A Centralized System Performance
Monitoring Infrastructure

by

Mohammed Sajjad Jafri

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Applied Science
in
Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2024

(© Mohammed Sajjad Jafri 2024

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Abstract

In this thesis, we introduce a centralized performance monitoring infrastructure. In the
current computing landscape, performance monitoring architectures are becoming more
and more important for different academic and industrial applications. Performance coun-
ters reveal valuable insight into the functioning of the platform. This information can then
be exploited for debugging applications, improving performance, identifying bottlenecks,
and much more. In our proposed infrastructure, we envision a configurable Advanced Per-
formance Monitoring Unit (APMU) connected to a set of monitoring Event Units (EVU)
that are installed in various hardware system IPs across the platform. These EVUs send
hardware event information to the APMU. The APMU has smart counters that are capa-
ble of operating on the incoming events, and an instruction processor that can implement
any desired software mechanisms on the counter data. Our design allows for an efficient
collection and correlation of event data, allowing the APMU to get a more holistic insight
into the system behaviour, revealing microarchitecture-specific information. We intend to
allow users the ability to develop EVUs for IPs relevant to them. For instance, in the im-
plementation phase of this work, we developed an AXI4-based Snooping Unit as a concrete
example of a custom-EVU. Therefore, to help integrate such custom EVUs with an APMU
infrastructure, we also standardize an EVU-APMU interface. We provide the specification
for this interface, ensuring that users can connect any custom-EVU to an APMU, as long
as both abide by the interface specification.

In this work, we implement two design IPs. One is the previously mentioned AXI4-based
Snooping Unit and the other is a RISC-V compliant APMU. We also provide a software
stack to support programming on its processor. The implemented design is emulated on an
AMD Virtex UltraScale+ FPGA VCU118 device. To evaluate the implementation of our
design, we present the hardware synthesis results for the FPGA, and the execution results
of a latency-based regulation case study, demonstrating the functionality of our design.

111

Acknowledgements

I want to express my deepest gratitude to Professor Rodolfo Pellizzoni, my supervisor,
for his invaluable guidance, expertise, and patience during the course of my research.
Working under him has been one of the most enlightening experiences of my life. I am
grateful and honoured to have had this opportunity.

I sincerely thank Professors Hiren Patel and Seyed Majid Zahedi for taking the time
and effort to review my thesis and providing valuable feedback.

I offer my heartfelt appreciation to Abdur Rahman and Gopishankar Thayyil for their
assistance in my research. Their contributions and efforts have added much value to this
endeavour. Thanks also goes out to Aravind, Danesh and Wafic, for making my experience
at the University of Waterloo a pleasant one.

Last but not least, I would like to thank Zahra for her kindness, and for impacting my
life in many positive ways.

v

Dedication

This work is dedicated to my beloved parents for their endless love, patience, and
unwavering support. Your sacrifices have made my present a reality. Everything that I am
is because of you.

To my lovely sister, I am proud of the person you have become. Thank you for adding
to my happiness.

To my love, Nida, you are my sunshine. My life is a brighter place with you in it.

Table of Contents

Author’s Declaration
Abstract
Acknowledgements
Dedication

List of Figures

List of Tables

1 Introduction
1.1 Motivation
1.2 Problem Statement
1.3 Solution
1.4 Contribution Lo
1.5 Thesis Structure.
1.6 Acknowledgement

2 Background and Related Works
2.1 Background: Performance Monitoring in COTS Architectures

vi

ii

iii

iv

1x

xi

= I R L

N

2.1.1 Hardware Performance Counters.
2.1.2 Hardware Monitoring and Management Frameworks
2.1.3 SoC Performance Monitoring
214 Tracing
2.1.5 Software Support
2.2 Related Works: Managing Resource Contention
2.2.1 Software Approaches: General Purpose and Cloud
2.2.2 Software Approaches: Real-Time Systems
2.2.3 Hardware Approaches

System Design

3.1 List of Example Applications

3.2 Proposed Design
3.2.1 EVU-APMU Interface
3.2.2 Event Units (EVU) o oo
3.2.3 Advanced Performance Monitoring Unit (APMU)

3.3 Software Design

Implementation

4.1 AXI4 Snooping Unito
4.1.1 AXI4 Fundamentals L.
4.1.2 Event Table for the SPU
4.1.3 Hardware Design of the SPU

4.2 Implemented APMU
4.2.1 APMU Interconnect
4.2.2 APMU Core and SPMs

4.3 Software Support

vii

11
13
13
14
15
16
18

21
22
26
27
30
32
42

5 Evaluation 65

5.1 Ewvaluation Platform 65
5.1.1 Introduction 66

5.1.2 Addition of the APMU and AXI4 SPUs to the platform 70

5.2 Hardware Synthesis Results 71
5.3 Case Study: Latency-based Regulation 73
5.3.1 Implementation 78

5.3.2 Interference Tests on PULP 81

5.3.3 Regulation Results 0 0. 83

6 Conclusions 88
References 91
APPENDICES 100
A Specification: EVU-APMU Interface 101
B Specification: Advanced Performance Monitoring Unit 104
B.1 APMU Control and Status Registers 105
B.2 APMU Ports 106
B.3 Event Filter 107
B.4 Counter Block 107
B.5 APMU Core and Memory Infrastructure 114
B.6 APMU Interconnect 115
B.7 Software Design Considerations 115

viil

List of Figures

3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1

4.2
4.3
4.4
4.5
4.6

Typical multicore platform, with our proposed centralized performance mon-

itoring infrastructure. L o 22
EVU-APMU Interface. 27
The fields of an event packet. 27
Event Info bits transmitting request latency and transaction size. 28
APMU Block Diagram with M EVUs. 33
Event Filter of an APMU Counter Block. 35
Counter Block. 36
Format of a XLEN-bit APMU Counter. 37
Status register of the APMU core., . 42
BootAddr register of the APMU core. 42

Connection of an SPU between Manager and Subordinate modules. Figure
(a) shows the original AXI bus between the two modules. Figure (b) shows

the bus getting routed through a SPU. 47
SPU Pipeline. 52
SPU Block Diagram. 53
An example to explain the functioning of the SPU-CAM. 58
Ibex Pipeline [1] (writeback stage not included). 61

Counter-Read Instruction Format. Figure (a) shows the standard RISC-
V I-type instruction format. Figure (b) shows the format of our custom
counter-read instruction.o Lo 62

X

4.7

4.8

4.9

5.1
2.2
2.3
0.4
2.5

Al
A2

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8

Counter-Write Instruction Format. Figure (a) shows the standard RISC-V
S-type instruction format. Figure (b) shows the format of custom counter-
write instruction.

Wait-for-X Instruction Formats. Figure (a) shows the standard RISC-V
R-type instruction format. Figure (b) shows the format of custom WFP
instruction. Figure (c) shows the format of custom WFO instruction.

APMU Software Stack.

Evaluation Platform based on PULP, along with APMU and AXI4 SPUs. .
Interference test results. o oo
Regulation Results for the Synthetic Benchmarks.
Regulation Results for the SDVB Benchmark Suite.

Timestamp of the regulation decisions taken by the APMU core during
disparity at @« = 50%.

The fields of an event packet.

Event Info bits transmitting request latency and transaction size.

APMU Architecture.
Timer register of the APMU core.
BootAddr register of the APMU core.
Status register of the APMU core.
APMU Counter Block. o
Format of a XLEN-bit APMU Counter.
Format of EventSelCfg register.

Format of EventInfoCfg register.

List of Tables

2.1 PMU events supported by CVA6 family of RISC-V cores. 9
3.1 AXI4 SPU Event Table 32
3.2 ALU Operations and their opcodes L. 39
3.3 Example of an APMU Memory Map. 44
4.1 A typical address mapping for a computing platform. o1
5.1 Overall resource utilization cost of the system and its primary IPs. 74
5.2 Resource utilization cost of the different SPU configurations. 74
5.3 Resource utilization breakdown of an SPU. 75
A.1 An exemplified EVU Event Table. 103
B.1 Counter Mode of Operation. 108
B.2 ALU operations and their opcodes. 113
B.3 Example of an APMU Memory Map. 116

X1

Chapter 1

Introduction

1.1 Motivation

The saturation of Moore’s law has slowed down the yearly performance growth that the
computer industry once came to accept as perpetual. However, the performance demands
of contemporary computer systems are still growing rapidly, especially in computing and
data-intensive domains such as machine learning, scientific modelling, blockchain, etc.

To meet the growing performance demands, computer architects have shifted towards
heterogeneous computer architectures that support extensive parallel computing capabili-
ties and consist of multiple processors of different types, multi-tiered memory hierarchies
and dedicated hardware accelerators, etc. While this approach has shown considerable
improvements in power and compute efficiency over homogeneous computer systems, it
has increased the complexity of computing platforms. To derive high performance in such
systems, it has become important to ensure that platform resources such as cache, main
memory, system bus, /O devices etc., are being shared efficiently. However, the systems’
complexity makes it challenging to evaluate the impact that various components have on
one another. Due to the abundant parallelism in modern computers, it becomes difficult
to isolate sources of contention. There can be an incredible amount of overlap between
services of different applications, leading to complicated patterns of transitive delays, i.e.,
a request being delayed by another request that itself is delayed due to other requests.
For instance, a read request to the last-level shared cache from a core can be stalled due
to a contention miss caused by the eviction of the requested cacheline to accommodate a
fetch request made by another core. To reload the requested cacheline, the last-level cache

(LLC) has to send a fetch request to the main memory, which could be busy serving misses
from other cores.

Additionally, the problem is not solely limited to performance. With the adoption
of computers in various fields, users impose additional constraints on these systems. For
instance, with the growth of the cloud computing market and the introduction of software-
as-a-service (SaaS), platform-as-a-service (PaaS), and infrastructure-as-a-service (laaS)
paradigms, resource fairness has also become a major topic of academic and industrial
research. In such systems, the task of extracting high performance is coupled with the
objective of ensuring fair resource sharing among all users. Similarly, the adoption of em-
bedded controllers in mixed critical and real-time domains such as aviation, automotive,
healthcare, etc., has also seen a rapid increase in the past few decades. In such systems, it
is crucial to ensure that certain system-level timing and/or efficiency guarantees are always
met. Any failure to meet such guarantees can have disastrous consequences in terms of lives
lost and/or infrastructure and resource wasted. Therefore, the task of extracting higher
performance from computer systems while ensuring that these additional requirements are
met is even more complicated.

1.2 Problem Statement

Researchers in the domain of computer architecture have spent considerable effort in tack-
ling the problem of high-performance requirements coupled with other constraints. Over
the years, they have proposed countless approaches which can be broadly categorized on
the basis of their technology level, i.e., whether they are software-based, hardware-based,
or an intricate mix of the two. A detailed study of some of the proposed approaches is
presented in Section 2.2 of Chapter 2. A majority of these approaches rely on real-time
information about the system and its various components. In [2], researchers at Google
have demonstrated that for warehouse-scale data centers and cloud computing systems, ac-
cess to hardware-level performance metrics not only leads to accurate isolation of software
and hardware bottlenecks in the system, but also aids in implementing better resource
management policies. The same argument can be extended to embedded systems as well.

Hardware performance counters (HPC) are widely used in both industrial ([3], [1], [5])
and academic computing platforms to provide researchers and system designers access to
such low-level performance metrics. Performance counters are installed in various hardware
modules, such as processors, caches, memory controllers, etc., to study inter-component
interference, the modules’ and the overall system behaviour, etc. These small groups of
distributed counters are capable of counting hardware events incoming to that specific

module, e.g., the number of hits and misses to a platform-level cache made by different
cores, the number of open and closed row accesses to the DRAM, the request latencies
on the system interconnect, etc. However, this decentralized approach has an inherent
limitation. Since the counters are localized to their corresponding modules, correlation of
events occurring in different modules becomes complicated and time-consuming.

For instance, let us consider resource regulation policies. In recent years, the monitoring
infrastructure has seen increased usage in the domain of run-time resource regulation policy.
A standard resource regulation policy, such as ([6], [7], [3], [9], [10]), broadly has three
phases:

1. Information Collection Phase

The mechanism accesses the distributed hardware counters and collects the stored
hardware event information.

2. Reconstruction and Correlation Phase

In this phase, the collected information is studied to reconstruct a model of the system
or component behaviour, and to correlate the usage of different resources by different
compute units. This is often achieved using complex mathematical algorithms which
are implemented either in software or via specialized hardware.

3. Regulation Phase

This information is then used in the last stage to implement the desired regulation
policy. A regulation or allocation policy controls the distribution and allocation of
various system-level resources, such as the platform cache, system bus bandwidth,
I/O devices, etc.

As the counters are distributed across multiple modules, the task of reconstructing
system behaviour and correlating various event information becomes challenging. There
is the added overhead of accessing these counters and the increased software complexity
of combining the collected information, both of which, in many cases, are non-negligible.
Since many of the allocation algorithms are periodically executed with very small intervals
(in ms and ps ranges), any additional overhead is highly undesirable. It either reduces
the quality of the allocation policy because less counters can be polled and have their data
processed, or increases the time period of the policy, which reduces its efficiency, since the
policy now takes longer to adapt to changes in the execution workload and consequent
system behaviour.

1.3 Solution

Our objective is to design and implement a centralized performance monitoring infras-
tructure. We aim to develop an infrastructure where users can install custom monitoring
units, called Event Units (EVUs), in individual system components, like processors, caches,
memory controllers; etc. These units are responsible for transmitting event information to
an Advanced Performance Monitoring Unit (APMU). The APMU is capable of collecting
and processing the received information. We provide a design specification for the APMU.
The APMU comprises a set of configurable smart counters that can perform arithmetic
and logical operations on the received event information, and a specialized instruction
processor that is capable of executing software programs on the counter data.

We also allow users to develop their own EVUs targeting components relevant to their
application. To support easy integration, we standardize the interface used to connect
EVUs to the APMU and provide a specification for the same. The interface specification
allows EVUs to be developed independently from the APMU, because different EVUs
and APMU implementations can always be connected, provided they both adhere to this
specification. In fact, researchers have developed similar monitoring units for measuring
contention with shared data for caches and memory ([11], [12]).

Compared to state-of-the-art industrial frameworks such as Intel’s RDT [1] and Arm’s
MPAM [3] that only supports a limited number of resource management mechanisms, our
proposed work is designed to be flexible and re-programmable. Our goal is to provide users
an infrastructure that supports the execution of complex event-based software mechanisms.

Given that EVUs and the central APMU can aid in the collection and correlation of
events from different hardware IPs, they can be used to implement a variety of software
mechanisms. Performance monitoring architectures are used extensively to implement run-
time regulation and resource management policies. Additionally, they are also being used
in other domains. For example, researchers have suggested using performance counters to
implement profile-guided optimizations (PGOs) ([13], [11]). Similarly, works such as ([15],
[16], [17]) have developed anomaly and intrusion detection systems, employing hardware
counters. A recent work [18] also showed that hitherto undisclosed PMU events in Intel
CPUs could be effectively used for transient execution attack and side channel attack
detection.

Keeping these works in mind, we believe that our design can also be used to imple-
ment profiling and tracing functionalities, security mechanisms such as hardware-software
control-flow integrity checks, intrusion and anomaly detection, etc.

As a proof of concept, we have implemented an AXI4-based ([19]) Snooping Unit (AXI4

4

SPU) as an example of a custom EVU, and a RISC-V-compliant APMU as a concrete
realization of our APMU specification. We also have used our implementation to execute
a regulation case study.

1.4 Contribution

In this thesis, we present a configurable and centralized performance monitoring infras-
tructure that is implemented from the ground up in RTL, written in SystemVerilog. The
infrastructure is then used to implement a resource regulation case study. Our major
contributions are the following:

1. We present the specification for a parameterizable Advanced Performance Monitor-
ing Unit (APMU) that supports data collection and processing functionalities. The
APMU has a specialized instruction processor that can execute software programs
on the collected data. The processor is extended to support additional features.

2. Our vision is for users to develop custom Event Units (EVUs) to monitor hardware
[Ps fitting their circumstance. With this in mind, we provide an interface specification
for connecting EVUs to the APMU, while keeping the design constraints for custom
EVUs as nonrestrictive as possible.

3. We implement the proposed specification in RTL for a RISC-V-based FPGA plat-
form. We evaluate the hardware resource cost of the design and compare it against
existing components in the system. We also provide a software stack, with library
support and pre-defined macros, that eases the use of the APMU and its instruction
processor.

4. We execute a latency-based regulation case study to showcase the functionality of our
design, and demonstrate how it can be used to implement other advanced software
policies.

1.5 Thesis Structure

The rest of the thesis is structured as follows:

1. Chapter 2 provides relevant background information on performance monitoring
infrastructure prevalent in industrial and academic hardware platforms. As a proof
of concept, we aim to implement a latency-based regulation mechanism using our
proposed architecture. To that extent, we also discuss the related works from that
domain in this chapter.

2. Chapter 3 introduces our proposed design. We begin with the EVU-APMU interface
specification, followed by a discussion on the development philosophy for generalized
EVUs. Finally, we introduce the APMU design specification.

3. Chapter 4 demonstrates our RTL implementation of the design proposed in Chapter
3. The implementation was developed for a RISC-V compliant platform. For that
reason, the APMU has a specialized RISC-V processor. Additionally, we also present
the AXI4-based Snooping Unit, an EVU designed to snoop point-to-point AXI4
buses.

4. Chapter 5 presents our evaluation of the design, when emulated on an FPGA board.
In this chapter, we implement a regulation case study and discuss the results. Addi-
tionally, we also present the hardware synthesis reports for the design.

5. Chapter 6 concludes the thesis with our final remarks and potential future works.

1.6 Acknowledgement

I would like to thank Abdur Rahman, a member of our research team from the University
of Waterloo, for providing his support in creating and maintaining the software framework
for the AMD Virtex UltraScale+ FPGA VCU118 board [20], and for performing initial
software testing. He developed the software infrastructure necessary to run the San Diego
Vision Benchmark(SDVB) Suite [21] on our chosen platform.

I would also like to thank Gopishankar Thayyil for his work on the last-level cache
(LLC). He implemented a partitioning mechanism in the LLC that allows us to map way-
based cache partitions to individual cores; a feature useful for implementing memory reg-
ulation policies on multicore platforms. Additionally, he substituted the LLC’s random
replacement policy with a pseudo-least recently used (pLRU) policy.

Chapter 2

Background and Related Works

This chapter is divided into two sections. In Section 2.1, we present the necessary back-
ground information discussing the existing performance monitoring frameworks, and how
they are utilized in both static program optimization and dynamic resource management.

Additionally, since in Chapter 5, we focus our evaluation and case study on the issue of
contention for shared memory resources, specifically in a real-time setting, we review the
work done in this domain in Section 2.2.

2.1 Background: Performance Monitoring in COTS
Architectures

Hardware performance monitoring systems are a crucial component of modern computing
platforms. They are used extensively in profiling, bandwidth regulation, resource manage-
ment, etc. For that reason, modern architectures, both open-source and COTS, support
performance counters. In this section, we discuss the various performance monitoring
frameworks available and their limitations.

2.1.1 Hardware Performance Counters
A standard hardware monitoring framework consists of a number of counters and associated

hardware installed in a processor to monitor various low-level events. For instance, Arm
and Intel have dedicated performance monitoring units embedded in their processors ([22],

7

[23], [21]) that count events such as level 1 cache accesses and refills, memory errors,
exceptions taken, etc. In some cases, the events can also be filtered on the basis of the
privilege level of the processor that initiated them. These counters can be enabled, read
from, written to, and programmed to count specific events either by using specialized
instructions or by writing to dedicated control and status registers, depending on the
PMU framework. Many of these frameworks also support overflow interrupt functionality,
in which the processor receives an interrupt when one of its performance counters overflow.
Even though these performance counters make a rich amount of hardware information
available to programmers, they remain cumbersome to use directly. This is because PMU
specifications often undergo extensive changes between CPU generations, as has been the
case for both Intel and Arm.

As a final note, we also present the current RISC-V PMU framework as proposed in
the “Zientr” and “Zihpm” extensions [25]. The “Zicntr” extension proposes three counters:
CYCLE, TIME and INSTRET, which are used to count CPU cycles, real-time clock cycles,
and number of instructions retired, respectively. The “Zihpm” extension proposes 29
additional 64-bit hardware performance counters. However, the set of events and other
details are platform-specific. In Table 2.1, we introduce the events supported by the PMU
of the CVAG6 family of RISC-V cores, which are conveniently also the processors used
in our evaluation platform, discussed in Chapter 5. Unfortunately, the current list of
performance monitoring events in the CVA6 family is lacking. Events such as number of
unaligned accesses to and writebacks by the data cache, unconditional jumps (j, jal, jr,
jalr), etc., are missing. Another major limitation of RISC-V performance counters is that
they are only accessible by the processor itself. This means that a core cannot read the
counters of another core directly, which makes the execution of a multicore mechanism
difficult.

2.1.2 Hardware Monitoring and Management Frameworks

A major limitation of in-core performance counters is that they are unable to track trans-
actions through the platform’s memory hierarchy, leaving the system architect unaware of
information such as the number of platform cache hits or misses generated by a partic-
ular core or application. In the current environment, this information is becoming more
and more crucial due to growing performance demands. Works such as ([13], [14]) have
proposed using hardware monitoring to implement different profile-guided optimization
(PGO) frameworks. By exploiting the information about data access patterns across the
memory hierarchy, provided by performance counters embedded in the memory subsys-
tem, software designers can implement more efficient memory-aware programs, for high-

Event ID | Event Name Description

1 L1 I-Cache Misses Number of misses in L1 [-Cache

2 L1 D-Cache Misses Number of misses in L1 D-Cache

3 ITLB Misses Number of misses in ITLB

4 DTLB Misses Number of misses in DTLB

D Load Accesses Number of data memory loads

6 Store Accesses Number of data memory stores

7 Exceptions Valid Exceptions encountered

8 Exception Handler Returns | Return from an exception

9 Branch Instructions Number of branch instructions encountered

10 Branch Mispredicts Number of branch mispredictions

11 Branch Exceptions Number of valid branch exceptions

12 Call Number of call instructions

13 Return Number of return instructions

14 MSB Full Scoreboard is full

15 Instruction Fetch Empty Number of invalid instructions in IF

16 L1 I-Cache Accesses Number of accesses to Instruction Cache

17 L1 D-Cache Accesses Number of accesses to Data Cache

18 L1 Cache Line Eviction Number of Data Cache line eviction

19 ITLB Flush Number of ITLB Flushes

20 Integer Instructions Number of Integer instructions

21 Floating Point Instructions | Number of Floating point instructions

99 Pipeline Stall Nurpber of cycles the pipeline is stalled
during read operands

23-31 Reserved Reserved

23-31 Reserved Reserved

Table 2.1: PMU events supported by CVA6 family of RISC-V cores.

performance computing (HPC) and embedded systems. For this reason, many industrial
manufacturers have developed their own monitoring frameworks.

Additionally, given the growing complexity of modern computer systems, these moni-
toring platforms are also being used to manage the problem of shared resource contention.
In systems running multiple virtual machines (VMs) or applications, system resources such
as cache, main memory and system bus are expected to be distributed fairly among all
VMs. However, if one of the VMs starts consuming more resources than its expected share,
this can adversely affect the performance of other VMs sharing the same resources. For

example, suppose two VMs with differing criticality levels share the same LLC. In that
case, the VM with lower criticality may evict the cache lines of the more critical VM.
This problem, called the noisy neighbour problem, is very prominent in cloud computing
platforms. To resolve this specific problem, Arm proposed the Memory System Resource
Partitioning and Monitoring (MPAM) [3], which is an extension to their application pro-
file (A-profile) architectures. The A-profile architecture targets high-performance markets
where the impact of shared resource contention is more prominent. The MPAM extension
divides the system into a set of partitions wherein each partition is a software environment,
defined by its partition space ID and partition number. The partitions also define the dif-
ferent sources for memory transactions. MPAM specifies two categories of partitioning
techniques: those for caches and those for memory bandwidth regulation. For caches, the
specification provides:

e (Cache-portion partitioning, wherein the cache is divided into portions of equal sizes
and the portions are allocated to different partitions based on their resource require-
ments.

e (Cache-capacity partitioning, wherein each partition has a minimum and maximum
capacity assigned to it. When a victim cache line is to be selected for eviction, the
decision is based on the cache capacity occupied by partitions of candidate cache
lines. Cache lines belonging to partitions that have exceeded their cache capacity
will be evicted first.

e Cache maximum associativity partitioning, wherein each MPAM partition gets al-
lotted a maximum number of ways to use within any cache set, depending on its
criticality and requirements.

For memory-bandwidth regulation, MPAM proposes the following:

e Memory-Bandwidth Min-Max Partitioning, wherein each partition is allotted a min-
imum and maximum bandwidth. The priority of memory transactions made by
different partitions depends on the bandwidth consumed by the partitions and the
minimum and maximum bandwidth allotted to them. Accesses made by partitions
that have not exhausted their minimum bandwidth have a higher priority than those
made by partitions that have consumed their minimum but not their maximum band-
width. Accesses by partitions that have spent their maximum bandwidth have the
lowest priority.

10

e Memory-bandwidth proportional-stride partitioning, wherein each partition has a
stride, which is a scaled reciprocal of its weight. Each incoming access is allotted a
deadline defined by considering the stride of the accessing partition and the frequency
of its accesses.

e Priority partitioning, wherein each partition is assigned a priority. Memory transac-
tions with higher priority take precedence over lower-priority ones.

In a similar vein, Intel proposed the Resource Directory Technology (RDT) Framework
[1]. In the RDT Framework, each core is tagged with a Resource Monitoring ID (RMID).
Multiple cores can be tagged with the same RMID, which allows users to monitor and regu-
late applications and VMs running on multiple cores simultaneously. The RDT framework
comprises five mechanisms, which work as follows:

e Cache Allocation Technology (CAT) allows for hardware way-based partitioning of
the LLC in Intel processors. The user determines the partitioning ratio, considering
the criticality and requirements of the workload.

e Cache Monitoring Technology (CMT), when provided with an RMID, offers informa-
tion about the LLC occupancy for applications or cores associated with said ID. This
allows users to monitor the cache utilization of different applications, which aids in
profiling.

e Memory Bandwidth Allocation (MBA) allows allocating memory bandwidth to spe-
cific VMs or applications. The platform throttles applications that exhaust their
allotted bandwidth.

e Code and Data Prioritization (CDP) allows users to exercise software control over
code placement and data in the LLC. This mechanism can protect the code of certain
VMs or applications, limiting the contention caused by programs with large code
footprints.

e Memory Bandwidth Monitoring (MBM) enables users to track multiple VMs or ap-
plications and monitor their memory bandwidth for each running thread separately.

2.1.3 SoC Performance Monitoring

Arm’s MPAM and Intel’s RDT are both technologies that try to ensure quality of service
(QoS) guarantees when running multi-tenant applications. Using these frameworks, system

11

architects can better comprehend the impact that a particular VM or application has on
the memory subsystem, and how it affects other VMs or applications that are running in
parallel. However, in practice, a modern system-on-chip (SoC) comprises a lot of different
components and peripherals.

Keeping this in mind, SoC vendors often include other performance monitoring units
(PMUs) tied to specific components. Such PMUs expose registers that can be read through
the system interconnection. For example, besides cache and memory-bandwidth utiliza-
tion, bus latency is another crucial metric in studying contention. By observing the average
latency of different applications when run in isolation and in contention, system architects
can better understand how resource sharing in the system interconnect impacts the overall
performance and QoS of the system. This insight is crucial for making informed decisions
regarding resource allocation, load balancing and system optimization to ensure that ap-
plications coexist harmoniously while maintaining predictable performance levels. For this
purpose, AMD for instance, has a set of AXI Performance Monitor (APM) [20] in its Zynq
UltraScale+ MPSoC devices, such as, the ZCU102 [27]. The APMs are a collection of pro-
grammable monitors located at multiple points on the PS AXI interconnect for profiling
real-time activity over it. Each APM contains a set of programmable event counters that
can be configured by software to measure system performance. It also supports cross-probe
trigger functionality between counters and logging of event information. Along with the
APMs, the Zynq UltraScale+ MPSoCs also have a Platform Monitoring Unit [28], which is
responsible for system initialization, power management and system error handling. The
PMU contains a programmable user processor that can be used to execute software pro-
grams. However, the PMU processor does not have access to event information regarding
other platform components, thus limiting its usage.

On the PL side, one can instantiate additional performance monitoring IPs. For in-
stance, the APMs discussed above are based on the AXI Performance Monitoring IP [5]
provided by AMD Xilinx, for measuring the performance of AXI-based (AXI full-burst,
AXI-Lite, AXI Stream) systems. The IP can measure the bus latency suffered by a specific
manager /subordinate in a system. It can be used to count the occurrence of read/write re-
quests, the number of bytes written to/by the agent, the number of clock cycles wasted by
the manager in confirming a handshake, i.e., the number of idle cycles between the assertion
of the VALID signal by the manager and the READY signal by the subordinate. Similar to
the APM, the IP can also be configured to log the timestamps of specified events, allowing
the user to reconstruct the AXI transactions later. The counter and tracing functionality
can also be used for real-time profiling of software applications.

12

2.1.4 Tracing

A problem with the hitherto discussed frameworks is that they collect aggregate metrics,
but do not allow system designers and programmers to see information pertaining to in-
dividual events. Therefore, information that might vary between individual events of the
same type, such as the address accessed by a memory instruction, is not collected by them.
This problem has traditionally been solved by generating an execution trace of the program
using debuggers, potentially with custom interfaces. Tracing transactions on the system
interconnects helps users reconstruct the system behaviour. This is immensely useful for
profiling and debugging programs, analyzing performance, identifying bottlenecks, and
much more. Considering the potential usefulness of a standardized tracing infrastructure,
Arm has proposed the Arm CoreSight specification [29].

Arm CoreSight provides a set of hardware and software components that assist with de-
bugging and tracing capabilities in Arm-based systems. The collected traces make it easier
to analyze and optimize software execution on Arm processors. The CoreSight specification
provides a range of tools to support debugging of embedded systems. CoreSight offers three
categories of trace macrocells: Embedded Trace Macrocell (ETM), which is used to collect
processor-driven trace, which includes information about program execution and data; Sys-
tem Trace Macrocell (STM) (and its predecessor Instrumentation Trace Macrocell (ITM)),
which provides application-driven trace, i.e., the software writes to memory-mapped STM
channels and the STM generates a trace corresponding to the register and value written,
and the AHB Trace Macrocell (HTM), which provides detailed trace information for traffic
on the CoreSight AHB bus. The generated information is merged into a stream and sent to
a trace sink, an endpoint for the trace data. CoreSight supports both on-chip trace storage
in RAM via the Embedded Trace Buffer (ETB) and off-chip connections to debug tools
via the Trace Port Interface Unit (TPIU). CoreSight also supports cross-triggering, using
which multiple cores in a multicore system can trigger or access each other for synchronized
debugging and profiling operations.

2.1.5 Software Support

As mentioned earlier, these PMU frameworks often undergo massive changes across gen-
erations. Therefore, any knowledge that one might have of a framework implementation
might not even port to another implementation of the same framework. Certain events
might only be available to specific processors, as is the case for Arm cores. In certain ar-
chitectures, the counters might not be available to lower privilege levels of the processors,
requiring a trap to a higher privilege level for access rights. All this combined with the

13

fact that there are a limited number of counters, and that interpreting hardware results is
often difficult, makes these counters extremely unwieldy for most software programmers.

To ease this burden, professionals have developed a variety of software tools that can
act as an interface between a programmer and the hardware PMU. We briefly discuss three
of the most common performance monitoring tools below:

e Linux perf is the official Linux performance analyzer, with its source code being
part of the Linux kernel ([30], [31]). It allows for hardware- and software-based
monitoring, with specialized support for Intel and AMD processors. perf can be
used to count occurrences of a given event in the kernel and user space. It supports
three sampling modes: a) event-based sampling, wherein a sample can be recorded
when a event threshold is reached; b) time-based sampling, wherein samples are
recorded at a given frequency; and c) instruction-based sampling (only supported for
ADMG64 processors), wherein a processor monitors the instructions it is executing,
and samples the events created during the execution. perf also supports tracing,
allowing users to either set up pre-defined tracepoints in software (static tracing) or
by placing tracepoints using uprobes (user) or kprobes (kernel) (dynamic tracing).

e Arm MAP [32] is a software profiling tool developed for Arm-based applications. It
is designed for performance debugging and profiling of C, C++, Fortran and Python
applications to locate bottlenecks in the system. The tool uses adaptive sampling
methods to combine data from multiple processes running on multiple compute units.
Arm MAP supports parallel, single- and multi-threaded profiling with typically less
than 5% runtime overhead.

e Intel’s VTune [33] is a performance analysis software designed for Intel processors
based on x86 series of instruction sets. VTune is supported on Linux and Windows
operating systems and can work with multiple languages: C, C++4, C+#, Fortran,
OpenCL, Python, Google Go, etc. VTune offers performance analysis for single-
threaded and multi-threaded applications and memory debugging capabilities.

2.2 Related Works: Managing Resource Contention

In Chapter 5, we evaluate the functionality of our design by implementing a runtime
latency-based regulation policy. Therefore, in this section, we discuss related works in
the domain of resource contention, which primarily fall into two categories: a) those that
evaluate the impact of resource contention for multi-tenant platforms, and b) those that

14

regulate different applications based on these evaluations. The proposed literature for (a)
recommends using monitoring or tracing infrastructures to gather insight about contention
and its ramifications on system performance ([31], [35], [30], [37], [38], [L1]). On the
other hand, those in (b) leverage the performance characteristics gathered through these
monitoring techniques while using counters to monitor and count events whilst regulation

(01 70, 151, 190 [1oD).-

2.2.1 Software Approaches: General Purpose and Cloud

The complexity of executing multi-application or multi-threaded workloads on multicore
systems leads to high variability in the overall execution time of the application. As
mentioned earlier, different applications running on different cores still affect one another
because of contention in shared resources.

([34], [35], [36], [37], [38]) are some of the software approaches that aim to evaluate
the impact of memory contention for different workloads in, primarily, data center and
cloud computing systems. These techniques aim to quantify performance degradation
caused due to co-location of memory-intensive applications. The approaches can broadly be
categorized as: static and dynamic. Static approaches such as [31], [35] although effective
at predicting application slowdown due to contention, require apriori knowledge of the
application’s behaviour. This limits their deployment in systems that often run unknown
applications. Take for instance, the infrastructure-as-a-service (IaaS) cloud service models,
where the users provide their own workload to be executed on the monitored infrastructure.
Dynamic approaches such as [306], [37] and [38] evaluate applications’ slowdown at run
time via the hardware performance counters present in the memory subsystem and the
processors. The performance of an application under contention can be measured by
simply reading the corresponding counters. However, measuring the performance of a
running application as if in absence of other applications is challenging. [30] attempts
this by periodically pausing all other applications for a very short time. By stalling other
applications, the work allows the application-under-analysis to have unfettered access to
the system resources, which would be comparable to their performance in isolation. This
approach has considerable overhead and non-negligible margin of error because a) all other
applications have to be periodically halted, and b) the caches would not be warmed up in
the beginning of the measurement period and thus, the peak isolation performance would
not be accurately captured. In absence of memory partitioning, this also hurts the other
applications because their data might get evicted. [38] attempts to limit the number of
pauses that are incurred by applications that are not under analysis to reduce overhead.
It does this by categorizing the application-under-analysis’ execution into different phases.

15

It makes the assumption that the performance of an application is relatively unchanged in
one phase. Therefore, the framework only has to measure isolation performance once at
every phase change. Change in execution of other applications constitute a phase change
only when they have massive effect on the application-under-analysis. This is done to limit
frequent pausing of other applications. Since these techniques are software-based, they
incur high overheads in terms of execution time and are coarse-grained when compared to
hardware alternatives. However, they can be readily employed in commercial-off-the-shelf
(COTS) platforms to evaluate the impact of contention.

2.2.2 Software Approaches: Real-Time Systems

It is important to develop robust models that can predict performance degradation due to
resource contention, because a) they provide system designers with an astute understanding
of their architecture, and b) it allows for the implementation of more precise regulation
policies. From the perspective of tackling memory interference, the non-trivial solution
when dealing with high-criticality tasks has always been to pause all other tasks. But the
system takes a massive performance hit in those cases, and researchers in the real-time and
other embedded domains have proposed several regulation policies to protect non-critical
tasks or the cores running them from the critical ones ([6], [7], [3], [9], [10], [39]).

In [6], the authors propose a memory bandwidth reservation system called MemGuard.
The core idea behind the work was to provide guaranteed memory bandwidth to appli-
cations by regulating the sum of memory requests made by each core to the DRAM. [0]
ensures that the total sum of memory request rates by all cores is always less than the
minimum DRAM service rate r,,;,. The minimum DRAM service rate is the minimum
bandwidth supported by the memory in worst-case scenarios. This r,,;, service rate is
then distributed amongst all cores. This is called the MemGuard budget of the cores.
Each core is also assigned a performance counter that increments every time the core
makes a memory request. The counters are programmed to overflow when the budget of
their corresponding core exhausts. Upon overflow, an interrupt halts the offending core.
As [0] is a software-based approach, it runs at each scheduler tick. This is called the
MemGuard Period. At the start of each period, the regulator resumes all halted cores,
measures the budget consumed by each core in the previous round and replenishes their
budgets. The knowledge of the budget previously consumed allows MemGuard to imple-
ment a reclamation policy wherein a core that is not fully consuming its own budget can
donate it to another that is regularly exhausting its own. In [7], MemGuard is implemented
on Linux to counter Denial-of-Service (DoS) attacks. The original MemGuard is extended
to separately monitor read and write requests, allowing the OS to set a high budget for

16

reads and a low budget for writes. Thus protecting the system from writeback buffer DoS
attacks. Meanwhile [%] proposed a new implementation of MemGuard that could work for
mixed-criticality systems, implemented on Linux KVM-based virtualized environment. In
this work, guest applications on Linux communicate their memory bandwidth requirements
to the MemGuard kernel module. The design combines MemGuard regulation policy with
Completely Fair Scheduler (CFS), the default Linux scheduler, allowing MemGuard to
regulate memory accesses made by guest applications.

However, since MemGuard was originally proposed for systems employing COTS mem-
ory controllers, it has a large time period which leads to coarse-grained regulation. Addi-
tionally, due to the memory overhead of interrupts—that also need to be considered when
defining the budgets—MemGuard can only be implemented to regulate one or two memory
bandwidth metric at once.

[9] proposed a fine-grained regulation solution that allows defining complex regulation
algorithms that combine the data from multiple performance counters. The work, called
MemPol, implemented the regulation policy on an auxiliary processor, allowing it to poll
the counters at microsecond-level frequency. Additionally, the processor had access to
built-in on-chip debug facilities that allowed it to halt cores without causing extra memory
accesses via interrupts. The work also suggested employing a global regulator alongside
the per-core local regulators. This help redistribute the unused bandwidth between cores.
Compared to MemGuard, MemPol allows us to aggregate multiple counter together to
implement more holistic regulation policies. This is especially important in the current
scenario, since in a modern system, no singular metric can successfully account for all
the complexities of the design. However, unlike MemGuard, it needs hardware support
in the form a dedicated processor with access to counter information of other processors
and IPs. [9] was implemented on the Xilinx ZCU102 [27] board and could run its polling
algorithm with a time period of 6.25 pus. This fine-grained approach to regulation better
handles the bursty nature of memory transactions, preventing starvation of other cores. In
MemGuard, due to the 1 ms time period, it was possible that a single core could drive the
DRAM utilization to 100% for a short period of time before getting regulated.

A commonality in the works discussed above is that they all rely on memory bandwidth
regulation when trying to limit memory interference between different applications or cores.
A different approach proposed by [10] is to directly measure the memory request latencies,
and then argue on the properties of the observed latency distribution. The presence of
performance counters either in the system interconnect or the memory controller is essential
to enable this work. In [10], the authors execute the core-under-analysis in isolation,
compute a timeliness objective by imposing constraints on the probability of achieving
a target execution time. When running in contention, the proposed regulation policy

17

a) characterizes the memory request latency of the core-under-analysis as a probability
distribution function, and b) attempts to alter its shape via regulation of other cores,
to ensure that the observed distribution curve complies with the target. A drawback
of this approach is that due to hardware limitations, the actual implementation could
only generate a discretized distribution function where request latencies are slotted into
observation bins. This work employed the APM event monitors introduced in Section 2.1.3
to generate the latency distribution curves.

As a side note, we also present the work done by [39], which relies on a instruction
processor, similar to MemPol to methodically assess the progress made by an applica-
tion while it is running in contention. [39] proposes a Milestone-Based Timely Progress
Assessment (MB-TPA) which is based on comparing the intermediate progress of the ap-
plication against a collection of statically generated milestone instruction addresses. In
[39], the control flow of the application-under-analysis is thoroughly profiled by running
representative set of inputs to generate its control flow graph (CFG). This CFG is then
processed to generate a milestone graph which is then coupled with temporal information.
This timed milestone graph represent the intermediate progress stages that the application-
under-analysis must traverse. Using CoreSight hardware, the program counter of the core
executing the application-under-analysis were compared against this timed milestone graph
to gain an insight into the progress made by said application. The authors argue that TPA
when coupled with regulation approaches such as the ones mentioned above, can help en-
sure Timely Progress Integrity (TPI) of the system as a whole. Additionally, TPA can also
be utilized to detect execution anomalies.

Lastly, as mentioned before, high-criticality systems depend on tight real-time bounds
to meet their guarantees and be safe. However, this is where both Arm’s MPAM and
Intel’s RDT fall short. Works such as [10] and [11] have analyzed the MPAM and RDT
frameworks respectively, and observed the following: a) for MPAM, the specification is
underspecified at multiple places, as it fails to accurately define how the mechanisms are
intended to work, and b) for RDT, the various mechanisms often do not work as expected,
and in some cases, their measurement values might even be incorrect. Due to ambiguities
and uncertainties in these frameworks, they become unsuitable for real-time applications.

2.2.3 Hardware Approaches
Over the years, researchers have proposed several hardware-based approaches to expand

existing COTS monitoring functionalities to better estimate interference in memory sub-
system.

18

The problem of contention in the memory subsystem, especially caches, is often exac-
erbated when shared data is involved, as shown by ([12], [13]). The works implemented
synthetic benchmarks consisting of multiple threads in different execution settings: sequen-
tially i.e., one after the other on a single processor, and in parallel on different processors,
accessing different amount of private and shared data. [12] observed a 3.8x slowdown in
the execution time for the parallel with shared data scenario compared to the sequential
one. The authors argued that in case of real-time and processing intensive applications,
the memory coherency overhead, if not accounted for, can lead to deadline violations.

Given the impact of contention due to cache coherence, works such as [11] have at-
tempted to develop frameworks to accurately measure coherence-related contention. [11]
proposed a cache coherence monitoring infrastructure called Remote Protocol-Contention
Tracking (RPCT) which relies on performance counters in the private and shared caches
of the cores. When a core requests exclusive access to a cache line that is already present
in the private cache(s) of other core(s), it suffers a delay because the said cache line has to
be invalidated from cache(s) of other core(s). Under RPCT, coherence-related contention
is tracked from the perspective of the cores generating it instead of the cores suffering it.
In other words, the cache of core ¢ which owns the data starts counting contention cycles
suffered by core j only when it receives a fetch request from core j for that data. In RPCT,
if there are N cores then the cache controller of core ¢ needs N — 1 counters to measure
contention caused by core ¢ on every other core. In shared caches, the RPCT protocols
demands that there must be (N — 1)? &~ N? counters, to count contention between every
two pairs of cores.

RPCT showcases the need for a centralized performance monitoring system. In the
proposed infrastructure, if one wants to measure the contention caused by core ¢ on all
other cores then they need to aggregate all counters in the cache controller of core i and all
the counters in the shared cache that measure contention caused by core 7. Performing these
kind of aggregation operations can induce latency overheads, which can worsen in case of
memory hierarchies with multiple levels of shared caches. This makes the proposed-RPCT
infrastructure difficult to employ for dynamic regulation or resource allocation policies.
However, if the coherence-related contention information for each core was stored in a
centralized location then it could be used to implement less pessimistic and more accurate
regulation policies.

[12] proposed a similar work for tracking contention in the memory controller, by devel-
oping a hardware mechanism, called MCTrack to capture inter-core interference in memory.
The authors developed a monitor that can be installed in the memory controller to track
the state of requests of different cores in the controller. The monitor contains a set of
contention counters, one per core, which increment on the basis of information gathered

19

from the controller, i.e., which core is getting delayed due to which other core. Similar to
our vision with the monitoring EVUs, the authors implemented their monitor in a non-
intrusive manner, such that it does not affect the performance or behaviour of the memory
controller. In fact, both RPCT and MCTrack are good examples of custom-EVUs that
can be standardized using our specification provided in Chapter 3 and hooked up to the
APMU to collect contention information across the entire memory subsystem.

Lastly, researchers have also proposed hardware mechanisms to monitor contention due
to concerns of resource fairness, especially for cloud markets. We briefly discuss some of
them here. [11] attempts to estimate the wunfairness in the memory subsystem, which
is defined as the ratio of slowdown an application suffered compared to that suffered by
another. The slowdown is the ratio of the time taken by the application when running in
contention to that in isolation. This work attempts to calculate the excess delay the appli-
cation suffers running in contention, accounting for shared cache interference, DRAM bus
and bank conflict interference, and DRAM row-buffer interference. If the unfairness be-
tween applications exceeds a specified threshold, then the system will dynamically throttle
the requests of applications that have enjoyed an unfair advantage over others. A different
approach by [15] involves the use of auxiliary tag stores to measure the interference cycle
count for a portion of the cache sets. The cycle count calculated by sampling those sets
is then extended to account for interference in all cache requests. Both [11] and [15] can
also be seen as examples of custom-EVUs, capable of monitoring fairness in the caches and
DRAMs.

20

Chapter 3

System Design

This chapter proposes a centralized performance monitoring architecture, independent of
the hardware platform and the technology employed. In the proposed architecture, we
envision a system with Event Units (EVUs) embedded into various platform components,
such as the processors, interconnections, caches, memory controllers, I/O ports, etc., to
monitor the hardware events associated with them. An example of such a system is given
in Figure 3.1. These EVUs can transmit events and additional event-related information
to an Advanced Performance Monitoring Unit (APMU). The APMU comprises a number
of event counters and a specialized instruction processor. The counters can be configured
to either count the occurrences of these events or operate on the additional event data.
The APMU processor can be programmed to execute any desired software algorithm. The
APMU is connected to the platform bus, facilitating communication between the APMU
and different system modules. It is also connected to the system interrupt controller,
allowing it the ability to trigger interrupts when warranted.

To ensure users freedom in designing their own custom-EVUs, we do not define an
EVU specification. But we do recommend a set of design guidelines. We need to ensure
compatibility between the APMU and these custom-EVUs, and to that effect, we specify a
standardized interface between the two. Following our interface specification, any custom-
EVU can be connected to any APMU implementation. In the APMU specification, we
specify a minimum set of functionalities for the APMU IP, so that software mechanisms
can be developed independently of the APMU implementation. For the sake of conciseness,
we focus on the main design rationale in this chapter. A full specification for the AMPU
and the EVU-APMU interface is given in the appendices.

This chapter has three sections. In Section 3.1, some of the intended applications of

21

the architecture are discussed. These applications help justify our design decisions. The
proposed hardware design is explained in Section 3.2. And the software component of the
design is discussed in Section 3.3.

o] [[
o Core 0 Core 1 Core 2 Core 3
MMU MMU MMU MMU
I3 DS I3 D% 15 DS 5 DS
Event
System Bus Uniit
LLC » APMU
«— |
Event Unit T T
Main Memory

Figure 3.1: Typical multicore platform, with our proposed centralized performance moni-
toring infrastructure.

3.1 List of Example Applications

As mentioned, the APMU has a customized instruction processor that can process counter
data and execute any desired software mechanism. A non-exhaustive list of techniques
that can be implemented through the APMU is provided below.

1. Resource Allocation Techniques

As discussed in Section 2.1.2, both Intel and Arm have proposed several variants of
cache allocation techniques. These variants are targeted at high-performance systems
that aim to meet certain QoS guarantees. The shared platform cache is partitioned
between multiple tenants on the basis of either cache capacity or associative ways.

These techniques can be implemented dynamically using the APMU. Depending on
the number of accesses made, hits and misses suffered etc., the APMU core can
write to the configuration registers in the cache and update its allocation policy.

22

Moreover, similar techniques can be applied to other hardware resources as well, such
as the memory controller, system bus, I/O ports, etc. Application cores that have
consumed less memory bandwidth, suffered longer request latencies, or those that
have been waiting for 1/O devices for long, etc., can be prioritized during request
arbitration for those resources. We believe that the APMU is well-suited for this
application because it can support any custom software allocation policy, combining
and correlating information from multiple hardware IPs simultaneously.

Must be noted that for this purpose, we are dependent on the presence of configura-
tion registers in the given resource that allows us to configure parts of its functionality.
For example, the LLC that we are using in our evaluation in Chapter 5 supports way-
based partitioning. By writing to the internal configuration of the LLC, we can map
different ways to different application cores.

. Regulation Techniques

The APMU can be used to implement the different regulation techniques discussed
in Section 2.2.2. Using EVUs distributed over the memory subsystem, the APMU
can collect a variety of pertinent information such as the number of requests made,
response latency suffered, etc. This information can then be used to implement
various regulation mechanisms such as MemGuard, MemPol, etc.

The works ([6], [7], [3], [9]) propose different variants of access-based regulation
policies, i.e., each core is allowed to make a certain number of reads and writes
to the memory subsystem, with their budget being replenished at regular intervals.
If a core exceeds its allocated budget, the regulator can step in and either halt it
entirely or reduce the priority of its requests until it acquires a new budget. A
different approach was suggested by [10] that proposed a latency-based regulation
policy that regulates cores when the latency distribution of the core-under-analysis is
stochastically larger than a predefined target distribution. Latency-based regulation
has less pessimistic bounds compared to access-based regulation. This is because the
total latency suffered due to memory requests is a better indicator of the program’s
execution time than the number of memory accesses made. But complex hardware
is required to measure individual request latency, which was not available in the
COTS platform used by [10]. Their platform could only slot requests into discrete
observation bins on the basis of their latency, forcing them to implement a discretized
version of their proposed policy.

The APMU can be used to implement the above policies efficiently. Because the sys-
tem information is centralized in the APMU counters, the APMU processor suffers

23

low access penalty compared to traditional designs where the counters are local-
ized within the hardware IP. By combining the information gathered from multiple
modules, such as the system bus, caches, memory controllers, etc., the APMU can
implement regulation policies comprising multiple metrics, unlike MemGuard and
its variants ([0], [7], [8]) which can only focus on one or two metrics at once due to
high access overhead. Using custom-EVUs, the APMU can also measure the latency
of individual requests, which can be used to more accurately implement works such
as [10]. Moreover, the APMU core also supports specialized hardware functions,
discussed in Point 5 of Section 3.2.3, allowing it to poll counters more effectively,
compared to existing software solutions such as those employed by MemPol ([9]).

. Timely Progress Assessment

The work [39] proposed a mechanism that uses timestamped milestone information
to assess the progress made by a core. They define a milestone as an addresses that
helps convey information about the processor’s progress, thus acting as a progress
milestone. In the work, a milestone-flow graph is developed through profiling and
then provided to a monitoring core. Whenever the application core reaches a mile-
stone address, as detected by specialized hardware in the core, the monitoring core
is notified, allowing it to keep track of the core’s progress. Following the notification,
the monitoring core updates this specialized hardware component with the next set
of potential milestone addresses from the graph. Our proposed APMU can be easily
employed to execute such a mechanism, provided that there is a custom-EVU present
in the application core. Moreover, using events information from other system com-
ponents, the APMU can also help isolate the cause for delay in the application core
during different phases of program execution.

. System Traces for Profiling and Debugging

As discussed in Section 2.1.4, many industrial designs and specifications have tracing
capabilities, such as AMD Xilinx’s AXI Performance Monitoring IP [5] that supports
the logging of specific AXT events with timestamps, and Arm’s CoreSight [29] which
supports extensive tracing functionality. The system or processor traces generated by
such designs are used extensively for profiling and debugging programs, conducting
performance analysis, etc.

The APMU can be used to generate detailed execution traces of the system. The
key idea being that upon receiving events from multiple EVUs, the APMU processor
can process them before generating the trace packets. For example, the APMU
and custom-EVUs can be set up to track accesses to a subset of memory addresses

24

through the memory subsystem. EVUs in the caches, and memory controller can
be configured to track the nature of these accesses: whether they result in a cache
hit or miss, in an open- or close-row access in the memory controller, etc. Moreover,
EVUs in the application cores can also help convey information about their execution
phase using the milestone-based progress assessment technology discussed above, in
Point 3. By combining all this information the APMU core can generate a latency
decomposition for such accesses, categorized across the execution phases of the overall
system.

. Security Mechanisms

Since the APMU has a bird-eye view of the entire platform, it can be easily adapted
to implement a plethora of security mechanisms, such as control-flow integrity (CFI)
checks, intrusion detection systems (IDS), policies to protect against denial-of-service
(DoS) and side-channel attacks, etc.

Several forward-edge control-flow integrity (CFI) mechanisms ([16], [17], [18], [19])
rely on control-flow checks to verify control flow switches of a processor. In the em-
bedded domain, these checks can be made against the program’s known control-flow
graph (CFG) ([17]). By embedding an EVU in the application processor, the APMU
can extract information about the direct and indirect jumps made by the program
and compare it to the CFG stored in APMU’s memory. In case of a CFI violation,
the APMU can interrupt the offending core within a reasonable time window.

Current literature has also proposed different variants of intrusion and anomaly de-
tection systems (IDS, AIDS, respectively) that utilize hardware performance counters
([50] [15], [16], [17]). Using the system information gathered by these counters, differ-
ent types of intrusion and anomaly detection models can be developed. The current
literature categorizes AIDS system as follows:

(a) Knowledge-based AIDS

These models have a priori knowledge of the expected system behaviour and
they reinforce this behaviour using description languages or finite-state machines

(FSMs).
(b) Statistical AIDS

Statistical AIDS involves the collection and examination of every item in a
set of events signifying expected usage, which is then used to build a statistical
model of normal user behaviour. At run-time, the system behaviour is compared
against this model to ensure correctness.

25

(c) Machine Learning-based AIDS

In this approach, large quantities of data is extracted from the system to train
different machine learning (ML) models, such as clustering algorithms, neural
networks, decision trees, genetic algorithms etc. Once trained, these models can
then be used to ensure correct system behaviour at run-time.

All of the above works can benefit from a centralized performance monitoring frame-
work. The APMU can collect a variety of system-related information in its coun-
ters and as system traces, which can then be used to either develop a statistical or
knowledge-based AIDS, or train an ML model. Additionally, the developed model
can then be implemented on the APMU processor directly.

Likewise, considering the susceptibility of shared resources to DoS attacks, several
works have proposed solutions to detect and protect against them ([7], [51], [52]).
By analyzing the resource access pattern of different applications, the APMU can
detect suspicious behaviours. By combining and correlating information from mul-
tiple EVUs, the APMU can simultaneously monitor the entire platform and provide
protection against multiple security vulnerabilities.

3.2 Proposed Design

This section describes our generalized architecture that consists of a) an Advanced Perfor-
mance Monitoring Unit (APMU), and b) a set of distributed Event Units (EVUs). The
EVUs can transmit hardware events and additional event information from the module
they are installed in to the APMU. The APMU receives and operates on this information
according to its configuration, which can be changed at run-time.

This work aims to limit the number of restrictions placed on EVU designers to ease their
burden of developing component-specific EVUs. To that extent, we do not provide an EVU
specification beyond a set of recommended guidelines. However, to guarantee integration
with the performance monitoring infrastructure, an EVU-APMU interface specification is
provided.

This section is laid out as follows: Section 3.2.1 describes the EVU-APMU interface.
Section 3.2.2 provides a generalized description of EVUs along with a set of guidelines for
development, and Section 3.2.3 furnishes the details of the APMU.

26

3.2.1 EVU-APMU Interface

The interface specification helps standardize the connection between any custom-EVU and
the APMU. The output of an EVU has to be connected to a port on the APMU through a
physical interface, as shown in Figure 3.2. Each APMU port must have a unique Port ID.
An EVU can be connected to multiple APMU ports, if it so requires. The technical
specification of the interface is provided in Appendix A.

EVU_ 1 EVU 2 | ceeeeennnnanns EVU M
Port_1 - R Port_M

Advanced PMU
(APMU)

Figure 3.2: EVU-APMU Interface.

The interface is divided into two layers: a) the logical layer, which specifies the infor-
mation that must be sent to the APMU per event, and b) the physical layer, which defines
how the EVU is physically connected to the APMU. The two layers are described below:

1. Logical Layer

] Source ID \ Event Info \ Event ID \

Figure 3.3: The fields of an event packet.

For each observed event, the EVU transmits an event packet to the APMU. The
event packet contains information that helps the APMU recognize the event and
some additional metadata that provides a deeper insight into that event. An event
packet, as shown in Figure 3.3, is divided into three fields: the Event ID, Event Info
and Source ID. The fields are described below:

27

] Request latency ‘ Transaction size ‘
31 C 8 7 C 0
Sub-field 2 Sub-field 1

Figure 3.4: Event Info bits transmitting request latency and transaction size.

(a) Event ID (Mandatory)

Every type of event observed by an EVU is mapped to a unique Event ID, en-
coded as an unsigned integer. For example, an EVU in a processor can map dif-
ferent observable events such as memory instructions executed, branches taken,
etc., to unique Event IDs.

(b) Event Info (Optional)

The specification allows EVUs to pack additional metadata in the Event Info
alongside each event that they transmit to the APMU. This field helps convey
additional information about the event. EVUs are allowed to group more than
one type of metadata with an event. In such cases, the Event Info field must
be split into multiple sub-fields. For example, in a system implementing the
AXI4 protocol [19], it is possible to have an EVU connected to an AXI4-based
port to monitor both request latency and transaction size of individual requests.
To do so, the Event Info field could be divided into two sub-fields as shown in
Figure 3.4, where 8 bits are reserved for transaction size and 24 bits for request
latency.

(c¢) Source ID (Optional)

In many hardware IPs, the events are generated due to the action of entities
external to said IP. For example, requests sent across a communication bus are
generated by manager and subordinate modules connected externally to the
bus. Or in caches, the memory accesses are made by external compute units. In
such cases, transmitting information about the source entity that initiated said
events is beneficial. Keeping this in mind, the interface specification supports
the assignment of a unique Source ID to each potential event source for the
component monitored by the EVU. This field is also encoded as an unsigned
integer.

Each EVU-APMU interface is defined by an event table that contains all the necessary
information to help users program the APMU with respect to this EVU. The event
table is expected to have the Event ID and Event ID encodings, the supported

28

Event Info types, etc. This document is platform-dependent, so it must be drafted
after the platform has been designed, including all the EVUs and the monitored
component.

Lastly, the Event ID and Source ID encodings do not need to be consistent across
EVUs of different types. This means that EVUs of different types can use the same
Event ID and Source ID to represent different events and sources, respectively.

. Physical Layer

In this section, we list some of the possible physical connections that can be estab-
lished between an EVU output port and an APMU input port. The simplest way of
implementing this physical layer is to use a set of parallel wires, which is also what
we implemented for our custom event unit, the AXI4-based Snooping Unit, discussed
in Section 4.1. In this interface, the EVU sends one event packet to the APMU per
clock cycle. The size of the interface is dictated by the size of the event packet,
which can, if not limited, lead to expensive wiring cost for the design. However,
using a parallel interface we can send more information per event packet, including
Event Info and Source ID fields.

An alternative solution is to implement a one-hot interface where the interface has a
fixed number of bits confirmed at synthesis time, with each bit mapping to a specific
hardware event. Using this interface, the EVU can transmit multiple event packets
in one clock cycle. However, each event packet is restricted to just one bit, which
can only confirm whether the event was observed in or not. Those event packets do
not contain any Event Info or Source ID fields. It might be possible to transmit
that information through this interface by adding extra wires, but it is only feasible
when all the events in the interface share the same Event Info and Source ID
values. Because in that case, these fields only need to be transmitted once per clock
cycle, through some additional wires. If different events have different Event Info
or Source ID values then they would each require extra bits to send them, but then
the wire cost of the interface would quickly explode. Users are free to develop other
types of EVU-APMU interfaces if they deem so necessary. However, then they must
provide the specification for these interfaces.

Lastly, the operating frequency of an EVU is likely to depend on that of the IP it is
monitoring. Therefore, it is possible that this operating frequency is different from
that of the APMU. This introduces additional design considerations because if an
EVU and the APMU lie in different clock domains, i.e., they are asynchronous then
they must be connected via clock domain crossing FIFOs (CDC FIFOs). If the EVU

29

clock is faster than that of the APMU, then it might need internal buffers to store
excess event packets.

3.2.2 Event Units (EVU)

EVUs are hardware monitoring units distributed across various system components to
monitor microarchitectural events. These components, such as processors, caches, memory
controllers, interconnects, etc., are called monitored components. Each EVU output is
connected to an APMU port as per the interface specification described above, in Section
3.2.1. Apart from the interface, we do not specify any other constraints for EVU devel-
opment. However, an EVU should be designed keeping the following considerations in
mind:

1. Correctness

The addition of an EVU to a monitored component should not affect the correctness
of said component.

2. Minimally Invasive

The EVU must be minimally invasive, i.e., its addition to the monitored compo-
nent should ideally not affect its performance. But in cases where unavoidable, the
performance degradation should be limited.

3. Interface Considerations

The interface for an EVU has to be decided considering a variety of factors such as,
the number of potential events, the amount of information sent per event packet, the
event generation rate, etc., which might yield certain interface types more suitable
than others. For example, the simplest EVU-APMU physical interface—a parallel
interface—has its bit width equal to the bit size of its event packet. The size of
an event packet is the summation of all the bits in the Event ID, Event Info, and
Source ID fields. Therefore, in an EVU with a parallel interface, it is important to
keep the number of wires minimal. For other interfaces, the number of wires might
be less of a concern, but sending a large transaction including the metadata of the
event can still consume significant power.

4. Optimization

The EVU should be optimized for area and efficiency. Since the APMU can operate
on the collected event data, all unnecessary computations should be offloaded to the
APMU.

30

5. Configurability

EVUs can be designed to support different configurations. They can be configurable
at synthesis time, run-time or even both. However, each of these configurability
options have their own trade-offs. EVUs that are not configurable are easier to
design. However, in that case, they are likely to transmit all event types to the
APMU; forcing the APMU to filter them as it receives them at run-time. In this
configuration, the APMU gets access to all the possible events that the EVU can
monitor. But this design is not feasible for EVUs with large number of architectural
events.

EVUs that are designed for complex components such as processors, etc., tend to
support hundreds or even thousands of different architectural events. But it is more
likely that a user only cares about a subset of these events, depending on their
application. Therefore, it does not make sense to transmit all these events to the
APMU for filtering. Even more so, considering the expensive wiring cost.

One way to get around this problem is to make the EVU configurable at synthesis
time. This would allow users to specify the list of event they want the EVU to actively
monitor. Moreover, doing so at synthesis would also reduce the area of the EVU, and
the size of its interface(s) because architectural events that are not being monitored
by the EVU would not need any circuitry. But this makes the EVU inflexible at
run-time as users cannot change the list of actively monitored events.

It is also possible to make the EVU configurable at run-time. In this case, the
EVU can transmit a set of existing Event IDs. The users can then specify what
architectural event maps to each Event ID, by writing to configuration registers in
the EVU. The EVU would then only transmit information about these architectural
events to the APMU using the Event IDs mapped to them. Also, since the list of
supported Event IDs is much smaller than the number of supported architectural
events, the resulting interface size would also be reduced. This also makes the EVU
design flexible at run-time but with additional power and area costs.

An example of a functional EVU is presented in Section 4.1. We designed this EVU for
the AMBA AXI4 protocol to monitor ongoing AXI transactions. It should be connected
between an AXI4 manager and subordinate pair. A brief description of the AXI4 protocol
is given in Section 4.1.1. The event table for the AXI-based Snooping Unit (AXI4 SPU)
is given in Table 3.1. Information about the Source ID encoding is omitted for now.
Each AXI event can also be associated with some additional event information. The
EVU can be configured at synthesis to select the list of additional metadata that must be

31

transmitted alongside each event type. The request latency event information is essential
in implementing latency-based regulation policies similar to the one discussed in Point 2
of Section 3.1.

Event Event ID Event Info
No event 0 NA
Read request

Size of transaction, unaligned transfer, etc.

Write request

Read response
Write response

=~ W] —

Request latency, etc.

Table 3.1: AXI4 SPU Event Table

3.2.3 Advanced Performance Monitoring Unit (APMU)

The proposed APMU can receive, collect and operate on event packet received from EVUs
distributed in the system. As shown in Figure 3.5, it comprises a configurable number of
counters of XLEN-bit width—where XLEN is a parameter configurable at synthesis time—
and their associated configuration registers and ALUs, a specialized processor and its
instruction and data scratchpad memories (SPMs), and an interconnect to facilitate com-
munication between the various intra-APMU components. The APMU is also connected
to the system interrupt controller, allowing it to trigger interrupts in the application cores.
The technical specification of the APMU is provided in Appendix B, but an explanation
of each APMU components is given here:

1. APMU Timer

The APMU has a 64-bit timer which increments every clock cycle. A timer is im-
portant for implementing mechanisms that require accurate timekeeping. It is also
useful for generating timestamps for logging trace packets.

2. Ports

The APMU can support a configurable number of ports. Each EVU in the system
must connect to a separate APMU port, with a unique Port ID. The APMU port

32

Connected to rest of
the system.

A Jv EVU_ 1 EVU 2 | vevveninnnnann EVU_M
APMU i i l
Read-Write
Manager Port Port_1 PINEZ || sesessmnennssns Port_M
v L e i—‘

A X NUM_COUNTERS

'y
Event Filter
v
‘_
—»

APMU Core and APMU
Scratchpad Memories Interconnect Overfiow Interrupt
Lines .
Counter Block o 10 the interrupt
cantraller,
J ‘[L X * NUM_COUNTERS
APMU
Read-Write

Subordinate Port

Vo

Connected to rest of
the system.

Figure 3.5: APMU Block Diagram with M EVUs.

receives event packets from an EVU and transmits it downstream to a subset of event
filters, introduced in Point 3. This subset can range from one to all the event filters

in the APMU.

Recall from Section 3.2.1 that the Event ID and Source ID encodings are not likely
to be consistent across EVUs. This implies that the Port ID must be used to first
specify the EVU whose events we want to count or operate on. Depending on the
selected EVU, the Event ID and Source ID encodings of that EVU as provided in
its event table are then used to filter in desired events. Lastly, the bit width of each
APMU port depends on the EVU it is connected to and its choice of interface.

33

3. Event Filters

Event filters process the event packets received through the APMU ports, as shown
in Figure 3.6. The output of every APMU port is fanned out to either all or a subset
of event filters. All counters have their own event filters. They process the event
packets by comparing them against the configuration registers of their corresponding
counters. These configuration registers, introduced in Point 4, are programmed to
specify events that the event filter should accept, called selected events. The remain-
ing events are discarded.

Depending on the interface, the event filters can receive multiple event packets in the
same clock cycle, be it from multiple APMU ports or a single one. Moreover, the
configuration registers can also specify more than one selected events for its counter.
Therefore, the event filter should be capable of handling multiple selected events in
the same clock cycle.

One way of implementing an event filter module is given below. In this design, the
event filter sends three output signals to its respective counter block: a) an increment
value, b) a selected event info and c) an event valid. The increment value represents
the total number of selected events the event filter received in that clock cycle. For
example, consider a counter programmed to count events with ID 5 and 7 from EVUs
connected to ports 1 and 3, respectively, of the APMU. At time ¢, the APMU receives
event packets with Event IDs 5 and 7 on ports with Port IDs 1 and 3, respectively.
In this case, the counter should increment by 2, one for each selected event.

Meanwhile, the selected event info signal represents the Event Info field of the
selected event that was received in the current clock cycle. This allows the counter
block to operate on the additional event information that is packed within an event
packet. In case of multiple selected events, the event filter can arbitrarily pick the
event metadata belonging to any of the selected event packets. This is why when the
counter is configured to operate on the Event Info field, the event filters should be
programmed to focus on a single port. Otherwise the counters risk missing out on
event info from other selected events received in the same clock cycle.

The event valid signal is only set to high when the filter receives at least one selected
event in a clock cycle. Otherwise it is set to low.

34

}47 M EVU-APMU Interfaces —

port_i port_ i L. port_I
; -y o S—
jopTTTTTTmmmmmmmmmsmmmsmsnmnens Tyt B T
o LA] LA] v ¥
i : \.I_J'J "\Tz’
' :
| l ¥ ¥ l \ SRR 'L"
P Variable Adder ZaEin OR Gate
1 Event Info
L : Increment Selected Event Event
i | Ewvent Selection Register Value Info Walid

From counter block.

Figure 3.6: Event Filter of an APMU Counter Block.

4. Counter Blocks

Each APMU counter has its own counter block. A counter block constitutes an XLEN-
bit counter, where XLEN is a parameter specified during synthesis, its configuration
registers and an ALU. An example design of the counter block is shown in Figure
3.7. Each APMU counter is associated with two configuration registers: the Event
Selection register (EventSelCfg), and the Event Info register (EventInfoCfg). This
section only discusses the features of the configuration registers. A bit-by-bit de-
scription of the configuration registers is provided in the specification in Appendix
B.

The structure of an APMU counter is given in Figure 3.8. Each counter has XLEN
bits. The two most significant bits of a counter are called its pending and overflow
bits. The remaining XLEN-2 bits are used for standard counter operations.

(a) Pending bit
The most significant bit of the counter is called its pending bit. This bit is set
whenever the counter is updated during regular operation. When the counter is
programmed to only count events without operating on the event info bits, it is

35

From event filter, -----.
1 I

Count Mode Functicnal Ewvent
To event filter. Update Mode Update Valid
Yy ;
i Operaion > Z1MUX 7 ; I
?-1 Mode Bit i . Write Valid i
: v ¥ i
e e e Mux Contral :
: AL e Signal Logic Unit '
: - _CBL;HIET
' Write Data Writes
0 Event Selection Register 2:1 MUX
Fecmmed Event Info Register P Counter

Figure 3.7: Counter Block.

said to be in count mode. In this mode, the counter is updated by the number of
selected events received in that clock cycle. This information is conveyed by the
input signals sent from the event filter. On the other hand, if the counter block
is programmed to operate on the event info bits and then update accordingly, it
is said to be in functional mode. In this mode, the counter is updated according
to the ALU operation specified in the EventInfoCfg register. The pending bit
is always set when the counter is updated during either operation modes.

The pending bit is reset by the hardware when the core exits its Wait-for-
Pending mode, described in Point 5. Apart from that, it can be also reset by
writing 0 to it through software.

Overflow bit

The second most significant bit is called its overflow bit. When this bit is set,
the counter is said to have overflow. The counter can send an interrupt signal
to the platform interrupt controller upon overflow. Additionally, by setting
the overflow bit of a counter, the APMU core can also trigger an interrupt.
This functionality is crucial to several case studies discussed in Section 3.1; for
instance, the regulation policies such as MemGuard and its variants ([0], [7],
[3]). In these mechanisms, each application core is assigned a specific budget
for some metric, such as the number reads or writes to memory, etc., with the
budget being reset at regular intervals. If the core exceeds it allotted budget

36

then the mechanism forces it to halt. If the counter is reset to its overflow value
(2¥E%1) ‘minus the regulation budget, it will automatically overflow when the
budget is exhausted. Thus triggering an interrupt.

If the overflow bit is set while the counter was updated in either count mode
or functional mode, then it must be reset via software. But it is also reset by
the hardware when the core exits the Wait-for-Overflow mode, as described in
Point 5.

| Pending Bit | Overflow Bit | [XLEN-2]-bit Counter |
XLEN-1 XLEN-2 XLEN-3 ... 0

Figure 3.8: Format of a XLEN-bit APMU Counter.

The operation mode of a counter is decided by the EventInfoCfg register. Addi-
tionally, the two configuration registers are also responsible for controlling all other
aspects of the counter block.

The EventSelCfg register is used to specify events that its respective counter should
either count or operate upon. These selected events are processed by the event filter
privy to said counter.

The EventInfoCfg register is used to specify operations that the ALU in that counter
block should perform on the event metadata of a selected event packet. As discussed
in Figure 3.4, the Event Info field can have various event-related metadata merged
together. Therefore, it is necessary to allow ALU the functionality to operate on only
a subset of these bits. The EventInfoCfg register can be used to specify a contiguous
set of bits from the Event Info field for the ALU to operate on. This specified set of
event info bits from a selected event is referred to as the sliced event info bits. The
EventInfoCfg register is also used to enable or disable the interrupt functionality
for counter overflow.

Each counter has a dedicated ALU that can perform various arithmetic and logical
operations on the selected event info bits input from the filter. Firstly, the ALU
isolates the sliced event info bits from the Event Info field. Then it performs the
selected operation. An ALU operation is specified by writing its opcode to the
EventInfoCfg register. The supported ALU operations and their opcodes are given
in Table 3.2. A brief description of the various operations is given below:

(a) The Addition operation adds the sliced event info bits to the counter data. For
example, using this ALU operation, a counter can cumulatively count the total

37

latency an application core suffers on each memory request, which is crucial
for implementing the latency-based regulation policies discussed in Point 2 of
Section 3.1. For example, consider a latency-based regulation policy that at-
tempts to ensure that the core-under-analysis does not suffer an average request
latency greater than some set target, while suffering memory contention from
other cores. In this case, the APMU can set up a counter to count the number
of requests made by said core, and another to count the total latency suffered.
This can be done by installing EVUs in the memory subsystem. For example,
the Snooping Unit we present in Section 4.1. Meanwhile, the APMU core can
be programmed to calculate the average request latency using the data stored in
the two aforementioned counters, and take necessary actions when the average
exceeds a set target.

The KeepMin and KeepMax operations compare the sliced event info signal to
the counter value, and keep the minimum or maximum of two, respectively.
For example, this ALU operation can be used to study the best- and worst-case
request latencies suffered by an application under different phases of contention.

The Increment: Eq operation compares the sliced event info bits to another
value, written to a sub-field, of the EventInfoCfg register. If the two are equal,
the counter increments by 1.

The ALU supports also other operations like Increment: NotEq, etc., which
are similar except for the chosen relational operator(s). For example, these op-
erations can be used to monitor when an application core accesses a particular
memory region, assuming that an EVU is present in the core. An application
core, if allowed by the OS or hypervisor, can access any memory-mapped plat-
form component in the system. But in cases where it is hard to vet the program
being executed on the core, there is a risk of security attacks, such as denial-of-
service (DoS) on caches, memory, 1/0O devices, etc. The APMU can be used to
protect vulnerable IPs from such attacks. The EVU can transmit information
signifying the component accessed by a core as part of the Event Info of an
event packet. This can be done trivially by comparing the address of the load or
store instruction to the platform memory map. If the core made can access to
a specific memory location lying within a particular address range the counter
will increment. This will consequently set its pending bit. Through the Wait-
for-Pending functionality, the APMU core will be informed and it can then run
a software check to verify the validity of the access.

Operations like Add: NotEq, Add: NotEq, Add: LessThan, etc., are similar to
Increment: X, except that in this case, if the relational operation evaluates to

38

true, then the sliced event info bits are added to the counter.

Operation Opcode
Addition 00000
KeepMax 00001
KeepMin 00010
Increment: Eq 00011
Increment: NotEq 00100
Increment: LessThan 00101
Increment: GreaterThan 00110
Increment: LessThanEqual 00111
Increment: GreaterThanEqual 01000
Increment: InRange 01001
Increment: NotInRange 01010
Add: Eq 01011
Add: NotEq 01100
Add: LessThan 01101
Add: GreaterThan 01110
Add: LessThanEqual 01111
Add: GreaterThanEqual 10000
Add: InRange 10001
Add: NotInRange 10010

Table 3.2: ALU Operations and their opcodes

5. APMU Core and Memory Infrastructure

The APMU has a processing core that can be programmed at runtime to execute
complex software mechanisms such as those presented in Section 3.1. Most of these
mechanisms are event-based, i.e., they only make supervisory decisions when specific
events occur. For that reason, the specification proposes additional functionalities
in the core that build upon the existing APMU architecture, to improve its program
execution time further when implementing these mechanisms.

39

The choice of a suitable processing core considering the trade-off in area, power, and
efficiency is left to the discretion of the system designer and their platform’s use case.
A multi-issue out-of-order processor with more efficient functional units, such as a
single-cycle multiplier, floating point ALU, etc., will generally have higher instruc-
tions per cycle (IPC) than a single-issue in-order processor for the same program,
but at the cost of more power and area consumption. However, in certain use cases
such as those of real-time systems, the latter might be a more suitable choice because
its worst-case execution time (WCET) can be calculated more predictably than the
former. Nevertheless, the specification proposes the following functionalities for any
chosen APMU processor:

(a)

Support to read and write to the APMU counters and registers

Since the APMU core is expected to process the counter data, it is reasonable
to add support to the core so that it can access them effectively. The core can
read the counters and re-evaluate its policies according to the program loaded
into it. This functionality is essential in implementing any of the event-based
software mechanisms presented in Section 3.1.

Support to read and write to rest of the system

The APMU core should be able to read and write to other sections of the system
memory and I/O devices via the shared platform bus. This feature is required
to implement dynamic resource allocation and arbitration techniques, similar to
those discussed Point 1 of Section 3.1. For instance, consider a mechanism that
based on various metrics, such as the number of cache accesses, hit-miss ratio,
access latency, etc., updates the cache partition sizes for the application cores.
Shared caches generally have configuration registers that control their partition
allocation. Therefore, to implement such a mechanism, the APMU core must be
able to write to the configuration registers of these caches. Using this feature,
the APMU can also transmit tracing information to off-chip memory at runtime.

Wait-for-X Functionality

Most of the software mechanisms discussed in Section 3.1 either wait for the
occurrence of certain events, or wait until certain events have occurred a specific
number of times before executing their policies. For example, in budget-based
regulation techniques, an application core is only halted when it has spent its
allocated budget. In [39], hardware in the application core would inform a
smaller monitoring core when it had reached a new progress milestone, along
with information about the milestone reached. Taking this into account, the
specification proposes two additional functionalities:

40

1.

il.

Wait-for-Pending

Recall from Point 4 of Section 3.2.3, that the most significant bit of every
APMU counter is called its pending bit, which is set whenever the counter
is updated during its count or functional mode. The Wait-for-Pending
functionality allows the APMU core to enter a no-operation or low-power
state, while polling on a set of counters. The core only exits this Wait-for-
Pending mode when any one of the specified counter has its pending bit
set.

For example, this feature can be used to implement CFI mechanisms, where
a counter is programmed to increment only when an application core exe-
cutes a branch or jump instruction. The APMU core can enter a Wait-for-
Pending mode on this counter, only waking up when it increments. After
which the core can verify the branch or jump instruction using any of the
CFI mechanisms described in Point 5 of Section 3.1.

Wait-for-Overflow

As mentioned in Point 4 of Section 3.2.3, the second most significant bit
of the counter is called its overflow bit. This bit is set when the XLEN-2
bit wide counter overflows. The Wait-for-Overflow functionality, similar to
the Wait-for-Pending functionality, puts the counter in a no-operation or
low-power state, only waking it up when any one of the specified counters
has overflown.

For example, this feature can be used to implement budget-based regula-
tion policies. The counter value can be initialized to the overflow value,
(2¥EV1) "minus its budget. Therefore, when the counter reaches its budget,
it overflows, triggering the APMU core.

We envision that such functionalities can be implemented by extending the ISA
with specific instructions.

Support to trigger interrupts

The ability to halt and resume application cores is crucial in implementing most
of the techniques discussed in Section 3.1. As such, the APMU core should have
the functionality to send interrupt signals to the platform interrupt controller.
This can be done by setting the overflow bit of the counters to 1.

The core should be complemented with instruction and data SPMs. The SPMs should
be read- and write-able through the manager and subordinate ports of the APMU
that connect it to the platform. Using these ports, any external manager, such as,
an application core can access the SPMs. By updating the instruction SPM (ISPM)

41

during runtime, the APMU core can be repurposed to implement other programs
dynamically. The data SPM (DSPM) eases the execution of programs that require
a software stack, and can also be used to store system information for profiling,
analysis, and debugging purposes.

To safely re-program the core, it needs a mechanism that allows external managers,
such as the application cores, to halt and restart it. In that respect, the core has
the Status (Status) and Boot Address registers (BootAddr), as shown in Figure 3.9
and Figure 3.10 respectively. The bit width of the BootAddr is defined as YLEN and
it depends on the address width of the memory interface of the APMU core. The
Oth bit of the Status register is the Stall bit, and the remaining bits are currently
unused. The core is stalled if the Stall bit is set to 1. The reset value of this register
is 1. This implies that at system reset, the core is already stalled. When 0 is written
to this bit, the core restarts from the ISPM address specified in BootAddr register.
The BootAddr register is initialized with the value of the ISPM base address. When
the core is started, it fetches instructions from the boot address and executes them.
The core can be reset again by writing a 1 to the Stall bit.

’ Unused \Stall Bit‘
31 ... 1 0

Figure 3.9: Status register of the APMU core.

Boot Address
YLEN-1 ... 0

Figure 3.10: BootAddr register of the APMU core.

3.3 Software Design

The infrastructure of the APMU is designed such that it can be integrated into a virtualized
environment. In virtualized platforms, the hypervisor has exclusive control over security-
critical components. Since the APMU is capable of halting any application core in the
system, it is essential to restrict unauthorized access to it. Moreover, due to its criticality,
it is important to ensure that the APMU is booted in a safe and controlled manner. Keeping
this in mind, we envision a boot up process in which the hypervisor owns an image for

42

the APMU, similar to it having an image for each VM. It then loads the VMs on the
application cores and the APMU image on the APMU. The hypervisor needs to initialize
the APMU. This includes performing functions such as programming the configuration
registers, setting up interrupts, etc. Once the hypervisor has completed all APMU-related
operations, it can start the deviceS.

In some cases, the system designer might want to allow the operating systems, running
on top of the hypervisor, access to certain portions of the APMU counters. For example, a
virtualized OS that needs to run a resource regulation policy on its own user-level program
might need to use some APMU counters. This can be done by letting the hypervisor
emulate access to the counters on behalf of the virtualized OS, but this method would
result in large software overheads, increasing the polling cost significantly. In the case of a
hypervisor that supports two-level translation, a more efficient solution would be to map
the memory addresses of some APMU counters to the virtual memory of the OS. This
would allow the OS to access some of the APMU counters directly.

For that reason, the counters are spaced out in physical memory so that the hypervisor
can put different counters in different physical pages and map them to the virtual pages
of different OSes. Thus placing the counters under the control of their respective OSes.
But critical registers such as those belonging to the APMU core and the configuration
registers of the counters are not spaced out as such, and should not be mapped to the
virtual pages of OSes directly. If an OS needs to access any of these registers, it should do
so via hypervisor calls that need to be defined in the software framework of the hypervisor.
An example memory map of the APMU is given in Table 3.3. In the given memory map,
all registers, except the timer are be 32-bit wide. The timer is 64-bit wide.

Similarly, the OS might need to run a program on the APMU core. In this case, the
hypervisor can also map part of the core’s ISPM and DSPM to the OS’s virtual memory. By
letting OSes access portions of the ISPM and DSPM, the system can run mechanisms that
can take input from these OSes at regular intervals. For example, a multi-level regulation
policy where the hypervisor assigns a budget to all its virtual machines, and where the
VMs are allowed to distribute their budget internally between their user-level programs.
The hypervisor can map small portions of the ISPM to all the VMs so that they can write
the budget allocation of their user-level programs in their allocated ISPM portion. The
program running on the specialized core can read these allocations and regulate the various
programs accordingly. Moreover, the data produced by the APMU processor can also be
accessed by the OSes through the DSPM. An important use case would be when an OS
wants to monitor the system trace of one of its user-level programs. The core can write the
trace information into the DSPM, and the hypervisor can then allot the updated DSPM
regions to the said OS.

43

Counter Block Register Address
APMU Timer base
NA APMU Core Status Register | base + 0x8
APMU Core Boot Address | base + 0Oxc
0 Event Selection Register base + 0x10
Event Info Register base + 0x14
1 Event Selection Register base + 0x18
Event Info Register base + Oxlc
31 Event Selection Register base + 0x108
Event Info Register base + 0x10c
Counter base + page_size
1 Counter base + 2 x page_size
31 Counter base + 32 X page_size

Table 3.3: Example of an APMU Memory Map.

Since the APMU counters have several configuration settings and the processor has
custom functionalities, we recommend providing software support for programming the
APMU to help users write programs for the processor. This can be done by supplying a
compiler specific to the APMU to help compile code, along with a set of library functions
and macros to support common functionality.

To ensure that the specialized APMU core is not executing malicious programs, the
hypervisor can restrict access to the core’s ISPM, run source code analysis on any program
code that is to be run on the APMU core, impose strict programming rules, perform
security checks, etc. This would ensure that no rogue OS can take control of the APMU
processor, ensuring a safe execution environment. However, the specification does not
specify this.

Lastly, since the APMU is a platform device, it needs to be protected from malicious
attackers. By design, any platform manager can write to the APMU counters and the
SPMs. This means that if an OS controls a DMA peripheral, it could maliciously configure
it to write/read to the APMU. To avoid this, we need an I/O Memory Management
Unit (MMU). For example, both Arm and RISC-V have the System MMU [53] and 1/O
MMU ([54], [55]) architecture specifications, respectively; designed to protect the platform

44

memory from malicious DMA traffic.

45

Chapter 4

Implementation

This chapter presents the hardware implementation of the design specification proposed in
Chapter 3 as a proof of concept, along with basic software support. This implementation
is designed considering a RISC-V architecture that employs AXI4-based system intercon-
nects. The hardware design consists of an AXI4 Snooping Unit (AXI4 SPU) and the
Advanced Performance Monitoring Unit (APMU). The AXI4 SPU is developed to monitor
AXI packets sent between AXI manager and subordinate pairs. It generates event packets
for the APMU in accordance with the EVU-APMU interface specification presented in Sec-
tion 3.2.1. We envision the AXI4 SPUs as being embedded between various inter-platform
components, such as the processors and the shared LLC, the LLC and main memory, etc.
This would allow the APMU access to information about the LLC which can then be
exploited to run some of the case studies discussed in Section 3.1.

This chapter has three sections. In Section 4.1, the AXI4 SPU is discussed. The RISC-
V-compliant APMU and its supporting software stack are presented in Sections 4.2 and
4.3, respectively.

4.1 AXI4 Snooping Unit

The AXI4 Snooping Unit (from here on, referred to as the SPU) is designed to snoop AXI
packets sent between a pair of monitored manager-subordinate components. The SPU has
a manager and a subordinate port. It is connected between the monitored components,
as shown in Figure 4.1. The manager IP is connected to the subordinate port of the
SPU, and the manager port of the SPU is connected to the subordinate IP. The AXI

46

request and response packets sent through the SPU are processed via dedicated filters,
which output different AXI-related event packets. These event packets are then forwarded
to the APMU using a parallel interface. The event table of the SPU is presented in Section
4.1.2, and the hardware design is discussed in Section 4.1.3. Before that, in Section 4.1.1
we introduce to the AXI4 protocol to familiarize the readers with the fundamentals of the
AXI4 specification.

AR
»
. R
Manager Module AW . | Subordinate Module
w Ll
»
‘ B
(a)
AR — — AR
R R
I . J—
Sh Mn)
Manager Module AW AXl4 SPU AW Subordinate Module
— sPort Port— 5
W
 E—— >
B B
« «
(b)

Figure 4.1: Connection of an SPU between Manager and Subordinate modules. Figure (a)
shows the original AXI bus between the two modules. Figure (b) shows the bus getting
routed through a SPU.

4.1.1 AXI4 Fundamentals

The AMBA AXI4 protocol [19] specified by Arm, is an on-chip point-to-point burst-based
communication protocol. AMBA4 is the 2010 revised version of the AMBA specifica-
tion. The revised protocol specifies three AXI4-based variants: full AXI4, AXI4-Lite and
AXI4-Stream. This section presents the relevant information for the full AXI4 protocol
(referred to as AXI4, from now on) which supports burst transactions, allowing multiple
data packets, also called beats, to be transferred in response to a single request.

47

1. Under the specification guidelines, communication over an AXI4 bus can only occur
between a single initiator, called a manager, and a single target, called a subordinate,
as shown in Figure 4.1a. However, the specification provides detailed descriptions and
signals, allowing users to extend the protocol to develop their custom multi-manager
multi-subordinate interconnects.

2. Communication channels

The AXI4 specification has five communication channels, namely, write address
(AW), write data (W), write response (B), read address (AR) and read data (R).
Each channel is composed of multiple signals, such as, xVALID, xREADY, AxADDR,
xDATA, etc.

To ensure correct communication over a channel, AXI4 defines a handshake mecha-
nism. This mechanism uses a set of signals: xVALID and xREADY to transfer the data
payload over the channel. A payload consists of all the other source-related signals in
the channel except for xVALID. The source sets xVALID to indicate that the payload
on the channel is valid and can be read from that cycle onwards. The destination
module sets the xREADY signal to indicate that it is ready to read the payload. When
both signals are high in the same cycle, the payload is considered transferred. After
which, the source can send a new payload over the channel from the next clock cycle
onwards. An individual data transfer, that is when both the xVALID and xREADY
signals are high for one or more clock cycles to transfer one payload, is defined as a
beat.

As shown in Figure 4.1a, the manager IP is the source module for the AR, AW
and W channels, while it is the destination module for the R and B channel. The
converse is true for the subordinate IP. Since the manager initiates a data transfer, it
is responsible for providing the details of the transfer, such as the memory address to
be accessed, the amount of data to be transferred, the type of request: read or write,
etc. A read comprises the manager sending a read request on the AR channel and the
subordinate’s response on the R channel. In order to do so, the manager provides all
the necessary information such as the read address, the size of each beat, the number
of beats, the burst type, etc., using the respective signals of the AR channel. Upon
receiving a read request, the subordinate responds with the read data in the form
of a series of beats, following the manager’s constraints, over multiple clock cycles.
The subordinate sets the RLAST signal on the R channel to signify the last beat of
the transaction.

On the other hand, in case of a write, the manager sends a write request on the AW
channel and the write data on the W channel. This involves sending the necessary

48

write information on the AW channel, followed by the data to be written on the W
channel. Upon completion of the write, the subordinate responds on the B channel.

. Type of bursts

The specification supports burst-based transfer. In AXI4, a data transaction is called
a burst, which is made of multiple beats of valid data. The address accessed by the
first beat of the burst is sent through the AxADDR signal. However, the addresses
of the remaining beats are computed by the subordinate module based on the burst
type, indicated by the AxBURST signal. AXI4 supports three burst types: incremental
(INCR), fixed (FIXED) and wrap (WRAP). In INCR burst, the following address is
computed by adding the beat size, calculated as 2*%12E to the address of the current
beat. In FIXED burst, the address for the following beats does not change. This mode
is used to access fixed I/O ports continuously. For instance, the TX or RX registers
used by the UART module. The third mode, WRAP, is similar to the INCR mode
except that the next address will wrap around to the starting address if it crosses
the burst boundary. This mode is used in critical word first cache refills.

. Transaction IDs

In AXI4, each transaction is associated with a transaction ID. However, the AXI4
protocol allows managers to reuse transaction IDs for new transactions, even if there
are ongoing transactions with the same ID. This means that there is no unique key
that can be used to tag a transaction. But the AXI4 specification does impose a few
restrictions for AXI4-based subordinate modules. The one most relevant for under-
standing the SPU is the following: read or write requests with the same transaction
ID targeting the same subordinate must be resolved in order if they share the same
communication channel.

4.1.2 Event Table for the SPU

This section provides a logical description of the SPU events and their associated metadata.
The hardware design developed to capture these events is presented in Section 4.1.3. As
discussed in Section 3.2.1, an EVU event packet has the following three fields: Event ID,
Event Info, and Source ID. The event table detailing the various events and their as-
sociated metadata is given in Table 3.1. The Source ID encoding is omitted in the event
table but it is discussed in Point 1 of Section 4.1.3. The SPU is configurable and allows
users to choose what additional event information they want to transfer with each type of
event.

49

The read and write request events indicate that the manager has initiated a new read
or write transaction. Meanwhile, the read and write response events indicate that the
subordinate has completed an ongoing read or write transaction. A detailed explanation
of the various events is given below:

1. No event

The Event ID of 0 is reserved for when the SPU does not observe any valid event on
the AXI bus.

2. Read request

The read request event indicates that the manager has initiated a new read trans-
action. Under the AXI4 protocol, a manager initiates a new read transaction by
sending a valid read address to a subordinate. When the SPU detects a new valid
read address on the AR channel, it generates a read request event packet. Along
with the read event packet, we can also transmit additional information regarding
the read request, such as the index of the addresses it is accessing, the size of the
transaction requested, and whether the address is aligned or not. The EVU can also
be configured to transmit the ID of the manager that initiated the transaction via
the Source ID field.

The SPU maps read addresses to unique indices based on an address mapping that
must be provided at synthesis time. A typical example of such a mapping is given
in Table 4.1. This allows the APMU to focus on AXI transactions that only affect
a particular module, such as the main memory, etc. This feature is essential in
implementing regulation policies, or in monitoring and restricting accesses to specific
memory regions or 1/O devices for security purposes.

The SPU can compute the size of the requested transaction in either a) the number of
bytes or b) the number of cachelines (or rows in main memory) touched. Along with
this information, the SPU can also determine whether the transaction is aligned. A
transaction is considered aligned if it occurs at cacheline (or row) boundaries. This
feature is primarily aimed at cache and main memory transactions.

3. Write request

Similar to Point 2, a write request event indicates that a new write transaction has
been initiated by the manager. The event packet can also contain the Source ID of
the initiating manager and additional information about the address range the write
is directed to, the size of the write transaction and whether it is aligned or not.

20

Index | Address Range | Mapped to
0x0000 - 0xOFFF | Debug ROM
0x1000 - Ox7FFF | Main Memory
2 0x8000 - 0x81FF | UART

3 0x8200 - 0x8FFF | Reserved

=]

Table 4.1: A typical address mapping for a computing platform.

4. Read response

The read response event indicates that the subordinate has completed an ongoing
read transaction. In AXI4, a read transaction completes when the subordinate sends
the last read data beat, as indicated by the last signal (RLAST) on the read data (R)
channel. A read response event packet can also contain additional information, such
as the index of the addresses accessed and the response latency. It can also contain
the Source ID of the manager that initiated the read.

The address mapping and the associated indices are the same as the one explained
in Point 2. However, the read response latency is measured from the clock cycle
the transaction is initiated, i.e., a valid read address is sent to the subordinate to
the clock cycle in which the subordinate sends back the last data beat for the same
transaction.

5. Write response

Similar to Point 4, a write response event indicates that an ongoing write transaction
has been completed. In AXI4, a write transaction completes when the subordinate
sends back a write response signal (bRESP) on the write response (B) channel. A
write response event packet can contain the same set of additional event information,
namely, the index of the addresses accessed and the response latency.

In this case, the response latency is measured from the clock cycle the transaction is
initiated to the clock cycle in which a valid write response is observed for the same
transaction. Lastly, the event packet can also transmit the Source ID of the manager
that initiated the write.

4.1.3 Hardware Design of the SPU

The SPU is connected between a manager and subordinate pair through AXI4 ports,
as shown in Figure 4.1. In the current implementation, the subordinate and manager

ol

ports

of the SPU are connected directly without any pipeline registers. This ensures that

adding an SPU does not increase the delay suffered by the requests. However, on platforms
where adding an SPU between two modules breaks timing closure, pipelining might become
necessary.

The SPU is connected to the APMU through a parallel interface. As shown in Figure
4.2, the SPU registers request and response packets traversing between the AXI manager
and subordinate before processing them, a clock cycle after. The AXI packets are processed
via dedicated filters that produce AXI-related event packets. Each SPU event from Table
3.1 has a separate pipeline. The generated event packets are stored in their respective
FIFOs. The output port of the SPU that is connected to the APMU is selected from these
FIFOs in a round-robin (RR) fashion via an RR arbiter. If there is no valid event packet,
the SPU transmits a no-event packet. The entire SPU design is presented in Figure 4.3.

AXI
Packet

Clock

From other FIFOs

Pipeline 1 Round-Robin Send to
* Register > PacketFilter FIFO Arbiter > APMU

1

Yy

h 4

Figure 4.2: SPU Pipeline.

The SPU packet filters are discussed in detail below:

1.

AR Channel Filter

The AR channel filter generates the read request event packets explained in Point
2 of Section 4.1.2. It takes in the registered AXI packet sent on the AR channel.
When the ARVALID signal on this channel is set, it indicates that the manager has
initiated a new read transaction and the filter generates a new event packet containing
details of the initiated read, such as the index of the accessed address, the size of the
transaction, and the alignment of the transaction.

The filter compares the address accessed on the ARADDR signal against the address
mapping programmed in the SPU at synthesis time to decode its index.

The SPU can be programmed to compute transaction addresses in either a) bytes or
b) the number of cachelines (or rows) accessed. In the first case, the size of an AXI

o2

AXI % AXI
Manager > WG Subordinate
AXI Sb P Mn AXI
Manager Port BETEIE] < Port Subordinate
AXI % AXI
Manager Eavictans Subordinate

—* Reg AW Channel - -
P E Filter » AW FIFO >
— " Reg B Channel N -
A~ Fiter » BAFO a
A
SPU Timer RR Arbiter
4 (To APMU)
Reg R Channel o N
—>» A —> Filter > R FIFO >
Reqg AR Channel ol N
— //\ Filter » AR FIFO »
AXI P AXI
Manager Sh i EE = Mn Subordinate
Part Part
AXI . AXI
Manager (> ALlEIE Subordinate
Figure 4.3: SPU Block Diagram.
transaction in bytes can be calculated using the ARLEN and ARSIZE signals.
Transaction Size = (ARLEN+1) x 2*RSTZE (4.1)

Where ARLEN is the number of beats in the AXI burst, and ARSIZE is the log, of the
size of each beat.

The SPU can also compute the transaction size in the number of cachelines (or rows)
affected. However, the current filter design only supports this for INCR burst type.
Burst types are described in Point 3 of Section 4.1.1. To calculate the transaction
size in the number of cachelines, we need to check if the transaction is going to cross
over to multiple cachelines. Since each AXI4 transaction has a defined transaction
size in bytes, we need to confirm whether the available bytes in the current cacheline
is greater than or equal to the transaction size of the request. If it is greater, then
the request will only access this one cacheline. Otherwise, we need to compute the
remaining subsequent cachelines that will be accessed. This is because in INCR burst
type, the addresses of the upcoming beats are incremental. The pseudo-code for this

23

operation is given as Algorithm 1. It works as follows:

(a)

Let r_addr be the starting address of the read request, and t_size be the
transaction size of the request in bytes, computed using Equation 4.1. Let
LineOffset be the number of offset bits in the cache addressing scheme. Lastly,
let the address width of the bus be 64-bits.

We first need to calculate the address of the current cacheline. Since AXI4
supports unaligned transactions, a read request can target addresses from the
middle of a cacheline. Therefore, to get the address of the current cacheline we
discard the offset bits, as shown in Line 2.

Compute the address of the next cacheline. This can be done by incrementing
the index of the current cacheline by 1, as shown in Line 5.

Calculate the number of available bytes in the current cacheline. These are the
bytes that can potentially be read during a read transaction.

For example, consider a cache with 8 B cachelines. If the current cacheline starts
at address 0x0, while the read request is targeting address 0x5 and onwards,
then the bytes from 0x0 to 0x4 are unavailable bytes, as they can never be
read in this transaction. But bytes 0x5, 0x6, 0x7 in this cacheline and those in
the subsequent cachelines can potentially be read, depending on the transaction
size of the request. The number of available bytes in the current cacheline is
calculated as shown in Line 8.

In lines: 11-14, we compare if the transaction size of the request (t_size) is
greater than the number of available bytes in the current cacheline. If yes, then
we calculate the remaining number of bytes left, divide it by the total number
of bytes in a cacheline (2Le0Hset) to get the number of additional cachelines
accessed, on top of the current one. Since the number of bytes in a cacheline is
a power of 2, the division can be replaced with a bitwise right shift operation.
If the transaction size is equal or less than the number of available bytes in
the current cacheline, then it implies that the request is only accessing this one
cacheline.

Algorithm 1 Pseudo-code to compute transaction size in cachelines.

// Current cacheline address.
curr_line_address = (r_addr[63:LineOffset] << LineOffset);

// Next cacheline address.
next_line_address = this_line_address + (1 << LineOffset);

54

// Number of available bytes on current line.
n_available_bytes = next_line_address - r_addr;

// To account for the current cacheline.
cachelines_affected = 1;
if (n_available_bytes < t_size) begin
cachelines_affected += ((bytes_in_burst - bytes_on_cur_line)
>> LineOffset) + 1;
end

On the other hand, the address alignment can be computed quickly by applying the
logical-OR, operation to the cacheline offset bits of the address. Aligned addresses
must have their offset bits as 0.

The filter also transmits the Source ID of the initiating manager. However, the
design to discern the Source ID has to be platform-dependent. Under the AXI4
protocol, the manager IDs do not need to be sent along with the transaction packets.
They are omitted entirely in some AXI4-based interconnect architecture. This means
a conscious effort must be made to make this information available to the SPU. This
can be done in various ways. For example, one can send the manager ID using the
reserved user bits. The SPU must be designed to split out the user bits from the
incoming AXI packets to isolate the Source IDs.

Our evaluation platform PULP, discussed in Section 5.1, uses the AXI4 implementa-
tion developed by [56]. The proposed interconnect in this work prepends the manager
ID to the packet’s original transaction ID before forwarding it to the subordinate
module. The subordinate module also responds with the same extended transaction
ID. This allows the interconnect to route packets belonging to different managers but
sharing the same transaction ID. Thus, when connected between the manager port
of the interconnect and a subordinate module, the SPU computes the Source ID by
truncating the transaction ID of the incoming and outgoing packets to retrieve the
manager ID.

. AW Channel Filter

The AW channel filter generates the write request event packets discussed in Point
3 of Section 4.1.2. When a new write is detected on the AW channel as indicated
by the AWVALID signal, the filter creates a new event packet. The hardware design of
this filter is similar to that of the AR channel filter presented above in Point 1.

95

3. R Channel Filter

The R channel filter generates the read response event packets explained in Point 4
of Section 4.1.2. It monitors both the AXI packets on the AR channel sent by the
manager and those on the R channel transmitted by the subordinate. The packets
sent on the AR channel signify a new read request. The ones on the R channel
indicate when an ongoing read transaction is finished. When the RLAST is set for an
ongoing transaction, it implies that the subordinate is sending the last data packet
of that transaction. In this case, the filter generates a new read response event
packet and additional information, such as the index of the accessed address and the
response latency.

The address index is computed in a manner similar to the method described in Point
1. However, the logic required to compute the response latency is more complicated.
As mentioned in Point 4 of Section 4.1.1, there is no unique key that can be used to
identify individual requests. Therefore, to compute the latency of a request, the SPU
uses a content-addressable memory (CAM) that creates a new entry when a new read
transaction is started. When an ongoing transaction is completed, its corresponding
entry is removed.

Apart from the transaction ID, each entry has a few additional properties: the time
at which the request arrived at the channel filter, whether this request is the oldest
one in the set of active requests sharing the same transaction ID, or whether it is
the youngest, and a pointer to the next-oldest request in the set. The SPU has its
own timer that it uses to store the timestamp of the arriving requests. When a CAM
entry is popped out, the response latency is calculated as the difference between the
current SPU timer value and the timestamp at which the request first arrived.

An example to explain the functioning of the CAM is presented through Figure 4.4.
Entries with pointers as “*” are pointing to themselves. For the oldest and youngest
columns, “Y”, “N” imply yes, no, respectively. Let R; be the set of all read requests
with transaction ID i. Let P(ry) be the pointer of request 7, that points to the
next-oldest request in the set to which r; belongs. All timestamps are from when
the request arrived at the R channel filter.

Consider an empty CAM that has no valid requests. When a new request, r, with
ID 1 arrives at time T" = 2, it is populated into the CAM. Since there are no active
requests with ID 1, this request is both the oldest and youngest in the set R;. Its
pointer, in this case, points back to itself. A new request, ro, with ID 2, arrives at
T = 5. This request, too, populates another entry in the CAM, being both the oldest
and youngest in its set, Ry, with its pointer again pointing back to itself. At T' =7,

o6

a new request, r3, with ID 2 arrives. This request will then become the youngest
request in the set Ry. The pointer of the previous youngest request, i.e., ry, will now
point to r3. At T" = 8, another request, r4, with ID 2 enters the CAM. This request
is now the youngest in Rs, and the previous youngest r3 will now point to ry. ro is
still the oldest request in Ry. Therefore, P(r1) — 11, P(re) — r3, P(r3) — r4 and
P (7“ 4) — Ty4.

At T = 11, the last packet for a transaction with ID 2 is received. Since the AXI4
protocol ensures that requests with with the same transaction ID targeting the same
channel are ordered, it must be the last packet for the oldest read request in the set
R5. Thus, 75 is popped from the CAM, its arrival timestamp is subtracted from the
current clock cycle, and the response latency is calculated, which is 6. The request
that P(ry) points to now becomes the oldest request in the set Rs. Therefore, r3 is
now the oldest request for Ry. At T' = 12, the last packet for a transaction with ID
1 is received. The only request with transaction ID 1 is ry. It is popped from the
CAM, and its response latency is 11. The set R; becomes empty again. The CAM
now only has two entries: r3 and ry.

4. B Channel Filter

Under the AXI4 protocol, a written transaction is completed only when the subordi-
nate module sends back a write response to the initiating manager via the B channel.
For the SPU, the W channel is unused.

The B channel filter generates the write response event packets discussed in Point 5
of Section 4.1.2. The hardware design of this filter is similar to the R channel filter
presented in Point 3. It has a separate CAM, because under the AXI4 protocol, a
read and a write transaction with the same transaction ID do not need to be ordered
as they are targeting different channels.

When a new write request is observed on the AW channel, a new CAM entry is
populated with the same entry properties as that of the CAM in the R channel filter.
A write request with a particular ID is terminated when a write response is observed
on B, causing the CAM to pop out the oldest request from the set of all requests
with the same ID.

4.2 Implemented APMU

The APMU is designed for a RISC-V compliant platform with AXI4-based interconnec-
tions, as per the specification explained in Section 3.2.3. In this section, we primarily

57

Arrival

D Time Oldest | Youngest | Paointer
T=o rif 1| 2 Y Y '
T=5 rif1] 2 |y | vy [* |
ref2]| s | v | v [* |
T=7 [2 | v [v [* |
rel 2| s | ¥y | N [r3
ralz2 | 7 [N [v [*
T=8 rif1] 2 | v [v [* |
r2 | 2 | 5 | Y | N | r3
ral 2 | 7 | N | N [r4
ral 2 [8 | N | ¥ [*
T=11 1] 2 | v [¥y [* |
32 [7 [v [N [ra
rd | 2 | 8 | N | Y | B
T=12 ral 2 | 7 | ¥ | N [r4
ral 2 [8 | N | ¥ [

Figure 4.4: An example to explain the functioning of the SPU-CAM.

discuss the technology-specific design decisions made while developing the APMU, namely,
the APMU memory map, its internal interconnect, and the APMU core.

Our APMU implementation uses an extended version of the Ibex RISC-V 32-bit proces-
sor ([57] [1], [58]). As the Ibex core can only support 32-bit operations, the implementation
is constrained. The maximum number of counters in the design is limited to 32, with each

58

counter being 32-bit wide. As the counters support the overflow functionality, each counter
has a separate wire that must be connected to the platform interrupt controller in the sys-
tem. The APMU uses an internal AXI4-Lite interconnection. Lastly, the APMU memory
map is the same as the one presented in Section 3.3, except that the page size is 4 KB
which is the standard size for RISC-V pages.

4.2.1 APMU Interconnect

The APMU has an internal AXI4-Lite crossbar. We re-used the IP developed by the
authors of [50]. The AXI4-Lite interface is similar to the full AXI4 interface discussed
in Section 4.1.1 except that it lacks the infrastructure to support burst operations. All
AXI4-Lite transactions are made of one beat only. We chose an AXI4-Lite crossbar over
full AXI because we expect most of the accesses made to the APMU to be control accesses,
i.e., accesses made to configure various APMU counter blocks. This reduces the area and
power consumption of the APMU, as discussed later in Section 5.2. Only continuous
accesses made to the instruction and data SPMs would benefit from burst support that
comes with a full AXI4 crossbar. However, besides run-time tracing functionality, other
mechanisms discussed in Section 2.2 and in Section 3.1 such as those implementing resource
regulation and management, CFI-checkers, etc., do not need support for a large number of
data accesses during their execution.

The APMU has both a manager and a subordinate port, allowing it to send and receive
read /write transactions to and from the system. This functionality is important because
it allows the APMU core to update other components of the platform. For example, the
APMU core can alter the cache partitioning scheme dynamically depending on either user
input or an internal allocation policy.

The APMU interconnect also allows the core to update the counter blocks by accessing
their physical address. This feature allows the APMU core to reprogram counters to count
different events as required.

4.2.2 APMU Core and SPMs

We chose the Ibex core by lowRISC ([57] [1], [58]) for the APMU instruction processor
because of its low area footprint; the hardware synthesis results are presented in Sec-
tion 5.2. Ibex is an open-source RISC-V-compliant processor designed specifically for
control-oriented applications with limited arithmetic capabilities. The open-source im-
plementation is highly configurable providing support for a branch predictor, instruction

29

cache, single-cycle multiplier, RISC-V extension for bit manipulation, etc. However, for
our implementation, we have chosen the following processor configurations:

1. The Ibex core supports the RV32IMC ISA. RV32I is the base 32-bit instruction set for
RISC-V processors; M indicates support for multiplication, and C indicates support
for compressed 16-bit instructions.

2. The open-source implementation provides two pipeline options: a 2-stage pipeline
where the two stages are instruction fetch (IF) and instruction decode plus execute
(ID/EX), and a 3-stage pipeline where the write-back operation (WB) is split out
from the previous ID/EX. For our purpose, we chose the smaller 2-stage pipelined
version, as shown in Figure 4.5.

3. The chosen core has a fast multi-cycle multiplier which offers a reasonable trade-off
between area and performance. It takes 3-4 cycles to complete a multiple operation.
MUL instructions take 3 clock cycles, while MULH instructions take 4 clock cycles. In
the RISC-V ISA, MUL instruction multiplies two 32-bit registers and returns the lower
32 bits, and MULH performs signed multiplication of two 32-bit registers and returns
the upper 32 bits. The division hardware implements a multi-cycle long division
algorithm which is slow and takes up to 37 clock cycles.

4. The processor does not have an instruction cache but rather a prefetch buffer, which
reads from the instruction SPM. The core also does not have a branch predictor.

Apart from the above configuration, we added support for the functionalities presented
in Point 5 of Section 3.2.3. This was done by extending the RISC-V ISA. We assigned the
hitherto unused opcode 7°000_0111 to the APMU instructions, which are the following:

1. Counter-read

The counter-read instruction transfers value from counters to registers. The instruc-
tion is encoded in the I-type format of RISC-V instructions, shown in Figure 4.6,
with all unused bit fields set to 0. The funct3 for this instruction is 3’b000.

Each counter in the APMU has a unique counter ID. The ID of the counter that is
to be read is written into rs1. Counter-read reads the counter value and copies it
into the register specified in rd.

2. Counter-write

60

Register File

Instruction Fetch Decode and Execute

\!Vr[teback

Controller

%9342 diAld

a2epa)u] AlIoWsy ered

Compressed Instruction

Decoder

l aoeUSIU| AJOWSN uoIaNIsu| | g
B

-

Figure 4.5: Ibex Pipeline [1] (writeback stage not included).

The counter-write instruction transfers value from registers to counters. The instruc-
tion is encoded in the S-type format, shown in Figure 4.7, with all unused bit fields
set to 0. The funct3 for this instruction is 3’b001.

The ID of the counter that is to be updated is written into rs1. Counter-write copies
the value from the register referred by rs2 to the counter.

. Wait-for-Pending (WFP)

The WFP instruction stalls the core until the pending bit, introduced in Point 4 of
Section 3.2.3, of one of the specified counters is set. The instruction is encoded in the
R-type format, shown in Figure 4.8b, with the unused rs2 field set to 0. The funct3
and funct?7 fields of this instruction are 3°b010 and 7°h000_0000 respectively.

The set of counters that have to be monitored is written as a bitmap into the rsi
register wherein each bit maps to a APMU counter. Since the processor registers
in Ibex are 32-bit wide, the maximum number of counters supported by the APMU
is currently restricted to 32. The instruction will actively poll only those counters
whose corresponding bit was set in rs1. If it observes that the pending bit of any
one of these counters is set, the core exits the Wait-for-Pending mode and resumes
operation. Counters that were not selected for polling, i.e., their corresponding bit
is set to 0 in rs1, do not affect the processor behaviour. This implies that the core
will not resume operation even if their pending bit is set.

61

31 30 25 24 21 20 19 15 14 12 11 7 6 0

| imm[11] | imm[10:5] | imm[4:1] | imm[0] | rs1 funct3 | rd opcode
()

31 30 25 24 21 20 19 15 14 12 11 7 6 O

IE [0 IE IE | s1 | 3’b000 | rd | opcode |

(b)

Figure 4.6: Counter-Read Instruction Format. Figure (a) shows the standard RISC-V
[-type instruction format. Figure (b) shows the format of our custom counter-read instruc-
tion.

31 30 256 24 20 19 15 14 12 11 8 7 6 0
’ imm[11] ‘ imm[10:5] ‘ rs2 ‘ rsi ‘ funct3 ‘ imm[4:1] ‘ imm[0] ‘ opcode
(a)

31 30 256 24 20 19 15 14 12 11 8 7 6 0
’ 0 \ 0 \ rs2 \ rsl \ 3’b001 \ 0 \ 0 \ opcode ‘

(b)

Figure 4.7: Counter-Write Instruction Format. Figure (a) shows the standard RISC-V S-
type instruction format. Figure (b) shows the format of custom counter-write instruction.

When the instruction observes that the pending bit of one the selected counters is set,
it also sets the corresponding bit for that counter in the rd register to 1. If multiple
selected counters have their pending bit set in the same clock cycle, then all their
corresponding bits are set in rd. The hardware automatically resets the pending bit
when the APMU core exits the Wait-for-Pending mode.

4. Wait-for-Overflow (WFO)

The WFO instruction stalls the core until the overflow bit, introduced in Point 4 of
Section 3.2.3, of one of the specified counters is set. The instruction is encoded in the
R-type format, shown in Figure 4.8c, with the unused rs2 field set to 0. The funct3
and funct? fields of this instruction are 3°’b010 and 7°h000_0001 respectively.

Similarly to WFP, the set of counters that have to be monitored by this instruction is
written as a bitmap into the rsi register wherein each bit corresponds to a counter.

62

31 25 24 20 19 15 14 12 11 7 6 0

funct? rs2 \ rsi \ funct3 rd opcode
(2)

31 25 24 20 19 15 14 12 11 7 6 0
7°b000-0000 | 0 | rs1 3’b010 [rd opcode
(b)

31 256 24 20 19 15 14 12 11 7 6 0
| 7°b000-0001 | 0 | rs1 3°b010 [rd | opcode |

()

Figure 4.8: Wait-for-X Instruction Formats. Figure (a) shows the standard RISC-V R-type
instruction format. Figure (b) shows the format of custom WFP instruction. Figure (c)
shows the format of custom WFO instruction.

The instruction will actively poll only those counters whose corresponding bit was
set in rs1. If it observes that the pending bit of any one of these counters is set, the
core exits the Wait-for-Pending mode and resumes operation. Counters that were
not selected for polling, i.e., their corresponding bit is set to 0 in rs1, do not affect
the processor behaviour.

When the instruction observes that a counter has overflown, it sets the corresponding
bit for that counter in the rd register to 1. If multiple counters overflow in the
same clock cycle, then all their corresponding bits are set in rd. The hardware
automatically resets the overflow bit when the APMU core exits the Wait-for-Pending
mode.

The APMU core has specialized read-and-write instructions for counters because ac-
cessing the counters via the internal AXI4-Lite crossbar can have up to 4 clock cycle delay.
Instead, the counter-read and counter-write instructions only take 2 clock cycles. Compar-
atively, the load-store unit (LSU) in the Ibex core connected to the data SPM also takes 2
clock cycles. Lastly, a wire from the APMU core status register had to be connected to the
controller IP of the Ibex processor, allowing the register to reset the core when its Stall
bit was set.

63

4.3 Software Support

As discussed in Section 3.3, the APMU has several custom features: its counters can be
configured to perform a variety of operations on the incoming event packets and its pro-
cessor supports multiple custom instructions. These customizations can make its difficult
for a user to use the APMU; particularly in writing code for its processor.

Considering this, we have developed a basic software stack for programming the APMU.
It includes a set of library functions, and macros that can be used to implement custom
APMU instructions in C. The stack includes a RISC-V GNU compiler [59] that can generate
an assembly program from the input C code. This program can then be passed through
our custom assembler, which converts it into bytecode to be uploaded into the APMU
ISPM, as shown in Figure 4.9.

Library Functions

RISC-V
—— Assembly ——»
code

Standard GNU
RISC-V Toolchain

Custom Upload onto the

C code —» Assembler APMU ISPM.

Software Macros

Figure 4.9: APMU Software Stack.

64

Chapter 5

Evaluation

This chapter evaluates the hardware implementation of our centralized performance mon-
itoring infrastructure in terms of hardware utilization and its functionality through a
latency-based regulation case study. In order to do this, we first define the evaluation
platform used to test our infrastructure. Specifically, we are using a PULP-variant plat-
form that we extended for our purpose. Our design is used to profile the platform based
on synthetic programs to extract timing characteristics for the cores and memory modules,
followed by the regulation case study and comparison against related works.

This chapter has three sections. In Section 5.1, we introduce the platform that we
used to evaluate the functionality and performance of our infrastructure. In Section 5.2,
we present the hardware synthesis results of our infrastructure and provide architectural
insights into the design to explain the results. In Section 5.3, we define and implement our
regulation case study. In this section, we also present a comparison against other related
works.

5.1 Evaluation Platform

PULP, short for Parallel Ultra Low Power ([60], [61]), is an open-source silicon-proven
RISC-V platform developed through collaboration between ETH Zurich and the University
of Bologna. It is an open-source, scalable, and energy-efficient solution for embedded
computer systems. To test out the platform, we realized a FPGA emulator on top of the
AMD Virtex UltraScale+ FPGA VCU118 board [20)].

65

5.1.1 Introduction

This section introduces the evaluation platform, including the changes we introduced to
make it suitable for executing a latency-based regulation case study, which is defined in
Section 5.3.

al_saqr
ITAG_ENABLI
APMU [} :
. P ;
host_domain | H
| AXILLC o > DRAM
DB FESVR | i
LICCFGREG <
cvab_subsystem|
ocp
SIMDTM BoOT
- t AXIZNEN
SIM JTAG
me R op AXI_ADAPTER
AXIo4
;
i AXI-LITE
LOCAL_ITAG XBAR | L)l
AXIo4
UART 2 AXI-LITE
il MAILBOX
AXio4
2 —
] Ethemet AXILITE
axilite_subsystem
AXIo4
sp1 2
P8
P8 P8
ant X FLL 2REG
=] e cxanars | ool 32 Kb,
1 XBAR APB Gen | ~wtni
b NODE
L GPIO:
HART O coc SPU 2
e
AXIo4
upwA
2 PERIPHS
e B SUBSYSTEM I
cVe4A6 ma |
apb_subsystem
AXIs4
cVe4A6 aa |
s 2
HART2
PAD
12_subsystem FRAME
L
s
HART 3 coc []spu ToDM
] INTERCONNECT
——3 rnuc
— — 8BANKS
$ 51 ’W‘ L2.SPM
2
P8

Figure 5.1: Evaluation Platform based on PULP, along with APMU and AXI4 SPUs.

The platform has multiple interconnections that connect various hardware modules
together, as shown in Figure 5.1. The primary system interconnect is a full AXI4-based
crossbar, which follows the AMBA AXI4 bus protocol discussed in Section 4.1.1. It is imple-
mented using the open-source non-coherent on-chip communication architecture presented
in [56]. The AXI4 crossbar has multiple managers, we describe the relevant managers
below:

66

1. CV64A6 cores

The original PULP-variant that we started with was a single-core platform. How-
ever, to generate meaningful results for our resource contention-based case study, we
had to extend it to a multicore setup. The extended PULP-variant is a non-coherent
multicore platform that has four CV64A6 cores, which belong to a class of 64-bit
RISC-V application cores with a 6-stage, single-issue pipeline. It is an in-order core
that supports RV64IMAC ISA, as specified in the RISC-V Volume I: Unprivileged
ISA [62]. RV64L is the base 64-bit instruction set for RISC-V processors. M indicates
support for multiplication, A for atomic operations, and C for compressed 16-bit in-
structions. This is because base RV64I instructions are 32-bit wide, while instructions
from the compressed instruction set only occupy 16 bits. The core also implements
the standard RISC-V Volume II: Privileged ISA [63], which includes three privilege
levels: machine mode (M), supervisor mode (S), and user mode (U). The core also
supports the Hypervisor extension [64], which adds the Hypervisor (H) mode to the
privilege levels and replaces S and U modes with virtual supervisor (VS) and virtual
user (VU), respectively. The machine level is the highest privilege level of the core
and is mandatory for RISC-V processors; the remaining levels are optional. CV64A6
with the Hypervisor Extension is capable of running hypervisors like Bao [65].

Each application core is identified by a unique HART ID. Both the platform interrupt
controller and the debug module require the HART ID of the core to send an interrupt
or debug request to it, respectively. Additionally, each CV64A6 core has a private L1
instruction and a private write-through, no-write-allocate data cache. Both caches
have a cacheline size of 16 B. The L1 instruction cache has four ways, 256 sets, and
a total size of 16 kB, while the L1 data cache has eight ways, 256 sets, and a size of
32 kB. Each core also has a four entry deep store buffer, i.e., until a store instruction
is committed it remains in the store buffer. This also means that while reads are
blocking, writes are non-blocking until the store buffer is filled up.

2. Debug Module

The platform has a debug module based on the SiFive debug specification, version
0.13 from SiFive [66]. The CV64A6 core is compatible with this external debug
specification and can be debugged using Open On-Chip Debugger (OpenOCD) [67]
and the GNU debugger (gdb) [68]. The debug module can halt any core by sending
it a debug request signal via a dedicated wire. Upon receiving a debug request, the
core enters the debug mode, only exiting it when the debug module updates core-
specific flags in its memory space. The debug module is responsible for booting up
the application processors after the binary is loaded onto the main memory via the

67

JTAG interface. Additionally, the debug module can also be accessed via the AXI4
system interconnect.

For the thesis, we had to slightly modify the debug unit to allow the APMU to use
it to regulate application cores as warranted. For this, we added a set of registers in
the module. The APMU could write the HART ID of the core it wants to regulate to
these specific registers using the AXI4 system crossbar. Depending on the register
updated, the debug module would send out a halt or start request to the core with
that specific HART 1ID.

The crossbar is responsible for routing read and write requests from managers to the
subordinate modules and subsystems connected to it. It is important to note here that
the AXI4 protocol does not put many restrictions on the transaction IDs associated with
each data transfer. It is challenging to route multiple packets with the same transaction
ID from different managers to different subordinates. To overcome this problem, a simple
solution proposed by [50] is to prepend the transaction ID from the manager side with the
manager ID. This implies that the transaction ID, as seen by the subordinate, includes
the ID of the manager who sent the transaction request. For example, if core 0 with the
manager ID 3°h3 (3°b011) sends a read request with transaction ID 4°hA (4°11010) to the
LLC, then the crossbar will prepend the manager ID to the received transaction 1D, and
the subordinate will see a read request with transaction ID 7°h3A (7°b011_1010). Having
said this, a brief description of the various AXI subordinates modules and subsystem is
given below:

1. AXI4-Lite Subsystem

The AXI4-Lite system interconnect has two applications: a) it is used to write to
the configuration register of the last-level cache (LLC), as discussed below in Point
2, and b) it also connects to a platform mailbox used for synchronization purposes.

2. Memory Subsystem
The memory subsystem comprise of the platform LLC and the DDR4 main memory.

(a) Last-level cache (LLC)

The LLC has an AXI4-based subordinate port to receive fetch requests from
external managers via the AXI4 crossbar. It is configurable in terms of size
and can support either 2, 4, 8, 16, or 32 ways. The LLC is write-back with
write-allocate, and can support multiple outstanding transactions. It also has

68

a set of configuration registers which can be read from and written to via the
AXI4-Lite subsystem.

The original LLC was modified to introduce a way-based partitioning mecha-
nism, that allows us to map AXI4 managers to particular ways. We also replaced
the original random replacement policy of the LLC with a pseudo-least recently
used (pLRU) replacement policy.

Apart from the above modifications, we also had to update the LLC pipeline to
ensure that the transaction IDs of the requests were being sent out to the main
memory. This is necessary if we want to distinguish between requests to main
memory on the basis of the application core that initiated them.

All the functionalities of the LLC mentioned above, including the partitioning
scheme, are controlled by their appropriate configuration registers. The LLC
has a 32-bit register that can be used to set different ways of the LLC as an
SPM. It also has registers controlling the LLC’s flushing functionality and cache
partitioning registers to designate ways to AXI4 managers. The BIST output
of the tag SRAM is also stored in a configuration register that the application
cores can access.

For our evaluation, the LLC is configured to have 1024 sets (5), 32 ways in each
set (W), and eight blocks in each way per set (B), where one block is 64-bit
wide (b). The size of the LLC is defined as S x W x B x b = 2M B.

(b) DDR4 Main Memory

The LLC is further connected to the on-chip DDR4-2400 main memory through
a AXI4-based interface. The Virtex VCU118 board has a dual 80-bit DDR4

component memory. Each component memory comprise a 2.5 GB set of five
256 MB x 16 (80-bit) DDR4 SDRAM devices.

3. Interrupt Controllers

The PULP platform, following standard RISC-V specification, has two interrupt
controllers: the CLINT and the PLIC.

(a) Core-Local Interrupt Controller (CLINT)

The CLINT ([69], [70]) module is the RISC-V-compliant interrupt controller
responsible for generating local interrupts. It manages timer interrupts and
software interrupts for the application cores. This module is also used for gen-
erating inter-processor interrupts (IPIs).

(b) Platform-level Interrupt Controller (PLIC)

69

The PLIC module [71] is the RISC-V-compliant platform interrupt controller
responsible for handling external interrupts triggered on the application cores.
The PLIC allows users to set up different external devices,for example, the
UART, nDMA, Ethernet, etc., as interrupt sources.

4. Other Subordinate

The AXI4 interconnect is also used to program various other system peripherals and
subsytems such as the UART, Ethernet, SPI, APB subsystem and L2SPM subsys-
tem. The Advanced Peripheral Bus (APB) subsystem, based on the AMBA APB
protocol [72], is used to route communication packets to various system peripherals
such as the clock and reset generator module, the L2SPM subsystem, and the I/O
DMA subsystem (uDMA). Meanwhile. the Level-2 SPM (L2SPM) subsystem, with
8 memory banks, is used for facilitating data transfers between I/O devices and the
main memory via the ptDMA.

Lastly, the primary operating frequency of the original platform, including the applica-
tion cores, the system interconnections, the LLC, etc., is 50 MHz. The APMU, including
the APMU core, and the SPUs are also running at 50 MHz. However, the DDR4 main
memory operates at 650 MHz, which means that the current platform hardware is not
sufficient to saturate the main memory.

5.1.2 Addition of the APMU and AXI4 SPUs to the platform

We added five AXI4 Snooping Units to the platform, as shown in Figure 5.1.

1. Four of them were placed between the output of the application cores’ clock-domain
crossing FIFOs (CDC FIFOs) and their respective subordinate ports on the AXI4
crossbar. These SPUs are responsible for monitoring the AXI requests sent out and
responses received by the application cores, which includes all fetches and writebacks
by the L1 instruction and data caches to the LLC, and all non-cacheable requests
made to other system components, such as the UART, debug module, etc.

2. The last AXI4 SPU was connected between the LLC and the DDR4 main memory,
allowing us access to the requests sent out by the LLC. The SPU is able to distinguish
between requests initiated by different cores using their transaction IDs. The SPU
in this case encodes this information in the Source ID bits of the event packet.

70

Combining the information gathered from the five SPUs, we can count the number
of read and write requests to the LLC and main memory generated by each application
core. We can also measure their cumulative request latencies and transaction sizes. The
SPUs connected to the output of the application cores are able to monitor read and write
transactions between the L1 cache of the application core and the LLC. The L1 cache of
the application cores is write-through, write no-allocate. This means that read requests to
the LLC are only generated due to read misses in the L1 private caches, both instruction
and data. Meanwhile the writes to the LLC are caused due to the writes to the data
cache which being write-through, sends it down the memory hierarchy right away. On the
other hand, the SPU between the LLC and main memory can monitor reads and writes
to the DRAM. Apart from read-misses, write-misses in the LLC also initiate a read from
main memory because the LLC is write-back, write allocate. However, the SPU cannot
distinguish between reads caused due to read misses versus those due to write misses as
this information is consumed internally within the LLC. If these misses in the LLC evict
a dirty cacheline, they will also initiate a write-back to the main memory. But again,
we cannot distinguish between write-backs due to read misses, versus those due to write
misses.

Each of the five SPUs are connected to separate ports in the APMU IP. The APMU
is also connected to the AXI4-Lite subsystem as both a manager and a subordinate. This
allows the user to write to the configuration registers of the counters and program the
APMU core, while also allowing the core the ability to write to other system components.
For example, the APMU can write to the debug module to halt or resume the application
cores at will. We use this functionality in our regulation case study in Section 5.3. Apart
from this, the overflow interrupts of the APMU counters are also connected to the PLIC
as interrupt sources, one source per counter. This allows individual counters to trigger
interrupts on the application cores upon overflow.

5.2 Hardware Synthesis Results

The PULP-variant introduced in Section 5.1 has been synthesized for the AMD Xilinx
Virtex VCU118 board [20] using Vivado v2021.2. In the Virtex Ultrascale+ FPGA family
([73], [71]), each CLB contains one slice. There are two type of slices: SLICEL (Slice as
Logic) and SLICEM (Slice as Memory). SLICEL LUTSs are only used to implement logical
circuits, while SLICEM can be also be configured as distributed-RAM. Each slice consists
of eight 6-input LUTs and sixteen flip-flops.

The synthesis results are presented below. The CLB column represents the number of

71

CLBs utilized by the design. CLB registers represents the number of flip-flops used within
the CLBs. LUT as Logic and LUT as Memory provide the distinction of how many LUTs
have been used as logic (can be either SLICEL or SLICEM) and how many have been used
as memory (only SLICEM). BRAM tiles and DSPs represent the number of Block RAM
and DSP tiles used, respectively.

Table 5.1 shows the resource cost of the overall system, and the split between the
resources utilized by the application cores, the APMU, the SPUs and the remaining system.
In the design, the APMU has 32 counters, with a 4 KB instruction and a 32 KB data SPM.
All the SPUs have a CAM with a depth of 16 entries and a FIFO of depth 8 entries. In
the overall design, the APMU uses 7.13% of CLBs, 2.93% CLB registers, 7.41% LUTs and
3.11% BRAM tiles. However it has comparatively higher cost in the LUTs used as logic
and memory, when compared to the other resourrces. This is primarily due to two factors:

1. The APMU counters and registers that are accessible via the AXI4-Lite APMU
crossbar are implemented using flip-flops and registers. We have used the AXI4-Lite
register IP provided by [50] because it is compatible with the AXI4-Lite crossbar
IP; both have been developed by the same authors. The AXI4-Lite register IP is
expensive because the current design has 32 32-bit counters, each with two 32-bit
configuration registers, along with with two 32-bit APMU registers and one 64-bit
APMU timer. Even though, the IP only allows one register to be read from or written
to per clock cycle via the APMU crossbar, it allows multiple registers to be updated
in the same clock cycle, by any other custom-hardware mechanism. This feature also
drives up the logic cost of the design.

But this feature is non-negotiable for the counters since the specification allows for
multiple counters to be incremented simultaneously. However, the configuration and
other APMU registers, aside from the APMU timer, do not have any such require-
ments. Therefore, in future, the AXI4-Lite register IP can be modified to optimize
out this feature for the configuration and other APMU-critical registers except the
timer.

2. The APMU ISPM consumes a large number of LUTSs as memory when compared
to other components in the platform. Even though, the APMU DSPM has been
implemented using BRAM tiles, we were unable to synthesize the ISPM using BRAMs
because of complexities in the instruction fetch logic of the APMU core. In our
current design, the core is able to fetch one instruction every clock cycle, but when
the ISPM is synthesized using BRAMs, the APMU processor fetches one instruction
every two clock cycles, which is undesirable. We believe, this issue can be resolved
in future by modifying the fetch logic of the APMU core.

72

Apart from these issues, the APMU consumes a very modest amount of FPGA re-
sources. The APMU core is significantly smaller than the application processors, while the
internal APMU AXI4-Lite crossbar consumes approximately half the amount of resources
when compared to the full AXI system crossbar. Additionally, the SPUs consume different
amount of resources depending on whether they are connected between the L1 cache of the
processor and the AXI4 crossbar, or between the LLC and main memory, despite sharing
the same configuration. We believe this is due to the placement and routing logic of the
Synthesis tool, as this trend was observed in other SPU configurations as well.

Table 5.2 shows the resource cost of SPUs for different CAM and FIFO sizes. These
results are from the SPUs that were connected to the output of the application cores and
are only presented to show the relative increase in resource utilization for the SPU IP.
These IPs support all the Event Info sub-fields from the SPU event table, presented in
Section 4.1.2.

Lastly, Table 5.3 gives the resource breakdown of individual components of an SPU,
connected at the output of the application core, and supporting all the Event Info sub-
fields. As discussed in Section 4.1.3, each SPU event has its own pipeline with a channel
filter and a FIFO. As expected, the content-addressable memory (CAM) in the R and B
channel filters consume the most resource of the SPU; with each utilizing around 30% of
the overall CLB registers and 31% of the overall LUTSs for logic. The CAM in the current
IP is synthesized using flip-flops and registers. However, in future, it might be possible to
develop an SPU design with BRAM-consuming CAMs.

5.3 Case Study: Latency-based Regulation

In this section, we define our regulation case study that is used to evaluate the functionality
of the APMU. Our case study implements a latency-based regulation on a cluster of cores,
where one core, the core-under-analysis (CUA) is executing a critical real-time application
while others (non-CUA) are running best effort tasks. Our mechanism aims to regulate
the non-CUA cores on the basis of the average request latency of the CUA core. A target
latency is set for the CUA, and if the current request latency of the CUA exceeds this
target, the mechanism halts the non-CUA cores. Another approach to this would involve
regulation on the basis of the total latency. Under this approach, the CUA is allowed to
suffer a maximum amount of request latency called L2, When the delay suffered by the
CUA exceeds this value, the mechanism halts all other cores permanently. However, we
chose to not implement this mechanism because it can halt the cores indefinitely, massively
killing their performance.

73

IP Name CLB CLB Registers | LUT as Logic | LUT as Mem | BRAM Tiles DSPs
PULP Platform 87,060 274,235 452,901 2,670 1,030 115
| Core Cluster 39,796 119,556 200,416 0 264 108
|__0ne cva6 core 9,832 29,311 49,769 0 66 27
| APMU 6,209 8,033 31,672 2,088 32 1
| APMU Xbar 706 9,635 0 0 0
| Event Filters 1,351 4,228 0 0 0
| Counters and 4,424 11,766 0 0 0
Registers
| _APMU Core 1,390 5,005 40 0 1
| APMU ISPM 72 175 2048 0 0
| _APMU DSPM 78 220 0 32 0
| SPUs 1,963 7,677 6,869 0 0 0
| One Core-to-LLC 369 1,424 1,313 0 0 0
SPU
| LLC-to-Mem SPU 487 1,981 1,617 0 0 0
| _Rest of the 41,055 146,646 220,813 582 734 6
L system
Full AXI Xbar 15,000 19,358 0 0 0

Table 5.1: Overall resource utilization cost of the system and its primary IPs.

SPU Config (CAM Depth, FIFO Depth) | CLB | CLB Registers | LUT as Logic
SPU (8, 8) 219 | 992 837

SPU (16, 8) 360 | 1,424 1,313

SPU (32, 8) 684 | 2,320 2,454

Table 5.2: Resource utilization cost of the different SPU configurations.

For a given execution of the task under analysis in isolation, we are measuring the
following: the execution time (total running time of the program) E, the cumulative latency
of read and write memory requests Lz, Ly, respectively, and the number of read and write
requests Kr, Ky, respectively. By studying these measurements, we observed that the
CV64A6 core stalls on reads but due to its four-entry deep store buffer, does not stall on
write requests until the buffer is full, i.e., it stalls only after four consecutive write requests.
This observation is also verified in Section 5.3.2. For this reason, we define the effective
memory request latency L as follows,

L=Lg+ Ly/A. (5.1)

74

IP Name CLB CLB Registers | LUT as Logic
SPU (16,8) 369 1424 1313
AR Channel Filter 0 3

AW Channel Filter 0 3

R Channel Filter 433 404

B Channel Filter 433 409

AR FIFO 66 28

AW FIFO 58 24

R FIFO 146 44

B FIFO 146 44

RR Arbiter 2 0

Table 5.3: Resource utilization breakdown of an SPU.
Similarly, we define the effective number of memory requests K as,
K =Kr+ Ky/4. (5.2)

Considering Equation 5.1, we can define the total execution time F of a program as
the sum of the computation time C' and the effective request latency L,

E=C+L.

(5.3)

Since, the task under analysis might be executed multiple times, we want to define an
upper bound for the measurable parameters. We let E™* to be an upper bound for F
over all possible executions (i.e., the WCET in isolation), K™ to be an upper bound for
K. We can then compute C™** to be an upper bound for £ — L. Our case study is based

on the following assumptions:

A1l Isolation

Co-running a task under analysis with interfering tasks can increase the effective
latency L of its memory requests by a factor A > 0; however, it does not affect the
sequence of instructions executed by the program nor the number of memory requests
it issues. Note: if there is a shared cache, this requires cache partitioning, plus no
shared data or coherence, as is the case of our platform. Also, we must assume that
the task is not preempted in either case.

75

A2 Additivity (under isolation)

If the effective latency L is increased by a factor A, then the execution time increases
no more than A. We expect this behaviour, because as mentioned above, the com-
putation time is not affected by contention. Moreover, in case of reads, extra read
latency Ag can stall the core but by no more than Ag; and in the case of writes,
extra read latency Ay, can stall the core by only Ay /4 because four writes need to
be stored in the buffer consecutively. This increase represents the worst-case because
if the four consecutive writes are more evenly spread out then the core would not
have to stall at all.

Given a regulation parameter, a > 1, the goal of our regulation mechanism is to ensure
that the execution time of the task when running with interfering tasks is bounded by
E™* ., This is called the target setpoint. Keeping assumption A2 in mind, we can
calculate the maximum acceptable request latency, L™**(«) for this case as follows,

L3 (a) = B oo — O™, (5.4)

At any point in time during the execution, let L.,,; and K,,,; be the effective latency
of memory requests and the effective number of memory requests made by the task under

analysis following the same definitions from Equations 5.1 and 5.2, respectively. Therefore,
these terms can be decomposed as follows,

Lcon

Lcont = Lcont,R + 4t7Wa (55)
Kcon

Kcont = Kcont,R + Ttwv (56)

where Leont g, Leont,w are the cumulative read and write request latencies at that point of
time, and Kont g, Keont,w are the number of read and write request made by the task so
far.

With these definitions, we want to prove the following: if at the end of the task,
Leont/ Keont < L2 (a) /K™ holds, then it must be F; < E™* - o, where E,; is the

cont
execution time of the program.

By the isolation (A1) and additivity (A2) property, the following must hold,

Ccont S C .
g Econt S E+ Lcont - La (58)

76

where E and L are the execution time and memory latency of the corresponding execution
in isolation, respectively, such that A = L.y, — L.

By definition we have C™** > E — L, because it is an upper bound over £ — L.

" Econt S E + Lcont - L S Lcont + Cmax (59)

Moreover, our stated assumption is,

Lcont < Lmax(a)

cont 5.10
Kcont o Kmax ()
Lmax a/
— Lcont S }c'(o'n—ntéx) * Dcont (511)
By the isolation property (A1), it must be K.y < K™
[max
" Econt S ;gn—nia(? . Kcont + (rmax (512)
< Li(a) + C™* (5.13)
— pmax ., _ (Omax j cymax (514>
— Emax . g (5.15)

Thus, the property holds.

Based on the detailed property, we describe our run-time mechanism as follows:

1. The mechanism first computes L2¥*(«), from Equation 5.4. Then it computes the

average latency avg_lat = L2 (o) / K™,

2. At run-time, the mechanism calculates the effective request latency L.y, from Equa-
tion 5.5, where Leout,r and Leon: w are collected by reading the corresponding APMU
counters.

3. The mechanism also reads the values of K o r, Keone,w from the APMU counters
to compute K., as defined in Equation 5.6.

4. The mechanism stops the other cores so that the value of Ly, / Keons does not become
larger than avg_lat i.e., we aim to ensure that the running average of the request
latencies is always less than or equal to that of the maximum acceptable average.
And if the value of Leyni/ Keont falls below the avg_lat, it resumes them.

7

5.3.1 Implementation

In this section, we present the C code used to implement the regulation mechanism dis-
cussed above in Section 5.3. The program, given in Algorithm 2, expects the target average
latency (Leont/Keont) to be written into the DSPM at address DSPM_BASE + 0x80. The
program takes 20 clock cycles to start up, this includes the time taken to initialize various
registers, the stack pointer, and to load up the target average latency from the DSPM.
The polling period of the program is 93 clock cycles, i.e., the core re-computes the run-
ning average latency every 93 clock cycles. As discussed in Section 4.2.2, the APMU core
consumes 2 clock cycles per memory and counter instruction. Additionally, the multiplier
in the worst-case can take up to 4 clock cycles. To regulate cores, the APMU needs to
communicate with the debug module through the system AXI4 crossbar. As described in
Section 5.1, the APMU can halt and resume cores by sending their HART IDs to the debug
module at specific addresses. A halt or resume request takes 8 clock cycles to be routed
to the debug module via the system AXI4 crossbar and the module takes one clock cycle
further to process it. Once the application core receives a halt request, it further takes
around 5 clock cycles to halt. Therefore, the platform consumes 14 clock cycles to halt or
resume an application core.

Algorithm 2 Regulation Algorithm

// APMU-specific addresses.
#define DEBUG_HALT 0x200
#define DEBUG_RESUME 0x208

#define TIMER_ADDR 0x10404000
#define DSPM_BASE_ADDR 0x10427000

// Macros for 32-bit read and write to memory addresses.
#define read_32b(addr) (*(volatile int *) (long) (addr))
#define write_32b(addr, val_) (*(volatile int *)(long) (addr) = val_)

// Macros to program the Debug module.
#define debug_halt(core_id) write_32b(DEBUG_HALT, core_id)
#define debug_resume(core_id) write_32b(DEBUG_RESUME, core_id)

// Macros for custom APMU core instructions.

// Counter read: rd = cnt[rsi]

#define counter_read(rd, rsi) asm volatile ("cnt.rd\t%0,%1" : "=r" (rd)
"y n (ISl)) ;

78

// Counter write: cnt[rsl] = rs2
#define counter_write(rsl, rs2) asm volatile ("cnt.wr\t%0,%1"

||ru (IS2)) ;
#define HALT 1
#tdefine RESUME 0

void main () {
// Load the DSPM base address into SP.
asm volatile ("1i sp,DSPM_BASE_ADDR");

// Number of requests and latencies, read from APMU counters.

volatile int unsigned cnt_n_read, cnt_read_lat;
volatile int unsigned cnt_n_write, cnt_write_lat;

// Used for total latency computation and comparisons.
volatile int unsigned current_lat = O;

volatile int unsigned target_lat = O;

// Used to loop over non-CUA cores.
int unsigned core_idx = 0;

// Used to loop over APMU counters.
int unsigned counter_idx = O;

// To verify correct operation.
int unsigned halt_status = RESUME;

" (rsi) R

// This is the target avg_lat that APMU should maintain for CUA.

volatile int *target_addr = (int*) (DSPM_BASE_ADDR + 0x80);

volatile int unsigned target_avg_lat = read_32b(target_addr);

// Regulation mechanism starts.

while (1) {
// Read necessary APMU counters.
// Counter 0: Number of read requests
counter_read(cnt_n_read, 0);
cnt_n_read = cnt_n_read & Ox7FFFFFFF;

// Counter 1: Number of write requests

counter_read(cnt_n_write, 1);
cnt_n_write = cnt_n_write & Ox7FFFFFFF;

79

// Counter 2: Cumulative read latency
counter_read(cnt_read_lat, 2);

// Counter 3: Cumulative write latency
counter_read(cnt_write_lat, 3);

current_lat = cnt_read_lat + (cnt_write_lat >> 2);
target_lat = (cnt_n_read + (cnt_n_write >> 2)) * target_avg_lat;

if ((current_lat <= target_lat) && (halt_status == HALT)) {
// Resume all cores if halted.
debug_resume (1) ;
debug_resume(2) ;
debug_resume(3) ;
halt_status = RESUME;
} else if ((current_lat > target_lat) && (halt_status == RESUME)) {
// Halt all cores if not already halted.
debug_halt(1);
debug_halt(2);
debug_halt(3);
halt_status = HALT;

As mentioned in Section 2.2, MemPol [9] had also implemented a regulation policy using
a small monitoring core that enjoyed access to performance counters in the application
cores; however, it had tested a different regulation mechanism. In this section, we compare
against those results of MemPol such as the access time of the counters, the time taken to
halt or resume an application core, and the polling period. MemPol was implemented on
the Zynq Ultrascale4+ ZCU102 device, using the smaller real-time Cortex R5 core as the
regulator core. The results presented in [9] are in ns and us but since our platforms are
running at different clock speeds, using time taken as a comparison metric does not give
very meaningful insights. Therefore, we convert MemPol’s results into clock cycles, using
500 MHz as the operating frequency for Cortex Rb; as it is the default configuration on
Vivado.

The Cortex R5 core consumes 137 and 108 clock cycles to read from and write to the
performance counters in the application core, respectively; compared to the 2 clock cycle

30

delay per read/write operation for the APMU. Additionally, MemPol has a polling period
of 3125 clock cycles, this is because of the large access time of the performance counters
distributed across multiple processors. The work also assumes a worst-case poll-control
delay (D) of 2000 clock cycles, where D is defined as the delay between observing that a
core has exhausted its budget and the point where the core stops initiating further memory
accesses. For our mechanism, the polling period is 93 clock cycles and the worst-case poll
control delay D is 107 clock cycles, which is much faster than MemPol. These results
though mechanism-dependent still show that our APMU infrastructure is more suitable
for implementing fine-grained event-based software mechanisms than existing COTS plat-
form.

5.3.2 Interference Tests on PULP

In this section, we present the timing characteristics for our evaluation platform, introduced
in Section 5.3. To generate these characteristics we sweep the memory with one CV64A6,
making read and write transactions, with different strides. This is our core-under-analysis
(CUA). All these memory sweeps are made under different cases of contention: when no
other core is running, when one other core is running, when two other cores are running,
when three are running. The other cores are referred to as non-CUA cores. As our platform
is non-coherent, we had to ensure that the memory regions used by different cores do not
overlap. We allocate 25 MB of memory space for each core. The size of the LLC is 2 MB.
Additionally, since the LLC is partitioning, the cores can only affect each other’s request
latencies and not their hit-miss ratio in the LLC.

As mentioned in Section 5.2, the platform clock runs at 50 MHz but the DDR4 mem-
ory has a clock speed of 650 MHz, because of this difference in clock frequency, we see
relatively small increase in the response latency of the memory controller even under con-
tention. However, the increase in overall response latency, combining both the LLC and
main memory, is much larger because the effects of contention are more prominent for the
LLC. As mentioned in Section 5.3, in worst-case every read can be blocking but we need
four consecutive writes to have the same effect. In this section, we also verify our claim.
Considering Equation 5.9 from Section 5.3, we have,

" Econt S Lcont + Omax (516)
— Lcont > Eccmt - Cmax, (517)

81

As L., is the effective latency during contention, it defined in Equation 5.5 as follows,

Lcont,W
1 .

Lcont = Lcont,R + (518)

From here on, we have two cases: a) when the CUA is only making read requests, i.e.,
Leontw, Keontw = 0, and b) when the CUA is only making write requests, i.e., Leont g,
Kcont,R = 0.

1. Case a) is as follows,

Lcont Z Econt - Cmax (519)
- Lcont,R > Econt - M (520)

Leont.r 1s the cumulative latency observed by the APMU counters and can be de-
fined as Leont,r = g - Kcont,r, Where [g is the latency of an individual read request.
Therefore, we get,

B, — Cmax
lp > TM’R (5.21)
This equation represents the lower bound for read request latencies.
2. Similarly, we have for case b),
Leontw 2 4+ (Econt — C™) (5.22)

As Leontw is the cumulative latency observed by the APMU counters, it can also
be defined as Leontw = lw - Keont,w, Where lyy is the latency of an individual write
request. Therefore, we get,

Econt - Cmax
lw >4- (—) (5.23
Kcont,W)

This equation represents the lower bound for write request latencies.
The above results can be used to verify our claim regarding the nature of read and
write requests in the platform and their impact on the CUA core. Figure 5.2, shows all

the interference test results. The horizontal axis is the number of non-CUA cores that
are interfering with the memory subsystem by making their own requests. The non-CUA

82

cores can make four type of requests: reads that hit in the LLC, reads that miss in the
LLC, writes that hit in the LLC, and writes that miss in the LLC. The vertical axis is
the request latency as measured by the APMU in clock cycles. In Figure 5.2a, we plot
the contention suffered by the CUA while making read requests that hit in the LLC. Each
solid line represent the latency observed by the APMU (Ig) for that type of contention,
the corresponding dotted line represents the lower bound derived in Equation 5.21.

Similar results are obtained when the CUA initiates writes that hit in the LLC, as shown
in Figure 5.2b. However, the case for read and write misses must be further categorized.
A request that misses in the LLC can cause a write-back if it evicts a dirty cacheline.
Considering this, we collect the latency of read and write miss requests made by the CUA,
for both cases, when they cause a write-back and when they do not. It must be pointed
out that since we generate non-CUA requests by sweeping over large independent memory
regions with read or write requests, each write request that misses in the LLC will inevitably
generate a write-back as well. This might explain why the contention is worse for write
misses.

As can be seen in the results, for all the cases where the CUA is generating read
requests, the solid and dotted lines overlap. This is because in the experiments the CUA is
blasting the LLC with reads and every read stalls it. However, in case of writes the dotted
line being the lower bound either overlaps or is under the solid line. However, in a few
cases such as the non-CUA write miss case in Figure 5.2f, the dotted line is slight above
the solid line; we suspect this is due to rounding errors, as the difference between the two
is very small, of 1 clock cycles.

5.3.3 Regulation Results

In this section, we present the results of our case study. The experiments were conducted
on a set of synthetic benchmarks, followed by the San Diego Vision Benchmark (SDVB)
Suite [21]. The synthetic tests were conducted to achieve the following objectives: 1) to
explore the functionality of the APMU, 2) verify the operation of our implementation, and
3) validate our regulation mechanism.

Synthetic Benchmarks: In these experiments, we executed synthetic all-read and all-
write programs on the CUA core. Following the steps detailed out in Section 5.3, we first
gathered results on the worst-case execution time of the task under isolation, to compute
Emexs Oma and K™, Next, we executed the regulation policy considering a set of target
setpoints (E™®* - o), calculated by varying the regulation parameter «, from 0 to 50%
with increments of 10%. The regulation program loaded into the APMU core ensured

83

B MNon-CUA Read Hit 4 MNon-CUAWrite Hit @ Non-CUA Read Miss & Non-CUA Write Miss W Non-CUA Read Hit 4 Non-CUA Write Hit @ Non-CUA Read Miss & Non-CUA Write Miss
== Non-CUA Read Hit == Non-CUAWrite Hit = = Non-CUA Read Miss = = Mon-CUA Write Miss == Non-CUARead Hit == Non-CUAWrite Hit = = Non-CUA Read Miss = = Non-CUA Write Miss

200 200
150 150
E 100 E. 100
3 3
50 50
° > T
1 JE— i .
0 0
0 1 2 3 0 1 2 3
Number of non-CUA cores Number of non-CUA cores
(a) CUA core makes read hits in LLC. (b) CUA core makes write hits in LLC.
® MNon-CUARead Hit 4 Non-CUAWrite Hit @ Non-CUARead Miss & Non-CUA Write Miss W MNon-CUARead Hit 4 Non-CUAWrite Hit @ Non-CUA Read Miss 4 Non-CUA Write Miss
= Non-CUA Read Hit == Non-CUA Write Hit == Non-CUA Read Miss == Non-CUA Write Miss == Non-CUA Read Hit == Non-CUA Write Hit = = Non-CUA Read Miss = = Non-CUA Write Miss
200 200
150 150
E 100 E 100
3 3
1 . .
50 + - - 50 - ? 1
& 5
0 0
0 1 2 3 0 1 2 3

Number of non-CUA cores Number of non-CUA cores

(¢) CUA core makes read misses without (d) CUA core makes read misses with write-
write-backs in LLC. backs in LLC.

Non-CUA Read Hit 4 Non-CUA Write Hit @ Non-CUA Read Miss & Non-CUA Write Miss
== Non-CUA Write Hit == MNon-CUA Read Miss = = Non-CUA Write Miss

B Non-CUA Read Hit 4 Non-CUAWrite Hit @ Non-CUA Read Miss 4 Non-CUA Write Miss

== Non-CUA Read Hit Non-CUA Write Hit = = Non-CUA Read Miss = = Non-CUA Write Miss = = Non-CUA Read Hit
200 250
200
150
- ~ 150
g “ g 100
3 3
0 o g
50
0 0
0 1 2 3 a 1 2 3

Number of non-CUA cores Number of non-CUA cores

(e) CUA core makes write misses without (f) CUA core makes write misses with write-
write-backs in LLC. backs in LLC.

Figure 5.2: Interference test results.

that the current average of the effective request latency is never larger than the maximum

acceptable average.

84

The results are shown in Figure 5.3. The graphs show the difference between the target
setpoint (E™** - «) and the observed execution time (F..,;) at the end of the program. The
regulation % shows the total amount of the time the non-CUA cores were halted compared
to the total program run-time. The regulation % falls as the regulation parameter is
increased, which is to be expected. More importantly, as we can see that the difference
between the target setpoint and observed execution times are close (2.1% in the worst-
case). This also shows that in the worst-case, while every read can stall the processor, four
consecutive writes are needed to have the same impact.

@ Target Setpoint A Observed Regulation % @ Target Setpoint A Observed Regulation %

15 100 15 100
14 14

75 75
13 13
50

12 12

25 25

1l 11

Normalized Execution Time
B
Normalized Execution Time

10 = 0 10 = 0
0 10 20 30 40 50 0 10 20 30 40 50

Regulation Parameter (a) Regulation Parameter (a)

(a) Regulation result for synthetic all-reads (b) Regulation result for synthetic all-writes
benchmark. benchmark.

Figure 5.3: Regulation Results for the Synthetic Benchmarks.

San Diego Vision Benchmarks: In this section, we aim to assess the performance
of the APMU using the regulation mechanism described in Section 5.3 by executing real
benchmarks. We evaluate our design by executing a set of representative benchmarks,
similar to the work done by ([10], [9]). Figure 5.4 shows our results for disparity, mser,
localization and ansift benchmarks. As discussed under synthetic benchmarks, the graphs
shows the difference between the target (E™**-«) and the observed (E.,,;) execution times.
The regulation % shows the total amount of time the non-CUA cores were halted during
the program run.

In the worst-case, the difference between the target and observed execution is around
30.3%, which implies that the mechanism is over-regulating. Moreover, since the localiza-
tion and sift are computationally intensive benchmarks with comparatively fewer memory
accesses, their over-regulation margin is higher. This is because in our latency-based anal-
ysis, we assume that in the worst-case every four consecutive writes halt the core, which
leads to a large upper bound in the worst-case effective latency L. Since it is possible that

85

if the writes are spread out enough, none of them will stall the core. But because we do
not have information about the true nature of the writes due to the lack of an EVU in the
application core, the mechanism is forced to over-regulate.

15

14

13

1z

Normalized Execution Time

11

10

Mormalized Execution Time

]

o

@ Target Setpoint A Observed Regulation %

2

0
10 20 30 40 50

Regulation Parameter (o)

(a) Regulation result for Disparity.

15

14

13

1.2

11

10

@ Target Setpoint A Observed Regulation %
) %‘
0 10 20 30 40 50

Regulation Parameter (a)

(c) Regulation result for Localization.

100

75

25

0

Normalized Execution Time

Figure 5.4: Regulation Results for

Normalized Execution Time

@ Target Seipoint A Observed Regulation %

15

14

1.3

1.2

11

1.0

15

14

13

12

11

1.0

0 10 20 30 40

Regulation Parameter (a)

(b) Regulation result for Mser.

@ Target Setpoint A Observed Regulation %

PaEEn

0 10 20 30 40 50

Regulation Parameter (o)

(d) Regulation result for Sift.

the SDVB Benchmark Suite.

prate

100

75

25

0
50

3

Lastly, we also plot a timestamped graph in Figure 5.5 showing the regulation mech-
anism in action, as it halts and resumes the non-CUA cores for the disparity benchmark,
with a = 50%. This graph also shows the different execution phases of the CUA core,
when the core starts making a lot of memory accesses, the mechanism is forced to halt the
Nnon-cores.

86

Regulation Decision

Nan-CUA core Status

Resumed

500 1000 1500 2000 2500 l 3000

Time (us)

Figure 5.5: Timestamp of the regulation decisions taken by the APMU core during disparity
at a = 50%.

87

Chapter 6

Conclusions

As highlighted in Chapters 1 and 2, performance monitoring frameworks are a crucial
component of modern computer systems. They are used in a variety of applications from
program profiling, optimization, tracing, to resource regulation and management, security
checks, etc. Major industrial chip designers such as Arm and Intel have developed and pro-
posed their own performance monitoring frameworks targeting, both, individual processors,
and the overall system. However, the existing monitoring frameworks are decentralized,
which means that the performance counters are embedded in the modules individually.
This limits their reach in implementing complex software mechanisms spanning multiple
hardware IPs, because of the access overhead and the added complexity in combining the
various events to get a cohesive model of the system. Keeping the aforementioned problems
in mind, we propose a centralized system performance monitoring infrastructure that com-
prises an Advanced Performance Monitoring Unit (APMU) and small Event Units (EVUs)
that are spread out across the platform. These EVUs are dedicated monitoring units that
when installed in a hardware module can be used to generate low-level event information
about said module. The EVUs collect this information transmit it to the APMU in the
form of a standardized event packet. The APMU consists of a set of smart performance
counters that can operate on this incoming packet and store it. This allows the APMU to
store event information from a variety of platform components, allowing users access to a
rich amount of low-level system information. The APMU also has an instruction processor
that was extended with additional functionality to provide support for the software mech-
anisms that are often used in conjunction with such devices and frameworks. In Section
3.1, we discuss several such applications that actively poll performance counters and take
decisions accordingly.

Along side our proposed design, we also provide a detailed specification of the APMU,

38

and the EVU-APMU interface. For the sake of compatibility and easy integration, we
have standardized the EVU-APMU interface. This allows users to connect any APMU-
compatible EVU to the APMU, regardless of its implementation, allowing users a great
deal of freedom in developing their own EVUs targeting IPs relevant to their use case. The
specifications have been developed with the aim of extensibility in mind. Our discussion
on the specification is presented in Chapter 3. Following which in Chapter 4, we introduce
our implementation of the architecture, targeting an open-source RISC-V platform, with
AXI4-based system interconnections. To implement the additional functionalities for the
APMU core, we extend the RISC-V ISA to include our own custom instructions. We
additionally also developed a software setup that allows us to efficiently write programs for
the APMU processor, using these custom instructions. Our implementation also includes
an AXI4 Snooping Unit, an EVU, designed for snooping AXI transactions.

In Chapter 5, we present our evaluation of the implemented design comprising the
hardware synthesis results for the AMD Virtex UltraScale+ FPGA VCU118 device and
the results of a latency-based regulation case study. In terms of hardware optimization, we
believe that more work can be done in the APMU, as discussed in Section 5.2. Using the
information available through our custom-EVU, we were to able implement a mechanism
that regulates application cores on the basis of latency, which is more accurate than band-
witdh regulation. Our synthetic results validate the functionality of our design. However,
the benchmarks results are less promising. This is because our chosen latency-based reg-
ulation mechanism is unable to accurately account for stalls caused by writes, due to the
presence of the store buffer in the application cores. This issue is further exacerbated by
the write-through nature of the L1 data cache of the cores; as this balloons up the number
of writes, making our lack of information about the impact of the writes on application
core even more glaring, causing us to over-regulate the other cores. However, our results
show that the APMU is able to efficiently use the performance counters to run complex
regulation policies.

In future, we plan to run our APMU device in a virtualized environment, running a
hypervisor that can support the APMU. Using two-stage address translation, the hypervi-
sor can map individual APMU counters to different virtual machines for faster access in a
safe and controlled manner. The current APMU hardware already supports this feature.
Additionally, by developing a software stack, we can ease the integration of the APMU and
its custom-EVUs into the virutalized environment. This would also include an hypervisor-
initiated initialization routine during boot time, software libraries to implement dynamic
APMU configuration functionalities, etc. We also plan to implement our design on other
platforms such as the Berkeley’s FireSim [75].

On other fronts, we anticipate that our APMU design can be extended to implement

89

many of the applications listed in Section 3.1, provided that the necessary EVUs are
developed. Moreover, we believe that the centralized aspect of the design can aid in the

development of more complex software mechanisms that can effectively use the information
the APMU provides.

90

References

1]

Ibex: An embedded 32 bit RISC-V CPU core; Ibex Documentation
0.1.devb0+gc9f4a32.d20240105 documentation. https://ibex-core.readthedocs.
io/en/latest/. [Accessed 06-01-2024].

Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. Profiling a warehouse-scale com-
puter. SIGARCH Comput. Archit. News, 43(3S):158-169, jun 2015.

Memory System Resource Partitioning and Monitoring (MPAM), for A-profile ar-
chitecture. https://developer.arm.com/documentation/ddi0598/latest/. [Ac-
cessed 30-11-2023].

Intel® Resource Director Technology (Intel® RDT) framework. https:
//www.intel.com/content/www/us/en/architecture-and-technology/
resource-director-technology.html. [Accessed 30-11-2023].

AMD Xilinx. AXI Performance Monitor, Zynq UltraScale+ Device Technical Ref-
erence Manual (UG1085) — xilinx.com. https://www.xilinx.com/products/
intellectual-property/axi_perf_mon.html. [Accessed 30-11-2023].

Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. Memguard:
Memory bandwidth reservation system for efficient performance isolation in multi-core
platforms. In 2013 IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 55-64, 2013.

Michael Garrett Bechtel and Heechul Yun. Denial-of-service attacks on shared cache
in multicore: Analysis and prevention. CoRR, abs/1903.01314, 2019.

Nicolas Dagieu, Alexander Spyridakis, and Daniel Raho. Memguard, memory band-
width management in mixed criticality virtualized systems - memguard kvm schedul-
ing. 2016.

91

https://ibex-core.readthedocs.io/en/latest/
https://ibex-core.readthedocs.io/en/latest/
https://developer.arm.com/documentation/ddi0598/latest/
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.xilinx.com/products/intellectual-property/axi_perf_mon.html
https://www.xilinx.com/products/intellectual-property/axi_perf_mon.html

[9]

[15]

[16]

Alexander Zuepke, Andrea Bastoni, Weifan Chen, Marco Caccamo, and Renato Man-
cuso. Mempol: Policing core memory bandwidth from outside of the cores. In 29th
IEEFE Real-Time and Embedded Technology and Applications Symposium, RTAS 2023,
San Antonio, TX, USA, May 9-12, 2023, pages 235-248. IEEE, 2023.

Ahsan Saeed, Denis Hoornaert, Dakshina Dasari, Dirk Ziegenbein, Daniel Mueller-
Gritschneder, Ulf Schlichtmann, Andreas Gerstlauer, and Renato Mancuso. Mem-
ory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs. In
Alessandro V. Papadopoulos, editor, 35th Euromicro Conference on Real-Time Sys-
tems (ECRTS 2023), volume 262 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 4:1-4:23, Dagstuhl, Germany, 2023. Schloss Dagstuhl — Leibniz-
Zentrum fiir Informatik.

Roger Pujol, Mohamed Hassan, Hamid Tabani, Jaume Abella, and Francisco Javier
Cazorla. Tracking coherence-related contention delays in real-time multicore systems.
In Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing, SAC
23, page 461-470, New York, NY, USA, 2023. Association for Computing Machinery.

A. de Lecea, M. Hassan, E. Mezzetti, J. Abella, and F. J. Cazorla. Improving timing-
related guarantees for main memory in multicore critical embedded systems. In 2023
IEEFE Real-Time Systems Symposium (RTSS), pages 265-278, Los Alamitos, CA,
USA, dec 2023. IEEE Computer Society.

Ali-Reza Adl-Tabatabai, Richard L. Hudson, Mauricio J. Serrano, and Sreenivas Sub-
ramoney. Prefetch injection based on hardware monitoring and object metadata.
SIGPLAN Not., 39(6):267-276, jun 2004.

Deok-Jae Oh, Yaebin Moon, Do Kyu Ham, Tae Jun Ham, Yongjun Park, Jae W.
Lee, Jung Ho Ahn, and Eojin Lee. Maphea: A framework for lightweight memory
hierarchy-aware profile-guided heap allocation. ACM Trans. Embed. Comput. Syst.,
22(1), dec 2022.

Malcolm Bourdon, Pierre-Francgois Gimenez, Eric Alata, Mohamed Kaaniche, Vincent
Migliore, Vincent Nicomette, and Youssef Laarouchi. Hardware-performance-counters-
based anomaly detection in massively deployed smart industrial devices. In 2020 IEEE
19th International Symposium on Network Computing and Applications (NCA), pages
1-8, 2020.

Mohamed El Bouazzati, Russell Tessier, Philippe Tanguy, and Guy Gogniat. A
lightweight intrusion detection system against IoT memory corruption attacks. In

92

[17]

[18]

[19]

[22]

[23]

2023 26th International Symposium on Design and Diagnostics of Electronic Circuits
and Systems (DDECS), pages 118-123, 2023.

Abraham Peedikayil Kuruvila, Sayar Karmakar, and Kanad Basu. Time series-based
malware detection using hardware performance counters. In 2021 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages 102112, 2021.

Yihao Yang, Pengfei Qiu, Chunlu Wang, Yu Jin, Dongsheng Wang, and Gang Qu.
Exploration and exploitation of hidden pmu events, 2023.

AMBA AXI and ACE Protocol Specification Issue F.b, Arm Ltd., 2017.
https://developer.arm.com/-/media/Arm},20Developer’20Community/PDF/
Learn%20the%20Architecture/102202_0100_01_Introduction_to_AMBA_AXTI.
pdf?revision=369ad681-f926-47b0-81be-42813d39e132, 2020. [Accessed 12-12-
2023].

AMD Virtex UltraScale+ FPGA VCU118 Evaluation Kit — xilinx.com. https://
www.xilinx.com/products/boards-and-kits/vcull8.html. [Accessed 11-02-2024].

Sravanthi Kota Venkata, Ikkjin Ahn, Donghwan Jeon, Anshuman Gupta, Christopher
Louie, Saturnino Garcia, Serge Belongie, and Michael Bedford Taylor. Sd-vbs: The san
diego vision benchmark suite. In 2009 IEEE International Symposium on Workload
Characterization (IISWC), pages 55-64, 20009.

ARM® Cortex®)-A72 MPCore Processor Technical Reference Manual Revision
r0p3 — developer.arm.com. https://developer.arm.com/documentation/100095/
0003/7lang=en. [Accessed 13-02-2024].

Intel®) Microarchitecture Codename Nehalem Performance Moni-
toring Unit Programming Guide (Nehalem Core PMU). https:
//www.intel.com/content/dam/develop/external/us/en/documents/
30320-nehalem-pmu-programming-guide-core.pdf. [Accessed 13-02-2024].

Intel® 64 and IA-32 Architectures Software Developer Manuals — intel.com.
https://www.intel.com/content/www/us/en/developer/articles/technical/
intel-sdm.html. [Accessed 16-02-2024].

“Zientr” and “Zihpm” Counters — RISC-V Extension. https://wiki.riscv.org/
display/HOME/Recently+Ratified+Extensions, March 2023.

93

https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Learn%20the%20Architecture/102202_0100_01_Introduction_to_AMBA_AXI.pdf?revision=369ad681-f926-47b0-81be-42813d39e132
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Learn%20the%20Architecture/102202_0100_01_Introduction_to_AMBA_AXI.pdf?revision=369ad681-f926-47b0-81be-42813d39e132
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Learn%20the%20Architecture/102202_0100_01_Introduction_to_AMBA_AXI.pdf?revision=369ad681-f926-47b0-81be-42813d39e132
https://www.xilinx.com/products/boards-and-kits/vcu118.html
https://www.xilinx.com/products/boards-and-kits/vcu118.html
https://developer.arm.com/documentation/100095/0003/?lang=en
https://developer.arm.com/documentation/100095/0003/?lang=en
https://www.intel.com/content/dam/develop/external/us/en/documents/30320-nehalem-pmu-programming-guide-core.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/30320-nehalem-pmu-programming-guide-core.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/30320-nehalem-pmu-programming-guide-core.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://wiki.riscv.org/display/HOME/Recently+Ratified+Extensions
https://wiki.riscv.org/display/HOME/Recently+Ratified+Extensions

[26) AMD Xilinx. AXI Performance Monitor, Zynq UltraScale+ Device Technical Ref-
erence Manual (UG1085) — docs.xilinx.com. https://docs.xilinx.com/r/en-US/
ugl1085-zyng-ultrascale-trm/AXI-Performance-Monitor. [Accessed 25-02-2024].

[27) AMD Xilinx. Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit — xilinx.com.
https://www.xilinx.com/products/boards-and-kits/ek-ul-zcul02-g.html.
[Accessed 20-11-2023].

[28] AMD Xilinx. Platform Management Unit, Zynq UltraScale+ Device Technical Ref-
erence Manual (UG1085) — docs.xilinx.com. https://docs.xilinx.com/r/en-US/
ug1085-zyngq-ultrascale-trm/Platform-Management-Unit.

[29] CoreSight Architecture — developer.arm.com. https://developer.arm.com/
Architectures/CoreSight20Architecture. [Accessed 30-11-2023].

[30] Perf Wiki — perf.wiki.kernel.org. https://perf.wiki.kernel.org/index.php/
Main_Page. [Accessed 13-12-2023].

[31] Arnaldo Carvalho de Melo. The New Linux 'perf’ tools. http://vger.kernel.org/
~acme/perf/1k2010-perf-paper.pdf, 2010. [Accessed 12-12-2023].

[32] Profiling with Arm MAP; Arm Documentation 2013 — devel-
oper.arm.com. https://developer.arm.com/documentation/102732/1910/
Low-overhead-profiling-for-production-and-test-wrokloads-at-any-scale.

[Accessed 16-02-2024].

[33] Intel® VTune™ Profiler User Guide — intel.com. https://www.intel.com/
content/www/us/en/docs/vtune-profiler/user-guide/2023-1/overview.html.

[Accessed 16-02-2024].

[34] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa.
Bubble-up: Increasing utilization in modern warehouse scale computers via sensible
co-locations. In 2011 44th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 248259, 2011.

[35] Sriram Govindan, Jie Liu, Aman Kansal, and Anand Sivasubramaniam. Cuanta:
Quantifying effects of shared on-chip resource interference for consolidated virtual
machines. In Proceedings of the 2nd ACM Symposium on Cloud Computing, SOCC
11, New York, NY, USA, 2011. Association for Computing Machinery.

94

https://docs.xilinx.com/r/en-US/ug1085-zynq-ultrascale-trm/AXI-Performance-Monitor
https://docs.xilinx.com/r/en-US/ug1085-zynq-ultrascale-trm/AXI-Performance-Monitor
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://docs.xilinx.com/r/en-US/ug1085-zynq-ultrascale-trm/Platform-Management-Unit
https://docs.xilinx.com/r/en-US/ug1085-zynq-ultrascale-trm/Platform-Management-Unit
https://developer.arm.com/Architectures/CoreSight%20Architecture
https://developer.arm.com/Architectures/CoreSight%20Architecture
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
http://vger.kernel.org/~acme/perf/lk2010-perf-paper.pdf
http://vger.kernel.org/~acme/perf/lk2010-perf-paper.pdf
https://developer.arm.com/documentation/102732/1910/Low-overhead-profiling-for-production-and-test-wrokloads-at-any-scale
https://developer.arm.com/documentation/102732/1910/Low-overhead-profiling-for-production-and-test-wrokloads-at-any-scale
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/2023-1/overview.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/2023-1/overview.html

[36]

[37]

Alex D. Breslow, Ananta Tiwari, Martin Schulz, Laura Carrington, Lingjia Tang,
and Jason Mars. Enabling fair pricing on hpc systems with node sharing. In SC
'13: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, pages 1-12, 2013.

Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. Bubble-flux: Precise
online qos management for increased utilization in warehouse scale computers. In
Proceedings of the 40th Annual International Symposium on Computer Architecture,
ISCA 713, page 607-618, New York, NY, USA, 2013. Association for Computing Ma-
chinery.

Ram Srivatsa Kannan, Michael Laurenzano, Jeongseob Ahn, Jason Mars, and Lingjia
Tang. Caliper: Interference estimator for multi-tenant environments sharing architec-
tural resources. ACM Trans. Archit. Code Optim., 16(3), jun 2019.

Weifan Chen, Ivan Izhbirdeev, Denis Hoornaert, Shahin Roozkhosh, Patrick
Carpanedo, Sanskriti Sharma, and Renato Mancuso. Low-Overhead Online Assess-
ment of Timely Progress as a System Commodity. In Alessandro V. Papadopoulos,
editor, 35th Euromicro Conference on Real-Time Systems (ECRTS 2023), volume
262 of Leibniz International Proceedings in Informatics (LIPIcs), pages 13:1-13:26,
Dagstuhl, Germany, 2023. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.

Matteo Zini, Daniel Casini, and Alessandro Biondi. Analyzing arm’s mpam from the
perspective of time predictability. IEEE Transactions on Computers, 72(1):168-182,
2023.

Parul Sohal, Michael Bechtel, Renato Mancuso, Heechul Yun, and Orran Krieger. A
closer look at intel resource director technology (rdt). In Proceedings of the 30th Inter-
national Conference on Real-Time Networks and Systems, RTNS 22, page 127-139,
New York, NY, USA, 2022. Association for Computing Machinery.

Giovani Gracioli and Antonio Auguto Frohlich. On the influence of shared mem-
ory contention in real-time multicore applications. In 2014 Brazilian Symposium on
Computing Systems Engineering, pages 25-30, 2014.

Ayoosh Bansal, Rohan Tabish, Giovani Gracioli, Renato Mancuso, Rodolfo Pellizzoni,
and Marco Caccamo. Evaluating the memory subsystem of a configurable heteroge-
neous mpsoc. In Workshop on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT), volume 7, page 55, 2018.

95

[44]

[45]

[46]

[47]

[49]

[51]

[52]

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. Fairness via source
throttling: A configurable and high-performance fairness substrate for multicore mem-
ory systems. ACM Trans. Comput. Syst., 30(2), apr 2012,

Kristof Du Bois, Stijn Eyerman, and Lieven Eeckhout. Per-thread cycle accounting
in multicore processors. ACM Trans. Archit. Code Optim., 9(4), jan 2013.

Tanmaya Mishra, Thidapat Chantem, and Ryan Gerdes. Survey of control-flow in-
tegrity techniques for real-time embedded systems. ACM Trans. Embed. Comput.
Syst., 21(4), oct 2022.

Fardin Abdi Taghi Abad, Joel Van Der Woude, Yi Lu, Stanley Bak, Marco Caccamo,
Lui Sha, Renato Mancuso, and Sibin Mohan. On-chip control flow integrity check for
real time embedded systems. In 2013 IEEE 1st International Conference on Cyber-
Physical Systems, Networks, and Applications (CPSNA), pages 26-31, 2013.

Tyler Bletsch, Xuxian Jiang, and Vince Freeh. Mitigating code-reuse attacks with
control-flow locking. In Proceedings of the 27th Annual Computer Security Applica-
tions Conference, ACSAC ’11, page 353-362, New York, NY, USA, 2011. Association
for Computing Machinery.

Victor van der Veen, Dennis Andriesse, Enes Goktasg, Ben Gras, Lionel Sambuc, Asia
Slowinska, Herbert Bos, and Cristiano Giuffrida. Practical Context-Sensitive CFI.

In Proceedings of the 22nd Conference on Computer and Communications Security
(CCS’15), October 2015.

Ansam Khraisat, Igbal Gondal, Peter Vamplew, and Joarder Kamruzzaman. Survey

of intrusion detection systems: techniques, datasets and challenges. Cybersecurity,
2:20, Jul 2019.

Michael Bechtel and Heechul Yun. Memory-aware denial-of-service attacks on shared
cache in multicore real-time systems. IEEE Transactions on Computers, 71(9):2351—
2357, 2022.

Thomas Moscibroda and Onur Mutlu. Memory performance attacks: denial of mem-
ory service in multi-core systems. In Proceedings of 16th USENIX Security Symposium
on USENIX Security Symposium, SS’07, USA, 2007. USENIX Association.

Arm System MMU Support — developer.arm.com. https://developer.arm.com/
Architectures/System),20MMU%20Support. [Accessed 21-02-2024].

96

https://developer.arm.com/Architectures/System%20MMU%20Support
https://developer.arm.com/Architectures/System%20MMU%20Support

[54]

[55]

[61]

[62]

RISC-V Technical Specifications - Home - RISC-V International — wiki.riscv.org.
https://wiki.riscv.org/display/HOME/RISC-V+Technical+Specifications.
[Accessed 25-02-2024].

RISC-V IOMMU Architecture Overview — open-src-
SOC.0Tg. https://open-src-soc.org/2022-05/media/slides/
RISC-V-International-Day-2022-05-05-14h10-Perinne-Peresse.pdf. [Ac-

cessed 25-02-2024].

Andreas Kurth, Wolfgang Ronninger, Thomas Benz, Matheus A. Cavalcante, Fabian
Schuiki, Florian Zaruba, and Luca Benini. An open-source platform for high-
performance non-coherent on-chip communication. CoRR, abs/2009.05334, 2020.

Pasquale Davide Schiavone, Francesco Conti, Davide Rossi, Michael Gautschi, Antonio
Pullini, Eric Flamand, and Luca Benini. Slow and steady wins the race? a comparison
of ultra-low-power risc-v cores for internet-of-things applications. In 2017 27th Inter-
national Symposium on Power and Timing Modeling, Optimization and Simulation
(PATMOS), pages 1-8, 2017.

An update on Ibex, our microcontroller-class CPU core; lowRISC: Collabora-
tive open silicon engineering — lowrisc.org. https://lowrisc.org/news/2019/
06/an-update-on-ibex-our-microcontroller-class-cpu-core/. [Accessed 06-

01-2024].

GitHub - riscv-collab/riscv-gnu-toolchain: GNU toolchain for RISC-V, including GCC
— github.com. https://github.com/riscv-collab/riscv-gnu-toolchain. [Ac-
cessed 25-02-2024].

Davide Rossi, Igor Loi, Francesco Conti, Giuseppe Tagliavini, Antonio Pullini, and
Andrea Marongiu. Energy efficient parallel computing on the pulp platform with sup-
port for openmp. In 2014 IEEE 28th Convention of Electrical & FElectronics Engineers
in Israel (IEEEI), pages 1-5, 2014.

PULP platform. PULP Platform — pulp-platform.org. https://pulp-platform.
org, 2014. [Accessed 30-11-2023].

Andrew Waterman, Krste Asanovié¢, and et al. The RISC-V Instruction Set Manual,
Volume I: User-Level ISA, Document Version 20191213. December 2019.

97

https://wiki.riscv.org/display/HOME/RISC-V+Technical+Specifications
https://open-src-soc.org/2022-05/media/slides/RISC-V-International-Day-2022-05-05-14h10-Perinne-Peresse.pdf
https://open-src-soc.org/2022-05/media/slides/RISC-V-International-Day-2022-05-05-14h10-Perinne-Peresse.pdf
https://lowrisc.org/news/2019/06/an-update-on-ibex-our-microcontroller-class-cpu-core/
https://lowrisc.org/news/2019/06/an-update-on-ibex-our-microcontroller-class-cpu-core/
https://github.com/riscv-collab/riscv-gnu-toolchain
https://pulp-platform.org
https://pulp-platform.org

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Andrew Waterman, Yunsup Lee, Rimas Avizienis, David Patterson, and Krste
Asanovi¢. The RISC-V Instruction Set Manual, Volume II: Privileged Architecture,
Document Version 1.7-draft. May 2015.

Andrew Waterman, John Hauser, Krste Asanovi¢, and et al. The RISC-V Instruction
Set Manual, Volume II: Privileged Architecture (with Hypervisor Eztension), Docu-
ment Version 20211203. December 2021.

José Martins, Adriano Tavares, Marco Solieri, Marko Bertogna, and Sandro Pinto.
Bao: A lightweight static partitioning hypervisor for modern multi-core embedded
systems. In Workshop on next generation real-time embedded systems (NG-RES 2020).
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2020.

Tim Newsome, Megan Wachs, and et al. RISC-V Debug Specificatoin, Document
Version 1.0-STABLE. March 2019.

Open On-Chip Debugger — openocd.org. https://openocd.org/. [Accessed 20-02-
2024].

GDB: The GNU Project Debugger — sourceware.org. https://www.sourceware.
org/gdb/. [Accessed 20-02-2024].

GitHub - CLIC (Core-local Interrupt Controller). https://raw.githubusercontent.
com/riscv/riscv-fast-interrupt/master/clic.pdf. [Accessed 19-02-2024].

GitHub - pulp-platform/clint: RISC-V Core Local Interrupt Controller (CLINT) —
github.com. https://github.com/pulp-platform/clint. [Accessed 20-02-2024].

GitHub - riscv/riscv-plic-spec: PLIC Specification — github.com. https://github.
com/riscv/riscv-plic-spec. [Accessed 20-02-2024].

AMBA APB Protocol Specification; Arm Documentation 2013 — developer.arm.com.
https://developer.arm.com/documentation/ihi0024/latest/. [Accessed 19-02-
2024].

AMD Xilinx. UltraScale™ Architecture and Product Data Sheet: Overview
(DS890) — docs.xilinx.com. https://docs.xilinx.com/v/u/en-US/
ds890-ultrascale-overview. [Accessed 22-02-2024].

AMD Xilinx. UltraScale Architecture Configurable Logic Block User
Guide (UGH74) — docs.xilinx.com. https://docs.xilinx.com/v/u/en-US/
ughb74-ultrascale-clb. [Accessed 22-02-2024].

98

https://openocd.org/
https://www.sourceware.org/gdb/
https://www.sourceware.org/gdb/
https://raw.githubusercontent.com/riscv/riscv-fast-interrupt/master/clic.pdf
https://raw.githubusercontent.com/riscv/riscv-fast-interrupt/master/clic.pdf
https://github.com/pulp-platform/clint
https://github.com/riscv/riscv-plic-spec
https://github.com/riscv/riscv-plic-spec
https://developer.arm.com/documentation/ihi0024/latest/
https://docs.xilinx.com/v/u/en-US/ds890-ultrascale-overview
https://docs.xilinx.com/v/u/en-US/ds890-ultrascale-overview
https://docs.xilinx.com/v/u/en-US/ug574-ultrascale-clb
https://docs.xilinx.com/v/u/en-US/ug574-ultrascale-clb

[75] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid, Dayeol
Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra, Qijing
Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and Krste
Asanovié¢. FireSim: FPGA-accelerated cycle-exact scale-out system simulation in the
public cloud. In Proceedings of the 45th Annual International Symposium on Computer
Architecture, ISCA 18, pages 29-42, Piscataway, NJ, USA, 2018. IEEE Press.

99

APPENDICES

100

Appendix A

Specification: EVU-APMU Interface

This specification discusses the interface that connects the output port of an Event Unit IP
(EVU) to an input port on the Advanced Performance Monitoring Unit IP (APMU). An
EVU is a hardware monitoring IP that can be designed and installed in any desired plat-
form component to monitor hardware events and collect additional information related to
them. The component in which the EVU is embedded for monitoring is called a monitored
component. The EVU sends the observed event information to the APMU for counting
and other purposes.

The interface is composed of two layers: the logical layer, which describes the informa-
tion that the EVU sends to the APMU for each observed event, and the physical layer,
which describes the physical connection used to transmit this information. These layers
are detailed below:

1. Logical Layer

The EVU sends an event packet for each individual event that it observes in the
monitored component. Each event packet is composed of three fields: Event ID,
Event Info, and Source ID, as shown in Figure A.1. They are explained below:

] Source ID \ Event Info \ Event ID \

Figure A.1: The fields of an event packet.

(a) Event ID (Mandatory)

101

] Request latency ‘ Transaction size ‘
31 C 8 7 C 0
Sub-field 2 Sub-field 1

Figure A.2: Event Info bits transmitting request latency and transaction size.

The Event ID field encodes the type of event that was observed by the EVU
in its monitored component. The Event ID is encoded as an unsigned integer.
All events of an EVU must be mapped to unique Event IDs.

(b) Event Info (Optional)

An EVU can also transmit additional information alongside each event using
the Event Info field. This field can be split into sub-fields where each sub-field
represents a specific type of event information.

For example, in the case of an EVU monitoring read or write requests through
a bus, transmitting information about the response latency and the transaction
size might be beneficial. Therefore, the number of sub-fields for the Event Info
field for these events would be 2, as shown in Figure A.2.

(c) Source ID (Optional)

The source of an event is the component external to the monitored component
whose behaviour led to the generation of said event. For example, the processor
that initiates a cache access is the source of that access and all events that
are generated due to that access. Each potential event source is represented
by a unique Source ID. Similar to Event ID, this field is also encoded as an
unsigned integer.

Each EVU-APMU interface must have a document that helps users program the
APMU to filter the event packets being transmitted through it. This document
is called the event table. The event table contains the list of events the EVU can
transmit through that interface, along with its Event ID encoding, the Event Info
bits associated with each event, and the Source ID encoding. The example of a
reduced event table is given in Figure A.1. This is event table of an AXI-based EVU.
The Source ID encoding is omitted in this example.

Lastly, the Event ID and Source ID encodings are not expected to be consistent
across EVUs tpyes. Therefore, different types of EVUs can re-use the same IDs to
represent events/source.

102

Event Event ID Event Info
No event 0 NA

Read request
Write request

Size of transaction, unaligned transfer

Read response

=W N =

Request latency, clock spent in contention

Write response

Table A.1: An exemplified EVU Event Table.

2. Physical Layer

The physical layer defines the physical connection that is used to connect the EVU
to a port on the APMU. The EVU can choose one of the provided physical layers
for its interface, or it can choose to implement a different one; but in that case, they
must provide a specification for the interface.

(a) Parallel Interface
The parallel interface is the simplest interface, wherein the EVU sends one event
packet per clock cycle using a set of parallel wires. The size of the interface is
equal to the size of the event packet of the EVU. This interface can only send one
event packet per clock cycle but each packet can have additional event-related
information packed in it, along side the Event ID.

(b) One-hot Interface

In this interface, the EVU sends a set of parallel wires to the APMU port,
where each bit of the wire represents an individual event. This interface allows
the EVU to send multiple event packets per clock cycle, where each packet is
composed of only one bit.

If the EVU and APMU are running in different clock domains then the interface
must have clock domain crossing FIFOs (CDC FIFOs) to help facilitate asynchronous
communication between the IPs.

103

Appendix B

Specification: Advanced Performance
Monitoring Unit

This specification presents the Advanced Performance Monitoring Unit (APMU) that en-
ables users to implement various event-dependent software mechanisms. The APMU, as
shown in Figure B.1, has the following features:

1.

Each EVU output port connects to a dedicated port on the APMU, represented by
a unique Port ID.

. A configurable number of counter blocks, wherein each counter block has one counter,

two configuration registers (EventSelCfg and EventInfoCfg) and an arithmetic-
logic unit (ALU). The counter blocks have support to generate interrupts in case of
overflow.

. Each counter block has its separate event filter which processes the event packets

received from all APMU ports to generate the corresponding signals to update its
counter.

An instruction processor, with complementary instruction and data scratchpad mem-
ories (SPMs), capable of executing program code stored in said SPMs.

. A subordinate port that allows components, external to the APMU, to program the

counter blocks, the processor and its SPMs.

. A manager port that connects to the rest of the platform, allowing the APMU core

to read /write to non-APMU mapped memory addresses.

104

Connected to rest of

the system.
A EVU_ 1 EVU 2 | vevveninnnnann EVU_M
APMU i i l
Read-Write
Manager Port Port_1 Friid | EREEREEREERE Port_M
N ﬁl

A X NUM_COUNTERS

'y
Event Filter
v
‘_
—

APMU Core and APMU
Scratchpad Memories Interconnect Overfiow Interrupt
Lines .
Counter Block y 10 Mheinterrupt
cantraller,
J ‘[L X * NUM_COUNTERS
L
APMU
Read-Write

Subordinate Port

Vo

Connected to rest of
the system.

Figure B.1: APMU Architecture.

B.1 APMU Control and Status Registers

The core has three control and status registers:

1. APMU Timer

The APMU has a 64-bit cycle counter. It is a read-only register necessary for time-
keeping operations.

2. Boot Address Register

105

’ APMU Timer ‘
63 0

Figure B.2: Timer register of the APMU core.

The APMU has a boot address register (BootAddr), which is read- and write-able.
The core always boots from the address written into this register. The bit width of
the register (YLEN) is dependent on the bit width of the APMU processor.

’ Boot Address ‘
YLEN-1 . 0

Figure B.3: BootAddr register of the APMU core.

. Status Register

The status register (Status) is a 32-bit read- and write-able register that is required
to reset the APMU core. In the current specification, the Oth bit of the register is
called the Stall bit. If this bit is set, the APMU core stalls. The core will restart
from the address written into BootAddr register, described in Point 2 of B.1.

’ Unused \Stall Bit‘
31 ... 1 0

Figure B.4: Status register of the APMU core.

B.2 APMU Ports

The APMU has multiple ports, one for each EVU interface connected to it. An EVU can
be connected to multiple APMU ports through multiple interfaces. The output of every
APMU port is passed downstream to a set of counters through their respective event filter.
For each port, the size of this counter set can range from one to all the counters in the

APMU.

Each APMU port is represented by a unique Port ID. Since EVUs of different types

can re-use the same Event ID for different events, it is important to add another layer of

106

identification to the design. This is achieved through the Port ID, as the Port ID helps
identify the EVU connected to it. Once the EVU is known, the user can also decode the
events received by comparing its Event ID to the event table of the interface.

B.3 Event Filter

Each counter block, discussed in Section B.4, has its own event filter. This module processes
all the event packets received from the APMU ports and depending on the configuration
registers of its counter, filters out unnecessary events. The configuration registers specify
a set of events, that its counter should either count or operate upon, using the Event ID,
Source ID and Port ID fields. These events are called selected events. The event filters
should be capable of accepting multiple selected events received simultaneously from one
or more ports. As mentioned in Section B.2, each APMU port is fanned out to either all
or a subset of event filters in the APMU. The ports can send the event packets received
from their respective EVU downstream to only those the event filters, and by extension
counters, that are connected to them.

Before continuing this section, please read Table B.1.

B.4 Counter Block

Each APMU counter is bundled together with its configuration registers and a programmable
ALU to constitute a counter block, as shown in Figure B.5. The specification does not limit
the number of counter blocks in the APMU. This section is divided into four parts, ex-
plaining each component of the counter block.

1. APMU Counter

The APMU counter has a parameterizable bit width XLEN, as shown in Figure B.6.
The two most significant bits of the counter are called its pending and overflow bits,
while the rest are used for standard counter operation. The pending bit is set when-
ever the counter is incremented during its count or functional operation mode. The
overflow bit is set when the XLEN-2 bit-wide counter overflows. If overflow interrupt
is enabled in the EventInfoCfg register then the counter triggers an interrupt upon
overflow.

107

Counter Mode of Operation

An APMU counter can be programmed to operate in two modes: count or functional

mode. The operation mode of the counter is controlled via the Operation Bit in the
EventInfoCfg register, discussed in Point 2b of Section B.4. The two modes are ex-
plained below:

1. Count mode

When the Operation bit is reset to 0, the counter is said to be operating in count
mode. In this mode, the counter is incremented by the number of selected events
received across all APMU ports connected to its event filter.

2. Functional mode

When the Operation bit is set to 1, the counter is said to be operating in functional
mode. In this mode, the event info bits associated with the selected event packet
are operated upon by the ALU of the counter. The output computed by the ALU
is then updated into the counter. This mode should only be set in scenarios where
the counter is not expected to receive multiple selected events in one clock cycle.

If the event filter does receive multiple selected events while its counter is in func-
tional mode then the filter can arbitrarily pick the event info bits of any one of the
selected event packets. This is because otherwise the ALU hardware will become
unnecessarily complicated if it is expected to operate on event info bits from mul-
tiple event packets simultaneously.

Table B.1: Counter Mode of Operation.

2. Configuration registers

The counter block has two configuration registers: the Event Selection Register
(EventSelCfg), which is used to specify the IDs of the selected event, and the Event
Info Register (EventInfoCfg), which is used to specify details regarding the func-
tional operation mode of the counter. The formats of the registers are detailed below:

(a) Event Selection Register (EventSelCfg)

The EventSelCfg register has the fields described in Figure B.7. Let ESLEN be
the bit width of the EventSelCfg register. The Event ID Value and Event ID Mask
are used to specify the set of selected events that the counter should count or

108

From event filter, ------
l oo

Event Selection Register W

Count Mode Functional Event
To event filter. Update Mode Update Valid
A A O :
Operation z ;
s py TEEEEEEEEmeess [, B 7 e
g Mode Bit i : Write Valid i
: l v v |
E __________ Mux Contral i
E AL Signal Logic Unit !
E - _C{:ulmer
i Write Data rites

= Event Info Register P Counter

Figure B.5: APMU Counter Block.

| Pending Bit | Overflow Bit | [XLEN-2]-bit Counter |
XLEN-1 XLEN-2 XLEN-3 e 0

Figure B.6: Format of a XLEN-bit APMU Counter.

operate on. The event filter will only accept those events whose Event IDs
satisfy the following boolean expression:

(Event ID AND Event ID Mask) == Event ID Value

The size of these fields is equal to the minimum number of bits needed to specify
the Event ID of any of the events that can be sent by the EVUs connected to
this particular counter through the APMU ports.

Similarly, the event filter can be configured to filter event packets based on
their Source ID and the Port ID of the port that received the packet. Coun-
ters will only increment for events whose Event ID, Source ID, and receiv-
ing port’s Port ID are in the set specified by the EventSelCfg register. The
size of the Source ID Mask and Source ID Value is computed similar to the

109

Port ID Value | Port ID Mask | Source ID Value ‘ Source ID Mask ‘

ESLEN-1

. | Event ID Value | Event ID Mask
0

Figure B.7: Format of EventSelCfg register.

Event ID Mask and Event ID Value. On the other hand, the size of the
Port ID Mask and Port ID Value is equal to the minimum number of bits
needed to the store the Port ID of any of the APMU ports connected to the
counter.

Note: There are no restrictions on the number of bits used for any of the IDs.
For instance, consider an APMU connected to three EVUs. It will only have
three ports. In this case, the system architect can use the following Port IDs:
3’b001, 3’b010, 3’b100. This allows them to configure counters to count
events transmitted by different combinations of ports. If Port ID Mask and
Port ID Value are set to 3’b001 and 3’b000 then any event packet arriving
at a port with ID 3’bXX0 will be accepted; here X represent ”"do not care” bits.
This means both ports 3’b100 and 3°b010 will be considered but not 3’b001.

(b) Event Info Register (EventInfoCfg)

’ Overflow Intr Enable ‘ Operation Mode ‘ Value Upper ‘ Value Lower ‘
EILEN-1

.. | ALU Opcode | EISF End | EISF Start

0

Figure B.8: Format of EventInfoCfg register.

The EventInfoCfg register has the fields described in Figure B.8. Let EILEN be
the bit width of the EventInfoCfg register. The bit width of some of the fields
is dependent on the types of EVUs connected to the APMU. The explanation
of each field is as follows:

i. EISF Start and EISF End
Event Info Sub-field Start (EISF Start) and End (EISF End) fields are used
to specify the starting and ending bits of the Event Info field that the
ALU should operate upon. This is because these bits can be subdivided to

110

ii.

pack various metadata together, as discussed in Point 1b of Appendix A.
Therefore, the user needs to specify which of the metadata sub-field, i.e.,
which contiguous set of the event info bits, the ALU should operate upon.
Both of these fields can take any value between 0 and the maximum number
of bits used for the Event Info field out of all the connected EVUs. The
ALU slices the Event Info field associated with a selected event according
to these starting and ending bits, both inclusive, as written in EISF Start
and EISF End, respectively. The ALU uses these sliced event info bits as
an input operand, while the other input operand is the counter data.

ALU Opcode

The ALU of the counter block can be programmed to perform specific op-
erations by writing to this field. A set of supported opcode and their corre-
sponding operations are given in Table B.2. The supported ALU operations
are described below:

A. Addition
The ALU adds the sliced event info bits to the APMU counter.

B. KeepMax
The ALU compares the sliced event info bits against the counter value
and stores the larger of the two back into the counter. Using this opera-
tion, the ALU can be programmed to capture the maximum encountered
value of an event metadata.

C. KeepMin
The ALU compares the sliced event info bits against the counter value
and stores the smaller of the two value back into the counter. Using
this operation, the ALU can be programmed to capture the minimum
encountered value of an event metadata.

D. Increment: Eq
The ALU compares the value of the sliced event info bits to the value
written in the Value_L field of EventInfoCfg. If the two values are
equal then the counter is incremented by 1.

E. Increment: NotEq
The ALU compares the value of the sliced event info bits to the value
written in the Value_L field of EventInfoCfg. If the two values are not
equal then the counter is incremented by 1.

111

F. Increment: LessThan
The ALU compares if the value of the sliced event info bits is less than
the value written in the Value_L field of EventInfoCfg. If yes then the
counter is incremented by 1.

G. Increment: GreaterThan
The ALU compares if the value of the sliced event info bits is greater
than the value written in the Value_L field of EventInfoCfg. If yes
then the counter is incremented by 1.

H. Increment: LessThanEqual
The ALU compares if the value of the sliced event info bits is less than
or equal to the value written in the Value_L field of EventInfoCfg. If
yes then the counter is incremented by 1.

[. Increment: GreaterThanEqual
The ALU compares if the value of the sliced event info bits is greater
than or equal to the value written in the Value_L field of EventInfoCfg.
If yes then the counter is incremented by 1.

J. Increment: InRange
The ALU compares if the value of the sliced event info bits is in the
range |[Value_L,Value_U] (both inclusive). If yes then the counter is
incremented by 1.

K. Increment: NotInRange
The ALU compares if the value of the sliced event info bits is in the
range [Value_L,Value_U] (both inclusive). If not then the counter is
incremented by 1.

L. Add: X
These operations are similar to the Increment: X operations. The only
difference is that if the evaluation condition is true then the sliced event
info bits are added to the counter. Here, X can be any of the fol-
lowing relational operator: Equal, NotEqual, LessThan, GreaterThan,
LessThanEqual, GreaterThanEqual, InRange, NotInRange.

iii. Value Lower (Value_L) and Value Upper (Value_U)
The Value Lower and Value Upper fields are used in conjunction with the

112

1v.

Operation Opcode
Addition 00000
KeepMax 00001
KeepMin 00010
Increment: Eq 00011
Increment: NotEq 00100
Increment: LessThan 00101
Increment: GreaterThan 00110
Increment: LessThanEqual 00111
Increment: GreaterThanEqual 01000
Increment: InRange 01001
Increment: NotInRange 01010
Add: Eq 01011
Add: NotEq 01100
Add: LessThan 01101
Add: GreaterThan 01110
Add: LessThanEqual 01111
Add: GreaterThanEqual 10000
Add: InRange 10001
Add: NotInRange 10010

Table B.2: ALU operations and their opcodes.

ALU to evaluate the specified boolean condition. The values written into
these two fields are treated as Unsigned Integer. The specification does
not limit the size of the two fields.

Operation Mode

This bit is used to specify the operation mode of the APMU counter, as
discussed in Table B.1. If this bit is reset to 0 then the counter will only
track the number of selected events and the ALU will not perform any event
info-specific operation. If this bit is set to 1 then the counter is in functional
mode and will update based on the ALU computation result.

Counter Overflow Enable bit
The MSB of the EventInfoCfg register is the Counter Overflow Enable
bit. If the bit is set then upon overflow the counter will generate an overflow

113

interrupt. Otherwise, it will not generate any interrupt. In both cases, the
counter resumes operation after an overflow without resetting its overflow
bit. This must be handled in software.

B.5 APMU Core and Memory Infrastructure

The APMU has an instruction processor capable of executing program code. It should be
supported by instruction and data scratchpad memories (SPMs). The specification also
endorses additional functionalities for the APMU core to improve its performance when
executing event-dependent programs, such as an exclusive datapath to access counters and
to extend its capabilities, such as the ability to write to other memory locations in the
system. These functionalities are mentioned below:

1. Support to read and write counters efficiently.

The core should have an efficient datapath to reduce the access latencies for the
APMU counters.

2. Support to read and write to rest of the platform memory.

The core should be able to read and write from non-APMU mapped memory ad-
dresses. This allows the core to interact with other system components and can be
useful for implementing event-dependent mechanisms.

3. Support for Wait-for-X functionality.

The counters have two special bits: pending and overflow, as detailed in Section B.4.
The pending is set to 1 whenever the counter increments in count or functional mode.
The overflow bit is set to 1 when the XLEN-2 bit counter overflows. To effectively use
these bits, the specification proposes two functionalities:

(a) Wait-for-Pending
Under this functionality, the core enters a busy wait mode, polling the pending
bit of a subset of counters. It exits the busy wait mode when the pending bit
of any of the specified counters is set to 1. When the core exits the Wait-for-
Pending, it also resets the pending bit of the counters that were set.

(b) Wait-for-Overflow

Similarly, under this functionality, the core enters a busy wait mode, polling
the overflow bit of a subset of counters. It exits the busy wait mode when the

114

overflow bit of any of the specified counters is set to 1. When the core exits the
Wait-for-Overflow, it also resets the overflow bit of the counters that were set.

4. Support to trigger interrupts.

The core should be able to trigger interrupts in other application cores and devices.

5. External support to reset and halt the core.

The APMU should have support to halt and reset the APMU core using external
platform components. This feature is aided by the Status and BootAddr registers,
discussed in B.1.

B.6 APMU Interconnect

The APMU also has an internal interconnect that enables communication between the
APMU core and other APMU components such as the SPMs, counters, configuration regis-
ters, etc. The APMU has a manager port that allows the APMU core to access non-APMU
memory addresses in the platform. Additionally, the APMU also has a subordinate port
that allows other components in the platform to access internal APMU components. This
allows external platform components to initialize and configure the APMU for operation.

B.7 Software Design Considerations

To facilitate integration in virtualized systems, the APMU counter blocks are spaced apart
in the physical memory. This allows the hypervisor to place different counter blocks on
different physical pages. Each of these pages can then be mapped to the virtual memory
of a different virtual machine. An example memory map is shown in Table B.3 where each
counter block is spaced exactly one page apart.

115

Counter Block Register Address
APMU Timer base
NA APMU Core Status Register | base + 0x8
APMU Core Boot Address | base 4+ Oxc
0 Event Selection Register base + 0x10
Event Info Register base + 0x14
1 Event Selection Register base + 0x18
Event Info Register base + Oxlc
a1 Event Selection Register base + 0x108
Event Info Register base + 0x10c
0 Counter base + page_size
1 Counter base + 2 X page_size
31 Counter base + 32 X page_size

Table B.3: Example of an APMU Memory Map.

116

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Solution
	Contribution
	Thesis Structure
	Acknowledgement

	Background and Related Works
	Background: Performance Monitoring in COTS Architectures
	Hardware Performance Counters
	Hardware Monitoring and Management Frameworks
	SoC Performance Monitoring
	Tracing
	Software Support

	Related Works: Managing Resource Contention
	Software Approaches: General Purpose and Cloud
	Software Approaches: Real-Time Systems
	Hardware Approaches

	System Design
	List of Example Applications
	Proposed Design
	EVU-APMU Interface
	Event Units (EVU)
	Advanced Performance Monitoring Unit (APMU)

	Software Design

	Implementation
	AXI4 Snooping Unit
	AXI4 Fundamentals
	Event Table for the SPU
	Hardware Design of the SPU

	Implemented APMU
	APMU Interconnect
	APMU Core and SPMs

	Software Support

	Evaluation
	Evaluation Platform
	Introduction
	Addition of the APMU and AXI4 SPUs to the platform

	Hardware Synthesis Results
	Case Study: Latency-based Regulation
	Implementation
	Interference Tests on PULP
	Regulation Results

	Conclusions
	References
	APPENDICES
	Specification: EVU-APMU Interface
	Specification: Advanced Performance Monitoring Unit
	APMU Control and Status Registers
	APMU Ports
	Event Filter
	Counter Block
	APMU Core and Memory Infrastructure
	APMU Interconnect
	Software Design Considerations

