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Abstract

In this thesis, we introduce a high-performance DDR4 SDRAM memory controller
synthesizable design for AMD /Xilinx’s FPGA devices. Due to limitations on operating
frequency, the design on FPGA presents additional challenges compared to ASIC design:
in particular, the controller must be able to issue 4 DRAM commands in a single clock
cycle. Utilizing Xilinx’s memory controller (MIG) as a foundational framework, our design
incorporates features such as the discrimination of received requests based on their origin
and the implementation of the FR-FCFS arbitration scheme in the front-end scheduler.
Additionally, our memory controller utilizes the Round Robin arbitration scheme in the
back-end scheduler to optimize throughput through effective bank parallelism. Our mem-
ory controller is able to perform DRAM initialization, refresh, and calibration. Its design
is extensible, allowing for further development of other types of DDR4 memory controllers
and adaptation for various DDR4 speed grades. The development process involved creating
the memory controller’s logic blocks in RTL from the ground up, with the integration of
specific modules from Xilinx’s MIG related to the user interface, calibration, and the phys-
ical layer. Standalone verification of each designed module was conducted, followed by the
comprehensive validation of the entire integrated project. To evaluate the performance of
our memory controller and Xilinx’s MIG, we conducted extensive assessments using both
EEMBC benchmarks and synthetic benchmarks in simulation. These evaluations provide a
comprehensive comparison of their performance across various scenarios, offering valuable
insights for further developments in the field.
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Chapter 1

Introduction

1.1 Motivation

Multiprocessor systems facilitate the simultaneous execution of multiple threads on a single
chip. Such systems comprise independent processing cores that share the same memory
subsystem. They offer advantages compared to single-core systems such as power efficiency,
scalability, and improved throughput. However, sharing resources among cores presents a
significant challenge when designing such systems. Threads accessing shared memory sub-
systems may interfere with each other and if this conflict is not effectively handled it can
lead to extended waiting times for access to shared resources and result in degraded overall
performance. The DRAM memory stands as a vital shared resource in a multi-processor
system, and interleaved requests from threads can degrade the performance, and negatively
impact locality. Additionally, this interference can lead to more serious problems such as
unfairness between some threads at the expense of others, potentially causing important
threads to be starved for extended periods. Commercial-off-the-shelf (COTS) memory con-
trollers [15][16][39][28] are designed to improve the overall performance in average-case by
reordering requests in multi-core systems. These memory controllers employ intricate opti-
mizations that result in significantly heightened latency in the worst-case. In recent years,
researchers in the embedded system field have developed a new line of memory controllers
[L1][12][14][18] specifically designed to strictly bound the worst-case latency for realtime
applications, such as avionics. These memory controllers prioritize minimizing the worst-
case latency that a request experiences throughout the memory hierarchy in the system.
In addition to bounding worst-case latency, considerations for average-case optimizations,
similar to those implemented in COTS memory controllers are also an interesting topic in



the realtime community.

1.2 Problem Statement

Various memory controller proposals exist, yet most are only evaluated based on architectural-
level simulations, and there is a lack of open-source memory controller implementations
for ASICs. On the contrary, FPGAs prove advantageous when aiming to implement con-
figurable memory controllers. A configurable memory controller provides users with the
flexibility to intervene in the memory controller and DRAM device interface, enabling ma-
nipulation of the designs for enhanced performance. However, this path is not without
challenges.

A significant challenge arises from the fact that the maximum frequency of FPGA fabric
typically ranges from 300 MHz to 400 MHz, while for example DDR4 DRAM clock frequen-
cies range from 800 MHz to 1600 MHz. For this reason, contrary to an ASIC design, an
FPGA controller must be able to schedule and issue multiple DRAM commands per clock
cycle. The inherent complexity in the memory controller design requires efficient FPGA
implementations to achieve high frequency. Nonetheless, implementing memory controllers
offers the advantage of more accurate performance evaluation on real hardware compared
to simulation. In particular, architectural simulators typically ignore management op-
erations such as refresh and calibration that are crucial to maintain data correctness in
high-performance DRAM devices.

Given the widespread use of FPGAs in cloud and data centers, efficient execution of
memory-intensive programs on these platforms is crucial. FPGA vendors like Xilinx and
Intel offer users various memory controllers. Our project aims to build upon Xilinx’s mem-
ory controller, MIG. Despite MIG being designed to achieve high FPGA fabric frequency
of 333 MHz, its ability to issue DRAM commands is highly constrained. Depending on the
workload, this can result in significantly reduced performance, as we show in our evalua-
tion. Additionally, MIG lacks the capability to track the origin of requests, a feature that
can be valuable in real-time memory controllers.

1.3 Objective

Our research group objective is to design and implement a high-performance DDR4 DRAM
memory controller on Xilinx FPGAs. Compared to the highly constrained Xilinx MIG, we



seek to study trade-offs between achievable implementation frequency and freedom of the
controller to dynamically schedule memory requests and DRAM commands. Additionally,
our goal is to implement a modularized controller that can be extended in the future for
developing and testing different DRAM scheduling and management solutions for both
cloud / data centers and embedded systems.

1.4 Solution

Our memory controller design is based on Xilinx’s MIG, which includes scheduling logic
blocks along with other modules designed for interfacing with DDR4 memory on Xilinx
FPGAs. While we utilized these modules from Xilinx, we re-engineered the scheduling part
entirely. A significant amount of effort was spent studying the requirements of the Xilinx
DDRA4 physical interface regarding initialization, refresh and calibration, and integrating
the corresponding management blocks in our design. Our memory controller is unique in
its ability to distinguish requests from different sources (cores), a feature absent in MIG.
Moreover, our memory controller adopts the FR-FCFS arbitration scheme, leading to sig-
nificant performance improvements. We present two versions of the memory controller,
with the initial design excelling in performance but operating at a lower frequency. The
second version, while introducing additional constraints on scheduling, is more suitable
for FPGA implementation. This version leverages the time-independency between differ-
ent commands. We designed our memory controller in a parametric way which makes it
configurable. Furthermore, we structured our modules to facilitate future reuse, with the
intention of developing alternative schedulers.

1.5 Contribution

In this thesis, we present a high-performance memory controller that is implemented from
the ground-up in RTL. The major contributions are the following :

e We provide an analysis of the MIG building blocks based on its available code, high-
lighting its structure and the intercommunication between modules. We highlight the
limitations and requirements imposed by the DDR4 physical interface implemented
on the Xilinx FPGA as a hard IP, and the role of the management blocks to maintain
compliance in the memory controller. We then discuss the design of the scheduling
logic and its key limitations.



e We present a new request scheduler and command scheduler design for front-end
and back-end arbitration in the memory controller respectively. We show how to
incorporate request queues and command queues into the design, and how to integrate
our design blocks with the the rest of the Xilinx MIG. We introduce two versions of the
command scheduler, trading-off operating frequency vs the freedom to dynamically
issue commands.

o We evaluate the performance of our design using RTL simulation and compare it to
the existing MIG based on both synthetic memory traces, and traces derived from
CPU benchmarks.

1.6 Structure of This Thesis

This thesis is organized as follows. Chapter 2 provides the required background on DRAM
and memory controllers. Chapter 3 discusses the structure of Xilinx’s MIG followed by
Chapter 4 which entails the design of our proposed high-performance memory controller.
Chapter 5 provides a comparison between our memory controller and the MIG based on
both synthetic and real benchmarks. Lastly, Chapter 6 provides concluding remarks and
opportunities for future work.

1.7 Acknowledgment

I would like to thank Ali Abbasi for designing the RTL implementation of the command
queue, and the command scheduler version 2.



Chapter 2

DDR4 and Memory Controller
Background

This chapter furnishes the essential background information needed for the subsequent
chapters. Initially, we delve into the specifics of DDR SDRAM memories in Section 2.1,
with a focus on DDR4. We explore the novel features introduced in DDR4 that were absent
in DDR3. After establishing a foundational understanding of DDR4, we shift our focus to
memory controllers in Section 2.2. In this section, we delve into the critical attributes of
memory controllers. Finally, in Section 2.3 we discuss related works.

2.1 DDRA4 Background

Due to its favorable cost-per-bit, Double Data Rate Synchronous Dynamic Random-Access
Memory (DDR SDRAM), has consistently been preferred for designing main memory sub-
systems. Notably, the cost-per-bit of DRAM has been diminishing as process technology
scales, allowing significantly more DRAM cells to be integrated within the same die area.
For this reason, DRAM has been extensively used in many computer systems. In contrast
to the ongoing reduction in cost, the latency of DRAM has remained relatively constant.
We commence by providing essential background details on DDR. These memories trans-
fer data at both rising and falling edges, which is why they are termed DDR (Double
Data Rate). There have been multiple generations of DDR, spanning from the 1st to the
5th. As DDR1 and DDR2 are no longer in common use, we will begin by outlining the
features of DDR3. The DDR3 memory system is organized hierarchically, consisting of



channels, ranks, and banks and its clock rate ranges from 400 MHz to 1033 MHz. How-
ever, the more recent DDR4 generation, introduced in 2013, presents a higher clock rate
ranging from 800MHz to 1600MHz while exhibiting lower power consumption. Further-
more, DDR4 introduces an additional address level called bank group, where banks within
the same bank group are interdependent. This implies that accessing bank By within bank
group BG, denoted as access A, incurs larger timing constraints on subsequent accesses to
all banks of bank group BG, compared to accesses to the banks in other bank groups. The
latest generation, DDR5, unveiled in 2020, boasts significantly increased density compared
to its predecessor, DDR4. DDRS5 features up to twice the number of bank groups as DDR4
and introduces two distinct 32-bit channels compared to DDR4, which provides only one
64-bit channel. Additionally, the fastest DDR5 variant, with a speed grade of 5600 MT/s,
exceeds the speed of the fastest DDR4, which operates with a speed grade of 3200 MT/s,
by more than 1.5 times. In the rest of the chapter, we focus on DDR4 as our controller
designs targets this DDR generation.

2.1.1 DDRA4 Structure

In general, a DRAM device is like a three-dimensional array, with its levels named bank,
row, and column. A set of DRAM devices is called a rank. The DRAM chip always consists
of 16 or 8 banks which can be accessed at the same time while sharing the same command
and data bus. Inside each bank, there is a two-dimensional array of memory cells each
storing 1 bit. In addition, there is a row buffer within each bank that temporarily stores
the content of the most recently accessed row of that bank. Once the data is placed into the
row buffer, subsequent read and write commands to that bank can be performed quickly,
and this reduces the latency associated with accessing different columns sequentially. Also,
utilizing a row buffer reduces energy consumption as activating a row consumes more energy
compared to column access.

Additionally, DDR4 leverages parallelism in bank groups to reduce the latency of a
request and to significantly increase the overall performance of the system. Each bank
group is assigned to one DDR4 memory chip, and within each memory chip, there are
four banks. There are three models of DDR4 chips namely x4, x8, and x16. The number
represents the output data width of the chip, 4, 8, and 16 bits, respectively. Models x4,
and x8 have 4 bank groups and 16 banks in total while model x16 has 2 bank groups and
8 banks in total.

In Figure 2.1, the bank group structure of DDR4 is depicted. Only one bank will be
activated during any read and write operations. After the data is amplified through sense
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Figure 2.1: Bank group organization in x4/x8 model. The figure only shows the data 1/0.

amplifiers, it will be connected to Global IO Gating using Local IO Gating. The width of
the Data I/O can be 4, 8, or 16 bits.

2.1.2 DDRA4 Access Protocol

There are various pins on the DDR4 memory chip. Pins CAS, RAS, and ACT are used to
encode different types of commands [23]. Moreover, pins RAS and CAS are used as address
bit 16 and 15 respectively. Additionally, there are separate address pins (A) covering bits
Oth to 14th. These pins are used to determine the row and column address. Furthermore,
bank groups and banks are assigned through dedicated pins called BG, and BA, respec-
tively. The DRAM operates in two separate clock domains. The main differential clock
pin (clk) serves as the reference for command transfer between the memory controller and
the memory module. In contrast, the DQS pin acts as a separate clock used as a reference
for transmitting data to/from the memory module, with the actual data passing through
the DQ pins. on DDR memories data is transferred both on the positive and negative edge
of DQS, and that is where the double data rate word comes from. Although both clk and
DQS operate at the same frequency, they are not synchronous, and over time, they may
drift away from each other.



The flow of accessing DRAM memory consists of three distinct phases, each fulfilling a
pivotal role in the retrieval and manipulation of data. Each of these phases is associated
with specific commands, and owing to the complexity of DRAM memories, there exist
relative timing constraints that govern the transition from one phase to the next.

In the initial phase, known as the precharge phase, when the PRE command is executed,
the temporary data stored in the row buffer is sent back to the respective memory cells
within the activated row. This phase is essential for preserving data integrity. In addition
to PRE, there is a particular command which applies PRE to all banks within the memory;,
called PREA.

In the subsequent phase, referred to as the activation phase, when the ACT command
is given along with the row address, the designated row is activated, and its data is moved
to the row buffer. During this phase, the entire row is transferred to the row buffer because
subsequent read or write operations might involve different column addresses within the
same row. Requests that target the currently activated row within a bank are termed
“open requests”, while those targeting rows different from the currently activated row are
referred to as “close requests.”

In the final phase, known as the I/O gate phase, four different commands can be issued.
RD and WR commands, accompanied by a column address, are used for read and write
operations, respectively. Additionally, RDA and WRA commands are available, which are
equivalent to RD and WR but also include an auto-precharge function. After executing
these commands, there is no requirement to initiate precharge at the start of the new
request.

Additionally, DDR4 supports other types of commands, with one crucial command be-
ing the REF (refresh) command. This command is employed to refresh all the stored bits
within all cells in the memory banks. Because DRAM essentially stores data as charges
in capacitors, and these capacitors tend to lose their charge gradually over time, the re-
fresh command plays a crucial role in preserving data integrity and ensuring the continued
reliability of stored information. Furthermore, to account for voltage and temperature
variations across the board, the drivers of pins in DRAM need to be calibrated periodi-
cally, as elaborated in Section 2.1.4. ZQCS and ZQCL are the designated commands for
performing these calibration tasks.

2.1.3 Timing Constraints

As highlighted in Section 2.1.2, it is important to note that there are specific timing
constraints between the commands, depending on which banks and bank groups they are



directed at. The timing constraints can be categorized into two groups:

1. Intra-bank timing constraints: These constraints apply to commands that target
the same bank. They define the order and timing of commands within a single bank.

2. Inter-bank timing constraints: In contrast, inter-bank timing constraints apply
to commands that target different banks. They specify the timing requirements when
transitioning between commands directed at separate banks.

In Table 2.1, all important timing constraints are listed. We make the following obser-
vations:

e Since open requests target the same row, they do not need any PRE and ACT com-
mands issued. Thus, they proceed faster than close requests which require additional
timing constraints such as tgc, and tgras which are particularly long.

e There is an extra timing constraint once a request type changes from RD to WR
or vice versa. These additional timing constraints are denoted by trrw (Read-to-
Write), and twrgr (Write-to-Read). Therefore, switching between different request
types can be expensive and affect the overall performance of the memory.

e The burst length in DDRA4 is 8 which means it takes 4 clock cycles to transmit data,
tpus = 4.

e In addition to these, there are other timing constraints associated with refresh (tgpry,
trrc)-

The example shown in Figure 2.2, depicts the relation between a Read CAS directed
to Bank a, and column n. The PRE command can be issued after tgrp followed by ACT
which can be issued tzp after the PRE command. It is noteworthy that the data burst of
length 8 will be placed on the DQ pin after tgy.

Furthermore, in DDR4, the timing constraint between two ACTs targeting two differ-
ent banks in two distinct bank groups (tgrp) is lower than that targeting two different
banks in the same bank group (trgp, ); these constraints are referred to as short and long,
respectively. Similarly, there are (tcopg), and (tcop, ) between two CASes directed to two
different banks. For instance, in Figure 2.3, the first ACT activates row n in bank group a,
and bank ¢ while the second ACT accesses the same row n but in bank group b, and bank
c. The imposed timing constraint is tgrpg since two ACTs are directed to different bank

9



Inter-Bank Constraints Intra-Bank Constraints

Description Cycles Description Cycles

tRRD ACT to ACT 1:6, s=4 tRL RD to DATA 18
tWTR WR DATA to RD 1:9, s=3 tWR WR DATA to PRE 18
tWtoR WR to RD 25 tRP PRE to ACT 18
tRTW RD to WR 12 tRCD ACT to CAS 18
tBUS DATA 4 tRTp RD to PRE 9
tCCD CAS to CAS 1:6, s=4 tRC ACT to ACT 57

tRAS ACT to PRE 39

Table 2.1: DDR4-2400U timing constraints [22]. [ and s refer to the long (same bank
group) and short (different bank groups) timing constraints, respectively.

DQS 1,
DQs_c

BC4 Opertaion |

o ! I L o > 523
] ]

BLA Opertaian

oo i U (= R B R Ry

2ET\me Break E‘ Transitioning Data [///] Don't Care

Figure 2.2: The example shows the relative timing constraint between a Read CAS, followed
by PRE, and ACT targetting bank a in bank group a. (reproduced from [23])

groups. However, the third ACT activates row n in the same bank group as the second
ACT but in bank d, and the timing constraint in this case is tgrp, -

Another important ACT-related timing constraint is ¢4y, specifies a timeframe dur-
ing which a maximum of four Activate commands can be issued consecutively. During
this window, 4 ACTs can be issued back-to-back with the tRRDg, and tRRD; timing
constraint between them. However, once you have executed four ACT commands, you

10



must wait until the ¢y window expires before issuing next ACT command.

When the CAS type changes, transitioning from read to write or from write to read,
specific timing constraints are imposed, denoted as tgrry and tyrg, respectively. This
introduces additional latency on top of the request and can potentially degrade the system’s
performance. Therefore, the frequency of switches between read and write requests is a
critical factor that influences the overall system performance.

Cormrmand

Bank

Group IX8e 8 W2 T T TN N T T L T P ) R T
Bank /NBank e 5/ LD T L Bk W L L T T A T e W
Address W Raw W/ L T T T 8 TR Y L L T L 8T L T A 7 L T T K mawm W 7 Y

Don’t Care

Figure 2.3: trrps, trrp, shown for three ACTs accessing the same row in different banks
and bank groups.(reproduced from [23])

2.1.4 DDRA4 Initialization

DDR4 memory is not ready to operate in normal mode immediately after it is turned
on. Depending on the topology of the circuit, trace delays, and other environmental
factors, some initialization steps are required. The initialization first begins with a DQS
Gate Calibration stage during which the read DQS preamble is detected and the gate
responsible for data capturing will be calibrated. In the next stage, Write Leveling is
performed to align DQS with the primary clock in DRAM chip for write requests. During
this phase, the DQS is delayed until the 0-to-1 transition on DQ is detected. Similarly,
for read requests once again DQS is calibrated to align well with a primary clock in the
Read Leveling stage. It is worth noting that between these stages, sanity checks are run
to ensure that each stage has successfully finished.

In a high-speed I/O interface, the signal integrity (S/I) can quickly degrade due to
variations in the impedance of the output driver caused by process, temperature, and
voltage (PVT) fluctuations. A ZQ calibration is widely adopted across various generations
including DDR3/4 [33][29] and even DDR5 [19]. During ZQ calibration, the pull-down
resistor in the DRAM chip is matched to the external reference resistor, and the pull-
up impedance is matched to the calibrated pull-down resistor over PVT variation. ZQ

11



calibration is performed using two commands, ZQSC, and ZQSL which stands for ZQ Short
Command, and ZQ Long Command, respectively. After all the above stages, initialization
ends with ZQ Long calibration after which the memory is ready to operate in normal mode.

In addition to the above stages, at run time the memory device needs to be calibrated.
As mentioned before, ZQ Short calibration is used to tune the internal resistors of drivers
to increase S/I. Furthermore, additional calibration steps might be required at run time
depending on the structure of the DRAM chip. Given that our memory controller is built
upon Xilinx’s MIG, we elaborate on the calibration mechanisms integrated by Xilinx’s
MIG specifically designed for Xilinx FPGAs in Section 3.5.

2.1.5 JEDEC Family

JEDEC has introduced three groups of DDR memories that cater to different needs in-
cluding data rate, power consumption, and application use cases. DDRx series are used
for general computing and mostly are employed in computer systems. GDDRx is designed
to provide high memory bandwidth for graphical processing units. Lastly, LPDDRx was
introduced to provide a high data rate while focusing on power consumption. These series
are suitable for mobile computing systems. Our memory controller is specifically designed
for DDR4 memories.

2.1.6 PHY

The low-level physical interface to an external DDR memory is referred to as the PHY. The
PHY provides the interface discussed in Section 2.1.2 to the memory controller. The PHY
is a mixed-signal circuit that receives signals from the memory controller and transmits
them to the DRAM. In contrast, the memory controller is a pure digital logic circuit.

2.2 Memory Controller Background

Building upon the foundational knowledge of DDR4 background outlined in Section 2.1,
we now delve into the details of memory controller design. Specifically, in the following
sections, we introduce a widely employed architectural framework. A DRAM memory
controller serves as the bridge between the requestors (CPUs, DMAs, GPUs, etc) and the
DRAM memory module. Its primary responsibility is to manage access to the DRAM

12



device by issuing commands in accordance with the timing constraints specified by the
DRAM standard. In general, the memory controller consists of an address mapper, a
request arbiter, a command generator, and a command scheduler.

2.2.1 Address Mapping

Address mapping involves breaking down the incoming physical address of a memory re-
quest into its constituent parts, which typically includes rank, bank group, bank, row, and
column bits. The process of address translation determines how each request is assigned
to a specific bank group and bank. There are two primary categories of mapping policies:

1. Interleaved Banks: In this policy, each core can access any bank or rank within
the memory system. The most common way of implementing this is that sequential
accesses, each corresponding to a burst, are mapped to different banks in different
bank groups. However, it may encounter row interference and lead to higher latency:
different cores can potentially interfere with each other by closing each other’s row
buffers, leading to performance degradation. In the average case, the requests tend
to be uniformly distributed among banks and the benefits of accessing various banks
are more than the downsides of row interference. However, in the worst-case scenario,
all the requests can target the same bank which leads to worse overall performance.

2. Sequential: In this scheme, consecutive requests target the same bank. Various
resources can access the memory module, each called a requestor. Each bank can
be uniquely dedicated to a particular requestor, and that specific bank is not shared
among other requestors. This scheme is beneficial in real-time applications as a
requestor does not impact the row buffer of a bank, and the MC can take advantage
of row locality. However, this policy comes with a few downsides. First, the number
of banks in DRAM is limited, and if the number of requestors is more than the
number of banks, this policy will not be applicable. Second, since the banks are not
shared among requestors, sharing data between requestors is a challenge [10].

2.2.2 Arbiters

Since multiple requestors can have access to DDR4 memory, and they share the same ad-
dress and data bus, there should be a set of rules that govern the access grant of these
requestors. Arbiters can be used on more than one level in memory controllers. Typically,
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in COTS memory controllers, arbiters are used in two levels. The first one arbitrates re-
quests that arrive at the memory controller, this arbiter is known as the front-end arbiter
which is employed in request scheduler design. The second one arbitrates at the command
level, which is known as the back-end arbiter, and is used in command scheduler design. In
essence, the back-end arbiter in the memory controller monitors all timing constraints and
determines when it is safe to issue a particular command. However, the front-end arbiter
determines the order of requests to be processed and translated into proper commands. In
other words, both arbiters play an important role in affecting the overall memory perfor-
mance.

2.2.3 Request Scheduler

Once requests arrive at the memory controller, they will be enqueued into buffers called
request queues. Depending on the arbitration scheme implemented at the request level,
these queues can be per bank group, or bank, or even requestors. COTS memory controllers
mostly apply a modified version of First-Ready-First-Come-First-Served (FR-FCFS) policy
to improve memory bandwidth. This scheme prioritizes the processing of the open requests
over requests that target other rows that are not activated. This technique results in
less commands being generated and subsequently, decreases the latency of the request.
However, prioritizing open requests over other requests can lead to the starvation of closed
requests. This means that, if there is no limit for reordering of requests, the latency bound
for closed requests might be unbounded, which is clearly not desirable [11].

2.2.4 Command Generator

When a request is selected by the request scheduler it is passed to the command generator.
In some designs, the command generator is part of the request scheduler design. Depending
on the currently opened rows in the row buffers and the address of the request itself, the
command generator translates the chosen request into a set of commands. These commands
are PRE, ACT, and CAS. However, if the required data width from the requestor is larger
than the data width of the memory controller, the number of CASes will be more than one
as multiple consecutive CASes are required. Generally, the command generator implements
one of the following two policies:

1. Close-Page Policy: Using this policy every request has a constant latency. The
currently activated row in the row buffer will be closed once its corresponding request
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finishes. After each CAS, a PRE is automatically issued. By leveraging this scheme,
for the next close request that arrives later, there is no need to issue any PRE
command, and this results in reducing the latency.

2. Open-Page Policy: Command generator can skip generating the PRE command
to not close the current row buffer. Thus, subsequent requests still can gain from the
current opened row in the row buffer as it reduces the total latency of the request. If
further requests target different rows, the command generator would generate PRE
as well as other commands, ACT, and CAS. COTS memory controllers preferably
implement Open-Page Policy as it optimizes the latency of open requests in average
cases.

2.2.5 Command Scheduler

The command scheduler ensures that the commands issued to the DRAM are in proper
order and they respect the relative timing constraints. Moreover, some other constraints
might be imposed by the DRAM PHY, which should be honored by the command scheduler.

In general, there are two categories of command schedulers:

1. Static: In this type of command scheduler a request is serviced by issuing a set
of commands with pre-defined timing, designed to meet the JEDEC standard[22].
The static scheduler ensures that each set adheres to timing constraints. While fixed
scheduling makes implementation easier, it is less efficient as it struggles to capture
the parallelism between different types of requests, such as open and close requests
with distinct timing constraints.

2. Dynamic: These arbiters schedule commands individually without the need for
pre-defined timing like static schedulers. Dynamic schedulers require a set of timing
counters to monitor all timing constraints. They issue a command when it is deemed
safe to do so. Although more complex, dynamic schedulers are generally more efficient
and adaptable to various policies and different types of requests.

2.2.6 Other Functionalities

The memory controller is not only limited to request scheduling, it is also responsible for
performing maintenance tasks such as calibration, refresh, and even error correction:
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1. Refresh: In COTS memory controllers, there is always a module responsible for
managing the refresh process. In some controllers, the refresh is automated, with the
memory controller itself issuing a REF command every tggp;. In other controllers,
the cores notify the memory controller when a refresh is required. The refresh process
starts by transitioning all banks to an idle state through the issuance of a PRE
command. The memory controller issues a PREA command to the PHY, which
places all the banks into the idle state. Subsequently, when all banks are in the
idle state, the memory controller issues a REF command to the PHY. Once a REF
command is issued, all banks undergo the refresh operation.

2. Calibration: All initial and run time calibrations discussed in Section 2.1.4 should
be performed and configured by the memory controller. Before the normal mode,
the memory controller should learn read and write delays using Read and Write
Leveling respectively. It is also responsible for issuing ZQ commands to the PHY
in initialization and runtime calibration. Meanwhile, it should also respect timing
constraints relevant to these tasks.

3. ECC: COTS memory controllers often incorporate a specialized feature known as
Error-Correcting Code (ECC). ECC is designed to identify and correct 1-bit errors
or detect 2-bit errors in the data. This process involves adding extra bits to the data,
which are used for error detection and correction purposes.

2.3 Related Works

2.3.1 Memory Controller Design

DDR memory systems stand as a prominent bottleneck in many computing systems, multi-
core systems in particular. A huge amount of research effort has been conducted to increase
the overall performance of these memories by applying various techniques. Specifically, nu-
merous novel memory controller designs have been proposed in recent years. All memory
controller designs mostly center around one of the first scheduling policies, FR-FCFS pro-
posed by Rixner et al. in [37], and it is commonly adopted in current controllers [50, 36, 17].
FR-FCF'S prioritizes commands in two orders. First, it prioritizes open requests over closed
requests, and if there is not any such request in the buffer, it issues the oldest request in the
buffer. However, FR-FCFS is a thread-unfair scheduling policy as faster cores are always
serviced before slower threads, and this can cause starving of slower ones. COTS memory
controllers often implement a modified version of the FR-FCFS policy in their schedulers.
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Significant efforts have been made to enhance the operation of these memory controllers
in multi-core systems, with regard to fairness between threads. The Fair Queuing Memory
Scheduler (FQM), derived from the fair queuing algorithm in computer networks [3], aims
to achieve an equal division of memory bandwidth among threads [30, 35]. It utilizes
a counter per requestor and services requests from the thread with the lowest counter
value. FQM does not leverage row locality which results in lower throughput compared to
other scheduling algorithms [27, 28]. The stall-time fair memory scheduler (STFM) [27]
assesses the slowdown of each thread relative to its isolation execution by quantifying the
interference between the threads. Once, the value exceeds a threshold, STFM prioritizes the
thread that has experienced the most substantial slowdown. The Parallelism-Aware Batch
Scheduling (PAR-BS) [28] is a thread-aware scheduler as opposed to FR-FCFS which tries
to enhance the overall performance of the system by establishing fairness among threads.
This scheduler groups memory requests into batches and prioritizes older batches over
younger ones. Nevertheless, writers in [15] showed that PAR-BS implicitly leads to lower
system throughput. Moreover, there are also other schedulers proposed to increase DRAM
throughput such as ATLAS [15], and Ipek et al. [I3] which employs machine learning
techniques to optimize memory scheduler policy.

On the other hand, real-time memory controllers strictly bound the worst-case latency
of requests while considering the optimizations made on high-performance memory con-
trollers in average-case. In other words, these memory controllers support the derivation of
tight latency bounds. The bound is not necessarily for all the cores; they can only provide
guarantees to some cores, not all. These types of real-time memory controllers are called
mixed-critical. Essential applications running on real-time systems need to have bounded
latency. In FR-FCFS, memory latency can be bounded by putting a limit on the number of
request reorderings carried out, as shown in [11][8]. Significant research effort has been put
into proposing different mechanisms in predictable memory controllers. The Analyzable
MC (AMC) [32] is the first design that adopts static command scheduling with a close-page
policy. The Programmable MC (PMC) [10] employs a close-page policy but divides larger
requests into multiple bundles using an open-page policy. The Private Bank Open Pol-
icy MC (ORP) [11] is the first design that uses a dynamic scheduling scheme with private
banks. ORP has implemented a complex FIFO to leverage the maximum bank parallelism.
ROC [19] is an open-policy memory controller that employs a rank-switching mechanism
to hide the latency of the write-to-read transition. ReOrder reorders the read and write
requests such that the number of switching between these two is minimized. Moreover,
it is shown that the effect of this reordering is bounded [1]. Furthermore, Mirosanlou et
al. in [25][15] proposed the DUETTO methodology that includes a pair of a real-time
predictable arbiter (RTA) with a high-performance arbiter (HPA). There is a dedicated
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estimator that monitors the state of the system, and when it is under heavy load and the
maximum latency is not violated, HPA would arbitrate accesses. Otherwise, the system
will switch to RTA to grant requests in critical situations.

2.3.2 Simulators

Most proposed scheduling policies in the literature are evaluated using a variety of sim-
ulators. Some of these simulators are behind the rapid change of technology in DRAMs
such as DRAMSim3 [21], and USIMM [3] that only support DDR2, and DDR3 while most
systems adopt DDR4 and even DDRS5 technology. Commonly used full-system simulators
[1, 5] rely on an inaccurate DRAM subsystem due to simulation speed and performance,
which is not sufficient for simulating different versions of MC. Ramulator [17] is a mod-
ular DRAM simulator that is designed to explicitly simulate a DRAM device’s behavior
while it offers a relatively basic MC that supports DDR3/4, LPDDR3/4, and GDDR5.
Finally, MCSim proposed in [24] allows the user to rapidly implement, verify, and test a
user-written MC, but it relies on a Ramulator for DRAM device simulation which does not
include the initialization and calibration steps. All the above cycle-accurate simulators are
implemented in C4++ while our memory controller is implemented in RTL, and supports
all the functional details of the DDR4 device calibration steps.

2.3.3 RTL Designs

Given that the PHY is a mixed-signal circuit, there are no existing RTL implementations of
PHY on FPGAs. Olgun et al. in [31] introduced an end-to-end framework facilitating the
integration of systems with DRAM-based processing-in-unit techniques. The framework
encompasses both software and hardware implementations; the hardware side is imple-
mented on FPGAs. However, it is worth noting that the implemented memory controller
is based on the DDR3 JEDEC standard, indicating support for DDR3 memory rather than
DDR4. Additionally, both Intel and Xilinx, as FPGA vendors, offer users a memory con-
troller IP. Due to the limitations in FPGA fabric frequency, both memory controllers issue
4 commands to the PHY in a single clock cycle. While Xilinx’s MIG is designed to support
frequencies up to 333 MHz, as we detail in the next chapter, the controller is significantly
limited in its ability to reorder requests and exploit parallelism among banks in the same
bank group; as we will later show in Chapter 5, this can lead to sub-optimal performance.
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Chapter 3

Xilinx Memory Controller

There are two kinds of memory controllers on Xilinx FPGAs depending on its architecture.
For instance, on Versal ACAP devices, there are hardened memory controllers accessible
through network-on-chip, these memory controllers (called DDRMC) operate at half the
DRAM clock rate, and either support DDR4 or DDR5. On the other side, there is a
memory controller IP implemented in the Adaptive Engine of ACAP devices which cannot
access hardened DRAM PHY through NoC as there are hardened memory controllers in
between.

In Ultrascale architecture, there are two DRAM PHYSs, one for the Processing Sub-
system (PS) side, and one for Programmable Logic (PL). The ARM cores in Ultrascale
architecture interface with the DRAM PHY on the PS side, and there is a hardened mem-
ory controller for this DRAM device. On the other side, MIG, a soft DDR4 memory
controller IP (MIG) interacts with a hardened DRAM PHY on the PL side.

The MIG includes a memory controller, calibration logic, and PHY. Given that we
have reused some of the modules within MIG, understanding the structure of MIG is
crucial. MIG provides a variety of IPs intended for the management of various operations.
These include a memory controller (which will be replaced with our memory controller),
calibration logic (used in our design), and other modules that serve specific tasks within
the MIG. In the following sections, we will delve into the design and functionality of the
various modules, each performing specific tasks inside the MIG.
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3.1 Overview

The MIG is mainly composed of four primary modules each specialized for a task, these
modules are as follows:

1. User Interface (UI): This layer provides queues that are used to buffer write and
read data, and supports reordering if configured.

2. Memory Controller: The controller processes a burst of requests from the User
Interface, generating transactions to and from DDR4 DRAM. It can be configured
to implement either an open-page or close-page policy. The controller prioritizes
read requests over writes. It also has the capability to rearrange memory requests
between bank groups, optimizing the scheduling of workloads with more random
address patterns.

3. Physical Layer (PHY): The PHY comprises both hard and soft blocks. The
hard blocks on the FPGA handle tasks such as capturing and serializing data or
transmitting and de-serializing data. Meanwhile, the soft blocks are involved in
initialization and run-time calibration.

4. Calibration and Initialization: This block contains a Microblaze soft IP to control
and monitor the sequences of initialization as well as calibration steps performed by

the PHY.

All four main parts of the MIG are shown in Figure 3.1. Our proposed MC replaces
MIG’s Memory Controller, while all other modules including Calibration, User Interface,
and PHY would remain untouched. There is a mux using which the process switches
between the memory controller and the calibration module. The mux and calibration
module are wrapped in top module called cal_top. First, PHY as a fundamental interface
to DDR4 in the MIG is explained in Section 3.2. Second, the User Interface functionality,
through which cores interface to MIG, is discussed in Section 3.3, followed by Section 3.4
in which the AXI interface is described. In Section 3.5, the implementation details inside
the calibration module are investigated, and then the memory controller design in the MIG
is explored in Section 3.6.

20



Ultrascale MIG

Initialization Done
\
Calibration
and
Initialization
FPGA !
: User . . DDR4
Use'r Interface PHY SDRAM
Logic
: Memory
Controller
Data
<& D

Figure 3.1: UltraScale Architecture-Based FPGAs MIG Core Architecture. [11]

3.2 PHY

The PHY serves as the fundamental physical interface to an external DDR4 DRAM device,
incorporating both hard and soft blocks crucial for ensuring the reliable operation of the
physical interface. Hard blocks are designed to serialize read data from the DRAM device
and de-serialize write data for transmission to the DRAM device. Additionally, the hard
block includes a PLL primarily responsible for generating the clock for the DRAM device.
On the other hand, the soft core handles the initialization steps necessary to transition
the DRAM device into normal mode after being powered on. Furthermore, the soft block
provides the calibration logic to set all delays in both hard and soft blocks to interface
properly with the DRAM device.

The PHY talks to the other building blocks of the MIG through an interface called the
Native Interface. This interface neither supports reordering nor incorporates any buffers.
On one side, the PHY receives/sends the data in a burst of 8 from/to the DRAM device
in the DRAM’s clock domain (serialization, and de-serialization respectively), and on the
other side, it transmits the data in a single clock cycle in the memory controller’s clock
domain. For instance, for a device with data width of 8 bits, PHY receives 64-bit data
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from upstream (the User Interface) in a single clock at a rate of 300 MHz, while a DDR4
device receives the same data in a burst of 8, in four clock cycles at a rate of 1200 MHz.

Considering that the maximum frequency achievable on implemented logic blocks on
FPGAs is approximately 300 MHz, the memory controller logic in MIG operates with a
DRAM to a system clock ratio of 4:1. For instance, if the DDR4 memory speed grade
is 2400 MT/s, given that DDR4 is a double data rate memory, the command frequency
effectively becomes half of the speed grade, which amounts to 1200 MHz. This indicates
that commands should ideally be issued at a frequency of 1200 MHz, a frequency that is
considerably high for logic implementations on FPGAs. Given the 4:1 ratio, the memory
controller would operate at 300 MHz. Consequently, MIG issues a pack of four commands in
a single clock cycle to the PHY, resulting in the DRAM device receiving a single command
with a frequency of 1200 MHz.

Moreover, there is another limitation imposed by the architecture of the PHY in Xilinx’s
MIG. CAS commands can only be picked in either slot 0 or slot 2 of the pack issued by the
memory controller. However, PRE and ACT can be placed in any of the slots. The PHY
also incorporates calibration logic designed to execute timing training calibration tasks,
Read Leveling, and Write Leveling which are discussed in Section 2.1.4.

3.3 User Interface

The MIG features a User Interface layer that provides a straightforward FIFO-style inter-
face. This layer functions to buffer data, ensuring that the read data presented aligns with
the order of requests. It accepts signals from the Native Interface in the PHY. The Native
Interface, lacking buffering, promptly presents returned data to the User Interface as it
arrives from the memory, potentially deviating from the original request order. The data
buffers employed in the User Interface maintain the order of arrival of requests. Given that
the controller is capable of reordering requests, the User Interface takes the responsibility
of reordering the returned data from the Native Interface as needed.

The User Interface can only accommodate one request at a time. When a new request
arrives at the User Interface, it generates the corresponding bank group, bank, row, and
column address of the request. Concurrently, a unique data pointer, indicating the index
assigned to the new request in the data buffer, is also transmitted to the MIG. Subsequently,
if the request type is read and its CAS is issued, the unique data pointer returns from
cal_top back to the User Interface. Using this pointer, the read data from the DRAM
memory is stored in the index pointed to by the unique returned pointer. Additionally, if
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the request type is write, its unique data pointer returns one clock cycle before its CAS
is issued to the PHY. The User Interface retrieves the corresponding write data settled
in the index referred by the data pointer and transmits it to the PHY. In the following
situations, the UI would not accept the submitted request from the user:

e The PHY initial calibration process is not finished.

e The signal from the memory controller in MIG indicates that either the request or
command queue is full.

e Both read and write data buffers in the UI can store up to 32 64-bit data values.
When these buffers get full, no new request will be accepted.

3.4 AXI4 Slave Interface

The Advanced eXtensible Interface (AXI), is a protocol developed by ARM for digital
systems, commonly employed in system-on-chip architectures. This protocol streamlines
communication and data transfer among diverse components in a digital system, encom-
passing processors, memory, and peripherals. The AXI establishes a standardized set of
rules and protocols, simplifying the integration and interconnection of IP blocks within
a system, and contributing to efficient and cohesive system design. The AXI protocol is
made up of five channels, two of which are used for read transactions, and the remaining
three are used for write transactions. These channels are the following:

1. Read Address (AR): This channel is used for transmitting address information
from the initiator to the target during read transactions.

2. Read Data (R): The Read Data channel facilitates the transfer of data from the
target to the initiator in response to a read transaction.

3. Write Address (AW): The Write Address channel carries the address information

from the initiator to the target during write transactions.

4. Write Data (W): This channel is responsible for transferring data from the initiator
to the target during write transactions.

5. Write Response (B): The Write Response channel conveys the response from the
target to the initiator after a write transaction, indicating the success or failure of
the operation.
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Xilinx provides the AXI slave interface block which can directly connect to the User
Interface, a layer on top of the User Interface, and facilitates the mapping of AXI4 trans-
actions to the User Interface. The block comprises separate sub-blocks to handle each AXI
channel separately, which results in independent write and read transactions. Since the
User Interface accepts only one request at a time, if there are simultaneous read and write
requests, the block will by default rely on a simple Round Robin arbiter to issue them.

3.5 Calibration

The calibration logic controls the initialization and calibration discussed in Section 2.1.4.
The calibration modules provide a thorough process for adjusting all delays within the hard
IP (PHY) and soft IP (Memory Controller, and Calibration Logic) to coordinate with
the memory interface. Each I/O pin used for data, address, and commands is individually
fine-tuned and subsequently combined to ensure the best possible interface performance.
After the reset is de-asserted, the calibration module invokes the memory initialization task
through which burst length, read, and write CAS latency are configured using configurable
registers within the DDR4 device. In addition to initialization, the calibration module
implements other crucial types of calibration, including Write Leveling, Read Leveling,
and ZQ Calibration [13]. These tasks are mainly employed to center the data along with
DQ@S in order to increase the data-valid window.

The calibration and training processes are carried out by an embedded MicroBlaze
(MB) processor which can be configured using a block RAM. This memory stores settings
governing the initialization and calibration processes. All other calibration-related modules
are wrapped by cal_top in RTL files. Module cal_ addr_decode serves as the interface
for the MB to the rest of the system and incorporates helper logic used by the MB.

3.6 Memory Controller

The memory controller is designed with the aim of efficiently handling read, and write
requests received from User Interface block. It accomplishes this while ensuring low latency,
adhering to all JEDEC protocol and timing requirements, and utilizing minimal FPGA
resources. The Memory Controller is composed of the primary logic blocks as the following:

e Group FSMs: These state machines are instantiated per bank group and enqueue
memory requests that target the same bank group, check DRAM timing constraints
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and make decisions regarding when to issue PRE, ACT, and CAS commands. More
details are discussed in Section 3.6.1. These modules are named mc_group in the
RTL design files.

Safe Logic and Arbitration Units: These logic units reorder memory requests
among Group FSMs based on additional DRAM timing evaluations while ensur-
ing that all issued DRAM commands will be processed and sent to the PHY. In
RTL design, these modules are mc_arb_c, mc_cmd _mux_c for CAS, mc_arb_a,
mc_cmd_mux_a for ACT, and mc_arb_mux_p for PRE. Also, another module,
called mc_rd_wr, manages the switching between reads and writes, as discussed in
Section 2.1.3.

Final Arbiter: This module is called mc_ctrl and makes the ultimate decision
about which commands are dispatched to the PHY and provides feedback to the
preceding stages so if a command is sent successfully, it is removed from the queues.

ECC: The MC offers an elective Single Error Correction Double Error Detection
(SECDED) Error-Correcting Code (ECC) scheme designed to identify and rectify
read data errors involving a 1-bit error per DQ burst, while also detecting all 2-bit
errors per burst. However, it does not correct 2-bit errors. Detection of three or more
bit errors per burst is uncertain and may or may not occur, but correction is never
attempted. The responsible module is called mc_ecc.

Maintenance: In addition to command path flow, there are components mainly
used to take part in the maintenance path. There is one block, called mc_ref ded-
icated to controlling the refresh and issuing ZQCS commands, and another module
named mc_periodic_read used to oversee periodic read conditions as discussed ear-
lier in Section 3.5.

In Figure 3.2, all the constituent blocks forming the memory controller of the MIG

are shown. The requests are received from the UI and then passed to Group FSMs. Once
selected within Group FSMs, the requests are transferred into Final Arbitration, and when
it is safe they are conveyed to the PHY. In the meantime, maintenance modules, mc_ref,
and mc_periodic_read take control of the flow when corresponding criteria are fulfilled
as discussed in Section 3.6.3.

First, we start by detailing the logic behind the Group FSMs in Section 3.6.1, and

then we entail the operations of refresh and periodic read in Section 3.6.3.
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Figure 3.2: MIG Memory Controller Block Diagram. (Reproduced from [11])

3.6.1 Group FSMs

In the MIG there are four Group Machines which are allocated depending on the technology
and the data width (x4, x8, x16). In x4, and x8 these groups are allocated 4 banks within
one bank group each, and in x16, each group is allocated two banks since the number of

total banks in x16 is 8, as discussed in Section 2.1.1.

Figure 3.3 shows the Group FSM block diagram for one instance. The Group FSM
block is divided into two primary sections: stage 1 and stage 2, each comprising a FIFO
and an FSM.

In stage 1, the block interfaces with the User Interface, where it first enqueues the
received request into the stage 1 FIFO. The row of the request at the front of the stage
1 FIFO is examined and shared with the stage 1 FSM. The FSM evaluates whether it
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Figure 3.3: MIG Group FSM block diagram. (reproduced from [11])

should send out a PRE or an ACT command and determines the safe timing for issuing
these commands. When a request is open and there is no pending Read with Auto-
Precharge (RDA) or Write with Auto-Precharge (WRA) commands in the stage 2 FIFO,
the transaction is moved from the stage 1 FIFO to the stage 2 FIFO. At this point, the
stage 1 FIFO is dequeued, and the stage 1 FSM initiates the processing of the next request.

Simultaneously, the stage 2 FSM handles the CAS command phase of the request at
the front of the stage 2 FIFO. The stage 2 FSM sends out a CAS command request when
it is safe to do so, taking into account the dedicated timers, tgrcp, trp, tras, intra-bank
constraints, which are being updated upon issuing PRE, and ACT. Both FSMs can issue
their corresponding commands to Safe Logic and Arbitration simultaneously.

In Section 3.2 we discussed the frequency ratio of the PHY and Memory Controller
blocks. Since the PHY’s clock domain is four times faster than that of the MC, the MC
issues a pack of 4 commands to PHY and it is essentially equivalent to issuing a single
command in a clock that is 4 times faster. As pointed out in Section 3.2, CAS should be
either slot 0 or slot 2 of the packet while ACT and PRE can be put in any slot. However,
to achieve higher frequency in the MIG design, in every pack, ACT is only in slot 1, and
PRE is only in slot 3. This pattern results in one unused empty slot every clock cycle.
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Let us consider an example that illustrates the operation of the Group FSM. Suppose
there are no requests in Group FSMs of bank groups 1 to 3, and only close requests are
present in stage 1 FIFO of Group FSM 0, with all timing counters set to zero. The
request at the front of stage 1 FIFO is read, and its PRE is generated in the Transaction
Group FSM, then passed to the Safe Logic and Reorder Arbitration module. As all other
Group FSMs are idle, the PRE command is placed in slot 3 of the pack and sent to the
PHY. Simultaneously, the timing counter is updated to the value of the intra-bank timing
constraint PRE to ACT, tgas. The Transaction FSM checks in every clock cycle whether
the tras counter reaches zero. Once it decrements to zero, the ACT of the same request
becomes safe to be issued. At the same time, the CAS of the request is pushed into the
stage 2 FIFO. Similarly, since other Group FSMs are idle, the ACT will be placed in slot 1
and subsequently sent to the PHY. The corresponding counter, tgcp, is updated with the
respective timing constraint. When the tgcp counter reaches zero, the CAS of the request
will be issued and placed either in slot 0 or slot 2 of the pack. Meanwhile, it is possible
that the PRE and ACT of the next request in the stage 1 FIFO are being generated.

3.6.2 Inter-group Command Arbitration

The controller gives precedence to reads over writes when reordering between Group FSMs
is enabled. In situations where both read and write CAS commands are deemed safe
for issuance on the SDRAM command bus, the controller exclusively selects read CAS
commands for arbitration. This approach reduces the frequency of switching between reads
and writes, resulting in fewer incurred switching penalties, specifically t grw and tyrg. The
module that switches arbitration between read and write requests is mc_rd_wr as shown
in Figure 3.2.

Requests that belong to the same Group FSM are never reordered. The reordering
between Group FSM instances is governed by a parameter. When set to "NORM,” re-
ordering is enabled, and the arbiter employs a round-robin priority plan, selecting among
the Group FSMs in priority order, considering commands safe for issuing to the PHY. The
timing of safe command issuance to the PHY can vary based on the target bank, bank
group, and their page status, often leading to reordering. In the case of the parameter
set to "STRICT”, all requests have their CAS commands issued in the order they were
accepted at the User Interface.
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3.6.3 Refresh and Periodic Read

There is a dedicated module specialized to control refresh and ZQ calibration flow. It
supports both user-generated refresh and ZQ provided through the User Interface, and
also it incorporates counters that track timing constraints such as trrc, tzgcs, and trer;.
Whenever the refresh interval, tgrgpr, is reached, the module would notify Group FSMs
that a refresh is required. In the meantime, it is possible that some requests are on-fly to
get issued to the PHY. For this reason, Group FSMs inform the mc_ref module whether
it is safe to start the refresh process. This module is capable of accumulating postponed
refresh tasks and performing all of them when it is safe to do. Sometimes, ZQ calibration
is required while a refresh is being performed. In this case, once the refresh finishes, ZQ
calibration becomes activated.

As pointed out earlier, the user is able to bypass the mc_ref module in the memory
controller through a flag, and issue ZQ commands directly through User Interface. The user
is responsible for honoring the rate at which these commands should be issued. However,
the memory controller adheres to the timing constraints of ZQCS, tzocs. The controller
may not maintain the precise order of maintenance transactions presented to the User
Interface in relation to regular read and write transactions. When initiating a ZQCS, the
controller temporarily interrupts system traffic, similar to the default mode, and executes
the Z(Q commands.

Moreover, limited by Xilinx’s PHY design two dynamic and periodic adjustments are
required to secure data integrity and a unified working system. The initial requirement
involves observing DQS edges to maintain synchronization between the free-running fre-
quency reference clock and the associated read DQS, ensuring phase alignment is locked.
The second dynamic adjustment aims to precisely adjust the position of the DQS preamble
for the upcoming read. This adjustment specifically focuses on locating the DQS preamble
and is essential to accommodate potential drift in the system that may shift the DQS
relative to the internal clock. Both of these dynamic adjustments require periodic reads.
Consequently, mc_periodic_read sends periodic read requests every 1 us when the bus
is idle or performing only writes. This module monitors the command bus and observes
whether any read CAS is issued during the past 1 s, and asserts corresponding signals.
Regarding periodic read, when the interval is reached, a signal notifies the first Group
FSM, which is for bank group 0, to inject a read request into the queue. For the address of
these periodic reads, when there are other requests in the queue of Group FSM and the 1
ps periodic time is due, the periodic read request targets the same address as the preceding
read /write request in the queue. When the controller is idle and no reads or writes are in
the request queue, the periodic read uses the last address accessed, and it might require
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an ACT command if it is a close request. These periodic reads are received in cal_top
module and the relevant tasks are performed to align DQS with the clock.
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Chapter 4

Memory Controller Design

We have developed a high-performance DDR4 memory controller that features an FR-
FCEFS arbitration scheme as its front-end scheduler and implements a Round Robin policy
among banks as its back-end scheduler. The command queues are instantiated per bank
and the memory controller capitalizes on bank parallelism, diverging from the bank group
parallelism characteristic of MIG. Moreover, the memory controller can identify the origin
of arriving requests, and enqueue requests per bank and per requestor. We decided to
track the core ID of requests for further developments of different memory controllers in
the future, real-time memory controllers in particular. We modified the User Interface in
the MIG so that when a new request arrives at the Ul, it also sends the core ID of a request
in addition to its address bits including the bank group, the bank, the row, and the column
along with the unique data pointer. Our memory controller is designed to interface with a
single-rank DRAM device while the MIG supports multi-rank.

The memory controller issues a pack of four commands akin to the MIG approach. Our
memory controller minimizes the switching between read and write requests. Two versions
of the command scheduler have been designed. The first version exhibits flexibility in
placing ACT and PRE in any slot, enabling the issuance of up to four PRE commands
within a single pack. In contrast, the second version restricts the placement of ACT to
either slot 1 or slot 3 and allows for only two PRE commands per pack. While the first
version outperforms the second at clock parity, it is pertinent to note that it supports a
lower frequency compared to the latter.

In this chapter, first, we begin with Section 4.1 to entail the structure of our memory
controller followed by Section 4.2, 4.3, 4.4 in which the design of the request scheduler,
page table, and command queues are discussed respectively. In Section 4.5, we discuss the

31



timing counters and the implementation of two versions of our memory controller.

4.1 Overview

Our memory controller incorporates three pipeline registers in its design. When a new
request is accepted from User Interface (UI), it is enqueued into the request queues, which

serve as the first pipeline register in the request scheduler.

Once a request is selected

by the request scheduler, its corresponding commands are inserted into the subsequent
queues, known as command queues. The second pipeline register in our design is the set of
command queues, through which the commands progress before traversing the command
scheduler logic. After the commands are issued, the relevant PHY signals are generated
and registered in the cal_top module, constituting the third pipeline register in our archi-
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Figure 4.1: Our memory controller block diagram
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Moreover, as shown in Figure 4.1, we re-used maintenance modules such as mc_ref,
and mc_periodic_read from Xilinx’s MIG design files. Request schedulers, denoted as
mc_request_scheduler_b, are instantiated per bank and each comes with a command
generator issuing PRE, ACT, and CAS commands. Similarly, command queues, denoted
as mc_command_queue_b, are instantiated per bank. These queues reorder commands
within them if needed and each passes the command at its front to the command scheduler,
denoted as mc_command_scheduler. Finally, module mc_ctrl takes the pack of four
commands issued by mc_command_scheduler and translates each command into the
PHY signals as discussed in Section 2.1.2.

Our memory controller replaces the memory controller of Xilinx’s MIG while all other
modules such as Calibration Logic, and PHY remain untouched. As pointed out earlier we
modified the User Interface so that it receives core 1D as well. The reason for employing
these modules is to leverage their specific functionalities that are in harmony with DDR4
PHY on Xilinx’s FPGAs.

4.2 Request Scheduler

In the memory controller, the request scheduler is composed of mc_request_scheduler_b
instances with a total number equal to the total number of banks instances are per
bank. For example, the structure of the request scheduler with a total of 16 banks is
shown in Figure 4.2a. Each mc_request_scheduler_b is composed of three primary
sub-modules mc_request_queue, mc_frfcfs, and mc_command _generator as shown
in Figure 4.2b. Sub-module mc_request_queue contains request queues that are per
requestor. In addition to request queues, simultaneously, the queue within mc_frfcfs en-
queues incoming requests in the order of their arrival. Essentially, the queue implements
the FR-FCFS scheme as it tracks the relative order of requests once they arrive. At last,
mc_command_generator generates the commands of the picked request depending on
whether the request is open or not, it generates CAS, or PRE, ACT, CAS respectively. The
request scheduler is tasked with two primary functions: enqueuing and selection (front-end
arbitration). Sometimes, the enqueuing task can be stalled due to the request queues be-
coming full, or the selection stalls due to a refresh being processed. Now in the following
sub-sections, the logic design of two sub-modules, mc_request_queue, and mc_frfcfs is
described. The command generator module simply creates a set of commands from the
picked request and passes the set to the command queue module.
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(b) The structure of a single mc_request_scheduler_b in bank b,,.

Figure 4.2: The request scheduler architecture.

4.2.1 Request Queue

If m denotes the number of cores, sub-module mc_request_queue contains m number
of pairs of queues, and each pair corresponds to one core. In Figure 4.3a, sub-module
mc_request_queue for 8 cores is illustrated. Each pair includes two queues, the first
queue is used to store all information about requests: the address, type, and data pointer.
The second queue stores pointers that point to the empty indices of the first queue. These
pointers are used to write a new request to one of the empty slots in the request queue.
These two queues are shown in Figure 4.3b.

Upon the arrival of a new request from core (), directed towards bank b, via User
Interface, the request undergoes the following process. A pointer, Write Pointer in Figure
4.3b is popped out from the Write Pointer Queue and it is used to write the new request
into the empty index of the Request Queue corresponding to core C,,. Moreover, when a
request is finished, it is safe to be removed from the request queue, and the pointer of the
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removed slot is returned to the second queue which will be used later for request insertion.
Once a request (the picked request in Figure 4.3b) is selected, its address and type are
passed to the mc_command_generator that corresponds to bank b,,, and subsequently,
the resulting commands are issued.

mc_request_queue

Request Queue Core 0
L3

Request Queue Core 1
L3

Request Queue Core 2
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T 1T
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|
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[}
>
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2
3
>
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o

—»{ Request Queue Core 7 ’—»
Core ID of new request L5

Pointer of a picked
request

Core ID of picked
request

(a) The structure of mc_request_queue with 8 number of cores.

Request Queue of core,,

w_rlte
pointer

write pointer
queue

.

request queue

B
picked request \ picked
request

(b) The structure of a pair of queues for core M.

Figure 4.3: The structure of mc_request_queue in mc_request_scheduler_b.

4.2.2 FR-FCFS Arbiter

Module mc_frfcfs mainly comprises a FIFO-style queue, called Global FIFO, a compara-
tor, and a one-hot priority encoder. Each entry in the global FIFO includes the row address
of a request, the pointer referring to the location of that request in the request queue, and
the corresponding unique data pointer of the same request retrieved from UI. The row
address of a request is used to determine whether the request is open or close. The pointer
of the request queue is used to select the winning request in mc_request_queue, and the
data pointer retrieved from cal_top is used to uniquely identify a request in the Global
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FIFO and remove it when it finishes. By leveraging thev Global FIFO, which is common
among all the requestors, the scheduler can discriminate the oldest request among all the
requests. In Figure 4.4, a Global FIFO with size of 8 is shown. Index 0 (LSB) is the oldest
slot, while index 7 (MSB) is the youngest slot. The row addresses of all slots in the Global
FIFO are compared against the current opened row of the corresponding page table. After
this comparison, a set of flags indicating whether a request is open (ready) or not is gener-
ated. Using these flags, the select signal of MUX2 (is_ready in Figure 4.4) is determined.
Simultaneously, using a one-hot priority encoder the oldest ready request is picked using
MUX1. The priority encoder returns the highest priority index in one hot format. The
highest priority is the LSB bit of one-hot encoded output, and the lowest priority is the
MSB. For instance, if the ready flags are 8’b0110.1000, the priority encoder would output
8’b0000.1000. If there are any ready requests, the ready request is picked otherwise, the
oldest request from index 0 is picked. Once a request is picked, the pointer referring to the
location of the won request in the request queue is passed to mc_request_queue.
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Figure 4.4: mc_frfcfs Arbiter Block Diagram

Once a request targeting bank b, is completed its data pointer returns to mc_frfcfs
corresponding to bank b,. Using this data pointer the request is identified in the Global
FIFO and subsequently removed from the queue. Additionally, requests located after the
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removed request are shifted towards LSB, this resembles the shift register behavior of the
Global FIFO.

4.2.3 Data Flow

After the arrival of a new request from core ¢, targeting bank b, at UI, the core ID of ¢,,
along with other information of the request will be passed to the corresponding request
scheduler, mc_request_scheduler_b,,, and the request will be enqueued in the request
queue core ¢,, of mc_request_queue. At the same time, the request queue passes the
index, in which the new request is placed, to mc_frfcfs. Subsequently, mc_frfcfs enqueues
the new request along with the request queue pointer received from mc_request_queue.
When a request is picked in mc_frfcfs, the corresponding request queue pointer is returned
to mc_request_queue and then it outputs the address, type, and data pointer to the
command generator of bank b,. At last, the command generator generates the commands.

When a request is finished, it will be identified using its unique data pointer in global
FIFO in mc_frfcfs, and this module passes the request queue pointer of the finished request
to mc_request_queue. Subsequently, the request will be removed from the request queue
in mc_request_queue.

4.3 Page Table

The page table module, identified as mc_page_table, tracks the currently activated row
for each bank. Each entry in this table corresponds to a specific bank where the opened
row of that bank is located. Moreover, each entry has a valid bit indicating whether the
corresponding bank of that entry is idle or not. Note that after the PRE command, a
bank will be in idle mode. Upon the issuance of an ACT of close request to a particular
bank, the row within the corresponding entry of the page table is updated to reflect the
row associated with that request. To illustrate the functionality of the page table, consider
the example of the FR-FCFS arbiter, mc_frfcfs, within the request scheduler of bank b,
denoted as mc_request_scheduler_b,. In this scenario, the arbiter compares the rows
of all requests in the Global FIFO against the current row stored in the b, entry of the
page table. Let us assume the current opened row is A. If the request scheduler selects
a close request, r, targeting row B, and there are no open requests in the Global FIFO,
the issuance of ACT of request r leads to the replacement of the row A in the b, entry of
the page table with row B. Furthermore, once the refresh operation finishes, after which

37



all banks are idle with no activated rows, all valid bits in entries of the page table will be
zero, and the rows within banks are no longer valid.

The page table serves as a register holding the current open rows in all banks. When
an ACT command is issued from the command scheduler, the table gets updated with a
new row in the subsequent clock cycle. On the other hand, the request scheduler queries
the activated rows from the page table to select a request in the current clock cycle. Due
to the one-clock cycle latency in the page table being updated, there is a possibility that a
previously open request, which is, in reality, a close request, might be detected as an open
request and passed downstream. To address this issue, we have imposed certain constraints
in the command queue design, which will be discussed in the Section 4.4.

4.4 Command Queue

The Command Queue module, denoted as mc_command_queue and instantiated per
bank, plays a pivotal role in storing commands generated by the corresponding command
generator. The command queue is capable of reordering commands in the case of open
requests. Let us delve into the logic behind the command queue. The command queue can
enqueue commands of three distinct requests at most. Since the command queue is one
of the pipeline stages in the memory controller design, and we prefer not to stall the flow,
the command queue should store commands of more than one request. Let us say we have
two requests r1, and ro. The PRE and ACT of the former are picked by the command
scheduler while its CAS is not serviced yet, and the latter is in the request queue, and
not yet pushed into the command queue. Regardless of request 7 being open or close, its
commands will be pushed into the command queue due to the same reason that we do not
want to stall the logic. In other words, when there is a single open request in the command
queue, meaning that a CAS is in the command queue, to prevent a waste of clock cycles,
the command queue would accept the next request. However, following the discussion in
Section 4.3, if a third request r3, which targets the same row as request r; arrives when ry is
at the front of the command queue, it will not be pushed into the command queue since we
do not know when commands of 7 will be selected by the command scheduler. Although,
if request rq is still in the command queue, r3 will be accepted, and the command queue
will be re-ordered in such a way that the CAS of r3 will be placed after the CAS of rq,
and ahead of the commands of ry. Furthermore, if there is a close request in the command
queue, meaning that there is an ACT or there are a PRE, and an ACT in the command
queue, no other close request will be accepted since the memory controller still needs to
issue at least two commands of the previous close request. The following are the conditions
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where an open request and a close request would not be accepted by the command queue:

Conditions not to accept an open request

e command queue being full
e number of CAS commands in the command queue being more than 2

e there is no CAS with the same address as the open request, and one PRE in the
command queue

Conditions not to accept a close request

e command queue being full

e number of CAS commands in the command queue being more than 2

e number of ACT commands in the command queue being more than 1

When mc_command_queue accepts the commands it checks whether it is an open
request or close request. For the former case, there is a combinational block logic called

CAS Insertion as shown in Figure 4.5 that inserts the open CAS into the command queue.
The insertion logic is illustrated in Table 4.1.

H Command Queue ‘ Action H
| - ]| Any || Any || Any || CAS | After CAS if row matches, otherwise push back
|| - || Any || Any || CAS || ACT || After CAS if row matches, otherwise push back
|| - || Any || Any || CAS || CAS | After the second CAS if row matches, otherwise push back
|| -] Any || CAS || CAS || ACT || After the second CAS if row matches, otherwise push back
[| - || CAS || ACT || PRE || CAS || | After either the first or second CAS if the row matches, otherwise push back

Table 4.1: The CAS insertion logic in the command queue.
However, for close requests, it pushes PRE, ACT, and CAS to the back of the queue.

The module always outputs the front of the command queue to the command scheduler.
The queue itself is a cyclic queue and it supports simultaneous read and write.

39



mc_command_gueue

CAS updated command gueue
1 CAS Insertion

T — command to the command scheduler

Command(s) generated from the
request scheduler

PRE, ACT, CAS

is_open

Figure 4.5: The block diagram of mc_command_queue module.

4.5 Command Scheduler

The command scheduler, denoted as mc_command_scheduler, receives a single com-
mand from each instance of the mc_command_queue and selects four commands within
a single clock cycle, a limitation imposed by the frequency constraint outlined in Section
3.2. Employing a Round Robin policy, the command scheduler arbitrates among command
queues organized per bank, thereby capitalizing on bank parallelism within our memory
controller. The primary functions of the command scheduler include command arbitration
and the monitoring of timing constraints to ascertain the safety of issuing specific command
types. We have implemented two designs of the command scheduler, each representing a
different trade-off between the constraints on issuing commands and the level of parallelism
in the command scheduler. In Version 1, ACT can be placed in any of the slots, and it
can issue up to four PRE commands. On the other hand, Version 2 can only put ACT
in either slot 1 or slot 3 and can issue up to two PRE commands. In Section 4.5.2, the
building blocks of the 1st version are discussed followed by Section 4.5.3, in which the 2nd
version is discussed.

4.5.1 Counters

Counters play a crucial role in ensuring the accurate operation of the command scheduler
by monitoring timing constraints and determining the safety of issuing specific commands.
The command scheduler relies on counters to keep track of timing constraints, ensuring
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compliance with JEDEC standards. These counters count down, and when the counter
value reaches zero, it indicates that the corresponding command is safe and ready to be
issued. These counters are organized into groups, with each group instantiated per bank.
Within each group, four counters are designated, each dedicated to a specific command
type associated with that bank. Given that there are four distinct command types—PRE,
ACT, RD, and WR—that can be directed to a bank, these counters provide detailed
tracking for precise command issuance timing. For instance, the PRE counter within a
group corresponding to bank b, determines when PRE command is safe to get issued to
bank b,. The structure of each group is shown in Figure 4.6a, and in Figure 4.6b, the
structural arrangement of all groups is illustrated.

counters
for bank b
group for bank by ‘ group Tor bant o ‘
‘ group for bank b, ‘
PRE counter
‘ group for bank by ‘
ACT counter
RD counter
WR counter group for bank by 5
(a) A group of counters for bank b;. (b) All groups of counters for all banks. The

total number of banks is 16.

Figure 4.6: The structure of counters used in the command scheduler.

4.5.2 Version 1

Concerning the frequency limit on the FPGA fabric, discussed in Section 3.2, the command
scheduler version 1 should issue a pack of four commands in one clock cycle, each command
within one slot. We implemented combinational logic that picks a command for a given
slot, given the current counter value, and the Round Robin pointer, and then computes the
new value for counters that are affected by the picked command. Also the Round Robin
pointer will get updated. Since, we need to pack 4 commands in 4 slots, we chained this
combinational logic one after another to pick all 4 commands sequentially. After the last
slot (slot 3), the final counters value and the final Round Robin pointer are registered to
be used for the next clock cycle. Now let us delve into the details of the combinational
logic for one slot.
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Figure 4.7: The basic structure of command scheduler version 1.

In each combinational logic of a slot, there are three blocks, a comparator, a Round
Robin arbiter, and a counter-updating module. For instance, for slot 0, these blocks are
comparator_0, arbiter_0, and updating_counter_0. In each clock cycle, the flow begins
with filling slot 0. First, comparator_0 takes the front command of all command queues,
and checks whether their corresponding counters are 0 or not, and subsequently outputs
a set of flags called vf_0. These flags are used by arbiter_0 to select the commands that
are safe to issue concerning timing constraints. Once the arbiter picks a command, it
will be placed into slot 0. Lastly, the picked command is passed to counter_updating_0
block through which the counters will be combinationally updated according to the timing
constraints, as discussed in Section 2.1.3.

Round Robin Arbiter

The arbiter implements a Round-Robin policy over command queues which are per bank.
The comparator in each slot logic generates a set of flags by which the arbiter would select
a command. The arbiter in the command scheduler version 1 employs a set of one-hot
priority encoders. The reason that we chose one-hot priority encoders instead of index
priority encoders is that the set of flags is nothing but a sequence of Os, and 1s, therefore,
one-hot priority encoders are a good match for this kind of logic. Each priority encoder
prioritizes a bit index in the flag. The structure of the arbiter is shown in Figure 4.8.
For instance, in priority encoder 0, and priority encoder 15 the highest priority index is
the 0-th, and 15-th bit respectively. After the priority encoder, only one of the outputs,
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selected by the round-robin pointer, is valid, using which the command will be extracted.

arbiter

Priority Encoder 0 — —

.
@— Priority Encader 15 E— —

Figure 4.8: The design of arbiter in the command scheduler.
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It is important to note that the arbiter always selects among commands that are ready
to be issued, as dictated by the state of the counters. As noticed in Section 2.1.3, the
penalties for switching between read and write requests are long, so if the memory controller
sends a read, other reads will be ready before the writes, so the arbiter prefers not to
switch. The same is true for bank groups, since tcopy, and trrp, are shorter so commands
of different bank groups are ready first, and the arbiter prefers to switch between bank
groups.

Counter Updating

This module, employing information from the bank group, the bank, and the type of the
selected command, identifies the counters to be impacted. Initially, it updates the counters
if the new constraint exceeds the current value of a counter. After the completion of this
update process for all counters, they are uniformly decremented by one. Subsequently,
the updated counters undergo transmission to the subsequent slot logic blocks. All these
operations are executed through combinational logic, and no registers are employed in the
process. For example, if in slot 0, a PRE command hitting bank b, is picked, the counters
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within the group for bank by are updated if the following timing constraints. (refer to
Section 2.1.3) are larger than the current counter value:

1. PRE: tRC
2. ACT tRp
3. RD: tRP+tRCD

4. WR: tRp + tRC’D

In particular, the ACT commands are affected by the ¢z constraint, as discussed in
Section 2.1.3. To keep track of the tg 4y constraint, which is common among all banks, we
have employed a FIFO-style queue with a size of four; each entry holds a valid bit and a
counter that keeps track of tray. Whenever a new ACT is issued, a fresh ¢y 4y constraint
is pushed into the FIFO along with its valid bit being asserted. When the FIFO becomes
full, it indicates that four ACTs have been issued so far (tpay is triggered), and the tpap
of the oldest ACT in the FIFO is now valid as a timing constraint. Once the ¢y counter
of the oldest ACT reaches zero, the next ACT, the 5th one, can be issued. Meanwhile, the
oldest ACT will be popped out from the FIFO, and instead the 5th one will be inserted
into the FIFO.

Optimization

According to the JEDEC standard, no more than one command of the same bank can be
selected before 4 clock cycles, all intra-bank timing constraints are more than 4 clock cycles.
We confirmed this for all speed grades of DDR3, and DDR4. Likewise, no more than one
same command type, except PRE, to different banks can be selected before 4 clock cycles.
This is mainly due to the fact that the smalest inter-bank constraints, tgrp,, and tcopg for
ACT, and CAS respectively, are 4 clock cycles. By observing these properties derived from
JEDEC timing constraints, we can further optimize the design of the command scheduler
version 1.

The most basic structure of Version 1 is depicted in Figure 4.7. Assume that com-
ponents arbiter, comparator, and updating_counter each have t,,, tcpnp, and ¢, de-
lay. The critical path in Figure 4.7 starts from comparator_0 and traverses through all
blocks of all slots, and ends in updating_counter_3. Therefore, the longest path delay
is 4temp + 4tarp + 4teyn. Nevertheless, exploiting the constraint that, in each clock cycle,
only one command from a specific bank is selected, and only one ACT and one CAS can
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be selected, allows these arbiters and updating counter modules to operate concurrently
rather than being sequentially interconnected, as shown in Figure 4.9. The main difference
between the implementation in Figure 4.9, and that of Figure 4.7 is that comparators in
slots 1, 2, and 3 are comparing against 1 instead of 0, which is the case in the basic design.
This flow is shown in Figure 4.7. These comparators use the counters from the previous
slot, before getting updated, to check whether a command is safe while in the basic design,
the comparators use the updated counter. For this reason, in design of Figure 4.9, the
picked command is passed to the comparator of the next slot logic, this is to ensure not
to pick the same command twice. To elaborate more, the objective is to prevent issuing
a PRE to the same bank or issuing two ACTs to two different banks in subsequent slots.
The novel idea in the design of Figure 4.9 results the following: the process of arbiter in
slot n, arbiter_n is parallel with the process of counter_updating n-1 (each red paral-
lelogram in Figure 4.9) and this results in a reduction in the longest path delay, either it
is 4tarp + tem + 4lemp OF 4ty + Loy + temp depending on the values of 244 and t4,.

Oth slot 1stslot 2nd slot 3rd slot
Command Queue

]
am ¥ J
R B ar 2 Br an ar,
arbiter_0 arbiter_1 arbiter_2 arbiter_3
oM cmo
RR
v v ¥ v

comparator_0 comparator_1 comparator_2 comparator_3

counters

Figure 4.9: The improved design of the command scheduler version 1 .

updating_counter_1 updating_counter_2 updating_counter_3 —‘

Due to the timing constraints, outlined earlier, if any type of command from the front
of the command queue corresponding to bank b, is picked for slot 3, definitely none will
be picked again from the same queue in slot 0 of the next clock cycle. Moreover, if any
ACT is picked in slot 3, no ACT from other command queues can be picked in slot 0 of
the following cycle since trrpg is 4. This implies that the last updating_counter block in
Figure 4.9, updating_counter_3 can operate in parallel with the first arbiter, arbiter_0.
This results in the implementation shown in Figure 4.10. All comparators now compare
against 1 while in the design of Figure 4.9, comparator_0 compares against 0. By this
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Figure 4.10: The best design of the command scheduler version 1.

approach all arbiters and time modules are operating in parallel (red parallelograms in
Figure 4.10), and this results in the longest path delay of either 4¢,,, or 4t..s + 4temp
depending on the values of ti,,, tars, temp-

4.5.3 Version 2

In Command Scheduler Version 2, the scheduling task is further parallelized by considering
the type of commands. This decision is primarily influenced by the nature of timing con-
straints. Specifically, the issuance of an ACT does not impose any intra-bank constraints
related to CAS on other banks, and vice versa. This implies that the arbitration of ACT
and CAS can be independently parallelized. In Version 1, there is a dedicated arbiter for
each slot, capable of selecting any type of command. In Version 2, however, there are
four arbiters—two dedicated to selecting ACT commands and the other two dedicated to
selecting CAS commands. Given the constraint imposed by Xilinx’s PHY, which limits
the placement of CAS commands to either slot 0 or slot 2 (as outlined in Section 3.2),
for the sake of design simplicity, it is decided to place ACT commands either in slot 1 or
slot 3. Given that, at most, one ACT and one CAS are selected in every clock cycle, two
vacant slots remain for the placement of PRE commands. Priority encoders are employed
for the selection of PRE commands, and these encoders differ in their highest priority in-
dex. Specifically, one of them assigns bank 0 the highest priority (priority_lsb), while the
other designates the same bank as the lowest priority (priority_msb). These two enocders
would select two different PRE commands if avaiable.
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The structure of the second command scheduler is depicted in Figure 4.11. Initially,
a set of comparators, akin to those in Version 1, is employed to ascertain the types of
commands that are ready in their predefined slots. For example, comparator_0 generates
CAS_vf 0 flags, indicating the readiness of CAS commands in slot 0 in all command
queues. Additionally, comparator_0 particularly identifies the presence of ready PRE
commands at the front of command queues through PRE_vf 0 and PRE vf 1 flags.
Subsequently, these flags are utilized in priority encoders to facilitate the selection of PRE
commands. This means that the readiness of PRE commands in the command queue is only
determined through comparator_0. Each Round Robin arbiter has its own Round Robin
pointer and by using the received flags from the corresponding comparator a command
is selected. All these arbiters and priority encoders concurrently make their command
selections. Ultimately, resolve_logic determines the final set of commands to be picked.
Once the final commands are determined, they are transmitted to the update_counter
block, where the counters are updated based on timing constraints for utilization in the
subsequent clock cycle.

The comparators and arbiters are similar to those used in Version 1. However, the
implementation of the timing module, updating_counter is changed. We next delve into
the major changes in the timing module followed by a discussion of how resolve_logic
works.

updating_counter

This module simultaneously receives a packet of four commands and, similar to the updat-
ing counter module in Version 1, imposes new timing constraints. However, in Version 1,
the updating counter module would decrement all counters after each slot logic, whereas
in the 2nd version, this is not the case since, at the end of the cycle, all commands are
selected. Instead, Version 2 decrements unaffected counters by 4. The decrement value
for those affected depends on the slot of the command influencing those counters. For
instance, if an ACT is placed in slot 1, the counters affected by ACT-related timing con-
straints (intra-bank constraints such as tgep, and inter-bank constraints such as tgrp, or
trrDs), should be decremented by 3 instead of 4. If the ACT is selected in slot 3, they
should be decremented by 1.

However, as discussed in the Counter Updating section of Section 4.5.2, the ACT and
the CAS each can be impacted by one intra-bank and one inter-bank constraint in a single
clock cycle. Implementing the updating_counter in this way requires more complicated
logic since, when it comes to updating the value of counters associated with ACTs and
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Figure 4.11: The command scheduler version 2 block diagram

CASs, three values should be compared: the current value of the counter, the intra-bank
constraint, and the inter-bank constraint.

resolve_logic

resolve_logic comprises two distinct blocks—one for ACT and another for CAS. Essen-
tially, it checks for the presence of any valid ready CAS command for slot 0. In the absence
of such a command, it introduces the first PRE command to slot 0. If no PRE command
is available, a NOP (null command) is inserted into the slot. This logic is mirrored for
slot 2. Similarly, for ACTs, if a valid ready ACT command exists for slot 1, it is selected;
otherwise, the 2nd PRE command, if available, is inserted into slot 1. The same logic
applies to slot 3.
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4.6 Maintenance Modules

As discussed in Section 4.1, we re-used modules mc_periodic_read and mc_ref from
Xilinx’s MIG to handle the periodic read required by MIG’s PHY and execute the refresh
process. When a refresh is due, the mc_ref module signals the request scheduler to halt
its selection flow. The module waits until all the commands currently within the command
queues are issued, and once the command queues are empty, they notify the mc_ref module
that refresh can safely start. After the refresh, the page table also invalidates all its entries.
For the periodic read, one of the command generators generates only CAS or PRE, ACT,
and CAS and passes them to the command queue. The decision to generate only CAS
depends on whether there is any valid open row in the page table. If there are multiple
valid opened rows, the command generator with the least corresponding bank number will
generate the CAS. If there is no valid opened row in the page table at all, PRE, ACT,
and CAS with an address from the previously issued request will be generated by the
command generator of bank 0. When the CAS of the periodic read is selected by the
command scheduler, a specific signal will assert in cal_top, indicating that the issued CAS
is intended for the periodic read. Once the periodic read finishes in PHY, cal_top notifies
mc_periodic_read to resume the regular flow.
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Chapter 5

Evaluation

We next present a comprehensive experimental evaluation of our memory controller with
two versions of the command scheduler, MC Ver 1, and MC Ver 2 as well as Xilinx’s MIG.
In Section 5.1, we first discuss the various validation methods that we applied to verify our
memory controller design. We then explain our experimental framework in Section 5.2.
Then, in Section 5.3, using synthetic traces we explore the behavior of the Xilinx MIG.
Subsequently, we compare the performance of both versions of MC and MIG under various
stress scenarios using synthetic traces. These traces encompass scenarios featuring only
open requests (representing best-case performance), only close requests, and a combination
of open and close requests. Next in Section 5.4, we compare MC Ver 1, and MIG based
on traces derived from an actual benchmark suite. Lastly, in Section 5.5 we report the the
maximum frequency of first, and second command scheduler designs along with their LUT
utilization.

5.1 Verification

The design of the DDR4 memory controller is a complex project that encompasses several
modules. Throughout the implementation phase, standalone testbenches were developed
to verify the correct functionality of individual modules, including the request scheduler,
the command queue, and the command scheduler. However, the verification process did
not conclude there. After integrating all these modules, further verification was performed
on the system. Xilinx provides a Verification IP that is based on AXI protocol, called
AXI VIP. AXI VIP is generally used to generate various patterns of AXI read, and write
requests. To verify the integrated project, we employed the AXI Interface in the MIG
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(refer to Section 3.4) along with AXI VIP as a request generator. We performed various
experiments through AXI VIP. Initial tests involved issuing a single read and a write request
to validate that the DDR4 memory is functioning correctly, and the memory controller
sends commands to the memory model. Subsequently, various patterns were implemented
to perform more extensive design verification. In these tests, AXI VIP first issues a portion
of write requests followed by read requests with the same addresses as write requests.
This would confirm whether the integrated design functions properly and all data are
written successfully. We conducted experiments with up to 10,000 read and write requests.
Furthermore, these tests were conducted with different numbers of read-to-write switching.
All test patterns were successfully passed.

5.2 Simulation Framework

To more easily test the memory controller’s performance with a variety of traces represent-
ing both stress scenarios and real benchmarks, we opted to establish a suitable simulation
framework that can issue requests in a controlled manner. This framework is designed to
support multiple concurrent cores, with each core’s requests described by a trace. Each
line in the trace file contains information about a single request, including: 1) the address
of that request, 2) the request type, which is either read or write, and 3) the clock cycle
at which the request is made assuming zero memory time.

To simulate cores issuing multiple concurrent requests, each core can be configured
separately to issue a variable number of out-of-order requests. Once a core issues all the
concurrent requests it can, it will be blocked until at least one of the requests completes.
When a request completes, its latency is added to the next request’s start cycle, and this
new start cycle becomes the time at which the next request will be issued.

The evaluation platform has been implemented using an Object-Oriented approach in
System Verilog. As depicted in Figure 5.1, each instance of the Requestor class reads a
trace file. Whenever the corresponding cycle of the request is equal to or greater than the
simulation cycle counter, the requestor passes the request to the Round Robin arbiter. The
arbiter selects one of the ready requests according to the Round Robin pointer, and sub-
sequently, the request is translated into the User Interface address standard. As discussed
earlier in Section 3.3, the User Interface accepts one request at a time. For this reason, the
Round Robin arbiter is used to select only one request among cores. Furthermore, there
is a class called Scoreboard, which logs the origin, address, command type, issuance, and
finish time of each request.
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Figure 5.1: The evaluation platform block diagram.

trace C3 |__>| requestor3

The memory module is modeled using MIG’s implementation. Unless otherwise speci-
fied, DDR4 2666 x8 is employed for all the experiment runs, and the total number of cores
is set to 8, where core 0 is the core under analysis denoted as core,,. This approach ensures
uniformity across all designs, as they operate with identical memory devices, utilize the
same type of traces, and share a common User Interface.

Now let us compute the theoretical maximum throughput of DDR4 2666 model. In
this model, the data rate is 2666 MT/s, which means the main clock frequency is 1333
MHz (750 ps). Per the configuration, the device width is 8 bits, and since we have a
burst of 8, the total data width would be 64 bits, and as discussed in Section 2.1.2, the
8 bursts are transmitted in 4 clock cycles. In ideal conditions, the throughput will be

(7206% = 2666 MB/s if the memory controller fully utilizes the data bandwidth.

5.3 Synthetic Benchmarks

A set of synthetic experiments are conducted to achieve the following objectives: 1) Explore
the behavior of MIG, 2) Validate our memory controller design, and 3) Compare the
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performance of our memory controller with that of MIG. We generated two categories of
traces. The first category involves sequential accesses, resembling open requests hitting the
same row. The second category comprises random requests targeting different rows within
the same bank and bank group. All cores are able to issue 4 concurrent requests to stress
the system.

5.3.1 Latency

To evaluate our memory controller design in terms of request latency, we conducted exper-
iments with a single core issuing isolated requests based on a synthetic trace file. We are
interested in computing the latency for open/close read requests as well as open/close write
requests, a total of 4 experiments. In this setup, we can compute the end-to-end latency
of a request traversing through the memory controller without being interfered with any
other interfering requests from the same core. The end-to-end latency is defined as the
time difference between when a request is issued by a core and when the corresponding
data is taken to/from the Ul First, we begin with open read-only and write-only requests;
the latency is 18, and 7 clock cycles respectively. This shows, that write requests finish
sooner than read requests. We believe that this significant difference in latency is due to
the extra clock cycles needed for the data to traverse the PHY modules. Subsequently, we
conducted experiments for close read-only and close write-only requests which resulted in
a latency of 27 and 18 clock cycles. All these values are the minimum latency that a single
request suffers.

5.3.2 MIG vs. MC Ver 1

In the initial experiment, we set up a configuration where 4 cores each issues purely se-
quential accesses, and each core is assigned to a unique bank. Given that the requests are
open, only CAS commands will be issued, and only the timing constraints of tccp, and
tcepg are imposed. The traces SEQ4prDG and SEQ4rSG correspond to this setup, (SEQ
refers to sequential, 4 shows the number of cores, R is the request type, read). In the
former, the four banks of the four cores are in different bank groups (shown by DG), while
in the latter, the four banks of the four cores are in the same bank group (shown by SG).
For this experiment, we present both the throughput of core,,, and the total throughput
of the system. As illustrated in Figure 5.2a, the throughput of core,, in both MC Ver 1
and MIG is equal in experiment SEQ,rDG. This equality stems from the fact that MIG
applies parallelism over bank groups, and since the banks are in different bank groups,
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MIG fully leverages bank group parallelism. Similarly, our memory controller arbitrates
over banks, resulting in leveraging bank parallelism. However, the throughput of MC Ver 1
in setup SEQ4rSG drops by 30% compared to setup SEQurDG, which is the result of
long inter-bank constraints as four banks are in the same bank group, and the issuance
of CAS to any of these banks imposes tccp,. Moreover, there is a 50% reduction in the
throughput of MIG. The reason for this is that all requests go into a single Group FSM,
and the queues inside this Group FSM frequently become full which results in a significant
drop in throughput.
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Figure 5.2: MIG performance VS. MC Ver 1 performance

As discussed in Section 2.1.3, there is a penalty when switching from read to write
or vice versa. This effect is demonstrated in the trace SEQurw DG, where four cores
sequentially access unique banks in different bank groups with random request types. If
we compare the throughput of core,, in this trace with that of SEQ,rDG, a significant
drop is observed, primarily attributed to the read-to-write and write-to-read switching
timing constraint. Similarly, the reported throughput for trace SEQ rw SG is less than
that of SEQ.rw DG due to the same reasons as before.

Next, we continue the experiment with 4 cores, each issuing close requests with random
rows, with each core assigned to a unique bank. As illustrated in Figure 5.2a, the through-
put of core,, for memory controllers in traces RN Dygr DG and RN D4rSG is notably lower
than that of traces SEQ4rDG and SEQ4rSG. This discrepancy is mainly attributed to
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the difference between open request latency and close request latency. However, when
comparing the bars of these two random traces, the throughput of core,, in MC Ver 1
remains almost the same between DG and SG whereas it changes in MIG since there is no
exploitable parallelism among requests to different banks in the same bank group.

The last experiment combines sequential and random requests. In this scenario, there
are 8 cores, forming four pairs, with each pair targeting a unique bank. In each pair,
the first core sequentially accesses a unique bank, and the second core issues random
close requests to the same bank. In other words, the requests of the second core interfere
with those of the first core. This setup, denoted as SEQRN DgSG, is conducted for all
pairs targeting different banks in the same bank group. For different banks in different
bank groups, this setup is denoted as SEQRN DgDG. As shown in Figure 5.2a, in trace
SEQRN DgDG, the throughput of core,, in MIG is less than that of MC Ver 1. This
suggests that MIG does not prioritize open requests of core,, over the close requests of its
pair, and the result suggests that MIG does not implement FR-FCFS arbitration. Similar
to previous experiments, when the cores switch to different banks in the same bank group,
the throughput in MIG decreases slightly due to the same reasons mentioned previously.
The total throughput of both memory controllers is shown in Figure 5.2b, and the same
patterns as in Figure 5.2a are observed.
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Figure 5.3: The latency comparison of two traces SEQRN DgSG, and SEQRN DgDG
between MC Ver 1, and MIG.

Previously, we compared the throughput of our memory controller (MC V1) with MIG
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for traces SEQRN DgSG and SEQRN DgDG. Now, let us delve into the latency of re-
quests for these traces in both MC V1 and MIG. As depicted in Figure 5.3, the average
latency of requests for both traces in MC V1 is nearly equal. This is because our mem-
ory controller employs bank arbitration, effectively managing request access to the banks.
Conversely, the average latency of requests for trace SEQRN DgSG is significantly higher
in MIG compared to MC V1. This is primarily attributed to MIG’s parallelization over
bank groups. When all requests target the same bank group, interference among requests
increases, resulting in elevated latencies. However, when cores target different bank groups,
latencies decrease, as expected.

5.3.3 Scalability

In this section, we will evaluate the performance of MC Ver 1, MC Ver 2, and MIG
as the number of cores increases from 4 cores to 16 cores. In Section 5.2, we showed
that the maximum theoretical throughput for DDR4-2666 is 2666 MB/s. To achieve the
maximum data bandwidth in our experiments, we used sequential traces as follows 1) Traces
SEQsr, and SEQ g contain 8 cores, and 16 cores respectively, each issuing sequential read
requests to a unique bank. 2) Traces SEQsw, and SEQew include 8 cores, and 16 cores
respectively, each issuing sequential write requests to a specific bank.

I vC v
3000 T T — MG
v v2
400 T
I viC v 2500
350 = e | |
[Cmc vz
300 gzooo .
7 2
2250 - ;E 1500
E.ZDD é
El F 1000 |
£ 150
F
100 500
50 0
SEQ,,DG SEQq, SEQ, 5
Trace
SEQ, DG SEQq, SEQ,
Trace (b) The total throughput of MC Ver 1, MC
(a) The throughput of core,, comparison Ver 2, and MIG comparison for sequential
for sequential read requests, the number of read requests, the number of cores changes
cores changes from 4 to 16. from 4 to 16.

Figure 5.4: The impact of the number of cores on throughput for sequential read accesses.
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Figure 5.5: The minimum, average, and maximum latency of sequential read accesses for
MC Ver 1.

The throughput of core,, for traces SEQ4r DG, SEQsr, and SEQ g, are shown in
Figure 5.4a. As the number of cores increases, the interference among banks also increases,
leading to a drop in the reported throughput. Conversely, when the number of cores
increases, the total throughput of all memory controllers increases, primarily because all
banks are utilized. However, the design cannot reach the ideal theoretical bandwidth of
2666 MB/s due to the arbiter used in the test platform, as discussed in Section 5.2, which
increases the time it takes for a new request from a core to arrive at the memory controller.
This is shown in Figure 5.4b, the black line is the theoretical throughput.

The throughput of core,, for sequential write accesses is illustrated in Figure 5.6a. The
reported throughput for sequential write requests, SEQ4w DG, SEQsw, and SEQ 6w are
higher than that of sequential read requests, mainly because write requests are finished
sooner than read requests as discussed in Section 3.3. We computed the average latency
for SEQuw DG, which is 16 cycles, and the average latency for SEQ4r DG, which is 27
cycles. These values confirm the fact that write requests finish sooner than read requests.
Also, these values are higher than what is determined only by the timing constraints, the
extra latency is added by PHY, and memory controller logic.

Moreover, we computed the latency of sequential read accesses of the same traces,
SEQirDG, SEQgr, and SEQ6z. The minimum, the average, and the maximum latency
are reported in Figure 5.5. As the number of cores increases, there is more interference
among cores, and consequently, the latency is increased.

Now, we evaluate the performance for the most interference traces. In this configura-
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Figure 5.6: The effect of the number of cores for sequential write accesses.

tion, all cores issue close requests to the same bank as core,,, and thus, all interfere with
core,s. First, we used traces RN D,rSB, RN DgrSB, and RN DgrSB, with 4, 8, and 16
cores respectively each issuing close read requests to the same bank (SB). As the number
of cores increases, interference also rises, decreasing the throughput of core,,, Figure 5.7a.
However, the total throughput for different numbers of cores remains the same since all
requests are closed, and the simulation time linearly increases with the number of cores,
leading to a constant total throughput. This is shown in Figure 5.7b. Likewise, an ex-
periment with traces RN Dyw SB, RN Dgy SB, and RN D1y SB are conducted with 4, 8,
and 16 cores respectively, each issuing close random write requests to the same bank. The
reported throughput of core,,, and total throughput are shown in Figure 5.8a, and Figure
5.8b respectively.

5.3.4 MC Ver 1 vs. MC Ver 2

In this section, we demonstrate that MC Ver 1 outperforms MC Ver 2 using the same
synthetic benchmarks used in the previous section. In the experiment with sequential
requests both MC Ver 1 and MC Ver 2 illustrated in Figure 5.6, and Figure 5.4, both MCs
have the same throughput since the requests are open and only CAS commands are issued.
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However, in the experiment with close requests, Figure 5.8, and Figure 5.7, the throughput
of core,, in MC Ver 1 is only slightly higher than the throughput of the same core in MC
Ver 2. This marginal difference is attributed to the variations in the scheduling policies
of the command schedulers in these memory controllers. As explained in Section 4.5.3,
the command scheduler of MC Ver 2 imposes more constraints in selecting ACT and PRE
commands. It only puts ACT on slot 1 and slot 3, and only issues 2 PREs.

5.4 EEMBC Benchmarks

In this section, we aim to assess the performance of our memory controller and MIG in
the presence of requests generated by a processor. To achieve this, we utilize the EEMBC
benchmark suite [34]. The benchmarks are executed on MacSim [24] with the following
configuration: Superscalar x86 cores clocked at 1GHz with bypassed cache to maximize
the stress on DRAM memory. The execution of these benchmarks on MacSim results in
trace files containing requests issued from the cores to DRAM. We leverage these traces in
our experiments to evaluate the performance of our memory controller. In all experiments,
we execute one of the EEMBC benchmark traces in core,,, while other interfering cores
run either EEMBC traces or synthetic benchmarks.

In the first experiment, the single-core system only contains core,, solely running
EEMBC traces without any interfering cores. In this configuration, core,, issues only
one request at a time, waiting for a request to be completed before sending the next one.
Since core,, is the sole core in this experiment and there are no interfering requests, the
performance of MC Ver 1 and MIG are nearly identical, shown in Figure 5.9. This experi-
ment serves to validate the integration of our memory controller design, with MIG acting
as a reference model. It is noteworthy that the throughput of core,, in all traces ranges
from 80 to 100 MB/s, with one exception, puwmod trace. This exception suggests that
the number of closed requests in this trace is higher than in the other traces, impacting
the subsequent experiment.

Next, we stress the memory controller by running EEMBC traces on core,, along with
interfering cores that run synthetic benchmarks. These synthetic benchmarks are crafted to
target the banks that are mostly hit by EEMBC traces. The objective of these experiments
is to assess the performance of MC Ver 1 and MIG, comparing their throughput. In this
configuration, core,, executes EEMBC traces and issues a new request once the previously
issued request completes. Meanwhile, the interfering cores, with a total number of 7,
run synthetic benchmarks, with each interfering core sequentially issuing read requests
to a unique bank. core,, in the first version of our memory controller outperforms the
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Figure 5.9: The throughput of core,, comparison amongst all EEMBC traces. Single-core

system.

performance of the same core in MIG, as shown in Figure 5.10a. This is primarily attributed
to the utilization of parallelism over banks in our memory controller, whereas MIG employs
parallelism over bank groups. Furthermore, our memory controller exhibits roughly a 50%
increase in the total system throughput compared to MIG, Figure 5.10b. As mentioned
earlier, the total throughput of trace puwmod is significantly lower compared to the total
throughput of the other traces. Upon closer examination of the log output from this trace,
it was observed that trace puwmod took much longer to complete. This observation
supports the conclusion that trace puwmod includes more close requests compared to the
other EEMBC traces.

In the final experiment, eight cores are each running an EEMBC trace. Since our bench-
mark suit consists of 9 traces but we have 8 cores, we neglected the last trace puwmod
in this setup. Each core issues a single request once its previously issued request com-
pletes, and the simulation ends when any of the cores finishes. The throughput of core,, is
illustrated in Figure 5.11a, with each trace indicating the specific trace that core,, is run-
ning. The first version of our memory controller outperforms MIG in all traces, showcasing
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(a) The throughput of core,, comparison
amongst nine experiments for both MC Ver 1,
and MIG. In each experiment, core,, runs the
trace in the X-axis.

(b) The total throughput of both memory con-
trollers amongst nine experiments. In each ex-
periment, core,, runs the trace in the X-axis.

Figure 5.10: EEMBC benchmark chart with the following configuration: 1) core,,:
EEMBC trace 2) interfering cores: synthetic benchmark.

around a 20% improvement. The total throughput is depicted in Figure 5.11b, where once
again, our memory controller exhibits a 20% increase in total throughput compared to
MIG.

5.5 Frequency and Hardware Utilization

The implementation details of both command schedulers were discussed in Sections 4.5.2
and 4.5.3. The primary motivation for designing the second command scheduler was the
limitation of the first version in achieving a frequency comparable to MIG’s capability.
MIG can offer a design with a maximum frequency of 333 MHz. FPGA board latency
depends on various factors, one of which is Logic Level. It indicates how many LUTs are
connected sequentially in the implementation of a logic block. A higher number of logic
levels leads to increased logical path delay and a reduced maximum frequency.

We designed our memory controller to be implemented on Xilinx Zynq Ultrascale+
ZCU102. Table 5.1 presents the maximum frequency, number of logic levels, and utilization
of resources, including LUTs and registers, for both designs—command scheduler version
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(b) The total throughput of both memory con-
trollers amongst eight experiments. Since the
same traces are permuted among cores, the to-
tal throughput of all eight experiments is iden-
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(a) The throughput of core,, comparison
amongst eight experiments for both MC Ver
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the trace in the X-axis.

Figure 5.11: EEMBC benchmark chart with the following configuration: 1) core,,:
EEMBC trace 2) interfering cores: EEMBC trace.

1 and command scheduler version 2. We did not utilize any BRAMs or DSPs in the design
of both command schedulers. The first version of command scheduler demonstrates nearly
a 60% improvement in maximum frequency compared the second version. Additionally,
the second command scheduler occupies fewer Logic Levels, approximately two-thirds of

that of version 1. In terms of resource utilization, MC Ver 1 employs more resources than
MC Ver 2.

Now, let us discuss the maximum frequency. The bottleneck of our memory controller
design is the command scheduler, although we can still implement the design on FPGAs for
lower frequencies than the maximum frequency for the following reason. The frequency at
which the memory controller should operate depends on the speed grade of DDR4 memory
due to the 4:1 clock ratio discussed in Section 3.2. For instance, if the DDR4 memory
module on the FPGA board is DDR4 1600, the memory controller should issue a pack of
4 commands at 200 MHz rather than 300 MHz. The speed grades of DDR4 are: 1600,
1866, 2133, 2400, 2666, 2933, and 3200 MT/s, resulting in the frequency of the memory
controller ranging from 200 to 400 MHz. MIG supports up to 333 MHz, while our current
command scheduler design supports up to 180 MHz, as shown before in Table 5.1. However
if we can not reach the nominal frequency of DDR4, based on the observation we had, we
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Command Scheduler Ver 1

Command Scheduler Ver 2

Banks =8 Banks = 16 Banks = 8 Banks = 16
Max Freq (MHz) 115 105 181 170
Logic Level 28 30 17 19
LUT 3756 7862 3747 7242
Register 252 463 212 408

Table 5.1: The utilization, and timing report for both command schedulers with the total

number of 8 banks, and 16 banks.

could reduce the clock frequency of PHY on the FPGA board. We dropped the frequency
of DDR4 2400 on ZCU102, which has the nominal frequency of 1200 MHz, to 600 MHz,
and it was still functional. However, this technique comes with a downside: since the clock
frequency is reduced by 50%, the throughput would decrease by almost 50%. For these
reasons, we aimed to reach at least the frequency of 200 MHz in our memory controller

design.
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Chapter 6

Conclusion

As highlighted in Chapter 1, DDR4 memories serve as a bottleneck in the performance
of many computer systems, and the efficiency of memory controllers significantly influ-
ences this performance. Given the lack of open-source ASIC implementations of memory
controllers, FPGAs offer a flexible platform for implementing various memory controller
designs due to their programmable logic. Major FPGA vendors such as Intel and Xilinx
provide memory controller designs for their users. In our case, we chose to implement our
design on Xilinx FPGAs. Xilinx’s MIG, while available, may not provide optimal per-
formance, and there is a limited number of high-performance DDR4 memory controllers
implemented on FPGAs. Our goal was to design a high-performance DDR4 memory con-
troller on Xilinx’s FPGAs that could surpass the performance of Xilinx’s MIG. Our memory
controller implements a FR-FCFS arbitration scheme as a front-end scheduler and employs
Round Robin arbitration over banks for the back-end scheduler, implementing an open-
page policy. It is important to note that we utilized Xilinx’s MIG as a foundation for our
design, reusing certain modules such as calibration logic and PHY logic. In Section 5.4,
we demonstrated that our memory controller outperforms Xilinx’s MIG in EEMBC bench-
marks assuming operating at same frequency.

Our memory controller is available in two versions, each tailored to address specific
performance considerations. Due to the frequency constraints on FPGA boards, both
our memory controllers and MIG issue up to 4 commands in a single cycle. While MIG
supports a maximum frequency of 333 MHz, the initial version of our memory controller
is limited to a maximum frequency of 100 MHz. This limitation primarily stems from the
design of the command scheduler in the first version.

In response to this constraint, the second version of our memory controller was de-
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veloped, featuring a redesigned command scheduler that adheres to a Round-Robin policy
over banks. This design enhancement led to a faster implementation, achieving 59% higher
maximum fre quency than that of the first version. Notably, the key distinction between
the two versions lies in their command scheduling capabilities. The first version can issue
up to 4 PRE commands and place ACT commands in any slot within a single cycle. In
contrast, the second version is more constrained, only allowing ACT commands in the 1st
and 3rd slots and permitting the issuance of two PRE commands in a single clock cycle.
While these additional constraints slightly impact the performance of the second version,
they contribute to a faster design with a higher frequency.

Our entire implementation is configurable and parameterized, providing a versatile
testbench platform with a realistic setting that incorporates refresh, initialization, and cal-
ibration. Leveraging MIG’s design as a foundation, our memory controller models various
DRAM speed grades with different data widths, enhancing its adaptability and applicabil-

1ty.

Looking forward, we anticipate that there are additional optimization opportunities for
the command scheduler design, which could result in a higher maximum frequency for the
overall design. Currently, our memory controller has been validated and tested solely in
simulation, despite being synthesizable. In the future, we plan to implement the design on
various FPGA boards equipped with different DDR4 devices to verify the functionality of
our memory controller and assess its real-world performance.

From the inception of the project, we have designed our memory controller with ex-
tensibility in mind, enabling future modifications and potential developments of real-time
memory controllers. Our ultimate objective is to create a real-time memory controller,
building upon the foundation laid by our high-performance memory controller. Addition-
ally, we aspire to design a pair-like memory controller, akin to DUETTO [25], leveraging
the lessons learned and innovations made during the course of this project.
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