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Abstract

A measurement system analysis involves understanding and quantifying the variability
in measurement data attributed to the measurement system. A primary goal of such
analyses is to assess the measurement system’s impact on the overall variability of the
data, determining its suitability for the intended purpose. While there are established
methods for evaluating measurement systems for a single variable, their applicability is
limited when dealing with other data types, such as multivariate and functional data. This
thesis addresses a critical gap in the literature concerning the assessment of measurement
systems when dealing with multivariate and functional observations. The primary objective
is to enhance the understanding of measurement system assessment studies, particularly
focusing on multivariate measurements and extending to functional data measurements.

Chapter 1 serves as an introduction. We review several statistical properties and pa-
rameters for assessing the measurement systems. This chapter includes some real-world
examples of measurement system assessment problems for multivariate and functional data
and elaborates on the challenges involved. We also outline the contents that will be ex-
plored in the subsequent chapters.

While the literature on measurement system analysis in multivariate and functional
data domains is limited, there is also a notable absence of a systematic theoretical in-
vestigation for univariate methods. In Chapter 2, we address this gap by conducting a
thorough theoretical examination of measurement system assessment estimators for uni-
variate data. The chapter explores various estimation methods for estimating variance
components and other essential parameters crucial for measurement system analysis. We
provide a comprehensive scrutiny of the statistical properties of these estimators. This
foundational understanding serves as the basis for subsequent exploration into the more
intricate domains of multivariate and functional data.

In Chapter 3, we extend the scope of measurement system assessment to include multi-
variate data. This chapter involves adapting the definitions of measurement system assess-
ment parameters to multivariate settings. We employ transformations that yield summary
scalar measures for variance-covariance matrices, with a specific focus on the determinant,
trace, and Frobenius norm of the variance-covariance matrix components. Building upon
the statistical concepts and properties discussed in Chapter 2, we conduct a targeted review
of existing theories related to variance-covariance component estimation. A key emphasis
is placed on the statistical properties of estimators introduced for one of the parameters in
measurement system assessment—the signal-to-noise ratio. Our investigation includes an
exploration of its convergence properties and the construction of approximate confidence
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intervals. Additionally, we conduct a comparative analysis of the application of three trans-
formations, namely, the determinant, the trace, and the Frobenius norm, based upon their
asymptotic properties.

In Chapter 4, our exploration takes a significant step forward as we establish a frame-
work for assessing measurement systems tailored to functional data types. This involves
extending the definition of parameters used in the evaluation of measurement systems for
univariate data by applying bounded operators on covariance kernels. To estimate the
measurement system assessment parameters, we first provide methods to estimate the co-
variance kernel components. Initially, we explore a classical estimation approach without
smoothing. Subsequently, we leverage specialized tools in functional data analysis, within
the framework of reproducing kernel Hilbert space (RKHS), to obtain smooth estimates of
the covariance kernel components.

The fifth chapter is devoted to a case study application, where we apply the developed
framework to a real-world functional dataset. Specifically, we analyze the surface roughness
of printed products in the context of additive manufacturing. The comprehensive analysis
in Chapter 5 employs statistical methods for univariate and multivariate data types and
techniques from functional data analysis.

We are in the process of converting the materials in Chapters 2, 3, and 4 to three
separate articles for submission.
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Chapter 1

Introduction

1.1 Introduction

Maintaining and continuously enhancing quality is of paramount importance for all or-
ganizations; from the manufacturing industry to public services such as transportation
healthcare, and education. In the manufacturing industry, quality is inextricably linked to
meeting pre-determined specifications. To meet and exceed users’ expectations, suppliers
have to continually strive to enhance their processes and products. In this environment,
key decisions about the process and products are greatly influenced by the quality and
reliability of the measurement data (Montgomery, 2020).

In the early 1990s, the Automotive Industry Action Group (AIAG) (1995) described the
quality of the measurement data in the automotive industry as “the statistical properties
of repeated measurements obtained from a measurement system under stable conditions”.
The measurement system, according to AIAG (1995) and Montgomery (2020), encompasses
all the components involved in collecting data, including the instruments or gauges, the
operator(s), the software, the method, or the protocols used, the conditions under which
the data is collected, and the environment in which measurement takes place.

The measurement data often deviate from the reference or the true value of the char-
acteristic being measured. Two critical aspects to consider for the quality of measurement
data are accuracy and precision (Vardeman and Jobe, 2016). Both these factors indicate
the closeness of the measured values to the true value. Accuracy pertains to the closeness
of the average of measurements to the true value and can be affected by various factors
such as the calibration of the measuring instrument, environmental conditions, and the
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operator’s skills. Precision, on the other hand, refers to the closeness of repeated mea-
surements to each other and can be influenced by factors such as the sensitivity of the
measuring instrument, the operator’s ability to make the measurement and environmental
conditions.

An analogy that helps us understand the concepts of accuracy and precision is a dart-
board. If a player throws darts and the darts land on average close to the center, then the
player is considered accurate. Conversely, if the player hits on average other areas of the
dartboard, then the player is less accurate. If the darts consistently land very close to each
other, then the player is precise. However, if the darts land all over the dartboard, then
the player is imprecise. Figure 1.1 illustrates the four cases that arise based on high/low
levels of accuracy and precision, with (a) being the most desirable and (d) being the least
desirable case.

(a) (b) (c) (d)

Figure 1.1: Graphical illustration for accuracy and precision: (a) high accuracy and high
precision, (b) high accuracy and low precision, (c) low accuracy and high precision, and
(d) low accuracy and low precision. The centers of the circles are considered the reference
points.

The error in measurement data can be caused by various factors such as the measure-
ment device itself, the operator performing the measurement, the surrounding conditions,
the time of measurement, or the items being measured, among others (Wheeler and Ly-
day, 1989). There are also other sources of measurement data error in industries, such as
cycle-to-cycle, day-to-day, machine-to-machine, and so on (Taver, 1995).

Given the variety of factors that can cause measurement data errors, it is crucial to
understand their sources for making an informed decision based on that data (Smith et al.,
2007). For instance, in the three-dimensional (3D) printing industry, the calibration of
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the 3D printer or the properties of the material being used can cause uncertainty in the
measurement data. The failure of the manufacturer to consider the sources of error can
result in the production of 3D-printed parts that are outside of the specified tolerance
range. This can lead to negative consequences such as decreased product quality, increased
production costs, and potentially decreased customer satisfaction and loss of business.
Likewise, in chemical analyses, the accuracy of measurement devices or the conditions
during data collection can be the root causes of uncertainty in measurement data, leading to
reduced accuracy and precision. By gaining a comprehensive understanding of the sources
of measurement data uncertainty and taking steps to minimize them, manufacturers and
analysts can produce more accurate and precise results, whether they are 3D printed parts
or chemical analyses, resulting in higher quality products.

A measurement system analysis is the practice of understanding and quantifying the
variability in measurement data pertaining to the measurement system (Montgomery and
Runger, 1993a). According to Montgomery and Runger (1993b), Burdick et al. (2003),
and Majeske (2012), the main goal of most measurement system analyses is to:

(1) evaluate the measurement system’s contribution to the overall variability of mea-
surement data,

(2) identify the sources of variability within the measurement system, and
(3) determine if the measurement system is suitable for its intended purpose.

The error linked to the measurement system may stem from various factors within
the measurement system. For instance, there may be multiple instruments or operators
involved in collecting the data. The measurement system error can result from instru-
ment wear and tear, operator’s skill and training, or ambient conditions (Montgomery and
Runger, 1993a). In many industries, a regular measurement system assessment study is
performed to identify and quantify this uncertainty, as well as to pinpoint the underlying
causes and address them accordingly.

1.2 Statistical properties of measurement systems

Measurement system analysis involves evaluating several statistical properties to determine
the quality of a measurement system. In the manual by Automotive Industry Action Group
(1995), these properties consist of bias, linearity, stability, repeatability, and reproducibil-
ity. Evaluating these properties is essential in ensuring that the measurement system is
adequate. To develop these concepts, let us consider a unit to refer to the object or item
being measured, which may be a manufactured product, a person, an animal, a physical
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or chemical substance, or anything of which a characteristic is being measured. A physical
quantity, property, or condition being measured is called the measurand.

Probability theory offers a useful framework for describing and analyzing the properties
of measurement systems. Let the random variable U represent the measurand for a unit,
and the random variable ϵ represent the error of the measurement system with mean δ and
standard deviation σϵ . One can model the actual measurement,

Y = U + ϵ. (1.1)

When the true value of the measurand is u and it is fixed, the actual measurement is
modeled as,

Y = u+ ϵ, (1.2)

As such, the expectation of the actual measurement is,

E(Y ) = u+ δ. (1.3)

The measurement of a unit is considered unbiased when the expected value of the actual
measurement is equal to the true value of the measurand. This condition is met when δ is
equal to zero (Vardeman and Jobe, 2016). If δ is non-zero, then the measurement bias is
δ. A quantity δ > 0 indicates that the measurement system overestimates the value of the
measurand, while a δ < 0 indicates that the measurement system underestimates the value
of the measurand. Bias is a measure of the measurement system’s accuracy. Figure 1.2
illustrates the measurement system bias via a schematic probability density function of Y
and the elements u and δ where δ has a positive value.

bias

u u+ δ

y

f(y)

Figure 1.2: Representation of a positive bias through the probability density function of
actual measurement Y , denoted as f(y), the true value of the measurand, and the mean
of the measurement system error.
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It is desirable to reduce or minimize any biases in a measurement system, and if such
biases exist, determine how they vary over the range of values being measured. The linear-
ity property of a measurement system compares the actual measurement to the true value
for different values of the measurand. According to the manual by Automotive Industry
Action Group (1995) and ISO GUM (2008), the linearity property of a measurement sys-
tem implies that the measurement system produces results that, on average, change at a
constant rate over the range of values being measured.

Figure 1.3 shows four different examples of the linearity property, with plots (a) through
(d) representing different scenarios. Plot (a) shows the ideal situation where the measure-
ment system provides the true value of the measurand on average. Plot (b) of this figure
indicates a fixed and positive bias for the measurement system, which does not depend on
the measurand value. Plots (c) and (d) show situations where the difference between the
measurement’s expected and true values has a constant slope. Note that in (Vardeman
and Jobe, 2016) a more restrictive condition for the linearity of a measurement system is
considered, which corresponds to plot (b).

Another ideal property of a measurement system is that it consistently produces the
same average result when used at different time frames to make measurements of the
same unit with a fixed measurand. Statistical stability is the property that refers to the
consistency of measurements over time. If the same measurement system produces similar
average measured readings for each time frame during a length of time, it can be assessed
as statistically stable (Automotive Industry Action Group, 1995). A measurement system
with lower bias variation over time is considered more stable.

During the statistical stability analysis of a measurement system, the conditions to
which the measurement system is exposed are a major point of discussion. For exam-
ple, a measurement system that exhibits changes in its readings because of temperature
fluctuations may not be considered statistically stable during those fluctuations but may
be considered statistically stable once the temperature is stabilized (Automotive Industry
Action Group, 1995).

Repeatability refers to the uncertainty in measurements obtained from the same mea-
surement system when it is used multiple times over a short period, under the same condi-
tions, to measure the same unit (Automotive Industry Action Group, 1995). For example,
in a factory that produces metal parts, a measuring tool is used to measure the dimensions
of each part. To assess the repeatability of the measuring tool, a single part is measured 10
times by the same operator, using the same measuring tool, and under the same conditions.
If the differences between the measurements are small and within an acceptable range, then
the measuring tool is considered to have good repeatability. However, if the differences be-
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Figure 1.3: Plots of the linear relationship of the actual measurement and the values being
measured. The scales of the vertical and horizontal axes are the same.

tween the measurements are large and outside of an acceptable range, then the measuring
tool may be deemed poor or require maintenance to improve its repeatability.

The measurement system repeatability can be quantified under model (1.1). With a
fixed true value, the variance of the actual measurement random variable is σ2

ϵ . A measure
of repeatability is the standard deviation of the actual measurement for a fixed measurand
true value, determined by,

σrepeatability = σϵ . (1.4)

Figure 1.4 depicts a schematic representation of the probability density function of actual
measurements for a fixed measurand u, along with the extent of imprecision resulting from
the measurement system’s repeatability.
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Figure 1.4: A graphical representation of the measurement system’s repeatability size,
depicted through the probability density function of the actual measurements. Here, δ
represents the bias of the measurement system.

In some cases, there may be multiple measurement systems that are similar and could
potentially be used for measuring. For instance, a particular piece of equipment could
be operated by any of several operators. Reproducibility refers to the uncertainty in the
measurement arising from changes in the measurement system conditions, which can be
differences in either the gauge, operator or so on (Montgomery, 2020). To compare these
measurement systems, one possible approach is to select a subset of available measurement
systems and use them to measure a single fixed measurand (Vardeman and Jobe, 2016).
In this context, the actual measurement can be modeled as,

Y = u+∆+ ϵ∗,

where ∆ is a random variable with variance σ2
∆ that represents the bias of the measurement

system (e.g., the differences among gauges, operators, etc), and ϵ∗ is a random variable with
a mean of zero and variance σ2

ϵ that represents the measurement system’s imprecision error.
We can assume that ∆ and ϵ∗ are statistically independent random variables. A measure
of reproducibility is the standard deviation of the bias of measurement system (Vardeman
and Jobe, 2016), determined by,

σreproducibility = σ∆.

The variance of the actual measurement can be expressed as the sum of the variance due
to differences between measurement systems (i.e., σ2

∆) and the variance due to uncertainty
within a single measurement system (i.e., σ2

ϵ ) (Montgomery and Runger, 1993a). Then the
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quantity,

σms =
√
σ2
∆ + σ2

ϵ , (1.5)

provides an estimate of the overall uncertainty associated with the measurement system.
This quantity is often used to assess the quality of a measurement system and to identify
sources of variation that may need to be addressed. Figure 1.5 illustrates the relationship
between σms, σrepeatability and σreproducibility.

σrepeatability
σ
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p
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d
u
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b
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it
y

σms

Figure 1.5: The relationship between the uncertainty in the measurement system, repeata-
bility, and reproducibility.

1.3 Parameters for assessing measurement systems

This section provides an overview of some of the fundamental parameters involved in
measurement system assessment. To begin, we assume that the characteristics of the units
being measured and the error of the measurement system are statistically independent. It
is well known that the total variance of the measurement data may be decomposed into
two variance components (Burdick et al., 2003; Montgomery and Runger, 1993a), say

σ2
t = σ2

u + σ2
ms (1.6)

where σ2
u and σ2

ms are, respectively, the variances of the units and measurement system
error.
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AIAG (1995) defines percentage R&R ratio as

%R&R =
σms

σt
100% . (1.7)

According to the guidelines set by AIAG (1995, Page 60), a measurement system is con-
sidered acceptable if the percentage R&R ratio is less than 10%. If the percentage R&R
ratio value falls between 10% and 30%, the measurement system’s acceptability will de-
pend on factors such as the significance of the application and the cost of any necessary
improvements. If the R&R ratio exceeds 30%, it is recommended to take steps to improve
the measurement system.

Larsen (2002) and Burdick and Larsen (1997) note the signal-to-noise ratio as,

SNR =
σu

σms

· (1.8)

The AIAG (1995) and Burdick et al. (2003) employ a scaled by
√
2 version of (1.8) as

the signal-to-noise. Furthermore, this scaled version is commonly referred to as the gauge
discrimination ratio which serves the purpose of determining whether the measurement
process has sufficient resolution to effectively monitor the feature of interest. An approval
value of 5 or greater is recommended by the AIAG, and a value less than 2 indicates
that the measurement system is unacceptable for monitoring the process. Steiner and
MacKay (2005, Page 97) suggest more moderate acceptability criteria where any value of
SNR obtained by (1.8) exceeding 3 shows the validity of the measurement system, while a
value less than 2 is considered as unacceptable.

An alternative ratio to compare the quality of a measurement system is the intra-class
correlation coefficient expressed as (Mader et al., 1999; Majeske and Andrews, 2002),

ICC =
σ2
u

σ2
t

=
σ2
u

σ2
u + σ2

ms

· (1.9)

This measure of quality represents the proportion of the total variance accounted for by
the variance among units. Donner and Eliasziw (1987) consider the intra-class correlation
coefficient to be a measure of reliability. This ratio is indicative of the relationship between
the correlation in repeated measurements on the same subject (Majeske and Andrews,
2002). When the measurement system variability is negligible relative to that of the units,
the intra-class correlation coefficient is close to one. If the measurement system variability
is significant compared with the variability of units, the intra-class correlation coefficient
gets smaller.
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The AIAG (1995) uses the precision-to-tolerance ratio (PTR) as another approval cri-
terion, which is the ratio of two widths: the width of tolerance and the distribution of
quality characteristics. If we let U and L as the upper and lower specification limits of the
process, the PTR is expressed as

PTR =
κσms

U − L
, (1.10)

where κ = 5.15 and κ = 6 are two common choices. With κ = 5.15 and κ = 6, the
numerator represents the length of the interval capturing 99% and 99.73% of a normal
distribution with a variance of σ2

ms, respectively. The approval value of PTR in the liter-
ature differs from 0.1 to 0.3. Montgomery and Runger (1993a) suggest a value of 0.1 or
less for the adequacy of a measurement system. Mader et al. (1999) mentions an approval
value not greater than 0.2. Barrentine (2003) recommends that a PTR value not exceed
0.3. Meanwhile, Montgomery and Runger (1993a) note not to rely too much on PTR. It is
more important that a measurement system is capable of detecting meaningful variability
in units. A process with low variability can tolerate a measurement system with a higher
PTR. They argued that the %R&R and the SNR are more informative measures than
PTR.

1.4 Guidelines and considerations

The standard measurement system assessment plan (Montgomery and Runger, 1993a; Bur-
dick et al., 2003) is to randomly select a number of units from the process and have each
operator perform repeated measurements on each selected unit. A two-way model is fre-
quently applied to data from this experiment that divides the measurement error into two
components: a systematic error caused by the operators (reproducibility) and a repeata-
bility error.

The number of units selected, the number of measurement trials conducted for each
unit, and the number of operators involved are important design considerations. The Au-
tomotive Industry Action Group (2003) manual provides guidelines for selecting these
numbers. It suggests selecting 10 units and conducting 2 to 3 measurement trials for each
unit when 2 to 3 operators are involved, resulting in a total number of 40 to 90 measure-
ments. When dealing with automated measurement systems or single-operator scenarios,
the recommended number of units to select is 10, with 6 measurement trials conducted
for each unit. In a similar scenario with a sample size of 60, Shainin (1992) recommends
an alternative plan where a maximum of 30 units are selected, and each unit is measured
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twice. For scenarios where baseline data is available, Browne, MacKay and Steiner (2010);
Browne, Steiner and MacKay (2010); Stevens et al. (2013) explore various plans that con-
figure both the number of the units and the number of repeated measurements needed to
meet the desired specific specifications.

Measurement systems unaffected by operator bias or human factors such as skills,
knowledge, or attitudes are commonly known as measurement systems with no opera-
tor effect. These systems are typically automated, relying on machine-controlled processes
like automated gauges or scanners for conducting measurements. They hold particular
significance in industries such as smart manufacturing (Suriano et al., 2015; Yang et al.,
2021; Majeske, 2012), aerospace, and the automotive sector (Drouot et al., 2018; Browne
et al., 2009). By treating the operator effect as negligible or nonexistent and thus excluding
it from consideration, we can use a simplified one-way model to capture the inherent vari-
abilities within the measurement system across repeated measurements. Notable studies in
the field of measurement system assessment that utilize one-way models include the works
of Browne et al. (2009); Browne, Steiner and MacKay (2010); Weaver et al. (2012).

1.5 Assessing multivariate and functional data mea-

surement systems

While the measurement system assessment techniques and tools discussed earlier are useful
for evaluating the measurement system of a single variable, their applicability is limited
when it comes to other data types, such as multivariate and ‘functional’ data. Multivariate
data refers to datasets that contain multiple variables or features, where these variables
may exhibit relationships with one another. On the other hand, functional datasets are
composed of samples from continuous and smooth functions, that vary over a continuous
domain, such as time, space, or another continuous parameter. These data types, both
multivariate and functional, are increasingly recognized as crucial in fields like neuroscience,
environmental science, and engineering. To gain a better understanding, let us explore a
few examples where the measurement system analysis is applied to these data types.

Example 1.1. (Measurement system of the imbalance (Voelkel, 2003)). Imbalance is a
frequent occurrence in machinery, causing problems such as vibration, abrasive wear, and
functional issues in rotating parts like tires and discs. To address these issues, it is crucial
to have an accurate measuring device that can quantify the degree of imbalance. A mea-
surement system assessment study is valuable in this context as it helps differentiate the
variation caused by the measurement system from the overall variation.
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The imbalance occurring within a single plane can be characterized as the vector con-
necting the expected mass center and the actual center of rotation, representing a two-
dimensional property. This vector can be expressed in either a Cartesian coordinate system
or a polar coordinate system. According to Voelkel (2003), conventional univariate mea-
surement system assessment methods do not provide adequate insights for analyzing this
two-dimensional data.

The example below showcases the measurement system assessment problem for a dataset
consisting of samples of functional data, in the context of foot pressure analysis.

Example 1.2. (Measurement system of plantar pressure). The study of foot pressure has
garnered significant attention in biomedical and sport-related research. The primary ob-
jective of foot pressure analysis is to gain insights into normal walking patterns, track the
development of walking abilities, and identify any irregular phenomena. The analysis of
foot pressure has wide-ranging applications, including the design of footwear, assessment
of sports performance, improvement of balance, and medical diagnostics. In the realm of
healthcare, the distribution of plantar pressure can offer valuable insights into gait instabil-
ity among the elderly and individuals with balance impairments. An illustrative example is
the freezing of gait, which can serve as a symptom of Parkinson’s disease (Shalin, 2021).
This discussion underscores the critical importance of employing plantar pressure measure-
ment systems that offer high accuracy and reliability, ensuring the validity and effectiveness
of the obtained results.

Two types of measurement systems commonly used for collecting plantar pressure are
platform systems and in-shoe systems. For example, a study by Shu et al. (2010) divides
the foot sole into 15 areas to study normal adult plantar pressure. Within each step, the
pressure is a continuous function of time for each area of interest. Meanwhile, Shi (1993)
uses data from an experiment with 34 adult participants and five steps recorded for each
person to develop a functional data one-way random effect model. This model has two
sources of variability: the variability between the subjects and the variability within the
subjects. Estimating both variabilities is crucial for further analytical developments.

The following example serves as an illustration of the measurement system assessment
problem, focusing on a dataset comprising functional data related to seat belt extraction
and retraction forces in vehicles.

Example 1.3. (Seat belt extraction and retraction forces in vehicle safety.). Seat belts, as
a crucial element of safety, play a significant role in preventing fatalities, necessitating a
focus on their functionality and comfort. Key to this is the assessment of extraction and
retraction forces involved in fastening seat belts within a vehicle.
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The extraction force, representing the effort needed to pull the seat belt from its re-
tracted position for fastening, and the retraction force, exerted by the seat belt mechanism
to retract it after extension, are vital considerations for achieving a balance between safety
and comfort. Manufacturers meticulously engineer these forces, conducting tests that out-
put force curves in dedicated extraction/retraction force-test setups. These force curves
are a result of rigorous testing, aiming to optimize extraction and retraction forces based
on factors such as crash scenarios, occupant sizes, and diverse driving conditions, align-
ing with safety standards and regulations. However, before committing resources to these
experiments, manufacturers must assess the capability of their measurement systems to ac-
curately gauge these forces. Studies by Ruck et al. (2020) and McKendry (2023) investigate
and explore this assessment challenge using a dataset of 250 force-by-distance curves.

Assessing the measurement systems for multivariate and functional data presents unique
challenges, due to the complex structure of these data types (Majeske, 2008). To address
the measurement system assessment for multivariate data, a straightforward approach is
to analyze each variable independently and conduct separate measurement system studies.
The effectiveness of this approach depends on the specific nature of the problem at hand. It
can be particularly beneficial in situations where the evaluation of the measurement system
is focused on individual variables, and/or when the variables exhibit either weak or no
correlation. See, e.g., Esmaeeli et al. (2019). Additionally, this approach is well-suited when
the variables possess distinct characteristics and requirements that are better captured by
separate assessments. For instance, a study focused on human health involves measuring
multiple indicators, such as heart rate, blood pressure, and body temperature. Each of
these indicators has its unique characteristics and requires specific measurement devices.
By independently assessing the measurement systems for each indicator, valuable insights
can be gained regarding each indicator. This approach enables targeted improvements in
the measurement systems for each indicator.

When features exhibit moderate to strong correlations, evaluating them as independent
entities can lead to an oversight of the interactions between variables. The performance
of a measurement system can be influenced by various factors that introduce errors in all
feature measurements. Therefore, comprehensively evaluating the system’s performance
requires considering the interrelationships among variables and understanding how the
system behaves under these conditions. This potential oversight of interactions between
variables is demonstrated in studies conducted by Sweeney (2007) and Wang and Yang
(2007).

Another potential issue arises when variables are treated independently, and the mea-
surement system performs well for some inputs during the assessment but fails for others.
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This scenario was demonstrated in a case study by Majeske (2008), which involved the
measurements of four characteristics of a sheet-metal panel. The study highlighted that
the presence of a few univariate quality measures that do not meet the required limitations
does not imply the incapability of the multivariate measurement system. This empha-
sizes the need to assess the measurement system’s performance as a whole, considering its
behavior across all features rather than relying solely on individual assessments.

Assessing measurement systems for functional data presents even greater challenges,
requiring several modifications and considerations. In functional data, individual observa-
tions are samples of functions. Typically, when a process is monitored, the measurements
are recorded at discrete points, producing, possibly, a high-dimensional vector of obser-
vations. Our consideration of this class of data as a special problem is prompted by at
least two factors. First, the process can be observed at a few points rather than on a high
number of points. Second, the choice of sampling points can vary among functional ob-
servations. Notably, the assessment of measurement systems with functional data remains
largely unexplored in the existing literature.

1.6 Roadmap of the thesis

To the best of the author’s knowledge, no literature exists on assessing measurement sys-
tems when dealing with functional observations. This dissertation’s primary focus is to
enrich the measurement system assessment studies of multivariate measurements and ex-
tend to functional measurements. In our investigation, we observed a scarcity in literature
even for multivariate data, and surprisingly, a systematic theoretical investigation for uni-
variate measurements in measurement system analysis is also lacking. This thesis presents
the methodology and theoretical framework for measurement system assessments in a con-
sistent format. The primary emphasis is on a one-way random effect model using a balanced
standard design. Continuing, the thesis is divided into the following chapters:

Chapter 2 conducts a detailed theoretical examination of measurement system assess-
ment studies when dealing with univariate data. The chapter explores various methods
employed for estimating variance components and other pertinent parameters crucial for
measurement system analysis. A comprehensive scrutiny of the statistical properties of
these estimators is provided, encompassing aspects such as bias, sampling variance, con-
vergence properties, confidence intervals, and robustness issues. This foundational under-
standing serves as a springboard for extending these analyses to the more intricate domains
of multivariate and functional data, a focal point of subsequent chapters.
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In Chapter 3, we expand the scope of measurement system assessment to encompass
multivariate data. The chapter begins by adapting the definitions of measurement sys-
tem assessment parameters to multivariate settings, employing transformations that yield
summary scalar metrics for variance-covariance matrices. Specifically, we focus on the de-
terminant, trace, and Frobenius norm of variance-covariance matrix components. Building
upon the statistical concepts and properties discussed in Chapter 2, we conduct a tar-
geted review of existing theories related to variance-covariance component estimation in
a one-way random effect model with equal replications. A key emphasis is placed on the
statistical properties of the estimators of the proposed parameters in measurement system
assessment, namely the signal-to-noise ratio. Our investigation includes an exploration of
its convergence properties and the construction of approximate confidence intervals.

In Chapter 4, we advance our exploration by establishing a framework to investigate
measurement system assessments, extending our scope to functional data types, where
observed data entities are trajectories of random processes. To effectively capture the
distinctive features of functional data, we expand the definition of parameters utilized in
evaluating measurement systems for univariate data. This extension involves the applica-
tion of a bounded operator on covariance kernels, with a specific focus on the trace and L2

operators.

For the estimation of measurement system assessment parameters, we introduce meth-
ods to estimate covariance kernel components associated with the one-way model. Initially,
we delve into a classical estimation approach without smoothing. Subsequently, we explore
specialized tools in functional data analysis to obtain smooth estimates of the covariance
kernel.

In Chapter 5, we conduct a detailed analysis of a real-world dataset, inherently consid-
ered as functional data. This dataset encompasses measurements of the surface roughness
of printed products in the context of additive manufacturing. Our examination starts with
a comprehensive analysis of this functional dataset, employing statistical methods tailored
for both univariate and multivariate data types. Additionally, we leverage techniques from
functional data analysis, a topic explored throughout this thesis.
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Chapter 2

Measurement System Assessment
Study with a Single Characteristic:
A Systematic Review

2.1 Introduction

The field of measurement system assessment has seen considerable methodological ad-
vancements in the case of univariate data types. The Automotive Industry Action Group
(2003) has developed various guidelines and standards for measurement system analy-
sis that provide a comprehensive guide for conducting analysis and interpreting the re-
sults. Montgomery and Runger (1993a) demonstrate the practical aspects of designing and
conducting a measurement system study, while Burdick et al. (2003) review the methods
used to evaluate the capability of a measurement system with a focus on the ANOVA proce-
dure. Additionally, Browne, MacKay and Steiner (2010), Stevens et al. (2010) and Stevens
et al. (2013) offer several plans as alternatives to the standard plan for measurement system
assessment. The methodologies for measurement system analysis have been extended to en-
compass measurement setups that involve non-numerical scales. For example, Van Wierin-
gen and De Mast (2008) and Danila et al. (2010) demonstrate a methodology for assessing
measurement systems that measure on a binary scale and evaluate units as pass or fail.
In addition, Culp et al. (2018) propose a methodology for measurement system analysis
with ordinal measurements, while Osthus et al. (2021) develop an approach to assess re-
peatability and reproducibility with count measurements. However, to the best knowledge
of the author, there is still a lack of documentation on the theoretical properties of these
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methods and their investigation in the literature, despite the significant methodological
inclusiveness in the field.

This chapter presents a comprehensive theoretical investigation of measurement system
assessment studies involving univariate data. Specifically, we examine statistical topics
and properties related to the parameters of measurement system analysis, with a focus
on the one-way random effect model using a balanced standard plan. Although the one-
way model is advantageous for its simplicity, our investigation has revealed complexity
in certain aspects. Nonetheless, the knowledge gained from this investigation is expected
to serve as a solid foundation for extending these theoretical analyses to other situations,
such as two-way analysis of variance and beyond. The author of this thesis is interested in
exploring these areas further, but this will be beyond the scope of this thesis. So, in this
thesis, we focus on the one-way random effect model only, as it is often sufficient for many
practical measurement system assessment scenarios.

Additionally, by deeply exploring the one-way model, our goal is to provide a compre-
hensive understanding of how to assess the performance and variability of measurement
systems. This knowledge will serve as a solid foundation for extending these analyses to
multivariate and functional data, which will be of particular interest in Chapters 3 and 4.

This chapter is organized as follows: In Section 2.2, we present the univariate one-
way ANOVA model, a statistical framework to assess the variability of the measurement
system. We establish our basic notation and parameters to gauge measurement system
quality. These parameters are the variance components and the ratio of variance com-
ponents. These key statistical parameters are investigated in greater detail throughout
this chapter. Continuing, Section 2.3, provides a preliminary analysis of the univariate
one-way ANOVA model, laying the groundwork for a deeper understanding of the mea-
surement systems. Different techniques for estimating the relevant parameters are outlined
in Section 2.4. In Section 2.5, we provide a comprehensive examination of the statistical
properties linked to the parameters of interest, covering the estimator’s bias, sampling vari-
ance, hypothesis testing, convergence properties, and confidence intervals. In Section 2.6
we examine the robustness issues when the model is misspecified. Additionally, Section 2.7
offers supplementary materials and proofs that further enrich the chapter’s contents and
insights.
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2.2 The univariate one-way model

We consider a setting where an experiment is being conducted with a randomly selected
sample of a > 2 units from a population of units. Throughout this chapter, we will refer
to the entity being measured in our study as a unit, and the sample size will correspond
to the total number of these units. Each unit in the sample is measured r > 1 times.
In this setting, the order in which the units are measured is determined randomly. See,
e.g., (Automotive Industry Action Group, 1995, Section 3). It is assumed that the mea-
surand remains unchanged across the repeated measurements. The model used to express
the measured values is,

Yij = µ+ Ui + ϵij, for i = 1, . . . , a, and j = 1, . . . , r, (2.1)

where Yij is the jth repeated measurement for the ith unit, µ is a general mean parameter,
Ui represents the random main effect of unit i, and ϵij represents the random measurement
error associated with the jth replicate measurement taken from unit i. All Ui’s are assumed
to be independent and identically distributed (i.i.d.) N (0, σ2

u) random variables, and all
ϵij’s are i.i.d. N (0, σ2

ϵ ) random variables. Furthermore, for i fixed, we treat each Ui and
ϵij as being mutually independent.

Under the one-way model of (2.1), while the random variables Ui’s and ϵij’s are un-
correlated, the measurements Yij’s are not uncorrelated for all i and j. When considering
repeated measurements j and j′ of unit i, we have,

Cov(Yij, Yij′) = σ2
u for j ̸= j′ , (2.2)

whereas for measurements of different units, one has,

Cov(Yij, Yi′j′) = 0 for i ̸= i′, and any j, j′. (2.3)

As Yij’s are normally distributed random variables, the zero covariance of (2.3) signifies the
independence of measurements of different units. Conversely, the repeated measurements
made on each unit are dependent. In view of (2.1), measurement Yij has variance,

σ2
t = σ2

u + σ2
ϵ . (2.4)

The variance quantities σ2
u and σ2

ϵ which make up the measurement total variance σ2
t are

called variance components.

It is desirable to have a measure to assess the quality of the measurement system. The
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statistic used for this purpose is the ratio of the two aforementioned variance components,

ρ =
σ2
u

σ2
ϵ

· (2.5)

A smaller value of ρ suggests that the dominant source of variation is the measurement
error, while larger values of ρ indicate that the measurement error is not the primary cause
of variation in the observed data. The parameters of measurement system assessment
outlined in Chapter 1, i.e., the percentage R&R ratio, SNR, and the intra-class correlation
coefficient, can be related to ρ through %R&R = (1 + ρ)−1/2 × 100%, SNR = ρ1/2, and
ICC = 1/ (1 + ρ−1) .

2.3 Preliminary analysis

In the context of the one-way model (2.1), there are two sources of variation: the units (U)
and the measurement errors (ϵ). Here, the source refers to the underlying factors or
components contributing to the variation observed in measurement data (Y ).

Two sums of squares that are the basis for the analysis of the variance components of
the one-way model (2.1) are,

SSu = r
a∑

i=1

(Y i· − Y ··)
2, (2.6)

SSϵ =
a∑

i=1

r∑
j=1

(Yij − Y i·)
2 , (2.7)

where Y i· =
1
r

∑r
j=1 Yij is the mean of the measurements from the ith unit, and Y ·· =

1
ar

∑a
i=1

∑r
j=1 Yij is the overall mean of measured data. There are two means of squares,

MSu =
r

a− 1

a∑
i=1

(Y i· − Y ··)
2, (2.8)

MSϵ =
1

a(r − 1)

a∑
i=1

r∑
j=1

(Yij − Y i·)
2 . (2.9)
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The total corrected sum of squares is defined as

SSt =
a∑

i=1

r∑
j=1

(Yij − Y ··)
2. (2.10)

This total sum of squares can be partitioned into,

SSt = SSu + SSϵ . (2.11)

This classification based on the source of variation is known as the analysis of variance
(ANOVA). The ANOVA classification associated with the one-way model of (2.1) is demon-
strated in Table 2.1.

With the normal distribution of Ui’s and ϵij’s and their mutual independence, SSu and
SSϵ are two independent statistics where,

SSu

E [MSu]
∼ χ2

a−1 , and
SSϵ

E [MSϵ]
∼ χ2

a(r−1) . (2.12)

The expected mean of squares terms are,

E [MSu] = σ2
ϵ + rσ2

u and E [MSϵ] = σ2
ϵ . (2.13)

The distributions of SSu and SSϵ given in (2.12) lead to the result that

F =
MSu/E [MSu]

MSϵ/E [MSϵ]
= (1 + rρ)−1MSu

MSϵ

(2.14)

has a central F -distribution with a− 1 and a(r − 1) degrees of freedom.

To begin a measurement system study, Montgomery and Runger (1993a) recommend

Table 2.1: The analysis of variance classification for one-way model (2.1).

Source Degree of freedom Sum of squares Mean of squares

U dfu = a− 1 SSu = r
∑a

i=1(Y i· − Y ··)
2 MSu =

SSu

a− 1

ϵ dfϵ = a(r − 1) SSϵ =
∑a

i=1

∑r
j=1(Yij − Y i·)

2 MSϵ =
SSϵ

a(r − 1)

Total ar − 1 SSt =
∑a

i=1

∑r
j=1(Yij − Y ··)

2
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conducting an initial analysis to investigate the factors contributing to the variation of
measured data. This analysis can be achieved through a hypothesis test for σ2

u , which we
discuss in Section 2.5.3. Once the significance of this variance component is statistically
tested, one can move forward to estimate the variance components.

2.4 Point estimation

The field of variance component estimation is extensively explored for the one-way model,
with a wealth of literature on the subject. For a comprehensive review of methods in this
domain, readers can refer to references such as Klotz et al. (1969); Sahai (1979); Khuri
and Sahai (1985); Robinson (1987); Searle et al. (1992). The present section provides a
concise overview of several established techniques for estimating the variance components
within the context of the one-way model as defined by Equation (2.1). Specifically, we
examine the ANOVA-based estimators, uniformly minimum variance unbiased estimator
(UMVUE), and maximum likelihood estimator of variance components. Moreover, we
utilize the common approach of plug-in estimator to obtain estimators for ratios of vari-
ance components, which are being used in the context of measurement system assessment
studies.

2.4.1 ANOVA estimation

A typical procedure for estimating the variance components is through the use of the
ANOVA method. The procedure is akin to the method of moments. Each sum (or mean)
of the squares’ expected value is a linear function of the variance components. The ANOVA
estimation method involves solving these equations for σ2

u and σ2
ϵ , subsequently substituting

the expected means of squares with their corresponding observed values. Thus, the ANOVA
estimators for σ2

u and σ2
ϵ can be derived as,

σ̂2
u =

1

r
(MSu −MSϵ) and σ̂2

ϵ = MSϵ . (2.15)

These estimators are unbiased. Substituting the ANOVA estimators (2.15) outlined in
(2.5), the plug-in estimator of ρ is,

ρ̂
ANOVA

=
1

r

(
MSu

MSϵ
− 1
)
. (2.16)
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One drawback of this ANOVA estimator is its potential to yield a negative estimate for

the variance component σ2
u. The estimator σ̂2

u obtained as in (2.15) will result in a negative
value whenever MSu < MSϵ . Such an occurrence depends on the data characteristics. In
model (2.1), the probability of such an event occurring is

Pr (MSu < MSϵ) = Pr
(
F < (1 + rρ)−1

)
, (2.17)

where random variable F has an F -distribution with a − 1 and a(r − 1) degrees of free-
dom. The probability defined in (2.17) is a function of the sample size, denoted by a,
and the number of measurement replications, denoted by r, which together comprise the
total number of measurements N = ar. Additionally, it depends on the ratio of variance
components denoted by ρ. A lower probability of MSu < MSϵ is preferred, indicating a
higher likelihood that the ANOVA estimates of variance components align with the param-
eter space requirements, specifically, σ2

u ∈ R0+, and σ2
ϵ ∈ R+, where R0+ and R+ denote,

respectively, the set of non-zero real numbers and positive real numbers.

To better understand the likelihood of this scenario, Figure 2.1, illustrates the relation-
ship between the probability ofMSu < MSϵ and ρ across four sample sizes (a = 5, 10, 20, 30)
and three values of replications (r = 2, 3, 6), a total of 12 plans. As observed in Figure 2.1,
increasing the number of measurements, i.e., N = ar, either through larger sample sizes
or increased replications, results in a reduction in the probability of MSu < MSϵ . Gen-
erally, larger values of ρ are more advantageous (Majeske and Andrews, 2002). A higher
value of ρ corresponds to a decreased probability of MSu < MSϵ . It is important to note
that the recommended range for ρ can vary depending on the specific context. For in-
stance, as pointed out by Steiner and MacKay (2005), improving the measurement system
is advisable if ρ falls below approximately 4.

A negative estimate of variance can be interpreted in different ways (Thompson, 1962).
It might suggest that the actual value of the variance component is insignificantly different
from zero, implying that the model could potentially be simplified. This assertion can
gain statistical support through a hypothesis testing procedure, testing the null hypothesis
H0 : σ2

u = 0 .

A negative variance estimate can be a consequence of insufficient data, prompting
the need to incorporate more data. When assessing a measurement system, baseline (or
historical) data are readily available. The use of baseline data is recommended in the
literature (Steiner and MacKay, 2005, Chapter 7). The significant benefits of incorporating
baseline data into measurement system assessment are quantified by Stevens et al. (2013).
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Figure 2.1: The probability of MSu < MSϵ as a function of ρ for a = 5, 10, 20, 30 and
r = 2, 3, 6, when the random effects Ui and measurement errors ϵij are normally distributed.

2.4.2 Non-negative ANOVA estimation

When considering σ2
u = 0 , the ANOVA estimator of σ2

ϵ is calculated as follows,

σ̂2
ϵ =

SSt

ar − 1
· (2.18)

This formula for σ̂2
ϵ can be expressed as (MSudfu + MSϵdfϵ)/ (dfu + dfϵ), represent-

ing a pooled variance estimator of MSu and MSϵ . In cases where MSu < MSϵ , it
can be demonstrated that SSt/(ar − 1) < MSϵ . Conversely, if MSϵ < MSu , then
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MSϵ < SSt/(ar − 1)1. Utilizing this relationship, the non-negative ANOVA estimators
of variance components are expressed as follows,

σ̂2
u = max

(
0,

1

r
(MSu −MSϵ)

)
, (2.19a)

σ̂2
ϵ = min

(
SSt

ar − 1
,MSϵ

)
. (2.19b)

These non-negative ANOVA estimators of variance components are no longer unbiased and
they demonstrate smaller mean square errors compared to their ANOVA counterparts, as
noted by Lee and Kapadia (1992).

The plug-in estimator of ρ using the non-negative estimators of variance components
is given by,

ρ̂
NANOVA

= max
(
0,

1

r

(
MSu

MSϵ
− 1
))

. (2.20)

2.4.3 Uniformly minimum variance unbiased estimators

The UMVUEs of variance components have been developed for the one-way model. Let
θ = (µ, σ2

u, σ
2
ϵ )

⊤ be the vector of unknown parameters in model (2.1) and suppose the
observed data of the measurements on unit i are arranged by yi = (yi1, . . . , yir)

⊤. The
likelihood function of θ, as set up in (Searle et al., 1992, Chapter 3), is given by

L(θ) = c(σ2
u , σ

2
ϵ ) exp

{
−1

2σ2
ϵ

a∑
i=1

r∑
j=1

(yij − yi·)
2 − 1

2(σ2
ϵ + rσ2

u)

a∑
i=1

r∑
j=1

(yi· − y··)
2− ar(µ− y··)

2

2(σ2
ϵ + rσ2

u)

}
(2.21)

where c(σ2
u , σ

2
ϵ ) = (2π)−

1
2
ar(σ2

ϵ )
− 1

2
a(r−1)(σ2

ϵ + rσ2
u)

−a
2 , and yi· = 1

r

∑r
j=1 yij and y·· =

1
ar

∑a
i=1

∑r
j=1 yij . For a more in-depth explanation of the derivation of the likelihood

function, refer to Section 2.7, where you will find additional details.

From the likelihood function structure, it can be inferred that the joint distribution
of Yij’s belongs to the exponential family and the vector (Y ··,MSu,MSϵ)

⊤ constitutes a
jointly sufficient and complete statistic for the parameter vector θ = (µ, σ2

u, σ
2
ϵ )

⊤. By em-
ploying an unbiased estimator of θ, as established by Lehmann-Scheffé theorem (1950, 1955),
this estimator becomes the UMVUE for θ, only depending on (Y ··,MSu,MSϵ)

⊤. Note

1For positive values of a, b, c, and d where
a

b
<

c

d
, it can be shown that

a

b
<

a+ c

b+ d
<

c

d
.
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that the ANOVA estimators of variance components outlined in (2.15) are unbiased, as

E(σ̂2
u) = σ2

u and E(σ̂2
ϵ ) = σ2

ϵ . Consequently, the UMVUEs for variance components σ2
u

and σ2
ϵ coincide with their respective ANOVA estimators (Graybill and Wortham, 1956).

2.4.4 Maximum likelihood estimation

Taking logarithm of L(θ), the log-likelihood function of θ is,

l(θ) =− a(r − 1)

2
ln(σ2

ϵ )−
a

2
ln(σ2

ϵ + rσ2
u)−

1

2σ2
ϵ

a∑
i=1

r∑
j=1

(yij − yi·)
2

− 1

2(σ2
ϵ + rσ2

u)

a∑
i=1

r∑
j=1

(yi· − y··)
2 − ar(y·· − µ)2

2(σ2
ϵ + rσ2

u)
− ar

2
ln(2π) .

(2.22)

The definition of maximum likelihood estimation necessitates the maximization of the
likelihood function within the parameter space. The log-likelihood function presented
in (2.22) incorporates the parameter µ through the quadratic term (y·· − µ)2. Given the
nature of this parameter, the parameter space for µ is R. The log-likelihood function l(θ)
reaches its maximum when µ equals y··.

Calculating the partial derivatives of l(θ) with respect to σ2
u and σ2

ϵ and subsequently
solving the resulting score equations results in the following maximum likelihood estimators
of variance components,

σ̂2
u =

1

r

(
β−1MSu −MSϵ

)
and σ̂2

ϵ = MSϵ , (2.23)

where the scaling factor β is defined as β =
a

a− 1
.

The estimators in (2.23) are considered as the maximum likelihood estimators under

the condition that both σ̂2
u and σ̂2

ϵ remain within the parameter space of σ2
u and σ2

ϵ . The

estimator σ̂2
ϵ = MSϵ is inherently positive, and thus it falls within the parameter space

of σ2
ϵ . However, the estimator σ̂2

u, as provided in (2.23) is non-negative only if the condition
MSu ≥ βMSϵ is satisfied.

If MSu < βMSϵ, the log-likelihood function l(θ) is maximized at the following bound-
ary point from the parameter space,

σ̂2
u = 0 and σ̂2

ϵ =
SSt

ar
· (2.24)
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In this scenario, the pair of estimators provided in equation (2.24) serves as the maximum
likelihood estimators for σ2

u and σ2
ϵ , respectively (Searle et al., 1992, Chapter 3). By com-

bining the relations (2.23) and (2.24), we can express the maximum likelihood estimators
for σ2

u and σ2
ϵ as follows,

σ̂2
u = max

(
0 ,

1

r

(
β−1MSu −MSϵ

))
, (2.25a)

σ̂2
ϵ = min

(
SSt

ar
,MSϵ

)
. (2.25b)

Substituting these maximum likelihood estimators for the variance components into the
equation for ρ, the maximum likelihood estimator for ρ is determined as follows,

ρ̂
MLE

= max
(
0 ,

1

r

(
β−1MSu

MSϵ
− 1
))

. (2.26)

2.4.5 Other estimation methods

Other approaches are available for estimating the variance components. Among these, two
notable approaches include the use of restricted maximum likelihood (Thompson, 1962;
Patterson and Thompson, 1971) and the Bayesian framework.

The restricted maximum likelihood estimation is an adaptation of the maximum like-
lihood estimation method. It aims to estimate model parameters by maximizing the like-
lihood of the observed data while incorporating constraints on these parameters. This
method is advantageous as it can yield estimates that are less biased compared to stan-
dard maximum likelihood estimates. Notably, under the assumption of normality for the
random effects and balanced study plans, the solutions obtained using the restricted max-
imum likelihood and non-negative ANOVA estimators are identical (Corbeil and Searle,
1976).

Within the Bayesian framework, variance components are regarded as random vari-
ables characterized by a density function known as the prior density. Bayesian estimation
involves utilizing the Bayes Theorem to derive a conditional probability distribution, re-
ferred to as the posterior density, taking into account the observed data. This posterior
density then guides the estimation of the parameters of interest, demanding a numeri-
cal solution (Searle et al., 1992, Section 3.9). Notable examples of this approach include
the works of Tiao and Tan (1965); Klotz et al. (1969); Portnoy (1971), which explore
Bayes estimators of variance components within the context of the one-way model, as well
as studies by Rajagopalan and Broemeling (1983); Fong et al. (2010), which extend this
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methodology to a broader range of linear models. Moreover, the study by Weaver et al.
(2012) showcases how the Bayesian approach offers a versatile alternative across a wide
spectrum of measurement system analyses.

A summary of the estimator results discussed and reviewed in this section is presented
in Table 2.2.

Table 2.2: Estimators of variance components and their ratio ρ in a one-way random effect
model with balanced data.

Method Estimators

ANOVA and UMVUE σ̂2
u =

1

r
(MSu −MSϵ)

σ̂2
ϵ = MSϵ

ρ̂
ANOVA

=
1

r

(
MSu

MSϵ
− 1
)

Non-negative ANOVA and
restricted maximum likelihood

σ̂2
u = max

(
0,

1

r
(MSu −MSϵ)

)
σ̂2
ϵ = min

(
SSt

ar − 1
,MSϵ

)
ρ̂

NANOVA
= max

(
0,

1

r

(
MSu

MSϵ
− 1
))

Maximum likelihood σ̂2
u = max

(
0 ,

1

r
(β−1MSu −MSϵ)

)
σ̂2
ϵ = min

(
SSt

ar
,MSϵ

)
ρ̂

MLE
= max

(
0 ,

1

r

(
β−1MSu

MSϵ
− 1
))

2.5 Theoretical properties

With the estimation of measurement system study parameters, understanding their statisti-
cal properties becomes crucial. In this section, we undertake a comprehensive examination
of the statistical properties associated with the estimation of variance components and
their ratio in the framework of the measurement system assessment study. Exploring these
properties will provide further insights into the underlying characteristics and performance
of the measurement system.
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2.5.1 The expected values and bias

In our analysis of theoretical properties, we start by examining the expected value and
bias linked to the estimation of the variance components and their ratio. Our focus will be
on conducting a detailed examination using the estimations from ANOVA, non-negative
ANOVA, and maximum likelihood methods.

A. ANOVA estimations

The ANOVA estimators of variance components provided in (2.15) are unbiased since
E[MSu] = rσ2

u + σ2
ϵ and E[MSϵ] = σ2

ϵ . However, this unbiasedness does not directly carry
over to the estimator of ρ as defined by (2.16). The expected value of ρ̂

ANOVA
according

to (2.16) is expressed as follows,

E
[
ρ̂

ANOVA

]
=

1

r
E
[
MSu

MSϵ

]
− 1

r

=
1

r
(1 + rρ)E[F ]− 1

r
. (2.27)

where F is a random variable that has a central F -distribution with dfu = a − 1 and
dfϵ = a(r − 1) degrees of freedom. Note that the expectation of F is dfϵ/(dfϵ − 2) where
dfϵ > 2. Subsequently, the expected value of ρ̂

ANOVA
can be expressed as,

E
[
ρ̂

ANOVA

]
=

1

dfϵ − 2

(
ρ dfϵ +

2

r

)
. (2.28)

The disparity between the expected estimation values and the actual value of a parameter
is considered as the bias of the estimator. In the case of ρ̂

ANOVA
, the bias is expressed as

Bias
[
ρ̂

ANOVA

]
= E

[
ρ̂

ANOVA

]
− ρ =

2(1 + rρ)

r(dfϵ − 2)
(2.29)

This equation demonstrates that ρ̂ANOVA consistently exhibits a positive bias and the bias
tends to zero as the sample size or the number of replications increases.

The relative bias, expressed in percentage, is used to measure the accuracy of an esti-
mator for estimating ρ. It can be calculated using the following relation(

E [ρ̂ ]

ρ
− 1

)
× 100 . (2.30)
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Figure 2.2 depicts a comparison of the percentage relative bias of ρ̂
ANOVA

with respect to
ρ across various study plans, characterized by different combinations of sample size and
number of replication measurements.
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Figure 2.2: The percentage relative bias of ρ̂
ANOVA

with respect to ρ in a one-way random
effect model.
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It is worth noting that any reasonable measurement system typically has ρ > 1 (Browne,
Steiner and MacKay, 2010), and therefore we focus on ρ > 1 in our study. Each figure
comprises four distinct sample sizes, specifically with a = 5, 10, 20, 30. For each sample size,
we consider three different numbers of measurement replication, including r = 2, 3, 6. As
illustrated in Figure 2.2, an increase in either the sample size or the number of replications
results in a reduction of bias in the estimation of ρ̂

ANOVA
.

Figure 2.3 illustrates a scenario where the total number of measurements remains con-
stant at N = 60 across four study plans. While the plan characterized by a = 10 and r = 6
is noteworthy due to its recommendation by AIAG (2003) for single-operator measurement
systems, it’s important to highlight that the plan with a = 6 and r = 10 demonstrates a
lower relative bias for the estimation of ρ̂

ANOVA
compared to the other plans. This reduction

in bias can primarily be attributed to its higher degrees of freedom for error and the larger
number of replications.
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Figure 2.3: The percentage relative bias of ρ̂
ANOVA

as a function of ρ in a one-way random
effect model with N = 60 measurements.

B. Maximum likelihood and non-negative ANOVA

Identifying the bias of maximum likelihood and non-negative ANOVA estimators can be
challenging since their estimations of σ2

u and σ2
ϵ depend on the relationship between MSu
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and MSϵ. Specifically, the expected values of σ2
u, σ

2
ϵ , and ρ depend on the probability of

the event that the estimates lie on the boundary of the parameter space. This probability
using the maximum likelihood estimation method is determined by,

p◦ = Pr
(
MSu

MSϵ
< β

)
= Pr

(
F < β(1 + rρ)−1

)
, (2.31)

where F is the random variable, as characterized in (2.14). The expected values of the

maximum likelihood estimators σ̂2
u and σ̂2

ϵ are determined by

E
[
σ̂2
u

]
=

1

r
(1− p◦) E

[
β−1MSu −MSϵ

∣∣∣ MSu

MSϵ
≥ β

]
, (2.32)

E
[
σ̂2
ϵ

]
= (1− p◦) E

[
MSϵ

∣∣∣ MSu

MSϵ
≥ β

]
+

p◦

ar
E
[
SSt

∣∣∣ MSu

MSϵ
< β

]
, (2.33)

and the expected value of ρ̂
MLE

is,

E
[
ρ̂

MLE

]
=

1

r
(1− p◦) E

[
β−1MSu

MSϵ
− 1

∣∣∣ MSu

MSϵ
≥ β

]
. (2.34)

We can determine the expectation of ρ̂
MLE

through,

E [ρ̂
MLE

] =
1

r
(1− p◦) E

[
β−1(1 + rρ)F − 1 | F ≥ β(1 + rρ)−1

]
. (2.35)

The distribution of ρ̂
MLE

can be verified as a truncated F -distribution with a − 1 and
a(r−1) degrees of freedom. A more explicit expression for the moments of this distribution
is provided by Nadarajah and Kotz (2008), involving the use of the Gauss hyper-geometric
function.

The expected values of the maximum likelihood estimators σ̂2
u, σ̂

2
ϵ , and ρ̂

MLE
cannot be

obtained analytically due to the complexity of the equations. Consequently, assessing the
bias associated with these estimates presents challenges in analytical determination, and
thus numerical evaluations are necessary.

The properties of the estimators from the non-negative ANOVA and maximum likeli-
hood methods are very similar in model (2.1). In fact, by substituting β with 1 in equa-
tions (2.31) and (2.35), we can first deduce the probability that the non-negative ANOVA
estimations lie on the boundary and subsequently compute E

[
ρ̂

NANOVA

]
.

In Figures 2.4 and 2.5, we depict the percentage relative bias of ρ̂
MLE

and ρ̂
ANOVA

relative
to ρ across various combinations of a and r as shown in Figure 2.2. From Figure 2.4, the
estimate of ρ

MLE
exhibits a positive bias when r = 2, while it demonstrates a negative bias
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Figure 2.4: The percentage relative bias of ρ̂
MLE

with respect to ρ in a one-way random
effect model, where the random effects of U and ϵ are normally distributed.
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Figure 2.5: The percentage relative bias of ρ̂
NANOVA

with respect to ρ in a one-way random
effect model, where the random effects of U and ϵ are normally distributed.
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when r = 6. Interestingly, when r = 3, the bias remains approximately zero across all the
studied sample sizes, which is a desirable characteristic. Plot (d) of Figure 2.4 with a = 30
illustrates the larger sample size situation, where the relative bias exhibits a narrower
range, indicating reduced variability across different numbers of measurement replications.
Comparing the plots of Figures 2.4 and 2.5, ρ̂

MLE
generally exhibits smaller bias across

plans with smaller numbers of measurement replication, e.g., 2 and 3 replications. However,
ρ̂

NANOVA
has a smaller relative bias than ρ̂

MLE
, in absolute value, when r = 6.

Figure 2.6 illustrates the percentage relative bias of ρ̂
MLE

and ρ̂
NANOVA

for four study
plans with a constant total number of measurements N = 60. We note that ρ̂

MLE
exhibits

negligible bias, close to zero, with a = 20 and r = 3, while ρ̂
NANOVA

achieves its least bias
when a = 6 and r = 10.
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Figure 2.6: The percentage relative bias of (a) ρ̂
MLE

and (b) ρ̂
NANOVA

as a function of ρ in
a one-way random effect model with N = 60 measurements.
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2.5.2 Sampling variance

A. ANOVA estimations

The variances of the mean of squares terms MSu and MSϵ , which follow multiples of chi-
squared distributions with dfu = a− 1 and dfϵ = a(r− 1) degrees of freedom, are obtained
as (Searle et al., 1992),

Var [MSu] =
2 (E [MSu])

2

a− 1
and Var [MSϵ] =

2 (E [MSϵ])
2

a(r − 1)
· (2.36)

Given the independence of MSu and MSϵ under the normality assumption, we can express

the variances of σ̂2
u and σ̂2

ϵ , using the ANOVA estimation method for a sample size of a
and replication r as follows

Var
[
σ̂2
u

]
=

2

r2

{
(σ2

ϵ + rσ2
u)

2

a− 1
+

σ4
ϵ

a(r − 1)

}
, (2.37)

Var
[
σ̂2
ϵ

]
=

2σ4
ϵ

a(r − 1)
· (2.38)

The variance of ρ̂
ANOVA

, as defined in (2.16), can be computed by,

Var
[
ρ̂

ANOVA

]
=

1

r2
Var

[
MSu

MSϵ

]
=

(1 + rρ)2

r2
Var [F ] , (2.39)

where the random variable F is defined in (2.14). Then, the variance of random variable
F is,

Var [F ] =
2 df2ϵ (dfϵ + dfu − 2)

dfu (dfϵ − 2)2 (dfϵ − 4)
, (2.40)

where dfϵ > 4, and does not exist otherwise. This condition on dfϵ restricts the sample size
a and the number of measurement replications r. For example, when r = 2, the sample size
a should be greater than or equal to 5. Plugging (2.40) in (2.39), the variance of ρ̂

ANOVA
is
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obtained as,

Var
[
ρ̂

ANOVA

]
=

2(1 + rρ)2 df2ϵ (dfϵ + dfu − 2)

r2dfu (dfϵ − 2)2 (dfϵ − 4)
, (2.41)

B. Maximum likelihood and non-negative ANOVA

First, we study the variance of σ̂2
u and σ̂2

ϵ using their maximum likelihood estimations. For

σ̂2
u,

Var
[
σ̂2
u

]
= E

[(
σ̂2
u

)2]− (E [σ̂2
u

])2
=

1

r2
(1− p◦)E

[(
β−1MSu −MSϵ

)2 ∣∣∣ MSu

MSϵ
≥ β

]
−
(
E
[
σ̂2
u

])2
, (2.42)

where E
[
σ̂2
u

]
is explained in (2.32). For σ̂2

ϵ ,

Var
[
σ̂2
ϵ

]
= E

[(
σ̂2
ϵ

)2]− (E [σ̂2
ϵ

])2
= (1− p◦)E

[
MS2

ϵ

∣∣∣ MSu

MSϵ
≥ β

]
+

p◦

a2r2
E
[
SS2

t

∣∣∣ MSu

MSϵ
< β

]
−
(
E
[
σ̂2
ϵ

])2
. (2.43)

where E
[
σ̂2
ϵ

]
is outlined in (2.33). In a similar fashion, we can determine the variance of

ρ̂
MLE

through

Var [ρ̂
MLE

] = E
[
ρ̂ 2

MLE

]
− (E [ρ̂

MLE
])2 ,

where,

E
[
ρ̂ 2

MLE

]
=

1

r2
(1− p◦)E

[(
β−1(1 + rρ)F − 1

)2 | F ≥ β(1 + rρ)−1
]
, (2.44)

and E [ρ̂
MLE

] is given in (2.35).

We can express the finite-sample variance properties of σ̂2
u and σ̂2

ϵ using non-negative
ANOVA estimators, as well as ρ̂

NANOVA
, in a similar manner by setting β to 1.

A relative standard error (SE), expressed as a percentage, is calculated to compare the
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finite-sample variance of the ρ estimations using the following formula√
Var [ ρ̂ ]

ρ
× 100 . (2.45)

In Figure 2.7, the plots illustrate the relative standard error (SE) as a function of ρ for
estimates of both ρ̂

NANOVA
and ρ̂

MLE
. These plots represent various study plans, each with a

total of 60 measurements. From the comparison we observe that ρ̂
MLE

consistently exhibits
lower variance than ρ̂

NANOVA
across the studied plans. Additionally, the smallest relative SE

of ρ̂
MLE

is achieved when the study plan consists of a sample size of 20 with 3 measurement
replications.
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Figure 2.7: The percentage relative SE of (a) ρ̂
MLE

and (b) ρ̂
NANOVA

as a function of ρ in a
one-way random effect model with N = 60 measurements.

2.5.3 Test of hypothesis

Point estimates provide insight into the magnitude of the assessment parameters for mea-
surement system study, but they do not convey enough information about the precision of
these estimates. For example, if a point estimate for the measurement system variability
exceeds expectations, hypothesis testing can help determine if it is significantly larger than
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a particular hypothesis. Conversely, a small point estimate for the signal-to-noise ratio (or
the parameter ρ) might indicate an inadequate measurement system. Utilizing statistical
hypothesis tests enables us to make probabilistic statements and assess the significance of
these parameters (Burdick, 1994; Montgomery and Runger, 1993a).

To assess the statistical significance of estimated values and make informed decisions
about the measurement system, we will explore three specific hypothesis tests within the
context of model (2.1), as listed below.

i) H0 : σ2
u = 0 vs H0 : σ2

u > 0 ,
ii) H0 : σϵ ≤ σ0 vs Ha : σϵ > σ0 ,
iii) H0 : ρ ≤ ρ0 vs Ha : ρ > ρ0 .

An essential question in the field of measurement system analysis is whether the vari-
ability in measurement data can be attributed to variability among units (Montgomery
and Runger, 1993a). To investigate this, a hypothesis test can be conducted for σ2

u with
the null hypothesis H0 : σ2

u = 0 .

We employ the statistic MSu/MSϵ to assess whether the variance component σ2
u is

negligible compared to σ2
ϵ . Under hypothesis H0 : σ2

u = 0, the statistic MSu/MSϵ follows
an F -distribution with dfu and dfϵ degrees of freedom. A large observed value of this
statistic provides evidence that the variance component σ2

u significantly affects the observed
data. The p-value for testing H0 : σ2

u = 0 can be obtained as,

p-value = 1− Pr

(
F <

r
∑a

i=1(yi· − y··)
2/(a− 1)∑a

i=1

∑r
j=1(yij − yi·)

2/(N − a)

)
, (2.46)

Another common query in measurement system assessment studies is whether the mea-
surement system exhibits a low variability that remains below a certain threshold (Burdick
and Larsen, 1997). In such cases, a hypothesis test can be carried out with the null hy-
pothesis H0 : σϵ ≤ σ0 and the alternative hypothesis Ha : σϵ > σ0 , where σ0 represents
an acceptable threshold.

To test the hypothesis H0 : σϵ ≤ σ0 , we utilize SSϵ/σ
2
0
as the test statistic. If σϵ = σ0 ,

this statistic has the same distribution as X = SSϵ/σ
2
ϵ , which follows a chi-square dis-

tribution with dfϵ degrees of freedom. Typically, a large observed value of SSϵ provides
evidence in favor of σϵ > σ0 . The p-value for the test can be computed as

p-value = 1− Pr

(
X <

1

σ2
0

a∑
i=1

r∑
j=1

(yij − yi·)
2

)
. (2.47)

38



In measurement system analysis, it may be necessary to conduct a hypothesis test
to examine whether the relative size of the variance components due to the units and
measurement system is greater than a certain level, denoted as ρ0 (Donner and Eliasziw,
1987; Steiner and MacKay, 2005). In this case, we formulate the null hypothesis as H0 :
ρ ≤ ρ0 , with the alternative hypothesis Ha : ρ > ρ0 .

For this hypothesis test, we use the test statistic (1 + rρ0)
−1MSu/MSϵ. If ρ = ρ0 ,

this test statistic follows an F -distribution with degrees of freedom dfu and dfϵ. A large
observed value of (1 + rρ0)

−1MSu/MSϵ provides evidence in favour of the alternative
hypothesis Ha : ρ > ρ0 . The p-value for this hypothesis test is calculated as

p-value = 1− Pr

(
F <

r
∑a

i=1(yi· − y··)
2

(1 + rρ0)
∑a

i=1

∑r
j=1(yij − yi·)

2

)
. (2.48)

2.5.4 Convergence properties

This section focuses on the convergence behavior of the estimates of σ2
u, σ

2
ϵ , and the ratio

of these components as the number of measurements N = ar increases in the one-way
model (2.1). We will examine if the estimators of these components are consistent, and
investigate their convergence in distribution.

We analyze the asymptotic characteristics of the estimates in three situations, where
the sample size (a) and/or the replication number (r) increase:

(S1) a → ∞ and r is fixed,
(S2) a → ∞ and r → ∞,
(S3) r → ∞ and a is fixed.

In each case, the total number of measurements, denoted as N = ar, increases due to the
growth in either the sample size, replication number, or both. We lead off the analysis by
examining the asymptotic behavior of the maximum likelihood estimates. This knowledge
will provide us with a foundation for analyzing and interpreting the convergence properties
of ANOVA-based estimators.

In Theorem 2.1, we provide insight into the convergence behavior for the maximum like-
lihood estimates of variance components σ2

u and σ2
ϵ in the one-way random effect model (2.1)

for asymptotic situation S1.

Theorem 2.1. Let σ̂2
ϵ and σ̂2

u be the maximum likelihood estimates. Then with a fixed
number of measurement replications r and as a → ∞, the following convergence properties
hold:
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a) σ̂2
ϵ

a.s−→ σ2
ϵ , provided that E

[
ϵ2ij
]
< ∞ ,

b) σ̂2
u

a.s−→ σ2
u, provided that E [U2

i ] < ∞ and E
[
ϵ2ij
]
< ∞ ,

c) Within the context of the normal distributional setting of model (2.1) and under the
condition that σ2

u is positive,

√
a

(
σ̂2
ϵ − σ2

ϵ

σ̂2
u − σ2

u

)
d−→ N

(
0,

(
σ11 σ12

σ21 σ22

))
,

where the elements of the covariance matrix are given by

σ11 =
2σ4

ϵ

r − 1
, σ12 =

−2σ4
ϵ

r(r − 1)
,

and σ22 = 2(σ2
u + r−1σ2

ϵ )
2 +

2σ4
ϵ

r2(r − 1)
·

Proof. See the supplementary materials in Section 2.7.

It is noteworthy that the almost sure convergence properties established in Theorem 2.1
hold under only the assumptions of independence and identical distributions of all Ui’s and
all ϵij’s, as well as the finiteness of their second moments. Specifically, the validity of the
results is not affected by the distributions of Ui’s and ϵij’s. Furthermore, without assuming
the distributions of Ui and ϵij’s, part (c) of Theorem 2.1 still guarantees convergence to a
normal distribution as long as U2

i and ϵ2ij have finite variances. However, the covariance
matrix will be different and it depends on the distributions of Ui’s and ϵij’s.

In Theorem 2.2, we analyze the convergence properties of ρ̂
MLE

in the asymptotic situ-
ation that the sample size a grows large.

Theorem 2.2. As a → ∞ and for any fixed number of measurement replications r, we
have

a) ρ̂
MLE

a.s−→ ρ, provided that E
[
ϵ2ij
]
and E

[
U2
ij

]
are finite,

b)
√
a (ρ̂

MLE
− ρ)

d−→ N
(
0, σ2

ρ

)
where σ2

ρ =
2

r2

[
(1 + rρ)2 +

1

r − 1

]
, under the condition

that σ2
u is positive.

Proof. Applying Slutskey’s theorem to parts (a) and (b) of Theorem 2.1 concludes part
(a). Applying Slutskey’s theorem to the marginal asymptotic distribution of the estimator
for the variance component σ2

u, together with the estimator for σ2
ϵ converging almost surely

to the true value σ2
ϵ , concludes part (b).
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Corollary 2.1, which addresses the convergence of σ̂2
u , σ̂

2
ϵ and ρ̂

MLE
as both the sample

size and number of measurement replications become large, is derived from the results
established in Theorems 2.1 and 2.2.

Corollary 2.1. Under the condition of σ2
u > 0 and the normality distribution assumption

of model (2.1), as a → ∞ and r → ∞ then,

a) The joint distribution of
(
σ̂2
ϵ , σ̂

2
u

)⊤
converges as follows,

√
a

(√
r
(
σ̂2
ϵ − σ2

ϵ

)
σ̂2
u − σ2

u

)
d−→ N

(
0,

(
2σ4

ϵ 0
0 2σ4

u

))
,

b)
√
a (ρ̂

MLE
− ρ)

d−→ N (0, 2ρ2) .

Therefore, a−1/2 is the rate of convergence of ρ̂
MLE

. Next, we analyze the asymptotics
for the situation S3.

Theorem 2.3. Given a fixed sample size, as r → ∞ the following convergence properties
hold:

a) σ̂2
ϵ

a.s−→ σ2
ϵ , provided that E

[
ϵ2ij
]
< ∞ ,

b)
√
ar
(
σ̂2
ϵ − σ2

ϵ

)
d−→ N (0, τ 2ϵ ), where τ 2ϵ = Var

[
ϵ2ij
]
, provided that τ 2ϵ < ∞ ,

c)
a

σ2
u
σ̂2
u

d−→ χ2
a−1 , provided that σ2

u is positive.

d)
a

ρ
ρ̂

MLE

d−→ χ2
a−1 , provided that σ2

u is positive.

Proof. See the supplementary materials.

Combining the results from Theorems 2.1 to 2.3 leads to the conclusion that the prob-
ability of obtaining an estimate on the boundary of the parameter space is zero when the
number of measurements grows large, as specified in Theorem 2.4.

Theorem 2.4. As the number of measurements N → ∞ and under the conditions specified
by model (2.1), both non-negative ANOVA and maximum likelihood methods approach zero
probability of estimates lying on the boundaries of the parameter space.

Proof. Refer to the supplementary materials.
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2.5.5 Confidence intervals

We explore the construction of confidence intervals for the variance components σ2
u and

σ2
ϵ as well as the parameter ρ involved in the measurement system assessment study.

Under the conditions of the one-way model (2.1), exact confidence intervals for σ2
ϵ and ρ

can be found (Scheffé, 1959, Page 229). However, for the variance component σ2
u , exact

confidence intervals are not readily available. We will demonstrate the process of obtaining
approximate confidence intervals using results from large sample theories.

A. Exact confidence intervals

Under the normality assumption of ϵij in the one-way random effect model of (2.1), we have
SSϵ/σ

2
ϵ ∼ χ2

a(r−1) leading to the derivation of the exact (1−α)100% confidence interval for

σ2
ϵ as follows,

CIσ2
ϵ
=

[
SSϵ

χ2
a(r−1),1−α/2

,
SSϵ

χ2
a(r−1), α/2

]
, (2.49)

where χ2
ν,1−α/2 and χ2

ν, α/2 are, respectively, the upper and lower critical values of a chi-
squared distribution with ν degrees of freedom at the α

2
-level.

Under the assumptions of normality and independence of Ui’s and ϵij’s, the exact confi-
dence interval can be obtained for the ratio of variance components σ2

u and σ2
ϵ . From (2.14),

it is observed that (1 + rρ)−1MSu

MSϵ
follows an F -distribution with a−1 and a(r−1) degrees

of freedom. Therefore, the exact (1− α)100% confidence interval for ρ is defined by,

CIρ =

[
1

r

(
MSu/MSϵ

Fa−1, a(r−1),1−α/2
− 1
)
,
1

r

(
MSu/MSϵ

Fa−1, a(r−1), α/2
− 1
)]

. (2.50)

Here Fa−1, a(r−1), 1−α/2 and Fa−1, a(r−1), α/2 are, respectively, the upper and lower critical
values of an F -distribution with a− 1 and a(r − 1) degrees of freedom at the α

2
-level.

B. Approximate confidence intervals

An exact confidence interval for σ2
u is not available. We can construct large sample intervals,

as suggested by Montgomery and Runger (1993b); Borror et al. (1997).

Using the result of Theorem 2.1, we can establish a Wald-type confidence interval for

σ2
u. The quantity

√
a (σ̂2

u−σ2
u)/

√
σ̂22 is asymptotically pivotal, which leads to the following
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Wald-type confidence interval for σ2
u at 1− α level,[

σ̂2
u −

z1−α/2

√
σ̂22√

a
, σ̂2

u +
z1−α/2

√
σ̂22√

a

]
. (2.51)

However, the above Wald confidence interval of σ2
u is not range preserving, as the lower

bound could be negative. To address this issue, we can define the negative bounds to be
zero, resulting in the interval

CIσ2
u,Wald =

[
max

(
0, σ̂2

u −
z1−α/2

√
σ̂22√

a

)
, σ̂2

u +
z1−α/2

√
σ̂22√

a

]
. (2.52)

To construct a confidence interval that preserves the range for σ2
u , we can construct a Wald

confidence interval for the log-transformation on σ̂2
u . Subsequently, we invert the limits

to approximate a confidence interval for σ2
u. Applying the delta method to the limiting

distribution outcome of Theorem 2.1 yields the following asymptotic convergence result,

√
a
{
log
(
σ̂2
u

)
− log

(
σ2
u

)} d−→ N
(
0,

σ22

σ4
u

)
, (2.53)

as a → ∞. Consequently
√
a
{
log(σ̂2

u)− log(σ2
u)
}
σ̂2
u/
√
σ̂22 is asymptotically pivotal, where

σ̂2
u > 0. This leads to the following (1− α)100% confidence interval for σ2

u,

CIσ2
u,log

=

[
exp

{
log(σ̂2

u)−
z1−α/2

√
σ̂22

σ̂2
u

√
a

}
, exp

{
log(σ̂2

u) +
z1−α/2

√
σ̂22

σ̂2
u

√
a

}]
. (2.54)

We note that when the number of measurements or the signal-to-noise ratio is small, the
log-transform confidence interval of σ2

u may not offer a reasonable approximation, partly

due to the increased likelihood of obtaining an estimate of σ̂2
u close to zero. Ebadi et al.

(2023) demonstrate that using the Cornish–Fisher expansion to adjust the percentiles can
yield favorable results. Further investigation into this matter is a potential avenue for
future research.

We can construct a large sample confidence interval for σ2
u, based on the result of

Theorem 2.3. This asymptotic confidence interval, with (1− α)100% coverage probability
for σ2

u, is established as follows

CIσ2
u,chi

=

[
aσ̂2

u

χ2
a−1, 1−α/2

,
aσ̂2

u

χ2
a−1, α/2

]
. (2.55)
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A summary of the three approximate confidence interval bounds for σ2
u discussed in this

section is presented in Table 2.3.

Table 2.3: Relations of approximate confidence intervals on σ2
u for the one-way random

effect model based on its asymptotic distributions.

Interval Lower limit Upper limit

CIσ2
u,Wald max

(
0, σ̂2

u −
z1−α/2

√
σ̂22√

a

)
σ̂2
u +

z1−α/2

√
σ̂22√

a

CIσ2
u, log

exp

{
log(σ̂2

u)−
z1−α/2

√
σ̂22

σ̂2
u

√
a

}
exp

{
log(σ̂2

u) +
z1−α/2

√
σ̂22

σ̂2
u

√
a

}
CIσ2

u,chi
a σ̂2

u

χ2
a−1, 1−α/2

a σ̂2
u

χ2
a−1, α/2

C. Comparison of confidence intervals

We conducted Monte Carlo simulation studies to assess the performance of the three confi-
dence intervals for σ2

u as listed in Table 2.3. These simulations considered six combinations
of a and r while maintaining a constant total of N = 96 measurements. For each (a, r) com-
bination, we investigated three distinct sets of variances: (σ2

u, σ
2
ϵ ) = (0.5, 1), (0.5, 0.5), and

(0.5, 0.1), representing low, moderate, and high signal-to-noise ratio scenarios, respectively.
In each scenario, we generated 5× 105 simulated datasets, where Ui and ϵij independently
followed normal distributions with variances σ2

u and σ2
ϵ . These scenarios were chosen to

assess the confidence intervals’ performance under varying levels of variance signal-to-noise
ratio and various combinations of a and r.

We assessed the coverage probability of each confidence interval by measuring how
frequently it accurately included the true value of σ2

u. When calculating the results for the

log-transformed confidence interval, we focused on samples with σ̂2
u > 0.01. To gauge the

likelihood of this scenario, Table 2.4 provides the Pr(σ̂2
u < 0.01) values for the scenarios

under study.

Tables 2.5 and 2.6 display the outcomes of our numerical investigation regarding the
90% and 95% asymptotic confidence intervals and the average length of these intervals,
respectively. In these tables, we have highlighted in blue the highest simulated coverage
probability among the three. We noted that the log-transformed confidence intervals for σ2

u
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Table 2.4: Pr( σ̂2
u < 0.01) with N = 96 measurements.

(a, r)

(σ2
u, σ

2
ϵ ) (6, 16) (8, 12) (12, 8) (24, 4) (32, 3) (48, 2)

(0.5, 1) 2.15× 10−2 1.18× 10−2 5.36× 10−3 3.72× 10−3 5.27× 10−3 1.25× 10−2

(0.5, 0.5) 6.55× 10−3 2.26× 10−3 4.20× 10−4 4.0× 10−05 8.0× 10−5 1.90× 10−4

(0.5, 0.1) 7.90× 10−4 9.0× 10−5 0 0 0 0

generally provide better coverage compared to the Wald-type intervals. However, it is im-
portant to highlight that these confidence intervals tend to produce less reliable percentiles
in scenarios with a low signal-to-noise ratio or a small number of measurement replications.
In such cases, the interval length tends to increase significantly. In scenarios with mod-
erate to high signal-to-noise ratio situations, CIσ2

u,log
demonstrates superior performance

over CIσ2
u,chi

in attaining the target coverage level when dealing with large sample sizes.
Conversely, when replication numbers are larger, CIσ2

u,chi
exhibits better performance.

2.6 Robustness issues

In this section, we briefly explore the robustness issues of the procedures introduced in this
chapter for univariate measurement system assessment. A comprehensive investigation of
robustness is deferred to future work.

We consider the scenario where the distribution of the measurement errors deviates
from the assumed model and ϵij’s follow a contaminated normal distribution,

ϵij ∼ (1− λ)N (0, σ2
ϵ ) + λH, for i = 1, . . . , a, and j = 1, . . . , r. (2.56)

Here, λ denotes the contamination ratio, and H represents the contamination distribution.
Under this model, ϵij’s are drawn from the assumed normal distributed N (0, σ2

ϵ ) with
probability 1− λ , and from the distribution H with a probability λ.
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Table 2.5: Simulated 90% confidence intervals for σ2
u with α = 0.1 and N = 96 measure-

ments.

(a) σ2
u = 0.5, σ2

ϵ = 1

Coverage probability Mean interval width

(a, r) CIσ2
u,Wald CIσ2

u,log
CIσ2

u,chi
CIσ2

u,Wald CIσ2
u,log

CIσ2
u,chi

(6, 16) 0.687 0.903 0.828 0.851 1.148 1.906

(8, 12) 0.735 0.919 0.818 0.825 1.063 1.334

(12, 8) 0.786 0.941 0.790 0.765 1.131 0.902

(24, 4) 0.846 0.962 0.701 0.690 1.802× 102 0.540

(32, 3) 0.866 0.959 0.646 0.682 6.832× 104 0.450

(48, 2) 0.891 0.943 0.533 0.713 1.599× 1011 0.354

(b) σ2
u = 0.5, σ2

ϵ = 0.5

Coverage probability Mean interval width

(a, r) CIσ2
u,Wald CIσ2

u,log
CIσ2

u,chi
CIσ2

u,Wald CIσ2
u,log

CIσ2
u,chi

(6, 16) 0.687 0.822 0.864 0.828 1.004 1.929

(8, 12) 0.735 0.847 0.859 0.778 0.895 1.350

(12, 8) 0.785 0.872 0.845 0.693 0.765 0.912

(24, 4) 0.842 0.901 0.799 0.573 0.612 0.546

(32, 3) 0.859 0.913 0.766 0.541 0.577 0.454

(48, 2) 0.881 0.939 0.695 0.522 3.633 0.358

(c) σ2
u = 0.5, σ2

ϵ = 0.1

Coverage probability Mean interval width

(a, r) CIσ2
u,Wald CIσ2

u,log
CIσ2

u,chi
CIσ2

u,Wald CIσ2
u,log

CIσ2
u,chi

(6, 16) 0.687 0.798 0.893 0.800 0.931 1.949

(8, 12) 0.735 0.827 0.892 0.732 0.821 1.363

(12, 8) 0.785 0.852 0.889 0.631 0.682 0.921

(24, 4) 0.840 0.878 0.880 0.478 0.498 0.550

(32, 3) 0.855 0.885 0.875 0.425 0.439 0.458

(48, 2) 0.871 0.893 0.863 0.364 0.372 0.361
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Table 2.6: Simulated 95% confidence intervals for σ2
u with N = 96 measurements.

(a) σ2
u = 0.5, σ2

ϵ = 1

Coverage probability Mean interval width

(a, r) CIσ2
u,Wald CIσ2

u,log
CIσ2

u,chi
CIσ2

u,Wald CIσ2
u,log

CIσ2
u,chi

(6, 16) 0.728 0.992 0.889 0.936 1.566 2.740

(8, 12) 0.776 0.991 0.882 0.929 1.570 1.809

(12, 8) 0.827 0.991 0.860 0.893 3.248 1.164

(24, 4) 0.889 0.984 0.781 0.813 9.957× 103 0.667

(32, 3) 0.910 0.980 0.726 0.802 1.246× 107 0.551

(48, 2) 0.940 0.967 0.611 0.833 6.611× 1014 0.430

(b) σ2
u = 0.5, σ2

ϵ = 0.5

Coverage probability Mean interval width

(a, r) CIσ2
u,Wald CIσ2

u,log
CIσ2

u,chi
CIσ2

u,Wald CIσ2
u,log

CIσ2
u,chi

(6, 16) 0.728 0.895 0.921 0.911 1.282 2.773

(8, 12) 0.776 0.913 0.918 0.897 1.126 1.831

(12, 8) 0.826 0.934 0.908 0.823 0.950 1.177

(24, 4) 0.885 0.959 0.870 0.683 0.756 0.675

(32, 3) 0.903 0.969 0.842 0.644 0.834 0.556

(48, 2) 0.927 0.977 0.776 0.621 8.364× 101 0.433

(c) σ2
u = 0.5, σ2

ϵ = 0.1

Coverage probability Mean interval width

(a, r) CIσ2
u,Wald CIσ2

u,log
CIσ2

u,chi
CIσ2

u,Wald CIσ2
u,log

CIσ2
u,chi

(6, 16) 0.728 0.861 0.944 0.892 1.178 2.802

(8, 12) 0.776 0.886 0.944 0.870 1.024 1.848

(12, 8) 0.826 0.911 0.942 0.752 0.840 1.188

(24, 4) 0.882 0.932 0.936 0.570 0.604 0.680

(32, 3) 0.898 0.938 0.932 0.507 0.530 0.561

(48, 2) 0.916 0.945 0.923 0.433 0.447 0.437
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We performed Monte Carlo simulation studies using contaminated data. In the data
generation process, we considered two contamination distributions for H:

(a) normal distribution N (0, 9σ2
ϵ ),

(b) scaled central t-distribution with 5 degrees of freedom and scaling factor 3σϵ.

Contamination ratio λ was set at 0.05 and 0.1. We explored four plans with (a, r) as follows:
(10, 6), (15, 4), (20, 3), and (30, 2), resulting in a total number of 60 measurements. The
true value of σ2

u was fixed at 0.5, and we investigated σ2
ϵ = 1, 0.5, and 0.1, corresponding

to low, moderate, and high signal-to-noise ratio settings. Table 2.7 shows the coverage
probability of the 90% confidence interval of ρ based on 5 × 105 random trials for both
cases of the contamination distributions.

In both contamination scenarios, it becomes apparent that the coverage probability
deviates from the nominal level, resulting in under coverage. Specifically, with an increase
in the contamination ratio λ from 5% to 10%, the coverage probability drops below 80%
in settings with moderate and high signal-to-noise ratios. The Monte Carlo study results
underscore the significant impact of heavy-tail distribution for contamination, such as the t-
distribution, on the confidence interval of ρ. Notably, the majority of coverage probabilities
fall below 70% for a 10% contamination ratio.

Table 2.7: Simulated coverage probability of the nominal 90% confidence intervals for ρ
under various settings of a and r with σ2

u = 0.5 : (a) H ∼ N (0, 9σ2
ϵ ) , (b) H ∼ 3σϵt(5) .

(a) H ∼ N (0, 9σ2
ϵ )

λ = 5% λ = 10%

(a, r) ρ = 0.5 ρ = 1 ρ = 5 ρ = 0.5 ρ = 1 ρ = 5

(10, 6) 0.876 0.862 0.844 0.835 0.802 0.757

(15, 4) 0.868 0.846 0.812 0.821 0.768 0.689

(20.3) 0.867 0.839 0.792 0.820 0.755 0.647

(30, 2) 0.873 0.841 0.774 0.835 0.762 0.617

(b) H ∼ 3σϵt(5)

λ = 5% λ = 10%

(a, r) ρ = 0.5 ρ = 1 ρ = 5 ρ = 0.5 ρ = 1 ρ = 5

(10, 6) 0.850 0.820 0.785 0.783 0.720 0.643

(15, 4) 0.838 0.794 0.738 0.766 0.675 0.560

(20.3) 0.839 0.786 0.711 0.768 0.661 0.515

(30, 2) 0.853 0.792 0.690 0.798 0.677 0.487
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2.7 Supplementary materials

This section includes the supplementary materials associated with Chapter 2.

A. Further details on the derivation of the likelihood function

Let Yi = (Yi1, . . . , Yir)
⊤ denote a random vector consisting of all r repeated measurements

on unit i for i = 1, . . . , a. Under the assumptions of one-way model (2.1), Y1,Y2 . . . ,Ya are
i.i.d. multivariate N (µ1r,Σ) random vectors, where 1r is a column vector with r elements
of 1, and Σ is defined by,

Σ = σ2
ϵIr + σ2

uJr . (2.57)

Here, In is the n× n identity matrix and Jn = 1n1
⊤
n is an n× n matrix with elements 1.

The likelihood of observing sample y1, . . . ,ya is,

L(θ;y1, . . . ,ya) =
a∏

i=1

(2π)−
r
2 |Σ|−

1
2 exp

(
−1

2
(yi − 1rµ)

TΣ−1(yi − 1rµ)
)

(2.58)

With Σ given in (2.57) involving a special form, its determinant and inverse matrix are
obtained as2,

|Σ| = (σ2
ϵ )

r−1(σ2
ϵ + rσ2

S) , (2.59)

and

Σ−1 =
1

σ2
ϵ

(
Ir −

σ2
u

σ2
ϵ + rσ2

S

Jr

)
. (2.60)

Plugging in the expressions for |Σ| and Σ−1, we can re-express the likelihood function
presented in equation (2.58) as follows,

L(θ;y1, . . . ,ya) = c(σ2
u , σ

2
ϵ ) exp

(
− 1

2σ2
ϵ

a∑
i=1

(yi − 1rµ)
T
(
Ir −

σ2
u

σ2
ϵ + rσ2

u
Jr

)
(yi − 1rµ)

)
, (2.61)

2If A = cIn + uvT , then |A| = cn(1 +
1

c
uTv) and A−1 = 1

c

(
In − uvT

c+vTu

)
.
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with c(σ2
u , σ

2
ϵ ) being defined as,

c(σ2
u , σ

2
ϵ ) = (2π)−

1
2
ar(σ2

ϵ )
− 1

2
a(r−1)(σ2

ϵ + rσ2
u)

− 1
2
a .

The term inside the exponential function can be arranged in order to display SSu and SSϵ,
as follows,

1

2σ2
ϵ

a∑
i=1

(yi − 1rµ)
T

(
Ir −

σ2
u

σ2
ϵ + rσ2

u
Jr

)
(yi − 1rµ)

=
1

σ2
ϵ

a∑
i=1

r∑
j=1

(yij − µ)2 − σ2
u

σ2
ϵ (σ

2
ϵ + rσ2

u)

a∑
i=1

(yi − µ1r)
T11T

r (yi − µ1r)

=
1

σ2
ϵ

a∑
i=1

r∑
j=1

(yij − yi· + yi· − µ)2 − r2σ2
u

σ2
ϵ (σ

2
ϵ + rσ2

u)

a∑
i=1

(yi· − µ)2

=
1

σ2
ϵ

a∑
i=1

r∑
j=1

(yij − yi·)
2 +

r

σ2
ϵ

a∑
i=1

(yi· − µ)2 − r2σ2
u

σ2
ϵ (σ

2
ϵ + rσ2

u)

a∑
i=1

(yi· − µ)2

=
SSϵ

σ2
ϵ

+
r

σ2
ϵ + rσ2

u

a∑
i=1

(yi· − y·· + y·· − µ)2

=
SSϵ

σ2
ϵ
+

SSu

σ2
ϵ + rσ2

u
+

ra

σ2
ϵ + rσ2

u
(y·· − µ)2.

which leads to the expected outcome.

B. Proof of convergence properties

To prove convergence properties outlined in Section 2.5, we rely on a set of lemmas that
establish the convergence of sample moments. Specifically, Lemma 2.1 (Lehmann, 1999,
Section 2.1) provides the necessary information on the consistency of sample moments,
and Lemma 2.2 (Lehmann, 1999, Section 2.4) presents the asymptotic normality results of
sample variance.

Lemma 2.1. (Consistency of sample moments). Let X1, . . . , Xn be i.i.d. random
variables with mean ξ and finite k–th absolute moment E

[
|Xi|k

]
, so the k-th central moment

Mk = E
[
(Xi − ξ)k

]
exists. Then the k-th sample moment M̂k =

1
n

∑n
i=1(Xi−X)k converges

to Mk almost sure as n → ∞.
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Lemma 2.2. (Asymptotic normality of sample variance). Suppose that X1, . . . , Xn

are i.i.d. random variables such that E [Xi] = ξ , Var [Xi] = σ2, and Var [(Xi − µ)2] = τ 2 <
∞ hold. Let S2 = 1

n

∑n
i=1(Xi −X)2. Then,

√
n(S2 − σ2)

d−→ N (0, τ 2)

as n → ∞.

Using these lemmas, we can now proceed to establish the convergence properties of the
estimators introduced in Section 2.5.

Proof of Theorem 2.1

(a) Recall that

σ̂2
ϵ = MSϵ =

1

a(r − 1)

a∑
i=1

r∑
j=1

(Yij − Y i·)
2.

The random variable Yij−Y i· can be expressed as ϵij−ϵi· where ϵi· =
1
r

∑r
j=1 ϵij. Assuming

independent random variables ϵij’s with zero mean and finite second moment σ2
ϵ , it can

be shown that the second moment for the random variable ϵij − ϵi· is E [(ϵij − ϵi·)
2] =

r − 1

r
σ2
ϵ . Because all ϵij’s are identically distributed too, random variables

∑r
j=1(ϵ1j − ϵ1·)

2,∑r
j=1(ϵ2j − ϵ2·)

2, . . . are independent, identically distributed, and have finite mean,

E

[
r∑

j=1

(ϵij − ϵi·)
2

]
= (r − 1)σ2

ϵ , for i = 1, . . . , a. (2.62)

By the strong law of large numbers when we get,

1

a

a∑
i=1

r∑
j=1

(ϵij − ϵi·)
2 a.s−→ (r − 1)σ2

ϵ , (2.63)

as a → ∞ and for any fixed number of r. This completes the proof for part (a).
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(b) The maximum likelihood estimate of σ2
u is given by,

σ̂2
u =

1

r

(
β−1MSu −MSϵ

)
,

=
1

a

a∑
i=1

(Y i· − Y ··)
2 − 1

ar(r − 1)

a∑
i=1

r∑
j=1

(Yij − Y i·)
2.

The random variable generated by Y i· can be represented as µ + Ui + ϵi·. Assuming that
all Ui’s and all ϵij’s are i.i.d., we can conclude that the random variables Y 1·, Y 2·, . . .
are identically distributed and independent with mean µ and the variance of σ2

u + r−1σ2
ϵ .

Applying Lemma 2.1 to Y 1·, Y 2·, . . . we obtain that,

1

a

a∑
i=1

(Y i· − Y ··)
2 a.s−→ σ2

u +
σ2
ϵ

r
, (2.64)

as a → ∞. Combining this with the result from part (a) that MSϵ → σ2
ϵ almost surely,

we conclude that

σ̂2
u

a.s−→ σ2
u > 0, as a → ∞, (2.65)

which means that the estimator σ̂2
u converges almost surely to the true value of σ2

u as
a → ∞, value of r.

(c) To prove this, we begin with the equation,

√
a

(
σ̂2
ϵ − σ2

ϵ

σ̂2
u − σ2

u

)
=

√
a

 1

a(r − 1)

∑a
i=1

∑r
j=1(Yij − Y i·)

2 − σ2
ϵ

1

a

∑a
i=1(Y i· − Y ··)

2 − 1

ar(r − 1)

∑a
i=1

∑r
j=1(Yij − Y i·)

2 − σ2
u

 . (2.66)

This equation can be expressed as the sum of two vectors,

1√
a

a∑
i=1

 1

(r − 1)

∑r
j=1(Yij − Y i·)

2 − σ2
ϵ

−1

r(r − 1)

∑r
j=1(Yij − Y i·)

2 + σ2
ϵ
r

 and
1√
a

a∑
i=1

(
0(

Y i· − Y ··
)2 − σ2

u − σ2
ϵ

r

)
. (2.67)

The multivariate central limit theorem indicates that, as a → ∞,

1√
a

a∑
i=1

(
1

r−1

∑r
j=1(Yij − Y i·)

2 − σ2
ϵ

−1
r(r−1)

∑r
j=1(Yij − Y i·)

2 + σ2
ϵ

r

)
d−→ N

(
0, τ 21

(
1 −r−1

−r−1 r−2

))
, (2.68)
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where τ 21 is the variance of
1

r − 1

∑r
j=1(Yij − Y i·)

2, given by

τ 21 =
1

(r − 1)2
Var

[
r∑

j=1

(ϵij − ϵi·)
2

]
. (2.69)

Furthermore, the asymptotic distribution of a sample variance indicates that,

√
a

(
1

a

a∑
i=1

(
Y i· − Y ··

)2 − σ2
u −

σ2
ϵ

r

)
d−→ N (0, τ 22 ) (2.70)

as a → ∞ where τ 22 is the variance of (Y i· − µ)2, expressed by,

τ 22 = Var
[
(Ui + ϵi·)

2] .
In the case of the one-way model (2.1) with normal distribution assumptions, we have

τ 21 =
2σ4

ϵ

r − 1
, (2.71)

τ 22 = 2(σ2
u + r−1σ2

ϵ )
2. (2.72)

In addition, the random vectors presented in (2.67) are independent. Combining these
results leads to the expected outcome, and hence, the proof is complete.

Proof of Theorem 2.3

(a) Consider the following equation for σ̂2
ϵ ,

σ̂2
ϵ =

1

a(r − 1)

a∑
i=1

r∑
j=1

(ϵij − ϵi·)
2.

The random variables ϵij’s are i.i.d.. Applying Lemma 2.1 to ϵi1, ϵi2, . . ., we obtain

1

r

r∑
j=1

(ϵij − ϵi·)
2 a.s−→ σ2

ϵ (2.73)
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as r → ∞ and for any fixed number of units. By summing the above result for all units,
we obtain

1

ar

a∑
i=1

r∑
j=1

(ϵij − ϵi·)
2 a.s−→ σ2

ϵ as r → ∞ and ∀a . (2.74)

Therefore, σ̂2
ϵ

a.s−→ σ2
ϵ as r → ∞.

(b) Starting from the asymptotic normality of the sample variance in Lemma 2.2, we
have,

√
r

(
1

r

r∑
j=1

(ϵij − ϵi·)
2 − σ2

ϵ

)
d−→ N (0, τ 2ϵ ), as r → ∞. (2.75)

Since
∑r

j=1(ϵ1j − ϵ1·)
2,
∑r

j=1(ϵ2j − ϵ2·)
2, . . . are independent random variables that are

normally distributed as r increases, their sum will also be normally distributed. Thus,
using the properties of the normal distribution, we get

√
ar

(
1

ar

a∑
i=1

a∑
j=1

(ϵij − ϵi·)
2 − σ2

ϵ

)
d−→ N (0, τ 2ϵ ), as r → ∞. (2.76)

which concludes the result.

(c) To prove this part, we start by expressing the maximum likelihood estimate of σ2
u

as,

σ̂2
u =

1

a

a∑
i=1

(
Y i· − Y ··

)2 − 1

r
MSϵ (2.77)

We know that the random variable
∑a

i=1

(
Y i· − Y ··

)2
/(σ2

u + r−1σ2
ϵ ) follows a chi-squared

distribution with a − 1 degrees of freedom assuming the normal distribution of random

effects. Therefore, a−1
∑a

i=1

(
Y i· − Y ··

)2
has a gamma distribution with shape parameter

(a− 1)/2 and scale parameter 2(σ2
u+r−1σ2

ϵ )/a
3. Moreover, part (b) of this theorem implies

3If X ∼ χ2
ν and c > 0, then the random variable cX follows a gamma distribution with a shape

parameter of ν/2 and a scale parameter of 2c.
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that MSϵ = Op

(
r−1/2

)
, which allows us to express (2.77) as

σ̂2
u = Gamma

(
a− 1

2
, 2a−1

(
σ2
u + r−1σ2

ϵ

))
+ op (1) . (2.78)

Here, Gamma(κ, θ) denotes the gamma distribution with shape parameter κ and scale

parameter θ. Since r−1σ2
ϵ converges to zero as r → ∞, we have that σ̂2

u converges in
distribution to a gamma distribution with shape parameter (a− 1)/2 and scale parameter
2σ2

u/a, as r → ∞, i.e.,

σ̂2
u

d−→ Gamma
(
a− 1

2
, 2a−1σ2

u

)
. (2.79)

which is the expected convergence result.

Proof of Theorem 2.4

In the limit case where the sample size a tends towards infinity, we established in Theo-

rems 2.1 and 2.2 that σ̂2
u converges to σ2

u , σ̂
2
ϵ converges to σ2

ϵ , and ρ̂
MLE

converges to ρ. In
addition, β → 1 and the estimates obtained through the maximum likelihood method and
(non-negative) ANOVA are identical.

In the scenario where the replication number r approaches infinity the estimates take

different forms: σ̂2
u →

∑a
i=1 (yi· − y··)

2 /a, σ̂2
ϵ → σ2

ϵ , and ρ̂
MLE

→
∑a

i=1(yi· − y··)
2/(aσ2

ϵ ),
using the maximum likelihood method. With (non-negative) ANOVA method, the esti-

mates can be slightly different: σ̂2
u →

∑a
i=1 (yi· − y··)

2 /(a − 1), σ̂2
ϵ → σ2

ϵ , and ρ̂
(N)ANOVA

approaches
∑a

i=1 (yi· − y··)
2 /((a − 1)σ2

ϵ ) . In either case, all of these estimates fall within
the parameter space for the respective parameters.
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Chapter 3

Measurement System Assessment
Study for Multiple Characteristics

3.1 Introduction and background

When extending the measurement system assessment study to include multivariate data,
we are confronted with the inherent complexity of their variability structure. In this
context, the evaluation of the measurement system’s performance and capability presents
distinct challenges. To the best of the author’s knowledge, the literature on this topic is
sparse and not as developed as the univariate case.

Addressing the challenge of quantifying a measurement system’s performance often in-
volves summarizing complex variance-covariance matrices into a single scalar value. One
approach, by Voelkel (2003), represents the summary measure of a variance-covariance ma-
trix for bivariate data through the diameter of a circle. The circle is calculated to include,
with a pre-specified probability, the mass of the corresponding bivariate normal distri-
bution. In a different approach, Majeske (2008) investigates this problem by developing
confidence regions in the form of ellipsoids, considering the assumption of random variables
following a multivariate normal distribution. Wang and Yang (2007) and Wang (2013) uti-
lize principal component analysis (PCA) to identify significant components and compute a
composite summary index for the measurement system performance. The proposed index
is typically calculated as the geometric mean of measurement system assessment parame-
ters, such as the R&R ratio and PTR, for the selected principal components. Expanding
on this methodology, Peruchi et al. (2014) refine the PCA-based method by introducing a
summary measure through the weighted arithmetic mean and weighted geometric mean,
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applied to the R&R ratios of the selected principal components. Marques et al. (2020)
and de Almeida et al. (2020) explore applying factor analysis methods, particularly suited
for multivariate cases where variables can be grouped into distinct categories, called fac-
tors, such that there is typically a high correlation between variables within the same group
and moderate to low correlation between variables of different groups. Subsequently, a uni-
variate measurement system analysis would be performed for each factor. These diverse
approaches offer insights into summarizing and evaluating the performance of measurement
systems in the context of multivariate data, each with its advantages and applicability.

In this study, our goal is to offer scalar metrics for assessing measurement systems of
multivariate data. By doing so, we aim to equip practitioners with metrics that are simpler
and more interpretable. This approach streamlines the interpretation process and supports
more informed decision-making regarding measurement system performance.

Our study examines the applicability of several scalar measures for summarizing variance-
covariance components in the context of measurement system assessment. Specifically, we
explore variants of the following measures of a variance-covariance matrix:

❏ Generalized variance
❏ Trace
❏ Frobenius norm (or vector variance)

Each scalar measure corresponds to a distinct operation, offering unique insights into the
characteristics of the variance-covariance matrix. They serve as particular generalized
means of the eigenvalues, providing deeper information about the structure and behaviour
of variances and covariances.

The generalized variance is a measure linked to the volume (or hyper-volume) bounded
by the contours of the multivariate normal density function. Along with its variants, it
holds significant importance in monitoring multivariate process variability. Noteworthy
works by Alt and Smith (1988), Djauhari (2005), Montgomery (2020), and the compre-
hensive literature review by Ebadi et al. (2022) demonstrate the success of this measure
in capturing variability. Despite its appealing features, the generalized variance has cer-
tain limitations. One notable limitation is that if the variance-covariance matrix is rank
deficient, the generalized variance becomes zero. This constraint imposes a significant
constraint on its applicability, requiring the variance-covariance matrix to be non-singular.
Additionally, when the number of variables is greater than 2, obtaining the statistical prop-
erties of the sample generalized variance, e.g., its exact distribution or moments (Huwang
et al., 2007), can be challenging.

On the other hand, the trace of a variance-covariance matrix provides an alterna-
tive approach to describing multivariate dispersion by summing the variances of all vari-
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ables (Huwang et al., 2007; González and Sánchez, 2010). In a comprehensive literature
review by Ajadi et al. (2021), an overview of selected articles that employ the trace measure
as a summary statistic for the estimated covariance matrix is presented. Unlike the general-
ized variance, the trace represents a linear mapping, which enhances its appeal for variance
component models. However, a criticism raised is that the trace measure does not consider
the covariances among random variables when computing the overall measure (Ajadi et al.,
2021).

Another measure of multivariate variability is the vector variance, which characterizes
the overall variability of a variance-covariance matrix by considering the trace of its squared
form, thus incorporating all the elements of the covariance structure (Djauhari, 2007;
Djauhari et al., 2008). The trace and vector variance measures are equal to zero if and
only if the distribution is degenerate at the mean vector.

The assessment of measurement systems for multivariate data relies on estimating two
variance-covariance matrices: one associated with the measurement system and the other
corresponding to the units. A widely employed technique for their estimation is the un-
biased estimation of the variance-covariance components through multivariate analysis of
variance (MANOVA), as demonstrated in numerous studies focusing on measurement sys-
tem assessment (Majeske, 2008; Peruchi et al., 2016; Shi et al., 2016; Esmaeeli et al.,
2019). This procedure entails subtracting positive-definite matrices, occasionally lead-
ing to estimated variance-covariance matrices that may not be non-negative definite. In
a different approach, Bayesian methods have been applied to computationally evaluate
variance-covariance matrices in this context (Hamada, 2016).

This chapter focuses on assessing measurement systems applied to multivariate data,
aiming to build upon the statistical procedures and concepts discussed in Chapter 2. Our
particular emphasis lies in exploring the one-way random effect model with an equal num-
ber of replications. In this setting, the unbiased estimate of the units’ variance-covariance
matrix may not necessarily be non-negative definite. This issue and potential methods to
address it have been extensively noted in the literature, including the works by Ander-
son (1984); Amemiya (1985); Anderson et al. (1986); Srivastava and Kubokawa (1999);
Kubokawa and Tsai (2006); Duan et al. (2023). To ensure a non-negative estimate of the
units’ variance-covariance matrix while also obtaining a positive-definite estimate of mea-
surement error variance-covariance matrix, we follow the approach proposed by Anderson
(1984) and consider the maximum likelihood estimation for the subsequent analyses.
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3.1.1 Contributions and outlines

We make the following contributions in this chapter:

1. We extend the definition of parameters used to assess measurement systems to
encompass multivariate data. Specifically, we explore using the generalized variance,
the trace, and the Frobenius norm to effectively summarize the variance-covariance
matrices.

2. We conduct a selective review of existing theories on the estimation of variance-
covariance components within a one-way random effect model with equal replica-
tions.

3. We explore the convergence properties of variance-covariance components obtained
through the maximum likelihood estimation method.

4. We concentrate on one of the proposed parameters in measurement system assess-
ment—the signal-to-noise ratio. Our investigation encompasses an exploration of
its convergence properties and the construction of approximate confidence intervals.
Our systematic inference procedure can be seamlessly extended to other proposed
measurement system assessment parameters introduced in this chapter.

5. We conduct a comparative analysis of the application of three transformations, i.e.,
the generalized variance, the trace, and the Frobenius norm, in their asymptotic
properties.

The structure of this chapter is as follows: In Section 3.2, we present the framework
of the multivariate one-way model for studying measurement systems. We establish our
fundamental notation and parameters essential for evaluating multivariate data measure-
ment systems. Section 3.3 provides an initial exploration of the one-way model, offering
insights to prepare for our in-depth study. Estimating the parameters of measurement sys-
tem assessment involves estimating the variance-covariance components. In Section 3.4,
we study various existing methods for estimating these crucial quantities. In Section 3.5,
we investigate the convergence properties of the estimators of variance-covariance com-
ponents and the signal-to-noise ratio. In Section 3.6, several confidence intervals of the
signal-to-noise ratio are discussed. The results of our simulation studies are presented in
Section 3.7. In Section 3.8, we offer prospects on the topics covered in this chapter. Ad-
ditionally, Section 3.9 provides supplementary materials and proofs, further enhancing the
chapter’s content and insights.
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3.1.2 Notation

We introduce some notation that will be used throughout this chapter.

The identity matrix of size n is denoted by In, Jn represents an n × n matrix with
all entries equal to one, while 1n is a column vector of size n consisting of ones. For a
given matrix A = (aij), the notation |A|, ∥A∥

F
, and tr(A) represent its determinant,

Frobenius norm, and trace, respectively. If a symmetric matrix A is positive definite,
positive semi-definite, or negative definite, we write A ≻ 0, A ⪰ 0, or A ≺ 0, respectively.
The notation vec(A) refers to the vector obtained by stacking the columns of matrix A on
top of one another. The symbol A ⊗B indicates the Kronecker product of two matrices
A and B. For a scalar-valued differentiable function f , the gradient of f with respect to
A is denoted by ∇f(A) = ∂f(A)/∂A. For a symmetric n×n matrix A = (aij), we define
Γ(A) =

(
Γij(A)

)
a block matrix, of size n2×n2, where each block Γij(A) for i, j = 1, . . . , n

is given by,

Γij(A) =

aija11 + ai1aj1 . . . aija1n + ainaj1
...

. . .
...

aijan1 + ai1ajn . . . aijann + ainajn

 . (3.1)

3.2 Model and performance metrics

To analyze the capability of a measurement system that measures multiple characteristics,
an experiment is conducted by randomly selecting a sample of a > 2 units from the available
population. Each unit in the sample consists of p features, where p ≤ a, and each feature
is measured r ≥ 2 times. The following model is employed to represent the measured data
and for subsequent analyses,

Yij = µ+Ui + ϵij, for i = 1, . . . , a, and j = 1, . . . , r. (3.2)

Here, Yij, µ, Ui, and ϵij are all p–dimensional column vectors. Measurement vector Yij

contains the measurements of all p features for unit i at the jth repeated measurement,
µ is the vector of general mean, while Ui represents the vector of random effect for unit
i, and ϵij represents the random measurement error for unit i at the jth replication. All
Ui’s are i.i.d. multivariate N (0,Σu) random vectors, and all ϵij’s are i.i.d. multivariate
N (0,Σϵ) random vectors. Furthermore, each pair of Ui and ϵij is mutually independent.

In the context of multivariate one-way random effect model (3.2), the variance-covariance
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matrix of measurement vector Yij is expressed as,

Σt = Σu +Σϵ . (3.3)

A key parameter used to assess the capability of a measurement system in univariate
measurement system assessment studies is the signal-to-noise ratio. This parameter is de-
termined by the ratio of two components, associated with the variability of the units being
measured and the variability of the measurement system itself. It helps identify whether
the measurement system constitutes the dominant source of variation in the measurements.

In this study, we extend the parameter’s definition to multivariate data by summarizing
the variance-covariance matricesΣu andΣϵ using a scalar function and comparing the ratio
between them. The statistic for this purpose is defined as follows,

ρ
V
=

V(Σu)

V(Σϵ)
· (3.4)

Here, V : Rp×p → R is a continuous smooth transformation that quantifies the variability
of the variance-covariance matrix. When p = 1, the covariance matrix is reduced to a
variance value, and V(·) is defined such that V(σ2

u) = σ2
u and V(σ2

ϵ ) = σ2
ϵ , resulting

in ρ = σ2
u/σ

2
ϵ . Note that the definition of SNR (signal-to-noise ratio), outlined in (1.8)

for univariate measurements, is a square root transformation of ρ . In this chapter, we
exclusively work with ρ

V
and refer to it as the signal-to-noise ratio. The square root

transformation of ρ
V
is denoted as SNR

V
, where SNR

V
= [V(Σu)/V(Σϵ)]

1/2.

Applying this framework, we set up the counterparts of the percentage R&R ratio and
the intra-class correlation coefficient for multivariate data, as follows,

%R&R
V
=

[
V(Σϵ)

V(Σu +Σϵ)

]1/2
× 100% , (3.5)

ICC
V
=

V(Σu)

V(Σu +Σϵ)
· (3.6)

We will examine the following specific transformations of the variance-covariance matrix
to quantify data concentration using summary statistics.

A. Generalized variance

The generalized variance is defined as the determinant of the variance-covariance matrix.
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Using the generalized variance, we can calculate the signal-to-noise ratio as,

ρ
gv

=
∣∣ΣuΣ

−1
ϵ

∣∣ 1p . (3.7)

This statistic allows us to quantify and compare the variability of the variance-covariance
matrices Σu and Σϵ by taking the geometric mean of their eigenvalues. It also repre-
sents the geometric mean of the eigenvalues ofΣuΣ

−1
ϵ , providing a measure that captures

both the variability and the relationship between these matrices. Note that (3.7) corre-
sponds to the performance criterion proposed by Majeske (2008), based on the volume
of ellipsoid contours related to a non-singular multivariate normal distribution.
Using this convention, we can proceed to calculate the percentage R&R ratio and the
intra-class correlation coefficient as follows,

%R&Rgv =
∣∣Σϵ (Σu +Σϵ)

−1
∣∣ 2p × 100% , (3.8)

ICCgv =
∣∣Σu (Σu +Σϵ)

−1
∣∣ 1p . (3.9)

B. Trace

The alternative statistic for assessing the signal-to-noise ratio can be defined using the
trace of Σu and Σϵ, as follows

ρ
tr
=

tr (Σu)

tr (Σϵ)
, (3.10)

The trace of a matrix is equivalent to the average of the eigenvalues of that matrix.
This form enables the comparison between the variance-covariance matrices Σu and Σϵ

based on their average eigenvalues.
Using the trace, we establish the counterparts of the percentage R&R ratio and the
intra-class correlation coefficient for multivariate data, as follows,

%R&Rtr =

[
tr(Σϵ)

tr(Σu) + tr(Σϵ)

]1/2
× 100% , (3.11)

ICCtr =
tr(Σu)

tr(Σu) + tr(Σϵ)
· (3.12)

The percentage R&R ratio and the intra-class correlation coefficient can be related to

62



ρ
tr
through the following relationships,

%R&Rtr =
(
1 + ρ

tr

)−1/2 × 100% , (3.13)

ICCtr =
(
1 + ρ−1

tr

)−1
. (3.14)

C. Frobenius norm

By considering the Frobenius norm of the variance-covariance matrices Σu, Σϵ, and Σt,
we obtain the following measures for the signal-to-noise ratio, the percentage R&R ratio,
and the intra-class correlation coefficients,

ρ
F
=

∥Σu∥F
∥Σϵ∥F

, (3.15)

%R&R
F
=

[ ∥Σϵ∥F
∥Σu +Σϵ∥F

]1/2
× 100% , (3.16)

ICC
F
=

∥Σu∥F
∥Σu +Σϵ∥F

, (3.17)

where ∥Σ∥2
F

= ∥vec (Σ)∥2 = tr (Σ2) . This form enables a comparison between the
variance-covariance matrices based on the sum of the squares of all elements of these
variance-covariance matrices or, in other words, based on the quadratic mean of all their
eigenvalues.

3.3 Preliminary analysis

For the multivariate one-way model (3.2), the two matrices of the sum of squares and cross-
products that capture the variation between groups and within groups are, respectively,
given as follows,

SSu = r

a∑
i=1

(Y i· − Y ··)(Y i· − Y ··)
⊤, (3.18)

SSϵ =
a∑

i=1

r∑
j=1

(Yij − Y i·)(Yij − Y i·)
⊤. (3.19)
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Here, Y i· =
1
r

∑r
j=1 Yij represents the mean vector of measurements for the ith unit, calcu-

lated as the average of r measurements for that unit. Alternatively, Y ·· =
1
ar

∑a
i=1

∑r
j=1 Yij

is the overall sample mean vector of the measurements, calculated as the average of all
measurements in the experiment. The matrices of the mean of squares and cross-products
corresponding to SSu and SSϵ are given by,

MSu =
SSu

dfu
=

r

a− 1

a∑
i=1

(Y i· − Y ··)(Y i· − Y ··)
⊤, (3.20)

MSϵ =
SSϵ

dfϵ
=

1

a(r − 1)

a∑
i=1

r∑
j=1

(Yij − Y i·)(Yij − Y i·)
⊤ , (3.21)

where dfu = a − 1 and dfϵ = a(r − 1) . Table 3.1 displays the multivariate analysis of
variance classification.

The matrices MSu and MSϵ possess certain properties that are relevant for their in-
terpretation. Specifically, MSu is a positive-semi definite symmetric matrix, which means
that all of its eigenvalues are non-negative real numbers, while MSϵ is a positive-definite
symmetric matrix, which implies that all of its eigenvalues are strictly positive real num-
bers. Additionally, assuming the normality distribution for Ui’s and ϵij’s and their mutual
independence, MSu and MSϵ are two independent matrices, where

SSu ∼ W(Σϵ + rΣu, a− 1) and SSϵ ∼ W(Σϵ, a(r − 1)) . (3.22)

Here, W(Σ, n) refers to a central Wishart distribution with scale matrix Σ and n degrees
of freedom. If a ≤ p, SSu and SSϵ no longer have a density. However, their distributions
are defined, taking values in a lower-dimension subspace of p × p matrices (Uhlig, 1994;

Table 3.1: The multivariate analysis of variance classification for the multivariate one-way
model.

Source
Degree of

Sum of squares and products
Mean of squares

freedom and products

U dfu = a− 1 SSu = r
∑a

i=1(Y i· − Y ··)(Y i· − Y ··)
⊤ MSu =

SSu

a− 1

ϵ dfϵ = a(r − 1) SSϵ =
∑a

i=1

∑r
j=1(Yij − Y i·)(Yij − Y i·)

⊤ MSϵ =
SSϵ

a(r − 1)

Total ar − 1 SSt =
∑a

i=1

∑r
j=1(Yij − Y ··)(Yij − Y ··)

⊤
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Srivastava, 2003). In this chapter, we assume that a > p , allowing us to find the expected
values of MSu and MSϵ as follows

E [MSu] = Σϵ + rΣu and E [MSϵ] = Σϵ . (3.23)

To initiate the measurement system study for multivariate data, we can extend the
recommendation of Montgomery and Runger (1993a) for univariate data by conducting an
initial analysis to investigate the factors contributing to the variability in the measured
data. For the one-way model described in Section 3.2, we can test whether the unit’s effect
on the measured data is significant. Specifically, we set the null hypothesis of no unit’s
effect as H0 : Σu = 0. Various tests are available for this analysis, and further insights
into these tests can be found in references such as (Sugiura and Nagao, 1968; Rao, 1983;
Krzanowski and Marriott, 1994) and (Anderson, 2003, Section 10.6).

3.4 Point estimation

To estimate the signal-to-noise ratio, the percentage gauge R&R ratio, and the intra-class
correlation coefficient, one can estimate the variance-covariance matrices Σu and Σϵ and
then apply the plug-in estimators,

ρ̂
V
=

V
(
Σ̂u

)
V
(
Σ̂ϵ

) , (3.24)

%R̂&R
V
=

[
V(Σ̂ϵ)

V(Σ̂u + Σ̂ϵ)

]1/2
× 100% , (3.25)

ÎCC
V
=

V(Σ̂u)

V(Σ̂u + Σ̂ϵ)
· (3.26)

We will briefly discuss some existing methods for analytically estimating the variance-
covariance matrices in the one-way random effect model with a balanced design setting.

3.4.1 Multivariate ANOVA estimation

The procedure for multivariate ANOVA, also known as MANOVA, is similar to the univari-
ate ANOVA. Specifically, the expected value of each empirical matrix of sums (or means)
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of squares and cross-products is a linear function of the variance-covariance matrices. To
estimate Σu and Σϵ, one can solve the equations in (3.23) for these matrices, and re-
place E [MSu], and E [MSϵ] with their empirical versions. This procedure results in the
multivariate ANOVA estimators as follows,

Σ̂u =
1

r
(MSu −MSϵ) and Σ̂ϵ = MSϵ . (3.27)

The parameter space for variance-covariance matrices specifies that the estimator of Σϵ

should be a symmetric positive definite matrix, while the estimator of Σu should be a
symmetric positive semi-definite matrix. The ANOVA estimation of Σϵ always remains
within the parameter space of Σϵ. The ANOVA estimator of Σu can, at times, fall outside
the parameter space, yielding inadmissible results such as negative variances and potential
failure to be positive semi-definite. These issues may lead to computational difficulties or
result in invalid inferences

The probability of Σ̂u ⪰ 0, in the one-way model, depends on the distribution of the
smallest root of the equation

|MSu − δMSϵ| = 0 , (3.28)

which may also be expressed as
∣∣MSuMS−1

ϵ − δI
∣∣ = 0 (Hill and Thompson, 1978). To

illustrate this, let

MSu = ZDZ⊤ and MSϵ = ZZ⊤, (3.29)

where Z is a p × p matrix, D = diag(δ1, . . . , δp) and δ1 ≥ δ2 ≥ . . . ≥ δp > 0 are the roots

of (3.28). Therefore, Σ̂u = r−1Z(D − I)Z⊤, and it is positive definite if δp ≥ 1.

To evaluate Pr(δp ≥ 1), we need the distribution of the smallest eigenvalue ofMSuMS−1
ϵ .

Here, MSu and MS−1
ϵ are independent Wishart matrices. The ratio of two independently

distributed Wishart random matrices and the behavior of its eigenvalues, which generalize
the univariate statistic of the F -distribution, is of fundamental importance in multivariate
analysis. The works of Pillai (1965); Venables et al. (1974); Hill and Thompson (1978);
Bhargava and Disch (1982); Johnstone (2009); Hashiguchi et al. (2018) have contributed
to this subject. The distributions of the eigenvalues of MSuMS−1

ϵ rely only on ΣuΣ
−1
ϵ ,

rather than the individual elements of Σu and Σϵ .

To get a better understanding of the likelihood of Σ̂u ≻ 0, consider the case where Σu

and Σϵ are diagonal matrices, and the signal-to-noise ratio is the same for all individual
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variables such that ΣuΣ
−1
ϵ = ρI. Let S1 and S2 be defined as

S1 = a(r − 1)MSϵ and S2 = λ−1(a− 1)MSu ,

where λ = 1 + rρ, and it is also the solution of |(Σϵ + rΣu)Σ
−1
ϵ − λI| = 0. As a result,

S1 ∼ W(Σϵ, a(r− 1)) and S2 ∼ W(Σϵ, a− 1). Let κ1 be the largest eigenvalue of S1(S1 +
S2)

−1. Then, κ1 satisfies |S1 − κ1(S1 + S2)| = 0. This implies that the smallest root of
|MSu − δMSϵ| = 0 can be determined as,

δp =
a(r − 1)(1− κ1)λ

κ1(a− 1)
·

Then, the probability that Σ̂u is not positive definite can be computed through,

Pr(δp < 1) = 1− Pr
(
κ1 <

dfϵλ

dfu + dfϵλ

)
· (3.30)

The generalization of this result to cases where Σu and Σϵ are not necessarily restricted
to be diagonal is discussed by Hill and Thompson (1978). Several methods that facilitate
the calculation of the cumulative distribution function of κ1 can be found in (Johnstone,
2009) and the references there.

In Figure 3.1, the plots depict the probability of δp < 1, according to (3.30), as a
function of ρ for different values of p ranging from 3 to 8. These plots consider a plan
with a = 10 and r = 6. As the dimensionality p increases, the likelihood of δp < 1 also
increases.

The increasing likelihood of δp < 1 with higher dimensionality underscores that when
dealing with multiple inputs for each sample, the probability of the MANOVA estimator
of Σu not being positive definite becomes more significant. This observation suggests
exploring alternative estimator types. In the following sections, we investigate the UMVUE
and maximum likelihood estimations.

3.4.2 UMVUEs

Suppose the vector µ and matrices Σu and Σϵ are the unknown parameters. Using the
notation yij for the observed value of the random vector Yij, the likelihood function for µ,
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Figure 3.1: Probability of δp < 1 with respect to the signal-to-noise ratio ρ for a = 10 and
r = 6, with Σu = ρI and Σϵ = I.

Σu, and Σϵ, as developed by Anderson et al. (1986), is expressed as follows,

L(µ,Σu,Σϵ) =

c(Σu,Σϵ) exp
(
−1

2
tr
(
GΣ−1

ϵ

)
− 1

2
tr
(
H(Σϵ + rΣu)

−1
)
− ar

2
(y··−µ)⊤(Σϵ + rΣu)

−1(y··−µ)
)
,

(3.31)

where

c(Σu,Σϵ) = (2π)−
apr
2 |Σϵ|−

a(r−1)
2 |Σϵ + rΣu|−

a
2 ,

H = r
a∑

i=1

(yi· − y··)(yi· − y··)
⊤, and G =

a∑
i=1

r∑
j=1

(yij − yi·)(yij − yi·)
⊤,

with yi· =
1
r

∑r
j=1 yij and y·· =

1
ar

∑a
i=1

∑r
j=1 yij. For further detailed insights into the

derivation of this likelihood function, we refer the reader to the supplementary materials
provided in Section 3.9.

The procedure for obtaining the UMVUEs of µ, Σu, andΣϵ is similar to their univariate
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counterparts. The relationship of L(µ,Σu,Σϵ), as outlined in (3.31), signifies that the joint
distribution of Yij’s belongs to the multi-parameter exponential family. Additionally, Y ··,
MSu, and MSϵ together form the complete and sufficient statistics for µ, Σu, and Σϵ .
Consequently, the UMVUEs for both Σu and Σϵ align with their corresponding MANOVA
estimators.

3.4.3 Maximum likelihood estimation

To address the issue of obtaining non-positive definite estimators in MANOVA, we need
a procedure that ensures the covariance matrix estimators remain within their parameter
space. Klotz and Putter (1969); Anderson (1984) and Rao and Heckler (1998) have ex-
plored the derivation of maximum likelihood estimation of Σu and Σϵ constrained to their
parameter space for the one-way model. Since many of the results in our study rely on
these estimations, we provide a brief overview here.

Taking logarithm from (3.31), the log–likelihood function of µ,Σu and Σϵ is obtained
as follows,

l(µ,Σu,Σϵ) = −apr

2
ln(2π)− a(r − 1)

2
ln(|Σϵ|)−

a

2
ln(|Σϵ + rΣu|)−

1

2
tr(GΣ−1

ϵ )

−1

2
tr
(
H(Σϵ + rΣu)

−1
)
− ar

2
(y·· − µ)⊤(Σϵ + rΣu)

−1(y·· − µ) .
(3.32)

Maximum likelihood estimation methods require us to maximize the likelihood function
within the defined parameter space. Initially, we consider maximizing l(µ,Σu,Σϵ) with
respect to µ, where Rp is the parameter space for µ. The likelihood function of (3.32)
interacts with µ only through the quadratic form (y·· − µ)⊤(Σϵ + rΣu)

−1(y·· − µ). It is
easy to see that setting µ = y·· maximizes the likelihood function for any fixed Σu and Σϵ,
making Y ·· the maximum likelihood estimator for µ.

Next, we investigate the maximum likelihood estimators for the covariance matrices
Σu and Σϵ. Let Q be an orthogonal p × p matrix, and Λ = diag(λ1, . . . , λp), with
λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0, such that,

MS
− 1

2
ϵ MSuMS

− 1
2

ϵ = βQΛQ⊤, (3.33)

where β =
a

a− 1
. We define Z = MS

1
2
ϵ Q. Then, we can express MSu and MSϵ as

MSu = β ZΛZ⊤ and MSϵ = ZZ⊤, (3.34)
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Using this decomposition pair, we get

β−1MSu −MSϵ = Z(Λ− Ip)Z
⊤ . (3.35)

If all λi’s are greater than or equal to unity, then β−1MSu−MSϵ is non-negative definite,
and the maximum likelihood estimators of Σu and Σϵ are derived as follows,

Σ̂u =
1

r

(
β−1MSu −MSϵ

)
and Σ̂ϵ = MSϵ . (3.36)

If some of the λi’s are less than 1, then β−1MSu −MSϵ is not non-negative definite. For
univariate data, this indicates negativity. However, for multivariate data, a matrix that is
not non-negative definite can be indefinite. Let k be the number of eigenvalues λi’s greater
than unity. Then, the remaining p − k eigenvalues λk+1, . . . , λp are less than unity. To
partition Z and Λ, we first define Λ1 as a diagonal matrix with the first k eigenvalues
λ1, . . . , λk and Λ2 as a diagonal matrix with the remaining p− k eigenvalues λk+1, . . . , λp .
We also define Z1 as the p × k sub-matrix of Z corresponding to the first k columns and
Z2 as the p× (p− k) sub-matrix corresponding to the remaining columns of Z. With this
notation, we can write,

Z =
(
Z1 Z2

)
and Λ =

(
Λ1 0
0 Λ2

)
.

It is possible to decompose (3.35) as follows,

β−1MSu −MSϵ = Z1(Λ1 − Ik)Z
⊤
1 +Ω, (3.37)

where Ω is defined as

Ω = Z2(Λ2 − Ip−k)Z
⊤
2 . (3.38)

This decomposition expresses β−1MSu − MSϵ as the sum of Z1(Λ1 − Ik)Z
⊤
1 ⪰ 0 and

Ω ≺ 0 . The term Z1(Λ1 − Ik)Z
⊤
1 , representing the non-negative definite contribution

to the decomposition, can be considered as the estimator of rΣu. It has been shown
in (Anderson, 1984, Section 7) that the maximum likelihood estimators for the variance-
covariance matrices Σu and Σϵ are given by,

Σ̂u =
1

r

(
β−1MSu −MSϵ −Ω

)
and Σ̂ϵ = MSϵ +

Ω

r
· (3.39)

Of particular significance is the fact that these estimators are obtained by adjusting the
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estimators given in (3.36) using the term Ω. To establish that Σ̂ϵ in (3.39) is positive

definite too, we can write Σ̂ϵ as,

Σ̂ϵ = Z1Z
⊤
1 +

1

r
Z2Λ2Z

⊤
2 +

r − 1

r
Z2Z

⊤
2 ,

in which all terms are positive definite matrices. Therefore, Σ̂ϵ ≻ 0 . On the other hand,
Σ̂u ⪰ 0 and its rank is determined by k, the number of eigenvalues of Λ greater than
one. If all eigenvalues λi’s are less than 1, the maximum likelihood estimates for the
variance-covariance matrices Σu and Σϵ are obtained as follows,

Σ̂u = 0 and Σ̂ϵ =
SSt

ar
· (3.40)

The estimation procedure described above yields a maximum likelihood estimate of Σu

whose rank is determined by the available sample data. However, there are cases where
prior knowledge or considerations regarding the true rank of Σu are available. Even when
the true rank is unknown, statistical tests are available to make inferences about the rank
of Σu (Anderson, 1989; Anderson and Amemiya, 1991; Amemiya et al., 1990). Hence,
it may be desirable in some situations to obtain an estimator of Σu that is both non-
negative definite and constrained to have a pre-specified rank, denoted as m where m < p .
By imposing this constraint, the variation of the units can be characterized in a lower-
dimensional linear space, with a maximum dimension of m. To estimate the covariance
matrix Σu with a specified reduced rank of m, the integer k that is used to partition Λ
can be determined as the minimum of m and the number of λi’s greater than one.

3.4.4 Other estimation methods

Various alternative approaches are available for estimating the variance-covariance compo-
nents of the multivariate one-way model (3.2), which are constrained within the parameter
space.

One such method, known as bending and originally proposed by Hayes and Hill (1981),
involves the modification of eigenvalues derived from MS−1

ϵ MSu . This technique has
found extensive application in the field of genetics and biomedical contexts. Another esti-
mation method discussed by Amemiya (1985), is based on restricted maximum likelihood
estimation. It involves minimizing an objective function that incorporates L(µ,Σu,Σϵ)
alongside a penalty term. Employing this method, the estimators for Σu and Σϵ are
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defined as follows,

Σ̂u =
1

r
(MSu −MSϵ −Ω) and Σ̂ϵ = MSϵ +

a− 1

ar − 1
Ω . (3.41)

In a similar context, Meyer and Kirkpatrick (2010) propose alternative estimators for
variance-covariance matrices, employing a penalized maximum likelihood approach, which
can be computationally intensive. Srivastava and Kubokawa (1999) and Kubokawa and
Tsai (2006) discuss several estimators for the variance-covariance matrices by minimizing
entropy loss functions. However, the statistical properties of their suggested estimators
require cumbersome investigation.

3.5 Convergence properties

To examine the asymptotic properties of the outcome estimates, we consider three scenarios
in which either the sample size, replication numbers, or both become large:

(S1) a → ∞ and r is fixed,
(S2) r → ∞ and a is fixed,
(S3) r → ∞ and a → ∞.

We analyze these scenarios by examining estimators obtained through the maximum like-
lihood method as well.

S1. Asymptotic behaviors when increasing the sample size a

Theorem 3.1 provides insights into the asymptotic properties of Σ̂u and Σ̂ϵ in the con-
text of asymptotic scenario S1. According to Remadi and Amemiya (1994), having some
knowledge of the rank of Σu with a sufficiently large probability is crucial for correctly
inferring the distribution convergence in this asymptotic case. This knowledge can be
acquired through a hypothesis test expressed in terms of the rank of Σu.

Theorem 3.1. As the replication number r remains fixed and a → ∞, the estimators Σ̂u

and Σ̂ϵ from the maximum likelihood method exhibit the following asymptotic properties:

a) Σ̂ϵ
a.s−→ Σϵ, given that ϵij’s are i.i.d. random vectors with E [∥ϵij∥2] < ∞ .

b) Σ̂u
a.s−→ Σu, provided that both Uij’s and ϵij’s are i.i.d. random vectors such that

E [∥Ui∥2] < ∞ and E [∥ϵij∥2] < ∞, and ϵij’s are independent of Uij’s.
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c) Under the normality assumption of i.i.d. random vectors Ui and ϵij, and given that

Σu ≻ 0, the joint distribution of Σ̂ϵ and Σ̂u satisfies,

√
a vec

(
Σ̂ϵ −Σϵ

Σ̂u −Σu

)
−→ N

(
0,

(
Σ11 Σ12

Σ21 Σ22

))
.

The blocks of the covariance matrix of the limiting distribution are given by,

Σ11 =
1

r − 1
Γ(Σϵ) , Σ12 =

−1

r(r − 1)
Γ(Σϵ) ,

Σ22 = Γ
(
Σu +

1
r
Σϵ

)
+

1

r2(r − 1)
Γ (Σϵ) ,

where Γ(·) denotes the covariance operator as defined in (3.1).

Proof. See the supplementary materials.

Without specifying a particular distribution for Ui and ϵij, part (c) of Theorem 3.1 still
ensures convergence to a normal distribution, provided that both sequences Ui and ϵij are
i.i.d. random vectors of finite fourth moments.

In Theorem 3.2, we investigate the convergence characteristics of ρ̂
V
as the sample size

tends towards infinity.

Theorem 3.2. As a → ∞, and with any fixed replication number, we have the following
convergence results:

a) ρ̂
V

a.s−→ ρ
V
, provided that E [∥Ui∥2] < ∞ and E [∥ϵij∥2] < ∞,

b) Within the conditions defined in Theorem 3.1, part (c), we have

√
a

(
V(Σ̂ϵ)− V(Σϵ)

V(Σ̂u)− V(Σu)

)
d−→ N

(
0,

(
σ11 σ12

σ21 σ22

))
,

where

σ11 =
2

r − 1
∥∇V(Σϵ)Σϵ∥2F , σ12 =

−2

r(r − 1)

{
tr
(
∇V(Σϵ)Σϵ∇V(Σu)Σϵ

)}
,

σ22 = 2 ∥∇V(Σu)
(
Σu +

1
r
Σϵ

)
∥2
F
+

2

r2(r − 1)
∥∇V(Σu)Σϵ∥2F .
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c) Under the constraint defined in Theorem 3.1, part (c),
√
a
{
ρ̂
V
− ρ

V

} d−→ N
(
0, σ2

ρ

)
,

where

σ2
ρ =

ρ2
V
σ11 − 2ρ

V
σ12 + σ22

{V(Σϵ)}2
.

Proof. See the supplementary materials.

Using the result of Theorem 3.2, we proceed to derive the asymptotic variances σ11

and σ22, along with the asymptotic covariance σ12, by exploring the three selections of the
matrix transformation V(·) outlined in Section 3.2.

a. Generalized variance

Assuming Σu is full rank, let V(Σ) =
∣∣Σ∣∣ 1p . The gradient of ∣∣Σ∣∣ is Σ−1. Then, ∇V(Σ)

is 1
p

∣∣Σ∣∣ 1pΣ−1. Thus,

σ11 =
2

p(r − 1)

∣∣Σϵ

∣∣2p , σ12 =
−2

p2r(r − 1)

∣∣ΣϵΣu

∣∣1p tr(Σ−1
u Σϵ

)
,

σ22 =
2

p

∣∣Σu

∣∣2p {1 + 2

pr
tr
(
Σ−1

u Σϵ

)
+

1

pr(r − 1)
∥Σ−1

u Σϵ∥2F
}
.

(3.42)

b. Trace

When we let V(Σ) = tr(Σ) , the gradient of V(Σ) is the identity matrix. Consequently,

σ11 =
2

r − 1
tr
(
Σ2

ϵ

)
, σ12 =

−2

r(r − 1)
tr
(
Σ2

ϵ

)
,

σ22 = 2 tr
{(

Σu +
1
r
Σϵ

)2}
+

2

r(r − 1)

1

r
tr
(
Σ2

ϵ

)
.

(3.43)

c. Frobenius norm

When V(Σ) = ∥Σ∥
F
, the gradient of V(Σ) is given by ∇V(Σ) = Σ/∥Σ∥

F
. This leads

to,

σ11 =
2

r − 1
, σ12 =

−2

r(r − 1)

{
tr(Σ3

ϵΣu)
}
/∥Σϵ∥F∥Σu∥F ,

σ22 =2 ∥Σu(Σu +
1
r
Σϵ)∥2F/∥Σu∥2F +

2

r(r − 1)

{
1

r
∥ΣuΣϵ∥2F

}
/∥Σu∥2F .

(3.44)

74



S2. Asymptotic behaviors when increasing the replications r

In the asymptotic case S1, complexities arise in the distributional convergence due to
the rank restrictions. Shifting our focus to the second asymptotic scenario, S2, where
the replication number increases, we first provide a detailed analysis of the convergence
properties of Σ̂u and Σ̂ϵ. Theorem 3.3 concentrates on this scenario.

Theorem 3.3. Suppose the sample size a is fixed. As r → ∞, the following asymptotic
properties hold,

a) Σ̂ϵ
a.s−→ Σϵ, provided that E [∥ϵij∥2] < ∞ .

b)
√
ar vec

(
Σ̂ϵ −Σϵ

) d−→ N
(
0,Γ(Σϵ)

)
, provided that ϵij’s are normally distributed.

c) a Σ̂u
d−→ W(Σu, a − 1), provided that Ui’s and ϵij’s are normally distributed i.i.d.

random vectors.

d) The estimates Σ̂ϵ and Σ̂u tend to be statistically independent.

Proof. Refer to the supplementary materials for the proof.

Analyzing the asymptotic distribution of ρ̂
V
in case S2 incorporates a transformation of

a random matrix following a Wishart distribution. The literature contains well-established
results regarding the distribution of some transformations of a Wishart matrix. For detailed
information on the trace and the sample generalized variance transformations of a Wishart
matrix, readers can refer to Jensen (1970); Anderson (2003); Gupta and Nagar (2000);
Pham-Gia et al. (2015). We will provide a brief overview of some of these results.

Let us consider S = (sij), a random matrix that follows a Wishart distribution W(Σ, n)
where Σ = (σij). In general, when Σ is not a diagonal matrix, the distribution of tr(S)
becomes quite complex, involving zonal polynomials (Gupta and Nagar, 2000, Section 1.5).
A detailed description of this distribution and its moments is provided in (Muirhead, 1982,
Theorem 8.3.4). In a special case where Σ is a scaled identity matrix, i.e., Σ = σ2I,
the quantity tr(S)/σ2 follows a chi-square distribution. In a more general case where Σ
is a diagonal matrix, each quantity sii/σii follows a chi-squared distribution, and these
variables are independent. In this instance, tr(S) can be expressed as a linear combination
of independent central chi-square random variables. In a bivariate setting, this yields a
mixture of Gamma distributions.

As for the determinant of S, its distribution involves the product of chi-squared dis-
tributed random variables (Anderson, 2003). The discussion highlights the associated
complexities when it comes to the asymptotic distribution of parameter ρ̂

V
.
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S3. Asymptotic behavior when increasing the sample size a and replications r

Turning our attention to the third asymptotic scenario S3, Theorem 3.4 specially addresses
this scenario, providing straightforward asymptotic distribution results of Σ̂u and Σ̂ϵ and
ρ̂
V
in this setting.

Theorem 3.4. Under the normality assumptions on sequences Ui and ϵij, and provided
that Γ(Σu) ≻ 0, we have as a → ∞ and r → ∞,

a) The joint distribution of Σ̂u and Σ̂ϵ converges as follows,

√
a vec

(√
r
(
Σ̂ϵ −Σϵ

)
Σ̂u −Σu

)
−→ N

(
0,

(
Γ(Σϵ) 0

0 Γ(Σu)

))
.

b)
√
a
{
ρ̂
V
− ρ

V

} d−→ N
(
0, σ2

ρ

)
where

σ2
ρ = 2

(∥∇V(Σu)Σu∥F
V(Σϵ)

)2

.

Proof. See the supplementary materials for the proof.

In Section 3.2, we proposed three different transformations for quantifying the signal-
to-noise ratio. In Theorem 3.5, we conduct a comparative analysis of their asymptotic
properties.

Theorem 3.5. As a → ∞ and r → ∞, and when considering the relative values of V(Σ̂ϵ),

V(Σ̂u), and ρ̂
V
, the following ranking holds among the three matrix transformations:

a) The generalized variance transformation yields the smallest asymptotic variances.
b) The Frobenius norm transformation results in the highest asymptotic variances.

Proof. Refer to the supplementary materials.

3.6 Confidence intervals

We leverage the result of Theorem 3.2 and establish Wald-type confidence intervals for
V(Σϵ), V(Σu), and ρ

V
. Here, we will detail the procedure for constructing confidence
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intervals for ρ
V
, noting that the procedures for establishing confidence intervals for V(Σϵ)

and V(Σu) follow a similar approach.

The quantity
√
a {ρ̂

V
− ρ

V
}/σρ is asymptotically pivotal, which leads to the following

Wald-type confidence interval for ρ
V
at 1− α level,[

ρ̂
V
−

z1−α/2σ̂ρ√
a

, ρ̂
V
+

z1−α/2σ̂ρ√
a

]
. (3.45)

In the aforementioned Wald-type confidence interval, the lower bound can be negative.
Thus, the direct construction of the confidence interval for ρ

V
based on ρ̂

V
does not

preserve the range. To address this, we can simply set any negative lower bounds to zero,
resulting in the interval

CIρ,Wald =

[
max

(
0, ρ̂

V
−

z1−α/2σ̂ρ√
a

)
, ρ̂

V
+

z1−α/2σ̂ρ√
a

]
. (3.46)

To create a confidence interval of ρ
V

that preserves the range, we can utilize a log
transformation on ρ

V
based on the result of Theorem 3.2. This transformation yields the

following result,

√
a
{
log(ρ̂

V
)− log(ρ

V
)
} d−→ N

(
0,

σ2
ρ

ρ2
V

)
, (3.47)

as a → ∞ . Consequently
√
a ρ̂

V

{
log(ρ̂

V
)− log(ρ

V
)
}
/σ̂ρ is asymptotically pivotal, where

ρ̂
V
> 0 . This leads to the following confidence interval for ρ

V
,

CIρ, log =

[
exp

{
log(ρ̂

V
)−

z1−α/2σ̂ρ

ρ̂
V

√
a

}
, exp

{
log(ρ̂

V
) +

z1−α/2σ̂ρ

ρ̂
V

√
a

}]
. (3.48)

3.7 Simulation studies

We conducted numerical studies to examine the finite sample statistical properties of three
signal-to-noise ratio estimators, namely ρ̂gv , ρ̂tr , and ρ̂

F
. Our investigation focuses on a

one-way model with three variables, that is p = 3 . We kept the mean vector µ at zero. In
our analysis, we considered two models for the variance-covariance matrices:

– Model 1: In this model, we assume Σu = ρI and Σϵ = I. Here, all three variables
of the measurand are uncorrelated, and the marginal signal-to-noise ratio values are
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identical for each variable, each equal to ρ . Additionally, with all three transfor-
mations, that are the generalized variance, the trace, and the Frobenius norm, the
signal-to-noise ratio quantity consistently maintains the value of ρ .

– Model 2: We introduced more complexity by specifying Σu as the following non-
diagonal matrix,

Σu = α

0.9 0.5 0.5
0.5 2.0 0.3
0.5 0.3 3.0

 , (3.49)

while maintaining Σϵ = I. In this scenario, the variables being measured are corre-
lated, and the marginal signal-to-noise ratio values vary among the variables. The
eigenvalues of Σu are proportional to 0.649, 2.000, and 3.250. The parameter α in
this model is adjusted based on the desired signal-to-noise ratio ρ

V
.

For each design, we generated 105 simulated datasets in which the random variables Ui

and ϵij followed multivariate normal distributions with variance-covariance matrices Σu

and Σϵ , respectively.

Figures 3.2 and 3.3 display the percentage relative bias and the percentage relative
standard error (SE) results for ρ̂gv , ρ̂tr , and ρ̂

F
with respect to their true values, ρgv , ρtr ,

and ρ
F
, over a continuous range from 1 to 9. These comparisons are made under four

different configurations of (a, r) : (16, 6), (24, 4), (32, 3), and (48, 2), while maintaining a
constant total of 96 measurements. The results for Model 1 are presented in Figure 3.2
and the results for Model 2 are shown in Figure 3.3.

For both Model 1 and Model 2, as the sample size of the plans increases, the three
estimators of the signal-to-noise ratio show reduced bias. Notably, in the case of a plan
with a = 48 and r = 2, the smallest relative bias is observed across all three estimators of
the signal-to-noise ratio for both models.

In these studies, the estimators ρ̂gv and ρ̂
tr

exhibit a negative relative bias for both
models, indicating underestimation across the range of signal-to-noise ratios from 1 to 9.
We observe that ρ̂gv has the most substantial percentage bias level for a small to moderate
range of signal-to-noise ratios quantities, while ρ̂

F
exhibits the smallest bias.

Plots (b), (d), and (f) in Figures 3.2 and 3.3 indicate that the plan with a = 48 and
r = 2 generally results in the lowest relative bias and SE, especially for scenarios with
moderate to high signal-to-noise ratio levels.
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Figure 3.2: The percentage relative bias and the percentage relative SE of ρ̂gv , ρ̂tr , and
ρ̂

F
, for Model 1 with N = 96 measurements.
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Figure 3.3: The percentage relative bias and the percentage relative SE of ρ̂gv , ρ̂tr , and
ρ̂

F
, for Model 2 with N = 96 measurements.
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3.8 Discussion and prospects

The concept of using a single summary number as a measure of variability for multidimen-
sional observations is supported by several compelling reasons. Firstly, a single summary
number offers simplicity and ease of understanding, making it more accessible for individ-
uals involved in process monitoring and decision-making. By condensing the information
into a single value, it eliminates the complexity of interpreting multiple numbers and pro-
vides a concise representation of the variability. Furthermore, this approach ingeniously
reduces the multivariate problem to a univariate one, facilitating comparisons across differ-
ent observations. This reduction to a single number summary streamlines the assessment
of the measurement system for multivariate data. However, it is important to acknowledge
the potential risks associated with representing the quality measure of multivariate charac-
teristics with a single number. The misuse or misinterpretation of this summary measure
can lead to flawed conclusions or inappropriate actions. We also remind ourselves that the
classical approval levels were designed to be used for a single variable, rather than a vector
of variables. The approval criteria for multivariate parameters in measurement system
assessment studies are currently under investigation in our ongoing and future work.

81



3.9 Supplementary materials

This section contains the proofs of the theoretical results and supplementary materials
related to Chapter 3.

A. Further details on the derivation of likelihood function (3.31)

To make the random vectors more amenable to maximum likelihood estimation, we re-
format them by combining the vectors Yi1, . . . ,Yir into a single extended vector Yi =
(Y ⊤

i1 , . . . , Y
⊤
ir )

⊤. Assuming normality and independence of the random vectors in the
multivariate one-way model (3.2), Y1,Y2, . . . ,Ya are i.i.d. multivariate N (1r ⊗ µ,Σ) ran-
dom vectors where Σ is defined by

Σ = Ir ⊗Σϵ + Jr ⊗Σu . (3.50)

Let yi denote the observed value of Yi. The likelihood of observing y1, . . . ,ya is,

L(µ,Σu,Σϵ;y1, . . . ,ya) =
a∏

i=1

(2π)−
pr
2 |Σ|−

1
2 exp

(
− 1

2
(yi − 1r ⊗ µ)⊤Σ−1(yi − 1r ⊗ µ)

)
.

(3.51)

Since Σ has the special structure described in (3.50), we can calculate its determinant and
inverse matrix as follows,

|Σ| = |Σϵ|r−1|Σϵ + rΣu| , (3.52)

and

Σ−1 = Ir ⊗Σ−1
ϵ − Jr ⊗

(
Σ−1

ϵ Σu(Σϵ + rΣu)
−1
)
. (3.53)

By substituting the expressions for |Σ| and Σ−1, we can rewrite the likelihood function in
(3.51) as,

L(µ,Σu,Σϵ;y1, . . . ,ya) =

c(Σu,Σϵ) exp
(
− 1

2

a∑
i=1

(yi − 1r ⊗ µ)⊤
{
Ir ⊗Σ−1

ϵ − Jr ⊗
(
Σ−1

ϵ Σu(Σϵ + rΣu)
−1
)}

(yi − 1r ⊗ µ)
)
,

(3.54)
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where

c(Σu,Σϵ) = (2π)−
apr
2 |Σϵ|−

a(r−1)
2 |Σϵ + rΣu|−

a
2 .

The exponential term in L(y1, . . . ,ya;µ,Σu,Σϵ) can be manipulated to yield matrices of
sums of squares and products SSu and SSϵ in the likelihood expression. Specifically, we
can write,

a∑
i=1

(yi − 1r ⊗ µ)⊤
{
Ir ⊗Σ−1

ϵ − Jr ⊗
(
Σ−1

ϵ Σu(Σϵ + rΣu)
−1
)}

(yi − 1r ⊗ µ)

=

a∑
i=1

(yi − 1r ⊗ µ)⊤(Ir ⊗Σ−1
ϵ )(yi − 1r ⊗ µ)

−
a∑

i=1

(yi − 1r ⊗ µ)⊤
{
Jr ⊗

(
Σ−1

ϵ Σu(Σϵ + rΣu)
−1
)}

(yi − 1r ⊗ µ) .

(3.55)

Looking at the right-hand side of equation (3.55), we can write the first term as follows,

a∑
i=1

(yi − 1r ⊗ µ)⊤(Ir ⊗Σ−1
ϵ )(yi − 1r ⊗ µ)

=
a∑

i=1

r∑
j=1

(yij − µ)⊤Σ−1
ϵ (yij − µ)

=
a∑

i=1

r∑
j=1

(yij − yi· + yi· − µ)⊤Σ−1
ϵ (yij − yi· + yi· − µ)

=

a∑
i=1

r∑
j=1

(yij − yi·)
⊤Σ−1

ϵ (yij − yi·) + r

a∑
i=1

(yi· − µ)⊤Σ−1
ϵ (yi· − µ)

= tr
(
GΣ−1

ϵ

)
+ r

a∑
i=1

(yi· − µ)⊤Σ−1
ϵ (yi· − µ) , (3.56)
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Continuing with the second term on the right-hand side of (3.55), we have

a∑
i=1

(yi−1r ⊗ µ)⊤
{
Jr ⊗

(
Σ−1

ϵ Σu(Σϵ + rΣu)
−1
)}

(yi − 1r ⊗ µ)

=
a∑

i=1

(yi − 1r ⊗ µ)⊤(1r ⊗ Ip)
(
Σ−1

ϵ Σu(Σϵ + rΣu)
−1
)
(1r ⊗ Ip)

⊤(yi − 1r ⊗ µ)

= r2
a∑

i=1

(yi· − µ)⊤Σ−1
ϵ Σu(Σϵ + rΣu)

−1(yi· − µ) . (3.57)

Combining the expressions in (3.56) and (3.57), we obtain,

tr(SSϵΣ
−1
ϵ ) + r

a∑
i=1

(yi· − µ)⊤Σ−1
ϵ (yi· − µ)− r2

a∑
i=1

(yi· − µ)⊤Σ−1
ϵ Σu(Σϵ + rΣu)

−1 (yi· − µ)

= tr
(
GΣ−1

ϵ

)
+ r

a∑
i=1

(yi· − µ)⊤Σ−1
ϵ

{
Ip − rΣu(Σϵ + rΣu)

−1
}
(yi· − µ)

= tr
(
GΣ−1

ϵ

)
+ r

a∑
i=1

(yi· − µ)⊤(Σϵ + rΣu)
−1(yi· − µ) , (3.58)

where the sum term in the last equality can be expressed as

a∑
i=1

(yi· − µ)⊤(Σϵ + rΣu)
−1 (yi· − µ)

=

a∑
i=1

(yi· − y·· + y·· − µ)⊤(Σϵ + rΣu)
−1(yi· − y·· + y·· − µ)

=
1

r
tr(H(Σϵ + rΣu)

−1) + a (y·· − µ)⊤ (Σϵ + rΣu)
−1 (y·· − µ) . (3.59)

This results in the likelihood function of (3.54) to be expressed as,

L(µ,Σu,Σϵ) =

c(Σu,Σϵ) exp
(
−1

2
tr
(
GΣ−1

ϵ

)
− 1

2
tr
(
H(Σϵ + rΣu)

−1
)
− ar

2
(y·· − µ)⊤(Σϵ + rΣu)

−1(y·· − µ)
)
.

B. Proof of convergence properties

We start by reviewing some relevant materials that will assist in our proofs. Lemma 3.1 (An-
derson, 2003, Section 3.4) provides essential information regarding the consistency of the
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multivariate sample covariance matrix. Subsequently, Lemma 3.2 (Anderson, 2003, Sec-
tion 3.4) presents the asymptotic normality results of a sample covariance matrix.

Lemma 3.1. (Consistency of sample covariance matrix). Suppose X1, . . . ,Xn

are i.i.d. random vectors with a mean E [X] = ξ and finite variance-covariance matrix
E
[
(X − ξ)(X − ξ)⊤

]
= Σ. Then, the sample covariance matrix S = 1

n−1

∑n
i=1(Xi −

X)(Xi−X)⊤ converges to Σ almost surely as n → ∞, provided that each element of Xi’s
has finite second moment.

Lemma 3.2. (Asymptotic normality of sample covariance matrix). Consider a
sample of independent p-dimensional random vectors X1, . . . ,Xn, drawn from a multivari-
ate normal distribution N (ξ,Σ). Let S = 1

n−1

∑n
i=1(Xi −X)(Xi −X)⊤. Then,

√
n vec (S −Σ)

d−→ N
(
0,Γ(Σ)

)
,

as n → ∞, where Γ(Σ) =
(
Γij(Σ)

)
and

(
Γij(Σ)

)
kℓ
= σijσkℓ+σiℓσkj for i, j, k, ℓ = 1, . . . , n.

In Lemma 3.2, without assuming normality, if X1, . . . ,Xn are i.i.d. random vectors
with finite fourth moments,

√
n vec (S −Σ) will still follow an asymptotically normal dis-

tribution with a mean of 0. However, it’s important to note that the specific covariance
structure of this limiting distribution depends on the fourth-order moments of X1, . . . ,Xn.

The following lemma is used in the derivation procedure of several theorems and results,
in this chapter.

Lemma 3.3. Let A = (aij), B = (bij), and C = (cij) be symmetric p × p matrices, and
Γ(·) be defined as in (3.1). Then we have,

a) {vec (A)}⊤ Γ(B)vec
(
C
)
= 2 tr (ABCB) .

b) When A = C, we have: {vec (A)}⊤ Γ(B)vec
(
A
)
= 2∥AB∥2

F
.

Proof. We can derive the result as follows,

{vec (A)}⊤ Γ(B)vec
(
C
)
=

p∑
i=1

p∑
j=1

p∑
k=1

p∑
ℓ=1

aik
(
bijbkℓ + biℓbjk

)
cjℓ

= 2

p∑
i=1

p∑
j=1

p∑
k=1

p∑
ℓ=1

aik bkℓ cℓj bji

= 2 tr(ABCB).
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Substituting C = A into the expression, we have,

{vec (A)}⊤ Γ(B)vec
(
A
)
= 2 tr(ABAB)

= 2 tr
(
(AB)2

)
= 2 ∥AB∥2

F
.

This establishes the results as claimed in the lemma.

Now, we can proceed to prove the convergence properties of the estimators introduced
in Section 3.5.

Proof of Theorem 3.1

(a) Consider the maximum likelihood estimator Σ̂ϵ = MSϵ +
Ω
r
. Since Ω = Op(a

−1/2)

according to Remadi and Amemiya (1993, 1994), we can express Σ̂ϵ as

Σ̂ϵ = MSϵ +Op

(
r−1a−1/2

)
. (3.60)

The next step involves demonstrating MSϵ
a.s−→ Σϵ as a → ∞. Recall that,

MSϵ =
1

a(r − 1)

a∑
i=1

r∑
j=1

(Yij − Y i·)(Yij − Y i·)
⊤.

The random vector Yij−Y i· can be equivalently expressed as ϵij−ϵi· where ϵi· =
1
r

∑r
j=1 ϵij.

Considering the independent random vectors ϵij’s with a mean of zero and covariance
matrix E

[
ϵijϵ

⊤
ij

]
= Σϵ, we can demonstrate that,

E
[
(ϵij − ϵi·) (ϵij − ϵi·)

⊤
]
=

r − 1

r
Σϵ .

Furthermore, since ϵij’s are identically distributed vectors, then
∑r

j=1 (ϵ1j − ϵ1·) (ϵ1j − ϵ1·)
⊤,∑r

j=1 (ϵ2j − ϵ2·) (ϵ2j − ϵ2·)
⊤, and so on, are i.i.d. random matrices with an expected value

of (r − 1)Σϵ. Then, By the strong law of large numbers, we obtain,

1

a

a∑
i=1

r∑
j=1

(ϵij − ϵi·) (ϵij − ϵi·)
⊤ a.s−→ (r − 1)Σϵ , (3.61)
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for any fixed number of replications. Consequently, we can conclude that MSϵ
a.s−→ Σϵ as

a → ∞.

(b) Given that Ω = Op(a
−1/2), we can express Σ̂u as follows,

Σ̂u =
1

r

(
β−1MSu −MSϵ

)
+Op

(
r−1a−1/2

)
. (3.62)

Next, we demonstrate the convergence of the term β−1MSu to rΣu +Σϵ as a → ∞. The
random variable generated by Y i· can be represented equivalently as µ+Ui+ϵi·. Under the
assumption that all Ui’s and all ϵij’s are i.i.d., we can conclude that the random variables
Y 1·, Y 2·, . . . are i.i.d. with a mean of µ and covariance matrix Σu + r−1Σϵ. By applying
Lemma 3.1 to Y 1·, Y 2·, . . ., we obtain the following convergence result,

1

a

a∑
i=1

(Y i· − Y ··)(Y i· − Y ··)
⊤ a.s−→ Σu +

1

r
Σϵ (3.63)

as a → ∞. This implies that β−1MSu
a.s−→ rΣu + Σϵ as a → ∞. Combining this result

with the convergence result from part (a) of this theorem, where MSϵ → Σϵ almost surely

as a → ∞, we can conclude that Σ̂u
a.s−→ Σu as a → ∞.

(c) To prove this, we begin with,

√
a vec

(
Σ̂ϵ −Σϵ

Σ̂u −Σu

)
=

1√
a

a∑
i=1

vec

(
1

(r−1)

∑r
j=1(Yij − Y i·)(Yij − Y i·)

⊤ −Σϵ

−1
r(r−1)

∑r
j=1(Yij − Y i·)(Yij − Y i·)

⊤ + 1
r
Σϵ

)

+
1√
a

a∑
i=1

vec

(
0

(Y i· − Y ··)(Y i· − Y ··)
⊤ −Σu − 1

r
Σϵ

)
,

(3.64)

where the two random vectors on the right-hand side are independent. The multivariate
central limit theorem indicates that, as a → ∞,

1√
a

a∑
i=1

vec

(
1

(r−1)

∑r
j=1(Yij − Y i·)(Yij − Y i·)

⊤ −Σϵ

−1
r(r−1)

∑r
j=1(Yij − Y i·)(Yij − Y i·)

⊤ +
1

r
Σϵ

)
d−→ N (0,Σ1) ,

where Σ1 is defined as,

Σ1 =
1

r − 1

(
1 −r−1

−r−1 r−2

)
⊗ Γ(Σϵ) . (3.65)

87



Furthermore, the asymptotic normality of a sample covariance matrix, as in Lemma 3.2,
indicates that

√
a vec

(
1

a

a∑
i=1

(Y i· − Y ··)(Y i· − Y ··)
⊤ −Σu −

1

r
Σϵ

)
d−→ N

(
0,Γ

(
Σu +

1
r
Σϵ

))
. (3.66)

Combining these results leads to the expected outcome.

Proof of Theorem 3.2

The validity of results in part (a) can be established by applying the continuous mapping

theorem to Σ̂ϵ and Σ̂u, and leveraging the asymptotic results provided in Theorem 3.1.

(b) Applying the multivariate Delta method to the limiting distribution result in part
(c) of Theorem 3.1, we have,

√
a

(
V(Σ̂ϵ)− V(Σϵ)

V(Σ̂u)− V(Σu)

)
−→ N

(
0,

(
σ11 σ12

σ21 σ22

))
in distribution where

σ11 = ∇{vec(V(Σϵ))}⊤Σ11∇vec (V(Σϵ)) ,

σ12 = ∇{vec(V(Σϵ))}⊤Σ12∇vec (V(Σu)) ,

σ22 = ∇{vec(V(Σu))}⊤Σ22∇vec (V(Σu)) .

(3.67)

In the above expressions, Σ11, Σ12, and Σ22 are matrices as given in Theorem 3.1.

To proceed with the proof, we substitute the relations Σ11, Σ12, and Σ22 in the ex-
pressions for σ11, σ12, and σ22. By applying the result from part (a) of Lemma 3.3, where
we have {vec (A)}⊤ Γ(B)vec

(
C
)
= 2 tr(ABCB), alongside the relation ∇vec(V(Σ)) =

vec (∇V(Σ)), we obtain the following expressions,

σ11 =
2

r(r − 1)

{
tr
(
r {∇V(Σϵ)Σϵ}2

}
,

σ12 =
−2

r(r − 1)

{
tr
(
∇V(Σϵ)Σϵ∇V(Σu)Σϵ

}
, (3.68)

σ22 = 2 tr
( {

∇V(Σu)
(
Σu +

1
r
Σϵ

)}2 )
+

2

r2(r − 1)

{
tr
(
{∇V(Σu)Σϵ}2

)}
.
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Furthermore, by using the relation tr(A2) = ∥A∥2
F

for a symmetric matrix A, we can
express σ11 and σ22 equivalently as follows,

σ11 =
2

(r − 1)
∥∇V(Σϵ)Σϵ∥2F ,

σ22 = 2 ∥∇V(Σu)
(
Σu +

1
r
Σϵ

)
∥2
F
+

2

r2(r − 1)
∥∇V(Σu)Σϵ∥2F .

(3.69)

(c) Let the bivariate function g be defined as g(x, y) = y/x . Applying the Delta method
to the limiting distribution in part (b) with g (V(Σϵ), V(Σu)), as a → ∞, we find that√
a {ρ̂− ρ} → N (0, σ2

ρ), where σ2
ρ is determined by

σ2
ρ = u⊤

(
σ11 σ12

σ21 σ22

)
u , (3.70)

and

u =

(
∂g (V(Σϵ), V(Σu))

∂V(Σϵ)
,
∂g (V(Σϵ), V(Σu))

∂V(Σu)

)⊤

=
1

V(Σϵ)

(
−ρ
1

)
. (3.71)

Performing the algebraic calculations, we have,

σ2
ρ =

ρ2σ11 − 2ρσ12 + σ22

{V(Σϵ)}2
· (3.72)

Proof of Theorem 3.3

(a) We begin with the relationship Σ̂ϵ = MSϵ +Op(r
−1a−1/2). As the replication number

becomes large, the second term tends to zero. Therefore, we can proceed with the proof
by demonstrating that MSϵ converges to Σϵ almost surely. Applying Lemma 3.1 to the
sequence of random vectors ϵi1, ϵi2, . . ., we have,

1

r − 1

r∑
j=1

(ϵij − ϵi·)(ϵij − ϵi·)
⊤ a.s−→ Σϵ , (3.73)
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as r → ∞, for each i = 1, . . . , a. By summing up the result of (3.73) across all units, we
obtain

MSϵ =
1

a(r − 1)

a∑
i=1

r∑
j=1

(ϵij − ϵi·)(ϵij − ϵi·)
⊤ a.s−→ Σϵ , (3.74)

as r → ∞ for any sample size. Therefore, Σ̂ϵ
a.s−→ Σϵ as r → ∞.

(b) We aim to establish the proof of this part by showing that,

√
ar vec (MSϵ −Σϵ)

d−→ N
(
0,Γ(Σϵ)

)
, (3.75)

as r → ∞. Applying Lemma 3.2, which describes the asymptotic normality of the sample
covariance matrix, we have,

√
r vec

(
1

r − 1

r∑
j=1

(ϵij − ϵi·)(ϵij − ϵi·)
⊤ −Σϵ

)
d−→ N

(
0,Γ(Σϵ)

)
, (3.76)

as r → ∞. Since (ϵ1j − ϵ1·)(ϵ1j − ϵ1·)
⊤, (ϵ2j − ϵ2·)(ϵ2j − ϵ2·)

⊤, and so on, are independent
random matrices that follow a normal distribution when vectorized, and assuming a suffi-
ciently large replication number, their summation will also exhibit a normal distribution,
in asymptotic case. This implies the convergence in (3.75) as r → ∞.

(c) To demonstrate the result of this part, we examine the relationship of the maximum
likelihood estimate of Σu, given by,

Σ̂u =
1

a

a∑
i=1

(Y i· − Y ··)(Y i· − Y ··)
⊤ − 1

r
(MSϵ −Ω) . (3.77)

We proceed to establish the distributional convergence of the first term in (3.77). Recall
that the sequence of Y 1·, Y 2·, . . . are i.i.d. random vectors with a covariance matrix of
Σu+r−1Σϵ . Consequently, under the assumption of normally distributed random variables,
the sum

∑a
i=1(Y i·−Y ··)(Y i·−Y ··)

⊤ follows a Wishart distribution W(Σu + r−1Σϵ, a− 1).
As r → ∞, the first term in (3.77) converges to a−1W(Σu, a−1) . Moreover, the remaining

terms are Op(1/r) which allows us to express Σ̂u as,

Σ̂u =
1

a
W(Σu, a− 1) + op(1), (3.78)

as r → ∞.

90



(d) The independence of the asymptotic relationships of Σ̂ϵ and Σ̂u follows from their
relationships expressed in terms of independent statistics.

Proof of Theorem 3.4

Part (a) of Theorem 3.4, which addresses the convergence of Σ̂u and Σ̂ϵ, can be deducted
from the results presented in Theorem 3.1. Here, we provide a concise proof by demonstrat-
ing the asymptotic normality of Σ̂u. The next steps concerning the asymptotic normality
of Σϵ and its independence from Σ̂u in their asymptotic behaviors are identical to that
presented in parts (b) and (d) of Theorem 3.3.

From Theorem 3.3, we have that Σ̂u =
1

a

∑a
i=1(Y i· −Y ··)(Y i· −Y ··)

⊤ +Op(r
−1a−1/2) .

Using the asymptotic normality of a sample covariance matrix, as stated in Lemma 3.2,
we find that,

√
a vec

(
1

a

a∑
i=1

(Y i· − Y ··)(Y i· − Y ··)
⊤ −Σu −

1

r
Σϵ

)
d−→ N

(
0,Γ

(
Σu +

1
r
Σϵ

))
, (3.79)

as a → ∞, leading to

√
a vec

(
1

a

a∑
i=1

(Y i· − Y ··)(Y i· − Y ··)
⊤ −Σu

)
d−→ N (0,Γ (Σu)) , (3.80)

as both a → ∞ and r → ∞. This implies the asymptotic relation of Σ̂u as the sample size
and replications number both tend to infinity.

(b) Applying the multivariate Delta method to the result in part (a), we find that the

joint distribution of V(Σ̂ϵ) and V(Σ̂ϵ) converges as follows,

√
a

(√
r
(
V(Σ̂ϵ)− V(Σϵ)

)
V(Σ̂u)− V(Σu)

)
d−→ N

(
0,

(
h

V
(Σϵ) 0
0 h

V
(Σu)

))
, (3.81)

as a → ∞ and r → ∞ where h
V
(Σ) = 2 ∥∇V(Σ)Σ∥2

F
= 2 tr

(
{∇V(Σ)Σ}2

)
.

Using the marginal asymptotic distribution of V(Σ̂u), together with V(Σ̂ϵ)
a.s−→ V(Σϵ)

and the Slutsky’s theorem, concludes the expected result.
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Proof of Theorem 3.5

Based on Theorem 3.4, the relative values of V(Σ̂ϵ), V(Σ̂u), and ρ̂
V
, converge as follows,

√
ar

{
V(Σ̂ϵ)

V(Σϵ)
− 1

}
d−→ N

(
0, u

V
(Σϵ)

)
, (3.82)

√
a

{
V(Σ̂u)

V(Σu)
− 1

}
d−→ N

(
0, u

V
(Σu)

)
, (3.83)

√
a

{
ρ̂
V

ρ
V

− 1

}
d−→ N

(
0, u

V
(Σu)

)
, (3.84)

where u
V
(Σ) = 2

[
∥∇V(Σ)Σ∥F

V(Σ)

]2
. For the three cases of V(Σ) =

∣∣Σ∣∣ 1p , V(Σ) = tr(Σ),

and V(Σ) = ∥Σ∥
F
, the corresponding asymptotic variances are derived, respectively, as

follows,

u
gv
(Σ) =

2

p
, (3.85)

u
tr
(Σ) = 2

∥∥∥ Σ

tr(Σ)

∥∥∥2
F
, (3.86)

u
F
(Σ) =

2 tr(Σ4)

{tr(Σ2)}2
· (3.87)

Thus, to proceed with the proof the theorem, we need the following inequality,

1

p
≤ tr(Σ2)

{tr(Σ)}2
≤ tr(Σ4)

{tr(Σ2)}2
, (3.88)

which should hold for any symmetric positive semi-definite matrix Σ. To verify the in-
equalities in (3.88), we proceed by showing that

1

p
≤ α2

1 + · · ·+ α2
n

(α1 + · · ·+ αn)
2 ≤ α4

1 + · · ·+ α4
n

(α2
1 + · · ·+ α2

n)
2 , (3.89)

where α1, . . . , αn are all positive numbers.

The first inequality in (3.89) directly follows from the Cauchy-Schwarz inequality.
To establish the second inequality, we introduce new variables zi = αi/

√∑n
i=1 α

2
i for

92



i = 1, . . . , n, allowing us to express the second inequality as

z21 + · · ·+ z2n
(z1 + · · ·+ zn)

2 ⩽
z41 + · · ·+ z4n

(z21 + · · ·+ z2n)
2 · (3.90)

Here, 0 < zi ≤ 1 for i = 1, . . . , n and
∑n

i=1 z
2
i = 1. Therefore, we only need to confirm

that,

1 ⩽ f(z1, . . . , zn) , (3.91)

where the function f(z1, . . . , zn) is defined as,

f(z1, . . . , zn) = (z1 + · · ·+ zn)
2 (z41 + · · ·+ z4n

)
. (3.92)

This function is symmetric with respect to its variables. The minimum of f(z1, . . . , zn) oc-
curs when all variables are equal (Waterhouse, 1983). Given the condition that

∑n
i=1 z

2
i = 1,

the minimum of (3.92) occurs when z1 = · · · = zn = 1/
√
n , at which point the value of

f(z1, . . . , zn) becomes 1. This completes the proof.
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Chapter 4

Measurements System Assessment
Study for Functional Datasets

4.1 Introduction and background

In Chapters 2 and 3, we addressed the assessment of measurement systems when dealing
with conventional data types, such as samples of scalar random variables or random vec-
tors. However, many real-world manufacturing processes often involve more complex and
dynamic measurement data, requiring sophisticated approaches to analysis. In this chap-
ter, we take a step further by extending the analysis of measurement systems to encompass
functional data type that consists of observations of continuous random functions across a
defined domain.

In the manufacturing industry, functional datasets are becoming increasingly available
in various fields. For instance, within the realm of surface quality assessment, functional
datasets play a significant role in capturing a wide spectrum of surface characteristics.
These include roughness, waviness, finish, texture, geometric compliance, and shape de-
formation, measured along a continuous path or area. Notable examples can be found in
references such as (Jin et al., 2020; Yang et al., 2021; Mozaffari et al., 2021; Jin et al.,
2023). The prevalence of such datasets underscores the necessity for advanced analytical
approaches that can comprehensively address uncertainties stemming from the measure-
ment system and other contributing factors in the context of functional data.

The statistical methodologies for analyzing functional datasets are referred to as func-
tional data analysis. Comprehensive insights into this field are presented by Bosq (2000);
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Ramsay and Silverman (2005); Zhang (2013); Horváth and Kokoszka (2012); Wang et al.
(2016); Srivastava and Klassen (2016); Wang et al. (2016).

Functional data, due to their inherent nature of being infinite-dimensional objects, in-
troduce challenges to their analysis. They can be treated as sample paths or realizations of
a stochastic process. The Karhunen–Loève theorem provides a representation of stochastic
processes in L2 space. This representation is obtained by extracting functional principal
components from the covariance kernel of these stochastic processes. In practical applica-
tions, this representation is often truncated to a selected number of the initial expansion
terms to approximate the stochastic processes. This operation of estimating the principal
components and selecting a subset of them as functional bases is widely known as functional
principal component analysis (FPCA). Employing this framework, a stochastic process in
L2 space can be characterized by a finite-dimensional vector including the random princi-
pal component scores. For an in-depth exploration of this subject, we refer the reader to
notable works by Ramsay and Silverman (2002, 2005); Yao et al. (2005); Ferraty and Vieu
(2006); Hall et al. (2006); Hall (2010); Horváth and Kokoszka (2012); Shang (2014). Other
relevant contributions to the field of FPCA include James et al. (2000); Di et al. (2009);
Jolliffe and Cadima (2016).

One of the fundamental challenges that naturally emerges in functional data analysis
is the estimation of mean and covariance functions. This task holds significance not only
in its own right but also plays a pivotal role for FPCA and the broader context of mea-
surement systems analysis when dealing with functional data. Classical estimators from
multivariate statistics, such as the sample mean and covariance matrix, may not provide
reasonable smoothed estimations in this scenario. The effectiveness of these estimators
can be influenced by diverse sampling plans under which data are collected, ranging from
dense to sparse and from regular to irregular settings (Horváth and Kokoszka, 2012; Zhang
and Wang, 2016; Nie et al., 2022). Moreover, functional data involve complex temporal
or spatial dependencies and are often susceptible to noise contamination. These factors
collectively suggest the need for distinct statistical approaches when analyzing functional
data (Yao et al., 2005).

Several methods and modifications have been proposed to infuse smoothness into the
estimation process. These techniques consider conditions of smoothness, including the
requirement of possessing several continuous derivatives (Ramsay and Silverman, 2005).
In the works by Besse et al. (1997); Cardot (2000); Wahba (1990), non-parametric spline-
based techniques are employed to estimate a smooth curve for each sample path of the
functional data within a variety of sampling settings.

In the literature concerning the estimation of mean and covariance functions, one
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category is founded on a form of the penalized least-squares method. To estimate the
mean function, Rice and Silverman (1991) suggest a least-squares approach that maintains
smoothness up to the second derivation. This method is applied within an identical sam-
pling setting, where data are collected at the same locations across all functions. Cai and
Yuan (2011), on the other hand, adapt the penalized least-squares method. They control
the level of smoothness using (L2 norm of) the n-th derivative of functions, considering
both regular and irregular sampling settings. In a different context, Cai and Yuan (2010)
employ the penalized least-squares method to estimate the covariance function within the
framework of reproducing kernel Hilbert space (RKHS).

Within the spectrum of methodologies, another significant category for the estimation
of mean and covariance functions is based on kernel smoothing techniques (Yao et al., 2005;
Hall et al., 2006; Li and Hsing, 2010; Zhang, 2013; Zhang and Wang, 2016). A widely used
kernel method is the local linear smoothing, which locally fits a straight line across all
points within the function’s domain.

In the realm of functional data, a collection of functional observations often exhibits
consistent shape features, with potential random distortions in observation time, distance,
or any other continuous parameter (Kneip and Gasser, 1992; Ramsay and Silverman, 2005).
This temporal variation, or warping, constitutes a significant source of variability in func-
tional data, distinguishing it from more conventional data formats. The process of aligning
functional observations to mitigate such variations is known as registration. For a summary
of major functional data registration methods, refer to (Marron et al., 2014).

In current real-world scenarios involving measurement system studies, a notable absence
exists: a standardized procedure for measurement system assessment tailored to the class of
functional data. This chapter aims to bridge this gap by introducing specific methodologies
for such scenarios. Unlike the classical methods adopted from multivariate data analysis,
our approach utilizes and benefits from the specialized tools of functional data analysis
that are purpose-built for effectively addressing the intricacies of these datasets.

4.1.1 Contributions and outlines

In this chapter, we make the following contributions:

1. We establish a framework for studying measurement systems involving functional
data using a one-way ANOVA model.

2. We extend the definition of parameters used in assessing measurement systems of
univariate data to effectively capture the distinctive characteristics of functional
data. This extension involves utilizing a bounded operator on covariance kernels.
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We focus on the trace and the L2 operators of covariance kernels. We illustrate how,
by employing these operators, the parameters for measurement system assessment
can be expressed in terms of the underlying eigenvalues.

3. To estimate the measurement system assessment parameters, we first provide meth-
ods to estimate covariance kernel components associated with the one-way model.
We employ a regularization approach within the framework of RKHS to obtain
smooth and reliable estimates of the covariance kernels.

The organization of this chapter is outlined as follows: After establishing the basic no-
tation, Section 4.2 introduces the setup and framework of the one-way ANOVA model for a
measurement system study involving functional data. This section provides a comprehen-
sive overview of fundamental definitions and properties related to the model components.
Section 4.3 offers a detailed review of the structure of variability in the functional one-way
model. In Section 4.4, parameters for assessing the measurement systems of functional
data are established and defined. Section 4.5 is dedicated to the estimation procedure. It
reviews a basic estimation technique without smoothing and then employs a regularization
method within the framework of RKHS to estimate two smooth covariance functions cor-
responding to the random effects in the model. Moving forward, Section 4.6 presents the
results of numerical studies conducted. In Section 4.7, prospects for further research are
discussed. Additional resources and supplementary materials are outlined in Section 4.8.

4.1.2 Basic notation and conventions

This chapter employs the following notation and conventions: We use D to denote a finite
interval. The L2 norm of a function f(x), with x ∈ D, is denoted as ∥f∥

L2 , where,

∥f∥
L2 =

[∫
D

f 2(x) dx

]1/2
.

If ∥f∥
L2 < ∞, we refer to f , as a squared integrable function. In this case, we can express

f(x) ∈ L2(D), where L2(D) represents the Hilbert space comprising all squared integrable
functions over D. The associated inner product of L2(D) is defined as,

⟨f, g⟩
L2(D)

=

∫
D

f(x)g(x) dx,

where both functions f and g belong to L2(D). The notation f (n) refers to the n-th
derivative of the function f .
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If f(x1, x2) is a bivariate function and x1, x2 ∈ D, notations tr(f) and ∥f∥
L2 represent

the trace and the L2 norm of f , respectively, given by

tr(f) =

∫
D

f(x, x) dx ,

∥f∥
L2 =

[∫∫
D×D

f 2(x1, x2) dx1 dx2

]1/2
.

A symmetric bivariate function f(x1, x2) is considered positive-semi-definite if, for any
x1, x2, . . . , xn ∈ D and a1, . . . , an ∈ R, the following inequality holds for all n,

n∑
i=1

n∑
j=1

aiajf(xi, xj) ≥ 0 ,

and positive definite if ‘>’ holds, where a1, . . . , an are not all zero.

4.2 One-way model setup

Suppose an experiment is being conducted, where a sample of ‘a’ units is randomly selected
from the population of units. The measurand represents a continuous feature or attribute
of the units, which is a function of the independent variable x, where x belongs to a
connected interval D ⊂ R. Each sample unit undergoes multiple measurements, with
r > 1 repetitions. We treat the replication measurements of each unit sample as a single
group. The underlying model employed to represent the measurement data is given by,

Yij(x) = µ(x) + Ui(x) + ϵij(x), for i = 1, . . . , a, and j = 1, . . . , r, (4.1)

where x ∈ D. In this model, Yij(x) represents the measured value of the attribute for the
ith unit at location x and in the jth replicate. The term µ(·) denotes the overall mean
function, which represents the expected behavior of the attribute over the interval D. The
component Ui(·) represents the random function associated with the main effect of unit i,
and ϵij(·) is the random function corresponding to the measurement error of unit i at the
jth replication measurement.

All Ui’s are independent realizations of the stochastic process U , and all ϵij’s are inde-
pendent realizations of the stochastic process ϵ. These stochastic processes, U and ϵ, are
characterized by the following assumptions: First, without loss of generality, we assume
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that U and ϵ are centered on zero, meaning that for any point x ∈ D, E [U(x)] = 0 and
E [ϵ(x)] = 0. Secondly, U and ϵ are second–order processes, indicating that E[|U(x)|2] < ∞
and E[|ϵ(x)|2] < ∞, for all x ∈ D. Furthermore, stochastic processes U and ϵ are mutually
independent.

From the second-order property of processes U and ϵ, it can be inferred that these
processes are stochastic elements ofL2(D), equipped with the Borel σ-algebra, and squared
integrable. This indicates that,

E
[
∥U∥2

L2

]
= E

[∫
D

U2(x) dx

]
< ∞, (4.2a)

E
[
∥ϵ∥2

L2

]
= E

[∫
D

ϵ2(x) dx

]
< ∞ . (4.2b)

The squared integrability condition of U(·) and ϵ(·), as outlined in (4.2), enables the
calculation and analysis of their variances and covariances. The covariance kernels (or
covariance functions) of the stochastic processes U and ϵ are defined as follows,

Cu(x1, x2) = E [U(x1)U(x2)] , (4.3a)

Cϵ(x1, x2) = E [ϵ(x1) ϵ(x2)] , (4.3b)

respectively, where x1, x2 ∈ D. The covariance kernel Cu is positive semi-definite, while
Cϵ is positive definite. Both Cu and Cϵ are squared integrable; that is,∫∫

D D

C2
u(x1, x2) dx1 dx2 < ∞, (4.4a)

∫∫
D D

C2
ϵ (x1, x2) dx1 dx2 < ∞. (4.4b)

Consequently, both Cu and Cϵ are Hilbert–Schmidt kernels of L2(D×D). For an in-depth
exploration of these properties of covariance kernels, refer to (Horváth and Kokoszka, 2012,
Chapter 2).

In the functional one-way random effects model (4.1), the covariance kernel of the
measurement Yij is expressed as,

Ct(x1, x2) = Cu(x1, x2) + Cϵ(x1, x2) . (4.5)

By using the properties of the L2 norm, it can be demonstrated that Ct is also squared
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integrable, establishing it as a Hilbert-Schmidt kernel of L2(D× D). The constituent
parts Cu and Cϵ of the covariance kernel Ct are individually denoted as covariance kernel
components.

4.3 Spectral analysis

This section provides a comprehensive review of the structure of the variability of stochastic
processes U and ϵ in model 4.1.

The covariance operators Au : L2(D) → L2(D) and Aϵ : L
2(D) → L2(D) associated

with Cu and Cϵ can be expressed as the following integral operators,

Auf(·) =
∫
D

Cu(· , x)f(x) dx, (4.6a)

Aϵf(·) =
∫
D

Cϵ(· , x)f(x) dx. (4.6b)

Since D is a bounded interval and Cu and Cϵ are Hilbert-Schmidt kernels, the covariance
operators Au and Aϵ are both compact and self-adjoint operators on the Hilbert space
L2(D). Applying the spectral theorem for compact and self-adjoint operators, we ascertain
the existence of two sequences of basis functions in L2(D). One sequence, denoted as
Ψ1,Ψ2, . . . , encompasses the eigenfunctions of Au . Correspondingly, the other sequence,
denoted as Φ1,Φ2, . . . , comprises the eigenfunctions of Aϵ . For x ∈ D, these sequences
satisfy

AuΨk(x) = λukΨk(x), (4.7a)

AϵΦν(x) = λϵνΦν(x), (4.7b)

where eigenvalues λu1 ≥ λu2 ≥ · · · ≥ 0 and λϵ1 ≥ λϵ2 ≥ · · · ≥ 0 .

According to Mercer’s theorem, which relates the spectral expansion of an operator to
the representation of the corresponding kernel, the covariance kernels Cu and Cϵ can be
expressed as

Cu(x1, x2) =
∑
k≥1

λukΨk(x1)Ψk(x2), (4.8a)

Cϵ(x1, x2) =
∑
ν≥1

λϵνΦν(x1)Φν(x2). (4.8b)
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Motivated by these representations, the covariance kernels Cu and Cϵ possess the following
properties

tr(Cu) =

∫
D

Cu(x, x) dx =
∑
k≥1

λuk < ∞, (4.9a)

tr(Cϵ) =

∫
D

Cϵ(x, x) dx =
∑
ν≥1

λϵν < ∞, (4.9b)

and

∥Cu∥2L2 =

∫∫
D D

C2
u(x1, x2) dx1 dx2 =

∑
k≥1

λ2
uk < ∞, (4.10a)

∥Cϵ∥2L2 =

∫∫
D D

C2
ϵ (x1, x2) dx1 dx2 =

∑
ν≥1

λ2
ϵν < ∞. (4.10b)

These equations highlight that the trace and L2 norm of the covariance kernels of stochas-
tic processes U and ϵ are finite and can be expressed solely in terms of the associated
eigenvalues.

Moving forward, we focus on designing parameters for the assessment of the measure-
ment system of functional data. The spectral analysis of stochastic processes U and ϵ
enables us to articulate the measurement system assessment parameters, leveraging the
spectral properties of covariance kernel components Cu and Cϵ .

4.4 Parameters for assessing measurement systems

In Chapter 1, we presented an overview of fundamental parameters related to the assess-
ment of a measurement system for a single variable. In Chapter 3, we extended these con-
siderations to multivariate data, summarizing variance-covariance matrices using a scalar
function. In this chapter, we further extend our study to define the functional versions
of these parameters. Building upon the notion in Chapter 3, we proceed to summarize
the covariance kernels. This procedure involves the use of a continuous bounded operator
T : L2(D×D) → R that acts on a covariance kernel and produces a positive real number.

Applying this framework, we set up the counterparts of the signal-to-noise ratio, the
percentage R&R ratio, and the intra-class correlation coefficient for functional data, re-

101



spectively, as follows,

SNR
T
=

[
TCu

TCϵ

]1/2
, (4.11)

%R&R
T
=

[
TCϵ

TCt

]1/2
× 100% , (4.12)

ICC
T
=

TCu

TCt

· (4.13)

We examine the following special mappings of the covariance kernels to quantify the dis-
persion of functional data.

A. Trace

By defining the operator T as the trace of covariance kernel, the signal-to-noise ratio,
the percentage R&R ratio, and the intra-class correlation coefficient for functional data
are expressed as follows,

SNRtr =

[
tr(Cu)

tr(Cϵ)

]1/2
, (4.14)

%R&Rtr =

[
tr(Cϵ)

tr(Ct)

]1/2
× 100% , (4.15)

ICCtr =
tr(Cu)

tr(Ct)
· (4.16)

Following the spectral analysis of stochastic processes U and ϵ and using the linear
property of the trace operator, these parameters can alternatively be calculated using
the eigenvalues associated with the covariance kernels, in the form of

SNRtr =

[∑
k≥1 λuk∑
ν≥1 λϵν

]1/2
, (4.17)

%R&Rtr =

[ ∑
ν≥1 λϵν∑

k≥1 λuk +
∑

ν≥1 λϵν

]1/2
× 100% , (4.18)

ICCtr =

∑
k≥1 λuk∑

k≥1 λuk +
∑

ν≥1 λϵν
· (4.19)
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Since expectation commutes with bounded (continues) linear operators, we have,

E
[
∥U∥2

L2

]
=

∫
D

Cu(x, x) dx, (4.20a)

E
[
∥ϵ∥2

L2

]
=

∫
D

Cϵ(x, x) dx . (4.20b)

These equations imply that the expected L2 norm of the stochastic processes U and ϵ
is equal to the trace of the covariance kernels associated with each of these processes.
From the independence of the stochastic processes U and ϵ, it can be deduced that

E
[
∥U + ϵ ∥|2

L2

]
=

∫
D

Ct(x, x) dx . (4.21)

Equations (4.20) and (4.21) highlight that the parameters for assessing the measure-
ment system, as outlined in (4.14), effectively quantify the relative variability between
the processes U and ϵ concerning their expected L2 norms.

B. L2 norm

By defining the operator T as the L2 norm of the covariance kernel, we can establish
the signal-to-noise ratio, percentage R&R ratio, and intra-class correlation coefficients
for functional data as follows,

SNR
L2 =

[∥Cu∥L2

∥Cϵ∥L2

]1/2
, (4.22)

%R&R
L2 =

[∥Cϵ∥L2

∥Ct∥L2

]1/2
× 100% , (4.23)

ICC
L2 =

∥Cu∥L2

∥Ct∥L2

· (4.24)

Additionally, the signal-to-noise ratio can be calculated as,

SNR
L2 =

[∑
k≥1 λ

2
uk∑

ν≥1 λ
2
ϵν

]1/4
. (4.25)

The L2 norm operator is not linear in the sense of preserving the addition.
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4.5 Estimation procedure

From (4.11), to estimate the parameters for measurement system assessment, one can
estimate the covariance kernels Cu and Cϵ and then apply the following plug-in estimators,

ŜNR
T
=

[
TĈu

TĈϵ

]1/2
, (4.26a)

%R̂&R
T
=

[
TĈϵ

TĈt

]1/2
× 100% , (4.26b)

ÎCC
T
=

TĈu

TĈt

, (4.26c)

where Ĉt = Ĉu + Ĉϵ .

As we proceed to the following sections, we will explore fundamental approaches for
estimating the covariance kernels Cu and Cϵ. The discussion will unfold, covering a basic
estimation method and extending to more a sophisticated technique involving smoothing
procedures.

4.5.1 Basic estimation without smoothing

For the functional one-way model (4.1), we can define several sample means and covariance
functions, without involving smoothing.

Two sample mean functions associated with this model are the group sample mean
function and the global sample mean function. Specifically, at point x within the interval D,
the group sample mean function for the ith unit is calculated as follows,

Y i·(x) =
1

r

r∑
j=1

Yij (x) . (4.27)

The global sample mean function of the measurements, considering all units and replicated
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measurements, is given by

Y ··(x) =
1

ar

a∑
i=1

r∑
j=1

Yij (x) . (4.28)

There are two bivariate functions, the sum of squares and cross products, capturing the
between-groups and within-groups variations. They are defined, respectively, as follows,

SSu(x1, x2) = r

a∑
i=1

[
Y i·(x1)− Y ··(x1)

] [(
Y i·(x2)− Y ··(x2)

]
, (4.29)

SSϵ(x1, x2) =
a∑

i=1

r∑
j=1

[
Yij(x1)− Y i·(x1)

] [
(Yij(x2)− Y i·(x2)

]
, (4.30)

where x1, x2 ∈ D. The bivariate functions of the mean of squares and products corre-
sponding are given by,

MSu(x1, x2) =
SSu(x1, x2)

a− 1
=

r

a− 1

a∑
i=1

[
Y i·(x1)− Y ··(x1)

] [(
Y i·(x2)− Y ··(x2)

]
, (4.31)

MSϵ(x1, x2) =
SSϵ(x1, x2)

a(r − 1)
=

1

a(r − 1)

a∑
i=1

r∑
j=1

[
Yij(x1)− Y i·(x1)

] [
(Yij(x2)− Y i·(x2)

]
,

(4.32)

Table 4.1 displays the functional analysis of variance, also known as FANOVA, classifica-
tion.

Table 4.1: The analysis of variance classification for the functional one-way model with
stochastic effects.

Source
Degree of

Sum of squares and products
Mean of squares and

freedom products

U dfu = a− 1 SSu(x1, x2) = r
∑a

i=1

[
Y i·(x1)− Y ··(x1)

] [(
Y i·(x2)− Y ··(x2)

]
MSu(x1, x2) =

SSu(x1, x2)

a− 1

ϵ dfϵ = a(r − 1) SSϵ(x1, x2) =
∑a

i=1

∑r
j=1

[
Yij(x1)− Y i·(x1)

] [
(Yij(x2)− Y i·(x2)

]
MSϵ(x1, x2) =

SSϵ(x1, x2)

a(r − 1)

Total ar − 1 SSt(x1, x2) =
∑a

i=1

∑r
j=1

[
Yij(x1 − Y ··(x1)

] [
Yij(x2 − Y ··(x2)

]
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Under the assumptions outlined for the one-way model (4.1), it can be shown that,

E [MSu(x1, x2)] = Cϵ(x1, x2) + r Cu (x1, x2) , (4.33a)

E [MSϵ(x1, x2)] = Cϵ (x1, x2) . (4.33b)

Through the use of the above equations, the unbiased estimators of Cu and Cϵ are obtained
as

Ĉu(x1, x2) =
1

r
(MSu(x1, x2)−MSϵ(x1, x2)) , (4.34a)

Ĉϵ(x1, x2) = MSϵ(x1, x2) . (4.34b)

In practice, the observed data consists of sample values of functions Yij(·) collected at
a finite number of discrete points. The sampling arrangement can take the form of either
regular or irregular grids. In a regular grid setting, data from all functions are collected at
identical points across all subjects and replications. Conversely, for an irregular sampling
method, the sampling locations and the number of samples collected per function may vary
between functions.

The unbiased estimators of covariance kernels presented in (4.34) require that the sam-
pling method be regular across all functional observations. Given that the observations
consist of a finite number of discrete points, the estimators of covariance kernels in (4.34)
are considered unbiased at this finite set of points, rather than across the entire range D.

4.5.2 Estimation with smoothing

To estimate the covariance kernels of processes U and ϵ within the context of one-way
ANOVA model 4.1, we apply a regularization approach using RKHS framework, following
the methodology outlined in (Cai and Yuan, 2010). Given the foundational role of RKHS in
our research, we offer a brief review of the terms, definitions, and key properties associated
with RKHS in the supplementary materials of Section 4.8. For a more comprehensive
exploration of RKHS, we recommend referring to Aronszajn (1950); Wahba (1990).

We begin by reviewing the required conditions for covariance kernels to be included
in an RKHS. We assume that the sample paths of U and ϵ exhibit smoothness, each
belonging to a specific RKHS. If the process U resides in the RKHS with the reproducing
kernel Ku, denoted as H(Ku), and satisfies E

[
∥U∥2H(Ku)

]
< ∞, then it is established that

the covariance kernel Cu is a member of the tensor product Hilbert space H(Ku⊗Ku) (Cai
and Yuan, 2010, Theorem 1). Likewise, assuming that the process ϵ belongs to the Hilbert
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space H(Kϵ) and satisfies E
[
∥ϵ∥2H(Kϵ)

]
< ∞, the covariance function Cϵ is a member of the

tensor product Hilbert space H(Kϵ ⊗Kϵ). For brevity in notation, we henceforth assume
Ku = Kϵ = K. This result can be applied to derive estimates for Cϵ and Cu within the
framework of H(K ⊗K).

Next, we investigate the regularization method to derive smooth estimates of covariance
kernels Cϵ and Cu . This process involves formulating an optimization problem utilizing a
generic input functionB, whereB serves as an initial non-smooth estimate of the covariance
kernel we aim to estimate. The regularization problem is stated as follows,

min
C∈H(K⊗K)

{
L(B,C) + λ∥C∥2H(K⊗K)

}
. (4.35)

Here, L(B,C) quantifies the discrepancy between the estimated covariance kernel C and
the initial estimate B, at a finite number of discrete points. The term ∥C∥2H(K⊗K) serves
as a penalization term that encourages smoothness in the solution for desirable properties.
The parameter λ > 0 acts as a tuning parameter, controlling the trade-off between fidelity
to the data and smoothness of the estimated covariance kernel. The specific value of λ
can be determined through techniques like cross-validation, or information criteria such as
AIC or BIC. See, e.g., (Hastie et al., 2009).

We employ a least squares method to find the member of H(K ⊗K) that best fits the
initial estimate B, while the smoothness level is controlled by parameter λ. To proceed,
we adopt a regular discrete sampling setting where data from all units and replications are
collected at m identical points, namely s1, . . . , sm. The loss function L(B,C) in problem
(4.35) is the residuals sum of squares, computed as,

L(B,C) =
m∑

k1=1

m∑
k2=1

(
B(sk1 , sk2)− C(sk1 , sk2)

)2
. (4.36)

To derive the specific form of the initial estimate B, we take advantage of the relationships
among MSu, MSϵ, and the covariance kernels Cu and Cϵ, as detailed in (4.33). For the
estimation of Cϵ, the initial estimate B is defined as follow,

B(sk1 , sk2) = MSϵ(sk1 , sk2) =
1

a(r − 1)

a∑
i=1

r∑
j=1

[
Yij(sk1)− Y i·(sk1)

] [
Yij(sk2)− Y i·(sk2)

]
.

(4.37)

Here, (sk1 , sk2) are selected from the sampling grid where k1 = 1, . . . ,m, and k2 = 1, . . . ,m.
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On the other hand, when adopting the following expression for the input function B,

B(sk1 , sk2) =
1

r
MSu(sk1 , sk2) =

1

a− 1

a∑
i=1

[
Y i·(sk1)− Y ··(sk1)

] [
Y i·(sk2)− Y ··(sk2)

]
,

(4.38)

the outcome of serves as an estimator for Cu + r−1Cϵ , from which we can deduce the
estimator of Cu.

The well-posedness of the regularization problem (4.35) ensures a unique solution that
depends stably on the input data (Tikhonov and Arsenin, 1977). Although the problem
is formulated within an infinite-dimensional subspace, the representer theorem guarantees
the existence of a finite-dimensional representation for the solution.

By the representer theorem, and following a similar approach as described in (Wahba,
1990, Theorem 1.3.1), the minimizer of the regularization problem (4.35) under the regular
discrete sampling is assumed to have the form,

C(x1, x2) =
m∑

k1=1

m∑
k2=1

a
k1k2

K(x1, sk1)K(x2, sk2), (4.39)

for any x1, x2 ∈ D, where the coefficients ak1k2 ∈ R need to be estimated. From the
reproducing property of the RKHS ofH(K)⊗H(K), it follows thatK(x1, sk1)K(x2, sk2) =
K⊗K((x1, x2), (sk1 , skj)). In the representation given in (4.39), the covariance kernel C is
expressed in terms of basis functions, which are derived from the tensor product of kernel
sections centered on the sampling grid points (sk1 , sk2).

For a function C that admits the representation (4.39), its squared RKHS norm ∥C∥2H(K⊗K)

can be derived as,

∥C∥2H(K⊗K) =
m∑

k1=1

m∑
k2=1

m∑
ℓ1=1

m∑
ℓ2=1

a
k1k2

a
ℓ1ℓ2

K(sk1 , sℓ1)K(sk2 , sℓ2)

= a⊤(K ⊗K) a , (4.40)

where

a =
(
a11, a12, . . . , a1m, a21, . . . , amm

)⊤
,

and K ∈ Rm×m is the positive semi-definite kernel matrix, with the entry in row k1 and
column k2 evaluated as K(sk1 , sk2).
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Define the vector of the initial estimates as

b =
(
B(s1, s1), B(s1, s2), . . . , B(s1, sm), B(s2, s1), . . . , B(sm, sm)

)⊤
.

Now, the regularization problem min
C∈H(K⊗K)

{
L(B,C) + λ∥C∥2H(K⊗K)

}
is equivalent to,

min
a

∥b− (K ⊗K) a∥2 + λ a⊤(K ⊗K) a . (4.41)

The solution for coefficients vector a is given by

â = H−1b . (4.42)

where H = K ⊗K + λ I.

Remark 4.1. The extension of the aforementioned outcome becomes more versatile by
enriching the RKHS with offset terms from a parametric subspace denoted as N0. This
enrichment leads to an estimator for the covariance function composed of two terms: one
term is from H(K⊗K) and the other belongs to N0. Assuming a regular discrete sampling
setting, the estimator for the covariance function takes the following form,

C̃(x1, x2) =
m∑
i=1

m∑
j=1

aijK(x1, si)K(x2, sj) +

n0∑
p=1

dpϑp (x1, x2) , (4.43)

where x1, x2 ∈ D, and {ϑ1, . . . , ϑn0} are the basis functions of N0.

To account for the impact of the penalization function on the terms from the parametric
space (Duchon, 1977), the regularization problem for estimating C̃ can be expressed as,

min
a,d

∥b− (K ⊗K) a−φd∥2 + λ a⊤(K ⊗K) a . (4.44)

where,

φ = (ϑ1, . . . ,ϑn0) , d =
(
d1, . . . , dn0

)⊤
,

ϑp =
(
ϑp(s1, s1), ϑp(s1, s2), . . . , ϑp(s1, sm), ϑp(s2, s1), . . . , ϑp(sm, sm)

)⊤
,

for p = 1, . . . , n0 . The solutions for vectors a and d that minimize (4.44) are, respectively,
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estimated by,

â = H−1
(
I −φ(φ⊤H−1φ)−1φ⊤H−1

)
b , (4.45)

d̂ =
(
φ⊤H−1φ

)−1
φ⊤H−1b . (4.46)

The vector of fitted values to the data is

(K ⊗K) â+φ d̂ = S b , (4.47)

where S is the projection operator,

S = (K ⊗K)H−1
(
I −φ(φ⊤H−1φ)−1φ⊤H−1

)
+φ

(
φ⊤H−1φ

)−1
φ⊤H−1 . (4.48)

This extension opens avenues for more comprehensive analysis, as we shall explore in
the subsequent section of this chapter.

4.6 Simulation study

We conducted simulation studies to demonstrate the implementation of the methodology
developed in this chapter and to illustrate its performance in finite sample settings. We
considered D = [0, 1] and designated the RKHS H as the second-order Sobolev-Hilbert
space W2

2 . This space is precisely defined in the supplementary materials of Section 4.8.
The reproducing kernel associated with W2

2 is given by,

K(x1, x2) =
1

4
B2(x1)B2(x2)−

1

24
B4( |x1 − x2| ) , (4.49)

where Bn(·) is the n-th Bernoulli polynomial (see, e.g., Wahba (1990)). For the parametric
space, we selected N0 = span{1, x1, x2, x1x2, x

2
1, x

2
2} .

Motivated by the numerical example of Mostafaiy et al. (2019), we generated the mean
function µ and the stochastic processes U and ϵ as follows,

µ(x) =
∑10

k=2 4(−1)k+1k−2Ψk(x) , (4.50a)

U(x) =
∑10

k=1(−1)k+1k−2ζkΨk(x) , (4.50b)

ϵ(x) =
∑5

ν=1

1

2
(−1)ν+1ν−2ξνΦν(x) , (4.50c)
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where the basis functions Ψk(·) and Φν(·) are given by

Ψk(x) =

{
1 for k = 1 ,√
2 cos(kπx) for 2 ≤ k ≤ 10 ,

(4.51a)

Φν(x) =
√
2 sin(νπx) , for ν = 1, . . . , 5 . (4.51b)

The random variables ζ1, . . . , ζ10 and ξ1, . . . , ξ5 are independently sampled from the uniform
distribution on [−

√
3,
√
3 ]. It can be verified the covariance functions Cu and Cϵ are

Cu(x1, x2) =
∑10

k=1 λukΨk(x1)Ψk(x2) , (4.52a)

Cϵ(x1, x2) =
∑5

ν=1 λϵνΦν(x1)Φν(x2) , (4.52b)

where λuk = k−4 and λϵν = 4−1ν−4, for k = 1, . . . , 10 and ν = 1, . . . , 5.

To generate the trajectories of the random measurement function Yij’s, we indepen-
dently generated sample paths Ui’s and ϵij’s for i = 1, . . . , a and j = 1, . . . , r. Subsequently,
the function Yij was constructed using the functional one-way model described in (4.1).
We considered a simulated scenario with a sample size of 10 and 6 replications. Figure 4.1
(a-c) illustrates the simulated mean function µ(·), the sample paths of the units main effect
Ui(·), and the measurement error ϵij(·) for i = 1, . . . , 10 and r = 1, . . . , 6. Plot (d) of this
figure depicts the composite functions obtained by combining these three terms across all
samples and replications, i.e., Yij (·) . Each function is represented with a distinct color for
visual clarity in these panels.

The tuning parameter λ plays an important role in the efficiency of the resulting es-
timates of covariance functions and, consequently, in the parameters of the measurement
system assessment study. Employing a grid search, we estimated the value of the tuning
parameter using the generalized cross-validation (GCV) method. The GCV function is
defined as follows,

GCV =
∥ (I − S)b∥2

(1−m−2tr(S))2
, (4.53)

where S represents the projection matrix characterized in (4.48).

The sampling frequency was set to m = 4 and 8, where each trajectory of Yij is sampled
at m fixed points, spaced by a distance of 1

m−1
within the interval [0, 1]. Applying the

estimation method outlined in this chapter to the simulated dataset, we obtain smooth
estimates of the covariance kernel components. Figure 4.2 presents a 3D visualization
comparing the true covariance functions Cu and Cϵ with their respective estimates at
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varying sampling frequencies. Significantly, at a higher sampling frequency, the estimates
more effectively capture the underlying modes of variability within Cu and Cϵ . For a more
detailed insight, Figure 4.3 illustrates the estimates of the first two basis functions for
both Cu and Cϵ, alongside the corresponding true basis functions for comparison. This
visual examination highlights the method’s capability to capture the main characteristics
of covariance function components, even with as few as 4 samples per function.

The values of the percentage R&R ratio, the signal-to-noise ratio, and intra-class cor-
relation coefficient values are detailed in Table 4.2, utilizing both the trace and L2 norm
of the covariance functions. Panel (a) presents the true values, while panel (b) showcases
the estimated values.

Following the same criteria as employed in univariate measurement system assessment
studies for approving the measurement system, where an R&R ratio greater than 30%
suggests the need for improvement, it is recommended to enhance the measurement sys-
tem. For the signal-to-noise ratio, Steiner and MacKay (2005) suggest improvement when
the ratio falls between 2 and 3. Consequently, improving such a measurement system is
recommended based on these considerations.
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Figure 4.1: Simulated functions µ(x), Ui(x), ϵij(x), and Yij(x), for a = 10 and r = 6.
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(a) True covariance function Cu. (b) True covariance function Cϵ.

(c) m = 4 (d) m = 4

(e) m = 8 (f) m = 8

Figure 4.2: True covariance functions of Cu and Cϵ (the top panels) and their smooth
estimates for a sampling frequency m = 4 (the middle panels) and m = 8 (the bottom
panels), in a one-way random effect model with a = 10 and r = 6.

113



0 0.2 0.4 0.6 0.8 1
0.8

0.9

1

1.1

1.2

(a) Ψ1 and its estimates.
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(d) Φ2 and its estimates.

Figure 4.3: Smooth estimation of the first and second basis functions of Cu (left panels)
and Cϵ (right panels), for sampling frequencies m = 4 and 8. The solid lines represent the
true basis functions.
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Table 4.2: The values of the percentage R&R ratio, the signal-to-noise ratio, and intra-
class correlation coefficient, using the trace and L2 norm of covariance functions: (a) true
values, (b) estimated values.

(a)

Trace L2 norm

%R&Rtr SNRtr ICCtr R&R
L2 SNR

L2 ICC
L2

%44.69 2.00 0.80 %45.39 2.00 0.82

(b)

Trace L2 norm

m %R̂&Rtr ŜNRtr ÎCCtr %R̂&R
L2 ŜNR

L2 ÎCC
L2

4 %44.69 2.00 0.80 %45.19 2.01 0.82

8 %43.74 2.06 0.81 %44.67 2.04 0.83

4.7 Prospects for further research

While this chapter primarily focuses on scenarios where functional data samples are col-
lected using regular grid points, it is important to emphasize that the regularization ap-
proach for estimating continuous covariance kernels within the RKHS framework is not
restricted to cases with a regular grid. The algorithm for estimation relies on a smooth-
ing procedure, enabling us to effectively capture underlying patterns within the functional
data. This approach facilitates the learning of continuous covariance kernels based on a
finite set of training samples, and it can be adapted for irregular sampling grids as well.

We consider our current work to be valuable for gaining insightful perspectives and as
a practical guide for addressing the measurement system assessment of functional data,
using a FANOVA model. However, we acknowledge the need to establish cutoff values for
the parameters in the measurement system assessment study, a point that currently lacks
clarity. This aspect is under investigation in our ongoing and future work.

Functional data can extend into more intricate domains, such as multivariate functional
data or spatial random fields (Mart́ınez-Hernández and Genton, 2020; Koner and Staicu,
2023). A prime example of this data type is found in the field of additive manufacturing,
where the variable of interest pertains to the surface characteristics of manufactured parts,
shape, or a combination of these. When investigating this phenomenon, scientific inquiries
often revolve around the repeatability and reproducibility of the measurement system.
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We believe that the tools and techniques presented in this chapter open new avenues for
research and the development of methodologies to analyze the measurement systems of
these complex datasets.

In this thesis, we explored the measurement system analysis of functional data in a
Hilbert space. We examined the so-called vertical or amplitude variations of the functional
data, which involves shifting observations up or down. It is also possible for functional
data to inherit other modes of variability.

Another mode can be the warping, which leads to the phase variability of functional
observations. To get a better understanding, consider a template function µ(x) defined
on domain D ⊂ R. A model for the representation of a function when subjected to the
warping effect is given by

y(x) = a(x)(µ ◦ h(x)) + ε(x), (4.54)

where x ∈ D. In this model, y(x) represents the measured value of the template function
at location x, h(x) is the warping effect, which satisfies some properties, a(·) ∈ R+ and ε(·)
are the scaling and vertical translations, respectively. The composition µ◦h(·) characterizes
µ(h(·)) and represents the warping of µ(·) by h(·). The effect of this warping function is
relocating the values of µ(·) horizontally. The warping function, therefore, does not change
the amplitude values directly. That being said, warping only affects the phase, i.e., the
value of location, (or time).

While classical tools for functional data analysis in the Hilbert space L2(D) work well
when functional data observations are perfectly aligned, they have limitations, such as the
lack of isometry, as for two functions f1(x), f2(x) ∈ L2(D), in general

∥f1 − f2∥L2 ̸= ∥f1 ◦ h− f2 ◦ h∥L2 .

The lack of isometry results that Hilbert space tools are inadequate in capturing the warp-
ing effect accurately and do not provide a suitable distance metric.

The framework of elastic functional data (Srivastava et al., 2010), offers the tools to
represent and analyze this mode of variation, when present in functional data. In this
framework, the Riemannian geometry and Fisher-Rao metric are to achieve a proper dis-
tance metric (Srivastava et al., 2011). The strength of using this framework is paramount
in predicting the underlying template function under random warping, scaling, and vertical
translation.
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4.8 Supplementary materials

In this section, we have included the supplementary materials that accompany Chapter 4.

A. Reproducing kernel Hilbert spaces

Let H be a real Hilbert space of functions defined on the interval D, equipped with an
inner product ⟨·, ·⟩H. The space H is termed an RKHS if there exists a symmetric positive-
definite function K(·, ·) on D× D, known as the reproducing kernel of H, satisfying the
following properties for every x ∈ D and f ∈ H,

i) K(x, ·) ∈ H,
ii) f(x) = ⟨f(·), K(x, ·)⟩H .

The second property, referred to as the reproducing property, states that the evaluation
of a function at a point can be represented as an inner product with the corresponding
reproducing kernel. It is important to note that the reproducing kernel is a positive semi-
definite function. We denote the Hilbert space associated with the reproducing kernel
function K as H(K). The Moore-Aronszajn theorem (1950) establishes a one-to-one cor-
respondence between an RKHS of functions and the reproducing kernel, such that each
RKHS is uniquely associated with a specific kernel K.

A concrete example of an RKHS is the Sobolev-Hilbert space Wn
2 with n ∈ N. This

space consists of all functions f ∈ L2([0, 1]) that satisfy the following conditions

i) f, f (1), . . . , f (n−1) are absolutely continuous,
ii) f (n) ∈ L2([ 0, 1]).

When Wn
2 is endowed with the squared norm given by

∥f∥2Wn
2
=

n−1∑
k=0

(∫ 1

0

f (k)(x)dx

)2

+

∫ 1

0

(
f (n)(x)

)2
dx, (4.55)

the space Wn
2 becomes an RKHS with a reproducing kernel expressed as

Kn(x1, x2) =
1

(n!)2
Bn(x1)Bn(x2)−

(−1)n

(2n)!
B2n ( |x1 − x2| ) . (4.56)

Consider the reproducing kernel K in the context of Mercer’s theorem. Assuming that
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the reproducing kernel K is squared integrable, it can be expressed as

K(x1, x2) =
∑
k≥1

ρkφk(x1)φk(x2) , (4.57)

where ρ1, ρ2, . . . are non-negative constants, and φ1(·), φ2(·), . . . represent a sequence of
orthonormal basis functions of L2(D). According to (Wahba, 1990, Lemma 1.1.1), a
function f ∈ L2(D) belongs to RKHS of H(K) if and only if the following condition is
met,

∥f∥2H(K)
=
∑
k≥1

f 2
k

ρ
k

< ∞ , (4.58)

where fk = ⟨f, φk⟩L2(D). This condition validates the eligibility of a function for inclusion
in the RKHS of H(K), where the reproducing kernel K is defined as per (4.57).

The tensor product Hilbert space is defined as follows: Let H1 and H2 be two Hilbert
spaces defined on D, equipped with the corresponding inner product operations ⟨·, ·⟩H1

and ⟨·, ·⟩H2 . For functions f ∈ H1 and g ∈ H2, the tensor product of f and g is defined as
f ⊗ g(x1, x2) = f(x1)g(x2), where x1, x2 ∈ D. Let V denote the vector space generated by
all such tensors. By defining the following inner product for vector space V ,

⟨f1 ⊗ g1, f2 ⊗ g2⟩ = ⟨f1, f2⟩H1
⟨g1, g2⟩H2

, (4.59)

where f1, f2 ∈ H1 and g1, g2 ∈ H2, the vector space V is complete, thereby making V a
Hilbert space. This Hilbert space is referred to as the tensor product Hilbert space of H1

and H2, denoted by H1 ⊗H2, and the associated inner product is denoted as ⟨·, ·⟩H1⊗H2 .

For an RKHS H(K), it can be shown that the tensor product Hilbert space H(K) ⊗
H(K) is itself an RKHS. Let us consider two functions f and g that are elements of an
RKHS H(K) defined on D. For every x1, x2 ∈ D, the following relationship holds,

f ⊗ g(x1, x2) = ⟨f(·), (x1, ·)⟩H(K) ⟨g(·), K(x2, ·)⟩H(K)

= ⟨f ⊗ g,K(x, ·)⊗K(y, ·)⟩H(K)⊗H(K)
. (4.60)

This equation implies that the reproducing property remains intact for an RKHS with the
reproducing kernel K ⊗K, which is given by,

K ⊗K((x1, x2), (y1, y2)) = K(x1, y1)K(x2, y2) . (4.61)
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We can demonstrate the condition under which a bivariate function f on D× D can be
included in the tensor product space H(K) ⊗ H(K), where K is the reproducing kernel
expressed as per (4.57). According to Cai and Yuan (2010), a bivariate function f ∈
L2(D× D) belongs to the tensor product Hilbert space H(K)⊗H(K), if and only if the
following condition is met,

∥f∥2H(K⊗K)
=
∑
k≥1

∑
ℓ≥1

f 2
kℓ

ρ
k
ρ
ℓ

< ∞ , (4.62)

where f
kℓ

is defined as,

f
kℓ
=

∫∫
D×D

f(x1, x2)φk
(x1)φℓ

(x2)dx1dx2 . (4.63)

This condition verifies the eligibility of a bivariate function for inclusion in the RKHS
H (K ⊗K) .

B. The Representer theorem

The following Representer theorem is due to Kimeldorf and Wahba (1971), and the gener-
alized result is due to Schölkopf et al. (2001).

Theorem 4.1. (Nonparametric Representer theorem). Consider a nonempty set
X, a positive-definite real-valued kernel K on X× X, with the corresponding RKHS of
H(K). Let (x1, y1), . . . , (xn, yn) ∈ X×R be the training sample, g(·) is a strictly increasing
real-valued function on R+, an arbitrary error function E : (X× R2)n → R ∪ {∞}, which
collectively define the following regularized risk function,

E {(x1, y1, f(x1)) , . . . , (xn, yn, f(xn))}+ g(∥f∥) .

Any function f ∈ H(K) minimizing the above risk function, admits a representation of the
form,

f(·) =
n∑

i=1

aiK(·, xi) ,

where ai ∈ R .
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It is possible to generalize the above result further, by enriching the RKHS through the
addition of offset terms, which are not subject to penalization.

Theorem 4.2. (Parametric Representer theorem). In addition to the assumptions
of the previous theorem, suppose we are given a subspace N0 that is the span of {ϑ1, . . . , ϑn◦},
where ϑ1, . . . , ϑn◦ are real-valued basis functions on X. We consider functions of the form
f̃ = f + h, with f ∈ H(K) and h ∈ N0. Any function f̃ minimizing the regularized risk,

E
(
(x1, y1, f̃(x1), . . . , (xn, yn, f̃(xn))

)
+ g(∥f∥) .

admits a representation of the form

f̃(·) =
n∑

i=1

aiK(·, xi) +

n0∑
p=1

dpϑp(·) ,

where ai, dp ∈ R .
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Chapter 5

Case Study Application

In this chapter, we apply the three methodologies discussed throughout this thesis to
analyze a real-world dataset of surface texture indicators from an additive manufacturing
process.

The case study involves a functional dataset acquired from the Multi-Scale Additive
Manufacturing Lab. This dataset comprises measurements of two indicators reflecting the
surface roughness of printed products. While the specific focus may not align perfectly with
the measurement system assessment outlined in this thesis, we chose this dataset because
of its relevance. It serves as a valuable demonstration to showcase the versatility of the
methodologies presented in this thesis, although the case study itself does not address a
measurement system assessment problem. This chapter presents a comprehensive analysis
of this additive manufacturing dataset, covering statistical methods for analyzing univariate
and multivariate data types, along with functional data analysis techniques.

5.1 Experiment setup and data acquisition

An experiment was conducted over five days, with each day corresponding to an individual
manufacturing cycle. During each cycle, three items were printed, all derived from the
same computer-aided design and utilizing the same setup on the manufacturing platform.
Consequently, a total of 15 items were printed throughout the experiment. A confocal
laser scanning microscope was employed for precise data acquisition, facilitating high-
resolution profilometry data collection. The key surface texture characteristics used to
measure roughness are the arithmetic mean height and maximum height, denoted as Sa
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and Sz, respectively. In a given area A, they are defined as follows

Sa =
1

A

∫
|z(x, y)| dx dy , (5.1)

Sz = max
A

z(x, y) + min
A

|z(x, y)| , (5.2)

where z(x, y) represents the height at the location (x, y). To learn more about the scanner
and its surface roughness measurement methods, interested readers can visit https://

www.keyence.com/support/user/laser-microscope-documents/.

The surface data profile includes measurements of arithmetic mean heights and max-
imum heights, collected from 14 consistently identical locations across all manufactured
items. Figure 5.1 provides a visual illustration of this dataset. In Figure 5.1(a), the ob-
served values of Sa for all five cycles and printed parts are shown with respect to their
respective locations, with observations connected together. Printed parts within the same
day are represented using the same color. Similarly, Figure 5.1(b) displays the observed
values of Sz for all 15 parts. A full listing of the dataset is provided in the supplementary
materials of Section 5.4. Our goal is to assess and compare day-to-day and item-to-item
variations contributing to surface roughness variability.

5.2 Surface texture model

This is an analysis of variance problem involving 5 days (5 cycles) and 3 printed items each
day. The variables are the roughness measurements Sa and Sz, which can be potentially
observed over continuous domains. Therefore, we can treat them as functional observations.
We require a FANOVA that includes a smoothing technique and considers the sparsity, such
as those discussed in Chapter 4. The underlying model for the texture roughness indicator
at location x is given by,

Yij(x) = µ(x) +Di(x) + ϵij(x), for i = 1, . . . , 5, and j = 1, . . . , 3, (5.3)

where x ∈ D, and D is a continuous domain initially spanning [0, 14]. In this model, Yij(x)
represents the measured value of the roughness for the jth printed item in the ith cycle at
location x, µ(·) denotes the overall mean function which represents the average roughness.
The term Di represents the random effect function specific to day (or cycle) i, and ϵij(·) is
the random function specific to the jth printed item during cycle i.
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Figure 5.1: Illustration of additive manufacturing dataset values for roughness indicators:
the arithmetic mean height (top panel) and maximum height (bottom panel).

Throughout this thesis, we have consistently denoted ϵij as the measurement error in
the context of measurement system assessment. In the context of this specific case study,
ϵij refers to the item’s error. Despite this specific designation, we continue to use the term
measurement error to represent the item’s error in our discussions.
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5.2.1 Point-wise analysis

We initially applied a one-way ANOVA model, detailed in Chapter 2, to the roughness
measurements at all 14 locations. In this analysis, the roughness measurement at each
location was treated as an individual random variable, resulting in 14 distinct analyses.
We tested the significance of the variance associated with the day’s effect by calculating
the p-value for each of the 14 variables, as described in (2.46). In 12 locations for Sa and
9 locations for Sz, the p-value exceeds 0.1, suggesting that the observed data provide no
evidence against the presence of variation due to the day’s effect at these locations.

We calculated the variances associated with the day and residual effects for the rough-
ness indicators Sa and Sz using both UMVUE and maximum likelihood estimation meth-
ods. The results are summarized in Table 5.1. We note that the UMVUE for the variance
of the day’s effect may not always be non-negative, suggesting that the UMVUE can be
unsuitable as an estimator for these data.

The maximum likelihood estimates for the ratio of two standard deviations, denoted

as ŜNR, corresponding to the day’s effect and measurement error are obtained across all
14 variables. The results are illustrated in Figure 5.2. The red dashed line in the figure
represents the cut-off point for the signal-to-noise ratio, as recommended by Steiner and
MacKay (2005).

For both the arithmetic mean height and maximum height indicators, ŜNR exhibits
spikes at specific locations, such as locations 6 and 10, suggesting higher variation in
the day’s effect at these locations. In the case of arithmetic mean height data (Sa), the
estimated signal-to-noise ratio consistently remains below 2 across all locations. This
suggests that measurement error is the dominant cause of variation based on these data.
However, for the maximum height data (Sz), the estimated signal-to-noise ratio reaches the
cut-off point at one location, indicating that the measurement error is not the dominant
cause of variation at that particular location.

5.2.2 Multivariate analysis

For an overall assessment of day-to-day variation, rather than assessing each location sepa-
rately, we conducted a one-way MANOVA analysis. Each vector of observations comprised
14 variables, corresponding to the roughness indicator at one of the 14 locations. Due to
the limitations of the dataset with fewer samples than variables, the sample covariance
matrices related to the day’s effect and measurement error do not have full ranks, leading
to rank-deficient sample covariance matrix estimates.
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Table 5.1: UMVUE and Maximum likelihood estimates of the variance components for the
day’s effect and the measurement error, obtained using a marginal one-way ANOVA model
across 14 locations: (a) arithmetic mean height data, (b) maximum height data.

(a) Arithmetic mean height

UMVUE Maximum likelihood

Location Day Measurement error Day Measurement error

1 -0.3674 1.9618 0 1.5371

2 0.2674 3.9932 0 3.9409

3 0.0259 1.5068 0 1.4271

4 0.0518 1.7086 0 1.6362

5 -0.5351 3.4780 0 2.8181

6 0.6656 1.4951 0.4328 1.4951

7 -0.0238 2.2369 0 2.0687

8 0.1327 2.8369 0 2.7539

9 0.3946 1.8278 0.1939 1.8278

10 0.9749 1.6297 0.6713 1.6297

11 0.3285 1.7853 0.1437 1.7853

12 -0.1507 2.9007 0 2.5868

13 -0.6457 8.1503 0 7.0903

14 1.0928 3.5259 0.6392 3.5259

(b) Maximum height

UMVUE Maximum likelihood

Location Day Measurement error Day Measurement error

1 -53.4332 420.5338 0 349.7516

2 202.3546 423.6456 133.6407 423.6456

3 -232.1755 825.4680 0 584.6964

4 47.9851 331.5120 16.2873 331.5120

5 113.1867 452.0489 60.4128 452.0489

6 372.0950 69.3914 293.0499 69.3914

7 24.9529 420.6623 0 412.5804

8 441.0145 977.7357 287.6292 977.7357

9 -37.5239 224.4918 0 179.5066

10 153.6675 196.8401 109.8113 196.8401

11 -64.0189 311.9683 0 239.9553

12 -19.6021 342.8833 0 304.3428

13 37.1673 150.7627 19.6830 150.7627

14 112.3476 276.0883 71.4722 276.0883
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Figure 5.2: The maximum likelihood estimates of the ratio of standard deviation for the

day’s effect and measurement error, referred to as ŜNR, using a marginal one-way ANOVA
model at each of the 14 locations.

For both the arithmetic mean height and maximum height data, we computed two
matrices of the sum of squares and products associated with the day’s effect and the
measurement error. Subsequently, we obtained the UMVUEs of the variance-covariance
components. Table 5.2 presents the eigenvalues of these estimates. It is observed that
the variance-covariance matrices of the measurement error are singular, and the variance-
covariance matrices of the day’s effect are indefinite, with only 4 non-negative eigenvalues
out of 14.

To address this challenge, we conducted PCA on the original dataset, reducing the
dimensionality from 14 variables to 10—matching the degree of freedom of the measure-
ment error. Through this dimension reduction process, we effectively captured 97.5% and
97.8% of the total variation in the dataset corresponding to measurements of Sa and Sz,
respectively. After reducing the dimension, we applied a multivariate one-way model and
obtained the UMVUE and maximum likelihood estimates of the variance-covariance matrix
components for the day’s effect and measurement error. The eigenvalues of the estimated
variance-covariance matrices are displayed in Table 5.3.

The result of this analysis for each dataset, the arithmetic mean height and maximum
height data, is discussed below.

A. Arithmetic mean height data

Concerning the UMVUE for the day’s variance-covariance matrix component six eigen-
values are found to be negative out of 10, with some negative quantities exhibiting
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Table 5.2: The eigenvalues of the UMVUE estimates of the variance-covariance matrices,
using a one-way MANOVA model.

Arithmetic mean height Maximum height

Order Day Measurement error Day Measurement error

1 8.5053 12.5015 1166.0049 1866.7667

2 3.8365 7.0449 833.2087 1074.6261

3 0.7216 6.5062 339.4760 731.2912

4 0.4530 3.7126 155.6996 581.5624

5 -0.0004 3.3179 -4.6565 438.4744

6 -0.1488 2.0663 -15.2332 272.6237

7 -0.1852 1.6081 -29.3418 194.3011

8 -0.3131 0.9808 -43.2594 137.0455

9 -0.5699 0.7725 -53.9790 90.1361

10 -0.8953 0.5262 -97.6290 37.2049

11 -0.9637 0.0001 -142.6632 0

12 -1.9413 0 -158.1404 0

13 -2.2050 0 -327.3454 0

14 -4.0825 0 -524.1338 0

significant magnitude. As a result, the UMVUE for the day’s variance-covariance ma-
trix component is not non-negative definite, after dimension reduction. The maximum
likelihood estimate of the variance-covariance matrix component associated with the
day’s effect has several zero eigenvalues. The first three eigenvalues explain almost
100% of the total variation. This can imply that the variance-covariance matrix of the
day’s effect is rank deficient.

B. Maximum height data

Similar to the arithmetic mean height case, the UMVUE for the day’s variance-covariance
matrix component is not non-negative definite here, after dimension reduction, either.
In addition, the maximum likelihood estimate of the variance-covariance matrix com-
ponent associated with the day’s effect has several zero eigenvalues, with the first five
eigenvalues explaining almost 100% of the total variation.

To assess and compare the day-to-day variability with the measurement error variability,
we employ the statistics suggested in Chapter 3. These statistics condense each variance-
covariance matrix component into a scalar value. We applied the trace and norm of the
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Table 5.3: The eigenvalues of the estimates of the variance-covariance matrix components
associated with the day’s effect and measurement error, after dimensional reduction.

(a) Arithmetic mean height

UMVUE Maximum likelihood

Order Day Measurement error Day Measurement error

1 8.4646 12.5008 6.8523 8.3668

2 3.8061 7.0431 3.2678 4.7739

3 0.4625 6.5015 0.3769 4.3809

4 0.0436 3.6885 0.0002 2.9365

5 -0.5335 3.3124 0.0001 2.2217

6 -0.8133 2.0553 0.0001 1.5186

7 -0.9583 1.4364 0 1.2651

8 -1.9392 0.7727 0 0.6406

9 -2.2016 0.5617 0 0.5399

10 -4.0807 0.1035 0 0.1027

(b) Maximum height

UMVUE Maximum likelihood

Order Day Measurement error Day Measurement error

1 1148.6090 1866.6819 946.8587 1248.9215

2 827. 2275 1072.6129 751.9810 737.8783

3 329.0220 724.1777 275.5912 515.0882

4 96.5489 561.4179 60.9543 492.1334

5 -43.9434 437.2086 0.0227 293.6625

6 -95.4883 262.8319 0.0071 195.4339

7 -141.8639 153.6648 0.0021 143.4157

8 -157.4841 136.1239 0 92.2636

9 -327.0383 55.1857 0 53.4915

10 -524.0330 2.4042 0 2.4018
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matrices. Table 5.4 presents the estimated signal-to-noise ratio values. Based on the
decision rule for univariate data, for both the arithmetic mean height and maximum height
data, the signal-to-noise ratio values are smaller than 2, indicating that the measurement
error is the primary contributor to the observed variation.

Table 5.4: The signal-to-noise ratio estimates using the trace and the Frobenius norm of
variance-covariance matrix components for arithmetic mean height and maximum height
data.

ŜNRtr ŜNR
F

Arithmetic mean height (Sa) 0.63 0.82

Maximum height (Sz) 0.73 0.86

5.2.3 Functional data analysis

We now apply specialized tools for the analysis of functional data by implementing the
regularization method using an RKHS, as discussed in Chapter 4.

Assuming that the sample paths of the day’s effect and the measurement error belong to
a certain RKHS. In this case, their corresponding covariance functions belong to a tensor
product space. We opted for the second-order Sobolev-Hilbert space W2

2 as the chosen
RKHS. For the parametric space, we used N0 = span{1, x1, x2, x1x2, x

2
1, x

2
2}. The tuning

parameter λ in the regularization problem was determined via a grid search and GCV
method, using the GCV function defined in (4.53).

In Table 5.5, we present the 12 largest eigenvalues (in magnitude) associated with
the estimates of covariance kernel components for both the day’s effect and measurement
error. Negative eigenvalues are observed in both the day’s effect and measurement error
covariance kernels, a phenomenon often attributed to the limitations of small sampling
settings. To mitigate the issue of indefiniteness, one potential solution involves projecting
the estimates onto the space of positive-definite functions by setting negative eigenvalues
equal to zero.

The estimated values of SNRtr and SNR
L2 are calculated based on the positive eigen-

values associated with the covariance function estimates of the day’s effect and the mea-
surement errors. The results are illustrated in Table 5.6. Following the decision rule for
univariate data, both the arithmetic mean height and maximum height data show signal-
to-noise ratio values smaller than 2, signifying that the predominant source of the observed
variation can be attributed to measurement error.
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Table 5.5: The eigenvalues associated with the estimated covariance functions for the day’s
effect and measurement errors, implementing the regularization approach over the RKHS
framework.

Arithmetic mean height Maximum height

Order Day Measurement error Day Measurement error

1 6.4951 7.0968 876.2953 2157.6042

2 1.3634 5.5049 530.3977 1264.3188

3 0.3105 2.5374 351.9961 914.4360

4 0.1396 1.0253 120.4036 240.6127

5 0.0092 0.0200 4.5002 3.8747

6 0.0000 0.0004 0.1448 0.0370

7 -0.0001 0.0001 0.0022 0.0182

8 -0.0004 0.0000 -0.0062 -0.1825

9 -0.1321 -1.1835 -37.2697 -66.5875

10 -0.2603 -0.8448 -130.3025 -245.3950

11 -1.3892 -1.4899 -389.4536 -696.2877

12 -2.9417 -3.0322 -500.7067 -2016.9273

Table 5.6: The signal-to-noise ratio estimates using the trace and the L2 norm of covariance
functions for arithmetic mean height and maximum height data.

ŜNRtr ŜNR
L2

Arithmetic mean height (Sa) 0.72 0.84

Maximum height (Sz) 0.64 0.64
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The smooth estimates of the first leading basis functions for both the day’s effect and
measurement error covariance functions are depicted in Figure 5.3. looking at the curves
it can be observed, for both roughness indicators, that the first basis function associated
with the day’s effect exhibits a smoother pattern with fewer ripples. For a comprehensive
view, Figure 5.4 provides the 3D plots of the covariance function estimates for the day’s
effect and measurement error.
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Figure 5.3: Smooth estimation of the first basis function of day effect and item effect for
the arithmetic mean height (top panel) and maximum height (bottom panel) roughness
indicators
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(a) (b)

(c) (d)

Figure 5.4: Estimates of covariance functions corresponding to the day and item effects for
the arithmetic mean height (top panels) and maximum height (bottom panels), using the
RKHS smoothing method.
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5.3 Comparison of methodologies

In this section, we compare three methodologies employed in this chapter for analyzing the
additive manufacturing dataset.

We applied three methodologies to discern the primary source of variation in the mea-
surements of two roughness indicators. The point-wise analysis allowed for an independent
examination of variation in the day’s effect at each of the 14 locations. While the analysis
of arithmetic mean height consistently identified measurement error as the dominant cause
of variation across all locations, the examination of maximum height data revealed that at
one location, the variation attributable to the day’s effect predominated. Consequently, for
these data, it may be necessary to employ methodologies that consider overall day-to-day
variation.

Both multivariate and functional data analysis approaches enable an overall assessment
of the day-to-day effect relative to measurement error. Functional data analysis tools
are particularly advantageous when there is prior knowledge of the data’s nature, such
as the order of collected samples and underlying smoothness. In such cases, functional
data analysis offers superior capabilities. However, in the absence of such information,
multivariate data analysis tools can be effectively utilized.
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5.4 Supplementary material

The dataset used in the case study presented in this chapter is provided in Table 5.7.

Table 5.7: The additive manufacturing case study dataset, including two surface roughness
indicators: arithmetic mean height and maximum height, measured in micrometers.

item 1 item 2 item 3

day location Sa Sz Sa Sz Sa Sz

1

1 15.8142 150.9376 16.4418 154.7735 19.5767 185.3556

2 16.2396 179.6778 18.3226 171.3407 17.9559 190.0342

3 15.2769 138.7714 17.5159 187.2241 17.4911 215.5314

4 19.8382 185.9456 18.7139 204.7901 18.4931 187.5317

5 17.4341 166.5843 17.5417 207.4305 17.6516 217.1608

6 17.4144 179.1234 15.6851 186.4145 17.8163 207.9204

7 15.9842 193.4986 17.0782 223.3932 18.4813 184.3721

8 17.2842 185.9857 16.3717 173.5216 16.4214 183.9491

9 16.6899 185.0446 16.6050 175.3170 18.2561 186.0849

10 18.2265 197.5126 15.3234 161.6667 17.5149 188.8636

11 17.7221 197.8555 19.9222 180.8608 16.8216 178.7585

12 16.4460 168.0996 19.3555 171.1917 13.7021 149.2174

13 22.7213 195.3031 15.3238 157.7218 16.5667 174.2890

14 16.8037 164.4793 19.8869 178.0095 16.3429 200.0500

2

1 18.0337 180.0380 15.8445 146.3601 18.0053 182.0201

2 16.7270 184.4368 19.6428 183.2617 21.3372 193.2535

3 16.7348 162.1750 16.1348 191.9976 18.5131 188.9810

4 17.6263 195.6394 16.8098 157.3294 19.1699 183.1615

5 22.5559 218.1262 16.4419 217.4865 19.5687 173.8972

6 19.5192 194.6053 19.2660 197.0146 16.4055 189.5859

7 18.9229 185.8017 17.2087 152.1666 19.8267 216.0673

8 19.3084 190.5167 15.8058 174.9040 14.5392 169.2935

9 20.4839 196.4947 18.0583 158.0377 17.6707 198.9530

10 16.9187 172.2214 16.3263 171.7709 16.7718 179.6701

11 19.0916 180.0296 16.9740 171.5532 19.3530 195.1110

12 18.1106 196.7730 18.1330 176.9972 16.3610 178.0702

13 19.2155 184.4769 23.6988 191.4654 17.1176 193.7935

14 21.7119 237.7091 20.0360 206.1837 16.6999 183.6231
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item 1 item 2 item 3

day location Sa Sz Sa Sz Sa Sz

3

1 15.9528 189.0304 19.5538 210.5994 18.4232 161.6373

2 21.0043 255.5313 18.8148 189.9513 17.1109 184.6086

3 17.5372 220.7395 18.3090 169.2820 19.2929 180.5064

4 16.8794 180.3613 20.1262 181.1621 18.5829 185.6703

5 18.2401 184.4683 20.8454 184.2203 17.0007 155.8582

6 15.5474 162.6579 15.4434 152.1582 16.8525 156.6085

7 14.8653 166.0205 17.8931 194.7030 16.8552 152.4085

8 18.3141 203.6321 17.1928 198.9038 21.7974 316.4879

9 19.4482 177.4798 17.3584 190.8859 18.8804 196.0557

10 17.1787 176.981 18.3125 176.5729 18.8347 168.7191

11 19.5680 171.4775 18.6879 186.8132 18.1755 173.0034

12 19.6343 155.6801 19.0967 200.5407 16.6548 177.6843

13 17.7350 177.5857 18.0063 199.7107 22.8400 183.3953

14 19.2537 178.8159 21.7320 173.3913 17.2732 170.1581

4

1 17.2762 161.8631 17.9226 147.6671 16.3791 189.7208

2 17.9874 166.9865 18.5356 149.3668 13.0690 186.5075

3 16.0446 186.5664 17.3127 149.9303 18.9040 215.6276

4 18.5500 170.7229 15.0705 130.7493 17.1407 181.6487

5 15.7060 150.7718 19.3416 151.0163 18.2732 192.8021

6 16.9173 156.8372 17.9022 162.9500 15.4346 167.9646

7 18.9507 177.9755 14.8720 152.7842 16.8112 173.1651

8 17.4127 166.9821 18.2363 186.5488 16.3774 156.9171

9 16.7690 175.5213 16.6754 170.7327 16.5278 175.4136

10 14.1707 137.2782 16.4651 151.0526 16.8182 176.2960

11 15.3936 150.4212 15.5819 193.6588 18.8871 216.5452

12 16.0138 169.1214 16.7177 148.8597 15.7553 165.5691

13 17.3709 184.1335 17.9926 172.4130 15.655 166.0623

14 16.0679 161.2346 14.5668 179.6443 17.059 188.1869
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item 1 item 2 item 3

day location Sa Sz Sa Sz Sa Sz

5

1 15.9997 173.2688 16.8121 148.6221 16.5904 180.9642

2 16.4902 171.5257 16.1504 152.4072 17.4032 165.5486

3 19.5245 175.5943 17.0604 147.3706 18.4322 193.2283

4 17.9370 187.7948 18.8631 167.2399 16.9810 145.8290

5 19.4714 181.9503 18.3453 169.0899 17.8519 175.5743

6 15.1143 153.3545 16.8081 156.7802 14.9719 143.2342

7 18.0412 180.6271 16.0984 187.3097 16.0078 178.8348

8 18.2084 187.2960 16.7121 181.3355 18.8298 197.3136

9 19.1414 196.2299 14.8717 153.2942 16.2130 175.8737

10 20.8908 190.2989 18.4184 211.5840 17.5673 184.6830

11 17.6168 183.7346 16.6617 164.7389 16.6045 166.7632

12 17.1072 198.4568 18.8436 176.9580 15.5543 141.4431

13 18.0304 170.2955 14.5059 153.5340 17.9444 178.3198

14 16.9599 185.0618 18.4743 186.6141 16.8205 167.6222

136



References

Ajadi, J. O., Wang, Z. and Zwetsloot, I. M. (2021), ‘A review of dispersion control charts
for multivariate individual observations’, Quality Engineering 33(1), 60–75.

Alt, F. B. and Smith, N. D. (1988), ‘Multivariate process control’, Handbook of statistics
7, 333–351.

Amemiya, Y. (1985), ‘What should be done when an estimated between-group covariance
matrix is not nonnegative definite?’, The American Statistician 39(2), 112–117.

Amemiya, Y., Anderson, T. W. and Lewis, P. A. (1990), ‘Percentage points for a test of
rank in multivariate components of variance’, Biometrika 77(3), 637–641.

Anderson, B. M., Anderson, T. W. and Olkin, I. (1986), ‘Maximum likelihood estimators
and likelihood ratio criteria in multivariate components of variance’, The Annals of
Statistics 14(2), 405–417.

Anderson, T. W. (1984), ‘Estimating linear statistical relationships’, The Annals of Statis-
tics 12(1), 1–45.

Anderson, T. W. (1989), The asymptotic distribution of characteristic roots and vectors
in multivariate components of variance, in ‘Contributions to probability and statistics’,
Springer, pp. 177–196.

Anderson, T. W. (2003), An introduction to multivariate statistical analysis, 3rd edn, Wiley
New York.

Anderson, T. W. and Amemiya, Y. (1991), ‘Testing dimensionality in the multivariate
analysis of variance’, Statistics & probability letters 12(6), 445–463.

Aronszajn, N. (1950), ‘Theory of reproducing kernels’, Transactions of the American math-
ematical society 68(3), 337–404.

137



Automotive Industry Action Group (1995), Measurement System Analysis (MSA), 2nd
edn, AIAG, Southfield, MI.

Automotive Industry Action Group (2003), Measurement System Analysis (MSA), 3rd edn,
AIAG, Southfield, MI.

Barrentine, L. B. (2003), Concepts for R&R studies, Quality Press.

Besse, P. C., Cardot, H. and Ferraty, F. (1997), ‘Simultaneous non-parametric regressions
of unbalanced longitudinal data’, Computational Statistics & Data Analysis 24(3), 255–
270.

Bhargava, A. K. and Disch, D. (1982), ‘Exact probabilities of obtaining estimated non-
positive definite between-group covariance matrices’, Journal of Statistical Computation
and Simulation 15(1), 27–32.

Borror, C. M., Montgomery, D. C. and Runger, G. C. (1997), ‘Confidence intervals for
variance components from gauge capability studies’, Quality and Reliability Engineering
International 13(6), 361–369.

Bosq, D. (2000), Linear processes in function spaces: theory and applications, Vol. 149,
Springer Science & Business Media.

Browne, R., MacKay, J. and Steiner, S. (2010), ‘Leveraged gauge r&r studies’, Technomet-
rics 52(3), 294–302.

Browne, R. P., Mackay, R. J. and Steiner, S. H. (2009), ‘Improved measurement-system as-
sessment for processes with 100% inspection’, Journal of Quality Technology 41(4), 376–
388.

Browne, R., Steiner, S. H. and MacKay, R. J. (2010), ‘Optimal two-stage reliability studies’,
Statistics in medicine 29(2), 229–235.

Burdick, R. K. (1994), ‘Using confidence intervals to test variance components’, Journal
of Quality Technology 26(1), 30–38.

Burdick, R. K., Borror, C. M. and Montgomery, D. C. (2003), ‘A review of methods for
measurement systems capability analysis’, Journal of Quality Technology 35(4), 342–354.

Burdick, R. K. and Larsen, G. A. (1997), ‘Confidence intervals on measures of variability
in R&R studies’, Journal of Quality Technology 29(3), 261–273.

138



Cai, T. T. and Yuan, M. (2011), ‘Optimal estimation of the mean function based on dis-
cretely sampled functional data: Phase transition’, The annals of statistics 39(5), 2330–
2355.

Cai, T. and Yuan, M. (2010), ‘Nonparametric covariance function estimation for functional
and longitudinal data’.

Cardot, H. (2000), ‘Nonparametric estimation of smoothed principal components analysis
of sampled noisy functions’, Journal of Nonparametric Statistics 12(4), 503–538.

Corbeil, R. R. and Searle, S. R. (1976), ‘A comparison of variance component estimators’,
Biometrics pp. 779–791.

Culp, S. L., Ryan, K. J., Chen, J. and Hamada, M. S. (2018), ‘Analysis of repeatability
and reproducibility studies with ordinal measurements’, Technometrics 60(4), 545–556.

Danila, O., Steiner, S. H. and MacKay, R. J. (2010), ‘Assessment of a binary measurement
system in current use’, Journal of Quality Technology 42(2), 152–164.

de Almeida, F. A., Leite, R. R., Gomes, G. F., de Freitas Gomes, J. H. and de Paiva,
A. P. (2020), ‘Multivariate data quality assessment based on rotated factor scores and
confidence ellipsoids’, Decision Support Systems 129, 113173.

Di, C.-Z., Crainiceanu, C. M., Caffo, B. S. and Punjabi, N. M. (2009), ‘Multilevel functional
principal component analysis’, The annals of applied statistics 3(1), 458.

Djauhari, M. A. (2005), ‘Improved monitoring of multivariate process variability’, Journal
of Quality Technology 37(1), 32–39.

Djauhari, M. A. (2007), ‘A measure of multivariate data concentration’, Journal of Applied
Probability & Statistics 2(2), 139–155.

Djauhari, M. A., Mashuri, M. and Herwindiati, D. E. (2008), ‘Multivariate process variabil-
ity monitoring’, Communications in Statistics-Theory and Methods 37(11), 1742–1754.

Donner, A. and Eliasziw, M. (1987), ‘Sample size requirements for reliability studies’,
Statistics in medicine 6, 441–448.

Drouot, A., Zhao, R., Irving, L., Sanderson, D. and Ratchev, S. (2018), ‘Measurement
assisted assembly for high accuracy aerospace manufacturing’, IFAC-PapersOnLine
51(11), 393–398.

139



Duan, S., Yu, G., Duan, J. and Wang, Y. (2023), ‘Sparse positive-definite estimation for
large covariance matrices with repeated measurements’, arXiv preprint arXiv:2304.08020
.

Duchon, J. (1977), Splines minimizing rotation-invariant semi-norms in sobolev spaces, in
‘Constructive Theory of Functions of Several Variables: Proceedings of a Conference
Held at Oberwolfach April 25–May 1, 1976’, Springer, pp. 85–100.

Ebadi, M., Chenouri, S., Lin, D. K. and H. Steiner, S. (2022), ‘Statistical monitoring of
the covariance matrix in multivariate processes: a literature review’, Journal of Quality
Technology 54(3), 269–289.

Ebadi, M., Chenouri, S. and Steiner, S. H. (2023), ‘Phase I analysis of high-dimensional
processes in the presence of outliers’, Journal of Quality Technology pp. 1–20.

Esmaeeli, R., Aliniagerdroudbari, H., Hashemi, S. R., Al-Shammari, H., Alhadri, M. and
Farhad, S. (2019), Univariate and multivariate gauge repeatability and reproducibility
analysis on the high frequency dynamic mechanical analysis (DMA) measurement sys-
tem, in ‘Proceedings of the ASME 2019 International Mechanical Engineering Congress
and Exposition’, Vol. 2B: Advanced Manufacturing, American Society of Mechanical
Engineers.

Ferraty, F. and Vieu, P. (2006), Nonparametric functional data analysis: theory and prac-
tice, Springer Science & Business Media.

Fong, Y., Rue, H. and Wakefield, J. (2010), ‘Bayesian inference for generalized linear mixed
models’, Biostatistics 11(3), 397–412.
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Scheffé, H. (1959), The analysis of variance, John Wiley & Sons.

Schölkopf, B., Herbrich, R. and Smola, A. J. (2001), A generalized representer theorem, in
‘International conference on computational learning theory’, Springer, pp. 416–426.

Searle, S. R., Casella, G. and McCulloch, C. E. (1992), Variance components, John Wiley
& Sons, Inc.

Shainin, P. D. (1992), Managing spc, a critical quality system element, in ‘46th Annual
Quality Congress Proceedings, ASQC’, pp. 251–257.

Shalin, G. (2021), Prediction and detection of freezing of gait in parkinson’s disease using
plantar pressure data, Master’s thesis, University of Waterloo.

Shang, H. L. (2014), ‘A survey of functional principal component analysis’, AStA Advances
in Statistical Analysis 98, 121–142.

145



Shi, L., He, Q., Liu, J. and He, Z. (2016), ‘A modified region approach for multivariate mea-
surement system capability analysis’, Quality and Reliability Engineering International
32(1), 37–50.

Shi, M. (1993), Multivariate analysis of variance and robust estimation of covariance struc-
tures when the data are curves, PhD thesis, The Ohio State University.

Shu, L., Hua, T., Wang, Y., Li, Q., Feng, D. D. and Tao, X. (2010), ‘In-shoe plantar
pressure measurement and analysis system based on fabric pressure sensing array’, IEEE
Transactions on information technology in biomedicine 14(3), 767–775.

Smith, R. R., McCrary, S. W. and Callahan, R. N. (2007), ‘Gauge repeatability and re-
producibility studies and measurement system analysis: A multimethod exploration of
the state of practice’, Journal of Industrial Technology 23(1).

Srivastava, A., Klassen, E., Joshi, S. H. and Jermyn, I. H. (2010), ‘Shape analysis of
elastic curves in euclidean spaces’, IEEE Transactions on Pattern Analysis and Machine
Intelligence 33(7), 1415–1428.

Srivastava, A. and Klassen, E. P. (2016), Functional and shape data analysis, Springer.

Srivastava, A., Wu, W., Kurtek, S., Klassen, E. and Marron, J. S. (2011), ‘Registration of
functional data using Fisher-Rao metric’.

Srivastava, M. and Kubokawa, T. (1999), ‘Improved nonnegative estimation of multivariate
components of variance’, The Annals of Statistics 27(6), 2008–2032.

Srivastava, M. S. (2003), ‘Singular wishart and multivariate beta distributions’, The Annals
of Statistics 31(5), 1537–1560.

Steiner, S. H. and MacKay, R. J. (2005), Statistical engineering: An algorithm for reducing
variation in manufacturing processes, Vol. 1, Quality Press.

Stevens, N. T., Browne, R., Steiner, S. H. and MacKay, R. J. (2010), ‘Augmented mea-
surement system assessment’, Journal of Quality Technology 42(4), 388–399.

Stevens, N. T., Steiner, S. H., Browne, R. P. and MacKay, R. J. (2013), ‘Gauge r&r studies
that incorporate baseline information’, IIE Transactions 45(11), 1166–1175.

Sugiura, N. and Nagao, H. (1968), ‘Unbiasedness of some test criteria for the equality of one
or two covariance matrices’, The Annals of Mathematical Statistics 39(5), 1686–1692.

146



Suriano, S., Wang, H., Shao, C., Hu, S. J. and Sekhar, P. (2015), ‘Progressive measurement
and monitoring for multi-resolution data in surface manufacturing considering spatial
and cross correlations’, Iie Transactions 47(10), 1033–1052.

Sweeney, S. (2007), ‘Analysis of two-dimensional gage repeatability and reproducibility’,
Quality Engineering 19(1), 29–37.

Taver, R. (1995), ‘Manufacturing solutions for consistent quality and reliability: The 9
step problem solving process’, AMACON, New York .

Thompson, W. A. (1962), ‘The problem of negative estimates of variance components’,
The Annals of Mathematical Statistics pp. 273–289.

Tiao, G. C. and Tan, W. (1965), ‘Bayesian analysis of random-effect models in the analysis
of variance. i. posterior distribution of variance-components’, Biometrika 52(1/2), 37–53.

Tikhonov, A. N. and Arsenin, V. (1977), Solutions of ill-posed problems, Winston/Wiley,
New York.

Uhlig, H. (1994), ‘On singular wishart and singular multivariate beta distributions’, The
Annals of Statistics pp. 395–405.

Van Wieringen, W. N. and De Mast, J. (2008), ‘Measurement system analysis for binary
data’, Technometrics 50(4), 468–478.

Vardeman, S. B. and Jobe, J. M. (2016), Statistical methods for quality assurance: Basics,
measurement, control, capability and improvement, 2nd edn, Springer, New York.

Venables, W. et al. (1974), ‘Null distribution of the largest root statistic’, Journal of the
royal Statistical Society, Series C: Applied Statistics, 23, Algorithm AS77 pp. 125–131.

Voelkel, J. G. (2003), ‘Gauge R&R analysis for two-dimensional data with circular toler-
ances’, Journal of quality technology 35(2), 153–167.

Wahba, G. (1990), Spline models for observational data, SIAM, Philadelphia.

Wang, F.-K. (2013), ‘An assessment of gauge repeatability and reproducibility with mul-
tiple characteristics’, Journal of Testing and Evaluation 41(4), 651–658.

Wang, F.-K. and Yang, C.-W. (2007), ‘Applying principal component analysis to a gr&r
study’, Journal of the Chinese Institute of Industrial Engineers 24(2), 182–189.

147



Wang, J.-L., Chiou, J.-M. and Müller, H.-G. (2016), ‘Functional data analysis’, Annual
Review of Statistics and Its Application 3, 257–295.

Waterhouse, W. C. (1983), ‘Do symmetric problems have symmetric solutions?’, The Amer-
ican Mathematical Monthly 90(6), 378–387.

Weaver, B. P., Hamada, M. S., Vardeman, S. B. and Wilson, A. G. (2012), ‘A bayesian
approach to the analysis of gauge r&r data’, Quality Engineering 24(4), 486–500.

Wheeler, D. J. and Lyday, R. W. (1989), Evaluating the Measurement Process, 2nd edn,
SPC Press, Inc., Knoxville, TN.

Yang, Y., Dong, Z., Meng, Y. and Shao, C. (2021), ‘Data-driven intelligent 3d surface
measurement in smart manufacturing: review and outlook’, Machines 9(1), 13.

Yao, F., Müller, H.-G. and Wang, J.-L. (2005), ‘Functional data analysis for sparse longi-
tudinal data’, Journal of the American statistical association 100(470), 577–590.

Zhang, J. T. (2013), Analysis of variance for functional data, Chapman and Hall/CRC.

Zhang, X. and Wang, J.-L. (2016), ‘From sparse to dense functional data and beyond’, The
Annals of Statistics 44(5), 2281–2321.

148


	List of Figures
	List of Tables
	Introduction
	Introduction 
	Statistical properties of measurement systems
	Parameters for assessing measurement systems
	Guidelines and considerations 
	Assessing multivariate and functional data measurement systems 
	Roadmap of the thesis

	Measurement System Assessment Study with a Single Characteristic: A Systematic Review
	Introduction
	The univariate one-way model
	Preliminary analysis
	Point estimation
	ANOVA estimation
	Non-negative ANOVA estimation
	Uniformly minimum variance unbiased estimators
	Maximum likelihood estimation
	Other estimation methods

	Theoretical properties
	The expected values and bias
	Sampling variance
	Test of hypothesis
	Convergence properties
	Confidence intervals

	Robustness issues
	Supplementary materials

	Measurement System Assessment Study for Multiple Characteristics
	Introduction and background
	Contributions and outlines
	Notation

	Model and performance metrics
	Preliminary analysis
	Point estimation
	Multivariate ANOVA estimation
	UMVUEs
	Maximum likelihood estimation
	Other estimation methods

	Convergence properties
	Confidence intervals
	Simulation studies
	Discussion and prospects
	Supplementary materials

	Measurements System Assessment Study for Functional Datasets
	Introduction and background
	Contributions and outlines
	Basic notation and conventions

	One-way model setup
	Spectral analysis
	Parameters for assessing measurement systems
	Estimation procedure
	Basic estimation without smoothing
	Estimation with smoothing 

	Simulation study
	Prospects for further research
	Supplementary materials

	Case Study Application
	Experiment setup and data acquisition
	Surface texture model
	Point-wise analysis
	Multivariate analysis
	Functional data analysis

	Comparison of methodologies 
	Supplementary material

	References

