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Fig. 1. Our method allows for fluid simulation around extremely complex geometry. The YeahRight mesh is challenging for fluid simulators due to its many
thin features and complex topology. We are able to generate simulations that interact with fine geometric features better than previous approaches (left)

because we leverage polyhedral cut-cells which can exactly represent the input triangle mesh (center). Even the smallest tendrils of the obstacle influence the

flow of the particle trajectories (right).

The comprehensive visual modeling of fluid motion has historically been a
challenging task, due in no small part to the difficulties inherent in geome-
tries that are non-manifold, open, or thin. Modern geometric cut-cell mesh
generators have been shown to produce, both robustly and quickly, workable
volumetric elements in the presence of these problematic geometries, and
the resulting volumetric representation would seem to offer an ideal infras-
tructure with which to perform fluid simulations. However, cut-cell mesh
elements are general polyhedra that often contain holes and are non-convex;
it is therefore difficult to construct the explicit function spaces required
to employ standard functional discretizations, such as the Finite Element
Method. The Virtual Element Method (VEM) has recently emerged as a
functional discretization that successfully operates with complex polyhedral
elements through a weak formulation of its function spaces. We present a
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novel cut-cell fluid simulation framework that exactly represents boundary
geometry during the simulation. Our approach enables, for the first time,
detailed fluid simulation with "in-the-wild" obstacles, including ones that
contain non-manifold parts, self-intersections, and extremely thin features.
Our key technical contribution is the generalization of the Particle-In-Cell
fluid simulation methodology to arbitrary polyhedra using VEM. Coupled
with a robust cut-cell generation scheme, this produces a fluid simulation
algorithm that can operate on previously infeasible geometries without
requiring any additional mesh modification or repair.
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1 INTRODUCTION

The desire to numerically reproduce the diverse behaviors of in-
compressible fluid phenomena presents several daunting challenges.
Incompressibility introduces a global structure that ensures local
deformations affect the entire fluid volume instantaneously. At the
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same time, Kolmogorov’s Theory of Turbulence states that the en-
ergy spectrum of a fluid cascades towards ever-higher frequen-
cies [Frisch and Kolmogorov 1995], generating increasingly intricate
details. Practical applications further demand the ability to faithfully
incorporate solid obstacles that can possess significant geometric
complexity, including non-manifold, high genus, open, or thin com-
ponents. Our aim in this work is to approach these challenges in a
holistic yet flexible fashion through a novel synthesis and general-
ization of recent numerical techniques: Cut-Cell Meshes, the Virtual
Element Method (VEM), and Particle-In-Cell (PIC) schemes.

Beginning with spatial discretization in the presence of complex
boundaries, we use cut-cell meshes [Tao et al. 2019], which are
formed by the intersection of a Cartesian grid with a standard trian-
gle mesh boundary description. Cut-cell meshes provide a natural
scaffolding with which to solve the equations necessary for global
incompressibility, while conforming to the original boundary shape,
even in the difficult geometric cases alluded to above.

Cut-cell meshes produced from nontrivial boundary geometry
inevitably possess mesh elements whose shapes strain the capabil-
ities of typical finite volume/element schemes. We therefore pair
cut-cell meshes with the recently developed Virtual Element Method
[Beirdo da Veiga et al. 2013, 2014], a powerful extension of finite
element concepts that was developed specifically to support meshes
whose elements are arbitrary polygons/polyhedra while retaining
support for high-order function spaces.

Finally, while VEM affords us an effective Eulerian solution for in-
compressibility enforcement, experience has shown that Lagrangian
particle-based treatments of advection can often better preserve fine-
scale vorticial structure. As a result, a range of hybrid Particle-In-Cell
(PIC) methods, which transfer information between mesh and parti-
cle representations, have been proposed to bridge the gap between
the Eulerian and Lagrangian perspectives [Zhu and Bridson 2005;
Jiang et al. 2015]. Prior methods in the PIC family either assume a
uniform Cartesian grid and considerably simplify the domain ge-
ometry, leading to lower quality boundary interactions, or have not
considered the significant level of obstacle complexity studied in our
work [Azevedo et al. 2016; Edwards and Bridson 2014]. We exploit
the mathematical ideas underpinning VEM to develop a tailored PIC
scheme that interacts seamlessly with, and leverages the structure
of, our geometry-conforming cut-cell mesh. Our resulting hybrid
VEMPIC simulator is able to produce detailed incompressible fluid
flows in the presence of extremely intricate geometries on which
prior methods would typically struggle or fail outright.

2 RELATED WORK

Fluid simulators can be categorized based on whether their degrees
of freedom (DOFs) move over time (Lagrangian) or remain fixed in
space (Eulerian). The most common purely Lagrangian techniques
use a collection of disconnected particles, each denoting the center
of a small distribution of fluid material [Desbrun and Gascuel 1996;
Monaghan 1992]. In recent years Lagrangian techniques based on
dynamic meshes have been developed, such as moving tetrahedral
meshes [Clausen et al. 2013; Misztal et al. 2013] or Voronoi/power
diagrams of Lagrangian point clouds [Sin et al. 2009; De Goes et al.
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2015]. Semi-Lagrangian advection methods [Stam 1999] which com-
bine ideas from both the Eulerian and Lagrangian perspectives are
popular in computer graphics, particularly for smoke simulation,
due to their unconditional stability [Nielsen et al. 2018]. Although
this stability initially came at the cost of overly smooth results, there
have been various efforts to reduce these effects [Fedkiw et al. 2001;
Selle et al. 2008]. Finally, in contrast to semi-Lagrangian schemes,
traditional purely Eulerian discretizations of the advection terms are
comparatively rare [Foster and Metaxas 1996; Mullen et al. 2009].
For many fluid animation problems hybrid particle/grid schemes
are highly effective; we discuss these below.

2.1 Particle + Mesh Schemes

The FLuid-Implicit-Particle (FLIP) method [Zhu and Bridson 2005]
is an excellent exemplar of modern hybrid "particle + mesh" (i.e.,
particle-in-cell) fluid simulators. Such methods alternate between
the two representations, allowing particles to naturally handle (La-
grangian) advection of fluid material and the mesh to handle (Euler-
ian) incompressibility enforcement. In particular, FLIP substantially
mitigates the smoothing induced by repeated grid-to-particle-to-
grid interpolations by transferring only the change in grid data;
i.e., propagating particle data increments, rather than overwriting
their data as the earliest particle-in-cell (PIC) approaches did. Fur-
ther advances have shown that the "overwriting" strategy can still
be effective if particles are augmented with linear or polynomial,
rather than constant, models of the local velocity, as in the Affine
PIC (APIC) [Jiang et al. 2015] and Polynomial PIC (PolyPIC) [Fu
et al. 2017] methods. Several techniques have sought to improve
the cost and/or level of detail captured by FLIP, by only storing
particles near the surface [Ferstl et al. 2016], using adaptive particle
sizes [Ando et al. 2013], or by resolving sub-grid dynamics via aux-
iliary processes [Mercier et al. 2015; Pfaff et al. 2012; Kim et al. 2008;
Bojsen-Hansen and Wojtan 2013]. Edwards and Bridson extended
PIC to high order [Edwards and Bridson 2012] using higher order
transfer operators, but considered only periodic domains without
obstacles.

Sulsky et al. first proposed the material point method (MPM) as a
generalization of classical PIC/FLIP schemes from fluid dynamics
[Brackbill et al. 1988] to support solid dynamics [Sulsky et al. 1994].
It is especially effective for materials with complex constitutive
behavior, such as snow [Stomakhin et al. 2013], granular media
[Daviet and Bertails-Descoubes 2016], or viscoplastic phenomena
[Ram et al. 2015], among others. Hu et al. [2018] developed a variant
of MPM to handle thin solids (i.e., with discontinuous velocity fields)
based on a color-field approach.

Unlike earlier PIC-based methods that used trilinear interpolation
of velocity, recent MPM methods use tensor product B-splines [Stom-
akhin et al. 2013]. This practice takes advantage of the regularity
of Cartesian grids by using velocity data from neighboring cells
to improve the smoothness of the velocity field without additional
per-cell velocity samples. Gagniere et al. [2020] use multiquadratic
B-spline interpolation for velocity and trilinear interpolation within
a fluid simulator based on cut-cell finite elements and implicit semi-
Lagrangian advection.



Recently, Fang et al. [2020] proposed a particle-based interface
quadrature treatment to handle free slip boundary conditions in
Cartesian grid MPM for two-way fluid-solid coupling, sidestepping
the need for a conforming mesh. The objects that this approach
supports remain fairly coarse relative to the MPM grid resolution.
By contrast, our work extends PIC to support fine-scale objects with
coarse grids using a combination of cut-cell meshes and polynomial
function spaces.

2.2 Cut-cell Meshes

Tetrahedral meshing has long been applied to conform simulation
elements with boundary geometry, including more recently for dy-
namic liquid surfaces (e.g., [Misztal et al. 2013; Clausen et al. 2013]).
However, regular Cartesian grids have remained popular due to
their simplicity, efficient construction, and ease of use, despite their
difficulties in resolving complex boundaries. Cut-cell meshes have
emerged as a popular extension of Cartesian grids to support non-
axis-aligned geometry. We can distinguish two categories: implicit
variants, which typically use per-node level set data to approxi-
mate the geometry contained in a cell, and explicit variants, which
construct the exact cut-cell geometry directly.

Implicit cut-cells are easily constructed and enable high fidelity
simulations when the geometry is well-resolved by the chosen grid
resolution, but are topologically limited in a fundamental way: each
grid cell can contain only one cut-cell and the adjacency graph
between cut-cells must be a subset of that of the Cartesian grid.
(With additional geometric and topological bookkeeping, this could
theoretically be generalized to at most five cut-cells per grid cell in
accordance with the corresponding marching cubes cases [Lorensen
and Cline 1987], though it has not yet been done.) In practice, this
limitation precludes domains with thin boundaries because fluid on
both sides of the boundary will frequently belong to the same cell.
Leakage between cells, as discussed by Guendelman et al. [2005]
and embraced in the work of Fei et al. [2018], allows fluid mate-
rial to pass through thin materials. The limitations above do not
preclude multimaterial simulations, where the material on both
sides of the cut-cell interface share similar discretizations, such as
liquid-air [Boyd and Bridson 2012], fluid-elastic [Teng et al. 2016],
and fluid-solid [Zarifi and Batty 2017] interactions; the resulting
simulations can convincingly reproduce the intended phenomena.

On the other hand, explicit (or geometric) cut-cell meshes are
generated by computing the intersection of each cell in a Cartesian
mesh with the boundary geometry, typically given as a triangle
mesh [Aftosmis et al. 1998]. The recently introduced Mandoline
cut-cell mesher supports creating a volume discretization from open
or even non-manifold geometry [Tao et al. 2019].

The Finite Element Method has been extended to support cer-
tain cut-cell mesh variants. The eXtended FEM [Moés et al. 1999]
enriches the FEM function space with jump functions, and has
been applied to cutting of shells and solids [Kaufmann et al. 2009b;
Koschier et al. 2017]. Sifakis et al. [2007a] uses copies of the uncut
elements’ basis functions, in a virtual node approach for elastic
objects [Molino et al. 2004], with an extension to support collisions
and more flexible cutting [Sifakis et al. 2007b]. In the fluid context,
Edwards and Bridson [2014] project their cut-cell geometry into a
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polygonal basis and define a projection scheme from particles to
degrees of freedom, similar in spirit to our work. Their approach dif-
fers in the use of the Local Discontinuous Galerkin method, which
adopts polynomial coefficients as the degrees of freedom with a
Lax-Friedrichs condition to conform between cells, requiring more
machinery to introduce boundary conditions. They use a regularized
least-squares procedure to map particle velocities to polynomial
coeflicients, whereas our approach only requires integration with
an unstructured quadrature rule, which can be computed as an
unweighted average over sample points. Their work considered
only simple volumetric obstacles, but emphasized the benefits of
p-adaptivity for liquids.

More recently, the work of Azevedo et al. [2016] extended FLIP
to geometric cut-cells by updating the cell adjacency graph for pres-
sure projection and using spherical barycentric coordinates to define
a (mostly) cell-conforming interpolation scheme for advection. The
low order cell-centered pressure projection is essentially a modified
finite volume or Discrete Exterior Calculus discretization [Hirani
2003]. This work was further extended by Chen et al. [2020] to
handle free surfaces by assigning each cell multiple virtual pres-
sure samples but only a single real pressure degree of freedom per
cell. Tao et al. [2019] demonstrated that Mandoline yields meshes
that are compatible with Azevedo’s Poisson discretization. How-
ever, these methods depend on solving a Poisson problem with a
graph-based-Laplacian on a dual mesh, using only one DOF per
cell, so they are limited in the complexity of sub-cell flow that can
be faithfully represented. Moreover, for advection, an additional
reconstruction and interpolation mechanism is required to generate
plausible boundary-respecting interior flows. Our use of a VEM
discretization leverages the efficacy of higher order pressure solu-
tions for navigating the fluid around complex contours; that is, the
pressure projection itself is made more "geometry-aware", and the
same polynomial spaces are used for both projection and advection.

Hyde and Fedkiw [2019] developed a different approach to ap-
proximately resolving fine sub-grid features on the interior of cells,
where the motion of sub-grid obstacles is guaranteed to contribute
a certain proportion of flux to cell boundaries according to the pro-
portion of the cell they occupy. The method builds on staggered
grid Laplacians, which are a particular instance of graph-based
Laplacians. From the perspective of graphs, this method extends the
standard finite difference graph by giving each obstacle its own node,
and connecting those obstacle-nodes to cells adjacent to the obsta-
cle. These additional degrees of freedom and connections bypass
the standard limitations of graph-based Laplacians for performing
pressure projection. The concurrent work of Lyu et al. [2021] simi-
larly adopts a denser connectivity graph in the context of Lattice
Boltzmann schemes to reduce aliasing along partially cut edges and
to better handle flows near thin features. They resolve sub-voxel
features by first projecting their nodes to thin feature boundaries
and then removing all nodes within the voxel. Both of these methods
make significant approximations of the real input geometry.

Unlike previous methods, we make the geometry a first-class citi-
zen by using the explicit cut cell mesh to place degrees of freedom
along the boundary in a precise fashion. We implement quadratic
pressures to maintain incompressibility not only between cells but
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in their interiors as well, without any complex notions of node place-
ment or smearing of interior features onto cell boundaries. Placing
degrees of freedom along all boundaries, including the boundaries
of occluding geometry, gives our pressure system awareness of thin
sub-grid features, allowing our method to easily resolve models with
fine details such as the tendrils of the YeahRight example of Figure 1.

2.3 Polyhedral Discretization Methods

A principal difficulty in generalizing FEM to polyhedral domains
is the construction of appropriate shape functions. Interpolation
schemes for polyhedra such as harmonic coordinates are promis-
ing [Joshi et al. 2007], but constructing stiffness matrices for general
geometry can be quite difficult. Techniques like the Method of Fun-
damental Solutions [Martin et al. 2008] can be used to estimate
boundary conditions, but require care to define boundary data and
still need an approximation via quadratures to evaluate stiffness
matrices.

In the context of shape function choice, Discontinuous Galerkin
methods relax the boundary conditions required by their shape func-
tions so they can choose easily refined spaces of functions, such as
polynomials. Some choose their shape function space as monomials
in the ambient space [Kaufmann et al. 2009a], while others choose
to define their polynomials on best fit tetrahedra [Edwards and
Bridson 2014]. Similarly, Trusty et al. [2021] apply shape matching
to match their deformations to a polynomial basis.

The Mimetic Finite Difference (MFD) method [Brezzi et al. 2009]
moves away from shape functions by instead using finite differ-
ence/volume concepts while preserving discretized versions of Stokes’
and Green’s Theorems. MFD defines graph-based discrete differen-
tial operators and introduces metric data such as length and volume
via adjoint operators. This strategy has connections to Discrete Ex-
terior Calculus methods which have been widely used in geometry
processing and elsewhere [Mullen et al. 2009; De Goes et al. 2020].

Merging MFD concepts with those of FEM, the Virtual Element
Method [Beirdo da Veiga et al. 2013] further decouples the mesh
degrees of freedom from the interior functional representation by
only guaranteeing a smooth notion of integration-by-parts. A vir-
tual function space with basis functions supported on cell interiors
and boundaries encapsulates the geometric details in functional
form. These functions, however, cannot be explicitly evaluated at
points and are instead defined via inner products, while an auxil-
iary (polynomial) function space is used for evaluating functions
at points. The necessary inner products are defined to guarantee
integration-by-parts. As we will show in Section 5.3, a combination
of analytically integrating polynomials over polyhedra and applying
a projection from virtual functions to polynomial functions suffices
to determine stiffness matrices in the virtual space.

3 FLUID DISCRETIZATION

We seek to simulate inviscid fluid flow as described by the incom-
pressible Euler equations,

Ju
P =—pu-Vu-Vp+f, (1)
V-u=0, )
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with vector-valued velocity field u, scalar density field p, vector-
valued external forces f, pressure field p, and time t.

3.1 PIC

We discretize these equations using a general particle-in-cell (PIC)
paradigm, maintaining both particle and mesh representations of
the fluid velocities [Zhu and Bridson 2005]. The dual representa-
tion leverages classical Chorin splitting [Chorin 1968], which sepa-
rates the Euler equations into alternating momentum updates and
incompressibility-enforcing pressure projections:

ﬁj+1 =uj+ hf, (3)

pj+1 = argmin [|ij41 — VplI%, (4)
p

Ujp1 =Uj41 — Vp, ®)

W41 = Oje1 + A(8j41 - V), (6)

where, j is the index of the current simulation step and h is the
timestep size. Equation (3) applies external forces, Equations (4)
and (5) apply a variational formulation of pressure projection, and
Equation (6) advects fluid material forward in space. This variational
formulation of pressure projection adopted above is described by
Batty et al. [2007].

A typical PIC implementation is given in Algorithm 1, using par-
ticles to handle advection and a Cartesian grid to handle pressure
projection. Because advection models the evolution of velocity due
to the fluid’s motion, moving particles with their velocities forms
an efficient discretization of the equation. Representing the velocity
field redundantly, with both particles and a grid, simultaneously
enables energetic motion and high-fidelity incompressibility in ex-
change for adding particle-to-grid and grid-to-particle transfers that
synchronize the two representations. The transfers are implemented
by sampling the velocity fields represented by the particles or the
Cartesian grid. Various options are available for these transfers,
such as trilinear or higher order interpolation and weighting [Zhu
and Bridson 2005], radial basis functions [Batty and Bridson 2008;
Ando et al. 2013], or tensor product B-spline kernels [Stomakhin
et al. 2013].

Algorithm 1: Basic PIC-based method

Function simulationStep(stepsize)
particleToMesh();
applyForces(stepsize);

// Section 5.1

pressureProjection(); // Section 5.3

meshToParticle(); // Section 5.2

advect(stepsize); // Section 6.3
end

To combine PIC with VEM, we consider three distinct representa-
tions: particle data, discrete mesh data, and the polynomials used to
represent the continuous velocity field within each cell. The discrete
mesh data values are stored on cell boundaries and interiors, and
thus their number depends directly on the complexity of the cell
geometry; by contrast, the polynomial representation is composed
of per-cell function spaces that do not. This separation of mesh



data from polynomial coefficients is what allows VEM to operate
on meshes with complex element geometries like our polyhedral
cut-cells.

Our pipeline (Figure 2) follows the same general schema as a
standard PIC simulator, but we replace the Cartesian grid with a
cut-cell mesh, and replace both the finite difference Laplacian and
trilinear interpolation used in standard PIC with VEM tools. More
precisely, we use particles to evaluate the velocity at the faces of
each cut-cell (Section 5.1), use a quadratic VEM scheme to perform a
cut-cell pressure projection (Section 5.3), and lastly use the resulting
per-cell linear velocity fields both to resample the particle velocity
values (Section 5.2) and to advect the fluid particles (Section 6.3).

4 VIRTUAL ELEMENT METHOD PRELIMINARIES

The Virtual Element Method (VEM) enables the solution of partial
differential equations on meshes composed of general polyhedral
elements. Like the Finite Element Method, VEM approximates func-
tions inside elements as a linear combination of basis functions,

f= Z midi, (7)

where f is the function to be approximated, m; are the VEM co-
efficients (i.e., degrees of freedom) stored at points on the mesh,
and ¢; are the basis functions. As is typical in many FEM formu-
lations, VEM assumes that the shape functions ¢; are smooth and
have the Kronecker Delta property. However, unlike the explicit
basis functions of standard FEM, VEM assumes that the values of its
basis functions are only known at the boundary of each polyhedral
element and at a sparse set of points inside its volume. Because these
basis functions are not known everywhere they are called Virtual;
we denote their space by V, and whenever possible index associated
quantities by i. Table 1 summarizes this and other notation used
throughout the paper.

To enable computation of derivatives and integrals of these virtual
functions we will define a projection onto the space of polynomials,
%, and perform such mathematical operations there instead. (We
will typically index # quantities by j.) This projection operator II :
V — P canbe constructed from sparse virtual function information
via Stokes’ theorem (§5.3). Importantly, this construction relies on
the assumption that each degree of freedom, m;, can be computed
via an inner product of the form

1
) =)= / fas ®)

where ¢; is a domain of integration (e.g., cell or face), and |c;| denotes
the area/volume of c;. Conveniently, the so-far-undefined functions,
gi, are themselves simply polynomials whose definition depends
on the $ we are projecting our virtual functions onto, and are
known a priori (§5.3.2). With these notions in hand, one can define
a convergent and consistent virtual element discretization.

4.1 Conformal vs. Non-conformal VEM

In our formulation, we follow “non-conformal” VEM [de Dios et al.
2016], which uses integrated DOFs. This choice contrasts with the
original “conformal” VEM approach [Beirdo da Veiga et al. 2013],
emphasized in standard introductions [Beirdo da Veiga et al. 2014;
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Table 1. Notation

Symbol Definition

% Virtual function space

P Polynomial function space

oi Virtual basis function

Vi Polynomial basis function

m; Measurement functor for ¢;

ci Integration domain for m;

gi Integration weights for m;

II VEM projection operator

G Green’s Matrix

LY V Laplacian

s % Laplacian

L Regularized # Laplacian

L VEM Laplacian ~ LY

£ Integration by parts cell coeffs
&v Integration by parts boundary coeffs

Mengolini et al. 2019], which uses pointwise DOFs. Figure 3 high-

lights the differences in how these two VEM variations store data.

There are several advantages to

our use of non-conformal VEM,

primarily relating to ease of imple-

mentation. In particular, support-

ing thin and non-manifold sub-

cell geometry requires duplicating

geometry and the DOFs that lie on

those geometries (see inset 2D illustration). However, even in the

presence of non-manifoldness, mesh faces have exactly two sides;

thus, because non-conformal VEM places degrees of freedom on

boundary faces, we only have to duplicate those boundary faces.

By contrast, conformal VEM would require duplicating vertices and

edges, which can have arbitrarily high valences. We discuss our du-

plication process, which naturally complements Mandoline’s data
structures, in Section 6.5.

4.2 Constructing the Inner Product

Let us return to our discussion of VEM machinery. Combining (7)
and (8) we have

2 (guh)di= ) mifi. ©

We will call values of m;(f) the V-coefficients, since they are the
coefficients for the virtual basis functions ¢;.

Although V, with basis functions ¢, is ostensibly our “primary”
function space, it is ultimately dictated by the polynomial space #:
that is, while the placement of DOFs and domains c; are determined
by the mesh geometry, the choice of the g; depends on P as we
outline below. Together they define the m; operator, and m; in turn
implicitly defines ¢; through the inner product of (8).

More specifically, the ¢; and g; will be defined so as to guarantee
that the result of integrating by parts on f (Vige) - (Vir), needed
later for the Laplacian, can be represented in terms of m;(f). As
we discuss in Section 5.3, this construction allows one to estimate
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Fig. 2. The data pipeline of our simulator resembles that of a traditional PIC simulator. The main difference is that we store mesh data as either m;-measured
per-face V-coefficients or II-projected per-cell P-coefficients. Our pressure system uses function spaces one degree higher than those used for the velocity.

Linear Quadratic
[~
Ny
—_ x|
>
N \ 21
™\ I I
|~ ~ [, = ~
Conformal Conformal
[~ S
A
>
/ | N
> \ \ >N N X
L7 ™ :: - ™
Non-Conformal Non-Conformal

Fig. 3. In two dimensions, conformal VEM stores DOFs at mesh vertices
in the linear case and adds extra DOFs on edges and cells for higher order
variants. The non-conformal variant we use stores DOFs on edges in the

linear case and similarly adds DOFs on edges and cells for higher order.

The positions of arrows in the non-conformal case are not indicative of the
velocity at a particular point, as those DOFs are integrals over faces. In three
dimensions, boundary DOFs lie on faces of polyhedra, rather than edges.
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/ (Véi)-(V¢;), by first finding its V-coeflicients through evaluation
of the m;, and then performing the actual computation in terms of
P-coeflicients.

Integration by parts transforms an integral over the domain Q
into a sum of integrals over the volume Q and its boundary 9Q:

/ (V) - (Vyp)dV = / YoV - dS / YehgdV.  (10)
Q oQ Q

Therefore, for a given polyhedral cut-cell, there must be integration
domains c; for each of the cell’s boundary faces and its interior. The
gi are simply polynomials chosen such that they span {V¢/;} on 0Q
and {A¢;} on Q.

As an example in two dimensions, if we select # to be the space of
quadratics then for a boundary edge e of a cell, we need two (virtual)
basis functions ¢; defined over e to span the space of linear functions.
To evaluate their associated m;, we define two pairs ¢y, g, and co, go,
where ¢, = ¢, = e and span({gn, go }) is the space of linear functions
on e. The interior space follows analogously.

4.3 Placement of DOFs

We use linear VEM for velocities and quadratic VEM for pressures,
which means that for velocities the associated P is the space of linear
functions and for pressures it is the space of quadratic functions.

Linear VEM requires only a single degree of freedom on each
of the boundary faces of a cell (and none on the interior). Since
the associated g; on each face is the unit function (i.e., g; = 1), (8)
implies that, for a function f, the coefficient m;(f) must be the
average of f on the face.

For quadratic VEM, each face has up to linear g; and each cell
has a single constant g; (see Figure 4). Thus, in three dimensions
there are three boundary m; per face, and each evaluates one axis
of the first moment of f with respect to a center point on the face.



Fig. 4. When P is the space of quadratic polynomials, the g; functions span
linear polynomials along each boundary facet and have a constant function
on cell interiors. These g; implicitly define V' via Equation (8).

For example, the integrands of (8) for the x-moment DOFs have the
form

9i(x,y,2)f(x,y,2) = (x = Cx) f(x, 9, 2), (11)
where Cy is the x-coordinate of the center. The single per-cell in-

terior DOF is the mean value over the cell. We provide explicit
definitions for the g; polynomials in Section 6.4.

4.4 The Projection Operator

We stated that the VEM projection operator II projects a function
represented in the virtual space V into one represented in the ex-
plicit polynomial space . This means that given the V-coefficients
m; for a given input function f with respect to a V-basis ¢;, we can
approximate it in terms of the $-basis functions, ¥; using:

Y miHgi~ Y Wymi()y;. (12)
i i

Thus the II;jm;(f) are the coefficients in the P-basis. The poly-
nomials /; are known explicitly (§5.2), so given m;(f) and II this
approximation of f can be directly evaluated at any point. We detail
the construction of this projection in Section 5.3.

VEM’s virtual basis functions and projection operator, outlined
above, lay the foundation for our hybrid VEMPIC scheme detailed
in the following section. Specifically, representing the velocity field
as in (12) allows it to be naturally point sampled and integrated for
advection and transfer operators, and will enable us to define the
discrete divergence and gradient operators required for our novel
VEM-based pressure projection.

5 VEMPIC

We now describe how to leverage VEM and the cut-cell mesh within
our particle-in-cell framework. At the outset of each timestep, we
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have a collection of particles, which act as point samples of the
smooth vector field representing the fluid velocity. We migrate
this velocity data onto the mesh, perform mesh-based pressure
projection, and finally transfer the updated velocity field back to
the particles. We begin with the particle transfer operations before
considering the VEM-based pressure projection.

5.1 Particle-to-Mesh Transfer

Transferring data from particles to the mesh entails finding V-
coefficients for the mesh’s (virtual) basis functions based on particle
values. Although the V basis functions cannot be evaluated, their
coefficients can be determined by discretizing the m; via numerical
integration. Equation (8) shows that for an arbitrary function f,
m;(f) is the mean of the product fg; within the domain ¢;. This
results in a relatively straightforward rule for approximating m;
from a set of sample points {p;} € c;:

1 1
m(h =11 [ af =5 P 13)

where the f; = f(p;) are the known data stored on the particles.

This expression is simply the mean value of g; f; for each c;, which

can be straightforwardly evaluated (recalling that the g; are known
polynomials).

C In general, there exist m; for cells and

i cell boundaries, and the sample points

@® @ used in each case must be handled dif-

o0 @® © (ferently based on the availability of sam-

C N J o o ples. When ¢; is a cell, the fluid particles

e _ o ° already lie within it so we could directly

Y o ® g use them as point samples to evaluate

o ) p (13); however, linear VEM , which we use

[ S ) @ for velocity, has no interior DOFs so we
o ® © do not need to.

L * o When ¢; is a boundary face we need

q k ® ® @ to evaluate a boundary integral, but par-

o ticles almost never lie precisely on the

boundary. Instead, we must create sam-
ple points whose values are estimated from the nearby particle
data. We use radial basis interpolation on the fluid particles, which
has previously been used for particle-to-grid transfers [Batty and
Bridson 2008; Ando et al. 2013]. An input signal f is approximated

by
FwWlp - gl
1) = szW(np gD’ s

where W is a radial basis function, p is a point that we want to query,
qi are the particle locations, and f; are known values of f at those
particle positions. We can then estimate the boundary coefficients
by evaluating m;( f ), using sample point locations drawn from a
uniform distribution on the surface of each boundary face. The
radial basis functions are used only for this transfer and play no
other role in our simulator.

Evaluating boundary samples from radial basis interpolants in
this way generalizes the standard PIC-style particle-to-grid transfer;
there an equation like (14) is applied to the center of each face,
which is equivalent to using a single sample in our scheme or a

ACM Trans. Graph., Vol. 41, No. 4, Article 115. Publication date: July 2022.



115:8 « M. Tao, et al.

0-th order quadrature rule. For the radial basis function we chose
the cubic-spline of Desbrun and Gascuel [1996] with a radius of
one-tenth the grid edge length to strike a balance between sub-grid
detail and performance.

5.2 Mesh-to-Particle Transfer

The polynomial basis # is used to evaluate the velocity field at
arbitrary points in the simulation domain, both for advection and
when transferring the mesh velocities onto particles. Intuitively,
provides local Taylor series expansions of the velocity field, while
the cell geometry determines the spacing and domains of these local
approximations. Concretely, for each cell we let  be the space of
polynomials up to degree k, and choose its basis {1/} to be the space
of scaled monomials up to degree k. Per de Dios et al. [2016], we
therefore define our polynomial basis as the product

S ((p=Ci)j\¥
¢a<p)=H(%) : (15)
J=1 !

where p is a point in space, j loops over coordinate axes, « €
N3, |a| < k are the polynomial exponents, C; is the center of the
cell ¢j, and D; = maxpec; (p — C;) is the diameter of the cell. Given
the P-coefficients for our velocity field we can now evaluate it at
any point in a cell.

The remaining missing piece is the VEM projection operator IT
from V to P. It will fall out naturally from defining our pressure
projection in the next section. We will then be able to convert a
particle-based field f to the corresponding explicit polynomial repre-
sentation in accordance with (12), as follows. Construct an estimate
of f, denoted f , from the discrete particle data {f;} using our radial
basis functions. Then, evaluate m;( f ) to convert this estimate to
V-coefficients, and finally apply II to project them to P-coefficients.

5.3 Pressure Projection
The VEM Laplacian L is a sparse matrix that estimates the V-
Laplacian LV :

Ly ~1) = [ (W (79, (16)

Since the ¢; are virtual, we instead construct it by projecting the
V-coeflicients to corresponding P-coefficients and evaluating an
analytically computed Laplacian L¥ over #. Thus, for arbitrary
functions s, t € V, we define L in terms of the $-Laplacian L? and
the (yet to be defined) projection II by

sTLt = (11s)TL? 11 17)
The P-Laplacian can be written coefficient-wise as
1= [ o) (18)
and in matrix form as
P =[v]"| M |[Y] (19)
M

where M is the mass matrix with entries M;; = f YiYyj and [V] isa
discrete gradient operator whose rows are the partial derivatives of
¥ in terms of other . coefficients. For brevity, going forward we
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will let diag(M, 3) denote the block-diagonal matrix composed of
three copies of M.

We make use of the construction above during pressure projection,
i.e., when determining pressure as a minimizer of (4). The necessary
condition can be written as inner products over functions via

(VA Vp) = (VA u) VA€ P. (20)

To fully discretize the above equation using the V-coefficients avail-
able to us, we must map everything to polynomials by applying the
projection operator II. Doing so transforms the necessary condition
into a linear system,

n7LP11p = 117 [V]” diag(MIT, 3)u, 1)

where u is a vector comprising three sets of VEM-coefficients stacked
upon one another, one for each coordinate axis. In this equation,
the left hand side has two derivatives applied to it whereas the right
hand side only has one.

(a) Corner Cell (b) Cut-Cell

Fig. 5. Quadratic pressures allow us to better resolve boundary conditions.
Up to a choice of origin, V((x + y) (x — y)) flows around corners (left) and
V(xy) flows around obstacles (right).

5.3.1 Quadratic Pressure. To ensure that the polynomial space used
for the pressure gradient is of the same order as the polynomial
space used for u, the space for p must be one order higher. Since
we have chosen a linear velocity space, we therefore use a qua-
dratic VEM formulation for our pressure projection step, consistent
with Section 4.3. Ando et al. [2013] similarly used piecewise-linear
pressures and piecewise-constant velocities, which they noted re-
duces locking artifacts. This choice also allows our pressure solver
to better resolve flows around corners (Figure 5a) and non-trivial
boundaries (Figure 5b).

5.3.2  Projection Operator. Let us finally define the VEM projection
operator II that projects a function f € V into the span of . If
f € V and IIf € P, then there exist coefficients f;, fj such that
f=23fi¢i € VandIlf = 3, fjy; € P. This operator is defined
independently for each cell, so for this section the operators will
refer to a single cell. VEM determines the f; coefficients according



to the following minimization with respect to II:
Jive-npiE = [ o0 @onsis
c c
-2 3" (V) - (V) fify (22)
+ (V) - (V) fif;.
That is, IT maps functions in V to the closest function in # using the
Dirichlet semi-norm to measure distance. The use of the Dirichlet
semi-norm (which emphasizes gradients rather than values of f)
reflects the fact that following the VEM solve for pressure, we will
subtract a P-pressure gradient from a P-velocity field to achieve
incompressibility. Thus, this choice of projector allows us to opti-
mize for the P-pressure gradient directly while using the V degrees
of freedom with a certain degree of continuity between cells. For
a single cell, projecting the minimal semi-norm V function to
results in the minimal semi-norm function in . However, for mul-
tiple cells, neighboring cells share V coefficients so the result of
projecting a ‘V-minimal solution implicitly balances #-minimality
with the magnitude of the discontinuity between cells [Brezzi and
Marini 2014].

If we momentarily ignore the kernel of L? | the necessary condi-
tions of (22) imply that for any A = }} A;¢/; € P,

0= [V Avei- Y ivn | @)
¢k i 7

Recalling (18), we can express the above equation in matrix form as
0=AT (Gf—L”f), (24)

Since A is arbitrary, we need Gf — L f = 0. Thus we would like to
define the projection operator as

m= (LP)A G, (25)

but there are two tasks required before we can achieve this: we need
to define G and modify L? to be invertible, yielding a new matrix
L”.

The virtual basis functions ¢; are implicitly defined to enable
a particular definition of G that is computable and relates the ¢/;
with m;. The coefficients of G are defined so that for f € P, the
value of (Vi/;, f) can be computed in terms of V-coefficients my (f).
Equation (9) implies G can be defined such that

(Vi V) = <V¢i, Z mz(V¢1)¢z> = ZGikmk(¢j)~ (26)
7 x

The above equality defines requirements for the g; used to define
the virtual basis functions. In particular, g; on boundary faces must
satisfy

N - Vy; € Span({gx}), (27)

where N is the normal of a boundary face, and interior per-cell g,
must satisfy

AYj € Span({ge}). (28)

Therefore when # spans degree d polynomials the boundary g
must span at least d — 1 degree polynomials over their boundary

VEMPIC: Particle-in-Polyhedron Fluid Simulation for Intricate Solid Boundaries « 115:9

faces and the cell g, must span at least d — 2 degree polynomials
over their interiors. Non-conformal VEM defines its per-face gj as
monomials on boundaries (see Section 6.4) and g, in cells as the
subset of monomials i/; that spans the space of d — 2 polynomials.
The algebraic manipulations that convert ¥; to gx and g, determine
the coefficients of G are detailed in Appendix A. The result is

(Vi V) = > K (9y) = > &l Imy(9y), (29)
k t

where the £Y and ¢ arise from the expansions

N-Vgi = ) & (30)
k

AyY; = Z & ite (31)
4

Equation (30) is defined along boundary faces and Equation (31) is
defined in each cell. Since these expressions are geometry-dependent
they do not have a simple, general closed-form, but can nevertheless
be straightforwardly evaluated for each particular cell geometry. Our
reference implementation demonstrates the details of this process.

5.3.3 Removing the kernel. Before we can compute the projection
operator for (25) we must make the Laplacian L? invertible. The
root of this issue is that the first vector of the ¥ basis, )y, is a
constant function and (Viyy, Vp) = 0 for all p, which causes the first
row and column of L? to be entirely composed of zeros. In fact, the
first row of G is also zero for the same reason, so both matrices need
to be modified to guarantee that IT can project constant functions
to constant functions. This is done by adding terms to the first row
of both L¥ and G so that the first entries of L? f and G evaluate
to an average-like statistic that is consistent with (26). In particular,
we let the first entry of the vector G[m;(f)] be the average value of
f in the cell and let the first row of our modified Laplacian be the
average values of each ¢/; in each cell.

The type of average computed depends on the VEM degree. For
quadratic VEM, there is a degree of freedom indexed by k that is
defined as the average value (i.e., mi(f) = 1/lc| fcf for cell ¢ and
arbitrary function f), so the first row of G only needs a single 1
on the kth column. However, for linear VEM no such degree of
freedom exists so the average value used is the mean value along
the boundary, 1/|ac| fac f. The modified G for linear VEM therefore
has a first row of the form

A el
0,i = | 3Q| .

In order to satisfy Equation (26) the first row of the modified Lapla-
cian L? is defined as the average values for each basis function

Yj.

5.3.4  Solving The Pressure Projection System. The Laplacian form
we have described corresponds only to the consistency term in stan-
dard VEM [Beirdo da Veiga et al. 2014]. VEM usually includes an
additional regularizer (or stability term), which aims to minimize the
discrepancy between V-coefficients and the projected polynomial’s
measurements (i.e., m; () ~ m;(ILf)). This regularizer is typically
necessary because |V| > |P|, causing the VEM Laplacian to have
a rather large null space of V /P (i.e., beyond the usual constant

(32)

ACM Trans. Graph., Vol. 41, No. 4, Article 115. Publication date: July 2022.



115:10 « M. Tao, et al.

function kernel). While many linear solvers cannot handle such
problems, the conjugate gradient (CG) method is robust to such a
null space, provided that our right hand side lies in the range of LY.
This is because, for semidefinite operators, CG only selects descent
directions in the range of the operator [Hayami 2018]. Our right
hand side lies in this range so CG can find a solution to our pressure
system. One can see that the right hand side lies in this span by
noting that

min&(p) = min [[Vlp - diag(IL)uly s (39

is a convex quadratic equation for which there exists p such that 0 =
%, a necessary condition for a solution. Equation (21) is precisely
the aforementioned necessary condition, so the system must be
solvable by CG.

Because our system can be successfully solved without the ad-
ditional stability term we simply neglect it. In fact, we found that
CG failed to converge after two or three simulation steps with the
stability term activated. We believe this is because the stabilizer,
which has the form (I-II)T (I-1I), will penalize regions where qua-
dratic pressure fields cannot fully resolve valid flows like complex,
potentially discontinuous boundaries.

5.4 Updating Velocity

The velocity field data computed from the pressure projection is only
used to perform the advection phase (including updating particle
data); it is not needed in the next frame. Since advection uses only
the velocity field expressed in the explicit polynomial space P, we
do not need to recover its updated representation in V. We therefore
conclude our pressure projection by directly computing

iip — Muqy — [V]IIp. (34)

That is, we find (only) the P coefficients for the new velocity field
using a IT-projected velocity update.

At this point, we have described how we use VEM to create a PIC-
based fluid simulator with complex geometric cut-cells. Building
on top of the standard non-conformal VEM Laplacian of de Dios
et al. [2016], we have formulated a consistent cut-cell VEM pressure
projection, including an appropriate discrete divergence operator
for the system’s right-hand-side, and proposed a natural method
for connecting particle representations of velocity fields with a
non-conformal VEM representation. It remains to discuss how we
leverage the structure of our cut-cells to create an efficient simulator.

6 GEOMETRIC QUERIES USING CUT-CELLS

The practical application of explicit polyhedral cut-cell meshes in
simulation remains an under-explored topic and therefore several
fundamental geometric queries required for our fluid solver have
not been described in the literature. Fortunately, the underlying
structure of cut-cell meshes often allows existing algorithms and
data structures for triangle meshes and/or Cartesian grids to be used
as accelerators, before applying a slower algorithm on a smaller
localized set of cut-cells. This is analogous to separate chaining
in hash tables, where the hash function determines a bucket of
elements in constant time, and then the entries of the bucket are
traversed linearly. We consider several such queries below.
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6.1 Cut-Cell Mesh Representation

Although the cut-cells in a cut-cell mesh are arbitrary polygons,
their boundary polygons, edges, and vertices, which we call cut-
faces, cut-edges, and cut-vertices, respectively, are all associated
with (and contained within) elements of the Cartesian grid planes
and original surface triangles used in their construction. It is these
relationships that we employ for efficient lookups.

6.1.1 Cut-cells. Consistent with the Mandoline library [Tao et al.
2019], the topology (connectivity) of cut-cells is expressed using a
matrix that maps cut-cell indices to associated cut-face indices (with
signs to indicate orientation). The actual geometry of the cut-cells is
determined by the cut-faces that make them up. The algorithms used
to query or manipulate these cut-faces can be specialized according
to their classification into one of two types: triangle cut-faces, which
are convex polygons that lie within one of the input surface triangles,
and grid cut-faces, which are general planar polygons that lie within
one of the axis-aligned cutting planes. For instance, triangle fans can
easily triangulate cut-faces that emerge from triangles because such
cut-faces are convex, whereas grid cut-faces may be non-convex
and even have holes, and thus require more complex algorithms.

6.1.2  Cut-faces. All cut-faces are planar polygons composed of
one outer boundary loop and potentially several interior boundary
loops for holes. Each polygon consists of a list of boundary loops,
and each boundary loop is an ordered list of indices into the set
of cut-vertices. Triangle cut-faces additionally store a reference to
the triangle that generated them and the associated barycentric
coordinates for their vertices. These coordinates provide a useful
parameterization for point positions within the plane of the triangle
cut-face; for a grid cut-face the 2D coordinates of its containing
axis-aligned plane play the same role.

6.1.3 Cut-edges. Cut-edges consist of a pair of cut-vertices (i.e., its
two endpoints) and the positions of those cut-vertices within the
grid edge or triangle edge that created it (its parent). Specifically,
the position of a point p is represented by the value ¢, such that
(1-t)vj+tvj = p, where the parent edge has endpoints v;, v . Similar
to the barycentric coordinates for triangle cut-faces, these positions
are useful for performing computations along the parent edges.

6.2 Locating Elements in Cut-Cell Meshes

Identifying the element containing a point is an important task
for particle-in-cell algorithms. For uniform Cartesian grids, this
point-location problem is O(1) due to the existence of an efficient
hashing function (e.g., the coefficient-wise floor function); for trian-
gle meshes bounding volume hierarchies can provide logarithmic
searches for the nearest triangles, which, with a sign convention,
can be used to determine whether a point lies in a given cut-cell. As
a concrete example, determining the nearest cut-edge to a point can
be implemented by first finding the nearest parent triangle edge or
grid edge using an off-the-shelf implementation, and then finding
the nearest cut-edge by iterating through the cut-edges that the
parent contains (Figure 6).

6.2.1 Integration. We use integral-based techniques (i.e., winding
numbers) to detect if a point lies in a cut-cell because, as detailed



Fig. 6. Top: To identify which cut-cell a point (black disk) lies in, we first
identify which regular grid-cell it lies in and then iterate over all cut-cells
within that grid-cell, using generalized winding numbers to test if the point
is inside. Bottom: To determine the nearest boundary point to a query point
(black disk), we first find the nearest input parent edge before iterating over
the cut-edges it contains to determine the nearest one.

below, such techniques typically do not require sophisticated algo-
rithms for triangulation or tetrahedralization of the geometry. Prop-
erly triangulating our cut-cells would be challenging due to potential
non-convexity or holes. Instead, when evaluating two-dimensional
integrals on polygonal boundaries of cut-cells, we triangulate the
boundaries with triangle fans; for three-dimensional integrals over
polyhedral cut-cells, we extend the boundary triangles to tetrahedra
by connecting each triangle to the cell centroid. Although such a
meshing will often possess intersections and inversions, linearity of
integration implies that the integrals still yield correct results, as
was also exploited by Edwards and Bridson [2014].

6.3 Advection

A key opportunity to exploit the parent geometry of our cut-mesh is
in the advection of particles, since it involves evaluating the velocity
field at arbitrary points (which requires knowing their containing
cut-cell) and handling potential collisions with obstacles. Both com-
putations can be accelerated using additional two-step processes
that again leverage the original cut-cell-generating geometry.

In a typical simulator, advection requires identifying the Carte-
sian cell containing a particle and applying grid-based interpolation
to sample the velocity; collision-handling then uses an obstacle’s
interpolated signed distance field to project out penetrating parti-
cles. We will describe how our cut-cell approach trades additional
computational effort in these steps for higher fidelity fluid boundary
behavior that surpasses the capabilities of basic grids.

We employ a second order Runge-Kutta integrator to advect
particles. We use Embree’s raytracing kernels [Wald et al. 2014] to
detect when a particle’s proposed path intersects with obstacles and
for simplicity apply mirror reflection to bring them back into the
fluid domain. The two types of obstacles that arise are the outer
grid boundary and the triangle mesh(es), so we aggregate them into
a single triangle mesh to pass into Embree. Since this query uses
only obstacle information, the cut-cell mesh is not needed.
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Table 2. The polynomial degree of each type of degree of freedom, with
the number of degrees of freedom required per element in parentheses. For
instance, in each cell the pressure P was of degree 2 and required 10 degrees
of freedom per cell. There are no “V-cell velocity degrees of freedom.

Type P-Cell V-Boundary V-Cell
Velocity Degree(DOFs) 1(4) 0(1)
Pressure Degree(DOFs) 2(10) 1(3) 0(1)

6.3.1 Nearest-Cell Queries. Mirror reflections can induce multiple
bounces near corners, which can be costly to resolve due to the
multiple raycast operations required. Rather than let individual par-
ticles induce multiple raycasts, if a collision is detected we perform
a single mirror reflection and check whether the reflection caused
the particle to escape the valid domain. If so, we project the escaped
particle back into the simulation domain via a nearest-cell query.

Nearest-cell queries proceed by finding the closest grid- and
triangle-elements (vertices, edges, faces, and cubes), looping through
the cut-mesh elements that they contain, looking up the associated
cut-cells that use those elements, and selecting the cut-cell that is
closest among them to the query point (Figure 6). (For grid-elements
we directly compute the nearest elements with modulo arithmetic
and for triangle-elements we use an axis-aligned bounding box
hierarchy.)

For the last step above, we determine the closest cut-cell from
the set of candidate cut-cells by finding the one with the closest
cut-face. Finding the nearest cut-face can be performed as follows,
without needing a triangulation of the faces. For triangle cut-faces,
we find the nearest triangle, project the query point onto its surface,
and then determine the containing grid cell of the projected point.
Since the intersection of a triangle and cube yields a single polygon
(by convexity), this information identifies the unique polygonal cut-
face. For grid cut-faces, we project the query point onto the closest
axis-aligned plane of the grid, and use the winding number within
the plane to determine the cut-face containing the point.

6.4 Bases and Degrees of Freedom

We have four basic types of coefficients because both pressure and
velocity will require their own V and ¥ spaces. Both V' and P are
composed of per-cell coefficients and V' has per-boundary coeffi-
cients as well, making a total of five types of degrees of freedom,
as shown in Table 2. Below we discuss some subtleties of the poly-
nomial spaces, with /; being the polynomials used for # and g;
the polynomials for V. (Recall that although V is "virtual", the
definition of its coefficients requires the g; functions, as in Section
4.2).

For each cut-face we construct a basis of scaled monomials, simi-
lar to each cell’s  in (15). For exponents a, § we define g, g(u,0) =
;3&72?,, where D is the diameter of the cut-face. This in-plane defini-
tion of g4 g is mapped to three dimensions with the assistance of a

local frame F : R? — R3 defined by
F(u,v) =Xu+ Yo +C, (35)

for vectors X, Y, C € R3 where X, Y are some orthogonal basis and C
is the center of a face. For cut-faces derived from grid faces on axis d;
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Fig. 7. In two dimensions, each edge of our cut-cell mesh has its own orientation (a) and each cell has an orientation for its boundary faces (b), indicated by
black and gray arrows, respectively. Mandoline encodes each cell using the indices of its boundary edges and the relative orientations of those boundary edges
(c); whether these two orientations agree or not is visually depicted by the two columns for each cell. We create a tufted mesh by duplicating/relabeling every
input geometry edge (teal) that has an opposing orientation (d). These new edges (green) topologically separate the cells according to the input geometry (e).
This process generalizes to three dimensions using surface normals rather than edge directions.

we use unit vectors €(;,1)%3 and €(;y)¢3 as our frame and for those
coming from triangles we arbitrarily choose the orthogonalization
of the first two edges.

The evaluation of fzjid in Equation (29) requires a change of basis
from ¢; to gg, which is computed by writing i/; in terms of boundary
frames:

uaUB
Z §a:ﬂ,y;d,5 m (36)

a+f<a+f+y

l//a,ﬂ,y(F(u,U)) =

where a, f,y are the exponents of the monomial in ¢, g,. We com-
puted these coefficients by algebraically expanding v g, (F) to
coefficients of u%v# monomials and multiplying those coefficients
by DA,

6.5 Two-sided Flows and Non-manifold Geometry

For each obstacle face we maintain two degrees of freedom, similar
to the tufting process used by Sharp and Crane [2020], which allows
for independent fluid flows on either side of a mesh. Because our
degrees of freedom are stored on faces, this immediately allows us
to also simulate on meshes with non-manifold vertices or edges.

Rather than trying to detect which cut-faces lay on non-manifold
boundaries (and thus need duplication), we simply create two sets
of DOFs for every cut-face originating from the input triangle mesh.
The Mandoline boundary representation (Figure 7) makes it straight-
forward to identify which set of degrees of freedom a cut-cell should
use: we simply rewrite the indices associated with cut-faces whose
orientation differs from that of the underlying mesh.

7 RESULTS

We tested our VEMPIC simulator with a variety of complex meshes
in both two and three dimensions. In this section we discuss the
types of challenging geometric features that our method success-
fully resolves. All simulations were run on a AMD Ryzen 9 5900X
with 64GB of RAM using Mandoline [Tao et al. 2019] to gener-
ate the meshes, Eigen [Guennebaud et al. 2010] for linear algebra,
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OneTBB [one 2020] for parallelization, and Embree [Wald et al.
2014] to detect particle-boundary collisions. An additional attrac-
tive feature of our method is that it did not require implementing
cell-merging, as used by other cut-cell simulators [Edwards and Brid-
son 2014; Azevedo et al. 2016]. To aid reproducibility, our reference
implementation can be found at https://github.com/mtao/vempic.

7.1 Scenes

Our simulation scenarios were all created by placing a piece of test
geometry in a cubic domain with a smoke emitter at the bottom,
e.g., as in Figure 8. The resulting simulation domain is instantiated
with particles distributed uniformly using Bridson’s Poisson disk
sampler [Bridson 2007]. The emitter region converts any particles
that enter its domain into smoke particles, which are buoyant and
therefore rise. We typically used a 602 grid in 2D and 50° in 3D;
despite these modest resolutions our method nevertheless resolves
the details of various complex obstacles. Table 3 lists data, timings,
and some features for all of our scenes.

We provide two visualizations of each scene: a traditional smoke
rendering and a velocity visualization using the Winter colormap.
In two dimensions we draw only smoke particles to produce the
smoke rendering, and draw both smoke and air particles for our
velocity visualization. In three dimensions we render smoke plumes
using Blender [Blender Online Community 2018]. Particles used
for the velocity visualization are selected in various ways to high-
light different features of our simulation, such as particles near the
occluding geometry or the fastest particles. We generated stream-
lines by selecting a subset of particles and tracing their trajectories
over multiple timesteps. The particles chosen are the fastest moving
particles in some intermediate frame and in different figures we
filter according to locations of interest, such as the surface of a
bunny (Figure 8), a dragon’s mouth (Figure 11), or the interior of
a monkey’s skull (Figure 14). In some examples we only filter for
fast particles, which occasionally resulted in streamlines further
from the obstacle (Figure 15). Because we also randomly remove a


https://github.com/mtao/vempic
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Slow Fast

Fig. 8. Smoke is emitted from a rectangle (resp. cylinder) at the bottom of the domain and rises until it collides with an obstacle and generates multiple
vortices. The rightmost column shows visualizations of the velocity fields using the Winter colormap on the velocity norm; blue implies slow or zero motion
and green implies faster motion. In three dimensions streamlines are used to illustrate the evolution of fluid particles over time.

large number of streamlines to improve visibility, small features can
appear as isolated strands.

7.2 Sub-grid Boundaries

Because our cut-cells always have full polynomial spaces our simu-
lator can resolve complex flows along thin boundaries. This effect is
especially visible in two dimensional results. Bernoulli’s principle
states that velocity through a tunnel is inversely proportional to
cross sectional flux; as seen in Figure 9, the fluid velocity is indeed
greater in the central thin gap and slows down further away. The
Semi-circles example (Figure 10) is more extreme: the boundaries
are much thinner than the grid while also having small gaps. The
flow generated by our simulator not only runs through the thin
pipes, but also correctly passes through the small gaps in the pipes.

Figure 9 illustrates our simulator’s ability to easily handle diag-
onal boundaries, which axis-aligned Cartesian grid solvers often
struggle with. This effectiveness is in part because, although our
velocity degrees of freedom lie on faces, they are full velocities and
not staggered flux samples.

Dragon. In a more challenging case, we can generate a stream of
smoke through the dragon’s mouth in Figure 11. Our simulator is
robust against the noisy geometry of the mouth interior, which was
an artifact of its original scanning process. VEM’s stiffness matrices
involve integrating over each of these noisy triangles, allowing it
to capture the desired effect. The resulting flow navigates around
fine features like the tongue and teeth while producing large-scale
features like the two streams through the sides of the mouth.

7.3 Thin Features

Our simulator can resolve many thin details, including the intricate
tendrils seen in YeahRight (Figure 1). Additional models with thin
features are listed in Table 3.

7.4 Open and Non-Manifold Geometry

Mandoline creates volumetric elements from open geometry, so
we can also simulate open or non-manifold geometry with little
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Table 3. Statistics for our simulations. Note that Mandoline resolves all Self-Isects (i.e., self-intersections) using libigl, to yield consistent non-manifold triangle

meshes before mesh generation.

Name Features Vertices Faces Grid Cut-Cells Cut-Faces Particles
Torus High genus 576 1152 503 119505 371457 1623616
Logs Manifold, Closed 960 1860 503 114843 402251 1589545
Bunny Manifold, Closed 34834 69663 503 119858 472045 1612111
Brucewick Manifold, Closed 1431 2858 603 119486 442283 1633429
Hilbert High genus, Thin features 19968 39936  50° 32395 169988 1592720
Cow Self-Isects, Thin features 2904 5804 503 120010 383585 1658280
Dragon Self-Isects, Noisy 50000 100000 503 119863 508144 1639375
Plane Open 4 2 503 119452 365714 1658280
Face Open 25905 51712 503 119486 442283 1658280
Gummy-Jack Self-Isects, Thin features 12243 24718 323 120393 416683 420971
YeahRight High genus, Thin features 23324 47168 503 118937 429907 1656605
Monkey Open 425 818 503 31072 99575 1658280
Vent Open, Self-Isects 28 38 50° 119408 367408 1645863
Crwth Open, Self-Isects 5632 11401 323 30649 122523 1658348

"!“F‘w"" ""i&,‘j?' y 4;;5{‘5@?""'"‘?&&

Fig. 9. Smoke initially rises along the walls of the heart and through the
crack. The fluid maintains incompressibility by speeding up through the
narrow tunnels in accordance with Bernoulli’s principle. The red rectan-
gles highlight some regions where fluid flows naturally along diagonal
boundaries without aliasing artifacts.

extra effort. In fact, several of our prior examples also possess self-
intersections (Table 3). The only notable difference in the computa-
tion of the VEM operators is the presence of cells in which both sides
of a boundary face belong to a single cut-cell (i.e., “flaps” in Mando-
line terminology). As we can see in the Face example (Figure 12) our
simulator, most notably the pressure solver, is able to resolve distinct
fluid flows on the separate sides of a thin surface. Because all of our
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Fig. 10. Thin walls and narrow gaps are both supported by our pressure
projection scheme.

Fig. 11. Larger meshes with noisy geometry, such as the inside of this
dragon’s mouth, are handled by our simulator.
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Fig. 12. The open face mesh generates two exterior plumes, flowing on either side of the face, and a third stream that flows through the interior, entering near
the front and then returning out the back. The interior and exterior flows differ significantly despite having only an infinitesimal membrane separating them.

Fig. 13. Despite being far smaller than the simulation grid our simulator
respects thin strings and flows around them.

computations involving boundary cells use boundary integrals, the
contributions of the two coincident faces cancel each other out so
we simply skip integrating those faces.

Particle advection can be slightly more challenging in such set-
tings. Because our linear velocity fields cannot always exactly re-
spect the complex geometry, some particles collide with boundaries
and then slide right along them. With open geometries this is po-
tentially problematic because floating point numerical precision
issues can, in rare instances, result in a particle being misidentified
as lying on the wrong side of a boundary, causing it to swap sides.
This occurred at sharp corners of the geometry in only a handful
of cases, so for our smoke renders we manually pruned the few
smoke particles that leaked through, but did not do so in our ve-
locity visualizations. Such leakages could be addressed with more
elaborate, robust particle tracking and collision handling mecha-
nisms, e.g., involving exact continuous collision detection and/or
explicitly exploiting knowledge of cell connectivity and particle
history. However, this issue did not substantially effect the observed
behaviors.

7.5 Ease of Configuration

One of the key features of our method is that it is easy to create
scenes with interesting behavior without much experience or spe-
cialized expertise in modeling for simulation. With our Monkey
example (Figure 14), we simply removed some elements on the
mouth and eyes of Blender’s Suzanne model, as well as adding a
smoke source under the eyes. Our simulator had no difficulty pro-
ducing a plausible fluid flow with this open non-manifold mesh: air
is naturally drawn in the mouth and exits the eyes as smoke.
Similarly, in the Vent example (Figure 15) we create an outer
frame and attach some planes through it, without concern for how
the planes penetrate the frame. Even with such a non-manifold
geometry our simulator creates a flow that respects the blades.

7.6 Performance

Table 4 lists the timings for each component of our algorithm. Sev-
eral of these procedures, such as the invocation of Mandoline and
construction of operators like the Laplacian, divergence, and gra-
dient operators, were performed only once at the beginning of the
simulation. Because the vast majority of our elements are plain vox-
els we constructed a stencil for such a voxel once and duplicated it
as needed. Table 4 shows that, with the exception of simple meshes
like the Torus and Plane, VEMPIC’s performance is dominated by
the cost of pressure projection. Because both mapping particle data
to meshes and advecting particles require identifying which cell
each particle lies in we cached that information to reuse in both
steps.

7.7 Geometric Fidelity Comparison to Mantaflow

We emulated our simulation setup in Blender’s built-in smoke simu-
lator Mantaflow [Thuerey and Pfaff 2018], with the aim of comparing
the resolving power of our respective pressure solvers. To provide a
reasonable comparison of our quadratic VEM pressure solve with
Mantaflow’s 7-point finite difference stencil we sought to match the
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EMPI

Fig. 14. We made holes through the eyes and mouth of Blender’s Suzanne mesh and placed an emitter on the inside. Air naturally flows in through the mouth,
is converted to smoke by the emitter region, and flows out through the eyes. Mantaflow, with its “Is Planar” setting only ejects a small stream out one eye.

Table 4. Average time for the various components of our simulations. Cell assignment is the identification of which cut-cell each particle lies in, as described
in Section 6.2.

Name Geometry Operators Time/step Cell Assignment/step Particle—>Mesh/step Pressure/step Advection/step
Torus 1.901 18.108 27.264 4.094 13.456 6.879 3.536
Logs 3.744 20.024 227.909 4.242 15.179 205.239 4.149
Bunny 4.988 31.219 487.146 5.453 20.732 457.573 5.486
Brucewick 2.834 30.757 75.649 9.876 23.144 37.017 9.593
Hilbert 6.233 30.704 1218.726 4.496 19.632 1190.462 5.095
Cow 1.525 19.628 56.773 5.996 13.831 33.789 5.749
Dragon 5.835 49.696 1095.645 6.103 22.617 1063.198 6.396
Plane 1.908 18.334 24.466 4.082 13.158 4.423 3.451
Face 3.595 32.775 172.455 6.470 18.345 143.882 6.820
Gummy-Jack 3.740 24.132 253.786 7.644 16.550 225.392 8.471
YeahRight 3.323 24.747 82.401 5.902 17.740 55.310 5.945
Monkey 2.309 19.553 67.345 4.201 13.455 46.637 3.809
Vent 1.980 17.938 31.228 5.956 13.214 8.707 5.921
Crwth 1.047 28.777 794.121 4.222 15.249 771.729 3.724

number of degrees of freedom. This can be computed by using Ta-
ble 2 and the number of cut-faces and cut-cells in our cut-cell mesh.
Although MantaFlow is noticeably faster than our simulator, due
to its simpler boundary treatment, sparser matrices, and significant
optimizations (e.g., matrix-free multigrid solver, specialized matrix
structures, etc.), we posit that with the same amount of data it re-
solves far less of the boundary than our simulator. We emphasize
that our method uses particles to track smoke density, rather than
MantaFlow’s semi-Lagrangian advection of a coarse density grid,
so our smoke also appears visually better resolved. However, this
aspect is largely incidental; the important difference is the distinct
flow structure induced by our pressure solver.

Flg 15. This vent has both open faces (the blades) and self-intersections To test the two methods, we Constructed a sequence of perpen-
(where the blades meet the frame), but our simulator creates a natural flow. dicular logs of different widths at different elevations to observe at
which resolution the simulators would detect and respond to fea-
tures. With our simulator configured with a 50° grid and Mantaflow
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Table 5. We used the Logs example of Figure 16 to test the effect of grid
resolution on the number of degrees of freedom. "L NNZ" refers to the
number of nonzeros in the system matrix. Interestingly, using a 60° grid
was faster than using a 50° grid in this case; increasing the grid resolution
decreased the geometric complexity of the cut-cells, making it easier to find
valid pressure solutions.

Grid Vertices Cells Faces LNNZ Time/step (s)

10° 6479 984 9249 2636724 3.909
20° 19890 7626 35900 8373024 8.454
303 44474 26293 97812 11454579 42.952
403 89503 63917 216259 22244596 71.465
503 156017 122793 402251 38502088 227.909
603 255858 213209 682882 61749726 172.644

configured with a corresponding 1403 grid (at ~ 2.3 seconds per
frame), we noted quite different behavior. While our smoke both
deflects off of and wraps around the logs, Mantaflow’s smoke flows
straight up or parallel to the logs, which shows its bias toward
axis-aligned directions.

We also compared our simulator (at 50%) with Mantaflow (at 903
and 0.48 seconds per frame) on our punctured monkey geometry
(Figure 14) with the “Is Planar” option to indicate Non-manifold
geometry. Unlike our simulator, which detected the three holes
and generated flows through them, the Mantaflow smoke mostly
remained trapped in the skull except for a small stream that flowed
straight out of a single hole. Although our input grid resolutions are
somewhat low, cut cells dramatically increase our method’s ability
to resolve flow near object boundaries and our quadratic pressure
solver gives more resolving power further from the object. Other
methods, even with increased grid resolution would have issues
with open / nonmanifold / slender boundaries without significant
additional effort and/or preprocessing.

7.8 Grid Resolution

Changing grid resolution does not always have monotonic effects
when combining cut-cell meshes and VEM. On the one hand, increas-
ing grid resolution leads to a larger system matrix, which generally
takes longer to solve. On the other hand, coarse cut-cells might not
have incompressible linear velocity fields that respect their bound-
aries, which affects the convergence rate of CG. Furthermore, with
respect to each cut-cell, L is dense, so large cut-cells containing
many triangles produce large dense blocks in the matrix. This re-
sults in higher memory consumption for cut-cell meshes with coarse
grid resolutions, which also affects the performance of the sparse
matrix multiplication required by CG. We therefore found that in
some cases increasing grid resolution resulted in faster iterations.
This is evident in Table 5 where the 60° system performed better
than the 503 system. Additional simulations are shown in Figure 17
and Figure 18, as well as the accompanying video.

8 LIMITATIONS AND FUTURE WORK

Performance. Our priority in this work was to maximize flexibil-
ity and expressivity in handling complex boundaries, rather than
raw speed, but performance remains a factor. The pressure solve
requires 3 variables per face, and the number of total faces scales
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with the number of triangle faces and grid faces. Thus, extremely
high resolution triangle meshes create a large number of degrees
of freedom, and this issue is further exacerbated by cutting those
triangles with the grid. Because each cell generates a local dense
block in the Laplacian, the presence of too many triangles in a single
cell can generate large dense matrices; in the extreme case, a single
“cell” simulation results in a fully dense matrix. Interestingly, this
reveals that multiplication with our Laplacian can sometimes be
sped up by increasing the simulation resolution, suggesting that a
judicious combination of our approach with an adaptive grid could
be beneficial. We emphasize that octree-style spatial adaptivity is
complementary (and orthogonal) to our use of Cartesian grid cut-
cells and our VEM formulation, and thus the two could be naturally
combined for improved performance. Furthermore, the storage of
the Laplacian could be compressed by taking advantage of the iden-
tical stencil structure shared by the many full cubic voxels present
in geometric cut-cell meshes, leading to additional speed-ups.

Further performance gains could be achieved through the devel-
opment of a well-designed multigrid scheme to replace (or precon-
dition) conjugate gradients. Similar to how we map data between
particles and VEM degrees of freedom by computing m , different
choices for estimating m; could be used to compute appropriate
restriction and prolongation operators.

Linear velocities. As the geometry in a single cut-cell can be arbi-
trarily complex, the existence of a nontrivial incompressible poly-
nomial velocity field that satisfies free-slip boundary conditions is
not guaranteed. This can result in single-cell vortices or particles
colliding into walls. The emergence of single-cell vortices is a con-
sequence of using linear velocities, so higher degree polynomials
would be required to increase the fidelity of the simulator without
increasing the grid resolution.

Due to the imprecision of floating point arithmetic, the interior
queries of Section 6.2 can occasionally fail to return any cells. This
tended to occur in cells with sharp corners. Because linear velocity
fields can be insufficient to resolve flows around such boundaries,
particles tend to repeatedly collide with them and increase the
likelihood of such errors. As a fail-safe in such cases, we fall back to
nearest-cell queries, but using higher order velocity fields to resolve
these complex geometries would also be helpful.

Having inadequate polynomials in a complex cut-cell also af-
fects the stiffness of our system. The velocity divergence near open
boundaries tends to be poorly resolved by quadratic pressure pro-
jection, which increases the stiffness of our pressure solve. It would
be interesting to add additional shape functions to handle these dis-
continuities. The development of a theoretical understanding of the
precise relationship between mesh cell shape and the effectiveness
of VEM remains a subject of ongoing investigation in computational
mathematics [Sorgente et al. 2022], but could offer insights into how
to best leverage cut-cells, grid adaptivity, and/or polynomial degree.
While we observed variations in the rate of CG convergence for
complex cut-cells, in practice we found our method to be stable for
CFL numbers around 1, in line with comparable PIC/FLIP solvers.

Sampling. Our estimates for m; could be improved: our approach
is akin to a box filter, which behaves poorly when the particle
distribution is biased or too sparse. Other filters could potentially
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VEMPIC

Mantaflow

(a) Plumes Contact the First Row

VEMPIC

(b) Plumes Contact the Second Row

Fig. 16. A phenomenological comparison between VEMPIC and Mantaflow’s smoke simulator. When smoke hits the first row of logs VEMPIC’s plume
separates into three separate plumes, and upon reaching the second row of logs it splits once again. By contrast, Mantaflow’s pressure solver does not identify
the first row and barely notices one of the logs in the second row, as can be seen by the vertical velocity lines.

improve these estimates. Another alternative is to use polygonal
quadratures or cubature [Kim and Delaney 2013] to allow for nodes
to be explicitly placed on mesh faces.

We occasionally faced issues where tiny cut-cells would not con-
tain particles, and in turbulent flows would report no velocities.
This leads to discontinuities in the reconstructed velocity fields that
appear as large divergences that must be resolved by the pressure
solver. Ensuring a sufficiently high density of particles resolved
these issues in practice. In the future, it would be helpful to develop
resampling techniques or methods to gracefully elide tiny cells or
the under-sampled degrees of freedom within them.

Another way to guarantee sufficient sampling might be to de-
velop a compatible semi-Lagrangian advection scheme [Stam 1999],
removing the dependency on the particle distribution, perhaps at
the cost of less energetic flows.

Additional applications. Our contributions unlock a myriad of op-
portunities for future work. First, it would be interesting to explore
more dynamic effects, such as free surface fluids, or to implement
coupling between fluid and rigid or elastic materials. With no-slip
boundary conditions it would be straightforward to assign the dif-
ferent regions of a cut-cell mesh to different material properties.
Another advancement required for this direction would be the imple-
mentation of an elastic material model under the VEM formulation
using cut-cells. Finally, we are curious to see the sorts of novel
applications that our simulator may enable, such as the ability to
provide feedback while prototyping aerodynamic geometries, either
manually or procedurally.
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9 CONCLUSION

We have presented a robust VEM-based algorithm for fluid simula-
tion on cut-cell meshes that can, without any further intervention
or preprocessing, resolve fine details such as thin tubes or infinitesi-
mally thin walls, even when given pathological collision geometry.
This algorithm builds upon the traditional PIC framework for fluid
simulation by generalizing the standard particle-to-mesh and mesh-
to-particle operators to the VEM degrees of freedom and polynomial
space, respectively, as well as using VEM to perform a quadratic
pressure projection. We have also shown how, although cut-cells
are general polyhedra, cut-cell mesh processing can be made more
tractable by taking advantage of the regular grid structure in a simi-
lar manner to hash tables. The result is a simulator robust to complex
geometric inputs such as thin, open, or even non-manifold colli-
sion geometries that are not easily handled with prior approaches.
Fundamentally, geometric modeling is often a difficult task and mod-
eling simulation-friendly geometry is even harder. By relaxing the
definition of simulation-friendly geometry, we hope that our new
method will allow users to focus on creating their desired geometry,
rather than on adapting or repairing it to satisfy the downstream
simulator.

ACKNOWLEDGMENTS

This work is graciously supported by NSERC Discovery Grants
(RGPIN-2017-05524 & RGPIN-2019-06895 & RGPIN-2021-02524),
the Connaught Fund (503114), the Ontario Early Researchers Award
(ER19-15-034), the European Research Council (714776 OPREP),



gifts from Adobe Research and Autodesk, and the Canada Research
Chairs Program.

REFERENCES

2020. Intel oneTBB. URI: http://github.com/oneapi-src/oneTBB (2020).

Michael J Aftosmis, Marsha J Berger, and John E Melton. 1998. Robust and efficient
Cartesian mesh generation for component-based geometry. AIAA journal 36, 6
(1998), 952-960.

Ryoichi Ando, Nils Thiirey, and Chris Wojtan. 2013. Highly adaptive liquid simulations
on tetrahedral meshes. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1-10.
Vinicius C Azevedo, Christopher Batty, and Manuel M Oliveira. 2016. Preserving
geometry and topology for fluid flows with thin obstacles and narrow gaps. ACM

Transactions on Graphics (TOG) 35, 4 (2016), 97.

Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A fast variational
framework for accurate solid-fluid coupling. In ACM Transactions on Graphics (TOG),
Vol. 26. ACM, 100.

Christopher Batty and Robert Bridson. 2008. Accurate viscous free surfaces for buckling,
coiling, and rotating liquids. (2008).

L Beirdo da Veiga, Franco Brezzi, Andrea Cangiani, Gianmarco Manzini, L Donatella
Marini, and Alessandro Russo. 2013. Basic principles of virtual element methods.
Mathematical Models and Methods in Applied Sciences 23, 01 (2013), 199-214.

L Beirao da Veiga, Franco Brezzi, Luisa Donatella Marini, and Alessandro Russo. 2014.
The hitchhiker’s guide to the virtual element method. Mathematical models and
methods in applied sciences 24, 08 (2014), 1541-1573.

Blender Online Community. 2018. Blender - a 3D modelling and rendering package.
Blender Foundation, Stichting Blender Foundation, Amsterdam. http://www.blender.
org

Morten Bojsen-Hansen and Chris Wojtan. 2013. Liquid surface tracking with error
compensation. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1-13.

Landon Boyd and Robert Bridson. 2012. MultiFLIP for energetic two-phase fluid
simulation. ACM Transactions on Graphics (TOG) 31, 2 (2012), 1-12.

Jeremiah U Brackbill, Douglas B Kothe, and Hans M Ruppel. 1988. FLIP: a low-
dissipation, particle-in-cell method for fluid flow. Computer Physics Communications
48,1 (1988), 25-38.

Franco Brezzi, Annalisa Buffa, and Konstantin Lipnikov. 2009. Mimetic finite differences
for elliptic problems. ESAIM: Mathematical Modelling and Numerical Analysis-
Modélisation Mathématique et Analyse Numérique 43, 2 (2009), 277-295.

F Brezzi and LD Marini. 2014. Virtual element and discontinuous Galerkin methods.
In Recent developments in discontinuous Galerkin finite element methods for partial
differential equations. Springer, 209-221.

Robert Bridson. 2007. Fast Poisson disk sampling in arbitrary dimensions. SSGGRAPH
sketches 10 (2007), 1.

Yi-Lu Chen, Jonathan Meier, Barbara Solenthaler, and Vinicius C Azevedo. 2020. An
extended cut-cell method for sub-grid liquids tracking with surface tension. ACM
Transactions on Graphics (TOG) 39, 6 (2020), 1-13.

Alexandre Joel Chorin. 1968. Numerical solution of the Navier-Stokes equations.
Mathematics of computation 22, 104 (1968), 745-762.

Pascal Clausen, Martin Wicke, Jonathan R Shewchuk, and James F O’brien. 2013. Simu-
lating liquids and solid-liquid interactions with lagrangian meshes. ACM Transac-
tions on Graphics (TOG) 32, 2 (2013), 1-15.

Gilles Daviet and Florence Bertails-Descoubes. 2016. A semi-implicit material point
method for the continuum simulation of granular materials. ACM Transactions on
Graphics (TOG) 35, 4 (2016), 1-13.

Blanca Ayuso de Dios, Konstantin Lipnikov, and Gianmarco Manzini. 2016. The non-
conforming virtual element method. ESAIM: Mathematical Modelling and Numerical
Analysis 50, 3 (2016), 879-904.

Fernando De Goes, Andrew Butts, and Mathieu Desbrun. 2020. Discrete differential
operators on polygonal meshes. ACM Transactions on Graphics (TOG) 39, 4 (2020),
110-1.

Fernando De Goes, Corentin Wallez, Jin Huang, Dmitry Pavlov, and Mathieu Desbrun.
2015. Power particles: an incompressible fluid solver based on power diagrams.
ACM Trans. Graph. 34, 4 (2015), 50-1.

Mathieu Desbrun and Marie-Paule Gascuel. 1996. Smoothed particles: A new paradigm
for animating highly deformable bodies. In Computer Animation and Simulation’96.
Springer, 61-76.

Essex Edwards and Robert Bridson. 2012. A high-order accurate particle-in-cell method.
Internat. J. Numer. Methods Engrg. 90, 9 (2012), 1073-1088.

Essex Edwards and Robert Bridson. 2014. Detailed water with coarse grids: Combining
surface meshes and adaptive discontinuous galerkin. ACM Transactions on Graphics
(TOG) 33, 4 (2014), 1-9.

Yu Fang, Ziyin Qu, Minchen Li, Xinxin Zhang, Yixin Zhu, Mridul Aanjaneya, and
Chenfanfu Jiang. 2020. IQ-MPM: an interface quadrature material point method for
non-sticky strongly two-way coupled nonlinear solids and fluids. ACM Transactions
on Graphics (TOG) 39, 4 (2020), 51-1.

VEMPIC: Particle-in-Polyhedron Fluid Simulation for Intricate Solid Boundaries « 115:19

Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. 2001. Visual simulation of smoke.
In Proceedings of the 28th annual conference on Computer graphics and interactive
techniques. 15-22.

Yun Fei, Christopher Batty, Eitan Grinspun, and Changxi Zheng. 2018. A multi-scale
model for simulating liquid-fabric interactions. ACM Transactions on Graphics (TOG)
37,4 (2018), 1-16.

Florian Ferstl, Ryoichi Ando, Chris Wojtan, Rudiger Westermann, and Nils Thuerey.
2016. Narrow band FLIP for liquid simulations. In Computer Graphics Forum, Vol. 35.
Wiley Online Library, 225-232.

Nick Foster and Dimitri Metaxas. 1996. Realistic animation of liquids. Graphical models
and image processing 58, 5 (1996), 471-483.

Uriel Frisch and Andrei Nikolaevich Kolmogorov. 1995. Turbulence: the legacy of AN
Kolmogorov. Cambridge university press.

Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and Joseph Teran. 2017. A
polynomial particle-in-cell method. ACM Transactions on Graphics (TOG) 36, 6
(2017), 1-12.

Steven Gagniere, David Hyde, Alan Marquez-Razon, Chenfanfu Jiang, Ziheng Ge,
Xuchen Han, Qi Guo, and Joseph Teran. 2020. A hybrid Lagrangian/Eulerian collo-
cated velocity advection and projection method for fluid simulation. In Computer
Graphics Forum, Vol. 39. Wiley Online Library, 1-14.

Eran Guendelman, Andrew Selle, Frank Losasso, and Ronald Fedkiw. 2005. Coupling
water and smoke to thin deformable and rigid shells. ACM Transactions on Graphics
(TOG) 24, 3 (2005), 973-981.

Gaél Guennebaud, Benoit Jacob, et al. 2010. Eigen. URI: http://eigen. tuxfamily. org 3
(2010).

Ken Hayami. 2018. Convergence of the Conjugate Gradient Method on Singular Systems.
https://doi.org/10.48550/ARXIV.1809.00793

Anil Nirmal Hirani. 2003. Discrete exterior calculus. Ph.D. Dissertation. California
Institute of Technology.

Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chen-
fanfu Jiang. 2018. A moving least squares material point method with displacement
discontinuity and two-way rigid body coupling. ACM Transactions on Graphics
(TOG) 37, 4 (2018), 1-14.

David AB Hyde and Ronald Fedkiw. 2019. A unified approach to monolithic solid-fluid
coupling of sub-grid and more resolved solids. J. Comput. Phys. 390 (2019), 490-526.

Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin.
2015. The Affine Particle-in-Cell Method. ACM Trans. Graph. 34, 4, Article 51 (July
2015), 10 pages. https://doi.org/10.1145/2766996

Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007. Har-
monic Coordinates for Character Articulation. ACM Trans. Graph. 26, 3 (July 2007),
71-es. https://doi.org/10.1145/1276377.1276466

Peter Kaufmann, Sebastian Martin, Mario Botsch, Eitan Grinspun, and Markus Gross.
2009b. Enrichment textures for detailed cutting of shells. In ACM SIGGRAPH 2009
papers. 1-10.

Peter Kaufmann, Sebastian Martin, Mario Botsch, and Markus Gross. 2009a. Flexible
simulation of deformable models using discontinuous galerkin fem. Graphical
Models 71, 4 (2009), 153-167.

Theodore Kim and John Delaney. 2013. Subspace Fluid Re-Simulation. ACM Trans.
Graph. 32, 4, Article 62 (jul 2013), 9 pages. https://doi.org/10.1145/2461912.2461987

Theodore Kim, Nils Thiirey, Doug James, and Markus Gross. 2008. Wavelet turbulence
for fluid simulation. ACM Transactions on Graphics (TOG) 27, 3 (2008), 1-6.

Dan Koschier, Jan Bender, and Nils Thuerey. 2017. Robust eXtended finite elements for
complex cutting of deformables. ACM Transactions on Graphics (TOG) 36, 4 (2017),
1-13.

William E Lorensen and Harvey E Cline. 1987. Marching cubes: A high resolution
3D surface construction algorithm. ACM siggraph computer graphics 21, 4 (1987),
163-169.

Chaoyang Lyu, Wei Li, Mathieu Desbrun, and Xiaopei Liu. 2021. Fast and Versatile
Fluid-Solid Coupling for Turbulent Flow Simulation. (2021).

Sebastian Martin, Peter Kaufmann, Mario Botsch, Martin Wicke, and Markus Gross.
2008. Polyhedral finite elements using harmonic basis functions. In Computer
graphics forum, Vol. 27. Wiley Online Library, 1521-1529.

Michael Mengolini, Matias F Benedetto, and Alejandro M Aragdn. 2019. An engineering
perspective to the virtual element method and its interplay with the standard finite
element method. Computer Methods in Applied Mechanics and Engineering 350 (2019),
995-1023.

Olivier Mercier, Cynthia Beauchemin, Nils Thuerey, Theodore Kim, and Derek
Nowrouzezahrai. 2015. Surface turbulence for particle-based liquid simulations.
ACM Transactions on Graphics (TOG) 34, 6 (2015), 1-10.

Marek Krzysztof Misztal, Kenny Erleben, Adam Bargteil, Jens Fursund, Brian Bunch
Christensen, Jakob Andreas Baerentzen, and Robert Bridson. 2013. Multiphase
flow of immiscible fluids on unstructured moving meshes. IEEE transactions on
visualization and computer graphics 20, 1 (2013), 4-16.

Nicolas Moés, John Dolbow, and Ted Belytschko. 1999. A finite element method for
crack growth without remeshing. International journal for numerical methods in
engineering 46, 1 (1999), 131-150.

ACM Trans. Graph., Vol. 41, No. 4, Article 115. Publication date: July 2022.


http://www.blender.org
http://www.blender.org
https://doi.org/10.48550/ARXIV.1809.00793
https://doi.org/10.1145/2766996
https://doi.org/10.1145/1276377.1276466
https://doi.org/10.1145/2461912.2461987

115:20 « M. Tao, et al.

Neil Molino, Zhaosheng Bao, and Ron Fedkiw. 2004. A virtual node algorithm for
changing mesh topology during simulation. ACM Transactions on Graphics (TOG)
23, 3 (2004), 385-392.

Joe J Monaghan. 1992. Smoothed particle hydrodynamics. Annual review of astronomy
and astrophysics 30, 1 (1992), 543-574.

Patrick Mullen, Keenan Crane, Dmitry Pavlov, Yiying Tong, and Mathieu Desbrun. 2009.
Energy-preserving integrators for fluid animation. ACM Transactions on Graphics
(TOG) 28, 3 (2009), 1-8.

Michael B. Nielsen, Konstantinos Stamatelos, Morten Bojsen-Hansen, Duncan Brins-
mead, Yannick Pomerleau, Marcus Nordenstam, and Robert Bridson. 2018. A
Collocated Spatially Adaptive Approach to Smoke Simulation in Bifrost. In ACM
SIGGRAPH 2018 Talks (Vancouver, British Columbia, Canada) (SIGGRAPH ’18).
Association for Computing Machinery, New York, NY, USA, Article 77, 2 pages.
https://doi.org/10.1145/3214745.3214749

Tobias Pfaff, Nils Thuerey, and Markus Gross. 2012. Lagrangian vortex sheets for
animating fluids. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1-8.

Daniel Ram, Theodore Gast, Chenfanfu Jiang, Craig Schroeder, Alexey Stomakhin,
Joseph Teran, and Pirouz Kavehpour. 2015. A material point method for viscoelastic
fluids, foams and sponges. In Proceedings of the 14th ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. 157-163.

Andrew Selle, Ronald Fedkiw, Byungmoon Kim, Yingjie Liu, and Jarek Rossignac. 2008.
An unconditionally stable MacCormack method. Journal of Scientific Computing 35,
2 (2008), 350-371.

Nicholas Sharp and Keenan Crane. 2020. A laplacian for nonmanifold triangle meshes.
In Computer Graphics Forum, Vol. 39. Wiley Online Library, 69-80.

Eftychios Sifakis, Kevin G Der, and Ronald Fedkiw. 2007a.  Arbitrary cutting
of deformable tetrahedralized objects. In Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. 73-80.

Eftychios Sifakis, Tamar Shinar, Geoffrey Irving, and Ronald Fedkiw. 2007b. Hybrid sim-
ulation of deformable solids. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics
symposium on Computer animation. 81-90.

Funshing Sin, Adam W Bargteil, and Jessica K Hodgins. 2009. A point-based
method for animating incompressible flow. In Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics symposium on computer animation. 247-255.

Tommaso Sorgente, Silvia Biasotti, Gianmarco Manzini, and Michela Spagnuolo. 2022.
The role of mesh quality and mesh quality indicators in the virtual element method.
Advances in Computational Mathematics 48, 1 (2022), 1-34.

Jos Stam. 1999. Stable fluids. In Proceedings of the 26th annual conference on Computer
graphics and interactive techniques. 121-128.

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle.
2013. A material point method for snow simulation. ACM Transactions on Graphics
(TOG) 32, 4 (2013), 1-10.

Deborah Sulsky, Zhen Chen, and Howard L Schreyer. 1994. A particle method for
history-dependent materials. Computer methods in applied mechanics and engineering
118, 1-2 (1994), 179-196.

Michael Tao, Christopher Batty, Eugene Fiume, and David IW Levin. 2019. Mandoline:
robust cut-cell generation for arbitrary triangle meshes. ACM Transactions on
Graphics (TOG) 38, 6 (2019), 1-17.

Yun Teng, David IW Levin, and Theodore Kim. 2016. Eulerian solid-fluid coupling.
ACM Transactions on Graphics (TOG) 35, 6 (2016), 1-8.

Nils Thuerey and Tobias Pfaff. 2018. MantaFlow. http://mantaflow.com.

Ty Trusty, Honglin Chen, and David IW. Levin. 2021. The Shape Matching Element
Method: Direct Animation of Curved Surface Models. ACM Transactions on Graphics
(2021). https://doi.org/10.1145/3450626.3459772

Ingo Wald, Sven Woop, Carsten Benthin, Gregory S Johnson, and Manfred Ernst. 2014.
Embree: a kernel framework for efficient CPU ray tracing. ACM Transactions on
Graphics (TOG) 33, 4 (2014), 1-8.

Omar Zarifi and Christopher Batty. 2017. A positive-definite cut-cell method for strong
two-way coupling between fluids and deformable bodies. In Proceedings of the
ACM SIGGRAPH / Eurographics Symposium on Computer Animation (Los Angeles
California). ACM, New York, NY, USA.

Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. ACM Transactions
on Graphics (TOG) 24, 3 (2005), 965-972.

ACM Trans. Graph., Vol. 41, No. 4, Article 115. Publication date: July 2022.

A DERIVATION OF G,

The entries of G can be directly extracted by a few manipulations
using Green’s first theorem:

fQ (Vo) - (V) = /a NV - /Q (MDY, (37)

- /aQ Zk: §Zi9k¢j - /Q Z{: & igey; (38)

Y I N
= Zk: fk’,' |ck| & A% z{: &ei || ‘/C[ gy
(39)
= D ELI I (9) = > Bl Imy(97), (40)
k ¢

where £V and £ are the coefficients for N - Vij; and A;, respectively,
in terms of the g, g¢ from the V basis. After applying integration by
parts to determine Equation (37) the derivatives of ¢/; are written out
in terms of polynomial bases g, g¢. The terms are then rearranged
to match the form of Equation (8) so the g, g¢ are absorbed into
my., my to match Equation (26).

The entries of G are therefore these coefficients §Zi|ck | and

~&p.|c?| for boundary face ¢y and cell ¢ respectively.

Implementing & is relatively straightforward because the basis
used for the g¢ will be ¢/; up to order k — 2; however, implementing
the boundary &V will require further elaboration, because each
boundary face actually needs its own polynomial function space.
We cannot define gy as the restriction of ¢; to the boundary face
¢ because two adjacent cells might share c; on their boundary
and the restrictions would not be compatible with one another. The
definition of the boundary gy, and therefore £V, must be specified
in terms of polynomial function spaces defined intrinsically on the
boundaries of cells, which are discussed in Section 6.4.
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(a) Torus — Rising smoke funnels through a small hole.

(b) Plane — A simple simulation of an open surface. Although the bottom side’s flow moves quite quickly the flow is nearly static on the top.

(c) Hilbert Curve — Even though the gaps are around two grid cells wide we obtain many small plumes and vortices.

Fig. 17. Some additional simulation examples that were not explicitly discussed in the main text.
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(a) Brucewick — The smoke flows around the small bumpy features of this face.

(b) Cow — The smoke flows around the thin legs and around the cow’s belly. This mesh has some self-intersections near the tail.

(c) Gummy-Jack — Although the ears are thin and intersect with the face, plausible smoke plumes are generated.

Fig. 18. Some additional simulation examples that were not explicitly discussed in the main text.
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