w, h are the width and height of each filter. The method computes a mean filter
W̄ = 1

n

∑
i=1..nWi to deal with the permutation invariance of the filters. This mean filter is

flattened Ŵ ∈ R(c·w·h) and a random projection matrix A ∈ Rk×(c·w·h) is sampled, where k is the
desired key length. The embedding consists of fine-tuning using the embedding loss described
above. A message can be extracted by computing m′ = AŴ T and applying the following rule.

mi =

{
1 m′i ≥ 0

0 otherwise
(4.2)

DeepMarks [33]3 proposes a similar embedding method as in Uchida, with a notable difference
in how a message is extracted. The authors compute the dot product between AŴ and the
owner’s signature, which returns a correlation score between −1.0 and 1.0. A correlation of 1.0
is interpreted as a perfectly retained watermark, whereas a correlation ≤ 0 corresponds to a
watermark accuracy of zero.

DeepSigns [192] proposes a watermarking method that uses the activations of some target
layer of the source model to encode a message. The intuition is that features extracted from
samples belonging to the same source class form clusters whose properties can be used to embed
watermarking information. In the author’s paper, clusters are modeled using a Gaussian Mixture
Model, whereby each feature cluster ci is described by a mean µi and a standard deviation σi. An
embedding loss is added during training that modifies each cluster’s mean and allows embedding
n bits of information per cluster, i.e., for m clusters, we can embed a message with m · n bits. A

3DeepMarks is labeled as a fingerprint by the authors, but since it modifies the model by embedding a
message, it is a watermark as per our definition.
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random projection matrix is sampled that is multiplied with the source model’s activation on the
target layer given the watermarking images. The result is a binary vector that is then activated
by the Sigmoid function. Elements of this binary vector can be interpreted as binary digits by
comparing their values with a threshold, similar to Uchida’s extraction.

4.3 Removal Attacks

This section provides summaries of the watermark removal attacks surveyed in this chapter. The
list contains (i) known watermark removal attacks, (ii) attacks that have not been evaluated as
removal attacks, and (iii) novel removal attacks.

4.3.1 Input Preprocessing

Input Reconstruction [136] uses an autoencoder4 [166] to compress and reconstruct images
before passing them to the surrogate model. The idea is that an autoencoder trained on non-
watermarked images will fail at reconstructing artifacts in the image it has never seen before (such
as additive masks or random noise) while preserving the remaining image’s content.

Input Noising [253] adds Gaussian noise with zero mean and some standard deviation to
the entire image.

Input Quantization [134] quantizes the pixel values for an input images. For a given number
of bits b, the input space is quantized into 2b evenly spaced intervals. Every pixel of the input
image is set to the mean of its interval.

Input Smoothing [241] convolves some kernel over the image, which makes the image appear
more blurry. Possible kernels are a mean, median, and Gaussian kernel. The image appears more
blurry after applying the convolution.

Input Flipping flips an image along its horizontal axis.

JPEG Compression [57] is similar to input reconstruction, but instead of using an autoen-
coder, the image is compressed through the JPEG compression algorithm.

Feature Squeezing [241] is similar to input quantization, except that input values are
rounded to the nearest quanta, and the quanta values are chosen to be multiples of 0.5k for some
k ∈ N.

4https://github.com/foamliu/Autoencoder
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Attack Category Source Model
Access

Data

Input Reconstruction [136], JPEG Com-
pression [57], Input Quantization [134],
Input Smoothing [241], Input Nois-
ing [253], Input Flipping, Feature
Squeezing [241]

Input Preprocess-
ing

White-box None

Adversarial Training [151], Fine-Tuning
(RTLL, RTAL) [227], Weight Quantiza-
tion [96], Label Smoothing [215], Fine
Pruning [139], Feature Permutation
(Ours), Weight Pruning [264], Weight
Shifting (Ours), Neural Cleanse [232],
Regularization [202], Neural Launder-
ing [5]

Model Modification White-box Domain

Overwriting [227], Fine-Tuning (FTLL,
FTAL) [227]

Model Modification White-box Labeled

Knockoff Nets [169] Model Extraction Black-box Transfer
Distillation [86] Model Extraction White-box Domain
Transfer Learning, Retraining [224],
Smooth Retraining (Ours), Cross-
Architecture Retraining (Ours), Adver-
sarial Training (From Scratch) [151]

Model Extraction Black-box Domain

Table 4.2: An overview of all watermark removal attacks evaluated in this Chapter 4 and
the attacker’s capabilities. ’Category’ refers to the categories from Section 2.3.1, ’Source
Model Access’ refers to the attacker’s access to the watermarked model, and ’Data’ refers to
the dataset requirements of the attack. ’None’ means no data is required, ’Domain’ means
the attack requires in-domain data, ’Labeled’ means the attack requires in-domain labeled
data (otherwise, it is always unlabeled), and ’Transfer’ requires out-of-domain data. We
instantiate these attacks against black-box and white-box watermarks in Chapter 4.
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4.3.2 Model Modification

Adversarial Training [151] is a method during training to increase a model’s robustness to
adversarial examples. A random subset of the training dataset is perturbed using the Projected
Gradient Descent (PGD) [151] adversarial attack, and these examples are then injected into the
training dataset with the ground-truth labels.

Feature Permutation. DNNs are invariant to feature permutations, meaning that neurons
in a hidden layer can be permuted without affecting the model’s functionality. We use (random)
feature permutation as an adaptive attack designed specifically against Deepsigns [192], which
encodes the message into the activations of hidden layers.

Fine-Pruning [139] is designed for backdoor removal that first prunes dormant neurons and
then fine-tunes the model to regain the drop in test accuracy. The idea is that neurons that are
never highly activated for benign inputs likely implement the functionality of the backdoor. Such
neurons are eliminated by setting their activation to zero.

Fine-Tuning [227] as a model stealing attack refers to a set of attacks that first apply a
transformation to the model, followed by fine-tuning.

• Fine-Tune All Layers (FTAL). All weights are fine-tuned.

• Fine-Tune Last Layer (FTLL). All but the last layer’s weights are frozen while the model
is fine-tuned.

• Retrain All Layers (RTAL). The last layer’s weights are re-initialized, and all weights are
fine-tuned.

• Retrain Last Layer (RTLL). The last layer’s weights are re-initialized, and only that layer’s
weights are fine-tuned.

RTAL and RTLL use predicted labels, whereas FTAL and FTLL use ground-truth labels (otherwise,
gradients are zero).

Overwriting [227] embeds a watermark using the same watermarking method but a different
watermarking key.

Label Smoothing [215] is a regularization method that computes the weighted mean of a
uniform distribution over all labels with a one-hot or (in our case) predicted label by the source
model. The idea is to regularize the model by making classes other than the ground-truth class
appear likely.

Regularization [202] is a two-phased attack that strongly regularizes the model in the first
phase, leading to a drop in test accuracy, which is compensated by fine-tuning the model in the
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second phase. The idea of the regularization phase is to move the model’s parameters far away
from their origin, while the fine-tuning phase finds a (different) local minima.

Neural Cleanse [232] is an attack designed for backdoor removal. It first reverse-engineers
the watermark trigger and then removes (’unlearns’) the trigger from the model. When a trigger
has been reverse-engineered, (i) it can be unlearned through fine-tuning on different labels or (ii)
removed by pruning most activated neurons in some layer.

Neural Laundering [5] is an extension of Neural Cleanse, specifically designed against
model-independent watermarking methods. The authors re-use the reverse-engineering trigger
step from Neural Cleanse and then iteratively prune weights triggered by the backdoor.

Weight Pruning [264] randomly prunes the weights in the source model until a given sparsity
ρ is reached in each layer.

Weight Shifting is a novel, adapted attack that we design specifically against white-box
watermarking methods. The idea is to apply a small perturbation to all filters of each convolutional
layer in the network, followed by fine-tuning the model to regain the loss in test accuracy. We
design weight shifting as an efficient and effective watermark removal attack specifically against
Uchida [227] and Deepmarks [33].

We explain the attack’s idea in the example of Uchida, but a similar intuition holds for
Deepmarks, where the watermark verification procedure is similar. A weakness of Uchida exploited
by weight shifting is that the attacker knows that if all filters were inverted, i.e. W ′i = −Wi,
then the watermark accuracy would be zero. We cannot directly invert all filters, as the model
experiences a significant drop in test accuracy. Hence, we construct a ’softer’ version of the attack
that only moves each filter in the direction of the inverse mean multiplied by some constant weight
parameter λ1 ∈ R. We additionally add small random Gaussian noise to each filter to encourage
the network to find slightly different filters in the fine-tuning phase.

Our attack can be formalized by the function S(W ;λ1, λ2), which takes as input a set of filters
W and outputs a shifted set of filters W ′. The parameter λ1, λ2 trade off the attack’s efficiency
with its effectiveness. Let A be a random normal matrix of the same shape as each filter Wi with
a variance equivalent to the variance over all filters for a convolutional layer and a mean of zero.
Shifted weights for each convolutional layer can be computed by applying the following function.

S(W ;λ)i = Wi −
λ1
n

∑
j=1..n

Wj − λ2A (4.3)

Weight Quantization [96] compresses a model by quantizing its weights. This attack is
equivalent to Input Quantization, but quantizes the model’s weights rather than the input image.
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4.3.3 Model Extraction

Retraining [224] is a method to train a surrogate model from API access to a source model.
The surrogate model is trained from scratch on the softmax output of the source model. Cross-
Architecture retraining is equivalent to retraining, but the surrogate and source model’s architecture
differs.

Cross-Architecture Retraining is equivalent to retraining, but the surrogate model uses a
different DNN architecture than the source model. The idea is to increase the dissimilarity to the
source model, which intuitively decreases the likelihood that the watermark is transferred to the
surrogate model.

Distillation [86] is a method originally designed as a model compression technique that
distills knowledge from a (larger) teacher DNN to a (smaller) student DNN. The idea is to scale
the teacher DNN’s logit activations before applying the softmax function, which increases the
prediction’s entropy. The student is trained using this scaled prediction vector.

Smooth Retraining re-trains a surrogate model on smoothed labels obtained from querying
the source model for multiple variations of the same image. For each query, a random affine
transformation (e.g., random cropping) is applied to the image, and the mean of all received labels
is computed as the final label. We design smooth retraining as an adaptive attack against the
active watermarking method DAWN. The intuition is that if DAWN responds with a false label
for one image, variations of the same image have a high probability of receiving the label predicted
by the source model.

Knockoff Nets [169] is a method for training a surrogate model from scratch using only
data from a different domain, referred to as the transfer set. We implement the random selection
approach proposed by the authors.

Transfer Learning [223] is similar to Retraining, but instead of using a randomly initialized
model, the attack assumes access to a pre-trained surrogate model from a different domain. This
surrogate is fine-tuned on data from the source model’s domain using labels predicted by the
source model. The pre-trained surrogate model has already learned semantically meaningful filters
for a different task. A common technique is to freeze the surrogate model’s weights that are
located in the lower layers (i.e., not updating them during training) to reduce the training time.
Another option is to reduce the learning rates for lower layers to encourage the reuse of these
filters.

Adversarial Training (from scratch) [151] is equivalent to adversarial training described
earlier, except that the attacker trains the surrogate model from scratch.
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4.4 Threat Model

Our study covers many different watermarking methods and evasion attacks that assume different
adversary models. For example, model modification attacks require white-box access to the source
model, whereas many model extraction attacks only require black-box access. We present a generic
adversary model for any watermarking method and watermark evasion attack. Tables 4.1 and 4.2
summarize the defender’s and attacker’s capabilities for all methods surveyed in this chapter.

4.4.1 Attacker’s Goals

The attacker’s primary goal is to derive a surrogate model from access to the source model (i) that
does not contain the watermark and (ii) is similarly accurate as the source model. A secondary
goal is to reduce resources needed for the evasion attack, such as the attack’s computation time.
Algorithm 10 formalizes the watermark verification game given a dataset D, a secret watermarking
key τ (only known to the defender) an attack A and the attacker’s access to the source model OA

and the defender’s access to the suspect model O for the verification of the watermark.

Algorithm 10 Watermark Verification Game

1: experiment WMVerify(D,λ, κ, δ,A, OA, O)
2: θ0 ← T (D) ▷ train a classifier
3: τ ← KeyGen(λ; θ0)
4: m ∼M ▷ sample a message uniformly at random
5: θ1 ← Embed(θ0, τ,m)
6: b ∼ {0, 1}
7: θ̂b ← A(OA(θb)) ▷ watermark removal attack returns a surrogate model
8: c← [[Verify(O(θ̂b), τ,m) < κ]] ▷ detect the presence of the watermark
9: return [[b = c]] · [[(Acc(θ,Dtest)−Acc(θb, Dtest)) < δ]]

The game begins by training an unmarked source model and generates a watermarking key
(lines 2-3). Then it samples a message and embeds the watermark into the model (lines 4-5). A
fair coin flip determines whether the attacker can access an unmarked or marked model (lines
6-7). The verifier accesses the model after the attack and detects the watermark with a p-value
of at most κ (lines 7-8). Finally, the game returns the gain of the verifier by (i) ensuring that
the accuracy degradation is at most δ and (ii) the verifier’s prediction about the presence of a
watermark was correct (line 10). The game returns 1 if the verifier correctly predicts the presence
of a watermark or its absence. A watermarking method lacks robustness or integrity if the expected
gain of the verifier in Algorithm 10 is low.
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4.5 Measured Quantities

We present a methodology to assess a watermarking method’s robustness. We describe a generally
applicable method to empirically determine a statistical test for a watermarking method’s decision
threshold for each watermarking method and dataset. While Algorithm 10 specifies a security
game, we must instantiate the strongest possible attacker to comprehensively study robustness. We
introduce the Nash equilibrium as a method to determine this best configuration of parameters in
an adversarial setting. The Nash equilibrium is computed over multiple parameter configurations
for each method and evasion attack. We aim to empirically determine whether watermarking
methods are robust to any evasion attacks.

4.5.1 Measurements

First, we describe the quantities measured for each experiment and our processing of these
measurements to ensure comparability between watermarking methods.

Embedding and Stealing Losses. We measure the embedding and stealing losses as
differences in test accuracy between an unmarked and a marked model and between a marked
and a stolen surrogate model. The test accuracy is the accuracy of a model’s predictions on an
unseen, labeled dataset from the same distribution. First, we define an auxiliary function that
computes the accuracy of a model M on a dataset D ⊆ X × Y.

acc(θ,D) = Pr
(x,y)∈D

[arg max
i

(Classify(x, θ)) = arg max
j

(y)] (4.4)

The embedding loss is the difference in test accuracy between an unmarked model θ0 and a marked
source model θ on a labeled test dataset DTest ⊆ X × Y.

LEmbed(θ0, θ,D) = Acc(θ0, D)−Acc(θ̂, D) (4.5)

The stealing loss is the difference in test accuracy between a marked source model θ and a stolen
surrogate model θ̂.

LSteal(θ̂, θ,D) = Acc(θ,D)−Acc(θ̂, D) (4.6)

The defender wants to minimize the embedding loss, and the attacker wants to minimize the
stealing loss.

Decision Threshold. The decision threshold κ ∈ [0, 1] determines the lowest tolerated
watermark accuracy to verify that a watermark is retained in a model. Ideally, a method defines
a decision threshold as part of their adversary model that we could use to assess its robustness.
Unfortunately, such methods are missing from the surveyed papers, meaning that we have to find
a methodology to empirically derive decision thresholds for each watermarking method.
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Determining the decision threshold for a watermarking method is difficult since it can depend
on the unmarked model. For example, consider the case of the zero-bit, model-dependent
watermarking method Frontier Stitching [127]. The presence of a watermark is detected if a
surrogate model predicts the ground-truth labels for images that are part of the watermarking key.
The watermarking key is composed of adversarial examples [213] generated for the source model.
During the embedding, the source model is adversarially trained [151] to predict ground-truth
labels for the watermarking key, whereas unmarked models still likely predict incorrect labels
if the adversarial examples are transferable [225]. The problem is that the watermark accuracy
of an unmarked model can increase without access to the source model by using adversarial
training. This affects this watermarking method’s decision threshold, which should be chosen large
enough so that unmarked models are not incorrectly verified. The challenge lies in estimating the
cumulative probability distribution that an unmarked model has a watermarking accuracy larger
than some decision threshold. Such an estimation enables determining a decision threshold so
that an incorrect verification (i.e., falsely claiming that a watermark is retained in a model) has a
given probability.

Modeling the Decision Threshold. We empirically estimate an unmarked model’s wa-
termark accuracy given two random variables: the unmarked model and the watermarking key.
Our goal is to estimate the cumulative probability that the watermark accuracy of a randomly
generated watermarking key and a randomly sampled unmarked model is higher than some
threshold. We make an i.i.d. assumption for our random variables and randomly generate 100
watermarking keys, each with a bit-length of N = 100. Then, we compute the watermark accuracy
on a set of 30 unmarked models for CIFAR-10 and 20 unmarked models for ImageNet for every
key and model pair. We model the cumulative normal probability distribution for the expected
number of matched bits and choose a decision threshold. Table 4.3 summarizes the resulting
decision thresholds for CIFAR-10 and ImageNet. We observe that some decision thresholds differ
between CIFAR-10 and ImageNet, which requires the defender to derive a threshold specific to
the model and dataset they want to protect. For the watermarking methods Content, Noise,
Frontier Stitching, and Blackmarks, we observed that the choice of parameters affects their decision
thresholds. In these cases, Table 4.3 shows the largest computed decision threshold, and we refer
to Appendix B.4 for more information.

Rescaling Watermark Accuracies. Our goal is to compare the robustness of different
watermarking methods. Relating watermark accuracies from different methods with each other
is difficult because their decision threshold may differ. In such cases, the watermark accuracy
alone does not indicate whether a method is robust without knowledge of the method’s decision
threshold. We avoid this issue by linearly rescaling the watermark accuracy by the method’s
decision threshold T so that a watermark is retained if the rescaled watermark accuracy is at least
equal to some fixed value T ′ = 0.5 and removed otherwise. This allows us to plot the watermark
accuracies for different methods into the same graph. We define a linear scaling function S(x;T )
that rescales the watermark accuracy so that (i) S(T ;T ) = T ′ and (ii) S(1;T ) = 1. The rescaling
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[255] [255] [255] [3] [109] [128] [34] [33] [192] [227] [216]

CIFAR-10 7% 49% 15% 15% 5% 53% 62% 40% 53% 58% 16%
ImageNet 1% 2% 1% 7% 16% 72% 81% 32% 58% 58% 6%

Table 4.3: This table shows the empirically determined, unscaled decision thresholds for
each watermarking scheme on two datasets with a p-value of 0.05. We obtain these decision
thresholds by generating 100 watermarking keys with a key length of N = 100 each and
compute the mean watermark accuracy on a set of unmarked models. We use 30 unmarked
models for CIFAR-10 and 20 for ImageNet. We refer to Appendix B.4 for details on the
computation of the decision thresholds.

function uses the method’s (unscaled) decision threshold T as a parameter and returns the scaled
watermark accuracy.

S(x;T ) = max(0,
1− T ′

1− T
x+

T ′ − T
1− T

) (4.7)

We clip the output to avoid negative watermark accuracies. From this point forward, unless stated
otherwise, we only refer to the rescaled watermark accuracy and decision threshold.

Runtime. The runtime helps assess the practicality of a watermarking method or evasion
attack. We measure the runtime to (i) embed the watermark and (ii) run an evasion attack. Since
runtimes depend on the hardware, we report all runtimes measured on (single) Tesla P100 GPUs.

Attack Success Criterion. A success criterion determines whether an evasion attack
successfully removed a watermark. We consider the watermark accuracy and the stealing loss
of the surrogate model. We say an evasion attack was successful when the surrogate model’s
watermark accuracy is lower than the method’s decision threshold and the surrogate model is
well-trained. In this thesis, we consider a maximum stealing loss of five percentage points for a
surrogate model to be considered well-trained. We refer to Section 4.4.1 for a security game that
formalizes our success criterion.

4.5.2 Nash Equilibrium

Our empirical analysis performs an ablation study over multiple sets of parameters for each
watermarking method and evasion attack. We now describe a method to measure the robustness
of a watermarking method against one or more evasion attacks under the consideration that the
defender and attacker can choose from a set of parameters. For every watermarking method and
evasion attack, we ablate over multiple parameters (see Section 4.2 and Appendix B.2) from which
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the defender and attacker can choose. We define a zero-sum game between the defender and
attacker, where both players want to choose optimal parameters to maximize their gains.

We construct a payoff matrix V ∈ Rm×n for n watermarking method parameters {d0, .., dn}
and m evasion attack parameters {a0, .., am}. The defender and attacker have full knowledge
of this payoff matrix. An entry in this matrix is computed by applying a payoff function on
the outcome of running an attack with the row’s parameters against a watermarking method
with the column’s parameters. We define the following payoff function. The payoff is zero for
non-successful attacks, and otherwise, the payoff is equal to the surrogate model’s test accuracy.
At the start of the game, both players choose their strategy from the payoff matrix. We observe
that the defender maximizes their gain if they minimize the payoff, whereas the attacker wants to
maximize the payoff. A Nash equilibrium is found when neither player gains from changing their
chosen parameters. Optimal parameters for both players can be derived as follows.

(d∗, a∗) = (di, aj) = arg min
i

(arg max
j

V [i, j]) (4.8)

Using the Nash equilibrium to present our results, we demonstrate that successful watermark
evasion attacks exist due to the watermarking method’s vulnerability rather than a wrong choice
of parameters.

4.6 Experiments

In this section, we present the results of our experiments. We describe our experimental setup, a
methodology for splitting data between the attacker and defender, and the model architectures.
Then, we report measured quantities of the attacks and methods, such as their runtimes or the
embedding loss.

We analyze the robustness of each watermarking method against (i) all attacks, (ii) categories
of attacks, and (iii) individual attacks. The first experiment validates whether a method is robust
if the attacker knows which method the defender has chosen (but not its parameters). The second
experiment analyzes which attack categories are most effective against each watermarking method.
The third experiment focuses on finding dominant attacks, i.e., successful evasion attacks that
remove any watermark. Our results show that none of the single attacks themselves removes all
watermarks. Still, we can find combined dominant attacks. We cannot depict all evaluation results
in this thesis. Hence, we will make our results publicly available via an interactive graph that
shows the Nash equilibrium for a set of attacks against a set of watermarking methods5.

5https://crysp.uwaterloo.ca/research/mlsec/wrt
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Figure 4.1: The runtimes for embedding (top) and attacking (bottom) a watermark on
CIFAR-10 and ImageNet measured on Tesla P100 GPUs.
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Figure 4.2: The embedding losses after watermarking compared to the unmarked model.

4.6.1 Setup

We implement all watermark methods and evasion attacks in our novel Watermark-Robustness-
Toolbox (WRT) with PyTorch [173] running as its backend. WRT will be made available as
open-source code, which allows independent verification of our empirical results. All reported
runtimes in this chapter were obtained using Tesla P100 GPUs.

4.6.2 Datasets

We embed watermarks into source models trained on the image classification datasets CIFAR-
10 [121] and ImageNet [47]. Our method of splitting the dataset between the attacker and defender
differs depending on the attack’s category. For model modification attacks, the attacker can access
a third of the dataset, and the defender can access the remaining two-thirds. Model extraction
attacks require more data to achieve a high test accuracy, and thus, we give the attacker and
defender access to the entire training dataset. We refer to Appendix B.3 for a description of the
datasets and details on our method of splitting the training dataset.

4.6.3 Model Architectures

All of our experiments assume that the attacker knows the source model’s architecture. For CIFAR-
10, we use the wide ResNet 28x10 [251], and for ImageNet, the ResNet-50 [82] architectures. We
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also perform cross-architecture retraining using a DenseNet-121 [94] for CIFAR-10 and ImageNet.

4.6.4 Runtimes and Embedding Losses

We report the runtimes for the evasion attacks and watermark embeddings. Since the choice
of parameters influences the runtimes, the results can only show general trends. We ensured
choosing parameters and training configurations that an attacker or defender would likely choose
in practice, such as using early stopping for the embedding. Section 4.2 and appendix B.2 contains
detailed descriptions of the chosen parameters and implementation details. Figures 4.1a, 4.1c
and 4.2a show results for CIFAR-10 and Figures 4.1b, 4.1d and 4.2b for ImageNet. All graphs
are shown as bar charts with the watermarking method or evasion attack on the y-axis and the
runtime or embedding loss on the x-axis. The coloring indicates categories.

Embedding Runtimes. Figures 4.1a and 4.1b show the embedding runtimes for CIFAR-10
and ImageNet. We refer to the training time as the time to train an unmarked model from
scratch. This training time is a reference point to assess the practicality of evasion attacks and
watermarking methods. We observe a training time of 1h and 100h for CIFAR-10 and ImageNet.

On CIFAR-10, model-independent methods have the highest embedding time of about 20% of
the total training time. Parameter encoding methods are more efficient and require only about
9% of the training time. We do not consider the runtime for the active methods but point out
that deploying them incurs computational costs for each inference. On ImageNet, we observe that
methods such as Jia and Deepmarks require considerably more time than on CIFAR-10, whereas
model-independent methods are relatively fast. Jia has the highest embedding time, exceeding
1.6% of the total training time. All embedding times are low compared to the total training times
on both datasets, and we conclude that all surveyed methods are efficient.

Attack Runtimes. Figures 4.1c and 4.1d show the attack runtimes for CIFAR-10 and
ImageNet. Input Preprocessing attacks are not shown because they run only during inference. We
observe that the runtimes of all attacks are proportionally similar on CIFAR-10 and ImageNet.
On both datasets, model extraction attacks require significantly longer than model modification
attacks. Transfer learning is an exception for a model extraction attack that is relatively fast as it
requires about 40% of the training time on CIFAR-10 and roughly 25% of the training time on
ImageNet. Knockoff is the slowest attack, which takes considerably longer than retraining due to
the larger size of the training dataset.

Embedding Losses. Figures 4.2a and 4.2b show the embedding losses, which is the drop
in test accuracy due to embedding the watermark into the source model (see Section 4.5.1).
Embedding losses for CIFAR-10 and ImageNet are about one percentage point, with the exception
of Deepsigns on ImageNet, which has an embedding loss of more than three percentage points.
The parameter encoding method Deepmarks incurs the lowest embedding loss on both datasets.
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Figure 4.3: Figures 4.3a and 4.3b show the minimum amount of training data required for
the transfer learning and retraining attacks to achieve a given test accuracy. Figures (c, f)
show the fastest attack that removes each watermark. With DAWN [216], the attacker has
to obtain white-box access by extracting the source model before using other attacks. For
a fair comparison with other methods, we do not consider this extraction runtime.
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Figure 4.4: The Pareto frontier for all watermarking methods with respect to the stealing
loss (defined in Section 4.5.1) and watermark accuracy of the best attack. A watermark
accuracy lower than T ′ = 0.5 means that the watermark is not robust.

4.6.5 Robustness of Watermarking Methods

This section describes our analysis of the robustness of each watermarking method against all
attacks. The defender can choose from a set of parameters for a single watermarking method,
whereas an attacker can choose from all parameters for all evasion attacks. The goal of this
analysis is to evaluate whether any watermarking method can be considered robust against an
adaptive adversary. We assume that the attacker knows the watermarking method chosen by the
defender but not its parameters.

Robustness. The results are illustrated in Figures 4.4a and 4.4b in the form of a scatter
plot. The x-axis shows the stealing loss, which is the drop in test accuracy in the surrogate
model compared to the source model, and the y-axis shows the rescaled watermark accuracy (see
Section 4.5.1). A watermark accuracy lower than T ′ = 0.5 means that the watermark has been
removed. We highlight T ′ by a dashed line in the graph. We draw the Pareto frontier, which is
the set of watermarking methods with a watermark accuracy or stealing loss so that no other
watermarking method improves upon both metrics. Jia, Content, and Deepmarks are members of
the Pareto frontier for CIFAR-10 and only Jia for ImageNet.

We observe that none of the watermarking methods is robust. For CIFAR-10, the marked
source models can be stolen with a stealing loss of less than one percentage point, i.e., without a
considerable loss of utility. For ImageNet, we observe that evasion attacks incur a higher stealing
loss overall. Jia has the highest stealing loss of three percentage points, whereas the remaining
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watermarking methods have a stealing loss of at most two percentage points. We designed a set
of adaptive attacks against a subset of watermarking methods and feature their results separately
as follows.

• Smooth Retraining: The smooth retraining attack is adapted to the active watermarking
method DAWN. The idea is to query DAWN multiple times with the same image, using a
different affine transformation (e.g., cropping, horizontal flipping) for each query. The label
for each image is the mean across all collected labels for each image. Smooth retraining is
the only attack that removes DAWN on CIFAR-10.

• Feature Permutation: Hidden layer neurons are permutation invariant, meaning that we
can apply a random permutation on the features without losing any utility of the model.
Deepsigns is the only method that is not robust against feature permutation attacks.

• Weight Shifting: Weight shifting perturbs the filter weights of each convolutional layer by
the negative mean over all its filters, adds a small amount of noise and fine-tunes the model.
We observe that weight shifting is the only model modification attack that removes Uchida
on CIFAR-10 and ImageNet.

Fastest Attacks. Figures 4.3c and 4.3d show the fastest attacks that successfully remove a
watermark. On CIFAR-10, we observe that some methods, such as Deepsigns, Blackmarks, and
Adi, can be removed with a negligible runtime, whereas Jia and Unrelated require the highest
runtime. On ImageNet, we observe that evading the watermarks from Unrelated and Jia requires
the highest runtime, whereas parameter encoding methods can be removed in the shortest amount
of time. For both datasets, we observe that the fastest attacks depend on the watermarking
method, i.e., there is no single fastest attack or attack category against all watermarking methods.

Dataset Availability. We stated that the dataset available for a model extraction attack
is larger than for model modification attacks. We ablate over the amount of data available to
the attacker to achieve a given test accuracy. This is relevant to discuss the practicality of model
extraction attacks because the attacker wants to minimize both (i) the training time and (ii) the
amount of data required to perform an attack.

Figures 4.3a and 4.3b show the amount of unlabeled data in relation to the surrogate model’s
test accuracy for CIFAR-10 and ImageNet. The attacker trains their surrogate model on data
labeled by source models with a test accuracy of 94.20% on CIFAR-10 and 75.48% on ImageNet.
On CIFAR-10, we observe that transfer learning achieves a significantly higher test accuracy than
retraining from scratch using the same amount of data. Retraining requires at least about 20k
samples to perform a successful attack, whereas transfer learning needs only about 5k samples.
On ImageNet, the difference between retraining and transfer learning goes to zero when more
than 250k samples are available to the attacker. Performing a successful evasion attack requires
at least 500k samples. While transfer learning still requires the same amount of data as retraining
from scratch, we point out that transfer learning requires significantly less computation time.
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Figure 4.5: An illustration of the robustness of each surveyed watermarking method against
categories of attacks for CIFAR-10 (top) and ImageNet (bottom). The axes show the
(scaled) watermark accuracy of a method against the best attack from each category. A
watermark is robust against a category if the watermark accuracy is at least T ′ = 0.5.
The method and attack parameters are chosen using the Nash Equilibrium, and we ignore
attacks when their stealing loss exceeds five percentage points. The attack categories are
Input Preprocessing (IP), Model Modification (MM), and Model Extraction (ME).
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4.6.6 Robustness against Attack Categories

In the previous section, we showed that none of the watermarking methods is robust against
all attacks. We further analyze the robustness of each watermarking method against categories
of evasion attacks. The defender can choose from the set of parameters for each watermarking
method, and the attacker can choose from the set of parameters for attacks of only one category.
This analysis provides insights into the vulnerability of watermarking methods to certain attack
categories. We refer the reader to Table 4.2 for a list of all attacks and their categories.

Figure 4.5 shows a radar plot of our result for CIFAR-10 and ImageNet. The radar plot
axis shows the watermark accuracy of each method against the most successful attack from each
attack category. A larger covered area in the plot illustrates higher robustness to multiple attack
categories. A method is robust against the attack category if the watermark accuracy is at least
T ′ = 0.5 (see Section 4.5.1). We analyze the results for each category.

Input Preprocessing. We observe that input preprocessing attacks often do not remove
a watermark on either CIFAR-10 or ImageNet, but these attacks often impact the watermark
accuracy. Input smoothing and input reconstruction are effective against Adi and Noise on
CIFAR-10 but not on ImageNet. We always apply feature permutation because it does not impact
the model’s utility and requires negligible computational costs. For this reason, Deepsigns, which
is vulnerable to feature permutation, is removed by input preprocessing attacks for both CIFAR-10
and ImageNet. Similarly, DAWN is not robust because it requires extracting a surrogate model
prior to running an input preprocessing or model modification attack. We extract a surrogate
model for DAWN using smooth retraining, which already removes the watermark.

Model Modification. Model modification attacks successfully remove all watermarks for
CIFAR-10 and ImageNet, except for Jia on ImageNet. Many surveyed watermarking methods are
vulnerable to multiple model modification attacks, whereas other methods, such as Uchida, are
only vulnerable to our adaptive weight-shifting attack. Similar to input preprocessing attacks, we
observe that model modification attacks that do not remove the watermark can still significantly
lower the watermark accuracy.

Model Extraction. We observe that almost none of the methods is robust to model extraction
attacks on CIFAR-10 and ImageNet. The most effective attack is transfer learning for both CIFAR-
10 and ImageNet because it requires a fraction of the training time for an unmarked model, and it
removes almost all of the surveyed watermarks. Notable exceptions are Noise and Blackmarks,
which are robust against transfer learning on ImageNet, but Noise is not robust against retraining
on ImageNet and Blackmarks is not robust against adversarial training. Retraining, distillation,
and adversarial training from scratch yield similar results as transfer learning, but they require (i)
at least as much data and (ii) have a significantly longer runtime. Therefore we do not evaluate
distillation and adversarial model extraction on ImageNet if a model is already vulnerable to
transfer learning or retraining.
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Attack
Watermark

[255] [255] [255] [3] [109] [127] [34] [33] [192] [227] [216]

Input Preprocessing
Input Smoothing [241]
(Gaussian Kernel)

✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✗/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓

Model Modification
Regularization [202] ✗/✓ ✓/✓ ✓/✓ ✗/✗ ✗/✓ ✗/✓ ✗/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✗
Neural Cleanse [232]

(Unlearning)
✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓

Feature Permutation (Ours) ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✗/✗ ✓/✓ ✓/✓
Weight Shifting (Ours) ✗/✓ ✓/✓ ✗/✓ ✗/✓ ✓/✓ ✓/✗ ✗/✓ ✗/✗ ✗/✗ ✗/✗ ✓/✓

Model Extraction
Knockoff Nets [169] ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✗/✓ ✗/✓ ✗/✓ -
Retraining [224] ✗/✗ ✗/✗ ✗/✗ ✗/✗ ✓/✓ ✗/✓ ✗/✗ ✗/✗ ✗/✗ ✗/✗ ✓/✗

Smooth Retraining (Ours) - - - - - - - - - - ✗/✗
Cross-Architecture

Retraining
✗/✗ ✗/✗ ✗/✗ ✗/✗ ✗/✓ ✗/✓ ✗/✓ ✗/✗ ✗/✗ ✗/✗ ✓/✗

Transfer Learning [223] ✗/✗ ✗/✓ ✗/✗ ✗/✗ ✗/✗ ✗/✗ ✗/✓ ✗/✗ ✗/✗ ✗/✗ ✓/✗

Table 4.4: A summary of the robustness for each watermarking method against selected
attacks. A checkmark (✓) indicates that the method is robust, and a cross (✗) indicates a
lack of robustness. A dash (-) indicates that the attack has not been performed against the
watermarking method (e.g., it is an adaptive attack designed against a subset of methods).
With two consecutive marks, we indicate the robustness of CIFAR-10 and ImageNet.

In summary, we conclude that model extraction attacks are the most effective evasion attacks
against most watermarks. Jia and Blackmarks are robust against retraining, but Jia is not robust
against transfer learning, and Blackmarks is not robust against adversarial training. Even when a
method is robust to retraining with the same architecture, the attacker can obtain a well-trained
surrogate model by switching to a different architecture. We believe that transfer learning is
more effective at removing some watermarks because the model re-uses low-level features learned
from another task. Hence, watermarks encoded into low-level features are less likely to be robust
against transfer learning. None of the parameter encoding methods is robust to transfer learning,
also because extraction of such a watermark is not defined for a different model architecture. For
example, Uchida defines a secret watermarking key that expects a layer’s weights to be in the same
shape as the source model’s layer used for the embedding. Input preprocessing attacks are often
not successful at removing a watermark, but they can reduce the watermark’s accuracy. Model
modification attacks, especially our novel adaptive attacks, successfully remove the watermark of
a subset of watermarking methods and require (i) significantly fewer data and (ii) computational
resources than model extraction attacks.
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4.6.7 Attack’s Effectiveness.

Table 4.4 shows whether a method is robust against an attack on CIFAR-10 and ImageNet for a
subset of attacks. We observe that (i) attacks designed against one category of watermarks are not
necessarily effective against watermarks from this category, and (ii) no method is robust against
all model extraction attacks. Neural Cleanse [5] and Regularization [202] were designed against
model-independent watermarks, but they often only decrease the watermark accuracy instead
of removing the watermark. Jia is robust against retraining but not against transfer learning,
suggesting that it is encoded into the low-level features of the source model. Transfer learning
does not re-learn these low-level features from scratch, which could explain why transfer learning
is more effective than retraining at removing the Jia watermark.

4.6.8 Dominant Attacks

This section analyzes whether a dominant attack exists that removes all watermarks. The
existence of a dominant attack would mean that an attacker does not require knowledge about
the method used by the defender to remove their watermark. The attacker can choose from the
set of parameters for a single attack, whereas the defender can choose from the set of parameters
for all watermarking methods. We observe that transfer learning is dominant for CIFAR-10, but
there exists no dominant attack for ImageNet.

Creating Dominant Attacks. We now evaluate whether it is possible to find combined
attacks that are dominant for source models trained on ImageNet. A combined attack performs
many attacks in sequence. Our empirical results show that transfer learning combined with label
smoothing is a dominant attack that removes all eleven watermarks on CIFAR-10 and ImageNet.
The threat of combined attacks to the robustness of watermarking methods has not yet been
explored, and we show that combined attacks can pose a significant threat.

4.7 Discussion

In this section, we discuss the practicality of the evaluated evasion attacks and argue that they
are real-world threats to DNN watermarking. We identify three requirements for the attacker: (1)
computational resources, (2) dataset availability, and (3) pre-trained models for transfer learning.
Then we present guidelines for designing future watermarking methods and discuss the implications
of our work for future research.

Computational Resources. Related work often restricts the availability of computational
resources to the attacker in their threat model [227, 3, 33] and claims robustness against attackers
with limited computational resources. While it may be the adversary’s objective to minimize
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computational resources, there is no theoretical guarantee that the adversary’s learning problem
will be a hard instance and require infeasible resources in some security parameters. Quite to the
contrary, for the classification problems considered in this chapter, the adversary’s costs are very
feasible. Using shared GPUs in the cloud, the monetary costs are proportional to the attack’s
runtime. All runtimes were obtained on (single) Tesla P100 GPUs, which incur a cost of 0.43$
per on-demand hour of GPU-time6. Training a ResNet-50 model from scratch on ImageNet,
consisting of 1.28 million images, takes about 100 hours and costs 43$. Transfer learning a model
takes only 23 hours and brings down the costs to about 10$. There are even more optimized
implementations [39] than ours, which achieve lower costs through various optimizations, e.g., by
training on multiple GPUs, utilizing TPUs, or choosing more efficient model architectures. We
conclude that, in absolute terms, the price for computational resources is almost insignificant and
is likely not a deterrent for the attacker.

Dataset Availability. Related work often does not restrict the dataset available to the
attacker, except for limiting the amount of ground-truth labels. We find that the attacker’s
dataset significantly influences the effectiveness of the evasion attacks. Increasing the amount of
(unlabeled) domain data is sufficient to perform successful evasion attacks, and predicted labels
can substitute ground-truth labels.

Using a transfer dataset (labeled data from a different domain) to train a model from scratch,
such as in the Knockoff attack [169], does not lead to successful evasion attacks. For CIFAR-10,
almost all watermarks are retained, and for ImageNet, we could not train a surrogate model with
high test accuracy. We observe that access to domain data is crucial to perform these attacks.

Availability of Pre-Trained Models. Related work has not used transfer learning to
remove watermarks, but transfer learning is a known method for training models in the visual
domain [223]. We show that transfer learning is highly effective at removing watermarks; it is
computationally efficient, and it can leverage access to less data than other model extraction
attacks. Related work has shown that access to larger transfer sets can reduce the amount of
domain data required for transfer learning [118]. Specifically, the authors use models that have
been pre-trained on up to 300 million images and show that they can transfer learn this model for
ImageNet with a test accuracy of 87.5% using as few as ten examples per class. We argue that it
should not be problematic for attackers to obtain access to a pre-trained model from a different
domain in practice. There exist many platforms to share pre-trained models with various model
architectures, such as ONNX7 or Model Zoo8, without charging the user.

6https://cloud.google.com/compute/gpus-pricing
7https://onnx.ai/
8https://modelzoo.co/
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4.7.1 Guidelines

In this section, we propose guidelines for evaluating the robustness of watermarking methods.
These guidelines incorporate many of our findings and provide a minimal checklist to claim
robustness for a watermarking method.

Attacker’s Dataset. Our experiments have shown that robustness on CIFAR-10 does not
imply robustness on ImageNet and vice versa. In general, we observed that it is more difficult to
remove watermarks from models trained on ImageNet than from models trained on CIFAR-10.
We believe that is because (i) the model and task are more complex and (ii) attacks have a greater
impact on the model’s utility (measured by the test accuracy). Our recommendation for image
classification models is to experiment on (i) a small dataset, (ii) a dataset with large input image
dimensions, and (iii) a dataset with a large number of classes. We use ImageNet to cover the last
two requirements within one dataset. Furthermore, we recommend listing the amount of data and
ground-truth labels used during the attack for evasion attacks.

Decision Threshold. We noticed that a method to derive a watermarking method’s decision
threshold is missing from many papers in related work. Disproving the robustness claim of a
method requires a method of deriving the decision threshold. This method affects the method’s
usability. For example, for the watermarking method Adi, we could theoretically derive the
decision threshold because the input images and target labels are drawn randomly. However,
Blackmarks requires an empirical method to derive a decision threshold because it relies on
adversarial examples for which it is difficult to theoretically quantify the transferability of these
examples to unmarked models. Our work proposes a general method to empirically determine this
decision threshold, which involves training many unmarked models on CIFAR-10 and ImageNet
(hence the usability is limited).

Parameter Ablation. We recommend stating all parameters for an evasion attack and
watermarking method that can be included in an ablation study. In our work, we manually
selected parameters for our ablation study. For multiple parameters, the robustness should be
evaluated at the Nash equilibrium. This enhances (i) the reproducibility of robustness claims and
(ii) allows for a fair evaluation of a method’s robustness and an attack’s effectiveness.

Class Accuracies. For some watermarking methods, such as Content or Jia, we observed
that the source model might unlearn a single class during the embedding process. On ImageNet,
the test accuracy drops only by about 0.1% when the model unlearns a single class, but we argue
that in such cases, the impact of the watermark is greater than the drop in overall test accuracy
suggests. We recommend evaluating the drop in test accuracy for single classes.

Runtime. We suggest that a watermarking method or evasion attack should show their
runtimes for the embedding or evasion procedure in relation to retraining a model from scratch.
While the runtime of all surveyed watermarking methods is small, we believe the runtime is still a
distinguishing factor for the proposed method’s practicality.
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4.7.2 Implications for Future Research

We show with our systematic, empirical study that a well-defined attacker can break all surveyed
watermarking methods. We argue that DNN watermarking robustness needs to be defined and
evaluated more rigorously. Many previous works evaluate against a relatively weak attacker that
does not adapt their attacks. In other cases, the attacker is limited by their computational resources
or the non-availability of other pre-trained models. We present a well-defined attacker model,
and our Watermark-Robustness-Toolbox9 is publicly available. Authors of future watermarking
methods can evaluate robustness against the attacker presented in this chapter.

4.8 Conclusion

We evaluate eleven watermarking methods from related work and empirically determine their
decision thresholds for the CIFAR-10 and ImageNet datasets. Then, we measured the performance
of a large set of evasion attacks against all watermarking methods and ablate over multiple
parameters for each method and evasion attack. We use the Nash equilibrium to evaluate a
method’s robustness against (i) all attacks, (ii) categories of attacks, and (iii) single attacks.
Our results show that none of the methods is robust against all attacks. We analyze these
results by analyzing each attack category’s effectiveness and find that the most effective evasion
attack categories are model extraction attacks, followed by model modification attacks. We show
that transfer learning removes all watermarks on CIFAR-10, but there exists no such dominant
attack for ImageNet. We create a combined attack composed of (i) transfer learning and (ii)
label smoothing that removes all eleven watermarks. Finally, we discuss the practicality of the
evasion attacks, e.g., their monetary costs and the dataset availability of the attacker, and propose
guidelines for evaluating the robustness of DNN watermarking. We hope that our work will
improve future evaluations of black-box or white-box DNN watermarking methods.

9https://github.com/dnn-security/Watermark-Robustness-Toolbox
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Chapter 5

Deep Neural Network Fingerprinting
By Conferrable Adversarial Examples

This chapter is based on work [146] that was published at the 2021 International Conference on
Learning Representations (ICLR). I investigate whether it is possible to extract an identifying
code from a source model to detect its unauthorized redistribution against model extraction
attacks. The threat is an attacker who tries to corrupt the identifying code and use a model
against its fair and intended use. I propose a fingerprint composed of samples from a new subclass
of transferable adversarial examples, which are called conferrable examples. Conferrable examples
can be used as a source model’s fingerprinting key to detect surrogate models while withstanding
model extraction attacks.

5.1 Motivation

Deep neural network (DNN) classifiers have become indispensable tools for addressing many
practically relevant problems, such as autonomous driving [220], natural language processing [245],
and health care predictions [59]. While a DNN provides substantial utility, training a DNN is
costly because of data preparation (collection, organization, and cleaning) and computational
resources required to validate a model [179]. For this reason, DNNs are often provided by a single
entity and consumed by many, such as in the context of Machine Learning as a Service (MLaaS).
A threat to the provider is model stealing, in which an adversary derives a surrogate model from
only API access to the source model.

Consider an MLaaS provider that wants to protect its service and hence restrict its redis-
tribution, e.g., through a contractual usage agreement because trained models constitute their
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Figure 5.1: Conferrable adversarial examples used as a fingerprint to identify surrogates.

intellectual property. A threat to the model provider is an attacker who derives surrogate models
and publicly deploys them. Since access to the source model has to be provided, users cannot be
prevented from deriving surrogate models. Krishna et al. [120] have shown that model stealing is
effective because even high-fidelity surrogates of large models can be stolen and efficient because
surrogate models can be derived for a fraction of the costs with limited access to domain data.

This chapter proposes a DNN fingerprinting method to predict whether a model is a (stolen)
surrogate or a (benign) reference model relative to a source model. DNN fingerprinting is a new
area of research that extracts a persistent, identifying code (fingerprint) from an already trained
model. Model stealing can be categorized into model modification, such as weight pruning [264],
or model extraction that uses some form of knowledge distillation [86] to derive a surrogate from
scratch. Claimed security properties of existing defenses ([3, 255]), have been broken by model
extraction attacks [202]. Our fingerprint is the first defense specifically designed to withstand
model extraction attacks, which extends to robustness against model modification attacks.

Our research provides new insight into the transferability of adversarial examples. In this
chapter, we hypothesize that there exists a subclass of targeted, transferable, adversarial examples
that transfer exclusively to surrogate models but not to reference models. We call this subclass
conferrable. Any conferrable example found in the source model should have the same misclas-
sification in a surrogate model but a different one in reference models. We propose metrics to
measure conferrability and an ensemble adversarial attack that optimizes these new metrics. Our
fingerprint is made of conferrable adversarial examples.

Retrained CIFAR-10 surrogate models can be verified with a perfect ROC AUC of 1.0 using
our fingerprint, compared to an ROC AUC of 0.63 for related work [23]. While our fingerprint
is robust to almost all derivation and extraction attacks, we show that some adapted attacks
may remove our fingerprint. Specifically, our fingerprint lacks robustness against transfer learning
attacks, where a similar, pre-trained model and limited domain data are accessible to the attacker.
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Moreover, our fingerprint is not robust against adversarial training [151] from scratch. Adversarial
training is an adapted model extraction attack specifically designed to limit the transferability of
adversarial examples. We hypothesize that incorporating adversarial training into the generation
process of conferrable adversarial examples may lead to higher robustness against this attack.

5.2 Related Work

In black-box adversarial attacks [171, 224, 151], access to the target model is limited, meaning that
the target architecture is unknown and computing gradients directly is not possible. Transfer-based
adversarial attacks [170, 171] exploit the ability of an adversarial example to transfer across models
with similar decision boundaries. Targeted transferability additionally specifies the target class
of the adversarial example. Our proposed adversarial attack is a targeted, transfer-based attack
with white-box access to a source model (that should be defended) but black-box access to the
stolen model derived by the attacker.

Liu et al. [141] and Tramèr et al. [226] show that (targeted) transferability can be boosted
by optimizing over an ensemble of models. Our attack also optimizes over an ensemble of
models to maximize transferability to stolen surrogate models while minimizing transferability to
independently trained models, called reference models. We refer to this special subclass of targeted
transferability as conferrable. Tramèr et al. [226] empirically studies transferability and finds
that transferable adversarial examples intersect with high-dimensional ”adversarial subspaces”
across models. We further their studies and show that (i) stolen models apprehend adversarial
vulnerabilities from the source model and (ii) parts of these subspaces, in which conferrable
examples are located, can be used in practice to predict whether a model has been stolen.

Watermarking of DNNs is a related method to DNN fingerprinting, where an identifying code
is embedded into a DNN, thereby potentially impacting the model’s utility. Uchida et al. [227]
embed a secret message into the source model’s weight parameters but requires white-box access to
the model’s parameters for the watermark verification. Adi et al. [3] and Zhang et al. [255] propose
backdooring the source model on a set of unrelated or slightly modified images. Their approaches
allow black-box verification that only requires API access to the watermarked model. Frontier-
Stitching [128] and BlackMarks [54] use (targeted) adversarial examples as watermarks. These
watermarks have been evaluated only against model modification attacks but not against model
extraction attacks that train a surrogate model from scratch. At least two of these watermarking
schemes [3, 255] are not robust to model extraction attacks [202]. Cao et al. [23] recently proposed
a fingerprinting method with adversarial examples close to the source model’s decision boundary.
We show that their fingerprint does not withstand retraining as a model extraction attack and
propose a fingerprint with improved robustness to model extraction attacks.
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5.3 Threat Model

We consider an attacker who wants to derive a surrogate model from access to the defender’s source
model that (i) has a similar test accuracy and (ii) cannot be verified by the defender as one of the
source model’s surrogate models. We consider two attacker models: (i) an attacker with white-box
access to the source model, meaning access to the source model’s parameters, and (ii) a less
informed, black-box attacker with only API access to the source model. A more informed attacker
can drop information and invoke all attacks of a less informed attacker. Robustness against a
more informed attacker implies robustness against a less informed attacker. Our attacker has
access to many unlabeled images but is limited in their access to ground-truth labels; otherwise,
they could train their own model, and there would be no need to steal a model.

In our evaluation, we experiment with attackers on CIFAR-10 [121] with up to 80% of ground-
truth labels. A plausible rationale for this constraint on label accessibility could be attributed
to the absence of a reliable oracle, such as in specialized domains like healthcare, where the
accuracy and confidentiality of data are important. Additionally, the procurement of labels could
be cost-prohibitive, as it may necessitate the use of human annotation services, for instance,
Amazon Mechanical Turk1, which can incur significant monetary expenses.

5.4 Conferrable Adversarial Examples

Conferrability is a new property for adversarial examples, in which targeted transferability occurs
only from a source model to its surrogates but not to independently trained reference models.
Intuitively, surrogate models are expected to be more similar to the source model than any
reference model, but quantifying this similarity is non-trivial. Conferrable examples are an
attempt to quantify this similarity by shared adversarial vulnerabilities of the source model and
its surrogates. Surrogate models differ from reference models in the objective function that they
optimize. Reference models maximize fidelity to the ground truth labels, whereas surrogate models
maximize fidelity to the source model’s labels, which do not always coincide.

Figure 5.2a shows the relation between targeted adversarial, transferable, and conferrable
examples for the source model, its surrogates, and all reference models. An example is transferable
if it is adversarial to any model. It is conferrable when it is adversarial only to surrogate
and source models. In that sense, conferrable adversarial examples are a subclass of targeted
transferable adversarial examples. Figure 5.2b shows the relation between transferable and
conferrable adversarial examples in a model’s decision space at the example of binary classification.
Transferable adversarial examples occur in those adversarial subspaces where the decision boundary

1https://www.mturk.com/
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(a) (b)

Figure 5.2: (a) The relationship between transferable and conferrable adversarial examples.
(b) A conceptual illustration of transferable and conferrable examples in a model’s decision
space relative to the ground truth provided by human annotators.

of surrogate and reference models coincide [225]. Conferrable adversarial examples occur in those
adversarial subspaces where the decision boundaries of surrogate and reference models differ.

Targeted transferability for a class t and a set of models Θ can be computed as follows.

Transfer(Θ, x; t) = Pr
θ∈Θ

[Classify(x, θ) = t] (5.1)

Objective. The defender aims to find adversarial examples that maximize the difference in
predicted labels between surrogate models S ⊆ Θ and reference models R ⊆ Θ. This difference
can be quantified by our conferrability score, which measures an example’s transferability.

Confer(S,R, x; t) = Transfer(S, x; t)(1− Transfer(R, x; t)) (5.2)

The central challenge for optimizing conferrability is that we require access to the function Transfer
that estimates an example’s transferability score. To the best of our knowledge, the only known
method to evaluate transferability is to train a representative set of DNNs and estimate the
example’s transferability itself. We use this method to evaluate transferability. In the case of
conferrable examples, we evaluate transferability on a set of surrogate and reference models
trained locally by the defender and use Equation 5.2 to obtain the conferrability score. We
hypothesize that conferrability generalizes, i.e., examples that are conferrable to a representative
set of surrogate and reference DNNs are also conferrable to other, unseen DNNs.

Conferrable Ensemble Method. This Section describes our adversarial attack to generate
conferrable adversarial examples, called the Conferrable Ensemble Method (CEM). CEM operates
on the source model θ, a set of its surrogates Sθ, and a set of reference models R. Our attack
constructs an ensemble model Mθ with a shared input layer that outputs per-class conferrability
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scores for each y ∈ Y. CEM generates highly conferrable adversarial examples by finding a
perturbation δ so that x′ = x0 + δ maximizes the output of the ensemble model for a target class t.

We now present the construction of the ensemble model Mθ. The ensemble model produces
two intermediate outputs for an input x ∈ X , representing the mean logits of all surrogate and all
reference models on x.

Surr(Sθ, x) =
1

|Sθ|
∑
θ∈Sθ

Dropout(Classify(x, θ); d) (5.3)

Ref(R, x) =
1

|R|
∑
θ∈R

Dropout(Classify(x, θ); d) (5.4)

To enhance transferability, we optimize with Dropout and a drop ratio of d = 0.3 [211]. The
ensemble model outputs a per-class conferrability score given an image. We refer to Appendix A.4
for details about the optimization.

Mθ(x;SM ,R) = softmax(Surr(SM , x)(1− Ref(R, x))) (5.5)

The loss in Equation (5.6) consists of three summands and is computed over the benign, initial
example x0, and the example at an intermediate iteration step x′ = x0 + δ. We denote the
cross-entropy loss by H. The first summand maximizes the output of the ensemble model for
some target class t. The second summand maximizes the categorical cross-entropy between the
current and initial prediction for the source model. The third summand minimizes the categorical
cross-entropy between the source model’s prediction and the predictions of its surrogates, and the
total loss L is the weighted sum over all individual losses. We use shorthand notation to refer to
the source model’s classification of an image by M(x) = Classify(x, θ).

L(x0, x
′) = α H(1,max

t
[Mθ(x

′)t])− β H(M(x0),M(x′)) + γ H(M(x′),Surr(Sθ, x′)) (5.6)

In all our experiments, we use weights α = β = γ = 1 and refer to Appendix A.6 for an empirical
sensitivity analysis of the hyperparameters. We address the box constraint, i.e., ||δ|| ≤ ϵ, similarly
to PGD [151] by clipping intermediate outputs around the ϵ ball of the original input x0 in the
L∞-norm. For optimizing an input with respect to the loss, we use the Adam optimizer [116].
Note that we use an untargeted attack to generate targeted adversarial examples. Targeted attacks
are harder to optimize than their untargeted counterparts [238]. We assign the source model’s
predicted label for the generated adversarial example as the target label and ensure that target
classes are balanced in the fingerprint verification key.

Fingerprinting Algorithms. We now describe our fingerprinting generation and verification
algorithms. For the generation, the defender locally trains a set of c1 surrogate and c2 reference
models (c1 = c2 = 18) on their training data before executing CEM. Surrogate models are trained
on data labeled by the source model, whereas reference models are trained on ground-truth
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labels. The defender composes the ensemble model ME as described in the previous paragraph
and optimizes for a perturbation δ given an input x0, so that L(x0, x0 + δ) is minimized. The
optimization returns a set of adversarial examples that are filtered by their conferrability scores
on the locally trained models. If their conferrability score (see Equation 5.2) exceeds a minimum
threshold (≥ 0.95), they are appended to the fingerprinting key. For fingerprint verification, we
compute the error rate between the source model’s prediction of the fingerprint and the target
model’s predictions. If the error rate exceeds 1− ρ, which we refer to as the decision threshold,
the target model is predicted to be a reference model and a surrogate model otherwise.

5.4.1 Experiments

Setup. We evaluate the robustness and undetectability of our fingerprint. Then, we show that
using our proposed method of deriving fingerprints (CEM), we can create adversarial examples
with substantially higher conferrability scores compared to known adversarial attacks such as
FGM [77], BIM [123], PGD [151], and CW-L∞ [25]. We demonstrate the undetectability of our
fingerprint by evaluating it against the detection algorithm proposed by Hitaj et al. [88]. Our study
on robustness is the most extensive study conducted on DNN fingerprints or DNN watermarks
compared to related work [23, 227, 255, 3, 128, 54, 216]. We compare our DNN fingerprint to
another proposed DNN fingerprint called IPGuard [23]. Appendix A.1 and Appendix A.2 contain
more details on the CIFAR-10 and ImageNet32 experiments.

Metrics. We measure the fingerprint retention as the success rate of conferrable examples
in a target model M̂ . An example is successful if the target model predicts the target label given
in Fy. We measure the accuracy with which the predicted label matches the expected label from
the fingerprinting key and refer to it as Conferrable Adversarial Example (CAE) accuracy.

CIFAR-10 models. We ablate over popular CNN architectures on CIFAR-10 without any
modification to the standard training process2. The defender’s source model has a ResNet20 [83]
architecture. All surrogate and reference models required by the defender for CEM are ResNet20
models trained on CIFAR-10 using retraining. The attacker has access to various model architec-
tures, such as DenseNet [99], VGG-16/VGG-19 [208] and ResNet20 [83], to show that conferrability
is maintained across model architectures.

Removal Attacks. Removal attacks are successful if (i) the surrogate model has a high test
accuracy (at least 85.55% for CIFAR-10, see Figure 5.4e) and (ii) the stolen surrogate’s CAEAcc is
lower than the verification threshold ρ. Stolen models are derived with a wide range of fingerprint
removal attacks, which we categorize into (i) model modification, (ii) model extraction, and (iii)
adapted model extraction attacks. Model modification attacks modify the source model directly,
such as fine-tuning or parameter pruning. Model extraction distills knowledge from a source

2https://keras.io/examples/cifar10 resnet
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ϵ 0.01 0.025 0.05 0.075 0.1 0.125 0.15

Tϵ 63.00% 75.00% 84.00% 86.00% 87.00% 87.00% 87.00%

Table 5.1: Experimentally derived values for the decision threshold Tϵ for CIFAR-10.

model into a fresh surrogate model, such as retraining or model extraction attacks from related
work [171, 104, 169]. A defense against model extraction attacks is restricting the source model’s
output to the top-1 predicted label. We refer to an extraction attack that retrains on the top-1
predicted label by the source model as Black-Box attack. We also evaluate transfer learning as a
model extraction attack, where a pre-trained model from a different domain (ImageNet32 [38]) is
transfer learned onto the source model’s domain using the source model’s labels.

Adapted model extraction attacks limit the transferability of adversarial examples in the
surrogate model, such as adversarial training [151]. In our experiment, we use multi-step adversarial
training with PGD. We design another adapted attack against our fingerprint called the Ground-
Truth attack, where the attacker has a fraction of p ∈ [0.6, 0.7, 0.8] ground-truth labels. We
trained surrogate models with Differential Privacy (DP), using DP-SGD [2], but even for large
ϵ, the surrogate models had unacceptably low CIFAR-10 test accuracy of about 76%. The test
accuracies of all surrogate models can be seen in Table 5.2. We repeat all removal attacks three
times and report the mean values and the standard deviation as error bars. Our empirically
chosen CIFAR-10 decision thresholds Tϵ (see Table 5.1) are chosen relative to the perturbation
threshold ϵ with which our adversarial attacks are instantiated.

Evasiveness Attack. Hitaj et al. [88] present an evasion attack against black-box watermark
verification. Their evasion attack trains a binary DNN classifier to distinguish between benign
and out-of-distribution images and reject queries by the defender. Our attacker trains a binary
classifier to classify benign images and adversarial examples generated by FGM, CW-L∞, and
PGD adversarial attacks. The evasion attack is evaluated by the area under the curve (AUC) of
the receiver operating characteristic (ROC) curve for varying perturbation thresholds.

Attacker Datasets. We distinguish between attackers with access to different datasets, which
are CIFAR-10 [121], CINIC [44] and ImageNet32 [38]. CINIC is an extension of CIFAR-10 with
downsampled images from ImageNet [47] for classes that are also defined in CIFAR-10. ImageNet32
is a downsampled version of images from all classes defined in ImageNet, i.e., ImageNet32 is most
dissimilar to CIFAR-10. We observe that the similarity of the attacker’s to the defender’s dataset
positively correlates with the surrogate model’s test accuracy and thus boosts the effectiveness of
the model stealing attack.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: The (a) conferrability scores, (b) non-evasiveness, and (c-d) irremovability to
model modification attacks. ϵ = 0.01 corresponds to 2.5/255 and ϵ = 0.15 equals 38.25/255
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5.4.2 Results

Conferrability Scores. Our empirical results show support in favor of the existence of conferrable
adversarial examples. CEM produces adversarial examples with the highest conferrability scores
compared to classical adversarial attacks such as FGM, PGD, and CW-L∞. We generate λ = 100
adversarial examples from the same set of CIFAR-10 test samples, filter those that are non-
successful to the source model, and evaluate conferrability scores as specified by Equation (5.2)
across five unseen CIFAR-10 surrogate and reference models trained from scratch. The results in
Figure 5.3a show that CEM outputs adversarial examples with significantly higher conferrability
scores than other attacks for small perturbation thresholds ϵ, which worsen as ϵ increases. For
ϵ = 2.5/255, we measure a mean conferrability score of 0.49, which amounts to a mean CAEAcc
of 0.42 in reference models and 0.85 in surrogate models (see Figure 5.3d). For ϵ = 38.25/255,
we measure a conferrability score of only 0.24, which translates to a mean CAEAcc of 0.98 in
surrogate models and 0.75 in reference models. These results show that transferability can be
increased with ϵ at the expense of lower conferrability. We observe that the conferrability scores
measured on surrogate and reference models used in CEM are nearly perfect. This indicates that
CEM could benefit from access to an even larger ensemble of models.

Undetectability. We evaluate the undetectability against attacks proposed by Hitaj et al.
[88]. Figure 5.3b show that (i) detectability increases with larger perturbation thresholds ϵ and
(ii) small perturbation thresholds ϵ ≤ 6/255 yield a ROC AUC of only 0.67. For ϵ ≤ 6/255, the
detection is too unreliable to be deployed in practice considering that only a small fraction of
requests would contain the fingerprint. Sufficiently high recall against our fingerprint comes at the
cost of more false positives, which diminishes the utility of the attacker’s model to other users.

Model Modification Attacks. Figures 5.3c and 5.3d illustrate the robustness of our
fingerprint against model modification attacks. We evaluate four types of fine-tuning attacks tried
by Uchida et al. [227], which are implemented as follows.

1. Fine-Tune Last Layer (FTLL): Freezes all layers except for the penultimate layer.

2. Fine-Tune All Layers (FTAL): Fine-tune of all layers.

3. Retrain Last Layer (RTLL): Re-initializes the penultimate layer’s weights and updates only
the penultimate layer while all other layers are frozen.

4. Retrain All Layers (RTAL): Re-initializes the penultimate layer’s weights, but all layers
are updated during fine-tuning.

Our results with iterative weight pruning [264] show that larger pruning rates p ∈ [0.7, 0.8, 0.9] can
remove our fingerprint, but only when it degrades the model’s test accuracy by 7% (see Table 5.2).
Note that we show robustness to much higher pruning rates than related work [23]. The attack
for p = 0.9 is unsuccessful because the surrogate test accuracy is lower than 85.55%, as described
in Section 5.4.1. Our fingerprint is robust for all remaining pruning configurations.
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Model Extraction Attacks. Figures 5.3 and 5.4 show that our fingerprint is also robust to
model extraction attacks, except for transfer learning when the attacker can access in-domain
data. Surprisingly, we find that surrogates extracted using out-of-domain data such as CINIC [44]
have higher mean CAEAcc values than CIFAR-10 surrogates at a lower test accuracy (−2.16%).
Similarly, we measure significantly lower CAEAcc values for reference models trained on CINIC
than those trained on CIFAR-10. This means that it is increasingly difficult for the attacker to
remove our fingerprints the more dissimilar the attacker’s and defender’s datasets become.

Figure 5.3f shows that our fingerprint is robust even when the attacker extracts the source
model using a different surrogate model architecture. Figure 5.4b shows that transfer learning
removes our fingerprint, but the attacker requires access to an in-domain dataset (e.g., CIFAR-10).
Transfer learning does not evade detection when the attacker only has access to out-of-domain data
such as CINIC. We observed that the pre-trained ImageNet32 model exceeds 80% test accuracy
after only a single epoch with CIFAR-10, which may be too few updates for our fingerprint to
transfer to the surrogate. The robustness of our fingerprint to a wide range of model extraction
attacks shows that certain adversarial vulnerabilities (that enable conferrable examples) are
consistently carried over from the source model to its surrogates. Our data supports that the class
of transferable examples can be broken down further into conferrable examples and that known
findings for transferable examples extend to conferrable examples.

Adapted Model Extraction Attacks. We now show the limitations of our fingerprint
when the attacker uses adaptive attacks that limit the transferability of adversarial examples
between the source and surrogate models. Figure 5.4c shows our fingerprint is not robust to
adversarial re-training from scratch. In CIFAR-10 surrogates, we measure a mean CAEAcc of
only 15% for ϵ = 0.025, which supports the claims by Madry et al. [151] that adversarial training
increases robustness to transfer attacks. We believe that incorporating adversarial training into the
generation process of conferrable adversarial examples could enhance robustness. The results from
our Ground-Truth attack in Figure 5.4d show that access to more ground-truth labels decreases
the CAEAcc in surrogate models. The results show that our fingerprint is robust unless the
attacker has more than 50% ground-truth labels for CIFAR-10.

Confidence Analysis. In Figure 5.4f, we show the ROC curve (false positive vs true positive
rate) of our fingerprint verification on ten unseen, retrained CIFAR-10 surrogate and reference
models. We compare our work with IPGuard [23] and generate n = 100 fingerprints in both
cases. Our ROC AUC is 1.0, whereas IPGuard has an ROC AUC of only 0.63. These results show
that IPGuard is not robust to retraining as a model extraction attack. Inspecting adversarial
examples generated by IPGuard further, we measure a mean adversarial success rate of 17.61% for
a surrogate and 16.29% for reference models. Figure 5.4e visualizes the difference in CAEAcc for a
well-trained surrogate and reference models at ϵ = 6/255. The plot shows that CAEAcc positively
correlates with the surrogate’s test accuracy. We measure a mean difference in CAEAcc of about
30% between a well-trained surrogate and reference models with our fingerprint.
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Figure 5.4: The robustness of our fingerprint against many different attacks.
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Fine-Tuning Pruning

Source FTLL FTAL RTLL RTAL p=0.7 p=0.8 p=0.9

89.30 89.59 89.57 87.90 87.25 88.00 86.97 83.36

Retrain Extraction

ResNet20 Densenet VGG16 VGG19 CINIC Jagielski Papernot Knockoff
89.22 90.88 90.91 90.05 87.06 88.74 87.34 84.55

AdvTrain Transfer Learning Ground-Truth

CIFAR-10 CINIC CIFAR-10 CINIC p=0.5 p=0.6 p=0.7 p=0.8
89.75 88.15 89.59 88.15 89.54 89.13 89.43 89.33

Table 5.2: Mean CIFAR-10 test accuracies for surrogate models derived by threefold
repetition of each evasion attack.

5.5 Conclusion

We empirically show the existence of conferrable adversarial examples. Our ensemble adversarial
attack CEM outperforms existing adversarial attacks such as FGM [77], PGD [151] and CW-
L∞ [25] in producing highly conferrable adversarial examples. We formally define fingerprinting
for DNN classifiers and use the generated conferrable adversarial examples as our fingerprint. Our
experiments on the robustness of our fingerprint show increased robustness to model modification
attacks and model extraction attacks. Transfer learning is a successful removal attack when
the attacker has access to CIFAR-10 data but not when the attacker only has access to CINIC.
Adversarial training from scratch is the most effective removal attack and successfully removes
our fingerprint. We hypothesize that adding adversarial training into the generation process
of conferrable adversarial examples may increase robustness against adversarial training. Our
experiments confirm the non-evasiveness of our fingerprint against a detection method proposed
by Hitaj et al. [88]. We empirically find that our fingerprint is the first to perfectly verify retrained
CIFAR-10 surrogates with an ROC AUC of 1.0.

84



Chapter 6

PTW: Pivotal Tuning Watermarking
for Pre-Trained Image Generators

This chapter is based on work that appeared at the 2023 USENIX Security Symposium [145]. We
study whether watermarking methods can reliably control model misuse of deep image generators.
The previous chapters focused on black-box and white-box watermarking methods to detect stolen
models and deter their unauthorized redistribution. To control misuse, the provider can access
only the generated content for attacker-chosen inputs. We refer to this as the no-box setting and
propose learnable watermarks for pre-trained image generators that can be trained and embedded
efficiently. Our results highlight that our watermarking methods for pre-trained image generators
outperform existing watermarking methods in both effectiveness and robustness.

6.1 Motivation

Deepfakes, a term that describes synthetic media generated using deep image generators, have
received widespread attention in recent years. While deepfakes offer many beneficial use cases,
for example, in scientific research [42, 210] or education [180, 207, 58], they have also raised
ethical concerns because of their potential to be misused which can lead to an erosion of trust in
digital media. Deepfakes have been scrutinized for their use in disinformation campaigns [4, 85],
impersonation attacks [158, 53] or when used to create non-consensual media of an individual
violating their privacy [81, 46]. These threats highlight the need to control the misuse of deepfakes.

While some deepfakes can be recreated using traditional computer graphics, deep learning such
as the Generative Adversarial Network (GAN) [75] can reduce the time and effort needed to create
deepfakes. However, training GANs requires a significant investment in terms of computational
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Figure 6.1: A demonstration of our watermark and the impact of the number of embedded
bits on the visual image quality. The top row shows the watermarked, synthetic image, and
the bottom row shows its difference from the same image without a watermark.

resources [114] and data preparation, including collection, organization, and cleaning. These costs
make training image generators a prohibitive endeavor for many. Consequently, generators are
often trained by one provider and made available to many users through Machine-Learning-as-
a-Service [22]. The provider wants to disclose their model responsibly and deter model misuse,
which is the unethical use of their model to generate harmful or misleading content [161].

Problem. Consider a provider who wants to make their image generator publicly accessible
under a contractual usage agreement that serves to prevent misuse of the model. The threat is
a user who breaks this agreement and uses the generator to synthesize and distribute harmful
deepfakes without detection. To mitigate this threat, companies like OpenAI have deployed
invasive prevention measures by providing only monitored access to their models through a black-
box API. Users that synthesize deepfakes are detectable when they break the usage agreement
if the provider matches the deepfake with their database. This helps deter misuse of the model,
but it can also lead to a lack of transparency and limit researchers and individuals from using
their technology [218, 50]. For example, query monitoring, which is used in practice by companies
such as OpenAI, raises privacy concerns as it involves collecting and potentially storing sensitive
information about the user’s queries. A better solution would be to implement methods that deter
model misuse without the need for query monitoring.

A potential solution is to rely on deepfake detection methods [131, 108, 32]. The idea guiding
such methods is to exploit artifacts from synthetic images that separate fake and real content.
While these detectors protect well against some deepfakes, it has been demonstrated that they can
be bypassed by unseen, improved generators that adapt to existing detectors [52]. As technology
advances, it is possible that generators that synthesize virtually indistinguishable images will be
developed, rendering passive deepfake detection methods ineffective in the long term.

A different approach to deepfake detection is watermarking [249] when the detection method
can access and modify the target generator. This is a kind of watermarking that modifies the
generator to embed an identifiable message that is later extractable from access to the generated
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content using a secret key. Methods such as generator watermarking [248, 249] remain applicable
to unseen image generators that could be developed in the future. For deepfake detection, the
provider needs a watermark that is extractable from any image synthesized by the generator.
We refer to this setting as a no-box verification because the verifier only requires access to the
generated content but not the generator model. However, there are still several challenges in
designing no-box watermarks. These include (i) the ability to embed long messages with limited
impact on the model’s utility, (ii) the undetectability of the watermark without the secret key,
(iii) robustness against removal, and (iv) the method should be efficient.

Solution Overview. Existing watermarking methods are challenging to scale to high-
resolution models because they require re-training the generator from scratch, which is com-
putationally intensive [248, 249]. Moreover, while some existing watermarks claim a good ca-
pacity/utility trade-off [249], these claims have been limited to relatively small generators. We
propose an efficient watermark embedding called Pivotal Tuning Watermarking (PTW) to address
these challenges. PTW is the first method to embed watermarks into pre-trained generators and
speeds up the embedding process by three orders of magnitude from more than one GPU month
when watermarking from scratch [248, 249] to less than one hour. We identify modifications to
existing watermarks that speed up their embedding significantly and propose our watermark that
can be embedded using PTW with an improved capacity/utility trade-off compared to related
work. Figure 6.1 visualizes this trade-off for our watermark.

We propose game-based definitions for robustness and undetectability and evaluate our
watermark in two threat models, where the adversary either has access to the generator only
through an API (black-box ) or has control over its parameters (white-box ). Our results confirm
that existing watermarking methods [249, 248] are robust and undetectable in the black-box
threat model using existing attacks. We propose three new attacks: a black-box attack called
Super-Resolution and two white-box attacks called (1) Overwriting and (2) Reverse Pivotal Tuning.
Our experiments indicate that watermarking can be robust in the black-box setting when the
attacker has limited access to a high-quality image generator. However, it cannot withstand a
white-box attacker with access to only 200 images (≈ 0.3% of the generator’s training dataset)
who can remove watermarks at a negligible loss in the generator’s image quality.

6.1.1 Contributions

• We propose a watermarking method for pre-trained generators called Pivotal Tuning
Watermarking (PTW). PTW does not require any training data, and (ii) is three orders of
magnitude computationally less intensive than existing methods [248, 249]

• We modify existing watermarking methods [249, 248] for GANs to be compatible with
pre-trained generators, enabling their replication efficiently for large models.

• We provide game-based definitions for robustness and undetectability.
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• We propose experiment with three generator architectures (StyleGAN2 [112], StyleGAN3 [114]
and StyleGAN-XL [198]) on multiple high-quality image generation datasets.

• We propose black-box and white-box watermark removal attacks. Our results show that
watermarking is not robust in practice against our white-box attacks.

• We make our source code publicly available that implements all presented experiments1.

6.2 Background & Related Work

This section provides a background on generative models and Pivotal Tuning [189], followed by a
description of related work on the detection and attribution of deepfakes.

6.2.1 Background

Pivotal Tuning [189]. Pivotal Tuning is a known method to regularize a pre-trained generator
while preserving a high fidelity to the generator before tuning. The idea is to preserve the mapping
from latent codes to images by cloning and freezing the generator’s parameters, referred to as
the Pivot with parameters θG, and then fine-tuning a trainable, second generator θ∗G with some
regularization term R(·). It has been demonstrated that Pivotal Tuning achieves near-perfect
image inversion while enabling latent-based image editing [189]. The Pivotal Tuning loss LPT is
written as follows.

LPT = LLPIPS(x0, x) + λRR(x) (6.1)

where x0 = G(z, θ0) is an image synthesized by the frozen Pivotal generator using a latent code
z ∈ Z and x = G(z, θ1) is the image generated with the cloned weights θ1 for the same latent code.
The Learned Perceptual Image Patch Similarity (LPIPS) [257] loss LLPIPS quantifies a perceptual
similarity between images extracted using deep feature extractors.

6.2.2 Related Work

This section summarizes related work on deepfake detection for deep image generators.

Deepfake Detection and Attribution. Deepfake detection and attribution are the tasks of
identifying fake images that have been generated or manipulated using deep image generators.
Detection focuses only on detecting whether an image is fake, whereas attribution focuses on
determining the image’s origin. For a given target generator that is used to synthesize a deepfake,

1https://github.com/nilslukas/gan-watermark
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Figure 6.2: Deepfake detection in a no-box setting by watermarking the generator.

we taxonomize existing work by (i) the level of access to this target generator and (ii) whether
the target generator’s parameters can be modified by the detection or attribution method before
the deployment of the generator.

(A) Without Generator Access: In this setting, the detection algorithm does not have
access to the target generator. Existing work on detecting deepfakes trains classifiers on a public set
of deepfakes with known labels for fake/real images [191, 131, 51], exploit semantic incoherence such
as asymmetries [153, 93] or low-level artifacts from the generation process [182, 108, 152, 32, 69, 239].
Deepfake attribution methods without access to the target generator apply unsupervised learning
methods [248, 73] or only attribute deepfakes to an architecture (and not a generator instance) [243].
Although these methods have proven effective in detecting some deepfakes, it has been shown
that they can be evaded by an adversary who adapts to these detectors [52].

(B) With Generator Access: The detection method can have some level of access to the
generator, including black-box API or white-box access to its parameters. (Fingerprinting)
Methods that do not modify the generator’s parameters are referred to as fingerprinting methods.
Recently, attribution methods have been proposed for Latent Diffusion models [201] based on
training classifiers on the model’s generated data. For GANs, fingerprinting methods all rely on
training classifiers on the target generator’s data [21, 242, 248]. (Watermarking) Methods that
modify the generator before deployment are referred to as watermarking methods. Yu et al. [249]
modify the generator’s training data and re-train a watermarked generator. Another approach
is to modify the generator’s training procedure [250]. All existing methods require training the
generator from scratch to embed a watermark.

6.3 Threat Model

Our threat model consists of a defender, who we also refer to as the model provider, and an
adversary, who controls a malicious user. Figure 6.2 illustrates attribution through watermarking in
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three steps. First, the provider trains a generator and embeds a watermark. Second, the generator
is deployed, and a malicious user generates harmful deepfakes at any time after deployment.
Finally, deepfakes are attributed to the generator by verifying their watermark.

Adversary’s Capabilities. We consider two adversaries that differ in their level of access
to the target generator. Our first adversary, the black-box adversary, has only API access to the
target generator. This means they can query the generator on any latent code z ∈ Z, but do
not have knowledge of its parameters or intermediate activations. The black-box adversary is
limited in the number of queries to the generator since queries usually incur a monetary cost to
the user. Our second adversary, the white-box adversary, has full access to the (watermarked)
target generator’s parameters, meaning they can tune the generator’s weights in an attempt to
remove watermarks and generate any number of watermarked images. We use the same definitions
for adversaries with black-box API access and white-box access as in Chapter 4.

Both adversaries can access a limited set of R real, non-watermarked images from the same
distribution as the defender’s training data. An adversary can have limited access to real images
without a watermark, which is a commonly made assumption to evaluate the robustness of
watermarking [148]. We assume limited availability of real, non-watermarked data in our threat
model, as an attacker with sufficient data and computational resources could train and deploy
their own generator without a watermark. A black-box attacker could attempt to extract the
generator [217] by training a surrogate on generated data, but this is out of the scope of our
work since model extraction (i) requires massive computational resources and (ii) likely results in
surrogate models with a low image quality [148].

Notation Description

T Stochastic training algorithm
M Distribution over messages
D Distribution over images
Dn Distribution over n images
D ∼ D Draw images D uniformly from D
y ← P(x⃗) Call P with x⃗ and assign result to y
A A procedure denoting an adversary
θ Parameters of a generator
m A watermarking message
τ A secret watermarking key
z A latent code as input for a generator

Table 6.1: A summary of this chapter’s notation.

Adversary’s Objective. The common goal of our adversaries is to synthesize images (i) with
high visual fidelity to real images and (ii) to generate images that do not retain the watermark.
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An image does not retain its watermark if the verification mistakenly outputs zero.

Defender’s Capabilities. The defender has access to their own generator’s parameters and
the secret watermarking key. Their objective is to verify any given image whether it originated
from their generator. We refer to the defender’s access during verification as no-box because,
unlike black-box watermarking [3] that can verify the watermark using many queries to the model,
with no-box access, the watermark needs to be verified using only one generated image and without
control over the query used the generate the image.

6.3.1 Robustness

Algorithm 11 encodes the watermark robustness game given a pre-trained generator θ0, a confidence
threshold for the verification κ ∈ [0, 1], a number R of non-watermarked images available to
the attacker and a challenge size K ∈ N+. The challenge size is the number of images that the
adversary has to synthesize to win the game. Note that an adversary with auxiliary access to at
least K non-watermarked, real images can always trivially win our security game by returning
these real images in their attack. For this reason, we make the assumption that the adversary’s
auxiliary dataset size R≪ K is much smaller than the challenge size. We choose K=50 000, which
allows comparing the quality of the generated images with related work [113, 114].

Algorithm 11 Watermark Robustness Game

1: procedure Access(θ) ▷ Determines adversary’s access
2: return θ if white-box else G(·; θ) ▷ Returns full model or black-box generator

1: experiment Robustness(θ0, κ,R,K)
2: τ ← KeyGen(θ0) ▷ Generate watermark key
3: m ∼M ▷ Sample watermark message
4: θ1 ← Embed(θ0, τ,m) ▷ Embed watermark into model
5: DA ∼ DR ▷ Attacker’s dataset of R images
6: X0, X1, Y ← ∅ ▷ Initialize sets for adversary and verification
7: B ∼ {0, 1}K ▷ K random coin flips
8: for i ∈ {1..K} do
9: X0 ← X0 ∪ {A(Access(θ1), DA)} ▷ Adversary generates images

10: X1 ← X1 ∪ {Gen(θ0, z)|z ∼ Z} ▷ Generate control images

11: Y ← Y ∪
{
Bi if Verify(XBi

i , τ,m) ≤ κ
1−Bi otherwise

}
▷ Verification step

12: e← 1
K

∑
i∈{1..K}(1− Yi) ▷ Compute evasion rate

13: return X0, e ▷ Return images after evasion and evasion rate

In Algorithm 11, the game generates a watermark key τ and a watermarking message m ∈M
uniformly at random. (lines 2-3). The defender then embeds the watermark into the generator θ0 to
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obtain the watermarked generator θ1 (line 4). The adversary obtains access to R non-watermarked
images (line 5), and K unbiased coin flips dictate the sequence of whether the verifier gets access to
the watermarked image after evasion or the non-watermarked image (line 7). A correct verification
means that the p-value returned by the verification function is at most κ when a watermark should
be present in the image, which we denote with Yi = 1 for the i-th verified image. An incorrect
prediction (Yi = 0) means that either (i) the p-value was smaller than κ in a non-watermarked
image or (ii) it exceeded κ for a watermarked image after evasion (line 11). Finally, the game
returns the images after evasion and the evasion rate e (lines 12-13).

The adversary’s success is its expected evasion rate e and the visual quality of its images X0,
which is commonly measured by the Fréchet Inception Distance (FID) [84]. FID is a perceptual
distance computed between two sets of images, and a low FID score indicates a high visual
similarity between both sets. Similar to the evaluation by Karras et al. [112], we measure the FID
between the adversary’s images X and the defender’s training dataset D. The adversary’s success
is a trade-off between the expected evasion rate e and the quality of the images X0.

SuccEvasion = E
[
(e− FID(X0, D))

]
(6.2)

6.3.2 Detectability

A detectable watermark poses a threat because it could facilitate an adversary in locating and
removing the watermark or spoofing it. Algorithm 12 presents the watermark detectability game
for a generator θ0 and the attacker’s access to R1 non-watermarked and R2 watermarked images
from the generator. Our game challenges the adversary to determine the presence of a watermark.

The defender generates a watermarking key (line 2) and embeds a randomly sampled water-
marking message into their pre-trained generator θ0 (lines 3-4). The attacker then gets access to
R1 images without a watermark and R2 images with a watermark that are samples given random
latent codes not controlled by the attacker (lines 7-9). A fair coin is flipped, deciding whether the
detection attack operates on images containing a watermark, and the attacker has to predict the
coin flip (lines 7-8). The success of the detectability attack is its expected classification accuracy.

SuccDetection = E [a] (6.3)

Contrasting with Related Work. Related work has proposed other methods to measure
detectability that sample synthetic images from generators trained on the same dataset with
different seeds [248]. However, in these approaches, it is unclear whether the detection was
successful because the watermark has been detected or because some other patterns make each
generator instance identifiable (e.g., a fingerprint). Our notion of detectability can be attributed
solely to the impact of the watermark in the synthesized image.
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Algorithm 12 Watermark Detection Game

1: experiment Detectability(θ0, R1, R2)
2: τ ← KeyGen(θ0)
3: m ∼M
4: θ1 ← Embed(θ0, τ,m)
5: D1 ← ∪i=1..R1{Gen(z, θ0)|z ∼ Z} ▷ Non-watermarked images
6: D2 ← ∪i=1..R2{Gen(z, θ1)|z ∼ Z} ▷ Watermarked images
7: b ∼ {0, 1} ▷ Unbiased coin flip
8: b̂← ADetect({G(z, θb)|z ∼ Z}, D1, D2) ▷ Detection attack
9: a← [[b̂ = b]] ▷ Determine correctness

10: return a

6.4 Conceptual Approach

This section describes our proposed embedding method for watermarking image generators. We
describe improvements of our embedding method over existing methods. Then, we modify two
existing watermarks for GANs to embed into pre-trained generators and propose our improved
GAN watermark. Finally, we propose three attacks against the robustness of watermarking.

6.4.1 Pivotal Tuning Watermarking

Pivotal Tuning Watermarking (PTW) is a method for watermarking a pre-trained generator to
preserve latent similarity with the Pivot. On input of the same latent code z ∈ Z, both generators
should produce a similar image with imperceptible modifications. Given a pre-trained generator
θ0 and watermark decoder θD, a watermarking message m ∈ M, a number of iterations N , a
regularization parameter λR and a learning rate α, PTW returns a watermarked generator θ̂ with
high output fidelity to the generator before watermarking for the same latent codes.

The watermark decoder neural network extracts messages from images. Let θD be a decoder
neural network that extracts messages from images, and m is a message that should be embedded.
Let λR be the strength of the watermark regularization term, α be the learning rate, and N be
the number of steps to optimize the generator θ.

Algorithm 13 creates a copy of the pre-trained generator’s parameters, called the pivot, and
enters a loop (lines 2-3). A random latent code is drawn and passed through both variants
of the generators to produce two images x0, x (lines 4-6). The loss is computed according to
Equation (6.1) where we compute a binary cross-entropy H on the extracted and target messages
(line 7). The optimization tries to encode as many bits of the message as possible into x while
minimizing the LPIPS loss to x0 generated by the pivot. The model parameters are updated
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Algorithm 13 Pivotal Tuning Watermarking

1: procedure Embed(θ0, τ,m,N, λR, α)
2: τ ← KeyGen(θ0) ▷ Requires a key where the verification is efficiently optimizable
3: θ̂ ← copy parameters from θ0 ▷ Freeze the Pivot θ0
4: for i ∈ {1..N} do ▷ Embedding loop
5: z ∼ Z
6: x0 ← Gen(z, θ0) ▷ Frozen Pivot
7: x← Gen(z, θ̂) ▷ Watermarked image
8: gθ̂ ← ∇θ̂LLPIPS(x0, x) + λRVerify(x, τ,m) ▷ Balance quality and message error rate

9: θ̂ ← θ̂ − α ·Adam(θ̂, gθ̂) ▷ Update the generator

10: return θ̂ ▷ Watermarked generator

iteratively (line 8), and the tunable generator’s parameters and the trained decoder are returned.
The decoder represents the secret watermarking key (line 9).

Overview. Any image generator that maps from a latent space to images (see Section 6.2.1) is
compatible with PTW. PTW can also be used to embed any image watermarking method [8, 262]
for that can be learned by a watermark decoder network. We highlight three advantages of PTW
over existing embedding methods for GANs [248, 249].

1. Speed: PTW enables watermarking a pre-trained generator up to three orders of magnitude
faster than watermarking from scratch.

2. No Training Data: PTW requires access only to the generator but not to any training
data or the discriminator.

3. Post-Hoc: PTW allows embedding watermarks as a post-processing step into any pre-
trained generator.

As stated in Algorithm 13, PTW requires access to a differentiable process to extract a message
from an image. We use a binary message space M and a deep image classifier θD to extract
multi-bit messages from images. We propose a KeyGen procedure that generates watermarking
keys by leveraging optimization criteria. Then, we show how existing watermarking methods can
be modified to embed them into pre-trained generators efficiently as a baseline for our watermarks.

6.4.2 Generating a Watermarking Key through Optimization

We now present the implementation of KeyGen that leverages an optimization procedure to
derive a watermarking key τ . The watermarking key consists of parameters of a deep image
classifier θD that can extract multi-bit messages from images and allow backpropagating through
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the extraction process because the classifier is efficiently differentiable The ability to efficiently
optimize the watermark decoder is central to our approach.

We generate a key with knowledge of the generator’s parameters, which is useful for learning
which pixels can be modified easily to hide messages with minimal impact on the visual image
quality of the generator. For example, a generator trained to synthesize faces likely allows encoding
more bits per pixel for central pixels in the image that belong to a face, as opposed to pixels
at the edge that encode the background. The challenge is that none of the existing pre-trained
GAN architectures allow the input of a message; hence, the problem becomes how to modulate a
message to a generator to subsequently encode this message into its generated images.

Overview. We use three methods to modulate a message to a generator without modifying
its architecture or re-training the generator from scratch. All three options are based on training
mapper neural networks, which map a message to a perturbation of the generator’s parameters [250]
or (ii) its inputs [174] (i.e., the latent codes). We implement the parameter mapper by adding
the perturbation to a subset of the GAN’s weights. In our experiments, we modulate ≤ 1% of its
total parameters in practice. Our parameter-mapper is similar to parameter-efficient fine-tuning
(PEFT) [92] techniques and universally applies to any generator architecture. Our implementation
focuses on modulating convolutional layers of GANs [254].

Algorithm 14 Generating Keys through an Optimization Procedure

1: procedure KeyGen(θ0, n,N, λR)
2: θP , θZ , θD ← random initialization ▷ Parameter and latent mappers and message decoder
3: θ ← {θP , θZ , θD} ▷ θ denotes all trainable parameters
4: for i ∈ {1..N} do
5: m ∼M
6: θP ←Mapper(θP , θ0,m, z) ▷ Perturbation of parameters
7: ẑ ←Mapper(θZ , θ0,m, z) ▷ Perturbation of latents
8: x← Gen(θ0 + θP , ẑ + z) ▷ Image containing a watermark
9: x0 ← Gen(z, θG) ▷ No watermark

10: gθ ← ∇θLLPIPS(x0, x) + λRVerify(x, θD,m)
11: θ ← θ − α ·Adam(θ, gθ) ▷ joint update of all trainable parameters
12: return θD

We now describe our key generation algorithm that trains a deep image classifier to extract
messages. Let Mapper(θ0, θ1,m, z) be a function that takes the parameters of a mapper θ0, a
GAN generator θ1, a message m and a latent input z ∈ Z to predict a perturbation. Parameter
mappers predict parameter perturbations, whereas latent mappers predict a perturbation to
latents.

Training the Decoder. Algorithm 14 presents pseudocode for the key generation procedure.
First, we randomly initialize a parameter mapper θP , a latent mapper θZ , and a message decoder
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Figure 6.3: An exemplary illustration of the mappers for a single generator synthesis layer
(adapted from [113]). On input of a latent code z and a message m, the mappers (in green)

modulate the generator’s weights and inputs. A is an affine transform and B is random
noise sampled during inference.

θD (lines 2-3). Then, we iteratively optimize all trainable parameters by randomly sampling
a message and predicting a parameter and a latent perturbation (lines 5-7). We generate a
watermarked and non-watermarked image and calculate the gradient on the loss between the
quality difference and the verification loss (lines 8-10). Finally, we update all trainable parameters
(line 11), and at the end of the optimization, we return the parameters of the decoder (line 12).
Figure 6.3 illustrates the modulation of a message to a synthesizing layer in a generator.

The returned decoder can extract messages from any image. Notably, the decoder learns an
encoding of the message that causes the least degradation in visual image quality (according to
the LPIPS loss). We refer to Figure 6.1, where the most perturbed pixels are pixels with high
semantic value, such as the eyes and nose of a face. Since the decoder depends on the generator
instance, a different decoder should be trained for each instance for the best visual quality, but
decoders can be re-used if the model architectures are similar. Next, we describe modifications to
existing watermarks [248, 250] that allow embedding them into pre-trained generators.

6.4.3 Modifying Existing Watermarks

Two existing watermarks for GANs require re-training the generator from scratch to embed a
watermark [248, 249]. This section describes modifications to both methods for watermarking
pre-trained generators as a baseline comparison to our method. First, we briefly summarize both
watermarking methods and then describe our modifications to enhance their efficiency.
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Figure 6.4: An illustration of our three attacks against the robustness of generator water-
marking. RPT stands for Reverse Pivotal Tuning. The function Invert maps images to
latent codes, and Downscale reduces the resolution of an image.

Summary. The first watermark, which we call Yu1 [248], trains an encoder-decoder network
on real images by marking the images with imperceptible patterns. The GAN is trained from
scratch on the marked training data. The second watermark, which we call Yu2 [249], modifies the
GAN’s training objective and is trained from scratch. Some of their modifications were invented
to mitigate training instabilities such as mode collapse [219] or consistency losses, which are
problems that do not appear during fine-tuning. The authors modulate the watermark with a
parameter mapper θP and embed the watermark by adding the predicted parameter perturbation
to the generator’s weights. We find that embedding without PTW has a substantial impact on
the generator’s image quality and that using PTW can preserve a much higher image quality. We
refer to the authors’ papers for a more detailed description of their works.

Modifications. The required modifications for Yu1 are straightforward: Instead of training
on real training data, we stamp synthetic data and use their decoder network for embedding a
watermark with PTW. For Yu2, we ignore all additional losses that address training instabilities
or consistency losses and train their weight mapping network instead via fine-tuning on synthetic
data while freezing the generator’s weights. We embed the Yu2 watermark using the author’s
approach of summing the weight mapper’s prediction to the generator’s parameters.

6.4.4 Attacks to Evade Watermark Detection

This Section proposes three novel adaptive attacks against the robustness of model watermarking
for image generators. Recall from Section 6.3 that we consider two adversaries: a black-box and a

97



white-box adversary. Previous work [248, 249] assumes only a black-box attacker who can execute
any of these five attacks: blurring, cropping, image noising, JPEG compression, or quantization.
We refer to Appendix C for a detailed description of all attacks and parameters, including those
from previous work. Figure 6.4 illustrates our proposed black box and two white-box attacks.

Black-box Attacks

Our black-box attacker first scales the resolution of an image down by a factor ρ and then uses
super-resolution models [190] to upscale the image to its previous resolution. A super-resolution
model can upscale images by interpolating details that are not sharp in the low-resolution image.
Such super-resolution models enable an attacker to apply stronger perturbations to images in an
attempt to remove their watermark with a smaller impact on the image quality. Super-resolution
models have been demonstrated to generalize well to out-of-domain data, meaning the attacker
does not need access to the generator’s training data. While our attacks use pre-trained models
from related work [190] to achieve super-resolution, we are the first to apply super-resolution
models to undermine watermarking in image generators. Previous attacks [248, 250, 249] use
image augmentation techniques such as blurring or noising to remove the watermark.

White-box Attacks

We propose two adaptive white-box attacks called Overwriting and Reverse Pivotal Tuning (RPT).
In the overwriting attack, the attacker trains their own watermark decoder (see Algorithm 14)
and then uses PTW for watermarking the generator using a random message. The success of the
overwriting attack depends on the similarity between the defender’s watermarking key τ and the
attacker’s watermarking key τ̃ . The overwriting attack can successfully remove the watermark if
both keys modulate similar pixels in the input.

Algorithm 15 (White-box) Reverse Pivotal Tuning (RPT)

1: procedure Invert(x, θ̂)
2: return arg min

z∈Z
LLPIPS(Gen(θ̂, z), x)

1: procedure RPT(θ̂, D,N, α)
2: Z ← {invert(x, θ̂)|x ∈ D}
3: for i ∈ {1..N} do
4: gθ̂ ← ∇θ̂LLPIPS(Gen(θ̂, Zi), Di)

5: θ̂ ← θ̂ − α ·Adam(θ, gθ̂)

6: return θ̂
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Figure 6.5: Images synthesized using our watermarked generators on different datasets and
model architectures. We show the image synthesized by the generator (i) before and (ii)
after watermarking and (iii) the difference between the watermarked and non-watermarked
images. StyleGAN-XL does not provide a pre-trained model checkpoint for AFHQv2.

Algorithm 15 implements our RPT attack. The attacker has access to a watermarked generator
θ∗G, a limited set of R non-watermarked, real images DR, and performs the RPT attack for N
steps with a learning rate α. Their goal is to regularize the generator to synthesize images that
are visually similar to their real images (i.e., they have high visual quality) but do not retain a
watermark. The RPT attack consists of two stages: (1) inversion of the real images (line 5) and
(2) Pivotal Tuning so that the inverted images have a high visual similarity to the real images
(lines 5-6). RPT should be successful with the availability of many non-watermarked images.

6.5 Experiments

We describe our experimental setup and specify measured quantities, namely capacity, utility,
detectability, and robustness. Then, we measure detectability and robustness (see Section 6.3) and
compare our watermarking method to the modified methods from related work (see Section 6.4.3).

6.5.1 Experimental Setup

Datasets. We experiment with three datasets for which pre-trained, high-quality generators
have been made publicly available. FFHQ [112] consists of 70k human faces in various poses. We
experiment with a lower-resolution version of the dataset at 2562 pixels, which we refer to as
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FFHQ-256, and the high-quality version FFHQ at 1 0242 pixels. In addition, we experiment with
AFHQv2 [36], which consists of roughly 16k animal images and has a resolution of 5122 pixels.

Pre-Trained Generators. We experiment with three StyleGAN-based architectures: Style-
GAN2 [112], StyleGAN3 [114] and StyleGAN-XL [198]. We select the StyleGAN architectures
because (1) this architecture achieves state-of-the-art FID values on the surveyed datasets and (2)
many high-quality model checkpoints are publicly available that have been trained with different
seeds23. State-of-the-art image generator architectures are evaluated using the same checkpoints
that we are using. Therefore, the image quality of our watermarked generated images can be
compared to the image quality in ongoing research on image generation models.

Framework. We implement all watermarking methods from scratch in PyTorch 1.13. While
implementations for Yu14 and Yu25 exist, we could not reproduce their results with the provided
implementation. Yu1 never converges, and Yu2 is implemented in Tensorflow version 1, which is
no longer supported by modern GPUs, meaning we cannot reuse their source code or load the
provided generator checkpoints.

6.5.2 Metrics

Utility. Similar to existing work [112], we measure the utility of a generator by its Fréchet
Inception Distance (FID) [84]. Lower FID indicates a higher utility. Like Karras et al. [112], we
measure FID between 50, 000 generated and real images. For AFHQv2, we use only 16 000 real
images due to the limited dataset size.

Capacity. We measure the capacity of a watermark in bits by the difference in the expected
number of correctly extracted bits from watermarked and non-watermarked images. The expected
rate of correctly extracted bits equals 0.5 for non-watermarked images, assuming messages are
randomly sampled. Let m ∈ {0, 1}n be a message, τ the secret watermarking key, and θ are the
parameters of a generator. The capacity of the generator is computed as follows.

Cθ = n · E
z∈Z

[
BER(Extract(G(z; θ), τ),m)− 0.5

]
(6.4)

The function BER computes the bit error rate between messages. It is straightforward to achieve
a high capacity by overwriting a significant portion of the image. However, doing so also decreases
the image’s quality, which can be measured and visualized as the capacity/utility trade-off.

Decision Threshold. We consider a watermark to be removed, if we can reject the null
hypothesis H0 with a p-value less than 0.05. The null hypothesis states that k matching bits

2https://github.com/NVlabs/stylegan3
3https://github.com/autonomousvision/stylegan-xl
4https://github.com/ningyu1991/ArtificialGANFingerprints
5https://github.com/ningyu1991/ScalableGANFingerprints
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Model StyleGAN2 StyleGAN3 StyleGAN-XL

FFHQ-256 158h 482h 552h
FFHQ-512 384h 662h 1285h
FFHQ-1024 929h 1161h 1456h

Table 6.2: Time measured in GPU hours required for training generators without water-
marking (from scratch) on FFHQ [112] on 8xA100 GPUs.

were extracted from the synthetic images by random chance. Quantitatively, the probability of
this event is calculated as Pr(X > k|H0) =

∑n
i=k

(
n
i

)
0.5n. In practice, for a watermark with

n = 40 bits, we need to extract at least 26 bits correctly, meaning that we verify the presence of a
watermark by correctly extracting Cθ ≥ 6 in bits.

6.5.3 Runtime Analysis

To calculate the speed-up of PTW over other methods [250, 249], we compare it with training
non-watermarked generators from scratch. This comparison is fair, as watermarking is not expected
to decrease a generator’s training time. We estimate the total runtimes in GPU hours using the
suggested parameters in the relevant GAN papers [113, 114, 198] on 8xA100 GPUs.

Table 6.2 shows the estimated training runtimes from scratch for each generator on FFHQ [113]
at varying pixel resolutions. For instance, training a StyleGAN-XL model on FFHQ at a resolution
of 2562 pixels requires 552 GPU hours. With PTW, watermarking a pre-trained generator on
FFHQ requires only about 0.5 GPU hours, which is three-orders of magnitude improvement for
high-resolution generators. Our approach also requires training the watermarking decoder (see
Algorithm 14), which is a one-time upfront cost of about 2 GPU hours.

6.5.4 Capacity/Utility Trade-off

This section summarizes our results on the capacity/utility trade-off on various datasets and
model architectures and compares them to two existing, modified watermarks: Yu1 and Yu2.

Visual Inspection. Figure 6.5 shows images synthesized by our watermarked generators on
all three surveyed datasets. The columns show the original image synthesized before and after
watermarking and their differences as a heatmap. Heavily modified regions are highlighted in
yellow and red. In both versions of the facial image datasets, we observe that our watermark
focuses on pixels located on the face of the generated person, most prominently its eyes. Upon
closer inspection, the network modifies the eyes and mouth area of a face strongest and is invariant
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(b) FFHQ-1024.
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(c) AFHQv2-512.

Figure 6.6: The capacity/utility trade-off. Figure 6.6a shows our watermark compared to two
existing, modified watermarks for StyleGAN2. Figure 6.6b shows our watermarking for on
FFHQ-1024 using three different generator architectures. Figure 6.6c shows our watermark
on a domain other than faces (wild animals) using different generator architectures. The
shaded area illustrates the standard deviation for three repetitions.

to the location of the face in the image. For AFHQv2, we observe that the pixels are more spread
out onto the entire image. In the next subsection, we compare our watermark quantitatively to
other existing watermarks.

Comparison to Existing Watermarks. Figure 6.6a shows the trade-off on FFHQ-256 for
different watermarking methods using a StyleGAN2 architecture. We plot the embedded bits
Cθ against the FID. Our method outperforms the other two approaches substantially, as we can
embed 100 bits with a similar loss in utility as embedding 20 bits using Yu2. In contrast, Yu1 is
not competitive, even though it employs PTW as its embedding strategy. Upon analyzing the
generated images, we observe that Yu1 is not sensitive to the capacity per pixel and attempts
to encode many bits of the message into background pixels, which noticeably deteriorates the
generator’s quality. We believe this method works better when the entire generator is re-trained
from scratch, as the generator can learn to allocate capacity to arbitrary pixels. For FFHQ-256,
using our watermark, encoding 40 bits only worsens the FID by approximately 0.3 points.

Watermarking High-Quality Generators. Figure 6.6b shows the trade-off using our
watermark across three generator architectures on FFHQ-1024. Compared to FFHQ-256, which
has a FID of over 5, the generators trained on FFHQ-1024 have a much lower FID of less than 3.
Our watermark embeds up to 40 bits with little loss in utility, but the FID deteriorates quickly
when embedding more than 40 bits. For StyleGAN2, we measure a FID deterioration of almost 3
points when embedding 100 bits. We believe the effect on the FID is greater for the high-quality
dataset due to two factors: (1) high-quality images with a low FID may be more sensitive to
modifications, and (2) our watermark decoder downscales images to 2242 pixels, which means that
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Figure 6.7: (a) The detection accuracy in relation to the adversary’s dataset size for different
capacities without truncation. (b) The detection accuracy plotted against truncation when
fixing the adversary’s dataset size to ≤ 100 labeled images. (c) An ablation study for the
number of real, non-watermarked data used during our adaptive Reverse Pivotal Tuning
attack. The shaded areas denote the standard deviation (N=3), and the dashed horizontal
lines show the generator’s FID before the attack.

our decoder cannot extract more information from larger images. Our decoder is a ResNet18 [82]
model designed for this resolution. Nonetheless, we demonstrate that watermarking high-quality
generators is possible using our method.

Watermarking Different Domains. Figure 6.6c shows the capacity/utility trade-off across
two generator architectures for the domain of animal images. We cannot evaluate StyleGAN-XL on
AFHQv2 because no pre-trained checkpoint was available for this dataset. We aim to demonstrate
that our watermark is not restricted to just the facial image domain. Figure 6.6c shows that our
approach can embed watermarks up to 100 bits, although we observe a strong deterioration in
FID of more than 4 points, at which point the watermark is (barely) visually perceptible. While
it is possible to embed 100 bits, given our results, we believe that 40 bits are more practically
relevant as the deterioration in FID is less than one point for StyleGAN2, and the watermark is
not easily perceptible. Interestingly, the deterioration in FID is stronger for the animal domain,
which we attribute to a larger output diversity. AFHQv2 contains images of multiple different
animal species in diverse poses.

6.5.5 Detectability

Our first experiment measures the detectability of our watermark at different capacities. We recall
from our security game in Algorithm 12 that the attacker can access R1, R2 non-watermarked
and watermarked images. In our experiments, we set R1 = R2 and evaluate the detectability of
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images synthesized by generators that have been watermarked with varying capacities. We use a
standard, pre-trained ResNet-18 and fine-tune it for the detection task using an Adam optimizer.

Detectability versus Dataset Size. Figure 6.7a shows the detection accuracy p of our
attack against the number of labeled images available to the adversary. As expected, a higher
watermark capacity results in a higher detectability of watermarked images. We observe that
an adversary with access to ≥ 400 labeled images has a classification accuracy of over 90% in
classifying watermarked/non-watermarked images for any capacity. An adversary with access to
≤ 100 images cannot reliably detect watermarked images if the capacity is at most 40 bits. Our
results show that the detection algorithm cannot detect our watermark unless the attacker can
access a relatively large set of labeled, non-watermarked images. Next, we evaluate the influence
of the latent code’s sampling strategy on the watermark detectability.

Truncation Trick. Generating an image from a GAN requires sampling a latent code. The
truncation trick [16] is a technique used for generative models to limit the range of values for a
latent code and allows for controlling the diversity and quality of the generated images. If the
truncation threshold ψ is low, samples will have a high similarity to the real training data but
limited diversity, meaning they may appear similar to each other. We identify that truncation
plays a significant role in the ability of an adversary to detect watermarks. Figure 6.7b shows
that the detection accuracy decreases with an increasing diversity of the generator’s output when
fixing the number of samples available to the adversary.

6.5.6 Robustness

We evaluate the watermark’s robustness against several types of attacks, including (1) black-box
attacks like cropping, blurring, quantization, noising, JPEG compression, and our super-resolution
attack, and (2) two white-box attacks, overwriting, and Reverse Pivotal Tuning (see Section 6.4.4).
We refer to Appendix C for describing the attacks and parameters we use during our evaluation.
All attacks are evaluated against generators that have been watermarked with a capacity of at
least Cθ ≥ 40 bits. Embedding 40 bits only deteriorates the generator’s FID by about 0.3 points
on average for StyleGAN2 on FFHQ.

Black-box Attacks

Latent Space Analysis. We examine whether there are points in the generator’s latent space
that synthesize high-quality images without a watermark. If such points exist, an attacker could
attempt to find them and sample the generator on these points. We test for such latent subspaces
using three sampling methods: (i) truncation, (ii) latent interpolation, and (iii) style-mixing (for
the StyleGAN architectures). Truncation restricts the distance of a latent code to the global
average. Latent interpolation samples point on a line between latent codes, and style-mixing
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combines intermediate latent codes w ∈ W and feeds them to the generator [112]. Our results
show that the mean capacity remains unaffected by the sampling method, meaning we were able
to successfully extract the watermark message in all cases. We conclude from these results that
the watermark generalizes to the generator’s entire latent space.

Removal Attacks. Next, we perform all surveyed removal attacks against all watermarked
generators and measure the evasion rate and FID with K = 50, 000 synthetic images. A summary
of all black-box attacks is shown as a scatter plot in Figure 6.8. The Figure shows the remaining
capacity after an attack on the x-axis and utility (measured by the FID) on the y-axis. The
Pareto front, which represents the optimal trade-off between capacity and utility, is highlighted
and represents the best attack out of all surveyed attacks that an adversary could choose. We find
that none of the black-box attacks are effective at removing a watermark, but our super-resolution
attack is always part of the Pareto Front.

The Pareto front represents the best capacity/utility trade-off a black-box attacker can achieve
using these attacks. For example, a black-box attacker can reduce the capacity by 10 bits from
50 to 40 but, in doing so, reduces the FID by over 6 points. Our super-resolution attack is on
the Pareto front but it cannot remove the watermark. Removal is only possible when the FID
drops to 30, at which point the image quality has been compromised. Table 6.3 summarizes the
best-performing black-box attacks for the three evaluated generator architectures. Each attack has
a single parameter that we ablate over using grid search. We refer to Appendix C for a detailed
description of all attacks and parameters we used in this ablation. Table 6.3 lists those data points
that either remove the watermark (Cθ < 5) or, if the watermark cannot be removed, the data
point with the lowest FID. None of the black-box attacks, including our super-resolution attack,
successfully remove the watermark while preserving the generator’s utility.

White-box Attacks

Overwriting. Table 6.3 shows that overwriting can remove watermarks but deteriorates the
generator’s image quality, measured using FID, by approximately 3 points for StyleGAN2 and 6
points for StyleGAN-XL. Such a deterioration in FID likely prevents attacks in practice because
low-quality deepfakes are more easily detectable. Overwriting implicitly assumes knowledge of the
defender’s watermarking method, which may not be true in practice. Overwriting could cause a
noticeable decline in FID if the attacker’s and defender’s watermarking methods differ.

Reverse Pivotal Tuning is substantially more effective than the overwriting attack as it
preserves the FID of the generator to a greater extent. We found that an attacker accessing 200 real,
non-watermarked images can remove any watermark without causing a noticeable deterioration in
FID. This means that with access to less than 0.3% of the training dataset, a white-box adversary
can remove any watermark. In the case of StyleGAN-XL, using 200 images leads to a decrease in
FID of less than one point (from 2.67 to 3.52).

105



0 10 20 30 40 50
Remaining Capacity after an Attack (Bits)

3
4
5

10

20

30
40
50
70

100

Fr
éc

he
t I

nc
ep

tio
n 

Di
st

an
ce

 (F
ID

)

Capacity/Utility Trade-off for Robustness

Pareto Front (Black-box)
Pareto Front (White-box)
Black-box Attack
White-box Attack

StyleGAN2
StyleGAN-XL
StyleGAN3

Figure 6.8: This Figure shows the robustness of our watermark against all surveyed attacks.
We highlight black-box and white-box attacks that are in the Pareto front.

StyleGAN2 StyleGAN-XL StyleGAN3

Cθ FID Cθ FID Cθ FID
Attacks 43.05 5.4 48.79 2.67 40.33 6.61

Black-box Attacks
Crop 39.73 8.72 42.71 6.18 38.23 8.69
Blur 38.82 36.84 12.12 10.32 35.12 11.73
JPEG 42.12 8.70 38.43 9.12 38.23 9.33
Noise 40.26 8.29 45.17 7.35 32.29 10.73
Quantize 37.17 11.60 43.27 5.61 39.72 8.71
SR 32.86 11.51 34.52 11.62 30.12 11.34

White-box Attacks
Overwrite 4.78 8.34 4.91 8.83 4.73 9.71
RPT200 4.91 5.47 4.52 3.52 4.59 6.65
RPT100 4.44 5.56 4.21 3.90 4.47 6.75
RPT50 4.38 8.07 4.38 15.32 4.16 14.47

Table 6.3: The capacity and FID of all surveyed attacks. We ablate over multiple parameters
for each attack and this table shows the points with the best (i.e., lowest) FID. RPTR

stands for the Reverse Pivotal Tuning attack using R real samples.
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Ablation Study for RPT. Figure 6.7c shows an ablation study over the amount of real,
non-watermarked training data an attacker requires to remove a watermark. We measured these
curves as follows: We randomly sample a set of R real images and run the RPT attack encoded by
Algorithm 15 with gradually increasing weight λLPIPS on the LPIPS loss until the watermark is
removed. Then, we compute the FID on K = 50, 000 images. In all experiments, the watermark is
eventually removed, but access to more data has a significant impact on the FID that is retained
in the generator after the attack. For StyleGAN2, we find that 80 images (≈ 0.1% of the training
data) can remove the watermark at less than 0.3 points of deterioration in FID, representing a
visually imperceptible quality degradation. Our results demonstrate that an adaptive attacker
with access to the generator’s parameters can remove any watermark using only a small number
of clean, non-watermarked images and can threaten the trustworthiness of watermarking.

6.6 Discussion

This section discusses the limitations of watermarking and our study, the extension of our work to
other image generators, and ethical considerations from releasing our attacks.

Non-Cooperative Providers. Our study indicates that watermarking for image generators
can be robust under restrictive threat models (see Section 6.3), where the attacker is limited in
their access to capable image generators. For watermarking to effectively control misuse, every
provider has to cooperate and watermark their generators before disclosing them. However, this is
unlikely to occur in practice [237]. A capable adversary with access to sufficient training data and
computational resources can always train their own generator without a watermark and provide it
to others. It is important to acknowledge this inherent limitation of watermarking methods, as
they cannot prevent this scenario. Nonetheless, they can act as a deterrent to adversaries who
cannot train their own generators from synthesizing harmful deepfakes.

Watermarking from Scratch. We focus on the robustness and undetectability of water-
marking methods on pre-trained image generators due to the substantially higher scalability
than watermarking from scratch. Further research is needed to explore the potential impact of
watermarking from scratch on robustness and undetectability.

Watermarking for Intellectual Property Protection. Watermarking has also been used
for Intellectual Protection (IP) protection of neural networks [168, 147, 227]. The IP protection
threat model typically assumes white-box access of the adversary to the target generator and
black-box API access of the defender to the adversary’s generator to verify a watermark. For
example, Ong et al. [168] embed a backdoor into a generator that synthesizes images containing a
watermark when the generator is queried with certain latent codes. All watermarks evaluated in
this chapter assume no-box access to the target generator, meaning that our watermarks can be
extracted from any of the generator’s synthetic images. We show that existing no-box watermarks
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are not robust in the white-box setting, meaning that they are likely not suitable candidates for
IP protection of generators in practice.

Other Generator Models. Recently, image generators such as DALL·E 2 [187] based on
the Transformer architecture [230], and latent diffusion models [190] have been shown to also
synthesize high-quality images. While OpenAI’s DALL·E 2 generator is only accessible through a
black-box API6, model checkpoints for latent diffusion are publicly available as a white-box7. The
utility of these checkpoints on FFHQ is comparable to that of the StyleGAN model checkpoints
used in this chapter (e.g., latent diffusion reports a FID score of 4.98). DALL·E 2 and Latent
Diffusion models also map from a latent space to images, but they accept auxiliary input such as
text that controls the synthesis. While PTW is compatible with any image generator that maps
latent codes to images, extending our work to other models requires developing a watermarking
method to map to their parameters (see Section 6.4.2), which we leave to future work. Our work
demonstrates for one state-of-the-art generator model architecture (StyleGAN-based generators
with a FID score of 2.1) that they can be watermarked effectively using our method.

Summary of Deepfake Detection. Our research reveals that existing watermarks are not
robust against an adversary with white-box access to the generator but can withstand a black-box
adversary. This means that watermarking can be a viable solution for deterring deepfakes if the
provider acts responsibly and the generator is provided through a black-box deployment. The
provider’s goal is to deter model misuse, which can be accomplished through several means. These
include (1) monitoring and restricting queries, (2) relying on passive deepfake detection methods,
or (3) implementing proactive methods such as watermarking. Monitoring lacks transparency and
can deter usage of the model if the user does not trust the provider [218, 50]. Passive detection
methods may not detect deepfakes as the quality of synthesized images improves or the adversary
adapts to existing detectors [52]. Active methods such as watermarking enable a different type
of deployment that (1) does not require query monitoring and (2) remains applicable to future,
higher-quality generators. The provider and the user agree on a mutually trusted third party to
deploy the generator, who does not tamper with the watermark nor monitor the queries. Our
research suggests that such a black-box deployment represents a viable option in practice to
prevent model misuse using existing watermarks.

Ethical Consideration. Deep image generators can have potential negative societal impacts
when misused, for instance, when generating harmful deepfakes. Our contributions are intended to
raise awareness about the limited trustworthiness of watermarking in potential future deployments
of image generators rather than to undermine real systems. While the attacks presented in our
work could be used to evade watermarking, thereby enabling misuse, we believe that sharing our
attacks does not cause harm at this time since there are no known deployments of the presented
watermarking methods. We aim to advance the development of watermarking methods that our
attacks cannot break.

6https://openai.com/dall-e-2/
7https://github.com/CompVis/latent-diffusion
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6.7 Conclusion

We propose Pivotal Tuning Watermarking (PTW), which is a scalable method for watermarking
pre-trained image generators. PTW is three orders of magnitude faster than related work and
enables watermarking large generators efficiently without any training data. We find that our
watermark is not easily detectable without the secret watermarking key unless the attacker can
access ≥ 100 labeled non-watermarked and watermarked images. Our watermark shows robustness
against attackers who are limited in their availability of similar-quality models. However, we are
the first to show that watermarking for image generators cannot withstand white-box attackers.
Such an attacker can remove watermarks with almost no impact on image quality using less than
0.3% of the training data with our adaptive Reverse Pivotal Tuning (RPT) attack. Our results
challenge that watermarking controls misuse when the parameters of a generator are provided,
showing that open-source watermarking in the no-box setting remains a challenging problem.
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Chapter 7

Leveraging Optimization for Adaptive
Attacks on Image Watermarks

The previous chapter proposed a watermarking method for pre-trained image generators that could
be optimized, which we refer to as a learnable watermarking method. A challenge when evaluating
watermarking methods and their (adaptive) attacks is to determine whether an adaptive attack is
optimal, i.e., it is the best possible attack. In this chapter, we solve this problem by defining an
objective function and then approach adaptive attacks as an optimization problem. The core idea
of our adaptive attacks is to replicate secret watermarking keys locally by creating surrogate keys
that are differentiable and can be used to optimize the attack’s parameters. We demonstrate for
Stable Diffusion models that such an attacker can break all five surveyed watermarking methods
at negligible degradation in image quality. Our findings highlight that the robustness of image
watermarks must be tested with learnable, adaptive attackers in the future.

7.1 Motivation

Deepfakes are images synthesized with deep image generators that can undermine the authenticity
of real images. While generated content can serve many beneficial purposes if used ethically, for
example, in medical imaging [7] or education [176], they also have the potential to be misused and
erode trust in digital media. Deepfakes have already been used in disinformation campaigns [14, 12]
and social engineering attacks [161], highlighting the need for methods that control the misuse of
deep image generators.

Watermarking offers a solution to controlling misuse by embedding hidden messages into all
generated images that are later detectable using a secret watermarking key. Images detected
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as deepfakes can be flagged by social media platforms or news agencies, mitigating potential
harm [79]. Providers of large image generators such as Google have announced the deployment of
their own watermarking methods [78] to enable the detection of deepfakes and promote the ethical
use of their models, which was also declared as one of the main goals in the US government’s “AI
Executive Order” [65].

A core security property of watermarking is robustness, which states that an attacker can evade
detection only by substantially degrading the image’s quality. While several watermarking methods
have been proposed for image generators [236, 261, 68], none of them are certifiably robust [11]
and instead, robustness is tested empirically using a limited set of known attacks. Claimed
security properties of previous watermarking methods have been broken by novel attacks [148],
and no comprehensive method exists to validate robustness, which causes difficulty in trusting the
deployment of watermarking in practice.

We propose testing the robustness of watermarking by defining robustness using objective
function and approaching adaptive attacks as an optimization problem. Adaptive attacks are
specific to the watermarking algorithm used by the defender but have no access to the secret
watermarking key. Knowledge of the watermarking algorithm enables the attacker to consider a
range of surrogate keys similar to the defender’s key. This is also a challenge for optimization
since the attacker only has imperfect information about the optimization problem.

Adaptive attackers had previously been shown to break the robustness of watermarking for
image classifiers [148], but attacks had to be handcrafted against each watermarking method.
Finding attack parameters through an optimization process can be challenging when the water-
marking method is not easily optimizable, for instance, when it is not differentiable. Our attacks
leverage optimization by approximating watermark verification through a differentiable process.
Figure 7.1 shows that our adaptive attacker can prepare their attacks before the provider deploys
their watermark. We show that adaptive, learnable attackers, whose parameters can be optimized
efficiently, can evade watermark detection for 1 billion parameter Stable Diffusion models at a
negligible degradation in image quality.

7.2 No-box Watermarking

Watermarking embeds a hidden signal into a medium, such as images, using a secret watermarking
key that is later extractable using the same secret key. In the context of deep learning, watermarking
can be characterized by the medium used by the defender to verify the presence of the hidden
signal. White-box and black-box watermarking methods assume access to the model’s parameters
or query access via an API and have been used1 primarily for Intellectual Property protection [227].

1Uchida et al. [227] study watermarking image classifiers. Our categorization is independent of the task.
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Figure 7.1: The attacker prepares their attack by generating a surrogate key and leveraging
optimization to find optimal attack parameters θA (illustrated here as an encoder E and
decoder D) for any message. Then, the attacker generates watermarked images and applies
a modification using their optimized attack to evade detection. The attacker succeeds if
the verification procedure cannot detect the watermark in high-quality images.

No-box watermarking [145] assumes a more restrictive setting where the defender only knows
the generated content but does not know the query used to generate the image. This type of
watermarking has been used to control misuse by having the ability to detect any image generated
by the provided image generator [78]. Given a generator’s parameters θG, a no-box watermarking
method defines the following three procedures.

• τ ← KeyGen(θG): A randomized function to generate a watermarking key τ .

• θ∗G ← Embed(θG, τ,m): Given a generator θG, a watermarking key τ and a message m,
return parameters θ∗G of a watermarked generator2 that only generates watermarked images.

• p ← Verify(x, τ,m): This function (i) extracts a message m′ from x using τ and (ii)
returns the p-value to reject the null hypothesis that m and m′ match by random chance.

A watermarking method is a set of algorithms that specify (KeyGen, Embed, Verify). A
watermark is a hidden signal in an image that can be mapped to a message m using a secret key τ .
The key refers to secret random bits of information used in the randomized verification algorithm
to detect a message. Adaptive attackers know the watermarking method but not the key message
pair. [24] first studied adaptive attacks in the context of adversarial attacks.

2Embedding can alter the entire generation process, including adding pre- and post-processors.
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In this chapter, we denote the similarity between two messages by their L1-norm difference.
We use more meaningful similarity measures when M allows it, such as the Bit-Error-Rate
(BER) when the messages consist of bits. A watermark is retained in an image if the verification
procedure returns p < 0.01, following [236]. Adi et al. [3] specify the requirements for trustworthy
watermarking, and we focus on two properties: Effectiveness and robustness. Effectiveness
states that a watermarked generator has a high image quality while retaining the watermark,
and robustness means that a watermark is retained in an image unless the image’s quality is
substantially degraded. We refer to Chapter 6 for security games encoding effectiveness and
robustness.

7.2.1 Watermarking for Image Generators

Several works propose no-box watermarking methods to prevent misuse for two types of image gen-
erators: Generative Adversarial Networks (GANs) [76] and Latent Diffusion Models (LDMs) [190].
We distinguish between post-hoc watermarking methods that apply an imperceptible modification
to an image and semantic watermarks that modify the output distribution of an image generator
and are truly “invisible” [236].

For post-hoc watermarking, traditional methods hide messages using the Discrete Wavelet
Transform (DWT) and Discrete Wavelet Transform with Singular Value Decomposition (DWT-
SVD) [41] and are currently used for Stable Diffusion3. RivaGAN [256] watermarks by training a
deep neural network adversarially to stamp a pattern on an image. Yu et al. [250, 249] propose
two methods that modify the generator’s training procedure but require expensive re-training
from scratch. Lukas and Kerschbaum [145] propose a watermarking method for GANs that can be
embedded into a pre-trained generator. Zhao et al. [261] propose a general method to watermark
diffusion models (WDM) that uses a method similar to Yu et al. [250], which tunes an autoencoder
to stamp a watermark on all training data before also re-training the generator from scratch.
Fernandez et al. [68] pre-train an autoencoder to encode hidden messages into the training data
and embed the watermark by fine-tuning the decoder D component of the LDM.

Wen et al. [236] are the first to propose a semantic watermarking method for LDMs they call
Tree-Rings Watermarks (TRW). The idea is to mark the initial noise xT with a tree-ring-like
pattern m in the frequency domain before generating an image. During detection, they leverage
the reversibility of the diffusion process in LDM’s, which allows mapping an image back to its
original noise. The verification extracts a message m′ by spectral analysis and tests whether the
same tree-ring patterns m are retained in the frequency domain of the reconstructed noise.

Surveyed Watermarking Methods. In this chapter, we evaluate the robustness of five
watermarking methods: TRW, WDM, DWT, DWT-SVD, and RivaGAN. DWT, DWT-SVD, and

3https://github.com/Stability-AI/stablediffusion
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RivaGAN are default choices when using StabilityAI’s Stable Diffusion repository, and WDM and
TRW are two recently proposed methods for Stable Diffusion models. However, WDM requires
re-training a Stable Diffusion model from scratch, which can require 150-1000 GPU days [49] and
is not replicable with limited resources. For this reason, instead of using the autoencoder on the
input data, we apply their autoencoder as a post-processor after generating images.

7.3 Threat Model

We consider a provider capable of training large image generators who make their generators
accessible to many users via a black-box API, such as OpenAI with DALL·E 2. Users can query
the generator by including a textual prompt that controls the content of the generated image. We
consider an untrustworthy user who wants to misuse the provided generator without detection.

Provider’s Capabilities and Goals (Model Capabilities) The provider fully controls image
generation, including the ability to post-process generated images. (Watermark Verification) In a
no-box setting, the defender must verify their watermark using a single generated image. The
defender aims for an effective watermark that preserves generator quality while preventing the
attacker from evading detection without significant image quality degradation.

Attacker’s Capabilities. (Model Capabilities) The user has black-box query access to the
provider’s watermarked model and also has white-box access to less capable, open-source surrogate
generators, such as Stable Diffusion on Huggingface. We assume the surrogate model’s image
quality is inferior to the provided model; otherwise, there would be no need to use the watermarked
model. Our attacker does not require access to image generators from other providers, but, of
course, such access may imply access to surrogate models as our attack does require. (Data Access)
The attacker has unrestricted access to real-world image and caption data available online, such as
LAION-5B [199]. (Resources) Computational resources are limited, preventing the attacker from
training their own image generator from scratch. (Queries) The provider charges the attacker per
image query, limiting the number of queries they can make. The attacker can generate images
either unconditionally or with textual prompts. (Adaptive) The attacker knows the watermarking
method but lacks access to the secret watermarking key τ and chosen message m.

Attacker’s Goal. The attacker wants to use the provided, watermarked generator to
synthesize images (i) without an extractable watermark that (ii) have a high quality. We measure
quality using a perceptual similarity function Q : D×D → R between the generated, watermarked
image and a perturbed image after the attacker evades watermark detection. We require that the
defender verifies the presence of a watermark correctly with a p-value of at most p < 0.01 [236].
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7.4 Conceptual Approach

In this Section, we define robustness as an objective function and show that we can optimize this
function efficiently using stochastic gradient descent when the watermark algorithm is known
(i.e., in adaptive attacks) for all five surveyed watermarking methods. Then, we propose learnable
attacks and find optimal parameters through empirical loss minimization.

7.4.1 Robustness as an Objective Function

As described in Section 7.2, a watermarking method defines three procedures (KeyGen, Embed,
Verify). The provider generates a secret watermarking key τ ← KeyGen(θG) that allows them
to watermark their generator so that all its generated images retain the watermark. To embed a
watermark, the provider chooses a message (we sample a message m ∼M uniformly at random)
and modifies their generator’s parameters θ∗G ← Embed(θG, τ,m). Any image generated by θ∗G
should retain the watermark. For any x ← Generate(θ∗G) we call a watermark effective if (i)
the watermark is retained, i.e., Verify(x, τ,m) < 0.01 and (ii) the watermarked images have
a high perceptual quality. The attacker generates images x ← Generate(θ∗G) and applies an
image-to-image transformation, A : D → D with parameters θA to evade watermark detection by
perturbing x̂← A(x). Finally, the defender verifies the presence of their watermark in x̂.

Let W (θG, τ
′,m) = Embed(θG, τ

′,m) be the watermarked generator after embedding with
key τ ′ and message m and GW = Generate(W (θG, τ

′,m)) denotes the generation of an image
using the watermarked generator. For any high-quality GW , the attacker’s objective becomes:

max
θA

E
τ ′←Keygen(θG)

m∈M

[
Verify(A(GW ), τ ′,m) +Q(A(GW ), GW )

]
(7.1)

This objective seeks to maximize (i) the expectation of successful watermark evasion over all
potential watermarking keys τ ′ and messages m (since the attacker does not know which key-
message pair was chosen) and (ii) the perceptual similarity of the images before and after the attack.
Note that in this chapter, we define image quality as the perceptual similarity to the watermarked
image before the attack. There are two obstacles for an attacker to optimize this objective: (1)
The attacker has imperfect information about the optimization problem and must substitute the
defender’s image generator with a less capable, open-source surrogate generator. When KeyGen
depends on θG, then the distribution of keys differs, and the attack’s effectiveness must transfer
to keys generated using θG. (2) The optimization problem might be hard to approximate, even
when perfect information is available, e.g., when the watermark verification procedure is not
differentiable.
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7.4.2 Making Watermarking Keys Differentiable

We overcome the two aforementioned limitations by (1) giving the attacker access to a similar
(but less capable) surrogate generator θ̂G, enabling them to generate surrogate watermarking
keys, and (2) by creating a method GKeyGen(θ̂G) that creates a surrogate watermarking key θK
through which we can backpropagate gradients. A simple but computationally expensive method
of creating differentiable keys θD is using Algorithm 16 to train a watermark extraction neural
network with parameters θD to predict the message m from an image.

Algorithm 16 GKeyGen: A Simple Method to Generate Differentiable Keys

Require: Surrogate generator θ̂G, Watermarking method (KeyGen, Embed, Verify), N
1: τ ← Keygen(θ̂G) ▷ The non-differentiable surrogate key
2: for j ← 1 to N do
3: m ∼M ▷ Sample a random message
4: θ̂∗G ← Embed(θ̂G, τ,m) ▷ Embed the watermark

5: x← Generate(θ̂∗G)
6: m′ ← Extract(x; θD)
7: gθD ← ∇θD ||m−m′||1 ▷ Compute gradients using distance between messages
8: θD ← θD − Adam(θD, gθD)
9:

10: return θD ▷ The differentiable surrogate key

Algorithm 16 generates a surrogate key (line 1) to embed a watermark into the surrogate
generator and use it to generate watermarked images (lines 3-5). The attacker extracts the message
(line 6) and updates the parameters of the (differentiable) watermark decoder using an Adam
optimizer [116]. The attacker subsequently uses the decoder’s parameters θD as inputs to Verify.
Our adaptive attacker must invoke Algorithm 16 only for the non-differentiable watermarks DCT
and DCT-SVD [41]. The remaining three watermarking methods TRW [236], WDM [261] and
RivaGAN [256] do not require invoking GKeyGen. In our work, we tune the parameters θD of a
ResNet-50 decoder (see Appendix D.3 for details).

7.4.3 Leveraging Optimization against Watermarks

Equation (7.1) requires finding attack parameters θA against any watermarking key τ ′ ←
KeyGen(θG), which can be computationally expensive if the attacker has to invocate GKeyGen
many times. We find empirically that generating many keys is unnecessary, and the attacker can
find effective attacks using only a single surrogate watermarking key θD ← GKeyGen(θ̂G).

We propose two learnable attacks A1,A2 whose parameters θA1 , θA2 can be optimized efficiently.
The first attack called Adversarial Noising, finds adversarial examples given an image x using
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Algorithm 17 Adversarial Noising

Require: surrogate θ̂G, budget ϵ, image x
1: θA ← 0 ▷ adversarial perturbation
2: θD ← GKeyGen(θ̂G)
3: m← Extract(x; θD)
4: for j ← 1 to N do
5: m′ ← Extract(x+ θA, θD)
6: gθA ← −∇θA ||m−m′||1
7: θA ← Pϵ(θA − Adam(θA, gθA))
8: return x+ θA

Algorithm 18 Adversarial Compression

Require: surrogate θ̂G, strength α, image x
1: θA ← [θE, θD] ▷ Compressor parameters
2: θD ← GKeyGen(θ̂G) ▷ surrogate key
3: for j ← 1 to N do
4: m ∼M
5: θ̂∗G ← Embed(θ̂G, θD,m)

6: x← Generate(θ̂∗G)
7: x′ ← D(E(x; θA)) ▷ compression
8: m′ ← Extract(x′, θD)
9: gθA ← ∇δ(LLPIPS(x

′, x)− α||m−
m′||1)

10: θA ← θA − Adam(θA, gθA)
11: return D(E(x; θA))

the surrogate key as a reward model. The second attack, called Adversarial Compression, first
fine-tunes the parameters of a pre-trained autoencoder in a preparation stage and uses the
optimized parameters during an attack. The availability of a pre-trained autoencoder is a realistic
assumption if the attacker has access to a surrogate Stable Diffusion generator, as the autoencoder
is a detachable component of any Stable Diffusion generator. Access to a surrogate generator
implies the availability of a pre-trained autoencoder at no additional cost to the attacker.

Adversarial Noising. Algorithm 17 shows the pseudocode of our adversarial noising attack.
Given a surrogate generator θ̂G, a budget ϵ ∈ R+ for the maximum allowed noise perturbation,
and a watermarked image x generated using the provider’s watermarked model, the attacker wants
to compute a perturbation within an ϵ-ball of the L∞ norm that evades watermark detection.
The attacker generates a local surrogate watermarking key (line 2) and extracts a message m from
x (line 3). Then, the attacker computes the adversarial perturbation by maximizing the distance
to the initially extracted message m and clips the perturbation into an ϵ-ball (line 7).

Adversarial Compression. Algorithm 18 shows the pseudocode of our adversarial com-
pression attack. After generating a surrogate watermarking key (line 2), the attacker generates
images containing a random message (lines 4-6) and uses their encoder-decoder pair to compress
the images (line 7). The attacker iteratively updates their model’s parameters by (i) minimizing a
quality loss, which we set to the LPIPS metric [257], and (ii) maximizing the distance between the
extracted and embedded messages (line 9). The output θA of the optimization loop between lines
3 and 10 only needs to be run once, and the weights θA can be re-used in subsequent attacks.

We highlight that the attacker optimizes an approximation of Equation (7.1) since they
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only have a surrogate generator θ̂G, but not the provider’s generator θG. This may lead to a
generalization gap of the attack at inference time. Even if an attacker can find optimal attack
parameters θA that optimizes Equation (7.1) using θ̂G, the attacker cannot test whether their
attack remains effective when the defender uses a different model θG to generate watermarking
keys.

7.5 Experiments

Image Generators. We experiment with Stable Diffusion, an open-source, state-of-the-art latent
diffusion model. The defender deploys a Stable Diffusion-v2.0 model4 trained for 1.4m steps in
total on a subset of LAION-5B [199]. The attacker uses a less capable Stable Diffusion-v1.15

checkpoint, trained for 431k steps in total on LAION-2B and LAION-HD. All experiments were
conducted on NVIDIA A100 GPUs.

Images are generated using a DPM solver [144] with 20 inference steps and a default guidance
scale of 7.5. We create three different watermarked generators for each surveyed watermarking
method by randomly sampling a watermarking key τ ← KeyGen(θG) and a message m ∼ M,
used to embed a watermark. Appendix D.1 contains descriptions of the watermarking keys. All
reported values represent the mean value over three independently generated secret keys.

Quantitative Analysis. Similar to Wen et al. [236], we report the True Positive Rate when
the False Positive Rate is fixed to 1%, called the TPR@1%FPR. Appendix D.2 describes statistical
tests used in the verification procedure of each watermarking method to derive p-values. We
report the Fréchet Inception Distance (FID) [84], which measures the similarity between real and
generated images. Additionally, we report the CLIP score [185] that measures the similarity of a
prompt to an image. We generate 1k images to evaluate TPR@1%FPR and 5k images to evaluate
FID and CLIP scores on the training dataset of MS-COCO-2017 [135].

7.5.1 Evaluating Robustness

Figure 7.2 shows the effectiveness of our attacks against all surveyed watermarking methods. We
evaluate adaptive and non-adaptive attacks. Similar to [236], for the non-adaptive attacks, we use
Blurring, JPEG Compression, Cropping, Gaussian noise, Jittering, Quantization, and Rotation
but find these attacks to be ineffective at removing the watermark. Figure 7.2 highlights Pareto
optimal attacks for pairs of (i) watermark detection accuracies and (ii) perceptual distances. We
find that only adaptive attacks evade watermark detection while preserving image quality.

4https://huggingface.co/stabilityai/stable-diffusion-2-base
5https://huggingface.co/CompVis/stable-diffusion-v1-1
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Figure 7.2: The effectiveness of our attacks against all watermarks. We highlight the Pareto
front for each watermarking method by dashed lines and indicate adaptive/non-adaptive
attacks by colors.

Table 7.1 summarizes the best attacks from Figure 7.2 when we set the lowest acceptable
detection accuracy to 10%. When multiple attacks achieve a detection accuracy lower than 10%,
we pick the attack with the lowest perceptual distance to the watermarked image. We observe
that adversarial compression is an effective attack against all watermarking methods. TRW is
also evaded by adversarial compression, but adversarial noising at ϵ = 2/255 preserves a higher
image quality.

TRW WDM DWT DWT-SVD RivaGAN

Best Attack Adv. Noising Compression Compression Compression Compression
Parameters ϵ = 2/255 r = 1 r = 1 r = 1 r = 1
LPIPS ⇓ 3.2e-2 5.6e-2 7.7e-2 7.5e-2 7.3e-2
Accuracy ⇓ 5.2% 2.0% 0.8% 1.9% 6.3%

Table 7.1: A summary of Pareto optimal attacks with detection accuracies less than 10%.
We list the attack’s name and parameters, the perceptual distance before and after evasion,
and the accuracy (TPR@1%FPR). ϵ is the maximal perturbation in the L∞ norm and r is
the number of compressions.

7.5.2 Image Quality after an Attack

Figure 7.3 shows the perceptual quality after using our adaptive attacks. We show a cutout of the
top left image patch with high contrasts on the bottom right to visualize noise artifacts potentially
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Figure 7.3: A visual analysis of two adaptive attacks. The left image shows the unwa-
termarked output, including a high-contrast cutout of the top left corner of the image to
visualize noise artifacts. On the right are images after evasion with adversarial noising (top)
and adversarial compression (bottom).

introduced by our attacks. We observe that, unlike adversarial noising, the compression attack
introduces no new visible artifacts. Appendix D.4 displays more visualizations on the perceptual
impact of our attacks on the image quality.

Table 7.2 shows the FID and CLIP scores of the watermarked images and the images after
using our adaptive attacks. We calculate the quality using the best attack configuration from
Figure 7.2 when the detection accuracy is less than 10%. Adversarial Noising is ineffective at
removing WDM and RivaGAN for ϵ ≤ 10/255, which we denote by N/A in Table 7.2.

7.5.3 Ablation Study

Figure 7.4 shows ablation studies for our adaptive attacks over the (i) maximum perturbation
budget and (ii) the number of compressions applied during the attack. TRW and DWT-SVD are
highly vulnerable to adversarial noising, whereas RivaGAN and WDM are substantially more
robust to these types of attacks. We believe this is because keys generated by RivaGAN and WDM
are sufficiently randomized, which makes our attack (that uses only a single surrogate key) less
effective unless the surrogate key uses similar channels as the secret key to hide the watermark.

Figure 7.4 shows that adversarial compression without optimization of the parameters θA
is ineffective at evading watermark detection against all methods except DWT. Our adaptive
optimization is necessary to find effective attacks. After optimization, adversarial compression
evades detection from all watermarking methods with only one compression.
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TRW WDM DWT DWT-SVD RivaGAN

FID CLIP FID CLIP FID CLIP FID CLIP FID CLIP

No WM 23.32 31.76 23.48 31.77 23.48 31.77 23.48 31.77 23.48 31.77
WM 24.19 31.78 23.43 31.72 23.16 32.11 23.10 32.15 22.96 31.84
A-Noise 23.67 32.15 N/A N/A 23.55 32.46 22.89 32.50 N/A N/A
A-Comp 24.36 31.87 23.27 32.01 23.16 32.17 23.06 31.92 23.25 31.86

Table 7.2: Quality metrics before and after watermark evasion. FID⇓ represents the
Fréchet Inception Distance, and CLIP⇑ represents the CLIP score, computed on 5k images
from MS-COCO-2017. N/A means the attack could not evade watermark detection, and
consequently, we do not report quality measures.
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Figure 7.4: Ablation over (left) the maximum perturbation budget ϵ in L∞ for adversarial
noising and (right) the number of adversarial compressions against each watermarking
method. “No Optimizations” means we did not optimize the parameters θA of the attack.

7.6 Discussion & Related work

Attack Scalability. The presented findings clearly indicate that even with a less capable
surrogate generator, an adaptive attacker can remove all surveyed watermarks with minimal
quality degradation. Our attackers generate a single surrogate key and can evade watermark
verification, which indicates a design flaw since the key seems to have little impact. If KeyGen
were sufficiently randomized, breaking robustness should not be possible using a single key, even
if the provided and surrogate generators are the same. An interesting question emerging from our
study relates to the maximum difference between the watermarked and surrogate generators for
the attacks to remain effective. We used a best-effort approach by using two public checkpoints
with the largest reported quality differences: Stable Diffusion v1.1 and v2. More research is
needed to study the impact on the effectiveness of our attacks (i) using different models, (ii) or
limiting the attacker’s knowledge of the method’s public parameters. Our attacks evaluate the
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best parameters suggested by the authors.

Types of Learnable Attacks. Measuring the robustness against different types of learnable
attacks is crucial in assessing the trustworthiness of watermarking. We explored (i) Adversarial
Examples, which rely solely on the surrogate key, and (ii) Adversarial Compression, which
additionally requires the availability of a pre-trained autoencoder. We believe this requirement is
satisfied in practice, given that (i) training autoencoders is computationally less demanding than
training Stable Diffusion, and many pre-trained autoencoders have already been made publicly
available [178]. Although autoencoders enhance an attacker’s ability to modify images, our study
did not extend to other learnable attacks such as inpainting [190] or more potent image editing
methods [17] which could further enhance an attack’s effectiveness.

Enhancing Robustness using Adaptive and Learnable Attacks. Relying on non-
adaptive attacks for evaluating a watermark’s robustness is inadequate as it underestimates
the attacker’s capabilities. To claim robustness, the defender could (i) provide a certification
of robustness [11], or (ii) showcase empirically that their watermark withstands strong attacks.
The issue is that we lack strong attackers. Although [148] demonstrated that adaptive attackers
can break watermarks for image classifiers, their attacks were handcrafted and did not scale.
Instead, we propose a better method of empirically testing robustness by proposing adaptive
learnable attackers that require only the specification of a type of learnable attack, followed by an
optimization procedure to find parameters that minimize an objective function. We believe that
any watermarking method proposed in the future should evaluate robustness using our attacks
and expect that future watermarking methods can enhance their robustness by incorporating our
attacks.

Limitations. Our attacks are based on the availability of the watermarking algorithm and an
open-source surrogate generator to replicate keys. While providers like Stable Diffusion openly
share their models, and replicas of OpenAI’s DALL·E models are publicly available [45], not all
providers release information about their models. To the best of our knowledge, Google has not
released their generators [193], but efforts to replicate are ongoing6. Providers like Midjourney,
who keep their image generation algorithms undisclosed, prevent adaptive attackers altogether
but may be vulnerable to these attacks by anyone to whom this information is released.

Outlook. An adaptive attacker can instantiate more effective versions of their attacks with
knowledge of the watermarking method’s algorithmic descriptions (KeyGen, Embed, Verify).
Our attacks require no interaction with the provider. Robustness against adaptive attacks extends
to robustness against non-adaptive attacks, which makes studying the former interesting. Adaptive
attacks will remain a valuable tool for studying a watermarking method’s robustness, even if the
watermarking method is kept secret. Previous works did not consider such attacks, and we show
that future watermarking methods must consider them if they claim robustness empirically.

6https://github.com/lucidrains/imagen-pytorch
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7.6.1 Related Work

[110] propose attacks that use (indirect) access to the secret watermarking key via access to the
provider’s Verify method. Our attacks require no access to the provider’s secret watermarking key,
as our attacks optimize over any key message pair (see Equation (7.1)). These threats are related
since both undermine robustness but are orthogonal due to different threat models. [175, 43]
propose black-box watermarking methods that protect the Intellectual Property of Diffusion
Models. We focus on no-box verifiable watermarking methods that control misuse. [145, 250, 249]
propose watermarking methods but only evaluate GANs. We focus on watermarking methods for
pre-trained Stable Diffusion models with much higher output diversity and image quality [49].

7.7 Conclusion

We propose testing the robustness of watermarking through adaptive, learnable attacks. Our
empirical analysis shows that such attackers can evade watermark detection against all five
surveyed image watermarks. Adversarial noising evades TRW [236] with ϵ = 2/255 but needs to
add visible noise to evade the remaining four watermarking methods. Adversarial compression
evades all five watermarking methods using only a single compression. We encourage using these
adaptive attacks to test the robustness of watermarking methods in the future.
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Chapter 8

Conclusion and Future Directions

This thesis presented five projects on three threats that emerge when providing large and capable
ML models to untrustworthy users. These threats are (i) data leakage, where the model leaks
sensitive information about the training data; (ii) model stealing, where an attacker redistributes
the provided model without authorization; and (iii) model misuse, where an attacker generates
content to deceive or manipulate others. The research question in this thesis was the following.

How can security mechanisms be tested and designed to control unintended use of a
provided model in the presence of untrustworthy users?

To provide answers to this question, I have empirically evaluated security mechanisms and tested
their reliability in an adversarial setting. Below, I summarize the contributions of this thesis and
outline future research directions.

8.1 Summary of Contributions

Chapter 3 shows that differential privacy alone cannot mitigate all privacy risks when fine-tuning
language models. The problem is that sensitive data, such as Personally Identifiable Information
(PII), can be duplicated within a group across many records, which would have to be accounted for
when applying differentially private noise. However, it is difficult to know group sizes a priori, and
larger group sizes have a detrimental impact on the model’s utility. The main contributions are (i)
novel attacks that can extract up to 10× more PII sequences than existing attacks, (ii) showing
that sentence-level differential privacy reduces the risk of PII disclosure but still leaks about 3%
of PII sequences, and (iii) a subtle connection between record-level membership inference and PII
reconstruction.
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I study the reliability of fingerprinting and watermarking methods for controlling unauthorized
model redistribution in Chapters 4 and 5. The fingerprint presented in Chapter 5 proposes a
new subclass of transferable adversarial examples, which I call conferrable examples, that extract
inputs from a model via optimization and can be used to identify its surrogate models. I conduct
a comprehensive set of experiments to demonstrate that the fingerprint is robust against model
extraction attacks, which extends to robustness against other attacks, such as fine-tuning or
pruning. However, designing defenses with robustness against unknown, adaptive attacks is
challenging without knowledge of these attacks. I show that adaptive attacks can undermine
the presented fingerprint’s robustness. In Chapter 4, I describe work to systematically evaluate
the robustness of known watermarking methods using handcrafted adaptive attacks. I propose
taxonomies and game-based definitions for robustness. The main contributions of this chapter are
taxonomies, new adaptive attacks, and guidelines on evaluating the robustness of watermarking
methods via handcrafted attacks.

Chapters 6 and 7 study the reliability of watermarking to monitor and control the potential
misuse of image generators by detecting watermarks in generated content. In Chapter 6, I propose
Pivotal Tuning Watermarking, which is the first learnable watermarking method for pre-trained
generators and is up to (i) three orders of magnitude faster than watermarking from scratch and
(ii) does not require any training data. An advantage of learnable watermarking methods is that
they can be adapted against known attacks. The evaluation shows that learnable watermarks
can be robust against attackers restricted to black-box API access to the watermarked model.
However, I propose attacks that undermine their robustness when the attacker has white-box
access to the parameters of the watermarked model. In the white-box setting, the reverse Pivotal
Tuning attack can remove any watermark at negligible degradation in image quality using only
200 non-watermarked images. These results support that open-weight models are unlikely to
contain a robust watermark. In Chapter 7, I instantiate learnable, adaptive attacks that can be
optimized to find the best possible parameters against any watermarking method given only its
algorithmic description and access to a less capable surrogate model. My work shows that under
such an assumption, one can instantiate adaptive attacks against five surveyed watermarking
methods that break their robustness with imperceptible perturbations to the image. Notably,
the presented attacks do not require access to the provider’s watermark detector and can remove
watermarks from a single watermarked image. I expect that future watermarking methods can
incorporate these attacks to enhance their robustness.

8.2 Future Directions

The ongoing development of increasingly capable ML systems underscores the need for security
measures to control their misuse and prevent data leakage. Such security mechanisms must
be reliable; otherwise, they could provide a false sense of security or privacy. For example,
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attackers have recently been shown to break ChatGPT’s security mechanisms. They could, as a
consequence, obtain potentially sensitive training data from ML systems such as ChatGPT [165]
or manipulate the system to produce unintended or potentially harmful content [181, 234]. My
research demonstrates that empirically tested security mechanisms are often unreliable because
attackers can develop adaptive attacks. Provable defenses like differential privacy can still leak
sensitive information from their dataset, as detecting private information correlated or duplicated
across multiple records is challenging. A primary challenge in developing empirical defenses is the
lack of knowledge about strong, adaptive attacks. To address this challenge, my work proposes
treating robustness as an objective function that can be optimized to obtain learnable adaptive
attackers that do not require handcrafting. An intriguing future direction involves integrating
learnable defenses with learnable attacks and studying the equilibrium of this adversarial min-max
optimization game. What restrictions on the adversaries’ capabilities make it challenging for
them to develop effective attacks, and how can one design security mechanisms that leverage such
hardness assumptions? While out of the scope of my thesis, answering these research questions is
essential to enhancing the reliability of security mechanisms.
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Appendix A

Deep Neural Network Fingerprinting
by Conferrable Adversarial Examples

A.1 Supplementary Material

Setup. We train all models on a server running Ubuntu 18.04 in 64-bit mode using four Tesla
P100 GPUs and 128 cores of an IBM POWER8 CPU (2.4GHz) with up to 1TB of accessible RAM.
The machine learning is implemented in Keras using the Tensorflow v2.2 backend, and datasets are
loaded using Tensorflow Dataset1. We re-use implementations of existing adversarial attacks from
the Adversarial Robustness Toolbox v1.3.1 [167]. DP-SGD [2] is implemented through Tensorflow
Privacy [70]. All remaining attacks and IPGuard [23] are re-implemented from scratch.

For the generated adversarial examples using attacks like FGM, PGD, and CW-L∞, we use
the following parametrization. We limit the maximum number of iterations in PGD to 10 and use
a step size of 0.01. For FGM, we use a step size of ϵ, and for CW-L∞ we limit the number of
iterations to 50, use a confidence parameter k = 0.5, a learning rate of 0.01 and a step-size of 0.01.
Fingerprints generated by CEM for CIFAR-10 can be seen in Fig. A.1a.

Analyzing Conferrable Examples. We further examine our fingerprint to find an
explanation for the large mean CAE accuracy in all reference models of more than 50%, even
though the baseline for random guessing is just 10%. For this, we plot the confusion matrix for
our fingerprint at ϵ = 0.025 in Fig. A.2.

The confusion matrix shows that all classes are represented in the fingerprint, and the target
class distribution is balanced. We notice a symmetry in the confusion matrix along the diagonal
line. A source-target class pair appears more often in our fingerprint if the classes are more similar

1https://www.tensorflow.org/datasets
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(a)

(b)

Figure A.1: Figure A.1a shows conferrable examples generated with CEM on CIFAR-10
with ϵ ≈ 6/255. Figure A.1b shows examples generated with CEM on ImageNet32 with
ϵ ≈ 26/255.
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Figure A.2: Confusion matrix for a fingerprint on CIFAR-10 models at ϵ ≈ 6/255 with the
initial label on the vertical axis and the target label on the horizontal axis. Depicted values
are normalized and represent percentages.
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to each other, e.g. classes ’dog’ and ’cat’ or ’automobile’ and ’truck’. We hypothesize that this
partially explains why reference models have large CAE accuracies of over 50%, even though the
baseline for random guessing would be at 10%. A reference model is more likely to misclassify
the class ’cat’ as the class ’dog’ than any other class, which moves the baseline closer to 50%
for many cases. The similarity of the reference model to the source model is another important
aspect of explaining the high CAE accuracy in the reference model. Our experiments show that
reference models trained on the same dataset are also more likely to share the same adversarial
vulnerabilities.

A.2 Experiments on ImageNet32

We select the following 100 classes from ImageNet32 [38].

kit fox, Persian cat, gazelle, porcupine, sea lion, killer whale, African
elephant, jaguar, otterhound, hyena, sorrel, dalmatian, fox squirrel, tiger, zebra,
ram, orangutan, squirrel monkey, komondor, guinea pig, golden retriever, macaque,
pug, water buffalo, American black bear, giant panda, armadillo, gibbon, German
shepherd, koala, umbrella, soccer ball, starfish, grand piano, laptop, strawberry,
airliner, balloon, space shuttle, aircraft carrier, tank, missile, mountain bike,
steam locomotive, cab, snowplow, bookcase, toilet seat, pool table, orange, lemon,
violin, sax, volcano, coral reef, lakeside, hammer, vulture, hummingbird, flamingo,
great white shark, hammerhead, stingray, barracouta, goldfish, American
chameleon, green snake, European fire salamander, loudspeaker, microphone,
digital clock, sunglass, combination lock, nail, altar, mountain tent, scoreboard,
mashed potato, head cabbage, cucumber, plate, necklace, sandal, ski mask, teddy,
golf ball, red wine, sunscreen, beer glass, cup, traffic light, lipstick, hotdog,
toilet tissue, cassette, lotion, barrel, basketball, barbell, pole

We train a ResNet20 source model and locally retrain c1 = 14 surrogate and c2 = 15 reference
models. In contrast to the experiments on CIFAR-10, we allow the defender access to various
model architectures, such as ResNet56, Densenet, VGG19, and MobilenetV2. We want to verify if
generating conferrable adversarial examples is feasible when the defender trains a set of models
with a larger variety in model architecture. In practice, it may be the case that the defender
locally searches for the best model architecture and, in the process, obtains multiple surrogate
and reference models with various model architectures.

Table A.1 and A.2 show the test accuracies and CAEAcc values of ImageNet32 surrogate and
reference models. Values in the brackets denote the lowest and highest values measured. Our
results for ImageNet32 are comparable to those obtained with models trained on CIFAR-10. We
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even measure a lower CAE accuracy in reference models than we did in reference models trained
on CIFAR-10. Note that the experiments conducted on ImageNet32 are results reported for
ϵ = 0.15, and the results for CIFAR-10 were generated with a perturbation threshold of ϵ = 0.025.

Table A.1: Surrogate model accuracies for ImageNet32.

Fine-Tuning

Metric Source FTLL FTAL RTLL RTAL

Test Acc 55.70 57.30 61.30 59.00 45.00
CAEAcc 100.00 100.00 100.00 100.00 82.00

Retrain

Metric ResNet20 ResNet56 Densenet VGG19 MobileNetV2

Test Acc 53.10 54.50 50.95 52.50 52.87
CAEAcc 97.00 99.00 90.00 76.00 97.00

Extraction

Metric Jagielski Papernot Knockoff

Test Acc 53.20 50.90 47.40
CAEAcc 98.00 90.00 98.00

Table A.2: Reference model accuracies for ImageNet32.

ResNet20 ResNet56 Densenet VGG19 MobileNetV2

Test Acc 55.00 59.10 55.95 54.10 62.90
CAEAcc 47.00 50.00 47.00 34.00 61.00

A.3 Fingerprinting Definitions

In this section, we formally define the term ’surrogate’ and provide security games for irremovability
and non-evasiveness of DNN fingerprinting. For ease of notation, we define an auxiliary function
to generate a fingerprint for a source model. enumerate

Definition of Surrogates. We define the randomized process ’distill’ that on the input of a
source model M and a dataset D ∈ D, returns a distilled surrogate S of the source model. Note
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Figure A.3: A schematic illustration of the source model and the two types of models, the
surrogate S and the reference model R, that a fingerprint verification should distinguish.
Distill is any distillation attack that results in a surrogate model with similar performance
as the source model, and Classify returns the predicted output of a model an image.

Algorithm 19 FModel Generation

1: procedure FModel
2: M ← T (D)
3: (F ,Fy)← Generate(M,D)
4: return M,F ,Fy

that other common derivation methods, such as retraining, fine-tuning, and pruning on labels
provided by the source model, can be expressed in terms of knowledge distillation [86].

For a given source model M we recursively define the set SM of its surrogate models as follows.

SM ← {Distill(S,D)|S ∈ SM ∪ {M}} (A.1)

If a model R ∈M is trained from a labeled dataset without access to S and hence is not contained
in the set of surrogate models for source model M , we refer to that model as reference model
relative to M . The goal of this work is to find a method that verifies whether a surrogate model
is in SM .

Irremovability. The attacker accesses the source model M to derive a surrogate M̂ ← A(M).
We say fingerprinting is not removable if the adversary has a low probability of winning the
following security game.

Note that our definition of a robust fingerprint differs from related work [23] because we
include in the set of removal attacks A also model extraction attacks. Fig. A.3 schematically
shows the types of models that a fingerprint verification should distinguish.

Non-Evasiveness. Hitaj and Mancini [87] show that an attacker can evade the black-box
verification by rejecting queries or returning random labels when the verification process is
detectable. We specify a non-evasiveness property, which makes it hard to separate members
of the fingerprint to benign data samples. A fingerprinting method is non-evasive, if for some
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Algorithm 20 Defense Strategy

1: procedure Defense(O,D,A)
2: (M,F ,Fy)← FModel ▷ compute model and fingerprint
3: M̂0 ← Train(O,D) ▷ train oracle model
4: M̂1 ← AdversaryTrain(M) ▷ adversary trains model

5: b
$←− {0, 1} ▷ randomly select a model

6: Send M̂b to the Defender
7: if Pr[Verify(M̂b(F),Fy) = b] ≈ 0.5 then
8: Adversary wins

ε ∈ R+, the adversary has a low probability of winning the following security game. Let Adv(D, ϵ)
be an adversarial attack with maximum perturbation ϵ ∈ R+ performed on the dataset D. An
adversarial example with a perturbation smaller than ϵ can be hard to detect [24]. The security
game is defined as follows.

Algorithm 21 Adversary Detection

1: procedure AdversaryDetection
2: (M,F ,Fy)← FModel
3: M̂ ← TrainDetector(M)

4: b
$←− {0, 1}

5: X0
$←− Adv(D, ϵ) ▷ generate adversarial examples

6: X1
$←− F

7: Send Xb to the adversary
8: if Pr[M̂(Xb) = b] > 0.5 + ϵ then
9: Adversary wins

Note that ε bounds the trade-off between evasiveness and the suspect model’s performance.
When ε becomes smaller, more queries from benign users are falsely rejected, or a random label
is returned at the same level of evasiveness. The goal of the attacker is to find a model that
maximizes evasiveness while also maximizing model performance.

A.4 Optimizing Conferrability

In this section, we formally present the optimization problem that has to be solved to find highly
conferrable adversarial examples. We denote the set of surrogate models for a source model M by
SM and the set of reference models as R.
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Conferrability scores should be minimal when all reference and surrogate models assign the same
target label (perfect transferability), or none of them assign the target label (non-transferability).
An adversarial example that is perfectly transferable to surrogate models and non-transferable to
reference models should have the maximum conferrability score. The following formula satisfies
these constraints for a target class t ∈ Y.

Confer(S,R, x; t) = Transfer(S, x; t)(1− Transfer(R, x; t)) (A.2)

Note that Equation A.2 does not have weight factors, as it is equally important to transfer to
surrogate models as it is to not transfer to reference models.

The optimization constraints to find adversarial examples with high conferrability scores can
be formalized as follows for a benign input x ∈ X and a perturbation δ in the infinity norm.

Minimize δ s.t.

1. M(x+ δ) = t

2. Pr
S∈S

[S(x+ δ) = t] ≈ 1

3. Pr
R∈R

[R(x+ δ) ̸= t] ≈ 1

subject to ||δ||∞ ≤ ϵ

The challenge of generating conferrable examples is to find a good optimization strategy that
(i) finds local minima close to the global minimum and (ii) uses the least amount of surrogate
and reference models to find those conferrable examples. Obtaining many surrogate and reference
models that allow optimizing for conferrability is a one-time effort, but may be a practical
limitation for datasets where training even a single model is prohibitively expensive.

A.5 Removal Attacks

In this section, we provide more details on the removal attacks and their parametrization.

A.5.1 Model Extraction

Retraining uses the source model M to provide labels to the training data D and then uses these
labels to train the surrogate model S.

S ← T (D) (A.3)
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Jagielski et al. [104] post-process the labels received from the source model by a distillation
parameter T ′ to obtain soft labels. For an input x ∈ D and a source model M , the soft labels
M ′(x) can be computed as follows.

M ′(x)i =
exp(M(x)

1/T ′

i )∑
j exp(M(x)

1/T ′

j )
(A.4)

The surrogate model is trained on the soft labels.

S ← Train(M ′, D) (A.5)

Papernot et al. [171] propose training the surrogate model iteratively starting with an initial
dataset D0 that is concatenated after each round with a set of the surrogate model’s adversarial
examples.

Algorithm 22 Sequential Model Training

1: S0 ← T (D0) ▷ Initial training with dataset D0

2: for i = 0, 1, 2, . . . do ▷ Iterative training process
3: Di+1 ← {x+ λ · sign(Jacobian(Si,M, x)) | x ∈ Di} ∪Di ▷ Dataset update
4: Si+1 ← FineTune(M,Di+1) ▷ Train model with updated dataset

JS denotes the Jacobian matrix computed on the surrogate model S for the labels assigned by
the source model M . We use the FGM adversarial attack to generate adversarial examples, as
described by the authors.

Knockoff [169] uses cross-domain transferability to derive a surrogate model. They construct
a transfer set, which is cross-domain data used to derive the surrogate model. We implement the
random selection approach presented by the authors

A.6 Empirical Sensitivity Analysis

We perform a grid search to understand the sensitivity of the choice of hyperparameters in
Equation (5.6) on the mean conferrability score over n = 50 inputs. Mean conferrability is
evaluated over five surrogate and five reference models trained on CIFAR-10, which have not
been used in the generation process of the conferrable examples. We evaluate all parameters in
the range [0.1, 0.5, 1.0] and leave out all combinations where α = β = γ, except for the baseline
used in Chapter 5 (α = β = γ = 1). The examples are generated for ϵ ≈ 6/255 with an Adam
optimizer [116] with a learning rate 5e−4, and we optimize for 300 iterations.
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Algorithm 23 Model Fingerprinting

1: procedure Generate(M,D,O)
2: S ← {Train(M,D)|i ∈ {1..c1}} ▷ Train surrogate models
3: R ← {Train(O, D)|i ∈ {1..c2}} ▷ Train reference models
4: DC ← {x ∈ D| arg maxiM(x)i = arg maxj O(x)j} ▷ Filter benign inputs
5: ME ← Compose(M,S,R) ▷ Generate conferrable examples
6: F ′ ← ∅
7: for x0 ∈ DC do
8: F ′ ← F ′ ∪ {x0 + arg minδ(L(x0,ME(x0 + δ)))}
9: F ← {x′ ∈ F ′|Confer(S,R, x′) ≥ τ} ▷ Apply threshold

10: return F ,M(F) ▷ Output fingerprint and key

Algorithm 24 Model Verification

1: procedure Verify(M̂(F),Fy)
2: F ′y ← Predict(M̂,F) ▷ Get suspect model’s output

3: pret ← 1
|Fy |

∑|Fy |
i=0 1argmaxj Fyij=argmaxj Fy

′
ij

▷ Calculate agreement

4: return pret ≥ θ ▷ Return verification result

The results are illustrated in Table A.3. We find that when α is small, the optimization does
not converge, and the source model does not predict the target label. When α is large relative to
the other parameters, we measure the highest mean conferrability. For α = 1.0 and β = γ = 0.1,
we measure a mean conferrability of 0.49.
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α β γ Conferrability α β γ Conferrability

0.1 0.1 0.5 0.20 0.5 1.0 0.1 0.44
0.1 0.1 1.0 0.20 0.5 1.0 0.5 0.37
0.1 0.5 0.1 0.20 0.5 1.0 1.0 0.29
0.1 0.5 0.5 0.20 1.0 0.1 0.1 0.49
0.1 0.5 1.0 0.20 1.0 0.1 0.5 0.42
0.1 1.0 0.1 0.20 1.0 0.1 1.0 0.40
0.1 1.0 0.5 0.20 1.0 0.5 0.1 0.45
0.1 1.0 1.0 0.20 1.0 0.5 0.5 0.37
0.5 0.1 0.1 0.20 1.0 0.5 1.0 0.37
0.5 0.1 0.5 0.20 1.0 1.0 0.1 0.41
0.5 0.1 1.0 0.20 1.0 1.0 0.5 0.42
0.5 0.5 0.1 0.20 1.0 1.0 1.0 0.40
0.5 0.5 1.0 0.20

Table A.3: An empirical sensitivity analysis of the hyperparameters in Equation (5.6).
Conferrability measures the mean conferrability score over five surrogate and five reference
models trained on CIFAR-10.
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Appendix B

SoK: How Robust is Deep Neural
Network Image Classification
Watermarking?

Appendix B.3 describes the datasets used in our experiments. Section 4.2 describes the hyper-
parameters used for all surveyed watermarking schemes in our ablation study. Appendix B.2
describes all surveyed removal attacks, including novel attacks such as weight shifting, and con-
tains a description of the parameters we used in the ablation study. A detailed description of
each approach can be found in the author’s papers. Section 4.3 provides further details on the
computation of the decision thresholds (see Section 4.5.1).

B.1 Watermarking Methods

In this section, we present the surveyed watermarking schemes and the parameters used for our
ablation study. For simplicity, we refer to a watermarking scheme by the first author’s name
unless it is known under a different name.

B.1.1 Model Independent

Adi [3]. We embed the same 100 watermarking keys used by the authors1. Images are resized
along their shortest side to the dimensions of the training data, followed by center cropping. For

1https://github.com/adiyoss/WatermarkNN
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ImageNet, we embed using early stopping [30] on the watermarking loss with a patience of five,
evaluated at the end of every 200th batch. The watermarking loss is the cross-entropy loss of the
model computed on the watermarking key. We ablate over the learning rate lr ∈ {10−3, 10−4}.
To speed up the embedding, we repeat the watermarking keys 1000 times for ImageNet and 100
times for CIFAR-10.

Zhang [255]. The authors propose three different schemes, referred to as Content, Noise and
Unrelated.

• Content: We use a white square embedded at the top left corner of the image. The square’s
size is s ∈ {32, 128} for ImageNet and s ∈ {8, 16} for CIFAR-10.

• Noise: We add the noise across the entire image and clip the resulting values into the range
[0, 1]. We ablate over the standard deviation σ ∈ {0.4, 1.0} for both ImageNet and CIFAR-10.
For CIFAR-10, we ablate over the learning rate during the embedding lr ∈ {10−3, 10−4}.

• Unrelated: We sample watermarking images from the Omniglot dataset [125] for both
CIFAR-10 and ImageNet. We ablate over the learning rate lr ∈ {10−3, 10−4}.

For CIFAR-10, we randomly sample the source-target class pair ’cat’ and ’dog’ and for ImageNet,
we sample ’tiger shark’ and ’stingray’. We use early stopping on the watermarking loss during
the embedding and repeat the watermarking keys 1000 times for ImageNet and 100 times for
CIFAR-10.

B.1.2 Model Dependent

Frontier-Stitching [127]. We use FGM [77] to generate adversarial examples and ablate over
the perturbation threshold perturbation threshold 0.1 ≤ ϵ ≤ 0.25.

Blackmarks [34]. We ablate over the loss term that minimizes the bit error rate between the
predicted cluster and the assigned cluster 0.01 ≤ λ ≤ 100.

Jia [109]. We sample the watermarking key from the training data and use a square as the
secret trigger pattern (same as the authors). For CIFAR-10, we compute the source class 4 (’deer’)
and target class 6 (’frog’). We use SNNL weights w ∈ {0.25, 1, 4} and a rate of r = 2, i.e., every
second batch consists of watermark data. The trigger has a size of 3× 3 pixels and resets values to
zero in the image across all three channels. For ImageNet, we compute source class 3 (’tiger shark,
Galeocerdo cuvieri’) and target class 4 (’hammerhead, hammerhead shark’). We use an SNNL
weight w = 64 and a ratio of ten during the embedding using a square trigger with 5× 5 pixels.
We compute the SNNL on a single layer, as mentioned by the authors, due to GPU memory
restrictions when computing the SNNL on all layers. When embedding 100 elements with a batch
size of 64, we observe the convergence of the SNNL and cross-entropy losses after about 100k
images are shown to the source model.
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B.1.3 Parameter Encoding

Uchida [227]. We embed the Uchida watermark with early stopping on the loss during training
and a patience of five, whereby we evaluate the condition at the end of every epoch for CIFAR-10
and after every 200 batches for ImageNet. The target layer has 9 408 weights for the ImageNet
models and 432 for CIFAR-10 models. For CIFAR-10, we ablate over the constant weight factor
of the embedding loss λ ∈ {0.1, 1, 10} and for ImageNet, we ablate over λ ∈ {1, 10}.

DeepMarks2 [33]. We ablate over the embedding strength γ ∈ {0.1, 10} and use the same
target layer as in Uchida.

DeepSigns [192]. In the author’s paper, clusters are modelled using a Gaussian Mixture
Model, whereby each feature cluster ci is described by a mean µi and a standard deviation σi. In
our experiments, we had difficulties embedding the watermark in ImageNet models using more
than m = 1 Gaussian distributions because of instabilities during training.

Even after extensive parameter search, we observe that for m > 1 (i) the test accuracy drops
significantly over time, and (ii) the regularization loss does not converge. The authors do not
provide source code, nor did they validate their scheme for ImageNet. We solve the issue for
ImageNet by modifying two elements of the embedding procedure.

• Single Gaussian: We use m = 1 Gaussian and n = 100 bits to embed the message on
ImageNet. We observe that the regularization loss converges.

• Alternating Training: We train on the whole dataset without the regularization loss for
two batches. Then, we fine-tune with the embedding loss on samples from the source class
for one batch. We observe that this stabilizes training and maintains a high test accuracy.

We can replicate the author’s result on CIFAR-10 by using m = 10 Gaussian distributions (one
for each class) and embedding n = 10 bits per Gaussian. On ImageNet, we embed the watermark
into a layer with 25 088 features and 24 576 features for CIFAR-10.

B.1.4 Active Schemes

DAWN [216]. We ablate over the expected rate r ∈ {0.01, 0.02} at which a false label is returned.

2DeepMarks is labeled as a fingerprint by the authors, but since it modifies the model by embedding a
message, it is a watermark as per our definition.
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B.2 Watermark Removal Attacks

In this section, we describe the parameters used in our ablation study for all removal attacks
surveyed in Chapter 4, sorted by their attack category. We make configuration files that show
the parameter ablations for all removal attacks publicly available as part of our Watermark-
Robustness-Toolbox (WRT).

B.2.1 Input Preprocessing

Input Reconstruction [136]. uses an autoencoder3 [166] to compress and reconstruct images
before passing them to the surrogate model. We ablate over the size of its bottleneck layer
64 ≤ h ≤ 512. We do not perform Input Reconstruction on ImageNet because, to the best of our
knowledge, no high-fidelity autoencoder for ImageNet is available.

Input Noising [253]. We ablate over the standard deviation 0.01 ≤ σ ≤ 0.2 for Gaussian
noise with zero mean.

Input Quantization [134]. For a given number of bits b we discretize the input space into 2b

evenly spaced intervals, referred to as quanta. We project every value of the input image to the
mean of its quantum and ablate over the number of bits b ∈ {3, 4, 5}.

Input Smoothing [241]. We use a mean, median, and Gaussian kernel. For the mean and
median kernels, we use a filter size of three, and for the Gaussian kernel, we ablate over the
standard deviation 0.1 ≤ σ ≤ 0.3.

Input Flipping. We flip an image along its horizontal axis.

JPEG Compression [57]. We ablate over a parameter 5 ≤ q ≤ 95 that controls the quality
of the compression.

Feature Squeezing [241]. The quanta values are chosen to be multiples of 0.5k for some
1 ≤ k ≤ 6.

B.2.2 Model Modification

Adversarial Training [151]. We inject about 10% of the training dataset’s size with adversarial
examples generated using Projected Gradient Descent [151] for ϵ ∈ {0.01, 0.1, 0.25}, a step size of
0.01 and a maximum number of 40 iterations. Each adversarial example is repeated twice, and we
fine-tune the surrogate model for five epochs.

3https://github.com/foamliu/Autoencoder
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Feature Permutation. DNNs are invariant to feature permutations, meaning that neurons
in a hidden layer can be permuted without affecting the model’s functionality. We use (random)
feature permutation as an adaptive attack designed specifically against Deepsigns [192], which
encodes the message into the activations of hidden layers.

Fine-Pruning [139]. We ablate over the sparsity 0.8 ≤ ρ ≤ 0.95 and fine-tune for ten epochs
on CIFAR-10 and five epochs on ImageNet.

Fine-Tuning [227]. Fine-Tuning as a model stealing attack refers to a set of attacks that
first apply a transformation to the model, followed by fine-tuning.

• Fine-Tune All Layers (FTAL). All weights are fine-tuned.

• Fine-Tune Last Layer (FTLL). All but the last layer’s weights are frozen while the model
is fine-tuned.

• Retrain All Layers (RTAL). The last layer’s weights are re-initialized, and all weights are
fine-tuned.

• Retrain Last Layer (RTLL). The last layer’s weights are re-initialized, and only that layer’s
weights are fine-tuned.

RTAL and RTLL use predicted labels, whereas FTAL and FTLL use ground-truth labels (otherwise,
gradients are zero).

Label Smoothing [215]. We use a weight of ϵ = 0.3 for the weighted sum between the
prediction and a uniform vector.

Regularization [202]. We L2-regularize for five epochs on CIFAR-10 and one epoch on
ImageNet using a weight decay of 0.1 (two orders of magnitudes higher than during training).

Neural Cleanse [232]. We implement both unlearning and pruning methods proposed by
the authors and ablate over the learning rate 10−3 ≤ α ≤ 10−2 for unlearning and the sparsity
0.8 ≤ ρ ≤ 0.99 for pruning.

Neural Laundering [5]. We ablate over the activation threshold to prune convolutional layer
neurons 0.03 ≤ c ≤ 3 and the learning rate for fine-tuning 10−4 ≤ α ≤ 10−2.

Weight Pruning [264]. We ablate over the sparsity 0.1 ≤ ρ ≤ 0.95 for the trainable weights
of each layer.

Weight Shifting. Weight shifting is a novel, adapted attack against parameter encoding
watermarking schemes. The idea is to apply a small perturbation to all filters of each convolutional
layer in the network, followed by fine-tuning the model to regain the loss in test accuracy. We design
weight shifting as an efficient and effective model stealing attack specifically against Uchida [227]
and Deepmarks [33].

169



We explain the attack’s idea at the example of Uchida, but a similar intuition holds for
Deepmarks where the extraction is highly similar. Let W ∈ Rn×c×w× be the convolutional filters
of a target layer, where n is the number of filters, c are the number of channels, and w, h are the
width and height of each filter. A weakness of Uchida exploited by weight shifting is that the
attacker knows that if all convolutional filters were inverted, i.e. W ′i = −Wi, then the watermark
accuracy would be zero. We cannot directly invert all filters, as the model experiences a significant
drop in test accuracy. Hence, we construct a ’softer’ version of the attack that only moves each
filter in the direction of the inverse mean multiplied by some constant weight parameter λ1 ∈ R.
We additionally add small random Gaussian noise to each filter to encourage the network to find
slightly different filters in the fine-tuning phase.

Our attack can be formalized by the function S(W ;λ1, λ2), which takes as input a set of filters
W and outputs a shifted set of filters W ′. The parameter λ1, λ2 trade off the attack’s efficiency
with its effectiveness. Let A be a random normal matrix of the same shape as each filter Wi with
a variance equivalent to the variance over all filters for a convolutional layer and a mean of zero.
Shifted weights for each convolutional layer can be computed by applying the following function.

S(W ;λ1, λ2)i = Wi −
λ1
n

∑
j=1..n

Wj − λ2A (B.1)

In our experiments, we use λ1 = 1.5, λ2 = 1.0 for CIFAR-10 and λ1 = 1.3, λ2 = 0 for Imagenet.
We fine-tune the model for ten epochs on CIFAR-10 and for five epochs on ImageNet.

Weight Quantization [96]. We ablate over the bit-size b ∈ {4, 5} (i.e., there are 2b discrete
states) for CIFAR-10 and ImageNet and fine-tune the model for one epoch.

B.2.3 Model Extraction

Retraining [224]. We use the same parameters for the surrogate model that were used to train
the source model.

Smooth Retraining. Smooth Retraining trains a surrogate model on smoothed labels
obtained from querying the source model for multiple variations of the same image. For each
query, a random affine transformation (e.g., random cropping) is applied to the image, and the
mean of all received labels is computed as the final label. We design smooth retraining as an
adaptive attack against the active watermarking scheme DAWN. The intuition is that if DAWN
responds with a false label for one image, variations of the same image have a high probability of
receiving the label predicted by the source model. In our experiments, we use n = 3 queries.

Knockoff Nets [169]. We implement the random selection approach on the Open Images [124]
dataset.
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Transfer Learning [223]. Transfer Learning is an established method from related work,
where a pre-trained model from a different domain is fine-tuned for a new domain. We propose
using transfer learning as a novel method to remove DNN watermarks. We use a pre-trained
ResNet-101 model4 for Open Images (v2) [124] that was published by Google in 2017. The model
defines an output layer with 5k output classes, which we replace by a layer with ten output classes
for CIFAR-10 and 1k output classes for ImageNet. We transfer-learn the model using stochastic
gradient descent (SGD) and freeze all but the last layer for the first 300 batches. We proceed by
training the entire model for five epochs and reduce the learning rate by a factor of ten in epochs
three and four.

Adversarial Training (from scratch) [151]. This method is equivalent to adversarial
training described earlier, except that the attacker trains the surrogate model from scratch.

B.3 Datasets

We now describe the datasets used in our experiments.

• CIFAR-10 [121] contains 50k training images and 10k testing images from 10 classes. All
images have a resolution of 32× 32 pixels.

• ImageNet [47] contains 1.28 million training images and 150k testing images from 1k
classes. We resize and center crop all images to 224× 224 pixels.

• Open Images [124] defines 19.794 classes and contains in total 8.85 million training images,
out of which we use a subset of 1.7 million images due to storage constraints on our machines.
Multiple classes can label images. We resize and center-crop all images to 224× 224 pixels.

All source models are trained on either CIFAR-10 or ImageNet. The Open Images dataset
is only used in the transfer learning attack. We use standard training procedures and data
augmentation, such as horizontal flipping, to train models for CIFAR-10 and ImageNet from
scratch. On CIFAR-10 and ImageNet, the source models achieve a test accuracy of 94.20% and
75.48%, respectively.

B.3.1 Dataset Splitting

We split the whole training dataset into thirds and assigned two-thirds to the defender for
embedding the watermark. For the attacker’s training data, we distinguish between the availability
of the following three datasets to the attacker.

4https://storage.googleapis.com/openimages/2017 07/oidv2-resnet v1 101.ckpt.tar.gz
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1. Labeled: Data from the same distribution where a subset of at most a third of the data is
labeled.

2. Domain: Unlabeled data from the same distribution.

3. Transfer: Labeled data from a different distribution.

In the first two cases, we assign the remaining third of the training dataset to the attacker. We
make an exception for model extraction attacks, where the attacker can access the whole training
dataset without labels. Such an exception is necessary because model extraction attacks require a
substantial amount of data to output well-trained surrogate models. We underpin this argument
with an ablation study in Section 4.6.5. Otherwise, if the attacker is given domain data, we replace
all labels with the predictions of the source model.

B.4 Estimating the Decision Threshold

For model-independent, model-dependent, and active watermarking schemes, we use 20 publicly
available, pre-trained models from the torchvision5 package that do not necessarily share the
source model’s architecture (ResNet-50). We use the following model architectures.

ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152 [82], Wide ResNet-50, Wide
ResNet-101 [251], VGG11, VGG13, VGG16, VGG19 [208], SqueezeNet [100], DenseNet-121,
DenseNet-161 [94], GoogleNet [214], Alexnet, Alexnet-50 [122], InceptionNet [215], MobileNetV2 [197]

B.5 Datasets

We survey three datasets that we split into training, validation, and testing sets. The training and
validation sets are equally large and are used to train the target and shadow models, respectively.
We evaluate the perplexity of all models on the testing set, which neither the target nor the
shadow models have seen during training.

ECHR. ECHR contains cases from the European Court of Human Rights, which consists of
118 161 records. Each record consists of 88.12 tokens on average. A case contains a numbered list
of facts, describing the case, such as persons involved or an order of events. We split the dataset
so that each record contains a single fact.

Flair NER tags 16 133 unique PII of the entity class ‘person’ and we identify that 23.75%
of the records contain at least one PII sequence. PII is duplicated according to a power law

5https://pytorch.org/vision/stable/models.html
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distribution with a mean duplication rate of 4.66. Most PII (≥ 90%) sequences are duplicated less
than 3 times. For ECHR, many PII from the ‘person’ class are full names (containing a first and
a second name), but there are also name abbreviations (e.g., ‘J.D.’ instead of ‘John Doe’).

Enron. Enron contains about 600 000 real e-mails from 158 employees of the Enron Cor-
poration. The e-mails were made public by the Federal Energy Regulatory Commission after
an investigation. We observe that e-mails use informal language and may contain typographical
errors. E-mails do not contain a header (e.g., a ‘from’, ‘to’ or ‘title’ field) unless an e-mail has been
forwarded, in which case the forwarded e-mails and their headers are contained in the e-mail’s
body. The e-mails are typically structured with a greeting, followed by the e-mail’s content,
followed by a footer containing the name and personal information about the sender, such as their
e-mail or work address, phone number, and homepage. We randomly sample a subset of 123 317
records from the Enron dataset, where each record consists of 346.10 tokens on average. Flair
tags 105 880 unique PII sequences from the ‘person’ entity class, and most records contain at least
one PII sequence (81.45%). PII sequences have a duplication rate of 11.68 and contain an average
of 3.00 tokens. From qualitative analysis, we observe that PII in the Enron dataset consists of
either just the first name or a first and a second name.

Yelp-Health. The Yelp-Health dataset consists of comments made on the yelp.com website
about facilities from the ‘Health & Medical’ category. Facilities from this category include
Psychoanalysts, Dental Hygienists, and Cardiologists, among many others. Compared to ECHR
and Enron, Yelp-Health reviews contain relatively short and few PII from the ‘person’ entity class.

We randomly sample a subset of 78 794 reviews with an average length of 143.92 tokens per
record. Flair tags 17 035 pieces of PII with an average duplication rate of 5.53 and 2.17 tokens per
piece. In total, 54.55% of records contain at least one PII sequence. From a qualitative analysis,
we find that pieces of PII from the ‘person’ entity class typically only contain the first name unless
they refer to the name of the doctor, who is usually addressed by their last name.

Even though reviews on Yelp-Health were knowingly posted to a public forum6, these posts
may contain sensitive information. For example, we find detailed descriptions of a relative’s disease
with timestamps and locations, which could be used to re-identify that individual. We believe
that studying leakage using datasets containing unprocessed data from users who may be unaware
of the consequences resulting from re-identification is of particular interest to the community.

B.5.1 PII Definition

This subsection describes what we mean by “direct” and “quasi-identifying” PII. Our definition is
equivalent to Pilán et al. [177], who study leakage of PII in large text datasets.

6https://www.yelp.com/developers/documentation/v3/all category list
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• Direct identifiers: A direct identifier is a type of PII that can be used to uniquely identify
an individual within a dataset. Examples of direct identifiers include an individual’s full
name, social security number, address of residence, cellphone number, or email address. As
a result of their sensitive nature, direct identifiers are often subject to legal and regulatory
frameworks aimed at safeguarding the privacy of individuals [61].

• Quasi-identifiers: A of PII is a quasi-identifier when it can indirectly identify an individual
through its combination with other quasi-identifying information. Examples of quasi-
identifiers include an individual’s age, gender, ethnicity, religion, and occupation. Because
of their potential to indirectly identify individuals, both direct and quasi-identifiers are
considered personal information. They are subject to the same legal and regulatory
frameworks in order to protect the privacy of individuals [61].

B.5.2 PII Entity Classes

We group PII by the following entity classes7.

1. cardinal: A cardinal value (e.g., “12”).

2. ordinal: An ordinal value (e.g., “11th”).

3. date: A date (e.g., “May 23rd 2015”)

4. event: An event name (e.g., “Blackhat”).

5. fac: A building name (e.g., “Newark Airport”).

6. gpe: Geo-political entity (e.g., “UAE”).

7. language: A language name (e.g., “Catalan”)

8. law: Law names (e.g., “Bill C-99”).

9. money: Currency (e.g., “1.25m USD”)

10. norp: Affiliation (e.g., “Alaskan”)

11. person: Names (e.g., “John Henry Doe”)

12. loc: Location (e.g., “11th District”)

13. org: Organization (e.g., “Microsoft”)

14. percent: (e.g., “(+0.78%)”)

15. product: (e.g., “GX-532”)

16. quantity: (e.g. “2000 lbs”)

7https://huggingface.co/flair/ner-english-ontonotes-large
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17. time: (e.g., “5:30 pm EDT”)

18. work of art: (e.g., “Star Wars”)

19. phone number: (e.g., “(+1)123-456-7890”)

20. email address: (e.g., “john.doe@anon.com”)

21. url: (e.g., “www.johndoe.com”)

Replacing PII

The attack described in Algorithm 5 involves substituting existing PII with PII of the same class.
For example, in the sentence “Teo Peric is an engineer.” we could replace “Teo Peric” with a
different PII of the class ’person’, resulting in “Ana Jaksic is an engineer.”.

B.5.3 PII Distribution

Table B.1 show the PII counts in each of the three surveyed datasets.

Table B.1: A summary of the evaluated datasets and statistics for PII from the entity class
‘person’. This table summarizes the part of the dataset that was used to train the model
after splitting the entire dataset into equally large training and validation sets and a small
testing set.

Records Tokens / Record PII Rec. w. PII Dup. / PII Tokens / PII

ECHR 118 161 88.12 16 133 23.75% 4.66 4.00
Enron 138 919 346.10 105 880 81.45% 11.68 3.00
Yelp-Health 78 794 143.92 17 035 54.55% 5.35 2.17

B.5.4 PII Leakage Metrics

We define formally the metrics introduced in Section 3.5.4.

1. PII Extractability: We assess PII extractability using precision and recall. Precision
(also called positive predictive value) quantifies the ratio of true positive predictions to all
positive predictions made by a classifier, while recall is the true positive rate, i.e. the ratio
of true positive predictions to all positive instances in the dataset. High recall implies that
a significant proportion of PII can be extracted from the LM’s generated output, and high
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Algorithm 25 Fill residual masks

1: procedure Fill-Masks(S)
2: i← 0
3: while [MASK] ∈ S do
4: Si, S ← Split(S, [MASK] ) ▷ At first [MASK]

5: i← i+ 1
6: Si ← S
7: S′ ← S0
8: for j ← 1 to i do
9: wj ←MLM(S′, Sj)

10: S′ ← S′wjSj
11: return S′

precision suggests that a generated PII is highly probable to appear in the training dataset.
Algorithm 5 represents the PII extraction game, and Equation (3.1) defines the adversary’s
success as its recall. Given the number of unique PII sequences |C| in D, the adversary
produces a set of PII sequences C̃ with a maximum size of |C|. Precision denotes the
expected fraction of correctly identified PII sequences in C̃ relative to the total number of
PII sequences produced by the adversary (|C̃|). Recall and precision are formally calculated
as follows:

Recall = E

[
|C ∩ C̃|
|C|

]
Precision = E

[
|C ∩ C̃|
|C̃|

]
(B.2)

2. PII Reconstruction and Inference: We measure the top-1 accuracy for PII reconstruction
and inference as formalized in Algorithm 6. Given a randomly sampled sequence S from the
training dataset that contains at least one piece of PII C, we compute the accuracy of an
attacker to produce a guess C̃ = C for a randomly selected [MASK] within the sequence.

SuccRecon = Pr
[
C̃ = C

]
(B.3)

The attack’s success depends mildly on the presence of other PII in the sampled sequence S.
This is because other PII sequences would be scrubbed, and the adversary would have less
contextual information to infer. Figure 3.4 illustrates this point for a sequence containing
multiple pieces of PII.

B.6 Filling Residual Masks

Algorithm 25 describes our procedure for filling residual masks in a masked query. We use a
publicly available masked language model (MLM) to fill in one masked token at a time. Given a
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sentence with multiple masked PII, for example “ [MASK] plays soccer in [MASK] , England.” the
goal of Fill-Masks is to fill in all masked tokens in a way that preserves the meaning of the
sentence.

Publicly available MLMs do not jointly fill multiple tokens. Hence we resort to filling in
masked tokens from left to right using the top token suggested by the MLM. In the example above,
we would query the MLM twice. The first query is “ [MASK] plays soccer in” and the second is
“John plays soccer in [MASK] , England.”, assuming the MLM fills the first mask with “John”.

Given a sentence S = S0 [MASK] S1 . . . [MASK] Si, algorithm 25 first identifies the subsequences
S0, . . . , Si (lines 2–6) and then queries the MLM to fill in each masked token separating them
from left to right (lines 7–10). The function MLM(S0, S1) queries the MLM on S0 [MASK] S1 to
predict the most likely token in the position of [MASK] .
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Appendix C

PTW: Pivotal Tuning Watermarking
for Pre-Trained Iamge Generators

This section describes the attacks and shows which parameters we explored in our grid search.
We refer to the image before attacking as the base image x and as the attacked image after the
attacker performs their attack x̃ = A(x, I) with auxiliary information I. We find the range of
evaluated parameters through experimentation by limiting the degradation of the attack on the
visual quality of the images.

C.1 Black-box Attacks

Black-box attacks assume only black-box API access to the target generator, meaning that they
can query the generator on arbitrary latent codes z ∈ Z, but they have no knowledge of or control
over the generator’s parameters or its intermediate activations.

The black-box attacks can be described as follows.

• Crop: First, the base image is center-cropped with a given cropping ratio ρ ∈ (0, 1] and then
resizes the cropping back to the base image’s original size. We experiment with cropping
ratios ρ ∈ [0.9, 1].

• JPEG Compression: This attack performs JPEG compression [231] on the base image
with a quality q. A higher quality better preserves the visual quality of the image and we
experiment with q ∈ [80, 200].

• Noise: This attack adds Gaussian noise N (0, σ2) to the image. We experiment with
σ ∈ (0, 0.05].
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Algorithm 26 Super-Resolution Attack

1: procedure Super-Resolution(x, ρ)
2: x̃← resize(x, ⌊resolution(x) · ρ⌋)
3: while resolution(x̃) < resolution(x) do
4: x̃← SR(x̃) ▷ apply SR model

5: return resize(x̃,resolution(x))

1: procedure Resolution(x)
2: return resolution of x in pixels
3: procedure Resize(x, d)
4: return downsized image x with resolution d

• Quantize. This attack quantizes the number of states that a pixel can have. We compute
quantization by the following formula for a quantization q ∈ [0, 1].

Quantize(x) = q · ⌊x/q⌋ (C.1)

We experiment with quantization strengths q ∈ [0.5, 1].

• Super-Resolution. Our Super-Resolution attack uses Latent Diffusion models [190]
provided through HuggingFace1. The used model increases an image’s resolution by a
factor of 4 through an optimization process. We use Super-Resolution as a removal attack
summarized by Algorithm 26. We experiment with scaling factors ρ ∈ [0.125, 0.5].

C.2 White-box Attacks

White-box attacks assume full access to the target generator’s parameters, meaning that the
adversary can issue virtually unlimited queries to the target generator and can control the
generator’s parameters and intermediate activations.

The white-box attacks can be described as follows.

• Overwriting. The overwriting attack trains a decoder according to Algorithm 14 and
overwrites the existing watermark using PTW described in Algorithm 13. We experiment
with different weights of the watermark embedding λR for PTW (see Algorithm 13).
Increasing the weight of the decoder’s loss λM results in a stronger perturbation of all
images synthesized by the target generator. We experiment with a weight λM ∈ [0.5, 1.5].

1https://huggingface.co/CompVis/ldm-super-resolution-4x-openimages
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• Reverse Pivotal Tuning (RPT). Our RPT attack is parameterized by the number of real,
non-watermarked images R available to the adversary. We invert images in the generator’s
latent space by backpropagating the LPIPS loss between the currently generated image
and the base image and updating the current latent code. While other methods [263, 189]
to invert real images can yield better results, backpropagation is simple and works well
in practice. During training, we iteratively synthesize images from a randomly sampled
batch of inverted latent codes and optimize the LPIPS similarity between the generated
and corresponding base images. Algorithm 15 encodes our RPT attack.

C.3 Generator Checkpoints

We experiment with the following checkpoints. All checkpoints were made publicly available by the
authors [113, 114, 198]. On FFHQ-256, we use the following models: StyleGAN22, StyleGAN-
XL3, StyleGAN34. On AFHQv2 we use the following models: StyleGAN25, StyleGAN36. On
FFHQ-1024 we use the following models: StyleGAN27, StyleGAN-XL8, StyleGAN39

C.4 Watermarking Parameters

All watermarks in Chapter 4 are embedded with the following parameters. We use an Adam
optimizer [116] and we use a learning rate of 10−4 for the generator during PTW (see Algorithm 13).
We use the same generator learning rate for training a watermark decoder (see Algorithm 14)
and a learning rate of 10−3 for the watermark decoder. The watermark decoder training from
Algorithm 14 contains a similarity loss and a binary cross-entropy loss for the watermark decoder.
We scale the similarity loss with a weight λLPIPS = 1 and the loss for the decoder with λM = 0.1.
We train with a batch size of 128 on FFHQ-256, a batch size of 64 on AFHQv2, and a batch size
of 32 for FFHQ-1024.

2https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/paper-fig7c-training-set-
sweeps/ffhq70k-paper256-ada.pkl

3https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan xl/models/ffhq256.pkl
4https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/

stylegan3-t-ffhqu-256x256.pkl
5https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/

stylegan2-afhqv2-512x512.pkl
6https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/

stylegan3-t-afhqv2-512x512.pkl
7https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/ffhq.pkl
8https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan xl/models/ffhq1024.pkl
9https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/

stylegan3-t-ffhq-1024x1024.pkl
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Appendix D

Leveraging Optimization for Adaptive
Attacks against Image Watermarks

D.1 Parameters for Watermarking Methods

Tree Ring Watermark (TRW) [236]: We evaluate the Tree-RingRings method, which the
authors state “delivers the best average performance while offering the model owner the flexibility
of multiple different random keys”. Using the author’s implementation1, we generate and verify
watermarks using 20 inference steps, where we use no knowledge of the prompt during verification
and keep the remaining default parameters chosen by the authors.

Watermark Diffusion Model (WDM) [261]: Instead of stamping the model’s training data
to embed a watermark, we apply the pre-trained encoder to a generated image as a post-processing
step. We choose messages with n = 40 bits and use the encoder architecture proposed by [249],
followed by a ResNet-50 decoder. Each call to KeyGen(θ̂G), where θ̂G is the surrogate generator,
trains a new autoencoder from scratch.

DWT, DWT-SVD [41] and RivaGAN [256]. We use 32-bit messages and keep the default
parameters set in the implementation used by the Stable Diffusion models2.

D.2 Statistical Tests

Matching Bits. WDM [261], DWT, DWT-SVD [41] and RivaGAN [256] encode messages
m ∈M by bits and our goal is to verify whether message m ∈M is present in x ∈ X using key τ .

1https://github.com/YuxinWenRick/tree-ring-watermark
2https://github.com/ShieldMnt/invisible-watermark
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We extract m′ from x and want to reject the following null hypothesis.

H0 : m and m′ match by random chance.

For a given pair of bit-strings of length n, if we denote the number of matching bits as k, the
expected number of matches by random chance follows a binomial distribution with parameters n
and expected value 0.5. The p-value for observing at least k matches is given by:

p = 1− CDF(k − 1;n, 0.5) (D.1)

Where CDF represents the cumulative distribution function of the binomial distribution.

Matching Latents. TRW [236] leverages the forward diffusion process of the diffusion model
to reverse an image x to its initial noise representation xT . This transformation is represented by
m′ = F(xT ), where F denotes a Fourier transform. The authors find that reversed real images
and their representations in the Fourier domain are expected to follow a Gaussian distribution.
The watermark verification process aims to reject the following null hypothesis:

H0 : y originates from a Gaussian distribution N(0, σ2IC)

Here, y is a subset of m′ based on a watermarking mask chosen by the provider, which
determines the relevant coefficients. The test statistic, η, denotes the normalized sum-of-squares
difference between the original embedded message m and the extracted message m′, which can be
complex-valued due to the Fourier transform. Specifically,

η =
1

σ2

∑
i

|mi −m′i|2 (D.2)

And,

p = Pr
(
χ2
|M |,λ ≤ η | H0

)
= Φχ2(η) (D.3)

Where Φχ2 represents the cumulative distribution function of the noncentral χ2 distribution. We
refer to [236] for more detailed descriptions of these statistical tests.

D.3 Details on GKeyGen

This section provides more details on Algorithm 16. Verify consists of a sub-procedure Extract,
which maps an image to a message using the secret key. The space of messages is specific to the
watermarking method. We consider two message spaces M: multi-bit messages and messages in
the Fourier space. All surveyed methods except TRW are multi-bit watermarks, for which we use
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the categorical cross-entropy to measure similarity, and for TRW, we use the mean absolute error
as a similarity measure between messages (line 7 of Algorithm 16).

We instantiate GKeyGen only for the DWT and DWT-SVD watermarking methods. We train
a ResNet-50 decoder θD in Algorithm 16 to predict a bit vector of the same length as the message
and calculate gradients during training using the cross-entropy loss. Attacking TRW, WDM,
and RivaGAN only requires invoking KeyGen, as the keys are the parameters of (differentiable)
decoders. We train these keys from scratch for WDM and RivaGAN. For TRW, the key generation
does not require any training, as the key only specifies elements in the Fourier space that encode
the message. The forward diffusion process used in Verify is already differentiable.

D.4 Qualitative Analysis of Watermarking Techniques

We refer to Figure D.1 for examples of non-watermarked, watermarked, and attacked images using
the attacks summarized in Table 7.1. We show three images for each of the five surveyed water-
marking methods: an image without a watermark, one with a watermark, and the watermarked
image after an evasion attack. We show the prompt that was used to generate these images and
label each image with the p-value with which the expected message was detected in the image
using the secret watermarking key and the Verify procedure.

D.5 Quality Evaluation

Table D.1 shows the FID and CLIPScore of all five surveyed watermarking methods without a
watermark (first row), with a watermark (second row), after our adaptive noising attack (third row)
and after our adversarial compression attack (fourth row). All results are reported as the mean
value over three independent runs using three different secret watermarking keys. We observe
that the degradation in FID and CLIPScores is statistically insignificant, as seen in Figure D.1.

D.6 Attack Efficiency

From a computational perspective, generating a surrogate watermarking key with methods such
as RivaGAN or WDM is the most expensive operation, as it requires training a watermark
encoder-decoder pair from scratch. Generating a key for these two methods takes around 4 GPU
hours each on a single A100 GPU, which is still negligible considering the total training time of
the diffusion model, which takes approximately 150-1000 GPU days [49]. The optimization of
Adversarial noising takes less than 1 second per sample, and tuning the adversarial compressor’s
parameters takes less than 10 minutes on a single A100 GPU.

183



TRW WDM DWT DWT-SVD RivaGAN

FID CLIP FID CLIP FID CLIP FID CLIP FID CLIP

No WM 23.32 31.76 23.48 31.77 23.48 31.77 23.48 31.77 23.48 31.77
WM 24.19 31.78 23.43 31.72 23.16 32.11 23.10 32.15 22.96 31.84
A-Noise 23.67 32.15 N/A N/A 23.55 32.46 22.89 32.50 N/A N/A
A-Comp 24.36 31.87 23.27 32.01 23.16 32.17 23.06 31.92 23.25 31.86

Table D.1: Quality metrics before and after watermark evasion. FID⇓ represents the Fréchet
Inception Distance, and CLIP⇑ represents the CLIP score, computed on 5k images from
MS-COCO-2017. N/A means the attack could not evade watermark detection, and we do
not report quality measures.

D.7 Double-Tail Detection

Jiang et al. [110] propose a more robust statistical test that uses two-tailed detection for multi-bit
messages. The idea is to test for the presence of a watermark with message m or message 1−m
(all bits flipped). We implemented the double-tail detection described by Jiang et al. [110] and
adjusted the statistical test in Verify to use double-tail detection on the same images used in
Figure 7.4. Table D.2 summarizes the resulting TPR@1%FPR with single or double-tail detection.
Since TRW [236] is not a multi-bit watermarking method, we omit its results.

Attack Method WDM DWT DWT-SVD RivaGAN

Adv. Noising (ε = 1/255) 100% / 100% 78.8% / 75.9% 100% / 100% 100% / 100%
Adv. Noising (ε = 2/255) 99.9% / 99.0% 79.1% / 75.0% 99.5% / 99.0% 99.9% / 99.9%
Adv. Noising (ε = 6/255) 68.0% / 68.7% 50.2% / 49.5% 0.0% / 23.3% 96.3% / 96.6%
Adv. Noising (ε = 10/255) 29.9% / 36.9% 0.0% / 57.3% 0.0% / 11.8% 67.0% / 63.3%
Adv. Compression 2.0% / 1.8% 0.8% / 0.5% 1.9% / 2.5% 6.3% / 5.7%

Table D.2: Summary of TPR@1%FPR using single-tail (left) and double-tail detection
(right). We mark attacks bold if their TPR@1%FPR is less than 10%.

Table D.2 shows that double-tail detection increases the robustness of DWT and DWT-SVD
against adversarial noising, which is the same effect that [110] find in their paper. We find
that Adversarial Compression remains effective against all attacks in the presence of double-
tail detection. Figure 7.4 shows that adversarial noising is highly effective against TRW but
is ineffective against the remaining methods because an attacker has to add visible noise (see
Figure 7.3).
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Figure D.1: Qualitative showcase of three kinds of images: non-watermarked, watermarked
with mentioned technique, and attacked images with the strongest attack from Table 7.1.
The p-values and text prompts are also provided.
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