
Smooth and Time-Optimal Trajectory Planning for

Multi-Axis Machine Tools

by

Katharine Nancy DiCola

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Mechanical and Mechatronics Engineering

Waterloo, Ontario, Canada, 2024

© Katharine Nancy DiCola 2024

ii

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the Examining

Committee is by majority vote.

External Examiner Anna Valente

 Professor, Department of Innovative Technologies

University of Applied Sciences and Arts of Southern

Switzerland

Supervisor(s) Kaan Erkorkmaz

 Professor, Mechanical and Mechatronics Engineering

 University of Waterloo

Internal Member Cliff Butcher

Associate Professor,

Mechanical and Mechatronics Engineering

University of Waterloo

Internal Member William Melek

Professor, Mechanical and Mechatronics Engineering

University of Waterloo

Internal-external Member Christopher Nielsen

 Professor, Electrical and Computer Engineering

 University of Waterloo

iii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of Contributions

included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted

by my examiners.

I understand that my thesis may be made electronically available to the public.

iv

Statement of Contribution

An early version of the linear programming (LP) + nonlinear programming (NLP) feedrate optimization

methodology, presented in Chapter 3 of this thesis, was published in the following conference paper:

• Chen, C.Q.G., DiCola K., K. Erkorkmaz, and X. Beudaert, "Two-Stage Feedrate Optimization for

Freeform Toolpath Contouring", Proceedings of the 7th International Conference on Virtual Machining

Process Technology (VMPT), Hamilton, Canada, 2018.

The feed optimization contribution in this thesis is a continuation of the research that was completed by an

earlier graduate student, Ms. Christina Chen. Chen had implemented linear programming (LP) based feed

optimization. At the time of writing this conference paper, Chen was completing her MASc thesis and the

author (DiCola) was starting her PhD. The first implementation of LP + NLP was developed collaboratively

between Chen and DiCola, who jointly led the writing of the manuscript. Due to her experience and

familiarity with the existing source code, Chen had taken the lead in developing the first software prototype.

UW team also received assistance from the industry collaborator Dr. Xavier Beudaert (Ideko, Spain), in

developing, improving, and benchmarking various feed optimization ideas. The valuable contributions

made by all co-authors, especially Ms. Christina Chen, are gratefully acknowledged by the author.

Following the early and successful demonstration of the LP+NLP concept in the above paper, the author

(DiCola) independently realized all of the proceeding formulation, development, integration, programming

iterations, and testing of the algorithm in simulations and experiments. She developed and analyzed the

conditions for the alignment of the nested long horizon (LP) and short horizon (NLP) windows, to ensure

that boundary conditions are passed on correctly between the two different subproblems. She also analyzed

the constraint compatibility conditions for switching between different physical constraints during the LP

and NLP steps, such that a feasible solution will always theoretically be guaranteed. Using the results of

these analyses, the author re-wrote nearly all of the algorithms in code and conducted extensive trouble

shooting, with long and challenging toolpaths, which helped catch and correct numerical issues that could

cause algorithm failure. The author also analyzed the optimum configuration parameters (e.g., meshing

densities, window sizes, overlaps, etc.) for the algorithm to work efficiently and effectively. All of these

contributions, detailed in Chapters 3 and 4 of this thesis, are essential for the proposed LP+NLP algorithm

to function in a robust and stable manner. Additionally, the toolpath smoothing methods described in

Chapter 5, which are not featured in the above conference paper, were developed independently by the

author.

v

Abstract

This thesis presents novel methods for feedrate optimization and toolpath smoothing in CNC machining.

Descriptions of the algorithms, simulation test cases, and experimental results are presented.

Both feedrate optimization and toolpath smoothing are essential for increasing manufacturing efficiency

while retaining part quality in CNC machining. The application of high-speed machining also necessitates

the use of high feedrates, and smooth toolpaths which can be safely traversed at high feeds.

However, problems occur when the feedrate is increased without check. High tracking error in machining

may cause part tolerance errors. Transient vibrations due to jerky movement can lead to poor part surface

quality. High speed trajectories may also demand greater torque than what the feed drives are capable of

producing, which affects the motion controller’s ability to follow the trajectory correctly. The condition of

the machine is also a concern, with the potential for damage or excessive wear on the machine’s

components, if excessive axis velocity or jerk (i.e., rate of change of acceleration) is commanded.

The feedrate scheduling algorithm developed in this thesis combines linear and nonlinear programming in

a dual-windowed implementation. Linear programming (which is computationally fast) is used to quickly

provide a near-optimal guess, based on axis velocity, acceleration, and jerk constraints. The solution is then

refined through the use of nonlinear optimization. In the latter step, requiring more computations, the

commanded motor torque and expected servo error are constrained directly, leading to shorter movement

time. A windowing alignment procedure is presented which allows for these two optimization methods,

each with different problem constraints and solutions horizons, to work in tandem with one another without

risking infeasible boundary conditions between the windows. The algorithm is validated in simulation and

experiment studies. Case studies analyzing the parameters of the optimization algorithm are also presented,

and the configuration which is most computationally efficient is determined.

A toolpath generation method is presented in which Euler-spiral pairs are used to smooth sharp corners,

with an algorithm that integrates directly with the developed feedrate optimization The result is an exactly

arc-length parametrized, G2-continuous toolpath whose axis derivatives can be computed very efficiently,

which helps reduce the overall computation time.

A repositioning toolpath method is also developed to reduce the cycle time of multi-layer contouring

operations. This method replaces circular arc based repositioning segments between contouring passes

(commonly used in industry) with a smooth Euler spiral based curve. This avoids tangent and curvature

discontinuities, allowing for smoother motion with lower velocity and acceleration demands, while also

reducing the overall motion. The repositioning toolpath has also been integrated with feedrate optimization

and validated in simulation results.

vi

Acknowledgements

First and foremost, I would like to give my greatest thanks to my supervisor Prof. Kaan Erkorkmaz, for all

of the time and effort put into helping me expand my knowledge, develop and implement my research, and

write my thesis. He has truly gone above and beyond in his duties as a supervisor, and I am very grateful

for his continued support during my PhD.

I would like to thank Dr. Serafettin Engin, Mr. Donald McIntosh, Dr. Jochem Roukema and numerous other

colleagues from Pratt & Whitney Canada for their assistance and feedback during my research, and the

opportunity to have a fruitful internship at the company. I would also like to thank Dr. Xavier Beudaert

(Ideko) for providing ideas, feedback, and benchmarking opportunities during the start of my studies, which

helped shape the feed optimization methodology.

I would like to thank my thesis committee members: Professor Anna Valente, Professor Kaan Erkorkmaz,

Professor Cliff Butcher, Professor William Melek, and Professor Christopher Nielsen, for taking the time

to read my thesis and contribute with constructive feedback.

Sincere thanks to all of the members of Precision Controls Group, past and present, who have assisted me.

I would like to thank Christina Chen in particular, who began the research that I have continued in this

thesis. I would also like to thank Chia-Pei Wang, for sharing his extensive knowledge of machine tools with

me, and Andrew Katz, for helping with experiments, writing, and organization, among many other things.

Finally, I would like to thank my parents, for their constant support. It is thanks to them that I have been

able to continue my education for all of these years.

This research was sponsored by Natural Sciences and Engineering Research Council of Canada (NSERC),

Pratt & Whitney Canada (P&WC), and Manufacturing Automation Laboratories (MAL) Inc.

vii

Table of Contents
Examining Committee Membership ... ii

Author’s Declaration .. iii

Statement of Contribution .. iv

Abstract ... v

Acknowledgements .. vi

List of Figures ... x

List of Tables .. xii

1 Introduction ... 1

2 Literature Review.. 4

2.1 Introduction ... 4

2.2 Smooth toolpath planning ... 4

2.2.1 Spline representation of toolpaths ... 5

2.2.2 Parametrization ... 9

2.2.3 Euler spirals .. 10

2.3 Feed optimization .. 13

2.3.1 Optimization constraints ... 13

2.3.2 Review of optimization methods .. 18

2.3.2.1 Linear programming (LP) ... 18

2.3.2.2 Nonlinear programming (NLP) ... 20

2.3.3 Windowing procedures to handle long toolpaths .. 25

2.4 Conclusions ... 27

3 Feedrate Scheduling through Synergistic Application of Linear and Nonlinear Optimization

via Dual-Windowing ... 28

3.1 Introduction ... 28

3.2 Dual windowing LP+NLP optimization ... 29

3.3 Parameterization of the tool progression (i.e., feedrate 𝒔 or its square 𝒔𝟐) as a B-spline function

 33

3.3.1 Introduction ... 33

3.3.2 General description of the B-spline function .. 34

3.3.3 Specific case: Uniform B-spline function ... 35

3.3.4 Derivative profiles for uniform B-splines ... 36

3.3.5 Control and evaluation points for the B-spline function ... 39

3.4 Linear programming (LP) optimization .. 40

3.4.1 Selection of kinematic V/A/J limits for compatibility with the proceeding NLP step 43

viii

3.5 Reparameterization of the LP solution to a B-spline function directly representing feedrate 44

3.6 Nonlinear programming (NLP) optimization.. 44

3.6.1 Control signal and tracking error models .. 45

3.6.2 NLP Method I - Sequential quadratic programming (SQP) .. 49

3.6.3 NLP Method II - Interior point algorithm (IP) .. 49

3.7 Coordination of boundary conditions and additional numerical considerations 50

3.8 Time-domain reconstruction ... 52

3.9 Simulation benchmarks ... 53

3.10 Experimental results .. 59

3.11 Conclusions ... 63

4 Impact of Configuration Choices When Utilizing the LP+NLP Method 65

4.1 Window size and overlap .. 65

4.2 Selection of constraint evaluation resolution with respect to the feedrate control variables 68

4.3 Comparison between sequential quadratic versus interior point NLP algorithms 70

4.4 Performance benchmark of LP+NLP on a higher-speed machine .. 71

4.5 Conclusions ... 73

5 Smooth Connection Between Toolpaths using Euler Spirals .. 75

5.1 Introduction ... 75

5.2 Euler spirals .. 76

5.2.1 Derivation of the Euler spiral equation ... 76

5.2.2 Geometric derivatives of the Euler spiral.. 77

5.3 Euler spiral pair connections between linear toolpath segments... 79

5.3.1 Determination of Euler spiral parameters for a single corner ... 80

5.3.2 Converting the double clothoid curve into toolpath coordinates .. 82

5.3.3 Extension of corner smoothing to 3-axis .. 83

5.3.4 Numerical computation of Fresnel integrals ... 84

5.3.5 Computation of only the geometric derivatives at the constraint evaluation points 85

5.3.6 Simulation case study: Euler spiral based corner smoothing integrated with feed optimization

 85

5.3.7 Experimental validation for corner smoothing ... 86

5.4 Connecting multi-layer toolpaths using Euler spirals ... 87

5.4.1 Parameterization of the layer transition curve .. 89

5.4.2 Sample trajectory using Euler spiral based layer transitions ... 93

5.5 Conclusions ... 96

6 Conclusions and Future Work ... 98

ix

6.1 Conclusions ... 98

6.2 Future work ... 99

Letters of Copyright permission .. 102

References ... 106

A. Appendices ... 110

A.1 Derivation of uniform quadratic and cubic B-spline equations and their derivatives 110

A.1.1 Starting Equations ... 110

A.1.2 Second order B-spline ... 110

A.1.3 Third order B-spline .. 111

A.1.4 Fourth order B-spline .. 111

A.1.5 Third order B-spline derivatives ... 114

A.1.6 Fourth order B-spline derivative ... 116

A.2 Derivation of theoretical minimum deceleration distance ... 119

x

List of Figures

Figure 2-1: Types of interpolation. ... 5

Figure 2-2: Cubic spline toolpath. [4] ... 6

Figure 2-3: Effect of derivative continuity. .. 7

Figure 2-4: Basis function spline, order 3. .. 8

Figure 2-5: Comparison between a toolpath using cubic B-splines and a toolpath using a cubic polynomial

spline. .. 8

Figure 2-6: Arc displacement compared with chord length.[4] .. 10

Figure 2-7: Basic shape of an Euler spiral. ... 11

Figure 2-8: Example of Euler spirals used in road design. ... 12

Figure 2-9: Optimized feed profile for a long (global) toolpath and its windowed (local) portion, considering

zero boundary conditions for both cases [17]. .. 15

Figure 2-10: Application of axis kinematic and cutting force constraints in feed optimization. [46] 16

Figure 2-11: Quasi-static servo error response for a ball screw driven feed drive (left), linear error model

based on the profiles of commanded velocity, acceleration, jerk, and snap (i.e., time-derivative of jerk).[39]

 .. 17

Figure 2-12: Linear, nonlinear, and nonconvex optimization. Blue shading designates feasible solution set.

 .. 18

Figure 2-13: Interior point optimization using logarithmic barrier functions. .. 22

Figure 2-14: Sequential quadratic programming (SQP). .. 24

Figure 2-15: Concept of solving the optimum feedrate profile in connecting windows [4]. 26

Figure 3-1: Sample section of dual windowing optimization procedure. ... 32

Figure 3-2: Illustration of dual windowing steps. ... 33

Figure 3-3: B-spline function from individual B-splines. ... 34

Figure 3-4: Quadratic and cubic B-splines. .. 37

Figure 3-5: Placement of control and evaluation points throughout a trajectory. 39

Figure 3-6: Structure of the B matrix and B’ submatrices in B-spline computation. 40

Figure 3-7: LP optimization procedure. .. 43

Figure 3-8: Results of B-spline reconstruction of feedrate profile from feedrate squared profile. 44

Figure 3-9: Router machine tool used in the experiments. ... 47

Figure 3-10: Results of a parameter identification routine. ... 47

Figure 3-11: Boundary condition enforcement at window boundaries in LP+NLP windowing optimization.

 .. 51

xi

Figure 3-12: Verification of time-domain reconstruction of a arc displacement profile. 53

Figure 3-13: Results of an optimization procedure. .. 54

Figure 3-14: Comparison between LP (left) and LP+NLP (right) feed optimization optimizations. 55

Figure 3-15: LP+NLP optimization of longer toolpath... 57

Figure 3-16: LP-only optimization of longer toolpath. ... 58

Figure 3-17: Experimental result of hand-shaped trajectory with LP+NLP dual-windowed optimization. 61

Figure 3-18: Predicted and experimental tracking errors from the router. .. 62

Figure 4-1: LP window size and computation time for LP-only optimization. .. 67

Figure 4-2: Constraint violations caused by low constraint meshing factor. .. 69

Figure 4-3: Constraint agreement when meshing factor is sufficiently high. ... 69

Figure 4-4: Simulated trajectory optimization on higher-speed machine. .. 73

Figure 5-1: Euler spiral between a straight line and a circular arc. ... 76

Figure 5-2: Euler spiral position coordinates and its geometric derivatives. .. 78

Figure 5-3: Summary of corner smoothing method. ... 79

Figure 5-4: Single Euler spiral corner. .. 80

Figure 5-5: Maximum path error and corner blending distance.. 81

Figure 5-6: Three-dimensional Euler spiral based toolpath smoothing. ... 83

Figure 5-7: Result of combined corner smoothing and feedrate optimization. ... 85

Figure 5-8: Experimental result of Euler-spiral smoothed toolpath with LP+NLP feedrate optimization. 86

Figure 5-9:Feedrate profile of experimentally tested Euler-spiral corner smoothing and LP+NLP

optimization result. ... 87

Figure 5-10: Multi-layer contouring operation connected via Euler spiral-based toolpaths. 88

Figure 5-11: Comparison between circular arc lead-in and lead-out and Euler spiral based transition, top-

down view. .. 88

Figure 5-12: Smooth transition between contour machining layers, 3D view. ... 89

Figure 5-13: Base curve of layer transition curve, before and after rotation and alignment....................... 90

Figure 5-14: Blending function of Euler spiral layer transition. ... 92

Figure 5-15: Layer transition on 11-layer contouring operation of star shape. ... 94

Figure 5-16: Optimized layer transition of 11-layer star-shaped contouring operation. 95

Figure 5-17: Comparison between Euler spiral based transition and circular arc based transition, with feed

optimization. ... 96

Figure A.2-6-1: Acceleration and deceleration distance with maximum velocity, acceleration, and jerk.

 .. 119

xii

List of Tables

Table 3-1: Parameters used in simulation case studies. .. 48

Table 3-2: Identified parameters of router machine used in experiment. ... 49

Table 3-3: Progression parameters for the dual windowing feed optimization algorithm. 50

Table 3-4: Constraints applied in simulation case studies. ... 54

Table 3-5: Computation time and movement cycle time for LP vs LP+NLP algorithms. 56

Table 3-6: Computation and motion time of very long toolpath... 58

Table 3-7: Constraints considered in the experimental trajectory generation for the router. 60

Table 4-1: Comparison of optimization time with different LP window sizes. .. 66

Table 4-2: Comparison of optimization time with different NLP window sizes. 67

Table 4-3: Influence of number of constraint checkpoints per control point (𝑁𝑐) on the optimization

outcome. .. 70

Table 4-4: Sample computation times of SQP and IP for toolpath in Figure 3-13. 71

Table 4-5:Parameters used in higher-speed machine simulation case study. ... 72

Table 4-6: Limits used in higher-speed machine simulation case study. .. 72

Table 5-1: Parameters used in the validating Euler spiral based layer transition.. 94

1

1 Introduction

In the modern manufacturing environment, a significant amount of research and development has been, and

continues to be, dedicated to one of the most fundamental goals: increasing the overall throughput of

manufacturing. Manufacturing processes often include repetitive motions, with the same toolpath being

executed many times. These processes can benefit greatly from trajectory optimization, as any decrease in

the motion time will result in an increase in the overall productivity. An additional motivation for fast

movement is the proliferation of high-speed machining (HSM). Depending on the materials and surface

quality demands for a part, the spindle speed of the cutting tool may be high to take advantage of potential

productivity gains. This is especially seen in the machining of aluminum alloys. This, in turn, will require

high velocities from the feed drives as they move the cutting tool through the workpiece.

The process of going from a CAD (computer-aided design) model of a part to a finished product presents

many opportunities for time saving modifications. Once the CAD model is created, CAM (computer-aided

manufacturing) software is used to generate the trajectory a machine must execute to create that part. The

computer numerically controlled (CNC) machine's controller converts this trajectory into command signals,

which are applied to the feed drive control loops of the machine. The motors then execute the given

commands to move the cutting tool along the part.

In this thesis, time saving options are explored for planning the trajectory of the machine, which is defined

by the toolpath (geometry) and the feedrate (tangential velocity profile of the tool as it moves along the

toolpath). While reducing the motion time, it is important to retain the final dynamic tool positioning

accuracy, and to ensure that the trajectory is within the physical actuation capabilities of the servomotors.

The ‘toolpath’ in the context of CNC machining is the geometric path which the cutting tool must follow

to produce the final part shape. The toolpath is typically generated using CAM software, which analyzes

the geometry of the target CAD model, as well as the material blank from which it will be cut, and

determines how the tool must travel to produce the target part. Reductions in machining time can be

obtained by modifying this toolpath, provided the resulting geometry remains within the specified

tolerances. One such modification is to smoothen the toolpath and eliminate sharp corners when allowable.

This allows for faster traversal of the path. Potential inaccuracies may also occur during the execution of

the trajectory by the machine’s feed drives, which when combined with the toolpath modification, may

violate the part tolerances. These factors must all be considered if changes to the toolpath are to be made.

The toolpath will also likely contain repositioning segments – movements made by the tool in which no

cutting is performed but rather the tool is moved from the end of one cut to the beginning of the next. The

toolpath may be modified more liberally in these sections, provided the modification does not cause a

2

collision, and thus they can be replaced with a new shorter or smoother path for the machine to execute

more quickly.

Another potential and important modification is to the feedrate (also referred to as ‘feed’). To reduce the

time taken to machine a part, it is desirable to increase the feedrate as much as possible without damaging

the machine or the part. While many machining operations require a constant feedrate during cutting (such

as when removing large amounts of material at once), some operations allow for a variable feedrate

(finishing operations, and operations in which the forces on the cutting tool are lower in general). These

operations may benefit from feedrate optimization, which is the scheduling of the feed to allow higher speed

progression when the part geometry, the cutting process, and especially the dynamic response of the

machine tool allows.

The feedrate optimization should solve the variable feedrate throughout the cutting operation to minimize

the machining time while maintaining the dimensional accuracy of the resulting part and avoiding any

overloading or damage to the machine. The nature of the problem depends on the selection of the

optimization constraints, and the computational method selected to optimize the feedrate while enforcing

these constraints. For a constraint to be used in an optimization routine, it must accurately reflect the

dynamic response which affects the part quality or machine operation, and must be predictable given

trajectory candidate. The numerical optimization routine must be selected which can accurately and

efficiently solve the problem posed by the constraints.

In this thesis, the following novel contributions are made:

• A new feedrate scheduling algorithm is developed and proposed, in which two optimization algorithms

(linear and nonlinear programming) are combined into a forward-looking windowed solution. The

advantages of each type of optimization are combined to reduce the cycle time of a machining

operation, without requiring excessive computation time. The final generated trajectories have the servo

tracking error and motor torque demand constrained directly, in order to ensure the part accuracy and

to prevent overloading and potential damage to the machine. Simulation and experimental test cases

are presented.

• A novel toolpath smoothing method is developed using Euler spiral pairs which integrates seamlessly

with the proposed feed optimization algorithm. The Euler spiral pairs yield a G2-continuous (i.e., twice

differentiable), exactly arc-length parametrized toolpath. To significantly reduce the computational

load, the algorithm can compute the axis geometric derivatives, needed by the feed optimization,

without having to numerically integrate the coordinates for the constraint evaluation points.

3

• An Euler-spiral based layer transition toolpath has been developed and integrated with the proposed

feedrate optimization. This algorithm applies specifically to multi-layer contouring operations with

repositioning between the layers. The proposed Euler spiral-based G2-continuous toolpath can be

traversed without substantial slowdowns, in comparison to using in-layer circular arc-based transitions,

which is the common industrial practice.

Following this introduction (Chapter 1), the literature review is presented in Chapter 2. Chapter 3 describes

the dual windowed LP+NLP feedrate optimization method and provides simulation and experimental

implementation results. Chapter 4 provides details on numerical considerations when configuring and

implementing the LP+NLP algorithm. Chapter 5 describes the developed toolpath corner smoothing and

layer transition techniques, and includes simulation and experimental results. The thesis conclusions and

future work recommendations are presented in Chapter 6.

4

2 Literature Review

2.1 Introduction

The first CNC machine tools were developed in the 1950s, with machines that could reproduce motions

recorded on punch card programming systems and with rudimentary feedback control implementation [1].

Due to the limited computational technology of the time, generation of advanced trajectories using a

computer system was not possible.

Modern machining applications demand significantly greater speed and precision. These operations require

much higher spindle speeds and feedrates, which in turn necessitates advanced strategies for numerical

control. Industries such as aviation, biomedical, and automotive part manufacturing require a machine tool

which can manufacture freeform toolpaths within very tight tolerances of dimensional accuracy and surface

quality. High-speed high-accuracy machine tools require trajectory generation methods that can accurately

command smooth and high-speed movements within the capabilities of the machine tool. A significant

amount of research has been performed, in the context of both robotics and machine tools, to generate

algorithms which can produce such trajectories.

Minimum-time motion problems for industrial motion control have been studied for over 50 years. Early

research focussed on robotic arms. In 1969, Kahn and Roth studied time-optimal control of a robotic

manipulator [2]. This process optimized the traversal between two points (i.e., point-to-point motion),

without considering the specific path taken by the machine between points. In 1985, Bobrow et al. studied

the problem of a robotic manipulator moving along a designated path in the minimum possible time, without

exceeding the torque limitation of the motors [3]. In modern manufacturing, there are many options for

time-optimal trajectory planning. In this research, the specific case of CNC machines is studied.

2.2 Smooth toolpath planning

For the machining time to be optimal, the toolpath must be smooth. Discontinuities in the toolpath, such as

sharp corners or sudden changes in curvature, would require the machine to slow down significantly or stop

completely. If a machine tool were to continue through a sharp corner at a constant speed, this would

produce a discontinuous velocity profile, and thus, an unbounded acceleration profile. These sudden high

accelerations would exceed the capacities of the feed drive motors and would likely produce huge

vibrations, which could damage the machine and have significant negative effect on the quality of the

resulting part.

Thus, the toolpath must be modified to eliminate these corners, while still following the original toolpath

within a specified tolerance.

5

CNC machine tools are capable to traversing between commanded positions using different path

descriptions, which are covered by different interpolation methods. For example, linear interpolation is the

simplest movement type – in which all intermediary points between the starting and destination point form

a straight line. This mode is used for machining straight edges. While linear interpolation allows for easy

calculation, it also creates corners at which toolpath geometric derivatives are not continuous (Figure 2-1a).

If such a toolpath is traversed without commanding low velocities at the corner, it will create large

fluctuations in the acceleration and jerk during machining, which will induce large servo errors and

structural vibrations, that are detrimental to the machine part quality and accuracy.

Circular interpolation allows for the toolpath to be defined as circular arcs – by specifying the start and end

points and center of each arc. With this interpolation, discontinuities in direction (i.e. sharp corners) can be

eliminated. However, discontinuities in curvature will remain, as the curvature profile will be piecewise

constant. Thus, if such toolpaths are traversed without coming to full stops at the connection points, sudden

changes in the curvature will result in step changes in the axis acceleration profiles, which are again

detrimental.

Advanced Computer Numerical Control (CNC) systems can apply various other and more complex forms

of interpolation, in particular spline interpolation, which can eliminate the discontinuity problem

encountered when linear and circular interpolation, is used to replicate toolpaths for freeform part

machining.

Figure 2-1: Types of interpolation.

2.2.1 Spline representation of toolpaths

A method for generating smooth toolpaths, which enable high traverse rates at increased motion control

accuracy, is spline interpolation. Splines are piecewise functions constructed of several segments, each with

its own function definition. The boundaries between segments are referred to as “knots”. The most common

type of spline is a polynomial spline, in which each segment is defined by a single polynomial equation.

These equations are selected such that at each knot, there is continuity in position, direction (i.e., tangent),

and in many cases higher order derivatives. The most common type of spline, a cubic polynomial spline,

can achieve the continuity of position, and its first and second derivatives (but is discontinuous in higher

derivatives). Figure 2-2 shows an example of a toolpath represented with a cubic spline.

6

Figure 2-2: Cubic spline toolpath. [4]

Cubic spline interpolation is a well-studied interpolation method which has been in use for many years. In

1985, Huan used cubic splines for a 2nd- derivative continuous toolpath [5]. This eliminates the corners

seen when using simple linear interpolation. Cubic splines are continuous in (i.e., differentiable up to) the

second derivative, and bounded in the third, implying that they can also be utilized when a jerk-limited

trajectory is required. As can be seen from Figure 2-3, with increasing degree of continuity of the motion

profile, the frequency content of acceleration can be clustered further into the low frequency range, thereby

enabling even smoother motion with potentially less residual vibrations or servo errors (at the expense of

requiring increased peak velocity and acceleration magnitudes). Hence, higher-order splines can also be

used to obtain an increased degree of continuity [6], and enable smooth motion overall [7], [8]. For example,

Erkorkmaz et al. used quintic splines to represent the toolpath [9] and later Yang and Yuen created corner

smoothing strategies using quintic splines [6].

7

Figure 2-3: Effect of derivative continuity.

As a different and more versatile kind of spline parameterization, basis function splines (B-splines) can be

used to represent either the toolpath or the feed profile of a trajectory. An individual B-spline is made of

polynomial pieces. Each B-spline is multiplied (or scaled) by a distinct value (the “control point” of that B-

spline). A set of B-splines can then be combined by summation into a “B-spline function”. Figure 2-4 shows

an example of B-splines (each in a different colour) and the resulting B-spline function (in black). Note that

each B-spline occupies only a short portion of the profile. This spline formulation allows for local

adjustment without affecting the rest of the function, in that changing any control point will affect only the

portion of the function occupied by its corresponding B-spline. This property is essential for achieving

numerical efficiency when using a windowed solution (Section 2.3.3). Furthermore, when B-splines are

used to parameterize the geometry of a toolpath, this property ensures that the instantaneous commanded

axis trajectory always remains within the convex hull of the three (or more, depending on the B-spline

order) consecutive control points used to define the local geometry.

8

Figure 2-4: Basis function spline, order 3.

Figure 2-5 compares a cubic B-spline function (made of cubic B-splines) and a polynomial spline. A

polynomial spline (Figure 2-5 (b)) will pass through each input point exactly, but it will pass outside of the

shape created by these points, and depending on the geometry and spacing of the points, the violation may

be large. A B-spline function (Figure 2-5 (a)) does not pass through each point directly, but is guaranteed

to stay within the convex hull.

Some CNC controllers are able to implement B-spline interpolation natively, in which case, the use of B-

spline toolpaths presents an advantage over other types of curves which would need to be computed

externally and input as discrete points.

Figure 2-5: Comparison between a toolpath using cubic B-splines and a toolpath using a cubic polynomial spline.

The toolpath may be represented by B-splines of different order. Zhao et al. used cubic B-splines to smooth

toolpaths with short linear segments in real-time with curvature continuity [10]. Sencer et al. used quintic

B-splines to optimize curvature for toolpaths composed of straight lines [11]. Lartigue et al. used sets of

cubic B-splines to machine a complex freeform surface [12].

9

B-splines may also be used to represent the feed profile, such as in [13]. Okwudire et al. used filtered B-

splines to reduce unwanted vibrations during machining [14]. The linear programming (LP) method

discussed in Section 3.4 uses B-splines to represent the squared feed profile [15], [16], [17].

NURBS (non-uniform rational B-splines), a modified form of B-splines, include weighting factors for each

spline segment, giving more precise control of the resulting profile. Liu et al. used NURBS toolpaths to

reduce feed fluctuations in constant-feed machining [18]. Heng and Erkorkmaz developed a NURBS

interpolator with the capability to modulate feedrate profile continuously across different toolpath segments

[19]. Duan and Okwudire generated an optimal cornering curve and then represented it using NURBS [20].

Wang et al. used a bisection method to interpolate projections of NURBS curves and surfaces [21].

Toolpath smoothing may also be performed by filtering commands sent to the machine’s servo controllers.

Tajima et al. used FIR filtering on velocity commands [22], which was also extended to the five-axis case

[23]. Sencer et al. also used FIR filtering to generate smoothed toolpaths with limited contour error [11].

FIR filtering, in which sudden changes in commanded velocity are smoothed, is used as an option in many

machine tool controllers for generating smooth trajectories.

2.2.2 Parametrization

The use of splines to represent smooth toolpaths can be complicated by the preference for arc-length

parametrization when designing a trajectory. Cubic spline toolpaths are second derivative continuous, but

are parametrized based on the chord length. Figure 2-6 illustrates the difference between incremental arc

displacement (𝑑𝑠) and corresponding incremental chord displacement (𝑑𝑢). As can be seen, the chord

length is not a good approximation of the arc length, and this can cause undesirable fluctuations in the feed,

when the feed planning is done based on the assumption that they are equal. Furthermore, between the

connections of spline segments, this also results in feed and acceleration discontinuity.

One solution to this problem is to deliberately design the splines such that they are nearly arc-length

parametrized. In this context, higher order splines can be used for greater continuity and accuracy in

parametrization. In 1993, Wang and Yang used quintic splines to create a toolpath which is close to arc-

length parametrized [8]. Another solution may be to quantify the difference between the arc length and the

spline parameter and compensate for it, such as in the work of Erkorkmaz and Altintas who used a feed

correction polynomial to represent the relationship between the arc length and the spline parameter [7],

[24]. A two-step prediction and adjustment method was developed to predict the relationship between path

parameter and displacement by Chen and Sun [25].

10

Figure 2-6: Arc displacement compared with chord length.[4]

2.2.3 Euler spirals

Euler spirals, also known as “clothoids” or “Cornu spirals”, can be used to create a high-order differentiable

curve [26]. Euler spirals are parameterized such that the relationship between the arc displacement and the

curvature is linear by definition, and thus are not subject to minute feed fluctuations caused by variations

in the relationship between the arc length and spline parameter. “Euler splines” or “clothoid splines” are

defined as piecewise combinations of these curves which produce a single resulting profile. Figure 2-7

illustrates the fundamental geometric shape of an Euler spiral, along with the gradual linear change in

curvature.

A method of creating clothoid splines to interpolate between points was proposed in 1989 by Stoer [27]. A

method of using clothoid pairs (two segments connected) was proposed in [28] for use in robot path-

planning. Jouaneh et al. [29] used clothoid segments to generate simple trajectories for 2-D machining. This

method uses clothoid pairs combined with straight-line segments for combined tool and table movement.

Walton and Meek [30], [31] developed a method of matching clothoid curves to input polylines (series’ of

straight line segments), using symmetrical and asymmetrical clothoid pairs, used in the design of roads,

railways and vehicle paths.

Shahzadeh et al. developed a method of CNC machine corner smoothing using clothoids [32]. In this

implementation, multiple clothoid segments are generated per corner and a maximum feed is computed for

constant-feed machining of the resulting toolpath. Further, Shahzadeh et al. used clothoid pairs to smoothen

sharp corners in machining [33]. This method uses iteration to create the clothoid that connect to straight

lines and arcs, by matching the tangent angles and curvatures at the boundary conditions.

A modified 3D generalized clothoid was developed by Xiao et al. [34]. The generated curve is not a clothoid

by the traditional definition, but still possesses the property of arc-length parameterization. Furthermore,

11

the curve is G3-continuous, whereas the standard clothoid spline (i.e., made up by connecting multiple

segments) satisfies only G2.

Figure 2-7: Basic shape of an Euler spiral.

Euler spirals have been used extensively in designs of roads and railroads. Eliminating sudden changes in

the route’s curvature allows for smooth travel along these paths. Figure 2-8 demonstrates their use in road

design. The left-hand side of Figure 2-8 shows a straight road connected directly to a curved road. If a

vehicle were to travel along this route at a constant speed, it would experience a sudden change in

acceleration due to the sudden change in road curvature. The right-hand side of Figure 2-8 shows a road

generated with an Euler spiral. In this case, the acceleration of the vehicle travelling along it would change

gradually due to the linear change in curvature.

12

Figure 2-8: Example of Euler spirals used in road design.

As shown by Eqs. (3-18) - (3-20) (in the proceeding chapter), the axis kinematic profiles are computed as

products of axis geometric derivatives, the feedrate, and the derivatives of the feedrate. By ensuring that

each of these is differentiable, discontinuities will also be avoided in the final axis kinematic profiles.

The second geometric derivative (𝑥𝑠𝑠, 𝑦𝑠𝑠) and curvature (𝑟𝑠𝑠) profiles in Figure 2-8 demonstrate the

advantages of this shape. If a machine tool’s servo axes are travelling along a path at a constant feedrate,

the axial velocity is proportional to the tangential velocity and the first geometric derivative 𝑟𝑠. The axis

level acceleration is proportional both to 𝑟𝑠 multiplied by the tangential component of acceleration (�̈�), as

well as the second geometric derivative, 𝑟𝑠𝑠 multiplied by the square of the tangential velocity (�̇�2). The

linear, continuous shape of the curvature profile prevents any discontinuities in the second derivatives, 𝑥𝑠𝑠

and 𝑦𝑠𝑠. This helps to preserve axis level acceleration continuity (provided that �̈� is also continuous), and

thus the axis level jerk can be kept bounded within given limits.

In this thesis, as discussed in Chapter 4, the clothoid has been developed and integrated into the toolpath

planning, to work seamlessly with the proposed feedrate optimization strategy. The framework for a 2D

clothoid has been studied and extended into 3-axis, by utilizing tilted planes. Then, the clothoid’s property

of analytical calculability of the geometric derivatives has been integrated and utilized within the feed

motion optimization method, also developed in Chapter 3 of this thesis. Afterwards, the use of clothoids

13

has been explored for time-optimal corner rounding within controlled geometric tolerances, as well as

producing time-optimal tool repositioning paths for multi-layered contour machining applications.

2.3 Feed optimization

Once a smooth toolpath is planned, the profile of feedrate (i.e., tangential velocity) along this toolpath must

be carefully planned and executed. Traditionally, parts can be machined at a constant feedrate when the

limiting cutting forces and chip load is of concern, especially in rough machining applications. However,

when performing finish machining or when tight regulation of cutting forces is not essential, allowing for

the feedrate to be modulated can make machining more efficient by reducing the overall motion time,

achieved by travelling faster along the low curvature sections of a toolpath while slowing down during

complex and high curvature portions. In the computation of a “minimum-time” trajectory, factors such as

the part’s targeted accuracy and surface quality, the machine’s dynamic and kinematic capabilities, and the

computational time of trajectory optimization, must all be considered and balanced.

Constant feed machining is the simplest choice in which the feedrate remains invariant throughout a cutting

pass. This approach was used in earlier trajectory generation algorithms, such as by Fleisig and Spence

[35]. Erkorkmaz and Altintas generated a jerk-limited profile in which the feed remains constant between

the acceleration and deceleration transients [36].

On the other hand, optimized feedrate either attempts the minimize the total travel time, or maximize the

integral (or integral square) of the feedrate as a function of travel distance. The feedrate optimization

problem is inherently nonlinear and solved subject to a variety of constraints, such as the limitation of

actuator level velocity, acceleration, jerk, and torque profiles, etc., as discussed in Section 2.3.1. The

methods employed in solving the optimization problem are numerous, ranging from simple heuristics, to

linear programming (LP), to nonlinear programming-based (NLP) optimization methods.

2.3.1 Optimization constraints

The selection of an optimization method depends primarily on which factors will be used as constraints.

One common approach is to constrain the motion kinematics in each axis with limits on the velocity,

acceleration, and jerk, to prevent damage to the machine and to preserve part quality. The velocity constraint

is selected based on the physical construction of the axes, determining the safe traverse velocities without

inducing early damage to the guideways and motion delivery components. The acceleration constraint is

selected based on maximum available motor torque, as the motor torque is correlated to the acceleration

14

and velocity through the equivalent inertia and viscous damping in a feed drive system. The motor cannot

supply unlimited torque, so if a very high acceleration is demanded, this will saturate the current delivered

by the motor power supply amplifier, thereby leading to nonlinear dynamic behavior and invalidation of

the linear stability analysis assumed in the commissioning of the servo feedback control systems.[37]

The jerk constraint is selected to reduce vibrations known to be caused by high rate-of-change in the

acceleration [38]. Excessive jerk, as shown in Figure 2-3 (left-hand panel), generates acceleration

commands, and therefore torque inputs, with rich high-frequency content. Such content can easily excite

structural vibration modes dominated by the machine tool feed drive assembly, the part, the tooling, and/or

the fixturing system, and resulting in unwanted vibration marks during machining. Excessive jerk can also

lead to premature damage of the machine tool drive components. It has also been shown in literature [39]

that a well-tuned feed drive control system typically exhibits a quasi-static servo error profile (excluding

transient vibrations) which are correlated to the commanded velocity, acceleration, and jerk. Therefore,

limiting jerk also indirectly helps retain a certain level of dynamic accuracy.

There are several advantages to adopting axis-level constraints. No prior knowledge of the machine's

dynamics is required to generate the trajectories, unlike with physics-based or physics-inspired models,

which must be derived, measured, and calibrated for each individual machine axis. Kinematic constraints

are also frequently used, and are sometimes integrated with other constraints, in more elaborate feedrate

optimization schemes, [13], [14], [36], [40], [41], [42], [43], as discussed in the proceeding.

In this thesis, a linear problem casting procedure is applied to approximately solve the optimization problem

with kinematic constraints (Section 3.4), based on a method previously presented in literature and explained

in the following. This method has been adopted to achieve a near-optimum initial guess as part of a larger

and more elaborate nonlinear programming-based solution, which is also presented in Chapter 3.

Zhang et al. optimized a robotic manipulator trajectory by reformulating the problem into linear constraints

through variable transformation and applying convex optimization [16], with a method introduced by

Verscheure et al. [44]. These constraints are based on manipulator joint trajectories rather than the end

effector position. A near-optimal solution can be solved by using linear programming (LP) [16]. Fan et al.

applied the same method to five-axis CNC machining [15]. They presented a method in which the chord

error, acceleration and jerk constraints are considered, with the jerk constraint being replaced by its

linearized upper bound [15]. In later work, Erkorkmaz et al. [17] showed that the linear programming

formulated solution can also be used to optimize different portions of a feedrate profile for a long toolpath

15

independent of one another, in a method conducive to parallel programming rather than having to solve the

complete toolpath sequentially in a forward progressing manner. The latter is the strategy typically used in

CNC systems. Following the Principle of Optimality [45], which implies that a short section taken out of a

long trajectory that is optimal, must itself be optimal as well, the work in [17] demonstrated that different

portions of the overall optimum feed profile can be solved and connected by utilizing the local feed minima,

which are influenced by the geometry of the toolpath, as shown in Figure 2-9. The work also demonstrated

that the LP solution (used for producing a close initial guess in Chapter 3) is indeed robust and

computationally efficient.

Figure 2-9: Optimized feed profile for a long (global) toolpath and its windowed (local) portion, considering zero boundary

conditions for both cases [17].

For increased technological utility and sometimes better performance, it is possible to constrain certain

physical factors directly, rather than relying on axis level constraints. One common option is to constrain

the cutting force, as excessive cutting force will damage the tool and part. In a collaboration with the

research team of Prof. Lazoglu (Koç University, Turkey), Erkorkmaz et al. combined axis kinematic

constraints and cutting force constraints to generate optimal trajectories [46]. The result, shown in Figure

2-10 shows the effect of both sets of constraints on the final optimized feed profile.

16

Figure 2-10: Application of axis kinematic and cutting force constraints in feed optimization. [46]

An earlier example is Kim and Kim (1996), who predicted tool force by measuring the current draw of AC

motors, and used this as feedback in a real-time controller [47]. Other methods allow for the prediction of

cutting force directly from the commanded trajectory. Ridwan et al. used fuzzy adaptive control to constrain

the cutting force, and therefore the tool power required for cutting [48]. Xu and Tang controlled deflection

cutting force using a “force-area quotient function” (a model of the relationship between the maximum

material removal rate and the feed direction in a five-axis machining operation) to reduce the machining

time [49].

Feed optimization can also be applied to constrain the dynamic positioning error of the machine tool servo

control system, in order to achieve a certain degree of machined part accuracy. Feng and Su constrained

scallop height and machining error in five-axis machining of 3-D surfaces.[50]

The torque demand from the motors may also be constrained to within safe limits. If a trajectory requires

more torque than a feed drive motor is able to produce, the machine will not be able to follow it. This

constraint was considered in early feed optimization for robots, such as in Bobrow et al. in 1985 [3]. More

modern optimization methods may also apply torque constraints. Ferry and Altintas considered tool shank

bending stress, tool deflection, max chip load, and torque limit as constraints in five-axis machining of jet

engine impellers [51].

17

For any attribute to be considered as a constraint in the optimization, it must be modeled. In this thesis, as

two practical constraints, the motor torque and servo error are considered, as discussed in Section 3.6.1.

The motor torque (𝑢) is computed by modelling the drive as an inertial element (i.e., mass - 𝑚), upon which

viscous friction (𝑏) and Coulomb friction (𝑑𝑐𝑜𝑢𝑙) are also active:

𝑢 = 𝑚𝑎 + 𝑏𝑣 + 𝑑𝑐𝑜𝑢𝑙 ∗ 𝑠𝑖𝑔𝑛(𝑣) (2-1)

The tracking error (𝑒) is modelled as a linear combination of the commanded axis level velocity (𝑣𝑟),

acceleration (𝑎𝑟), and jerk (𝑗𝑟). This formula is based on approximating the true servo error with a Maclaurin

series (i.e., around zero frequency) in the frequency domain, and was developed and validated by Gordon

and Erkorkmaz in [39]. The formula is not able to capture the influence of transient vibrations or stick-slip

friction induced errors, but is successful in predicting the general waveform of the servo error, as can be

see in Figure 2-11.

𝑒 = 𝐾𝑗𝑗𝑟 + 𝐾𝑎𝑎𝑟 + 𝐾𝑣𝑣𝑟 (2-2)

When considered in open form to include full expressions of the axis level acceleration and jerk profiles,

both Eqs. (2-1) and (2-2) lead to nonlinear inequality constraints as a function of the optimization variables,

as will be explained in detail in Chapter 3. However, their solution also can achieve trajectories that are

both faster than those solved using linear programming for only axis velocity, acceleration, and pseudo-

jerk, and which can also be tracked with comparable dynamic accuracy.

Figure 2-11: Quasi-static servo error response for a ball screw driven feed drive (left), linear error model based on the profiles

of commanded velocity, acceleration, jerk, and snap (i.e., time-derivative of jerk).[39]

18

2.3.2 Review of optimization methods

The field of computational optimization is richly complex –countless algorithms exist, tailored to a variety

of different scenarios and types of problem. The selection of an optimization method depends on the shape

of the problem to be solved – notably whether the problem is linear and whether the problem is convex. A

set can be described as convex if: for any two points in the set, the line connecting those two points lies

entirely within the set. This is represented visually in the Figure 2-12, with Panels A and B (convex)

compared with Panel C (nonconvex). In a convex optimization problem, both the feasible set and the

objective function must be convex [52]. The result of this is that any locally optimal point will also be

globally optimal. A nonconvex optimization problem may have many locally optimal solutions which are

not the absolute (i.e., global) optimal point. Linear problems can be considered a special subset of convex

optimization problems. All linear problems are convex, though the reverse is not necessarily true. In this

subsection, several optimization methods are reviewed, and their advantages and disadvantages are

discussed.

Figure 2-12: Linear, nonlinear, and nonconvex optimization. Blue shading designates feasible solution set.

The optimization problem in Figure 2-12 is a minimization problem, to find the value of 𝑥 which minimizes

the function 𝑝(𝑥), subject to equality constraints 𝑎𝑖(𝑥) = 𝑏 and/or inequality constraints 𝑎𝑖 ≥ 𝑏.

Optimization problems in this section will be presented in this format.

2.3.2.1 Linear programming (LP)

Linear programming is a type of optimization in which all constraint and objective functions are affine (i.e.

linear with respect to the free variables). An LP problem can be written as in Eq. (2-3).

19

min𝑐𝑇𝑥

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

𝑎𝑖𝑥 ≤ 𝑏𝑖

(2-3)

In which, 𝑐𝑇𝑥 represents a linear function of the variable 𝑥, and 𝑎𝑖𝑥 ≤ 𝑏𝑖 represents any number of linear

constraint equations. Linear programming problems are relatively simple to solve computationally. The

earliest examples of numerical optimization algorithms were designed to solve linear programming

problems, using the very limited computational capacity of the time.

Panel A of Figure 2-12 shows a graphical representation of a 2-D linear programming problem, in which

the goal is to minimize the objective function. The objective function is represented topologically, with

dotted lines indicating iso-levels of the function. The polygon represents the “feasible region”, i.e. the

intersection of feasible solutions for all constraint functions. In an LP problem, all constraint functions must

be affine – meaning that the feasible region is constructed from the intersection of “half-spaces” - the space

to one side of a line in 2D or of a plane in 3D, which may be extended similarly into higher dimensions.

The feasible region resulting from the intersection of linear constraints will take the shape of a polygon in

2D, or a polyhedron in higher dimensions. These shapes are always convex. The arrow in Figure 2-12

represents the decreasing direction of the objective function. The point at the bottom is the solution - the

point at which the objective function is smallest within the feasible region. More detailed descriptions of

linear programming can be found in [52], [53].

The solution of a linear programming optimization problem assumes one of three possible cases. The first

case is one single solution, as shown in Figure 2-12. As can be seen, the optimum solution occurs at one of

the corner points of the polygon (or polyhedron), which is a basic property utilized in the Simplex search

method [54]. The second case is a problem with no solution, when the size of the feasible region is zero,

and there are no points which satisfy all constraints. The third case is when there are multiple optimal points,

which will occur only if the iso-level contour of the objective function is parallel to one of the constraints.

In this situation, all optimal points will be on a single line, or plane (or hyperplane in higher dimensions).

Linear programming problems are convex by definition. The linearity of the constraints guarantees that the

resulting feasible region is convex.

While the axis-level constrained feedrate optimization problem is not linear, it can be approximated into a

linear optimization problem, at the expense of reformulating the problem by considering a linearized upper

bound approximation of jerk (i.e., pseudo-jerk), instead of the true jerk. This approach, explained in Section

3.4, leads to a slightly more conservative solution, but is very efficient and robust to solve.

20

2.3.2.2 Nonlinear programming (NLP)

NLP refers to a set of methods by which nonlinear optimization problems can be solved. Unlike with LP,

NLP can find optimum solutions for problems defined with nonlinear objective functions and nonlinear

constraints [52]. Due to the complexity of nonlinear optimization, numerous algorithms have been

developed. Many NLP algorithms are suited to specific optimization conditions, and may be inefficient or

inaccurate if used in other conditions. As such, the selection of a nonlinear optimization algorithm depends

strongly on the type of problem being solved. In this thesis, sequential quadratic programming (SQP) and

interior point (IP) optimization methods are discussed.

NLP - Interior Point (Barrier) Methods

Interior point methods make up a large category of optimization methods. These are also referred to as

“barrier methods” due to the property that all iterative steps towards the solution (though not necessarily

all tested points) must satisfy the inequality constraints of the problem. Thus, each step taken is in the

“interior” of the feasible set. There are many ways to enforce boundary conditions. One method is through

the use of logarithmic barrier functions. Such is presented as an illustrative example in the following, but

other barrier enforcement methods may also be used when implementing interior point optimization.

A constrained minimization function (Eq. (2-4)) may be converted to an unconstrained minimization

function (Eq. (2-5)) by representing the constraints as logarithmic barrier functions which influence the

objective function.

{
min
x∈ℝn

𝑝(𝑥)

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (𝑠. 𝑡.) 𝑔𝑖(𝑥) < 0, 𝑖 = 1,… ,𝑚

(2-4)

min
x∈ℝn

𝑝(𝑥) +
1

𝑡
log(−𝑔𝑖(𝑥)) + ⋯+

1

𝑡
log(−𝑔𝑚(𝑥))

(2-5)

This transformation offers several benefits. This new function is undefined outside of the feasible region,

and approaches infinity towards the boundaries – so the descent direction of the function is steered away

from the boundary. Therefore, by principle the optimization solver avoids cases where the function is

undefined. It is important to add that the new objective function is analytically differentiable at all feasible

points.

In Eq. (2-5), the parameter “𝑡” controls the transition rate of the barrier functions. As 𝑡 → ∞, the influence

of the logarithmic terms will diminish for solutions within the feasible set. The steps of the interior point

method will typically start with a lower value of 𝑡, and will increase 𝑡 gradually to higher values.

21

A numerical example of an interior point optimization is shown in Figure 2-13. The original optimization

problem has a 2-variable quadratic objective function and six linear constraints. Due to the shape of the

objective function, iterative steps will be guided towards the boundary, where the solver is prone to selecting

an infeasible iterate. In this example, the solution lies on the boundary, which means that the solver may

have difficulty selecting steps towards the solution without choosing infeasible iterates.

22

Figure 2-13: Interior point optimization using logarithmic barrier functions.

In the modified optimization problem, logarithmic barrier functions are applied. Now, the function is

differentiable over all feasible points. It also goes to infinity towards the boundary – in this way, the solver

is discouraged from leaving the feasible region. When 𝑡 is small, the modified objective function does not

resemble the original objective function very well (such as in Figure 2-13 (a) and (b)), but avoids the very

sharp, sudden transitions around the boundary. For example, when 𝑡 = 0.2, the barrier functions dominate,

23

and the original objective function is not very distinguishable. However, as 𝑡 is made larger in consecutive

solution iterations (such as in Figure 2-13 (c) and (d)), the modified objective function now closely

resembles the original (unconstrained) objective function as evaluated within the feasible solution space.

In fact, with a value of 𝑡 = ∞, the original problem is obtained.

A typical interior point optimization routine will alternate solving the modified objective function, and

increasing the barrier parameter, 𝑡. The decision of when and how much to increase 𝑡 to obtain the most

efficient solution can be complex and will vary significantly depending on the solver.

After each modified optimization problem is solved, the obtained solution 𝑥∗ is used as the starting point

for solving the next modified optimization problem, following the update of the barrier parameter. If each

increase to the barrier parameter is small, 𝑥∗ will change very little, which guarantees the starting guess

will be very close to the new solution. In this way, the modified optimization problem can be solved

efficiently at each step. However, this will also require solving more modified problems before obtaining a

solution to the full problem. If each increase to the barrier parameter is larger, then the starting guess in the

modified optimization problem will be less accurate, and thus each modified optimization problem will be

less efficient. There will, however, be fewer problems to solve overall. Detailed descriptions of interior

point optimization are available in [52], [53].

When using logarithmic barrier functions, the starting guess of an interior point algorithm must always be

a feasible point. This may be difficult to find, depending on the complexity of the constraints. In the case

of a feed optimization problem, however, a feasible starting guess can always be found by setting the

feedrate profile to be arbitrarily small. Many modern interior point algorithms are designed such that

infeasible starting guesses are acceptable – the solver can take an infeasible starting guess by starting with

another smaller optimization problem, which serves to generate a feasible point [55].

NLP – Sequential Quadratic Programming (SQP)

SQP is another method through which nonlinear optimization problems can be solved. Constraints and

objective functions considered in SQP problems may be nonlinear and nonconvex – they are not required

to be quadratic, despite the name. SQP problems may have any starting point, i.e., non-feasible starting

points and iterates can also be used.

SQP is accomplished by creating a localized quadratic sub-problem at each step, then solving this problem

using quadratic programming (QP) – for which there are many effective algorithms. SQP starts with a

24

nonlinear optimization problem, such as the one in Eq. (2-4), which aims to minimize 𝑝(𝑥). A quadratic

programming subproblem will then be created, solving for 𝑝′(𝑥), which is an approximation of 𝑝(𝑥) at the

current iterate. This is shown in Eq. (2-6), comprising a quadratic objective function (𝑝′(𝑥)) and linear

constraints. Information about quadratic programming can be obtained from [52].

{

 min

𝑥
𝑝′(𝑥) =

1

2
𝑥𝑇𝐺𝑥 + 𝑥𝑇𝑐

Subject to:

𝑎𝑖
𝑇𝑥 = 𝑏𝑖, 𝑖 ∈ ℰ

𝑎𝑖
𝑇𝑥 ≥ 𝑏𝑖, 𝑖 ∈ ℐ

(2-6)

The creation of the quadratic subproblem is depicted in Figure 2-14. A quadratic objective function is

selected that best fits the actual objective function around the current iterate point (shown in red), typically

by estimating the local gradient (𝑐) and Hessian (𝐺, i.e., second derivative matrix). Additionally, the nearby

nonlinear constraints are approximated as linear constraints. This quadratic sub-problem is then solved to

find the next iterate.

Figure 2-14: Sequential quadratic programming (SQP).

While the starting point and the intermediate steps in SQP may be non-feasible, the objective function can

still be evaluated at these points. Therefore, it’s not essential to find a feasible starting guess. However, the

computational efficiency of these problems benefits significantly from a near-optimal starting guess. A

mathematical overview of SQP can also be found in [56].

The feedrate optimization algorithms in this thesis were implemented in MATLAB, using the built-in

optimization functions included in the software package. The two MATLAB nonlinear optimization

functions used in this thesis are the “Interior Point” method and “SQP” optimization. Detailed descriptions

and guidelines for their implementation can be found in [57].

The interior point optimization implements logarithmic barrier functions, as described in the preceding

paragraphs. It implements a combination of optimization steps. The first is a “direct step” – which solves

25

for the KKT (Karush-Kuhn-Tucker) equations, a set of conditions which determine whether a given solution

is optimal in a specific problem. If this is not possible, the solver can also produce solution steps using a

conjugate gradient method. These steps are interspersed with updates to the barrier parameter. This

algorithm also includes steps which can compensate for infeasible starting conditions. It was found via trial-

and-error that this solver is better able to recover from infeasible starting guesses, without increasing the

solver time excessively. The interior point solver is not as efficient as the SQP solver, but may be more

successful in cases with an infeasible starting guess. MATLAB’s interior point algorithm is able to switch

into a “feasibility mode” in the case of an infeasible starting guess, in which the solver switches to a different

optimization routine whose only goal is finding a feasible iterate.

SQP optimization begins with obtaining the Hessian matrix at the current step. Following this, a quadratic

approximation of the function is realized, which is solved via quadratic programming (QP). MATLAB’s

QP method is an “active set” method, in which at each step, only certain constraints considered “active”

are included in the computation of the next step.

SQP was found to not be able to handle infeasible starting conditions well. It does include an additional

“initialization” step, which should ideally be able to handle an infeasible starting guess. However, for the

developed feed optimization problem it was observed by trial-and-error that this step usually increased the

solution time significantly or caused the solver to fail. The SQP solver is the most time-efficient of the two

methods, but only if the starting guess can be guaranteed to be feasible.

2.3.3 Windowing procedures to handle long toolpaths

As typical freeform machining toolpaths comprise of thousands to ten-thousands of spline segments, each

of which may have tens to hundreds of free variables defining the feedrate profile control points, it is

extremely difficult and also impractical to solve the optimum feed profile for a long and complex toolpath

all in one shot. This creates problems both in terms of computational efficiency and available memory to

store and process the necessary computations [17]. Instead, a “windowing” process is integrated with the

feedrate optimization, to solve the optimum feed profile in parts, i.e., “windows” along the toolpath. This

results in solving several smaller optimization problems with enforced boundary conditions, so that they

can connect seamlessly with the neighbouring windows.

A variety of different window configurations have been used previously. Forward-looking algorithms are

the most common [10],[13]. Tajima and Sencer created a smoothing process for linear toolpaths that uses

a look-ahead window method to blend multiple corners [42].

26

Windows may be split into individual sections which can be solved separately as in [17], in which the

algorithm is designed for a parallel computing environment and each window can be solved simultaneously.

An implementation of this concept is shown in Figure 2-15.

Figure 2-15: Concept of solving the optimum feedrate profile in connecting windows [4].

A toolpath may be designed such that each window has specific maxima of velocity, acceleration, and jerk,

such as in [19], [58], [59].

In this thesis, the windowing method has been applied in a dual (nested) structure, as will be explained in

Section 3.2. As the proposed feed optimization method utilizes a combination of LP (for fast and

approximate solution of a near optimal feed profile) and then a consecutive NLP pass (for refining the

optimality of the solution, subject to less conservative but nonlinear constraints), the LP steps are taken in

the form of large windows, within which the NLP solutions, which are computationally more intensive, are

then implemented as smaller window steps. Thus, feed profiles for indefinitely long toolpaths can be

processed in a forward streaming manner, similar to the implementation structure in CNCs, while taking

advantage of the speed of LP and further solution optimality that can be gained via NLP.

27

2.4 Conclusions

Extensive study has been devoted to the problem of reducing machining time while preserving part quality

and machine condition in CNC machining.

Toolpath smoothing methods have been discussed in the literature review. Multiple different spline types

have been used for CNC trajectories, including polynomial splines of different order, many varieties of B-

splines, and other types of splines, all of which have their own advantages in obtaining a smoother toolpath,

a better parametrization, or a more computationally efficient generation algorithm. In this thesis, a toolpath-

smoothing method is developed which uses Euler spiral pairs to obtain G2-continuous toolpaths which are

arc-length parametrized. The increased computational load of computing Euler spiral coordinate points (due

to the required numerical integration) is partly compensated for by using an algorithm which integrates

directly with a feed optimization procedure.

Many trajectory optimization strategies have been discussed in this literature review. Some of these

strategies are based on the limitation of axis kinematic profiles (i.e., velocity, acceleration, and jerk). These

methods are more conservative, but strategies have been developed that increase the computational

efficiency of the optimization significantly. They also require no prior knowledge of the machine on which

the trajectory will run. Other strategies seek to predict physical factors that affect part quality, and modify

the trajectory to control these factors directly. Many possible constraints can be predicted and controlled in

this way, such the force on the tool during cutting or the material removal rate. Among the factors which

have been studied are commanded motor torque and tracking error. In this thesis, the computation efficiency

of the velocity, acceleration and jerk constrained problem formulated for linear programming is combined

with the optimality obtained from a torque and tracking error constrained nonlinear optimization.

28

3 Feedrate Scheduling through Synergistic Application of Linear and

Nonlinear Optimization via Dual-Windowing

3.1 Introduction

The feedrate scheduling algorithm developed in this thesis applies a combination of two types of

optimization in a windowed configuration, organized to utilize the distinct advantages of each method.

Using linear programming (LP), which is fast and robust, it is possible to obtain a near-optimal solution

to the axis kinematics-constrained feed optimization problem (i.e., the minimization of motion time with

respect to axis level velocity, acceleration, and jerk magnitude limits). This is achieved by replacing the

jerk profile with a slightly conservative upper bound, named ‘pseudo-jerk’ [15], [16], [17]. Conveniently,

such axis kinematics (vel/acc/jerk) are commonly used in CNC machine tool controllers for feedrate

optimization. However, using these limits is also a conservative means to guarantee servo accuracy and

motor current limiting, thus can lead to the underutilization of the equipment.

In contrast, directly solving the trajectory optimization subject to only servo error and motor current

magnitude constraints, which are nonlinear by nature, can produce trajectories with even shorter motion

time. However, such trajectories cannot be solved by LP, and their solution necessitates application of

nonlinear optimization – also referred to as nonlinear programming (NLP). NLP is computationally more

expensive, but its convergence can be significantly accelerated if the objective function and constraints are

analytically differentiable, and a feasible and near-optimal initial guess is provided. The feed optimization

problems defined in this research already satisfy the differentiability requirement (i.e., the objective and

constraint functions are all continuous with respect to the optimization parameters). Furthermore, the dual

windowing LP+NLP method proposed in this thesis (introduced in Section 3.2), applies LP to obtain a near-

optimal and feasible initial guess to the nonlinear optimization problem.

In the proposed method, a near-optimal feed profile is first solved for a sufficiently long look-ahead

window by employing LP, based on velocity, acceleration, and jerk limit constraints. Then, the solution

obtained via LP is refined by applying NLP over shorter and overlapping portions. As NLP is

computationally much more expensive, the window size is kept smaller. In order to process indefinitely

long toolpaths in a forward-looking manner, as CNC code is normally read and parsed, the LP optimization

is then applied to the consecutive portion of the toolpath with some overlap with the earlier LP window.

The new portion of the toolpath is afterwards refined via NLP, and this algorithm is repeated while shifting

the optimization windows for LP and NLP forwards along the toolpath.

Thus, the advantages of both methods, i.e., fast initial computation with LP and motion time optimality

with NLP, are effectively utilized. Furthermore, the windowing and boundary condition matching

29

functionalities, which are detailed in the proceeding subsections, enable efficient processing of indefinitely

long toolpaths while guaranteeing the existence of a feasible solution during both LP and NLP steps.

Both LP and NLP optimization methods utilize B-spline representation to formulate the progression

profile to be optimized, with the free optimization variables coinciding to the control points of the B-spline

function. Since B-spline formulation is used, a solution within a window can be expediently computed and

updated by simply modulating the control points. The resulting effect on the kinematic profiles and

constraint functions is easily computable and confined only within a known localized portion of the

toolpath. This ‘local’ property of B-spline has been key in developing and implementing the proposed

LP+NLP windowed solution.

The proceeding sections of this chapter are organized as follows: The general progression of the

proposed dual windowed feed optimization is described in Section 3.2. The B-spline parameterization of

the progression (which coincides with feedrate �̇� in NLP, and its squared term 𝑞 = �̇�2 in the case of LP) is

explained in Section 3.3. This is followed by the LP solution for 𝑞 = �̇�2 in Section 3.4, its re-

parametrization as a B-spline in terms of �̇� in Section 3.5. The casting and solution of the NLP problem is

then explained in Section 3.6. The dual windowing method requires careful coordination and updating of

the boundary conditions while switching between overlapping LP and NLP solutions, in order to preserve

the kinematic compatibility and constraint feasibility conditions throughout the toolpath. The details of

these tasks are explained in Section 3.7. The feed optimization is solved in LP and NLP as a function of the

arc displacement (�̇� = �̇�(𝑠)). However, the arc displacement profile ultimately needs to be reconstructed in

the time domain as 𝑠 = 𝑠(𝑡). The numerical integration implemented for this functionality is explained in

Section 3.8. The simulation and experimental results obtained from the implementation of the algorithm

are presented and discussed in Sections 3.9 and 0. The conclusions for this chapter are then presented in

Section 3.11.

3.2 Dual windowing LP+NLP optimization

The windowing procedure, introduced in Section 2.3.3, splits the toolpath into smaller sections on which

optimization can be performed sequentially. Since the problem size is diminished, faster convergence in

each iteration can be achieved. By reducing the memory requirements, the possibility of the optimization

algorithm taking an excessive amount of time, or failing to converge is also mitigated.

The proposed optimization method uses a novel combination of LP and NLP in a serial windowed

configuration, as shown schematically in Figure 3-1. The computationally faster, but performance-wise

more conservative LP solution is obtained first for a large look-ahead window. The trajectory is afterwards

refined for better motion time optimality using shorter range windows with NLP.

30

As mentioned earlier, the main difference between the LP and NLP optimization is the choice of

constraints. Feed optimization via LP optimization (described in detail in Section 3.4) uses velocity,

acceleration, and jerk constraints, with jerk being capped by a slightly conservative upper bound, ‘pseudo-

jerk’ to enable linear constraint formulation. Feed optimization developed via NLP (described in detail in

Section 3.6) focuses directly on the motor torque (𝑢) and tracking error (𝑒) as constraints and relaxes the

bounds on velocity, acceleration and jerk (although the latter three could also be included into the NLP if

needed). Switching from the velocity, acceleration, jerk constraints in LP to the torque and servo error

constraints in NLP yields a solution that is less conservative, i.e., allowing faster movements with higher

accelerations and shorter motion time. However, after NLP is performed, the resulting trajectory may be

infeasible according to the original LP constraints, which would lead to infeasible boundary conditions or

trajectory sections being passed onto the adjacent LP window. Therefore, at the starting and ending

locations of the windows, the boundary conditions imposed for the LP and NLP sub-problems must be

carefully coordinated.

Considering Figure 3-1, the dual windowing algorithm progresses as follows:

• Step 1: The LP problem is defined and solved,

o A single large window is processed. The travel length, 𝑊𝐿𝑃, is several-fold longer than the

required distance for the slowest axis to accelerate from rest to full speed, based on the

given velocity, acceleration, and jerk constraints, and return to rest again. The first LP

window is between 𝑠 = 0 and 𝑠 = 𝑊𝐿𝑃.

o LP optimization is performed on this part of the trajectory.

• Step 2: The NLP problem is defined and solved,

o The NLP solution is solved in overlapping ‘short’ window steps of length 𝑊𝑁𝐿𝑃, starting

from 𝑠 = 0, and traversing to the arc distance of 𝑠 = 𝑊𝐿𝑃 − 𝑃𝐿𝑃. Here, 𝑃𝐿𝑃 is a buffer

distance to “pause” the NLP solution exactly at the planned start of the consecutive (large)

LP window (see panel titled ‘Step 1, repeat’). This guarantees that NLP does not modify

the already feasible starting boundary condition for the proceeding LP window, that is

produced by the current LP solution. Otherwise, modification of the state at this point could

potentially produce an infeasible problem definition for the proceeding LP window.

o The nonlinear optimization is performed sequentially in sub-windows overlapping by the

distance (𝑃𝑁𝐿𝑃), until the end of the current LP section is reached.

• Step 1, repeat: LP is performed on the consecutive section, from 𝑠 = 𝑊𝐿𝑃 − 𝑃𝐿𝑃 to 𝑠 = 2𝑊𝐿𝑃 −

𝑃𝐿𝑃.

• Step 2, repeat: Nonlinear optimization is performed in small sub-windows, this time across the

section from 𝑠 = 𝑊𝐿𝑃 − 𝑃𝐿𝑃 − 𝑃𝑁𝐿𝑃 to 𝑠 = 2𝑊𝐿𝑃 − 2𝑃𝐿𝑃 . Hence, the solution continues with

31

adequate overlap, from where the last NLP in the previous large lookahead window had left off.

Note that this overlaps the very last NLP solution by 𝑃𝑁𝐿𝑃

• This process continues, with regular shifts of the LP and NLP windows per the above pattern,

until the end of the toolpath is reached.

As a general term, considering the mth LP window, the solution range can be formulated as in Eq. (3-1)

𝑠𝐿𝑃 = 𝑠 ∈ [(𝑚 − 1)𝑊𝐿𝑃 − (𝑚 − 1)𝑃𝐿𝑃 ,𝑚𝑊𝐿𝑃 − (𝑚 − 1)𝑃𝐿𝑃] (3-1)

Similarly, the nth NLP (small) window within the mth LP window is active in optimizing the feed for the

arc displacement range given in Eq. (3-2):

𝑠𝑁𝐿𝑃 = 𝑠 ∈ [(𝑚 − 1)𝑊𝐿𝑃 − (𝑚 − 1)𝑃𝐿𝑃 + (𝑛 − 1)𝑊𝑁𝐿𝑃 − (𝑛 − 1)𝑊𝑁𝐿𝑃 ,

(𝑚 − 1)𝑊𝐿𝑃 − (𝑚 − 1)𝑃𝐿𝑃 + 𝑛𝑊𝑁𝐿𝑃 − (𝑛 − 1)𝑊𝑁𝐿𝑃]
(3-2)

And these small windows continue until, 𝑠 = 𝑚𝑊𝐿𝑃 −𝑚𝑃𝐿𝑃.

A practical example of the application of this windowing integrated optimization is shown in Figure 3-2.

Detailed descriptions of the algorithm are given in the remainder of this chapter. Methods to determine

window sizes (𝑊𝐿𝑃, 𝑊𝑁𝐿𝑃) and overlap (𝑃𝐿𝑃 , 𝑃𝑁𝐿𝑃) are discussed in Section 4.1.

32

Figure 3-1: Sample section of dual windowing optimization procedure.

33

Figure 3-2: Illustration of dual windowing steps.

3.3 Parameterization of the tool progression (i.e., feedrate �̇� or its square �̇�𝟐) as a B-spline function

3.3.1 Introduction

A B-spline function is constructed as the summation of a series of B-splines, or “basis” splines. The B-

splines are constructed using piecewise polynomial curves. They are defined by knots, which control the

shape and placement of individual B-splines, and control points, which act as scaling values for each

individual B-spline.

Figure 3-3 shows an example of a B-spline function. The knots are indicated by the vertical lines. Figure

3-3a illustrates a set of B-splines 𝑏𝑖(𝑠) created based on a chosen spline order and knot profile (which in

this case is monotonically increasing). Figure 3-3b demonstrates the influence of each control point 𝑐𝑖, in

scaling its respective B-spline 𝑏𝑖(𝑠). Then, the summation of the scaled B-splines is shown in Figure 3-3c,

which is designated as the final ‘B-spline function’ 𝑓(𝑠).

Note that in this thesis, B-splines are used to represent either the feedrate, 𝑓(𝑠) = �̇�, or its square 𝑞(𝑠) =

�̇�2, in the context of solving �̇� or �̇�2 as a nonlinear or linear optimization problem, respectively. In the

general descriptions of B-splines, 𝑓(𝑠) is used for exemplary notation, but the same mathematical

formulations apply also to 𝑞(𝑠).

34

Figure 3-3: B-spline function from individual B-splines.

B-splines vary based on several factors, including order and knot placement. A B-spline of order 𝑛 will

span a range of 𝑛 + 1 knots, and will be constructed of 𝑛 polynomial curve segments, where each

polynomial is of degree 𝑛 − 1. The B-spline function 𝑓(𝑠), within a range of two consecutive knots, will

have a maximum of 𝑛 local B-splines influence it. This means that the control points not attributed to the

influencing (or ‘active’) B-splines have no effect on 𝑓(𝑠) within this range. Thus, B-spline functions offer

the advantage of being able to accommodate local changes simply by adjusting the adjacent control points,

without impacting the rest of the B-spline function.

The B-splines shown in Figure 3-3 are quadratic – i.e., order = 3 and degree = 2. Each individual B-spline

spans 4 knots, and is constructed of 3 polynomial segments, each of degree 2. Figure 3-3 also shows a

simple distribution of quadratic B-splines with evenly spaced knots, which is a special case adopted in this

thesis for mathematical convenience. B-splines can, in general, be created with uneven non-negative

spacing between the knots, including zero spacing – in which multiple knots exist at the same location (i.e.

“knot multiplicity”). The latter can be used to enforce certain boundary conditions. Detailed mathematical

descriptions of B-splines are available in [60], [61], [62].

3.3.2 General description of the B-spline function

A B-spline can be generated using the following recurrence relation [61], originally developed by de Boor.

[62]. In a B-spline function of order 𝑛, with knot sequence 𝜉, the 𝑖th B-spline is given by 𝑏𝑖,𝜉
𝑛 , using Eqs.

(3-3) and (3-4). Note that the B-spline order “𝑛” is expressed as a superscript in this notation, and it is not

an exponent.

35

𝑏𝑖,𝜉
𝑛 (𝑠) = 𝛾𝑖,𝜉

𝑛 (𝑠) ⋅ 𝑏𝑖,𝜉
𝑛−1(𝑠) + (1 − 𝛾𝑖+1,𝜉

𝑛 (𝑠)) ⋅ 𝑏𝑖+1,𝜉
𝑛−1 (𝑠) (3-3)

Where:

𝛾𝑖,𝜉
𝑛 (𝑠) =

𝑠 − 𝜉𝑖
𝜉𝑖+𝑛−1 − 𝜉𝑖

(3-4)

For which the starting point is the “characteristic function” in Eq. (3-5), which is the definition of a first

order (i.e., zeroth degree) B-spline.

𝑏𝑖,𝜉
1 (𝑠) = {

1 𝑓𝑜𝑟 𝜉𝑖 ≤ 𝑠 < 𝜉𝑖+1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3-5)

This recurrence relation can be solved for any nondecreasing set of knots [𝜉1, 𝜉2, …], with the desired spline

order 𝑛. However, when the nature of the B-spline is a special case, the formula can be significantly

simplified. One such case is a uniform B-spline function, which is composed of B-splines with evenly

spaced knots, such as the ones in Figure 3-3.

3.3.3 Specific case: Uniform B-spline function

Applying evenly spaced knots in the definition of the B-splines leads to a uniform B-spline function. This

simplifies the analysis of the B-spline function and streamlines its computation. In this case, the knot

separation distance 𝑑 is specified, and all knots are defined as 𝜉𝑖 = 𝑑 ⋅ 𝑖. Derivation of the uniform B-

spline equations, including their derivatives, can be found in Appendix A.1.

For a quadratic B-spline function with evenly spaced knots, such as the one depicted in Figure 3-3, the B-

spline between 𝜉𝑖 = 𝑑 ⋅ 𝑖 and 𝜉𝑖+3 = 𝑑 ⋅ (𝑖 + 3) is defined by three segments, given in Eq. (3-6).

𝑏𝑖
3(𝑠) =

{

(𝑠 − 𝑑𝑖)2

2𝑑2
𝑓𝑜𝑟 𝑑𝑖 ≤ 𝑠 < 𝑑(𝑖 + 1)

−2𝑠2 + 𝑠𝑑(4𝑖 + 6) − 𝑑2[2𝑖2 + 6𝑖 + 3]

2𝑑2
𝑓𝑜𝑟 𝑑(𝑖 + 1) ≤ 𝑠 < 𝑑(𝑖 + 2)

(𝑑(𝑖 + 3) − 𝑠)2

2𝑑2
𝑓𝑜𝑟 𝑑(𝑖 + 2) ≤ 𝑠 < 𝑑(𝑖 + 3)

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3-6)

Above, 𝑠 represents the overall arc displacement from the very beginning of the toolpath. In the computer

implementation, the above formulation can be further simplified by re-parameterizing with respect to 𝑠′ =

𝑠 − 𝑑 ⋅ 𝑖 (i.e., the arc displacement from the starting knot of each B-spline).

Similarly, a cubic uniform B-spline is as a special case of the B-spline, is defined between 𝜉𝑖 = 𝑑 ⋅ 𝑖 and

𝜉𝑖+4 = 𝑑(𝑖 + 4) as four segments as shown in in Eq. (3-7).

𝑏𝑖
4(𝑠) = (3-7)

36

{

(𝑠 − 𝑑𝑖)3

6𝑑3
𝑓𝑜𝑟 𝑑𝑖 ≤ 𝑠 < 𝑑(𝑖 + 1)

−3𝑠3 + (9𝑖 + 12)𝑑𝑠2 − 3𝑑2(3𝑖2 + 8𝑖 + 4)𝑠 + 𝑑3(3𝑖3 + 12𝑖2 + 12𝑖 + 4)

6𝑑3
𝑓𝑜𝑟 𝑑(𝑖 + 1) ≤ 𝑠 < 𝑑(𝑖 + 2)

𝑠3 − (3𝑖 + 8)𝑑𝑠2 + (3𝑖2 + 16𝑖 + 20)𝑑2𝑠 − (𝑖3 + 8𝑖2 + 20𝑖 +
44
3
) 𝑑3

2𝑑3
𝑓𝑜𝑟 𝑑(𝑖 + 2) ≤ 𝑠 < 𝑑(𝑖 + 3)

(𝑑(𝑖 + 4) − 𝑠)3

6𝑑3
𝑓𝑜𝑟 𝑑(𝑖 + 3) ≤ 𝑠 < 𝑑(𝑖 + 4)

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

In this thesis, quadratic B-splines with uniform knot spacing have been used. This function achieves first

order continuity of its derivative with respect to the arc displacement (e.g., �̇�𝑠 = 𝑑�̇�/𝑑𝑠- here, a subscript

of 𝑠 indicates derivative with respect to 𝑠, for instance 𝑓𝑠(𝑠) = 𝑑𝑓(𝑠)/𝑑𝑠 and 𝑓𝑠𝑠(𝑠) = 𝑑
2𝑓(𝑠)/𝑑𝑠2). This

enables the resulting the tangential acceleration profile to be continuous (�̈� = �̇�𝑠�̇�), and the tangential jerk

(𝑠 = �̈�𝑠𝑠�̇�
2 + �̇�𝑠�̇�) and axis level jerk (�⃛� = [𝑥 𝑦 𝑧]𝑇) to be bounded.

For simplicity, in the remainder of this chapter and throughout the rest of the thesis, the order indication via

superscript will be dropped. Thus, a single B-spline is henceforth expressed as in Eq. (3-8), and will be a

quadratic B-spline, unless explicitly stated otherwise.

𝑏𝑖
3(𝑠) = 𝑏𝑖(𝑠) (3-8)

In this case, the B-spline function, defined as the summation of each B-spline 𝑏𝑖 multiplied by its

corresponding control point 𝑐𝑖, using the notation in Eq. (3-8) can be expressed as in Eq. (3-9).

𝑓(𝑠) =∑𝑐𝑖𝑏𝑖(𝑠)

𝑚

𝑖=1

 (3-9)

Thus, the structure of every B-spline in the entire (feedrate or feedrate-square) profile is conveniently

represented using the same set of equations, which greatly simplifies the formulation and computational

implementation. Section 3.3.5 describes the meshing of constraint checkpoints along the B-spline function,

and the utilization of the uniform knot spacing to gain the advantage of reducing the computational burden

during the evaluation of the optimization constraints.

3.3.4 Derivative profiles for uniform B-splines

Besides their ‘locality’ attribute, another major advantage of B-spline functions is that they are analytically

differentiable, and the derivatives (which can be determined easily) are linear with respect to the control

points. Figure 3-4 shows uniform quadratic and cubic B-spline functions along with their derivatives with

respect to 𝑠.

37

Figure 3-4: Quadratic and cubic B-splines.

In the general case, the first and second derivatives of 𝑓(𝑠) with respect to 𝑠 can be expressed as:

𝑓𝑠(𝑠) =
𝑑𝑓(𝑠)

𝑑𝑠
=∑𝑐𝑖[𝑏𝑖]𝑠(𝑠)

𝑚

𝑖=1

 (3-10)

𝑓𝑠𝑠(𝑠) =
𝑑2𝑓(𝑠)

𝑑𝑠2
=∑𝑐𝑖[𝑏𝑖]𝑠𝑠(𝑠)

𝑚

𝑖=1

 (3-11)

Extending from Eq. (3-6), the first and second derivatives (𝑏𝑠 and 𝑏𝑠𝑠) of a single uniform quadratic B-

spline with a knot separation distance 𝑑 can be represented as in Eqs. (3-12) and (3-13).

[𝑏𝑖]𝑠(𝑠) =
𝑑

𝑑𝑠
(𝑏𝑖(𝑠)) =

{

𝑠 − 𝑑𝑖

𝑑2
𝑓𝑜𝑟 𝑑𝑖 ≤ 𝑠 < 𝑑(𝑖 + 1)

−2𝑠 + 𝑑(2𝑖 + 3)

𝑑2
𝑓𝑜𝑟 𝑑(𝑖 + 1) ≤ 𝑠 < 𝑑(𝑖 + 2)

1

𝑑2
𝑠 −

𝑖 + 3

𝑑
𝑓𝑜𝑟 𝑑(𝑖 + 2) ≤ 𝑠 < 𝑑(𝑖 + 3)

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3-12)

[𝑏𝑖]𝑠𝑠(𝑠) =
𝑑2

𝑑𝑠2
(𝑏𝑖(𝑠)) =

{

1

𝑑2
𝑓𝑜𝑟 𝑑𝑖 ≤ 𝑠 < 𝑑(𝑖 + 1)

−2

𝑑2
𝑓𝑜𝑟 𝑑(𝑖 + 1) ≤ 𝑠 < 𝑑(𝑖 + 2)

1

𝑑2
𝑓𝑜𝑟 𝑑(𝑖 + 2) ≤ 𝑠 < 𝑑(𝑖 + 3)

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3-13)

38

In the case of a cubic B-spline, the first and second derivatives (𝑏𝑠 and 𝑏𝑠𝑠) can be expressed as in Eqs.

(3-14) and (3-15).

[𝑏𝑖]𝑠(𝑠) =
𝑑

𝑑𝑠
(𝑏𝑖(𝑠))

=

{

𝑠2 − 2𝑑𝑖𝑠 + 𝑖2𝑑2

2𝑑3
𝑓𝑜𝑟 𝑑𝑖 ≤ 𝑠 < 𝑑(𝑖 + 1)

−3𝑠2 + 2(3𝑖 + 4)𝑑𝑠 − 𝑑2(3𝑖2 + 8𝑖 + 4)

2𝑑3
𝑓𝑜𝑟 𝑑(𝑖 + 1) ≤ 𝑠 < 𝑑(𝑖 + 2)

3𝑠2 − (6𝑖 + 16)𝑑𝑠 + (3𝑖2 + 16𝑖 + 20)𝑑2

2𝑑3
𝑓𝑜𝑟 𝑑(𝑖 + 2) ≤ 𝑠 < 𝑑(𝑖 + 3)

−𝑑2(𝑖 + 4)2 + 2𝑑𝑠(𝑖 + 4) − 𝑠2

2𝑑3
𝑓𝑜𝑟 𝑑(𝑖 + 3) ≤ 𝑠 < 𝑑(𝑖 + 4)

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3-14)

[𝑏𝑖]𝑠𝑠(𝑠) =
𝑑2

𝑑𝑠2
(𝑏𝑖(𝑠)) =

{

 (

1

𝑑3
) 𝑠 − (

𝑖

𝑑2
) 𝑓𝑜𝑟 𝑑𝑖 ≤ 𝑠 < 𝑑(𝑖 + 1)

−
3

𝑑3
𝑠 +

(3𝑖 + 4)𝑑

𝑑3
𝑓𝑜𝑟 𝑑(𝑖 + 1) ≤ 𝑠 < 𝑑(𝑖 + 2)

3𝑠 − (3𝑖 + 8)𝑑

𝑑3
𝑓𝑜𝑟 𝑑(𝑖 + 2) ≤ 𝑠 < 𝑑(𝑖 + 3)

2𝑑(𝑖 + 4) − 2𝑠

2𝑑3
𝑓𝑜𝑟 𝑑(𝑖 + 3) ≤ 𝑠 < 𝑑(𝑖 + 4)

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3-15)

The development of the above derivative expressions is presented in Appendix A.1.

The ease of computing the derivatives brings important advantages. Notably in feedrate optimization, the

profile derivatives must be computed frequently and repeatedly. Since the spline function and its derivatives

are linear with respect to the control points, when evaluating the constraints (and their gradients), the

intermediate calculations of the progression (�̇� or 𝑞 = �̇�2) and the derivatives (e.g., �̇�𝑠, �̇�𝑠𝑠, which are then

used to construct �̈�, 𝑠), are simply solved by multiplying the control points with a pre-computed constant

matrix (based on the constraint checkpoint resolution), as shown in Section 3.3.5. This greatly accelerates

the constraint evaluations. Furthermore, the ability to directly compute the constraint gradients analytically,

without relying on numerical differentiation, also enhances the convergence during NLP.

In this thesis, the objective was to obtain trajectories with limited jerk, for which using a quadratic B-spline

function to formulate the feedrate (or its square) was sufficient (utilizing Eqs. (3-6), (3-12), (3-13)). If jerk

continuity is also required, then the optimization methods can be expanded to rely on cubic B-splines (as

provided in Eqs. (3-7), (3-14), (3-15)), albeit at the cost of slightly increased complexity and computational

load.

39

3.3.5 Control and evaluation points for the B-spline function

The numerical optimization represents the continuous B-spline function as a series of points at which the

constraint values are checked. As mentioned earlier, the function is modulated by the control points 𝑐𝑖,

separated by the knot distance 𝑑. However, in evaluating the constraints (which are a function of the

progression and its derivatives), the B-spline needs to be reconstructed at a higher resolution. For

implementation convenience and numerical efficiency, this resolution has been chosen, in this thesis, as an

integer subdivision of the knot distance.

Figure 3-5: Placement of control and evaluation points throughout a trajectory.

To generate the evaluation points, an integer constraint meshing factor 𝑁𝑐 is specified defined as the number

of evaluation points per control point. 𝑁𝑐 remains constant throughout the optimization process. For a

function with 𝑟 control points, the number of evaluation points is defined as 𝑁, where 𝑁 = 𝑟𝑁𝑐. The space

between evaluation points is then a subdivision of the knot spacing, i.e., 𝑑/𝑁𝑐.

In determining the meshing factor, a good practice would be to determine the smallest possible curvature

in the toolpath and to assign the constraint checking arc displacement accordingly, e.g., to be several times

smaller than the minimum radius of curvature, in determining the adequate meshing factor 𝑁𝑐 for a given

knot spacing 𝑑.

For a B-spline function with 𝑟 control points and 𝑁 evaluation points, the function at all evaluation points

can be computed using Eq. (3-16):

𝑓(𝑁×1) = [𝐵](𝑁×𝑟) ∗ 𝑐(𝑟×1) (3-16)

Above, the matrix 𝐵 is precalculated by enumerating the B-spline equations based on the knot separation

distance, 𝑑, the control points, and the displacement parameter (𝑠) at the corresponding evaluation points

(Eq. (3-3) - (3-5)). The 𝐵 matrix for the entire toolpath is large but sparse. Each LP and NLP step is

associated with a smaller matrix, 𝐵′, which is a subset of 𝐵. As the structure of 𝐵′ repeats itself along the

block diagonal of 𝐵, it is not necessary compute and store the complete 𝐵 matrix. Figure 3-6 exemplarily

shows the structure of the 𝐵 and 𝐵′ matrices for a quadratic B-spline profile with 3 evaluation points per

control point (𝑁𝑐 = 3).

40

Figure 3-6: Structure of the B matrix and B’ submatrices in B-spline computation.

In the interest of computational efficiency, the point alignment is set such that the 𝐵′ matrix does not change.

This is true when the number and alignment of evaluation points per control point remains constant

throughout the optimization procedure, and thus the size of each window remains fixed. Due to this

alignment, every B-spline in the function is defined by the same set of points, which are then multiplied by

the corresponding control point 𝑐𝑖. In Figure 3-6 this is represented as 𝑏′, which must only be computed

once for a single B-spline basis function and distributed into the submatrix 𝐵′. The dimensions of 𝑏′, for a

quadratic B-spline, are [3𝑁𝑐 × 1]. The entire 𝐵 matrix, or any submatrix 𝐵′, can be computed by aligning

𝑏′. Two 𝐵′ matrices will be used throughout most of the optimization – one for the LP windows (with longer

range) and one for the NLP windows (which are shorter). As needed, additional 𝐵′ matrices may also be

truncated for the windows at the end of the toolpath which do not require a complete window progression.

3.4 Linear programming (LP) optimization

The velocity, acceleration and jerk constrained problem can be converted into a linear problem with some

simplifications. Linear problem formulation methods presented by Zhang et al. and Fan et al. [15], [16]

were modified into a windowed solution by Erkorkmaz et al. [17]. The method applied in [17] is used in

the first step of the optimization described in this document. Building on the earlier works [15], [16], the

41

jerk constraint is replaced with “pseudo-jerk”, a conservative estimate of the jerk which ensures the actual

jerk constraint is not violated, albeit with some loss of optimality.

The optimization problem is stated in Eq. (3-17), where 𝐿 is the total length of the toolpath and 𝑞 = �̇�2 is

the square of the tangential velocity. The expressions for axis level velocity, acceleration, and jerk are given

in Eqs. (3-18) to (3-20). The x-axis equations are shown as an example – but the y- and z-axis equations

are identical in structure. In these equations, 𝑥𝑠 represents the geometric derivative of 𝑥, (𝑥𝑠 = 𝑑𝑥/𝑑𝑠).

max∫ 𝑞
𝐿

0

𝑑𝑠 𝑠. 𝑡. [

|�̇�|
|�̇�|
|�̇�|
] ≤ [

𝑣𝑥,max
𝑣𝑦,max
𝑣𝑧,max

] , [

|�̈�|
|�̈�|

|�̈�|
] ≤ [

𝑎𝑥,max
𝑎𝑦,max
𝑎𝑧,max

] , [

|𝑥|
|𝑦|
|𝑧|
] ≤ [

𝑗𝑥,max
𝑗𝑦,max
𝑗𝑧,max

] (3-17)

Most available optimization algorithms in software are set up to solve minimization problems. To use these

algorithms directly, the maximization of ∫𝑞 was instead expressed as a minimization of −∫𝑞.

The velocity, acceleration and jerk in each axis are computed from the prespecified toolpath 𝑥 = 𝑥(𝑠) with

known geometric derivatives (𝑥𝑠, 𝑥𝑠𝑠, 𝑥𝑠𝑠𝑠 𝑦𝑠, ….) using Eqs. (3-18) to (3-20).

�̇� =
𝑑𝑥

𝑑𝑡
= 𝑥𝑠�̇� (3-18)

�̈� =
𝑑�̇�

𝑑𝑡
= 𝑥𝑠�̈� + 𝑥𝑠𝑠�̇�

2 (3-19)

𝑥 =
𝑑�̈�

𝑑𝑡
= 𝑥𝑠𝑠 + 3𝑥𝑠𝑠�̇��̈� + 𝑥𝑠𝑠𝑠�̇�

3 (3-20)

If the geometric derivatives are not available in closed form, they can be computed numerically (by solving

values of ‘𝑠’) and applying the chain rule for differentiation as needed. Substituted into the constraints, they

can be written as:

|�̇�| ≤ 𝑣𝑥,max ⟺−𝑣𝑥,max ≤ �̇� and 𝑥̇ ≤ 𝑣𝑥,max (3-21)

|�̈�| ≤ 𝑎𝑥,max ⟺−𝑎𝑥,max ≤ �̈� and �̈� ≤ 𝑎𝑥,max (3-22)

|𝑥| ≤ 𝑗𝑥,max ⟺−𝑗𝑥,max ≤ 𝑥 and 𝑥 ≤ 𝑗𝑥,max (3-23)

The constraints are reformulated by introducing a variable transformation parameter, 𝑞 = �̇�2 (which is used

in Eq. (3-17)) which is equal to the square of the feed rate, �̇�.

𝑞 = �̇�2 (3-24)

After this transformation, the velocity, acceleration, and jerk equations can be represented as in Eqs. (3-25)-

(3-27). Once this parameter is introduced, the axial velocity, acceleration, and jerk equations, can be

represented as linear constraints.

|𝑥|̇ = |
𝑑𝑥

𝑑𝑡
| = |𝑥𝑠√𝑞| ≤ 𝑣𝑥,max (3-25)

|�̈�| = |
𝑑�̇�

𝑑𝑡
| = |𝑥𝑠𝑠𝑞 +

1

2
𝑥𝑠𝑞𝑠| ≤ 𝑎𝑥,max (3-26)

42

|𝑥| = |
𝑑�̈�

𝑑𝑡
| = |(𝑥𝑠𝑠𝑠𝑞 +

3

2
𝑥𝑠𝑠𝑞𝑠 +

1

2
𝑥𝑠𝑞𝑠𝑠)√𝑞| ≤ 𝑗𝑥,max (3-27)

The axis velocity constraint (3-25) is put in linear form by squaring both sides:

𝑥𝑠
2𝑞 ≤ 𝑣𝑥,max

2 (3-28)

As earlier indicated, the derivative terms (𝑞𝑠, 𝑞𝑠𝑠) are linear with respect to the profile 𝑞, because 𝑞 is

parameterized using 3rd order (quadratic) basis function splines. Hence, the function and derivative

calculations follow the identical structure earlier shown in Eqs. (3-9)-(3-11), based on the control points 𝑐𝑖.

𝑞(𝑠) =∑𝑐𝑖𝑏𝑖(𝑠)

𝑚

𝑖=1

 (3-29)

𝑞𝑠(𝑠) =∑𝑐𝑖[𝑏𝑖]𝑠(𝑠)

𝑚

𝑖=1

(3-30)

𝑞𝑠𝑠(𝑠) =∑𝑐𝑖[𝑏𝑖]𝑠𝑠(𝑠)

𝑚

𝑖=1

(3-31)

As 𝑥𝑠 and 𝑥𝑠𝑠 are precomputed constant arrays, determined by the toolpath geometry, the acceleration

constraint in Eq. (3-26) is already linear with respect to 𝑐𝑖.

To satisfy the jerk constraint, the √𝑞 term is replaced with an array 𝑞∗ serving as its upper bound. 𝑞∗ is the

unique solution for only the velocity- and acceleration-constrained problem (and is considered as an array

of constants in the context of solving 𝑞 in the LP optimization). Then, defining the pseudo-jerk as:

�̃� = (𝑥𝑠𝑠𝑠𝑞 +
3

2
𝑥𝑠𝑠𝑞𝑠 +

1

2
𝑥𝑠𝑞𝑠𝑠)√𝑞

∗
(3-32)

it follows that since 𝑞 ≤ 𝑞∗, the pseudo-jerk will be an upper bound on the actual axis-level jerk.

|𝑥| ≤ |�̃�| ⟺ |(𝑥𝑠𝑠𝑠𝑞 +
3

2
𝑥𝑠𝑠𝑞𝑠 +

1

2
𝑥𝑠𝑞𝑠𝑠)√𝑞| ≤ |(𝑥𝑠𝑠𝑠𝑞 +

3

2
𝑥𝑠𝑠𝑞𝑠 +

1

2
𝑥𝑠𝑞𝑠𝑠)√𝑞

∗| (3-33)

Hence, bounding the pseudo-jerk magnitude by 𝑗𝑥,max will guarantee that the actual jerk is bounded by the

same limit (i.e., |𝑥| ≤ |�̃�| ≤ 𝑗𝑥,max).

In this case, limiting the pseudo jerk takes the following form:

|(𝑥𝑠𝑠𝑠𝑞 +
3

2
𝑥𝑠𝑠𝑞𝑠 +

1

2
𝑥𝑠𝑞𝑠𝑠)√𝑞

∗| ≤ 𝑗𝑥,max (3-34)

Since the terms 𝑥𝑠, 𝑥𝑠𝑠, 𝑥𝑠𝑠𝑠 and 𝑞∗ are all computed ahead of time, the pseudo-jerk constraint is linear with

respect to 𝑞.

Now, the velocity, acceleration, and pseudo-jerk constraints can be considered jointly in context of the LP

problem, as shown schematically Figure 3-7. Of course, there is some loss of optimality in resulting motion

time, compared to using the actual jerk constraint. However, the loss of optimality was benchmarked to be

43

around only 5%, which can be remedied by NLP to account for exact jerk. The main advantage of LP and

linear problem formulation is the solution of a near-optimal feed profile at around ten times the speed of

applying full-fledged NLP solution, thus obtaining a good initial guess for the proceeding NLP steps.

Figure 3-7: LP optimization procedure.

3.4.1 Selection of kinematic V/A/J limits for compatibility with the proceeding NLP step

The velocity, acceleration, and jerk limits used in the LP step must accurately reflect the expected values

of motor torque and tracking error to ensure that these latter limits are not violated. In the proposed

methodology, the velocity, acceleration, and jerk limits are selected using the motor torque and tracking

error equations, described in further detail in Section 3.6.1.

𝑢𝑥,max = 𝑚𝑥𝑎𝑥,max + 𝑏𝑥𝑣𝑥,max + 𝑐𝑥 + 𝑑𝑐𝑜𝑢𝑙,𝑥 ∗ sign(𝑣𝑥,max) (3-35)

𝑒𝑥,max = 𝐾𝑣,𝑥𝑣𝑥,max + 𝐾𝑎,𝑥𝑎𝑥,max + 𝐾𝑗,𝑥𝑗𝑥,max (3-36)

The constraints in Eqs. (3-35) and (3-36) are expressed for the x-axis, and identical structures also apply to

other axes. With known values of 𝑢𝑚𝑎𝑥 and 𝑒𝑚𝑎𝑥 for each axis, solving Eqs. (3-35) and (3-36) for 𝑣𝑚𝑎𝑥,

𝑎𝑚𝑎𝑥, and 𝑗𝑚𝑎𝑥 would yield multiple solutions. It may be desirable to identify a specific value of 𝑣𝑚𝑎𝑥 first

and then compute the corresponding 𝑎𝑚𝑎𝑥 and 𝑗𝑚𝑎𝑥. A sample calculation is given below, using the

parameters from Table 3-4. In the sample case, the desired torque and tracking error are 𝑢𝑚𝑎𝑥 = 10V and

𝑒𝑚𝑎𝑥 = 0.02 mm. (Note that torque here is presented as a percentage of the maximum control signal).

Additionally, it is assumed that a maximum velocity of 𝑣𝑚𝑎𝑥 = 150 mm/s is specified.

In the Y axis, using Eq. (3-35) and applying the triangle inequality (|𝐴 + 𝐵| ≤ |𝐴| + |𝐵|), the maximum

acceleration is computed as 𝑎max = 3.34×103 mm/s2. This value is then combined with Eq. (3-36) to

compute the maximum jerk 𝑗max = 1.56×105 mm/s3.

In the X axis, using Eq. (3-35), a maximum acceleration of 𝑎max = 1.23 × 10
3 mm/s2 is found. However,

when combining this with Eq. (3-36), this acceleration value is found to be invalid, as the acceleration

contribution to tracking error is found to be 𝐾𝑎,𝑥𝑎𝑥,max = 0.0245, which exceeds the assigned tracking

error limit. The acceleration constraint in the X axis is therefore scaled down to 𝑎max = 500 mm/s2, and

the computed jerk constraint is found to be 6.36 × 104 mm/s3.

44

3.5 Reparameterization of the LP solution to a B-spline function directly representing feedrate

The LP solution is a B-spline function defining the feedrate square 𝑞(𝑠) = �̇�2 with respect to the path

parameter 𝑠. However, the NLP problem needs to be cast in terms of feedrate, in order to be able to compute

the nonlinear constraints. Thus, the LP solution needs to be re-parameterized in terms of B-spline functions

that directly represent the progression as �̇�. To achieve this, first, the �̇� values are computed at the constraint

checkpoints by taking the square root of the 𝑞(𝑠) profile. Then, a new B-spline is fitted using a Least

Squares formulation parameter estimation [63]. A sample result of this fit is shown in Figure 3-8.

Figure 3-8: Results of B-spline reconstruction of feedrate profile from feedrate squared profile.

The B-spline representation of �̇� will always have some discrepancy with the original points, although it is

usually small. In Figure 3-8 the discrepancy is not large enough to be visible (maximum fitting error of 0.6

mm/s, typically less than 1% of the function value). After the reconstruction, the new B-spline

representation is verified, to make sure it does not violate any constraints. If there is constraint violation,

the feedrate control points are scaled down until all constraints are satisfied. Similarly, non-negativity of

the new control points 𝑐𝑖 is also checked, to ensure that the feed profile always progresses forwards.

3.6 Nonlinear programming (NLP) optimization

The NLP method offers a more optimal solution than the LP in terms of motion time, but it is more

computationally intensive, and may require a near-optimal starting guess. The LP solution efficiently

generates such a near-optimal starting guess. The selection of the optimization algorithm for NLP is also

important, and is discussed in this section.

The main advantage of NLP is its ability to handle nonlinear constraints. One application can be to refine

the solution of the axis-level velocity, acceleration, and pseudo-jerk constrained problem to considering the

actual jerk instead of pseudo-jerk, which was observed, in benchmarks conducted, to produce further 4-5%

motion time reduction, which is a moderate gain. More importantly, replacing the velocity, acceleration,

45

and (pseudo-)jerk constraints with direct servo error and motor torque constraints, which are also nonlinear

but technologically more relevant, can result in even more significant decrease in motion time, as

demonstrated in the subsequent sections.

Hence, NLP problem considered in this thesis can be formulated as:

max∫ �̇�
𝐿

0

𝑑𝑠 𝑠. 𝑡. [

𝑢𝑥
𝑢𝑦
𝑢𝑧
] ≤ [

𝑢𝑥,max
𝑢𝑦,max
𝑢𝑧,max

] , [

𝑒𝑥
𝑒𝑦
𝑒𝑧
] ≤ [

𝑒𝑥,max
𝑒𝑦,max
𝑒𝑧,max

]

And optionally,

[

|�̇�|
|�̇�|
|�̇�|
] ≤ [

𝑣𝑥,max
𝑣𝑦,max
𝑣𝑧,max

] , [

|�̈�|
|�̈�|

|�̈�|
] ≤ [

𝑎𝑥,max
𝑎𝑦,max
𝑎𝑧,max

] , [

|𝑥|
|𝑦|

|𝑧|
] ≤ [

𝑗𝑥,max
𝑗𝑦,max
𝑗𝑧,max

] , �̇�𝑚𝑖𝑛 ≤ �̇� ≤ �̇�max

(3-37)

Naturally, when velocity, acceleration, and jerk constraints are also used, the resulting solution can be more

conservative in terms of motion time, as expected from the triangle inequality (|𝐴 + 𝐵| ≤ |𝐴| + |𝐵|).

In some cases, to ensure the forward traversal of the trajectory (i.e. to avoid unnecessary stops or backward

movements due to numerical errors), a lower bound can be imposed on the feedrate as 0 < �̇�𝑚𝑖𝑛 ≤ �̇�, where

�̇�𝑚𝑖𝑛 is a very small positive feed which would not cause any constraint violation. Similarly, to limit the

magnitude of cutting forces, motor power and torque, and tool deflections during machining, an upper

bound can also be imposed on the feedrate, as �̇� ≤ �̇�max.

In implementation, optimization algorithms tend to take the form of minimization problems. Modifying the

main statement of the problem, as in Eq. (3-38), allows the use commercially available optimization

algorithms.

min [−∫ �̇�
𝐿

0

𝑑𝑠]
 (3-38)

Once again, the geometric derivatives used in the constraints determined by the toolpath. The derivatives

of feedrate with respect to the arc parameter are computed per Eqs. (3-10)-(3-13). The time derivatives are

computed using Eqs. (3-18)-(3-20). Finally, the predicted control signal and tracking error are computed

according to Eqs. (3-39) and (3-40), which are described in Section 3.6.1.

3.6.1 Control signal and tracking error models

The tracking error and motor torque provide more direct indicators of a CNC machine tools motion

performance (and manufacturing accuracy) and utilization compared using the classical kinematic limits of

velocity, acceleration, and jerk. The NLP optimization problem stated in Eq. (3-37) includes direct

constraints on motor torque (or voltage command sent to the motor amplifiers, 𝑢) and the servo tracking

error (𝑒). Like kinematic constraints, these constraints must be calculated at point along the toolpath and

46

sufficiently close intervals. A given trajectory will typically result in different torque commands and

tracking errors on different machines. Thus, parameter identification is required and performed to quantify

the relationships between the commanded trajectory profile, and the resulting motor torque and servo

accuracy responses. This is typically achieved by executing a movement on the target machine, and

recording the velocity, acceleration, jerk, motor torque command, and tracking error for each axis, and

applying suitable model identification techniques.

The motor torque demand can be represented by approximating the CNC drives as an inertia element subject

to viscous and Coulomb friction, as shown by Eq. (3-39). This open-loop model neglects the transient

dynamics contributed by the feedback servo controller. However, these dynamics (except for stick-slip

friction) are typically not excited when smooth trajectories are used. In the equation, mass (𝑚𝑥), viscous

friction (𝑏𝑥), torque offset (𝑐𝑥) (due to preload or balancing), and Coulomb friction (𝑑𝑐𝑜𝑢𝑙,𝑥) can be

identified using Least Squares (LS) estimation [63] on the experimental data collected during trajectory

tracking. Eq. (3-39) applies separately to each axis, assuming that they are inertially decoupled.

𝑢𝑥 = 𝑚𝑥�̈� + 𝑏𝑥�̇� + 𝑐𝑥 + 𝑑𝑐𝑜𝑢𝑙,𝑥𝑠𝑖𝑔𝑛(�̇�) (3-39)

The tracking error can be approximated as a linear combination of the instantaneous velocity, acceleration,

and jerk commands (�̇�𝑟, �̈�𝑟 , 𝑥𝑟) as shown by Eq. (3-40), by assuming that the feed drive dynamics are

predominantly rigid and do not contain poorly damped (i.e., oscillatory) poles that which significantly

influence the servo response. Here, 𝐾𝑗, 𝐾𝑎, and 𝐾𝑣 are model parameters that can be identified using the LS

approach. 𝑒𝑥 is recorded tracking error from the CNC machine.

𝑒𝑥 = 𝐾𝑗,𝑥𝑥𝑟 + 𝐾𝑎,𝑥�̈�𝑟 + 𝐾𝑣,𝑥�̇�𝑟 (3-40)

47

Figure 3-9: Router machine tool used in the experiments.

The testbed machine, a 3-axis router as seen in Figure 3-9, was used to record torque and tracking error

profiles during a short movement. The parameters for the models in Eqs. (3-39) and (3-40) were then

estimated, and validated by reconstructing the motor torque and tracking error signals. The result is shown

in Figure 3-10.

Figure 3-10: Results of a parameter identification routine.

The control signal predictions are in very good agreement. However, the prediction of tracking error, which

is much more sensitive to minute effects and nonlinearities, is limited in accuracy by the nature of the

48

experimental setup. The setup used is a low-cost flatbed router with large amounts of friction (in the

guideways and ballscrew–nut interface), backlash (i.e., motion loss), lead errors (position-dependent

harmonic transmission error) and flexibilities (originating from the mechanical frame and assembly and

also the drive system (including the belt-driven connections between the motors and ballscrew-nuts

mechanisms). These all contribute to imperfections and unmodeled effects in the motion delivery, which

become more significant at the micron-level and lead to observed deviations from the predictions of Eq.

(3-40). For example, several of the large peaks in the tracking error plots in Figure 3-10 correspond to zero-

velocity transitions in the testing trajectory, at which stick-slip friction (currently not considered in the

model) becomes significant. However, in high-end CNC feed drives, which have much less friction and are

constructed with much more rigid components and connections, it has been shown that the quasi-static

tracking error model in Eq. (3-40) actually yields fairly accurate predictions [39], [64]. Therefore, in spite

of the mechanical disadvantages of the experimental setup that was used, the servo error model in Eq. (3-40)

has been adopted and used in this thesis.

Table 3-1 and Table 3-2 show the identified parameters used in simulation and experimental studies,

respectively.

Table 3-1: Parameters used in simulation case studies.

 X-axis Y-axis

𝑀 2.13 × 10−3 1.25 × 10−3

𝑏 4.67 × 10−2 3.80 × 10−2

𝑐 1.48 × 10−1 −1.19 × 10−3

𝑑𝑐𝑜𝑢𝑙 2.41 × 10−1 1.31 × 10−1

𝐾𝑣 −4.49 × 10−5 8.07 × 10−5

𝐾𝑎 1.99 × 10−5 1.52 × 10−6

𝐾𝑗 −5.20 × 10−8 −1.80 × 10−8

49

Table 3-2: Identified parameters of router machine used in experiment.

 X-axis Y-axis

𝑀 1.94 × 10−3 1.15 × 10−3

𝑏 5.06 × 10−2 3.28 × 10−2

𝑐 −1.34 × 10−1 1.32 × 10−1

𝑑𝑐𝑜𝑢𝑙 4.96 × 10−1 1.84 × 10−1

𝐾𝑣 5.34 × 10−5 2.93 × 10−5

𝐾𝑎 1.45 × 10−5 1.45 × 10−5

𝐾𝑗 7.17 × 10−7 2.39 × 10−7

3.6.2 NLP Method I - Sequential quadratic programming (SQP)

The basic SQP algorithm is described in Section 2.3.2.2. The iterates of this algorithm are computed by

first solving for the Hessian (second derivative) matrix of the Lagrangian of the problem, the latter which

is a modified objective function that integrates equality constraints. Using the Hessian, the quadratic

approximation of the objective function is created. Then, the quadratic program is solved. This solver is

able to deal with infeasible iterates – if the solution of the QP is infeasible according to the constraints, the

solver will go back and try again with a smaller step size. However, in experimentation, it was found that

infeasible starting conditions will cause the solution time to increase significantly – up to 5 times in

comparison to starting with a feasible guess.

This algorithm computes full matrices of the problem. In the best of the author’s knowledge, it does not

make adjustments that take advantage of sparse matrices. Implementation of the windowing solution is

therefore essential to the use of this algorithm, and the solution becomes very slow when trying to solve a

long toolpath. However, the efficiency of SQP can be increased by providing a near-optimal starting guess,

which the LP solution is able to generate.

3.6.3 NLP Method II - Interior point algorithm (IP)

In some cases, the SQP algorithm was prone to failure – for example, if a non-feasible initial guess was

arrived at numerical errors passed on from previous computational steps. There were also instances with

long toolpaths when the SQP, in an inexplicable manner, failed to converge. To overcome this drawback,

the interior point algorithm was also implemented for feed optimization.

The concept of interior point algorithms is described in Section 2.3.2.2. MATLAB’s interior point algorithm

implements logarithmic barrier functions and alternates between iterative steps to solve this function, and

50

the modification of the barrier function parameter. While this algorithm is separate from the SQP

implementation, it also internally uses SQP in some of its solution steps.

Unlike in the SQP algorithm, this problem operates using sparse approximations and sparse linear algebra

– this allows for the capacity to solve problems using large, sparse matrices. This would be a significant

advantage if a single one-shot solution to the NLP problem was desired, but is not needed in the windowed

solution presented in this thesis. In the developed algorithm, IP has been implemented as a secondary slower

but more robust solution, in the rare case the SQP algorithm fails to successfully converge. The user has to

manually select which NLP method is to be used.

3.7 Coordination of boundary conditions and additional numerical considerations

The progression parameters which must be set in the overall optimization algorithm are as follows:

Table 3-3: Progression parameters for the dual windowing feed optimization algorithm.

 LP specific NLP specific

Total toolpath length 𝐿 (distance) with 𝑟 control points

Window size 𝑊𝐿𝑃 𝑊𝑁𝐿𝑃

Overlap size 𝑃𝐿𝑃 𝑃𝑁𝐿𝑃

Constraint meshing factor i.e. number of

constraint evaluation points per control point

𝑁𝑐

Considering Figure 3-1, the window sizes, 𝑊𝐿𝑃 and 𝑊𝑁𝐿𝑃, are assigned based on certain factors: 1) An

excessively small window will be computationally inefficient and may not reach the actual achievable

optimal feedrate. 2) An excessively large window may cause the optimization to fail, or exceed the available

computational memory (which varies depending on the platform used to compute the optimization).

Note that most of the parameters in Table 3-3 are referred to in terms of distance along the toolpath.

However, in the implementation, these parameters are represented in terms of integer numbers of control

points. Thus, all values of 𝐿, 𝑊, and 𝑃 must be integer multiples of the knot spacing distance 𝑑.

The overlap sizes, 𝑃𝐿𝑃 and 𝑃𝑁𝐿𝑃, have similar considerations. If the overlap is too small, the feedrate will

be suboptimal at the connection points between windows. This is because boundary condition influences

causing the feedrate to drop to zero or small values will be inevitable. If the overlap is too large, the

computation time will be excessive, as long and overlapping portions of the trajectory will be unnecessarily

reoptimized. The minimum overlap is computed based on the worst-case deceleration distance of the

machine, based on the maximum kinematic parameters. The deceleration distance for a machine axis from

its maximum velocity is given in Eq. (3-41), which is derived in detail in Appendix A.2.

51

𝑙𝑑𝑒𝑐 = 𝑙𝑎𝑐𝑐 =

{

 𝑣max

3
2

√𝑗max
𝑖𝑓 𝑣max ≤

𝑎max
2

𝑗max

1

2
𝑣max (

𝑎max
𝑗max

+
𝑣max
𝑎max

) 𝑖𝑓 𝑣max >
𝑎max
2

𝑗max

(3-41)

The minimum deceleration distance is computed separately for each axis. Then, the largest one is used to

determine the minimum window overlap distance. From this, a minimum window size can be expressed in

control points as 𝑝 using Eq. (3-42) where 𝑟 is the number of control points in the trajectory, 𝐿 is the total

toolpath length, and 𝛼overlap is an applied safety factor (for instance, 𝛼overlap = 2 will enforce that the

overlap must be twice as long as the expected deceleration distance).

𝑝 = 𝛼overlap 𝑙𝑎𝑐𝑐
𝑟

𝐿
 (3-42)

The LP overlap, 𝑃𝐿𝑃, requires additional consideration, as shown in Figure 3-2. This overlap occurs at the

boundary between NLP-optimized and LP-optimized-only solutions, which have different constraints.

Once the nonlinear optimization has been performed based on servo error and motor torque constraints, the

solution will likely no longer be a feasible solution to the LP problem which considers velocity,

acceleration, and pseudo-jerk constraints. With infeasible initial boundary conditions, the consecutive LP

optimization step would fail. The use of a B-spline feed profile ensures that the boundary conditions remain

feasible for the LP at the beginning of the next LP step, as shown in Figure 3-11.

Figure 3-11: Boundary condition enforcement at window boundaries in LP+NLP windowing optimization.

The minimum size of the pause boundary is related specifically to the order of the B-spline feedrate profile.

In a B-spline function of order 𝑛, any individual B-spline will have a range of [𝜉𝑘 , 𝜉𝑘+𝑛]. Using Eqs.

52

(3-6),(3-12), and (3-13), it can be seen that the effect of any quadratic B-spline will be limited to the space

between four knots – hence, the length of the NLP pause buffer range would have to be at least 3𝑑.

3.8 Time-domain reconstruction

The solution obtained from the dual-windowing algorithm is a feedrate profile expressed in terms of arc

length, �̇�(𝑠), as well as functions that map a given value of 𝑠 to its corresponding 𝑥, 𝑦, 𝑧 coordinates. This

must be converted to arc displacement (𝑠(𝑡)) and feedrate expressed in terms of time (�̇�(𝑡)), in order to be

interpolated and sent as a discrete-time motion command to the servo controllers, ultimately as 𝑥(𝑡), 𝑦(𝑡),

and 𝑧(𝑡).

Eq. (3-43) defines the relationship between 𝑡 and 𝑠, which depends on the feedrate �̇�. In this work, it has

been solved using third-order Taylor series expansion.

𝑡𝑖 = ∫
1

�̇�

𝑠𝑖

𝑠𝑖−1

𝑑𝑠
(3-43)

Third-order Taylor series expansion was selected because the second and third derivatives of 𝑠 have already

been computed during the optimization.

The process of time reconstruction is described as follows:

1. An array of desired time values is created. In this case, a set of points with a constant sampling period

𝑇𝑠 are used, which is the most common form in sampled motion control systems.

2. The process will fail at any point when �̇�, �̈�, and 𝑠 are all sufficiently close to zero. To avoid this, a

minimum threshold for �̇� is selected and any parts of the trajectory with feedrates below this threshold

are marked as “breakpoints”. As most trajectories start and end at zero velocity, the beginning and end

of the toolpath are expected to be breakpoints.

3. If starting from a breakpoint: the first arc displacement will be zero, plus some small offset.

4. At this point, the following values are known: 𝑠𝑘 (arc displacement at sample 𝑘), a B-spline profile

defining the feedrate at any given position, and a desired time interval, 𝑇𝑠.

5. Values of the derivatives �̇�(𝑘), �̈�(𝑘), 𝑠(𝑘) are computed at the sample 𝑘.

6. The time and arc displacement for sample 𝑘 + 1, (𝑡(𝑘 + 1), 𝑠(𝑘 + 1)) are computed using Eqs. (3-44)

and (3-45).

𝑡(𝑘 + 1) = 𝑡(𝑘) + 𝑇𝑠 (3-44)

𝑠(𝑘 + 1) = 𝑠(𝑘) + �̇�(𝑘)𝑇𝑠 +
1

2
�̈�(𝑘)𝑇𝑠

2 +
1

6
𝑠(𝑘)𝑇𝑠

3
(3-45)

7. This iteration continues until reaching either the end of the toolpath or a designated breakpoint.

8. If a breakpoint is reached, then the same “feedrate offset” as the beginning is applied before continuing

as before.

53

Sample result for reconstruction of the arc displacement (and thus feed) profile in the time domain is shown

in Figure 3-12. The optimization output 𝑓(𝑠) is converted to a set of sample points (𝑡, 𝑠) at the desired time

intervals, which would ultimately be sent as displacement commands to the parametric toolpath

interpolation algorithms (i.e., 𝑥 = 𝑥(𝑠(𝑡)), 𝑦 = 𝑦(𝑠(𝑡)), 𝑧 = 𝑧(𝑠(𝑡)). For the purpose of verification, in

this sample an additional step was performed in which the feedrate profile was generated as a function of

arc displacement, and these two (phase plane and time-domain reconstruction data) were overlaid for

comparison on the bottom plot of Figure 3-12. As can be seen, there are only negligible differences between

the two, which can be reduced further, if needed, if applying smaller time steps.

Figure 3-12: Verification of time-domain reconstruction of a arc displacement profile.

3.9 Simulation benchmarks

The results of applying the proposed dual-windowed feed optimization are shown in Figure 3-13. A hand-

shaped sample toolpath is chosen due to its familiarity and variety of large and small curvatures. The

feedrate is displayed by varying colour throughout the toolpath. Additionally, plots of the constrained motor

torque and tracking error are provided below the toolpath. As can be seen, the constraints are satisfied

throughout the toolpath. The optimization was performed using the parameters in Table 3-1. The

acceleration and jerk limits were determined following the procedure in Section 3.4.1, to ensure that the LP

solution would also be feasible for the NLP problem. The resulting constraint limits are shown in Table

3-4.

54

Table 3-4: Constraints applied in simulation case studies.

 X-axis Y-axis

Maximum velocity [mm/s] 150 150

Acceleration [mm/s2] 500 3340

Jerk [mm/s3] 63000 156000

Control signal [V] 10 10

Tracking error [mm] 0.02 0.02

Figure 3-13: Results of an optimization procedure.

This case reveals several notable features of the optimization strategy:

• As predicted, the feedrate is faster during long, low-curvature segments and slows down during sections

with tighter curvature.

• The optimization trajectory can sometimes reach a very high feedrate. It may be desirable to implement

a feedrate limitation constraint as well (e.g., to keep machining forces limited). This is possible using

both LP and NLP strategies, although it was not implemented in this example.

55

• The torque and tracking error are within the constraint envelope. Constraint violations due to numerical

error in time reconstruction do occur, but the violation sizes are less than 1% of the assigned maximum

and are not visible on the constraint profiles.

Figure 3-14: Comparison between LP (left) and LP+NLP (right) feed optimization optimizations.

A comparison between the LP-only algorithm and the LP+NLP algorithm was made and is presented in

Figure 3-14, with computational time and movement time results presented in Table 3-5. In the LP-only

case (left side of Figure 3-14), the axis velocity, acceleration, and jerk limits are used as an indirect method

to constrain the control signal and servo error. In the LP+NLP implementation (right side of Figure 3-14),

the control signal and servo error are constrained. It can be seen that this ultimately reduces the motion time

by 29.7%, beyond the result obtained with only LP, without exceeding these prescribed limits. However, it

is also important to acknowledge the increased computational time (around 3-fold), in exchange for the

improved motion performance.

 It can be seen that in the Y-axis, the profiles of control signal and tracking error closely resemble each

other. This is caused by the weighting of the kinematic profiles in the identified parameters of the models

for 𝑢 and 𝑒, in which for the particular machine, both show strong correlation to the velocity commands.

56

Table 3-5: Computation time and movement cycle time for LP vs LP+NLP algorithms.

 LP only LP+NLP

Computation time (s) 3.47 11.94

Movement time (s) 19.00 11.80

One of the strengths of the dual-windowing approach is that it enables the processing of indefinitely long

toolpaths in a forward-moving (i.e., streaming) manner, similar to the architecture of an industrial CNC.

Both types of optimization (LP and NLP) are performed along the toolpath in a carefully coordinated

manner. An example of testing the proposed optimization on a longer toolpath is shown in Figure 3-15.

This sample toolpath has a length of 18500 [mm], and was processed using 4000 control points and 20000

constraint evaluation points. Noting that on a 3-axis machine, LP+NLP requires 27 inequality constraints

to hold at each evaluation point (i.e., (1 velocity, 2 acceleration, 2 pseudo-jerk, and 2 control signal and 2

tracking error) x (2 axes)), this translates to 540,000 inequality constraints.

Due to memory limitations on the optimization computer, the computation time was long, but the

optimization was overall successful. Small constraint violations due to numerical error in time

reconstruction did occur occasionally, as can be seen in the constraint plots of Figure 3-15, but outside of

these errors, the constraints remain within their prescribed limits. Trajectories of this length can be very

computationally expensive. The applied velocity, acceleration, and jerk limits are equal to those in Table

3-4. The control signal and tracking error limits used were 10 V and 0.02 mm, respectively.

The computation and motion time are provided in Table 3-6.

57

Figure 3-15: LP+NLP optimization of longer toolpath.

In comparison, the LP-only optimization of the same toolpath is presented below in Figure 3-16. The LP-

only optimized trajectory is much longer in time, approximately twice the movement time of the LP+NLP

optimization. Small, brief constraint violations continue to occur, caused by the time-domain reconstruction

(discussed further in Section 4.2). With the exception of these, the tracking error and motor torque, again,

stay well-below the limits due to the use of more conservative velocity, acceleration, and jerk constraints.

It can be verified that the velocity, acceleration, and jerk limits were set to their maximum possible values,

to not violate the control signal and servo error constraints. However, due to the conservativeness this brings

(from the triangle inequality), the control signal (i.e., motor torque) and tracking error capacity are clearly

underutilized, thus resulting in longer motion time.

58

`

Figure 3-16: LP-only optimization of longer toolpath.

Table 3-6: Computation and motion time of very long toolpath.

 LP only LP+NLP

Computation time (s) 37 353

Movement time (s) 117 80

This can be more clearly analyzed by considering the impact of limiting 𝑢𝑥 and 𝑒𝑥 indirectly by capping

the magnitudes of velocity, acceleration, and jerk:

|𝑢𝑥| ≤ 𝑢𝑥,max 

|𝑢𝑥| = |𝑚𝑥�̈� + 𝑏𝑥�̇� + 𝑐𝑥 + 𝑑𝑐𝑜𝑢𝑙,𝑥𝑠𝑖𝑔𝑛(�̇�)| ≤ 𝑚𝑥|�̈�| + 𝑏𝑥|�̇�| + |𝑐𝑥| + 𝑑𝑐𝑜𝑢𝑙,𝑥 ≤

≤ 𝑚𝑥𝑎𝑥,max + 𝑏𝑥𝑣𝑥,max + |𝑐𝑥| + 𝑑𝑐𝑜𝑢𝑙,𝑥 ≤ 𝑢𝑥,max

(3-46)

(3-47)

59

|𝑒𝑥| ≤ 𝑒𝑥,max 

|𝑒𝑥| = |𝐾𝑗,𝑥𝑥𝑟 +𝐾𝑎,𝑥�̈�𝑟 + 𝐾𝑣,𝑥�̇�𝑟| ≤ |𝐾𝑗,𝑥| ∙ |𝑥𝑟| + |𝐾𝑎,𝑥| ∙ |�̈�𝑟| + |𝐾𝑣,𝑥| ∙ |�̇�𝑟|

≤ |𝐾𝑗,𝑥| ∙ 𝑗𝑥,max + |𝐾𝑎,𝑥| ∙ 𝑎𝑥,max + |𝐾𝑣,𝑥| ∙ 𝑣𝑥,max ≤ 𝑒𝑥,max

When the numerical values are considered,

𝑚𝑥𝑎𝑥,max + 𝑏𝑥𝑣𝑥,max + |𝑐𝑥| + 𝑑𝑐𝑜𝑢𝑙,𝑥 = 𝑢𝑥,max (3-48)

|𝐾𝑗,𝑥| ∙ 𝑗𝑥,max + |𝐾𝑎,𝑥| ∙ 𝑎𝑥,max + |𝐾𝑣,𝑥| ∙ 𝑣𝑥,max = 𝑒𝑥,max

Considering Eqs. (3-46 and (3-47), while the terms |𝑚𝑥�̈� + 𝑏𝑥�̇� + 𝑐𝑥 + 𝑑𝑐𝑜𝑢𝑙,𝑥𝑠𝑖𝑔𝑛(�̇�)| and |𝐾𝑗,𝑥𝑥𝑟 +

𝐾𝑎,𝑥�̈�𝑟 + 𝐾𝑣,𝑥�̇�𝑟|represent the actual magnitudes of control signal and servo error that must be limited, the

latter expressions to the right-hand side of these terms, which are more conservative, assume the worst case

scenarios. This is convenient for mathematical purposes, but not fully realistic. For example, jerk,

acceleration, and velocity do not always have the same sign through a toolpath (which is what is assumed

when computing their limits 𝑗𝑥,max, 𝑎𝑥,max, 𝑣𝑥,max used for LP). Therefore, there will be instances where

larger velocity and acceleration magnitudes can be used, if they have cancelling signs in the torque equation

(e.g., decelerating during positive velocity). Similarly, the values of �̇�, �̈�, and 𝑥 are never simultaneously

at their maximum limits, although 𝑣𝑥,max, 𝑎𝑥,max, 𝑗𝑥,max are computed considering this extreme situation.

Thus, at many instances throughout the toolpath, the feed profile can be modulated so that the terms

|𝑚𝑥�̈� + 𝑏𝑥�̇� + 𝑐𝑥 + 𝑑𝑐𝑜𝑢𝑙,𝑥𝑠𝑖𝑔𝑛(�̇�)| and |𝐾𝑗,𝑥𝑥𝑟 + 𝐾𝑎,𝑥�̈�𝑟 + 𝐾𝑣,𝑥�̇�𝑟| stay within their prescribed limits,

while the individual profiles of �̇�, �̈�, and 𝑥 may exceed 𝑣𝑥,max, 𝑎𝑥,max, and 𝑗𝑥,max, respectively. This is the

key reason that LP+NLP, which facilitates direct limiting of the nonlinear constraints for 𝑢 and 𝑒 is able to

yield a faster trajectory and shorter motion time over LP.

3.10 Experimental results

Experimental validation was performed on the three-axis router as seen in Figure 3-9 using air-cut tests (in

which the tool moves through the specified trajectory without any material being cut). Such feedrate

optimization is particularly suited for operations with low cutting force, such as finish machining, in which

the servo errors are induced primarily by the trajectory commands and not the lightweight cutting forces.

60

The machine tool is driven by two x-axis drives, one on each side of the machine, moving the gantry. The

single y-axis drive which runs across the gantry. The drives are ball screw type (x-axes: rotating nut, y-

axis: rotating screw), with synchronous belt mechanisms providing the linkage between the motors.

When obtaining experimental results, the x-axis tracking error and torque model were predicted based on

one of the x-axis drives. The vertical z-axis was not fully functional at the time of conducting the

experiments, and therefore was not used. The parameters identified and used in the experiment are presented

in Table 3-7.

Table 3-7: Constraints considered in the experimental trajectory generation for the router.

Velocity [mm/s] 150

Acceleration [mm/s2] 500

Jerk [mm/s3] 10000

Tracking error [mm] 0.018

Control signal [V] 8

Figure 3-17 presents the experimental result for testing the hand-shaped toolpath shown in Figure 3-13. The

limits constraint limits were modified to match the limits of the experimental setup.

61

Figure 3-17: Experimental result of hand-shaped trajectory with LP+NLP dual-windowed optimization.

During the experiments, the tool was observed to travel smoothly along the assigned path, speeding up

during long and low curvature portions and slowing down at higher curvature sections.

The control signal plot (bottom right of Figure 3-17) shows accurate experimental reproduction of the

predicted motor control signal – the signal is successfully constrained to within the applied limit of 8 V

(with very small violations due to the noise of the recorded signal).

The tracking error plot (bottom left of Figure 3-17) shows some discrepancy, due to the factors explained

at the end of Section 3.6.1, originating from the mechanical imperfections of the motion transmission in the

experimental setup, such as heavy and non-uniform stick-slip friction, backlash, lead errors, and structural

vibrations. The actual and predicted tracking errors are shown in further detail in the zoomed in plot in

Figure 3-18. The measured servo errors show noticeably higher peaks than the prediction, which in the

62

experiments does cause some violation of the error constraints. Nevertheless, majority of the trends for the

servo error are still captured, especially for the y-axis which is more rigid compared to the x-axis.

Figure 3-18: Predicted and experimental tracking errors from the router.

The tracking error model (described in Section 3.6.1) is based on a linear combination of the commanded

velocity, acceleration, and jerk. It does not account for the contribution of static (stick-slip) friction and

other nonlinearities, which make significant contributions to positioning errors in this case. However, the

linear model works very well for high-end machine tool drives [39], [64], which have much lower friction

influence compared to inertial forces, better motion transmission, and also are more rigid by nature. In

future research, to improve the prediction accuracy for machines with large friction, an extended model can

be developed which includes an analytical approximation of the anticipated servo error profile contributed

by additional stick slip friction. However, in the context of validating the developed LP+NLP method, the

experimental results from the router are promising, in terms of demonstrating the effectiveness of the

proposed new trajectory generation method. Also, the prediction and limiting of motor torque is very

successful.

63

3.11 Conclusions

In this chapter, a novel feedrate optimization method has been presented, which combines two different

optimization methods into a single solution, applying two windowing methods in careful coordination with

one another. The proposed LP+NLP windowing method uses the advantages of each type of optimization

technique, the LP method’s robustness and computational efficiency, and the increased optimality of the

NLP solution. For each section of the toolpath, a near-optimal solution is generated using LP to solve the

velocity, acceleration, and jerk constrained linear problem. Following this, the solutions is refined using

NLP, with the constraints being swapped to limit the tracking error and commanded motor torque. The NLP

optimization generates a faster trajectory, while keeping the performance of the motion (i.e., torque

consumption and dynamic accuracy) within a specified envelope. The coordination of LP and NLP solution

windows and evaluation of boundary conditions are designed specifically to avoid generating optimization

problems with infeasible boundary conditions or initial solution.

The feedrate profile is represented using uniform quadratic B-splines, which allow for adjustment to the

feedrate in a small local area of the toolpath without any effect on the rest of the trajectory. The numerical

structure is determined so that may of the matrices and sub-matrices can be reused, and different feed

profiles evaluated very fast without chancing the structure or values of the many constant arrays. In addition,

the forward progressing windowed solution allows for the computation of optimized feedrate profile for

indefinitely long toolpaths without running into memory capacity issues, as demonstrated for a sample

toolpath with 9000 control points and 810,000 inequality constraints that must be satisfied while minimizing

cycle time for the overall motion.

While the optimization algorithm has been successfully developed, implemented, and tested, a possible

improvement, in the future, would be the refinement of the constraint equations, e.g., to facilitate more

accurate prediction of the servo error on a machine with large friction. As expected, the result of any given

optimization is machine-specific, and will not produce the same result on a different machine. The

predictive models for tracking error and motor torque rely on assumptions about the machine dynamics

which, may not always be fully accurate. Thus, improved machine characterization (e.g., considering

multibody dynamics or nonlinear effects like friction) can certainly be implemented, at least in an

approximate manner. For example, the open-loop multibody model can be used, or friction can be

approximated with a suitable nonlinear function as a function of arc displacement and the feedrate. The

good news is that the core optimization algorithm (i.e., LP + NLP) can be re-used without modification.

The only parts that would need to be changed are how the velocity, acceleration, and jerk limits are defined

for the LP step, and the necessary functions that handle calculation of motor torque and servo error.

The primary direction for future work would be an extension of the method into 5-axis. Prototype 5-axis

optimization methods have been developed in the course of this work; however, the axes are represented as

64

independent from each other. A 5-axis method which correctly models the interdependence of the linear

and rotary axes is the next step. These constraints are inherently nonlinear, and would be well-served by

the NLP optimization method.

Another issue is the adequate selection of the window and progressions sizes, as this can have a major

impact on the solution efficiency and optimality for LP and NLP methods. The subsequent chapter

investigates this problem with further numerical studies.

65

4 Impact of Configuration Choices When Utilizing the LP+NLP Method

The LP+NLP method includes parameters which must be tuned for optimal performance. These comprise

of the windows sizes for the larger LP and smaller NLP windows (𝑊𝐿𝑃, 𝑊𝑁𝐿𝑃), overlap lengths for the

two methods (𝑃𝐿𝑃, 𝑃𝑁𝐿𝑃) and the number of constraint evaluation points per control point (𝑁𝑐).

This chapter focusses on the impact of these parameter on the computational load for the optimization. The

window size is expressed not as a travel length, but instead in terms of number of control points, which is

the main factor affecting the computation time and optimality of the solution. The relationship between

control points and physical length is strongly dependent on the toolpath geometry and machine limits, and

must be assigned specifically based on the machining operation in question. One possibility, especially

when using cubic B-splines to represent the toolpath, is to enforce a minimum number of control points per

polynomial segment. This ensures that the feed is modulated with sufficient granularity as a function of

changing curvature along the toolpath.

The following presented computation time tests were performed on the same computer – a desktop PC

(Intel i7-3820 CPU at 3.60 GHz, with 16 GB of memory, running 64-bit Windows 10) running MATLAB

version 2023b. The computation time will vary significantly based on the computer used to perform the

optimization. Therefore, the computation times reported in this chapter are comparative with respect to one

another. Additionally, the assumption is made that the computer performing the optimization has sufficient

memory. On a computer with very limited memory the window sizes may need to be kept smaller than the

ideal sizes identified in this chapter.

4.1 Window size and overlap

Sets of sample calculations were performed to analyze the effect of changing window size. The ideal LP

window size was found by trial-and-error to be approximately 100 control points. However, variation in

this size had only very small effects on the overall computation time. The LP algorithm is much faster than

either of the available NLP algorithms, and is performed significantly less frequently than the NLP

algorithms. Therefore, fine-tuning the LP window size offers only marginal possibilities for improvement.

Initially tested values of LP window size ranging from 50 to 200 control points all resulted in average

computation times within approximately 3% of the fastest computation case. Table 4-1 shows the results

of LP window size tests. Each test was performed five times at identical configuration and the resulting

computational times were averaged for reporting. The computational times were quite consistent for tests

conducted under identical parameters.

66

As there is little loss of computational efficiency, shorter toolpaths, (such as some of the examples presented

in Section 3.9 and 3.10) may be solved in LP with a one-shot solution by setting the window length to

encompass the entire toolpath.

Table 4-1: Comparison of optimization time with different LP window sizes.

LP window size (# of control points) 50 75 100 150 200

Computation time (s) 10.44 10.16 10.12 10.28 10.26

Percentage increase compared with ideal size [%] 3.1 0.36 (reference) 1.5 1.3

When considered in isolation, outside of the LP+NLP optimization, the LP optimization time may be

examined over a more extensive range of window sizes. Figure 4-1 presents the computation times for a

total of 1000 control points, divided into various window sizes, with each successive window overlapping

the previous window by 8 points (which corresponds to four times the minimum required overlap distance

explained in Section 3.7). When the window size is very short, the overlap takes up a huge portion of each

window, and the total number of windows required to complete the toolpath becomes very large. Therefore,

the computation time is increased. At a window size of 10 control points, 496 windows are required to

complete the toolpath. When the window size is very large, only a few windows are required – at a window

size of 400 control points, only 3 windows are required to complete the toolpath. However, the computation

time for each window also keeps increasing, which affects the total computation time.

In isolation, based on the computational platform used, the ideal window size for LP optimization was

found to be 50 points. This size is large enough that the total window number remains reasonable, but small

enough that each LP optimization does not take excessively long. In the combined LP+NLP optimization,

the ideal LP window size was found to be 100 points, due to the additional computational load of converting

the LP solution prior to NLP optimization (Section 3.5), a process that occurs after each LP window

solution.

67

Figure 4-1: LP window size and computation time for LP-only optimization.

Changes in NLP window size have a much more significant influence on the LP+NLP optimization time.

As with the LP solution, a balance must be struck between the increased computational load of a larger

windows, versus the increase in redundant re-optimization of sections due to the NLP window overlap, as

discussed in the proceeding paragraphs. The ideal NLP window size was found to be 20 control points on

the computation platform used. Comparable window sizes of 15, 30 and 40 were also tested, and all

produced increases in computational time in the range of 5-20%. Table 4-2 shows the results of NLP

window size tests of the same LP+NLP optimization. In this case the LP window size was constraints to 50

control points.

Table 4-2: Comparison of optimization time with different NLP window sizes.

NLP window size (# of control points) 15 20 30 40

Computation time (s) 11.44 9.55 10.12 11.14

Percentage increase compared with ideal size [%] 19.9 (reference) 6.0 16.7

In selecting the value of overlap between windows, the priority is to avoid negative effects on the solution

profile. Based on the principle of optimality described in Section 2.3.1, an optimized trajectory solved with

a windowed solution should give the same result as a one-shot optimization, provided that the windows

overlap sufficiently to eliminate the boundary-condition dependent slowdowns at the beginning and end of

a window. Insufficient overlap will produce unnecessary local decelerations at the boundaries between

windows. The theoretical minimum overlap was computed in Section 3.7, but in practice, the overlap is

required to be significantly greater than the minimum, to account for numerical error, control point

alignment, and constraint differences between LP and NLP. The choice of overlap was made through

observing the local decelerations during many different optimization trials.

The control-point overlap between LP windows is set to be only slightly higher than the theoretical

minimum value. If small local decelerations occur, they will be overwritten by the proceeding NLP step.

68

The LP window overlap was set to be 4 times the theoretical minimum. This was determined by converting

the required overlap length into number of control points, considering the control point meshing step size.

(i.e., feedrate B-spline knot distance).

The NLP window size must have a relatively large overlap, due to both the increased feedrate of the solution

and to eliminate unnecessary decelerations / accelerations. If small and unnecessary local decelerations are

present between NLP windows, they will remain in the final solution. In experimentation, it was found that

NLP window overlap sizes of lower than 5 times the theoretical minimum could occasionally produce such

decelerations.

As an example, an optimization was performed with a total length of 2400 mm which comprised 200 control

points, and therefore resulted in 12 mm per control point. The theoretical minimum deceleration distance

was computed as 23.1 mm, a distance which is occupied by just under 2 control points. Then, the LP overlap

distance is set to be 4x this number, or 8 control points. The NLP overlap distance is set to be 5x this

number, or 10 control points.

4.2 Selection of constraint evaluation resolution with respect to the feedrate control variables

Section 3.3.5 describes the implementation of the constraint meshing factor 𝑁𝑐, defined as the number of

evaluation points per control point. A larger value of 𝑁𝑐 will result larger optimization matrices and reduced

computational efficiency. However, an excessively small value of 𝑁𝑐 is not sufficient to verify that the

constraints are met throughout the entire trajectory.

In the simplest case, where constraint violations are only checked at each control point (i.e., 𝑁𝑐 = 1), the

computational time is the lowest. However, the constraint checking points are placed so sparsely that large

constraint violations can occur in-between checking points. These violations only become noticeable after

optimization is complete and the time-domain reconstruction has been performed. A test case is presented

in Figure 4-2 to illustrate this effect. The reconstructed motor torque command (i.e., control signal) and

tracking error profiles are presented. The specified maximum limits for these variables are shown with the

black dashed lines. As can be seen, significant constraint violations are visible, including servo errors

anticipated six times that of the specified limit. During the optimization itself, no constraint violation was

detected in the trajectory – they occur so briefly that they can “slip through the cracks” in relation to the

sparsely-placed constraint checkpoints, only to appear after time-domain interpolation.

69

Figure 4-2: Constraint violations caused by low constraint meshing factor.

The solution to avoid these constraint violations is to increase the number of points for constraint

enforcement, by increasing the value of 𝑁𝑐. However, each increase in 𝑁𝑐 also increases the computational

load of the optimization proportionally. The result of optimization with a meshing factor of 𝑁𝑐 = 10 is

presented in Figure 4-3. In comparison with Figure 4-2, only negligible constraint violations are present

(less than 1% in excess of the specified limits).

Figure 4-3: Constraint agreement when meshing factor is sufficiently high.

A set of sample optimizations was run in which different values of 𝑁𝑐 were tested, and the result is given

in Table 4-3. The ideal value of 𝑁𝑐 may depend on the type of toolpath and manufacturing operation. For a

less precise operation in which small, brief constraint violations are not problematic, a of 𝑁𝑐 = 5 can

perhaps be tolerated. For more precise operations, a value of 𝑁𝑐 = 10 may be used to avoid small errors.

Increases past 10 points are not recommended, as the computation time increases significantly, and the

resulting trajectory does not differ significantly from the 𝑁𝑐 = 10 case.

70

Table 4-3: Influence of number of constraint checkpoints per control point (𝑁𝑐) on the optimization outcome.

 𝑁𝑐 = 1 𝑁𝑐 = 5 𝑁𝑐 = 10

Computation time [s] 6.35 9.51 20.33

Constraint violation (%) 400% ≤20% ≤1%

Constraint violation likelihood very likely occasional (no major violations)

4.3 Comparison between sequential quadratic versus interior point NLP algorithms

Both SQP and IP algorithms described in Section 3.6 are able to solve the NLP problem, but the

computational efficiency varies greatly between the two methods. In most conditions, the interior point

algorithm takes significantly longer to solve an optimization problem compared to SQP. The most important

factor in maintaining computational efficiency of the NLP step is to avoid infeasible starting conditions

from the LP step.

Table 4-4 presents a sample of computation times of the entire optimization process of a single toolpath,

when the NLP solver is set to use either the SQP or the IP algorithm. The test was performed on the sample

hand shaped toolpath depicted in Section 3.9 and 3.10, with a total length of 200 control points (control

point spacing = 10 mm). The LP window size was 40 points with an overlap of 8 points, and the NLP

window size was 20 points with an overlap of 10 points. The computation time of Table 4-4 includes the

following steps: initializations of the algorithm, LP steps, NLP steps, and time-domain reconstruction at a

sampling rate of 80 Hz. To compare the tolerance for constraint violations between NLP algorithms, the

LP step is solved with scaled-down or scaled up constraint limits (yielding guaranteed feasible versus

marginally infeasible and significantly infeasible starting guesses for the NLP solver).

As can be seen from Table 4-4, the IP algorithm is overall slower than the SQP in normal conditions.

However, if there is any violation of constraint values in the initial guess, the performance of SQP suffers

significantly. The IP is better able to handle such inputs. While under normal conditions, the LP constraints

are selected to avoid violation of the NLP constraints, it is nonetheless possible that infeasible starting

guesses may be generated by the LP – for instance, due to small numerical errors in approximation or

calculations. If constraint violations are expected from LP, it is computationally faster to scale down the

LP constraints to near-zero (thus avoiding all violations entirely) and continue using SQP, rather than switch

to the IP algorithm.

71

Table 4-4: Sample computation times of SQP and IP for toolpath in Figure 3-13.

Initial solution guess provided to NLP SQP computation time

[s]

IP computation time

[s]

Zero initial conditions for NLP step (all control

points are set to zero. LP solution was computed but

not used as the initial guess.)

5.27 16.37

LP solved with scaled-down constraint limits (80%) 3.70 9.47

LP solved with original constraint limits (default

algorithm)

3.66 8.97

LP solved with increased constraint limits (110%)

 passing on minor ‘infeasible’ start to NLP

19.10 8.75

LP solved with significantly increased constraint

limits (150%)  passing on significantly

‘infeasible’ start to NLP

(did not finish computing

within the testing period

of 300 seconds)

23.44

Based on this analysis, the SQP algorithm was selected for the majority of the nonlinear feed optimization

problems performed. However, some cases were identified in the testing in which numerical error occurs

led to a feasible solution not being found. In these cases, the optimization process may be repeated with the

IP algorithm. Currently, the selection between algorithms is achieved manually. In future implementation,

this can be automated so that if the SQP solution for a particular window does not converge within a given

computational time, or a feasible result it not obtained with SQP, that window would be solved using IP.

4.4 Performance benchmark of LP+NLP on a higher-speed machine

The simulation and experimental examples presented previously in Sections 3.9 and 3.10 were performed

considering the kinematic and dynamic limits of the wood router (Figure 3-9). This is a comparatively slow

machine with lower acceleration capabilities and worse servo accuracy compared to CNC machines

commonly used in industry. To evaluate the effectiveness of the algorithm for faster machines, an additional

simulation was performed with higher axis kinematic limits and greater accuracy requirements. The

parameters and limits considered in the ‘fast machine’ case are summarized in Table 4-5 and Table 4-6.

72

Table 4-5:Parameters used in higher-speed machine simulation case study.

 X-axis Y-axis

𝑀 6.0 × 10−3 3.0 × 10−3

𝑏 1.2 × 10−1 9.0 × 10−2

𝑐 4.5 × 10−1 −4.5 × 10−3

𝑑𝑐𝑜𝑢𝑙 7.5 × 10−1 3.9 × 10−1

𝐾𝑣 −2.24 × 10−5 4.03 × 10−5

𝐾𝑎 1.0 × 10−5 7.6 × 10−7

𝐾𝑗 −2.6 × 10−8 −9.0 × 10−4

Table 4-6: Limits used in higher-speed machine simulation case study.

 X-axis Y-axis

Maximum velocity [mm/s] 250 250

Acceleration [mm/s2] 5000 5000

Jerk [mm/s3] 40000 40000

Control signal [%] 50 50

Tracking error [mm] 0.02 0.02

The result of the optimization is given in Figure 4-4.

73

Figure 4-4: Simulated trajectory optimization on higher-speed machine.

Trajectories generated for the faster machine are successful in simulation. As with the trajectories generated

considering the router dynamics, the control signal and tracking error remain within their limits with only

minor numerical errors, particularly in the tracking error profile.

4.5 Conclusions

In this chapter, the selection of appropriate values for LP and NLP window sizes, overlap, and constraint

meshing factor are discussed. The motivation by which the parameters are selected is to reduce computation

time as much as possible while reducing the risk of constraint violation in the output trajectory.

Ideal window sizes selected, based on the used PC computational platform, sample toolpath geometries,

and machine limits considered, were 100 control points for LP and 20 for NLP. In general, LP window

sizes between 50 and 200 control points were found to be acceptable, as the LP window size has a secondary

effect on the total computation time. The NLP window size has a greater influence. The overlap was

selected as a multiple of the theoretical minimum overlap discussed in Section 3.7, with 4 times the

minimum for LP and 5 times the minimum for NLP windows. The large overlaps are selected to avoid

74

unnecessary local decelerations that occur at window boundaries, due to zero velocity and acceleration

initial and final conditions being imposed in each LP window problem definition.

The constraint meshing factor describes the number of constraint evaluation points per control point. An

overly small meshing factor results in a final (time-domain) trajectory with many large constraint violations.

Excessively large meshing factor, on the other hand, increases computation time. Bad on the toolpath that

was tested, a value of 5 was found to be ideal for computational efficiency if some constraint violation (e.g.,

20%) errors could be tolerated. A minimum value of 𝑁𝑐=10 was required for high-precision results in which

constraint violation has to be smaller (e.g., ≤1%).

Comparison was made between the SQP and IP algorithms for fulfilling the NLP window step. SQP is

significantly faster than the IP algorithm for all windows with a feasible initial guess. As the LP step is

designed to ensure feasibility of the starting guess, so the SQP algorithm can be selected as the primary

choice of NLP solver in nearly every case. Exceptions were noted, from rare cases (encountered during

more extensive testing) in which unpredictable numerical errors caused the SQP solver to fail. It was

observed that the IP algorithm is better able recover from these errors. Hence, in the final version of the

proposed algorithm, NLP has been implemented such that for each new window SQP, is first utilized and

only if this method does not succeed, the solution is obtained via IP.

An additional simulation was presented which validated the effectiveness of the algorithm when used to

generate an optimized trajectory for a higher-speed machine tool in comparison to the router, like ones

commonly used in the metal-cutting industry.

From the insights gained in this chapter, the selection of appropriate parameters can be achieved, that leads

to efficient and effective optimization of the feedrate profile in an error-free manner.

75

5 Smooth Connection Between Toolpaths using Euler Spirals

5.1 Introduction

Two toolpath smoothing methods are presented in this chapter. The first modifies the Euler spiral-based

corner smoothing method to combine synergistically with the optimization method discussed in Chapter 3,

to reduce the computational time of the combined smoothing and optimization. The second method uses

Euler spirals to generate transition toolpaths between the passes of a layered contour machining operation.

The Euler spiral is an arc length parametrized curve in which the curvature changes linearly with the arc

displacement. This continuous, gradual change in curvature makes it ideal for curves requiring tangent and

curvature transitions. For which reason, it has been used extensively in road and railroad design. This

benefit also applies for CNC toolpath planning. The G2-continuity of the Euler spiral profile means that,

when combined with a continuous feedrate profile, they generate continuous velocity and acceleration

profiles, and bounded jerk. The formulae for computing the coordinate points of Euler spirals require the

use of numerical integration, which does bring a minor amount of computational load during initialization,

similar to that of polynomial splines.

The corner smoothing method developed in this thesis applies Euler spiral “pairs” to replace sharp corners

in straight-line toolpaths, such as in [28], [29], [30], [31], resulting in a toolpath with continuity in both first

and second geometric derivatives. The smoothed path remains within a designated maximum contouring

deviation when compared with the original toolpath. The methodology developed in this thesis can be

applied in 2- or 3-dimensional straight-line toolpaths and differing from the earlier works, the toolpath

smoothing has also been integrated with automated feedrate optimization.

The combination of the corner smoothing and feed optimization takes advantage of a specific property of

Euler spirals. While they are computationally expensive due to the requirement for numerical integration,

their derivatives are much simpler to compute. This is beneficial in the context of optimization, which

requires the axis-level geometric derivatives to be determined a priori. There is no requirement for the

position coordinates to be computed until the optimization is complete and the trajectory is being generated

for commanding the machine tool. The computational time of the derivative-checking step is reduced by

90%, and therefore the total time of the optimization is significantly lower due to this.

Also in this chapter, an Euler-spiral based method for generating connecting movements between flat

contouring passes is presented. This method is designed for operation in which the contouring passes are

layered one on top of another. This technique affects only the repositioning segments between the

contouring passes and does not change the cutting toolpath or feedrate, which can be advantageous in the

case of high-precision machining operations with strict requirements for cutting feedrates. This transition

toolpath has been developed for reducing the total cycle time for machining such layered contouring

76

toolpaths, while preserving the to final part quality due to not making changes to the actual ‘cutting’ portion

of the operation.

5.2 Euler spirals

The Euler spiral is defined as a two-dimensional curve in which the curvature changes linearly with respect

to the arc displacement [30]. In Figure 5-1, a sample segment is shown which includes a straight line (zero

curvature), followed by a linear increase in the curvature (relative to the arc displacement 𝑠) throughout the

red highlighted Euler spiral segment, and then a circular arc of radius 𝑅𝑐, shown on the curvature plot as a

constant curvature of
1

𝑅𝑐
.

Figure 5-1: Euler spiral between a straight line and a circular arc.

5.2.1 Derivation of the Euler spiral equation

The derivation of the x- and y-coordinates of the Euler spiral starts with the linear expression of curvature,

𝜅, shown in Eq.(5-1). In this equation, 𝑐 is a constant that defines the rate at which the curvature changes

as a function of arc displacement 𝑠.

𝜅(𝑠) = 𝑐𝑠 (5-1)

The value of 𝑐 can be computed based on the length of the Euler spiral segment, 𝐿𝑠, and the ending radius

of curvature 𝑅𝑐.

𝑐 =
1

𝑅𝑐𝐿𝑠

(5-2)

From Eq. (5-2), the expression for the angle of the line 𝜃(𝑠), depicted in Figure 5-1, can be derived, as in

Eq. (5-3). The expression is simple and does not require numerical integration.

77

𝜃(𝑠) = ∫ 𝑐𝑢
𝑠

0

𝑑𝑢 =
1

2
𝑐𝑠2

(5-3)

The x- and y-coordinates of the resulting curve can be derived from the angle. For a small segment, 𝑑𝑠

[
𝑑𝑥
𝑑𝑦
] = [

𝑑𝑠 cos 𝜃(𝑠)

𝑑𝑠 sin 𝜃(𝑠)
]

(5-4)

Which can then be integrated over the whole curve, as given in Eqs. (5-5) and (5-6).

𝑥(𝑠) = ∫ cos (
1

2
𝑐𝑢2)

𝑠

0

𝑑𝑢
(5-5)

𝑦(𝑠) = ∫ sin (
1

2
𝑐𝑢2)

𝑠

0

𝑑𝑢
(5-6)

The above equations can also be normalized with a scaling factor, a:

𝑎 = √
𝑐

2

(5-7)

Once normalized, the x- and y-coordinates can be expressed in terms of the Fresnel integrals, as in Eqs.

(5-10) and (5-11). Fresnel integrals, defined as the cosine and sine of the square of the input, have been

significantly studied. Methods for accurate numerical computation of these integrals are available in

literature, as discussed in 5.3.4.

𝜅(𝑠) = 2𝑎2𝑠 (5-8)

𝜃(𝑠) = 𝑎2𝑠2 (5-9)

𝑥(𝑠) =
1

𝑎
∫ cos𝑢2 𝑑𝑢
𝑎𝑠

0

(5-10)

𝑦(𝑠) =
1

𝑎
∫ sin𝑢2
𝑎𝑠

0

𝑑𝑢
(5-11)

At this point, in the best of the author’s knowledge, the x- and y-coordinates of the Euler spiral cannot be

simplified further. Numerical integration is required to compute the coordinates along the line.

5.2.2 Geometric derivatives of the Euler spiral

For a given Euler spiral segment (Eq. (5-12)), the first, second, and third geometric derivatives are given

by Eqs. (5-13) to (5-15).

[
𝑥(𝑠)

𝑦(𝑠)
] =

1

𝑎

[

 ∫ cos 𝑢2

𝑎𝑠

0

𝑑𝑢

∫ sin𝑢2
𝑎𝑠

0

𝑑𝑢
]

(5-12)

[
𝑥𝑠(𝑠)

𝑦𝑠(𝑠)
] = [

cos(𝑎2𝑠2)

sin(𝑎2𝑠2)
]

(5-13)

78

[
𝑥𝑠𝑠(𝑠)

𝑦𝑠𝑠(𝑠)
] = 2𝑎2𝑠 [

− sin(𝑎2𝑠2)

cos(𝑎2𝑠2)
]

(5-14)

[
𝑥𝑠𝑠𝑠(𝑠)

𝑦𝑠𝑠𝑠(𝑠)
] = 2𝑎2 [−2𝑎

2𝑠2 cos𝑎2𝑠2 − sin 𝑎2𝑠2

−2𝑎2𝑠2 sin𝑎2𝑠2 + cos 𝑎2𝑠2
]

(5-15)

While determining the x- and y-axis coordinates requires numerical computation of the Fresnel integrals in

Eq. (5-12), the axis derivatives are expressed with simple formulae which can easily be computed

analytically. This offers an advantage in computation time for trajectory optimization routines that rely on

axis derivatives. The resulting derivative profiles are shown in Figure 5-2. When used for corner smoothing,

only a short segment of this profile is necessary, but the profiles in Figure 5-2 have been extended well

beyond these parts to verify the position and geometric derivatives while traversing multiple quadrants of

the same Euler spiral.

Figure 5-2: Euler spiral position coordinates and its geometric derivatives.

As shown earlier in Eqs. (3-18)-(3-20), the kinematic profiles of a trajectory are products of the axis

geometric derivatives with respect to arc length, the feedrate (�̇�), and its time derivatives (�̈�, 𝑠). Ensuring

that the axis first and second derivatives are continuous is necessary to ensure that the kinematic profiles of

a trajectory along this path remain bounded. An additional advantage is the arc-length parametrization of

the Euler spiral segments. Indeed, given the desired arc length to be traveled (𝑠), computing the Fresnel

integrals in Eq. (5-12) provides directly the x- and y-axis coordinates corresponding to that displacement,

79

eliminating the need to perform feed fluctuation corrections, which is a common issue with polynomial

type splines (like cubic or quintic), which are not arc length parameterized [7], [8].

5.3 Euler spiral pair connections between linear toolpath segments

In this section, a general method for applying Euler spirals to smooth the corners of toolpaths is developed

and described. Clothoid pair methods were proposed in literature before [28], [29], [31], [33]. In this thesis,

they have been synergistically integrated with the feed optimization in Chapter 3 to yield quick and time-

optimal cornering motion, while also providing advantageous mathematical computation properties. The

developed methodology applies to 2D paths, and has also been extended to 3D paths as described in Section

5.3.3.

Figure 5-3: Summary of corner smoothing method.

This method directly constrains the maximum contouring deviation 𝜖max with respect to the original path,

and the maximum cornering distance 𝑑max. These dimensions are indicated in Figure 5-3, and their

computation is detailed in Section 5.3.1.

The Euler spirals are computed based on the parameter, 𝑠′, which denotes the local arc displacement of any

corner, relative to its starting point 𝑠𝑠𝑡𝑎𝑟𝑡, (the arc displacement at the point 𝑃𝑠𝑡𝑎𝑟𝑡).

𝑠′ = 𝑠 − 𝑠𝑠𝑡𝑎𝑟𝑡 (5-16)

Figure 5-3 summarizes the method of smoothing using a symmetrical Euler-spiral pair. Given a set of input

points, the smoothed profile of each corner must be generated. In the top half of Figure 5-3, a set of

parameters is computed that defines the shape of each corner (as will be detailed in Section 5.3.1). The

stored values of these parameters for all corners provide a complete definition of the toolpath, from which

x- and y-coordinate points may be computed for any arc displacement value 𝑠, as shown in the bottom half

of Figure 5-3.

80

5.3.1 Determination of Euler spiral parameters for a single corner

For each corner in the original toolpath, the following parameters, designated in Figure 5-4, must be

computed:

• Scaling factor, 𝑎

• Corner length, 𝐿𝑠

• Start and end points, 𝑃𝑠𝑡𝑎𝑟𝑡 and 𝑃𝑒𝑛𝑑

Because the final size of the clothoid pair is not yet known, a temporary scaling factor is assumed, as 𝑎 =

1. Using the definition of the angle in Eq. (5-9), the total arc length of the corner can be computed from the

original angle of the corner, 𝜙:

𝜃 (
𝐿𝑠
2
) =

𝜙

2

(5-17)

𝐿𝑠 = √2𝜙

(5-18)

Figure 5-4: Single Euler spiral corner.

Figure 5-5 shows the contouring deviation and corner blending distance computed from the centre point of

the Euler spiral. In the second step, the correct scaling factor is computed such that the Euler spiral fits

within the applied contouring deviation and cornering distance constraints.

81

The values of contour deviation and cornering distance which correspond to the temporary scaling factor

𝑎 = 1 can be computed. These are denoted with 𝜖′ and 𝑑′. A temporary centre point 𝑃𝑐𝑒𝑛
′ can be computed

from Eq. (5-19).

𝑃𝑐𝑒𝑛
′ = [

𝑥𝑐𝑒𝑛
′

𝑦𝑐𝑒𝑛
′] =

[

∫ 𝑐𝑜𝑠 𝑢2
√𝜙
2

0

𝑑𝑢

∫ 𝑠𝑖𝑛 𝑢2
√𝜙
2

0

𝑑𝑢
]

(5-19)

The temporary contour deviation 𝜖′ and cornering distance 𝑑′ can be computed using Eqs. (5-20) and

(5-21).

Figure 5-5: Maximum path error and corner blending distance.

𝜖′ = |
𝑦𝑐𝑒𝑛
′

sin (
𝜋 − 𝜙
2

)
|

(5-20)

𝑑′ = |𝜖′ cos (
𝜋 − 𝜙

2
) + 𝑥′𝑐𝑒𝑛|

(5-21)

Because 𝑎 corresponds to a linear scaling of the size of the corner, it can be assigned by comparing the

temporary contouring deviation and cornering distance with the assigned constraints.

𝑎 = max(
𝜖′

𝜖𝑚𝑎𝑥
,
𝑑′

𝑑𝑚𝑎𝑥
)

(5-22)

Finally, the start and end points of the line can both be easily computed – they are both at a distance 𝑑 from

the corner point 𝑃𝑐𝑜𝑟𝑛𝑒𝑟 in the directions of incoming and outgoing lines to and from the corner point,

respectively.

82

5.3.2 Converting the double clothoid curve into toolpath coordinates

Using the computed parameters, the x- and y-coordinates of the line can be computed for any value of s.

First, the local arc displacement parameter of a corner is computed. If 𝑠𝑠𝑡𝑎𝑟𝑡 indicates the value of 𝑠 at

𝑃𝑠𝑡𝑎𝑟𝑡, then the local parameter 𝑠′ is computed as in Eq (5-16), from which the values of 𝑥 and 𝑦 can be

computed in Eqs. (5-23) and (5-24), where 𝜃𝑖 is the angle of the line immediately before the corner point,

and 𝜃𝑖+1 is the angle of the line immediately after.

[
𝑥(𝑠′)

𝑦(𝑠′)
] = 𝑅(𝜃𝑖)

1

𝑎

[

 ∫ cos𝑢2

𝑎𝑠′

0

𝑑𝑢

∫ sin𝑢2
𝑎𝑠′

0

𝑑𝑢
]

+ 𝑃𝑠𝑡𝑎𝑟𝑡 , 0 ≤ 𝑠
′ ≤

𝐿

2

(5-23)

[
𝑥(𝑠′)

𝑦(𝑠′)
] = 𝑅(𝜃𝑖+1)

1

𝑎

[

 ∫ cos 𝑢2

𝑎(𝑠′−𝐿)

0

𝑑𝑢

−∫ sin𝑢2
𝑎(𝑠′−𝐿)

0

𝑑𝑢
]

+ 𝑃𝑒𝑛𝑑 ,
𝐿

2
≤ 𝑠′ ≤ 𝐿

(5-24)

Above, the rotation matrices 𝑅(𝜃𝑖) and 𝑅(𝜃𝑖+1) can be expressed as,

𝑅(𝜃𝑖) = [
cos 𝜃𝑖 −sin𝜃𝑖
sin 𝜃𝑖 cos 𝜃𝑖

] , 𝑅(𝜃𝑖+1) = [
cos 𝜃𝑖+1 −sin 𝜃𝑖+1
sin 𝜃𝑖+1 cos 𝜃𝑖+1

]
(5-25)

The values of the function’s geometric derivatives can also be expressed as in Eqs. (5-13) to (5-15) with

rotations applied similarly to the x- and y-coordinate equations.

83

5.3.3 Extension of corner smoothing to 3-axis

Figure 5-6: Three-dimensional Euler spiral based toolpath smoothing.

This method can also be implemented for 3D toolpaths by applying a suitable rotation. Each corner is

defined by two lines – and therefore a single tilted plane. Each corner is created in 2-D in the corresponding

plane, and then rotated into place to match the original linear toolpath segments. To facilitate the extension

to 3D, an additional vector is computed for each plane, a normal vector 𝑣𝑛𝑜𝑟𝑚 which defines the plane’s

orientation.

The process of creating 3D corners takes place in three steps. First, the tilted plane on which the corner fits

is rotated on the x-y plane. Second, the desired sampling points for corner are created using the 2D

approach, defined in Sections 5.3.1and 5.3.2. Last, these points are rotated back into their intended

orientations.

To identify the angle of the tilted plane of the corner, 𝑣𝑛𝑜𝑟𝑚 is computed as in Eq. (5-26).

𝑣𝑛𝑜𝑟𝑚 = [

𝑣𝑥
𝑣𝑦
𝑣𝑧
] = (𝑃𝑐𝑜𝑟𝑛𝑒𝑟 − 𝑃𝑠𝑡𝑎𝑟𝑡) × (𝑃𝑒𝑛𝑑 − 𝑃𝑐𝑜𝑟𝑛𝑒𝑟)

(5-26)

Above, × represents the vector product.

Following this calculation, a set of transformations is generated, which rotates the tilted plane containing

the corner to the x-y plane, such that 𝑣𝑛𝑜𝑟𝑚 aligns with the corresponding z-axis.

84

For any point 𝑃, the modified 𝑃𝑟 which is in the x-y plane is computed using Eq. (5-27). The rotation

matrices are defined in Eq. (5-28), based on the components of 𝑣𝑛𝑜𝑟𝑚.

𝑃𝑟
′ = 𝑅2𝑅1𝑃

𝑃𝑟 = 𝑅2𝑅1𝑃 − 𝑃𝑟,𝑧
′

(5-27)

𝑅1 =

[

𝑣𝑥

√𝑣𝑥
2 + 𝑣𝑦

2

𝑣𝑦

√𝑣𝑥
2 + 𝑣𝑦

2

0

−
𝑣𝑦

√𝑣𝑥
2 + 𝑣𝑦

2

𝑣𝑥

√𝑣𝑥
2 + 𝑣𝑦

2

0

0 0 1]

 𝑅2 =

[

𝑣𝑧

√𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2

0 −
√𝑣𝑥

2 + 𝑣𝑦
2

√𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2

0 1 0

√𝑣𝑥
2 + 𝑣𝑦

2

√𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2

0
𝑣𝑧

√𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2
]

(5-28)

The rotation is performed in two steps: 𝑅1 corresponds to a rotation that aligns 𝑣𝑛𝑜𝑟𝑚 with the x-z plane,

and 𝑅2 corresponds to a rotation about the y-axis to align 𝑣𝑛𝑜𝑟𝑚 with the z-axis. After this rotation, the

point is then translated into the x-y plane by subtracting its z position 𝑃𝑟,𝑧
′ . Once these transformations are

applied to 𝑃𝑠𝑡𝑎𝑟𝑡, 𝑃𝑒𝑛𝑑, and 𝑃𝑐𝑜𝑟𝑛𝑒𝑟, the sample trajectory points along the Euler corner smoothing is

generated in the same way as the 2D approach, resulting in a set of points 𝑥𝑟(𝑠), 𝑦𝑟(𝑠). The final set of

corner points is then rotated and translated using the above transformation in reverse, as in Eq. (5-29).

[
𝑥(𝑠)

𝑦(𝑠)
] = 𝑅1

−1𝑅2
−1 ([

𝑥𝑟(𝑠)

𝑦𝑟(𝑠)
] + 𝑃𝑟,𝑧

′)
(5-29)

5.3.4 Numerical computation of Fresnel integrals

The generation of toolpaths relies on fast and accurate numerical integration methods. Selection of a

numerical method for Fresnel integrals must usually account for their oscillatory nature, which causes them

to be ill-conditioned and prone to large numerical errors [65]. However, in this application, the integration

is performed only on a limited portion of the function, which avoids the oscillatory section altogether. High

accuracy is also needed for interpolation, otherwise the planned velocity, acceleration, and jerk profiles will

not be replicated correctly. During testing, it was observed that simple first order or trapezoidal cumulative

summation produced excessive error and caused misalignment of the Euler spiral segments. Thus, the

Fresnel integrals have been computed in this thesis using MATLAB’s ‘quadgk’ function. This function

uses the Gauss-Kronrod quadrature method, which is particularly effective both for polynomial curves and

also Fresnel integrals. Further discussion of the Gaussian quadrature method can be found in [65].

85

5.3.5 Computation of only the geometric derivatives at the constraint evaluation points

To compute the sampled axis coordinates along the smoothed toolpath (𝑥, 𝑦, 𝑧), computation of integrals is

required. These integrals take up significant computational load. However, computing the axis derivatives

of the toolpath requires only simple formulae. In benchmarking, it was found that evaluating the actual

position coordinates on the Euler spiral required roughly 9 times more computational time compared to

evaluating the first, second, and third geometric derivatives. However, the feedrate optimization algorithm

needs only the geometric derivatives, and not the position coordinates themselves. Hence, once the

optimized feed profile is determined, the numerical integration applied to compute the position coordinates

only during the interpolation of the final axis trajectory.

5.3.6 Simulation case study: Euler spiral based corner smoothing integrated with feed optimization

A sample combined trajectory planning, involving smoothing of the ‘crown’ shape in Figure 5-3, and then

applying feedrate optimization via LP+NLP is shown in Figure 5-7.

Figure 5-7: Result of combined corner smoothing and feedrate optimization.

86

In processing the toolpath, the corner smoothing path deviation tolerance was set to 2 [mm], and the

maximum cornering distance to 40% of the length of any line. After executing the algorithm, it was verified

via inspection that at each acute corner, the contour deviation was indeed exactly 2 mm. At the obtuse

corners, the cornering distance constraint became active, and the path deviation was lower than 2 mm. Plots

of the predicted maximum control signal and servo tracking error are also shown. Each of these is kept

within the enforced limit, apart from small numerical errors caused by the time-domain reconstruction. By

the time NLP is complete, the velocity, acceleration, and jerk exceed the original LP-enforced constraints,

as is expected in the LP+NLP optimization.

5.3.7 Experimental validation for corner smoothing

Figure 5-8: Experimental result of Euler-spiral smoothed toolpath with LP+NLP feedrate optimization.

Combined toolpath smoothing and feedrate optimization was performed on a corner-smoothed toolpath on

the same experimental setup described in Section 3.10. The result is presented in Figure 5-8. The

experimental control signals are in excellent agreement with prediction results. Once again, due to

87

imperfections of the machine (e.g. friction and other nonlinearities), some inconsistency between the

predicted and measured servo is evident. Nevertheless, servo errors are in the range of prediction and on a

higher-end machine tool with better rigidity and lower friction, closer correlation can naturally be expected.

The tool is able to traverse the toolpath at the variable feedrate shown in Figure 5-9, reaching high speeds

during the straight-line segments, and continuing at moderate feedrates when turning around the corners.

Figure 5-9:Feedrate profile of experimentally tested Euler-spiral corner smoothing and LP+NLP optimization result.

5.4 Connecting multi-layer toolpaths using Euler spirals

Euler spirals can also be used to plan smooth in-between connections for multi-layered contouring

toolpaths. The toolpaths considered here are flat two-dimensional passes around, or within, a shape with

each pass being at a different height in the orthogonal direction. Figure 5-10 illustrates such an operation

for a ‘star-shaped’ contour.

Various methods exist for generating 3D machining toolpaths. When layer-by-layer contouring is required

with the z-axis feed occurring between the passes, an Euler spiral based toolpath can be used to reduce

motion time for repositioning between the layers. This is achieved by eliminating redundant decelerations

and accelerations.

88

Figure 5-10: Multi-layer contouring operation connected via Euler spiral-based toolpaths.

Figure 5-11a shows a top-down view of a typical contouring operation with lead-in/lead-out circular arcs,

which is a method commonly used in industry. Figure 5-11b shown an Euler spiral-based layer transition

curve, which has been developed in this thesis and integrated with feedrate optimization.

Figure 5-11: Comparison between circular arc lead-in and lead-out and Euler spiral based transition, top-down view.

89

The repositioning procedure in Figure 5-11a includes two circular arcs. The movement in the z-axis is

executed entirely in one straight line while connecting the sharp corners. In comparison, the Euler spiral-

based layer transition in Figure 5-11b can smoothly execute the movement from one z-level to the next, so

that the axes do not have to stop or slow down significantly, as they would with the sharp corners that occur

in the circular arc based repositioning strategy.

The Euler spiral based transition toolpath is shown in 3D in Figure 5-12. The section denoted ‘cutting’

remains unchanged for the contour machining portion. The ‘lead-in’ and ‘lead-out’ are accomplished with

Euler spiral segments, which remain within the same x-y plane within the consecutive contouring layers.

The ‘layer transition’ section is smooth between the z-levels of the current and proceeding layers, and also

blends the x-y coordinates of the toolpaths between the two layers.

Figure 5-12: Smooth transition between contour machining layers, 3D view.

5.4.1 Parameterization of the layer transition curve

The layer transition curve is created in two steps, combining Euler spiral segments aligned with each other,

which are then blended together. The base curve, shown in Figure 5-13a, is the starting point. An additional

curve (the layer blending function) is applied to accomplish the change in the z-level, and also to

accommodate minor changes in the x-y location and direction of the start and end points in each layer.

It should be noted that after the application of the layer blending function, the resulting toolpath is no longer

an exact Euler spiral – the curvature plot is no longer strictly linear, and the Euler spline parameter 𝑠 no

longer equal to the exact arc displacement. However, the resulting curve still remains very close to an Euler

spiral shape, provided that the z-axis step size is small and that the consecutive passes possess aligned entry

and exit points and tangents. The G2-continuity of the transition curve is also maintained.

90

Creating a base curve 𝑝𝑘(𝑠) that aligns with a given layer, Layer 𝑘, can be accomplished in two steps: First,

the shape 𝑝𝑛(𝑠) (shown in Figure 5-13a) is defined with Eqs. (5-30)-(5-32). This shape is then rotated and

aligned with the end of Layer 𝑘 (as 𝑝𝑘(𝑠)), using Eq. (5-33), as illustrated in Figure 5-13b.

Figure 5-13: Base curve of layer transition curve, before and after rotation and alignment.

𝑝𝑛(𝑠) = [
𝑥𝑛(𝑠)

𝑦𝑛(𝑠)
]

(5-30)

𝑥𝑛(𝑠) =

{

1

𝑎
∫ cos(𝑢2) 𝑑𝑢
𝑎𝑠

0

0 ≤ 𝑠 <
𝐿

4

1

𝑎
[∫ cos (−𝑢2 + 𝑎𝐿𝑢 −

𝑎2𝐿2

8
)𝑑𝑢

𝑎𝑠

𝑎𝐿
4

+∫ cos(𝑢2) 𝑑𝑢

𝑎𝐿
4

0

]
𝐿

4
≤ 𝑠 <

𝐿

2

1

𝑎
∫ cos(𝑢2 − 𝑎𝐿𝑢 +

3𝑎2𝐿2

8
)𝑑𝑢

𝑎𝑠

𝑎𝐿
2

𝐿

2
≤ 𝑠 <

3𝐿

4

1

𝑎
[∫ cos (−𝑢2 + 2𝑎𝑢𝐿 −

3𝑎2𝐿2

4
)𝑑𝑢 − ∫ cos(𝑢2) 𝑑𝑢

𝑎𝐿
4

0

𝑎𝑠

3𝑎𝐿
4

]
3𝐿

4
≤ 𝑠 < 𝐿

(5-31)

𝑦𝑛(𝑠) =

{

1

𝑎
∫ sin(𝑢2) 𝑑𝑢
𝑎𝑠

0

0 ≤ 𝑠 <
𝐿

4

1

𝑎
[∫ sin (−𝑢2 + 𝑎𝐿𝑢 −

𝑎2𝐿2

8
)𝑑𝑢 + ∫ sin(𝑢2) 𝑑𝑢

𝑎𝐿
4

0

𝑎𝑠

𝑎𝐿
4

]
𝐿

4
≤ 𝑠 <

𝐿

2

1

𝑎
[∫ sin (𝑢2 − 𝑎𝐿𝑢 +

3𝑎2𝐿2

8
)𝑑𝑢

𝑎𝑠

𝑎𝐿
2

+ 2∫ sin(𝑢2) 𝑑𝑢

𝑎𝐿
4

0

]
𝐿

2
≤ 𝑠 <

3𝐿

4

1

𝑎
[∫ sin (−𝑢2 + 2𝑎𝑢𝐿 −

3𝑎2𝐿2

4
)𝑑𝑢

𝑎𝑠

3𝑎𝐿
4

+∫ sin(𝑢2) 𝑑𝑢

𝑎𝐿
4

0

]
3𝐿

4
≤ 𝑠 < 𝐿

(5-32)

91

𝑝𝑘(𝑠) = [
𝑥𝑘
𝑦𝑘
] = [

cos(𝜃𝑒,𝑘) − sin(𝜃𝑒,𝑘)

sin(𝜃𝑒,𝑘) cos(𝜃𝑒,𝑘)
] 𝑝𝑛(𝑠) + [

𝑥𝑒,𝑘
𝑦𝑒,𝑘

]
(5-33)

In the above expressions, the parameters 𝑎 and 𝐿 are defined based on the desired size of the transition. A

clearance distance 𝑑 must be specified, as shown in Figure 5-13b. From this, the minimum radius of

curvature is computed in Eq. (5-34), followed by the scaling factor in Eq. (5-35), and the normalized length

𝐿′ in Eq. (5-36), and the total toolpath length in Eq. (5-37). The empirical factor ‘2.75’ in Eq. (5-34) was

determined by trial and error, when investigating the use of an Euler spiral to develop a layer transition

toolpath.

𝑟 ≅
𝑑

2.75

(5-34)

𝑎 =
1

𝑟√2𝜋

(5-35)

𝐿′ = 𝑎𝜋𝑟 (5-36)

𝐿 =
4𝐿′

𝑎

(5-37)

In the above equations, 𝐿 represents the perimeter for traveling around the full base oval shape, once. Each

of the four sections of this curve is an Euler spiral of the same shape, with the only differences being the

position and orientation of the shape. If the constraint evaluation points are placed identically on all

segments, Eqs. (5-31) and (5-32) may be solved only for the range of 0 ≤ 𝑠 < 𝐿/4, and the remaining three

segments can be generated by rotating and positioning exact copies of this segment.

As earlier mentioned, the base oval is rotated and positioned into alignment as shown in Figure 5-13b and

Eq. (5-33). To generate the final transition curve, two versions of the base oval shape are created, which

can be represented in arrays [𝑥𝑘 , 𝑦𝑘] aligning with the end of Layer 𝑘, and [𝑥𝑘+1, 𝑦𝑘+1] aligning with the

beginning of Layer 𝑘 + 1. A blending function is applied that transitions between these two oval shapes.

This way, the blending curve is able to account both for the z-level change, and any small discrepancies in

the x- and y-coordinate positions of each layer.

Before the blending function is applied, a certain portion of the transition toolpath is designated as ‘lead-

in’ or ‘lead-out’ for which no movement in the z-axis is desired. This way, the cutting tool would be

prevented from moving up or down (axially) while cutting a flat layer. To enforce the lead-in and lead-out

behaviour, a buffer factor 𝑏 is applied as in Eq. (5-38). This produces 𝐿𝑧 – the parameter length for the

vertical transition portion of the blending curve. The value of 𝑏 can be assigned based on the cutting

operation in question. As an example, when 𝑏 = 0.15, 15% of the total curve is designated as lead-out, and

15% is designated as lead-in, leaving 70% for the actual vertical (z-axis) transition.

𝐿𝑧 = 𝐿(1 − 2𝑏) (5-38)

92

The local Euler spline parameter for the transition portion of the blending curve is designated in Eq. (5-39).

𝑠𝑧 = 𝑠 − 𝐿𝑏 (5-39)

Figure 5-14: Blending function of Euler spiral layer transition.

Figure 5-14a shows the blending function as two parametric weights, to be applied on the two base oval

functions. This curve, made up of three connecting Euler spirals, is represented by Eqs. (5-40) and (5-41),

which are defined using the auxiliary functions detailed in (5-42) and (5-43). Similar to the base oval, it can

be viewed as one single segment repeated four times, with applied rotations and translations, which may be

used to reduce the number of numerical integrations that must be performed.

𝑠′(𝑠𝑧) =

{

 𝑓𝑠′,1(𝑠𝑧) 0 ≤ 𝑠𝑧 <

𝐿𝑧
4
 (part 1)

𝑓𝑠′,2(𝑠𝑧) + 𝑓𝑠′,1 (
𝐿𝑧
4
) − 𝑓𝑠′,2 (

𝐿𝑧
4
)

𝐿𝑧
4
≤ 𝑠𝑧 <

3𝐿𝑧
4
 (parts 2&3)

−𝑓𝑠′,1(−𝑠𝑧 + 𝐿𝑧) + 2(𝑓𝑠′,2 (
𝐿𝑧
2
) + 𝑓𝑠′,1 (

𝐿𝑧
4
) − 𝑓𝑠′,2 (

𝐿𝑧
4
))

3𝐿𝑧
4
≤ 𝑠𝑧 < 𝐿𝑧 (part 4)

(5-40)

𝑤(𝑠𝑧) =

{

𝑓𝑤,1(𝑠𝑧) 0 ≤ 𝑠𝑧 <
𝐿𝑧
4
 (part 1)

𝑓𝑤,2(𝑠𝑧) + 𝑓𝑤,1 (
𝐿𝑧
4
) − 𝑓𝑤,2 (

𝐿𝑧
4
)

𝐿𝑧
4
≤ 𝑠𝑧 <

3𝐿𝑧
4
 (parts 2&3)

−𝑓𝑤,1(−𝑠𝑧 + 𝐿𝑧) + 2(𝑓𝑤,2 (
𝐿𝑧
2
) + 𝑓𝑤,1 (

𝐿𝑧
4
) − 𝑓𝑤,2 (

𝐿𝑧
4
))

3𝐿𝑧
4
≤ 𝑠𝑧 < 𝐿𝑧 (part 4)

(5-41)

These functions are defined in terms of individual Euler spiral segments in (5-42) and (5-43).

𝑓𝑠′,1(𝑠𝑧) = ∫ cos (
2

𝑟𝑧𝐿𝑧
𝑢2)𝑑𝑢

𝑠𝑧

0

𝑓𝑠′,2(𝑠𝑧) = ∫ cos (−
2

𝑟𝑧𝐿𝑧
𝑢2 +

2

𝑟𝑧
𝑢 −

𝐿𝑧
4𝑟𝑧
) 𝑑𝑢

𝑠𝑧

0

(5-42)

93

𝑓𝑤,1(𝑠𝑧) = ∫ sin (
2

𝑟𝑧𝐿𝑧
𝑢2)𝑑𝑢

𝑠𝑧

0

𝑓𝑤,2(𝑠𝑧) = ∫ sin (−
2

𝑟𝑧𝐿𝑧
𝑢2 +

2

𝑟𝑧
𝑢 −

𝐿𝑧
4𝑟𝑧
)𝑑𝑢

𝑠𝑧

0

(5-43)

In order to compute these segments, a maximum radius of curvature must be assigned (𝑟𝑧), which also

influences the transition rate of the weighting function. By trial and error, it was found that using a value

𝑟𝑧 = 10𝐿𝑧 produced a suitable weighting function shape. After the curve is created, a factor is applied per

Eq. (5-44) which scales the weighting range to be between 0 and 1.

𝛼 =
1

𝑤(4𝐿𝑧)

(5-44)

 After the blending function is normalized, it is applied as a weighting factor which transitions between the

previously generated base curves [𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘] and [𝑥𝑘+1, 𝑦𝑘+1, 𝑧𝑘+1], aligning with the end of Layer 𝑘 and

beginning of Layer 𝑘 + 1, respectively. The z levels of each layer are represented as constant values 𝑧𝑘,

and 𝑧𝑘+1. The blending function is scaled with the factor 𝛼, given in Eq. (5-44), after which the final curve

can be computed with Eq. (5-45).

𝑓(𝑠𝑧) = [

𝑥(𝑠𝑧)

𝑦(𝑠𝑧)

𝑧(𝑠𝑧)
] = (1 − 𝛼𝑤(𝑠𝑧)) [

𝑥𝑘(𝑠
′(𝑠𝑧))

𝑦𝑘(𝑠
′(𝑠𝑧))
𝑧𝑘

] + (𝛼𝑤(𝑠𝑧)) [

𝑥𝑘+1(𝑠
′(𝑠𝑧))

𝑦𝑘+1(𝑠
′(𝑠𝑧))

𝑧𝑘+1

]

(5-45)

Figure 5-14b shows the two base curves, and the resulting transition toolpath after the weighting function

is applied.

5.4.2 Sample trajectory using Euler spiral based layer transitions

Figure 5-15 depicts the toolpath generated for a star-shaped contouring operation with Euler spiral based

layer transitions. They can be seen on the right-hand side of the figure, linking smoothly from one layer to

the next. This toolpath has been considered in the case study presented here.

94

Figure 5-15: Layer transition on 11-layer contouring operation of star shape.

The layer transition curve has been integrated with the feed optimization. A scenario is considered in which

the contour machining is to be conducted at a constant preassigned feedrate (for example, constrained due

to the machining process specifications), and the feedrate optimization is performed only on the transition

curves (to speed up the repositioning). To test the main idea, at this stage only LP-based feed optimization

was used. Table 5-1 lists the constraints that were considered in the trajectory generation and optimization.

It is customary in CNC toolpath programming for the entry portion into a contour machining operation to

have a feedrate typically lower (e.g. by around 50%) compared to the cutting feed value. This is referred to

as the ‘lead-in’ feedrate. In developing the simulation case study, to reflect industrial practice, a lead-in

feedrate of 50% was also imposed in the ‘lead-in’ portion of the repositioning toolpath.

Table 5-1: Parameters used in the validating Euler spiral based layer transition.

Cutting feedrate [𝑚𝑚/𝑠] 40

Maximum feed (lead-in) [𝑚𝑚/𝑠] 20

Maximum feed during layer transition [𝑚𝑚/𝑠] (not limited)

Axis velocity limit [𝑚𝑚/𝑠] 250

Axis acceleration limit [𝑚𝑚/𝑠2] 3000

Axis jerk limit [𝑚𝑚/𝑠3] 50000

95

Figure 5-16: Optimized layer transition of 11-layer star-shaped contouring operation.

Figure 5-16 shows the completed contouring toolpath with layer transitions, color coded to represent

feedrate. Each machining pass is visible as a section of constant feedrate. In between the cutting passes, the

feed decreases for the smaller transition curves – both due to the smaller geometry of the curve, and to

accommodate the enforced maximum lead-in feedrate, which was observed to be the active constraint. The

deceleration is smooth and the feedrate does not decrease to zero or near-zero, as would be the case with a

circular arc and corner based transition curve shown in Figure 5-11a. The axis-level velocity, acceleration,

and jerk are shown for a typical single transition, and as can be seen, they remain within the assigned limits

in Table 5-1.

In typical CNC programming, a circular arc transition toolpath like the one in Figure 5-11a is often traversed

at constant feedrate. This can be improved with optimization, but still remains slower than the Euler spiral

transition. Figure 5-17 presents a comparison between LP-based feed optimization performed on the Euler

spiral transition and the circular arc transition (considering the same limits in Table 5-1). The trajectory for

the circular arc toolpath has four noticeable slow-down points, each associated with a discontinuity: The

two corner points at which the direction (i.e., tangent) is discontinuous, and the connection points out of

and into the cutting portion, at which the curvature is discontinuous. The Euler spiral eliminates all of these

discontinuities, and therefore does not require the tool to slow down unnecessarily. Unless imposed by

geometry (e.g., very small radius of curvature in the transition), the feedrate does not have to slow down

96

below the specified lead-in feed value. Thus, in comparison to arc-based transitioning, in this example the

time required per tool positioning is decreased by 23%.

Figure 5-17: Comparison between Euler spiral based transition and circular arc based transition, with feed optimization.

5.5 Conclusions

In this chapter, two toolpath smoothing methods have been developed based on the Euler spiral. The first

is an extension of a known Euler spiral ‘pair’ method from literature, implemented to work directly with

the feedrate optimization method presented in Chapter 3. The Euler spiral pair method was developed and

implemented in both 2D and 3D. The second is a method designed to reduce machining time for multi-level

contouring operations, by enabling non-stop transitions between layers.

The Euler spiral pair method is advantageous as it generates an exactly arc-length parametrized curve which

is continuous in first and second geometric derivatives of the axes. This has been implemented in a method

in which the toolpath parameters are stored, and derivatives can be pre-computed for any given arc

displacement. Euler spiral based position coordinates can be inefficient to compute, as there is no closed-

form analytical solution and numerical integration is needed. By contrast, the axis geometric derivatives of

Euler spirals are represented with simple formulae, which is a convenient feature they offer for direct

calculation, in comparison to interpolating the toolpath ahead of time and computing the derivatives by

numerical differentiation.

The layer transition toolpath is advantageous in machining multi-layer contouring toolpaths. While the

machining portion remains unchanged, in comparison to using industry-standard circular arc-based

repositioning, Euler spirals can achieve non-stop tool repositioning while the tool is not cutting, with shorter

motion time and as well as lower acceleration and velocity requirements.

97

Future work for both methods would involve extending them into 5-axes. Prototype 5-axis smoothing

methods were tested in development, but the combination of tool tip position and orientation profiles

occasionally produced discontinuities or unwanted geometries.

98

6 Conclusions and Future Work

6.1 Conclusions

In this thesis, a novel feedrate scheduling method was developed combining linear programming and

nonlinear programming optimization algorithms in a dual-windowed configuration. Linear programming,

which is fast and robust, is used to generate a near-optimal starting guess of the feedrate profile, followed

by nonlinear programming to refine the profile. Nonlinear optimization is more computationally expensive,

but can directly constrain a wide variety of target responses which are nonlinear with respect to the feedrate.

The linear programming solution is a near-optimal solution to the velocity, acceleration, and jerk

constrained problem, which is used as a conservative means of limiting the servo tracking error and

commanded motor torque for the trajectory. The nonlinear optimization step implements motor torque and

tracking error constraints directly, allowing for shorter cycle times without exceeding the imposed

maximums on these two responses. The window size and alignment strategies have been developed

specifically for the dual-windowed strategy, in order to coordinate the boundary conditions of the two

optimization algorithms, as non-matching constraints have the potential to produce an infeasible

intermediate solution, which can cause the algorithm to fail.

Simulation case studies were generated that demonstrate the effectiveness of the algorithm, with a cycle

time reduction of approximately 30% when compared with the LP-only solution, and the predicted motor

torque and tracking error successfully constrained within the target envelope. Experimental case studies

were implemented that showed promise, with the simulated trajectories being implemented smoothly, and

the motor torque being successfully constrained. Accurately constraining the tracking error was more

challenging, due to the difficulty of predicting this response for the used testbed (a flatbed router), which

had significant nonlinearities, like friction, and low rigidity. Further experimental case studies are suggested

on a modern, industrial CNC machine, as the tracking error prediction model has already been validated in

literature.

Two toolpath smoothing methods were developed with the use of Euler spirals:

Euler spiral pair connections were used to generate a G2-continuous, exactly arc-length parametrized curves

for smoothing sharp corners in the toolpath. The G2-continuity of the toolpath, when combined with a

continuous feedrate profile, guarantees that the velocity and acceleration of the trajectory along that path

are continuous and the jerk is bounded. The algorithm has been integrated with the LP+NLP feed

optimization to reduce the overall computation time, taking advantage of the ease of computing geometric

derivatives for Euler spirals without having to solve the toolpath itself. Once the feedrate is optimized and

the feed profile and toolpath are ready to be interpolated, numerical integration is used for determining the

position profiles on the Euler spiral. For this purpose, Gauss-Kronrod quadrature method was determined

to be suitable.

99

An Euler spiral based layer-transition toolpath was designed for multilevel contouring toolpaths. This

method replaces the circular arc based repositioning segments, thus achieving smooth and uninterrupted

connection between the layers. Euler spiral based layer transitioning requires less motion time compared to

circular arc-based connections. Since tangent and curvature discontinuities are avoided, the required axis

velocity and acceleration commands are also smaller in magnitude.

The novel contributions of the thesis are as follows:

• A novel dual-windowing LP+NLP feedrate scheduling algorithm, in which two optimization

algorithms are combined into a forward-looking windowed solution. This algorithm is able to generate

optimized trajectories with motor torque and tracking error constrained directly, which gives lower

cycle times than the velocity, acceleration, and jerk constrained optimization. This algorithm was

verified in simulation and experiment.

• A toolpath corner smoothing method using Euler spiral pairs, which has been integrated in a novel

manner with the proposed LP+NLP feedrate optimization. Taking advantage of the derivative property

of Euler spirals, the method computes the geometric derivatives for the constraint checkpoints without

requiring computationally expensive numerical integration for computing the checkpoint coordinates.

The latter is normally required when working with other kinds of splines (e.g. B-spline, polynomial,

etc.).

• An Euler-spiral based layer transition toolpath to reduce machining time in multi-layer contouring. This

method has also been integrated with feed optimization. Compared to the industrial practice of planning

lead-in and lead-out movements via in-layer circular arcs, the proposed transition continuously

modulates the tangent and curvature, while integrating smooth z-axis motion. This results in quicker

movement while requiring less velocity and acceleration from the drives.

6.2 Future work

The research in this thesis opens several avenues for future work. Some of the topics recommended for

further research are:

• Continuous and streaming implementation: The developed feed optimization algorithm has a structure

amenable to continuous processing of indefinitely long toolpaths. However, the current implementation

in Matlab utilizes large-scale arrays for recording and displaying the final optimization profile outputs.

In future work, these can be removed so the output is written directly to a file or a continuous buffer.

• Using different basis functions: The feed optimization in this thesis considered B-splines as the

fundamental curve to modulate. In the future, other options, such as radial basis functions and wavelets

can also be investigated.

100

• Variable-step meshing of control and constraint evaluation points in feed optimization: Using fixed

distance meshing, which is adjusted to consider only the smallest feature size, can be conservative if

many of the toolpath segments are actually larger. One possible solution could be to split each toolpath

segment, typically defined by a cubic B-spline, into a fixed minimum number of control points and

constraint checkpoints. Larger features and toolpath segments, which have less abrupt curvature

changes, would thus utilize ‘as required’ feed modulation and constraint checkpoints, rather than a high

density of fixed mesh points. However, this would mean that the ‘𝐵’ matrix structure in Section 3.3.5

would not be constant anymore, but would need to be updated regularly in the algorithm. It is worth

investigating whether this modification can yield further computational efficiency, especially when

handling long toolpaths with segments that vary substantially in size with respect to one another (e.g.,

1:10 or 1:100).

• Extension of the algorithm to 5-axis: The feed optimization and toolpath smoothing algorithms

presented in this thesis can be extended to work with position and orientation vectors of the tool. 5-axis

machining is becoming increasingly important in industrial CNC, and is essential for producing

complex parts in many applications, like aerospace, biomedical, and automotive. Extending the

algorithms to 5 axes would broaden the range of machining operations that can be improved for

efficiency and quality.

• Use of a multibody model: The current optimization algorithm considers each axis to be independent

of one another. However, in the case of 5-axis machining, the inertial coupling between axes can have

a large effect on the dynamic response of the machine, which must be accurately modeled and

considered. The dynamic response of 5-axis machine tools, especially containing direct drive rotary

axes, are highly nonlinear, comprising of multibody coupling effects, friction, and position-dependent

disturbances (e.g., torque ripple). Therefore, nonlinear optimization is most suitable in handling them.

• Integrating feed optimization with machine learning (ML): The current feed scheduling method

developed is based on classical optimization methods, which can take a considerable time to converge.

Future research should consider utilizing ML to speed up the feed optimization, where ML can be

trained to detect patterns and yield near-optimum profiles based on the optimization output for given

axis derivative profiles and constraints. Then, a trained ML can be used to potentially replace parts of

the feed optimization (such as the initial guess generation via LP), or maybe to perform the optimization

altogether (with some safety and constraint compliance checks, as applicable).

• Position dependent modulation of constraint boundaries: In certain 3D machining applications, some

passes require only low positioning tolerance, whereas other portions of the toolpath may need tight

tolerances. To take advantage of the opportunities to ‘speed-up’ the manufacturing throughput when

101

possible, while ensuring compliance in the necessary portions for contour machining, the constraint

boundaries considered in the feed optimization can be made path dependent.

• Integrating toolpath and feedrate optimization into a single simultaneous optimization algorithm:

Allowing the feedrate and toolpath modifications to occur within the same optimization routine would

enable further reduction in motion time. It was observed by the author, while conducting this thesis,

that minute changes to the toolpath geometry can facilitate smoother geometric derivatives, allowing

an increase in the feedrate profile. To explore the benefit of simultaneous toolpath and feed

optimization, developing an algorithm first to work on short one-shot toolpaths, and then extending the

approach into a windowed solution, similar to the one presented in this thesis, is recommended for

future research.

• Extension to other processes: In the future, the methodologies in this thesis can also be extended to

processes other than machining, such as laser cutting, additive manufacturing (deposition), and

freeform surface polishing, which also require contour tracing. In such processes, feedrate may need to

be limited with both lower and upper bounds, as a function of arc displacement, which would be

incorporated into the optimization constraints.

102

Letters of Copyright permission

ELSEVIER LICENSE

TERMS AND CONDITIONS

Feb 13, 2024

This Agreement between Katharine DiCola ("You") and Elsevier ("Elsevier") consists of

your license details and the terms and conditions provided by Elsevier and Copyright

Clearance Center.

License Number 5724920709271

License date Feb 09, 2024

Licensed Content Publisher Elsevier

Licensed Content Publication Precision Engineering

Licensed Content Title

Accurate control of ball screw drives using pole-

placement vibration damping and a novel trajectory

prefilter

Licensed Content Author Dan J. Gordon,Kaan Erkorkmaz

Licensed Content Date Apr 1, 2013

Licensed Content Volume 37

Licensed Content Issue 2

Licensed Content Pages 15

Start Page 308

End Page 322

Type of Use reuse in a thesis/dissertation

Portion figures/tables/illustrations

Number of

figures/tables/illustrations
2

Format both print and electronic

Are you the author of this

Elsevier article?
No

Will you be translating? No

Title of new work
Smooth and Time-Optimal Trajectory Planning for

Multi-Axis Machine Tools

Institution name University of Waterloo

Expected presentation date Feb 2024

Portions Figure 2, page 310 Figure 7, page 313

Requestor Location

Katharine DiCola

Attn: Katharine DiCola

Publisher Tax ID GB 494 6272 12

Total 0.00 CAD

103

ELSEVIER LICENSE

TERMS AND CONDITIONS

Feb 13, 2024

This Agreement between Katharine DiCola ("You") and Elsevier ("Elsevier") consists of

your license details and the terms and conditions provided by Elsevier and Copyright

Clearance Center.

License Number 5724920454397

License date Feb 09, 2024

Licensed Content Publisher Elsevier

Licensed Content Publication CIRP Annals - Manufacturing Technology

Licensed Content Title

Feedrate optimization for freeform milling considering

constraints from the feed drive system and process

mechanics

Licensed Content Author
Kaan Erkorkmaz,S. Ehsan Layegh,Ismail

Lazoglu,Huseyin Erdim

Licensed Content Date Jan 1, 2013

Licensed Content Volume 62

Licensed Content Issue 1

Licensed Content Pages 4

Start Page 395

End Page 398

Type of Use reuse in a thesis/dissertation

Portion figures/tables/illustrations

Number of

figures/tables/illustrations
1

Format both print and electronic

Are you the author of this

Elsevier article?
No

Will you be translating? No

Title of new work
Smooth and Time-Optimal Trajectory Planning for

Multi-Axis Machine Tools

Institution name University of Waterloo

Expected presentation date Feb 2024

Portions Figure 7, page 398

Requestor Location

Katharine DiCola

Attn: Katharine DiCola

Publisher Tax ID GB 494 6272 12

Total 0.00 CAD

104

ELSEVIER LICENSE

TERMS AND CONDITIONS

Feb 13, 2024

This Agreement between Katharine DiCola ("You") and Elsevier ("Elsevier") consists of

your license details and the terms and conditions provided by Elsevier and Copyright

Clearance Center.

License Number 5724920163294

License date Feb 09, 2024

Licensed Content Publisher Elsevier

Licensed Content Publication CIRP Annals - Manufacturing Technology

Licensed Content Title
Linear programming and windowing based feedrate

optimization for spline toolpaths

Licensed Content Author
Kaan Erkorkmaz,Qing-Ge (Christina) Chen,Ming-

Yong Zhao,Xavier Beudaert,Xiao-Shan Gao

Licensed Content Date Jan 1, 2017

Licensed Content Volume 66

Licensed Content Issue 1

Licensed Content Pages 4

Start Page 393

End Page 396

Type of Use reuse in a thesis/dissertation

Portion figures/tables/illustrations

Number of

figures/tables/illustrations
1

Format both print and electronic

Are you the author of this Elsevier

article?
No

Will you be translating? No

Title of new work
Smooth and Time-Optimal Trajectory Planning for

Multi-Axis Machine Tools

Institution name University of Waterloo

Expected presentation date Feb 2024

Portions Figure 2, page 395

Requestor Location

Katharine DiCola

Attn: Katharine DiCola

Publisher Tax ID GB 494 6272 12

Total 0.00 CAD

105

106

References

[1] W. Pease, “An Automatic Machine Tool,” Scientific American, vol. 187, no. 3, pp. 101–115, 1952.

[2] M. E. Kahn and B. Roth, “The near-minimum-time control of open-loop articulated kinematic

chains,” 1971.

[3] J. E. Bobrow, S. Dubowsky, and J. S. Gibson, “Time-optimal control of robotic manipulators along

specified paths,” The international journal of robotics research, vol. 4, no. 3, Art. no. 3, 1985.

[4] C. Q. G. Chen, “Time-Optimal Feedrate Planning for Freeform Toolpaths for Manufacturing

Applications,” Master’s Thesis, University of Waterloo, 2018.

[5] J. Huan, “Direct Spline Interpolation of CNC-Machine Tool,” IFAC Proceedings Volumes, vol. 18,

no. 9, Art. no. 9, Aug. 1985, doi: 10.1016/S1474-6670(17)60297-0.

[6] J. Yang and A. Yuen, “An analytical local corner smoothing algorithm for five-axis CNC machining,”

International Journal of Machine Tools and Manufacture, vol. 123, pp. 22–35, Dec. 2017, doi:

10.1016/j.ijmachtools.2017.07.007.

[7] K. Erkorkmaz and Y. Altintas, “Quintic Spline Interpolation With Minimal Feed Fluctuation,”

Journal of Manufacturing Science and Engineering, vol. 127, no. 2, Art. no. 2, Apr. 2005, doi:

10.1115/1.1830493.

[8] F.-C. Wang and D. C. H. Yang, “Nearly arc-length parameterized quintic-spline interpolation for

precision machining,” Computer-Aided Design, vol. 25, no. 5, Art. no. 5, May 1993, doi:

10.1016/0010-4485(93)90085-3.

[9] K. Erkorkmaz, C.-H. Yeung, and Y. Altintas, “Virtual CNC system. Part II. High speed contouring

application,” International Journal of Machine Tools and Manufacture, vol. 46, no. 10, pp. 1124–

1138, Aug. 2006, doi: 10.1016/j.ijmachtools.2005.08.001.

[10] H. Zhao, L. Zhu, and H. Ding, “A real-time look-ahead interpolation methodology with curvature-

continuous B-spline transition scheme for CNC machining of short line segments,” International

Journal of Machine Tools and Manufacture, vol. 65, pp. 88–98, Feb. 2013, doi:

10.1016/j.ijmachtools.2012.10.005.

[11] B. Sencer, K. Ishizaki, and E. Shamoto, “A curvature optimal sharp corner smoothing algorithm for

high-speed feed motion generation of NC systems along linear tool paths,” The International Journal

of Advanced Manufacturing Technology, vol. 76, no. 9–12, Art. no. 9–12, 2015.

[12] C. Lartigue, C. Tournier, M. Ritou, and D. Dumur, “High-Performance NC for HSM by means of

Polynomial Trajectories,” CIRP Annals, vol. 53, no. 1, Art. no. 1, Jan. 2004, doi: 10.1016/S0007-

8506(07)60706-9.

[13] B. Sencer, Y. Altintas, and E. Croft, “Feed optimization for five-axis CNC machine tools with drive

constraints,” International Journal of Machine Tools and Manufacture, vol. 48, no. 7, Art. no. 7, Jun.

2008, doi: 10.1016/j.ijmachtools.2008.01.002.

[14] C. Okwudire, K. Ramani, and M. Duan, “A trajectory optimization method for improved tracking of

motion commands using CNC machines that experience unwanted vibration,” CIRP Annals, vol. 65,

no. 1, Art. no. 1, Jan. 2016, doi: 10.1016/j.cirp.2016.04.100.

[15] W. Fan, X.-S. Gao, C.-H. Lee, K. Zhang, and Q. Zhang, “Time-optimal interpolation for five-axis

CNC machining along parametric tool path based on linear programming,” Int J Adv Manuf Technol,

vol. 69, no. 5, Art. no. 5, Nov. 2013, doi: 10.1007/s00170-013-5083-x.

[16] Q. Zhang, S. Li, J.-X. Guo, and X.-S. Gao, “Time-optimal path tracking for robots under dynamics

constraints based on convex optimization,” Robotica, vol. 34, no. 9, Art. no. 9, Sep. 2016, doi:

10.1017/S0263574715000247.

[17] K. Erkorkmaz, Q.-G. (Christina) Chen, M.-Y. Zhao, X. Beudaert, and X.-S. Gao, “Linear

programming and windowing based feedrate optimization for spline toolpaths,” CIRP Annals, vol.

66, no. 1, Art. no. 1, Jan. 2017, doi: 10.1016/j.cirp.2017.04.058.

107

[18] H. Liu, Q. Liu, S. Zhou, C. Li, and S. Yuan, “A NURBS interpolation method with minimal feedrate

fluctuation for CNC machine tools,” The International Journal of Advanced Manufacturing

Technology, vol. 78, no. 5–8, Art. no. 5–8, 2015.

[19] M. Heng and K. Erkorkmaz, “Design of a NURBS interpolator with minimal feed fluctuation and

continuous feed modulation capability,” International Journal of Machine Tools and Manufacture,

vol. 50, no. 3, pp. 281–293, Mar. 2010, doi: 10.1016/j.ijmachtools.2009.11.005.

[20] M. Duan and C. Okwudire, “Minimum-time cornering for CNC machines using an optimal control

method with NURBS parameterization,” Int J Adv Manuf Technol, vol. 85, no. 5, Art. no. 5, Jul. 2016,

doi: 10.1007/s00170-015-7969-2.

[21] X.-R. Wang, Z.-Q. Wang, Y.-S. Wang, T.-S. Lin, and P. He, “A bisection method for the milling of

NURBS mapping projection curves by CNC machines,” The International Journal of Advanced

Manufacturing Technology, vol. 91, no. 1–4, Art. no. 1–4, 2017.

[22] S. Tajima, B. Sencer, and E. Shamoto, “Accurate interpolation of machining tool-paths based on FIR

filtering,” Precision Engineering, vol. 52, pp. 332–344, Apr. 2018, doi:

10.1016/j.precisioneng.2018.01.016.

[23] S. Tajima and B. Sencer, “Accurate real-time interpolation of 5-axis tool-paths with local corner

smoothing,” International Journal of Machine Tools and Manufacture, vol. 142, pp. 1–15, Jul. 2019,

doi: 10.1016/j.ijmachtools.2019.04.005.

[24] K. Erkorkmaz, “Efficient Fitting of the Feed Correction Polynomial for Real-Time Spline

Interpolation,” Journal of Manufacturing Science and Engineering, vol. 137, no. 4, Art. no. 4, Aug.

2015, doi: 10.1115/1.4030300.

[25] M. Chen and Y. Sun, “Contour error–bounded parametric interpolator with minimum feedrate

fluctuation for five-axis CNC machine tools,” Int J Adv Manuf Technol, vol. 103, no. 1–4, pp. 567–

584, Jul. 2019, doi: 10.1007/s00170-019-03586-5.

[26] R. Levien, “The Euler spiral: a mathematical history,” p. 16.

[27] J. STOER, “Curve Fitting With Clothoidal Splines,” Journal of Research of the National Bureau of

Standards, vol. 87, no. 4, pp. 317–346, 1982.

[28] Y. Kanayama, “Trajectory generation for mobile robots,” Int. J. Robotics Res, vol. 3, pp. 333–340,

1986.

[29] M. K. Jouaneh, Z. Wang, and D. A. Dornfeld, “Trajectory planning for coordinated motion of a robot

and a positioning table. I. Path specification,” IEEE Transactions on Robotics and Automation, vol.

6, no. 6, pp. 735–745, Dec. 1990, doi: 10.1109/70.63274.

[30] D. S. Meek and D. J. Walton, “Clothoid spline transition spirals,” Math. Comp., vol. 59, no. 199, pp.

117–133, 1992, doi: 10.1090/S0025-5718-1992-1134736-8.

[31] D. J. Walton and D. S. Meek, “A controlled clothoid spline,” Computers & Graphics, vol. 29, no. 3,

pp. 353–363, Jun. 2005, doi: 10.1016/j.cag.2005.03.008.

[32] A. Shahzadeh, A. Khosravi, and S. Nahavandi, “Path Planning for CNC Machines Considering

Centripetal Acceleration and Jerk,” in 2013 IEEE International Conference on Systems, Man, and

Cybernetics, Oct. 2013, pp. 1759–1764. doi: 10.1109/SMC.2013.303.

[33] A. Shahzadeh, A. Khosravi, T. Robinette, and S. Nahavandi, “Smooth path planning using biclothoid

fillets for high speed CNC machines,” International Journal of Machine Tools and Manufacture, vol.

132, pp. 36–49, Sep. 2018, doi: 10.1016/j.ijmachtools.2018.04.003.

[34] Q.-B. Xiao, M. Wan, Y. Liu, X.-B. Qin, and W.-H. Zhang, “Space corner smoothing of CNC machine

tools through developing 3D general clothoid,” Robotics and Computer-Integrated Manufacturing,

vol. 64, p. 101949, Aug. 2020, doi: 10.1016/j.rcim.2020.101949.

[35] R. V. Fleisig and A. D. Spence, “A constant feed and reduced angular acceleration interpolation

algorithm for multi-axis machining,” Computer-Aided Design, vol. 33, no. 1, Art. no. 1, Jan. 2001,

doi: 10.1016/S0010-4485(00)00049-X.

[36] K. Erkorkmaz and Y. Altintas, “High speed CNC system design. Part I: jerk limited trajectory

generation and quintic spline interpolation,” International Journal of Machine Tools and

Manufacture, vol. 41, no. 9, Art. no. 9, Jul. 2001, doi: 10.1016/S0890-6955(01)00002-5.

108

[37] K. Kong, H. C. Kniep, and M. Tomizuka, “Output Saturation in Electric Motor Systems:

Identification and Controller Design,” Journal of Dynamic Systems, Measurement, and Control, vol.

132, no. 051002, Aug. 2010, doi: 10.1115/1.4001792.

[38] Y. Altintas, Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC

design. Cambridge university press, 2012.

[39] D. J. Gordon and K. Erkorkmaz, “Accurate control of ball screw drives using pole-placement

vibration damping and a novel trajectory prefilter,” Precision Engineering, vol. 37, no. 2, Art. no. 2,

Apr. 2013, doi: 10.1016/j.precisioneng.2012.09.009.

[40] H. Li et al., “A novel feedrate scheduling method based on Sigmoid function with chord error and

kinematic constraints,” Int J Adv Manuf Technol, vol. 119, no. 3, pp. 1531–1552, Mar. 2022, doi:

10.1007/s00170-021-08092-1.

[41] S. Tajima and B. Sencer, “Real-time trajectory generation for 5-axis machine tools with singularity

avoidance,” CIRP Annals, vol. 69, no. 1, pp. 349–352, 2020.

[42] S. Tajima and B. Sencer, “Global tool-path smoothing for CNC machine tools with uninterrupted

acceleration,” International Journal of Machine Tools and Manufacture, vol. 121, pp. 81–95, Oct.

2017, doi: 10.1016/j.ijmachtools.2017.03.002.

[43] Y. Altintas and K. Erkorkmaz, “Feedrate Optimization for Spline Interpolation In High Speed

Machine Tools,” CIRP Annals, vol. 52, no. 1, pp. 297–302, Jan. 2003, doi: 10.1016/S0007-

8506(07)60588-5.

[44] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and M. Diehl, “Time-Optimal Path

Tracking for Robots: A Convex Optimization Approach,” IEEE Transactions on Automatic Control,

vol. 54, no. 10, Art. no. 10, Oct. 2009, doi: 10.1109/TAC.2009.2028959.

[45] D. E. Kirk, Optimal Control Theory: An Introduction. Courier Corporation, 2012.

[46] K. Erkorkmaz, S. E. Layegh, I. Lazoglu, and H. Erdim, “Feedrate optimization for freeform milling

considering constraints from the feed drive system and process mechanics,” CIRP Annals, vol. 62,

no. 1, Art. no. 1, Jan. 2013, doi: 10.1016/j.cirp.2013.03.084.

[47] T.-Y. Kim and J. Kim, “Adaptive cutting force control for a machining center by using indirect cutting

force measurements,” International Journal of Machine Tools and Manufacture, vol. 36, no. 8, Art.

no. 8, Aug. 1996, doi: 10.1016/0890-6955(96)00097-1.

[48] F. Ridwan, X. Xu, and F. C. L. Ho, “Adaptive execution of an NC program with feed rate

optimization,” Int J Adv Manuf Technol, vol. 63, no. 9, Art. no. 9, Dec. 2012, doi: 10.1007/s00170-

012-3959-9.

[49] K. Xu and K. Tang, “Five-axis tool path and feed rate optimization based on the cutting force–area

quotient potential field,” Int J Adv Manuf Technol, vol. 75, no. 9, Art. no. 9, Dec. 2014, doi:

10.1007/s00170-014-6221-9.

[50] H.-Y. Feng and N. Su, “Integrated tool path and feed rate optimization for the finishing machining of

3D plane surfaces,” International Journal of Machine Tools and Manufacture, vol. 40, no. 11, Art.

no. 11, Sep. 2000, doi: 10.1016/S0890-6955(00)00025-0.

[51] W. B. Ferry and Y. Altintas, “Virtual Five-Axis Flank Milling of Jet Engine Impellers—Part I:

Mechanics of Five-Axis Flank Milling,” Journal of Manufacturing Science and Engineering, vol.

130, no. 1, Art. no. 1, Jan. 2008, doi: 10.1115/1.2815761.

[52] J. Nocedal and S. Wright, Numerical Optimization. Springer Science & Business Media, 2006.

[53] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

[54] G. B. Dantzig, “Origins of the simplex method,” in A history of scientific computing, S. G. Nash, Ed.,

New York, NY, USA: ACM, 1990, pp. 141–151. doi: 10.1145/87252.88081.

[55] F. A. Potra and S. J. Wright, “Interior-point methods,” Journal of Computational and Applied

Mathematics, vol. 124, no. 1, pp. 281–302, Dec. 2000, doi: 10.1016/S0377-0427(00)00433-7.

[56] P. T. Boggs and J. W. Tolle, “Sequential Quadratic Programming *,” Acta Numerica, vol. 4, pp. 1–

51, Jan. 1995, doi: 10.1017/S0962492900002518.

109

[57] “Constrained Nonlinear Optimization Algorithms - MATLAB & Simulink.” Accessed: Oct. 23, 2023.

[Online]. Available: https://www.mathworks.com/help/optim/ug/constrained-nonlinear-

optimization-algorithms.html

[58] A.-C. Lee, M.-T. Lin, Y.-R. Pan, and W.-Y. Lin, “The feedrate scheduling of NURBS interpolator

for CNC machine tools,” Computer-Aided Design, vol. 43, no. 6, pp. 612–628, 2011.

[59] K. Erkorkmaz and M. Heng, “A heuristic feedrate optimization strategy for NURBS toolpaths,” CIRP

annals, vol. 57, no. 1, pp. 407–410, 2008.

[60] J. H. Gallier, Curves and surfaces in geometric modeling: theory and algorithms. Morgan Kaufmann,

2000.

[61] K. Höllig and J. Hörner, Approximation and modeling with B-splines. SIAM, 2013.

[62] C. De Boor, A practical guide to splines, vol. 27. springer-verlag New York, 1978.

[63] L. Ljung, System Identification: Theory for the User. Prentice Hall PTR, 1999.

[64] G. W. G. Tseng, C. Q. G. Chen, K. Erkorkmaz, and S. Engin, “Digital shadow identification from

feed drive structures for virtual process planning,” CIRP Journal of Manufacturing Science and

Technology, vol. 24, pp. 55–65, Jan. 2019, doi: 10.1016/j.cirpj.2018.11.002.

[65] R. M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods: From the Viewpoint

of Backward Error Analysis. New York, NY: Springer New York, 2013. doi: 10.1007/978-1-4614-

8453-0.

110

A. Appendices

A.1 Derivation of uniform quadratic and cubic B-spline equations and their derivatives

This appendix presents the mathematical derivations of the B-spline equations used in the main

optimization algorithm. Note that equation numbers will be used only for major equations and not

intermediary derivation steps.

The resulting quadratic B-spline equation is given in Eq. (A.1-6), and its first and second derivatives are

given in Eqs. (A.1-8) and (A.1-9) respectively. The resulting cubic B-spline equation is given in Eq. (A.1-7),

and its first and second derivatives are given in Eqs. (A.1-10) and (A.1-11) respectively.

A.1.1 Starting Equations

De Boor’s algorithm for B-spline computation is given in Eqs. (A.1-1), and (A.1-2). The starting point is

the characteristic function defined in Eq. (A.1-3), which is also the definition of a first-order B-spline.

𝑏𝑖,𝜉
𝑛 (𝑠) = 𝛾𝑖,𝜉

𝑛 (𝑠) ⋅ 𝑏𝑖,𝜉
𝑛−1(𝑠) + (1 − 𝛾𝑖+1,𝜉

𝑛 (𝑠)) ⋅ 𝑏𝑖+1,𝜉
𝑛−1 (𝑠) (A.1-1)

𝛾𝑖,𝜉
𝑛 (𝑠) =

𝑠 − 𝜉𝑖
𝜉𝑖+𝑛−1 − 𝜉𝑖

(A.1-2)

𝑏𝑖,𝜉
1 (𝑠) = {

1 𝑓𝑜𝑟 𝜉𝑖 ≤ 𝑠 < 𝜉𝑖+1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (A.1-3)

The notation 𝑏𝑖,𝜉
𝑛 represents the 𝑖th B-spline, of order 𝑛, with knot profile 𝜉 = [𝜉1, 𝜉2, … , 𝜉𝑘]. The knot

profile contains 𝑘 knots in total.

Additionally, because of the enforced uniform spacing, the knot positions can be defined in terms of a

constant knot separation distance 𝑑, as described in Eq. (A.1-4).

𝜉𝑖 = 𝑑𝑖 (A.1-4)

A.1.2 Second order B-spline

𝑏𝑖
2 = 𝛾𝑖

2𝑏𝑖
1 + (1 − 𝛾𝑖+1

2)𝑏𝑖+1
1

𝑏𝑖
1(𝑠) = {

𝛾𝑖
2 𝑓𝑜𝑟 𝑑𝑖 ≤ 𝑥 < 𝑑(𝑖 + 1)

(1 − 𝛾𝑖+1
2) 𝑓𝑜𝑟 𝑑(𝑖 + 1) ≤ 𝑥 < 𝑑(𝑖 + 2)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

For which we can compute 𝛾:

𝛾𝑖
2(𝑠) =

𝑠 − 𝑑𝑖

𝑑

The result is:

𝑏𝑖
2(𝑠) =

{

𝑠 − 𝑑𝑖

𝑑
𝑓𝑜𝑟 𝑑𝑖 ≤ 𝑠 < 𝑑(𝑖 + 1)

𝑑(𝑖 + 2) − 𝑠

𝑑
𝑓𝑜𝑟 𝑑(𝑖 + 1) ≤ 𝑥 < 𝑑(𝑖 + 2)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (A.1-5)

111

A.1.3 Third order B-spline

𝑏𝑖
3 = 𝛾𝑖

3𝑏𝑖
2 + (1 − 𝛾𝑖+1

3)𝑏𝑖+1
2

First, we can fill in the pieces of 𝑏𝑖
2 and 𝑏𝑖+1

2 from Eq. (A.1-5)

𝑏𝑖
3(𝑠) =

{

 𝛾𝑖

3 (
𝑠 − 𝑑𝑖

𝑑
) 𝑓𝑜𝑟 𝑑𝑖 ≤ 𝑠 < 𝑑(𝑖 + 1)

𝛾𝑖
3 (
𝑑(𝑖 + 2) − 𝑠

𝑑
) + (1 − 𝛾𝑖+1

3) (
𝑠 − 𝑑(𝑖 + 1)

𝑑
) 𝑓𝑜𝑟 𝑑(𝑖 + 1) ≤ 𝑠 < 𝑑(𝑖 + 2)

(1 − 𝛾𝑖+1
3) (

𝑑(𝑖 + 3) − 𝑠

𝑑
) 𝑓𝑜𝑟 𝑑(𝑖 + 2) ≤ 𝑠 < 𝑑(𝑖 + 3)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

And compute 𝛾

𝛾𝑖
3(𝑠) =

𝑠 − 𝑑𝑖

𝑑(𝑖 + 2) − 𝑑𝑖
=
𝑠 − 𝑑𝑖

2𝑑

The result is:

𝑏𝑖
3(𝑠) =

{

 (
𝑠 − 𝑑𝑖

2𝑑
)(
𝑠 − 𝑑𝑖

𝑑
) 𝑓𝑜𝑟 𝑑𝑖 ≤ 𝑠 < 𝑑(𝑖 + 1)

(
𝑠 − 𝑑𝑖

2𝑑
)(
𝑑(𝑖 + 2) − 𝑠

𝑑
) + (

−𝑠 + 𝑑(𝑖 + 3)

2𝑑
)(
𝑠 − 𝑑(𝑖 + 1)

𝑑
) 𝑓𝑜𝑟 𝑑(𝑖 + 1) ≤ 𝑠 < 𝑑(𝑖 + 2)

(
−𝑠 + 𝑑(𝑖 + 3)

2𝑑
)(
𝑑(𝑖 + 3) − 𝑠

𝑑
) 𝑓𝑜𝑟 𝑑(𝑖 + 2) ≤ 𝑠 < 𝑑(𝑖 + 3)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Which simplifies to:

𝑏𝑖
3(𝑠) =

{

(𝑠 − 𝑑𝑖)2

2𝑑2
𝑓𝑜𝑟 𝑑𝑖 ≤ 𝑠 < 𝑑(𝑖 + 1)

−2𝑠2 + 𝑠𝑑(4𝑖 + 6) − 𝑑2[2𝑖2 + 6𝑖 + 3]

2𝑑2
𝑓𝑜𝑟 𝑑(𝑖 + 1) ≤ 𝑠 < 𝑑(𝑖 + 2)

(𝑑(𝑖 + 3) − 𝑠)2

2𝑑2
𝑓𝑜𝑟 𝑑(𝑖 + 2) ≤ 𝑠 < 𝑑(𝑖 + 3)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (A.1-6)

A.1.4 Fourth order B-spline

𝑏𝑖
4 = 𝛾𝑖

4𝑏𝑖
3 + (1 − 𝛾𝑖+1

4)𝑏𝑖+1
3

𝑏𝑖
4(𝑠)

=

{

 𝛾𝑖

4 (
(𝑠 − 𝑑𝑖)2

2𝑑2
) 𝑓𝑜𝑟 𝑑𝑖 ≤ 𝑠 < 𝑑(𝑖 + 1)

𝛾𝑖
4 (
−2𝑠2 + 𝑠𝑑(4𝑖 + 6) − 𝑑2[2𝑖2 + 6𝑖 + 3]

2𝑑2
) + (1 − 𝛾𝑖+1

4) (
(𝑠 − 𝑑(𝑖 + 1))

2

2𝑑2
) 𝑓𝑜𝑟 𝑑(𝑖 + 1) ≤ 𝑠 < 𝑑(𝑖 + 2)

𝛾𝑖
4 (
(𝑑(𝑖 + 3) − 𝑠)2

2𝑑2
) + (1 − 𝛾𝑖+1

4) (
−2𝑠2 + 𝑠𝑑(4(𝑖 + 1) + 6) − 𝑑2[2(𝑖 + 1)2 + 6(𝑖 + 1) + 3]

2𝑑2
) 𝑓𝑜𝑟 𝑑(𝑖 + 2) ≤ 𝑠 < 𝑑(𝑖 + 3)

(1 − 𝛾𝑖+1
4) (

(𝑑(𝑖 + 4) − 𝑠)2

2𝑑2
) 𝑓𝑜𝑟 𝑑(𝑖 + 3) ≤ 𝑠 < 𝑑(𝑖 + 4)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

112

First, 𝛾 is computed:

𝛾𝑖
4(𝑠) =

𝑠 − 𝑑𝑖

𝑑(𝑖 + 3) − 𝑑𝑖
=
𝑠 − 𝑑𝑖

3𝑑

(1 − 𝛾𝑖+1
4) = 1 −

𝑠 − 𝑑(𝑖 + 1)

3𝑑
=
3𝑑 − 𝑠 + 𝑑(𝑖 + 1)

3𝑑
=
𝑑(4 + 𝑖) − 𝑠

3𝑑

Due to complexity, each of the four polynomial pieces is solved outside the large equation.

First polynomial piece:

𝛾𝑖
4 (
(𝑠 − 𝑑𝑖)2

2𝑑2
) = (

𝑠 − 𝑑𝑖

3𝑑
)(
(𝑠 − 𝑑𝑖)2

2𝑑2
) =

(𝑠 − 𝑑𝑖)3

6𝑑3

Second polynomial piece:

𝛾𝑖
4 (
−2𝑠2 + 𝑠𝑑(4𝑖 + 6) − 𝑑2[2𝑖2 + 6𝑖 + 3]

2𝑑2
) + (1 − 𝛾𝑖+1

4)(
(𝑠 − 𝑑(𝑖 + 1))

2

2𝑑2
)

Expansion of first half of second polynomial piece:

(
𝑠 − 𝑑𝑖

3𝑑
)(
−2𝑠2 + 𝑠𝑑(4𝑖 + 6) − 𝑑2[2𝑖2 + 6𝑖 + 3]

2𝑑2
)

= (
1

6𝑑3
) (𝑠 − 𝑑𝑖)(−2𝑠2 + 𝑠𝑑(4𝑖 + 6) − 𝑑2[2𝑖2 + 6𝑖 + 3])

= (
−2𝑠3 + 6𝑑𝑠2(𝑖 + 1) − 𝑑2𝑠(6𝑖2 + 12𝑖 + 3) + (𝑑3𝑖[2𝑖2 + 6𝑖 + 3])

6𝑑3
)

Expansion of second half of second polynomial piece:

(
𝑑(4 + 𝑖) − 𝑠

3𝑑
)(
(𝑠 − 𝑑(𝑖 + 1))

2

2𝑑2
)

= (
1

6𝑑3
) (−𝑠 + 𝑑(4 + 𝑖))(𝑠 − 𝑑(𝑖 + 1))

2

= (
1

6𝑑3
) (−𝑠 + 𝑑(4 + 𝑖))(𝑠2 − 2𝑠𝑑(𝑖 + 1) + 𝑑2(𝑖 + 1)2)

= (
−𝑠3 + (3𝑖 + 6)𝑑𝑠2 − 3𝑑2(𝑖2 + 4𝑖 + 3)𝑠 + 𝑑3(𝑖3 + 6𝑖2 + 8𝑖 + 𝑖 + 4)

6𝑑3
)

Combined:

−3𝑠3 + (9𝑖 + 12)𝑑𝑠2 − 3𝑑2(3𝑖2 + 8𝑖 + 4)𝑠 + 𝑑3(3𝑖3 + 12𝑖2 + 12𝑖 + 4)

6𝑑3

Third polynomial piece:

113

(
𝑠 − 𝑑𝑖

3𝑑
)(
(𝑑(𝑖 + 3) − 𝑠)2

2𝑑2
)

+ (
𝑑(4 + 𝑖) − 𝑠

3𝑑
)(
−2𝑠2 + 𝑠𝑑(4(𝑖 + 1) + 6) − 𝑑2[2(𝑖 + 1)2 + 6(𝑖 + 1) + 3]

2𝑑2
)

Minor simplifications:

(
𝑠 − 𝑑𝑖

3𝑑
)(
(𝑑(𝑖 + 3) − 𝑠)2

2𝑑2
) + (

𝑑(4 + 𝑖) − 𝑠

3𝑑
)(
−2𝑠2 + 𝑠𝑑(4𝑖 + 10) − 𝑑2(2𝑖2 + 10𝑖 + 11)

2𝑑2
)

Expansion of first half of third polynomial piece:

(
𝑠 − 𝑑𝑖

3𝑑
)(
(𝑑(𝑖 + 3) − 𝑠)2

2𝑑2
)

(
1

6𝑑3
) (𝑠 − 𝑑𝑖)(𝑑2(𝑖 + 3)2 − 2𝑠𝑑(𝑖 + 3) + 𝑠2)

(
𝑠3 − 𝑑(3𝑖 + 6)𝑠2 + 𝑑2(3𝑖2 + 12𝑖 + 9)𝑠−𝑑3𝑖(𝑖 + 3)2

6𝑑3
)

Expansion of second half of third polynomial piece:

(
𝑑(4 + 𝑖) − 𝑠

3𝑑
)(
−2𝑠2 + 𝑠𝑑(4𝑖 + 10) − 𝑑2(2𝑖2 + 10𝑖 + 11)

2𝑑2
)

(
1

6𝑑3
) (𝑑(4 + 𝑖) − 𝑠)(−2𝑠2 + 𝑠𝑑(4𝑖 + 10) − 𝑑2(2𝑖2 + 10𝑖 + 11))

2𝑠3 + (−18 − 6𝑖)𝑑𝑠2 + (36𝑖 + 6𝑖2 + 51)𝑑2𝑠 + (−2𝑖3 − 18𝑖2 − 51𝑖 − 44)𝑑3

6𝑑3

Combined:

(
𝑠3 − 𝑑(3𝑖 + 6)𝑠2 + 𝑑2(3𝑖2 + 12𝑖 + 9)𝑠−𝑑3𝑖(𝑖 + 3)2

6𝑑3
)

2𝑠3 + (−18 − 6𝑖)𝑑𝑠2 + (36𝑖 + 6𝑖2 + 51)𝑑2𝑠 + (−2𝑖3 − 18𝑖2 − 51𝑖 − 44)𝑑3

6𝑑3

(
1

6𝑑3
) (3𝑠3 − (9𝑖 + 24)𝑑𝑠2 + (9𝑖2 + 48𝑖 + 60)𝑑2𝑠 − (𝑖(𝑖 + 3)2 + 2𝑖3 + 18𝑖2 + 51𝑖 + 44)𝑑3)

(
1

2𝑑3
) (𝑠3 − (3𝑖 + 8)𝑑𝑠2 + (3𝑖2 + 16𝑖 + 20)𝑑2𝑠 − (𝑖3 + 8𝑖2 + 20𝑖 +

44

3
) 𝑑3)

𝑠3 − (3𝑖 + 8)𝑑𝑠2 + (3𝑖2 + 16𝑖 + 20)𝑑2𝑠 − (𝑖3 + 8𝑖2 + 20𝑖 +
44
3)𝑑

3

2𝑑3

Fourth polynomial piece:

114

(
𝑑(4 + 𝑖) − 𝑠

3𝑑
)(
(𝑑(𝑖 + 4) − 𝑠)2

2𝑑2
)

(
(𝑑(𝑖 + 4) − 𝑠)3

6𝑑3
)

Final equation:

𝑏𝑖
4(𝑠) (A.1-7)

=

{

(𝑠 − 𝑑𝑖)3

6𝑑3
𝑓𝑜𝑟 𝑑𝑖 ≤ 𝑠 < 𝑑(𝑖 + 1)

−3𝑠3 + (9𝑖 + 12)𝑑𝑠2 − 3𝑑2(3𝑖2 + 8𝑖 + 4)𝑠 + 𝑑3(3𝑖3 + 12𝑖2 + 12𝑖 + 4)

6𝑑3
𝑓𝑜𝑟 𝑑(𝑖 + 1) ≤ 𝑠 < 𝑑(𝑖 + 2)

𝑠3 − (3𝑖 + 8)𝑑𝑠2 + (3𝑖2 + 16𝑖 + 20)𝑑2𝑠 − (𝑖3 + 8𝑖2 + 20𝑖 +
44
3)𝑑

3

2𝑑3
𝑓𝑜𝑟 𝑑(𝑖 + 2) ≤ 𝑠 < 𝑑(𝑖 + 3)

(
(𝑑(𝑖 + 4) − 𝑠)3

6𝑑3
) 𝑓𝑜𝑟 𝑑(𝑖 + 3) ≤ 𝑠 < 𝑑(𝑖 + 4)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

A.1.5 Third order B-spline derivatives

Original third order equation:

𝑏𝑖
3(𝑠) =

{

(𝑠 − 𝑑𝑖)2

2𝑑2
𝑓𝑜𝑟 𝑑𝑖 ≤ 𝑠 < 𝑑(𝑖 + 1)

−2𝑠2 + 𝑠𝑑(4𝑖 + 6) − 𝑑2[2𝑖2 + 6𝑖 + 3]

2𝑑2
𝑓𝑜𝑟 𝑑(𝑖 + 1) ≤ 𝑠 < 𝑑(𝑖 + 2)

(𝑑(𝑖 + 3) − 𝑠)2

2𝑑2
𝑓𝑜𝑟 𝑑(𝑖 + 2) ≤ 𝑠 < 𝑑(𝑖 + 3)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

First polynomial piece:

(𝑠 − 𝑑𝑖)2

2𝑑2
=
𝑠2 − 2𝑑𝑖𝑠 + 𝑑2𝑖2

2𝑑2
= (

1

2𝑑2
) 𝑠2 −

𝑖𝑠

𝑑
+
𝑖2

2

First derivative:

𝑑

𝑑𝑠
(
(𝑠 − 𝑑𝑖)2

2𝑑2
) = (

1

𝑑2
) 𝑠 −

𝑖

𝑑
=
𝑠 − 𝑑𝑖

𝑑2

Second derivative:

𝑑

𝑑𝑠
(
𝑠 − 𝑑𝑖

𝑑2
) =

1

𝑑2

115

Second polynomial piece:

−2𝑠2 + 𝑠𝑑(4𝑖 + 6) − 𝑑2[2𝑖2 + 6𝑖 + 3]

2𝑑2

[−
1

𝑑2
] 𝑠2 + [

(4𝑖 + 6)

2𝑑
] 𝑠 − [𝑖2 + 3𝑖 + 1.5]

First derivative:

𝑑

𝑑𝑠
([−

1

𝑑2
] 𝑠2 + [

(4𝑖 + 6)

2𝑑
] 𝑠 − [𝑖2 + 3𝑖 + 1.5]) = [−

2

𝑑2
] 𝑠 + [

(4𝑖 + 6)

2𝑑
]

= [−
4

2𝑑2
] 𝑠 + [

𝑑(4𝑖 + 6)

2𝑑2
]

=
−2𝑠 + 𝑑(2𝑖 + 3)

𝑑2

Second derivative:

𝑑

𝑑𝑠
(
−2𝑠 + 𝑑(2𝑖 + 3)

𝑑2
) = −

2

𝑑2

Third polynomial piece:

(𝑑(𝑖 + 3) − 𝑠)2

2𝑑2
=
𝑑2(𝑖 + 3)2 − 2𝑑(𝑖 + 3)𝑠 + 𝑠2

2𝑑2
= [

1

2𝑑2
] 𝑠2 + [−

(𝑖 + 3)

𝑑
] 𝑠 + [

(𝑖 + 3)2

2
]

First derivative:

𝑑

𝑑𝑠
([

1

2𝑑2
] 𝑠2 + [−

(𝑖 + 3)

𝑑
] 𝑠 + [

(𝑖 + 3)2

2
]) =

1

𝑑2
𝑠 −

𝑖 + 3

𝑑

Second derivative:

𝑑

𝑑𝑠
(
1

𝑑2
𝑠 −

𝑖 + 3

𝑑
) =

1

𝑑2

Final equations:

𝑑

𝑑𝑠
(𝑏𝑖

3(𝑠)) =

{

𝑠 − 𝑑𝑖

𝑑2
𝑓𝑜𝑟 𝑑𝑖 ≤ 𝑠 < 𝑑(𝑖 + 1)

−2𝑠 + 𝑑(2𝑖 + 3)

𝑑2
𝑓𝑜𝑟 𝑑(𝑖 + 1) ≤ 𝑠 < 𝑑(𝑖 + 2)

1

𝑑2
𝑠 −

𝑖 + 3

𝑑
𝑓𝑜𝑟 𝑑(𝑖 + 2) ≤ 𝑠 < 𝑑(𝑖 + 3)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(A.1-8)

116

𝑑2

𝑑𝑠2
(𝑏𝑖

3(𝑠)) =

{

1

𝑑2
𝑓𝑜𝑟 𝑑𝑖 ≤ 𝑠 < 𝑑(𝑖 + 1)

−
2

𝑑2
𝑓𝑜𝑟 𝑑(𝑖 + 1) ≤ 𝑠 < 𝑑(𝑖 + 2)

1

𝑑2
𝑓𝑜𝑟 𝑑(𝑖 + 2) ≤ 𝑠 < 𝑑(𝑖 + 3)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (A.1-9)

A.1.6 Fourth order B-spline derivative

𝑏𝑖
4(𝑠)

=

{

(𝑠 − 𝑑𝑖)3

6𝑑3
𝑓𝑜𝑟 𝑑𝑖 ≤ 𝑠 < 𝑑(𝑖 + 1)

−3𝑠3 + (9𝑖 + 12)𝑑𝑠2 − 3𝑑2(3𝑖2 + 8𝑖 + 4)𝑠 + 𝑑3(3𝑖3 + 12𝑖2 + 12𝑖 + 4)

6𝑑3
𝑓𝑜𝑟 𝑑(𝑖 + 1) ≤ 𝑠 < 𝑑(𝑖 + 2)

𝑠3 − (3𝑖 + 8)𝑑𝑠2 + (3𝑖2 + 16𝑖 + 20)𝑑2𝑠 − (𝑖3 + 8𝑖2 + 20𝑖 +
44
3)𝑑

3

2𝑑3
𝑓𝑜𝑟 𝑑(𝑖 + 2) ≤ 𝑠 < 𝑑(𝑖 + 3)

(𝑑(𝑖 + 4) − 𝑠)3

6𝑑3
𝑓𝑜𝑟 𝑑(𝑖 + 3) ≤ 𝑠 < 𝑑(𝑖 + 4)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

First polynomial piece:

(𝑠 − 𝑑𝑖)3

6𝑑3
=
(𝑠 − 𝑑𝑖)(𝑠2 − 2𝑠𝑑𝑖 + 𝑑2𝑖2)

6𝑑3
=
𝑠3 − 2𝑠2𝑑𝑖 + 𝑠𝑑2𝑖2 − 𝑑𝑖𝑠2 + 2𝑠𝑑2𝑖2 − 𝑑3𝑖3

6𝑑3

=
𝑠3 − (3𝑑𝑖)𝑠2 + (3𝑑2𝑖2)𝑠 + (𝑑3𝑖3)

6𝑑3

First derivative:

𝑑

𝑑𝑠
(
𝑠3 − (3𝑑𝑖)𝑠2 + (3𝑑2𝑖2)𝑠 + (𝑑3𝑖3)

6𝑑3
) = (

1

2𝑑3
) 𝑠2 − (

𝑖

𝑑2
) 𝑠 + (

𝑖2

2𝑑
)

= (
1

2𝑑3
) 𝑠2 − (

2𝑖𝑑

2𝑑3
) 𝑠 + (

𝑖2𝑑2

2𝑑3
)

=
𝑠2 − 2𝑑𝑖𝑠 + 𝑖2𝑑2

2𝑑3

Second derivative:

𝑑

𝑑𝑠
(
𝑠2 − 2𝑑𝑖𝑠 + 𝑖2𝑑2

2𝑑3
) = (

1

𝑑3
) 𝑠 − (

𝑖

𝑑2
)

Second polynomial piece:

−3𝑠3 + (9𝑖 + 12)𝑑𝑠2 − 3𝑑2(3𝑖2 + 8𝑖 + 4)𝑠 + 𝑑3(3𝑖3 + 12𝑖2 + 12𝑖 + 4)

6𝑑3

117

First derivative:

𝑑

𝑑𝑠
(
−3𝑠3 + (9𝑖 + 12)𝑑𝑠2 − 3𝑑2(3𝑖2 + 8𝑖 + 4)𝑠 + 𝑑3(3𝑖3 + 12𝑖2 + 12𝑖 + 4)

6𝑑3
)

= (−
9

6𝑑3
) 𝑠2 + (

2(9𝑖 + 12)𝑑

6𝑑3
) 𝑠 − (

3𝑑2(3𝑖2 + 8𝑖 + 4)

6𝑑3
)

=
−3𝑠2 + 2(3𝑖 + 4)𝑑𝑠 − 𝑑2(3𝑖2 + 8𝑖 + 4)

2𝑑3

Second derivative:

𝑑

𝑑𝑠
(
−3𝑠2 + 2(3𝑖 + 4)𝑑𝑠 − 𝑑2(3𝑖2 + 8𝑖 + 4)

2𝑑3
) = −

3

𝑑3
𝑠 +

(3𝑖 + 4)𝑑

𝑑3

Third polynomial piece:

𝑠3 − (3𝑖 + 8)𝑑𝑠2 + (3𝑖2 + 16𝑖 + 20)𝑑2𝑠 − (𝑖3 + 8𝑖2 + 20𝑖 +
44
3
)𝑑3

2𝑑3

First derivative:

𝑑

𝑑𝑠
(
𝑠3 − (3𝑖 + 8)𝑑𝑠2 + (3𝑖2 + 16𝑖 + 20)𝑑2𝑠 − (𝑖3 + 8𝑖2 + 20𝑖 +

44
3
)𝑑3

2𝑑3
) =

(
3

2𝑑3
) 𝑠2 − (

2(3𝑖 + 8)𝑑

2𝑑3
) 𝑠 + (

(3𝑖2 + 16𝑖 + 20)𝑑2

2𝑑3
)

3𝑠2 − (6𝑖 + 16)𝑑𝑠 + (3𝑖2 + 16𝑖 + 20)𝑑2

2𝑑3

Second derivative:

𝑑

𝑑𝑠
(
3𝑠2 − (6𝑖 + 16)𝑑𝑠 + (3𝑖2 + 16𝑖 + 20)𝑑2

2𝑑3
) =

3𝑠 − (3𝑖 + 8)𝑑

𝑑3

Fourth polynomial piece:

(𝑑(𝑖 + 4) − 𝑠)3

6𝑑3
=
𝑑3(𝑖 + 4)3 − 3𝑠𝑑2(𝑖 + 4)2 + 3𝑑𝑠2(𝑖 + 4) − 𝑠3

6𝑑3

First derivative:

𝑑

𝑑𝑠
(
𝑑3(𝑖 + 4)3 − 3𝑠𝑑2(𝑖 + 4)2 + 3𝑑𝑠2(𝑖 + 4) − 𝑠3

6𝑑3
) =

−𝑑2(𝑖 + 4)2 + 2𝑑𝑠(𝑖 + 4) − 𝑠2

2𝑑3

Second derivative:

𝑑

𝑑𝑠
(
−𝑑2(𝑖 + 4)2 + 2𝑑𝑠(𝑖 + 4) − 𝑠2

2𝑑3
) =

2𝑑(𝑖 + 4) − 2𝑠

2𝑑3

Final equations:

118

𝑑

𝑑𝑠
(𝑏𝑖

4(𝑠))

=

{

𝑠2 − 2𝑑𝑖𝑠 + 𝑖2𝑑2

2𝑑3
𝑓𝑜𝑟 𝑑𝑖 ≤ 𝑠 < 𝑑(𝑖 + 1)

−3𝑠2 + 2(3𝑖 + 4)𝑑𝑠 − 𝑑2(3𝑖2 + 8𝑖 + 4)

2𝑑3
𝑓𝑜𝑟 𝑑(𝑖 + 1) ≤ 𝑠 < 𝑑(𝑖 + 2)

3𝑠2 − (6𝑖 + 16)𝑑𝑠 + (3𝑖2 + 16𝑖 + 20)𝑑2

2𝑑3
𝑓𝑜𝑟 𝑑(𝑖 + 2) ≤ 𝑠 < 𝑑(𝑖 + 3)

−𝑑2(𝑖 + 4)2 + 2𝑑𝑠(𝑖 + 4) − 𝑠2

2𝑑3
𝑓𝑜𝑟 𝑑(𝑖 + 3) ≤ 𝑠 < 𝑑(𝑖 + 4)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(A.1-10)

𝑑2

𝑑𝑠2
(𝑏𝑖

4(𝑠)) =

{

 (

1

𝑑3
) 𝑠 − (

𝑖

𝑑2
) 𝑓𝑜𝑟 𝑑𝑖 ≤ 𝑠 < 𝑑(𝑖 + 1)

−
3

𝑑3
𝑠 +

(3𝑖 + 4)𝑑

𝑑3
𝑓𝑜𝑟 𝑑(𝑖 + 1) ≤ 𝑠 < 𝑑(𝑖 + 2)

3𝑠 − (3𝑖 + 8)𝑑

𝑑3
𝑓𝑜𝑟 𝑑(𝑖 + 2) ≤ 𝑠 < 𝑑(𝑖 + 3)

2𝑑(𝑖 + 4) − 2𝑠

2𝑑3
𝑓𝑜𝑟 𝑑(𝑖 + 3) ≤ 𝑠 < 𝑑(𝑖 + 4)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (A.1-11)

119

A.2 Derivation of theoretical minimum deceleration distance

In this Appendix, the minimum distance required to decelerate from a given feedrate 𝑣𝑚𝑎𝑥 is computed.

Figure A.2-6-1: Acceleration and deceleration distance with maximum velocity, acceleration, and jerk.

In the example in Figure A.2-6-1, both 𝑙𝑎𝑐𝑐 (the acceleration distance) and 𝑙𝑑𝑒𝑐 (the deceleration distance)

are indicated, as the area of shaded region underneath the velocity curve. This trajectory is symmetrical,

and therefore 𝑙𝑎𝑐𝑐 = 𝑙𝑑𝑒𝑐. As we need only to compute one of these, the following equations apply to the

𝑙𝑎𝑐𝑐 portion of the curve.

The time interval occupied by each phase of the motion is marked on the plot as 𝑇1, 𝑇2, 𝑇4.

𝑇1 is first computed. During the first motion segment:

𝑗 = 𝑗max

𝑎 = 𝑗max𝑡

𝑣 =
1

2
𝑗max𝑡

2

If, at the end of the first segment, the maximum acceleration is reached, the resulting change in feed would

be given by Eq. (A.2-2).

𝑎max = 𝑗max𝑇1

120

𝑇1 =
𝑎max
𝑗max

 (A.2-1)

𝑣 =
1

2
𝑗max(𝑇1)

2 → 𝑣 =
1

2
𝑗max (

𝑎max
𝑗max

)
2

=
1

2

𝑎max
2

𝑗max

(A.2-2)

Throughout the course of one acceleration, there are two 𝑇1 segments, so the change in feed is given by Eq.

(A.2-3).

𝑣 =
𝑎max
2

𝑗max
 (A.2-3)

After this computation, there are two possible cases:

Case 1:

𝑣 ≤
𝑎max
2

𝑗max
: The acceleration never reaches its maximum value 𝑎𝑚𝑎𝑥. The segment with length 𝑇2 will

therefore not exist.

Case 2:

𝑣 >
𝑎max
2

𝑗max
: The acceleration will reach its maximum value 𝑎𝑚𝑎𝑥 and stay there for some time, 𝑇2.

Case 1:

As the acceleration does not reach its maximum, the previously computed 𝑇1 will not apply. Therefore, the

value of 𝑇1 is recomputed in Eq. (A.2-4).

𝑣𝑚𝑎𝑥 = 2 [−
1

2
𝑗max𝑇1

2]

𝑇1 = √
𝑣max
𝑗max

 (A.2-4)

Because of the symmetry of the curve, the value of 𝑇1 is doubled, and the acceleration distance is computed.

𝑙𝑎𝑐𝑐 =
1

2
𝑣max(2𝑇1)

𝑙𝑎𝑐𝑐 = 𝑣max√
𝑣max
𝑗max

=
𝑣max

3
2

𝑗max

Case 2:

The value of 𝑇1 computed in Eq. (A.2-1) remains true. We must then compute 𝑇2:

(𝑣max −
𝑎max
2

𝑗max
) = 𝑎max𝑇2

𝑇2 =
𝑣max
𝑎max

−
𝑎max
𝑗max

121

Then, same as before the curve is symmetrical:

𝑙𝑎𝑐𝑐 =
1

2
𝑓𝑤𝑐(2𝑇1 + 𝑇2)

𝑙𝑎𝑐𝑐 =
1

2
𝑣max (2

𝑎max
𝑗max

+
𝑣max
𝑎max

−
𝑎max
𝑗max

)

𝑙𝑎𝑐𝑐 =
1

2
𝑣max (

𝑎max
𝑗max

+
𝑣max
𝑎max

)

Result:

The final equation for acceleration and deceleration distance is given in Eq. (A.2-5).

𝑙𝑎𝑐𝑐 =

{

 𝑣max

3
2

√𝑗max
𝑖𝑓 𝑣max ≤

𝑎max
2

𝑗max

1

2
𝑣max (

𝑎max
𝑗max

+
𝑣max
𝑎max

) 𝑖𝑓 𝑣max >
𝑎max
2

𝑗max

(A.2-5)

