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Abstract

In the design and analysis of experiments, it is often assumed that experimental
units are independent, in the sense that the treatment assigned to one unit will not
affect the potential outcome of another unit. However, this assumption may not hold
if the experiment is conducted on a network of experimental units. The treatment
assignment of one unit can spread to its neighbors via their network connections.
The growing popularity of online experiments conducted on social networks calls for
more research on this topic. We investigate the problem of experiments on networks
and propose new approaches to both the design and analysis of such experiments.

The first chapter gives a brief introduction to the problem of network experi-
mentation. We begin by presenting some basic concepts of network data analysis
and experimental design. We then provide a review of existing literature on exper-
iments on networks, which can be categorized into model-based and design-based
approaches. The model-based approaches start by positing a model for the experi-
mental outcomes and optimal designs are found based on design criteria formulated
from the model. However, the model-based approaches can be sensitive to model
misspecification. In this thesis, we seek to enhance the robustness of the model-
based approaches by extending the flexibility of the models and developing design
methods that take into account one’s uncertainty in model parameters.

In the second chapter, we propose the General Additive Network Effect (GANE)
model, which encompasses many existing models from the literature while providing
greater flexibility in modeling the experimental outcomes on networks. In addition,
we establish an analysis framework that can be applied not only to the proposed
GANE model but also to many other experimental network outcome models. In
particular, we define causal effect quantities, hypothesis tests, and design criteria
that are of interest in experiments on networks. We derive the quasi-likelihood-based
estimation procedure and inferential properties of a specific family of specifications
under the GANE framework. The performance of certain specifications of the GANE
model is studied via simulations. We find that our proposed POW-DEG specification
performs well under model misspecifications.

The third chapter considers network experiments with binary outcomes. In this
case, models for continuous outcomes like those in Chapter 2 are no longer appro-
priate. We thus extend the GANE framework to binary data using link functions in
a fashion similar to generalized linear models. The model inherits the flexibility of
network effect modeling and inference from the GANE framework. Estimation and
inference are carried out via the maximum likelihood framework. We investigate the
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performance of different specifications of the model via simulations. We find that for
trustworthy estimation and inference in experiments with binary outcomes, larger
sample sizes are required than for their continuous-response counterpart. Binary
models are also difficult to estimate if the outcome data lacks heterogeneity (i.e., a
drastic imbalance of 1s and 0s). This requires careful consideration in the experimen-
tal design. Finally, we illustrate the applicability of our method in an agricultural
insurance experiment.

As illustrated in Chapters 2 and 3, to capture the interference patterns on net-
works, models for network experiments can be complex. As a result, design criteria
defined based on these models may not have an analytical form and/or they may
involve unknown parameters. This limits the use of traditional design construction
methods such as integer programming or gradient-based optimization algorithms. In
Chapter 4, we focus on enhancing the robustness of model-based approaches by for-
mulating a Bayesian design framework that takes into account prior distributions for
the unknown parameters. To find optimal designs, we investigate and adapt a variety
of general optimization algorithms. We investigate and compare the effectiveness of
these algorithms over a variety of model specifications and data sets that have been
proposed and used in the literature. Based on the resulting designs obtained from
various algorithms and settings, we deduce desirable design characteristics for each
model and provide general design guidelines for practitioners.

Finally, in Chapter 5, we summarize the contribution of the thesis and discuss
topics for future research.
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1.1.

UMichigan This refers to the UMichigan Facebook friendship network retrieved
from the Network Repository Rossi and Ahmed (2015). The network contains
snapshots of Facebook friendships in UMichigan some time in 2005. The net-
work is made undirected and simple. Summary statistics of the network is
given in Table 1.1.

HOM The Homophily Model, i.e. Model (2.4).

LNE The Linear Network Effects Model proposed by Parker et al. (2017), i.e., Model
(2.1).

FNE The Fraction Neighborhood Exposure Model used by Gui et al. (2015) which
uses the percentage of treated neighbors to model the network effect, i.e., Model
(2.5).
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LAV The Local Average Model that uses the average of neighbors’ outcomes to
model the network effects, i.e. Model 2.6.

LAG The Local Aggregate Model that uses the sum of neighbors’ outcomes to model
the network effects, i.e. Model 2.7.

POW-DEG The power-transformed LNE model, i.e. Model 2.9.
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GTE The global treatment effect.

DTE The direct treatment effect.
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OLS Ordinary Least Squares.

ML Maximum Likelihood.

GANE General Additive Network Effects.

BFGS Broyden-Fletcher-Goldfarb-Shanno.

AIC Akaike Information Criterion.
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Chapter 1

Introduction

“We are all connected to everyone and everything in the uni-
verse. Therefore, everything one does as an individual affects
the whole. All thoughts, words, images, prayers, blessings,
and deeds are listened to by all that is.”

- Serge King -

The world is an interconnected body where all entities are inseparable from one
another. There exist connections and hence networks in every corner of life. Scientists
have conducted studies on networks in logistics systems like transportation (Xu and
Harriss, 2008) and waterways (Sattar et al., 2019); in biological bodies such as the
brain (Xia et al., 2013) and proteins (Rual et al., 2005); in the citations of scientific
papers (Börner et al., 2012); and in social structures like businesses, (Krebs, 1996;
Owen-Smith and Powell, 2004), organizations (Tichy et al., 1979; Lewis and Sexton,
2004), and online social networks (Bakshy et al., 2012a,b; Bapna and Umyarov,
2015). It is thus insufficient, in many cases, to study individual entities separately
without considering the connections among them.

This has been the motivation for the study of networks in the past century (Ko-
laczyk and Csárdi, 2014). However, the adoption of network studies in statistics has
not been very popular until the recent computer age of the twenty-first century. One
of the reasons was the lack of data, especially in biology and social sciences. To
analyze a network, one must have a network at hand. This often requires network-
constructing studies, for example, surveys where each individual nominates their
connections (Latkin et al., 1995; Ennett et al., 2006), or research that reveals biolog-
ical correlations among genes (Franke et al., 2006; Sardiello et al., 2009), or proteins
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(Rual et al., 2005; Stelzl et al., 2005).

In recent decades, advances in science and technology have enabled us to col-
lect, store, and manage data in much bigger quantities and with better quality. As
a result, network data has also become more readily available. One of the most
prominent examples comes from online social networks. From the SixDegrees.com
website in 1997 to the global networks of Facebook and Twitter in 2006 (Boyd and
Ellison, 2007), nowadays, social networks have become a part of our daily lives.
They are platforms for connections, communications, networking, media, and pro-
paganda. Consequently, there is an increasing number of problems that these social
network companies face, from privacy issues (Hoadley et al., 2010), and misinforma-
tion (Christofides et al., 2009) to the selection of operational algorithms to improve
their products (Xu et al., 2015). These problems often require the companies to
conduct many experiments on their networks (Goel, 2014; Xu et al., 2015) in order
to make informed and strategic decisions. This has motivated recent research on ex-
perimentation on networks (Bond et al., 2012; Goel, 2014; Eckles et al., 2016; Gupta
et al., 2019; Larsen et al., 2023). In this chapter, we will introduce the basic concepts
and current literature in this area. We will also present an outline of the thesis and
the contributions it makes.

1.1 Basic Concepts and Notation

Experiments on networks consist of two components: experiments and networks. In
the following subsections, we will introduce basic concepts from the fields of network
analysis and experimental design. We will also define the notation that will be used
throughout the thesis.

1.1.1 Networks

A network is defined by its nodes and the links, or connections, among the nodes.
In graph theory, networks are referred to as graphs, nodes as vertices, and links as
edges. In this thesis, these terms will be used interchangeably.

Formally, a network G = (V , E) consists of a node set V and an edge set E . Nodes
are labeled by positive integers, i.e., V = {1, 2, ..., n}, where 0 < n ∈ N is the number
of nodes in the network. The edge set E contains pairs of nodes that are connected
in G

E = {{i, j} : node i is connected to node j in G, 1 ≤ i, j ≤ n}.
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An edge can also encode direction. If a node i is connected to node j, we say that
there is a directed edge from node i to node j. Likewise, if node j is connected to
node i, there is a directed edge from node j to node i. In this case, it is possible
that node i is connected to node j but node j is not connected to node i. (Think
about one-way roads!) However, if the edge has no direction, in the sense that if
node i is connected to node j implies node j is also connected to node i, we say that
{i, j} is an undirected edge. A network consisting of directed edges is called a directed
network, while a network consisting of only undirected edges is called an undirected
network.

If there is an undirected edge between node i and node j, we say that node i is a
neighbor of node j and vice versa. For each node i, the number of neighbors it has is
called the degree of node i. If a node i is connected to itself, we say that node i has
a self-loop. If there is more than one edge from node i to node j, we call the edges
a multi-edge. A simple network is a network without any self-loops or multi-edges.

A simple network G can be represented by its adjacency matrix A which contains
information about the edges of G.

A = [Aij]1≤i,j≤n such that Aij =

{
1 if {i, j} ∈ E
0 otherwise.

Since there are no self-loops in a simple network, the diagonal elements of A are all
zeros, i.e., Aii = 0, 1 ≤ i ≤ n. For an undirected network G, A is symmetric.

In a network, edges may contain more information than simply which nodes they
are connecting. For example, edges may encode the strength of relationships, flow
capacities, the number of edges for each multi-edge, etc. In this case, instead of
using the binary adjacency matrix A, the network can be represented using a weight
matrix W = [Wij]1≤i,j≤n, where Wij ∈ R is the weight of the edge {i, j} indicating
the strength of association between nodes i and j. A zero-weighted edge implies the
edge’s nonexistence. A network with weighted edges is called a weighted network.

The above provided a brief overview of some important concepts in network
analysis and graph theory. For a more detailed discussion, see Kolaczyk and Csárdi
(2014).

1.1.2 Designed Experiments

In science and engineering, we often want to study a system and understand how it
changes. For example, a farmer may want to know how to adjust the water level,
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the amount of fertilizer, and the temperature for a bountiful harvest; an automotive
engineer wants to know which engines can generate the highest acceleration; or a
pharmacist might want to know whether a new drug is effective in treating a certain
disease. In these examples, experiments are often required to help answer such causal
questions of interest.

Formally, an experiment is an empirical investigation in which specific inputs of a
system are intentionally manipulated so that the experimenters can observe whether,
and quantify by how much, certain outputs of the system change (Montgomery,
2019). Such outputs of the system are called the outcomes (also called outputs or
responses) of the experiment. The physical entities whose outcomes are measured
in the experiment are called experimental units. For example, experimental units
can be farming plots in an agricultural setting, cars in a manufacturing setting, and
subjects in a pharmaceutical setting.

The input variables to be manipulated by the experimenters are called the fac-
tors of the experiment. Different values of a factor that are chosen to be used in the
experiment are called levels of that factor. In the crop example, the factors may be
water, fertilizer, and temperature, and the levels are certain amounts of these fac-
tors. A unique combination of the levels of the experimental factor(s), which forms
a complete condition in which the system is observed, is called a treatment. When
a treatment is applied to an experimental unit, we say that a run (or a replication)
is conducted. The experimental design defines the treatments, determines the allo-
cation of the treatments among the experimental units, and the order of the runs so
that the experiment can help answer the question of interest accurately and precisely.
In designing an experiment, one often needs to take into account certain constraints
of the experiment, typically time and cost. Hence, experimental design is usually
viewed as a constrained optimization problem.

Three basic principles of experimental design are randomization, replication, and
blocking. First, depending on the experimental constraints, replication should be
applied so that each treatment is assigned to more than one experimental unit. This
helps to provide a more precise estimate of the treatment effects as well as an under-
standing of the variability of the outcomes, i.e., the experimental error. Second, since
the outcomes of an experiment can be affected by other (uncontrolled) inputs be-
sides the experimental factors, to neutralize the effects of these inputs, experiments
are usually randomized, i.e., the experimental units are randomly assigned to the
treatments. Third, whereas randomization handles uncontrolled inputs, to control
for other nuisance inputs (i.e., the inputs that may affect the experiment outcomes
but are not of analysis interest), it is helpful to group the experimental runs into
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homogeneous blocks based on those inputs, and then allocate different treatments
within each block. This helps remove the effects of the nuisance inputs and enhances
the accuracy of treatment comparisons. Altogether, the three principles of experi-
mental design enable us to conduct experiments with better internal and external
validity. For a more detailed discussion about experimental design, see Montgomery
(2019) and Wu and Hamada (2021). In this thesis, we focus on randomization and
replication. There has been considerably less work that considers blocking in exper-
iments on networks (Koutra et al., 2021), thus it is a promising avenue for future
research.

1.2 Design and Analysis of Experiments on Net-

works

An experiment on a network is one in which the experimental units reside within
a network. For example, users on social network websites connect by “friending”
or “following” one another; streets in a city are physically connected; students in a
university connect by taking the same courses; and researchers connect via collab-
orations. The following examples showcase possible applications of network experi-
mentation.

Example 1.1. (LINKEDIN) LinkedIn is a social network for professionals. On
LinkedIn, users can publish and update their CVs, connect with their past class-
mates and colleagues, and seek job opportunities or career advice. An important
component of LinkedIn is the “People You May Know” feature, where LinkedIn users
are presented with other users to whom they possibly want to connect. The system
uses the LinkedIn network data and builds models that estimate the propensity of
connections between two users. The effectiveness of these models can be measured
by the number of connections a user initiates using the “People You May Know”
feature. LinkedIn regularly updates the feature, and they conduct experiments on
their users to evaluate the updates (Yin, 2021). △
Example 1.2. (SURVEILLANCE CAMERA) La Vigne et al. (2011) discuss a sit-
uation when the experimenter wants to evaluate the effectiveness of surveillance
cameras in reducing crime rates. The experimenters selected certain streets for their
experiment. Surveillance cameras are randomly installed on some streets, and not
on others. The crime rate of each street will then be measured and analyzed to
determine the effectiveness of the cameras. This is a network experiment because
the streets are connected with one another in the traffic system. △
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Example 1.3. (COSMETICS ADVERTISEMENT) As social network services have
grown in popularity, it is common for businesses to utilize these platforms for ad-
vertising (Leskovec et al., 2007). Consider a cosmetic company that wants to know
whether a new ad is more effective compared to an older one. In this case, suppose
the company conducts an experiment on a social network platform’s users. And,
suppose the response of interest is the revenue from cosmetic sales. There is one
experimental factor, which is the ad version. The factor has two levels: the old ver-
sion and the new version. We will use this setting to provide illustrative examples
throughout the thesis. △

Often, the goal of experimentation is to understand the effects of the treatments
on the outcomes of individual experimental units, i.e., the treatment effect. However,
in the context of an experiment on a network, the experimenter may also want to
understand the influence of the network on the outcomes, i.e., the network effect,
and/or how the treatment mediates such influence. In the following subsection, we
will introduce the problem of network experimentation and the notation we use in
this thesis. Then, in the subsections that follow, we review existing research on the
subject.

1.2.1 Problem Setting

Consider an experiment to be conducted on n experimental units, labeled 1, 2, ..., n.
Assume that the associations among the experimental units are described by a net-
work G = (V , E). In particular, the nodes of G represent the experimental units,
and the edges of G represent their connections. Current studies (e.g., Gui et al.,
2015; Eckles et al., 2016; Aronow et al., 2017; Basse and Airoldi, 2018) generally
assume that the network is undirected and simple, and is observed and unchanged
throughout the experiment. Let A denote the adjacency matrix of G and K denote
the diagonal matrix whose diagonal element Kii is the degree (i.e., the number of
neighbors) of unit i, for i = 1, 2, ..., n.

Let Yi denote the experimental outcome of unit i, for i = 1, 2, ..., n, and let
Y = (Y1, Y2, ..., Yn)

⊤ denote the vector of outcome values. In this thesis, we consider
both cases where Y is continuous (Chapter 2) or binary (Chapter 3). The litera-
ture about experiments on networks mainly focuses on A/B testing problems, i.e.,
experiments with two treatments: the new condition whose effect is the interest of
the experimenter (called the treatment), and the existing condition that the experi-
menter wants to compare the new condition to (called the control). So far, we have
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seen that the word “treatment” has two meanings, one is the general notion of exper-
imental conditions, and one is the specific “new” condition in the A/B test setting.
For our purposes, we refer to the former meaning when we talk about the “treatment
assignment” or in the plural form “treatments”. And we refer to the latter meaning
when we talk about the “treatment” on its own. We denote the treatment assign-
ment vector by Z, where Zi = 1 if unit i is assigned to treatment and Zi = 0 if unit
i is assigned to control, i = 1, 2, ..., n. In this thesis, we will focus on investigating
A/B tests. Cases where the experiment has one factor at multiple levels (i.e., A/B/n
tests) or multiple factors (multivariate tests) are discussed as possible extensions in
Chapter 5.

In the A/B test setting, once the treatment assignment is determined, treatments
are operated concurrently. As such, we do not need to specify the order of the runs
because the treatments are run in parallel. In this case, the design of the experi-
ment refers to the decision of which experimental units (nodes) will be assigned to
treatment, and which will be assigned to control, which is equivalent to the selection
of the binary treatment assignment vector Z. In this thesis, we will refer to Z as
either the treatment assignment vector or the design, interchangeably. In contrast to
the design of the experiment, the analysis of the experiment refers to the process of
using observed experimental data to understand and infer the experimental results
according to the goals set by the experimenters. Thus, the (statistical) problem of
network experimentation concerns both the design and the analysis of experiments
on networks.

To design and analyze an experiment on a network, one needs to make cer-
tain assumptions. We will start with the common assumptions made in general
experimental design settings. The randomization and replication principles require
randomly assigning each treatment to multiple experimental units (nodes) in the
network. Hence, it is assumed that we can assign each unit to whichever treatment
we want. We further assume that all experimental units respond and we can measure
their outcomes. The problem of nonresponse is beyond the scope of the thesis. An-
other assumption that is usually made in the design and analysis of experiments is
the Stable Unit Treatment Value Assumption (SUTVA) (Rubin, 1980), which states
that the treatment assignment of an experimental unit will not affect the outcome
of another. Under this assumption, many classical design and analysis methodolo-
gies have been developed, such as randomized block designs, factorial designs, and
fractional factorial designs, etc. (Montgomery, 2019). However, in our setting where
individual units are connected with one another on a network, this assumption often
will not hold. The following example demonstrates how SUTVA may be violated in
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the network experiment setting.

Example 1.4. Let us continue with Example 1.3. Suppose that the new ad is shown
to Tracy, leading Tracy to buying more products from the cosmetics company. Now
if Connie is a friend of Tracy on the social network, Tracy may share information
about the products on their page, or introduce the products to Connie. In this case,
even if Connie is only presented with the old ad, they may still buy more products
from the company. In this sense, the treatment assignment of Tracy affected Connie’s
outcome. This violates SUTVA. △

As Example 1.4 shows, when the experimental units reside on a network G,
SUTVA may be violated. In particular, for an experiment on a network, the outcome
Yi of a unit i is not only affected by its own treatment assignment Zi as in traditional
settings, but it may also be influenced by Z, the treatment assignments of everyone
in the network. As a consequence, common techniques in classical experimentation
may be inadequate in the network setting, and more sophisticated approaches are
required.

There have been several approaches considered in the growing literature on the
design and analysis of experiments on networks. These approaches differ in many
ways, from the goals and assumptions of the experiment to the design and analysis
techniques proposed. In general, these approaches to the design and analysis of
such experiments can be classified into two categories: model-based and design-
based approaches. In the following subsections, we will review prominent research
and discuss the advantages and disadvantages of each of these two experimental
frameworks.

1.2.2 Model-Based Approaches

Model-based approaches begin by assuming a model for the experimental outcomes
(i.e., the outcome vectorY). With the assumed model, the analysis procedure can be
formed and corresponding properties of the analysis can be studied. To accommodate
such an analysis, design criteria are defined a priori according to the experimenters’
interests, and algorithms to find satisfactory designs are developed.

1.2.2.1 Models

Some studies suggest a linear network effects model (Gui et al., 2015; Parker et al.,
2017; Koutra et al., 2021) in which the outcome of a unit is modeled by a linear
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function of the treatment effect and the network effect. In particular, Parker et al.
(2017) introduce the model

Yi = µ+ τZi + γ1

n∑
j=1

AijZj + γ2

n∑
j=1

Aij(1− Zj) + ϵi, (1.1)

where ϵi
iid∼ N (0, σ2), µ is the baseline outcome (i.e., the outcome when no treatment

is applied and there is no network effect), and τ is the direct effect of the treatment.
The network effect is accounted for using γ1 and γ2, which quantify the influence
from the neighbors who are assigned to treatment or control, respectively. While
(1.1) uses the number of neighbors to define the network effect, Gui et al. (2015) use
the percentage of neighbors assigned to treatment

Yi = µ+ τZi +
γ

Kii

n∑
j=1

AijZj + ϵi. (1.2)

Thus, (1.2) assumes that there is no influence from the neighbors assigned with con-
trol, while in (1.1), such an effect is parametrized by γ2. We can see that both (1.1)
and (1.2) are ordinary linear regression (OLS) models. If the model is correctly speci-
fied, these estimators are unbiased for their respective parameters, given a treatment
assignment vector Z. The variances of these estimators can be estimated following
the usual OLS framework.

Another popular type of model is the network-correlated outcome model (Basse
and Airoldi, 2018; Pokhilko et al., 2019). Similar to the linear network effects model,
the treatment effect in the network-correlated outcome model is modeled by an addi-
tive term of individual treatment assignment. However, instead of modeling the net-
work effects as functions of the treatment assignment vector, the network-correlated
outcome model posits a correlation structure based on the network structure. This
is motivated by a conjecture that connected units often share similar characteristics,
which influence and thus create correlations in the experimental outcomes. This is
referred to in network science as homophily. One version of a network-correlated
outcome model is proposed by Basse and Airoldi (2018)

Yi = Ui + τZi +
n∑

j=1

AijUj + ϵi, (1.3)

where Ui
iid∼ N (µ, η2) denotes a latent variable that can be thought of as the “intrinsic

baseline outcome” of unit i in the absence of the network. In this model, the network
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effect is modeled using the sum of the U values of the neighbors and is unrelated to
the treatment assignment vector. Another outcome model, suggested by Pokhilko
et al. (2019), is adapted from the conditional autoregressive (CAR) models used in
the spatial statistics literature

Yi = µ+ τZi + ϵi where ϵi|ϵ−i ∼ N

(
ρ
∑
j ̸=i

Aijϵj
Kii

,
σ2

Kii

)
. (1.4)

Here, ϵ denotes the vector of ϵi’s and ϵ−i denotes the vector without the i-th element.
In this model, the correlation is modeled via the noise vector ϵ, where ϵi follows a
normal distribution with the mean being the average of the ϵ values of its neighbors.
It can be shown that under this model,

ϵ ∼ N
(
0, σ2(K− ρA)−1

)
. (1.5)

Thus, parameters of (1.3) and (1.4) can be estimated using Maximum Likelihood
(ML), with inference being conducted in accordance with the usual ML procedures.
Note that the above is not an exhaustive list of models, but instead a short intro-
duction to build intuition and familiarity. Many other models exist, and we review
and use some later in the thesis.

1.2.2.2 Design

As experimenters want to design the experiment so that the analysis can be done
accurately and efficiently, the design problem can be formulated into an optimiza-
tion problem where we find the treatment assignment vector Z (called the optimal
design) that optimizes a design criterion. In the model-based framework, design
criteria can be defined based on the inferential properties of the parameters’ esti-
mators. For example, D-optimality is a popular design criterion in the experimental
design literature (Pukelsheim, 2006; Fedorov and Leonov, 2013). A D-optimal design
aims to minimize the determinant of the variance-covariance matrix of the parame-
ter estimators, which is positively related to the volume of the confidence region of
the parameters. In network experimentation, D-optimal designs have also been con-
structed with respect to certain models (Pokhilko et al., 2019; Koutra et al., 2021).
While D-optimal designs aim to minimize the confidence region for all parameters,
experimenters may have specific parameters of interest. In this case, a design cri-
terion can be defined based on the variances of these parameters’ estimators. For
example, Var[τ̂ ] has been considered as the design criterion for (1.1), (1.3), and (1.4).
Parker et al. (2017) also consider Var[γ̂1 − γ̂2] as a design criterion for (1.1).
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Having selected the design criterion, we can proceed to find the optimal design.
Certain design criteria for certain models can be written in a closed form that allows
optimal designs to be found using integer programming (Pokhilko et al., 2019; Koutra
et al., 2021; Zhang and Kang, 2022). However, more generally, design criteria do not
have a closed-form formula, and heuristic optimization algorithms need to be used.
A conceptually straightforward solution is exhaustive search (Parker et al., 2017), in
which we calculate the design criterion for each of all possible designs, and choose the
design with the best design criterion value. However, in an A/B test where each unit
can be assigned to either treatment or control, there is a total of 2n possible designs.
This number will increase exponentially as the size of the network increases. Since
most real-world networks have very large n, the aforementioned solution, although
conceptually simple, is computationally prohibitive in practice.

To address this problem, Parker et al. (2017) consider two strategies. The first
strategy is an exchange algorithm that iteratively changes the treatment assignment
in the direction of optimizing the design criteria. Unfortunately, there is no guarantee
about the convergence of this approach and early stopping criteria need to be used
to control the running time. The second strategy is a random search, which involves
randomly generating a large number of designs and choosing a design with the best
design criterion value. Note that both procedures do not guarantee an optimal
design, and so sub-optimal designs will be returned. Via simulations, Parker et al.
(2017) observe that, given the same number of designs evaluated, the random search
approach, despite its simplicity, yields similar or even better designs compared to
the exchange algorithm.

To summarize, in the model-based approaches, treatment and network effects
are defined via model parameters. In terms of analysis, parameter estimation and
inference can be conducted using usual techniques such as the OLS or ML procedures.
In terms of design, optimality criteria can be constructed based on the model and a
good design can be found using suitable algorithms. A major drawback of model-
based approaches, however, is the reliance on the model assumptions, where model
misspecification is the main concern.

1.2.3 Design-Based Approaches

1.2.3.1 Literature Review

In the model-based approaches, the model plays a central role, in which its distri-
butional assumption and inferential properties drive the construction of the design
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and analysis. On the other hand, in the design-based approaches, the focus is on
the design strategy, i.e., the randomization scheme that generates the design Z, and
inferential uncertainty comes from the randomization scheme instead of any distri-
butional assumption.

In the literature, design-based approaches have been motivated by the main goal
of the network experiment. In many cases, the experimenters are interested in an-
swering the question of whether or not to deploy the treatment to the whole pop-
ulation (network). In Example 1.1, it is the question of whether to apply the new
“People You May Know” algorithm to the whole population of LinkedIn users; and
in Example 1.3, it is whether to show all users the new ad. Therefore, an impor-
tant goal of network experiments is to estimate the global treatment effect (GTE),
i.e., the difference in the average outcome of the units when the whole network is as-
signed with treatment compared to when the whole network is assigned with control.
Mathematically, the GTE is defined as

1

n

n∑
i=1

{
E[Yi|Z = 1n]− E[Yi|Z = 0n]

}
, (1.6)

where 1n and 0n are column vectors in Rn of ones and zeros, respectively. A naive
experimental strategy would be to assign all experimental units in the network to
treatment and then compare the average outcome to the average outcome before
the experiment was conducted. However, temporal effects may confound the results.
Unfortunately, both situations where the whole graph is assigned with treatment
or with control, i.e., the factual and counterfactual outcomes, cannot be observed
simultaneously. Therefore, in the experiment, only some of the units can be assigned
to treatment while the others should be assigned to control, i.e., Z ̸= 1n and Z ̸= 0n.

To estimate the GTE, a popular design strategy called graph-cluster randomiza-
tion (Ugander et al., 2013; Gui et al., 2015; Eckles et al., 2016) has been proposed.
The graph-cluster randomization strategy partitions the network into a reasonably
large number of clusters of densely connected units and then randomly assigns all
units in each cluster to either treatment or control. The dense connections among
the clusters’ units enable each unit to be surrounded by neighbors that share the
same treatment assignment as theirs, hence mitigating network interference. In this
case, the design strategy aims to simulate “two universes” (Ugander et al., 2013),
one where the whole network is assigned to treatment and and one where all the
units are assigned to control. Different graph clustering strategies, such as the ϵ-net
clustering algorithm (Ugander et al., 2013), the balanced label propagation algorithm
(Gui et al., 2015), and the random walk-based algorithm (Backstrom and Kleinberg,
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2011) have been studied and used in network experimentation. For a general review
on graph clustering, see Fortunato (2010); Fortunato and Hric (2016); Abbe (2017);
or Doreian et al. (2020).

In the design-based approaches, the analyses are conducted under the exposure
framework (Gui et al., 2015; Eckles et al., 2016; Aronow et al., 2017). In this frame-
work, units are classified into R exposures ε1, ε2, ..., εR depending on the treatment
assignment vector Z. A possible set of exposures is given in Example 1.5.

Example 1.5. Gui et al. (2015) propose the “neighborhood exposure” which com-
prises the following two exposures:

• the treatment exposure: units i such that Zi = 1 and the proportion of neigh-
bors of i assigned to treatment,

∑n
j=1AijZj/Kii, is greater than or equal to θ;

and

• the control exposure: units i such that Zi = 0 and the proportion of neighbors
of i assigned to treatment is less than or equal to 1− θ,

where 0 ≤ θ ≤ 1 is a threshold chosen a priori. In this case, R = 2, and ε1 denotes
the treatment exposure and ε2 denotes the control exposure. △

Let us denote the potential outcome of unit i if unit i belongs to exposure εk by
Yi(εk). In this case,

µ(εk) =
1

n

n∑
i=1

Yi(εk)

is the average potential outcome under exposure εk. Now, the experimenters may
be interested in contrasts of these average potential outcomes, for example, between
exposures k and l

µ(εk)− µ(εl) =
1

n

n∑
i=1

Yi(εk)−
1

n

n∑
i=1

Yi(εl).

Note that we cannot obtain µ(ϵk) directly from the experimental data because not
every unit i belongs to exposure εk. If i does not belong to εk, Yi(εk) is unobserved.
Hence, µ(εk) needs to be estimated by for example, inverse-probability-weighted
difference-in-mean estimators, such as the Horvitz-Thompson estimator (Horvitz and
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Thompson, 1952; Eckles et al., 2016; Aronow et al., 2017), or the Hajek estimator
(Hájek, 1971; Eckles et al., 2016)). The Horvitz-Thompson estimator of µ(ϵk) is

µ̂HT(εk) =
1

n

n∑
i=1

I(i ∈ εk)
Yi

π̂i(εk)
, (1.7)

where the propensity score πi(εk) is the probability that unit i belongs to exposure
k. The estimator π̂i(εk) is obtained by randomly generating different designs from
the design randomization scheme (such as the graph-cluster randomization), and
calculating the proportion of times that unit i belongs to exposure k. Unbiased or
conservative estimators of the variances of these estimators have been proposed and
studied (Aronow et al., 2017; Sussman and Airoldi, 2017; Li et al., 2019b).

1.2.3.2 Limitations

The design-based approaches are nonparametric, model-free, and thus robust to
model misspecification. This is a major advantage compared to the model-based
approaches. However, there still remain challenges in the design-based approaches.
First, the definitions of the exposures need to be specified by the experimenters. For
example, if the experimenters want to use the two exposures defined in Example
1.5, they need to choose the threshold θ a priori. In particular, threshold θ needs
to be set so that the potential outcomes under the exposures Yi(εk), k = 1, 2 are
close to the unobserved (counterfactual) potential outcomes in the two “universes”
where all units are assigned to the same treatment assignment (treatment or control).
However, it is often unknown which value of θ will make the two sets of potential
outcomes close enough. The effect of exposure misspecification still requires future
research (Sävje, 2023).

The choice of θ also affects the effective sample sizes. Depending on the value
of θ, there may be some units that cannot be classified into any of the exposures.
For example, any treated unit i having less than θ × 100% of neighbors assigned
to treatment will not be classified into either of the exposures defined in Example
1.5. In this case, the outcomes of these units will be discarded in the analysis. As a
result, despite having many units involved in the experiment, only a fraction of the
outcomes will be analyzed and the rest will be wasted. This happens regularly in
real-life networks, even when graph-cluster randomization is used with the intention
to simulate the treatment and control “universes”. Due to the typical structure
of a social network, it is unlikely that the network can be divided into similar-
sized disconnected clusters (Chin, 2019). As a result, units from one cluster connect
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Figure 1.1: Boxplots of the effective sample sizes of 1, 000 random graph-cluster
designs as θ changes. The designs are generated on three real-life networks.

with units from other clusters. These units will not be surrounded by neighbors
with the same treatment assignment if the two clusters are assigned to different
treatments. Thus, they may not be classified into either of the exposures in Example
1.5, especially if the threshold θ is large. However, as discussed above, it is preferred
that θ is large so that the two exposures mimic the two “universes” more closely.
Figure 1.1 illustrates the relationship between effective sample sizes (in percentage)
and the threshold θ. Each panel corresponds to one real-life network. The Enron
network is retrieved from the igraphdata package in R, containing a network of
emails exchanged among upper managers at Enron between 1998 and 2001. The
Caltech and UMichigan networks are retrieved from the Network Repository (Rossi
and Ahmed, 2015) and contain snapshots of Facebook friendship networks at Caltech
and University of Michigan in 2005 (Traud et al., 2012). All networks are made
simple and undirected. Summaries of these networks are given in Table 1.1. In each
panel, each boxplot shows the distribution of the effective sample sizes (with respect
to a certain value of θ) of 1, 000 designs randomly generated using graph-cluster
randomization. In particular, we use the balanced label propagation algorithm (Gui
et al., 2015) to perform the network clustering. The algorithm returns 9 clusters
for the Enron network, 12 clusters for the Caltech network, and 13 clusters for the
UMichigan network. The designs are generated by randomly selecting half of the
clusters and assigning all units in those clusters to treatment and the rest to control.
We can see that even when we set θ = 0.75 as suggested by Gui et al. (2015), about
half of the network units will be discarded because they do not qualify for either of
the two exposures in Example 1.5. The reduced effective sample size does not just
reduce precision; if the discarded units are systematically different from the analyzed
units, the analysis will be biased.
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Networks # of nodes (n) # of edges (m)

Enron network 184 2097
Caltech Facebook network 770 16,656
UMichigan Facebook network 3,749 81,903

Table 1.1: Summary statistics of networks used in this thesis.

Figure 1.2: Percentages of analyzed units having propensity scores πi(εk) less than
0.05 with respect to varying θ. The boxplots are based on the results of 1, 000 random
graph-cluster designs generated on three real-life networks.

As discussed in Section 1.2.3.1, to compute inverse-probability-weighted estima-
tors for the GTE, the propensity scores πi(εk), i = 1, ..., n, k = 1, 2 need to be
estimated using Monte Carlo simulations (Aronow et al., 2017). This can be com-
putationally challenging for large networks. Moreover, it is well-known that inverse-
probability weighted estimators can be unstable if the propensity scores are small for
certain units (Schafer and Kang, 2008; Crump et al., 2009; Khan and Tamer, 2010).
To illustrate the small propensity score problem in the design-based analysis, for each
network in Table 1.1, we generate 1,000 designs using graph-cluster randomization
in the same fashion as used in Figure 1.1. For each design, we calculate the per-
centage of analyzed units (i.e., units that are categorizable into either the treatment
or control exposure in Example 1.5) having propensity scores less than 0.05. The
distributions of such quantities in the 1,000 designs are plotted as boxplots in Figure
1.2. Each boxplot corresponds to a certain value of θ. We can see that the problem
of small-propensity scores happens quite often, especially with high values of θ. In
some cases, the proportions of analyzed units with small propensity scores can range
up to 50%. Together with the problem of effective sample size, this adds challenges
to the analysis in design-based approaches.
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1.3 Outline of the Thesis

The design-based approaches have been embraced in industry due to their model-free
property. However, as discussed in Section 1.2.3.2, they also have unique challenges.
On the other hand, the model-based approaches, with their inference advantages,
remain promising. This thesis will focus on addressing the main weakness of the
model-based approaches, i.e., the sensitivity to model misspecification. While Chap-
ters 2 and 3 extend the modeling flexibility in the analysis, Chapter 4 enhances the
robustness of experimental design to parameter specifications.

Existing model-based methodologies differ in their model specifications. In Chap-
ter 2, we attempt to unify the existing models by proposing a general class of models
called the general additive network effects (GANE) model. This general model pro-
vides greater flexibility in modeling while keeping the analysis simple. We then out-
line a model-based analysis framework for network experimentation which includes
causal quantities, hypothesis tests, and design criteria. The estimation procedure
and inferential properties of a subfamily of the GANE model are derived and stud-
ied via simulations. Simulation studies also provide evidence that the POW-DEG
specification of the GANE model we propose in Section 2.2.2.3 performs well under
model misspecification.

The GANE model in Chapter 2 is built for experiments with continuous out-
comes. However, experiments with binary outcomes are also common in practice.
For instance, the outcome might be the decision to purchase a product or adopt a
policy. In this case, the use of continuous-outcome models is inappropriate. In Chap-
ter 3, we consider a binary extension of the GANE model via a generalized linear
specification with the Bernoulli distribution and binary link functions. Estimation
and inferences of such binary models can be conducted using maximum likelihood
theory. The performance of different specifications of the model is investigated via
simulations. Our method is then applied to analyze the agricultural insurance ex-
periment from Cai et al. (2015).

We shift our focus to the design of network experiments in Chapter 4. Under the
model-based framework, the design is constructed by optimizing a design criterion
formulated based on the postulated model. However, due to the complex specifica-
tions of models for network experiments, design criteria based on these models often
involve unknown parameters. Thus, we propose the use of a Bayesian design crite-
rion to incorporate prior information on these unknown parameters. However, these
design criteria do not have a closed-form formula, which limits the use of classical
optimal design algorithms. We thus propose the use of meta-heuristic algorithms
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and Bayesian optimization techniques to construct the Bayesian optimal designs.
We adapt these algorithms to our specific design problem and evaluate their per-
formances on various models and data sets. We summarize the characteristics of
good designs with respect to each model and provide general design guidelines for
practitioners.

Chapter 5 concludes the thesis with a summary of our contribution and directions
for future research.

1.4 Contributions

The chapters of this thesis correspond to work that has already been published or
submitted for publication, or in preparation as follows.

• Chapter 2: Bui, T., Steiner, S.H., Stevens, N.T. (2023). General Additive
Network Effect Models. New England Journal of Statistics and Data Science,
1-19, doi 10.51387/23-NEJSDS29.

• Chapter 3: Bui, T., Steiner, S.H., Stevens, N.T. (2024+). Analysis of Network
Experiments with Binary Outcomes. In preparation.

• Chapter 4: Bui, T., Steiner, S.H., Stevens, N.T. (2024+). Optimal Bayesian
Designs for Experiments on Networks. Submitted to Technometrics.
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Chapter 2

General Additive Network Effects
Model

Many statistical methods have been developed based on the assumption that the
data of interest arise from, or can be aptly described by, a model. If a model’s
assumptions are found satisfactory, it can be very useful for learning about the system
of interest (Flassig and Schenkendorf, 2018). In particular, additive models have been
a fundamental tool in applied statistics (Rencher and Schaalje, 2008), especially in
the design and analysis of experiments, thanks to their simple interpretation and
generalizability. Therefore, it is intuitive to turn to linear models when it comes to
the design and analysis of experiments on networks.

In fact, different linear models have been introduced and applied to observational
(Manski, 1993; Christakis and Fowler, 2007; Bramoullé et al., 2009) and experimen-
tal (Gui et al., 2015; Parker et al., 2017; Advani and Malde, 2018; Basse and Airoldi,
2018) data on networks. In this chapter, we attempt to unify and extend these linear
models by introducing the general additive network effects (GANE) model. Although
no longer linear in the parameters, the model is additive in terms of causal quantities
of interest. We then outline a framework to design, analyze, and interpret network
experiments based on the GANE model. This includes the definition and estima-
tion of causal quantities, hypotheses concerning the significance of these effects, and
design criteria for optimal design. Last, we review, propose, and investigate several
model specifications under the GANE framework and conduct simulations to study
their characteristics.
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2.1 Motivation

Consider an A/B test in which the experimental units are nodes of a fixed and
observed network G. In particular, we consider the problem setting of Section 1.2.1.
To design and analyze such an experiment, Parker et al. (2017) introduce the linear
network effects model

Yi = µ+ τZi + γ1

n∑
j=1

AijZj + γ2

n∑
j=1

Aij(1− Zj) + ϵi, (2.1)

where ϵi
iid∼ N (0, σ2). The parameters of Model (2.1) are easy to interpret: µ is the

baseline outcome, τ is the treatment effect, γ1 is the effect of having an additional
treated neighbor and γ2 is the effect of having an additional controlled neighbor.
Because Model (2.1) is additive and linear, its parameters can be estimated using
ordinary least squares in a straightforward manner. The inference procedure thus
follows accordingly. Therefore, with Model (2.1), practitioners will find it easy to
apply this familiar linear regression framework to analyze their network experiments.

It is noticeable that Model (2.1) uses the numbers of neighbors, i.e., the node
degrees, to model the network effect. This can be clearly seen if we rewrite Model
(2.1) into

Yi = µ+ τZi + (γ1 − γ2)
n∑

j=1

AijZj + γ2

n∑
j=1

Aij + ϵi

= µ+ τZi + (γ1 − γ2)
n∑

j=1

AijZj + γ2Kii + ϵi. (2.2)

In this rearrangement of parameters, γ1 − γ2 parametrizes the effect of the number
of neighbors that are assigned to treatment. This term involves both the treatment
assignment vector Z and the network structure A. Thus, we can think of this term
as modeling the interaction between the network and the treatment. The other
network effect term uses the node’s degree Kii with parameter γ2. When γ2 > 0,
the more neighbors unit i has, the higher the expected outcome Yi, and vice versa.
This is reasonable in cases such as: a social network user with more friends will be
expected to engage with the platform more, or an author with more collaborators
will be expected to publish more papers. Such an effect can be referred to as the
popularity effect.
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Besides popularity, applied researchers also suggest other ways to model network
effects for observational data. For example, the average outcomes of neighbors are
commonly used to model a unit’s outcome (Manski, 1993; Bramoullé et al., 2009; Gui
et al., 2015; Advani and Malde, 2018). This is often referred to as the homophily effect
(Shalizi and Thomas, 2011), which reflects the conjecture that “you are the average
of the people around you” or that “people have the desire to conform to the average
outcomes of their neighbors” (Advani and Malde, 2018). Yet, some may argue that
the average outcome is not sufficient to represent the network effect because it does
not reflect the popularity effect. In that case, the aggregate outcome, i.e., the sum
of neighbors’ outcomes, can be used as an alternative. Example 2.1 lists examples
where the sum of neighbors’ outcomes can be used to model the network effects.

Example 2.1. According to Advani and Malde (2018), modeling the network effect
with the sum of neighbors’ outcomes is suitable in cases such as

• a consumer decides to buy a certain product if more of their friends also decide
to buy the product;

• a person’s perceived cost of committing a crime is lower if their neighbors also
engage in crimes (Bramoullé et al., 2014);

• a student will tend to put more effort into studying if their friends put more
effort (Calvó-Armengol et al., 2009). △

The number of neighbors, the average outcomes of neighbors, and the sum of out-
comes of neighbors are only some examples of the many proposed methods to model
network effects (Christakis and Fowler, 2007; Advani and Malde, 2018). This un-
derlines the need for a general model framework for experimental data that provides
flexibility to model the network effect according to the experimenters’ interest or
domain knowledge, and at the same time inherits the clear inference procedure and
interpretability of Model (2.1).

2.2 General Additive Network Effects (GANE)Model

2.2.1 The GANE Model

To generalize the idea of the linear network effects model proposed by Parker et al.
(2017) and incorporate different functional forms of the network effects, we propose
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the general additive network effects (GANE) model. Let D = {A,Z,Y,X}, where
X is the n× p matrix of the units’ possible covariates. The GANE model is written
as

Yi = µ+ τZi + fT,i(D,η) + fC,i(D,η) + ϵi, (2.3)

where fT,i and fC,i model the network effects experienced by unit i coming from
treated (with Z = 1) and controlled units (with Z = 0), respectively. The separa-
tion of network effects according to different sources (treatment or control) makes it
convenient to interpret and compare the sizes of network effects induced by different
treatments. Example 2.2 demonstrates how a linear model in the network experi-
ment literature can be re-formulated under the proposed GANE model and how the
separation of network effects can be useful in practice.

Example 2.2. The Homophily (HOM) Model: Gui et al. (2015) incorporates
the number of neighbors assigned to treatment (which they call the spill-over effect),
and the homophily effect into a linear additive model:

Yi = µ+ τZi + γ
n∑

j=1

AijZj +
ρ

Kii

n∑
j=1

AijYj + ϵi; (2.4)

Model (2.4) can be reparametrized under the GANE framework with

fT,i(D,η) = γT

n∑
j=1

AijZj +
ρT
Kii

n∑
j=1

AijYjZj,

fC,i(D,η) =
ρC
Kii

n∑
j=1

AijYj(1− Zj),

where η = (ρT , ρC , γT )
⊤. Note that to make the GANE parametrization equivalent

to Model (2.4), we need to impose the constraints ρT = ρC = ρ and let γT = γ. In this
sense, Model (2.4) assumes that unit i’s neighbors, no matter treated or controlled,
contribute with equal weights to the homophily effect experienced by unit i. On the
other hand, without the constraint, the GANE framework allows the weights to be
different among treated and controlled neighbors. This can be useful in cases where
the treatment alters the strength of the network effect.

Consider Tracy and Connie in Example 1.4. Suppose Tracy is assigned to treat-
ment while Connie is assigned to control (i.e., the new ad is shown to Tracy the old
ad is shown to Connie). Now, due to the new ad, Tracy may spend more money
on the company’s cosmetic products. Even though she does not watch the new
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ad, Connie, as a friend of Tracy, may observe Tracy’s increased spending, and her
spending may in turn become more similar to Tracy’s spending than other friends’
spending. In this case, the treatment increases the strength of the homophily effect
(the ρ term in Model (2.4)), and the proposed GANE model allows the modeling of
such a phenomenon. △

Note that the network effect functions fT and fC are functions of the experimen-
tal data D and can admit a parameter vector η. That is, the network effects may
depend on the network structure represented by the adjacency matrix A, the treat-
ment assignment vector Z, the outcomes vector Y such as in Example 2.2, and/or
covariates X as illustrated in Example 2.3 below.

Example 2.3. Continuing with the cosmetic ad setting of Example 1.3, the cosmetics
purchase of a user i may depend on the gender, age, or knowledge about cosmetics
of the user’s neighbor, which can be contained in a covariate matrix X. △

Using the GANE model, researchers can select the forms of the network effect
functions fT and fC according to their domain knowledge or other pragmatic con-
siderations. They will also be able to infer and interpret the parameters in a similar
fashion to the linear network effects model (2.1). Thus, the proposed model inherits
the interpretability of Model (2.1) while allowing the network effects to be modeled
more flexibly.

By proposing the GANEmodel, we take a model-based approach to the analysis of
experiments on networks. Compared to design-based approaches, although the model
relies on potentially restrictive assumptions about the network effects (via functions
fT and fC), it is able to (i) utilize all units in the experiments; (ii) allow researchers
to model different network interference patterns; and (iii) make predictions on the
outcomes. Therefore, if correctly specified, the proposed model will be a useful tool
to understand and quantify the treatment and network effects in the experiments.

2.2.2 Model Specifications

As previously discussed, with the proposed GANE model, the functional forms of
network effects can be chosen flexibly. These choices depend on the domain knowl-
edge or preferences of the experimenters, and/or how well these models fit the data.
In this section, we will discuss some possibilities and considerations when specifying
a GANE model.
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2.2.2.1 A Unification of Existing Linear Models

Most existing models for observational and experimental responses on networks are
linear in their parameters, e.g., the linear-in-means models (Manski, 1993; Bramoullé
et al., 2009), the linear network effects model (Parker et al., 2017), and so on. By
adopting an additive structure, the GANE model unifies these models under a com-
mon framework. In Section 2.2.1, Example 2.2 showed how the HOM model can
be written as a GANE model. In the examples below, we list some other existing
models and illustrate how they can be written under the GANE framework.

Example 2.4. The Linear Network Effect (LNE) Model: Model (2.1) pro-
posed by Parker et al. (2017) is a special case of the proposed GANE model with

fT,i(D,η) = γT

n∑
j=1

AijZj and fC,i(D,η) = γC

n∑
j=1

Aij(1− Zj)

being the number of neighbors of unit i that are assigned to treatment and control,
respectively. In this case, η = (γT , γC)

⊤. △
Example 2.5. The Fraction Neighborhood Exposure (FNE) Model: Gui
et al. (2015) consider using the percentage of treated neighbors to model the network
effect. This is equivalent to a GANE specification with

fT,i(D,η) =
γT
ki

n∑
j=1

AijZj, and fC,i(D,η) = 0. (2.5)

Note that we cannot let fC be the percentage of controlled neighbors because then
the model terms will be linearly dependent and hence inestimable. △
Example 2.6. The Local Average (LAV) Model: As discussed in Section 2.1,
in the economics literature, neighbors’ average outcome has been used to model the
network effect under the conjecture that units “have the desire to conform to the
average outcomes of their neighbors” (Advani and Malde, 2018). Under the GANE
framework, we can also use the local average (i.e., the average of neighbors’ outcomes)
to model the network effects, that is

fT,i(D,η) = ρT

∑
j=1AijZjYj∑
j=1AijZj

, and fC,i(D,η) = ρC

∑
j=1Aij(1− Zj)Yj∑
j=1Aij(1− Zj)

. (2.6)

Recall that we assumed the graph G to be simple with no self-loop, i.e., Aii = 0 for
all i. Thus in the LAV model, Yi does not appear on both sides of the equation. In
this LAV model, ρT and ρC are coefficients of the average outcomes of treated and
controlled neighbors, respectively. △
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Example 2.7. The Local Aggregate (LAG) Model: In Example 2.1, we dis-
cussed some situations where the sum, instead of the average, of the neighbors’ out-
comes might be preferred to model the network effect. Under the GANE framework,
we can specify the network effect functions accordingly:

fT,i(D,η) = ρT

n∑
j=1

AijZjYj, and fC,i(D,η) = ρC

n∑
j=1

Aij(1− Zj)Yj. △ (2.7)

2.2.2.2 The Use of Covariates

There are at least two ways that covariates can be incorporated into the GANE
model. First, covariates can be used to calculate a weight matrix W, whose elements
represent the strength of connections among nodes in the graph. Using a weight
matrix W instead of the dichotomous adjacency matrix A is practical if we posit
that the network effects are heterogeneous among the connections (edges). Indeed,
the concept of homophily tells us that people are more likely to connect and interact
with others who are similar to them (Shalizi and Thomas, 2011). Thus, it may be
reasonable to expect that the closer xi and xj are, the more important i and j are
to each other. In this case, a weight matrix can be constructed using some measure
of distance between the covariates. For example,

Wij =
Aij

||xi − xj||
,

the operator || · || denotes a norm (e.g., Euclidean norm) of vectors. With this
weighting scheme, as the distance between the covariates of units i and j increases,
the influence they have on each other decreases. We can then replace the adjacency
matrix A by this weight matrix W in the models discussed in Section 2.2.2.1.

Another possible use of covariates is to add them into the model equations, i.e.,

Yi = µ+ τZi + γ1fT,i(D,θ) + γ2fC,i(D,θ) + xT
i δ + ϵi, (2.8)

where δ is the vector of linear coefficients for covariate xi. This is similar to re-
gression adjustment in causal inference literature for observational data. We do not
consider regression adjustment in this section, however, the extension with regression
adjustment is straightforward.
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2.2.2.3 Nonlinear Growth

Existing response models for connected units usually consider cases where the node
degrees are small. For example, spatial statistics literature works on areal data
where a district can only have a handful of neighboring districts. Parker et al.
(2017) consider agricultural plots arranged on a lattice. Other applied work on peer
effects (Christakis and Fowler, 2007; Cai et al., 2015; Li et al., 2019a,b) construct the
network edges based on proximal relationships such as households or friendship or
nomination (e.g., name up to three friends of yours). In all these cases, the number
of connections for each node is likely small.

However, this does not apply to some social networks. Preferential attachment
(also known as cumulative advantages or “the rich get richer”) is a common phe-
nomenon in networks (Vázquez, 2003). In particular, in a growing network, new
nodes are more likely to connect with nodes with many existing connections, com-
pared to those with only a few. This eventually makes several nodes become “pop-
ular” with many connections while the rest of the nodes have far fewer. Figure 2.1
shows the histogram of degrees for the Caltech network described in Table 1.1. We
can see that there is a large number of nodes having less than 20 neighbors while a
few nodes have more than 200 connections. In fact, the range of degrees is from 0 to
248. This range is usually large for large social networks.

Figure 2.1: Histograms of the degree distribution of the Caltech Facebook network.

As noted, many existing models used in the literature assume linearity of the
network effect. For example, with the LNE model, Parker et al. (2017) assume that
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each additional treated neighbor will have an effect of size γT on the node’s response;
likewise, each controlled neighbor will have an effect of size γC . Similarly, the LAG
model assumes that the network effect is proportional to the sum of the neighbors’
outcomes, which creates an approximately linear relationship between the network
effect and the degree. However, this can be unrealistic, especially for popular nodes
with hundreds of neighbors on a social network, as illustrated in Example 2.8.

Example 2.8. Let us continue to consider the two friends Tracy and Connie in
Example 1.4. Since Tracy is assigned to treatment, Connie may spend more on
buying cosmetic products simply because she is Tracy’s friend. However, the increase
in money spent by Connie due to her first treated friend may not necessarily be
equal to the increase prompted by her 100th treated friend. More likely, the marginal
impact due to each additional treated friend may decrease. This conjecture is similar
to the law of diminishing marginal utility in economics (Gossen, 1983). △

On the other hand, it is also not reasonable to normalize the network effects by
degree as in the FNE or the LAV models since it removes the popularity effect, as
illustrated in Example 2.9.

Example 2.9. Continuing with Example 1.4, suppose Tracy and Connie both have
50% of their connections assigned to the new ad. According to the FNE model, Tracy
and Connie will experience the same network effects. However, if Tracy has many
more friends than Connie, we would expect Tracy to be more likely to be influenced
by her friends. △

Therefore, both a linear growth of network effects with respect to degrees in the
LNE and LAG models and a standardizing approach in the FNE and LAV models can
be inadequate to model the network effects. This motivates something in between,
where the network effects grow sub-linearly with respect to node degrees. The GANE
framework can easily accommodate this. Example 2.8 further demonstrates the
rationale of this idea.

We thus propose modeling the network effects sub-linearly with respect to node
degree. We can achieve this by performing a power transformation on the number
of neighbors of each treatment assignment

Yi = µ+ τZi + γT

(
n∑

j=1

AijZj

)λ

+ γC

(
n∑

j=1

Aij(1− Zj)

)λ

+ ϵi. (2.9)

We call this the POW-DEG specification because here the network effects are mod-
eled as powers of the treatment and control degrees. The parameter λ serves to
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temper the effect of the treatment and control degrees. As discussed above, since
a sub-linear growth might be reasonable, we expect 0 < λ < 1. But in the inter-
est of ample flexibility, e.g., super-linear growths, we do not make this assumption.
Another possible option is to perform a log transformation

Yi = µ+ τZi + γT log

(
n∑

j=1

AijZj

)
+ γC log

(
n∑

j=1

Aij(1− Zj)

)
+ ϵi. (2.10)

This does not require additional parameters, which can be both an advantage and
a disadvantage as the rate of growth is considered known. Another possibility is to
put a threshold on the network effects

Yi = µ+ τZi + γT min

(
n∑

j=1

AijZj, λ

)
+ γC min

(
n∑

j=1

Aij(1− Zj), λ

)
+ ϵi, (2.11)

for a chosen threshold λ > 0. With this specification, the network effects are con-
strained to be at most λ and cannot grow beyond this. Yet, in this case, functions fT
and fC are not smooth. If smooth thresholded growths are desired, we can consider
4-parameter functions, such as log-logistic, log-normal, or Weibull functions from the
dose-response literature (Holland-Letz and Kopp-Schneider, 2015); or the variogram
functions, such as the exponential, spherical, or Gaussian variogram functions from
spatial statistics literature (Cressie, 2015). Nevertheless, it is not our intention to
explore and investigate all these possibilities; instead, these are just some suggested
specifications of the GANE model that help us achieve a sublinear growth of the
network effects.

2.2.3 Causal Interpretation

Section 2.2.2 presented a wide range of possibilities when it comes to specifying
the GANE model. However, different specifications may lead to different parameter
interpretations, depending on the form of the network effect functions fT and fC .
To attain a universal interpretation for the GANE model, we consider using defini-
tions of causal effects from the causal inference literature. In particular, Hudgens
and Halloran (2008) give definitions of direct treatment effect (DTE), indirect treat-
ment effect (ITE), overall treatment effect (OTE) based on the comparison of two
treatment assignment vectors, say Z1 and Z2.

OTE(Z1,Z2) =
1

n

n∑
i=1

{
E[Yi|Z = Z1]− E[Yi|Z = Z2]

}
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DTE(Z1) =
1

n

n∑
i=1

{
E[Yi|Zi = 1,Z−i = Z1,−i]− E[Yi|Zi = 0,Z−i = Z1,−i]

}
,

ITE(Z1,Z2) =
1

n

n∑
i=1

{
E[Yi|Zi = 0,Z−i = Z1,−i]− E[Yi|Zi = 0,Z−i = Z2,−i]

}
,

(2.12)

where Z−i denotes the treatment assignment vector Z without the ith element. Saint-
Jacques et al. (2019) give similar definitions, with Z1 replaced by 1n and Z2 replaced
by 0n. In that case, the overall treatment effect becomes the global treatment effect
(GTE).

There are two difficulties with the definitions in (2.12). First, although it is easy
to understand the overall treatment effect, the interpretations of the direct effect
and indirect effect are less obvious. Taking the indirect effect as an example, it
is not clear what the average of individual node’s difference in expected outcome
when all other nodes on the network are assigned to treatment versus when they are
assigned to control, given the node itself is assigned to control, implies. Second, it
is computationally expensive to calculate the direct and indirect effects defined in
(2.12) for autoregressive models such as the LAG and LAV models. This is because
the summands in (2.12) need to be calculated separately for each i, which involves
generating the response vector Y corresponding to Z = ei (the n vector of 1 at the
ith position and 0 otherwise) and ϵ = 0n for each i = 1, ..., n. Considering these
difficulties, we propose a new set of definitions for causal quantities of interest as
presented below.

Definition 2.1. Global treatment effect (GTE): As discussed in Section 1.2.3.1,
the GTE (1.6) has been treated as the estimand of interest in the design-based
framework due to its important interpretation in business decision-making. Indeed,
without loss of generality, suppose that higher responses are desired, then a signifi-
cantly positive treatment effect will serve as evidence supporting a business decision
to deploy the treatment on the whole network. Mathematically, the GTE is the
overall treatment effect in (2.12) with Z1 replaced by 1n and Z2 replaced by 0n. The
terminology global used by Chin (2019) is informative because the GTE measures
the treatment effect at the global level, instead of the individual level, taking into
account the structure of the network and possible network effects. Furthermore, it
also implies a “global” deployment of the treatment or control. Under the GANE
framework, the GTE can be expressed as

GTE = E

[
1

n

n∑
i=1

Yi

∣∣∣∣∣ Z = 1n

]
− E

[
1

n

n∑
i=1

Yi

∣∣∣∣∣ Z = 0n

]
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= τ +
1

n

n∑
i=1

E
[
fT,i(DZ=1n ,η)

]
− 1

n

n∑
i=1

E
[
fC,i(DZ=0n ,η)

]
where the subscripts of D indicate that the data (including Y) are evaluated when
all the experimental units are assigned to treatment (Z = 1n) or control (Z = 0n),
respectively. The expectations in the second equivalence are necessary when fT
and/or fC are functions of the outcome Y. As shown, the GTE can be expressed
as a function of the model parameters. Moreover, under the GANE framework, the
GTE can be decomposed into two components, the direct and indirect treatment
effects (to be discussed below), which aid interpretation.

Definition 2.2. Direct treatment effect (DTE): We define the direct treatment
effect as the expected difference in outcomes when a node is assigned to the treatment
versus when a node is assigned to control, keeping the network effects fixed. Note that
this definition is based on fixing the network effects, while definitions in (2.12) are
based on a fixed treatment assignment vector (Hudgens and Halloran, 2008; Saint-
Jacques et al., 2019). With this definition, under the GANE model framework, the
direct treatment effect is simply

DTE = τ. (2.13)

The new definition is clear, easy to interpret, easy to calculate, and does not de-
pend on any specific treatment assignment vector. Hence, it can be used across all
specifications of the GANE model.

Definition 2.3. Indirect treatment effect (ITE): Interest can also lie in quanti-
fying the amount of the global treatment effect induced by the network. We therefore
define ITE as the difference between the global treatment effect and the direct treat-
ment effect, which, under the GANE framework, is

ITE = GTE− τ =
1

n

n∑
i=1

E
[
fT,i(DZ=1n ,η)

]
− 1

n

n∑
i=1

E
[
fC,i(DZ=0n ,η)

]
. (2.14)

Hence, the indirect treatment effect can also be interpreted as the difference between
the network effect induced by the treatment versus that induced by the control. Al-
though the global treatment effect is the primary interest of most applied studies
(Eckles et al., 2016; Chin, 2019), decomposing it into the direct and indirect treat-
ment effects helps us better understand the global treatment effect. Especially when
the GTE is zero, we may learn whether this is because the treatment does not have
any effect at all or because the direct and indirect effects cancel out.
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Overall, compared to the definitions in (2.12), the new set of causal quantities is
easier to interpret and understand. Thus, these quantities will be particularly useful
in practical applications. In addition, these quantities can be expressed as functions
of the GANE model parameters, which is convenient for inference. In particular,
when the expectations of fT and fC are known, estimates and hypothesis tests for
these quantities can be developed based on parametric inference associated with
the model. Overall, these definitions provide a systematic framework to interpret
network experiments under a wide variety of outcome models, aligning the analysis
results obtained from the model-based approaches with the ones obtained from the
design-based approaches.

2.2.4 Hypothesis Testing

Corresponding to the causal quantities defined in Section 2.2.3, we identify a set of
hypotheses that the experimenters may be interested in.

Hypothesis test 1: (DIRECT TREATMENT EFFECT) H01 : DTE = τ = 0 is the
null hypothesis that the direct treatment effect is 0. That is, keeping the network
effect fixed, a node’s outcome is the same no matter if it is assigned to treatment or
control.

Hypothesis 2: (SUTVA) H02 : fT = fC = 0 is the null hypothesis that there is no
network effect and SUTVA is satisfied.

Hypothesis 3: (INDIRECT TREATMENT EFFECT) H03 : ITE = 0 is the null
hypothesis that the indirect treatment effect is 0, i.e., the network effects from treated
and controlled neighbors are the same.

Hypothesis 4: (GLOBAL TREATMENT EFFECT) H04 : GTE = 0 is the null
hypothesis that the global treatment effect is 0, i.e., on average, treatment does not
have an effect on the nodes’ outcomes.

These hypotheses can be better understood using an illustrative example.

Example 2.10. In the cosmetic ad setting of Example 1.3, there are several hy-
potheses that the company may want to test. First, the company may be interested
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in learning whether the new ad induces more sales for individual customers who do
not engage in social media. This is equivalent to testing H01. Second, on a social
network, even without any ad, people sometimes share or recommend the cosmetic
products that they use, which in turn may increase product sales. This is a result of a
network effect and so testing H02 helps the company understand if any network effect
exists. Third, to see if the new ad affects the existing network effect, the company
should compare the network effect induced by the new ad and the existing network
effect induced by the old ad. This is done by testing H03. Finally, the company
wants to decide whether to deploy the new ad for all of their customers on the social
network platform. Hence they want to test H04. △

Since DTE, ITE, and GTE are functions of the model parameters, Hypotheses
1, 3, and 4 can be tested using Wald-type tests. If the model is estimated using M-
or Z-estimation (Van der Vaart, 2000), Hypothesis 2 can be tested using a likelihood
ratio test or a score test, respectively.

2.2.5 Design Criteria

As we can see from the above discussions, parameter estimation is an important step
for inference procedures such as interpretation and hypothesis testing. An important
element that affects the model estimation that we can manipulate ourselves is the
design, i.e., the decision about which nodes are assigned to treatment, and which
nodes are assigned to control. This is equivalent to the choice of the treatment
assignment vector Z. As discussed in Section 1.2.2.2, in a model-based framework
such as the GANE model, design criteria can be defined based on the efficiencies of
estimators of the model parameters. These criteria can then be used to evaluate,
compare, and select designs. An optimal design is a design that optimizes a given
design criterion.

In the network experiment context, as discussed in Section 2.2.3, GTE (or possibly
DTE or ITE) is the primary quantity of interest. In this thesis, we will focus on
setting the mean squared error (MSE) of the GTE estimator as the design criterion.
We will defer the discussion of the design problem to Chapter 4. Nevertheless,
both the design and analysis of network experiments require point and variance
estimation of GANE’s model parameters. Thus, in the next section, we will discuss
(quasi)-maximum likelihood estimation of the GANE model.
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2.3 Quasi-Maximum Likelihood Inference

In this section, we develop quasi-likelihood theory for estimation and asymptotic
inference in the context of the GANE model. Such theory is not readily available for
this type of model with this type of data.

2.3.1 Estimation

Different specifications of the GANE model may require different estimation tech-
niques. In fact, many of the GANE specifications can be estimated using (quasi)-
maximum likelihood. Note that the term quasi-maximum likelihood is used instead
of maximum likelihood when there is no distribution assumption on ϵ. To obtain the
(quasi)-likelihood of the outcome vector Y, we consider the family of GANE speci-
fications where the outcome Yi either (i) does not depend on neighboring outcomes,
or (ii) depends linearly on neighboring outcomes. That is,

fT,i(D,η) = ρT

n∑
j=1

WT,ijYj + γTgT,i(φ),

fC,i(D,η) = ρC

n∑
j=1

WC,ijYj + γCgC,i(φ), (2.15)

where η = (ρT , ρC , γT , γC ,φ
⊤)⊤ and WT,ij (or WC,ij) is the (i, j)th element of a pre-

specified weight matrix WT (or WC). For example, these weight matrices can be
set to the adjacency matrix A. The diagonals of these weight matrices are zero, i.e.,
Wl,ii = 0 for l ∈ {T,C} and i = 1, ..., n. In addition, gT,i(φ) and gC,i(φ) are real-
valued functions, possibly depending on the parameter φ, the experimental data D,
but not the outcome vector Y. We can see that Model (2.15) generalizes all model
specifications discussed in Section 2.2.2, in which the outcome of an experiment
may depend linearly on other unit’s outcomes and/or possibly nonlinearly on other
covariates. Model (2.15), however, excludes cases where the outcome of unit i is
dependent on a nonlinear function of the outcome vector Y, which complicates or
precludes the (quasi)-maximum likelihood theory.

To perform estimation, we consider the matrix form of Model (2.15) as follows

Y = µ1n + τZ+
(
ρTWTY + γTGT (φ)

)
+
(
ρCWCY + γCGC(φ)

)
+ ϵ, (2.16)
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where GT (φ) and GC(φ) denote the n × 1 vectors of gT,i(φ) or gC,i(φ) values re-
spectively. Let M(φ) = [1n Z GT (φ) GC(φ)] be the model matrix. Further, let
β = (µ, τ, γT , γC)

⊤ and ρ = (ρT , ρC)
⊤. Then, the model may be rewritten, isolating

for Y on the left-hand side, as follows

Y =
(
ρTWT + ρCWC

)
Y +M(φ)β + ϵ,

= S(ρ)−1

(
M(φ)β + ϵ

)
, (2.17)

where S(ρ) = In − ρTWT − ρCWC . The expression in (2.17) is well-defined if and
only if S(ρ) is invertible. Lemma 2.1 gives sufficient conditions on ρ so that S(ρ) is
nonsingular. Although the condition is based on any matrix norm, in practice, we
can use the popular spectral norm (Horn and Johnson, 2012, sec. 5.6) to derive the
constraints. The proof of Lemma 2.1 is given in Appendix A.1.1.

Lemma 2.1. If

max (|ρT |, |ρC |) <
1

||WT ||+ ||WC ||
,

where || · || denotes a matrix norm (Horn and Johnson, 2012, sec. 5.6), then S(ρ)
is invertible.

With Y expressed as in Equation (2.17) and assuming ϵ ∼ N (0n, σ
2In), the

log-likelihood function for Y is

logL(θ) = − n

2
log(2π)− n

2
log(σ2) + log |S(ρ)|

− 1

2σ2

(
S(ρ)Y −M(φ)β

)⊤(
S(ρ)Y −M(φ)β

)
, (2.18)

where θ = (ρ⊤,β⊤,φ⊤, σ2)⊤ is the vector of all model parameters. If the normality
assumption is not made, then (2.18) becomes the quasi-log-likelihood (Wedderburn,
1974; Lee, 2004) and the estimators θ̂ that maximize (2.18) are called the quasi
maximum likelihood estimators.

To find the maximum likelihood estimates, we take the first-order derivatives
with respect to β and σ2 and equate them to zero to obtain

β̂(ρ,φ) =
(
M(φ)⊤M(φ)

)−1

M(φ)⊤S(ρ)Y; (2.19)

σ̂2(ρ,φ) =
1

n

(
S(ρ)Y −M(φ)β̂(ρ,φ)

)⊤(
S(ρ)Y −M(φ)β̂(ρ,φ)

)
> 0. (2.20)
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Note that these are the solutions to an ordinary least squares model that regresses
the transformed outcome variable S(ρ)Y on the covariate matrix M(φ) when ρ and
φ are known. Plugging this into the log-likelihood (2.18), we can obtain the profile
log-likelihood

ℓp(ρ,φ) = −n

2
[log(2π) + 1] + log |S(ρ)| − n

2
log σ̂2(ρ,φ). (2.21)

Then, we can find φ̂ and ρ̂ by maximizing ℓp using numerical estimation techniques.
The maximum likelihood estimates β̂ and σ̂2 can be obtained by plugging φ̂ and ρ̂
into Equations (2.19) and (2.20).

Note that in (2.19), it is implicitly required that M(φ)⊤M(φ) is invertible, i.e.,
the columns of the model matrix M(φ) need to be linearly independent. Although
unlikely, multicollinearity may exist. For instance, in the POW-DEG specification
(2.9), when the graph is fully connected (i.e. when every node is connected with one
another), or when the treatment and/or control degrees are the same for all nodes,
the model matrix will have linearly dependent columns. It is thus important in the
design stage to choose a design that ensures the model matrix has full rank.

2.3.2 Asymptotic Results

Here, we study the behavior of the (quasi)-maximum likelihood estimators as the
network size increases to infinity. We use the subscript n to denote the data for a
given network size n. Model (2.17) then becomes

Yn = Sn(ρ)
−1

(
Mn(φ)β + ϵn

)
,

where Sn(ρ) = In − ρTWTn − ρCWCn. Let θ0 = (ρ⊤
0 ,β

⊤
0 ,φ

⊤
0 , σ

2
0)

⊤ be the true pa-
rameter values. The consistency and asymptotic normality properties of the (quasi)-
maximum likelihood estimators θ̂n are given in Theorem 2.2 below.

Theorem 2.2. Under Assumptions 1-6 (given in Appendix A.1.2), the (quasi)-
maximum likelihood estimator θ̂n obtained by maximizing the log-likelihood in (2.18)

is consistent to θ0. Further assuming that Jn(θ0) = −E
[
∂ logLn(θ0)

∂θ∂θ⊤

]
is invertible and

Vn(θ0) = E
[(

∂ logLn(θ0)
∂θ

)(
∂ logLnθ0)

∂θ

)⊤]
is positive definite, then

[Vn(θ0)]
−1/2[Jn(θ0)](θ̂n − θ0)

d→ N (0dim(θ), Idim(θ)),

where dim(·) denotes the length of a vector.
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The proof of Theorem 2.2 is given in Appendix A.1.3, following the ideas of
Lee (2004), treating Sn(ρ) and Mn(φ) as non-stochastic for any given ρ and φ.
The random errors ϵi,n are assumed to be independent and identically distributed

with mean zero and variance σ2
0. When ϵi,n follow a normal distribution, θ̂n is the

maximum likelihood estimator (instead of a quasi maximum likelihood estimator),
and we have Vn(θ) = Jn(θ) and

[Jn(θ0)]
1/2(θ̂n − θ0)

d→ N (0dim(θ), Idim(θ)).

2.3.3 Inference for Causal Quantities

With the asymptotic normality result, inference for the parameters can be performed
accordingly. The inference for the causal quantities given in Section 2.2.3 can then be
carried out via the Delta method (Doob, 1935). In particular, the global treatment
effect for Model (2.15) is calculated as

GTE(θ) =
1

n
1⊤
n

[(
µ+ τ +

1

n

n∑
i=1

gT,i(DZ=1n ,φ)

)
(In − ρTWT,Z=1n)

−1

−

(
µ+

1

n

n∑
i=1

gC,i(DZ=0n ,φ)

)
(In − ρCWC,Z=0n)

−1

]
1n. (2.22)

Using the Delta method, the variance of the GTE can be written as

Var
[
GTE(θ)

]
= t⊤Var(θ)t, (2.23)

where t = ∂GTE(θ)
∂θ⊤ . As DTE(θ) = τ and ITE(θ) = GTE(θ) − τ , the variance for

DTE and ITE can be derived in a similar manner. Variance estimators can be ob-
tained by plugging in the estimate θ̂ obtained from the (quasi)-maximum likelihood.
Confidence intervals and hypothesis testing can thus be conducted accordingly.

2.4 Simulations

In this section, we use simulations to study the properties of different specifications
of the GANE model. Specifically, we study our proposed POW-DEG specification
(2.9) and the HOM specification (2.4) as an illustration of a spatially autoregressive
specification. In order to study these model specifications on real-life networks, we
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use the Caltech Facebook network and the UMichigan Facebook network described
in Section 1.2.3.2. The summary statistics of these networks are given in Table
1.1. In our simulations, these networks provide realistic structures for the graph G,
however, the experiment and outcomes are hypothetical and simulated. Moreover,
as our theoretical results concern the case where the treatment assignment vector Z
is known, in this simulation, we choose a particular design where half of the nodes
are randomly assigned to treatment and the other half are assigned to control. The
summary statistics of the selected design for each network are given in Appendix
A.2.1.

2.4.1 The Distribution of the Estimates

In this subsection, we investigate the asymptotic properties of the maximum like-
lihood estimates derived in Section 2.3. First, we investigate the results for the
POW-DEG specification (2.9) by generating outcomes on the given network (ei-
ther the Caltech or UMichigan Facebook network) with the following parameter
settings: β = (0, 1, 0.5, 0.1)⊤ and σ = 1. We further vary the power λ within the set
{0.5, 0.75, 1, 1.25}, where λ = 1 corresponds to the LNE specification (2.1). With
each combination of parameters, 1,000 runs are conducted where the outcomes are
generated and the maximum likelihood estimates are calculated accordingly.

The distribution of the parameter and GTE estimates for the POW-DEG spec-
ification (2.9) are plotted in Figure 2.2. We can see that the distributions of all
estimates are reasonably bell-shaped and symmetric and centered around the true
values (dashed vertical lines) as is expected given the asymptotic theory. While the
distribution of τ̂ remains the same under different values of λ, the variances of the
other estimators decrease when λ increases. This is because the ranges of values
within GT and GC in the model matrix M increase as λ increases, which in turn
decreases the variance of the parameter estimates.

The coverage of 95% asymptotic confidence intervals and variances of the param-
eter estimates are given in Figure 2.3, where left axes correspond to variances and
right axes correspond to coverage. The blue lines depict the asymptotic variances
derived from J(θ0) and the red lines depict the sample variance of the 1,000 pa-
rameter estimates. Generally, these red and blue lines agree closely, except for the

small gaps in the variances of τ̂ and thus ĜTE. However, these gaps are close in
the results for the UMichigan network in Figure A.2. This suggests that a larger
sample size is required for the variances of the τ and GTE estimators to be accu-
rately estimated by the asymptotic theory. Concerning coverage, the coverage rates
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Figure 2.2: The distribution of parameter estimates of the POW-DEG speci-
fication on the Caltech Facebook network with β = (0, 1, 0.5, 0.1)⊤ and λ ∈
{0.5, 0.75, 1.00, 1.25} over 1,000 simulation runs.

Figure 2.3: The variances of the estimates (left axes, lines) and coverage rates (right
axes, bars) of POW-DEG specification on the Caltech Facebook network with β =
(0, 1, 0.5, 0.1)⊤ and λ ∈ {0.5, 0.75, 1.00, 1.25} over 1,000 simulation runs.
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for the 95% confidence intervals are plotted as grey bars on the right axes and the
dotted lines serve as a reference at 0.95. We can see that the obtained confidence
intervals have the correct coverage. To summarize, the simulation corroborates the
asymptotic theory and indicates that maximum likelihood procedures work as ex-
pected for the POW-DEG specification (2.9). Simulation results for a different set of
parameter values are included in Appendix A.2.2. These results suggest that when
the network effect is small and the network size is moderate, consistent estimation
of γT , γC , and λ is more difficult. However, the battery of simulations was also run
on the UMichigan Facebook network, whose size (n = 3, 749) is almost 5 times that
of the Caltech network, and we find that estimation of all parameters, whether the
network and treatment effects are large or small, agrees with the asymptotic theory.
These results are also available in Appendix A.2.2.

We conducted a similar simulation study on the HOM specification (2.4) with
µ = 0, τ = 1, γT = 0.5, ρT = ρC = 0.1 and σ2 = 1. The results for both the Cal-
tech Facebook network and the UMichigan Facebook network are shown in Figure
2.4. As with the POW-DEG (2.9) estimates, and in agreement with the likelihood
theory, the distributions of these parameter estimates are bell-shaped and centered
at the true values. Moreover, since the UMichigan Facebook network is larger, the
variation in the estimates decreases, as expected. Notice that the true values of GTE
are different for the two networks, even though all parameters used are the same.
This illustrates how the true value of GTE depends not only on the parameters but
also on the structure of the graph. Variances and confidence interval coverage are
also plotted in Figure 2.4. As we would expect, the asymptotic variances are suit-
able for inference and the asymptotic confidence intervals have acceptable coverage.
To demonstrate the generality of these findings we present additional simulation re-
sults for another set of parameter values in Appendix A.2.2. Overall, the theory
developed in Section 2.3 and the simulations presented here (for multiple GANE
specifications, parameter values, and networks) demonstrate the general utility of
maximum likelihood inference with GANE models.

2.4.2 Hypothesis Testing

As discussed in Section 2.2.3, under the GANE framework, we can test hypotheses
about the DTE, SUTVA, ITE, and GTE. In particular, testing DTE = 0 is equivalent
to testing H01 : τ = 0; testing whether SUTVA is satisfied is equivalent to testing
H02 : fT = fC = 0; the null hypothesis for testing the indirect treatment effect is
H03 : ITE = 0; and the null hypothesis for testing the global treatment effect is
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Figure 2.4: (upper) The distribution of parameter estimates of the HOM specification
with µ = 0, τ = 1, γT = 0.5, ρT = ρC = 0.1 over 1,000 simulation runs. (lower) The
corresponding variances of the estimates (left axes, lines) and coverage rates (right
axes, bars).
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H04 : GTE = 0. In the maximum likelihood framework, Hypotheses 1, 3, and 4 can
be tested using Wald-type tests, and Hypothesis 2 can be tested with a likelihood
ratio test.

We study the characteristics of these tests via simulation. The parameters of
the POW-DEG specification (2.9) are set at β = (0, 1, 0.5, 0.1)⊤, σ = 1 and λ ∈
{0.5, 0.75, 1.00, 1.25}. Separate simulations are conducted to investigate each of the
four hypothesis tests. For each simulation, values of certain parameters in β vary
while the others stay as stated. In particular, in the simulation for Hypothesis 1, τ
varies in the range [0, 1]; in the simulation for Hypothesis 2, γT = γC and their values
vary in the range [0, 0.05]; for Hypothesis 3, γC is fixed at 0.1 and γT − γC varies in
the range [0, 0.5]. Hypothesis 4 with H04 : GTE = 0 is also tested within each of
the three simulations (with different λ) and the results are aggregated over different
true values of GTE corresponding to different parameter combinations. All tests
are done at a 5% significance level and 1,000 runs are conducted for each parameter
combination. The results are presented in Figure 2.5. The dotted horizontal line
serves as a reference at the 5% level.

Figure 2.5: Rejection rates of hypothesis tests for POW-DEG specification on the
Caltech Facebook network with varying parameters.
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As expected, the rejection rates for each test increase as the respective parameter
values depart from their null values. Moreover, tests for H01 : τ = 0 seem to behave
similarly over different values of λ. This is consistent with the model estimation

results in Figure 2.2 where the variances for τ̂ and ĜTE look similar over different
values of λ while the variances for γ̂’s decrease as λ increases. We also remark that
the results at null values deviate slightly from the nominal 5% level. This can be
attributed to the use of asymptotic (inexact) variances in these tests. Although we
do not include the results for the UMichigan Facebook network, given its size and
given the results from Section 2.4.1, we expect similar results to those presented here
for the Caltech Facebook network.

We conducted similar simulations for the HOM specification (2.4) with µ = 0,
τ = 1, γT = 0.5, ρT = ρC = 0.1, and varying τ , γT = ρC and γT − ρC in different
simulations for different hypothesis tests. The results are included in Appendix A.2.3.
It can be noted that the results are similar in both networks, except for different
values of τ , signifying that this is an important parameter for the HOM specification
(2.4). We also note that the rejection rates for Hypothesis 3 always stay at 100% even
at γT = ρC (i.e., when the scaling coefficients for fT and fC are equal). This shows
that the indirect effect is not only affected by the sizes of the network effects but also
by the functional forms of fT and fC , which are different in the HOM specification
(2.4) compared to the POW-DEG specification (2.9).

2.4.3 Model Misspecification

The simulations in Sections 2.4.1 and 2.4.2 explore properties of maximum likelihood
inference for different GANE specifications when they are correctly specified. In this
section, we further investigate the properties of these specifications under model
misspecification. The specifications considered here are (i) the SUTVA specification,
in which network effects do not exist and fT = fC = 0; (ii) the linear network effect
(LNE) specification in (2.1); (iii) the POW-DEG specification in (2.9); (iv) the local
aggregate (LAG) specification in (2.7); and (v) the homophily (HOM) specification
in (2.4).

In this simulation, on the Caltech Facebook network, outcomes are generated
1,000 times for each of the listed model specifications. The data are then fitted using
each of the five model specifications. Because the global treatment effect GTE is
generally of primary interest, we use the GTE estimation and its inference results to
compare performance among specifications. To make the comparison fair, parameters
for each model specification are chosen such that the true global treatment effect
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(GTE) is fixed at 2.0 and the average outcome variance is 1.0 in all data-generating
scenarios. The exact parameter values for each specification are provided in Table 2.1.

Specification µ τ ρT ρC γT γC λ σ
SUTVA 0 2 0 0 0 0 1
LNE 0 1 0 0 0.1231 0.1 1

POW-DEG 0 1 0 0 0.2691 0.1 0.5 1
LAG 0 1 0.008492 0.001 0 0 0.9977
HOM 0 1 0.1 0.1 0.01728 0 0.9999

Table 2.1: Parameters for the simulation in Section 2.4.3.

Results of the simulation are plotted as heatmaps in Figure 2.6. The columns
correspond to outcome-generating models and the rows correspond to estimating
models. The top left panel shows the log ratio of the average estimated GTE to the
true GTE. The desired value is 0, which is colored white. Red represents overestima-
tion and blue represents underestimation. We see that all specifications can estimate
the SUTVA specification well because it is nested within all GTE specifications. The
POW-DEG specification seems to provide estimates with the lowest bias, even under
model misspecification.

The top right panel shows the standard deviations of the GTE estimates where
white represents low standard deviations and dark green represents high standard
deviations. We can see that the SUTVA and HOM (2.4) specifications provide the
lowest standard deviations while the highest standard deviations come from the
LAG specification (2.7). Both the POW-DEG (2.9) and the LNE (2.1) specifications
provide reasonably low standard deviations.

The bottom left panel shows the coverage rate of 95% confidence intervals for
the GTE constructed by each estimating model. The results show that LNE (2.1),
POW-DEG (2.9) and LAG (2.7) specifications have high coverage rates while the
HOM specification (2.4) has lower coverage rates and the SUTVA specification has
the worst. This is because the SUTVA specification does not capture the network
effects introduced by other specifications.

Finally, on the bottom right, the model selection results by AIC (Akaike, 1998) are
presented. Green represents high selection rates while white represents low selection
rates. AIC works well as it selects the correct model specification most of the time,
which is shown by the green diagonal. This supports the use of likelihood-based
model selection criteria such as AIC for the GANE framework. Furthermore, it
can be seen that POW-DEG specification (2.9) is selected fairly often no matter
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Figure 2.6: Model misspecification simulation results. The horizontal axis corre-
sponds to the data-generating model while the vertical axis corresponds to the esti-
mating model.
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the data-generating model, which suggests that it fits the data reasonably well even
under model misspecification.

As illustrated in Figure 2.6, the POW-DEG specification (2.9) is the only one that
performs well in each dimension. This illustrates the flexibility of the POW-DEG
model to capture a variety of network effects. Hence, we advocate its use generally,
especially when there is no prior information or preference for another specification.

2.5 Conclusions

We introduce the general additive network effect model for network A/B tests, which
unifies many existing models in the literature and enhances the modeling flexibility.
We further bridge the model-based and the design-based frameworks by defining
causal quantities of interest: the global treatment effect, the direct treatment effect,
and the indirect treatment effect as functions of the model parameters. Thus, in-
ference for all three quantities may be carried out via the inference of the model
parameters.

Although the model is studied under the A/B testing setting where there are just
two experimental conditions (treatment and control) and the outcomes are continu-
ous, the GANE model framework can be extended for use in other settings. First,
by expanding the model equation, the GANE model can be used to analyze exper-
iments with more than two experimental conditions. Second, by introducing link
functions and other distributional and functional assumptions, the framework can
be extended to deal with non-normal distributions and discrete outcomes in manners
similar to generalized linear models. In particular, the extension of the GANE model
to experiments with binary outcomes is treated in Chapter 3.

Despite the GANE framework’s flexibility, we recommend the POW-DEG specifi-
cation (2.9), which models the network effect as powers of the treatment and control
degrees. Via simulation, we found that the specification is robust against model mis-
specification in terms of inference for the global treatment effect. Thus we suggest
the use of this specification, especially in the design stage, when there is no prior in-
formation or modeling preference. Optimal designs for the POW-DEG specification
with respect to the MSE of the GTE are discussed in Section 4.

Finally, although AIC appears to work in the model misspecification simulation
in Section 2.4.3, the use of AIC is only possible in the analysis stage once the data
are observed, or when preliminary data are available. Model selection for the design
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and analysis of experiments on networks thus remains an open problem for future
research.
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Chapter 3

Analysis of Network Experiments
with Binary Outcomes

The GANE model proposed in Chapter 2 allows experiments with continuous out-
comes to be modeled with generalized network effects. However, many experiments
in practice concern binary outcomes, for example, experimenters may be interested in
studying individuals’ decisions to buy a certain product (Cai et al., 2015) or to adopt
a policy (Park et al., 1976). Applying models designed for continuous outcomes to bi-
nary outcome data may be inadequate due to distributional misspecification. In this
chapter, we extend the GANE framework in Chapter 2 for binary experimental out-
comes. In particular, we assume that the experimental outcomes follow a Bernoulli
distribution whose success probability is modeled using a non-autoregressive speci-
fication of the GANE model. We investigate the performance of such a model via
extensive simulations. Our method is then applied to the agricultural insurance data
set from Cai et al. (2015).

3.1 Binary GANE Extension

We consider the same problem setting as in Chapter 2, where we have access to n
experimental units. The experimental data D contains A,Z,X, which respectively
are the adjacency matrix, the vector of treatment assignments, and a possible matrix
of covariates. We assume D to be fixed. The experiment being considered is again
an A/B test with two treatments (treatment vs. control) on an undirected, simple,
and fixed network. That is, for each unit i, Zi = 1 indicates that the unit is assigned
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to treatment, and Zi = 0 indicates that the unit is assigned to control. For every
pair of units i and j, Aij = 1 indicates that the two units are connected on the
network, otherwise Aij = Aji = 0. Note that since the network is simple, Aii = 0 for
all i = 1, ..., n.

In this chapter, we consider the case where Yi, i = 1, ..., n are binary indicators
taking the values 0 or 1. For each i = 1, ..., n, we consider the case where the
experimental outcome Yi follows a Bernoulli distribution with success probability

P(Yi = 1) = h
(
µ+ τZi + γTgT,i(φ) + γCgC,i(φ)

)
, (3.1)

where h : R → [0, 1] is an inverse link function, which is often used in the GLM
literature (McCullagh and Nelder, 1989, sec. 2.2.3), and gT,i and gC,i are real-valued
functions that depend on parameters φ and the experimental data D but not the
experimental outcome Y. With Model (3.1), the outcome probability of a unit i
depends not only on its own treatment assignment Zi but also on other treated and
controlled units via functions gT,i(φ) and gC,i(φ). Note that the regression within h(·)
has a similar form as the GANE model in (2.15). The only difference is that Model
(3.1) excludes the autoregressive component that involves the experimental outcome
vector Y. If we choose to include the outcome vector Y in the regression, we will not
be able to specify the full likelihood forY. Indeed, including the outcome vectorY in
the regression is considered infeasible in the spatial econometrics literature (Anselin,
2002; Klier and McMillen, 2008).

3.1.1 Estimation

Since Model (3.1) makes a Bernoulli distributional assumption for the outcome, we
use maximum likelihood for the estimation and inference of Model (3.1). With this
distributional assumption, asymptotic likelihood theory is well established and so
theoretical developments like those in Section 2.3 are not necessary here. For brevity,
we rewrite Model (3.1) as

pi(β,φ) := P(Yi = 1) = h(mi(φ)
⊤β),

where mi(φ) = [ 1 Zi gT,i(φ) gC,i(φ) ]⊤ and β = [ µ τ γT γC ]⊤. Now, the
log-likelihood can be written as

ℓ(β,φ) =
n∑

i=1

{
Yi log pi(β,φ) + (1− Yi) log

[
1− pi(β,φ)

]}
. (3.2)
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Note that Model (3.1) is a conventional generalized linear model for fixed values of
φ since gT,i and gC,i are known up to φ. Thus, we can estimate the parameters of
Model (3.1) using the profile likelihood method. In particular, for a fixed value φ,
let β̂(φ) be the ML estimate of β in the binary regression (3.1), which can be found
using commands for generalized linear regression in standard statistical software.
Then, the ML estimate for φ can be found by maximizing the profile log-likelihood
ℓp(φ) = ℓ(β̂(φ),φ) using numerical optimization techniques.

3.1.2 Inference

Let θ0 = [ β0 φ0 ]⊤ be the true parameter values of Model (3.1). Following the
maximum likelihood theory (Serfling, 1980, sec. 4.2), the ML estimator is asymp-
totically unbiased and follows a normal distribution. The asymptotic variance of the
ML estimates is given by the inverse of the Fisher information matrix, that is,

J−1(θ0) =

(
E
[
− ∂2ℓ

∂θ∂θ⊤

∣∣∣
θ0

])−1

. (3.3)

Thus, an estimator of the variance is the plug-in estimator [J(θ̂)]−1. The subscript
indicating the dependence of J(θ0) on n is suppressed in this chapter for brevity. The
detailed derivation of the variance estimator for Model (3.1) is given in Appendix
B.1.1.

3.1.3 Global Treatment Effect

Recall that the global treatment effect (GTE) is the difference in the expected ex-
perimental outcomes, when all units in the network are assigned to treatment, versus
when they are assigned to control. This quantity is still of interest in the context of
binary responses. Hence, for Model (3.1), the GTE is given by

GTE(θ) =
1

n

n∑
i=1

{
h
[
mi(DZ=1n ,φ)

⊤β
]
− h
[
mi(DZ=0n ,φ)

⊤β
]}

, (3.4)

where mi(DZ=1n ,φ) is the value of mi when Z = 1n and mi(DZ=0n ,φ) is defined
similarly. Since the GTE in (3.4) is a function of the parameters, we can estimate
the GTE from data using the plug-in estimator, namely GTE(θ̂). The variance of
this estimator can be estimated using the Delta method by substituting θ̂ for θ
in Equation (2.23). Asymptotic confidence intervals and hypothesis tests can be
constructed accordingly.
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3.2 Simulations

Next, we study the properties of the ML estimator for Model (3.1) via simulations.
Note that in Model (3.1), if the network effect functions do not contain unknown
parameters, i.e., φ = ∅, Model (3.1) becomes a regular generalized linear regression.
Since the behavior of ML estimators for generalized linear regressions are well-studied
in the literature (McCullagh and Nelder, 1989), in this section, we focus on a nonlin-
ear specification of Model (3.1), that is, the POW-DEG specification from Chapter
2 with

gT,i(φ) =

(
n∑

j=1

AijZj

)λ

and gC,i(φ) =

(
n∑

j=1

Aij(1− Zj)

)λ

, (3.5)

where φ = {λ}. Similar to Chapter 2, to understand the estimator’s properties
in real-life network settings, we consider the Caltech and the UMichigan networks,
whose summary statistics are given in Table 1.1. Since the ML theory for Model 3.1
applies for fixed values of Z, in the simulation, we generate a fixed design Z for each
network setting (either the Caltech or the UMichigan network), where half of the
units are randomly selected and assigned to treatment and the rest of the units are
assigned to control. Summary statistics of the designs we generated are provided in
Appendix B.2.1. We use these designs throughout the simulation study.

3.2.1 The Distribution of the Estimates

First, we investigate the distribution of the ML estimator of Model (3.1) with the
logit link

h(x) =
1

1 + exp(−x)
.

Results for the probit regression version with h(x) = Φ(x), where Φ(·) is the cu-
mulative distribution function of the standard normal distribution, are given in
Appendix B.2.2. For the parameters, we consider β = (−2, 1, 0.5, 0.1)⊤ and λ ∈
{0.25, 0.5, 0.75}. For each combination of parameters and network, we conduct 1,000
simulation runs, in which we generate the experimental outcomes from Model (3.5)
and estimate the parameters using the generated data. The parameter estimates and
their estimated variances are recorded for investigation.

Figure 3.1a shows the distribution of the parameter and GTE estimates for the
Caltech network. The dotted vertical lines represent true parameter values. We can
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see that the distributions of the estimators are reasonably bell-shaped around the true
parameter values as expected by asymptotic theory. Of all parameters, τ seems to be
estimated the best as the sampling distribution of τ̂ is concentrated symmetrically at
the true value. Skewed distributions are seen for the other parameters and the GTE.
This happens because binary outcomes have less variation than continuous outcomes
and are difficult to fit. Extreme estimates can happen when the binary responses
are highly imbalanced. Hence, experiments with binary outcomes may require larger
sample sizes for the asymptotic results to work. This conclusion is supported by
the results for the larger UMichigan network in Figure 3.1b, where the sampling
distributions for every parameter are more symmetric and concentrated around the
true values.

We further investigate the variance estimates of the ML estimators in Figure 3.2.
The sample variance and theoretical variance (calculated using Equation (3.3)) are
plotted with red and blue lines, respectively. The coverage rates of the associated 95%
confidence intervals are plotted with grey bars, with dotted lines indicating the 0.95
level. We refer to the left axes for variances and to the right axes for coverage. We can
see that the estimation results are clearly better for the larger UMichigan network,
where sample and theoretical variances follow more closely and the coverage rates
are more accurate. There are still some discrepancies in the sample and theoretical
variances for λ, indicating that the parameter requires a larger sample size for the
large sample inference to be accurate. Nevertheless, this again emphasizes that large
sample sizes are required for ML estimation in experiments with binary outcomes.
Similar conclusions are found in the results for the probit regression, which are given
in Appendix B.2.2.

3.2.2 Hypothesis Testing

Due to the link function, the definitions of the direct and indirect effects in Section
2.2.3 are not relevant for Model (3.1). That is, τ is no longer the difference in
expected outcomes when a node is assigned to treatment versus control while keeping
the network effects fixed. Nevertheless, in the structure of Model (3.1), it is clear that
τ governs the effect from individual treatment assignment, γT and gT,i governs the
effect from treated units, and γC and gC,i are responsible for the effect from controlled
units. Thus, the experimenters may still be interested in testing similar hypotheses
considered in Section 2.4.2, i.e., H01 : τ = 0, H02 : γT = γC = 0, H03 : γT − γC = 0,
and H04 : GTE = 0. Hypotheses H01, H03 and H04 are tested using a Wald-type test
and Hypothesis H02 is tested using a likelihood ratio test.
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(a) Results for the Caltech network.

(b) Results for the UMichigan network.

Figure 3.1: The distribution of parameter estimates for the POW-DEG specification
of Model (3.1) with logit link over 1,000 runs, where β = (−2, 1, 0.5, 0.1)⊤ and
λ ∈ {0.25, 0.5, 0.75}.
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(a) Results for the Caltech network.

(b) Results for the UMichigan network.

Figure 3.2: The variances of the estimates (left axes, lines) and coverage rates (right
axes, bars) for the POW-DEG specification of Model (3.1) with logit link over 1,000
simulation runs β = (−2, 1, 0.5, 0.1)⊤ and λ ∈ {0.25, 0.5, 0.75}.
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We conduct simulations to study the properties of these tests. We use the same
set of parameters: β = (−2, 1, 0.5, 0.1)⊤ and λ ∈ {0.25, 0.5, 0.75}, and run separate
simulations to study each of the hypothesis tests. In each simulation, we vary some
parameters while keeping the others fixed. In particular, for H01, τ varies in [0, 1];
for H02, γT = γC and their values vary in the range [0, 0.05]; for H03, γC is fixed at
0.1 while γT − γC vary in [0, 0.5]. Results for testing H04 are accumulated through
the simulations of the other three hypotheses, in which different parameter combina-
tions result in different values of the GTE. Each scenario corresponding to a specific
combination of parameters and network is investigated via 1,000 runs. Results for
the logit link are shown in Figure 3.3 while results for the probit link are shown in
Appendix B.2.3. Note that because the results for H04 are accumulated throughout
all parameter combinations in the simulations for the other three hypotheses, the
GTE values in the H04 plot are not regularly spaced.

Overall, the rejection rates increase as the parameters move away from the null
values. Moreover, the tests become more accurate with higher power as the network
size increases, namely results are better for the UMichigan network compared to the
smaller Caltech network. However, we detect an anomaly in the test for H03 when
γT−γC > 0.4 in the UMichigan network. Specifically, the rejection rates drop rapidly
when γT increases beyond 0.5. This happens because larger parameter values have
led to simulated data with many more 1s than 0s, making the estimation difficult
and negatively impacting the performance of the hypothesis test. We can also see
some irregularities at GTE ≈ 0.17 in the test for H04. This is caused by certain
combinations of parameters in which τ is large, causing the generated data to be
more imbalanced. Nevertheless, the general trend for H04 rejection is still increasing
with GTE as expected.

Appendix B.2.3 shows results for the probit link, which behave more closely
to what is expected. The difference can be attributed to the difference in model
structure and thus the difference in the scale of feasible parameter values for each
model. Nevertheless, the simulation results suggest that experimenters should care-
fully design their binary-outcome experiments so that the numbers of 0s and 1s in
the outcomes are ideally both reasonably large.

3.2.3 GTE Estimation Under Model Misspecification

In the previous two sections, we studied the properties of the ML estimators of the
POW-DEG specification of Model (3.1) when the model is correctly specified. More-
over, in Chapter 2, we found that the POW-DEG specification for the continuous
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(a) Results for the Caltech network.

(b) Results for the UMichigan network.

Figure 3.3: Rejection rates of hypothesis tests for POW-DEG specification of Model
(3.1) with logit link and varying parameters.
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GANE model had good performance under model misspecification. Does the POW-
DEG specification still work well under model misspecification for binary data? In
this section, we address this question by considering cases where the underlying data-
generating model is not the same as the estimating model. In particular, we consider
the following data-generating model

Y ∗
i,t = µ+ τZi + γ

1

Kii

n∑
j=1

AijYj,t−1 + ϵi,t

Yi,t = I(Y ∗
i,t > 0), (3.6)

where ϵi,t ∼ N (0, σ2) and 0 ≤ t ≤ T . In this model, the binary experimental
outcome Yi,t of unit i at time t is determined by the value of a latent variable Y ∗

i,t.
The latent variable is influenced by unit i’s own treatment assignment Zi, and by
the outcomes of its neighbors in the previous time step. We can see that with this
model, the effect from an individual’s own treatment assignment is governed by the
parameter τ , while the effect from the network (here the neighbors) is governed by
the parameter γ. Thus, the GTE will also be affected by these two parameters. In the
literature, Model (3.6) has been used to evaluate the performance of different design-
based GTE estimators (Gui et al., 2015; Eckles et al., 2016; Chin, 2019). We will
use this model to evaluate the performance of different specifications of Model (3.1),
while comparing them with the simple difference-in-means estimator. Specifically,
we consider both linear and nonlinear specifications of the continuous GANE (2.3)
and the binary GANE (3.6) models. The list of models being compared is given
below.

(1) SUTVA model: This estimator corresponds to the SUTVA model in Section
2.4.3, namely a simple linear regression with the intercept and the treatment
assignment vector as covariates. The GTE estimator corresponding to this
model is equivalent to the difference-in-means estimator

τ̂ =

∑n
i=1 ZiYi∑n
i=1 Zi

−
∑n

i=1(1− Zi)Yi∑n
i=1(1− Zi)

. (3.7)

(2) Gaussian-GLM: the LNE model in (2.1).

(3) Probit-GLM: the LNE specification of Model (3.1) with probit link.

(4) Logit-GLM: the LNE specification of Model (3.1) with logit link.

(5) Gaussian-POWDEG: the POW-DEG model in (2.9).
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(6) Probit-POWDEG: the POW-DEG specification of Model (3.1) with probit link.

(7) Logit-POWDEG: the POW-DEG specification of Model (3.1) with logit link.

Following Eckles et al. (2016), in Model (3.6), we set the initial outcomes Yi,0

to 0 for i = 1, ..., n. We also set µ = −1.5, σ = 1, T = 3, while varying τ ∈
{0, 0.25, 0.5, 0.75, 1} and γ ∈ {0, 0.25, 0.5, 0.75, 1}. Each combination of network and
parameters is used in 1,000 simulation runs, in which the outcomes are generated us-
ing Model (3.6) and the GTE is estimated using estimators based on Models (1)-(7).
Note that in this simulation setting, the model assumptions of Models (1)-(7) are all
wrong. This enables us to evaluate their performances under model misspecification.
In particular, we evaluate the performance of these estimators using bias, standard
deviation, root mean squared error (RMSE), coverage rate, and the proportion of
times the estimator is selected among all estimators by the AIC. Results for the
Caltech network are given in Figure 3.4, and the results for the UMichigan network
are given in Figure 3.5.

In the figures, different colors represent different estimating models. Full lines
represent linear specifications (whenφ = ∅) while dotted lines represent the nonlinear
POW-DEG specifications. The columns of the panel grid correspond to different
values of γ in Model (3.6) while the rows correspond to different evaluation criteria.
First, we notice that the SUTVA estimator (in red) performs very well with low bias,
standard deviation, and RMSE when τ and γ are small. In this case, it is best to use
this simple estimator to estimate the GTE. However, as τ and γ increase, the bias
of the SUTVA estimator grows increasingly worse than the GTE estimators based
on binary models (in blue and green). We also notice that the standard deviation of
the SUTVA estimator is consistently low. This is because the SUTVA estimator’s
formula in (3.7) only takes into account the number of times Y = 1 in each treatment
group, rather than which unit has which outcome. On the other hand, the other
estimators take into account the network structure and hence are more sensitive
to the change in the response vector. At higher values of τ and γ, the SUTVA
estimator has increasingly large bias and poor coverage, which prompts the use of
binary models as in (3.1) in these scenarios. This conclusion is further supported
by the results for the UMichigan network in Figure 3.5. With a larger network, the
standard deviations of the estimators from the binary models decrease, making the
overall RMSE of these estimators lower than that of the SUTVA estimator.

Second, from Figure 3.4, although having correct coverage for the GTE, the
RMSE of estimators from models for continuous outcomes (in yellow) increase as τ
and γ increase. On the other hand, the RMSE of estimators coming from binary

57



Figure 3.4: Performances of different GTE estimators under Model (3.6) for the
Caltech network.
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Figure 3.5: Performances of different GTE estimators under Model (3.6) for the
UMichigan network.

59



models remain stable. This is because the predicted outcomes of binary models
are contained between 0 and 1 while the predicted outcomes of continuous models
can vary greatly as the size of treatment effect increases. Therefore, as is expected,
experimenters should generally use binary models to analyze experiments with binary
outcomes.

Finally, we can see that the linear specifications of the binary model in (3.1)
perform relatively well for all evaluation criteria, including bias, variance, RMSE, and
coverage. The nonlinear specifications perform worse due to uncertainty coming from
additional parameters. However, this problem is alleviated with more data as shown
in the results for the UMichigan network (Figure 3.5). Moreover, we find the choice
of link functions does not seem to have any noticeable influence on the results. Since
the AIC reasonably selects models that perform well across all evaluation criteria
(the bottom row of Figures 3.4 and 3.5), we recommend that experimenters try both
linear and nonlinear specifications of Model (3.1), and select the appropriate model
using the AIC.

3.3 Application to the Agricultural Insurance Data

3.3.1 Data Description

In this section, we consider the agricultural insurance data from Cai et al. (2015). The
data was collected from a large-scale experiment concerning farmers’ insurance, which
involved about 5,000 households in 250 villages in rural China. The experimenters
were interested in verifying the hypothesis that a better understanding of the policy
will enhance the insurance uptake rate. They were also interested in understanding
the social effects of information spread that may influence the farmers’ insurance
purchase decision.

To evaluate this, the experimenters created two types of information sessions: a
20-minute simple information session and a 40-minute intensive information session.
In this experiment, the simple information session acts as the control while the
intensive information session acts as the treatment. The sessions were held in two
rounds, each round comprised one simple and one intensive information session. The
first round and the second round were held three days apart. This allowed some time
for the information from the first round sessions to spread among friends and family,
but not likely to the whole network. Friendship links were established by asking
the farmers’ household heads to list five close friends with whom they often discuss
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rice production or financial issues. These friends could be in the same or different
villages.

In each village, the farmers’ households are randomized into one of the four
information sessions. After that, farmers assigned to the second round are further
randomized into one of the following three conditions: (a) farmers are shown the
overall uptake rate of their village in the first round, (b) farmers are shown the
detailed list of their village’s first-round attendees and their purchase decisions, and
(c) farmers are not shown any further information. The experimental design is
summarized in Figure 3.6. The outcome of interest, i.e., the farmers’ insurance
purchase decisions, was recorded at the end of each information session.

Figure 3.6: The within-village experimental design of the agricultural insurance ex-
periment, adapted from Figure 1.1 of Cai et al. (2015). The numbers of households
in each group in the raw data are given in brackets.

There are other experimental conditions on pricing and administrative style ap-
plied to the village level, but in this analysis we will only focus on the household-level
experimental design. Following Cai et al. (2015), we model variations among villages
using fixed effects in the regression and robust clustered variances (see Appendix
B.1.2). Overall, the data set contains information (covariates) on individual house-
holds such as gender, age, literacy, etc. of the household head, their treatment as-
signment, their purchase decisions (outcome), and the friendship links among them.
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Figure 3.7: The distribution of the number of households in each village in the
processed data set.

3.3.2 Our Analysis

We consider all households in both the first and second rounds of the experiment.
Different from Chin (2019) who only consider the treatment and outcome, we add
into our analysis covariates about the farmers’ households. Following Cai et al.
(2015), we consider (i) whether the household’s head is male, (ii) the age of the
household’s head, (iii) household size, (iv) area of rice production, (v) whether the
household’s head is literate, and (iv) dummy variables for villages. We also add
dummy variables indicating whether the second-round participants received overall
or detailed uptake information from their fellow villagers who participated in the
first round. Households with missing data are removed. This leaves us with a data
set of 4,514 households (units) from 173 villages. The distribution of the number of
households in each village is shown in Figure 3.7.

Since second-round households may receive information from their friends who
participated in the first-round sessions, we model network effects as the (power of)
number of friends who attended round 1 information sessions. We set the network
effects to 0 for first-round participants. Thus, the network we consider consists of
nodes representing households and edges coming from first-round participants to
second-round participants. This is a directed network. Note that Model 3.1 handles
network effects by functions gT and gC , which we extend here for directed networks.
In particular, we defined gT as the (power of) number of friends who attended the
intensive session in round 1 and gC as the (power of) number of friends who attended
the simple session in round 1.
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Note that covariates can be incorporated into the regression formula by adding
terms to the function h(·) in (3.1). In general, our regression formulas can be written
as

µ+ τZi + γT qT (Ui) + γCqC(Vi) + βTxi

for each household i, where xi is the vector of covariates for household i. When i is a
second-round participant, Ui and Vi are the numbers of friends of i that participated
in the first-round simple or intensive session, respectively. When i is a first-round
participant, Ui and Vi are set to 0. Functions qT and qC are set as one of

• Linear: qT and qC are identity functions, i.e., qT (x) = x and qC(x) = x; or

• POW-DEG: qT (x) = xλ and qC(x) = xλ; or

• POW-DEG-2: qT (x) = xλT and qC(x) = xλC , where λT can be different from
λC .

For function h(·), we consider both the probit and logit links, and compare them
with fitting a continuous model with identity link. We also compare these binary
models to the simple SUTVA model (3.7) in Section 3.2.3. Following Cai et al.
(2015), we calculate the robust clustered standard errors (see Appendix B.1.2) for
all parameter estimates with the grouping variable being the village membership.
The GTE estimates are calculated as the difference in average outcomes of second-
round participants when all farmers go to intensive sessions versus when they all go
to simple sessions.

Our analysis strategy differs from that of Cai et al. (2015) in various aspects.
First, we consider the first-round and second-round participants together, instead of
separately. This allows us to obtain a single estimate for the “direct” treatment effect
from a larger data set. Second, while Cai et al. (2015) consider dummy variables
for one, two, or more than two friends going to the first-round intensive session
to consider nonlinear network effects, we take a more parsimonious approach using
the POW-DEG and POW-DEG-2 specifications. This yields single estimates of
network effects coming from treatment or control, which is more convenient for effect
quantification and testing. Finally, Cai et al. (2015) use a simple linear regression for
binary data, which can be problematic as we illustrated in the simulation in Section
3.2.3. We instead consider binary response models and compare them to continuous
response models.

In addition, our analysis also differs from previous analyses from the network
experimentation literature, such as Chin (2019), in that we are able to capture more
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aspects of the data and the experimental design. For example, we incorporate covari-
ates, consider the effect of the treatment delay (second-round vs first-round sessions),
and calculate the robust clustered variances with respect to village membership.
Moreover, Chin (2019) combine both first-round and second-round participants into
a single network, which assumes that second-round participants can influence the
decisions of first-round participants. This is not true because the first-round partic-
ipants already made their decisions at the end of their sessions. Thus, our approach
of considering only the influence of first-round participants to second-round partici-
pants aligns better with the experimental design.

Our results are given in Table 3.1. We can see that the results are relatively
consistent across different models. The experimenters’ hypothesis that a better un-
derstanding of the insurance policy will lead to an increased uptake rate is well-
supported as the effect from intensive information sessions is found to be positive
and highly significant. All models also agree that the GTE is highly significant.
However, by ignoring the network effects, Model (1) estimates the GTE from 3 to
10 percentage points less than those of the other models. Model (1) is also not able
to conduct tests for H02 or H03 like the other models.

In terms of network effects, all models agree that there are some network effects,
since in all cases the test corresponding to H02 is significant. The network effect
from treatment is found to be significant in linear (Models (2)-(4)) and POW-DEG-
2 models (Models (8-10)). The POW-DEG specification did not return a similar
result. This implies that the test for specific network effects (coming from treatment
or control) can depend on the network effect functions considered. Nevertheless,
the POW-DEG-2 specifications have the smallest AIC values compared to their cor-
responding linear and POW-DEG counterparts. Moreover, note that the difference
between the first- and second-round sessions can be attributed mostly to the network
effects. While in the other network effect specifications, the effect of second round
is still significant, in the POW-DEG-2 specifications, such an effect is no longer sig-
nificant. This may imply that the POW-DEG-2 specifications manage to capture
all the network effects received by second-round participants. Therefore, the POW-
DEG-2 specifications seem to be the most appropriate network effect specifications
for this data. According to the POW-DEG-2 specifications, both the network effects
from the treatment and the control are significant, with the network effect coming
from the treatment being positive and the network effect coming from the control
being negative. This indicates that a household will be more likely to purchase the
insurance if they have more friends who know the product well, which agrees with
the findings by Cai et al. (2015) who used a different analysis approach. Moreover,
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with the POW-DEG-2 specification, we also find that having friends who do not
understand the policy well can decrease the purchase inclination. This is a new find-
ing compared to the original analysis by Cai et al. (2015), where they also report a
negative, but not significant network effect coming from friends in the simple session.

In terms of covariates, we find age and literacy of household heads highly sig-
nificant for insurance purchase decisions across all models. On the other hand, the
gender of household heads is not significant. Finally, the model selection result by
AIC reiterates that the continuous models are not appropriate for binary data. More-
over, for this data set, logit models are preferred compared to probit models. Overall,
the AIC suggests that we choose and hence draw conclusions using Model (10), i.e.,
the logit model with POW-DEG-2 network effect specifications.

3.4 Conclusion

In this chapter, we extended the GANE model framework to analyze network exper-
iments with binary outcomes. We outlined the inference procedure and conducted
simulation studies to investigate the performance of the model. We find that using
models for continuous data may be unfavorable for binary data, especially for large
treatment effects. We also find binary-outcome models are more difficult to estimate
due to less variation in outcome values. Therefore, experiments with binary outcomes
will typically require larger sample sizes than with continuous outcomes to achieve
the same precision. The experimenters also need to be careful in designing the ex-
periments so that the numbers of 1s and 0s in the outcomes are adequate for model
estimation and inference. Finally, the applicability of our method is illustrated by a
re-analysis of the agricultural insurance data from Cai et al. (2015). In particular,
our framework is close to the regression framework that practitioners are familiar
with while providing more flexibility with respect to network effect inference.

The popularity of experiments for binary outcomes on networks calls for more
research in the future. As discussed, these experiments may require larger sample
sizes. Thus, design and sample size calculation will be an important topic for future
research. Furthermore, in this chapter, we did not consider the autoregressive effect
of other units’ outcomes on a unit. However, it is possible that observing/discussing
the outcomes with other units may influence a unit’s final decision. In such cases,
other model structures, for example, binary models that incorporate latent variables
(Klier and McMillen, 2008; Piras and Sarrias, 2023), may be considered. This is an
exciting topic for future research.
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Models (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Model specification
Link Identity Identity Probit Logit Identity Probit Logit Identity Probit Logit
Network functions None Linear Linear Linear POW-DEG POW-DEG POW-DEG POW-DEG-2 POW-DEG-2 POW-DEG-2

Estimation
Intensive Session 0.0788*** 0.0761*** 0.2058*** 0.3397*** 0.0765*** 0.2066*** 0.3418*** 0.0757*** 0.2049*** 0.3392***

(0.0152) (0.0152) (0.0411) (0.0675) (0.0153) (0.0413) (0.0679) (0.0152) (0.0413) (0.068)

Net.Eff from Treatment 0.0558*** 0.1516*** 0.2486*** 0.0195 0.0493 0.0816 0.0453* 0.1233*** 0.1996***
(0.0132) (0.0364) (0.059) (0.0129) (0.034) (0.0567) (0.0192) (0.0354) (0.0557)

Net.Eff from Control 0.0098 0.0282 0.0438 0.0089 0.024 0.0377 -0.0599** -0.1605** -0.272**
(0.0115) (0.0313) (0.051) (0.008) (0.0228) (0.036) (0.0218) (0.0575) (0.0943)

Info - Overall -0.0431. -0.1174. -0.1923. -0.0431. -0.1183. -0.1928. -0.0434. -0.1188. -0.1949.
(0.0253) (0.0707) (0.1162) (0.0254) (0.0709) (0.1165) (0.0251) (0.0703) (0.1157)

Info - Detailed 0.0388 0.1074 0.1739 0.034 0.0957 0.1533 0.0508. 0.1391. 0.2279.
(0.0283) (0.0763) (0.1246) (0.0282) (0.0763) (0.1246) (0.0281) (0.0761) (0.1245)

Second Round -0.0739** -0.2007** -0.3283** -0.0615* -0.1641* -0.2696* -0.04 -0.1088 -0.1764
(0.0268) (0.0728) (0.1181) (0.026) (0.0705) (0.1145) (0.0262) (0.0757) (0.1222)

Male 0.0359 0.098 0.1572 0.0348 0.0945 0.153 0.0378 0.1039 0.1649
(0.0316) (0.0874) (0.142) (0.0316) (0.0872) (0.1418) (0.0316) (0.0874) (0.1421)

Age 0.0041*** 0.0112*** 0.019*** 0.004*** 0.0111*** 0.0187*** 0.004*** 0.0111*** 0.0188***
(0.0008) (0.0024) (0.0036) (0.0008) (0.0024) (0.0036) (0.0008) (0.0023) (0.0035)

Household Size -0.0076* -0.0216* -0.0355* -0.0073. -0.0206* -0.034* -0.0079* -0.0226* -0.037*
(0.0038) (0.0103) (0.017) (0.0038) (0.0104) (0.017) (0.0038) (0.0103) (0.0169)

Rice Prod. Area 0.0018** 0.0053 0.0117** 0.0018** 0.0053 0.0117** 0.0018** 0.0053 0.0118**
(0.006) (0.0037) (0.0038) (0.006) (0.0036) (0.0038) (0.006) (0.0037) (0.0038)

Literacy 0.0972*** 0.2664*** 0.4316*** 0.0958*** 0.2621*** 0.4259*** 0.0956*** 0.2622*** 0.4259***
(0.0185) (0.0511) (0.0842) (0.0185) (0.0512) (0.0844) (0.0184) (0.05) (0.0825)

Model fitness
AIC 6482.513 5910.036 5895.781 5890.616 6187.664 5893.323 5888.02 6186.015 5892.178 5886.358

Other inferences
GTE 0.0788*** 0.1436*** 0.1408*** 0.1426*** 0.1138*** 0.1079*** 0.1109*** 0.1843*** 0.1757*** 0.1784***

(0.0152) (0.0311) (0.0305) (0.0304) (0.026) (0.0255) (0.0252) (0.0362) (0.0309) (0.0306)

Test for H02 *** *** *** *** *** *** *** *** ***
Test for H03 ** ** ** *** *** ***

Table 3.1: Model fitting results. The coefficients are rounded to the nearest 4 digits. Significance codes ***, **, *, and . correspond to significance
levels 0.001, 0.01, 0.05, and 0.1, respectively. Robust clustered standard errors are given in brackets. Fixed effect estimates of individual villages are
not directly of interest and thus are not displayed in this table.
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Chapter 4

Optimal Bayesian Designs for
Network A/B Testing

Given a model for the experimental outcomes, a good design for the experiment can
be found by optimizing a design criterion. The design criterion should be deliber-
ately chosen to be related to the efficiency of the analysis that will be conducted
based on the model. As demonstrated in Chapter 2, to capture the complicated
network interference patterns, outcome models for network experiments can be com-
plex. Therefore, design criteria for network experiments usually involve unknown
parameters and may not have a closed-form formula. This limits the use of classical
optimal design methods.

In this chapter, we formulate a Bayesian design criterion based on the mean
squared error of the GTE estimator. In optimizing such a criterion, we select a de-
sign that is on average near-optimal with respect to the prior distribution of model
parameters. Since Bayesian design criteria often do not have a closed-form expres-
sion, we adapt and investigate a variety of general-use optimization algorithms to
find the optimal design on networks. We investigate and compare the effectiveness of
these algorithms over multiple model specifications and data sets. Our results help
characterize generally good designs for network A/B testing.
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4.1 Design Criterion

4.1.1 The Model-Based Design Problem

We consider the same setting as in Section 1.2.1, where an A/B test is conducted
on a simple and undirected network G = (V , E). The network G has |V| = n nodes
and is represented by the adjacency matrix A. In an A/B test, there are only two
experimental conditions, treatment and control. We denote the treatment assignment
vector, or the design of the experiment, by Z, where Zi = 1 indicates that unit i is
assigned to treatment and Zi = 0 indicates that unit i is assigned to control. Let X
be an n× p matrix of possible covariates and Y be the n× 1 vector of experimental
responses. In this chapter, we consider both cases when Y is continuous and binary.

As discussed in Section 1.2.2, model-based approaches to the design and anal-
ysis of experiments on networks impose a probabilistic model on the experimental
response

Y ∼ pY(D,θ), (4.1)

where D = {A,Z,Y,X) is the experimental data and θ ∈ Θ ⊂ Rd represents
possible parameters of the distribution pY. We assume that the covariates X and
the network A are given, while parameters θ are unknown and the experimental
design Z is to be determined. An optimal design Z∗ is defined as

Z∗ = argmin
Z∈{0,1}n

ϕ(Z),

where ϕ(·) is a design criterion specified by the experimenter and derived based on
the response model pY.

As discussed in Section 2.2.5, in network A/B test setting, the global treatment
effect (GTE) is often the quantity of primary interest. It is defined as the difference
in average response when the whole network is assigned to treatment versus control

GTE =
1

n

n∑
i=1

(
E
[
Yi

∣∣∣Z = 1n

]
− E

[
Yi

∣∣∣Z = 0n

])
. (4.2)

An estimator of the GTE can be determined prior to the experiment and the design
could be chosen in order to minimize some efficiency measure of this GTE estimator.
In this chapter, we focus on minimizing the MSE of the GTE estimator. Nevertheless,
the methodologies presented in this chapter can be applied to other possible design
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criteria such as the D-optimality criterion (Pukelsheim, 2006; Pokhilko et al., 2019)
or the variances of specific model parameters (Parker et al., 2017; Koutra et al.,
2021).

In classical experimental design, the design criterion can often be expressed in
a closed-form formula and the formula is often free of unknown model parameters.
Hence, exact optimization techniques such as gradient-based algorithms (Silvey et al.,
1978; Foster et al., 2020) or integer programming (Pokhilko et al., 2019) can be used.
However, models for network experiments are often complex in order to capture the
interference patterns. This typically makes the design criterion depend on unknown
parameters. Moreover, in some cases, the design criterion does not have a closed-form
formula. We illustrate this via the examples below.

Example 4.1. The Power-Degree (POW-DEG) Model: In the POW-DEG
model (2.9) of Chapter 2, the GTE can be expressed explicitly as

GTE = τ +
γT − γC

n

n∑
i=1

Kλ
ii, (4.3)

where Kii is the degree (or the number of connections) of unit i in the network.
As discussed in Section 2.3.3, we can obtain an unbiased estimate of this GTE by
plugging in the maximum likelihood estimates of τ, γT , γC and λ into (4.3). The
variance of this GTE estimator can then be derived using the Delta method (Doob,
1935; Van der Vaart, 2000)

Var(ĜTE) = d⊤Σ−1d, (4.4)

where

d⊤ = [ 0 1 1
n

∑n
i=1K

λ
ii − 1

n

∑n
i=1 K

λ
ii

γT−γC
n

∑n
i=1K

λ
ii logKii ],

Σ =
1

σ2

 M⊤M M⊤Ṁβ 0

M⊤Ṁβ β⊤Ṁ⊤Ṁβ 0
0 0 1

2σ2

 ,

in which

M = [ 1n Z GT GC ], Ṁ = [ 0n 0n ĠT ĠC ],

{GT}i =

(
n∑

j=1

AijZj

)λ

, {ĠT}i =

(
n∑

j=1

AijZj

)λ

log

(
n∑

j=1

AijZj

)
,
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{GC}i =

(
n∑

j=1

Aij(1− Zj)

)λ

, {ĠC}i =

(
n∑

j=1

Aij(1− Zj)

)λ

log

(
n∑

j=1

Aij(1− Zj)

)
,

and
β = [ µ τ γT γC ]⊤.

As the maximum likelihood estimator is asymptotically unbiased, we use Var(ĜTE)

as opposed to MSE(ĜTE) as our design criterion. It is clear from the formula above
that this design criterion involves unknown parameters λ and β. △

Example 4.2. The Binary Network-Temporal Autoregressive (BNTAR)
Model: Consider the response generating model (3.6) from the simulation in Section
3.2.3.

Y ∗
i,t = µ+ τZi + γ

1

Kii

n∑
j=1

AijYj,t−1 + ϵi,t,

Yi,t = I(Y ∗
i,t > 0), (4.5)

where Yi,t is the response of unit i at time step t with 0 ≤ t ≤ T , and the correspond-
ing error ϵi,t follows the standard normal distribution N (0, 1). Hence, Model (4.5)
assumes a latent variable Y ∗

i,t at time t that is dependent on the average response
of neighbors at time t − 1. The response Yi,t will be equal to 1 if this latent vari-
able is greater than a threshold, here 0. The model is inspired by graphical games
(Eckles et al., 2016), and is also adopted by Gui et al. (2015) and Chin (2019) as
the response-generating model for their simulation studies. The model’s popularity
is due to its reasonable dynamics and nonlinear structure, which can be used to
examine the performance of experimental analysis methods whose constructions are
based on a linearity assumption. However, the complex structure of the model makes
it hard to derive the formula for the GTE analytically. Moreover, the GTE also de-
pends on specific values of the model parameters. Indeed, in Eckles et al. (2016),
the true GTE is estimated using Monte Carlo approximation for each combination
of parameter values. The MSE of any GTE estimator, which is the design criterion
for this model, also needs to be estimated using Monte Carlo approximation. △

Example 4.3. The Conditional Network Autoregressive (CNAR) Model:
Pokhilko et al. (2019) and Zhang and Kang (2022) adopt the conditional autoregres-
sive model from the spatial statistics literature (Besag, 1974) to model the response
of a network experiment. A simple form of the model can be written as

Yi = µ+ τZi + ϵi,
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ϵi|ϵ−i ∼ N

(
ρ

n∑
j=1

Aijϵj
Kii

,
σ2

Kii

)
, (4.6)

where ϵ−i is the error vector without the ith element. The CNAR model has four
parameters: µ is the baseline response, τ is the effect of the treatment, σ2 is the
variance, and 0 ≤ ρ < 1 characterizes the strength of the network dependence
between neighbors. Under the CNAR model, the GTE is τ and the joint distribution
of the errors can be derived as (Pokhilko et al., 2019; Zhang and Kang, 2022)

ϵ ∼ N
(
0, σ2(K− ρA)−1

)
,

where K is the diagonal matrix of the degrees Kii (number of unit i’s connections).
When the parameter ρ is known, we can estimate the parameters β = (µ, τ)⊤ using
weighted least squares regression, which yields

β̂ = (M⊤(K− ρA)M)−1M⊤(K− ρA)Y, (4.7)

where M = [ 1n Z ] is the model matrix. This weighted least squares estimator

is unbiased. Thus, we can set the design criterion as MSE(ĜTE) = Var(ĜTE) =
Var(τ̂). We derive the variance-covariance matrix to be

Var(β̂) = σ2(M⊤(K− ρA)M)−1, (4.8)

where Var(τ̂) is the (2,2)th element. Both Pokhilko et al. (2019) and Zhang and
Kang (2022) consider the case of a pre-specified ρ and find the locally optimal design
using integer programming. However, it may be difficult to choose a specific value
for ρ in practice. △

In all examples, the design criterion is complicated, which involves unknown pa-
rameters or requires Monte Carlo approximation. In the case of unknown parameters,
we can assume specific values for these parameters and work on the closed-form for-
mula of the design criterion to find locally optimal designs using customized integer
programming (Pokhilko et al., 2019; Zhang and Kang, 2022). However, it is unclear
how to choose these values in practice. Finally, if the design criterion does not have
an analytic formula, it is clear that we cannot use any traditional approach to con-
struct optimal designs. Thus, we develop more generally useful design methods in
this chapter.
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4.1.2 Bayesian Design Criterion

To alleviate the problem of unknown parameters within design criteria for network
experiments, we propose to set a prior pη to describe their distribution (not depending
on the yet-to-be-observed data), where η ⊆ θ denotes the unknown parameters. Such
a prior can be specified to be either informative or noninformative according to the
experimenters’ domain knowledge. The design criterion can then be formulated as

ϕ(Z) =

∫
ϕ0(Z,η)pηdη, (4.9)

where ϕ0 is the target design criterion and the design criterion ϕ is the expected
value of ϕ0 over the prior distribution of the model parameters. In our setting,

ϕ0 = MSE(ĜTE). The design criterion ϕ in Equation (4.9) is called a Bayesian design
criterion. Some authors may prefer to call the this the pseudo-Bayeisan optimal
design criterion since the analysis is still carried out in the frequentist framework
(Ryan et al., 2016). Other types of Bayesian design criteria can be found in Chaloner
and Verdinelli (1995).

Since pη can be freely chosen, the design criterion ϕ in Equation (4.9) generally
does not have a closed-form expression. In this case, we can estimate ϕ(Z) using a
Monte Carlo approximation

ϕ(Z) ≈ ϕ̂(Z) =
1

L

L∑
l=1

ϕ0(Z,ηl), where ηl ∼ pη, (4.10)

for large L. Now, our problem amounts to finding the optimal design Z ∈ {0, 1}n that
optimizes ϕ̂(Z). This is a discrete optimization problem where the objective function
ϕ(Z) does not have a closed-form formula. In the next section, we will discuss
algorithms to construct optimal designs for the defined Bayesian design criterion.

4.2 Design Construction Algorithms

As discussed in the previous section, the design construction problem is equivalent
to a discrete optimization problem where the objective function, i.e. our design
criterion ϕ(Z), does not have a closed-form formula. This impedes the use of optimal
design strategies that are tailored to a specific model and/or require an analytical
formula of the design criterion (Pokhilko et al., 2019; Koutra et al., 2021; Zhang
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and Kang, 2022). Furthermore, as the network size n increases, the search space
(|{0, 1}n| = 2n) increases exponentially, making it difficult to find the exact solution
to the optimal design problem. In summary, our challenges include (i) a discrete and
exponentially large search space of size 2n and (ii) a non-differentiable and difficult-
to-evaluate objective function. So, we seek to use general optimization algorithms
that find near-optimal solutions. In this section, we describe three classes of design
construction algorithms: (i) meta-heuristic search, (ii) Bayesian optimization, and
(iii) graph cluster randomization. We discuss several specific algorithms under each
of these strategies and we present how they can be applied in the network A/B test
setting.

4.2.1 Meta-heuristic Search

Meta-heuristic searches (Gendreau et al., 2010) perform a partial search in the so-
lution space. They usually involve a local improvement (greedy) step and a random
step to help the search escape from local optima. Meta-heuristic algorithms are often
used in problems with a large search space but constrained computational resources.
They have been used in the experimental design literature to find near-optimal de-
signs (Garćıa-Ródenas et al., 2020) especially when the design criterion does not
have a closed-form formula. However, these applications are on continuous designs,
instead of discrete designs as in our problem. There has also not been any applica-
tion of these algorithms to the network A/B testing problem. Below, we introduce
four popular meta-heuristic algorithms (Martin and Quinn, 1996), and explain how
we adapt these algorithms to our network A/B testing problem.

4.2.1.1 Random Search

One of the simplest meta-heuristic algorithms is random search (Spall, 2005), where a
large number of designs is randomly generated from some distribution. The generated
designs are then evaluated based on the prespecified design criterion, and the design
with the smallest value of ϕ will be chosen as the “optimal” solution. Parker et al.
(2017) compared random search with an exchange algorithm where Zi, for i = 1, ..., n,
is changed iteratively so as to decrease the value of ϕ. They found that with respect
to their LNE model, random search is able to achieve a comparable result while being
less computationally complex.

Although the exact random search algorithms can be varied according to differ-
ent design-generating distributions, in our case, we use the uniform distribution to
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generate candidate designs, i.e.,

P(Z = z) =
1

2n
, for z ∈ {0, 1}n. (4.11)

This distribution is achieve by sampling Zi ∼ Bernoulli(1/2) independently for i =
1, 2, ..., n.

4.2.1.2 Tabu Search

While random search performs a “global search” where the designs are randomly
generated from a distribution, tabu search (Kernighan and Lin, 1970; Reeves, 1993)
performs a “local search”. In each step, the search will move to the best neighboring
design (defined below) relative to the current design. To prevent the search from
getting trapped in suboptimal neighborhoods, the tabu search algorithm keeps track
of recently visited designs in a tabu list and forbids the search to go back to that
region, with exceptions following an aspiration criterion.

Implementations of tabu search vary in terms of the definition of a design’s neigh-
borhood, how the tabu list is updated, and the aspiration rules. In our case, we define
neighbors of a design Z ∈ {0, 1}n as designs Z′ which have at most 100αneighbor% of
its elements different from Z. Since there can be a large number of such neighbors,
we only randomly generate and evaluate a fixed number of neighbors mneighbor in each
iteration. We also set the tabu list to be of fixed size mtabu. Thus, if a new design
is added, the oldest design is removed from the list. Finally, the aspiration criterion
is determined by the event U < αaspire, where U follows a uniform distribution in
[0, 1] and αaspire is called the aspiration rate. We set αneighbor = αaspire = 0.1 and
mneighbor = mtabu = 100. The detailed algorithm is summarized in Table 4.1. We
defer the discussion about the stopping criterion in Step 6 to Section 4.3.2.

4.2.1.3 Simulated Annealing

Similar to tabu search, simulated annealing (Kirkpatrick et al., 1983) is a local search
algorithm. However, instead of searching for the best neighboring design, the sim-
ulated annealing algorithm randomly chooses one neighboring design of the current
design. The search will move to this new design with the acceptance probability

P(accept Z(new)) = min

{
1, exp

[
−ϕ(Z(current))− ϕ(Z(new))

Ttemp

]}
, (4.12)
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Tabu Search

Step 1. Randomly generate an initial design Z(0). Set t = 0 and Z∗ = Z(0).
Step 2. Generate mneighbor neighboring designs, and evaluate them according to the

given design criteria. Order the neighboring designs from the best to worst.
Step 3. For each neighboring design in the ordered candidate list, starting with the

best one: if the design does not lie in the tabu list or if it does but the aspiration
criterion is satisfied, then set it to be Z(t+1). Otherwise, examine the next best
candidate. If none of the candidates is accepted, set Z(t+1) = Z(t).

Step 4 Add Z(t+1) into the tabu list. Remove the oldest design in the tabu list if the
tabu list now contains mtabu + 1 designs.

Step 5 If ϕ(Z(t+1)) < ϕ(Z∗), then set Z∗ = Z(t+1).
Step 6 Stop if the stopping criterion is met and return Z∗, otherwise set t = t+1 and

go to Step 2.

Table 4.1: Our implementation of tabu search.

where Ttemp > 0 is called the temperature. From Equation (4.12), we can see that
the search will certainly move to the new design if the new design is better in terms
of the design criterion. If the new design is worse than the current design, it will
still be accepted based on a probability that depends on the difference in design
criteria between the two designs and the temperature Ttemp. When Ttemp is high, the
acceptance probability is high and the search can explore more of the search space.
However, when Ttemp is low, the search will tend to settle in a local optimum area.
Inspired by the annealing process in physical chemistry where metal is heated and
then cooled down, the simulated annealing algorithm starts with a high temperature
for a large exploration and gradually decreases this temperature for a local greedy
search. In our implementation of the simulated annealing algorithm, we define neigh-
bors as in Section 4.2.1.2, set the initial temperature Ttemp at 1 and decrease it by
αcooling = 10% every mcooling = 50 iterations. The algorithm is summarized in Table
4.2.

4.2.1.4 Genetic Algorithm

The genetic algorithm (Holland, 1992) was originally created to simulate species
adaptations in nature, but eventually was shown to be a useful tool for optimization
problems (Martin and Quinn, 1996). In the context of the genetic algorithm, each
possible design is transformed into or regarded as a chromosome and the algorithm
starts with a population of chromosomes. As the algorithm progresses, the chromo-
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Simulated Annealing

Step 1. Randomly generate an initial design Z(0). Set t = 0 and Z∗ = Z(0).

Step 2. Generate a neighbor Z(new), and evaluate it according to the given design crite-
ria. Set Z(t+1) = Z(new) with probability given in Equation (4.12). Otherwise,
Z(t+1) = Z(t).

Step 3. If ϕ(Z(t+1)) < ϕ(Z∗), then set Z∗ = Z(t+1).
Step 4. Decrease the temperature by 100αcooling% every mcooling values of t.
Step 5. Stop if the stopping criterion is met and return Z∗, otherwise set t = t+1 and

go to Step 2.

Table 4.2: Our implementation of simulated annealing.

somes change by means of selection, crossover, and mutation so as to best “adapt”
to the objective function. That is, the chromosomes with good performance in terms
of the objective function will be born and thrive in the next generation.

Implementations of the genetic algorithm differ by genetic representation of the
search space and definitions of selection, crossover, and mutation operations. In our
case, as our search space is discrete, we can directly regard each design Z ∈ {0, 1}n
as a chromosome, whose elements Zi’s are regarded as genes. As the population
evolves, our execution of selection, crossover, and mutation operations is as follows.
During selection, the top 100αelite% designs (in terms of the design criterion) in
the population will be kept unchanged and moved to the next generation (iteration).
Meanwhile, the top 100αparents% of the designs will be eligible as parents and can mate
to produce offspring in the new population. In particular, besides the elite designs,
the rest of the new population is created by combining the designs of two randomly
selected eligible parent designs so that half of the elements in the child design come
from the father and the other half come from the mother. The exact indexes of the
elements i for which the values Zi’s come from the mother (or father) are randomly
chosen. Furthermore, the children will have mutations in αmutation of their genes, that
is, for each newly created child Z, 100αmutation% of Zi’s will be randomly generated.
We choose a fixed-sized population of mpop = 100 designs for each iteration, and we
set αelite = αmutation = 0.1 and αparents = 0.5. Our implementation is summarized in
Table 4.3.

4.2.2 Bayesian Optimization

Recall that our optimization problem involves the design criterion (4.9) in the form
of an integral. This integral is often intractable so it is typically evaluated using
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Genetic Algorithm

Step 1. Randomly generate an initial population of Z(0) = {Z(0,1), ...,Z(0,mpop)}. Set
t = 0.

Step 2. Evaluate the population and order them according to the design criterion ϕ(·).
Step 3. Move the top 100αelite% of the current population Z(t) to the next population

Z(t+1).

Step 4. For the remaining 100(1 − αelite)% of Z(t+1), perform crossover using two
randomly selected parents from top 100αparents% of the current population
Z(t).

Step 5. For each newly created child in Z(t+1): randomly modify 100αmutation% of
each unit’s treatment assignment.

Step 6. Stop if the stopping criterion is met and return the best solution in the current
population as Z∗. Otherwise set t = t+ 1 and go to Step 2.

Table 4.3: Our implementation of the genetic algorithm.

the Monte Carlo approximation given by (4.10). Depending on the target design
criterion function ϕ0, a large number of draws L may be required for a precise ap-
proximation of ϕ(Z) in (4.10). Thus, the objective function of our optimization
problem is computationally taxing to evaluate. On top of that, to explore the large
search space (2n), we will need to evaluate ϕ(Z) many times. To avoid this, Bayesian
optimization (Mockus, 1989; Garnett, 2023) techniques have been developed. One of
the main applications of Bayesian optimization is in hyperparameter tuning for ma-
chine learning models. In this chapter, we consider applying Bayesian optimization
for experimental design.

In our setting, following the principles of Bayesian optimization, we represent
the mapping Z 7→ ϕ(Z) by a conditional “prior” distribution p(ϕ(Z)|Z) that reflects
our belief and uncertainty about the design criterion function ϕ(·). As the algo-
rithm progresses and more data {Z, ϕ(Z)} are collected, the posterior distribution is
updated accordingly. We can decide which design to explore next based on an acqui-
sition function derived from this posterior distribution. The most common Bayesian
optimization technique is to employ Gaussian process prediction (Williams, 1998).
However, since our search space is discrete, we will need other Bayesian optimization
methods. In the following subsections, we discuss (i) local search using a surrogate
model for the design criterion, (ii) reinforcement learning, and (iii) the Tree-Parzen
estimator.
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4.2.2.1 Local Search with a Surrogate Model

Since Z ∈ {0, 1}n is high dimensional, it can be difficult to determine a reasonable
choice for the conditional prior distribution p(ϕ(Z) = u|Z) for u ∈ R. We can utilize
the flexibility and power of neural networks to approximate the relationship between
Z and ϕ(Z). In this case, the neural network is called a surrogate model for the
function ϕ(·).

To train the neural networks, we generate initial data {Z, ϕ(Z)} with the de-
sign criteria values ϕ(Z) evaluated using Monte Carlo approximation. Since Monte
Carlo estimation is computationally intensive which limits the initial sample size,
the initial surrogate model tends to be inaccurate and its predictions can have high
variance. Following Lakshminarayanan et al. (2017), we estimate this variance using
an ensemble of neural networks that have the same architecture. In particular, the
point prediction ϕ̃(Z) is set as the average µ(Z) of predictions made by each neu-
ral network in the ensemble. Similarly, the uncertainty of ϕ̃(Z) is estimated by the
standard deviation σ(Z) among these predictions.

Via an acquisition function hacquisition(·), we can decide to greedily move the search
to solutions Z that have low values of ϕ̃(Z), or to explore regions where the uncer-
tainty of prediction is high. Popular acquisition functions in Bayesian optimization
are upper confidence bound (UCB) (Srinivas et al., 2010), Thompson sampling (Lu
and Van Roy, 2017), or posterior mean. In this article, we use the UCB acquisition
function, which favors low values of hacquisition(Z) = µ(Z)−σ(Z), since Swersky et al.
(2020) find that it produces the best results for discrete optimization.

Our implementation is summarized in Table 4.4. We find that for our problem,
simple networks fit the design criteria better. Thus, for the simulations in Section
4.3, we use an ensemble of 10 neural networks, each with 1 hidden layer containing
4 nodes. The initial training data {Z, ϕ(Z)} contains minitial = 1000 observations,
where Z is randomly generated according to (4.11) and ϕ(Z) is approximated using
Monte Carlo approximation in Equation (4.10). The ensemble is trained for 100
epochs, with a batch size of 25, and a learning rate of 0.01 for each layer using mean
squared error loss and sigmoid activation functions. The ensemble is also re-trained
after every mupdate = 500 iterations as more data is collected during the search.
Overall, the use of the surrogate model allows us to examine more possible solutions
Z while restricting the number of intensive Monte Carlo evaluations of ϕ(Z).
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Bayesian Optimization via A Local Search with A Surrogate Model

Step 1. Randomly generate a collection of Z(1), ...,Z(minitial), evaluate them according
to the design criterion ϕ(·). Train the surrogate model using these data.

Step 2. Set t = minitial and choose Z(minitial) to be the design with the lowest value of
ϕ(·) in the initial data. Let Z∗ = Z(t).

Step 3. Randomly generate mneighbor neighbors of Z(t) and evaluate them using the
surrogate model. Select Z(t+1) as the neighbor that minimizes the acquisition
function hacquisition(·).

Step 4. If ϕ(Z(t+1)) < ϕ(Z∗), then set Z∗ = Z(t+1). Update the surrogate model every
mupdate iterations.

Step 5. Stop if the stopping criterion is met and return Z∗. Otherwise set t = t + 1
and go to Step 3.

Table 4.4: Our implementation of deep surrogate Bayesian optimization. In our simula-
tions, we use mneighbor = 100.

4.2.2.2 Reinforcement Learning

Instead of searching within the neighbors of the current solution as in the above
local search approach, we can train another neural network to suggest the next
designs to explore. This is called a policy network, which is used to improve the
policy (i.e., distribution) of actions in reinforcement learning (Li, 2017). To use such
techniques, we formalize our optimization problem into a reinforcement learning
problem. Suppose at iteration t, we are considering the current design Z(t). An
action αt ∈ {0, 1}n drawn from a policy distribution π(αt|Z(t)) modifies Z(t) into
Z(t+1) as follows:

Z
(t+1)
i =

{
Z

(t)
i if αi,t = 0

1− Z
(t)
i if αi,t = 1

.

By moving from Z(t) to Z(t+1), the action αt is paid a reward Rt, which is defined as
the decrease in value of the acquisition function

Rt = hacquisition(Z
(t))− hacquisition(Z

(t+1)),

where hacquisition is obtained from a surrogate model as in Section 4.2.2.1. Note that
larger rewards are desired. The motivation behind the use of a surrogate model is to
avoid evaluating ϕ(·) many times while training the policy network.

The policy network takes the current design Z(t) as an input and outputs the
probabilities πi,t = P(αi,t = 1|Z(t)). We train the policy network using the RE-
INFORCE algorithm (Williams, 1992) where weights ω of the policy network are

79



updated as

ω(t+1) = ω(t) − learning rate×Rt∇ω log π(αt|Z(t);ω(t)). (4.13)

As each αi,t can take the value 0 or 1, we model the policy distribution to be an
independent multivariate Bernoulli distribution with

π(αt|Z(t)) =
n∏

i=1

πi,t =
n∏

i=1

P(αi,t = 1|Z(t)).

In our implementation, we choose a neural network with two hidden layers (32
and 8 nodes) to train our policy network. Again, we use sigmoid activation functions
and learning rates of 0.01 for each layer. We follow Swersky et al. (2020) to take a
population approach, that is, in each iteration, the policy network is trained using
a population of mpop = 100 designs for mepoch = 100 epochs. The best mpop designs
created during the training are chosen to move on to the next iteration. The surrogate
model is trained similarly as in Section 4.2.2.1. However, we only use 30 epochs for
surrogate training to make the running time reasonable. Details of the algorithm are
given in Table 4.5.

Bayesian Optimization with Reinforcement Learning

Step 1. Randomly generate a population of Z̃(0,1), ..., Z̃(0,minitial) and evaluate them
according to the design criterion ϕ(·). Train the surrogate model using these
data. Set t = 0 and Z∗ as the best solution among the initial population.

Step 2. Rearrange the population in Step 1 and choose the best mpop designs: Z(0) =
{Z(0,1), ...,Z(0,mpop)}. Initialize the policy network.

Step 3. For each m of mepoch epochs: Feed each of Z(t,j) (j = 1, ...,mpop) into the
policy network and obtain Z(t,j,m) by sampling the action αt,j,m ∼ π(·|Z(t,j)).
Update the policy network using the REINFORCE algorithm in (4.13).

Step 4. Among Z(t,j,m) (j = 1, ...,mpop and m = 1, ...,mepoch), choose the best
mpop designs (according to the acquisition function) into the next popula-
tion Z(t+1) = {Z(t+1,1), ...,Z(t+1,mpop)}. Evaluate the design criteria ϕ(·) for
each of these designs.

Step 5. If ϕ(Z(t+1)) < ϕ(Z∗), then set Z∗ = Z(t+1). Update the surrogate model every
mupdate iterations.

Step 6. Stop if the stopping criterion is met and return Z∗. Otherwise set t = t + 1
and go to Step 3.

Table 4.5: Our implementation of deep reinforcement learning.
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4.2.2.3 Tree-Parzen Estimator

The Tree-Parzen estimator (Bergstra et al., 2011) models the conditional distribution
P(Z|ϕ(Z) < u∗), where u∗ is the γ-quantile of ϕ(Z), i.e.,

P(ϕ(Z) < u∗) = γ,

and γ is pre-specified. The algorithm then uses this conditional distribution to
identify designs that have high probabilities of having small values of the design
criteria. In particular, candidate designs Z are generated based on the conditional
distribution of Z|ϕ(Z) < u∗. The design that has the highest values of expected
improvement is chosen to be evaluated by calculating ϕ(·). Recall that we do not
want to evaluate ϕ(·) many times but still want to explore more designs.

For a specific design Z, the expected improvement in terms of design criterion is∫ u∗

−∞
(u∗ − u)P(ϕ(Z) = u|Z)du ∝

(
γ +

P(Z|ϕ(Z) ≥ u∗)

P(Z|ϕ(Z) < u∗)
(1− γ)

)−1

.

Thus, the design that maximizes the expected improvement is the design that max-
imizes P(Z|ϕ(Z) < u∗)/P(Z|ϕ(Z) ≥ u∗). For our problem, as Z ∈ {0, 1}n, we use
independent Bernoulli distributions to model and estimate the conditional distribu-
tions Z|ϕ(Z) < u∗ and Z|ϕ(Z) < u∗, that is,

P(Z|ϕ(Z) < u∗) =
n∏

i=1

P(Zi|ϕ(Z) < u∗). (4.14)

These conditional distributions are estimated and updated as the search progresses
and more design evaluations {Z, ϕ(Z)} are collected. The γ-quantile u∗ is also up-
dated accordingly. Our implementation of the algorithm is summarized in Table 4.6.
We set γ = 0.15 following Bergstra et al. (2011).

4.2.3 Graph-cluster Randomization

In the literature, there have been many attempts to characterize, in terms of graphical
structure, a generally good design for experiments on networks without specifying a
model. Parker et al. (2018) utilize graph symmetry to find units that have similar
connection structures for a matching design. Jagadeesan et al. (2020) take a similar
approach, where graph coloring is leveraged to conduct a matching design. Basse and
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Tree-Parzen Estimator

Step 1. Randomly generate a collection of Z(1), ...,Z(minitial), evaluate them according
to the design criterion ϕ(·) to obtain the initial list of designs and correspond-
ing design criteria {Z(i), ϕ(Z(i))}minitial

i=1 . Set t = minitial.
Step 2. Let u∗ be the γ-quantile of the observed ϕ(Z) values and let Z∗ be the best

design in this initial collection.
Step 3. Calculate the probabilities P(Zi = 1|ϕ(Z) < u∗) and P(Zi = 1|ϕ(Z) ≥ u∗)

from the current design-criteria list.
Step 4. Generate mcandidate candidates Z ∼ P(Z|ϕ(Z) < u∗) using (4.14). Let

Z(t+1) to be the one that maximizes P(Z|ϕ(Z) < u∗)/P(Z|ϕ(Z) ≥ u∗). Add
(Z(t+1), ϕ(Z(t+1))) into the current design-criteria list.

Step 5. Update u∗ and Z∗.
Step 6. Stop if the stopping criterion is met and return Z∗. Otherwise set t = t + 1

and go to Step 3.

Table 4.6: Our implementation of the Tree-Parzen estimator. We choose minitial = 1000
and mcandidate = 100 for our simulations.

Airoldi (2018) observe that the best experimental designs for their model are the ones
that “assign units with shared neighbors to different treatment groups, and avoid the
assignment of entire clusters of units that are densely connected to either treatment or
control”. On the other hand, graph cluster randomization assigns the same treatment
to closely connected clusters of units (Ugander et al., 2013; Eckles et al., 2016; Shalita
et al., 2016). Eckles et al. (2016) show that graph cluster randomization is able
to reduce bias in estimating the global treatment effect. Therefore, graph cluster
randomization has become popular in industry when experimenting on networks
(Gui et al., 2015; Saveski et al., 2017; Karrer et al., 2021). In Section 4.3, we will
examine the conflicting views of Basse and Airoldi (2018) and Eckles et al. (2016)
by investigating graph cluster randomization and other design approaches over a
collection of response models for network experiments.

As discussed in Section 1.2.3, graph cluster randomization first partitions the
network into clusters that have many connections within and much fewer connections
between clusters. Given such a clustering, each cluster and thus all of its units
are randomly assigned to either treatment or control. Graph cluster randomization
limits potential interference by ensuring each unit has the same treatment assignment
as (most of) its neighbors. This simulates universes (Ugander et al., 2013) where
the whole graph is assigned to either treatment or control. Thus, graph cluster
randomization is designed to reduce bias for estimating the GTE (Eckles et al.,
2016).
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Implementations of graph cluster randomization differ in terms of the clustering
algorithm which assigns cluster labels ci to each node i of the network, 1 ≤ i ≤ n.
The goodness of a clustering c = (c1, c2, ..., cn)

⊤ is usually evaluated using modularity
(Newman, 2006)

Q(c) =
1

2m

∑
i,j

(
Aij −

KiiKjj

2m

)
I{ci = cj},

where Kii =
∑n

j=1Aij is the number of connections (degree) of node i and m is the
number of edges in the network. Modularity measures the difference between the
observed number of edges within clusters assigned by c and the expected number of
such edges where the expectation is with respect to the degree distribution of the
graph (Newman, 2006). The higher the value of Q, the better the clustering c in
terms of grouping densely connected nodes together. Many clustering algorithms
exist. We consider balanced label propagation and the Louvain method, which are
described below.

Gui et al. (2015) argue that in addition to high modularity, a good clustering algo-
rithm needs to produce clusters of similar sizes (i.e., balanced) so that the difference-
in-means estimator (3.7) for the GTE has a small variance. They suggest a balanced
label propagation algorithm, in which the first step is to randomly assign the cluster
labels to nodes so that the cluster sizes are balanced. After that, the following two
steps are alternated until convergence. The first step is label propagation, in which
we iteratively check every pair of nodes and switch their labels if that increases the
modularity. Label propagation continues until the modularity can no longer increase.
The other step is random shuffling, where we randomly choose 100αshuffle% of pairs
and switch their labels. The random shuffling step is designed to help the algorithm
break away from locally optimal solutions. Following Gui et al. (2015), we choose
αshuffle = 0.05 in our implementation. There are other balanced graph clustering al-
gorithms proposed in the literature, such as the social hash algorithm (Shalita et al.,
2016; Karrer et al., 2021) and the restreaming linear deterministic greedy algorithm
(Saveski et al., 2017), but we use the balanced label propagation algorithm because
it produces clusterings with higher modularities (see Appendix C.1).

On the other hand, Karrer et al. (2021) observe that imbalanced clusters are
better when regression adjustment is applied in the analysis. They suggest using the
Louvain algorithm (Blondel et al., 2008), which is a fast and scalable algorithm that
is able to produce a possibly imbalanced clustering but with high modularity. The
algorithm starts by assigning each node to its own cluster. In each iteration, a node is
moved into a cluster of its neighbors so that the move will contribute the highest gain
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to modularity. Each cluster is then considered to be a new node and the algorithm
continues until the modularity cannot be increased anymore. Our implementation
of the Louvain algorithm is from the igraph package in R.

Note that balanced label propagation requires the number of clusters to be speci-
fied while the Louvain algorithm does not. In our implementation, we use the number
of clusters determined by the Louvain algorithm as input to balanced label propa-
gation. After a clustering is obtained, we randomly assign half of the clusters to
treatment and the other half to control, yielding a graph cluster randomized design.

Besides the clustering-based design construction algorithms discussed above, in
Section 4.3, we also consider balanced randomization, where we randomly assign
half of the units to treatment and the other half to control. This is the default
design construction algorithm for A/B tests with independent units and is thus a
relevant comparator. In our simulations, we use the designs produced by balanced
randomization as a baseline to investigate the relative efficiencies of the (optimal)
designs produced by other algorithms.

4.3 Simulations

4.3.1 Response-Generating Models

To investigate the performance of the design construction algorithms discussed in
Section 4.2, we consider a variety of models with different mean functions, error
structures, and response types. Below we list the models that we consider in this
chapter and discuss our choice of design criterion and prior specification for each
model.

The Conditional Network Autoregressive (CNAR) Model: In Example 4.3,
we discuss the CNARmodel (4.6), in which parameter ρ governs the correlation struc-
ture among the experimental units on the network. Since the weighted least squares

estimator (4.7) is unbiased, we can consider MSE(ĜTE) = Var(ĜTE) = Var(τ̂), the
(2,2) element of Var(β̂) in (4.8), as our target design criterion (i.e. ϕ0 in (4.9)).
While Pokhilko et al. (2019) and Zhang and Kang (2022) construct optimal designs
for known values of ρ, we aim to construct optimal designs with respect to a prior
distribution of ρ with the Bayesian design criterion (4.9). Since 0 ≤ ρ < 1, we assume
a noninformative, uniform prior for ρ in the range [0, 1).
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The Normal Sum (NS) Model: As discussed in Section 4.2.3, Basse and Airoldi
(2018) find that designs with a clustering structure such as those generated by graph-
cluster randomization are not desirable for their model. To verify this, we consider
that model in our simulations. In particular, Basse and Airoldi (2018) posit a hierar-
chical model where the network correlation is induced by “intrinsic latent variables”
X = (X1, ..., Xn)

⊤, in which

Xj ∼ N (µ, σ2)

Yi(0) | X ∼ N
(
Xi +

n∑
j=1

AijXj, γ
2
)

Yi = Yi(0) + τZi, (4.15)

where Yi(0) is the potential outcome when unit i is assigned to control. Basse and
Airoldi (2018) argue that the model arises naturally with an example where the
response of interest Yi is the time user i spends on a social media platform. Then
Xi can be thought of as the “intrinsic propensity of user i to spend time on the
website”. From the structure of Model (4.15), the GTE in this model is τ and Basse
and Airoldi (2018) estimate it using the difference-in-means estimator

τ̂ =
1

n1

n∑
i=1

ZiYi −
1

n0

n∑
i=1

(1− Zi)Yi, (4.16)

where n1 and n0 are the number of treated and controlled units, respectively. Under
the assumed model, the estimator is biased, and the corresponding mean squared
error can be derived as (Basse and Airoldi, 2018)

MSE(τ̂) = µ2

(
1

n1

n∑
i=1

ZiKii −
1

n0

n∑
i=0

(1− Zi)Kii

)2

+γ2ω⊤ω+σ2ω⊤A⊤Aω. (4.17)

The vector ω = (ω1, ..., ωn)
⊤ contains elements ωi such that ωi = 1

n1
if unit i is

treated and ωi = − 1
n0

if unit i is assigned to control. We can see that the MSE
formula in (4.17) depends on unknown parameters µ, γ and σ. In the simulations,
we posit priors on these unknown parameters. We choose a wide normal distribution
centered at zero as the prior for µ and inverse gamma priors for γ and σ. Specific
details are given in Table 4.7.

The Power-Degree (POW-DEG) Model: In Example 4.1, we discuss that for
the POW-DEG model (2.9), since the maximum likelihood estimator is asymptot-
ically unbiased, we can consider using its asymptotic variance as our target design
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criterion ϕ0. However, it is clear from (4.4) that the variance depends on model
parameters. Thus, the Bayesian optimal criterion with specified priors can be used
in the design stage when the parameters are unknown. For our simulations, we
choose a set of priors for the regression coefficients similar to that of the NS model.
As discussed in Section 2.2.2.3, since a sublinear growth is expected which renders
0 < λ ≤ 1, we set λ ∼ Uniform(0, 1]. Specific details about our prior specification
are summarized in Table 4.7.

The Binary Network-Temporal Autoregressive (BNTAR) Model: Finally,
we consider the BNTAR model in Example 4.2. Following Eckles et al. (2016), we
consider the difference-in-means estimator (4.16) for the GTE. Hence, our target
design criterion ϕ0 will be the MSE of the difference-in-means estimator. However,
due to the complex structure of Model (4.5), the design criterion cannot be derived
analytically. Thus, we need to estimate it using Monte Carlo approximation. In par-
ticular, for a given design Z, we generate the responses Yi,T in (4.5) 5,000 times, each
run with different parameter values drawn from the prior distribution and different
set of errors drawn from the standard normal distribution. A difference-in-means
estimate (4.16) is computed for each run. The MSE of the estimator under the
given design Z is then calculated with respect to the true GTE. The true GTE is
estimated as the difference in average responses (over the 5,000 runs) when all units
are assigned to treatment (Z = 1n) versus when all units are assigned to control
(Z = 0n). Following Eckles et al. (2016), we set µ = −1.5, T = 3, and Yi,0 = 0 for
all i ≤ 1 ≤ n. For τ and γ, we impose uniform priors on the values considered in
Eckles et al. (2016). Specific details are provided in Table 4.7.

Models Priors

CNAR Model (4.6) ρ ∼ Uniform[0, 1)

NS Model (4.15)

µ ∼ N (0, 102)

σ−2, γ−2 ∼ Gamma(1, 1)

POW-DEG Model (2.9)

µ, τ, γT , γC ∼ N (0, 102)

λ ∼ Uniform(0, 1]

σ−2 ∼ Gamma(1, 1)

BNTAR Model (4.5) τ, γ ∼ Uniform[0, 1]

Table 4.7: Parameter values and priors for models used in our simulations.
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4.3.2 Other Simulation Details

Both meta-heuristic and Bayesian optimization algorithms do not guarantee conver-
gence, thus they require a stopping criterion in order to control the running time.
There have been many stopping criteria proposed in the literature (Ribeiro et al.,
2011; Ghoreishi et al., 2017; Dai et al., 2019; Makarova et al., 2022). However, which
is best, both generally and specifically for each algorithm, has remained an open
problem. In our case, in order to make a fair comparison of the algorithms, we will
stop after a fixed number of design evaluations ϕ(·). Specifically, the algorithms
will stop after 5,000 design evaluations, where each evaluation uses a Monte Carlo
approximation (4.10) based on L = 5, 000 parameter draws. This value of L is deter-
mined empirically as the design criteria considered in this article generally converge
by 5, 000 parameter draws (see Appendix C.2).

To study the behaviors of the different response-generating models and design
algorithms on realistic network structures, in our simulations, we use the Enron,
Caltech, and UMichigan networks whose summary statistics are given in Table 1.1.
Due to the stochastic nature of the design construction algorithms considered, for
each scenario (network and model), we run each of the algorithms 30 times (to
generate 30 approximately optimal designs). We evaluate the designs found by each
algorithm in terms of efficiency compared to the naive balanced randomization (where
half of the network is randomly selected and assigned to treatment and the other
half is assigned to control). This enables us to make a fair comparison across designs
and models. In particular, for each model and method, the efficiency of a design is
calculated as

∆(Z) =
ϕ̄balanced randomization − ϕ̂(Z)

ϕ̄balanced randomization

× 100%. (4.18)

4.3.3 Results

4.3.3.1 Performance of Design Construction Algorithms

The performance of the algorithms described in Section 4.2 for each of the models
and networks are presented in Figure 4.1. Different rows of the grid show results for
different models, and different columns show results for different networks. In each
panel of the grid, a boxplot shows the distribution of efficiencies, given by (4.18), of
the 30 “best” designs found by a particular algorithm. The vertical dashed line at
0% serves as a reference. Designs lying on the left-hand side of this reference line
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perform worse than balanced randomization, and designs lying on the right-hand side
perform better. Given the size of the UMichigan network, we only show its results
for graph-cluster randomization, balanced randomization, genetic algorithm, and the
Tree-Parzen estimator due to infeasibly long running times for the other algorithms.

The first row of the grid shows the results for the CNAR model (4.6). We can see
that graph cluster randomization strategies, balanced or imbalanced, perform much
worse than any other algorithms. This indicates that this popular design algorithm
does not work for all response-generating models. Other algorithms perform slightly
better than balanced randomization, with meta-heuristic algorithms performing bet-
ter than Bayesian optimization algorithms.

Based on the MSE formula in (4.17), Basse and Airoldi (2018) point out that
good designs for the NS model (4.15) should not assign the same treatment assign-
ment to the entire cluster. Our results in the second row of Figure 4.1 corroborate
this statement; the graph cluster randomization performs much worse than other
design-finding methods. In fact, the efficiency loss can be up to more than 1000%.
This is mainly attributed to the bias which scales with µ in (4.17), and the wide
normal prior given to (unknown) µ. In addition to graph cluster randomization,
simple balanced randomization also occasionally produces very bad designs, causing
the average design criteria ϕ̄balanced randomization (4.18) to be very large. As a result,
designs produced by meta-heuristic and Bayesian optimization algorithms attain al-
most 100% efficiency gain.

In the third row of Figure 4.1, we present the results for the POW-DEG model
(2.9). Unlike the previous two models, the POW-DEG model prefers graph cluster
randomization. Such designs are the best designs for the Caltech and UMichigan net-
works, though the meta-heuristic algorithms and the genetic algorithm in particular
tend not to be far behind.

Lastly, we take a look at the results for the BNTAR model (4.5) in the bottom
row of Figure 4.1. Eckles et al. (2016) use the BNTAR model with fixed (known)
parameters to show the effectiveness of graph cluster randomization. However, when
the parameters are unknown and prior distributions are imposed, graph cluster ran-
domization performs worse than even simple balanced randomization. Moreover,
the efficiency gains of meta-heuristic and Bayesian optimization algorithms are so
minimal that we may avoid their computational complexity and opt to use balanced
randomization for this model.

We summarize these results with several conclusions. First, the performance
of graph cluster randomization depends highly on the assumed response-generating
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Figure 4.1: Efficiency of designs found by different algorithms under different models
and networks with respect to the balanced randomization algorithm.
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model. The algorithm may be the best for some models but the worst for others. In
terms of balance for the graph clustering, balanced and imbalanced cluster random-
ization gives similar results, with balanced cluster randomization performing slightly
better. Second, the performance of Bayesian optimization algorithms also varies with
respect to the models. This may be attributed to how well the surrogate model can
accurately represent the design criterion function ϕ(·). Finally, the genetic algorithm
seems to perform very well across all model and network settings considered. It also
has the lowest running times among all meta-heuristic algorithms, which, in general,
tend to be faster than the Bayesian optimization methods. See Appendix C.3 for
an analysis of running times. We thus recommend the general use of the genetic
algorithm for the problem of optimal Bayesian design on networks.

4.3.3.2 Characteristics of Optimal Designs

To understand what makes a good design for a given model, we study the char-
acteristics of the optimal designs generated across different algorithms for different
networks and response-generating models. The distributions of these characteristics
are plotted in Figure 4.2. Different rows represent different models and networks,
while different columns represent different design characteristics. In each panel, each
dot represents one design. By plotting the design characteristics against the effi-
ciency, we can see how characteristics are distributed among good and bad designs.

In the first column of Figure 4.2, we compare the average degrees of treated
and controlled nodes in different designs. The reference lines at 0 indicate perfect
balance. We can see that balance in terms of degree is particularly important for the
NS model (4.15). This is unsurprising given the first term of the MSE formula in
(4.17): large difference in average degrees between treated and controlled nodes will
increase the bias of the difference-in-means estimator. Degree balance also seems to
be preferred for the CNAR (4.6) and the POW-DEG (2.9) models. The BNTAR
model (4.5), on the other hand, seems to prefer assigning treatment to units with
lower numbers of connections.

We further investigate balance in terms of betweenness in the second column of
Figure 4.2. The betweenness of a unit measures the number of shortest paths (be-
tween pairs of other units) passing through that unit. If a unit lies on many shortest
paths connecting two other units, it is considered to have high (betweenness) central-
ity. This is similar to a transportation hub that many routes need to pass through.
We can see that betweenness balance is important across all models, especially in
the NS model (4.15).
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Figure 4.2: Characteristics of designs found by different algorithms for each model
and network.
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Finally, in the third column of Figure 4.2, we consider the clustering of the design
by measuring the percentage of nodes having a higher proportion of similarly assigned
neighbors than expected. If a design assigns b% of units to treatment, each unit is
expected to have b% of neighbors assigned to treatment and (100− b)% of neighbors
assigned to control. If a node is treated and has more than b% of neighbors assigned
to treatment, or if the node is controlled and has more than (100− b)% of neighbors
assigned to control, then the node tends to be surrounded by neighbors with the same
treatment assignment as themselves. This is exactly what happens in graph-cluster
randomization, where closely connected nodes are grouped into clusters and are given
the same treatment assignment. If a design has a high percentage of nodes having a
higher than expected number of similarly treated neighbors, then the design is more
“clustered”. We can see that the results in Figure 4.2 resonate with the results in
Figure 4.1, where graph-cluster randomization is good for the POW-DEGmodel (2.9)
while being poor for the CNAR (4.6) and the NS (4.15) models. For the BNTAR
model (4.5), clustered and unclustered designs seem to perform similarly.

In addition to these three characteristics, we also considered the percentage of
treated nodes (i.e., whether the design is balanced or not), and balance with respect
to closeness centrality. The results are shown in Appendix C.4, but we do not see
any notable patterns. We find that most designs, both good and bad, are balanced
in these two measures, implying that balance is important, but these particular
characteristics do not distinguish good designs from bad.

4.4 Conclusions

In this chapter, we formulate the problem of designing experiments on networks as
an optimization problem, where the design criterion is the mean squared error of a
GTE estimator averaged over the prior distributions of unknown parameters of the
postulated model. By considering such a Bayesian design criterion, we mitigate the
problem of unknown parameters in the design criteria formula, thus enhancing the
robustness of model-based optimal design approaches. Since most Bayesian design
criteria do not have closed-form formulas and need to be approximated using Monte
Carlo simulations, classical optimal design algorithms become infeasible, and other
general optimization algorithms need to be used. We adapted and investigated meta-
heuristic, Bayesian optimization, and graph-based design construction algorithms.
The effectiveness of these algorithms was evaluated using simulations across different
response-generating models and realistic network structures. Although we consider
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only the variance or MSE of the GTE estimator as the target design criterion in
our simulations, our methods can be easily generalized to any other target design
criteria.

In terms of the design construction algorithms, we find that the genetic algorithm
works reasonably well across all models and networks considered in this chapter
while being among the most computationally efficient. We thus recommend using
the genetic algorithm for optimal design problems on networks. In terms of design
characteristics, we find that balance between treatment and control groups, with
respect to various graphical characteristics, is preferred across almost all settings.
Thus, balanced designs in node characteristics may be generally favorable for network
experimentation. Finally, we find that graph cluster randomization, although highly
advocated in the literature, only performs well for some of the models considered.
In others, it can cause substantial efficiency loss. This emphasizes that the goodness
of a design depends on the intended analysis method. Although our results may
be impacted by the choice of hyperparameters in the algorithm implementations,
we choose hyperparameters according to the literature and obtain consistent results
across different scenarios. This strengthens the generalizability of our conclusions.

There are some aspects of optimal Bayesian design on networks that can be fur-
ther improved and investigated. First, the algorithms’ performances may be further
improved by employing more efficient coding, choosing different training distribu-
tions, and fine-tuning the hyper-parameters. Moreover, although we only consider
individual algorithms in this article, it may be valuable to investigate combinations
of these algorithms to see whether they can improve performance. Finally, our re-
sults show that the scalability of the optimization algorithms highly depends on the
scalability of the evaluation of design criteria. This can be a topic for future research.
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Chapter 5

Conclusion and Future Research

This thesis considers the problem of design and analysis of experiments when the
experimental units are connected on a network in which case interference via network
connections is common. This is an important problem because in many cases, such
as certain agricultural, clinical, or social experiments, the classical independence
assumption is not satisfied. Moreover, rather than an obstacle, interference may also
be the subject of interest for applied researchers.

In particular, we focus on the model-based approach in which a model is postu-
lated for the outcomes, and the design is constructed to optimize the efficiency of the
analysis based on the model. Both design and analysis of experiments on networks
are considered with a focus on enhancing flexibility, interpretability, and robustness.
In particular, Chapter 2 expands the modeling possibilities by introducing a general
class of parametric network effect specifications. Based on the additive structure of
the model, we propose a unified framework for causal interpretation and derive the
estimation and inference procedure for a family of specifications. Chapter 3 extends
the framework in Chapter 2 to experiments with binary outcomes. We apply such
a binary model to a real-world experiment and illustrate how our framework can be
useful for the analysis and interpretation of network experiments. Finally, Chapter
4 improves the robustness of model-based design by incorporating prior information
of unknown parameters into the design criterion. We formulate the optimal design
construction problem into a discrete optimization where the objective function is
computationally intensive. We approach this problem by adapting meta-heuristic
and Bayesian optimization techniques. Overall, the thesis presents a systematic
investigation of the problem of network experimentation in general and the model-
based approach in particular. We provide practitioners with useful overviews and
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insights, and we develop helpful tools that can be readily applied to the design and
analysis of network A/B tests in practice.

Nevertheless, network experimentation is still a burgeoning research area with
many possible extensions and open problems. First, since most current research
focuses on network A/B testing, future attention can be paid to experiments with
one or multiple factors at multiple levels. This is an important yet difficult prob-
lem since it is hard to quantify the network effect coming from each treatment on
a given network with a fixed structure. Second, in practice, many experiments are
conducted over an extended period of time, which may add uncertainty and tem-
poral confounding to the experimental outcomes. Thus, another promising area is
to incorporate, control, and leverage the time element of the experiment. Third,
experiments are often conducted on a sampled network. Sampling the experimental
network and generalizing the experimental results to the population network is also
an important topic for future research. Finally, research on network experimentation
does not only apply to network-correlated data. By properly defining the network
relationship, they may be applied to cluster-correlated or spatially correlated exper-
imental data. Causal inference on network-correlated observational data is also a
related area.
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Appendix A

Appendices for Chapter 2

A.1 Mathematical Details for Section 2.3

A.1.1 Proof of Lemma 2.1

We use the following two lemmas.

Lemma A.1. (Theorem 18.2.16 of Harville (2008)) Let A represent an n×n matrix.
Then, the infinite series I+A+A2+A3+· · · converges if and only if limk→∞Ak = 0,
in which case I−A is nonsingular and

(I−A)−1 =
∞∑
k=0

Ak = I+A+A2 +A3 + · · · ,

where A0 = I.

Lemma A.2. (Lemma 5.6.11 of Horn and Johnson (2012)) Let A be an n×n given
matrix. If there is a matrix norm || · || such that ||A|| < 1, then limk→∞ Ak = 0, that
is, each entry of Ak tends to zero as k → ∞.

From the two lemmas, if we have ||ρTWT + ρCWC || < 1 for any matrix norm
|| · ||, then S(ρ) will be invertible. Now, if the condition of Lemma 2.1 is satisfied,
using triangle inequality, we can derive

||ρTWT + ρCWC || ≤ |ρT |||WT ||+ |ρC |||WC ||,
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≤ max(|ρT |, |ρC |) [||WT ||+ ||WC ||] ,
< 1,

i.e., S(ρ) is invertible.

A.1.2 Assumptions Needed for Asymptotic Results

In order to achieve the asymptotic results in Theorem 2.2 in Appendix A.1.3, we
make the following assumptions.

Assumption A.1. ϵn = (ϵ1n, ϵ2n, . . . , ϵnn)
⊤ are independently and identically dis-

tributed with mean 0 and variance σ2
0 > 0. In addition, the moment E(|ϵi,n|4+η)

exists for some η > 0.

Assumption A.2. The true parameters ρ0 and φ0 lie in the interior of a compact
parameter space P×Φ. The parameters are uniquely identifiable, in the sense that
P (Ln(θ1) = Ln(θ2)) = 0 for θ1 ̸= θ2.

Assumption A.3. The elements ofWTn andWCn are at most of order hn uniformly,
i.e., Wln,ij = O(1/hn) ∀i, j and l ∈ {T,C}. The sequence hn can be bounded or
divergent. Furthermore, limn→∞ hn/n = 0.

Assumption A.4. The matrix Sn(ρ0) is nonsingular.

Assumption A.5. The weight matrices WTn, WCn and the matrix Sn(ρ0)
−1 are

uniformly bounded in both row and column sums. Moreover, Sn(ρ)
−1 is uniformly

bounded in either row or column sums.

Assumption A.6. For each i, the functions gT,i and gC,i are twice continuously
differentiable with respect to φ. The values of these functions and their derivatives
are uniformly bounded ∀φ ∈ Φ. Furthermore, ∀φ ∈ Φ, limn→∞Mn(φ)

⊤Mn(φ)/n
exists and nonsingular.

Assumptions A.1, A.2 and the differentiability requirement for gT,i and gC,i in
Assumption A.6 are usual regularity conditions for the consistency and asymptotic
normality of nonlinear least squares regression (Jennrich, 1969). The identifiability
requirement in Assumption A.2 contains the requirement that the columns of the
model matrix Mn(φ) are linearly independent as discussed in Section 2.3.1.

Note that we cannot use the usual central limit theorems to derive the asymptotic
behavior of Model (2.17) because as the sample size n changes, the weight matrices
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may also change, leading to changes in the outcomes Yn. For example, when a new
unit is added to the network, it can be connected to other existing units, which
in turn changes the degree ki for each existing unit i, i = 1, 2, . . . , n. This results
in a different set of weight matrices for autoregressive specifications such as the
LAG (2.7) or the HOM (2.4) specifications. Therefore, we need to use the Central
Limit Theorem for linear-quadratic forms of triangular arrays (Kelejian and Prucha,
2010). Assumptions A.3, A.5, and A.6 are introduced to satisfy the assumptions
of this theorem. Essentially, the bounds in these assumptions control the spatial
correlations to a manageable degree so that they do not diverge as n goes to infinity
(Lee, 2004). For example, suppose WTn = An, Assumption A.3 is satisfied as all
elements of A are either 1 or 0, i.e., bounded. However, to satisfy Assumption A.5 in
this case, we need to further require that the degree of each unit i, i.e., the number
of connections, is bounded as n goes to infinity. This is reasonable in social network
settings as one will not have infinitely many friends.

Finally, Assumption A.4 makes sure that Yn can be expressed in the reduced
form as in (2.17).

A.1.3 Proof of Theorem 2.2

To prove consistency, we use the following lemma.

Lemma A.3. (Theorem 3.4 of White (1996)) Let (Ω,F ,P) be a complete probability
space, let Θ be a compact subset of Rp, p ∈ N and let {Θn} be a sequence of compact
subsets of Θ. Let {Qn} be a sequence of random functions continuous on Θ a.s. and
let θ̂n = argmaxΘn Qn(·,θ) a.s. If Qn(·,θ) − Q̄n(θ) → 0 as n → ∞ a.s. uniformly
on Θ and if {Q̄n : Θ → R} has identifiably unique maximizers {θ∗

n} on {Θn} then
θ̂n − θ∗

n → 0 as n → ∞ a.s.

From the reduced form (2.17), consider

Qn(ρ,φ) = max
β,σ2

E(logLn(θ)),

= max
β,σ2

[
− n

2
log 2π − n

2
log(σ2) + log |Sn(ρ)|

− 1

2σ2
β⊤Mn(φ)

⊤Mn(φ)β − σ2
0

2σ2
tr
(
Bn(ρ)

)
+

1

σ2
β⊤Mn(φ)

⊤Sn(ρ)Sn(ρ0)
−1Mn(φ0)β0

110



− 1

2σ2
β⊤
0 Mn(φ0)

⊤Sn(ρ0)
−⊤Sn(ρ)

⊤Sn(ρ)Sn(ρ0)
−1Mn(φ0)β0

]
,

where Bn(ρ) = Sn(ρ0)
−⊤Sn(ρ)

⊤Sn(ρ)Sn(ρ0)
−1. Taking the first derivative with

respect to β and σ2, we obtain the maximizers of Qn(ρ,φ) as follows:

β∗
n(ρ,φ) =

[
Mn(φ)

⊤Mn(φ)
]−1

Mn(φ)
⊤Sn(ρ)Sn(ρ0)

−1Mn(φ0)β0;

σ∗2
n (ρ,φ) =

1

n

{
β⊤
0 Mn(φ0)

⊤S−⊤
n (ρ0)Sn(ρ)

⊤[In −Hn(φ)
]

× Sn(ρ)Sn(ρ0)
−1Mn(φ0)β0 + σ2

0tr
(
Bn(ρ)

)}
, (A.1)

where Hn(φ) = Mn(φ)
[
Mn(φ)

⊤Mn(φ)
]−1

Mn(φ)
⊤. Now,

ℓp,n(ρ,φ) = − n

2
log 2π − n

2
log σ̂2

n(ρ,φ) + log |Sn(ρ)| −
n

2
,

Qn(ρ,φ) = − n

2
log 2π − n

2
log σ∗2

n (ρ,φ) + log |Sn(ρ)| −
n

2
,

where σ̂2
n(ρ,φ) was given in (2.20). To use Lemma A.3, we first need to show

1

n

{
ℓp,n(ρ,φ)−Qn(ρ,φ)

}
= −1

2

{
log σ̂2

n(ρ,φ)− log σ∗2
n (ρ,φ)

}
= op(1).

Note that

σ̂2
n(ρ,φ)− σ∗2

n (ρ,φ) = 2R1n(ρ,φ) +R2n(ρ,φ)−
1

n
σ2
0tr
(
Bn(ρ)

)
,

where

R1n(ρ,φ) =
1

n
β⊤
0 Mn(ρ0)

⊤S−⊤
n (ρ0)Sn(ρ)

⊤[In −Hn(φ)
]
Sn(ρ)Sn(ρ0)

−1ϵn,

and

R2n(ρ,φ) =
1

n
ϵ⊤nS

−⊤
n (ρ0)Sn(ρ)

⊤[In −Hn(φ)
]
Sn(ρ)Sn(ρ0)

−1ϵn

=
1

n
ϵ⊤nS

−⊤
n (ρ0)Sn(ρ)

⊤Sn(ρ)Sn(ρ0)
−1ϵn

− 1

n

[
1√
n
Mn(φ)

⊤Sn(ρ)Sn(ρ0)
−1ϵn

]⊤[
1

n
[Mn(φ)

⊤Mn(φ)]
−1

]
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×
[

1√
n
Mn(φ)

⊤Sn(ρ)Sn(ρ0)
−1ϵn

]
.

It can be shown that R1n(ρ,φ) = oP (1) and R2n(ρ,φ)− 1
n
σ2
0tr
(
Bn(ρ)

)
= oP (1) using

the following three lemmas given in Lee (2004) and assumptions on the bounds of
matrices.

Lemma A.4. Suppose the elements An,ij of n × n matrices An are O(1/hn) uni-
formly for all i, j. If n × n matrices {Bn} are uniformly bounded in column sums
(respectively, row sums), then the elements of AnBn (respectively, BnAn) have the
uniform order O(1/hn). For these cases, tr(AnBn) = tr(BnAn) = O(n/hn).

Lemma A.5. Suppose {An} are uniformly bounded either in row or column sums
and their elements An,ij have order O(1/hn) uniformly in i and j. Then E(ε⊤nAnεn) =
σ2
0tr(An) = O(n/hn) and Var(ε⊤nAnεn) = O(n/hn). If limn→∞ hn/n = 0, then

(hn/n)[ε
⊤
nAnεn − E(ε⊤nAnεn)] = oP (1), where ϵn satisfies Assumption A.1 (possibly

without normality but with E(|ϵn|4+γ) < ∞ for some γ > 0).

Lemma A.6. Suppose that An is a square matrix with its column sums being uni-
formly bounded and elements of the n × k matrix Zn are uniformly bounded. Then
(1/

√
n)Z⊤

nAnϵn = Op(1). Furthermore, if the limit of Z⊤
nAnA

⊤
nZn/n exists and is

positive definite, then (1/
√
n)Z′

nAnϵn
d→ N (0, σ2

0 limn→∞ Z⊤
nAnA

⊤
nZn/n).

Therefore, σ̂2
n(ρ,φ)−σ∗2

n (ρ,φ) = oP (1) uniformly on P×Φ. Hence, sup(ρ,φ)∈P×Φ
1
n
{ℓp,n(ρ,φ)−

Qn(ρ,φ)} = oP (1). Second, we need to prove the identification uniqueness condition
that, for any ϵ1, ϵ2 > 0,

lim sup
n→∞

max
ρ∈N̄ϵ1 (ρ0),φ∈N̄ϵ2 (φ0)

1

n

[
Qn(ρ,φ)−Qn(ρ0,φ0)

]
< 0,

where N̄ϵ1(ρ0) denotes the complement of an open neighborhood of ρ0 of diameter
ϵ1 and likewise for φ. To see this, we can write

1

n

[
Qn(ρ,φ)−Qn(ρ0,φ0)

]
=

1

n

{
E[logLn(ρ,β0,φ0)]− E[logLn(ρ0,β0,φ0)]

}
− 1

2

{
log σ∗2

n (ρ,φ)− log

(
σ2
0

n
tr(Bn(ρ))

)}
.

The first term is less than 0 by Jensen’s inequality and the identifiability condition of

Assumption A.2. Furthermore, σ∗2
n (ρ,φ) ≥ σ2

0

n
tr(Bn(ρ)) from (A.1) by the positive
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semi-definiteness of the annihilator matrix I−Hn(φ). Putting all of these together,
we proved θ̂n = θ0 + oP (1).

Now, to prove the asymptotic normality, we apply the mean-value theorem on
the first order derivative of logLn(θ) at θ̂n yielding

∂ logLn(θ̂n)

∂θ
= 0 =

∂ logLn(θ0)

∂θ
+ (θ̂n − θ0)

∂2 logLn(θ̃n)

∂θ∂θ⊤ ,

where θ̃n lies between θ̂n and θ0. Therefore

θ̂n − θ0 = −

[
∂2 logLn(θ̃n)

∂θ∂θ⊤

]−1(
∂ logLn(θ0)

∂θ

)
.

We can write down the first derivatives of logLn(θ) with respect to θ as follows:

∂ logLn(θ)

∂β
=

1

σ2
ϵ⊤nMn(φ),

∂ logLn(θ)

∂σ2
= − n

2σ2
+

1

2σ4
ϵ⊤n ϵn,

∂ logLn(θ)

∂ρj

=
1

σ2
ϵ⊤nWjnSn(ρ)

−1Mn(φ)β

+

(
1

σ2
ϵ⊤WjnSn(ρ)

−1ϵn − tr(WjnS
−1
n (ρ))

)
,

∂ logLn(θ)

∂φ
=

1

σ2
ϵ⊤n

∂Mn(φ)

∂φ
β,

for j ∈ {T,C}. Note that these are linear and quadratic functions of ϵn. Therefore
we can apply the Central Limit Theorem for linear-quadratic functions (Kelejian and
Prucha, 2010) given as Lemma A.7 below.

Lemma A.7. (Theorem A.1 of Kelejian and Prucha (2010)) Consider the linear
quadratic forms (r = 1, . . . ,m)

Qr,n = ϵ⊤nAr,nϵn +B⊤
r,nϵn,

where ϵn = (ϵ1,n, . . . , ϵn,n)
⊤ is an n × 1 random vector, and Ar,n = (aij,r,n)i,j=1,...,n

is an n × n non-stochastic real matrix, and Br,n = (b1,r,n, . . . , bn,r,n)
⊤ is an n × 1

non-stochastic real vector. We make the following assumptions:
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1. The real-valued random variables of the array {ϵi,n : 1 ≤ i ≤ n, n ≥ 1} satisfy
E[ϵi,n] = 0. Furthermore, for each n ≥ 1, the random variables ϵ1,n, . . . , ϵn,n
are totally independent.

2. For r = 1, . . . ,m, the elements of the array of real numbers {aij,r,n : 1 ≤
i, j ≤ n, n ≥ 1} satisfy aij,r,n = aji,r,n and sup1≤j≤n,n≥1

∑n
i=1 |aij,r,n| < ∞.

The elements of the array of real numbers {bi,r,n : 1 ≤ i ≤ n, n ≥ 1} satisfy
supn n

−1
∑n

i=1 |bi,r,n|2+η1 < ∞ for some η1 > 0.

3. For r = 1, . . . ,m, one of the following two conditions holds

(a) sup1≤i≤n,n≥1 E|ϵi,n|2+η2 < ∞ for some η2 > 0 and aii,r,n = 0.

(b) sup1≤i≤n,n≥1 E|ϵi,n|4+η2 < ∞ for some η2 > 0 (but possibly aii,r,n ̸= 0) .

Let
Un = [Q1,n, . . . ,Qm,n]

⊤,

and µUn = E[Un] and ΣUn denote the mean and variance-covariance matrix of Un,
respectively. Suppose the assumptions hold and n−1λmin(ΣUn) ≥ c for some c > 0.

Let ΣUn =
(
Σ

1/2
Un

)(
Σ

1/2
Un

)⊤
, then

Σ
−1/2
Un

(Un − µUn)
d→ N (0, Im).

Therefore, we can apply Lemma A.7 to ∂ logLn(θ0)
∂β

with m = dim(θ) since all the
multipliers to ϵn are bounded. Note that the assumption on the minimum eigenvalue
of the variance-covariance matrix is to ensure that matrices ΣVn stay invertible as
n → ∞, to which we have an equivalent condition in Theorem (2.2). The assumption
of symmetry is W.L.O.G since ϵnAnϵn = ϵ⊤n [(An +A⊤

n )/2]ϵn (Kelejian and Prucha,
2010). Hence we have

[Vn(θ0)]
−1/2∂ logLn(θ0)

∂θ

d→ N (0dim(θ), Idim.(θ)) (A.2)

Now, what is left to be proved is

1

n

∂ logLn(θ̃n)

∂θ∂θ⊤ =
1

n

∂ logLn(θ0)

∂θ∂θ⊤ + oP (1) =
1

n
E
[
∂ logLn(θ0)

∂θ∂θ⊤

]
+ oP (1). (A.3)

The second derivatives of logLn(θ) with respect to θ are

∂2 logLn(θ)

∂β∂β⊤ = − 1

σ2
Mn(φ)

⊤Mn(φ),
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∂2 logLn(θ)

(∂σ)2
=

n

2σ4
− 1

σ6
ϵ⊤n ϵn,

∂2 logLn(θ)

∂ρj∂ρl

= − 1

σ2
Y⊤

nW
⊤
lnWjnYn

− tr(WlnSn(ρ)
−1WjnSn(ρ)

−1),

∂2 logLn(θ)

∂φ∂φ⊤ =
1

σ2

[
− β⊤

(
∂Mn(φ)

∂φ

)⊤(
∂Mn(φ)

∂φ

)
β

+ β⊤
(
∂2Mn(φ)

∂φ∂φ⊤

)⊤

ϵn

]
,

∂2 logLn(θ)

∂σ2∂β⊤ = − 1

σ4
Mn(φ)

⊤ϵn,

∂2 logLn(θ)

∂σ2∂ρj

= − 1

σ4
Y⊤

nW
⊤
jnϵn,

∂2 logLn(θ)

∂σ2∂φ⊤ = − 1

σ4
β⊤
(
∂Mn(φ)

∂φ

)⊤

ϵn,

∂2 logLn(θ)

∂β∂ρj

= − 1

σ2
Y⊤

nW
⊤
jnMn(φ),

∂2 logLn(θ)

∂φ∂ρj

= − 1

σ2
Y⊤

nW
⊤
jn

(
∂Mn(φ)

∂φ

)
β,

∂2 logLn(θ)

∂β∂φ⊤ =
1

σ2

[
− β⊤

(
∂Mn(φ)

∂φ

)⊤

Mn(φ)

+ ϵ⊤n

(
∂Mn(φ)

∂φ

)]
,

for l, j ∈ {T,C}. Let Ckn(ρ) = WknSn(ρ)
−1 for k ∈ T, C}. Using the mean-value

theorem, we have

1

n
tr(WlnSn(ρ̃n)

−1WjnSn(ρ̃n)
−1) =

1

n
tr(Cln(ρ̃n)Cjn(ρ̃n))
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1
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(ρ̃n − ρ0)

⊤

×


...
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{
Ckn(ρ̄n)

(
Cln(ρ̄n)Cjn(ρ̄n) +Cjn(ρ̄n)Cln(ρ̄n)

)}
...
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=
1

n
tr(Cln(ρ0)Cjn(ρ0)) + oP (1),

where ρ̄n lies between ρ̃n and ρ0. By consistency, θ̂n = θ0 + oP (1), thus θ̃n =
θ0 + oP (1) and ρ̄n = θ0 + oP (1). The elements of Ckn(ρ̄n)Cln(ρ̄n)Cjn(ρ̄n) and
Ckn(ρ̄n)Cjn(ρ̄n)Cln(ρ̄n) are O(1) and the elements of Y⊤

nW
⊤
lnWjnYn are OP (n/hn)

by Lemma AA.6. Therefore

1

n

∂2 logLn(θ̃n)

∂ρj∂ρl

=
1

n

∂2 logLn(θ0)

∂ρj∂ρl

+ oP (1).

For other partial derivative terms, we can use the fact that

Mn(φ̃n) = Mn(φ0) + o(1),

∂Mn(φ̃n)

∂φ
=

∂Mn(φ0)

∂φ
+ o(1),

∂2Mn(φ̃n)

∂φ∂φ⊤ =
∂2Mn(φ0)

∂φ∂φ⊤ + o(1),

by Assumption A.6 and the continuous mapping theorem (Van der Vaart, 2000); the
fact that elements of Mn(φ), ∂Mn(φ)/∂φ and ∂2Mn(φ)/∂φ∂φ

⊤ are all O(1); and
Lemma A.4, A.5, and A.6. Similarly, we also can prove

1

n

∂ logLn(θ0)

∂θ∂θ⊤ + oP (1) =
1

n
E
[
∂ logLn(θ0)
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]
+ oP (1),

with

E
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]
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E
[
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E
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116



E
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]
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E
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(
∂Mn(φ)
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)⊤

Mn(φ),

where p is the number of parameters in φ. This completes the proof for (A.3).
Finally, from (A.2), (A.3), and Slutsky’s theorem, Theorem 2.2 is proved.

A.2 Additional Simulation Results

A.2.1 Summary of the Fixed Designs

Summary Caltech UMichigan
Proportion of treated units 0.50 0.499
Difference of average degree

between treated and controlled units 0.42 -0.92
Proportion of units having

a higher proportion of similarly 0.49 0.48
assigned neighbors than expected

Table A.1: Summary statistics of the fixed designs used in the simulations of Section
2.4.

In the simulations of Section 2.4, we fix a design by randomly selecting half of
the units in the network and assigning them to treatment. The rest of the units
are assigned to control. We provide the summary statistics of the designs that we
generated in Table A.1 below. Because we choose balanced randomization for each
network, the proportion of treated units in each design is approximately 0.5. Both
designs are balanced in terms of degree, since for each design, the difference in average
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degree between treated and controlled units is less than 1. Finally, the proportion
of units having a higher proportion of similarly assigned neighbors than expected
illustrates the clustering of the design. If this number is large, then the majority
of units are surrounded by neighbors who are assigned to the same treatment as
themselves. We can see that this number is around 0.5 for each design, which implies
that there is no clustering. Thus, the designs we generated are not uncommon, and
our results are generalizable.

A.2.2 Additional Simulation Results for Section 2.4.1

(a) The distribution of parameter estimates.
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(b) The variances of the estimates (left axes, lines) and coverage rates (right axes, bars).

Figure A.1: Simulation results of the POW-DEG specification on the Caltech Face-
book network with µ = 0, τ = 0.5, γT = 0.1, γC = 0.0 and λ ∈ {0.5, 0.75, 1.00, 1.25}
over 1,000 simulation runs.
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Figure A.2: (upper) The distribution of parameter estimates of the POW-DEG spec-
ification on the UMichigan Facebook network with µ = 0, τ = 1.0, γT = 0.5, γC = 0.1
and λ ∈ {0.5, 0.75, 1.00, 1.25} over 1,000 simulation runs. (lower) The corresponding
variances of the estimates (left axes, lines) and coverage rates (right axes, bars).
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Figure A.3: (upper) The distribution of parameter estimates of the POW-DEG spec-
ification on the UMichigan Facebook network with µ = 0, τ = 0.5, γT = 0.1, γC = 0.0
and λ ∈ {0.5, 0.75, 1.00, 1.25} over 1,000 simulation runs. (lower) The corresponding
variances of the estimates (left axes, lines) and coverage rates (right axes, bars).
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Figure A.4: (upper) The distribution of parameter estimates of the HOM specifica-
tion with µ = 0, τ = 0.5, γT = 0.1, ρT = ρC = 0.0 over 1,000 simulation runs. (lower)
The corresponding variances of the estimates (left axes, lines) and coverage rates
(right axes, bars).
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A.2.3 Additional Simulation Results for Section 2.4.2

Figure A.5: Rejection rates of hypothesis tests for HOM specification on the Caltech
and UMichigan Facebook networks with varying parameters.
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Appendix B

Appendices for Chapter 3

B.1 Variance Derivation for the MLE

B.1.1 Asymptotic Variances

The information matrix is

I(θ) =

[
− ∂2ℓ

∂β∂β⊤ − ∂2ℓ
∂β∂φ⊤

− ∂2ℓ
∂φ∂β⊤ − ∂2ℓ

∂φ∂φ⊤

]
.

From Model (3.1) and the log-likelihood in (3.2), elements of matrix I(θ) can be
derived with

∂2ℓ

∂β∂β⊤ =
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)(
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)(
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)(
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)}
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)(
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)(
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+
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)(
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,
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=
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∂p2i

)(
∂pi
∂β

)(
∂pi
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)⊤

+

(
∂ℓ

∂pi

)(
∂2pi

∂β∂φ⊤

)}
,

(B.1)

where

∂ℓ

∂pi
=

Yi

pi
− 1− Yi

1− pi
,
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∂2ℓ
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= −Yi

p2i
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(
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)
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.

In the above derivation, we use the denominator layout. Since the regressors in Model
(3.1) are considered fixed, to obtain the Fisher information matrix J(θ) = E[I(θ)],
we only need to plug in the expectations

E
[
∂ℓ

∂pi

]
= 0,

E
[
∂2ℓ

∂p2i

]
= − 1

pi
− 1

1− pi
,

in place of ∂ℓ/∂pi and ∂2ℓ/∂p2i respectively in the derivative formulas (B.1), since
E[Yi] = pi.

B.1.2 Robust Clustered Variances

Under regularity conditions, maximizing the log-likelihood in (3.2) is equivalent to
solving the score equation

∂ℓ

∂θ
=

( ∂ℓ
∂β
∂ℓ
∂φ

)
=

n∑
i=1

(
∂ℓ
∂pi

∂pi
∂β

∂ℓ
∂pi

∂pi
∂φ

)
= 0. (B.2)

Thus, the asymptotic variance of the solution θ̂ to the score equation (B.2) is given
by (White, 1996)(

E
[
− ∂2ℓ

∂θ∂θ⊤

])−1

Var

[
∂ℓ

∂θ

](
E
[
− ∂2ℓ

∂θ∂θ⊤

])−1

. (B.3)
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This reduces to (3.3) if the model is correctly specified and ℓ is the true log-likelihood
of the data. Under model misspecification, we can use (B.3) to estimate the variance
of θ̂. In particular, we can estimate

E
[
− ∂2ℓ

∂θ∂θ⊤

]
by J(θ̂),

with J(θ) given in Appendix B.1.1. The variance of ∂ℓ/∂θ can be estimated by

n∑
i=1

(
∂ℓ
∂pi

∂pi
∂β

∂ℓ
∂pi

∂pi
∂φ

)(
∂ℓ
∂pi

∂pi
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∂ℓ
∂pi

∂pi
∂φ

)⊤

.

If the data has a grouping structure, i.e., if units 1, ..., n can be partitioned into G
group, then the variance of ∂ℓ/∂θ can be estimated by

G∑
g=1

(∑
i∈g

(
∂ℓ
∂pi

∂pi
∂β

∂ℓ
∂pi

∂pi
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))(∑
i∈g

(
∂ℓ
∂pi

∂pi
∂β

∂ℓ
∂pi

∂pi
∂φ

))⊤

. (B.4)

Then the variance estimator is called the robust clustered variance estimator (Freed-
man, 2006; Cameron and Miller, 2015). Other types of robust clustered variance can
be found in Zeileis et al. (2020).

B.2 Additional Simulation Results

B.2.1 Summary of the Fixed Designs

In the simulations of Section 3.2, we fix a design by randomly selecting and assigning
half of the units to treatment and the other half to control. Table B.1 below shows
the summary statistics of the designs. We use the same summary statistics as in
Table A.1, which is described in Appendix A.2.1. We can see that the designs
are balanced in terms of allocation and degree, and they do not show any notable
clustering behavior. This means that the designs we generated are not typically rare
and disproportionate, and so the results should be generalizable.

126



Summary Caltech UMichigan
Proportion of treated units 0.50 0.499
Difference of average degree

between treated and controlled units 2.78 1.46
Proportion of units having

a higher proportion of similarly 0.44 0.51
assigned neighbors than expected

Table B.1: Summary statistics of the fixed designs used in the simulations of Section
3.2.

B.2.2 Simulation Results on Distributions of Estimates for
the Probit Model

(a) The distribution of parameter estimates.
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(b) The variances of the estimates (left axes, lines) and coverage rates (right axes, bars).

Figure B.1: Simulation results for the POW-DEG specification of Model (3.1) with
probit link on the Caltech network over 1,000 runs.
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Figure B.2: (Upper) Distribution of estimates (upper), (Lower) variances and cov-
erage rates for the POW-DEG specification of Model (3.1) with probit link on the
UMichigan network over 1,000 runs.
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B.2.3 Simulation Results on Hypothesis Testing for the Pro-
bit Model

(a) Results for the Caltech network.
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(b) Results for the UMichigan network.

Figure B.3: Rejection rates of hypothesis tests for POW-DEG specification of Model
(3.1) with probit link and varying parameters.

131



Appendix C

Appendices for Chapter 4

C.1 Comparison among Balanced Graph Cluster-

ing Algorithms

The clustering algorithm used in our simulations is the balanced label propagation
(BLP), proposed early by Gui et al. (2015). Although it is able to produce balanced
clusterings with high modularities, the algorithm is criticized for being too slow due to
its exhaustive greedy step, which keeps exchanging cluster labels until modularity can
no longer increase (Saveski et al., 2017). There have been other algorithms proposed
in the literature, for example, the social hash algorithm for bipartite graphs (Shalita
et al., 2016), and the restreaming linear deterministic greedy (reLDG) algorithm
(Saveski et al., 2017). These algorithms sacrifice the high modularity and perfect
balance from the BLP for a faster running time. In order to justify the use of BLP
in Section 4.3, we run the two algorithms (each for 30 iterations), along with the
BLP (Gui et al., 2015) and the Louvain imbalanced clustering (Blondel et al., 2008)
algorithms on the Enron, Caltech, and UMichigan networks. We evaluate these
algorithms based on (i) modularity (the higher the better the clustering), (ii) range
of cluster sizes (the smaller, the more balanced the clustering), and (iii) running
time. Table C.1 shows the mean performance of the four clustering algorithms over
30 runs.

According to the results, we choose the BLP algorithm as it returns clusterings
with high modularities and perfect balance on our networks. This helps us investigate
how graph cluster randomization behaves in an ideal situation. However, it is also
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Algorithm
Modularity Cluster Size Range Running Time

Enron Caltech UMich Enron Caltech UMich Enron Caltech UMich

Louvain 0.3492 0.3981 0.3964 33 158 644 00:00:00 00:00:00 00:00:00

BLP 0.3027 0.3445 0.3707 1 1 1 00:05:34 01:12:23 23:24:51

reLDG 0.0837 0.1273 0.1016 1.83 2.23 1.97 00:00:24 00:00:02 00:06:01

Social hash 0.1983 0.2100 0.2985 10.27 19.0 50.1 00:00:02 00:00:50 00:14:36

Table C.1: Performance of different clustering algorithms. Each entry is the average value
over 30 runs.

notable that the algorithm does not scale well. The social hash algorithm seems to
be a good alternative when the network is large.

C.2 Convergence of Monte-Carlo Approximations

Our optimal design problems require Monte Carlo approximation in Equation (4.10)
where L is to be specified. Note that the Monte Carlo approximation will be called
to evaluate any new design that our search points to. Therefore, the number of
draws L in Equation (4.10) needs to be small enough for computational feasibility.
On the other hand, it also needs to be large enough for the approximation to be
stable and precise. In order to find the number of draws L for our simulations, we
run a simulation study in which the design criterion ϕ(Z) is evaluated for a randomly
generated design Z. For each model in Section 4.3.1 and each of the two networks
Enron and Caltech, we run the Monte Carlo approximation 10 times, each with
50,000 draws of parameters from corresponding prior distributions specified in Table
7. The results are shown in Figure C.1 with each line representing a run. We find
that L = 5, 000 (vertical dashed line) seems to give convergent results over all models.

C.3 Running Times of the Algorithms Considered

In our simulations, we use parallel computing where the Monte Carlo approximations
are distributed over 8 cores. Our results are obtained by running the algorithms on
Linux servers with the following configurations: (i) Model: Dell PowerEdge R840; (ii)
CPUs: four Intel Xeon Gold 6230 20-core 2.1 GHz (Cascade Lake); and Memory: 768
GB. We do not have control over the traffic of users on the servers, hence, recorded
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Figure C.1: Results of simulations investigating the number of draws L in Monte
Carlo approximations.
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running times may differ from the case where algorithms are run on independent
machines. We give the average running times for each algorithm and model in Table
C.2. Although there can be uncertainties associated with these numbers, Table C.2
still provides us some understanding of how different algorithms compare and scale.

Algorithms
CNAR model NS model POW-DEG model BNTAR model

Enron Caltech Enron Caltech Enron Caltech Enron Caltech

Imbalanced cluster randomization 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00

Balanced cluster randomization 00:05:34 01:12:23 00:05:34 01:12:23 00:05:34 01:12:23 00:05:34 01:12:23

Balanced randomization 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00

Tree-Parzen 00:23:06 01:24:51 00:36:55 02:01:29 01:21:27 03:00:25 01:29:36 03:21:25

Surrogate-based local search 05:13:14 06:41:23 05:03:21 06:19:30 05:59:08 07:37:19 06:56:08 08:18:19

Reinforcement learning 07:48:59 12:17:39 09:03:24 11:48:37 08:17:50 12:00:02 09:28:58 13:55:49

Random search 00:12:47 00:46:21 00:18:29 01:10:07 00:49:29 01:26:15 01:03:25 01:48:20

Tabu search 00:13:03 00:46:59 00:18:26 01:10:53 00:50:38 01:27:05 01:02:50 01:47:52

Simulated annealing 00:12:52 00:46:32 00:18:37 01:10:36 00:51:04 01:26:22 00:59:46 01:48:35

Genetic algorithm 00:11:48 00:43:02 00:16:42 01:01:58 00:43:40 01:23:04 00:57:12 01:38:17

Table C.2: The running times of each algorithm averaged over 30 runs.

C.4 Other Design Characteristics

In addition to the design characteristics discussed in Section 4.3.3.2, we investigate
two more characteristics: (i) the percentage of treated units and (ii) the difference
in average closeness between treated and controlled units. First, the percentage of
treated units demonstrates whether a design is balanced. A balanced design will have
equal allocation among treatment and control, resulting in a value of 0.5 for panels in
the first column of Figure C.2. Second, we also consider balance in terms of closeness.
The closeness of a unit is measured by the inverse of the average distance between
the unit to every other unit in the network. Similar to betweenness, closeness is
a measure of centrality within a network. The results in Figure C.2 do not show
any clear pattern where most designs are balanced in terms of both allocation and
closeness.
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Figure C.2: Additional design characteristics results.
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