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Abstract

Combinatorial structures have broad applications in computer science, from error-
correcting codes to matrix multiplication. Many analytic tools have been developed for
studying these structures. In this thesis, we examine three applications of these tools
to problems in combinatorics. By coincidence, each problem involves a combinatorial
structure named for a plant–AVL trees, cactus graphs, and sunflowers–which we refer to
collectively as combinatorial plants.

In our first result, we use a novel decomposition to create a succinct encoding for
tree classes satisfying certain properties, extending results of Munro, Nicholson, Benkner,
and Wild. This has applications to the study of data structures in computer science,
and our encoding supports a wide range of operations in constant time. To analyze our
encoding, we derive asymptotics for the information-theoretic lower bound on the number
of bits needed to store these trees. Our method characterizes the exponential growth for
the counting sequence of combinatorial classes whose generating functions satisfy certain
functional equations, and may be of independent interest. Our analysis applies to AVL
trees (a commonly studied self-balancing binary search tree in computer science) as a
special case, and we show that about 0.938 bits per node are necessary and sufficient to
encode AVL trees.

Next, we study the hat guessing game on graphs. In this game, a player is placed on
each vertex v of a graph G and assigned a colored hat from h(v) possible colors. Each player
makes a deterministic guess on their hat color based on the colors assigned to the players
on neighboring vertices, and the players win if at least one player correctly guesses his
assigned color. If there exists a strategy that ensures at least one player guesses correctly
for every possible assignment of colors, the game defined by 〈G, h〉 is called winning. The
hat guessing number of G is the largest integer q so that if h(v) = q for all v ∈ G then
〈G, h〉 is winning. We determine whether 〈G, h〉 is winning for any h whenever G is a cycle,
resolving a conjecture of Kokhas and Latyshev in the affirmative and extending it. We
then use this result to determine the hat guessing number of every cactus graph, in which
every pair of cycles shares at most one vertex.

Finally, we study the sunflower problem. A sunflower with r petals is a collection of r
sets over a ground set X such that every element in X is in no set, every set, or exactly
one set. Erdős and Rado [15] showed that a family of sets of size n contains a sunflower
if there are more than n!(r − 1)n sets in the family. Alweiss et al. [5], and subsequently
Rao [37] and Bell et al. [6], improved this bound to (O(r log(n))n. We study the case where
the pairwise intersections of the set family are restricted. In particular, we improve the
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best-known bound for set families when the size of the pairwise intersections of any two
sets is in a set L. We also present a new bound for the special case when the set L is the
nonnegative integers less than or equal to d, using techniques of Alweiss et al. [5].
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Chapter 1

Introduction

1.1 Generating Functions and Enumeration

Given a set C, and a weight function w : C → N mapping objects in C to the nonnegative
integers such that there are a finite number of elements in C of any weight, the counting
sequence c0, c1, . . . of the combinatorial class defined by C and w is the sequence defined
by

cn = |{c ∈ C : w(c) = n}|

for all n. In other words, cn is the number of objects in C with weight n.

The generating function C(z) for a combinatorial class C with counting sequence c0, c1, . . .
is the formal power series

C(z) =
∑
n≥0

cnz
n.

Often combinatorial classes admit symbolic equations relating the objects in the class. For
example, the class B of binary trees can be written as

B = ◦+ B × • × B (1.1)

where ◦ symbolizes a leaf node, • symbolizes an internal node, + symbolizes union, and
× symbolizes the cartesian product. Indeed, every binary tree is either the empty tree, or
a node with left and right child binary trees. If we are interested in a counting sequence
for binary trees where the weight function indicates the number of non-empty nodes in the
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tree, then we see that w(•) = 1 and w(◦) = 0. Using this weight function, we can transfer
the symbolic equation (1.1) to a function equation for the generating function

B(z) = 1 +B(z) · z ·B(z). (1.2)

Generating functions are a powerful tool for analyzing the asymptotic growth of a
sequence from equations such as (1.2). We use standard notation when discussing the
asymptotics of a sequence: a sequence fn = O(gn) if there exists a constant c > 0 such
that fn ≤ cgn for all n ∈ N, we say that fn = o(gn) if

lim
n→∞

fn
gn

= 0,

and we write fn ∼ gn if

lim
n→∞

fn
gn

= 1.

When fn = O(gn) and gn = O(fn), we say fn = Θ(gn) and when fn = o(gn), we say
gn = ω(fn).

When a generating function F represents a convergent series, there are strong links
between the behavior of the series and the analytic behavior of F .

Theorem 1.1.1 (Vivanti-Pringsheim). If F (z) =
∑

n≥0 fnz
n and fn ≥ 0 for all n then

the radius of convergence R of this series equals the minimum modulus of a singularity of
F (z).

From this theorem, and the root test for series convergence, we can conclude that
the exponential growth of a counting sequence is determined by the reciprocal moduli of
the generating function’s singularities closest to the origin, which we call the dominant
singularities.

In other words (cf. e.g. [18]), if the series defining F (z) has dominant singularities of
modulus R then

lim sup
n→∞

|fn|1/n =
1

R
.

Returning to our binary trees example, we can solve Equation (1.2) to get

B(z) = (1−
√

1− 4z)/2z,

from which it is clear that there is a singularity at z = 1/4 since there is a zero inside of a
square root (note that the singularity at z = 0 is “removable” and thus does not affect the
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asymptotic growth), and the counting sequence bn grows like 4n times a sub-exponential
factor.

In Chapter 2 we consider generating functions that satisfy more complicated functional
equations where the location of the dominant singularity is not easily determined. We
develop new tools to determine the location of the dominant singularities in this case.

1.2 The Probabilistic Method

The probabilistic method is a powerful combinatorial tool. Roughly speaking, the method
involves defining a probability space over some class of combinatorial objects and then
showing a desired property holds with positive probability, proving the existence of an
object in the class with the property. Consider the following example appearing in [4]
giving a lower bound on the Ramsey number R(k, k), the smallest integer n such that
any two coloring of the edges of the complete graph Kn contains a monochromatic Kk

subgraph.

Lemma 1.2.1 ([4]). For any integer k, the Ramsey number R(k, k) >
⌊
2k/2

⌋
.

Proof. We start by defining a probability space over the two colorings of the edges of Kn.
In this case, we take a uniformly random two-coloring of the edges of Kn where every edge
independently takes the color red or blue, each with probability 1/2.

The probability that a given k vertex complete subgraph G is monochromatic is

P(G monochromatic) = 21−(k
2),

and taking the union bound over all such k vertex subgraphs gives

P(∃G monochromatic) <

(
n

k

)
21−(k

2).

For n =
⌊
2k/2

⌋
some algebra shows that(⌊

2k/2
⌋

k

)
21−(k

2) < 1,

and therefore with positive probability there are no monochromatic k vertex complete
subgraphs. Hence, there exists a two coloring of Kb2k/2c with no monochromatic k vertex

complete subgraphs and
R(k, k) >

⌊
2k/2

⌋
.
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In Chapter 4 we will apply the probabilistic method to the sunflower problem, following
a strategy used in [5].

1.3 Organization

Using generating functions, analytic techniques, and the probabilistic method, we study
problems including succinct representation of AVL trees, the hat guessing number of
graphs, and the sunflower problem. The results and presentation of Chapter 2 are taken
from [11]. The results and presentation of Chapter 3 are taken from [10]. The results and
presentation of Chapter 4 are taken from [9].
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Chapter 2

AVL Trees

This chapter is adapted from Chizewer, Melczer, Munro, and Pun [11].

2.1 Preliminaries

AVL trees [1] (named for their discoverers, G. Adelson-Velsky and E. Landis) are a subclass
of binary search trees with logarithmic height, a property they maintain with updates
during insertions and deletions in logarithmic time. Indeed, AVL trees are the oldest
class of binary search trees maintaining logarithmic height and are characterized by the
key property that any pair of sibling subtrees differ in height by at most 1. Here we are
interested in the amount of storage needed to encode AVL trees with n nodes, a property
intimately related to the number of AVL trees on n nodes. Odlyzko [36] gave a conjectural
form for the number of AVL trees on n nodes in the 1980s, anticipating a forthcoming
proof, but this proof did not appear in the literature.

If C =
⊔∞

n=0 Cn is a family of objects, with Cn denoting the objects of size n in C,
then a representation of C is called succinct if it uses log2 |Cn|+ o(log |Cn|) bits to store the
objects of Cn. A succinct representation is thus one whose space complexity asymptotically
equals, up to lower-order terms, the information-theoretic lower bound. A succinct data
structure [34, 35] for C is a succinct representation of C that supports a range of operations
on C under reasonable time constraints.

5



2.2 Representations of Trees

The theory of succinct data structures has a long history, much of it focused on represen-
tations of trees. We first describe some important classes of trees in this context, and then
discuss our main results.

Binary Search Trees

Let B be the class of rooted binary trees, so that the number |Bn| of objects in B of size n is
the nth Catalan number bn = 1

n+1

(
2n
n

)
. The class B lends itself well to storing ordered data

in a structure called a binary search tree. The general idea is that for each node in the tree,
the data stored in its left subtree will be smaller than the data at that node, and the data
stored in the right subtree will be larger. To retrieve elements, one can recursively navigate
through the tree by comparing the desired element to the current node, and moving to the
left or right subtree if the element is respectively smaller or larger than the current node.
As a result, it is desirable to efficiently support the navigation operations of moving to
parent or child nodes in whatever representation is used.

A naive representation of B gives each node a label (using roughly log2 n space) and
stores the labels of each node’s children and parent. The resulting data structure sup-
ports operations like finding node siblings in constant time, but is not succinct as it uses
Θ(n log n) bits while the information-theoretic lower bound is only log2(bn) = 2n + o(n).
Somewhat conversely, a naive space-optimal representation of B is obtained by listing the
objects of Bn in any canonical order and referencing a tree by its position {1, . . . , bn} in
the order, but asking for information like the children or parents of a node in a specific
tree is then expensive as it requires building parts of the tree.

Practical succinct representations of binary trees supporting efficient navigation date
back to Jacobson [23], who encoded a tree by storing the binary string of length 2n + 1
obtained by adding external vertices so that every node has exactly two children, then
taking a level-order traversal of the tree and recording a 1 for each original internal node
encountered and a 0 for each external node encountered (see Figure 2.1). If each node is
labelled by its position in a level-order traversal then, for instance, the children of the node
labelled x in the tree encoded by the string σ have labels 2 rankx(σ) and 2 rankx(σ)+1 where
rankx(σ) is the number of ones in σ up to (and including) the position x. By storing o(n)
bits, the rank operation (and similar supporting operations used to retrieve information
about the trees) can be implemented in O(1) time. Jacobson’s results allow finding a
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Figure 2.1: A binary tree and its level-order bitmap representation.

parent or child using O(log2 n) bit inspections; Clark [12] and Munro [32] improved this to
O(1) inspections of log2 n bit words.

AVL Trees

Because the time taken to access elements in a binary search tree typically depends on the
height of the tree, many data structures balance their trees as new data is added. The
balance operation requires rearranging the tree while preserving the underlying property
that, for each node, the elements in the left subtree are smaller and the elements in the
right subtree are larger. One of the most popular balanced tree structures – for theoretical
study and practical application – are AVL trees [1]. Roughly speaking, AVL trees have
balancing rules that force the subtrees rooted at the children of any node differ in height
by at most one. Throughout this chapter we let A denote the class of AVL trees, so that
An consists of all binary trees on n vertices such that the subtrees of any vertex differ in
height by at most one (including empty subtrees).
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Figure 2.2: The six types of AVL trees with n = 5 nodes.

Due to the way they are constructed, AVL trees have mainly been enumerated under
height restrictions, and enumeration by number of vertices (which is crucial for determining
space-efficient representations, but not as important for other applications) is less studied.
A 1984 paper [36] of Odlyzko describes the behaviour of a family of trees whose generating
functions satisfy certain equations. It ends by stating that the generating function of AVL
trees ‘appears not to satisfy any simple functional equation, but by an intensive study. . . it
can be shown’ that |An| ∼ n−1α−nu(log n) where α = 0.5219 . . . is ‘a certain constant’ and
u is a periodic function, referencing for details a paper that was planned to be published
but was never written.1

Efficiently Representing Tree Classes

Let B be a function satisfying B(n) = Θ(log n). In [33] the authors give a method to
construct a succinct encoding, and corresponding data structure, for any class of binary
trees T satisfying the following four conditions.

1. Fringe-hereditary : For any tree τ ∈ T and node v ∈ τ the fringe subtree τ [v], which
consists of v and all of its descendants in τ , also belongs to T .

1The current authors thank Andrew Odlyzko for discussions on the asymptotic behaviour of AVL trees
and the growth constant α.

8



2. Worst-case B-fringe dominated : Most nodes in members of T do not generate large
fringe subtrees, in the sense that∣∣∣{v ∈ τ :

∣∣τ [v]
∣∣ ≥ B(n)}

∣∣∣ = o(n/ logB(n))

for every binary tree τ in the subset Tn ⊂ T containing the members of T with n
nodes.

3. Log-linear : There is a constant c > 0 and a function ϑ(n) = o(n) such that

log |Tn| = cn+ ϑ(n). (2.1)

4. B-heavy twigged : If v is a node of any τ ∈ T with |τ [v]| ≥ B(n), and τ`[v] and τr[v]
are the left and right subtrees of v in τ , then |τ`[v]|, |τr[v]| = ω(1).

We present a new construction that gives a succinct encoding for all classes of trees
defined by a property satisfying only the first three conditions. By using constant time
rank and select operations already supported by a succinct encoding for binary trees, we
can also eliminate the use of so-called “portal nodes” and thus relax the second condition
to the following property.

2′. Worst-case weakly fringe dominated: Most nodes in members of T do not generate
large fringe subtrees, in the sense that there is a B′(n) satisfying B′(n) = d log n +
o(log n) for some d < 1 such that∣∣∣{v ∈ τ :

∣∣τ [v]
∣∣ ≥ B′(n)}

∣∣∣ = o(n) (2.2)

for every binary tree τ ∈ Tn.

Adopting terminology similar to that of [33], we call a class of binary trees weakly
tame if it is fringe-hereditary, worst-case weakly fringe dominated, and log-linear. As
in [33], our encoding is static–it cannot be updated efficiently. Constructing a succinct
dynamic encoding–one that can be updated efficiently–for any class of weakly tame trees
is postponed to a future work.

Theorem 2.2.1. There exists a succinct encoding for any weakly tame class T that sup-
ports the operations in Table 2.1 in O(1) time using the (log n)-bit word RAM model.

Proof. See Section 2.3.
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Corollary 2.2.2. There exists a succinct encoding for AVL trees that supports the opera-
tions in Table 2.1 in O(1) time using the (log n)-bit word RAM model.

Proof. AVL trees are weakly tame (see [33, Example F.2]) so the result follows immediately
from Theorem 2.2.1.

Remark 2.2.3. In [33] the log-linearity of AVL trees is inferred from the stated exponential
growth of an in Odlyzko [36]. This growth is proven in Theorem 2.2.5 below.

A minor modification of the arguments in [33] show that Left-Leaning AVL (LLAVL)
Trees, which are AVL trees with the added restriction that at every node the height of
the left subtree is at least the height of the right subtree, are also weakly tame, giving the
following.

Corollary 2.2.4. There exists a succinct encoding for LLAVL trees that supports the
operations in Table 2.1 in O(1) time using the (log n)-bit word RAM model.

To characterize how much space is required by a succinct encoding, we derive an
asymptotic bound on the number of AVL trees using techniques from analytic combi-
natorics [18, 31]. To this end, let an = |An| be the counting sequence of A and let
A(z) =

∑
n≥0 anz

n be its associated generating function. The key to enumerating AVL
trees is to let Ah(z) be the generating function for the subclass of AVL trees with height
h. The balance condition on subtrees implies that an AVL tree of height h + 2 is a root
together with a subtree of height h + 1 and a subtree of height either h + 1 or h, giving
rise to the recursive equation

Ah+2(z) = Ah+1(z)(Ah+1(z) + 2Ah(z)) (2.3)

for all h ≥ 0. This recursion, along with the initial conditions A0(z) = z (encoding the
only AVL tree with height zero, which is a single vertex) and A1(z) = z2 (encoding the
only AVL tree with height one, which is a root with two children) uniquely determines
Ah(z) for all h. Summing over all possible heights gives the generating function

A(z) =
∞∑
h=0

Ah(z)

for AVL trees.

Equation (2.3) implies that Ah(z) is a non-constant polynomial with positive coefficients
for all h, so the equation Ah(z) = 1/3 has a unique positive solution for all h ∈ N (see
Figure 2.3 for values of these solutions). We prove the following.
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parent(v) the parent of v, same as anc(v, 1)
degree(v) the number of children of v
left child(v) the left child of node v
right child(v) the right child of node v
depth(v) the depth of v, i.e., the number of edges between the root and v
anc(v, i) the ancestor of node v at depth depth(v)− i
nbdesc(v) the number of descendants of v
height(v) the height of the subtree rooted at node v
LCA(v, u) the lowest common ancestor of nodes u and v
leftmost leaf(v) the leftmost leaf descendant of v
rightmost leaf(v) the rightmost leaf descendant of v
level leftmost(`) the leftmost node on level `
level rightmost(`) the rightmost node on level `
level pred(v) the node immediately to the left of v on the same level
level succ(v) the node immediately to the right of v on the same level
node rankX(v) the position of v in the X-order, X ∈ {PRE, POST, IN},

i.e., in a preorder, postorder, or inorder traversal of the tree
node selectX(i) the ith node in the X-order, X ∈ {PRE, POST, IN}
leaf rank(v) the number of leaves before and including v in preorder
leaf select(i) the ith leaf in preorder

Table 2.1: Operations discussed in [20, 33] which can be done in O(1) time in the (log n)-bit
word RAM model in a succinct encoding of a binary tree.

Theorem 2.2.5. If αh is the unique positive solution to Ah(z) = 1/3 then the limit

α = lim
h→∞

αh = 0.5219 . . .

is well-defined. Furthermore,

log2(an) = n log2(α
−1)︸ ︷︷ ︸

n(0.938...)

+ log θ(n)

for a function θ growing at most sub-exponentially (meaning θ(n) = o(κn) for all κ > 1).

Proof. The result follows immediately from applying Theorem 2.4.5 below with f(x1, x2) =
x21 + 2x1x2, since the unique positive solution to f(C,C) = C is C = 1/3.
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Figure 2.3: Values αh converging to α = 0.5219 . . . monotonically from below among even
h (red) and monotonically from above among odd h (blue).

Remark 2.2.6. A full proof of the claimed asymptotic behaviour an ∼ n−1α−nu(log n) in
Odlyzko [36], which characterizes sub-dominant asymptotic terms for the bitsize, requires
a more intense study of the recursion (2.3) and is outside the scope of this discussion. It
is postponed to future work.

Our approach derives asymptotics for a family of generating functions satisfying recur-
sive equations similar to (2.3). For instance, if Lh(z) is the generating function for LLAVL
trees with height h then

Lh+2(z) = Lh+1(z)(Lh+1(z) + Lh(z)) (2.4)

for all h ≥ 0, as an LLAVL tree of height h + 2 is a root together with a left subtree of
height h+ 1 and a right subtree of height h+ 1 or h. Note that the only difference between
this recurrence and the recursive equation (2.3) for AVL trees is the coefficient of Lh(z),
since there is now only one way to have an unbalanced pair of subtrees.

Theorem 2.2.7. If γh is the unique positive solution to Lh(z) = 1/2 then the limit

γ = lim
h→∞

γh = 0.67418 . . .

is well-defined. Furthermore, the number `n of LLAVL trees on n nodes satisfies

log2(`n) = n log2(γ
−1)︸ ︷︷ ︸

n(0.568...)

+ log θ(n)

12



for a function θ growing at most sub-exponentially.

Proof. The result follows by applying Theorem 2.4.5 below with f(x1, x2) = x21 + x1x2,
since the unique positive solution to f(C,C) = C is C = 1/2.

2.3 A New Succinct Encoding for Weakly Tame Classes

We now prove Theorem 2.2.1, first describing our encoding and then showing it has the
stated properties.

2.3.1 Our encoding

Let E denote a succinct data structure representing all binary trees that supports the
operations in Table 2.1, and denote the encoding of a binary tree τ in this data structure
by E(τ). We now fix a weakly tame class of binary trees T and, given a binary tree τ ∈ T
of size n, set

τ ′ =
{
v ∈ τ :

∣∣τ [v]
∣∣ ≥ d log n

}
where d is a constant such that B′(n) = d log n+ o(log n) satisfies (2.2) in the definition of
worst-case weakly fringe dominated.

Our succinct data structure for T is constructed as follows.

1. We call τ ′ the upper tree of τ and simply copy the encoding E(τ ′) for these nodes.

2. For every 1 ≤ j ≤ d log n we write down a lookup table mapping the trees in Tj
(with j nodes) to their corresponding E encoding. We can do this, for example, by
enumerating the Tj in lexicographic order by the E encoding using integers of bitsize
log |Tj| = cj + o(j), where c is the constant in the definition of log-linearity (2.1).

3. For each leaf node ` ∈ τ ′ the tree τ [`] has size |τ [`]| < d log n by definition of τ ′. We
call these trees lower trees, and write them down using their encoding in a lookup
table in leaf rank order of their roots in τ ′, storing the root locations in an indexable
dictionary.

4. Lastly, we store additional information in fully indexable dictionaries and indexable
dictionaries to support operations like node rank/select, level succ/pred, and
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leaf rank/select. For instance, for node rank/select we store a fully indexable
dictionary that maps the node rank for a node in τ ′ to the node rank of the node in
τ . The techniques to support the other operations are similar, and are analogous to
constructions used in [20, 17].

2.3.2 Proof of Size and Operation Time Bounds

Navigation through the upper tree follows standard navigation using E , which supports the
desired operations in constant time. When a leaf node ` is reached in the upper tree, the
operation x = leaf rank(`) gives the index of the child tree in the indexable dictionary.
Then the operation select(x) gives the location of the string encoding the child tree.
Finally, using the table mapping our encoding to the E encoding gives us the ability to
perform all the navigation operations on the smaller tree. In order to perform the lookup
using the mapping, it is necessary to know the size of the tree. This can be inferred from
the space in memory allocated to the naming, which can be calculated by the operation
select(x + 1) in the indexable dictionary to find the starting location of the next child
tree. To navigate back to the upper tree from a child tree, we use the reverse operations
of y = rank(x) in the indexable dictionary followed by select leaf(y) in the upper tree.

To get the node rank of a node in τ ′ we use the fully indexable dictionary, and to get
the node rank of a node not in τ ′ we simply get the node rank of the root of the child tree
and the node rank of the node within the child tree and perform the appropriate arithmetic
depending on the desired rank order (pre, post, in). For node select, if the node is
in τ ′ then selecting using the indexable dictionary is sufficient. Otherwise, the node is in
a child tree and the initial node select will return the predecessor node in τ ′ which will
be the root of the child tree when using preorder (the argument is similar for postorder
and inorder). Using the rank of this root and appropriate arithmetic, we can then select
the desired node in the child tree. Implementing the other operations is analogous. It
is clear that all of these operations are supported in constant time, since they involve a
constant number of calls to the constant-time operations in the existing data structures,
and lookups using (log n)-bit words.

Space Complexity The space used by E(τ ′) is o(n) by the weakly tame property. The
space used by the lookup tables is O(nd log n) = o(n) by definition of τ ′ and d, and the
space used by all of the encodings of the child trees is cn + o(n) by log-linearity. Lastly,
the space needed for the indexable dictionaries is o(n) for each [17, Lemmas 1 and 2].
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Summing these requirements shows that the total storage required is cn+ o(n) many bits,
so the encoding is succinct.

2.4 Asymptotics for a Family of Recursions

We derive the asymptotic behaviour of a family of generating functions which includes
Theorem 2.2.5 as a special case. Let F be a combinatorial class decomposed into a disjoint
union of finite subclasses F =

⊔∞
h=0Fh whose generating functions Fh(z) are non-constant

and satisfy a recursion

Fh(z) = f(Fh−1(z), Fh−2(z), . . . , Fh−c(z)) for all h ≥ c, (2.5)

where c is a positive integer and f is a multivariate polynomial with non-negative coeffi-
cients.

Remark 2.4.1. The elements of Fh are usually not the objects of F of size h (in our tree
applications they contain trees of height h, not trees with h nodes). The fact that each Fh

is finite implies that the Fh(z) are polynomials with non-negative coefficients.

We assume that there exists a (necessarily unique) positive real solution C to the
equation C = f(C,C, . . . , C), and for each h ≥ 0 we let αh be the unique positive real
solution to Fh(z) = C. In order to rule out degenerate cases and cases where the counting
sequence has periodic behaviour, we need another definition.

Definition 2.4.2. (recursive-dependent) We call the polynomial f recursive-dependent if
there exists a constant k (depending only on f) such that for any indices i, j ≥ c with
i ≥ j + k there exists a sequence of applications of the recurrence (2.5) resulting in a
polynomial P with Fi = P (F`1 , . . . , F`m) for some 0 ≤ `1 < · · · < `m ≤ i where ∂P

∂Fj
6= 0.

Example 2.4.3. The polynomial f(x, y) = y is not recursive-dependent because it leads
to the recursion Fh(z) = Fh−2(z), meaning that the values of Fh when h is even can be
independent of those where h is odd.

Lemma 2.4.4. If f is recursive-dependent with non-negative coefficients and a positive
fixed point then the limit α = limh→∞ αh exists.
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Figure 2.4: Values αi converging with uis shown in blue and `js shown in red.

Proof. We start by defining two subsequences of αh to give upper and lower bounds on its
limit, then prove that these are equal. First, we let

• u0 be the smallest index j ∈ {0, . . . , c− 1} such that αj = max{α0, . . . , αc−1}

and for all i ≥ 0 let

• ui+1 be the smallest index j ∈ {ui+1, . . . , ui+c} such that αj = max{αui+1, . . . , αui+c},

so that the ui denote the indices of the maximum values of the αh as h ranges over intervals
of size at most c. Conversely, we let

• `0 be the index j ∈ {0, . . . , c− 1} such that αj = min{α0, . . . , αc−1}

and for all j ≥ 0 let

• `i+1 be the index j ∈ {ui + 1, . . . , ui + c} such that αj = min{αui+1, . . . , αui+c},
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so that the `j denote the indices of the minimum values of the αh as h ranges over intervals
of size at most c. Figure 2.4 is a graph of the sequence αi, where the ui’s have been colored
blue and the `js have been colored red. The remaining values of αi which are not part of
the sequence of uis or `js have been colored green. From the picture, we can see that the
uis and `js bound the sequence from above and below respectively.

We claim that the subsequence αui
is non-increasing. To establish this, we fix i ≥ 1

and consider αui
. By definition, αui

≥ αuj
for all j ∈ {ui−1 + 1, . . . , ui−1 + c}. Thus,

if ui+1 ∈ {ui−1 + 1, . . . , ui−1 + c} then αui
≥ αui+1

as claimed. If, on the other hand,
ui+1 > ui−1 + c then repeated application of the recursion (2.5) implies

Fui+1
(αui

) = f
(
Fui+1−1(αui

), . . . , Fui+1−c(αui
)
)

...

= Q
(
Fui−1+1(αui

), . . . , Fui−1+c(αui
)
)
,

whereQ is a multivariate polynomial with non-negative coefficients such thatQ(C, . . . , C) =
C. All the Fh are monotonically increasing as non-constant polynomials with non-negative
coefficients, so Fj(αui

) ≥ Fj(αuj
) = C for all j ∈ {ui−1 + 1, . . . , ui−1 + c} and

Fui+1
(αui

) ≥ Q
(
C, . . . , C

)
= C.

Since Fui+1
is monotonically increasing and Fui+1

(αui+1
) = C, we once again see that

αui
≥ αui+1

. As i was arbitrary, we have proven that αui
is non-increasing. The same

argument, reversing inequalities, proves that the subsequence α`j is non-decreasing.

As α`j is non-decreasing and αui
is non-increasing, either α`j ≤ αui

for all i, j ≥ 0 or
α`j > αui

for all sufficiently large i and j. The second case implies the existence of indices
a, b > 0 such that α`b > αua but `b ∈ {ua−1+1, . . . , ua−1+c} so that ua is not the maximum
index of αj in this range, giving a contradiction. Thus, α`j ≤ αui

for all i, j ≥ 0 and the
limits

αu = lim
i→∞

αui
and α` = lim

j→∞
α`j

exist. To prove that the limit of αh exists as h → ∞, it is now sufficient to prove that
αu = α`.

Suppose toward contradiction that αu 6= α`, and define a = αu−α` > 0. For any ε > 0,
we pick i, j, k sufficiently large so that `j > ui > `k+c and |αui

−αu|, |α`j−α`|, |α`k−α`| < ε.
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Then by recursive-dependence we can recursively decompose F`j in terms of Fui
, and

possibly some other terms Fh1 , . . . , Fhr where each |hn − ui| ≤ c, to get

C = F`j(α`j) = P (Fui
(α`j), Fh1(α`j), . . . , Fhr(α`j))

where P (Fui
, Fh1 , . . . , Fhr) is a polynomial with non-negative coefficients that depends

on Fui
and satisfies P (C, . . . , C) = C. Because P is monotonically increasing in each

coordinate, and α`k + ε > α` ≥ α`j , we see that

C ≤ P (Fui
(α`k + ε), Fh1(α`k + ε), . . . , Fhr(α`k + ε)).

Furthermore, each αhn ≥ α`k so

C ≤ P (Fui
(α`k + ε), Fh1(αh1 + ε), . . . , Fhr(αhr + ε))

≤ P (Fui
(α`k + ε), C + poly(ε), . . . , C + poly(ε)).

Finally, αui
− a ≥ α`k so

C ≤ P (Fui
(αui
− a+ ε), C + poly(ε), . . . , C + poly(ε)).

Because a is fixed, P is monotonically increasing in each variable, and Fui
(αui

) = C,
taking ε → 0 shows that the right-hand side of this last inequality is strictly less than
P (C, . . . , C) = C, a contradiction. Thus, a = 0 and the limit α = αu = α` exists.

Theorem 2.4.5. If f is recursive-dependent with non-negative coefficients and a positive
fixed point, then the number an of objects in F of size n satisfies

an = α−n θ(n),

where α is the limit described in Lemma 2.4.4 and θ(n) is a function growing at most
sub-exponentially.

Proof. We prove that the generating function F (z) is analytic for |z| < α by showing that
the series

∑∞
h=0 Fh(z) converges for these values of z. Because |F (z)| → ∞ as z → α, the

point z = α is then a singularity of F (z) of smallest modulus, and thus (by the root test
for series convergence) the reciprocal of the exponential growth of an.

First, assume that there exists some k ≥ 0 and 0 < λ < 1 such that Fh(z) < λC for
every h ∈ {k, k+1, . . . , k+c−1}. Let A be the sum of the coefficients of all degree 1 terms of
f . Since f has non-negative coefficients and a positive real fixed point, we must have A < 1.
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Let g(x1, . . . , xc) be the function created by removing all degree one terms from f . Observe
that C = AC + g(C, . . . , C), and thus g(λC, . . . , λC) ≤ λ2g(C, . . . , C) = λ2(1 − A)C, so
that

f(λC, . . . , λC) ≤ AλC + λ2(1− A)C.

Algebraic manipulation shows that Aλ + λ2(1 − A) ≤ λ, and since f has non-negative
coefficients we can conclude that for every h ∈ {k + c, k + 1 + c, . . . , k + 2c − 1} we have
Fh(z) ≤ AλC + λ2(1 − A)C. Let λ0 = λ and define λi = λi−1(A + λi−1 − Aλi−1) for all
i ≥ 1. By the above argument we have

Fch+k(z) ≤ λhC,

so it remains to show that
∑∞

i=0 λi converges. We will show that λi ≤ λ(A + λ− Aλ)i by
induction on i. The result holds by definition for i = 1. If the result holds for some j ≥ 1
then

λj+1 = λj(A+ λj − Aλj)
≤ λ(A+ λ− Aλ)j(A+ λj − Aλj)
≤ λ(A+ λ− Aλ)j+1,

where the last inequality follows from the fact that λj < λ since A+λ−Aλ < 1. The sum∑∞
i=0 λ(A+ λ− Aλ)i converges as a geometric series, and thus

∑∞
h=0 Fh(z) converges.

It remains to show that if |z| < α then such a k and λ exist. For any |z| < α there is
some N sufficiently large such |z| < αn for all n ≥ N . By the definition of αn, and since the
coefficients of Fn are all positive, we must have Fn(z) < C. Hence Fn(z) < λnC for some
0 < λn < 1. Taking k = N and letting λ be the largest λn for n ∈ {N,N+1, . . . , N+c−1}
proves our final claim.
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Chapter 3

The Hat Guessing Game

This chapter is adapted from Chizewer, McInnis, Sohrabi, and Kaistha [10].

3.1 Preliminaries

Given a simple undirected graph G and a function h : V (G) → N mapping the vertices
of G to the positive integers, the hat guessing game 〈G, h〉 is a puzzle in which for every
vertex v ∈ G a player is placed and assigned a hat from h(v) possible colors. Each player
attempts to guess the color of his hat according to a predetermined strategy that takes
as input the colors assigned to players at neighboring vertices. The game 〈G, h〉 is known
in advance by the players, so they may use all information about G and h when devising
a set of deterministic strategies. The players are a team and are said to win for a given
coloring if at least one player guesses correctly. The hat guessing game 〈G, h〉 is said to be
winning if there exists some set of strategies for the players so that for every possible color
assignment, the players win. The players lose on a coloring if no player guesses correctly; if
there exists such a coloring for every possible set of guessing strategies, the game is called
losing.

We refer to the function h as the hatness function, and for a vertex v ∈ G we call
the value h(v) the hatness of v. A subgame 〈G′, h′〉 of a hat guessing game 〈G, h〉 is a
game where G′ ⊆ G is a subgraph, and the hatness function h′ = h|v∈G′ is the hatness
function h restricted to the vertices of G in G′. Moreover, we call a subgame proper if G′

is a proper subgraph of G. The hat guessing number of a graph, G, denoted HG(G), is
the largest integer q such that 〈G, ?q〉 is a winning game, where ?q denotes the constant
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function h(·) = q. We call a vertex v deletable if the subgame on G\{v} is winning. Note
that if a game has a winning subgame then it is winning, and if a game is winning then
decreasing the hatness of any vertex results in a winning game.

The hat guessing number was introduced in [8]. Previous results have attempted to
bound the hat guessing number of graphs, but few give exact answers. Some exact results
include the hat guessing number of trees (folklore), cycles [38], pseudotrees [27], complete
graphs (folklore), and some windmills and book graphs [21]. There are also upper and
lower bounds (that are somewhat far apart) on complete bipartite graphs [8, 19, 2], upper
bounds on outerplanar graphs [7, 26], and lower bounds on planar graphs [3, 24, 29].

Example 3.1.1. The hat guessing game 〈Kn, ?q〉 is winning if and only if q ≤ n

There are several proofs for Example 3.1.1 in the literature. To prove that 〈Kn, ?q〉
is winning for q ≤ n–and more generally to prove that a particular game is winning–a
common approach is to specify a winning strategy. The following is a winning strategy for
q = n. Number the players and colors 0, 1, . . . , n − 1 and let player i guess that his color
would cause the sum of all the colors to equal i (mod n). This gives a valid strategy since
every player sees every other player and so can calculate the unique integer 0, 1, . . . , n− 1
which would result in the desired sum. As the sum must take a value 0, 1, . . . , n − 1
(mod n), there will always be a player who guesses correctly. Using the fact above about
winning subgames, it is easy to see that the result holds for q < n as well. There are
several techniques for proving that a particular game is losing. One approach is to use
the probabilistic method to show that for an arbitrary strategy, there exists a coloring
for which no player guesses correctly. Consider the game 〈Kn, ?q〉 for q > n. Color each
player uniformly and independently at random from the q possible colors. Since a player’s
guess cannot depend on his own color, the probability that a given player guesses correctly
is 1/q. By the union bound, the probability that at least one player guesses correctly is
at most n/q < 1. Hence, with positive probability no player guesses correctly, so there
exists a coloring in which no player guesses correctly. By definition, this means the game
is losing.

In this chapter, we study the hat guessing problem for cycles and cactus graphs. Our
first result resolves [28, Conjecture 5.2] affirmatively and goes further, showing exactly
which games on cycles are winning. The second result adds cactus graphs to the growing
list of graph classes for which the hat guessing number is known exactly.

Theorem 3.1.2. Let C be a cycle on n vertices such that the hatness h of each vertex v
in C satisfies h(v) ≥ 2. Then 〈C, h〉 is winning if and only if C satisfies at least one of the
following conditions:
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1. The length n is 4 or divisible by 3 and h(v) ≤ 3 for all v ∈ C.

2. The length n is 3 and
∑

v∈C
1

h(v)
≥ 1.

3. The game 〈C, h〉 contains a winning proper subgame.

4. The hatness function satisfies both of the following properties:

(a) There exists a sequence of adjacent vertices in C with hatnesses (2, 3, 3) or
(3, 2, 3).

(b) For all v ∈ C, h(v) ≤ 4.

The forward implication for Condition 1 (that condition 1 implies 〈C, h〉 is winning)
is [38, Theorem 1]; for Condition 2, it is [28, Theorem 2.1]; for Condition 3, it follows
directly from definitions; and for Condition 4, it is [28, Theorem 5.1]. We prove the reverse
implications—that 〈C, h〉 is losing if none of the above conditions hold—in Section 3.2.

Our next result determines the hat guessing number of cactus graphs. A cactus graph
is a connected graph in which every pair of cycles share at most one vertex. Figure 3.1
shows an example of a cactus graph (on the left). A useful subset of the class of cactus
graphs is the class of pseudotrees, which are connected graphs with at most one cycle. The
hat guessing number of cactus graphs was first studied in [7], which derived1 a bound of
16 for any cactus graph. We apply Theorem 3.1.2 to exactly determine the hat guessing
number of every cactus graph.

Theorem 3.1.3. Let G be a cactus graph.

1. HG(G) = 4 if and only if G contains at least two triangles.

2. HG(G) = 3 if and only if G contains at least two cycles or a cycle of length 4 or
divisible by 3, and G contains fewer than two triangles.

3. HG(G) = 2 if and only if G is a pseudotree with at least one edge and no cycle of
length 4 or divisible by 3.

The lower bound for Statement 1 of the theorem follows from Theorem 3.2.1 by gluing
together two triangles, each with hatnesses (2, 4, 4) to either end of a path (possibly of
length 0) with hatnesses (2, 4, . . . , 4, 2) at the vertices with hatness 2 (as shown on the right

1The bound of 16 was mentioned in the preprint (arXiv:2109.13422) but was removed from the publi-
cation
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Figure 3.1: A cactus graph with two triangles (left) and the construction that shows that
the hat guessing number is at least 4 (right). The triple lines indicate vertices that are
glued together in the construction.

of Figure 3.1). Since this forms a winning subgame of 〈G, ?4〉, the game 〈G, ?4〉 is winning.
The lower bound for Statement 2 in the case of two cycles follows analogously by gluing
two winning cycles with hatnesses (2, 3, . . . , 3) to either end of a winning path (possibly of
length 0) with hatnesses (2, 3, . . . , 3, 2) and decreasing all hatnesses in the resulting game
to 3 to give a winning subgame of 〈G, ?3〉. The lower bound for Statement 2 in the one
cycle case follows from [38, Theorem 1], and the lower bound for Statement 3 is trivial.
We prove the upper bounds in Section 3.3.

3.2 Cycles

Throughout this section and the next we use constructors—rules for building winning
or losing games from smaller games that are easier to analyze—to simplify our proofs.
Given two graphs G1 and G2 with vertices v1 and v2, respectively, the graph denoted
G = G1 +v1,v2 G2 formed by gluing G1 and G2 at v1 and v2 is given by the union of vertices
and edges G = G1 ∪ G2 where v1 and v2 are identified as a single vertex in G which is
incident to all vertices in the union NG1(v1) ∪ NG2(v2) of their respective neighbor sets
in the original graphs. The following theorems, which concern the gluing of winning and
losing graphs, are used as building blocks to prove our main results.

Theorem 3.2.1 ([28, Theorem 3.1]). Let G1 and G2 be graphs with v1 ∈ G1 and v2 ∈ G2

and let G = G1 +v1,v2 G2. Let h1 and h2 be hatness functions for the graphs G1 and
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G2 respectively, and suppose that 〈G1, h1〉 and 〈G2, h2〉 are both winning. Then 〈G, h〉 is
winning, where

h(v) =


h1(v) if v ∈ G1\{v1}
h2(v) if v ∈ G2\{v2}
h1(v1) · h2(v2) if v = v1 = v2

.

Theorem 3.2.2 ([25, Theorem 4.1]). Let G1 and G2 be graphs with v1 ∈ G1 and v2 ∈ G2

and let G = G1 +v1,v2 G2. Let h1 and h2 be hatness functions for the graphs G1 and G2

respectively, and suppose that 〈G1, h1〉 and 〈G2, h2〉 are both losing with h1(v1) ≥ h2(v2) = 2.
Then 〈G, h〉 is losing, where

h(v) =

{
h1(v) if v ∈ G1

h2(v) if v ∈ G2\{v2}
.

With these results in mind, we are ready to prove the reverse implications in Theo-
rem 3.1.2: if none of the conditions hold then the game is losing. If none of the conditions
hold and n = 3, the result follows from [28, Theorem 2.1]. Hence, we may assume n > 3
for the rest of the proof. Furthermore, if there are no vertices of hatness 2 then the result
holds by [38, Theorem 1], so we may also assume for the rest of the proof that there is at
least one vertex a with h(a) = 2. We split the proof into two parts, depending on whether
Condition 4a or Condition 4b fails.

3.2.1 Proof of Theorem 3.1.2 when Condition 4a Fails

We begin by assuming that Conditions 1, 2, 3, and 4a all fail, and Condition 4b holds.

Proof. Given these assumptions, let C be a cycle of length n > 3 such that for every
v ∈ C we have 2 ≤ h(v) ≤ 4, and let h(a) = 2 for some vertex a ∈ C. As a reminder,
our assumptions also imply 〈C, h〉 does not contain a winning subgame and the hatness
sequences (3, 2, 3) and (2, 3, 3) do not appear. Note that a is the only vertex with hatness
2 as otherwise Condition 3 would be satisfied by repeated application of Theorem 3.2.1 to
the game 〈K2, ?2〉.

Based on the supposition, we have two possible minimal cases, as suggested in [28].
It suffices to prove the claim for these minimal cases as increasing the hatnesses of any
vertex cannot cause a losing game to become winning. The first case is that the hatnesses
of a’s neighbors are each 4, and every other hatness is 3. The second case is that a has
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Figure 3.2: The two cases described in the proof of Theorem 3.1.2, where the ellipsis
indicates an arbitrary (possibly 0) number of vertices with hatness 3.

one neighbor b with hatness 3 and one with hatness 4, and the second neighbor of b has
hatness 4. Any other vertices in the cycle have hatness 3 if they exist. We prove the result
for these two possibilities separately, although the technique is quite similar.

In the first case, let v, a, b, and c be a sequence of vertices in the cycle with

h(v) = 4, h(a) = 2, h(b) = 4, h(c) = 3,

and any other vertices have hatness 3, as shown on the left side of Figure 3.2. Let xb be
the color guessed least frequently by vertex b (breaking ties arbitrarily). By the pigeonhole
principle, b can only guess xb at most once. Let xa and xc be the colors of a and c,
respectively, when b guesses xb (if xb is never guessed then a and c can be chosen arbitrarily).
Let Xv be the set of colors for v so that when b is colored xb, and v is colored from Xv,
a guesses color xa. Suppose toward a contradiction that |Xv| ≥ 2. Then we commit to
coloring a with the color which is not xa, b with the color xb, c with any of the three colors,
and v with a color from Xv, so a and b guess incorrectly. Hence, 〈C, h〉 is winning only
if there exists a winning strategy for the game on a path of length at least 2 where every
vertex has hatness 3 except for one vertex with hatness 2, as depicted in the right side of
Figure 3.3. Theorem 3.2.2 implies that this path is losing, hence in any winning strategy
we may assume that |Xv| ≤ 1. Thus, we can commit to coloring a with xa, v with one of
at least 3 colors not in Xv, coloring b with xb, and coloring c with one of the two colors not
equal to xc. This ensures again that a and b each guess incorrectly, and we again reduce to
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Figure 3.3: The two cases described in the proof of Theorem 3.1.2, after coloring a and
b and committing to a subset of colors for c and v. The ellipsis indicates an arbitrary
(possibly 0) number of vertices with hatness 3.

the path where every vertex has hatness 3 except one with hatness 2 (in this case depicted
on the left side of Figure 3.3), which is losing. Hence, C is losing.

Next, we prove the result in the second case, where we have a sequence of vertices
v, a, b, c in the cycle with

h(v) = 4, h(a) = 2, h(b) = 3, h(c) = 4,

and any other vertices in the cycle have hatness 3 if they exist (as shown on the right side
of Figure 3.2). As before, we let xb be the least frequently guessed color for b, breaking
ties arbitrarily. By the pigeonhole principle, xb is guessed at most twice. Let (xa, xc) and
(ya, yc) be the colorings of (a, c) for which b guesses xb. If xb is guessed at most once then we
can choose arbitrary values for any undetermined pairs. Now, there are three possibilities
to consider. The first case is xc = yc; the second is xa = ya; the third is xa 6= ya and
xc 6= yc.

In the first case, we commit to coloring b with the color xb, and c with a color other
than xc. This reduces to a path where the first vertex has hatness 2, the second vertex has
hatness 4, and the remaining vertices have hatness 3, which is losing by Theorem 3.2.2.

In the second case, we proceed as in the (4, 2, 4, 3) case. Let Xv be the set of colors for
v such that a guesses xa. As before, if |Xv| ≥ 2 we color a with the color not equal to xa,
v from Xv, and c arbitrarily; otherwise, we color a with xa, v from colors not in Xv, and

26



c from colors not xc or yc. As before, these choices ensure that a and b guess incorrectly
and leave losing paths. (Shown on the right and left sides of Figure 3.3, respectively; we
actually have 4 possible colors for c in the first case, but only 3 are needed.)

Finally, in the third case, assume without loss of generality that a guesses xa at most
as frequently as ya when b is colored xb. Then we can commit to coloring b with the color
xb, vertex a with the color xa, and c with a color that is not xc, of which there are 3
choices. Since xa is guessed at most as frequently as ya, there are at least 2 colors for v
such that a does not guess xa, and we can again reduce the game to a losing path (in this
case, the one shown on the right in Figure 3.3). Thus, 〈C, h〉 is losing in all cases when
Conditions 1, 2, 3, and 4a fail.

It remains to show that 〈C, h〉 is losing when Conditions 1, 2, 3, and 4b fail.

3.2.2 Proof of Theorem 3.1.2 when Condition 4b Fails

We begin with lemmas to simplify the argument for this case. Our first lemma allows us
to delete two vertices of a cycle, leaving behind a path that is winning if the original cycle
is winning. An application of the lemma is depicted in Figure 3.4.

Lemma 3.2.3. Let C = (V,E) be a cycle of length at least 4, let t, u, v, w ∈ V be consecu-
tive vertices in the cycle so that (t, u), (u, v), (v, w) ∈ E, and let h(·) be a hatness function
with h(v) > h(u). We define

h′(x) =


⌈
h(w)

(
1−

⌈
h(v)
h(u)

⌉−1)⌉
if x = w

h(t)−
⌊

h(t)
h(u)

⌋
if x = t

h(x) if x ∈ V \{t, u, v, w}

.

If 〈C, h〉 is winning then 〈C\{u, v}, h′〉 is winning.

Proof. The first step is to show that there exists a color xv ∈ [h(v)] such that for each
color xu ∈ [h(u)] there is a set Xw(xu, xv) ⊆ [h(w)] of colors for w with

|Xw(xu, xv)| ≥

⌈
h(w)

(
1−

⌈
h(v)

h(u)

⌉−1)⌉
, (3.1)

so that if v is colored xv, u is colored xu, and w is colored xw ∈ Xw(xu, xv) then v guesses
incorrectly. Indeed, suppose toward a contradiction that no such xv exists. Then, for
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Figure 3.4: A cycle before and after applying Lemma 3.2.3

each color xv ∈ [h(v)], there exists a color xu ∈ [h(u)] that violates Equation (3.1). That
is, there exists a set Yw(xu, xv) ⊆ [h(w)] of colors for w such that v correctly guesses xv
whenever w is colored from Yw(xu, xv) and u is colored xu, and

|Yw(xu, xv)| > h(w)−

⌈
h(w)

(
1−

⌈
h(v)

h(u)

⌉−1)⌉
.

By the pigeonhole principle, there is some yu ∈ [h(u)] which is used to generate Yw(yu, xv)

for a subset Yv ⊆ [h(v)] of colors with |Yv| ≥
⌈
h(v)
h(u)

⌉
. Summing over this set, we get

∑
yv∈Yv

|Yw(yu, yv)| >
⌈
h(v)

h(u)

⌉(
h(w)−

⌈
h(w)

(
1−

⌈
h(v)

h(u)

⌉−1)⌉)

≥
⌈
h(v)

h(u)

⌉(
h(w)

⌈
h(v)

h(u)

⌉−1)
= h(w).

This is a contradiction, since for a fixed color yu there are exactly h(w) guesses made by
v. Hence, there exists some zv ∈ [h(v)] with the desired property.
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Fix the color of v to be zv. With zv fixed, fix the color of u to be the least fre-

quently guessed color of u, denoted zu. By our choice of zu there are at least h(t)−
⌊

h(t)
h(u)

⌋
colors remaining for t, all of which ensure that u guesses incorrectly. Finally, there are⌈
h(w)

(
1−

⌈
h(v)
h(u)

⌉−1)⌉
colors for w that ensure v guesses incorrectly. Hence, after the

vertices of C commit to a guessing strategy, we can commit to coloring the vertices of
C\{u, v} using h′(x) colors for each x ∈ C\{u, v} in a way that guarantees u and v guess
incorrectly. Hence, if 〈C, h〉 is winning then the corresponding winning strategy must give
a winning strategy on 〈C\{u, v}, h′〉.

Our next lemma handles a step present in a few cases in Theorem 3.1.2. Equivalent
results have been shown in other works, but we reprove the result here in terms that are
useful for our arguments. This lemma can be thought of as a “vertex deletion” lemma
as it allows us to delete a vertex with hatness 5 lying on a path without changing the
winningness of the game.

Lemma 3.2.4. Let P be a path and let h be a hatness function with h(v) = 5 for some
v ∈ P . The game 〈P, h〉 is winning if and only if there is a connected proper subgraph of
P which is winning.

Proof. Let P be a path and let h be a hatness function with h(v) = 5 for some v ∈ P . If
P contains a winning connected proper subgraph then P is winning. Suppose P does not
contain a winning connected proper subgraph and let L,R be the resulting disjoint paths
when v is deleted from P . Then L and R are connected proper subgraphs of P , so they are
losing with their given hatness functions. The three vertex path with hatnesses (2, 5, 2) is
also losing. By Theorem 3.2.2, we can glue together this path with L on one endpoint and
R on the other endpoint to get a new losing path where the hatnesses are inherited from
the endpoints of L and R. Note that this is exactly the game 〈P, h〉, so P is losing.

We are now ready to prove Theorem 3.1.2 when Conditions 1, 2, 3, and 4b all fail. In
particular, when Condition 4b fails, there is a vertex with hatness at least 5.

Proof. Let C be a cycle of length at least 4 with at least one vertex of hatness 5 and no
winning proper subgraph. Observe that if there are no vertices with hatness 2, the game is
losing by [38, Theorem 1]. Hence, we may assume there is at least one vertex with hatness
2. We may also assume without loss of generality that every vertex has hatness 2, 3, or
5 since decreasing the hatness of a vertex does not make a winning game losing. Finally,
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on any path between two vertices of hatness 2 we assume there is at most one vertex with
hatness 5 for the same reason.

In order to apply Lemma 3.2.3 we need to work with an explicit sequence of hatnesses.
Given the above restrictions, we can narrow down the sequences that need to be considered
to the following cases:

• There exists a 2 with two adjacent 3’s giving the sequences (3, 2, 3, 3) or (3, 2, 3, 5),

• There exists a 2 with exactly one adjacent 3 giving the sequences (5, 2, 3, 3) or
(5, 2, 3, 5),

• There are no 2’s with any adjacent 3’s and we can find the sequence (2, 5, 2).

The conditions in last bullet follows from the restrictions above. We now handle each case.

For the sequence (2, 5, 2), we can choose a color for the vertex of hatness 5 that is never
guessed, leaving a path that induces proper subgame of 〈C, h〉. Hence, this path must be
losing and the result holds.

For the sequence (5, 2, 3, 5), we apply Lemma 3.2.3 with

h(t) = 5, h(u) = 2, h(v) = 3, h(w) = 5

to get a path with endpoints t and w with h′(t) = 3 and h′(w) = 3. Observe that t and w
have degree one in the new graph, and so they are deletable by Theorem 3.2.2. This leaves
a proper subgame that must must be losing. Hence, 〈C, h〉 is losing.

For the sequence (5, 2, 3, 3), we again apply Lemma 3.2.3 with

h(t) = 5, h(u) = 2, h(v) = 3, h(w) = 3

to get a path with endpoints t and w with h′(t) = 3 and h′(w) = 2. Observe that t has
degree one in the new graph, so it is deletable. Suppose towards a contradiction that the
new path is winning. Then, by Theorem 3.2.1, we can glue one end of a path (2, 3, 2) which
is winning to w and create a new graph that is still winning but where w has hatness 4.
Then we can decrease the hatness of w to 3, and the graph is still winning. However,
this new graph is a proper subgraph of the original cycle C, which yields a contradiction.
Hence, 〈C, h〉 is losing.

For the sequence (3, 2, 3, 3), we apply Lemma 3.2.3 with

h(t) = 3, h(u) = 2, h(v) = 3, h(w) = 3

30



to get h′(t) = 2 and h′(w) = 2. Suppose toward a contradiction that the resulting path
is winning. Then we can glue a copy of the winning path with hatnesses (2, 2) to t and
(2, 3, 2) to w, which gives a new winning path where t and w both have hatness 4 by
Theorem 3.2.1. Decreasing the hatnesses for t and w to 3 preserves the winningness of the
path. Note that this path contains a vertex of hatness 5. By Lemma 3.2.4 there must be a
winning connected proper subgraph. However, any connected proper subgraph of this path
cannot contain both endpoints and is thus also a proper subgraph of the original cycle,
yielding a contradiction. Hence, 〈C, h〉 is losing.

For the sequence (3, 2, 3, 5), we apply Lemma 3.2.3 with

h(t) = 3, h(u) = 2, h(v) = 3, h(w) = 5

to get h′(t) = 2 and h′(w) = 3. Since w has hatness 3 in the new graph, w is deletable.
After deleting w, suppose toward a contradiction that the graph is winning. Then we can
glue an edge with hatnesses (2, 2) to t, creating a winning graph where t has hatness 4.
We can then decrease the hatness of t to 3. This graph is now a proper subgame of 〈C, h〉,
which must be losing, a contradiction. Hence, 〈C, h〉 is losing.

3.3 Cactus Graphs

We start by proving the general upper bound that every cactus graph has hat guessing
number at most 4, proving Statement 1 of Theorem 3.1.3. Then, we show how the same
argument can be modified to prove Statement 2. Finally, we observe that Statement 3
follows immediately from [27].

Definition 3.3.1. Let G be a cactus graph with a cycle C. We say that C is a leaf cycle
if deleting the edges of C leaves at most 1 connected component with a cycle (so all other
connected components are acyclic).

Figure 3.5 depicts the leaf cycles of a cactus graph in bold.

Proof of Theorem 3.1.3. First, we prove the general upper bound of HG(G) ≤ 4 for all
cactus graphs G by induction on the number of vertices. The base case is trivial. Suppose
that the result holds for all cactus graphs on n ≥ 1 vertices, and let G be a cactus graph
with n+ 1 vertices. We show that HG(G) < 5. If G has a vertex v with degree 1 then [2,
Theorem 1.8] shows that HG(G) = HG(G\{v}), and the result holds by induction. Thus,
we may assume that G has no vertices of degree 1. If G has no cycles then G is a tree,
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Figure 3.5: A cactus graph with the leaf cycles in bold.

and HG(G) = 2. Hence, we may also assume G has at least one cycle. In particular, this
implies G has a non-empty leaf cycle C. We can decompose G as G = C+v,vG

′ at a vertex
v ∈ C ∩ G′, where G′ is a cactus graph on fewer than n + 1 vertices. By the induction
hypothesis HG(G′) < 5, so the game 〈G′, ?5〉 is losing. Theorem 3.1.2 shows that 〈C, h〉 is
losing where h(v) = 2 and h(w) = 5 for all w 6= v. Then 〈G, ?5〉 is losing by Theorem 3.2.2,
so HG(G) < 5 and the result holds.

The same argument can easily be modified to prove the upper bound for Statement 2, by
assuming HG(G) < 4 in the induction hypothesis for graphs satisfying Statement 2. If the
graph has exactly one cycle, then it is a pseudotree and the result holds by [27]. Otherwise,
G has at least two cycles, and thus at least two leaf cycles. Statement 2 ensures at most
one triangle, so we can choose a non-triangle leaf cycle C in G and write G = C+vG

′ where
G′ is a cactus graph on fewer than n + 1 vertices. Then 〈C, h〉 is losing where h(v) = 2
and h(w) = 4 for all w 6= v, and 〈G′, ?4〉 is losing by the induction hypothesis, so 〈G, ?4〉
is losing by Theorem 3.2.2.

As Statement 3 follows from [27], the proof of Theorem 3.1.3 is complete.

3.4 Open Problems

Theorem 3.1.2 (along with some lemmas about leaf deletion) can extend the result for
pseudotrees [27] to arbitrary hatness functions [30]. Naturally, we would like to do the
same for graphs with more than one cycle. The treelike structure of cactus graphs, which
this chapter leveraged, could help make them the next step. One challenge that must be
overcome is that the hatness for any individual vertex of a winning cactus graph may be
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arbitrarily large. For example, we can take n copies of the triangle with hatnesses (2, 4, 4)
and glue them together at the vertices of hatness 2. The resulting graph is a winning
cactus with a vertex of hatness 2n. Even worse, we can glue multiple copies of this graph
together to get arbitrarily many vertices with hatness 2n.

Instead, we could turn to theta graphs, consisting of three internally vertex disjoint
paths that share common endpoints. Thetas are the “simplest” non-cactus graphs, and
yet we lack even an analogue to Theorem 3.1.3. Every theta has maximum degree 3, so
the hat guessing number of a theta is trivially at most 8 by [16]. Careful analysis using a
generalized version of Lemma 3.2.3 shows that thetas have hat guessing number at most
4. We postpone a full characterization of thetas for both constant and general hatness
functions to a future work.
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Chapter 4

The Sunflower Problem

This chapter is adapted from Chizewer [9].

4.1 Preliminaries

A set family F over a finite set X is a collection of subsets of X. We say that a set family
is n-uniform if every set in the family has size n.

Definition 4.1.1 (Sunflower). An r-sunflower is a collection of sets S1, . . . , Sr such that

Si ∩ Sj = S1 ∩ S2 ∩ · · · ∩ Sr = K for all i 6= j.

We call the set K the core and the sets Si\K the petals.

Erdős and Rado [15] originally referred to sunflowers as ∆-systems and proved that
given an n-uniform set family F with |F| = n!(r−1)n there exists an r-sunflower contained
in F . Sunflowers were renamed by Deza and Frankl in [14], with this new name now
dominant in the literature. The sunflower problem has been studied in several papers,
including [15, 13, 14, 5, 37, 22], and Erdős and Rado conjectured that a stronger bound
holds.

Conjecture 4.1.2 (Erdős and Rado [15]). Let F be an n-uniform set family. There exists
some constant C = C(r) depending only on r such that F contains an r-sunflower whenever

|F| > C n.
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Recently, Alweiss et al. [5], and subsequently Rao [37] and Bell et al. [6], made progress
toward this bound by showing there exists some constant C such that F contains an
r-sunflower whenever |F| > (Cr log n)n. We study the sunflower problem with added
restrictions on the pairwise intersections.

Definition 4.1.3. Let F be a set family. We call F an L-intersecting family if there exists
a set L ⊂ N such that

|Fi ∩ Fj| ∈ L for every Fi, Fj ∈ F , with i 6= j.

The problem of sunflowers in L-intersecting set families was first studied in [22]. These
authors show that given an L-intersecting set family F with |L| = s, the family F contains

a 3-sunflower whenever |F| > (n2−n+1)8s−12(1+
√
5/5)n(s−1). We improve their bound, and

extend the result to all r ≥ 3 in the following theorem, which is one of the main results of
this chapter.

Theorem 4.1.4. Let F be an L-intersecting, n-uniform set family, for some set L ⊂ N
with |L| = s ≥ 1. Let m = max{r − 1, n2 − n + 1}. Then F contains an r-sunflower
whenever

|F| > 2n log2(s+1)+s log2(m).

We also consider the special case where L = {0, 1, . . . , d} for some d ∈ N. In this
case, we call the set family d-intersecting. Using the techniques of [5, 37] we achieve the
following bound, our second main result.

Theorem 4.1.5. Let F be a d-intersecting, n-uniform set family. There exists an absolute
constant C such that for every r, n ≥ 3, the family F contains an r-sunflower whenever

|F| > (4r)n(Cr log(rd))d.

The results of [6] can be used to get Cr log(d) instead of Cr log(rd) by paying an extra
factor of 2n.

Corollary 4.1.6. Let F be an n-uniform, r-sunflower-free family for 3 ≤ r ≤ log n. For
any C > 1 there exists c = c(r) > 0, depending only on C and r, such that if |F| ≥ (C4r)n

then there exists F1, F2 ∈ F with

|F1 ∩ F2| ≥ cn/ log log n.
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Corollary 4.1.6 follows immediately from Theorem 4.1.5 by setting d = cn/ log log n.
The following question naturally arises.

Question 4.1.7. Do there exist constants C, c > 0 depending only on r, and possibly each
other, such that if F is an n-uniform, r-sunflower-free family of size |F| ≥ C n then there
exist F1, F2 ∈ F with |F1 ∩ F2| ≥ cn?

Corollary 4.1.6 is of interest because the statement in Question 4.1.7 is equivalent to Con-
jecture 4.1.2. The proof of this fact follows the same argument that will be used throughout
this chapter. We begin, towards a contradiction, with a sunflower-free family of size (2C)n/c

(where C and c are given by Question 4.1.7) and identify the largest subfamily with no
pairwise intersection of size at least cn. The size of this subfamily is bounded by the state-
ment in Question 4.1.7. Among the remaining sets, we can find (2C)n/c−n of them that all
contain the same subset of size cn using the pigeonhole principle and a basic counting ar-
gument. Deleting this subset from these sets and applying induction to the family formed
by the new sets completes the proof. The reverse direction holds vacuously.

The remainder of the chapter is organized as follows. Theorem 4.1.4 will be proved in
Section 4.2, and Theorem 4.1.5 in Section 4.3. We briefly discuss the results in Section 4.4.

4.2 Proof of Theorem 4.1.4

We proceed using similar ideas to the original proof of Erdős and Rado [15], and the
subsequent result of Hegedűs [22], beginning with the following lemma.

Lemma 4.2.1 (Deza [13]). Let F be an L-intersecting, n-uniform set family where L = {t}
for some 0 ≤ t < n. If F ≥ n2 − n+ 2 then F is a sunflower.

Lemma 4.2.1 provides the base case for our induction argument. We also state the
following definition, which will be useful in this section and the next one.

Definition 4.2.2. Given a family F over X and a set T ⊆ X, the link of F at T , denoted
FT , is defined as

FT = {F \T : F ∈ F , T ⊆ F}.

Proof of Theorem 4.1.4. We use induction on a slightly stronger statement than that of
the theorem.
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Claim 4.2.3. Let F be an L-intersecting, n-uniform set family for L = {`1, . . . , `s} with
0 ≤ `1 < `2 < · · · < `s < n and s ≥ 1. Let m = max{r − 1, n2 − n+ 1}. Then F contains
an r-sunflower whenever

|F| > n!ms

(`1 + 1)!(`2 − `1)!(`3 − `2)! · · · (`s − `s−1)!(n− `s − 1)!
. (4.1)

Proof of Claim 4.2.3. Fix m as above. We proceed by induction on s. Indeed, for s = 1 we
apply Lemma 4.2.1 to get the result immediately. Suppose the result holds for 0 < j < s,
and let F be an n-uniform, L-intersecting family (with L as above) with |L| = s ≥ 2.
Suppose that F satisfies Inequality (4.1). Let S ⊆ F be a maximal subset of F such that
for every Si, Sj ∈ S if i 6= j then |Si ∩ Sj| = `1. If |S| > m then, by Lemma 4.2.1, S (and
hence F) contains an r-sunflower. Thus, without loss of generality, we can assume that
|S| ≤ m. By maximality of S, every set in F intersects at least one set of S in at least
`1 + 1 elements. Let S ∈ S be the set which intersects the most elements of F in at least
`1 + 1 elements, and let

F ′ = {F ∈ F : |F ∩ S| ≥ `1 + 1}.

By the pigeonhole principle |F ′| ≥ |F|/m. There are
(

n
`1+1

)
subsets of S of size `1 + 1, and

every set in F ′ contains at least one such subset, so again by the pigeonhole principle there
exists a set S ′ ⊆ S such that |S ′| = `1 + 1 and the link at S ′ in F ′ satisfies

|F ′S′| ≥
|F|

m
(

n
`1+1

) > (n− `1 − 1)!ms−1

(`2 − `1)!(`3 − `2)! · · · (`s − `s−1)!(n− `s − 1)!
. (4.2)

Let L′ = {`2− `1− 1, . . . , `s− `1− 1}. We observe that F ′S′ is an (n− `1− 1)-uniform, L′-
intersecting family, and |L′| = s− 1. Thus, by Inequality (4.2) and induction F ′S′ contains
an r-sunflower (note that m still satisfies the requirements of the induction hypothesis).
If F1, . . . , Fr ∈ F ′S′ is an r-sunflower then taking F1 ∪ S ′, . . . , Fr ∪ S ′ ∈ F gives an r-
sunflower.

Theorem 4.1.4 follows immediately from Claim 4.2.3 using the bound
(

n
m1,...,mk

)
≤ kn for

multinomial coefficients.

4.3 Proof of Theorem 4.1.5

We proceed using a similar argument to the main theorem of [5]. We start by stating some
definitions from [5], so that we may apply their results.
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Definition 4.3.1. An n-uniform family F over X is κ-spread if |F| ≥ κn and for all T ⊆ X
with |T | ≤ n we have |FT | ≤ κ−|T ||F|.

We also introduce weight functions, so that we can deal with multiset families (this is
not strictly necessary, but it makes it easier to apply the results of Alweiss et al. [5]).

Definition 4.3.2. A function σ : F → Q is a weight function on a set family F if it maps
each set in F to a rational weight, such that not all sets have weight zero. Moreover we
define σ(S) =

∑
S∈S σ(S) for a set family S ⊆ F .

Our next definition generalizes the idea of κ-spread using weight functions.

Definition 4.3.3. A set family F over X, and corresponding weight function (F , σ), is
s-spread if s = (s0; s1, . . . , sn) satisfies s0 ≥ s1 ≥ · · · ≥ sn ≥ 0 with σ(F) ≥ s0 and for
every set T ⊆ X the subfamily T = {F ∈ F : T ⊆ F} satisfies σ(T ) ≤ s|T |.

Our final definition is used in our probabilistic arguments below. We write R ∼ U(X,α)
whenever R ⊆ X is generated by taking each element of X uniformly and independently
at random with probability 0 ≤ α ≤ 1.

Definition 4.3.4. Let 0 < α, β < 1. A family F is (α, β)-satisfying if given R ∼ U(X,α),

PR(∃S ∈ F , S ⊆ R) > 1− β.

A family F is s-spread if there exists a weight function σ such that (F , σ) is s-spread, and
a weight profile s is (α, β)-satisfying if any s-spread family F is (α, β)-satisfying.

Using these definitions, we can now state the following lemmas.

Lemma 4.3.5 ([5, Lemma 1.6]). If F is a (1/r, 1/r)-satisfying family, and ∅ /∈ F , then F
contains r pairwise disjoint sets.

Lemma 4.3.6 ([37, Lemma 4]). Let 0 < α, β < 1/2. There exists a universal constant
C > 1 such that if κ = κ(n, α, β) = C log(n/β)/α and a multiset family F over X is a
κ-spread, n-uniform family then F is (α, β)-satisfying.

The next lemma, which is the main technical result of this section, will allow us to use
Lemma 4.3.6 on sets of size d for a d-intersecting family.
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Lemma 4.3.7. Let F be a d-intersecting, n-uniform set family that is s-spread, such that
s := (|F|; s1, . . . , sd, 1, . . . , 1). Let p, δ > 0, and suppose that s′ = ((1− δ)|F|; s1, . . . , sd) is
(α′, β′)-satisfying. Then F is (α, β)-satisfying for

α = p+ (1− p)α′, and β = β′ + (2/p)n/(δ|F|)

Before proving Lemma 4.3.7, we define a notion of “good” and “bad” set pairs. Bound-
ing the number of bad pairs is the key idea in this proof.

Definition 4.3.8. Let F be an n-uniform family over X and let W ⊆ X. Given S ∈ F
and w ∈ [n] we call the set pair (W,S)w good if there exists a set S ′ ∈ F (possibly with
S ′ = S) such that

S ′ \W ⊆ S \W , and |S ′ \W | ≤ w

We call S ′ a witness to the goodness of (W,S)w. We call a set pair bad otherwise.

We use Definition 4.3.8 with w = d for our purposes.

Proof of Lemma 4.3.7. Let F be a d-intersecting, n-uniform set family over X, with |X| =
x. We begin by bounding the number of bad set pairs using an encoding inspired by [5].
Suppose (W,S)d is a bad pair for W ⊆ X where |W | = px and S ∈ F . First, we consider
all possible sets W ∪S. Since |S| = n and |W | = px, we know that px ≤ |W ∪S| ≤ px+n.
Hence, there are

n∑
i=0

(
x

px+ i

)
≤

n∑
i=0

(
1− p
p

)i(
x

px

)
≤
(

1− p
p

+ 1

)n(
x

px

)
= p−n

(
x

px

)
possible sets for W ∪ S. Let W ∪ S be the first piece of information in the encoding.
There are 2n possible values for W ∩ S since |S| = n. Let W ∩ S be the second piece of
information in the encoding. Now we claim that given these two pieces of information,
and the additional information that the corresponding set pair (W,S)d is bad, we can
reconstruct (W,S)d. Indeed, if we knew S in addition to this information, we could clearly
reconstruct (W,S)d. Let S ′ ∈ F and suppose that S ′ ⊆ W ∪ S, so that S ′ \W ⊆ S \W .
Since (W,S)d is bad, it must be that |S ′ \W | > d, hence |S ′ ∩ S| > d. Since F is
d-intersecting, S ′ = S and there is a unique set S for a given W ∪ S, which can be
computed by taking the unique set S ⊆ W ∪ S. Since we also know W ∩ S, we can
compute W . Therefore, there are at most (2/p)n

(
x
px

)
bad set pairs. Since there are

(
x
px

)
possible sets W , the expected number of bad set pairs for a given W is (2/p)n. Let
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S(W ) = {S ∈ F : (W,S)d is bad}. By Markov’s inequality, the probability over W drawn
uniformly from

(
X
px

)
, the set of subsets of X with size px, satisfies

PW (|S(W )| ≥ δ|F|) ≤ (2/p)n

δ|F|
. (4.3)

When |S(W )| ≤ δ|F| we define a new d-uniform multiset family F ′ over X \W which is
s′ = ((1 − δ)|F|; s1, . . . , sd)-spread. The rest of the proof follows immediately from the
arguments in Section 2.1 of [5].

Proof of Theorem 4.1.5. We roughly follow the argument used in [5, 37]. Let F be a d-
intersecting, n-uniform family over X of size |F| > (4r)n(Cr log(rd))d, for C to be chosen
later. Let T ⊆ X be the largest set with |T | ≤ d (possibly |T | = 0) such that

|FT | ≥ (Cr log(rd))−|T ||F|.

We claim that FT is κ = Cr log(rd)-spread. Indeed, if |T | = d then FT is a family of
pairwise disjoint sets, and otherwise we can find a link at T ′ ⊆ X \T such that |T ′| > 0
and

(FT )T ′ ≥ (Cr log(rd))−|T
′||FT |.

But then, taking T ′ ∪ T gives a larger set with

|FT∪T ′| ≥ (Cr log(rd))−|T∪T
′||F|,

a contradiction. Hence, FT is s-spread and (d− |T |)-intersecting for weight profile

s = (|FT |; |FT |/κ, . . . , |FT |/κd−|T |, 1, . . . , 1),

taking σ(F ) = 1 for all F ∈ FT .

Let s′ = (|FT |/2; |FT |/κ, . . . , |FT |/κd−|T |). As in [5], we observe that if a family is
(|FT |/2; |FT |/κ, . . . , |FT |/κd−|T |)-spread, then it is also s′′ = (|FT |; |FT |/κ′, . . . , |FT |/κ′(d−|T |))-
spread for κ′ = κ/2. By Lemma 4.3.6, s′′ (and hence also s′) is ( 1

2r
, 1
2r

)-satisfying for C
chosen sufficiently large. Hence, by Lemma 4.3.7 with δ = 1/2 and p = 1

2r
, we know

that s is (1/r, 1/r)-satisfying choosing C sufficiently large according to the result of the
lemma. Therefore, by Lemma 4.3.5, this implies FT contains r pairwise disjoint sets. Let
F1, . . . , Fr ∈ FT be pairwise disjoint. Then F1 ∪ T, . . . , Fr ∪ T ∈ F is an r-sunflower.
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4.4 Discussion

It is easy to see that Theorem 4.1.5 implies a stronger statement than the best known
bound whenever d = o(n). The original bound of Erdős and Rado can be directly applied
to d-intersecting sets families to achieve a bound of (r− 1)d+1n!/(n− d)!, and it is natural
to ask when Theorem 4.1.5 improves this trivial bound. There is some constant c > 0 such
that

(r − 1)d+1n!

(n− d)!
≥
(

(r − 1)n

2

)cn/ log logn

≥ (4r)n(Cr log(rcn/ log log n))cn/ log logn

for d ≥ cn/ log log n and n sufficiently large. Hence, in this regime, we improve the best
known bound. In particular, this motivates Corollary 4.1.6 and Question 4.1.7.
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