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Abstract 

This thesis introduces a novel ontology-based deep learning classification model 
specifically tailored for civil engineering applications, focusing on automating the 

extraction and classification of water infrastructure capital works tenders and progress 

certificates. Utilizing ontology for standardizing tender-bid data and employing Named 

Entity Recognition (NERC) for item categorization, the model adeptly addresses the 

challenges posed by the diversity in document styles and formats. 

Incorporating Long Short-Term Memory (LSTM) structures within the model enables 

the learning of both linear and non-linear dependencies between words. This aspect is 

particularly significant in tackling the unique language constructs present in tender-bid 

document records. The model’s effectiveness is underscored by its impressive classification 

accuracy, achieving 92.6% for testing data and 98.7% for training data, thereby marking a 

significant advancement in the field. 

The practical application of this model through a web server highlights its adaptability 

and efficiency in real-world scenarios. The model’s role in tasks such as unit cost 
calculation establishes a new benchmark in the industry, showcasing the thesis’s innovative 

contributions in areas like ontology-based data structuring and LSTM-driven automated 

unit cost computation. 

Looking beyond its current scope, this research holds potential for broader applications 

and adaptations in different civil engineering domains. It lays the groundwork for future 

enhancements, including exploring multilingual extensions and specialized approaches 

aligned with evolving industry trends. This thesis amalgamates data preprocessing, deep 

learning, and engineering expertise to boost efficiency and accuracy significantly. The 

unique methodology fosters continuous improvement and broad applicability across different 
regions. The practical integration of this technology in civil engineering tasks, demonstrated 

through the web server, opens avenues for further development to encompass a wider array 

of applications. 

Future research directions include refining the framework to cater to the dynamic needs 

of various civil engineering domains and extending the web server’s capabilities for real-time 

data processing and analysis. Investigating the applicability of this methodology in other 
engineering or interdisciplinary contexts could also provide valuable insights, extending the 

utility of this research. This thesis lays a solid foundation for ongoing enhancements in 

capital work planning and tender contract assessment within the civil engineering industry. 
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Chapter 1 
Introduction 

Water utilities serve as authoritative entities in every municipality, responsible for water 
preservation, treatment, distribution, billing, and tasks that ensure residents receive 

clean and sustainable water. In this context, maintaining and improving existing water 
infrastructure becomes a long-term objective for each municipality. To achieve this 

goal, municipalities continuously engage in the planning, maintenance, management, and 

expansion of both water distribution and wastewater collection systems. As a result, a 

significant portion of their budget is typically allocated to these tasks. 

These responsibilities include annual watermain and sanitary sewer capital works 

programs, which are the current focus of this thesis. To perform annual planning, the 

city must prioritize projects requiring immediate action. Once high-priority projects are 

selected, tenders are issued, and bids may be received from contractors. The bids must be 

analyzed, and the contract is generally awarded to the lowest reliable bidder. During this 

process, the engineer’s estimate of the project’s cost is a significant piece of information. 

Engineers encounter several problems during this process. The primary problem is 

estimating the project price based on historically awarded project prices and inflation in 

these project costs. However, normalizing historical project information using unit costs 

has yet to be achieved. Therefore, engineers would only have access to the most recent 
project information, which is available in electronic format and follows the same formatting. 
As this task is not standardized, the project value estimation could be biased toward the 

engineer’s judgment. 

Once the bids are received, the engineer must perform a bid analysis and decide which 

contractor should be awarded the project. The bidding process is currently done online, 
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and a certain level of consistency in the bid structure is enforced. However, the breakdown 

of tasks and assigning different records to different contract parts still depend on the 

contractor’s preference. Therefore, another task assigned to the engineer is to import the 

submitted bids from various contractors, match different fields that correspond to each 

other, and create consistent formatting. Unfortunately, this task has no standardized or 
automated process and must be done manually. 

After completing the project, the progress certificate must be cleaned, verified for its 

integrity, and archived. The archived document is then ready for future processes, such as 

annual unit cost analysis (for operational planning) or long-term unit cost analysis (required 

for tactical or strategic planning). However, based on feedback from industrial partners 

and to the best of our knowledge, this final step is often incomplete, or no trained staff is 

available to perform it regularly. 

1.1 Problem State of the Art 

In the current landscape, cities are adequately equipped with tools and personnel to 

effectively manage short- to mid-term planning. However, they encounter difficulties 

with large-scale analysis due to the enormous quantity of tender documents required 

and the extensive duration of examination. An increase in complexity, including extra 

contracts from previous years or contracts with inconsistent terms, could exceed municipal 
capabilities. Therefore, conducting an analysis spanning several years would require a 

significant augmentation of employee hours, making long-term planning in this scenario 

impractical without simplification strategies. 

A consistent and standardized data source in municipalities is necessary to accurately 

calculate the correct inflation rate. Instead, municipalities often resort to financial indices 

like the consumer price index, designed for consumer goods, which inadequately captures 

the inflation trend in specific projects such as watermain and sanitary sewer works. Even 

when the inflation rate for current projects with consistent layouts and electronic format is 

calculated, referring back to over a decade’s worth of information is necessary. For a precise 

inflation rate, it still needs to be attainable. Given the diverse origins of contract records, 
inconsistencies can arise during the import process. Such inconsistencies primarily stem 

from format differences in bidder contracts and alterations in required contract formats 

instituted by municipalities. 

In summary, the issue of record inconsistency in either short-term (operational) or 
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long-term (tactical and strategic) financial planning finds its roots in tender-bid documents. 
Records can exist in various forms and degrees of accessibility, escalating their challenge. 
For instance, some records may be archived and only available in paper format or scanned 

copies that are not tabulated, making them unsuitable for direct use in any analysis. Others 

might be archived but in electronic form, albeit with inconsistent formatting either in 

tabulation or arrangement of the records. Lastly, there can be archived records in an 

electronic format that, despite having consistent formatting, could be more consistent in 

disaggregating information and assigning the records to their corresponding parts. 

Each of these issues presents a significant hurdle in the financial information process. 
As delineated in the following section, the proposed solution will address each of these 

issues, illuminating the novel contributions and objectives of this thesis and its contribution 

to the field of civil engineering. 

1.2 Proposed Solution and Research Objective 

The primary objective of this thesis is to introduce a decision support platform designed to 

empower municipalities with the capacity to conduct insightful "what if" financial scenarios. 
This platform envisioned as a tool grounded in historical data, leverages historical watermain 

and sanitary sewer capital works records, progress certificates, and contract summaries. 

The platform harnesses information from historical, tender-bid documents and progress 

summaries. The system’s backbone is an ontology-based deep learning classification 

model specifically designed to extract and categorize vital data from tenders and progress 

certificates related to water infrastructure capital works. This model addresses the diversity 

of styles and formats in these documents by standardizing the data using an ontology. This 

ontology integrates data and relationships from various contract tables, streamlining the 

data analysis. 

The deep learning model parses tender item descriptions, simplifying the data and 

enhancing the accuracy in identifying and standardizing tender items. The model’s outcome 

expedites the extracting and consolidating essential information from water infrastructure 

capital work documents. 

The thesis argues that the unit cost calculation process, an integral part of tendering 

and bid analysis for every city, is well-suited for machine learning applications. This 

process is prone to errors and lacks standardization, requiring a labour-intensive approach. 
The integration of machine learning is expected to improve the process, making it more 
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streamlined and standardized. This approach should reduce manual effort and potential 
errors while enhancing accuracy, consistency, and efficiency in the tendering process. 

The central objective is to automate and standardize the calculation of unit costs for 
watermain and sanitary sewer capital works. The proposed solution offers a web-based 

front end seamlessly linked to a standardized database and associated tools. This interface 

ensures consistent access to historical contracts and facilitates the download of standardized 

revisions of all imported documents. 

In summary, this thesis seeks to extend data analysis capabilities within the current 
industry practices. By accessing information across different times and geographical 
locations, it aims to enhance the utilization and analysis of project records. The objectives 

of the proposed solution, which facilitate the realization of the presented concept, are 

summarized in Figure 1.2. 

1.3 Literature Review 

This literature review provides an overview of the roles of ontology and data provenance 

within the architecture, engineering, and construction (AEC) industry. The review begins 

by discussing ontology and its relevance in organizing data from various sources, followed 

by an overview of the critical role that data provenance plays in ensuring data reliability 

and trustworthiness. 

1.3.1 Ontology 

The application of semantic web technologies, including ontologies, is vital in the AEC 

industry, specifically for enhancing interoperability. Ontology languages like OWL, 
grounded in Description Logic (DL), allow computers to understand and process data, 
promoting targeted semantic interoperability and efficient data exchange within the 

industry [Yang and Zhang, 2006], [Abdul-Ghafour et al., 2007], [Pauwels et al., 2011], 
[Venugopal et al., 2015], [Le and Jeong, 2016], [Hitzler et al., 2012], 
and [Baader and Nutt, 2003]. The Resource Description Framework (RDF) plays a crucial 
role in enabling the representation and combination of information from diverse knowledge 

domains [Schreiber and Raimond, 2014], [Hitzler et al., 2012], [Brickley and Guha, 2014], 
[Berners-Lee, 2003], [Horrocks et al., 2005], [W3C OWL Working Group, 2012]. 
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This thesis takes the application of ontology in the AEC industry a step further by 

focusing on its use for standardizing data related to watermain and sanitary sewer systems 

capital works from multiple municipalities [Abdalla et al., 2015]. It demonstrates how 

ontology captures the "structure" of information in a standard format, facilitating the 

assimilation of data from diverse sources that vary in data storage format and granularity 

levels [Abdalla et al., 2015]. 

Despite differences in the construction of municipal tender documents, professional 
engineers can evaluate them and generate estimates, emphasizing the flexibility of 
ontologies [Zhou et al., 2016]. While this diversity poses challenges for data reuse, 
ontologies bridge the interoperability gap, facilitating the efficient reuse of previously 

generated data. 

In civil engineering, ontologies, like the ifcOWL ontology, represent knowledge within a 

specific domain, including building data models, geometries, semantics, relationships, and 

properties [Rischmoller et al., 2000a], [Schevers and Drogemuller, 2006], 
[Beetz et al., 2005], [Agostinho et al., 2007], [Zhao and Liu, 2008], [Krima et al., 2009], 
[Beetz et al., 2009], [Barbau et al., 2012], and [Pauwels et al., 2015]. Extensions to these 

ontologies encapsulate additional rules and improve type information representation 

[Terkaj and Sojic, 2015], [Borgo et al., 2015], and [de Farias et al., 2015], demonstrating 

the role of ontologies in collaborative information management, building performance 

analysis, and energy management [Shah et al., 2011], [El-Diraby, 2013a], 
[Ruikar et al., 2007], [Anumba et al., 2008], [Lima et al., 2002], [Lima et al., 2003], 
[Lima et al., 2005], [Anumba et al., 2008], [Ricquebourg et al., 2007], 
and [Wicaksono et al., 2010]. 

The literature provides several examples of successful ontology applications in 

managing data from different sources [Rahm and Do, 2000], [Costin et al., 2017], 
[Musen, 1998], and [Yin et al., 2012], underscoring ontology’s practicality for integrating 

multiple data sources and maintaining record quality and integrity. 

This thesis fills a significant gap in the literature by focusing on ontologies for specific 

use cases in civil engineering, such as the rule definitions and knowledge particular to the 

"Water Systems, Civil Engineering field" [Bilgin et al., 2018] 
and [Shvaiko and Euzenat, 2005]. This application deviates from traditional ontology 

construction applications in construction management, emphasizing the ongoing evolution 

of civil engineering’s approach to data standardization. 

Semantic web technologies allow multiple ontologies to co-exist and link, often 

representing the same physical elements [Abdul-Ghafour et al., 2007], enabling efficient 
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integration with systems outside the AEC domain like Geographical Information Systems 

(GIS) [Metral et al., 2009], [Pileggi and Amor, 2013], and [Metral et al., 2010]. Ontology 

in civil engineering, as evidenced by the ifcOWL ontology’s use in construction and 

building information management [Kadolsky et al., 2014], [Baumgartel et al., 2014], 
[Kim and Grobler, 2009], has become essential in the industry. 

Ontology rules formally represent domain knowledge critical to automated reasoning 

and inference, data quality assurance, and decision-making systems 

support [Stuckenschmidt, 2009]. The advent of semantic web technologies in the AEC 

domain acknowledges the importance of accurately modelling existing conditions rather 
than forcing them into a single predefined model [Pauwels et al., 2017], 
[Rezgui et al., 2011], and [El-Diraby, 2013c]. 

In conclusion, ontologies have become integral to civil engineering, facilitating semantic 

interoperability, efficient data exchange, collaborative information management, and 

standardization. Notwithstanding these developments, the inherent challenges in balancing 

expressive power and reasoning efficiency, ontologies are providing solutions to complex 

problems within the industry, underscoring their central role in the evolution of civil 
engineering [Abdalla et al., 2015], [Li et al., 2015], [Zhou et al., 2016], [Bilgin et al., 2018], 
and [Shvaiko and Euzenat, 2005]. 

1.3.2 Data Provenance and Quality Management in AEC 

The scientific research community places considerable emphasis on data provenance, which 

traces the origin, lineage, and history of data [Moreau et al., 2013]. Ensuring data quality is 

crucial for decision-making systems, as inaccurate or incomplete data can lead to erroneous 

analyses and outcomes, a concern reflected in various studies [Fisher and Kingma, 2001], 
[Pipino et al., 2002], and [Sadiq et al., 2011]. Although the paper by Khaki [Khaki, 2021] 
focuses on aspects of data provenance, it is cited here for its broader relevance to the field, 
despite not aligning directly with the specific aims of this thesis. 

Researchers employ an extended set of ontology rules and provenance records to 

address data errors and ensure data provenance. Ontology rules formally represent domain 

knowledge, enabling automated reasoning and inference [Stuckenschmidt, 2009]. By 

enforcing consistency and facilitating automated reasoning, these rules enhance data 

quality. Provenance records track the origin and lineage of data, aiding in error 
identification and correction [Moreau et al., 2013]. They provide valuable information 
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about data sources and transformations, enabling researchers to trace data history and 

ensure its reliability and traceability. 

The extended set of ontology rules encompasses a broader collection of rules utilized 

in ontology-based data management. These rules enforce consistency, enable automated 

reasoning, and improve data quality. Provenance records complement ontology rules by 

capturing data origin and lineage, supporting error identification, and facilitating error 
correction processes. Together, these techniques promote reliable and traceable data 

management. 

A significant concern in the field relates to errors that could emerge while converting 

hard-copy documents into electronic format, causing a decline in data 

quality [Kim et al., 2003]. It is, therefore, essential to ensure accurate data provenance via 

thorough checking and error correction procedures to maintain the integrity of the original 
document’s content [Kim et al., 2003]. 

In the context of correction of Optical Character Recognition (OCR) errors, 
identification of errors, data cleaning, and the construction of relational databases, the 

application of semantic web technologies within the AEC industries could have an indirect 
impact [Abanda et al., 2013a]. Semantic web technologies could enhance data 

comprehension, support identifying and correcting OCR errors, and aid in data cleaning 

and database construction. 

However, the challenge of achieving data interoperability introduces potential semantic 

errors, particularly evident during the heterogeneous Information Delivery Manual (IFC) 
translation and binding processes across various Building Information Modelling (BIM) 
authoring tools [Lee et al., 2016]. Although not directly tied to data cleaning processes and 

error identification or correction, these challenges underscore the importance of maintaining 

the integrity of the IFC data model to ensure data quality. 

In conclusion, data provenance, along with the application of ontology rules and semantic 

web technologies, presents a promising approach to tackle the challenges of error correction, 
data cleaning, and relational database construction. However, it is crucial to remain 

vigilant about potential errors introduced during data conversion processes and consider 
interoperability challenges within specific domains like AEC. 
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1.3.3 Literature Review of Relational Databases in AEC 

One of the persistent challenges within the AEC industry, notably in dealing with water 
infrastructure, is the effective utilization of heterogeneous data. Historically, such data 

have often been stored in proprietary formats, limiting the capacity for comprehensive 

exploitation and analysis [Loffredo, 1998] and [Solihin et al., 2017]. Numerous attempts 

have been made to circumvent this constraint by making the data more accessible. Still, 
these efforts often limit the scope of available data and confine the capability for ad-hoc 

queries [Loffredo, 1998]. 

The industry is gravitating towards a more user-centric approach to tackle this issue. 
This new direction draws parallels to the data warehouse concept used in general database 

management systems [Adamson, 2010] and [Kimball and Ross, 2011]. Considerable 

advancements have been made in developing databases that allow data access beyond 

vendor-specific Application Programming Interfaces (APIs) [Loffredo, 1998]. The primary 

focus has been on the IFC model server and query-based systems for BIM data, with the 

main foundation being relational databases [You et al., 2004], [Beetz et al., 2010], 
[Mazairac and Beetz, 2013], [Jotne Co., 2014], [Liu et al., 2016], [Khalili and Chua, 2015], 
[Jiang et al., 2015], and [Li et al., 2016]. 

However, such systems, despite their innovation, pose significant performance concerns, 
particularly for complex queries, attributable to the complexity of the STEP 

model [Ghang et al., 2014], [Jeong et al., 2010], and [Solihin et al., 2017]. In response, 
semantic web technologies like RDF and OWL are increasingly adopted for information 

representation and creation of relational databases [Berners-Lee et al., 2001], 
[Berners-Lee, 2006], [Hausenblas and Kim, 2012], [Abanda et al., 2013b], 
[Schmachtenberg et al., 2014], and [Auer et al., 2015]. These technologies leverage the 

power of ontologies to consolidate data from diverse sources, thus simplifying data 

integration [Musen, 1998], [Yin et al., 2012], [Abdalla et al., 2015], 
and [Costin et al., 2017]. 

Ontology usage also assists in maintaining data quality and enhancing decision support 
systems by providing data provenance, a critical aspect in large data 

systems [Fisher and Kingma, 2001], [Pipino et al., 2002], [Sadiq et al., 2011], 
[Moreau et al., 2013], and [Khaki, 2021]. 

Despite the advances, there remains a need for a more streamlined model for efficient 
data management, particularly as the industry moves towards data-driven design and 

maintenance. The existing practices, which can sometimes be inefficient, do not always 
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foster seamless data sharing, creating a significant barrier to disseminating data and 

findings across various scales [Traver and Ebrahimian, 2017], 
[Abdallah and Rosenberg, 2019], and [Smith et al., 2023]. 

Existing data repositories like the EPA’s Storage and Retrieval System (STORET) and 

USGS’s National Weather Information System (NWIS) illustrate the hurdles in facilitating 

smooth interaction between modern water infrastructure data 

repositories [Chen and Han, 2016] and [Choat et al., 2022]. While efficient in gathering 

large quantities of data, these systems overlook the need for a controlled language in the 

collected data, leading to overlaps and ambiguous variable codes that decelerate data 

querying [Chen and Han, 2016] and [Choat et al., 2022]. 

Efforts to resolve these issues, such as the development of the Observations Data Model 
(ODM) and Hydrologic Information System, have proven to be overly complex and 

computationally expensive for typical water monitoring and management 
tasks [Horsburgh et al., 2008], [Maidment, 2008], and [Horsburgh et al., 2016]. 

Recognizing these limitations, there has been a move towards developing a more 

streamlined model, like the water infrastructure data model, which simplifies data 

management processes, including data loading, querying, and 

exporting [Connolly and Beg, 2005]. This model, designed as a multidimensional data 

cube, organizes metadata through relational tables, making it more suitable for handling 

vast amounts of generated data. 

In conclusion, despite advancements, existing relational database practices in the AEC 

industry sometimes lack efficiency and speed, highlighting the need for more streamlined 

models that can handle large data volumes effectively. 

1.3.4 Contract Processing in AEC 

In the recent literature, the role of semantic web technologies in contract processing has 

gained noticeable traction. While the primary focus of this research is not limited to the 

Civil Engineering domain, the established principles and techniques offer promising avenues 

to optimize processes in this field. 

The implications of employing an extended set of ontology rules and provenance records 

extend to the field of building data management. The Linked Building Data (LBD) 
Community Group, operating within the World Wide Web Consortium (W3C), puts 

forth a vision of a comprehensive web that interconnects building data [W3C Report, 2014]. 
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Researchers can formally represent domain knowledge specific to building data by leveraging 

ontology rules, enabling automated reasoning and inference. This enhances data consistency 

and quality, improving the reliability and usefulness of interconnected building data. In 

conjunction with ontology rules, provenance records provide valuable insights into the 

origin and lineage of building data, facilitating error identification and correction processes. 
The utilization of these techniques supports the establishment of a robust and traceable 

network of interconnected building data. 

In the context of this thesis, understanding and leveraging the concepts of ontology rules 

and provenance records within the domain of building data management can significantly 

contribute to achieving the research objectives. Consistency can be ensured by incorporating 

an extended set of ontology rules, improving the quality of used data. Moreover, the 

utilization of provenance records allows for tracing the sources and transformations of data, 
thereby enhancing its reliability and facilitating error identification and correction. 

Principles of knowledge representation and reasoning, particularly the Closed World 

Assumption (CWA) and Open World Assumption (OWA), significantly influence contract 
processing discussions [Tao et al., 2010], [Perez-Urbina et al., 2012], 
and [Terkaj and Sojic, 2015]. While not directly relating to contract processing, these 

assumptions impact the handling of undefined or ambiguous information. The CWA 

assumes any information not presently known or accessible to be false, a concept prevalent 
in traditional relational databases. Conversely, the OWA posits that a lack of knowledge 

does not inherently imply falsity, which is applicable in distributed systems like the World 

Wide Web, where the entirety of relevant information may not be locally available or 
explicitly stated. Therefore, representing these assumptions with Web Ontology Language 

(OWL) might substantially enrich the automatic processing of contracts by augmenting 

inference capabilities, handling incomplete or implicit information, and hence facilitating 

more comprehensive contract analysis. 

In the context of automatic contract processing, particularly within the architecture, 
engineering, and construction (AEC) domains, data interoperability, defined as the ability 

for data from varied sources to function together effectively, plays a pivotal role. Semantic 

interoperability, a shared understanding of data definitions and meanings, is the industry’s 

objective [Rischmoller et al., 2000b] and [Veltman, 2001]. BuildingSMART International’s 

application of the Industry Foundation Classes (IFC) data model makes strides toward 

this goal, providing a framework for data exchange across various Building Information 

Modeling (BIM) authoring tools [International Organization for Standardization, 1994] 
and [Lee et al., 2016]. However, the IFC model presents challenges, specifically 
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surrounding binding, adaptability, and extensibility [Lee et al., 2016]. Binding refers to 

linking data to its representative concept or object. Adaptability denotes the data model’s 

ability to evolve in response to industry changes, while extensibility reflects the ease of 
adding new elements or features to the data model. These elements are essential to 

maintain up-to-date systems and data coherence [Whyte and Donaldson, 2015] 
and [Wang et al., 2020]. 

The development of domain ontologies offers considerable insights into contract 
processing. For instance, El-Gohary and El-Diraby designed a domain ontology to support 
knowledge-enabled process management and coordination across various urban 

infrastructure stakeholders and projects [El-Gohary and El-Diraby, 2010]. Likewise, 
El-Diraby and Osman developed a domain ontology for construction concepts in urban 

infrastructure projects [El-Diraby, 2013b]. Such studies indicate a move towards 

knowledge conceptualization in civil infrastructure, with potential implications for 
automated contract processing. 

In conclusion, while automatic contract processing in Civil Engineering is not yet fully 

established, the principles and technologies discussed in allied domains provide a foundation 

for future research and practical applications in this field. 

1.3.5 Text Classification in AEC 

Extracting historical project cost information from municipal tender-bid documents is a 

complex and time-consuming task. This task becomes more challenging due to diverse project 
characteristics, expert biases, and unique material and service values [Younis et al., 2016]. 
Notably, the identification and categorization of input tender items for unit cost calculations 

or rescaling of historical projects can introduce inconsistencies [Rehan et al., 2016]. The 

inherent difficulty and complexity of these tasks emphasize the need for automated systems 

to ensure accuracy and efficiency. 

In this regard, Text Categorization (TC) has emerged as a promising 

solution [Sebastiani, 2002]. Powered by natural language processing algorithms, TC has 

diverse applications ranging from document organization to classifying newspaper articles 

by theme [Lindén et al., 2018], text filtering, target audience 

evaluation [Magdy and Elsayed, 2016], word sense disambiguation [Raganato et al., 2017] 
and [Navigli, 2009], hierarchical webpage categorization [Qi and Davison, 2009], and 

sentiment analysis [Dang et al., 2020]. TC algorithms can achieve accuracies of 70% 
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Tender-bid document records present a unique application of TC, where records need to 

be classified into standardized categories, a problem known as Named Entity Recognition and 

Classification (NERC) [Paliouras et al., 2000] and [Isozaki, 2001]. However, conventional 
machine learning approaches struggle to handle complex sentences, sparse words for 
classification, and a vast pool of entities requiring classification despite meeting minimum 

accuracy requirements [Isozaki, 2001] and [Wu et al., 2006]. 

In the civil engineering domain, the adoption of TC is still in its infancy and has yet to 

be extensively quantitatively evaluated [Costin et al., 2017]. Current TC algorithms 

struggle with insufficient training data and fail to achieve the necessary 

accuracy [Wang and El-Gohary, 2021]. Moreover, the impact of text identification and 

classification accuracy on analysis results has yet to be thoroughly examined, suggesting 

that current text classification methods may not be entirely suitable for industry and 

municipal applications [Zhou and El-Gohary, 2016]. 

To overcome these shortcomings, this thesis proposes a combination of machine learning 

and mathematical models. Specifically, it employs deep learning techniques, notably 

long short-term memory (LSTM) models, for classifying items in watermain and sanitary 

sewer capital works based on tender-bid documents [Siami-Namini et al., 2019]. This thesis 

proposes leveraging deep learning techniques, particularly LSTM models, to enhance the 

classification of items in tender-bid documents, aiming to improve accuracy and efficiency 

across municipalities. 

LSTM models are capable of learning hierarchical representations of data and 

comprehending complex linguistic structures [Siami-Namini et al., 2019]. These models 

directly learn from raw text data, eliminating the need for extensive manual feature 

engineering and improving their performance with increased data. Such features are 

advantageous when dealing with the voluminous nature of municipal tender documents, 
enhancing the approach’s suitability for identifying tender item types from their 
descriptions in the context of civil engineering and water system infrastructure capital 
works. 

Although the potential of text mining and machine learning is evident, challenges 

persist, such as missing data, data inconsistency, and the need for advanced data handling 

methods [Mohanta and Das, 2016], [Yang and Bayapu, 2020], 
[Gao and Pishdad-Bozorgi, 2020], and [Christopher Pereira, 2020]. Studies have 

demonstrated the potential of text classification in addressing these issues. Thereby 

improving efficiency, rapidly identifying urgent complaints, and enhancing customer 
satisfaction [Bosch et al., 2005], [Coussement and Van den Poel, 2008], 
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[Pyon et al., 2011], [Hartmann et al., 2019], and [Hong et al., 2022]. These findings 

underscore the need for a more advanced, automated text classification system, 
particularly in civil engineering and water infrastructure capital works. 

This thesis aims to fill the research gap with a deep learning approach that addresses the 

need for automated, accurate, and scalable text classification solutions in civil engineering. 

Despite the promising applications of text classification in various domains, its potential 
has not been fully realized, mainly in civil engineering. Considering the immense volume 

of data in municipal tender documents and the inefficiencies of current manual processes, 
there is an urgent need for automated, accurate, and scalable text classification solutions. 
This research gap, coupled with the promising capabilities of machine learning and deep 

learning techniques, offers a unique opportunity for advancing text classification techniques 

in civil engineering and water infrastructure capital works. The deep learning approach 

proposed in this thesis is set to address these needs, paving the way for more efficient and 

effective management of municipal tender-bid documents. 

1.3.6 Literature Review Summary 

In this dissertation, we delve into the crucial methodologies and technologies utilized within 

the Architecture, Engineering, and Construction (AEC) sector, mainly concentrating on 

their application for data standardization and developing systems conducive to efficient 
data management and processing. The critical areas explored encompass ontology, data 

provenance, relational databases, contract processing, and text classification. 

Ontologies have become pivotal within the AEC domain, facilitating semantic 

interoperability, effective data exchange, cooperative information management, and data 

standardization. Their employment in harmonizing data concerning watermain and 

sanitary sewer systems capital works across various municipalities corroborates these 

benefits. Such semantic web technologies allow multiple ontologies to function 

concurrently, facilitating integration with systems beyond the confines of the AEC domain, 
such as Geographic Information Systems (GIS). 

Data provenance, essentially tracking data origin, lineage, and history, fortifies data 

quality and bolsters decision-making systems. Ontological rules coupled with provenance 

records significantly overcome hurdles linked to error correction, data cleaning, and the 

creation of relational databases, particularly in the AEC industry’s context. However, the 

caveat of potential semantic errors arising during data interoperability underscores the 

need for persistent data quality checks. 
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Relational databases in the AEC industry, specifically those concerning water 
infrastructure, have struggled to effectively utilize heterogeneous data due to proprietary 

storage formats and insufficient comprehensive analysis capabilities. An observable trend 

toward user-centric databases reflecting the data warehouse concept implies ontologies’ 
critical role in data consolidation and quality assurance. Despite this progress, the pursuit 
of efficiency and handling capacity remains fraught with challenges, highlighting the 

necessity for continual research. 

The utility of semantic web technologies is also evident in contract processing within the 

AEC field. The capacity to integrate and interpret varied contract-related data holds the 

promise of streamlining contract management processes. The implementation of principles 

like the Closed World Assumption (CWA) and Open World Assumption (OWA) in tandem 

with the Web Ontology Language (OWL) may facilitate more efficient automatic processing 

of contracts by adeptly managing incomplete or implicit information. 

The final focal point is the growing demand for powerful text classification techniques 

for extracting and interpreting historical project cost data from municipal tender-bid 

documents. Machine learning and deep learning techniques, specifically long-short-term 

memory (LSTM) models, can advance text classification techniques in civil engineering 

and water infrastructure capital works. 

Considering the industry-wide challenges, including disorganized and non-standardized 

data, the following chapter introduces a methodology designed to tackle these issues, 
considering the distinct characteristics pertinent to each field. The foundation laid in this 

chapter offers a foundation for applying the proposed methodology, setting the stage for a 

comprehensive understanding of the contemporary landscape of data management in the 

AEC industry. 
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1.4 Methodology 

The methodology of the proposed solution starts with the city engineer overseeing a 

watermain and sanitary sewer capital works project description and seeking to calculate 

unit costs while preparing to tender the project and receive bids. Next, the engineer 
transfers the received bids to the proposed system’s interface (tablet as the front end). The 

server side deals with standardization and unit cost analysis. Ultimately, the engineer can 

review the results through the front-end interface. This methodology contrasts conventional 
engineering judgment, and the machine learning approach introduced. It illustrates how 

the proposed solution can simplify the intricate process of unit cost calculation and bid 

analysis. 

Figure 1.1 provides a sample representation of the proposed solution concept, illustrating 

the functional blocks and the flow of information from project initiation to the final analysis. 

Figure 1.1: Sample representation of the proposed solution concept. 

Predecessors of this project developed a unique set of item descriptions to ensure that 
all similar items have matching descriptions and identifying features (description, unit, and 
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types of items, such as the specific diameter size of copper pipes) [Shapton, 2017]. This 

standardized rule is a crucial ontology component that safeguards the core database and 

transforms inconsistent incoming data into standardized revisions. 

Data Provenance is another critical aspect of the methodology. The system should be 

capable of keeping track of changes or corrections made to data so data provenance records 

are maintained. Provenance records (in the form of metadata) can significantly contribute 

to cleaning and preserving records when integrating different data 

sources [Buneman et al., 2001] and [Dai et al., 2008]. In the current project, this essential 
concept ensures that tracking errors back to their sources is possible. The provenance 

records correspond to Block C in Figure 1.1. 

Furthermore, Block B in Figure 1.1 represents how the two components of standardizing 

data, the ontology and automatic classification module, collaborate to maintain the integrity 

of the core database. Ontology rules keep the core dataset compatible with the standard 

format and layout required by the system. Also, they provide structure and filtering for the 

newly imported standard tenders. Any incoming new contract must first pass through the 

ontology rules, and the layout and consistency of the fields need to be checked. Once this 

step is completed, the classification module performs the subsequent step. The classification 

module ensures that items are accurately categorized according to the standardized model 
in this thesis. 

Previous studies demonstrate that the results of unit cost index depend on correctly 

categorizing each item in a tender-bid document [Rehan et al., 2016]. Therefore, the 

classification module’s accuracy is paramount, as it directly determines the reliability of 
all future analyses. The automatic classification module is responsible for identifying and 

classifying items. For instance, a sample watermain item can be classified as either a 

watermain-pipe or a watermain-hydrant item. Only the automatic classification module or 
a field expert can determine the item’s correct mapping. This functionality is implemented 

using a deep learning-based classifier that leverages long short-term memory (LSTM) blocks, 
which are specialized for learning patterns in data sequences. The non-linear characteristics 

of the deep-learning approach, combined with the LSTM, allow the classifier to capture 

non-linear language constructs available in training data and use them to classify incoming 

tender-bid documents into their corresponding categories. 

Catching to the user’s needs is a straightforward task once the data resides in the core 

database, represented in Block C of Figure 1.1. It requires a simple interface to receive 

instructions and utilize the available tools for analysis. Steps D, E, and F in Figure 1.1 

show this part of the proposed approach. In other words, the main bottleneck preventing 
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municipalities from expanding the analysis and using the wealth of information buried in 

their historical records is the inability to combine all data sources to perform the required 

analysis. 

1.5 Outcomes and novel contributions 

The main deliverable of the proposed solution is a standardized database and methodology. 
This system is designed to import disaggregated data, process both existing and future 

electronic contracts, and incorporate scanned facsimiles of paper-based historical data. 
Considering the potential inconsistency and subjective nature of the contract item 

categorization and analysis, this thesis employs a deep learning-based classification method 

to allocate each record to its standard category accurately. This approach aims to mitigate 

the challenges associated with contract item categorization in the civil engineering domain. 

Additionally, this project yields the standardization and categorization of tender-bid 

items: the integration and consolidation of project/contract records. A primary advantage 

of the standardized database is its ability to adhere to a uniform style and format, regardless 

of the city or contractor. This consistency simplifies the data processing tasks for the 

operator, who must only deal with a single data format. Another contribution of this thesis 

also includes the import and standardization of projects/contract records. 

The thesis utilizes the unit cost index calculation method to establish a foundational 
confidence level for subsequent AI applications. This method is effective when dealing with 

financial data spanning multiple periods, as it helps adjust for price fluctuations caused 

by inflation. By mathematically rescaling the financial data, the influence of inflation is 

minimized, enhancing the accuracy of results in more complex studies. 

The unit cost index estimates costs incurred during specified periods within the historical 
data [Rehan et al., 2016]. This normalization process provides vital insights for cost and 

price inflation calculations related to watermain and sanitary sewer capital works. Notably, 
the unit cost results play a crucial role in calculating inflation. A detailed examination 

of the inflation analysis procedure following the unit cost calculation is expounded in the 

work of Rehan et al. [Rehan et al., 2016]. 

Another outcome of the proposed approach is its scalability and extensibility. As 

the process is automated and requires limited human intervention, it is scalable and 

can efficiently handle larger volumes of documents from diverse municipalities or regions. 
Similarly, the proposed solution can be adapted to other industry fields by employing a 
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customized basket of goods and services to develop a bespoke cost index. Thus, the current 
proposed solution for watermain and sanitary sewer capital works can serve as a model 
applicable to similar fields, such as building construction or roads. 

The subsequent outcome of this thesis is an ensemble of toolboxes specifically designed 

to allow each municipality to utilize the standardized database. These tools yield valuable 

insights and recommendations derived from historical data analysis, enabling informed 

decision-making in watermain and sanitary sewer capital works. The composition and 

interplay of these toolboxes constitute a crucial part of the capital works plan for water 
utilities. 

The proposed decision support system includes several toolboxes that enhance the 

efficiency and effectiveness of watermain and sanitary sewer capital works planning and 

execution. The toolboxes are as follows: The unit cost calculation toolbox, an evolved 

version of its predecessor proposed by Shapton [Shapton, 2017], enables straightforward 

computation of unit cost. The bidding analysis and awarding toolbox allows the operator to 

import project bids, evaluate them, and rank them based on selected criteria. The standard 

tender summary toolbox imports a contract and transforms it into the standardized format of 
the primary database. It enables the operator to download a consistent and revised update. 
The contractor profiling toolbox allows the operator to conduct a meta-analysis on bidders 

using historical data. It provides insight into project risk, geographical relationships, and 

bidder behaviours, potentially revealing collusion among frequent bidders. These toolboxes 

are integral to the proposed decision support system, aiming to improve efficiency in 

watermain and sanitary sewer capital works planning and execution. 

1.6 Thesis Organization 

Figure 1.2 summarizes the five chapters presented in this thesis and highlights the 

contributions of the main three chapters (Chapters Two, Three, and Four). Chapter One 

outlines municipalities’ current data management practices for dealing with the volume of 
data and inconsistencies in their databases. It explains why this situation can escalate into 

a problem and outlines the implications of such a problem. Chapter One describes the 

proposed solution and explains how it addresses the identified issue. 

Chapter Two begins by discussing municipalities’ data challenges and current approaches 

to addressing them. It then presents the proposed data analysis solution and explains how 

it can tackle the existing issues. Chapter Three focuses on the next aspect of the problem 
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(Chapter 2)
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Problem 
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Literature Review
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and objec�ves

(Chapter 3)

Automa�c 
Records 

Classifica�on

(Chapter 4)

Applica�on 
of AI Model

(Chapter 5)

Conclusion, 
and future 

work

֎ A framework designed for data 
standardization & record classification 
that combines ontology, data cleaning, 
and provenance records.

֎ A proposed methodology for 
creating an instance of ontology in the 
field of water systems using historical 
tender records.

֎ An updated unit cost calculation 
method requiring four sub-sections for 
Watermain & and three for Sanitary 
Sewers parts, significantly improving 
classification accuracy & reducing the 
minimum required training instances.

֎ Developed a DLANN model that 
automates & standardizes the items 
from inconsistent tender-bids.

֎ Achieved over 95% classification 
accuracy & demonstrated adaptability 
by aligning historical records and 
accommodating new data.

֎ Unveiled hidden data relationships 
& enabled iterative model refinement, 
aligning with current research trends 
and supporting informed municipal 
decision-making.

֎ Developed a versa�le web server, 
integrating analy�cal and management 
toolboxes.

֎ Enhanced operational efficiency and 
facilitated management and analysis of 
contracts and bids.

֎ Merged prac�cal application with 
theore�cal concept, offering industry-
relevant solution, recognizing its scope 
and limitations.

Research Objec�ves

֎ Development & implementa�on 
of a lexicon & ontology to represent 
the professional knowledge of a civil 
engineer when tendering/bid-ding 
on capital works projects involving 
watermain and sanitary sewers.

֎ Generation of ontology rules, 
relations, definitions, & constraints 
to maintain the correctness and 
integrity of a data structure.

֎ Construction and curation of a 
unified and standardized core data-
set.

֎ Application of a deep learning-
based ar�ficial neural network 
(DLANN) prediction method, which 
is a supervised learning model 
trained and validated using a 
curated set of tender-bid contracts.

֎ After training, the DLANN maps 
the input records of a tender-bid 
document to predefined category 
and sub-category classes. The 
tender-bid items, with the mapped 
corresponding standardized parts 
and sub-parts, are used to construct 
unit cost of watermain & sanitary 
sewer construction projects.

֎ Implementation of the algorithms 
presented in previous chapters as an 
online decision support system, 
known as the WaterIAM webserver.

֎ Implementation of various 
toolboxes to u�lize the developed 
methodology, including Tender 
Summary, Bidder Analysis, Unit Cost 
and Inflation, and Geographical 
Filtering.

Figure 1.2: Thesis chapters objectives, innovations, and contributions 
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and its solution: identifying and classifying the records in each contract. This chapter 
introduces the deep learning approach, assesses the details of the method’s implementation, 
and demonstrates its effectiveness in solving the problem based on the obtained results. 

Chapter Four illustrates the toolbox generated based on the proposed solution, describes 

the different components of the solution, and explains how each component addresses 

a specific aspect of the problem. This chapter summarizes the information presented 

in the previous chapters by showcasing a sample case of the identified problem in the 

three reference cities. Chapter Five concludes this thesis by outlining the advantages and 

disadvantages of the proposed solution and suggesting possible paths to address them in 

future research. 
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Chapter 2 
Record Standardization 

2.1 Introduction 

In this project, three anonymized Canadian cities serve as industrial partners and have 

provided awarded tender bid documents for watermain and sanitary sewer capital works. 
These documents, sourced from various departments within each city, offer a wealth of 
data for analysis. A typical tender consists of items describing combinations of labour, 
material, and equipment activities associated with watermain and sanitary sewer capital 
works pertinent to the design drawings of the capital works project. Contractors bidding on 

the tender must provide a unit cost for each item, with the total bid cost being calculated 

by summing the products of unit costs and their respective quantities. Despite differences 

in tender document formatting across the cities, professional engineers must evaluate these 

documents to produce market-efficient, legally binding estimates. Hence, standardizing and 

organizing these documents into a database is essential for municipalities. This structure 

facilitates creating engineering estimates and using historically awarded bid unit costs to 

calculate inflation in labour, material, and equipment costs. 

Municipalities often lack a standardized data format in tender document construction, 
leading to a ’lack of information interoperability’ [Zhou et al., 2016]. Despite this, contracts 

are structured to enable professional engineers to derive market-efficient, legally binding 

estimates from design drawings. The central goal of this thesis is to overcome these 

challenges by standardizing and organizing these documents into a comprehensive database 

that will allow municipalities to generate more precise engineering estimates and historical 
cost inflation analyses. 
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This chapter focuses on the objective of importing existing and future documents 

governed by the rules of ontology, which represent awarded tender bids for watermain and 

sanitary sewer capital works in compliance with municipal civil engineering best practices. 
The importing process must address two essential tasks: (1) integrating multiple data sources 

and (2) ensuring the quality and integrity of the imported records [Rahm and Do, 2000] 
and [Batini et al., 2021]. While several methods can be employed for the second task, 
ontology is particularly well-suited to the current application. 

The initial analytical step requires importing and unifying heterogeneous data sources, 
such as scanned PDFs and electronic spreadsheets. The import and field unification 

processes carry a significant potential for errors [Devlin and Cote, 1996]. The unified data 

must be stored in the core database for future use and in-depth analysis. The ontology 

ensures the preservation of its structure. However, the effectiveness and control of ontology 

can be application-dependent. In the current case, the ontology consists of a set of rules, 
restrictions, tables, patterns, and styles defining the data format (both physical and 

conceptual). For instance, the data being analyzed includes two styles of documents from 

three cities. One city has an in-house standardized document format encompassing all 
contracts and bidding documents. Another city outsources the task of issuing tenders, 
meaning these tenders do not adhere to a standard style. The third city incorporates a 

combination of both approaches. 

Although these documents are valuable in determining construction delays, they lack 

suitability for precise statistical, financial, or numerical analysis. In contrast, this thesis 

proposes a solution centred on tender summary documents containing detailed information 

on water systems capital work, allowing for the evaluation of accuracy and quality through 

comparisons of numerical results with engineering best practices. 

To address this problem, the thesis develops a methodology that leverages natural 
language processing to standardize a lexicon - i.e., a vocabulary of frequently used terms 

in the field. This chapter aims to create and implement this lexicon structured within an 

ontology framework. This lexicon represents civil engineers’ professional knowledge when 

tendering or bidding on watermain and sanitary sewer capital works projects in conjunction 

with engineering design drawings. Ontology rules, relations, definitions, and constraints 

underpin the lexicon, ensuring the correctness and integrity of the data structure. 

The ontology outlines constraints and rules governing the data, safeguarding its integrity 

against errors. Furthermore, it allows for the unique recording of the description and 

cost of each item in a tender or bid document in a database. The resulting description 

then facilitates a machine learning algorithm to classify each tender item into standard-
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parts and standard-sub-parts related to watermain and sanitary sewer capital works. It 
enables the automation of engineer-estimated unit costs and inflation calculations. The 

primary contribution of the proposed method is the amalgamation of a pre-processing 

data methodology and a deep learning model. This combination is designed to capture, 
replicate, and automate professional engineers’ expert knowledge in interpreting contracts 

for watermain and sanitary sewer capital works projects. 

This thesis leverages ontology for data standardization and quality assurance in the 

context of civil engineering, specifically focusing on watermain and sanitary sewer capital 
works tender documents. The work contributes in three significant ways: firstly, by 

establishing a unique lexicon specific to these documents; secondly, by formulating an 

ontology using tailored filters for contextual error detection; and thirdly, by curating a 

set of common items, initially copied from RS-Means by Rehan et al. [Rehan et al., 2016], 
pertinent to watermain and sanitary sewer capital works. These items are integral to 

training an LSTM-based deep learning classifier, detailed in the following chapter, which 

facilitates the conversion of tender-bid documents from three cities into a standardized 

database. The classifier’s application aims to consistently map contract items to pre-existing 

classification schemas, offering a solution to the time-consuming task of manual mapping 

while maintaining or even surpassing its accuracy. 

The proposed methodology aims to integrate inconsistent data sources into a unified, 
standardized core dataset. The proposed methodology is designed to support importing 

new electronic documents from previously known sources with minimal involvement from 

the engineer. Furthermore, the methodology can extend to incorporate data from new 

entities, such as different cities, municipalities, and contractors, ensuring correct storage for 
future access. The proposed method can deal with the diversity and inconsistency of data 

formats coming from different cities and contractors. Also, it is resilient to errors occurring 

in the contract items’ descriptions, units, and prices due to using an ontology to clean up 

errors and deep learning to rectify mistakes in categorization. 

Additionally, the proposed approach is flexible enough to accommodate shifts in the 

style of item descriptions and representations over time, which may result from changes 

in policy or staffing within a municipality. This important feature can be achieved by 

retraining the classifiers with updated training samples of new data format (e.g. when a 

city changes its contract styles in the future). An essential aspect of the proposed method is 

the implementation of provenance records. These records trace the origins of each piece of 
data, adding an additional layer of reliability and accuracy to the data set. The provenance 

records help ensure that the municipality’s system remains relevant and functional over 
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time. New records’ format, style, and contents will change over time, and error correction 

methodology has to modify the records accordingly. Data provenance records and the 

ontology structure can capture the abstract nature of these changes to keep the system 

from losing functionality for new records and contracts. 

2.1.1 Flowchart for Importing Tender-Bid Documents 

The flowchart of the proposed approach (Figure 2.1) outlines the critical steps and 

components involved in importing heterogeneous tender-bid documents, their 
standardization, and storage of the resulting data in a core database. This flowchart 
illustrates the engineering decision-making process that transforms tender-bid documents 

into organized, standardized tables apt for inclusion in the core database. These 

standardized records and documents represent cost estimations for watermain and sanitary 

sewer capital works. Nevertheless, standardization enables machine learning algorithms to 

analyze the data, discern patterns, and emulate civil engineering expert knowledge and 

expertise when classifying each item in a given tender-bid document. Thus, it has potential 
applications such as computing unit costs for watermain and sanitary sewer capital works. 

Essential elements of the flowchart include the data import, data standardization, 
data storage, item classification (elaborated in Chapter Three), and future adaptability. 
Figure 2.1 not only represents the standardization process for imported documents and 

tenders but also differentiates the work detailed in Chapter Three of this thesis, particularly 

in blocks 2A.9 and 2A.10 (item classification routine). Despite standardizing the imported 

records (outputs of Chapter Two), further processing via machine learning analysis is 

necessary. 

The following contribution of this thesis involves categorizing and sub-categorizing 

records according to a standard protocol determined by available training data and a 

summarized list of RS-Means items, to be examined in the following chapter. The suggested 

machine learning-based method offers flexibility to adapt to future changes in the item 

description and representation styles by retraining classifiers using updated training samples 

of the new data format. In such instances, the entire process envisioned in the flowchart is 

revisited; however, as the process is automated, it does not impose additional burdens on 

the engineer in charge. 

The central feature of the proposed approach (handling diverse and inconsistent data 

sources while maintaining resilience to errors in contract item descriptions, units, and 

prices) relies on the methodology for processing spreadsheets generated by optical character 
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Figure 2.1: flowchart of the process involving the main routine starts with receiving the 

contract and ends with storing the processed data, ready for analysis in the core database. 
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recognition (OCR) from paper-based documents. Due to their sub-optimal quality, OCR 

algorithms may produce errors when converting hard-copy historical documents into 

importable spreadsheets. The OCR-based tender-bid document handling functionality is 

represented in blocks 2A.1, 2A.2, and 2A.3. Further details are provided in Appendix A.1, 
as this is not the main focus of the presented methodology. Another contribution of the 

proposed method is the implementation of provenance records, which are essential for 
data curation tasks. Blocks 2A.4 to 2A.10 include assigning and incorporating provenance 

records within the presented flowchart. 

The remainder of this chapter details how the proposed methodology achieves the 

objectives. The following section discusses importing tender-bid documents and addresses 

the challenges encountered during this step. Subsequently, the concept of an ontology 

is introduced, with implementation aspects such as construction, rules, filters, tables, 
validation techniques, and natural language processing methods. The final section focuses 

on standardized data storage and access within the core database through the MySQL 

server. This section also clarifies the nature of provenance records and flags used in the 

pipeline and their contribution to the safety and auditability of error correction methods. 
The chapter concludes with a summary, discussion, and recommendations for future steps. 

2.2 Data and Methodology 

This section introduces three anonymized contracts as running examples to illustrate the 

methodology employed in this thesis. These contracts, labelled Contract A, Contract B, 
and Contract C, were obtained from three reference cities and provide valuable contract 
data for watermain and sanitary sewer capital works projects. The original forms of these 

contracts are presented in raw tables in Table 2.1 for Contract A, Table 2.2 for Contract B, 
and Table 2.3 for Contract C (located on Pages 28, 30, and 32 respectively). The process of 
progressively modifying these contracts throughout the pipeline is demonstrated in this and 

the following chapter. The process transforms the data’s raw state into a format suitable 

for subsequent algorithmic or analysis-based steps. 

Each contract represents standard features common to most watermain and sanitary 

sewer capital works contracts of one anonymized city. Professional engineers participating 

in or evaluating the tender bidding process readily understand the information presented 

in these contracts, thanks to their adherence to engineering best practices. Individual 
cost items are typically organized into rows, each with a unique description and bid price. 
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However, spreadsheets and items’ representation styles and formatting vary across cities, 
as illustrated by the three representative contracts. 

For instance, Contract B presents two sets of prices and quantities, while Contract A 

only includes one final price and quantity set. Only the final price and quantity values for 
Contract B are retained to standardize tender-bid documents. The other price fields are 

omitted as they are irrelevant to the current project and context. Due to non-standardized 

data presentation, the style and arrangement of information fields were verified with the 

engineer during import. The specific steps of this "import process" are implemented in the 

WaterIAM-Khaki system and detailed in block 2A.3 of the flowchart shown in Figure 2.1. 
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Table 2.1: Sample running example of a contract from Contract A (City A), Part 1. 
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Table 2.1 continued, sample running example of a contract from Contract A (City A), 
Part 2. 
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Table 2.2: Sample running example of a contract from Contract B (City B), Part 1. 
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Table 2.2 continued, sample running example of a contract from Contract B (City B), Part 
2. 
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Table 2.3: Sample running example of a contract from Contract C (City C), Part 1. 
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Table 2.3 continued, sample running example of a contract from Contract C (City C), Part 
2. 
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2.2.1 Importing Tenders 

Figure 2.1 on Page 25 illustrates the contract importing step of the WaterIAM-Khaki 
data standardization pipeline. Various issues arise during importing, as demonstrated 

by examples in Tables 2.1 to 2.3 (on Pages 28 to 32), and are addressed within the 

WaterIAM-Khaki system. Each case is analyzed, and the corresponding solutions are 

actively implemented within the WaterIAM-Khaki, although alternative solutions may exist 
in the literature. To facilitate discussion, each flowchart block is named and numbered. 

Tender Item Mapping 

Industrial partners supplied tender-bid documents from diverse sources (e.g., contractors, 
companies, municipal engineers), which were not required to follow a standard formatting 

protocol. They were accepted as long as the tenders contained valid descriptions, quantities, 
and units. However, this led to variations in tender documents, resulting from factors 

such as column order, aggregation level preferences, and item categorization. Importing a 

tender into the core database entails mapping parsed and validated items to a standard set 
of items represented and curated in the ontology as part of the WaterIAM-Khaki server 
implementation. 

Various approaches can be employed for the mapping process, including element-level 
integration (language-based, constraint-based, upper-level formal ontologies) and structure-
level integration (graph-based, taxonomy-based, model-based) [Ratinov and Roth, 2009]. 
The methodology used in this project is a combination of element-level and structure-level 
integration. It offers a new approach within the civil engineering domain and aims to 

facilitate effective tender item mapping, enhancing data standardization and interoperability. 
After detailing the implemented methodology for tender item mapping in WaterIAM-Khaki, 
it is crucial to note and address common challenges encountered in this process. 

Import issue, item number inconsistency 

In the analysis of the three running examples, discrepancies in the "item number" field 

(Figure 2.2) have been rectified before the import process is complete. In Contract A, the 

field represents item types determined by municipal engineers’ expert knowledge, whereas in 

Contract B and Contract C, it merely denotes the order of items and parts. The latter cases 

offer limited information, while the former provides specific details relevant to contractors 

and municipalities. 
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To standardize these records, the "item number" column in Contract A is retained for its 

informative content (e.g., Watermain standard-part and PVC Pipes standard-sub-part can 

be identified by "B1.a.x" item number). In contrast, the item number can be omitted for 
Contract B and Contract C as it solely indicates local order in tender documents. Suppose 

this field is absent from a contract item. In that case, the classification process determines 

the standard-part and standard-sub-part, with an appropriate provenance tag assigned to 

indicate post-import classification. Figure 2.1 on Page 25 visualizes this process and its 

related blocks in block 2A.5. The operator is responsible for clarifying the item number’s 

meaning and flags it accordingly. 

Figure 2.2: Comparison of item numbers in three sample contracts. 
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Figure 2.3: Example of assigning similar items to different categories. 
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Import issue, item standard-part identification 

Inconsistencies in the import process can arise while mapping the "Part" column. The 

"Part" field indicates an item’s category and may be identified individually (e.g., Contract 
A) or by the section where the item is defined (e.g., Contract B and Contract C). This 

field may also be referred to as "Category" or "section" in tender-bid documents, as shown 

in Figure 2.3. 

The system detects a notable inconsistency due to the non-standard naming of the 

part in Contract B (i.e., both "Road" and "Roadworks" parts, while only "Road" is the 

standard-part name). Additionally, while Contract A and Contract C categorize services 

related to hydrants under the "Watermain" part, Contract B misclassifies it in the "Road" 
part. 

The first issue is addressed by mapping both parts to a single standard-part labelled 

"Road". The system identifies the standard-part for an item based on its description and 

other field values, leveraging expert knowledge incorporated into its algorithms. The 

classification algorithm presented in the next chapter is proposed and implemented to 

automate this process. The part of the WaterIAM-Khaki import routine handling standard-
part identification is depicted in blocks 2A.9 and 2A.10 of the flowchart in Figure 2.1. 
The main objective of the next chapter is to address the issue of missing or standardizing 

standard-part in records. 

In this case, the ontology actively identifies items with inconsistent "Part" fields and 

rectifies the detected issues. However, standardization of the fields is a task that is not the 

responsibility of the ontology and is done for almost all imported items by the classification 

algorithm. The only cases exempted from standardizing are those that the operator flagged 

as standardized previously. The imported items may follow a standard categorization of 
items (such as the case of Contract A and City A); however, there is no direct way of 
checking the compatibility of their standard with the one presented in this work. Thus, 
the ontology marks all imported items with "not standardized", corresponding to the "Pink 

Flag" in data provenance records (refer to Section 2.2.5 on Page 65). 
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Import issue, item description inconsistency 

When converted from hard copies to electronic format, historical contracts often contain 

typos and errors arising from limitations in optical character recognition (OCR). For 
instance, Table 2.2 item 1.1 has an incorrect final price of 4,03440 CAD for concrete 

disposal in the "Road" part, as shown in Figure 2.4. The correct final price should be 

4,034.40 CAD. 

Figure 2.4: Item 1.1 of Contract B shows an incorrect Final Price because of an OCR error. 

The item description is another problem applicable to all three running examples of the 

contracts. In Table 2.2, item (4.5) of the Watermain part has the description: "remove & 

replace existing water service connection (from new 150mm to property line)". The original 
item is shown in Figure 2.5. 

Figure 2.5: example of the non-standard item description. 

There are several issues with the current format of the description text that would 

prevent further analysis: 

1. It comes from a table without meaningful item numbers; it requires further processing 

by the classifier to identify its standard-part and standard-sub-part. 

2. As a pre-requisite for automatic classification, the description words should be in their 
most simplified form to enhance classification accuracy. After using natural language 

processing rules implemented in the ontology, the text is converted to the following: 

remove and replace exist water service connect (from new 150 mm to 

property line) 
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3. The prepositions, auxiliary words, and punctuation characters are not acceptable for 
the classifier as they do not contribute to the meaning or classification of the item. 
Therefore, the description is updated to: 

remove and replace exist water service connect (from new 150 mm to 

property line) 

Figure 2.6 presents a flowchart illustrating the data integrity check process for imported 

items. The initial step (block 2C.1) verifies that the sum of tender document parts matches 

the total sum. Subsequent steps include validating unit cost and quantity fields (block 

2C.2) and ensuring the consistency of the total cost of items with their existing counterparts 

(block 2C.3). The system includes a process to verify the integrity of an item’s description 

and then updates the text using implemented natural language processing techniques. 

We have implemented various filters that programmatically identify and correct issues, 
as demonstrated in Figures 2.4 and 2.5. These filters include: 

• A sum check after importing items ensures the final price matches the provided 

contract sum if detected by the algorithm. 

• Ontology rules that define price ranges for different standard-parts, generated through 

investigation of similar items and domain expert consultation. 

• Rules that cross-check item descriptions against a water infrastructure systems lexicon, 
flagging terms that do not exist in the dictionary with "Yellow flags." The identified 

anomalies, once flagged, are addressed to ensure clarity in subsequent data processing 

steps. 

• Rules ensuring correct currency item presentation by checking for "," ".", and "$" 
characters. 

While some steps appear redundant, our analyses show their importance in ensuring 

data integrity. Ensuring the validity of items passed through OCR or other communication 

channels is vital for accurate post-processing. Our work with scanned documents from an 

industrial partner showed that the filters identified several errors that, if unnoticed, would 

impact the accuracy of the standardized records. 
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Figure 2.6: Flowchart of the WaterIAM Item Integrity Check Routine, converting paper 
format documents into tabular form for pre-processing. 
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Data provenance records are incorporated to address potential errors and track the 

changes applied to each record at each stage. Despite taking precautions, errors may still 
be present in the final items, adjusted fields may not reflect correct values, and additional 
errors may be introduced during correction and import. Therefore, each error correction 

step is documented for record integrity and auditability. Raw contract items are stored 

with a "Black flag" in the core database for reference, and items with provenance Meta-Data 

are marked with a "Violet flag". 
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2.2.2 Ontology 

Introduction and Objectives 

The ontology is designed to bring uniformity to civil engineering records, particularly 

focusing on tender bids. It is pivotal in identifying discrepancies in imported documents 

and aligning records with established standards. The ontology supports a hybrid analysis 

approach, crucial for enhancing the tender updating process, ensuring unit compatibility, 
and refining the machine learning classification system. Figure 2.7 illustrates the ontology’s 

role in this context. 

Figure 2.7: The ontology’s role in filtering non-compliant terms, simplifying word 

classification for machine learning analysis, and assisting in the assignment of item 

numbers or classifications. 

Construction Methodology 

The construction of the ontology involves several sources, including formalized existing 

knowledge, historical project records, and analytic tools and decision-support systems. The 

development of the ontology model begins with this formalized knowledge and is validated 

and expanded through six iterative cycles using tabulated historical data. 

Structural Components of the Ontology 

The ontology is structured hierarchically, comprising classes, subclasses, object properties, 
and data properties. It includes classes such as Item, Unit, Equipment, and 
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ClassificationOutput, which are further detailed into subclasses to enhance specificity. 
Relationships between classes are defined using object properties like hasUnit, 
hasStndPart, and hasStndSubPart, while attributes of items are captured using data 

properties such as hasSize, hasDepth, hasCity, and hasContract. Cardinality rules are 

strictly enforced to maintain data integrity. 

Ontology Implementation and Applications 

The ontology aids in standardizing item parts and categories, including normalizing 

dimensions like diameter and depth. It is instrumental in detecting errors in document 
imports, a process visualized in Figure 2.8. 

Additionally, Figure 2.9 on Page 46 provides an overview of the ontology’s data 

hierarchy, detailing categorizing words and sentences into classes based on their role in 

knowledge representation. 

Data Pre-processing and Tokenization 

Data pre-processing is initiated with thorough cleaning and tokenization to ensure quality, 
adhering to rules that standardize word forms, and addressing pluralization and irregularities 

in English. Additionally, a surcharge calculation function is incorporated to adjust the unit 
price of items. 

Standardized Items and Named Entity Recognition 

Standardized items and their categorization under standard-parts and standard-sub-parts 

are presented in Table 2.4, employing a many-to-one matching strategy. 

The structure of the ontology for categorizing various elements related to Sanitary 

Sewers and Watermain construction projects is outlined in Listing 2.1 on Page 47. The 

ontology provides a structured and standardized way to represent and classify the various 

components involved in these projects, ensuring consistency and clarity in the management 
and documentation of these elements. 
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Table 2.4: Examples of standardized parts and sub-parts with their respective 

classifications. 
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Figure 2.8: Process flowchart for updating WaterIAM item descriptions using the ontology 

routine. 
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Figure 2.9: Overview of the ontology’s data hierarchy, detailing the categorization of 
words and sentences into classes based on their role in knowledge representation. 
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Listing 2.1: Ontology representation of sanitary sewers and watermain items and their 
properties 

owl : Thing 

# Material Class 

Class : Material 

SubClass : Backfill 

SubClass : Concrete 

SubClass : Curb 

SubClass : Driveways 

SubClass : Granular 

GranularA 

GranularB 

GranularM 

SubClass : Hydrant 

SubClass : Lead 

SubClass : Manhole 

SubClass : Pipe 

SubClass : RetainingWall 

SubClass : RoadBase 

SubClass : Shoulder 

SubClass : Sidewalk 

SubClass : Tree 

SubClass : Trench 

SubClass : Valve 

ObjectProperty : hasUnit 

Range : Unit 

Cardinality : exactly 1 

# Service Class 

Class : Service 

SubClass : Adjustment 

SubClass : Apply 

SubClass : Construction 

SubClass : Disposal 

SubClass : Excavation 

SubClass : Installation 

SubClass : Rebuilding 

SubClass : Removal 

SubClass : Supply 

ObjectProperty : hasUnit 

Range : Unit 

Cardinality : exactly 1 

# Standard -Part Class 

Class : Standard -Part 

SubClass : NoStdSubPart 

SubClass : Prt_General 

SubClass : Prt_ProvisionalItem 

SubClass : Prt_Road 

SubClass : Prt_SanitarySewer 

SubClass : Prt_StormSewer 
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SubClass : Prt_Watermain 

ObjectProperty : hasStndSubPart 

Range : Standard -Sub -Part 

Cardinality : exactly 1 

# Standard -Sub -Part Class 

Class : Standard -Sub -Part 

SubClass : SS_Lateral 

SubClass : SS_Manhole 

SubClass : SS_Pipe 

SubClass : WM_Hydrant 

SubClass : WM_Pipe 

SubClass : WM_Service 

SubClass : WM_Valve 

# Unit Class 

Class : Unit 

SubClass : unt_Hour 

SubClass : unt_LS 

SubClass : unt_Tonne 

SubClass : unt_each 

SubClass : unt_litre 

SubClass : unt_m 

SubClass : unt_m2 

SubClass : unt_m3 

# Equipment Class 

Class : Equipment 

SubClass : SawCutter 

SubClass : Excavator 

SubClass : Bulldozer 

SubClass : Crane 

SubClass : Backhoe 

# Item Class 

Class : Item 

ObjectProperty : hasStndPart 

Range : Standard -Part 

Cardinality : exactly 1 

ObjectProperty : hasStndSubPart 

Range : Standard -Sub -Part 

Cardinality : exactly 1 

ObjectProperty : hasMaterial 

Range : Material 

Cardinality : exactly 1 

ObjectProperty : hasService 

Range : Service 

Cardinality : exactly 1 

ObjectProperty : hasUnit 

Range : Unit 

Cardinality : exactly 1 

ObjectProperty : hasEquipment 

Range : Equipment 

Cardinality : zero or more 
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ObjectProperty : hasClassificationOutput 

Range : ClassificationOutput 

Cardinality : exactly 1 

# Object Properties 

ObjectProperty : hasConstruct 

Domain : Item 

Range : Material 

Cardinality : exactly 1 

ObjectProperty : hasMaterial 

Domain : Item 

Range : Material 

Cardinality : exactly 1 

ObjectProperty : hasService 

Domain : Item 

Range : Service 

Cardinality : exactly 1 

ObjectProperty : hasStndPart 

Domain : Item 

Range : Standard -Part 

Cardinality : exactly 1 

ObjectProperty : hasStndSubPart 

Domain : Standard -Part 

Range : Standard -Sub -Part 

Cardinality : exactly 1 

ObjectProperty : hasUnit 

Domain : {Material , Service , Item} 

Range : Unit 

Cardinality : exactly 1 

ObjectProperty : hasEquipment 

Domain : Item 

Range : Equipment 

Cardinality : zero or more 

ObjectProperty : hasClassificationOutput 

Domain : Item 

Range : ClassificationOutput 

Cardinality : exactly 1 

# Data Properties 

DataProperty : hasDepth 

DataProperty : hasSize 

# Datatypes 

Datatypes : integer 

# ClassificationOutput Class 

Class : ClassificationOutput 

SubClassOf : Thing 

Comment : This class is used to represent the possible classification outputs 

for items in Chapter 3. 

SubClass : Prt_General 

SubClass : Prt_ProvisionalItem 

SubClass : Prt_Road 

SubClass : Prt_SanitarySewer 
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SubClass : SS_Lateral 

SubClass : SS_Manhole 

SubClass : SS_Pipe 

SubClass : Prt_StormSewer 

SubClass : Prt_Watermain 

SubClass : WM_Hydrant 

SubClass : WM_Pipe 

SubClass : WM_Service 

SubClass : WM_Valve 

ObjectProperty : hasClassificationOutput 

Domain : Item 

Range : ClassificationOutput 

Cardinality : exactly 1 

Individuals : 

# Maintenance holes standard 1200 mm diameter 2.2m deep 

Individual : MaintenanceHole_2_2m 

Type: SS_Manhole 

DataProperty : hasSize 

Value : 1200 

Unit: unt_mm 

DataProperty : hasDepth 

Value : 2.2 

Unit: unt_m 

DataProperty : hasCity 

Value : CityA 

DataProperty : hasContract 

Value : ContractY 

ObjectProperty : hasStndPart 

Value : Prt_SanitarySewer 

ObjectProperty : hasStndSubPart 

Value : SS_Manhole 

ObjectProperty : hasClassificationOutput 

Value : Prt_SanitarySewer 

# Remove existing sanitary sewer pipe 225 mm diameter 

Individual : RemoveSewerPipe_225mm 

Type: SS_Lateral 

DataProperty : hasSize 

Value : 225 

Unit: unt_mm 

DataProperty : hasCity 

Value : CityB 

DataProperty : hasContract 

Value : ContractX 

ObjectProperty : hasStndPart 

Value : Prt_SanitarySewer 

ObjectProperty : hasStndSubPart 

Value : SS_Lateral 

ObjectProperty : hasClassificationOutput 

Value : Prt_SanitarySewer 

# Supply and place temporary 150 mm diameter bypass waterline 

Individual : TempBypassWaterline_150mm 
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Type: WM_Pipe 

DataProperty : hasSize 

Value : 150 

Unit: mm 

DataProperty : hasCity 

Value : CityC 

DataProperty : hasContract 

Value : ContractZ 

ObjectProperty : hasStndPart 

Value : Prt_Watermain 

ObjectProperty : hasStndSubPart 

Value : WM_Pipe 

ObjectProperty : hasClassificationOutput 

Value : Prt_Watermain 

# Supply and install gate valve including valve box and rod 300 mm diameter 

Individual : GateValve_300mm 

Type: WM_Valve 

DataProperty : hasSize 

Value : 300 

Unit: mm 

DataProperty : hasCity 

Value : CityA 

DataProperty : hasContract 

Value : ContractY 

ObjectProperty : hasStndPart 

Value : Prt_Watermain 

ObjectProperty : hasStndSubPart 

Value : WM_Valve 

ObjectProperty : hasClassificationOutput 

Value : Prt_Watermain 

# Supply , place and compact granular subbase materials Granular A 

Individual : GranularA_Subbase 

Type: NoSubPart 

DataProperty : hasSize 

Value : GranularA 

DataProperty : hasCity 

Value : CityB 

DataProperty : hasContract 

Value : ContractX 

ObjectProperty : hasStndPart 

Value : Prt_Road 

ObjectProperty : hasStndSubPart 

Value : NoSubPart 

ObjectProperty : hasClassificationOutput 

Value : Prt_Road 

Heterogeneous data filtering 

Ontologies provide flexibility in specific application contexts and ensure structural 
consistency. Each ontology revision evolves over time, capturing a particular domain’s 
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formalized knowledge. This encapsulation takes the form of a collection of concepts or 
entities and the relationships that connect these concepts. Using ontologies allows 

researchers to filter out inconsistent data and ensure only relevant information is analyzed. 
Ontologies enable researchers to filter out inconsistent data, ensuring the analysis focuses 

on pertinent information. 

Consider the example of water systems: the ontology for this domain would feature 

entities such as pipes and valves. Our prior knowledge of these systems informs us that the 

size of pipes and valves in a project should generally correspond unless stated otherwise. 
Therefore, size becomes an attribute associated with the pipe and valve entities, with the 

established relationship stipulating that in a connected pipeline, their size attributes ought 
to align. 

Such structured knowledge can generate a data model, creating a knowledge graph. 
In this graph, the entities and their attributes become nodes and sub-nodes, while the 

relationships take on the role of edges that link related concepts and attributes together. An 

ontology, whether in the form of text-based rules, graphical representations, RDF schemas, 
or as part of a data standardization pipeline, can capture and standardize information 

structures, facilitating maintenance and updates [Abdalla et al., 2015]. 

In practical applications, a well-crafted ontology can enable the integration and import 
of records from various data sources. This feature is leveraged to organize information 

drawn from multiple municipalities in the current project context. The core information 

remains consistent even if municipalities present records in various formats with different 
granularity. By providing a uniform organizational tool, ontology proves invaluable for 
systematizing data from these heterogeneous sources. This theme, previously introduced in 

our literature review, gains prominence in the implementation phase. 

Word-frequency table 

A key aspect of ontology is the lexicon, which represents frequently used words in the field 

of watermain and sanitary sewer systems capital works. Table A.1 in Appendix A.2 on 

Page 167 displays words with a frequency of 2 or more times in the available documents. 
A concise version is generated using the running examples from Table 2.1 on Page 28, 
Table 2.2 on Page 30, and Table 2.3 on Page 32 , represented by Table 2.5 on Page 54. 
This lexicon combines item descriptions from three running examples (Contract A, Contract 
B, and Contract C). To maintain consistency, words are converted to their root form 

(e.g., "connected" or "connection" → "connect") as part of the ontology’s standardization 
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framework. Li et al. [Li et al., 2015] present a method for automatically creating domain-
oriented term taxonomy using ontology. 

Units are standardized (e.g., square meter, m2, sq.m. → m2), and punctuation marks are 

removed according to ontology guidelines. The resulting table filters prospective documents 

during importing. Constructing this table necessitates a comprehensive survey of contracts 

across multiple cities. This approach captures prevalent field-specific words and minimizes 

the omission of informative terms. The main table (in the Appendix) uses all raw contracts 

from three cities for the primary lexicon, which is approximately equivalent to 300 tender 
documents (each tender containing 150 items). The available pool contained about 95,000 

words, which, after removing redundancies and overly specific place names, was reduced to 

910 words. These words form the corpus of the water system infrastructure description 

table presented in Appendix A.2. 
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Table 2.5: Word frequency table generated from the running example. 
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Field value verification 

Field value verification involves using the ontology’s training data to identify specific pipe 

and valve sizes for watermain items, as well as types and dimensions of components for 
sanitary sewer items. Applying such restrictions during contract item imports allows for 
detecting contextual errors, rectifying them, or raising error flags for operator review and 

revision. 

For example, a sanitary sewer item with a pipe material (SS_Pipe standard-sub-part) 
and a pipe size of 160 mm. The ontology-based rules will detect inconsistency (since valid 

sanitary sewer pipe sizes in this range include 100, 125, 150, and 200 mm) and flag the 

record as potentially erroneous for operator investigation. We seek expert intervention in 

such cases, and the item’s record receives a "Red flag". 

In another scenario, an item belonging to SS_Pipe standard-sub-part is not identified 

as such. The item will be entered into the database as "standard-parts not detected" until 
the automatic classification system determines its standard-sub-part. Before classification, 
the item receives a "Pink flag" for not having a standard-part/standard-sub-part assigned. 
Once classified, a "Green flag" is assigned, indicating the automatic classification mechanism 

has determined the standard-part/standard-sub-part, and the record is safe for further 
processing. 

Natural Language Processing 

Natural Language Processing is employed to standardize and simplify contract language for 
water systems, compensating for the absence of a unified standard for material and service 

descriptions. Occasionally, descriptions may include extraneous information, such as street, 
contractor, or supervisor names, which is irrelevant to the item standard-part and can be 

excluded from the standardized dataset. Constructing a lexicon for watermain and sanitary 

sewer capital works prevents unnecessary data from entering the dataset while keeping 

a copy in the core dataset as raw reference data. The available data can also simplify 

descriptions by eliminating grammatical tenses and converting all nouns to singular forms. 
It facilitates the decoding and classification of descriptions for subsequent algorithms. 

Different descriptions of the same word are merged (e.g., dozer, bulldozer, and bull dozer 
become "bulldoze"; driveway, drive way, driveways, drwy, dvwy, dwy are all converted to 

driveway), and this approach is applied to units consistency. Figure 2.10 displays word 

clouds based on each field’s most frequently used words (watermain on the right and 
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sanitary sewer on the left). Furthermore, Figure 2.8 on Page 45 presents a flowchart of 
the import routine using ontology to standardize item descriptions. Note that the word 

clouds serve illustrative purposes and do not possess computational significance. 

Figure 2.10: Word cloud representations of the ontology tables: Watermain (Right) and 

Sanitary Sewer (Left). The size of the words is directly proportional to their frequency of 
occurrence in their respective standard-part. 

2.2.3 Standardized Data 

Once the data is processed through the ontology standardization pipeline discussed in this 

chapter, it is expected to be of a quality suitable for machine learning classification. The 

only remaining step is to determine the standard-part and standard-sub-part of the data, 
which will be addressed in the next chapter. 

Tables 2.6, 2.7, and 2.8 display running examples that have undergone all pipeline 

stages mentioned in this chapter. These tables demonstrate that both item descriptions 

have been simplified, and units have been made consistent. The part column in these 

tables is based on information reported in the source document, so the part values at this 

stage are unreliable for data analysis due to a lack of standardization. Moreover, during 

our analysis, we encountered parts from new cities not yet included in the standard-part 
categorization, such as "storm and road", necessitating operator review. 
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Table 2.6: Sample running example of a contract (Contract A) City A. 
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Table 2.7: Sample running example of a contract (Contract B) City B. 
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Table 2.8: Sample running example of a contract (Contract C) City C. 
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Data Provenance 

Data provenance refers to the documentation and tracking of the origin, lineage, and 

history of data [Moreau et al., 2013]. It enables identifying and correcting errors, ensuring 

the data is trustworthy and reliable. In scientific research, data provenance is essential for 
reproducibility, accountability, and transparency [Garijo et al., 2014, Missier et al., 2013]. 
Moreover, data provenance is critical for decision support systems, where using incorrect or 
incomplete data can lead to erroneous analyses and unpredictable 

outcomes [Fisher and Kingma, 2001], [Khaki, 2021], [Pipino et al., 2002], 
and [Sadiq et al., 2011]. 

In this project, we developed a decision support tool that analyzes tender/contract 
documents to evaluate contractors’ bids and behaviours. The outcome of this tool is the 

conversion of tender-bid as presented in Table 2.1 on Page 28, Table 2.2 on Page 30, 
Table 2.3 on Page 32 being used as input and converted to the output tables presented in 

Table 2.6 on Page 57, Table 2.7 on Page 58, and Table 2.8 on Page 59. Common errors 

in the current application were previously discussed in this chapter. We implemented a 

systematic approach for detecting and analyzing records, including potential errors, ensuring 

the tool’s output accuracy and reliability. This approach includes investigating sample 

cases to identify error sources, finding systematic methods to address error types, and 

analyzing the resulting sensitivity to errors [Reeder and David, 2016]. 

Our system used an extended set of ontology rules and provenance records to address data 

errors and ensure data provenance. Ontology rules formally represent the domain knowledge, 
allowing for automated reasoning and inference [Stuckenschmidt, 2009]. Provenance records, 
on the other hand, document the origin and lineage of data, facilitating error identification 

and correction [Moreau et al., 2013]. 

When converted to electronic format, hard copies of archived documents require sanity 

checks before error correction to guarantee accurate data provenance. Using OCR 

technology to digitize printed documents can introduce errors, leading to data quality 

deterioration [Kim et al., 2003]. Therefore, ensuring that the digitized data accurately 

reflects the original document’s content is essential. 

In summary, data provenance is critical for ensuring the accuracy and reliability of 
decision support systems. It involves documenting and tracking the origin, lineage, and 

history of data, enabling error identification and correction. A systematic approach 

combining ontology rules and provenance records is necessary to address errors and ensure 

trustworthy data. 
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2.2.4 Image Pre-processing for Hard Copies 

Analyzing scanned tenders and employing Optical Character Recognition (OCR) poses 

several challenges. The quality of scans is inconsistent, with pages often rotated or skewed 

due to varying scanning methodologies. Furthermore, table formatting varies; some tables 

showcase visible column borders, others only display header borders, while actual table 

cells are visually separated solely by whitespace. Such variation might require operator 
feedback. Consequently, automated data extraction using OCR tools, such as ABBYY, 
without pre-processing is often insufficient. 

Due to significant variations in scanning quality and table layouts, a universal approach 

was ineffective. In response, we developed a suite of image analysis tools to refine table 

layouts in OCR-scanned PDFs. Once the document scan quality is sufficiently enhanced, 
OCR software like ABBYY FineReader can extract tabular data. This section overviews 

these tools and the steps required for tabular data extraction from a sample page. 

For illustrative purposes, we use an example of a single table from a single page detailing 

the process of enhancing scan quality. A simple measure of scan quality assessment is 

applying OCR software to the raw data, followed by a result examination. Further steps 

are unnecessary if the tabulation scheme aligns (i.e., the arrangement of data in cells) and 

maintains a minimum text conversion accuracy. However, frequently, pages are skewed 

and need realignment, along with improvements in image brightness and contrast. Any 

present marks (checkmarks, handwritten notes) should be removed or noted for final result 
adjustments. 

The image de-skewing routine utilizes either the table’s four external corners or one 

vertical and one horizontal line (both user-provided) to ascertain the level of skewness or 
rotation requiring correction. Another method for detecting lines in table rows and columns 

involves the Hough Transform [Aggarwal and Karl, 2006]. 

The table’s external corners are identified using a manual or semi-automated process 

(involving the Hough Transform). This information helps create the transformation matrix 

needed to de-skew the image, applying scale or rotation adjustments as necessary. Even 

post-Hough Transform application and line detection, user feedback is critical to ensure 

accurate parameter and line detection. 

As illustrated in Figure 2.11, there are non-aligned horizontal lines, even though the 

vertical lines are aligned, barring the overall image rotation. The line slope signifies page 

skewness, with left text boxes slightly shifted downward compared to those on the same 
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row’s right. Such a skewed image would yield low-quality results from OCR software, 
necessitating correction. 

In conclusion, extracting data from tables in scanned documents is a complex and 

multi-faceted challenge. Issues such as varying table layouts, missing visual markers (e.g., 
table cell borders), and page rotation or skewness contribute to this complexity. No single 

solution can address all these cases, as evidenced by this project’s experiences. Combining 

manual and automated methods, including OCR technology and image analysis tools, is 

vital to enhance scan quality and facilitate accurate data extraction. 

Figure 2.11: An example table requiring de-skewing (right side 3.5 Degrees higher than 

left) and counterclockwise rotation (0.75 Degrees) for accurate text recognition in cells. 
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2.2.5 Data Quality and Integrity Management 

In this project, we have adopted a detailed approach to maintain data quality and integrity 

to identify errors, manage noise, and address omissions based on a deep understanding of 
the data’s nuances. The identification of errors often hinges on predefined data requirements 

and typologies. For instance, when considering a dataset on watermains, the items involving 

"pipe material" contains standard entries such as "cast iron or CI," "PVC," or "ductile iron or 
DI." Any divergence from these accepted materials prompts an error flag. Similarly, in the 

case of sanitary sewer datasets, numeric entries indicating the pipe diameter in millimetres 

are expected. In their absence, potential errors are flagged. 

Another common challenge is the noise introduced while translating physical records to 

digital data. This issue is frequently encountered when tender documents, initially in hard 

copy, are scanned and converted into electronic tables. During this process, elements such 

as handwritten annotations or checkmarks, originally designed to provide clarity, often 

introduce noise and disrupt the Optical Character Recognition (OCR) process. 

Data omissions are notably challenging to identify and can significantly impact the 

dataset’s integrity. For instance, watermain items contain information regarding each 

pipe diameter. An error flag is raised in cases where this information is absent, signalling 

a critical omission that can impact subsequent calculations and assessments. Similarly, 
missing data on the depth of the sanitary sewer maintenance holes, a factor vital for 
determining the cost while resizing the depth and diameter to the specifics of the unit cost, 
constitutes a significant omission. 

The process of rectifying these issues requires a multi-faceted approach. Missing data, 
such as the diameter of a watermain pipe, are addressed with operator intervention and 

consultation with original engineering drawings or other copies of the bid document. On 

the other hand, issues such as a missing pipe diameter in a sanitary sewer dataset can be 

resolved by treating the item as a lateral sewer pipe. Other correction mechanisms rely 

on utilizing information from different fields or items. For instance, if the unit cost of a 

watermain pipe segment is missing, an estimation can be made by dividing the total cost 
by the quantity, assuming these fields are available. In situations where this approach is 

not viable, alternative strategies might be employed, such as using cost data from similar 
pipe segments or consulting industry-standard cost databases. 

The origin of the data significantly influences its propensity for errors. Electronic 

table datasets derived directly from bid submission websites, services, or other digital 
platforms are typically less susceptible to errors. The absence of OCR processing, which 
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often introduces transcription errors and other discrepancies, contributes to this reduced 

error propensity. Furthermore, these digital datasets undergo software validation checks, 
ensuring data completeness and integrity. 

Despite these advantages, electronic table datasets are not entirely exempt from errors. 
Issues often arise due to human error during data entry, such as typographical errors, 
inconsistent terminology, or incorrect unit assignments. For instance, inconsistencies in 

a watermain dataset can occur when engineers interchangeably use the terms "PVC" and 

"polyvinyl chloride," or "DI" and "Ductile Iron." This inconsistency necessitates cleaning 

procedures to standardize the terminology. Likewise, a standard error in sanitary sewer 
datasets could be the inconsistent assignment of units for pipe length in feet or meters. It 
leads to issues during unit cost analysis and necessitates correction during data cleaning. 

Even digital datasets are not immune to data omissions. A missing pipe length or 
diameter could go unnoticed if the system is not configured to enforce compulsory data 

entry for these fields. Moreover, logical errors could arise, such as inconsistencies between 

a watermain pipe diameter and the valves used to connect the pipe to the existing 

infrastructure. In summary, although automated error detection and correction 

mechanisms provide substantial support, human intervention is indispensable in certain 

situations. Depending on the nature and severity of the encountered issues, the level of 
intervention can vary. Regardless of the datasets’ origins and complexities, maintaining 

vigilant quality control and adhering to robust data validation protocols remain essential 
to ensure the data’s accuracy and reliability. 

The function of ontology, especially its predefined rules or standards, is pivotal in 

structuring the data. Ontologies define relationships, establish hierarchies, and set 
constraints on valid data, eliminating redundancy and ensuring data coherence. For 
example, ontology rules standardize the names of pipe materials, flagging entries that 
deviate from the established terminology. Additionally, ontologies are crucial in managing 

logical errors and missing data. Rules can enforce the consistency of pipe and valve 

diameters in sequential items or require an associated depth for each maintenance hole 

entry, ensuring data completeness. By implementing ontology rules, the data cleaning 

process can be partially automated, minimizing the need for manual review and 

intervention and optimizing the time and effort required. 

In conclusion, managing data quality and integrity in this project involves a complex 

interplay of error detection, noise management, and data omission handling. Utilizing 

both manual interventions and automated methods, along with robust ontological rules, 
ensures the data’s consistency, accuracy, and reliability. The strategies outlined here form 
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a comprehensive framework for maintaining the high standards required in the data’s 

lifecycle. 

Provenance Flags 

This section introduces flags, part of the ontology, to facilitate data import and maintenance 

and streamline the data analysis process. These flags facilitate efficient communication 

between the different components and stages of the data analysis process, promoting a 

more streamlined flow of information. Table 2.9 lists the flags and their descriptions. 

Record Cleaning Status; Every record indicates whether a cleaning procedure has 

been applied. Reasons for labelling a record as "clean" include error correction, updating 

existing entries with new values, or amendments to contract payments. Cleaned records 

will carry the "Violet flag." 

Nature of the Data Quality Issue; if a record is identified as faulty, the type of 
error, whether corrected or still present, is specified. Errors include missing data, outliers, 
incorrect formats (e.g., numeric instead of a string or litres instead of gallons), typos, spikes 

or abnormalities in data trends, noisy records or measurements, duplicate records, field 

data overload, and incorrect timestamps. Records with OCR-related errors should have 

the "Brown flag." 

Employed Cleaning Approach; the cleaning approach used is explicitly mentioned 

in the provenance records. These approaches include interpolation and extrapolation for 
missing records, unit modification for inconsistencies, ignoring the error, filtering and 

removal of outliers, re-acquisition from redundancies, storage format change, manual 
correction and override, duplicate elimination, filling by a constant value from rules in 

Ontology, using the most probable value, replacing by central tendency value, and replacing 

by a value acquired through binning or clustering neighbouring records. 

Cleaning Revision; records might require multiple cleaning iterations or further error 
identification post-cleaning. Hence, a field indicating the date of the cleaning process, 
the reason for (re)cleaning, and the revision number (in cases of multiple revisions) are 

included. 

Detection Method; the detection method employed by the operator or cleaning 

software. Examples include operator-based, expert monitoring and flagging, watchdog 

programs, data mining transformation-caused outlier, filtered outlier, and dictionary-based 

or lookup table-based detection. 
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Table 2.9: description of flags used in the record standardization process. 

Error Source; determining the origin of the error is crucial for future ontology revisions. 
Possible error sources include meter-based errors, operator-based errors, integration-schema 

mismatch errors, records import algorithm issues, OCR algorithm errors, or unknown 

sources. 

Cleaning Tool Used; if a cleaning tool was utilized, it is documented in the provenance 

records. Available data cleaning tools include locally programmed code, data wrangler, 
Drake, open refine, Winpure, Patnab, cleaning scope, Alteryx, and local lookup table, 
among other available tools. 

Additional Provenance Record Fields; other fields that are included in the 

provenance records might specify whether the update’s scope was local or global and 

whether the update is incorporated as an ontology rule for future imports. These flexible 

guidelines can be adapted to accommodate future expansions or address unforeseen issues. 

The data quality and integrity management process dramatically benefit from the 

structuring power of ontology, particularly when it comes to defining and enforcing rules 

or standards. By defining relationships, establishing hierarchies, and setting parameters 

for valid data, Ontology facilitates the systematic organization and standardization of 
data. For example, an ontological rule might enforce uniformity in the terminology of 
pipe materials, enabling the system to identify and flag any entries that stray from this 

norm. Similarly, ontologies can help manage logical inconsistencies and address missing 

data, as rules can be designed to enforce certain conditions - such as matching diameters 

for pipes and valves in a sequence or ensuring each maintenance hole entry includes a depth 

attribute. With these rules in play, aspects of the data cleaning process can be automated, 
saving significant amounts of time and manual effort. 
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2.2.6 Relational Database Schema 

The system’s data model, realized through a relational database, is a critical component of 
the overall data pipeline. It serves as the foundation for the processing, standardization, and 

analyzing the tender data. It facilitates data storage and retrieval and fosters consistency, 
data integrity, and extensibility, which are fundamental characteristics of a robust data 

system. Furthermore, it reinforces adherence to the ontology’s semantic rules, guaranteeing 

data conformity to established formats, relationships, and constraints. 

In the ‘contract_bid_item_tab’, the selection of varchar data type for the majority of 
the fields lends versatility to the data it can store. The variable character limits, based on the 

expected input size, contribute to space efficiency while maintaining a degree of flexibility. 
More importantly, the choice of using unique identifiers (‘contract_id,’ ‘item_uid,’ 

‘unt_uid,’ ‘ref_itm_uid,’ and ‘doc_uid‘) for associating entities among different 
tables enables the normalization of data, thereby reducing redundancy and inconsistency. 

The ‘item_reference_table’ plays a vital role in data standardization by providing 

centralized storage for standardized parts, subparts, descriptions, and possible alternatives 

of items. This standardization ensures that every item in the system can be uniquely 

identified and referenced, allowing a uniform interpretation and comparison of items across 

various contracts. The option of storing possible units of measurement for each item 

facilitates the handling of diverse units that might appear in the contracts, strengthening 

the system’s adaptability. 

In the ‘bid_docs’ table, the decision to include fields for city and contractor information 

reflects the multi-dimensionality of the data, acknowledging that a contract is not just 
a list of items but also involves contextual information. By capturing this, the system 

provides a more comprehensive view of the tender process, thus facilitating more nuanced 

and context-specific analysis. 

Lastly, the ‘units’ table plays a pivotal role in harmonizing the units of measurement 
across different contracts. Including standard conversion methods and ratios enables 

seamless conversion of various units into their standard forms, ensuring comparability of 
items irrespective of their original units. The boolean field ‘unt_standard’ provides an 

efficient way to quickly determine whether a unit is standard, thereby streamlining the 

standardization process. 

The schemas’ relationships between tables illustrate the system’s ability to capture 

complex interdependencies among data elements. Using foreign keys, the data model 
supports joins between tables, facilitating comprehensive queries and detailed data analysis. 
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Overall, choosing a relational database for this data system provides a structured 

framework for efficient data management and ensures adherence to the ontology’s semantic 

rules. This combination of efficiency, flexibility, and consistency makes it ideal for handling 

tender data. By catering to the varied needs of standardization, storage, retrieval, and 

analysis, the database serves as the backbone of the data pipeline, ultimately driving the 

goal of delivering accurate and insightful results. 

Schema Details 

The primary goal of the data pre-processing chapter is to prepare the data for analysis, 
involving determining the type of items available in tender documents (data) for classification 

in the subsequent chapter. A crucial decision in this process is selecting a suitable storage 

format for the data. 

In this case, the simplified standard data consists of a list of contract items for each 

city, containing a description, quantity, unit, and unit price fields. An SQL database 

has been implemented for data storage, as shown in Figure 2.12. The chosen relational 
database ensures accuracy and flexibility and is designed for future modifications with 

efficient storage consumption. 

The implemented ontology, which includes rules, filters, definitions, and tables, ensures 

the data’s consistency and standardization and guarantees consistency, standardization, 
understandability, and error-free content before entering the core database. However, the 

primary storage format remains a relational table in the SQL database management system. 

The first table in the schema is the ‘contract_bid_item_tab’, which serves as a 

catalogue of all the items involved in various contracts. Each entry in this table represents 

a distinct item, with fields capturing a wide range of data points. For instance, the 

‘contract_id’ field assigns a unique identifier for each contract, and the ‘item_uid’ 

provides a unique identifier for the item. The ‘item_number’, ‘item_quantity’, and 

‘item_unit_cost’ fields hold the item number, quantity, and cost per unit, respectively. 
Other fields like ‘item_parent_desc’ and ‘item_org_section’ offer narrative context. 
The table also interlinks with other tables through ‘unt_uid’, ‘ref_itm_uid’, and 

‘doc_uid’, which connect to the units table, item reference table, and bid documents 

table, respectively. The ‘ref_std_part’ and ‘ref_std_sub_part’ fields contain 

references to the standardized part and subpart of the item. Notably, the ‘contract_id,’ 

‘item_uid,’ item_number’, ‘item_parent_desc,’ ‘unt_uid,’ ‘ref_itm_uid,’ 

‘doc_uid,’ ‘ref_std_part,’ ‘ref_std_sub_part’, and ‘item_org_section’ fields 

68 



bid_item_tab

contract_id
varchar(64)

item_uid
varchar(24)

item_number
varchar(64)

item_quantity
double

item_unit_cost
double

item_parent_desc
varchar(64)

unt_uid
varchar(32)

ref_itm_uid
varchar(32)

unt_uid
varchar(32)

doc_uid
varchar(64)

ref_std_part
varchar(64)

ref_std_sub_part
varchar(64)

item_org_section
varchar(255)

ref_item_tab

ref_itm_uid
varchar(32)

ref_description
varchar(255)

ref_stdpart
varchar(64)

ref_stdsubpart
varchar(64)

ref_possible_alt
varchar(255)

ref_possible_unt1
varchar(32)

ref_possible_unt2
varchar(32)

ref_possible_unt3
varchar(32)

ref_possible_unt4
varchar(32)

ref_itm_uid

ref_std_part

ref_std_sub_part

bid_docs_tab

doc_uid
varchar(32)

doc_city
varchar(64)

doc_contractor
varchar(64)

doc_uid

units_tab

unt_uid
varchar(32)

unt_name
varchar(32)

unt_standard
bool

unt_std_conv
varchar(32)

unt_std_ratio
double

unt_uid

Figure 2.12: The enhanced entity-relationship diagram of the core database. 
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are all varchar types, with a maximum length ranging from 24 to 255 characters. On the 

other hand, the ‘item_quantity’ and ‘item_unit_cost’ fields are of double types, 
allowing for a high degree of precision in representing quantities and costs. 

Next, the ‘item_reference_table’ serves as a repository for standardization 

information related to the items. Each row represents a distinct reference item, identified 

by ‘ref_itm_uid.’ The ‘ref_description’ field provides a fuller description of the 

reference item, and the ‘ref_std_part’ and ‘ref_std_sub_part’ fields delineate the 

standardized part and subpart of the item. The ‘ref_possible_alt’ field captures 

possible alternative references for the item, and the ‘ref_possible_unit1’, 

‘ref_possible_unit2’, ‘ref_possible_unit3’, and ‘ref_possible_unit4’ fields 

indicate potential units of measurement for the item. This table includes varchar fields 

such as ‘ref_itm_uid,’ ‘ref_description,’ ‘ref_std_part,’ 

‘ref_std_sub_part’, and ‘ref_possible_alt’, each with different character limits from 

32 to 255, offering flexibility for capturing a broad array of standardized parts, subparts, 
descriptions, and possible alternatives. The ‘ref_possible_unit1’, 

‘ref_possible_unit2’, ‘ref_possible_unit3’, and ‘ref_possible_unit4’ fields are 

also varchar types, each with a maximum of 32 characters. 

The ‘bid_docs’ table provides an overview of each bid document, including the 

associated city and contractor. Each row corresponds to a separate document, designated 

by ‘doc_uid’. The ‘doc_city’ field records the associated city, and the ‘doc_contractor’ 
field tracks the involved contractor. Notably, all the fields in this table (‘doc_uid,’ 

‘doc_city’, and ‘doc_contractor‘) are varchar types, with a maximum length of 64 

characters, providing ample room for unique document identifiers, city names, and contractor 
names. 

Finally, the ‘units’ table provides a directory of potential and acceptable units of 
measurement according to the ontology. Each unit is uniquely identified by ‘unt_uid’, 
with ‘unt_name’ holding the unit name and ‘unt_standard’ indicating whether the unit 
is standard. The ‘unt_std_conv’ and ‘unt_std_ratio’ fields detail the standard 

conversion method and ratio for each unit. Here, ‘unt_uid’, ‘unt_name’, and 

‘unt_std_conv’ are varchar fields, each with a limit of 32 characters, appropriate for 
unique unit identifiers, unit names, and standard conversions. The ‘unt_standard’ field 

is a bool type, capable of holding a boolean value to show whether the unit is a standard 

one, while the ‘unt_std_ratio’ field is a double type for precise representation of 
standard conversion ratios. 

In summary, the size of each field is designed based on the nature of the data it 
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is expected to store, balancing storage efficiency with the flexibility to accommodate a 

wide range of values. This schema provides a structured and interlinked framework for 
capturing and retrieving detailed information about items, contracts, bid documents, and 

measurement units. 

2.3 Conclusion 

In this chapter, the complex challenges associated with standardizing and organizing tender 
bid documents for watermain and sanitary sewer capital works were discussed. These 

records are primarily sourced from three anonymized Canadian cities. The initiative is 

marked by its focus on converting a diverse array of documents, each with its unique 

formatting and structure, into a coherent and unified database. This pivotal transformation 

is not just a technical exercise but a strategic move to enhance the accuracy and efficacy 

of engineering estimates and inflation calculations in municipal projects, addressing the 

long-standing issue of information interoperability. 

At the crux of this endeavor is the innovative integration of ontology and natural 
language processing techniques, which proved instrumental in ensuring the precision and 

integrity of data. These methodologies underpinned the data transformation, facilitating 

its standardization and making it conducive to advanced analysis and application. The 

methodology’s standout feature is its adaptability, ensuring that the system remained 

relevant and robust amidst potential changes in data formats, styles, and contents. The 

integration of provenance records further bolstered this framework, providing essential 
traceability and accountability in the data handling processes. 

In parallel, the chapter detailed the meticulous design and structure of the relational 
database schema, a cornerstone for the data’s processing, standardization, and analytical 
processing. The schema is crafted to support consistency, data integrity, and extensibility, 
ensuring close alignment with the ontology’s semantic rules. Each component of the schema 

is carefully designed to play a specific role in data storage and standardization, facilitating 

comprehensive queries and detailed data analysis. The thoughtful balance between storage 

efficiency and the ability to accommodate diverse data types is a key consideration in the 

schema’s design. 

The chapter also illuminated the broader implications of ontology in civil engineering, 
demonstrating its effectiveness in improving data quality and organization. The relational 
database format, employed for storing the organized data in the core database, exemplifies 
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the ease and efficiency brought about by ontology in database management. The concept of 
data provenance was highlighted as a critical element, allowing for efficient error correction 

and audits. This feature is especially crucial given the evolving nature of new records and 

contracts, which often exhibit variations in format, style, and content. 

In conclusion, this chapter has not only addressed the immediate challenges of 
standardizing tender bid documents in civil engineering but has also set a precedent for 
efficient, informed decision-making in municipal engineering projects. The methodologies 

and systems developed herein offer a blueprint for other cities and municipalities to 

enhance their data management and analysis capabilities. The integration of advanced 

techniques like ontology, data pre-processing, error detection and correction, and the 

incorporation of provenance flags have established a sophisticated and effective strategy for 
managing complex datasets in municipal engineering. This work significantly contributes 

to the field of civil engineering, promising applications beyond water systems and into 

other domains where chronological document management and contextual consistency are 

crucial. 
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Chapter 3 
Automatic Record Classification 

3.1 Introduction 

Water utilities are crucial in providing residents with a reliable and clean water supply 

and managing water conservation, treatment, distribution, billing, and other essential 
tasks. At the core of these responsibilities lies the necessity for municipalities to construct 
in-house engineering cost estimates, primarily derived from historical tender-bid documents’ 
unit cost indices. These indices are vital for designing and tendering new capital works 

projects concerning watermain and sanitary sewer systems. However, the critical role of 
water utilities in ensuring efficient and cost-effective water management faces significant 
challenges, particularly in the meticulous and complex process of extracting and analyzing 

historical project cost information. 

The extraction of historical project cost information is a labour-intensive manual process. 
Also, the accuracy can be inconsistent, depending mainly on municipal experts’ expertise 

and their personal preferences. In addition, the challenge of inconsistency arises during the 

process of rescaling or calculating the unit cost across different historical projects. Factors 

such as the unique values of materials and services, the size of projects, and inflation over 
time further compound this complexity. A recognized solution to this problem involves 

normalizing projects using a unit cost index [Younis et al., 2016]. This process requires 

carefully disaggregating project components and rescaling to a standardized unit project. 
Ensuring the correct identification and categorization of imported tender items across all 
available projects from contractors is vital for accurate and consistent results. 

However, the variability in individual engineers’ preferences and item categorizations 
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may lead to disparate price estimates. The preceding chapter highlighted the lack of 
standardized data sources for watermain and sanitary sewer capital work projects. It 
renders current methodologies for standardizing unit cost estimates within a municipality 

both insufficient and highly dependent on individual cost-estimating engineers’ expertise 

and practices. The problem becomes even more intricate when expanding the scope to 

multiple municipalities across regional, provincial, or national scales. 

To deal with this issue, engineers usually limit their historical unit cost calculations to 

the most recent tender-bid documents to mitigate these challenges. They avoid rescaling to 

account for inflation and mostly adhere to similar tender-bid document style 

guidelines [Rehan et al., 2016]. However, inconsistencies can still arise during data import 
due to divergent contract records from various sources. Thus, creating a structured and 

homogeneous dataset is paramount for ensuring systematic access to historical records. 

The preceding chapters have identified that existing methodologies. While those are 

helpful, they fall short of providing a universally applicable, automated solution. They 

lack the ability to effectively standardize and classify tender-bid items on a large scale 

while accounting for the nuances and complexities inherent in these documents. This 

gap in methodology is particularly evident when considering the challenges of rescaling or 
recalculating unit costs across various historical projects, further complicated by factors 

like material values, project sizes, and inflation. 

Furthermore, the reliance on recent tender-bid documents and the avoidance of inflation 

rescaling introduces another layer of inconsistency. The variability in contract records and 

engineers’ subjective nature of data importation lead to a fragmented approach to dataset 
creation. This inconsistent approach hinders the development of a structured, homogenous 

dataset essential for systematic access to historical records and accurate unit cost analysis. 

The objective of this chapter is to explore the application of artificial intelligence (AI) 
models for the purpose of automating unit cost computation using historical watermain 

and sanitary sewer capital works projects. This automation and consistent classification 

of historical tender-bid documents aim to improve the accuracy of unit costs and develop 

more reliable engineering estimates for capital work projects. An essential part of this 

process involves adopting and evaluating various classification methodologies to ensure the 

required accuracy and performance are met. 

In this chapter, we delve into developing an automated AI model by first leveraging 

machine learning and then subsequently, artificial intelligence to address the complex 

relationships inherent in tender-bid data. The chapter commences by examining initial 
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classification methodologies, highlighting the limitations of distance metrics and ontology-
based approaches. It then transitions to a detailed discussion on feature extraction, notably 

implementing the "Bag-of-Words" model, which is pivotal in natural language processing. 

The next section of the chapter is dedicated to exploring the decision tree and its 

extension random forest (RF) classifiers, where it is introduced to enhance accuracy. This 

segment also examines the RF’s superiority over other classifiers like Naive Bayes and k-
nearest neighbours in pattern recognition within the dataset. Following RF, the data quality 

and accuracy of the model are still inadequate, and essential transition to deep learning is 

discussed. This transition, necessitated by the limitations of RF and its unsuitability with 

sequential data representation, emphasizes the adoption of deep learning methodologies and, 
particularly, the Long Short-Term Memory (LSTM) structure. At this point, the decision 

to favour LSTM models over Generative Pretrained Transformers (GPT) is examined, 
considering factors such as computational efficiency, training dataset size requirement, and 

interpretability. 

To reconnect with this chapter’s main objective, the methodology’s innovation and 

contribution converge to create a sophisticated and adaptable AI model, aligning with 

clarifying items in tender-bid documents pertaining to watermain and sanitary sewer capital 
works. This model is accurate and versatile in its current form and shows promise for 
efficient processing of unsupervised data in the future. Therefore, the model can replicate 

the services that a professional engineer would provide when estimating unit costs. 

The chapter concludes by demonstrating the DL model’s classification capabilities of 
tender-bid items, as evidenced through a confusion matrix, RMSE, and R-squared values, 
showing strong predictive performance, particularly for watermain-related predictions. 
The Results section compares the performance of bidirectional and unidirectional LSTM 

models, with no marked advantage for BiLSTM. Emphasizing the importance of continuous 

improvement, the progressive improvement of the training data subsection highlights 

iterative refinement of the training-validation dataset, facilitated by collaborative efforts 

between the expert and the DL model, leading to increased dataset precision. 

3.2 Methodology 

This section describes the methodology employed in this study, systematically designed to 

cover all steps of data preparation, classification, and model development. The method is 

designed for high precision and reliability in classifying large volumes of tender and bid 
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data specific to watermain and sanitary sewer capital works projects. The process involves 

several stages of evolution, each designed to progressively refine the model and dataset, 
addressing the limitations encountered in the previous stages. Figure 3.1 is provided as a 

procedure guideline to show the transformation of both data and AI model to achieve the 

objective of this chapter. 

• Importing data and preliminary cleaning using ontology: The methodology 

commences with the importation and preliminary data cleanup using ontology-based 

relations and restrictions, as elaborated in Chapter 2. This initial step is pivotal for 
standardizing the dataset, thereby providing a consistent foundational framework for 
the subsequent methodological stages. The ontology’s role is crucial in ensuring a 

basic level of consistency and accuracy in the initial treatment of the data. 

• Step A, Training data preparation: This step entails the data preparation 

methodology for classifying tender-bid documents in water infrastructure projects. 
Over 250 documents from three Canadian cities are analyzed, with each item or 
"record" comprising various fields like description, unit, and cost. The approach 

addresses categorization inconsistencies by standardizing item parts and sub-parts. 
The data is divided into training-validation and testing sets and are prepared for a 

5-fold cross-validation, and the testing set, comprising different contracts, assesses the 

classifier’s performance. This meticulous data preparation is essential for developing 

an accurate and efficient classification model for item classification. 

• Step B, Minimum distance classification with expert intervention: The first 
stage involved employing a minimum distance method to calculate the proximity 

between each new item’s description and existing items in the ontology. This process 

is augmented by matching the ontology requirements as additional constraints are 

added to the distance value, facilitating, and limiting the generation of potential 
class lists for each item. However, this method’s reliance on human intervention, 
specifically requiring an engineering expert to manually oversee and select the most 
appropriate classification for each item, introduces subjective biases. Despite these 

challenges, this stage is essential in establishing a baseline dataset with preliminary 

class labels for the purpose of supervised learning, even though these classified training 

items are considered imperfect and occasionally misidentified. 

• Step C, Machine learning analysis and data enhancement: 
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– Step C1, Feature set generation using "Bag-of-Words": In response 

to the initial method’s inadequacies mentioned in Step B, the methodology is 

transitioned to utilizing a Bag of Words (BoW) representation for feature vector 
generation. BoW is selected due to its simplicity and effectiveness in capturing 

the nuances of textual data. 

– Step C2, Random forest classifier training: At this point, the random 

forest (RF) classifier is utilized. This shift represents a significant methodological 
advancement, utilizing the RF’s interpretability and ease of implementation. 
Despite a notable improvement in accuracy (reaching up to 90% in certain 

classes), the model’s performance is uneven across different classes, indicating 

the need for further refinement. 

– Step C3, Genetic algorithm optimization: Addresses the model’s uneven 

performance through the integration of genetic algorithms aimed at refining 

feature selection by selecting the most suitable words for classification. Positioned 

as the third segment in this step, it effectively encompasses Step C2, illustrating 

the logical progression of data flow and procedures to include genetic algorithm 

(GA) optimization. This strategy significantly improves the random forest 
classifier’s performance, with an average accuracy of 80.12% and peaks of 95% 

in some classes. The genetic algorithm’s efficiency in navigating large feature 

spaces and its ability to avoid overfitting are critical factors in this improvement. 

– Step C4, Training data refinement and expert intervention: This step 

encapsulates the critical methodology of iterative refinement of the training 

data for tender-bid item classification in water infrastructure projects. The 

process, underpinned by meticulous analysis of misclassified instances indicated 

by confusion matrices and expert collaboration, leads to the detection, re-
evaluation, and correction of mislabeled data points. Spanning ten iterations and 

involving various methodological parts (C3, C2, and C4), this approach resulted 

in updating approximately 6% of the training data labels, which consequently 

improved the average accuracy of the model from 80.12% to 85.96%. However, 
these iterations also highlighted the limitations of the Random Forest model in 

handling the dataset’s complexity, particularly its inability to enhance accuracy 

further or consistently identify error patterns beyond the achieved accuracy 

level. 

• Step D1, Transition to deep learning: This part details the shift from a random 

forest classifier to a more advanced Long Short-Term Memory (LSTM) model, a 
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significant step in handling a large dataset from various industrial partners. Initially, 
manual classification assisted by minimum distance calculations was used but proved 

impractical for the dataset’s volume. The decision tree method, while initially useful, 
reached an average accuracy limit of 85.96% due to its inability to process sequential 
text information effectively. This limitation led to the adoption of LSTM models, 
chosen over the other alternative Generative Pretrained Transformers (GPT) due to 

LSTM’s computational efficiency, suitability for the dataset’s size, capability in 

capturing patterns in sequential data, and customization potential. The LSTM’s 

implementation marks a strategic evolution in the project’s approach to data 

classification, setting a foundation for future integration of more complex models like 

GPT. 

• Step D2, Deep learning model: The development and configuration of the Deep 

Learning (DL) artificial neural network model is described in this Step. It includes 

its architecture and component functionalities, supported by a practical example 

demonstrating the model’s data transformation process. Equipped with LSTM, the 

DL model significantly enhances the pattern detection capabilities through the process 

of training the LSTM model. 

• Step D3, Progressive improvement of training data: In this step, an additional 
5% of misclassifications within the dataset were identified and corrected. This 

improvement is achieved through a rigorous process of over 100 iterations involving 

the training of the deep learning model and subsequent review of misclassified items. 
This meticulous refinement enhances the model’s precision, leading to an increase in 

classification accuracy beyond the initial target of 92%. Following these 100 iterations, 
the performance of the deep learning model is evaluated using test data. The final 
iteration of the model, demonstrating the most effective classification accuracy, is 

selected as the definitive version for practical application in the field. 

• Chapter 4, This section signifies the practical application of the developed deep 

learning model. Aligned with the project’s objectives, the model is tailored to automate 

or consistently classify historical tender-bid items. The remainder of this chapter 
delves into the application of the model’s classification outputs for calculating unit 
costs in tender-bid documents. This step represents the real-world implementation of 
the DL model, demonstrating its utility in the field. 

An important consideration at this stage is the potential issue of overfitting, a common 

challenge when a model and data are overly optimized in tandem. Nonetheless, in this 
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specific context, the risk of overfitting is substantially lessened due to the ground truth 

established by the engineering expert. Contrary to situations with ambiguous or unidentified 

target classes, like a cancer prediction model, our model functions within a clearly defined 

and expert-validated classification system. Unlike observational labels that are typically 

accurate but not infallible, the initial data classes in our model were derived through a 

semi-automatic process involving human labelling, which can inadvertently introduce label 
noise. As such, the engineering expert plays a critical role in verifying the accuracy of 
each item’s classification. Ultimately, this expert-guided verification of the training data 

serves as a protective measure, ensuring that the model remains precise and in line with 

practical, real-world standards, thus effectively mitigating the risks commonly associated 

with overfitting. 

3.2.1 Step A, Training Data Preparation 

Data preparation, a crucial phase in the proposed methodology, directly influences the 

efficiency and precision of the ensuing classification and prediction models. This subsection 

elucidates the processes involved in this stage. It focuses on elements such as input data, 
record categories, record inconsistencies, and data segregation for training, validation, and 

testing purposes. 

Input Data 

The previous chapter detailed the procurement of data for this project, encompassing over 
250 water system infrastructure tender/bid documents from three major Canadian cities. 
The data is structured in lists comprising individual item sets, as illustrated in Table 2.4 

on Page 44. Each element called a "record", has a distinctive description and cost value. 
Following the process of data importation and cleanup, each record is disaggregated into 

the subsequent fields (table columns): 

a) Description (char [512], for instance, "supply and install of 150mm diameter PVC pipe"), 

b) Unit (char [32], for example, "meter"), 

c) Unit price (double, for instance, "80.70 CAD"), 

d) Quantity (double, for example, "600"), 
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e) Contract (char [32], for instance, "redacted.name"), 

f) City (char [32], for example, "redacted.city"), 

g) Original category (char [32], for instance, "sanitarysewer"). 

The following fields are absent and will be incorporated during the classification process: 

1. standard-part (for instance, "SanitarySewer"), and 

2. standard-sub-part (for instance, "SS_Pipe"). 

The original section, determined by the municipality or contractor during tender 
issuance, is unconstrained and can vary (e.g., "Roads", "Road", "Road Works"), unlike the 

standard-part. Conversely, the standard-part is confined to the items outlined in Eq. 3.7 on 

Page 103. Different municipalities or contractors might organize items differently, leading to 

inconsistencies across tender-bid documents. For instance, in the scenario provided above, 
the original section is "SanitarySewer", while the correct one (according to the standardized 

definition) is "Watermain". Table 3.1 furnishes examples of each standardized part and 

sub-part of items, as defined by the contractor for the Watermain and SanitarySewer 
categories. 

Record Categories 

A widely accepted classification standard for an item’s "part" comprises categories such 

as Road, General, Sanitary Sewer, Storm Sewer, Watermain, Provisional Items, and 

Miscellaneous, as illustrated in Table 2.4 on Page 44. The most prominent standard-parts 

engaged in this thesis are "Watermain" and "Sanitary Sewer", each of which is further 
dissected into standard-sub-parts. To streamline the design of the automatic classification 

and assemble more training input data, a specific set of item categories with analogous 

characteristics are consolidated into four primary standard-sub-parts for Watermain and 

three for Sanitary Sewer. The standard-sub-parts designated for Watermain include: 
WM_Services, WM_Pipe, WM_Valve, and WM_Hydrant; for Sanitary Sewers, these are: 
SS_Pipe, SS_Lateral, and SS_Manholes (refer to Figure 3.1). 

From a machine learning standpoint, the availability of supervised input data is 

paramount. Therefore, securing classification by engineering expert on the standard-parts 

and sub-parts of a testing and validation set of contracts is crucial. 
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Standard
Part

Standard
Sub-Part

General Item Description

Sanitary
Sewer

Manhole
any item related to constructing a new or removing a manhole xmaintenance holeW acceptable diameter

range xRD--mm to E---mmW

Sanitary
Sewer

Lateral
sanitary sewer items related to lateralsK including xnot limited toW: xPVCK cast ironK asbestos cementK

concreteK steel case pipesWK xjackW boreK stubK break to the main lineK direction drillK open cutK groutingK dye
testK tv inspectionK trenchlessK cleanoutK Inspection

Sanitary
Sewer

Pipe
sanitary sewer items related to pipes xPVCK reinforced concreteK CIPPW xopen cutK various sizesWK new pipeK

new connectionK connection to existing

Watermain Pipe
watermain items related to pipesK including xnot limited toW: new pipe installation xPVCWK bore jackK direction

drillK open cutK pluggingK trenchlessK copper pipe service installationK tapping sleeveK concrete pressureK
casing jack and boreK

Watermain Hydrant
watermain items related to hydrantsK including new hydrantK bend tee fittingsK reconnection of an existing

hydrant

Watermain Service

watermain items related to water servicesK including xnot limited toW: cathodic protection abandoning old
watermainK removingAdisposing of valve boxesAhydrantsApipesK installing new water service with type K

copperK trenchless installationK disconnection and cap existing watermainK all appurtenances to connect to
existing watermainK protection of existing watermain with concreteK leak repairK replacement of serviceK

remove and replace of curb stop and box at the property line

Watermain Valve
watermain items related to valvesK including xnot limited toW: tapping sleeve valveK water valve and boxK

curb stop and boxK shutdown delayK valve cleaningK curb stopsK curb boxesK main stops

General
Not

Applicable

general itemsK including xnot limited toW: bondingK fencesK wooden barriersK maintaining and removing silt
control devicesK excavated soil retainingK preGcondition surveyK site officeK construction layoutK unshrinkable

fillK traffic controlK clear stoneK control monument

Provisional
Item

Not
Applicable

provisional itemsK including xnot limited toW: removingAreplace of treesAstumpsK pavement markingsK
crossing line paintingK valve cleaningK contingency allowanceK providing bulkheads at the concrete boxK

cleaning and grubbingK supply and installing calcium chloride incidental time and ratesK lean mix concreteK
dewateringK application of waterK shoring and bracingK test holesK

Road
Not

Applicable

road itemsK including xnot limited toW: granular materialsK road excavation and disposal road base materialK
cold mixArecycled asphaltK temporary barriersK saw cuttingsK speed bumpsK dowel supply and installationK
concrete curb gutterK building and adjustment of water valve chamberK repairing cracked sealingK salvaging

road materialsK relocation and repair of culvertsK HDPE culvertsK deadGend barricade OPSDK hot mix
asphaltAcementK driveway restorationK boulevard gradingK CSP culvertsK asphalt millingK

Storm
Sewer

Not
Applicable

storm sewer itemsK including xnot limited toW: insulation or serviceK granular bedding backfillK concrete
storm boxK manufacture plugK catchbasinsK adjusting storm manholes flush and tv inspection of storm
sewersK abandoning old storm sewersK PVC pipesK culvert repair and restorationK and cleaning of siltsK
xreinforcedW concrete storm sewersK plugging pressure groutsK precast chamber of storm manholesK

catchbasin leadsK perforated subdrainsK supplyAinstallArepair of catchbasin frame and grades

Table 3.1: Breakdown of standard parts and sub-parts. 

Table 3.2: Representative items from contracts A, B, and C emphasize hydrants, while 

standard part and sub-part categorizations are missing. 
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Records Inconsistency 

A considerable source of inconsistency lies within each item’s "Original-Part" field, as 

demonstrated in Table 3.2. For instance, while Contracts B and C categorize "services 

performed related to hydrants" under the "Watermain" part (in line with the most common 

assumption and the standard), Contract B classifies it under the "Road" part. Furthermore, 
Contract B uses both "Road" and "Roadworks" parts, even though only "Road" is an 

acceptable standard-part name. In cases involving labels like "Roads" and "Road works", 
the solution involves renaming both parts to "Road" and merging them into a single 

standard-part. 

Addressing the discrepancy between "Watermain" and "Road" necessitates 

comprehending the context of water system contracts. For human operators, determining 

the appropriate standard-part can be challenging, necessitating expert knowledge. The 

introduced automatic classification method (DL) learns the pattern of item descriptions for 
all standard-parts and standard-sub-parts from the provided training data. As a result, the 

classifier can precisely determine the corresponding standard-part for an item with an 

unknown or incorrect part. Table 3.2 presents an example: although all four items describe 

"services, installation, or removals concerning hydrants", the second item is misclassified 

under the "Road" part. The classification model aims to detect and correct such errors by 

accurately assigning the item to its corresponding class (e.g., "Watermain" standard-part 
and "WM_Hydrant" standard-sub-part in this case). 

Training, Validation, and Testing Data 

The data are divided into two main segments for developing the DL model: training-
validation and testing contract data. The training and validation dataset comprises over 
250 tender-bid documents from three anonymized cities’ archived contracts/tenders. This 

dataset is utilized to construct the DL classifier, and any alterations could affect the 

performance of the DL model. Conversely, the testing data is exclusively used to assess the 

DL model’s performance. 

The training and validation of the DL model are conducted using 5-fold cross-validation. 
A separate set of contracts from the three cities, with no overlap with the training data, is 

used as testing data. 
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City Total # # of Watermain Sanitary Sewer Other Used 

of Records contracts # # Cat. # for 

Reference Items 1161 - 281 242 637 Training / 

(manual generation) Validation 

City A 736 3 165 112 459 Training/Validation 

City B 1526 13 444 301 781 Training/Validation 

City C 403 2 30 227 146 Training/Validation 

City A 589 3 119 83 387 Testing 

City B 265 2 83 44 138 Testing 

City C 336 2 38 148 150 Testing 

Table 3.3: Details of items utilized for training, validation, and testing to construct and 

evaluate the performance of the proposed DL classification model 

3.2.2 Step B, Minimum Distance-Based Classifier Using Ontology 

In the initial stages of our research, we employed a distance-based ontology algorithm 

for classifying items within our dataset. This early methodology, utilizing the RS-Means 

dataset as a classification benchmark, was instrumental in laying the foundation for more 

advanced classification techniques. 

The approach involved measuring the similarity between item descriptions in our dataset 
and those in the RS-Means ontology, taking into account parameters such as "item standard-
part," "item unit," and "item unit price." However, post-improvement of the dataset and 

addressing label noise, the method achieved an accuracy of 80.12%. It became clear that 
the semi-automatic nature of this approach was insufficient for the complete automation of 
the classification process. 

A key feature of this method was its independence from pre-classified data, which is 

crucial for supervised learning. The min-distance calculation aided experts in manual record 

classification, preparing the data for subsequent model training. Nevertheless, the approach 

proved impractical and time-consuming for the vast volume and complexity of the dataset. 

The ontology’s role in this method involved aligning similar words from the dataset 
for accurate matching, extracting word roots from descriptions, and ensuring precise unit 
matching. Items were arranged alphabetically based on word roots to simplify edit distance 

calculations, with operators presented with the top ten closest matches for decision-making. 
Each item was weighted and prioritized to assist in this process. 
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Figure 3.2: Implementing Ontology-based item detection and matching, combines manual 
and automated processes. 

Despite these measures, the ontology-based distance approach had significant limitations. 
It depended heavily on operator input, with a 40% decrease in accuracy without human 

involvement. Consequently, this method was not chosen as the primary tool for importing 

new items but was used for classification and as a sanity check for mapping results, as 

depicted in Figure 3.2. These insights guided the transition to more automated and 

sophisticated classification techniques in subsequent stages of our research. 

3.2.3 Step C1, Feature Set Generation using "Bag-of-Words" 

Classifiers serve as an effective mechanism for identifying standard parts and sub-parts. 
In contrast to previous methods that primarily relied on a reference list of pre-classified 

items, developing a classifier necessitates appropriate training and testing data. The 

training dataset comprises contract or tender summaries, which experts have thoroughly 

examined to verify the correct assignment of items to standard parts. The primary 

advantage of a classifier is its ability to discern patterns and relationships, such as syntactic 

and semantic associations within item descriptions, thereby enabling the automation of 
future item classification. However, the efficacy of a classifier depends on consistent data 

sources. Retraining the classifier through a semi-automated process becomes necessary if 
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the contract’s content changes or new data emerges. 

Pre-processing of item descriptions is required to classify them into standard parts 

and sub-parts. This pre-processing is facilitated by ontology, which breaks down the 

contract description into individual words, removes stop words, and applies rules to 

eliminate redundant words or numbered items. The feature extraction process includes 

word stemming and embedding. Terms are reduced to their root forms, and the ontology 

ensures consistency by standardizing variations of words to this root form. Words with 

low-information content are deemed irrelevant are discarded, leaving only significant ones. 
In word embedding, weights are assigned according to the frequency of words within the 

description. 

In natural language processing and information retrieval, the "Bag-of-Words" (BoW) 
model serves as a fundamental approach for representing text data [Kim et al., 2005]. 
The BoW model, which is both straightforward and efficient, represents text (be it a 

sentence or document) as a bag or multiset of its words, disregarding the order and 

grammar but preserving the frequency or presence of words. The construction of a BoW 

representation begins with the compilation of the vocabulary, which encompasses all unique 

words discovered across the entire dataset. Each word within the vocabulary is assigned a 

unique index value. After that, for each text within the dataset, a vector is created where 

each entry corresponds to the frequency or presence (depending on the BoW variant used) 
of a word from the vocabulary in the text. 

For instance, if we consider a vocabulary of ["tree," "this," "wind," "house," and "is"], 
the BoW representation of the sentence "this is a tree" would be [1, 1, 0, 0, 1] relative 

to this vocabulary. Each vector entry indicates the corresponding word’s presence in the 

sentence’s vocabulary. The semantics of the sentence are captured solely by the presence 

or absence of words, regardless of their relative order. 

While the BoW model is useful, it presents certain limitations. Notably, it ignores word 

order, which can sometimes carry significant semantic information. Furthermore, it treats 

all words equally, even though some words may have a more significant semantic impact. 
Despite these limitations, the BoW model remains a foundational technique in numerous 

natural language processing tasks. For applications requiring greater semantic complexity, 
alternative text representation techniques, such as Term Frequency-Inverse Document 
Frequency (TF-IDF) vectors or word embeddings like Word2Vec or GloVe, can be used. 

Figure 3.3 on Page 88 shows the results of stemming and applying the bag-of-words 

method to the running examples. The attribute vector contains over 128 words after 
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removing redundancies and irrelevant words. Only words with a frequency of five or more 

are shown in the figures. The discrepancies among similar contracts from various cities 

underscore the classification problem’s complexity. 

3.2.4 Step C2, Random Forest Classifier 

The Random Forest technique effectively mitigates overfitting and enhances the accuracy 

of decision trees [Biau and Scornet, 2016]. This approach involves generating multiple 

decision trees with varying parameters, leading to diverse classification outcomes. A key 

advantage of the Random Forest is its ability to provide predictions with confidence levels. 
For instance, if a hundred trees classify a contract item’s standard part, with ninety-eight 
indicating Watermain and one each for Sanitary Sewer and Road, the item is classified as 

Watermain based on majority voting. This method generally surpasses the reliability of a 

single decision tree. 

Consider a scenario with a minority winner: out of a hundred trees, forty-nine vote 

for Watermain, forty-eight for Sanitary Sewer, and three for Road. Though Watermain 

is selected, the close vote suggests a less confident classification. Instances with minority 

votes are documented for label noise investigation and expert review. 

Figure 3.4 exemplifies a decision tree classifying items into the sanitary sewer standard 

part, demonstrating how word patterns influence classification. The training data’s accuracy 

is crucial for the classifier’s effectiveness. Random Forest’s ensemble strategy, aggregating 

predictions, offers nuanced classification, accommodating data variability and complexity. 

The resilience of Random Forest to errors or data contamination is another 
benefit [Dietterich, 2000]. This resilience is vital given the susceptibility of the dataset to 

errors. Testing other classifiers like Naive Bayes, k-nearest neighbour, and linear 
discriminant analysis revealed suboptimal performance compared to Random Forest. 
Specifically, Naive Bayes underperformed due to its feature independence assumption, 
which is not applicable in this context where item description words are correlated. 

The core of this research involves using decision trees and Random Forests for 
classification. Decision trees act as structured flowcharts, dividing datasets based on 

attributes. Configured with a maximum depth of ten and using the Gini index for splitting 

nodes, they achieved an average accuracy of 85.96%. Random Forests, synthesizing 

outcomes from multiple trees, address individual tree limitations, especially in large, 
complex datasets [Breiman, 2001, Quinlan, 1986]. 
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Figure 3.3: The stemming and bag-of-words representations of a sample tender-bid 

document, where only the highest frequency words are displayed (words with an 

occurrence of five times or more). 
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Figure 3.4: A sample of a decision tree classifier generated by the classification module 

determining if an item belongs to the sanitary sewer standard part. 

3.2.5 Step C3, Enhancing Classifier Performance through Genetic 

Algorithm-Driven Feature Selection 

In classifier optimization, the crux lies in the judicious selection of features. The genetic 

algorithm (GA), renowned for its ability to navigate large search spaces efficiently, was 

utilized. The GA commenced with a binary representation of a 736-word feature set 
extracted from an ontology dictionary. This set forms the foundation of the feature selection 

process. The GA’s fitness function assessed each feature combination’s efficacy, with specific 

emphasis on maintaining genetic diversity and optimizing classification accuracy. The 

GA’s configuration included strict adherence to predefined constraints and a cap of five 

hundred generations to prevent overfitting. Additionally, the mutation rate was set at 
1/N, dynamically adjusting as the number of features decreased. The results of the GA 

optimizations are feature vectors of 85 to 150 words. 

To further enhance the understanding of this optimization process, it is crucial to delve 

into the specific role of the GA in classifier enhancement. The GA’s prowess in feature 

selection is instrumental in distilling the essential elements from a vast pool of data, thereby 

facilitating the classifier’s ability to discern and interpret complex patterns with greater 
accuracy and efficiency. 
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The meticulous optimization of the feature selection process, facilitated by the genetic 

algorithm (GA), significantly enhanced the random forest classifier’s effectiveness. This 

process involved identifying the most potent features for precise classification, enabling the 

classifier to interpret complex relationships between words in contract item descriptions with 

improved precision and efficiency. The RF classifier’s performance, as detailed in Figure 3.6 

on Page 93 provided here and the Table 3.6 provided in the results section of this chapter on 

Page 110, demonstrated variability across different classes. For instance, in categories like 

provisional items, wm_hydrant, and ss_lateral, the accuracy rates were recorded at 34.12%, 
66.67%, and 70.45%, respectively. These figures, though moderate, substantially exceed the 

baseline chance accuracy of 8.33%, indicating the classifier’s relative effectiveness in these 

more challenging categories. In contrast, the classifier achieved exceptional performance in 

the majority of the classes, with accuracy rates surpassing 93.48%, thereby reflecting its 

overall robustness. 

The study also uncovered limitations in the random forest classification approach, 
particularly in specific scenarios. For example, the wm_hydrant category, characterized by 

a limited number of samples, highlighted the challenges associated with insufficient data. 
Conversely, categories with an adequate number of samples, such as provisional items and 

ss_lateral, still struggled to achieve high accuracy, pointing to the intrinsic constraints of 
the random forest method in dealing with high input data variability and a large array of 
output classes. 

A significant issue identified with the bag-of-words data representation, which disregards 

word order and perceives input text as an assortment of individual words. This assumption 

results in the loss of crucial sequential information, particularly relevant in the context 
of item descriptions. Despite carefully selecting the most relevant words via the genetic 

algorithm, the decision tree classifier’s accuracy averaged at 85.96% and could not be 

increased further. 

Figure 3.5 on Page 92 illustrates the classification design mechanism, encompassing 

stages like Ontology and Importing, Data Pre-processing, Classifier Training, Optimizing 

by Genetic Algorithm, and the Final Phase, outputting optimized classification. Each 

segment is vital to the solution’s ability to identify standard parts and sub-parts in each 

contract item accurately. 
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3.2.6 Step C4, Enhanced Training Data Refinement and Expert 

Intervention 

Training Data Refinement is a critical aspect of our methodology, focused on iteratively 

enhancing the accuracy and reliability of the Random Forest (RF) classifier in tender-bid 

item classification. This section delves into the details of the iterative refinement process, 
highlighting how each cycle contributes to refining the model. 

The RF model undergoes dynamic training across multiple iterations. Initially, the 

process involves identifying and correcting misclassified instances in the training data with 

the help of an engineering expert. This step leads to progressive improvements in data quality 

and classification accuracy. The confusion matrix for the RF model, as shown in Figure 3.6, 
shows the results of several training iterations, where misclassifications were continually 

investigated and rectified. With each iteration, the RF model’s performance improved, 
reflecting enhanced data classification and reduced confusion caused by inconsistencies 

in the training data. The confusion matrix also points out areas requiring improvement, 
marked by false negatives and positives, especially among closely related sub-parts. 

Initially, the RF model played a pivotal role in classifying unclean data and refining 

the training dataset. Its user-friendliness and relative insensitivity to data errors made it 
a suitable initial tool for classification. Iterative enhancements in both data quality and 

RF hyperparameters suggested the potential of achieving performance comparable to more 

complex systems, as evidenced by the improved accuracy seen in Figure 3.6. 

Furthermore, the interpretability of the RF model is one of its key strengths. It provides 

transparency in the decision-making process, which is essential for engineering experts. This 

clarity is invaluable when addressing discrepancies in tender items, facilitating intuitive 

understanding, and rectifying potential data or reasoning errors. The iterative refinement, 
coupled with the expert’s input, ensures that the RF model not only becomes more accurate 

over time but also remains aligned with practical engineering standards. 

The insights from this iterative refinement process highlight the importance of selecting 

appropriate machine-learning models and techniques for complex datasets. While the 

RF classifier and genetic algorithms brought significant improvements, their limitations 

underscore the potential need for exploring alternative machine learning algorithms or 
hybrid models. 
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Figure 3.5: Block diagram of the decision tree classifier training and genetic algorithm 

optimization mechanism. Each block shows representative numbers of different records 

used from each city to populate the training. 

3.2.7 Step D1, Transition to Deep Learning 

The transition to Deep Learning represents a significant advancement in the methodology, 
signifying the transition from traditional decision tree classifiers to more advanced Long 

Short-Term Memory (LSTM) models. This section discusses the factors prompting this 

transition and the steps taken to adapt the vast, unstructured dataset for Deep Learning. 

The need for a reliable and efficient classification method for the extensive dataset 
obtained from industrial partners across three cities drove this research. The unclassified 

state of the initial dataset deemed it unfit for immediate application with supervised learning 

methodologies. Consequently, a minimum distance (min-distance) calculation was initially 

suggested to assist the engineering expert in manually classifying records by measuring 

similarities between data points, thus preparing the data for subsequent model training. 
However, given the large dataset volume and the number of records needing classification, 
the proposed min-distance ontology method became impractical and time-consuming. In 

addition, the semi-automated process’s susceptibility to human error introduced further 
complexity. 

A random forest classifier was employed under engineering expert supervision to 
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Figure 3.6: Confusion matrix from the classification of testing records of sample tenders 

using Random Forest only. 

overcome these challenges and to achieve an acceptable level of accuracy. This precision 

level was vital for the deep learning model to discern the intricate patterns and 

relationships within the dataset. The decision tree algorithm initiated the automated 

process, paving the way for the LSTM deep learning model. It acted as a critical bridge, 
transitioning the dataset from an unclassified state to a structured format conducive to 

supervised learning. It resulted in a deep learning model adept at extracting valuable 

insights from an extensive and complex dataset. 

While the decision tree algorithm made progress, it had significant limitations. One 

crucial challenge was compatibility issues with the bag-of-words representation of data, 
which ignores word order and treats input text as a collection of individual words. This led to 

the loss of sequential information, a crucial aspect in the context of item descriptions. Even 

after carefully selecting the most relevant words through a genetic algorithm, the accuracy 

of the decision tree classifier as shown on Figure 3.6 averaged 85.96%. This performance 

underscored that the traditional approach was promising but did not satisfy the application’s 

stringent accuracy requirements when using the classified data for computing unit costs. 

In response, the focus shifted toward deep learning methods, specifically the Long 

Short-Term Memory (LSTM) model. Known for its efficacy in natural language processing 
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tasks, the LSTM model yielded promising results. A critical insight gained from this 

transition was the advantage of word-to-vector representation in enhancing classification 

accuracy. Building on this finding, the LSTM model was implemented. 

LSTM vs. Generative Pretrained Transformers 

The decision to employ Long Short-Term Memory (LSTM) models over Generative 

Pretrained Transformers (GPT) was informed by several considerations, both practical and 

theoretical: 

• Computational Efficiency: LSTMs are generally more computationally efficient 
than large-scale transformers like GPT. Training GPT models, especially the larger 
variants, requires significant computational resources, which might not be readily 

available or cost-effective for every research project [Vaswani et al., 2017]. 

• Dataset Size: Transformers thrive on large datasets, especially models like GPT. 
Given the limited size of the dataset in this research (10-20 contracts), an LSTM 

was deemed more appropriate. Overfitting can concern transformers when data is 

limited [Wang et al., 2019]. 

• Interpretability: LSTMs provide greater interpretability due to their more 

straightforward structure than transformers. This is crucial in academic settings 

where understanding the model’s decisions and being able to explain them is as 

important as the accuracy of the model itself. 

• Task Specificity: While GPT models are designed to be generalists and perform 

a wide range of tasks, LSTMs can be tailored more specifically to a particular task. 
The specificity of the classification task in this research did not necessitate the broad 

capabilities of GPT. 

• Training Time: Training an LSTM, especially on a smaller dataset, can be faster 
than training a large transformer model. This is crucial for iterative experimentation 

and rapid prototyping. 

• Memory Footprint: LSTMs have a smaller memory footprint compared to large 

transformer models. This is advantageous when there are constraints in terms of 
available RAM or GPU memory. 
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Figure 3.7: The block diagram of the implemented solution. 

• Maturity and Stability: LSTMs have been around for a longer time compared to 

transformer models like GPT. They have a proven track record, and their behaviour 
is well-understood in the deep-learning community. 

• Customization: LSTMs can be more easily customized or adapted to specific 

requirements. With GPT or other transformer models, making changes can be more 

complex due to the intricacies of the model architecture. 

In addition to the above reasons, it is worth noting that the current LSTM model can 

serve as a foundation for future work. While decision trees were used as a stepping stone 

for the LSTM mechanism and generated ground truth data, the current LSTM model can 

similarly be used to generate input for the GPT engine in future endeavours. 

3.3 Deep Learning Model 

This section details the development and configuration of the Deep Learning (DL) artificial 
neural network model, showcased in Figure 3.7. The function of each component within 

this architecture is elaborated in subsequent subsections. To aid in understanding the DL 

model’s process, a practical example is provided (Figure 3.8). This example demonstrates 

how an item, initially without standard-part and standard-sub-part identifiers (as mentioned 

in Table 3.2 on Page 82), is transformed into a numerical array suitable for DL classification 

(see Figure 3.9). This step in the methodology represents a crucial phase in developing 

high-accuracy classifiers for the DL model. A significant aspect of this phase is the iterative 

improvement of the dataset, which allows for more effective training of the DL model. 

The running example examines an item from Table 3.2 on Page 82, which lacks standard-
part and standard-sub-part identifiers. The transformation process begins by leveraging its 
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description, as denoted in Step A of Figures 3.8 and 3.9. The item’s section, mislabelled 

as "Roads", is correctly assigned to "Watermain" based on the ontology’s patterns and 

descriptions. Consequently, the section’s name should be adjusted to "Road", the item’s 

unit supplanted by "Each", and the unit price annotated with a dollar sign "$" and a decimal 
point. 

Subsequently, the item undergoes filtration, utilizing the ontology’s filters and rules. 
This step aims to preserve consistency and maintainability, as displayed in Step B of 
Figures 3.8 and 3.9. The filters and rules eradicate superfluous words while the Natural 
Language Processing (NLP) library morphs complex words into their root form. 

The ensuing transformations are: 

• "hydrants": a plural form, is converted to singular, 

• "with": a non-informative preposition, as per previous classification system training, 
is removed, 

• "150mm" is parsed to two identifiable words: "150" and "mm", 

• "boxes" and "anodes": both in plural form, are converted into singular, 

• "and": coordinating conjunction lacking additional information is removed, 

• "(provisional)": including unacceptable punctuation characters, is removed. 
Furthermore, "provisional", derived from the root "provide", is reduced to its first five 

characters, "provi". 

The final description aligns with the ontology’s requirements. For the running example, 
the resultant description is portrayed in Step B of Figure 3.9 as: "hydrant complete anchor 
tee 150 mm diameter valve box anode opsd 1105.010 provi". 

After Step B, the item meets all ontology constraints and is subsequently conserved in 

the central, standardized dataset. However, the item is still devoid of the standard-part 
and standard sub-part. This step is where the DL model is crucial. As it emulates the 

expert’s manual classification approach learned during the training phase, it effectively 

predicts these missing values based on the processed item descriptions. 

To address this, the DL model includes the original category from the tender document 
in the revised description. The item’s unit is also included as an additional input word to 

the description sentence. The DL model necessitates the conversion of the item’s description 
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Figure 3.8: Block diagram of a record’s transformation to determine its standard-part and 

standard-sub-part. 

sentence into a numerical array. This transformation is facilitated by the Word Embedding 

Block (WEB), as indicated in Step C of Figures 3.8 and 3.9. The WEB purges words 

exclusive to the contract, city, time, or contractor, courtesy of the ontology’s lexicon. The 

lexicon, fashioned by assessing over four hundred contracts and 90,000 words, comprises 

2019 unique words. The ensuing descriptions for each item range between 60 and 350 

words. The word count follows a Poisson distribution. Thus, a fixed encoding sequence 

length of two hundred words is sufficient to capture most of the information in each 

description. For sentences exceeding this limit, the surplus words are eliminated. Trials 

and observations have determined that a maximum of 200 words optimally preserves the 

majority of information since only 0.1% of the items necessitate the omission of words 

beyond the 200-word limit. 

The resulting numerical array is presented in Step C of Figure 3.9, wherein each number 
signifies distinct word in the library. For instance, the words "anode" and "hydrant" 
correspond to numbers 37 and 24, respectively. These numbers are randomly assigned 

during initialization but remain immutable after that. The "word2vec" algorithm, elucidated 

by Goldberg et al. in [Goldberg and Levy, 2014], is then employed to convert each unique 

number into a corresponding vector. This conversion is denoted as Step D in Figures 3.8 

and 3.9. The algorithm allows vectors to symbolize different words while encapsulating 

their similarities and differences. Figure 3.11 showcases vectors for five exemplar words: 
"valve", "hydrant", "excavate", "manhole", and "lateral". The first two words pertain to the 

Watermain standard-part and thus exhibit a high correlation in their vector representations, 
influencing the DL state similarly. Analogously, "manhole" and "lateral", related to the 

sanitary sewer standard-part, exhibit analogous behaviour. Conversely, "excavate", not 
directly associated with either Watermain or sanitary sewer standard parts, yields a 

significantly disparate vector representation. Figure 3.10 reveals correlation values between 

vectors of the sample words, corroborating these observations, and indicates a negligible 
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Figure 3.9: Visual representations of a sample record going through each transformation 

step to determine its standard-part and standard-sub-part. 
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correlation of "excavate" with terms related to the sanitary sewer or watermain standard-
parts. 

3.3.1 Step D2, Model Design 

Constructing a robust deep-learning model requires careful decisions pertaining to 

architecture, input features, activation functions, and optimization methodology. For the 

DL model, the adopted architecture incorporates word embedding, LSTM, and Dense 

layers. Word Embedding is employed to convert words into dense vectors of fixed 

dimensions. The LSTM layer captures these vectors’ temporal dependencies, making it 
suitable for handling sequences of words in our dataset. Lastly, dense layers are deployed 

for classification. Activation functions are integral for instilling non-linearity into the 

model, with ReLU and Softmax selected for the hidden and output layers, respectively. An 

analysis, in conjunction with iterative testing, was used to determine the optimal layer 
sizes and additional hyperparameters, thereby ensuring the model’s robustness and 

performance. 
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Long Short-Term Memory 

As displayed in Figure 3.11, the vectors of size 240 are created for the 2019 most frequently 

occurring unique words in the current dataset. The figure represents the embedding 

dimension (width of WEB) and matches the number of LSTM blocks available in the DL 

model. Consequently, in this instance, the output from the embedding layer will be a matrix 

of 200 x 240 floating-point numbers ranging from -0.5 to 0.5. This output is designated 

as Xt in Equations 3.1 on Page 103. As Figure 3.11 illustrates, some vertical vectors are 

highly correlated. The degree of correlation between two vectors directly corresponds to 

how their related words are associated within the context of the training data. 

Figure 3.12 presents a block diagram of the unidirectional Long Short-Term Memory 

(LSTM) module used in this research. Each LSTM block accepts an input sequence, denoted 

by Xt, at every timestep of t. As the vector is serially fed into the LSTM module, each 

LSTM block receives a single value from the numbers array at every time instance. 

Figure 3.10: Comparison of correlation values among word encodings for different sample 

words. 
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Figure 3.11: Visual representation illustrating how two correlated words ("root" and 

"fertilize") are encoded with highly correlated vectors and how a random word ("park") is 

encoded with significant variation. 
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Figure 3.12: The graphical depiction of data flow within a single LSTM unit. 
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Deep Learning Output Classes 

The implementation and formulation of the deep learning model are based on the model 
presented by Van Houdt et al. [Van Houdt et al., 2020]. The LSTM model employs the 

activation function activF () = T anh() for state information updating and the σ() = 

sigmoid() function for gate information updating. Each block’s weights are represented 

by Wx∗, recurrent weights by Wh∗, and bias by b”. In this context, t indicates a variable’s 

current value, while t − 1 denotes the variable’s previous value. The following equations for 
the input, forget, output, hidden, and candidate blocks at timestep t calculate the output, 
which serves as the input for the subsequent stage of deep learning: 

It = σ(Xt Wxi + Ht−1Whi + bi), (3.1) 
Ft = σ(Xt Wxf + Ht−1Whf + bf ), (3.2) 
Ot = σ(Xt Wxo + Ht−1Who + bo), (3.3) 
C̃ 

t = tanh(Xt Wxc + Ht−1Whc + bc), (3.4) 
Ct = Ft ⊙ Ct−1 + It ⊙ C̃t, (3.5) 
Ht = Ot ⊙ tanh(Ct) (3.6) 

The standard parts utilized for each input record’s classification are defined as follows: 

Yv ∈ {General, Miscellaneous, ProvisionalItem, (3.7) 
Road, SanitarySewer, StormSewer, W atermain}. 

Each item is organized into the standard contract’s standard-part corresponding to 

overarching attributes of the watermain and sanitary sewer capital works project. If an 

item is classified as "Watermain" or "SanitarySewer", it requires further standard-sub-part 
classification. For Watermain and SanitarySewer items, the standard sub-parts are defined 

as: 

∈ {WM_P ipe, W M_V alve, W M_Hydrant, W M_Service} (3.8)Yvwatermain 

Yvsanitarysewer ∈ {SS_P ipe, SS_Lateral, SS_Manhole} (3.9) 

At this juncture, the formal definition and application-specific deep learning structures 

with the LSTM Layer are delineated. 
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Parameters and Hyper-Parameters of the Deep Learning Model 

The LSTM network architecture begins with a sequence input layer of size one, 
accommodating numeric sequences. It is succeeded by a word embedding layer with an 

embedding dimension of 240, which maps words into vectors in a 240-dimensional space. 
The architecture consists of an LSTM layer with two*embeddingDimension (480) hidden 

units, allowing us to learn the dependencies between sequences. The LSTM layer’s output 
is channelled into a fully connected layer featuring several nodes equal to the classes in our 
data. It is succeeded by a Softmax layer that assigns probabilities for each category and, 
finally, a classification layer that selects the class with the maximum probability. 

For the LSTM model training, the Adam optimization algorithm is used. The optimal 
minibatch size, determined through trial and error, is between 52 and 98. A training 

gradient threshold of 2 was chosen to prevent gradient explosion, a common issue in 

training RNNs, and the training data are shuffled every epoch to enhance the model’s 

robustness and generalizability [Bengio et al., 1994]. 

The model is trained using a holdout validation strategy, reserving 20% of the data for 
validation purposes. This ensures our model’s performance is not overestimated and can be 

generalized effectively to unseen data. Regarding computational settings, the model uses a 

parallel execution environment for training, accelerating the process relative to training on 

a CPU. 

All these considerations and decisions contribute to the robustness and effectiveness 

of the proposed LSTM model in tackling the text classification task. By fine-tuning these 

hyperparameters and architectural decisions, we developed a model that demonstrates 

strong performance in the given text classification task. 

3.3.2 Step D3, Progressive Improvement of Training Data 

This step involves a systematic, iterative refinement process for the training data, which is 

crucial for the effective learning and classification accuracy of the Deep Learning (DL) model. 
Key to this process is the detailed examination and correction of the dataset to ensure its 

precision and reliability. This iterative approach, widely recognized in machine learning, 
addresses label noise-a frequent challenge in dataset preparation [Karimi et al., 2020]. 

During each DL training session, a thorough analysis of the training results is undertaken 

to assess and enhance the model’s robustness. Particular attention is paid to instances of 
misclassification, identifying, and correcting any inaccuracies introduced during the learning 

104 



phase. This aspect is similar to the refinement done in the Random Forest training (Step 

C4), where the DL model, too, learns to identify patterns in the training data, including 

pseudo false positives and negatives. 

The training process undergoes multiple cycles of refinement until reaching a state 

where no further improvements are discernable, ultimately yielding a dataset with minimal 
errors. This intensive process involved up to 100 iterations to reach the desired level of 
data stability and model precision. 

In line with neural network characteristics, the LSTM network is initialized with 

random values, introducing an element of variability. To ensure consistent and dependable 

performance, the LSTM model undergoes multiple training sessions with different 
initializations. This method guarantees that the model’s effectiveness is not coincidental 
but replicable across various training scenarios. 

This refinement process embodies a mutual learning dynamic. Initially, the DL model 
(Step D2) learns from the data. Subsequently, the engineering expert evaluates the model’s 

output (Step D3), leading to data updates based on these insights, and the cycle repeats 

(returning to Step D2). This continuous feedback mechanism ceases once the DL Classifier’s 

errors no longer contribute to identifying new errors in the training and validation data. 
This method of progressive data cleaning aligns with approaches documented in existing 

literature [Gao et al., 2018, Khaki, 2021, Karimi et al., 2020]. 

3.4 Results 

The principal aim of devising and training the Deep Learning (DL) artificial neural network 

model revolves around leveraging the classification output as essential additional data 

fields (standard part and sub-part) within tender-bid items. These enriched items can be 

used in financial and engineering estimates for prospective projects. The precision of the 

standard-part and sub-part assignment thus emerges as a crucial aspect. To comprehend 

how classes may intermingle during classification, the confusion matrix is deployed, with 

results encapsulated in Figure 3.13. 

All experiments were executed on a high-performance computer outfitted with an Intel 
(R) Xeon E-2186G CPU operating at 3.80 GHz, 128 GB DDR4 RAM, a NVidia GeForce 

RTX 3060 Ti GPU, and NVME 2TB storage with a 3000 MBps read and write capability. 
The preponderance of the project coding was carried out in Python, complemented by 
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marginal instances scripted in Visual Basic and Python. Barring explicit indication, the 

models were implemented using the available Python toolboxes. 

3.4.1 LSTM-Based Deep Learning Results 

Recent studies have highlighted the potential advantages of bidirectional LSTM in 

unveiling hidden relationships and dependencies among specific words more 

effectively [Siami-Namini et al., 2019]. However, in the context of this project, employing 

this LSTM structure did not result in a notable improvement in classification accuracy. 
Table 3.4 compares classification accuracy for identifying each standard-part and 

standard-sub-part using BiLSTM and unidirectional LSTM. The data indicates no 

statistically significant advantage in utilizing a BiLSTM over a conventional, 
single-directional LSTM model. In certain cases (e.g., Watermain Hydrant), the simpler 
LSTM model outperformed the BiLSTM. 

Standard Part 
Standard 

Sub-Part 

Item 

Count 

Testing 

Accuracy 

BiLSTM 

Testing 

Accuracy 

LSTM 

Sanitary Sewer Lateral 176 98.3% 96.6% 

Sanitary Sewer Pipe 39 97.4% 84.6% 

Sanitary Sewer Manhole 24 87.5% 100.0% 

Watermain Pipe 27 88.9% 96.3% 

Watermain Valve 43 88.4% 95.4% 

Watermain Service 138 93.5% 93.5% 

Watermain Hydrant 9 77.8% 100.0% 

Provisional Item No Sub-Part 85 90.6% 80.0% 

General No Sub-Part 173 97.7% 97.11% 

Miscellaneous No Sub-Part 1 100.0% 100.0% 

Road No Sub-Part 200 94.5% 93.0% 

Storm Sewer No Sub-Part 116 88.8% 91.38% 

Table 3.4: Classification results of validation items after training both the LSTM and 

BiLSTM-based DL Classifiers. 
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3.4.2 Model Performance Metrics 

The unit cost approach employed in this study for estimating RMSE measures of unit costs 

compared to engineer estimates (Root Mean Square Error) and R-squared values is derived 

from the methodology adopted by my predecessor in the group, Rehan et al. This approach 

is thoroughly documented in their work, specifically in [Rehan et al., 2016], within Table 1, 
titled "Cost allocation procedure for the pipe component of watermain and sanitary sewer 
projects," which details the standard components of watermain and sanitary sewer projects. 

The efficacy of the DL model is quantified through its performance metrics, which 

include RMSE and R-squared values, as detailed in Table 3.5. The RMSE values serve 

as the standard deviation of the residuals (prediction errors), where lower values denote a 

more accurate model. The DL model demonstrates strong performance with RMSE values 

ranging from 0.041 to 0.096. These low RMSE values indicate the model’s robustness, with 

the most precise predictions observed for "watermain unit cost" (0.041 RMSE) and the 

least precise for "watermain unit hydrants" (0.096 RMSE). 

R-squared, or the coefficient of determination, denotes the proportion of variance for 
a dependent variable that an independent variable or variables in a regression model can 

explain. High R-squared values suggest a good fit of the model to the data. The observed 

R-squared values range from 0.907 to 0.995, which are notably high and indicate that the 

model explains a substantial fraction of the variance in the data. 

The model demonstrates a robust predictive capacity for "watermain unit cost" and 

"watermain unit pipes" with an R-squared value of 0.995. Conversely, its predictive capacity 

is slightly lower for "sanitary sewers unit pipes" with an R-squared of 0.907. Nonetheless, 
an R-squared of 0.907 is still considered satisfactory, indicating that the model captures a 

considerable portion of the variance in the data. 

In essence, the DL model performs admirably in cost estimation. It has a strong fit 
for most of the data, particularly for "watermain unit cost" and "watermain unit pipes" 
regarding RMSE and R-squared. Though the performance is slightly weaker in predicting 

"sanitary sewers unit pipes" and "watermain unit valves," these predictions are still within 

acceptable limits. 

3.4.3 Confusion Matrix Analysis 

The confusion matrix for the LSTM model is presented in Figure 3.13, which shows the 

high accuracy achieved in mapping all standard-part and standard-sub-part items. Most 
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Standard 

Part / 

SubPart 

Watermain 

Unit 

Cost 

Watermain 

Unit 

Pipes 

Watermain 

Unit 

Valves 

Watermain 

Unit 

Hydrants 

Sanitary 

Sewers 

Unit 

Cost 

Sanitary 

Sewers 

Unit 

Pipes 

Sanitary 

Sewers 

Unit 

Manholes 

RMSE 21.536 8.964 28.397 0.000 11.541 5.630 0.000 

R-Squared 0.9779 0.9957 0.9997 1.000 0.9986 0.9999 1.000 

Table 3.5: Comparison of unit cost values regarding RMSE, and r-squared correlation 

computed for various Standard-Parts, contrasting the ground truth (engineer estimate) 
and the DL model classification outcomes. 

false negatives and false positives are seen between standard-sub-parts of a standard-part, 
indicating areas where the LSTM model can be further refined. 
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Figure 3.13: Confusion matrix from the classification of testing records of sample tenders 

using deep learning (LSTM only). 

The RF model’s ease of use and lower sensitivity to data errors made it an excellent 
initial tool. At the same time, the LSTM’s capability to uncover complex patterns 

provides a deeper level of analysis, albeit with higher computational costs. The iterative 

improvements in the data quality and RF hyperparameters could potentially yield a model 
with performance comparable to that of the LSTM. 

The comparison of unit cost values calculated using the ground truth classification 
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(validated by expert classifications) against those derived from the model’s classifications is 

illustrated in Figure 3.14 on Page 109 and Figure 3.15 on Page 112. These comparisons, 
along with the confusion matrices, help understand each model’s strengths and limitations. 
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Figure 3.14: Comparison of unit cost values computed for different aspects of the 

watermain, contrasting the ground truth (actual costs) and the DLANN model 
classification outcomes. 

Table 3.6 presents the classification results for both RF and LSTM models, showing 

the accuracy for each class and the number of items. The table complements the confusion 

matrices by providing a numerical representation of the classification performance, which 

offers a comprehensive view of the models’ capabilities compared to the figures. 
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Class 
Accuracy (%) 

# Items 
Random Forest LSTM Deep Learning 

general_nosubpart 
misc_nosubpart 
provisionalitem_nosubpart 
road_nosubpart 
sanitarysewer_ss_lateral 
sanitarysewer_ss_manhole 

sanitarysewer_ss_pipe 

stormsewer_nosubpart 
watermain_wm_hydr 
watermain_wm_pipe 

watermain_wm_service 

watermain_wm_valve 

95.95% 

0.00% 

34.12% 

93.50% 

70.45% 

100.00% 

97.44% 

93.97% 

66.67% 

100.00% 

93.48% 

95.35% 

97.11% 

100.00% 

80.00% 

93.00% 

96.59% 

100.00% 

97.44% 

91.38% 

100.00% 

96.30% 

93.48% 

95.35% 

168 

1 

68 

186 

170 

24 

38 

106 

9 

26 

129 

41 

Table 3.6: Classification Results for Random Forest and LSTM Deep Learning 

3.5 Conclusion 

In this chapter, we developed and refined an automated system for classifying historical 
tender-bid documents in watermain and sanitary sewer capital works projects using Artificial 
Intelligence (AI) and Machine Learning (ML) techniques. The primary challenges addressed 

were the lack of standardized data sources and the variability in unit cost estimates due 

to individual engineers’ preferences. These challenges were magnified when considering 

multiple municipalities across different scales. 

The methodology employed involved multiple stages, beginning with the import and 

preliminary cleaning of data from over 250 documents across three Canadian cities. This 

data was then prepared for a 5-fold cross-validation process. The initial classification 

utilized a minimum distance method with expert intervention. However, the approach was 

shifted to feature set generation using the Bag of Words (BoW) model due to its limitations. 
Subsequently, a Random Forest (RF) classifier was trained, demonstrating improved 

accuracy but uneven performance across classes. To refine this, a genetic algorithm was 

integrated for feature selection optimization, enhancing the RF classifier’s performance. 

The next phase involved iterative refinement of the training data, which was done over 
ten iterations with expert collaboration. This refinement led to a significant improvement 
in the model’s accuracy. Recognizing the limitations of the RF model in handling complex 
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datasets, the methodology transitioned to deep learning. 

The development of the Deep Learning (DL) model, specifically a Long Short-Term 

Memory (LSTM) network, marked a significant advancement. The DL model was chosen 

for its computational efficiency, suitability for sequential data, and customization potential. 
Over 100 iterations, the model’s precision was further refined, surpassing the initial accuracy 

target of 92%. The final iteration of the model, selected for its optimal classification accuracy, 
was evaluated using test data. 

The practical application of the DL model is emphasized in automating the classification 

of historical tender-bid items for unit cost calculation. An important consideration in 

this process is mitigating overfitting risks, achieved through expert-validated classification 

systems and a semi-automatic process involving human labeling. 

The DL model’s architecture is carefully designed to include components for transforming 

item descriptions into a format suitable for classification. This transformation process is 

vital for the DL model to emulate the expert’s manual classification approach, allowing the 

accurate prediction of missing standard-part and sub-part values based on processed item 

descriptions. 

In conclusion, the LSTM-based DL model demonstrated strong performance in the 

classification of tender-bid items, validated through rigorous testing and progressive 

refinement. The model’s precision in standard-part and sub-part assignments is crucial for 
providing accurate financial and engineering estimates for infrastructure projects. This 

automated classification system represents a significant advancement in the field of AI and 

ML applied to civil engineering, offering a solution to the challenges of standardizing data 

and reducing variability in unit cost estimates across multiple municipalities. 
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Figure 3.15: Comparison of unit cost values computed for various aspects of the sanitary 

sewer, contrasting the ground truth (actual costs) and the DL model classification 

outcomes. The bottom left plot illustrates watermain and sanitary sewer project unit cost 
indices. 
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Chapter 4 
Application of the AI Model 

The current chapter delineates the results of implementing the proposed methodology 

within the context of this research project. This implementation is organized into three 

main sections. The first section discusses the specific challenges and solutions concerning 

implementing the proposed methodology. The components to be addressed in this section 

include (I) natural language processing and the utilization of ontology, (II) the deep learning 

classification system for standardizing the imported data, and (III) the implementation of 
unit cost optimization. The subsequent section focuses on the results derived from applying 

the methodology to tenders available from the three cities described previously. Particular 
emphasis is placed on the numerical precision of the data and the used methods, ensuring 

the accurate implementation of the methodology. 

The final section of the chapter unveils the outcomes of designing a user-friendly interface 

to cater to the end-user targets of the proposed method. The interface is crafted to be 

simple, intuitive, and responsive to user requirements. The most fitting solution, in this 

case, involved transitioning from Matlab/Python to Visual C# (read as "C Sharp") to 

achieve a streamlined project implementation. The proof-of-concept webserver and its 

implementation results are presented later in this chapter. 

4.1 Implementation 

The main code of this project is authored using the Matlab and Python scripting languages. 
While both languages do not compile code and run scripts and functions, these tools have 

been chosen for their experimental nature, enabling the utilization of various toolboxes 
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and facilitating visualization. Nonetheless, the code is formulated in alignment with object-
oriented programming principles, ensuring that migration to C++ or C# requires minimal 
effort. 

The implementation is conducted in layers, facilitating the separation of architectural 
layers or components of the code. This layered approach enhances the understanding and 

execution of the code. The layers encompass: 

• Layer A, imported raw table (tender) 

• Layer B and C, Raw Table Cleanup and Ontology-Updated Processing 

• Layer D, Deep Learning Input Preparation 

• Layer E, Standardized Table with Classification Results 

• Layer F, Normalized Table Ready for UCI Calculation 

• Layer G, Results of Unit Cost Optimization 

• Layer H, visualization, performance enhancement, and evaluation table 

4.1.1 Layer A, imported raw table 

This layer accepts input in Excel format, accommodating variations in style and formatting 

across cities and contractors. The arrangement of fields is not fixed, and the process relies 

on specific restrictions to validate the input table. If the following required fields are absent, 
the program will return an error and terminate: 

• "WaterIAM Contract", "WaterIAM Description", "WaterIAM Section", "WaterIAM 

Unit", "WaterIAM Quantity", "WaterIAM Unit Price", "WaterIAM City". The 

interpretation of these fields is largely self-evident, but certain entries that necessitate 

additional explanation are elaborated upon below: 

– "WaterIAM Contract", is the name of the contract or tender is similar for all 
items in one tender document. 

– "WaterIAM Description", a description of an item is usually limited to the 

description field of the item. However, in some cases, several items have one main 

description and short additional descriptions individually (’i.e. item 1 description 

114 



= "trenchless pipes", item 2 description = "200 mm", item 3 description = "300 

mm" → item 1 WaterIAM Description = "trenchless pipes", item 2 WaterIAM 

Description = "trenchless pipes 200 mm", item 3 WaterIAM Description = 

"trenchless pipes 300 mm". 
– WaterIAM Section, the section that item is presented in, for example, items 

that come after a line indicating "Watermain Section" belong to the "watermain" 
section. The input file does not need to adhere to a standard set of descriptions. 
The rules in the ontology will update the section name to its corresponding 

standard one. 
– WaterIAM Unit, the unit items are limited to: "ea." (for "each" unit), "Hour", 

"L.S." (for lump sum unit), "m" (for linear meter), "m2" (for area in square meter), 
"m3" (for volume in cubic meter), and "Tonnes" (for mass in 1000 kilograms or 
tonnes). 
Any other item with a non-compatible unit should be converted to one acceptable 

in the above list. (i.e. "ft" (for linear length in feet) should be converted to "m", 
and the quantity and unit price should be updated accordingly). 

• The optional acceptable fields include: "WaterIAM Item Number", "Org Description", 
"Org Sheet Name", "WaterIAM PSP Override", "WaterIAM Org Section", 
"WaterIAM Standard Part", "WaterIAM Standard Sub Part", "WaterIAM Total 
Price", "WaterIAM Multiple", "WaterIAM Depth". The absence of these fields will 
not hinder the execution, and further descriptions are provided below: 

– "WaterIAM Item Number", a field that indicates the item number in the original 
tender document. Its value can be a number for the order and does not have 

a significant meaning, or in some cases (i.e. City A), the item number would 

indicate the section and details of the nature of the item. 
– "WaterIAM PSP Override", as mentioned in Chapter 3, the output of the deep 

learning classification module would determine the standard-PSP. However, 
if the operator overrides this classification, it is possible to define the desired 

standard-PSP in this column. 
– "WaterIAM Org Section", this column merely defines the original categorization 

of the tender item. This field provides essential information for the DLC and is 

recommended to be included in the input table if possible. 
– "WaterIAM Standard Part", is a field that identifies a predetermined standard-

part for each item. The value of the standard-part can result from the previous 
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classification mechanism or the feedback from an expert on particular items with 

acceptable standard-part. Note that although this field defines the standard 

part for the item, it does not override the classification of the DLC. 

– "WaterIAM Standard Sub Part", is a field that identifies a predetermined 

standard-sub-part for each item. The value of standard-sub-part can result from 

the previous classification mechanism or the feedback from an expert on the 

particular items with acceptable standard-sub-part. Note that although this 

field defines the standard part for the item, it does not override the classification 

of the DLC. 

– "WaterIAM Multiple" this field is an essential step for the DLC training process. 
Some items belong to a particular standard-part, and the value of the original 
section should not affect them. However, due to the lack of diversity in data, the 

classifier defines a relationship between the original section and the standard-part. 
The "WaterIAM Multiple" field allows the operator to generate several similar 
pseudo items with the same standard-part and random original section to destroy 

this unwanted relationship effectively. 
An example of this situation is when the tender item description is: "concrete 

any curb piece private repair type Concrete storm sewers CSA A257 with Class 

’B’ bedding and Granular ’A’ cover and backfill". In this case, the original 
section is identified as "StormSewer", and the standard-part is also recognized 

as "StormSewer". However, regardless of the original section, based on the 

description (and the fact that Storm Sewers is specifically mentioned), the item 

belongs to the "StormSewer" standard-part. Therefore, assigning the value of 
10 to 20 to the "WaterIAM Multiple" field allows the system to rectify this 

confusion. 

– "WaterIAM Depth is a field whose value is meaningful for a limited set of items 

(i.e. SanitarySewer_SS_Manhole). If the natural language processing module 

fails to identify the depth of the item, it is possible to override the value using 

this field specifically. 

Layer A yields a raw table standardizing the inputs procured from the user, setting the 

stage for further analysis and the subsequent processing embodied in Layer B. 
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4.1.2 Layer B and C: Raw Table Cleanup and Ont-Updated 

Processing 

In this combined layer, the raw table received from the previous stage is prepared through 

an extensive cleaning process with the aid of natural language processing (NLP), style 

adjustments, and formatting. This cleaned table is then refined to align with ontology 

requirements and generate the classes map table and functions for subsequent stages. The 

details of this combined layer are presented below. 

• Removing the Item Number : (Description as in Layer B). 

• Updating Spelling According to the Ontology Lookup Table: (Description as in Layer 
B, including handling of typos, backward entries, etc.). 

• Removal of Specific Words and Characters: The function filters out predefined words 

and characters such as brackets, hyphens, etc. It includes removing quotations, 
filtering out characters in the Ont_RemChars array, and further custom handling as 

detailed in Layer C. 

• Lemmatization of Words: Lemmatization is performed to reduce words to their 
root form. It helps unify terms with similar concepts, aiding natural language 

understanding and consistency with ontology. (Details from both Layers B and C). 

• Update of Words and Characters: (Description as in Layer C). 

• Special Handling of Numbers and Symbols: Specific conditions related to numbers 

and symbols are handled. (Details as in Layer C). 

• Word Splitting and Standardizing Spacing: The text is split into individual words, and 

spacing is standardized. It includes conversions like "copper-pipe 25mm diameter" 
to "copper pipe 25 mm dia". (Details from both Layers B and C). 

• Frequency Table Update: (Description as in Layer C). 

• Final Formatting: Any extra spaces between words are reduced to single spaces, 
ensuring consistent formatting throughout the table. 

The resulting output of this combined layer is a refined table that has undergone initial 
cleanup and ontology-updated processing, ready for further analysis and manipulation. 
The table is saved in PLLR.L03_OntolTbl.table, and robust error handling is maintained 

throughout the process. 
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4.1.3 Layer D, Deep Learning Input Preparation 

The fourth layer of the WTM system, implemented in the function 

WTM_Layer_04_DeepLearning_PrepareInputs__v5p0, is responsible for preparing the 

data for deep learning processing. It involves a series of steps: 

• Initialization and Warning Suppression: The code starts by initializing an empty 

array for the organized data and turns off warning notifications to avoid unnecessary 

alerts during the process. 

• Record Importing and Validation: The function iteratively processes each record in 

the ontology table from the previous layer. If any mandatory field like Contract, 
UnitPrice, or Quantity is missing, the record is skipped. 

• Calculation of Total Price: If the TotalPrice field is missing or empty, it is computed 

by multiplying the UnitPrice and Quantity fields. 

• Record Structure Formation: A new structure is formed for each record, populating 

fields like Description, Unit, FinalPrice, StandardPart, StandardSubPart, etc., 
with necessary transformations. These transformations include class-type extraction 

and specific string manipulations. 

• Handling Missing Fields: The code handles various scenarios where fields might be 

missing or unclassified, assigning default values such as "Unclassified" or -1 where 

appropriate. 

• Standardization of Parts and Subparts: The code ensures that standard parts and 

subparts are categorized correctly and named uniformly. It includes specific 

replacements for certain terms and removing records that don’t meet the criteria. 

• Warnings and Classification Validation: A warning is issued if the part categories do 

not match the expected number, and the code turns warning notifications back on 

after processing. 

• Final Data Structuring: The code finalizes the standard parts and subparts, converting 

them into categorical variables and associating them with the organized data. 

• Data Assignment: The final organized data table is assigned to 

PLLR.L04_DLCTable.table for further processing. 

118 



The output of Layer D is a structured table that has been prepared and cleaned 

specifically for deep learning applications, with all necessary fields appropriately transformed 

and categorized. This layer ensures that the data is in a suitable format to be utilized 

effectively in subsequent machine learning or deep learning tasks. 

4.1.4 Layer E, Standardized Table with Classification Results 

In this layer, the deep learning model undertakes the classification task for a given dataset, 
considering standardized parts and subparts within the system. The functionality of this 

layer can be outlined as follows: 

• Preparation: The layer begins by ordering the fields of the deep learning classification 

table. If a classification table already exists, an error is raised to avoid overwriting. 

• Initialization: Variables for tracking predictions, correct and wrong count, included 

contracts, and other necessary parameters are initialized. 

• Iterative Analysis: The main body of the function iterates through the current 
data, performing deep-learning classification on each record. Process updates are 

printed to the console if verbose mode is enabled. 

• Issue Handling: A specific check is conducted for issues regarding unsupported 

subparts, and appropriate warning messages are displayed if such an issue is found. 

• Prediction: Depending on whether classification override is enabled, the function 

either uses a trained LSTM model to predict the subpart or employs the override 

value from the data. If the prediction is incorrect, related details are printed, the 

extent of which depends on the verbosity level. 

• Accuracy Tracking: The function keeps track of correct and wrong predictions, 
updating the counters accordingly. 

• Post-Processing: The predicted values are standardized into a string format, and 

the final classification results are stored in the OutPredictions structure. 

• Error Handling: Any exceptions within the layer are caught and rethrown, allowing 

for appropriate error handling at a higher level. 
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The output of Layer E comprises a standardized table with classification results, 
encapsulating both predictions and reference data. It contributes to a more accurate and 

comprehensive understanding of the overall system by providing deep learning-based 

insights into the given data, thus offering a vital step in the data processing pipeline. 

4.1.5 Layer F, Normalized Table Ready for UCI Calculation 

Layer F of the process focuses on preparing a normalized table to calculate the Unit Cost 
Index (UCI). This layer carefully analyzes the contracts and corresponding dates, performs 

unit cost calculations, and organizes the results into a structured table. The primary 

functionalities of Layer F are described below: 

• Initialization: All necessary variables, such as contracts, contract dates, and unit 
cost structure, are initialized. Existing data is cleared if verbose mode is enabled. 

• Contract Analysis: The function iterates through each contract, identifying the 

corresponding date and ensuring it exists within the parameters. 

• Unit Cost Calculation: For each contract, the layer invokes a Unit Cost Calculator 
that computes the actual unit costs for specific categories such as project costs, pipe 

costs, and other related fields. 

• Statistical Analysis: Various statistical parameters, such as the minimum, 
maximum, mean, and product of unit costs, are analyzed, and the results are printed 

to the console. 

• Data Normalization: The processed data is normalized and organized into a 

structured format, creating a table that includes fields like contracts, cities, dates, 
and different types of unit costs. 

• Box Plot Considerations: The code includes provisions for handling box plot data 

if required, although this functionality appears to be reserved for future use. 

• Error Handling: Proper error handling is implemented to catch any exceptions 

during the execution, ensuring that issues are promptly identified and addressed. 

• Finalization: The normalized data is stored in the L06_UCIStrct structure, 
preparing it for subsequent UCI calculations. 
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The efforts in this layer to calculate and normalize the unit costs according to various 

criteria represent a vital step in understanding the financial dimensions of the system. The 

meticulous handling of contracts and the corresponding unit cost calculations demonstrate 

a robust approach to preparing the data for UCI calculation, a critical component in the 

overall analysis. 

4.1.6 Layer G: Results of Unit Cost Optimization 

Layer G focuses on optimizing unit costs, implementing the unit cost inflation model, and 

quantifying the results of this optimization using various parameters. This optimization 

step is crucial for reducing cost uncertainties and enhancing the predictability of cost 
estimates. 

• Initialization of Genetic Algorithm Parameters: The optimization process 

involves setting up parameters for a Genetic Algorithm (GA). The parameters include 

the number of variables, step size, and lower and upper bounds. The GA operates 

within these defined limits to search for optimal solutions. 

• Analysis Type Determination: For optimization, the method uses Geometric 

Brownian Motion (GBM), a popular stochastic process used in various financial and 

engineering applications. GBM is favoured for its mathematical tractability and 

the ability to model various real-world phenomena. Here, the GBM helps find the 

optimized unit cost calculation parameters. 

A key aspect of Layer G is calculating unit costs based on the selected method; 
currently, the code only supports the "Geometric Mean Value" method, but there is 

scope for other types of analyses to be incorporated. 

• Sorting Input Data: All data from Layer F, sorted by date, is input into Layer G. 
Then, each Optimization Detail is iteratively processed. The optimization process 

displays iterations if the ’Verbose’ option is enabled. 

• Optimization Loop: The primary function in Layer G is 

‘local_OptimizationFunction,‘ which serves as the objective function for the GA. It 
takes an input vector, representing the GBM parameters for optimization, and 

returns the cost residuals. It performs various calculations related to GBM, such as 

calculating the log returns (SofT), the expected log return (EofT), and the variance 
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of log returns (VarOfS), and it also computes the Z1 and Z2 scores, excluding 

outliers based on specified limits. 

• Cost Analysis: The unit cost analysis uses the parameters obtained from the local 
optimization function. The analysis involves computing the geometric mean values 

and applying exponential functions to obtain the final unit cost. 

• Residual Evaluation: A comprehensive residual evaluation is carried out to ensure 

that the optimization converges to a feasible solution. Conditions and limits are 

applied to control the residual. 

• Results and Summary: The optimization results are stored in a struct, which 

includes all details related to the optimization, unit cost summary, and other analytical 
parameters. 

This layer presents an optimization strategy involving various mathematical and 

statistical operations, targeting unit cost optimization. By employing both GBM and GA, 
the optimization aims to be suitable for diverse scenarios. However, further testing and 

validation might be necessary to confirm its effectiveness across all possible applications. 
The detailed recording and structuring of the results make Layer G a critical component 
within the model, contributing to the comprehension of unit cost dynamics without 
overextending its capabilities. 

4.1.7 Layer H, Visualization, Improved Performance, and Eval. 
Table 

Layer H in the system is devoted to visualizing unit costs and various other components 

related to water treatment management components. Below are the key functionalities and 

processes of this layer: 

• Definition of Analysis Types: 

– Two analysis types are defined, focusing on specific components and statistical 
measurements. 

– A Comprehensive list of analysis types is formulated for detailed inspection. 

• Organization of Data: 
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– Data is organized into structures based on date and attributes, facilitating easy 

access and manipulation. 

– Specific curve data structure is formed to store box plot data. 

• City Categorization: 

– Cities are categorized into three regions, ensuring data is appropriately classified. 

– Unknown city data triggers an error message, maintaining the integrity of the 

categorization. 

• Data Collection: 

– Iterates through existing and new data sets to populate corresponding arrays. 

– Aligns data with respective city categories and marker types for analysis. 

• Visualization of Data: 

– Utilizes error bar graphs to represent the data visually. 

– Different colours and markers distinguish regions and data sets. 

– Visualizes the mean and variation of unit costs for comprehensive insight. 

• Storage of Curve Data: 

– Stores the curve data within the structure for subsequent utilization. 

– Encapsulates essential insights for further analysis or reporting. 

• Summary: 

– Layer H serves as a robust tool for understanding cost dynamics within water 
treatment management. 

– Integrates statistical analysis with visualization, assisting in informed decision-
making. 
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4.2 Results 

This section elucidates the results derived from analyzing the records of 277 contracts 

obtained from the three reference cities presented in the thesis. These results, depicted in 

Figure 4.1 on Page 127 to Figure 4.7 on Page 130, provide an in-depth understanding of 
the various facets of the contracts and tenders. A detailed breakdown of the data reveals 

that of the total contracts, 221 tenders belong to City A, 52 belong to City B, and 10 

tenders belong to City C. The distribution reflects the magnitude and scale of operations 

in these cities and offers an insight into the spatial dynamics of the projects. 

The approach adopted for calculating the unit cost index for each type of project closely 

follows the methodology previously employed by Rehan et al. [Rehan et al., 2016]. This 

methodological alignment ensures continuity with past research and supports a robust 
comparative analysis. The sections below elaborate on the plots’ specifics to represent the 

analyzed data. 

In the respective plots, each data point is denoted with distinct markers and colours 

to represent the cities: star and green for City A, circle and red for City B, and square 

and blue for City C. These markers illustrate the geometric mean value of all individually 

scaled contract items for each project type within a given scaled contract to unit project. 
Accompanying each data point is a vertical line matching the marker’s colour, indicating 

the range of item values. The upper bound of this line, marked with a small horizontal 
line, signifies the maximum value of the scaled item found for that specific contract. In 

contrast, the lower bound represents the minimum value. 

This graphical representation offers a comprehensive view of the data, allowing for 
immediate visual differentiation between cities and a clear understanding of the range 

and central tendency of contract values over time. Figures 4.1, 4.2, and 4.3 focus on 

sanitary sewerage projects, including manholes, pipes, and overall unit projects, respectively. 
Similarly, Figures 4.4, 4.5, 4.6, and 4.7 pertain to watermain projects, encompassing 

hydrants, pipes, valves, and overall unit projects. These visual representations enable a 

nuanced understanding of the variability and trends in contract values across different 
cities and project types, thereby enhancing the analysis of spatial and temporal patterns in 

urban infrastructure development. 
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4.2.1 Analysis of Contract Value Variability 

Regarding differences in the price variations presented in the figures and reasons behind 

the varying sizes of error bars, our analysis reveals several key factors influencing these 

disparities. The range of error bars, representing the upper and lower bounds of scaled item 

values for each contract, varies notably across different cities and years. This variation 

is primarily attributed to the impact of inflation, which is evident in the plots where the 

leftmost projects, representing earlier years, show a smaller range of items compared to the 

rightmost items, indicative of more recent years. 

Additionally, the number of items in a contract significantly influences the range of 
prices. Contracts with a larger number of items tend to exhibit a broader range of scaled-
item values, resulting in longer vertical range lines in the plots. Furthermore, the pricing 

strategy employed for different items within a contract can lead to increased variability. 
For instance, contractors may allocate higher costs to material procurement and lower 
costs to service items to receive higher payments in advance. This discrepancy in pricing 

contributes to greater variability in the vertical range lines of the corresponding contracts. 

In contrast to City A’s procurement approach, where the municipal authority outlines 

contract specifications and invites competitive bidding based on a predefined template, 
City B adopts a contractor-driven bid proposal model. In this model, contractors assume 

the role of primary engineers in formulating the bid, encompassing the detailed proposal of 
contractual elements, material specifications, service deliverables, and provisional items. 
Although there are differences in procedure, our analytical assessment, grounded in unit price 

calculation methodology and item categorization aided by the AI model, reveals a remarkable 

parity in unit project costs between the two cities. This observation shows no significant 
markups or disparities in unit project cost calculations. It highlights the effectiveness 

and methodological robustness of our AI-driven classification and scaling algorithm in 

standardizing unit cost computations across heterogeneous tendering frameworks. 

In the context of City C, a municipality characterized by dense urban development, our 
analysis shows a potential escalation in unit costs. The rise in unit cost values is attributable 

to the densely built environment and the proximity of complex infrastructural networks. 
These factors inherently amplify the logistical and material expenditure components, 
reflected in the escalated service and material costs associated with urban infrastructure 

projects. 

However, it is essential to note that comparing different contracts solely based on the 

range they exhibit is not straightforward and may yield inaccurate insights. The vertical 
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lines in the plots offer a more qualitative approach to understanding pricing variability 

in each contract item. A consistent range of geometric mean item prices, and to a lesser 
extent, their extreme points, are expected. Contracts showing inconsistent pricing should 

be scrutinized for potential errors or underlying issues causing this inconsistency. 

The figures indicate that City A exhibits higher variation in sanitary sewer items 

compared to City B. However, this variation is less pronounced in watermain contracts. In 

the case of City C, due to the limited number of contracts and their recent nature, it is 

challenging to comment on their spread or make direct comparisons with the other cities. 
The inclusion of City C in the figures demonstrates the feasibility of calculating scaled 

contract values for cities with different characteristics and layouts. It also indicates that, 
despite the inability to draw definitive conclusions, the pattern of contract item ranges in 

City C appears to follow a similar trend to Cities A and B, especially when considering 

inflation and price increases over time. 

These insights, drawn from the analysis of the figures, underscore the complexities 

involved in interpreting contract data across different urban settings. They highlight the 

importance of considering various factors, such as inflation, contract size, and pricing 

strategies, in understanding the variability and trends observed in urban infrastructure 

development contracts. 

4.2.2 Comparison with Shapton’s Findings 

The results obtained in this study, particularly visible through Figures 4.1 to 4.7, can 

be contextualized within the framework of Shapton’s work in [Shapton, 2017]. Shapton’s 

analysis of City A provides an in-depth examination of the impact of government policy 

changes on contract prices within the infrastructure sector. Shapton scrutinizes the effects 

of the Infrastructure Stimulus Fund (ISF), which significantly increased project applications 

and approvals, especially in the water and wastewater infrastructure sector. This policy 

led to a disproportionate funding allocation towards these sectors, with Ontario receiving 

substantial federal and provincial support [Shapton, 2017]. 

Shapton further illustrates this impact by analyzing specific projects in City A, 
highlighting the reconstructions and infrastructure revitalization projects. Though 

categorized differently, these projects included substantial components of watermain, 
sanitary sewer, storm sewer, and road construction, aligning with the broader 
infrastructure development trends under the ISF [Shapton, 2017]. These changes in the 
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Figure 4.1: Plot of the unit cost index values for projects in the three cities, encompassing 

maintenance hole items. Each entry in the figure delineates the minimum, geometric mean, 
and maximum value, offering a comprehensive understanding of the cost dynamics. 

number and unit costs of the projects can be seen in the current results in Figures 4.1, 4.2, 
4.3, 4.4, and 4.7. 

An important observation from Shapton’s thesis is the fluctuation in the number 
of capital works projects and the corresponding unit prices post-ISF. Shapton notes a 

heightened number of projects during the ISF years (2009-2010) and a subsequent decrease 

in later years (2011, 2013, 2014). This trend mirrors the findings in this thesis, where 

although a direct trend analysis is not conducted, the subtleties of these changes are 

apparent in the provided figures as mentioned above. Shapton’s work clearly indicates how 

ISF influenced project prioritization and funding in City A, leading to a temporary spike in 

infrastructure projects, followed by a reduction in subsequent years [Shapton, 2017]. 

Moreover, Shapton’s analysis extends to the tender prices of these projects. They 

observe that the total tender prices of water and wastewater projects were higher during 

the ISF years compared to the post-ISF years. It is consistent with the observations in 

this thesis, where 2009 and 2010 show higher total tender prices for these projects, albeit 
less pronounced due to the need for explicit trend analysis in our figures. Thus, while this 

thesis provides a quantitative overview of contract prices in City A, City B, and partially 

City C, Shapton’s detailed examination offers a more nuanced understanding of the specific 

impacts of governmental policy changes on these prices [Shapton, 2017]. 
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Figure 4.2: Plot of the unit cost index values for projects in the three cities, encompassing 

sanitary sewer pipe items. Each entry in the figure delineates the minimum, geometric 

mean, and maximum value, offering a comprehensive understanding of the cost dynamics. 
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Figure 4.3: Plot of the sanitary sewer unit project values for tenders in the three cities, 
covering all standard sub-parts of the sanitary sewer standard part. Each entry signifies 

the minimum, geometric mean, and maximum values, encapsulating the unit project values 

variations. 
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Figure 4.4: Plot of the unit cost index values for projects in the three cities, encompassing 

hydrant items. Each entry in the figure delineates the minimum, geometric mean, and 

maximum value, offering a comprehensive understanding of the cost dynamics. 
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Figure 4.5: Plot of the unit cost index values for projects in the three cities, encompassing 

watermain pipe items. Each entry in the figure delineates the minimum, geometric mean, 
and maximum value, offering a comprehensive understanding of the cost dynamics. 
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Figure 4.6: Plot of the unit cost index values for projects in the three cities, encompassing 

watermain valve items. Each entry in the figure delineates the minimum, geometric mean, 
and maximum value, offering a comprehensive understanding of the cost dynamics. 
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Figure 4.7: Plot of the watermain unit project values for tenders in the three cities, 
covering all standard sub-parts of the watermain standard part. Each entry signifies the 

minimum, geometric mean, and maximum values, encapsulating the unit project values 

variations. 
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4.3 Data Analysis Toolbox 

The development of the Data Analysis Toolbox represents a significant step towards realizing 

the project’s goals, demonstrating an innovative contribution to academia and industry. 
This section elucidates a web server interface’s design, objectives, and implementation, 
encapsulating the methodologies and databases delineated in the preceding chapters. It 
offers an efficient Decision Support System that potentially meets the needs of industry 

stakeholders and municipalities. 

4.3.1 Overview of the Interface 

The prior version of this project, developed by Shapton et al., employed an offline 

application in Microsoft Access. Although functional, it was confined to limited and 

simplified capabilities. In contrast, the current project has evolved into an online, 
web-based application driven by the necessities detailed in the objectives section below. 
This transformation caters to a broader spectrum of real-time interactions, bridging the 

gap between scientific research and practical application. 

4.3.2 Objectives of the Web Server Interface 

The web server interface is designed to fulfill specific objectives catering to user requirements. 
These objectives are detailed as follows: 

(A) Real-Time Interaction: The interface should be online to facilitate real-time 

interaction with tools and databases. 

• Immediate access for operators to server information without additional processing. 

• Reasonable processing time for filtered data or processed information proportionate 

to the computational load. 

(B) Data Import and Alignment: The interface must import new contracts, ensuring 

alignment with predefined standards. Required order: (a) item number, (b) 
specification number, (c) item description, (d) unit, (e) unit price, (f) quantity, (g) 
total price. Extraneous fields are ignored. 

(C) Export Functionality: Users can export the standardized tender and download it 
as a CSV file. 
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(D) Analysis Capability: Facilitates the analysis of unit cost index and inflation for 
specific standard-parts with acceptable delay parameters. 

4.3.3 Implemented Features and Outcomes 

The web server’s functionality is multifaceted, emphasizing user interaction and data 

privacy. Key features and outcomes include: 

• User Responsiveness: The server’s architecture minimizes response time and caches 

repeated queries for immediate future access. 

• Contract Acceptance and Standardization: The server accepts new contracts, 
processes them through a filtration and mapping approach, and stores them for future 

analysis. Downloadable standardized tenders are made available to users. 

• Analytical Toolbox: The current revision focuses on basic unit cost index and 

inflation rate calculations. This implementation serves as a proof of concept, 
demonstrating that the platform can potentially extend to diverse financial analyses 

within the confines of standardized methodologies. It is important to note that the 

system is not designed to diagnose specific industry trends, such as past cost 
inflation or collusion among bidders, and any such claims would require further 
validation and domain expertise. 

In summary, the Data Analysis Toolbox embodies a critical component of the project, 
transforming theoretical methodologies into practical tools. The interface’s online nature 

enhances accessibility, ensuring the data’s privacy is safeguarded and municipalities retain 

exclusive access to their respective information. It sets the stage for further enhancements, 
aligning with the scientific community’s aspirations and the industry’s pragmatic needs. 

4.3.4 Methods 

This section elucidates the various toolboxes implemented within the webserver, integral 
to the functioning and practical application of the system. Each toolbox is meticulously 

designed to execute specific tasks, contributing to the overall efficiency and responsiveness 

of the server. A brief description of each toolbox and illustrative examples are provided 

to explain the corresponding functionality and its integration within the larger webserver 
framework. 
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Figure 4.8 provides a comprehensive illustration of the client and server-side 

implementation of the software, demarcating the functional relationships and architectural 
design. This visual representation aids in understanding the collaborative dynamics 

between different components and how they interact to deliver the desired outcomes. 

Figure 4.8: Illustration of the client and server-side implementation of the software. 

The ensuing sections will delve into the details of the individual toolboxes, elucidating 

their design, operational principles, and contributions to the overall system’s capabilities. 

Tender Summary Index 

The Tender Summary Index is an essential component within the WaterIAM server, 
functioning as the primary interface for operators seeking to harness the platform’s 

capabilities. Acting as the gateway to the system’s various features, this toolbox allows 

users to manage contracts seamlessly, ensuring efficient integration with the core database. 
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As depicted in Figure 4.9, one of the principal functionalities of this toolbox is the 

option to import a new contract. Post-importation, operators gain the ability to download 

this specific contract, as well as other existing tenders, through the associated "Tender 
Query" toolbox. This feature allows for greater accessibility and control over the stored 

data, enhancing the user’s interaction with the system. 

Figure 4.9: Sample webserver output while using the Tender Analysis toolbox. 

The Tender Summary Index toolbox underscores the flexibility and user-centred design 

134 



of the WaterIAM server, catering to the varied needs of the operators. Its intuitive layout 
and comprehensive functionality establish it as a pivotal aspect of the system’s architecture, 
playing a vital role in navigating and exploiting the diverse features embedded within the 

platform. 

Bidder Analysis Toolbox 

The Bidder Analysis Toolbox represents an advanced feature within the server’s architecture, 
enabling operators to gain insight into the statistical information associated with bidders 

across various contracts. This aspect of the system focuses on providing a comprehensive 

view of the bidders’ annual activities, detailing the total number of bids made and the 

subsequent contracts awarded, as illustrated in Figure 4.10. 

Figure 4.10: Sample webserver output while using the Bidder Analysis toolbox. 

It is pertinent to note that the bidder information is not directly manageable through the 

web interface. Instead, the server relies on previously uploaded statistical profiles specific 
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Figure 4.11: An example of contractor analysis plots that compare the historical bidding of 
a contractor. 

to contractors or bidders. As such, the toolbox primarily serves as a demonstrative feature, 
exemplifying the potential benefits and delivery of such information to the operator. 

Though not currently implemented, an extended representation of bidder statistics is 

proposed in Figure 4.11 on Page 136. This additional layer of analysis would delineate 

the annual bidding profile and bid range for individual contractors, adding depth to the 

system’s analytical capabilities. 

While the Bidder Analysis Toolbox within the WaterIAM server constitutes a robust 
component for understanding bidder activities, it is pivotal to recognize its limitations in the 

current implementation stage. Specifically, this toolbox does not possess the functionalities 

required to diagnose or predict collusion among bidders or to scrutinize past project costs. 
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These aspects represent complex areas that are beyond the toolbox’s current capabilities. 

Despite these constraints, the Bidder Analysis Toolbox holds significant potential for 
future enhancements. Its current design facilitates a nuanced comprehension of bidder 
activities, offering municipalities and operators valuable insights into the bidding landscape. 
Such features contribute substantially to the system’s efficacy, even as they leave room for 
further exploration and development in subsequent research efforts. 

Unit Cost Analysis Toolbox 

The Unit Cost Analysis Toolbox serves as a critical component within the server’s interface, 
encapsulating the main functionality of the proposed algorithm. This toolbox facilitates 

the operator’s ability to execute a refined version of the unit cost calculation method, as 

delineated in previous studies [Shapton, 2017], [Rehan et al., 2016]. 

Designed with versatility in mind, the toolbox can be applied to various city datasets 

and tailored to specific periods. Moreover, it supports distinct standard parts, such as 

Watermain" or Sanitary Sewer," providing further customization in the context of standard-
parts. Each standard part’s unit cost calculation parameters can be adjusted through the 

user-friendly interface, offering the operator control over the analysis parameters. 

Figure 4.12 presents a sample webserver output when utilizing the Unit Cost Analysis 

Toolbox. As depicted, the webserver not only calculates unit costs for reference projects 

but also allows for selecting default values for specific project units. It includes parameters 

like unit pipe size, valve size, and the number of valves and hydrants, thereby providing a 

more comprehensive understanding of the unit cost dynamics. 

The Unit Cost Analysis Toolbox is a specialized component within the system, explicitly 

designed to facilitate detailed cost assessments. Rooted in methodologies previously outlined 

in the literature, this toolbox has been developed with a clear and specific purpose in mind. 
It should be noted, however, that the toolbox’s capabilities are confined to the execution of 
cost evaluations and do not extend to the analysis or prediction of past cost project costs. 

It is paramount to cautiously approach any assertions regarding the toolbox’s predictive 

capabilities, as its current design and functional parameters do not support these. Such 

limitations must be acknowledged to ensure a clear understanding of the system’s capabilities 

and intended applications. 

In summary, the Unit Cost Analysis Toolbox symbolizes a significant achievement 
in translating theoretical concepts into practical applications. Its dynamic design and 
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Figure 4.12: Sample webserver output while utilizing the Unit Cost Analysis Toolbox. 

adaptability make it valuable for in-depth cost assessment operators. The toolbox’s 

integration within the more extensive system enhances the overall robustness and illustrates 
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a practical realization of academic methodologies, thereby contributing substantively to 

the field. 

Geographical filtering of the Projects and visualization toolbox 

The "Map Visualizer" toolbox accurately represents how geographic information 

corresponding to various projects can be harnessed and utilized. Serving as a 

demonstrative example, this tool seeks to enrich financial analysis by overlaying historical 
financial data with their corresponding spatial information, thereby enhancing the depth 

and context of the interpretation. 

On an interactive map, the toolbox visually presents the location of three distinct types 

of standard-parts: watermains, sanitary sewers, and roads. This visual representation 

promotes a more intuitive understanding of the spatial distribution of projects, enabling 

analysts to discern patterns and correlations that might otherwise remain obscured. 

Each project’s location is meticulously extracted from the contract or tender information 

provided by collaborating municipalities. This information not only adds to the authenticity 

of the data but also fosters a collaborative approach to information sharing between different 
governmental bodies. 

To ensure compliance with privacy standards and maintain the data’s anonymity, the 

locations shown in Figure 4.13 are randomly selected and do not correspond to actual 
projects. This precaution reflects the ethical considerations inherent in handling sensitive 

information and demonstrates a commitment to responsible data management. 

Conclusion 

This chapter has methodically presented the implementation and outcomes of an AI model, 
detailing its multifaceted application in urban infrastructure projects across various cities. 
The AI methodology, designed to address specific challenges in data processing and analysis, 
successfully integrates natural language processing, deep learning classification, and unit 
cost optimization. These components form the foundation of a comprehensive system 

capable of standardizing and analyzing vast datasets with precision and efficiency. 

The implementation of the AI model is structured into several progressive layers, each 

serving a distinct yet integral role in the data processing pipeline. Starting with Layer 
A, which focuses on importing and validating raw data tables, the model demonstrates 
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Figure 4.13: sample output of the webserver while using the map filtering toolbox. 
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meticulous attention to detail in handling data. The subsequent layers, B through H, extend 

this approach, ensuring that each step, from data cleaning to visualization, adheres to 

rigorous standards of accuracy and relevancy. The structured approach not only enhances 

the data’s usability but also aligns with object-oriented programming principles, paving 

the way for potential migration to advanced programming platforms. 

A key highlight of this chapter is the analysis of 277 contracts from three different cities, 
offering insights into the variability of contract values and the influence of various factors 

such as inflation, contract size, and pricing strategies. This analysis, underpinned by the unit 
cost index methodology, brings to light the complexities of urban infrastructure development 
and the need to consider contextual factors in interpreting data. The comparison with 

Shapton’s findings further enriches this analysis, linking governmental policy changes to 

fluctuations in project numbers and unit costs. 

The development of the Data Analysis Toolbox marks a significant leap in bridging the 

gap between theoretical research and practical application. The transition from an offline 

Microsoft Access application to an online, web-based platform underscores the project’s 

evolution, catering to the dynamic needs of industry stakeholders and municipalities. The 

web server interface, with its focus on real-time interaction, data import and alignment, 
export functionality, and analysis capability, epitomizes the practical utility of the AI 
model. The various toolboxes, from the Tender Summary Index to the Unit Cost Analysis 

Toolbox, each contribute uniquely to the system’s robustness and adaptability. 

Furthermore, the introduction of the "Map Visualizer" toolbox exemplifies the potential of 
integrating geographical information with financial data, offering a more nuanced perspective 

on project distribution and trends. While ensuring privacy and ethical considerations, this 

tool enhances the depth and context of financial analyses, enriching the interpretation with 

spatial dynamics. 

In conclusion, this chapter encapsulates the successful application of an AI model in 

analyzing and visualizing urban infrastructure data. It demonstrates the model’s capacity to 

handle complex datasets, adhere to high standards of data processing, and provide insightful 
analyses that are crucial for decision-making in urban development. The integration of 
advanced AI techniques with a user-friendly interface and practical toolboxes underscores 

the project’s commitment to making sophisticated methodologies accessible and relevant 
to industry and municipal stakeholders. The AI model, with its layered approach and 

comprehensive analysis, stands as a testament to the potential of AI in transforming data 

into actionable insights, thereby fostering scientific inquiry and operational efficiency in 

urban infrastructure management. 
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Chapter 5 
Conclusions, Contributions, and Future 

Research 

5.1 General Conclusions 

This thesis has systematically unravelled various facets of civil engineering data management, 
analysis, and application. The four chapters are designed to work together, each building 

on the other to create a cohesive and innovative framework not currently seen in existing 

academic literature or industry solutions. A general summary is presented below: 

Chapter One established the imperative for a systematic and automated approach 

towards importing, standardizing, classifying, and analyzing data in civil engineering. This 

chapter sets the stage for the rest of the thesis by identifying the fundamental problem 

that the subsequent chapters address. 

Chapter Two provided the innovative ontology tool to structure data, contributing to 

enhancing the quality and sustainability of data handling in civil engineering. Introducing 

a lexicon specific to infrastructure capital works and the concept of data provenance are 

vital features that facilitate error correction and data refinement. 

Chapter Three presented a significant advancement in classification methodologies 

through the use of LSTM, addressing the specific challenges of language constructs in tender-
bid document records. This chapter’s contribution to automating unit cost computations 

with high accuracy is a notable achievement that serves municipalities with standardized, 
consistent categorizations. 
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Chapter Four demonstrated the feasibility of the entire approach through the 

implemented web server. It distilled the theoretical insights into a practical application, 
showcasing the adaptability and diversity of the methodology. This chapter’s contribution 

lies in simplifying complex tasks like unit cost calculation, an essential enhancement in 

efficiency and precision within civil engineering. 

In essence, this thesis makes three major contributions: 

1. Introduction of ontology as a tool for structuring data in civil engineering. 

2. A novel approach to classification through LSTM, leading to automation in unit cost 
computation. 

3. Implementation of a web server that translates theoretical concepts into real-world 

applications. 

These contributions are woven together to create a pathway toward advanced data 

management and analysis tools in civil engineering. They significantly depart from existing 

methodologies, emphasizing data as a dynamic resource that fuels informed decision-making 

and elevates operational standards. This coherent and innovative framework heralds a new 

era of industry transformation and academic exploration. 

5.2 Contributions 

This research brings together the findings and methodologies from all chapters to enrich the 

existing body of knowledge by making the following impactful and original contributions 

that are not commonly found in current academic literature or industry solutions: 

1. Introduction of a unique methodology that integrates data preprocessing, deep 

learning, and professional engineering insights to automate contract interpretation 

for watermain and sanitary sewer capital works. This methodology bridges the gap 

between traditional practices and modern AI-driven processes, significantly 

improving efficiency and accuracy. 

2. Advancement of machine learning techniques tailored to civil engineering, including 

developing an AI model that emulates the unit cost computation from tender-bid 

documents. This replaces human-guided mapping, reduces overhead, and enhances 

classification accuracy. 
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3. Creation of a repeatable and adaptable approach, such as a design that allows model 
refinement with incoming data. This ensures continuous improvement and relevance, 
making the methodology more robust and versatile across different municipalities or 
regions. 

4. Broadening the applicability of the methodology, extending potential applications 

beyond water systems to other civil engineering domains. This opens new avenues 

for innovation, setting a benchmark for data-driven decision-making in the industry. 

Additionally, the research offers these significant features: 

• A comprehensive lexicon and ontology specific to the industry, enhancing data 

contextualization and error detection. 

• Compilation of a curated inventory of materials and services, paired with data 

provenance records, for future compatibility. 

• Application of natural language processing for efficient classification and 

standardization across various municipalities. 

The contributions and features detailed in this thesis collectively form a framework 

that addresses the current needs of civil engineering professionals while offering a basis for 
further refinements and advancements. This framework exhibits a significant shift from 

existing practices, indicating a step towards modernized approaches within the industry. 

Future work could extend and refine this framework to better meet the evolving demands 

of the civil engineering domain. For instance, exploring the integration of real-time data 

processing capabilities, further customizing the methodology for diverse civil engineering sub-
domains, or enhancing the user interface of the implemented web server for a more intuitive 

user experience are potential avenues for future exploration. Additionally, collaboration 

with industry stakeholders to test and validate the framework in real-world settings could 

provide valuable insights and drive further innovations in practical applications. 

5.3 Future Research Directions 

Building upon the comprehensive framework established in this thesis for automating capital 
work planning and enhancing the assessment of project costs and tender contracts, several 
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promising areas for future research emerge. These areas, while extending the current work, 
also open new avenues for exploration and innovation in civil engineering data management 
and application: 

1. Expansion to Other Civil Engineering Sub-Domains: While the current 
framework is tailored to watermain and sanitary sewer capital works, extending this 

methodology to other areas such as transportation, urban planning, and environmental 
engineering could significantly broaden its impact. 

2. Enhancement of User Interface and Interaction: Improving the user interface 

of the developed web server for a more intuitive and user-friendly experience would 

facilitate broader adoption and ease of use, especially for professionals less familiar 
with advanced data analysis tools. 

3. Multilingual and Cross-Cultural Adaptation: Adapting the framework for use 

in different languages and cultural contexts would be beneficial, especially considering 

the global nature of civil engineering projects. It would involve not just language 

translation but also the customization of ontologies to reflect different construction 

norms and regulations. 

4. Advanced Machine Learning Models for Predictive Analytics: Investigating 

the use of more advanced machine learning models, such as deep reinforcement 
learning or generative adversarial networks, could enhance predictive capabilities in 

cost estimations and risk assessments. 

5. Collaborative Validation and Refinement: Working in collaboration with 

industry professionals to apply the framework in real-world settings would provide 

valuable feedback for refinement. It could include case studies or pilot projects in 

different municipalities or regions. 

These potential research directions not only build upon the existing contributions of 
this thesis but also align with the ongoing evolution of civil engineering practices. By 

pursuing these avenues, future research can continue to advance the field, offering innovative 

solutions to complex challenges and further transforming industry practices. 
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A.1 OCR and related issues 

The flowchart depicted in Figure A.1 outlines the procedure for preparing scanned images 

of tables for Optical Character Recognition (OCR) detection and conversion. The process 

can be summarized as follows: 

1. Receive a Contract: The process begins with receiving a contract other than in 

table format. 

2. Check Image/Table Format: The system checks if the PDF or image is of a table 

and not in a scanned format. 

3. Evaluate Brightness and Contrast: If the image is a scanned table, its brightness 

and contrast are assessed. If acceptable, it moves to the OCR processing phase. 

4. Quality Assessment: If the image is not scanned, it is considered that quality 

degradation has not occurred, and the system proceeds to process the table using 

OCR software. 

5. Brightness and Contrast Adjustment: If the image requires adjustments, the 

corresponding routines for brightness and contrast are called. 

6. Correct Skewness: If the table image is skewed, the corresponding routines to 

correct it are invoked. 

7. Final Processing: Once all the above steps are performed, the image is ready for 
the ABBYY software and can be exported to a table with minimal errors. 

This process ensures that the scanned images of tables are in the appropriate format 
and quality for further OCR detection and conversion, contributing to the efficiency and 

accuracy of the WaterIAM system. 
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Figure A.1: Flowchart of using a hard copy contract for the WaterIAM system and 

passing through the OCR check routine. 
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A.2 Main word-frequency table 

The main word-frequency table is a comprehensive lexicon representing key terms in the 

field of watermain and sanitary sewer systems capital works. Due to the extensive nature of 
this table, spanning four pages, it is included in its entirety in this Appendix. A description 

and a concise one-page sample are provided in Section 2.2.2 on Page 52 of Chapter Two. 
The following tables represent the full details, compiled from approximately three hundred 

tender documents. 

167 



Table A.1: Word frequency table generated from all contracts 

(Refer to Section 2.2.2 on Page 52), Part 1 of 4. 
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Table A.1, continued: Word Frequency table generated from all contracts 

(Refer to Section 2.2.2 on Page 52) Part 2 of 4. 
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Table A.1, continued: Word Frequency table generated from all contracts 

(Refer to Section 2.2.2 on Page 52) Part 3 of 4. 
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Table A.1, continued: Word Frequency table generated from all contracts 

(Refer to Section 2.2.2 on Page 52) Part 4 of 4. 
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A.3 Ontology definition and implementation 

A.3.1 Data Preprocessing and Word Tokenization 

The process of preparing the data for subsequent analyses comprises several essential stages, 
including data type conversion, cleaning, handling special fields, and word tokenization. The 

following sections delineate the processes and mechanisms employed for data preprocessing 

and tokenization. 

Data Type Conversion and Checking Each field of the raw table data is inspected 

and converted to its required data type if necessary. This process ensures the accuracy 

and consistency of the data types throughout the dataset, enabling correct and efficient 
analysis. 

Description Cleaning and Splitting For the Description field of each entry in 

StructTbl, the code performs text cleaning and word splitting operations. This operation 

ensures that the description field is in a suitable format for subsequent analyses, aiding in 

feature extraction and improving the quality of data-driven insights. 

Multiple Field Handling There is an optional field Multiple, which if present, triggers 

the creation of additional copies of the current record. The ‘OrgSection’ field is randomly 

updated in these duplicated entries, allowing for the generation of varied and comprehensive 

training data for the model. 

Word Exclusion and Substitution The ontology is designed to standardize data 

and preclude errors to enhance the subsequent analyses. Specific words, predominantly 

comprising conjunctions, prepositions, and numerals, are entirely removed. These are 

outlined in the Ont_RemWords list. Similarly, certain words are replaced with alternatives 

to standardize synonymous terms and correct common misspellings or abbreviations. 

Character Exclusion and Substitution Certain characters for removal from words are 

specified, predominantly pertaining to punctuation. Certain characters are also replaced 

with alternatives to standardize the use of particular punctuation marks and symbols. 
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Root Extraction Words are processed through the WTM_NLP_RootFinder__v4p0 

function, which reduces words to their base or root forms. This function employs common 

Natural Language Processing techniques to either lemmatize or stem words. 

Unit Separation Strings that contain unit need this essential rule for cleanup. This rule 

plays a vital role in the data preprocessing stage. It takes an input string and a list of 
units, sorts the units based on their length in descending order, and separates the input 
string into multiple sub-strings based on predefined separators such as ’ ’,’;’,’-’,’:’,’/’. The 

rule checks for numbers and units in the sub-strings and if found, separates and arranges 

them properly. Each sub-string is further separated if it contains one of the units. The rule 

specifically handles several cases: 

• When a unit is found at the beginning of the sub-string and is followed by a number 
(i.e. "mm275 pipe diameter" is replaced by "mm 275 pipe diameter"). 

• When a unit is found at the end of the sub-string and is preceded by a number (i.e. 
"43sqft" is replaced by "43 sqft"). 

• When a unit is found in the middle of a sub-string and is both preceded and followed 

by a number (i.e. "15PVC50mm pipe" is replaced by " 15 PVC 50 mm pipe"). 

The output of this rule is a list of processed strings with numbers and units separated. 

Project Program Availability The program developed for this project, including all 
the tools and functions described in this section, is available online for download. Interested 

parties can access the repository at the following Git address: https://github.com/ 

mld-khaki/WaterIAM-Prj-MiladKhaki. 

Special Case Handling and Dynamic Ontology Update Conditions are in place to 

handle unique cases, such as removing a period at the end of a string with a significant 
number of numeric characters or single quotation marks at the beginning or end of a word. 
Additionally, the system incorporates a dynamic ontology update functionality through the 

WTM_ONT_UpdateByWTMTable__v1p0 rule. 

The WTM_ONT_UpdateByWTMTable__v1p0 rule takes a mapping table, 
referred to as the Input Table, and a list of words, referred to as Input Words, as inputs. 
The purpose of this rule is to update the words in Input Words based on the mapping table. 
The specific rules followed by this rule are as follows: 
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1. The rule accepts two inputs: Input Table, a table or structured data that includes 

mapped unknown words, and Input Words, a list of words or strings. 

2. If any of the elements in Input Words are not already in string format, they are 

converted to strings. 

3. The rule iterates through each word in Input Words. For each word, it checks against 
all rows in the MapUnknownTable within the Input Table. The MapUnknownTable 

contains the list of the words that need to be updated. 

4. If a word from Input Words is found as an entry in the MapUnknownTable, it is updated 

to the corresponding mapped word(s) found in the same row of MapUnknownTable. 
If multiple mapped words are found, they are concatenated and separated by a space 

to form a single string. 

5. This process continues until all words in InpWords have been checked and possibly 

updated based on the mapping table. 

6. The output, referred to as OutWords, is the list of updated words. 

7. The following are a few example rows and rules of the MapUnknownTable: 

• Input Word: "chlonde", Corresponding Row in MapUnknownTable: "chlonde" is 

replaced by "chloride" (typo and OCR error correction). 

• Input Word: "chlorination", Corresponding Row in MapUnknownTable: 
"chlorination" is replaced by "chlorinate" (word consistency) 

• Input Word: "ci", Corresponding Row in MapUnknownTable: "ci" is replaced by 

"castiron" (abbreviation removal for consistency) 

• Input Word: "cicbmh", Corresponding Row in MapUnknownTable: "cicbmh" is 

replaced by "castiron catchbasin manhole", (abbreviation removal for consistency) 

• Input Word: "clcbs", Corresponding Row in MapUnknownTable: "clcbs" is 

replaced by "castiron catchbasin" (abbreviation removal for consistency) Input 
Word: "cliftonvale", Corresponding Row in MapUnknownTable: "cliftonvale" is 

replaced by "" (word specific to a place or street, no additional value, removal). 

• Input Word: "colborne", Corresponding Row in MapUnknownTable: "colborne" 
is replaced by "" (word specific to a place or street, no additional value, removal). 

• Input Word: "conc", Corresponding Row in MapUnknownTable: "conc" is 

replaced by "conrete" (abbreviation removal for consistency) 
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If multiple mapped words are associated with a single unknown word, they are joined 

together, separated by a space. The WTM_ONT_UpdateByWTMTable__v1p0 

rule enables the ontology to dynamically update based on a mapping table, thereby 

enhancing its adaptability. 

Separation of Numbers from Strings Numerical values are separated from string 

data, reducing noise and enabling the model to focus on both numbers and text data. 

Removal of Subitem Numbers The WTM_NLP_RemoveSubitemNumber__v1p0 

function removes subitem numbers from a given word. It entails the exclusion of any 

numeric identifiers linked to an item or subitem in a list. 

Handling Quotation Marks and Leading Zeroes Special care is taken to remove 

single quotation marks at the beginning or end of a word and to check if a word begins 

with 0. If so, and the word length is two or more characters, the leading 0 is removed. 

Period at the End of String For words with more than four characters and containing 

more than three alphabetic characters that conclude with a period (’.’), the period is 

eliminated. The minimum four-letter length condition ensures that numbers remain 

untouched and only the punctuational character "." is removed from the strings. 

Tokenization Rules Tokenizing text in natural language processing tasks is essential. 
It allows a program to understand different inflections of the same word as having the 

same root meaning. The general structure of each word is taken as input. A set of rules 

transform this word into its most simple form. These rules include the transformation of 
plural forms to singular, explicit rules for certain English words that do not follow regular 
spelling conventions, and specific handling for words ending in ’ly’, ’ing’, ’ment’, ’ion’, etc 

(i.e. "paving" and "pavement" are replaced by "pave"). 

Record Sanity Check Rule This rule verifies the presence and type of a specified field 

(‘ItemStr‘) within a given record. 

1. The rule accepts three inputs: ‘Line’, which represents the structure to be checked; 
‘ItemStr’, indicating the field name to be examined within the structure; and ‘DigStr’, 
specifying the expected field type. 
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2. If the ‘ItemStr’ field does not exist in the ‘Line’ structure, the function returns ‘-1’ 
and throws an error with the message "Unacceptable." 

3. When the ‘ItemStr’ field exists in the ‘Line’ structure, the function proceeds to 

validate if the field is non-empty and not a NaN value. 

4. If the value of ‘DigStr’ is "digit" and the ‘ItemStr’ field in ‘Line’ is numeric, the 

function returns ‘true’. 

5. Similarly, if the value of ‘DigStr’ is "string" and the ‘ItemStr’ field in ‘Line’ is of 
character or string type, the function returns ‘true’. 

6. If none of the above conditions are met, indicating a mismatch in the field type, the 

function returns ‘false’. 

7. Example usage of the rule: 
assert(WTM_UCI_CheckLineItems__v2p0(CurItemInfo, "FinalPrice," "digit") == 

true). In this example, the ‘WTM_UCI_CheckLineItems__v2p0’ function is called 

to check if the field named "FinalPrice" within the ‘CurItemInfo’ structure is numeric. 
The assertion confirms that the condition ‘WTM_UCI_CheckLineItems__v2p0( 
CurItemInfo, "FinalPrice," "digit")’ evaluates to ‘true’, ensuring that the "FinalPrice" 
field is indeed a numeric value in the ‘CurItemInfo’ structure. 

176 



A.3.2 Standardizing Item Categories 

The process of standardizing item categories covers a wide range of classifications, such 

as general items, roadwork, and various types of pipes and sewers, among others. String 

operations are used extensively to handle the various input forms, even managing unusual 
cases such as empty inputs, not string data types, or fall under a category data type. 
If an item’s input does not contain a category, it remains unclassified and is labelled as 

"UNKNOWN" for future classification. 

Function: WTM_ONT_ItemUpdater__v2p0 

The function ‘WTM_ONT_ItemUpdater__v2p0’ plays a key role in this standardization 

process. It takes an input mapping table and an original item. The function then iterates 

through the table to find an interval where the original item fits. Specifically, the original 
item should be less than the upper limit and greater than or equal to the lower limit of an 

interval in the table. The function asserts that the original item fits into only one table 

interval. If the original item fits into multiple intervals, it raises an error. The item index 

is then set as the index of the interval that the original item fits into. Finally, the function 

updates the original item to be the upper limit of the interval from the input mapping table 

that it fits into. 

Classification and Numerical Equivalents 

Each specific string input corresponds to a standardized category type and is assigned a 

numerical equivalent. The classifications are: 

• The category "General" covers various string inputs, such as "GNRL" and "GENERAL". 
It is assigned a numerical equivalent of 1. 

• The "Road" category represents sections like "ROAD", "ROADWORKS", 
"ROADWORK", "ROADS", "REMOVAL", "REMOVALS", and more. Its numerical 
equivalent is 2. Special road categories like "RD_General", "RD_ConcSidewalk", and 

"RD_Manhole" are also considered preserved for future project expansions. 

• The "Miscellaneous" category represents "MISC" and "MISCELLANEOUS" sections. 
As no further rule is defined for miscellaneous items, it has no numerical value and is 

set to NaN. 
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• The "Watermain" category covers sections like "WTMN", "WATERMAIN", 
"WATERMAINS", and corresponds to the number 4. Further, there are 

subcategories within "Watermain", each with specific string representations and 

numerical equivalents. 

• The "SanitarySewer" category represents sections like "SNSW", "SANITARYSEWER", 
"SANITARY SEWER" , "SANITARY SEWERS" , and more. It corresponds to the 

number 5, and also has its own subcategories. 

• The category "ProvisionalItem" includes "ChangeWorkOrder" and is represented by 

numerical equivalents of 3 and 10, respectively. 

• The "StormSewer" category and its subcategories are currently not expanded further to 

keep the focus on watermain and sanitary sewers; however, this can be a consideration 

for future work. 
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A.3.3 Watermain Item Surcharge Calculation 

The function, ‘WTM_UCI_ItemSurcharge__v5p0’, calculates and adds a surcharge to each 

item’s unit price to compute the item’s unit cost. The function requires three parameters: 
‘ItemInfo’, ‘Costs’, and ‘Prms’. 

Total Price Calculation , the total price for an item is computed by multiplying the 

unit price by the quantity (‘ItemInfo.UnitPrice * ItemInfo.Quantity‘). 

Cost Summation for Specific Parts : the summation of all costs is calculated 

which contains the standard sub-types: "WM_Pipe", "WM_Hydrant", "WM_Valve", 
"WM_Service", "StormSewer", and "Road" are summed up to compute "BCDEM_Cost". 
This cost is used in the following calculations. 

• Surcharge Calculation Part 1: The first part of the surcharge is computed as a 

proportion of the item’s total price relative to its contribution to the "BCDEM_Cost". 
This is done separately for General costs ("General") and Provisional Item costs 

("ProvisionalItem"), and these two surcharge amounts are then added together. If 
"BCDEM_Cost"is zero, the surcharge is set to zero. 

• Surcharge Calculation Part 2: The second part of the surcharge calculation is 

conditional based on the standard sub-part of the item. If it is "WM_Pipe’, the 

surcharge is computed as the proportion of the item’s total price to the cost of the 

Watermain Pipe "WM_Pipe", multiplied by the total cost of the Watermain Service 

"WM_Service", inflated by a factor dependent on the General and Provisional costs 

relative to "BCDEM_Cost" . On the other hand, if standard sub-part is "SS_Pipe", 
the surcharge is computed as the proportion of the item’s total price to the cost of 
the StormSewer Pipe ("SS_Pipe"), multiplied by the total cost of the StormSewer 
Lateral ("SS_Lateral"), inflated by a factor dependent on the General and 

Provisional costs relative to "BCDEM_Cost". If standard sub-part is anything else, 
the second part of the surcharge is set to zero. 

The total surcharge at this point is the sum of the two parts of the surcharge (Surcharge1 

and Surcharge2), divided by the quantity of the item. If the item quantity is zero, the total 
surcharge is set to zero. 
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A.3.4 Normalizing Attributes of Sanitary Sewer Items 

This section details the normalization process of different attributes related to sanitary 

sewer items such as manholes and pipes. 

Sanitary Sewer Manholes 

The Diameter and Depth of ’SS Manhole’ items is determined based on their descriptions 

in the provided ’Item’. The pertinent rules extracted are as follows: 

• Initialization, Set initial values for ‘OutDiameter’ and ‘OutDepth’. Initialize the 

‘SizeValues’ array with ‘[1200, 1500, 1800]’, which are possible diameters. 

• Misleader Removal, There are some known misleading terms that are found in the 

description of the items but are not relevant for determining the diameter and depth. 
These are removed from the ‘Item.Description’ using ‘regexprep’ and ‘strrep’ functions. 
These are usually the item number in the description of an item ( "a) sanitary manhole 

1200 mm"to "sanitary manhole 1200 mm") 

• Diameter Determination, if the string representation of the size value is contained in 

the item’s description it will be assigned to the corresponding field: ‘OutDiameter’. 
After setting the size value and the size string, the string equivalents will be removed 

from the item’s description. 

• Depth Determination, using a regular expression the potential depths value of an 

item is captured in the item’s description. If no depth value is found, the field should 

be marked by ‘Could not find Item Depth!!’ and sets ‘OutDepth’ to ‘-1’. 

Sanitary Sewer Pipes 

Each "SS Pipe"item requires the Diameter and Type. Determination is based on their 
descriptions in the provided item. 

• Pipe Type Determination, the item’s description should contain either "PVC" or 
"concrete". If one of these is found, the type is determined. If not, a flag is raised for 
the operator to check. 
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• Diameter Determination, it then initializes arrays ‘SizeValues’ and ‘TypeValues’ for 
potential diameters and corresponding types, respectively. Then, for each size value, 
it checks if the string representation of the size value is contained in the item’s 

description. This process is performed multiple times until the known misleading 

strings are removed, and it is possible to ascertain whether the item description has 

the pipe dimensions. 

Observed Material Prices 

The scaling process for observed material prices related to sanitary sewer items, such as 

manholes and pipes, is managed through the rule 

‘WTM_UCI_SS_Scale_Observed_MaterialPrice__v2p0’. This rule manipulates the 

observed material price based on restrictions, parameters, and data extracted from the 

sewer cost table. It accepts three arguments: ‘ObservedMaterial’, ‘Item’, and ‘Prms’. 

The application of the rule involves scaling the observed material price by extracting 

information from the sewer cost table, which is filtered and selected based on specific 

criteria. The ‘ItemNum’ and ‘MaterialType’ fields from ‘Item’, along with the ‘PipeSize’ 
and ‘PipeType’ fields from ‘Prms’, play a crucial role in this process. Additionally, the 

function utilizes a fixed ‘Size’ value of 375 during the filtering processes. The adjustment 
formula consists of a sequence of multiplication and division operations involving the 

‘MaterialCost’ field from ‘Input Item’, ‘RefTable’, ‘ItemAdj’, and ‘SelectionAdj’. In essence, 
this rule scales the observed material price according to the item size, material type, and 

sewer analysis parameters. As a result, this rule encompasses complex transformation 

regulations for the price of pipe and maintenance holes in sanitary sewer items. 
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Glossary 

Black flag This flag indicates that the record is a raw item with no change to the original 
information. The flag is not permanent, but it is advisable to keep this copy of the 

record untouched for a provenance check. An item is not readily usable for analysis. 
41 

Brown flag This flag indicates that the record is from a hard-copied source. The flag is 

permanent, and an item with this flag could be used for analysis (but this flag does 

not guarantee safety for analysis). 65 

DLC Deep Learning Classification module 115, 116 

Green flag This flag indicates that the record has standard-part and standard-sub-part 
that were predicted using the deep learning classifier. Therefore, this flag comes after 
the resolution of the issue in an item with a pink flag. It is a removable flag if the 

operator deems the classification wrong. An item with this flag is suitable for analysis. 
55 

Meta-Data while storing information in a database, the information that is the main 

content is called the data. In the case of WaterIAM, Data is the contracts and items 

that are stored in the main database. In contrast, any information not directly usable 

by the user and supporting the primary Data is called meta-data. In the WaterIAM 

database, the contract’s additional information (consultant, dates, personnel) is 

considered meta-data. Additionally, the provenance records that indicate what error 
corrections are performed are also considered meta-data. 41 

OCR Optical Character Recognition xi, xiv, 38, 166 
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Pink flag This flag indicates that the record does NOT have pre-determined standard-part 
and standard-sub-part. It is a removable flag (after using the deep learning classifier 
and determining the standard-part and standard-sub-part). An item with this flag is 

not suitable for analysis before the issue resolution. 55 

Red flag A flag assigned to record with errors. This flag indicates that manual handling is 

required. It is removable after the error is removed, and the item cannot be analyzed 

before resolution. 55 

standard-part The standardized Part of an item that is compatible with the classification 

performed via the DLC. These parts are: "General", "ProvisionalItem", "Miscellaneous", 
"Road", "SanitarySewer", "StormSewer", and "Watermain" xii, 35, 37--39, 43, 55, 56, 
81, 83, 103, 115, 116, 132, 137, 139 

standard-PSP The standardized part and standardized sub-part of an item together 
that are compatible with the classification performed via the DLC. The acceptable 

standard-psps are:"General_NoSubPart", "ProvisionalItem_NoSubPart", 
"Miscellaneous_NoSubPart", "Road_NoSubPart", "StormSewer_NoSubPart", 
"SanitarySewer_SS_Pipe", "SanitarySewer_SS_Manhole", 
"SanitarySewer_SS_Lateral", "Watermain_WM_Pipe", 
"Watermain_WM_Valve","Watermain_WM_Service", and 

"Watermain_WM_Hydrant" 115 

standard-sub-part The standard subpart of an item that is compatible with the 

classification performed via the DLC. Within the contex of the current thesis and 

project, standard-sub-parts are defined only for "Watermain", and "Sanitary Sewer" 
Parts. The default standard-sub-part use for other standard-parts is "NoSubPart". 
The standard-sub-parts for the "Watermain" standard-part are: "WM_Pipe", 
"WM_Valve", "WM_Service", and "WM_Hydrant". Also the standard-sub-parts for 
the "Sanitary Sewer" standard-part are: "SS_Pipe", "SS_Manhole", and 

"SS_Lateral". 35, 38, 43, 55, 56, 81, 103, 116 

Violet flag A flag assigned to records that the errors in them are removed and have 

provenance information. The item with a violet flag can be analyzed. 41, 65 

WaterIAM-Khaki It is part of the WaterIAM project done by Milad Khaki and is in 

Milad’s Ph.D. thesis scope. The proof of concept of WaterIAM-Khaki is a website 
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that is developed by Milad Khaki and is based on C Sharp, Java, and MySQL 

implementation. 34, 37 

Yellow flag A flag assigned to records with minor error(s). This flag indicates that the 

record should be used with caution. It is removable after the minor error(s) are 

removed. The usage of the record in analysis depends on the nature of the minor 
error. 39 
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