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Abstract

The performance of machine-learning applications heavily relies on the choice of the

underlying hardware architecture, encompassing factors such as computational power,

scalability, memory, and storage capabilities. These hardware choices significantly impact

the efficiency and effectiveness of machine-learning systems. Resource-intensive programs

can lead to competition for system resources, causing delays, while inefficient resource usage

can saturate resources and harm user experience. To address resource variation among

applications, resource sharing is implemented, allowing applications to dynamically allocate

resources as needed, promoting efficient resource utilization. However, resource-allocation

strategies often prioritize performance, potentially overlooking fairness among users or

applications, especially in shared environments. Balancing performance optimization

and fair resource-allocation is a complex challenge, requiring mechanisms that encourage

resource sharing, prevent envy, and ensure a fair distribution of resources. Incorporating

these characteristics promotes collaboration, minimizes negative emotions, and prioritizes

the well-being of all participants in the system.

This research introduces an innovative resource-allocation mechanism that addresses

shortcomings in traditional methods. Our method prioritizes both fairness and efficiency in

resource distribution, utilizing a token-based mechanism to ensure fairness and implementing

individual preferences based on learned thresholds through an Actor-Critic method to

improve efficiency. A computer simulation involving 40 accelerators and 20 agents in different

environments demonstrates a performance improvement 1.28× compared to standard

approaches. This study contributes by shedding light on the complex challenges of resource-

allocation in heterogeneous systems and providing a practical solution with our approach.
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Chapter 1

Introduction

The performance of various machine learning applications is heavily dependent on the

selection of the underlying hardware architecture [2, 8, 60, 62, 64]. Machine learning tasks,

which encompass a wide range of applications, rely on the computational power [13, 27],

scalability [38, 41, 46], memory, and storage capabilities [32, 43] of the hardware. Choices

like using powerful GPUs or specialized hardware, optimizing for energy efficiency [27],

and ensuring compatibility with machine learning frameworks can significantly impact the

speed, efficiency, and overall effectiveness of the machine learning system [11, 42, 44].

Furthermore, applications often exhibit changing resource needs, sometimes demanding

a significant amount of resources while at other times using them inefficiently. These

variations in resource utilization can detrimentally affect the overall performance of a

system [21, 37, 53, 59, 74, 77]. When a program is resource-intensive, it can compete

with other programs for system resources, potentially causing delays and slowdowns. On

the other hand, inefficient resource usage can lead to resource saturation and negatively

impacting the user experience [33, 48]. Effectively managing and optimizing resource usage

is crucial in system administration to maintain system stability and ensure a smooth user

experience.

To address the variations in resource utilization among multiple applications, the practice

of resource sharing is implemented [9, 53, 57, 66]. Resource sharing involves allowing different

applications to collectively access and utilize hardware components and system resources
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rather than operating in isolation. This collaborative approach can have several beneficial

effects on system performance and resource allocation efficiency [49, 66]. Firstly, it promotes

a more efficient utilization of system resources by enabling applications to share available

resources as needed [53, 57]. Instead of each application trying to reserve and use a fixed set

of resources, they can dynamically allocate and release resources, depending on their current

needs [26, 53, 76]. This adaptability helps prevent resource shortages and over-provisioning,

leading to better resource allocation efficiency.

Sharing resources among multiple applications presents a complex and multifaceted

challenge at the intersection of performance optimization and equitable resource distribution

[35, 36, 68]. Within a heterogeneous system environment characterized by diverse hardware

components and software applications, the process of identifying and assigning tasks to

suitable hardware resources can be inherently intricate [34, 74]. This intricacy is due to the

multiple factors to consider, such as the computational capabilities of different hardware

components, the memory requirements of applications, and the dynamic nature of workloads

[77, 80]. As a result, the efficient utilization of these resources for task execution and overall

performance enhancement can become a complex juggling act.

Moreover, the prevailing resource allocation strategies are often based on optimizing

system utility, aiming to maximize overall performance and efficiency [23, 28, 45]. However,

in this pursuit, fairness among users or applications can sometimes be overlooked [4]. Such

resource allocation strategies may not ensure a level playing field for all users, potentially

leading to a situation where some applications enjoy improved performance at the expense

of others [9]. This lack of fairness can be particularly problematic in shared computing

environments where multiple users or clients depend on shared resources. For example, in

large companies, they get resources from cloud provider and let the employees to use for

their jobs [53].

The inherent trade-off between performance optimization and fair resource allocation

becomes a central concern [9, 36, 53]. On one hand, there is a pressing need to ensure

that the system operates at peak efficiency, making the best use of available resources. On

the other hand, the aspect of fairness cannot be dismissed, as it plays a critical role in

preventing resource contention, ensuring user satisfaction, and adhering to principles of

equity [23]. Striking the right balance between these competing objectives is a complex but
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essential task in resource management.

Achieving fairness in a system necessitates the integration of specific characteristics

within a mechanism of resource sharing, as identified by prior studies [23, 53, 82]:

• The mechanism should actively encourage agents to engage in resource sharing rather

than relying solely on exclusivity [19, 71]. This means setting up rewards or special

access for those who share. For instance, This reward can be a better performance in

comparison with the exclusive usage.

• Fairness is upheld by ensuring that no agent experiences envy toward others [71].

This is so ideal to have this feature in our system and good performance together

because everytime there is it is crucial that the mechanisms in place go beyond mere

distribution of resources and actively work to prevent any user from feeling jealous

or left out. This involves creating a system that allocates resources in a fair and

transparent manner, ensuring that no individual or group is at a disadvantage or feels

envious of others.

• A mechanism should propose a situation where no one can be better off without

making someone else worse off. This means finding a balance where the distribution of

resources is optimized in a way that benefits everyone involved. In such a system, any

attempt to give more to one person or group would come at the expense of another.

It is like ensuring that the sharing arrangement is as good as it can get for everyone,

without favoring one user at the cost of another. This way, the system operates in a

way that maximizes overall well-being and fairness.

By incorporating these characteristics into the system’s design and operation, a foundation

for fairness is established and promoting collaboration. However, achieving all three

conditions simultaneously is not always feasible, especially when addressing one-shot

problems. For instance, the second and third conditions may not be simultaneously

achievable in all scenarios. Consider a scenario where we have two one-hour jobs in our

system. Utilizing a first-in-first-out (FIFO) scheduler for these two jobs can satisfy the

third condition. However, the second condition may not be met because the job running
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second will envy the job running first. Conversely, employing a short time quantum and

attempting to run these two jobs concurrently with a round-robin (RR) scheduler may not

fulfill the third condition. In RR, both jobs will finish after two hours, whereas in FIFO,

one job concludes after one hour, and the other after two hours, indicating that one job

achieves better performance without detriment to the other. Therefore, we should satisfy

most of these conditions as much as we can.

This research presents an innovative mechanism designed to overcome the shortcomings

associated with conventional resource allocation methods. Unlike traditional approaches, our

mechanism places a strong emphasis on both fairness and efficiency in resource distribution.

To ensure fairness, our approach incorporates a token-based mechanism for allocating

resources among agents. This mechanism introduces a systematic and equitable approach,

enhancing the overall fairness in resource distribution within cloud accelerators.

Furthermore, to outperform existing mechanisms, we implement a strategy for distribut-

ing resources to agents based on their individual preferences. These preferences are derived

from a threshold strategy, which is learned through the application of an Actor-Critic

method [39]. An Actor-Critic method plays a pivotal role in shaping our resource prefer-

ences. By incorporating a learning mechanism, agents gain insights into optimal resource

distribution, adapting their preferences based on real-time feedback.

We conducted a detailed examination of the effectiveness of our technique using a

computer simulation. This simulation included 40 different accelerators through 20 agents

in heterogeneous and homogeneous environments. For the accelerators, we use Gemmini

[22] which is a full-system, full-stack DNN hardware exploration and evaluation platform

Our assessment results are very encouraging, demonstrating a performance gain of ∼ 1.3×
in average when compared to standard approaches. In our test, in a situation that there is a

big difference in sharing, our method gets ∼ 2.8× better than the best schedulers available.

Also, when the time limit is crucial, our method does ∼ 1.1× better on average. When

the time limit is not close, the performance becomes similar to the best solution available.

These findings highlight the practical use and efficacy of our technique in the setting of

heterogeneous accelerators.

We make substantial contributions in this study, beginning with a straightforward
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description of the complex issue underlying the allocation of various resources. We dig

into the difficulties that inevitably accompany managing these many types of resources,

giving light on the intricacies that must be addressed for successful resource allocation in

heterogeneous systems.

Our second contribution focuses on the development of fairness metrics tailored to

heterogeneous systems. We not only develop these measures, but also demonstrate their

suitability for the wide range of systems. By tailoring fairness metrics to the unique

characteristics of heterogeneous setups, we aim to pave the way for a more equitable

resource allocation process that considers the diverse needs of the system components.

In addition, we explain how our scheduler works and the technique we use to create

thresholds dictating resource preferences among agents. This part of our contribution

intends to improve resource allocation efficiency by proposing a systematic method to

preference setting. To demonstrate the effectiveness of our suggested strategy, we report

the results of performance and fairness assessments done in simulated environments in

a systematic manner. These assessments provide a concrete indication of the practical

applicability and beneficial impact of our contributions to diverse resource allocation.

Briefly, In Chapter 2, we explore our reasons for undertaking this project and why it

is valuable. In Chapter 3, we clarify the concept of fairness in our project’s framework

and attempt to define it for our purposes. Chapter 4 delves into our algorithm and its

functioning. In Chapter 5, we present the results of our system’s evaluation. Lastly, in

Chapter 6, we discuss existing works related to ours and how we address their limitations.
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Chapter 2

Motivation and Background

This chapter aims to discuss the motivation behind our work. We begin by exploring

hardware accelerators and their varying performance levels when executing ML applications

due to their heterogeneous nature. Subsequently, we dive into the concepts of fairness

and efficiency and examine their interconnectedness, particularly within heterogeneous

systems. We highlight the challenges in achieving a balance between fairness and optimizing

system performance, emphasizing the complexities involved in satisfying both objectives

simultaneously within heterogeneous computing environments.

2.1 Heterogeneous Hardware Accelerators

Machine learning applications are becoming increasingly popular, notably in fields such as

computer vision, speech recognition, and robotics [26, 53, 76, 77, 80]. As the complexity

of machine learning models grows, the need for fast hardware accelerators to meet their

rising computing requirements becomes critical [47, 52, 61, 79]. Using customized hardware

accelerators is one of the commonly accepted options. Various companies provide different

kinds of hardware accelerators appropriate for machine learning activities. These accelerators

extend beyond GPUs to include a variety of specialized devices designed to improve the

performance of machine learning tasks.
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These accelerators are priced differently, with options ranging from low-cost to high-end

[15, 55]. Typically, the cost is proportional to the increased capabilities of the accelerators.

However, the costly prices of modern accelerators make it difficult for many small businesses

and research organizations to invest in such high-performance technology. Cloud service

providers have stepped in to give rental choices for these pricey accelerators in order to

address this issue [55]. This enables smaller entities, such as research teams and budding

firms, to have access to and use sophisticated gear without making a large initial expenditure.

Consequently, small companies and research groups can now leverage cloud-based solutions

to rent and run their applications on these specialized hardware accelerators, democratizing

access to high-performance computing resources in the field of machine learning.

2.1.1 Gemmini

Gemmini [22] is a full-stack DNN accelerator generator that is open-source and meant to

allow rigorous assessment of deep learning architectures. It solves the problem of assessing

DNN accelerators by offering a versatile hardware template, a multi-layered software stack,

and an integrated SoC environment.

Architecture

Figure 2.1 depicts Gemmini’s architectural plan, which is centred on a spatial design with

processing elements (PEs) scattered throughout. These PEs execute dot products and

accumulations. Data is retrieved from a local scratchpad of banked SRAMs and stored in a

local accumulator with a bitwidth bigger than the inputs. Gemmini’s adjustable peripheral

circuitry supports various DNN kernels such as pooling [24] and non-linear activations.

These accelerators may be programmed and configured thanks to their integration with a

RISC-V host CPU.

As shown in Figure 2.2, Gemmini’s spatial array is constructed with a dual-level hierarchy,

providing flexibility for alternative microarchitecture designs [22]. The first level is made

up of tiles connected by explicit pipeline registers, and inside these tiles are arrays of PEs

linked in combination. Using weight- or output-stationary dataflow, each PE performs a
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Figure 2.1: Gemmini hardware architectural template overview [22]

multiply-accumulate operation once every cycle. Tiles are connected combinationally in

rectangular arrays of PEs, whereas the spatial array forms a rectangle array of these tiles

with pipeline registers between them. Only nearby PEs and tiles share inputs and outputs.

Programming Support

Gemmini’s generator generates both hardware and a bespoke software stack, increasing

developer efficiency while dealing with multiple hardware shapes. It provides a multi-level

software method that includes a high-level, user-friendly flow that turns ONNX [14] file

DNN descriptions into executable software while optimizing kernel mapping on the Gemmini

accelerator. It also has a low-level alternative with C/C++ APIs and optimized functions for

common DNN kernels. To achieve maximal performance, these routines require particular

tuning for each hardware instance, taking into account characteristics such as scratchpad

sizes. Each new accelerator iteration includes a header file that describes parameters such

as spatial array size, allowed dataflows, and computational blocks.
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Figure 2.2: Microarchitecture of Gemmini’s two-level spatial array [22]

System Support

Using the Chipyard [3] framework, Gemmini enables the coupling of RISC-V CPUs with

Gemmini-developed accelerators. This integration varies from simple microcontrollers

that handle mostly IO duties to complex, high-performance CPUs that manage numerous

demanding applications while running the Gemmini accelerator. Multiple CPUs and

accelerators in a system can operate on various tasks at the same time. Bus widths, cache

sizes, and memory system architectures might also differ amongst system configurations.

Integrating Gemmini accelerators with a full RISC-V SoC and deep software stack, including

an operating system, allows for more realistic testing of workloads [22]. This setup reveals

potential issues that wouldn’t appear in simpler setups.

2.2 Fairness vs. Efficiency

Balancing performance and maintaining fair resource allocations across time periods is an

ongoing and challenging task [35, 36, 68]. This problem arises mostly from the performance
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reduction that frequently occurs when attempting to allocate resources equally, especially

when there is inadequate or no knowledge about the value of diverse workloads [9]. When

the goal is to maximize efficiency, it often leads to a situation in which a few applications

dominate the bulk of the resources. While this strategy is efficient, it may result in

an unbalanced and potentially unfair distribution in which some applications are given

preference over others [72, 73].

Prioritizing fairness in resource distribution, on the other hand, might create its own set

of issues [36, 53]. While this method guarantees that resources are spread more equitably

among all programs, it may not necessarily result in the best use of those resources. In such

circumstances, the system’s overall output or performance may be lower than what might be

achieved if resources were distributed based on efficiency or workload needs. This trade-off

between fairness and efficiency is an important concern in system design, particularly when

resources are limited and the interests of different applications or users must be balanced.

The aim is to establish a happy medium that maximizes overall system performance while

preserving a sufficient amount of resource fairness.

2.2.1 Early Scheduler

Traditionally, early scheduling algorithms, such as the round-robin algorithm, did not place

a great value on efficiency. Instead, these systems cycled through a list of jobs or users,

allocating an equal amount of resources or processing time to each before moving on to the

next. While simple and fair in its rotation, this strategy frequently neglected the diverse

demands and potential efficiency of different activities [58, 65]. It did not account for

the fact that some jobs may take more resources or be finished more rapidly, resulting in

inefficient resource use and possible bottlenecks in systems with considerably varying task

requirements.

2.2.2 Recent Scheduler

More modern systems have begun to incorporate performance factors with fairness. Domi-

nant Resource Fairness (DRF) [23], for example, was designed to allocate resources in a
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cluster while ensuring fairness based on the dominant resource required by each job. DRF

provides a step forward in thinking by seeking to balance the demands of various jobs with

the available resources, with a focus on the most crucial resource for each work. Despite

its gains, DRF still prioritizes fairness above absolute efficiency [4]. Another approach,

as proposed in [81], is an algorithm designed for sharing heterogeneous resources among

multiple agents. This strategy focuses on allocating strong cores to agents who actively

bid for them, implying a market-like process for resource allocation. While innovative,

this approach is mainly tailored for systems that combine powerful and typical resources.

Its applicability is limited in scenarios involving more than two types of resources, thus

restricting its usefulness in more complex or diverse environments.

2.2.3 Issue of Scheduling in Heterogeneity

Scheduling resources in a system that includes heterogeneous resources is challenging primar-

ily due to the diverse characteristics of the resources involved [10, 34]. In a heterogeneous

environment, resources differ significantly in their capabilities and performance metrics [40].

For instance, some resources might have higher processing power, while others might offer

better memory or specialized hardware for specific tasks like graphics processing or data

encryption. This diversity means that each resource is uniquely suited for certain types

of tasks but might be less efficient or even incapable of handling others. As a result, the

scheduler must have a detailed understanding of both the requirements of the tasks and

the capabilities of each resource.

Moreover, balancing load across these heterogeneous resources adds another layer of

complexity [72]. The goal of load balancing is to maximize resource utilization and minimize

overall system latency by distributing tasks in a way that avoids overloading any single

resource while underutilizing others [31]. This requires a sophisticated scheduling algorithm

that can not only match tasks to the most appropriate resources but also continuously

monitor and adjust the distribution of tasks in response to changing conditions. Such an

algorithm needs to consider the current load on each resource, the predicted future load, and

the potential impact of each task on resource performance. In a heterogeneous environment,

the varying performance characteristics of each resource make this a particularly challenging
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Table 2.1: Arrivals of queues

Rounds Arr1 Arr2

r1 150 275

r2 370 280

task [70]. The scheduler must effectively balance the load while ensuring that each task is

executed on a resource that can handle it efficiently.

Example

In this scenario, two agents are involved in a system where they need to manage the

utilization of two hardware accelerators. Each agent oversees a queue containing multiple

applications, all of which require processing on these accelerators. For clarity, we denote

each resource (hardware accelerator) as Ri, where i represents the specific resource in

question. The complexity of this setup lies in the fluctuating workload of each agent’s

queue, which varies at different times. To simplify our discussion, we consider only two

distinct applications in this example. These applications represent the variety of tasks that

need to be processed by the accelerators. To better understand the dynamics of this system,

we refer to three key tables. The first, Table 2.1, provides detailed insights into the arrival

of each agent’s queue. These categorically list the number of tasks present in the queues

of each agent at any given time, offering a snapshot of the workload distribution between

the two agents. Meanwhile, Table 2.2 delves into the performance aspect, specifically

focusing on the throughput each resource delivers for the different applications. This table

is crucial for understanding how effectively each hardware accelerator handles the various

applications, which in turn influences the agents’ strategies for queue management and

resource allocation. By analyzing both tables, one can gain a comprehensive view of the

operational efficiency and task distribution in this two-agent, two-accelerator system.

In this system, the primary goal for each agent is to minimize the total load of all

applications. This objective is rooted in the belief that a lower aggregate load reduces the
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Table 2.2: Agents’ throughput for each resource

Agents R1 R2 R3 R4

A1 100 120 150 200

A2 200 100 50 200

likelihood of system failures, thereby enhancing overall efficiency and reliability. Conse-

quently, the focus is not just on managing individual tasks but on reducing the combined

burden of all tasks across the system.

To achieve this, we consider a scenario that emphasizes fairness in resource allocation.

In an ideal fair scheduling system, the time allocated to each agent for using each resource

would be evenly divided. This equitable approach ensures that each agent receives an equal

opportunity to utilize the resources, thereby maintaining balance in the system. In practice,

this means that in each scheduling round, each agent would be allocated exactly half of the

total available time on each resource. Such an arrangement implies that the throughput an

agent can achieve for each application is effectively halved during their allocated time. The

rationale behind this is to ensure that no single agent monopolizes the resources, allowing

for a fair and balanced distribution of processing time. This assumption of equal time

allocation forms the basis of our scheduling strategy, focusing on fairness and balanced

resource usage. It is a strategy that not only ensures equal access to resources but also

aligns with the agents’ preference for minimizing overall load to reduce the risk of system

failure.

Referencing Table 1, we observe the workload distribution for two agents over the initial

two rounds of job processing. In Round 1, Agent 1 receives 150 jobs in its queue, while

Agent 2 experiences a higher influx with 275 jobs. This disparity in job intake significantly

impacts the processing dynamics under the fair scheduler system. Under the mentioned

scheduling system, which equally divides resource time between the two agents, Agent 1

effectively manages to clear its entire queue of 150 jobs in Round 1, leaving its queue empty.

In contrast, Agent 2, grappling with a larger workload, is only able to process 225 out of

its 275 jobs. This results in a backlog of 50 jobs that are carried over to the next round.
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Moving to Round 2, the scenario evolves. Agent 1 now faces a substantial increase in its

workload, with 370 new jobs entering its queue. Given the constraints of the scheduling

system, it can only process 285 of these jobs, resulting in 85 jobs remaining unprocessed

by the end of the round. Meanwhile, Agent 2 starts Round 2 with a combined total of

330 jobs, consisting of 280 new jobs and the 50 unresolved jobs from Round 1. However,

similar to the previous round, Agent 2 is only capable of processing 225 jobs, leaving a

higher residue of 105 jobs for the subsequent round.

Assessing the performance in terms of utility, a measure of the agents’ effectiveness in

clearing their queues, we notice a diminishing trend. In Round 1, the utilities for Agents 1

and 2 are 0 and -50, respectively, reflecting Agent 1’s ability to clear its queue and Agent

2’s backlog. In Round 2, the utilities further decline to -85 for Agent 1 and -105 for Agent

2. This downturn indicates an increasing inefficiency in handling the incoming workload

under the current fair scheduling system, as both agents accumulate a growing number of

unprocessed jobs.

In this alternative scenario, we explore a scheduling strategy that deviates from strict

fairness but seeks to optimize overall efficiency for both agents. This approach involves

allocating resources in a manner that better matches each agent’s workload and throughput

capabilities. In the first round, the resource allocation is adjusted to better suit the agents’

incoming job loads. Specifically, Agent 1 is allocated resource R3, while Agent 2 is given

resources R1, R2, and R4. This tailored allocation allows both Agent 1 and Agent 2 to

successfully process all their jobs in the first round. As a result, both agents achieve a

utility of 0, indicating no backlog and complete processing of their respective queues. In

the second round, the resource allocation is again strategically adjusted. Agent 1 is given

resources R3 and R4, while Agent 2 is allocated R1 and R2. In this configuration, Agent 1

is able to process a significant portion of its jobs, totaling 350 out of 370. However, it still

faces a minor shortfall, leaving 20 jobs unprocessed. On the other hand, Agent 2, with its

allocated resources, manages to clear all of its jobs, maintaining a utility of 0.

Comparing this scenario with the previous one, it is evident that both agents benefit

more from the revised scheduling strategy. In the first scenario, under strictly fair scheduling,

both agents experienced a backlog, indicated by negative utility values. In contrast, in this

new scenario, the tailored allocation of resources leads to improved utility scores for both
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agents. Agent 1 has a significantly reduced backlog, and Agent 2 is able to consistently

clear its queue. This comparison highlights the effectiveness of a more flexible scheduling

approach that prioritizes efficiency and job throughput over strict equality in resource

distribution.
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Chapter 3

Fairness

Drawing on the core notions of economic game theory as elaborated in many past academic

works, it becomes important to achieve three separate requirements in order to construct an

equitable and sustainable framework of fairness [82]. These factors are critical in ensuring

that the outcomes of any economic game are regarded as equitable and acceptable by all

parties involved, encouraging cooperation and mutual respect.

The first of these three principles is known as Sharing Incentives (SI) [19, 71]. This

concept proposes a model in which all participants in the economic game favour a community

approach to resource allocation. In essence, it implies that people would get more value

and advantage from collectively sharing their resources rather than using them in a solo,

exclusive manner. This approach promotes a culture of common benefit and discourages

resource hoarding or selfish use, ensuring that benefits are distributed more fairly among

all players.

The following rule is about being Envy-Free (EF), which is important to the idea

of fairness in economic game theory. When resources or benefits are spread among the

participants, no one player has a desire for what has been allotted to the others, according

to this rule [71]. In a more detailed sense, this rule assures that no participant believes

that another has obtained a better bargain or a larger share of resources. The purpose of

this approach is to inspire in all participants a sense of happiness and satisfaction with
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what they have received. It’s a critical component in maintaining harmony and preventing

feelings of resentment or unfairness in the distribution process.

Pareto Efficiency (PE) is the third and equally important principle [23, 82]. This notion

is a little more complicated, requiring a fine balance in the distribution of resources or

happiness. Pareto Efficiency is accomplished when resources are allocated in such a way

that it is impossible to make one person happier or better off without concurrently making

at least one other person unhappy or worse off. This approach provides an optimal resource

allocation in which the collective welfare is maximized, and no more improvements can be

made without harming at least one member.

We initiate an in-depth examination of each principle in detail. In section 3.2, we delve

into the concept of the sharing incentive and its formulation. Moving on to section 3.3,

we explore the envy-free principle. Finally, in section 3.4, we discuss the role of Pareto

efficiency in our system.

3.1 Preliminaries

Our research focuses on the analysis of a system that includes m distinct machine learning

accelerators. The goal is to allocate these accelerators among n users across a sequence of R

rounds. In each of these rounds, a user denoted by i may gain access to several accelerators.

Each accelerator provides different levels of utility, depending on the specific workload of

the user. This leads to the formation of preference sets P r
i for the accelerators by each user.

We use the symbol ui to denote the total utility that an agent, or user i, gains over all R

rounds. To break it down, ur
i represents the utility that agent i acquires in a single round r.

Furthermore, ur,c
i indicates the potential utility that agent i could receive from accelerator

c during round r. In each round, we represent the queue length of agent i by qri and its

arrival by Arrri in round r. Therefore, ui is the sum of all ur
i values, and each ur

i is the

combined sum of ur,c
i values assigned to agent i:

ui =
∑
r∈R

ur
i (3.1)
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ur
i = −max(0, qri + Arrri −

∑
c∈M

xr,c
i · ur,c

i ) (3.2)

Where M is the set of all accelerators and xr,c
i ∈ {0, 1} denotes if accelerator c is

allocated to agent i in round r or not.

3.2 Sharing Incentive

In a situation where multiple individuals or groups (referred to as agents) use a common

set of resources, our designed system aims to promote a culture of cooperation and mutual

benefit [50, 82]. The goal is to encourage all agents to prefer working together and sharing

resources instead of using them separately and exclusively [18, 50, 83]. The success of our

system is measured by what we call the Sharing Incentive (SI) [71]. SI is achieved when

all agents involved are happy with the way resources are being shared. This means every

agent feels that they are getting enough from the shared resources and sees the benefit in

continuing to share.

On the other hand, if even one agent feels that they are not getting their fair share

or are unhappy with the way resources are allocated in our system, it indicates that we

have not successfully met the Sharing Incentive. In such cases, it shows that our system

needs improvement to ensure everyone feels content with the shared use of resources. Our

ultimate aim is to create a balance where all agents see the value in sharing resources,

leading to a more efficient and harmonious use of what is available.

To formalize SI, we introduce two distinct types of utilities for each agent: shared utility

and expected utility.

• Shared Utility (ush
i ): This represents the utility or benefit that agent i receives

when participating in a resource-sharing arrangement with other agents.It reflects the

value or satisfaction derived from a collaborative use of resources.

• Expected Utility (uex
i ): In contrast, this denotes the utility that agent i would gain if

it had exclusive access to all resources with regard to its portion in sharing.It provides
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Table 3.1: An example of agents’ resource need and utilities

Agents Preference (P r
i ) Utilities (ur,ci )

A1 [2,4,3,1][1,2,3,4][3,1,2,4] [0.1,0.9,0.1,0.2][0.9,0.9,0.9,0.6][0.8,0.3,0.9,0.1]

A2 [4,2,3,1][4,2,3,1][1,2,4,3] [0.5,0.6,0.5,0.7][0.4,0.5,0.6,0.6][0.6,0.5,0.1,0.5]

a baseline to compare the benefits of shared versus expected resource usage.For

example if two agents want to share a resource and they have equal portion for usage,

their uexs is the utilities they gain when they just have half time usage of resource in

each round.

To assess how fair and effective our resource allocation mechanism is, we introduce a

metric known as utility-fairness. This metric is defined for each agent i as the ratio of

shared utility to expected utility, mathematically represented as:

ϕi =
ush
i

uex
i

(3.3)

The utility-fairness metric, ϕi, helps in understanding how the benefits of shared resource

usage compare to the benefits of expected use for each agent.

A mechanism is said to satisfy the Sharing Incentive (SI) if it meets the following

condition: The mechanism satisfies SI if for every agent i, the shared utility is at least as

great as the expected utility. Mathematically, this can be represented as:

ϕi ≥ 1, ∀i (3.4)

To be more specific, in the absence of SI, agents desire equal weighted resource division.

This allocation results in inefficient resource use. This formula is applicable when the

utility function represents agents’ gains, such as throughput. If the utility function instead

represents the costs an agent must bear, like latency, then the equation should be expressed

as ϕi ≤ 1.
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Table 3.2: Sequences of allocations in 3 rounds for each agent and their overall utilities

Name A1 Allocation (x1) A2 Allocation (x2)

Time Equal [12 ,
1
2 ,

1
2 ,

1
2 ][

1
2 ,

1
2 ,

1
2 ,

1
2 ][

1
2 ,

1
2 ,

1
2 ,

1
2 ] [12 ,

1
2 ,

1
2 ,

1
2 ][

1
2 ,

1
2 ,

1
2 ,

1
2 ][

1
2 ,

1
2 ,

1
2 ,

1
2 ]

Dynamic-Fair Part. (M0) [0,1,0,1][1,1,0,0][1,0,1,0] [1,0,1,0][0,0,1,1][0,1,0,1]

Fixed-Fair Part. (M1) [0,0,1,1][0,0,1,1][0,0,1,1] [1,1,0,0][1,1,0,0][1,1,0,0]

MTF (M2) [0,1,0,0][1,1,1,0][1,0,1,0] [1,0,1,1][0,0,0,1][0,1,0,1]

Table 3.3: Overall utilities

Name u1 u2

Time Equal 3.35 3.05

Dynamic-Fair Part. (M0) 4.6 3.2

Fixed-Fair Part. (M1) 2.8 3.1

Most Token First (MTF) (M2) 5.3 3.3

To further illustrate the concept of utility-fairness, consider an example involving the

resource preferences of two agents. These preferences are tabulated in Table 3.1. As a

specific instance, in the first round of allocation, agent two demonstrates a preference order

where accelerator c4 is favored over c2, which in turn is preferred over c3, and so forth. (In

this example, we assume that we have a maximum number for the length of queue and

normalize the length by this maximum number. We have more detail about this in section

5)

Additionally, we illustrate various allocation scenarios that may arise under different

mechanisms in Table 3.2. Let us focus on a scenario involving two agents, denoted as A1

and A2. For the sake of simplicity in this example, we assume that both agents have equal

weight/portion in the decision-making process, with w1 = 0.5 and w2 = 0.5 respectively.

Their primary objective is to allocate the usage of a single Graphics Processing Unit (GPU)

between them in a manner that is perceived as fair by both parties.

At the outset, let us consider the expected utilities of the agents, denoted as uex
1 and
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uex
2 . These utilities represent the satisfaction or benefit each agent would derive if they

were to use the GPU with expecting of allocation based on their weight. Initially, we can

say uex
1 = 3.35 and uex

2 = 3.05.

However, the scenario changes when we introduce a dynamic-equal partitioning mecha-

nism, denoted as M0. In this setup, the GPU is divided equally between the two agents.

Under such a partitioning scheme, the shared utilities of the agents are denoted as ush
1 = 4.6

and ush
2 = 3.2.

The utility-fairness metric, ϕi, for each agent is calculated as the ratio of their shared

utility to their expected utility. For the first agent, ϕ1 =
ush
1

uex
1

= 1.36, and for the second

agent, ϕ2 =
ush
2

uex
2

= 1.04. These values suggest that both agents receive more utility than the

utility they would have if they used the GPU by time-equal allocation.

Continuing our exploration of resource allocation mechanisms, we now consider mecha-

nism M1, which is characterized as a fixed-equally partitioning mechanism. Under M1, the

shared utilities for agents A1 and A2 are denoted as ush
1 = 2.8 and ush

2 = 3.1, respectively.

This reflects the utility each agent receives when the accelerator is partitioned equally but

in a fixed manner, without dynamic adjustments.

The utility-fairness metric for each agent under mechanism M1 can be computed as

follows:

• For agent A1: ϕ1 =
ush
1

uex
1

= 0.82.

• For agent A2: ϕ2 =
ush
2

uex
2

= 1.02.

It is evident from these metrics that agent A2 exhibits a preference for mechanism M1

over M0, the dynamic-equal partitioning mechanism. On the other hand, agent A1 shows a

preference for either the equal partitioning scenario (M0) or the time-equal use scenario.

This divergence in preferences among the agents underlines that mechanism M1 fails to

satisfy the Sharing Incentive (SI), as it does not equally cater to the interests of both agents.

Next, we introduce our proposed allocation mechanism, Most Token First allocation,

denoted as M2. We go through the allocation mechanism in section 4. Under M2, the
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shared utilities are ush
1 = 5.3 for agent A1 and ush

2 = 3.3 for agent A2. This leads to the

following utility-fairness metrics:

• for agent A1: ϕ1 =
ush
1

uex
1

= 1.58.

• for agent A2: ϕ2 =
ush
2

uex
2

= 1.08.

These values indicate that, similar to mechanism M0, both agents receive more utilities

than the utilities they would have achieved under time-equal use. This alignment in agent

preferences suggests that mechanism M2 successfully satisfies the requirement of the Sharing

Incentive, making it a viable option for fair resource allocation between the two agents.

3.3 Envy Free

Envy-freeness (EF) is a concept often used in the field of economics and game theory, which

pertains to the allocation of resources or goods among multiple agents. In an envy-free

scenario, each agent is allocated a portion of the resources, and the core of this idea revolves

around the satisfaction and preference of each agent towards their allocated share compared

to the shares of others [16, 29, 71]. An agent experiences envy if they desire the allocation

assigned to another agent, often because they perceive it to be better or more beneficial for

their interests.

The dynamics of EF become particularly interesting and complex when the allocations

are non-uniform, and the perceived value of these allocations varies from one agent to

another. This difference in valuation can be attributed to a variety of factors, such as

individual preferences, needs, or the utility each agent derives from their allocation. For

instance, in a situation where resources are scarce, an agent might prefer another’s allocation

because it better satisfies their specific needs or because it offers a higher utility.

EF is closely tied to the concept of fairness in allocation [30]. A fair allocation is often

described as one where no agent would prefer the allocation of another, implying that

everyone is at least as happy with their allocation as they would be with the allocation of
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another agent. This does not necessarily mean that all allocations are equal, but rather

that they are equitable in the eyes of the agents involved.

When evaluating whether an allocation satisfies the condition of being Envy-Free (EF),

it is crucial to consider the subjective perceptions of the agents. If all agents exhibit a

preference for their individual allocations, it signifies that the allocation satisfies the EF

condition. This is a strong indication of a successful and fair distribution of resources, as it

implies that each agent believes they have received a fair share, and there is no desire to

exchange their allocation for that of another agent.

To formalize the concept of EF within our system, let us consider a set of agents denoted

by A = {A1, A2, ..., An} and a set of resources or accelerators that can be allocated. Let

X = {X1, X2, ..., Xn} represent the allocation of resources to these agents over a series of

R rounds using a specific mechanism M . In this context, Xi refers to the allocation for

agent Ai, and is defined as Xi = {X1
i , X

2
i , ..., X

R
i }, where Xr

i represents the allocation to

agent Ai in round r. Each Xr
i is a set {xr,1

i , xr,2
i , ..., xr,m

i }, where xr,c
i is a binary indicator

taking a value in {0, 1}, denoting whether accelerator c is allocated to agent i in round r.

Furthermore, we define a utility function ui(X) to quantify the satisfaction or benefit

that agent Ai derives from a certain allocation X. Specifically, u
Xj

i is the utility experienced

by agent Ai when utilizing the system with the allocation originally designated for agent

Aj.

The mechanism M is said to satisfy EF if and only if the following condition holds for

all pairs of agents:

∀i, j ∈ {1, 2, ..., n}, wj · uXi
i ≥ wi · u

Xj

i (3.5)

In this equation, wi represents the weight assigned to agent Ai. The condition essentially

states that for each agent Ai, the utility they derive from their own allocation Xi, when

weighted by their importance wi, should be at least as great as the utility they would derive

from any other agent’s allocation Xj. This ensures that no agent prefers the allocation of

another agent over their own, thus satisfying the criteria of EF in the allocation.

Consider the aforementioned scenario involving two agents, A1 and A2, in the context

of a resource allocation problem. Under mechanism M1, an alteration in the allocations of
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A1 and A2 leads to the following utility outcomes: uX2
1 = 3.9 and uX1

2 = 3.0. Notably, in

this mechanism, agent A1 achieves a higher utility when allocated the resources of A2 (3.9)

compared to their utility from their own allocation (assumed to be lower). This discrepancy

indicates that A1 envies the allocation of A2, as they perceive it to be more beneficial or

satisfying.

Alternatively, in mechanism M2, upon altering the allocations, the resulting utilities are

uX2
1 = 1.4 and uX1

2 = 2.8. In this scenario, both agents demonstrate a higher preference for

their own respective allocations over those of the other agent. Specifically, the utility A1

derives from A2’s allocation is less than the utility from their own allocation, and similarly,

A2 finds their own allocation more satisfying than that of A1. This outcome implies that

neither agent envies the other’s allocation, thus fulfilling the condition for EF. Consequently,

while mechanism M1 fails to meet the EF criterion due to the presence of envy from A1

towards A2, mechanism M2 successfully aligns with the EF criterion.

3.4 Pareto Efficiency

Pareto Efficiency (PE) is a fundamental concept in economics and resource allocation

that plays a crucial role, especially in heterogeneous environments where resources vary

in type and utility [67]. Within any given allocation mechanism, PE embodies the idea

that it is impossible to improve the utility (or satisfaction) of a single agent without

simultaneously reducing the utility of at least one other agent [7, 67]. This concept is

pivotal in understanding the dynamics of resource allocation, particularly in systems where

resources are limited and diverse in nature [54].

PE revolves around the goal of achieving an optimal allocation among all feasible

distributions of resources [12]. An allocation is said to be Pareto optimal if there is no other

feasible allocation that could make at least one agent better off without making someone

else worse off. In other words, a Pareto optimal allocation is a state where resources are

distributed in such a way that no further reallocation can enhance the utility of one agent

without harming another. This principle ensures that resources are utilized in the most

efficient manner possible within the given constraints.
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To formalize the concept of Pareto Efficiency (PE) within the framework of our resource

allocation system, we introduce specific notations and conditions that define PE in the con-

text of heterogeneous resource distribution across different rounds. Let Ψ = {X1, X2, ..., Xk}
represent the set of all possible resource allocations among the agents, where k is the total

number of feasible allocations. Each allocation X i in Ψ is a distinct distribution of resources

among the agents.

Furthermore, for each allocation X i and round r, we define a utility set UXi,r =

{uXi,r
1 , uXi,r

2 , ..., uXi,r
n }, where uXi,r

j denotes the utility of agent j in round r when allocation

X i is implemented. The utility uXi,r
j quantifies the satisfaction or benefit derived by agent

j from the specific allocation X i during that round.

Considering a specific mechanism M̂ employed in our system, let XM̂ be the allocation

chosen by M̂ for a particular round r. We say that the mechanism M̂ satisfies Pareto

Efficiency in round r if and only if the following condition holds:

∄M,M ̸= M̂ ⇒ (∀i uXM ,r
i ≥ uXM̂ ,r

i ) ∧ (∃j uXM ,r
j > uXM̂ ,r

j ) (3.6)

This condition states that there does not exist any other allocation X i in the set

of possible allocations Ψ that can make every agent strictly better off compared to the

allocation XM̂ chosen by the mechanism M̂ . In other words, XM̂ is PE if improving the

utility of any one agent under any alternative allocation X i would necessarily reduce the

utility of at least one other agent.

To illustrate the concept of Pareto Efficiency (PE) using a concrete example, let us

consider two mechanisms, M1 and M2, in the context of our allocation system. We analyze

the utilities derived by two agents in the first round of allocation under these mechanisms

to assess whether they satisfy the criteria of PE.

Under mechanism M1, the utilities of the two agents in the first round are given by:

uM1,1
1 = 0.3 and uM1,1

2 = 1.1. Here, uM1,1
j denotes the utility of agent j in the first round

under allocation mechanism M1. According to the principle of PE, if there exists an

allocation M such that uM,1
1 > 0.3 while maintaining uM,1

2 ≥ 1.1 or vice versa, it indicates a

failure of M1 to satisfy PE. This failure arises because the existence of such an alternative
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allocation implies that it is possible to improve the overall welfare of all agents without

disadvantaging any individual agent, a fundamental requirement for an allocation to be

Pareto efficient. In this example, mechanism M2 presents such an alternative. Under M2,

the utilities for the first round are given by: uM2,1
1 = 0.9 and uM2,1

2 = 1.7.

Comparing the utilities under M2 with those under M1, we observe that both agents

achieve higher utilities under M2 than under M1 in first round.(0.9 > 0.3 for agent 1 and

1.7 > 1.1 for agent 2). This indicates that M2 is a more efficient allocation in terms of

maximizing the welfare of all agents without making any one of them worse off, hence

satisfying the criteria of Pareto Efficiency for the first round of allocation.
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Chapter 4

Mechanism Design

We provide a token-based system that collects agents’ preferences and allocates resources

based on their token amounts. Agents also learn how to report their preferences in order to

maximize their own usefulness. In this part, we will look at our system’s scheduler and

learning process.

4.1 Most-Token-First Scheduler

4.1.1 Tokens Distribution

Our scheduler is designed to operate in a dynamic environment, where resource allocations

are determined on a round-by-round basis. This approach allows for adaptability and

responsiveness to changing conditions and requirements of agents. In each round, the

scheduler takes into account the preferences of the agents and the availability of tokens.

The agents are equipped with individual budgets, denoted as Br
i , for each round r. These

budgets are crucial for determining how resources are allocated among the agents. The

initial budget allocation (B1
i ) for each agent is carefully determined in proportion to their

respective weights. Let us assume that the total quantity of tokens available in the system

is represented by T . The weight of an agent i is denoted as wi, and it plays a significant
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role in the distribution of the initial budgets. The formula for calculating the initial budget

of agent i is given by:

B1
i =

wi · T∑n
j=1 wj

(4.1)

In this equation, the denominator
∑n

j=1 wj represents the sum of weights of all agents

in the system. It ensures that the distribution of the initial budgets is relative to the total

weights.

Furthermore, agents are allowed to bid for resources using their allocated budgets. The

bidding process is governed by rules that ensure fair competition and efficient utilization of

resources. The scheduler evaluates these bids and allocates resources accordingly, It not

only aims to maximize the overall utility and satisfaction of all agents, but also adheres to

the constraints of token availability and budget limitations.

4.1.2 Preferences and Thresholds

In the context of our resource allocation system, the process of agents expressing their

preferences plays a pivotal role in each round of allocation. This is achieved by agents

submitting an ordered list of preferences for the available m accelerators. For each agent

i in round r, this set of preferences is denoted by P r
i = {p1,ri , p2,ri , ..., pm,r

i }. The list P r
i

consists of m elements, each representing a accelerator in the set C. These elements are

ordered to reflect the preference hierarchy of the agent, such that for any two accelerators

pk,ri and pl,ri in C, the accelerator pk,ri is preferred over pl,ri whenever k < l. This ordering is

crucial as it guides the scheduler in understanding the priorities of each agent regarding

the accelerators.

In addition to providing their preference list, each agent specifies a threshold value τi.

This threshold value is a critical parameter for the scheduler as it represents the minimum

level of utility, denoted as ur,c
i , that an agent is willing to accept for allocating their tokens

to a particular accelerator. In essence, τi acts as a cut-off point, indicating the agent’s

willingness to commit resources to their preferences. If the utility ur,c
i for a accelerator c
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is equal to or exceeds this threshold value τi, the agent is amenable to allocate tokens to

secure that accelerator. Conversely, if the utility for a accelerator is below this threshold, it

implies that the agent recognize the accelerator as less desirable or not worth.

The scheduler plays a crucial role in interpreting these preferences and threshold values.

It utilizes this information to make informed decisions about resource allocation. Specifically,

the scheduler will not charge an agent for a accelerator if the utility value ur,c
i associated

with that accelerator falls below the agent’s threshold τi.

4.1.3 Algorithm

In our system, each round of resource allocation is characterized by a structured process

where agents actively participate by submitting their preferences and corresponding thresh-

old values. This process is integral to the functioning of our allocation mechanism, as

outlined in algorithm 1. The mechanism operates in a sequential manner, taking into

account both the preferences of the agents and their available budgets.

The first step in this process involves the mechanism selecting an agent who not only

has the highest budget available but also expresses a desire for at least one accelerator

where the utility ur,c
i is greater than or equal to their specified threshold τi. This step

ensures that the agent with the most resources at their disposal and a clear preference for

high-utility accelerators is given priority in the allocation process.

Once such an agent is identified, the mechanism proceeds to allocate to them their most

preferred accelerator. This is determined based on the agent’s submitted preference list

P r
i , where the topmost accelerator that meets the utility threshold τi is selected. Following

this allocation, the allocated accelerator is removed from the preference lists of all other

agents. This removal is necessary as it prevents the same accelerator from being allocated

to multiple agents and ensures that each accelerator is uniquely assigned. Subsequent to

the allocation, the scheduler then reduces the budget of the agent by one.

This process is repeated iteratively, with the mechanism continuously selecting agents

based on their remaining budgets and preference lists. The iteration continues until there

are no agents left with a positive budget who desire any accelerator above their threshold
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values. This condition signifies the completion of the allocation round, ensuring that all

available resources are distributed among the agents in accordance with their preferences,

budgets, and the utility thresholds they have set.

Algorithm 1 Most-Token-First Scheduler

Input: Preferences P r, Thresholds T r, Budgets Br, Last turn of RR turn, Agents’

weights W

assignemnts = list()

tokens = 0

for i = 1 to m do

append null to assignments

end for

while true do

a = agent with max budget and available needed accelerator w.r.t. P r, T r, Br

if a is null then

break

end if

accelerator = get first item from P r[a]

assignments[accelerator] = a

Remove accelerator from P r

Br[a] := Br[a]− 1

tokens := tokens+ 1

end while

DistributeTokens(tokens,W )

while at least one accelerator remains do

Assign remaining accelerator w.r.t. P r and turn

Update turn

end while
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4.1.4 Complexity

The computational complexity of the Most-Token-First (MTF) algorithm, a critical aspect

of its efficiency, can be methodically analyzed in terms of its dependence on the number of

accelerators and agents involved. Let m represent the total number of accelerators available

for allocation, and n denote the number of agents participating in the allocation process.

During each iteration of the algorithm, a key step involves identifying the agent with the

highest budget. This step requires a comprehensive comparison among all n agents to

determine the one with the maximum available budget. Consequently, this identification

process necessitates O(n) operations, as it involves a linear scan through the list of agents.

Once the agent with the highest budget is identified, the next step is to assign a accelerator

to this agent. This assignment is relatively straightforward and can be achieved in constant

time, denoted as O(1). The simplicity of this step stems from the fact that the agent’s

top preference, which meets their utility threshold, is readily accessible from their ordered

preference list. Following the assignment of the accelerator, the algorithm then proceeds to

remove the allocated accelerator from the preference lists of all other agents. The process of

removing a accelerator from each agent’s preference list involves iterating over all n agents,

resulting in a complexity of O(n) for this step. Considering that this procedure is repeated

for each of the m accelerators, the overall complexity of the MTF algorithm accumulates.

This repetitive nature of the algorithm leads to a total complexity of O(m × n), as the

procedure is conducted once for each accelerator.

In the worst-case scenario, every single accelerator is allocated following this exact

procedure, reinforcing the worst-case complexity of O(m× n). However, in the best-case

scenario, where no agent has preferences with utilities exceeding their thresholds, the

performance of the MTF algorithm parallels that of a round-robin algorithm. In such a

scenario, each agent is allocated a accelerator in a sequential manner without the need for

extensive preference and budget comparisons Therefore, in this situation, the complexity is

O(m).
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4.2 Learning

As we mentioned before, in our resource allocation system, each agent needs to report

their preferences to the scheduler. This reporting is essential as it enables the scheduler to

allocate accelerators to agents in a manner that aligns with their preferences. Thus, it can

optimizes the utility that each agent derives from the allocation. In the construction of

the preference list P r
i , it is imperative for an agent to methodically prioritize accelerators

based on the utility they offer. Specifically, an agent should position a accelerator c that

provides a higher utility above other accelerators in their preference list. This prioritization

is crucial due to the implications it has on the allocation outcome. If an agent were to

erroneously place a less preferred accelerator c′ (with lower utility) before a more preferred

accelerator c (with higher utility), they might end up being allocated accelerator c′ instead

of c. Such an allocation would result in the agent incurring the same cost as they would

have for obtaining the more preferred accelerator c, but with a lower utility payoff. This

scenario is not optimal for the agent, as it leads to a suboptimal use of their resources with

reduced satisfaction. Therefore, it is in the agent’s best interest to meticulously rank the

accelerators in their preference list such that higher utility accelerators are positioned above

those with lower utility.

Agents must give the scheduler with their utility threshold tau in addition to expressing

their preferences. This threshold plays an important role in the allocation process, par-

ticularly in guiding the scheduler’s decisions regarding whether an agent should expend

a token for an assigned accelerator. The determination of this utility threshold τ in each

round is a significant decision that the agents must make. It is not a trivial task and

requires careful consideration, as it directly influences the cost-benefit analysis associated

with each potential accelerator allocation. Agents are required to set this threshold based

on their prior experiences and observations within their respective workloads. This decision-

making process demands a keen understanding of the value and utility derived from various

accelerators in past allocation rounds.

The complexity of this setting may not be immediately evident. It involves a multifaceted

evaluation of past allocations, utility received, and the changing dynamics of the agents’

workloads. Therefore, agents require a robust learning mechanism to effectively determine
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the optimal value of τ for each round. This learning mechanism is essential for agents to

adapt to the evolving allocation landscape and to make informed decisions that optimize

their utility over time. To address this challenge of learning the optimal threshold value,

our system incorporates two distinct types of learning methods: no-regret [20] learning

and actor-critic [39] learning. No-regret learning focuses on minimizing regret over a series

of decisions, enabling agents to learn from past allocations and adjust their strategies

accordingly. On the other hand, actor-critic learning, a reinforcement learning approach,

involves agents (actors) making decisions and learning from the feedback (critiques) on the

outcomes of those decisions.

Through a comprehensive evaluation process, we aim to select the learning method that

yields the most superior results in terms of optimizing the agents’ utility and enhancing

the overall efficiency of the allocation process. This evaluation is crucial as it determines

the effectiveness of the learning mechanisms in guiding the agents to set appropriate

utility thresholds. The selected learning method will be instrumental in enabling agents to

adaptively set their thresholds in response to the dynamic conditions of each allocation

round, thereby optimizing their participation in the resource allocation process.

4.2.1 No-Regret Algorithm

No-regret learning [20] is an iterative learning process employed by agents in our system,

where the objective is to minimize regret over time. Regret in this context is defined as

the difference in performance between the agent’s chosen strategy and the best possible

strategy that could have been followed. In our approach, the strategies are represented by

the choice of utility thresholds that agents can report. These thresholds are essentially the

experts that the agent compares itself against to evaluate its performance. However, given

the practical limitations of computational resources and the need for manageability, it is not

feasible to consider an infinite number of possible thresholds. Therefore, we discretize the

range of possible thresholds into a finite set for operational efficiency. This range is denoted

by U = {0.0, 0.1, ..., 0.9}, providing a comprehensive but finite set of threshold values that

agents can choose from. Additionally, in our system, we make an important assumption

regarding the utilities provided by the accelerators. We assume that these utilities are
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normalized within the range of [0, 1). The method that we use for this normalization is

mentioned in section 5.2.

In each step of the learning process, the agent employs the Hedge algorithm [20], to

select a threshold from the set U . The Hedge algorithm is a well-established method in the

realm of no-regret learning. Upon selecting a threshold, the agent then proceeds to update

the weights associated with all possible thresholds in the set U . This update is based on

the rewards received by the agent, which are contingent on the performance of the chosen

threshold in the current allocation round.

The reward for a particular threshold τ for agent i in round r is quantified through a

specific equation:

Rτ,r
i = (

∑
c∈Cτ,r

i

uc,τ,r
i )− E[ur

i ] ∗Br+1
i (4.2)

where, Cτ,r
i represents the collection of accelerators allocated to agent i in round r

as a result of selecting the threshold τ . The term ur
i denotes the array of utility values

that agent i can potentially derive from all accelerators during round r. Additionally, Br
i

signifies the budget available to agent i for that particular round. This equation is designed

to capture the efficacy of the threshold τ in terms of the utility gained by the agent and

the cost incurred. The reward calculation is a crucial component of the learning process, as

it directly influences the agent’s future threshold selections by adjusting the weights based

on the observed outcomes.

In our system, the state of an agent is characterized by their current budget. However,

the Hedge algorithm, which is integral to our learning mechanism, does not inherently

accommodate direct input regarding the agent’s budget. To navigate this limitation, we

introduce a unique learner for each possible state of an agent’s budget, denoted as B (the

total number of tokens in the system). This approach, while necessary, leads to a significant

increase in the complexity of the learning process. Algorithm 2 shows the procedure of this

method.

The intricate nature of this learning mechanism is further compounded by the fact

that the computational complexity of the Hedge algorithm is expressed as |B||U |. It is
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Algorithm 2 No regret algorithm

w = list()

loss = list()

for i = 1 to |Btotal| do
w[i] = 1

loss[i] = 0

end for

while cnovergence OR maximum round passed do

Choose one threshold based on w

ūr′ = best utility in curr round

loss[i] = 1
r

∑r
r′=1 u

r′
i − ūr′

w[i] := w[i] · exp(ϵ · loss[i])
end while

the number of experts that an agent uses totally when it learns. Here, |U | signifies the
number of thresholds in the finite set of possible thresholds. This formulation indicates

that the complexity escalates exponentially with both the number of thresholds and the

varying states of the budget. Unfortunately, our system faces constraints in reducing

the number of budget states, which are intrinsic to the nature of our resource allocation

process. Consequently, this leaves us with the alternative of modifying U , the set of

possible thresholds, as a means to manage and potentially reduce the overall complexity.

This complexity notably impacts the speed of learning, as a more complex algorithm

requires more computational resources and time to converge to an effective decision-making

strategy. In addition to these challenges, we observe that the no-regret learning approach

demonstrates lower performance compared to the actor-critic model. This observation is

further elaborated and demonstrated in the following section of our analysis.

4.2.2 Actor-Critic Method

The Actor-Critic [39] method is a widely recognized approach in the field of reinforcement

learning, distinguished by its synthesis of policy-based and value-based methodologies. This

35



hybrid structure facilitates a more comprehensive and effective learning process for agents

operating within a given environment [6, 25]. To elucidate the distinct components of this

method, we explain more detailed examination of both the Actor and the Critic aspects in

the subsequent paragraphs.

The Actor component in the Actor-Critic framework embodies the policy aspect of

reinforcement learning [39]. Essentially, it describes the strategy or behavioral pattern that

an agent adopts for selecting actions in response to the prevailing state of the environment.

Within the context of our system, the action taken by an agent is manifested in the form of

selecting a threshold value that the agent reports in each allocation round. Additionally,

the primary objective of the agent is to maximize its utility, which is achieved through the

outcomes of its actions. The utility gained serves as the reward for the agent, motivating

the actor to learn and adopt the most advantageous threshold selection strategy. This

reward for agent i in round r, denoted as Rr
i , is quantified as the cumulative utility derived

from all accelerators assigned to the agent:

Rr
i =

∑
c∈Cr

i

uc,r
i (4.3)

where Cr
i represents the set of accelerators allocated to agent i in round r, and uc,r

i denotes

the utility of each accelerator c to the agent.

The Critic aspect of the method focuses on estimating and evaluating the value function

[39]. The critic’s primary function is to assess and provide feedback on the actions executed

by the actor. This feedback mechanism is pivotal as it assigns a value to each state

encountered by the agent. It enables the actor to measure the effectiveness of its actions.

The critic’s role is vital in the learning process, as it offers a perspective on the quality and

potential outcomes of the actions taken by the actor. Subsequently, the actor incorporates

this feedback to refine and adjust its policy. By using this feedback, actor enhances the

likelihood of achieving higher rewards. This iterative process of feedback and adjustment is

central to the Actor-Critic method, where the critic informs the actor about the efficacy of

its actions, and the actor utilizes this information to optimize its policy for better future

performance.

The state of each agent is defined by a specific set of parameters. This state is defined
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as sri = {Br
i , u

r
i}, where each element represents a key factor in the agent’s decision-making

process. The budget of the agent at round r is represented by Br
i . The second element, ur

i ,

signifies the utilities of accelerators for the agent. To update the estimated value of the

current state based on the observed reward and the estimated value of the next state, the

following equation is employed:

V (sri ) := V (sri ) + α(Rr
i + γV (sr+1

i )− V (sri )) (4.4)

In this equation, α ∈ (0, 1] represents the learning rate, which controls the rate at which

new information overrides old information. The term γ ∈ (0, 1] serves as the discount

factor for future values, indicating the importance of future rewards compared to immediate

rewards. The function V (·) denotes the value function, which is learned during the process

for each state. This function estimates the expected utility or benefit of being in a certain

state. It considers both immediate and future rewards.

Our system incorporates two separate neural networks for the actor and critic components.

The actor network is responsible for mapping the current state of an agent to a set of

probabilities for threshold selection. Meanwhile, the critic network maps the current state

to its estimated value. To train both the actor and critic networks, we utilize the temporal

difference (TD) learning method [69]. TD learning is a method that involves calculating the

difference between the estimated outcomes (predicted by the value function) and the actual

outcomes observed. This TD error is then used for backpropagation within our neural

networks and allows them to learn and improve their predictions and decisions over time.

The TD error equation, which is fundamental to this learning process, can be expressed

for agent i in round r as follows:

δ = Rr
i + γV (Sr+1

i )− V (Sr
i ) (4.5)

Figure 4.1 shows the procedure of working of this our method.

For the critic component, which is responsible for predicting the value associated with a

given state, δ is directly applicable as an error term to facilitate its updates. To optimize

the critic’s learning through gradient descent, a common approach in machine learning, we
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Figure 4.1: Procedure of actor critic method

utilize the square of the TD error. So, the loss function for the critic, denoted as losscritic,

is thus formulated as follows:

losscritic = δ2 (4.6)

On the other hand, the actor component requires a different approach to calculate its

loss. The actor’s loss is determined by considering the probability of selecting a particular

threshold τ given the agent’s state sri , combined with the TD error δ. The loss function for

the actor is formulated as follows:

lossactor = − log(π(τ |sri )) · δ (4.7)

In this equation, π(τ |sri ) represents the probability of choosing threshold τ conditioned

on the agent’s current state sri . The use of the logarithm of this probability, multiplied by

the TD error, is a standard approach in reinforcement learning for policy gradient methods.

Hyperparameters

Hyperparameters play an important role in the configuration of machine learning models.

These parameters are essential for the optimal performance of the learning algorithms

[5, 17]. To efficiently search for and optimize these hyperparameters, we employ Optuna [1].
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Optuna is a robust hyperparameter optimization framework known for its effectiveness in

identifying the most suitable hyperparameter settings for a given model. Its capabilities are

particularly beneficial in our context, where fine-tuning these parameters is key to achieving

high performance. One of the notable strengths of Optuna is its ability to identify the best

hyperparameter settings through an efficient search process. This process involves exploring

a wide range of possible hyperparameter configurations and identifying those that yield the

most promising results. Additionally, Optuna possesses the capability to prune ineffective

trials, which significantly accelerates the optimization process. By eliminating trials that

are less likely to produce optimal outcomes early in the process, Optuna ensures a more

focused and faster search for the best hyperparameters.
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Chapter 5

Evaluation

In this chapter, we examine our system. To set the stage for this evaluation, section 5.1

introduce the baselines that serve as our reference points for comparing and assessing our

system’s effectiveness. Following the introduction of the baselines, the subsequent section

delve into an exploration of our workloads. Moving further into our evaluation, section 5.3

undertake a detailed examination of various facets of our system’s performance. section

5.4 explore the overhead of scheduling within our system. Then, section 5.5 conduct a

fairness analysis to ensure that our system operates equitably and does not exhibit bias in

its decision-making processes.

5.1 Baseline

For our baseline, we compare our system with some state-of-the-art algorithm. Specifically,

we implement the following two policies for scheduling in a heterogenous system.

• Themis [53]: In this method, the objective is to minimize the maximum values of

ρ = Tsh

Tid
in each round. Tsh represents the completion time of jobs in in shared usage

of accelerators. On the other hand, Tid denotes the completion time of jobs running

on 1
n
share of all accelerators.
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Table 5.1: Gemmini throughputs for different computation clock frequencies

Applicaiton Gemmini 2GHz Gemmini 3GHz

Resnet conv 70.262 86.332

Resnet matmul 3.001 4.139

Mobilenet conv 81.644 111.995

Mobilenet WS 1.480 2.101

• Gandivafair [9]: Gandivafair uses stride scheduling. In stride scheduling, each agent is

assigned a “stride” value on each resource based on its weight (tickets in Gandivafair),

which represents its priority or share of the resource time. The scheduler maintains

a queue of jobs and selects the process with the smallest stride value to run next.

As jobs run, their stride values are adjusted to ensure proportional allocation of

accelerator time based on their assigned shares. This approach ensures fairness by

dynamically adjusting priorities, allowing agents with smaller strides to receive more

resource time.

5.2 Workloads

The tasks in our setup involve a combination of multiple neural network inference processes

that run on the Gemmini [22] accelerator at various clock frequencies. We specify the

amount of inference that each architecture can provide to different applications, and these

are detailed in Table 5.1. In our setup, the total number of inferences is the throughput for

each agent.

To manage the distribution of these tasks across different accelerators, each agent is

equipped with a Power-of-Two-Choice load balancer. This load balancer handles task

assignment, ensuring that tasks are evenly distributed among the available resources. Jobs

have a deadline, meaning they will be dropped from the queue after passing their deadlines.

Furthermore, we assume that the arrival rate of jobs follows a Poisson distribution with a
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λ = 40. This is the base parameter for arriving rates. Each agent, based on his weight, has

a coefficient that specifies its own λi.

During each iteration, agents submit their demand for the resources they require, and

each resource can only process tasks that are present in its queue. To assess the performance

of our agent policies, we conducted a benchmark that spanned 300 iterations, providing

insights into how effectively our policies operate in this context.

In our system, we have implemented a strategy where each agent is associated with

a worker responsible for managing the runtime operations of the agents. These workers

are tasked with executing the procedures required by each agent. This approach is chosen

because the tasks undertaken by each agent are entirely independent of one another. While

it is possible to assign each agent to a single thread, we found that this incurred a significant

overhead for our system. Therefore, to streamline operations, we have distributed agents

among these workers, with each worker dedicated to handling the tasks of a specific agent.

The scheduler is the part of a component that is called coordinator. The coordinator

facilitates communication with the workers, exchanging data with them and ensuring that

the necessary information is relayed to each worker. To facilitate this communication and

maintain synchronization between the coordinator and workers, we have implemented a

message queuing system. The overview of our system is shown in Figure 5.1.

Figure 5.1: Overview of architecture of implementation.
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In our system, there are twenty agents sharing forty accelerators, and these accelerators

are heterogeneous in nature, offering diverse capabilities and performance characteristics. It

allows us to evaluate and adapt our approach to various scenarios and resource configurations.

5.3 Performance

To assess how well our system performs, we analyze it in two scenarios. First, we examine

its performance when all agents have identical weights. Then, we explore a scenario where

agents possess varying weights. In both cases, we ensure that agents’ queue utilities, which

represent the ratio of their arrivals to departures based on their weight, remain constant.

We vary these queue utilities from 40% to 80% in our experiments to observe the system’s

behavior under different loads.

In Figure 5.2, we present the weighted social welfare in the scenario where all agents

have the same weights. Social welfare is the weighted average utility that agents get through

the experiment. In our system, utility is the accumulated throughput that an agent can

get from the accelerators assigned to it. Figures 5.3 illustrates the average throughput

of all agents within this uniform weight setup. As you can see, at 60% queue utility, our

technique exceeds Themis by 152%. On average, it outperforms two other schedulers by

39%.

To explore the impact of weight heterogeneity, we devised three distinct setups. In

the first setup, we divided the agents into two equal groups: half with a weight of 1 and

the other half with a weight of 2. Figure 5.4 provides insight into the weighted social

welfare within this configuration. Additionally, Figure 5.5 offers a detailed view of the

average throughput of all agents in this particular setup. Further granularity is provided by

Figure 5.6, which showcase the average throughput of each agent type categorized by their

respective weights. As shown, when queue utility is 60%, our technique surpasses Themis

by 183%. It outperforms two other schedulers by an average of 43%.

In the second setup, we diversified the weights of agents as follows: half of the agents

retained a weight of 1, while 25% were assigned a weight of 2 and the remaining 25% were

endowed with a weight of 4. The weighted social welfare for this arrangement is depicted
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Figure 5.2: Weighted social welfare for setup that all agent has same w = 1.

in Figure 5.7. Moreover, Figures 5.8 presents the average throughput of all agents in this

setup, offering insights into how the system handles varied weight distributions. Figures

5.9 delves deeper, presenting the average throughput of each agent type based on their

individual weights. When queue utility is 70%, our technique outperforms Themis by 73%.

In compared to the other two schedulers, it outperforms them by 25%.

In the third setup, we diversified the weights of agents to further examine system

performance. Here, we allocated weights as follows: half of the agents retained a weight of

1, a quarter of the agents were assigned a weight of 2, and the remaining quarter boasted a

weight of 8. This deliberate variation in weights allows us to explore how the system copes

with a wider range of weight discrepancies. Figure 5.10 serves as a visual representation of

the weighted social welfare within this particular setup. Figure 5.11 offers detailed insights

into the average throughput of all agents in this setup. Figure 5.12 shows the average

throughput of each agent type based on their individual weights in this setup. As you can

see, our technique outperforms Themis by 62% when queue utility is 50%. When compared

to two other schedulers, it performs 14% better on average.

To assess the impact of deadlines on our system, we analyze it with various deadlines

for dropping jobs from the queue. Figure 5.13 illustrates the effects of different deadlines on
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(a) (b)

(c) (d)

(e)

Figure 5.3: Average Throughput for setup all agent has same weights and queue utility is

(a) 40% (b) 50% (c) 60% (d) 70% (e) 80%.

45



Figure 5.4: Weighted social welfare for setup that half agents have w = 1 and other half

have w = 2.

our system. The performance of the Themis cannot improve after certain deadline, however

we can get the best performance that can be reached using Gandivafair. In average, we have

8% improvement in comparison with Gandivafair, and in overall, we outperform 13% to

others.

To explore our system under conditions where each agent possesses a unique queue

utility, we conducted experiments using two distinct setups. In the first setup, we divide

the agents as follows: half of them are assigned a weight of 1 with a queue utility of 70%,

25% have a weight of 2 with a queue utility of 50%, and the remaining 25% have a weight

of 4 with a queue utility of 40%. Figure 5.14 visually represents their average throughput

and the throughput of each agent type within this setup. In the second setup, the agents’

queue utilities are different: 50% have a weight of 1 with a queue utility of 40%, 25% have

a weight of 2 with a queue utility of 50%, and the remaining 25% possess a weight of 4 with

a queue utility of 70%. Figure 5.15 displays the average throughput and the throughput of

each agent type within this alternative setup.

It is feasible to determine the ideal threshold for each agent in every round, but it is

not practical to demonstrate this for this number of agents. Therefore, considering the

performance enhancement observed for each user type (based on their weights) and the
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(a) (b)

(c) (d)

(e)

Figure 5.5: Average Throughput for setup half agents have w = 1 and other half have

w = 2 and queue utility is (a) 40% (b) 50% (c) 60% (d) 70% (e) 80%.
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(a) (b)

(c) (d)

(e)

Figure 5.6: Average throughput of each type of agent for setup half agents have w = 1 and

other half have w = 2 and queue utility is (a) 40% (b) 50% (c) 60% (d) 70% (e) 80%.
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Figure 5.7: Weighted social welfare for setup that half agents have w = 1, 25% of agents

have w = 2 and 25% of them have w = 4.

narrow confidence interval, it appears that they were all trained to select the optimal value.

5.4 Scheduling Overhead

In Figure 5.16 and Figure 5.17, we present a detailed analysis of the scheduling overhead’s

impact on the system’s runtime. This metric measures the average time that the coordinator

dedicates to the scheduling algorithm. To comprehensively explore the influence of both

the number of agents and the number of accelerators on scheduling, we conducted various

experiments with distinct setups.

First, to understand the effect of the number of agents, we maintained a constant

number of accelerators at 40 while varying the number of agents from 20 to 60 and we

show it in Figure 5.16. To investigate the impact of the number of accelerators, we fixed

the number of agents at 20 and varied the number of accelerators from 20 to 60 and it is

demonstrated in Figure 5.17.

The Themis scheduling algorithm incurs the highest scheduling overhead because it

involves solving an Integer Linear Programming (ILP) problem, which is known for its
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(a) (b)

(c) (d)

(e)

Figure 5.8: Average Throughput for setup half agents have w = 1, 25% of agents have

w = 2 and 25% of them have w = 4 and queue utility is (a) 40% (b) 50% (c) 60% (d) 70%

(e) 80%.
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(a) (b)

(c) (d)

(e)

Figure 5.9: Average throughput of each type of agent for setup half agents have w = 1,

25% of agents have w = 2 and 25% of them have w = 4 and queue utility is (a) 40% (b)

50% (c) 60% (d) 70% (e) 80%.
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Figure 5.10: Weighted social welfare for setup that half agents have w = 1, 25% of agents

have w = 2 and 25% of them have w = 8.

exponential complexity. Comparing our system’s performance with that of Gandivafair, we

find that our system demonstrates superior scheduling times. This improvement showcases

our system’s effectiveness in reducing scheduling overhead.

5.5 Fairness Analysis

5.5.1 Sharing Incentive

In our system, we evaluate fairness using a specific metric outlined in Section 3. To show

that our system adheres to the Sharing Incentive (SI) rule, we get the ϕ distribution on

agents and show what is the distribution of ϕ. Figure 5.18 displays this distribution in

setup when 50% of agents have w = 1, 25% have w = 2 and the remaining 25% have

w = 4 and queue utility of all agents are the same. As you can see, our system has better

distribution and satisfies most of the agents with better ϕ. Therefore, it becomes evident

that our system comfortably fulfills this requirement for most of agent. Consequently,

we can confidently state that our mechanism has better SI with comparison with other
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(c) (d)

(e)

Figure 5.11: Average Throughput for setup half agents have w = 1, 25% of agents have

w = 2 and 25% of them have w = 8 and queue utility is (a) 40% (b) 50% (c) 60% (d) 70%

(e) 80%.
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(c) (d)

(e)

Figure 5.12: Average throughput of each type of agent for setup half agents have w = 1,

25% of agents have w = 2 and 25% of them have w = 8 and queue utility is (a) 40% (b)

50% (c) 60% (d) 70% (e) 80%.
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Figure 5.13: Weighted social welfare for setup that half agents have w = 1, 25% of agents

have w = 2 and 25% of them have w = 4 with different deadlines (X-axis shows the

deadline).

(a) (b)

Figure 5.14: (a) Average throughput of all agents (b) average throughput of each type of

agent for setup half agents have w = 1, 25% of agents have w = 2 and 25% of them have

w = 8 and queue utility 70% for agents with w = 1, 50% for agents with w = 2 and 40%

for agents with w = 4.
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(a) (b)

Figure 5.15: (a) Average throughput of all agents (b) average throughput of each type of

agent for setup half agents have w = 1, 25% of agents have w = 2 and 25% of them have

w = 8 and queue utility 40% for agents with w = 1, 50% for agents with w = 2 and 70%

for agents with w = 4.

Figure 5.16: Effect of number of agents on scheduling overhead
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Figure 5.17: Effect of number of accelerator on scheduling overhead

algorithms, promoting fairness in how resources are allocated in our system.

5.5.2 Envy-free

To provide a comprehensive insight of EF, we present Table 5.2, which provides a detailed

breakdown of the utilities experienced by individual agents in different allocation scenarios.

Given constraints in illustrating scenarios involving a large number of agents, we have

chosen a setting in which 10 accelerators are shared among 5 agents. All agent has same

weights and queue utility which is 80%. In this table, each row represents a unique agent

with distinct characteristics, and the columns indicate the allocations they receive. All

agents achieve their highest utility when they are assigned their designated allocations.

This observation suggests that none of the agents desire allocations other than their own.

This innate contentment, where no agent covets the allocations of others, highlights the

satisfaction of the envy-freeness (EF) constraint.
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(a) (b)

(c) (d)

(e)

Figure 5.18: Sharing Incentive index for setup that half of agents have w = 1, 25% have

w = 2 and 25% have w = 4 and queue utility is (a) 40% (b) 50% (c) 60% (d) 70% (e) 80%.
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Table 5.2: Alteration utilities with other agents’ allocations

Agents A1 Alloc A2 Alloc A3 Alloc A4 Alloc A5 Alloc

u1 74.29 72.18 62.09 72.42 73.02

u2 63.18 74.00 62.32 72.23 66.44

u3 65.77 70.59 74.23 72.84 67.51

u4 65.68 68.45 66.83 75.19 62.60

u5 68.79 71.56 56.76 67.54 73.32
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Chapter 6

Related Works

6.1 ML Jobs Schedulings

A number of studies have been conducted to address this need, each proposing various

frameworks and methodologies. One of the seminal works in this domain is presented by

[76]. They introduce an innovative cluster scheduling framework named Gandiva. The

framework leverages specialized knowledge in the domain of deep learning to enhance the

speed and efficiency of training deep learning models within a GPU cluster. Gandiva’s

approach is unique in its ability to dynamically adapt to the varying requirements of deep

learning tasks, ensuring optimal utilization of GPU resources.

Concurrently, [26] approach the problem from a slightly different angle. They propose a

GPU cluster manager, named Tiresias, which is specifically customized for distributed deep

learning training tasks. Tiresias effectively arranges and positions deep learning tasks within

a GPU cluster to significantly reduce their job completion times (JCTs). This approach

is particularly notable for its predictive job scheduling algorithm, which anticipates the

resource needs of different tasks.

Further contributions to this field come from Optimus [56] and Salus [80], who each

devise their own solutions to optimize the scheduling and management of GPU resources

for deep learning. While Optimus focuses on dynamic resource allocation strategies, Salus
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introduces a novel way of memory management to reduce the overhead of context switching

in GPU clusters. However, these works present two notable shortcomings. Firstly, they

predominantly focus on deep learning workloads. This is a limitation considering the wide

variety of machine learning applications that exist globally, each with its unique computa-

tional requirements. Secondly, their primary consideration revolves around performance

enhancement. While performance is undoubtedly crucial, this singular focus often comes at

the expense of other critical factors such as fairness and resource allocation equity.

Recognizing these gaps, newer research works have emerged. Studies like Gandivafair [9],

Themis [53], AntMan [77], and TGS [75] have made strides in addressing fairness issues

within their systems. These efforts are commendable as they attempt to balance both

fairness and performance concerns in GPU cluster scheduling. However, they still remain

predominantly centered on the optimization of deep learning workloads. In contrast, our

approach diverges from the existing literature by being applicable to a broader spectrum of

applications. This makes our method more versatile and inclusive, catering to the diverse

landscape of machine learning applications beyond just deep learning. We believe that this

comprehensive approach not only enhances performance but also ensures a more equitable

distribution of resources among various machine learning tasks.

6.2 Heterogeneous System Scheduling

Several studies have endeavored to develop scheduling techniques that can efficiently utilize

the diverse resources of these systems. These methodologies range from sophisticated

mathematical models to heuristic approaches, each aiming to optimize various aspects of

system performance.

Chen proposes a novel method that involves the projection of core configurations and

program resource demands into a multi-dimensional space in [10]. This approach is guided by

weighted Euclidean distances, which help in accurately mapping tasks to the most suitable

cores based on their computational needs and the core’s capabilities. This methodology is

particularly effective in systems with a wide variety of core types and performance levels.

Another significant contribution is from [40], who introduce the concept of bias scheduling.
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This method is tailored for systems with diverse core microarchitectures and performance

characteristics. It involves identifying key metrics that can determine an application’s bias

towards certain core types. By doing so, the scheduler can optimize the allocation of tasks

to cores that best fit their performance profile, thereby improving overall system efficiency.

Van Craeynest, in [70], introduces an innovative approach known as Performance

Impact Estimation (PIE). PIE is designed to predict optimal workload-to-core mappings

by estimating the performance impact of different core allocations. This technique allows

for more informed scheduling decisions, leading to improved performance in heterogeneous

systems.

Notably, a common theme among these schedulers is their prioritization of performance

over other factors like fairness. While performance optimization is crucial, focusing solely on

this aspect can lead to resource allocation disparities, especially in environments with diverse

user needs and task requirements. In contrast to these existing methods, our work seeks

to strike a balance between performance and fairness in the scheduling for heterogeneous

systems. We propose a novel framework that not only optimizes performance but also

ensures a fair distribution of resources among different tasks and users.

A notable work in this area is by [81], who employ a token-based mechanism to allocate

heterogeneous processors. In their model, the allocation problem is formulated as a repeated

game, where each agent (or task) is allocated tokens that they can use to bid for processor

time. However, their approach assumes uniformity in the utility provided by all super

cores to the agents. This assumption may not hold in real-world scenarios where different

tasks may derive varying levels of utility from the same core. Our system addresses this

assumption by accommodating the possibility that each cluster may provide distinct levels

of utility to different agents. We introduce a dynamic utility model that adapts to the

changing needs and preferences of tasks, thereby ensuring a more equitable and efficient

allocation of resources in heterogeneous systems.
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6.3 Token-Based Algorithms in Resource Sharing

Token-based algorithms have emerged as a popular solution in various sectors to address

resource sharing. These algorithms typically involve the use of tokens as a means of

incentivizing cooperative behavior, ensuring fair resource distribution, and managing user

interactions effectively.

Xu develops a pioneering token system specifically designed for autonomous wireless

relay networks in [78]. Their approach was aimed at encouraging cooperation within ad

hoc mobile networks. In this system, tokens serve as a form of currency or incentive

for self-interested users. The key idea is to encourage users to forward communication

from other nodes by rewarding them with tokens. This incentivization helps overcome

the inherent reluctance of users to utilize their resources for the benefit of others, thereby

enhancing overall network efficiency. Similarly, Shen, in [63], examines the same scenario

but approaches the problem from a slightly different angle. They create a system for token

exchange to address user interference issues in ad hoc networks. In their model, tokens are

utilized as a means to regulate access to the network, thereby reducing interference and

contention among users. This system not only incentivizes cooperation but also ensures a

more efficient utilization of network resources.

A notable aspect of both these systems is their application in decentralized systems.

These token-based algorithms are particularly suited for environments where there is no

central authority to regulate resource allocation or user behavior. By leveraging the concept

of tokens, these systems introduce a self-regulating mechanism that promotes cooperation

and efficient resource usage among independent and self-interested entities. In contrast

to the aforementioned studies, our research takes a different direction by focusing on the

application of token-based algorithms in the context of accelerators within centralized

systems. Unlike decentralized ad hoc networks, accelerators in centralized systems are

characterized by a central authority that manages resource allocation and scheduling. This

presents a different set of challenges and opportunities for the implementation of token-based

algorithms.
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Chapter 7

Conclusion

In this thesis, we have proposed a novel token-based mechanism designed to enhance

the allocation of resources in a heterogeneous accelerator environment. The fundamental

premise of our approach lies in the effective communication of agent preferences to a central

scheduler, which then undertakes the challenging task of optimizing resource allocation

based on these preferences. To facilitate the determination of these preferences, we have

leveraged the power of an Actor-Critic model, which acts as a critical component in our

system, effectively establishing thresholds that guide each agent’s preference reporting.

Our endeavor doesn’t stop at introducing this mechanism; it also involves the systematic

formalization of all essential fairness constraints. Ensuring fairness in resource allocation

is a paramount concern, especially in diverse and dynamic computing environments. By

integrating these fairness constraints into our model, we aim to strike a delicate balance

between maximizing performance and upholding fairness principles.

An important aspect of our work involves a comprehensive analysis that pits our

innovative approach against conventional resource allocation techniques. This analysis is

critical in demonstrating the superior performance of our methodology across a wide range

of scenarios. We have meticulously examined various performance metrics and benchmarks

to establish the effectiveness and robustness of our approach. Through this analysis, we

have illustrated how our method outperforms existing approaches, highlighting its potential

for real-world applications.
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It is important to emphasize that our approach primarily focuses on two key objectives:

maximizing performance and ensuring fairness. Achieving both of these objectives simulta-

neously is a complex and challenging task, but it is a fundamental aspect of our work. We

believe that striking the right balance between performance and fairness is vital in diverse

computing landscape.

However, even as we celebrate our achievements and the promising results of our

research, a critical question remains unanswered: “Is our approach the ultimate mechanism

for efficiently distributing resources within heterogeneous accelerators?” This question

opens the door to future research and exploration. While our approach has demonstrated

improvements, the field of resource allocation in heterogeneous accelerators is ever-evolving.

New technologies and methodologies may emerge, and further refinements to our approach

could be possible. Therefore, ongoing inquiry and innovation in this domain are essential

to ensuring that we continue to advance the state of the art in resource allocation and

optimization.
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