
Essays on Empirical likelihood for
Heaviness Estimation, Outlier

Detection and Clustering

by

Zhuojing Zhang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Applied Economics

Waterloo, Ontario, Canada, 2024

© Zhuojing Zhang 2024



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Zhonghui Zhang
Assistant Professor
School of Finance
Nanjing Audit University

Supervisor(s): Tao Chen
Associate Professor
Department of Economics
University of Waterloo

Internal Member: Pierre Chaussé
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Abstract

Empirical likelihood (EL) is a non-parametric likelihood method of inference, first proposed
by Owen (1988). There are a large number of studies about the extensions and applications
of EL. Most studies discuss the EL ratio for constructing confidence regions and testing
hypotheses, while this thesis focuses on the EL weight assigned to each observation in
the dataset by the EL ratio function. This thesis contains three chapters on studying the
behaviour and application of EL weights.

Specifically, chapter 1 provides a novel approach based on the EL weights to estimate
a threshold that separates the bulk part and tail part of datasets of datasets with a heavy-
tailed histogram. Because the transition between the bulk and tail parts can not be fully
disjointed in many cases, we allow the threshold to be a random variable instead of a fixed
number. In addition, the threshold is relative to a benchmark since heaviness is a relative
concept.

In Chapter 2, we focus on outlier detection. We develop an unsupervised method based
on EL to identify outliers. In particular, we calculate the EL weights through the EL ratio
function with the bootstrap mean constraint and show that the EL weights have different
behaviours for datasets with and without outliers. Additionally, the EL weights provide a
measure of outlierness for all observations, which might reduce the cost of time.

In Chapter 3, I consider a clustering algorithm based on the EL weights. Clustering is
an unsupervised method that aims to group unlabeled datasets based on their similarities.
Numerous clustering methods have been proposed. The performance of these methods
is typically related to the characteristics of the dataset in the specific applications. The
proposed EL weights based clustering algorithm is available to work on datasets with
outliers. Moreover, it might suggest the number of clusters for well-separated clusters.

v



Acknowledgements

I would like to express my deepest gratitude to Dr. Tao Chen, Dr. Pierre Chaussé, Dr.
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Preliminary

1. Introduction

Likelihood method is an effective and flexible method which is widely used in Economics.
For example, maximum likelihood estimation is a general method for measuring the pa-
rameters of economic models, as well as for inference and testing hypotheses. However,
one problem of parametric likelihood methods is the requirement for assumptions of the
distribution of the models.

Then, non-parametric likelihood methods are developed to avoid the problem of model
misspecification. Empirical likelihood (EL), first introduced by Owen (1988), is a non-
parametric likelihood method that captures some advantages of likelihood methods without
assuming the distribution of the dataset. Then, some creative works, such as Owen (1990),
Qin and Lawless (1994), DiCiccio and Romano (1989), DiCiccio et al. (1991), Newey and
Smith (2004) and Hjort et al. (2009), built good properties and greatly improved the
implementation of EL. In this section, we briefly introduce the EL, while comprehensive
reviews of EL are referred to Owen (2001) and Lazar (2021).

Let X1, . . . , Xn ∈ R be the independent and identical distributed random variable from
an unknown distribution F with mean µ. The empirical likelihood function is

L(F ) =
n

∏
i=1

wi,

where wi is the weight that the distribution F places on xi with wi ≥ 0,∑n
i=1wi = 1. Then,

the empirical likelihood ratio function is

R(F ) = L(F )
L(Fn)

=
n

∏
i=1

nwi,

where Fn is the empirical distribution function such that put 1/n to each observation.

1



Owen (1988) considered the mean µ as the parameter of interest. The profile empirical
likelihood ratio function for the µ is defined as

R(µ) =max{
n

∏
i=1

nwi∣
n

∑
i=1

wi(Xi − µ) = 0,wi ≥ 0,
n

∑
i=1

wi = 1} . (1)

The empirical likelihood ratio statistic −2 logR(µ) asymptotically follows χ2
1 under some

mild conditions, serving as a non-parametric version of the Wilks’ theorem (Owen, 1988,
1990).

Moreover, Qin and Lawless (1994) combined the empirical likelihood with estimating
equations. Consider random vectors, X1, ...,Xn ∈ Rd, and the parameter vector θ ∈ Rp such
that E[m(X,θ)] = 0, where m(X,θ) ∈ Rs is the estimating equation. The profile empirical
likelihood ratio for θ is written as

R(θ) =max{
n

∏
i=1

nwi∣
n

∑
i=1

wim(X,θ) = 0,wi ≥ 0,
n

∑
i=1

wi = 1} . (2)

Similar to the result on −2 logR(µ), the empirical likelihood ratio statistic −2 logR(θ)
asymptotically follows χ2

p under some mild conditions.

We should note that the selection of m(X,θ) depends on the research problems and the
prior information. For example, if we have the information about the mean and variance
of a variable, that is, E(X) = µ and V ar(X) = σ2, we could take

m(X,θ) = (X − µ)2 − σ2,

where θ = (µ,σ). When considering the regression model for X ∈ Rd and Y ∈ R, we might
take

m(X,θ) =X(Y −X ′
β),

where θ = β is the regression parameter.

Now, to solve (2), which is a maximization problem, the Lagrange multiplier method
is employed and then gives the weight function

wi =
1

n

1

1 + λTm(X,θ)
, (3)

where the λ is the Lagrange multiplier satisfying the following non-linear equation,

1

n

n

∑
i=1

m(X,θ)
1 + λTm(X,θ)

= 0.

2



However, the solution for (2) might not exist. Hence, the adjustment of EL has been
studied (Chen et al., 2008; Grendár and Judge, 2009; Liu and Chen, 2010). Besides the
adjusted empirical likelihood, there are many variants of empirical likelihood, including
the bayesian empirical likelihood (Lazar, 2003; Schennach, 2007; Zhong and Ghosh, 2016),
the weighted empirical likelihood (Wu, 2004; Glenn and Zhao (2007)), and the jackknife
empirical likelihood (Jing et al., 2009; Gong et al., 2010; Cheng et al., 2018). A recent
review for variants of EL is referred to Liu and Zhao (2022).

2. Literature review

Some good properties of EL have been established, such as the ability to handle com-
plex data structures and provide robust inference without specific assumptions about the
distribution of datasets. Thus, EL has been widely used in many problems.

Owen (1991) considered the EL for regression which is an important tool that might
help to analyze the relationships between variables or predict the behaviour of variables.
Chen (1993, 1994) studied the higher-order properties of EL inference for the regression
coefficients and the linear combinations of regression coefficients. La Rocca (1998) in-
vestigated the coverage error of empirical likelihood for linear regression models using a
bootstrap method. The coverage error of EL for the non-parametric regression is studied
by Chen and Qin (2000) with a local linear kernel estimator and by Chen and Qin (2003)
with a Nadaraya-Watson estimator. The EL inference for the non-parametric linear regres-
sion with missing data is investigated in Wang and Rao (2002). Whang (2006) considered
the EL for quantile regression and discussed the Bartlett correctable of smoothed EL.

Moreover, Kolaczyk (1994) extended EL to generalized linear models, introduced by
Nelder andWedderburn (1972), with a fixed amount of overdispersion. Song and Cui (2003)
proposed an extended empirical likelihood with incorporating extra constraints to improve
the efficiency of estimation for generalized linear models. The missing data problem in the
generalized linear models is studied by Xue et al. (2011), which proposed the bias-correction
approaches using the inverse selection probability weighted imputation technique. Zang
et al. (2017) applied EL to test both the entire set of regression coefficients and a part of
the regression coefficients in high dimensional generalized linear models.

The regression with censored data has also been discussed. Qin and Jing (2001) studied
the EL for censored linear regression with random censoring, while Wang et al. (2011) and
Cai and Chen (2018) discussed the EL inference for the censored data with fixed censoring
points. Additionally, many researchers considered the right censored regression data which

3



is often found in survival data. Qin and Tsao (2003) investigated EL inference for the me-
dian regression model of the right censored data based on the normal-approximation-based
method. Li and Wang (2003) proposed an adjusted empirical likelihood for regression co-
efficients under the right censored data, as well as the linear combinations of the regression
coefficients.

Using EL for the problems associated with the use of instrumental variables was also
discussed. Guggenberger and Smith (2005) considered the problem of instrumental variable
models in regression using EL. Anatolyev (2005), Smith (2011) and Chang et al. (2015)
investigated the higher order properties of EL in the case of weakly dependent processes.
Zhao and Xue (2013) and Sun et al. (2019) constructed the confidence intervals for the
varying-coefficient functions by using a proposed instrumental variable-based empirical.

Although EL was first designed to deal with independent observations, it has been ex-
tended to dependent observations. Monti (1997) developed EL to time series models based
on Whittle’s estimation method. Then, Nordman and Lahiri (2006) devised a frequency
domain empirical likelihood based on the periodogram and spectral estimating equations
to both short and long range dependence. Baragona et al. (2013) focused on structural
breaks in regression and auto-regression models based on EL. Furthermore, a goodness-of-
fit statistic based on the EL ratio for parametric time series regression models is proposed
by Chen et al. (2003). A review of EL for time series is referred to Nordman and Lahiri
(2014).

Other than time series data, there are also many works on EL for longitudinal data.
Tang and Leng (2011) and Wang and Zhu (2011) were interested in EL for quantile regres-
sion with longitudinal data. Bai et al. (2010) studied a weighted EL for generalized linear
models with longitudinal data, and showed that the efficiency of the weighted EL inference
is affected by the selection of weights. Tian and Xue (2014) constructed the EL inference
for the generalized linear model with longitudinal data by combining the EL method with
the quadratic inference function. Recently, Yin et al. (2023) considered the EL inference
for fixed design generalized linear model.

3. Outline of the thesis

In this thesis, we study the behaviour of EL weights assigned to each observation by (2),
and investigate the applications of EL weights.

Specifically, chapter 1 provides a novel approach based on the EL weights to estimate
a threshold that separates the bulk part and tail part of datasets of datasets with a heavy-

4



tailed histogram. Because the transition between the bulk and tail parts can not be fully
disjointed in many cases, we allow the threshold to be a random variable instead of a fixed
number. In addition, the threshold is relative to a benchmark since heaviness is a relative
concept.

In Chapter 2, we focus on outlier detection. We develop an unsupervised method based
on EL to identify outliers. In particular, we calculate the EL weights through the EL ratio
function with the bootstrap mean constraint and show that the EL weights have different
behaviours for datasets with and without outliers. Additionally, the EL weights provide a
measure of outlierness for all observations, which might reduce the cost of time.

In Chapter 3, I consider a clustering algorithm based on the EL weights. Clustering is
an unsupervised method that aims to group unlabeled datasets based on their similarities.
Numerous clustering methods have been proposed. The performance of these methods
is typically related to the characteristics of the dataset in the specific applications. The
proposed EL weights based clustering algorithm is available to work on datasets with
outliers. Moreover, it might suggest the number of clusters for well-separated clusters.

5



Chapter 1

Where Does the Heaviness Start?1

1.1 Introduction

Datasets with a heavy-tailed histogram tend to have a large number of outliers that provide
important information. In many fields, datasets are characterized by this feature, such
as Psychology (Barabási, 2005; Malmgren et al., 2008), Economics (Rossi-Hansberg and
Wright, 2007; Giesen and Sudekum, 2010), Finance (Mandelbrot, 1963; Gabaix et al.,
2003; Gabaix, 2009), Statistics (Richardson, 1948; Clauset and Woodard, 2013; Cirillo and
N., 2016) and Hydrology (Anderson and Meerschaert, 1998; Katz et al., 2002; Bernardara
et al., 2007), to name a few. One important challenge for analyzing datasets with this
feature is that the behaviours of the bulk part and tail part are different. For example, it
is generally accepted that Pareto distributions are useful when describing the distributions
of high incomes, which are represented in the tail parts of income datasets. However,
Pareto distributions perform poorly over the whole range of incomes (Reed, 2003). Pareto
distributions have infinite variance when the shape parameter is smaller than two, and the
usual least square method cannot be used directly when datasets have infinite variance
(Kanter and Steiger, 1974). Thus, the properties of one part of the dataset can affect the
choice of method and mislead the analysis of the other part or the overall pattern, leading
to questions about which part of the dataset should be dropped to study non-extreme
events or be used to predict rare events. We loosely use the word “threshold” to denote
the solution. Because the transition between the bulk and tail parts can not be fully
disjointed in many cases, we allow the threshold to be a random variable instead of a fixed
number.

1This chapter is co-authored with Tao Chen.
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Wemight borrow approaches from Extreme Value Theory (EVT) to estimate the thresh-
old. In EVT, a tail parameter k, which is the number of upper observations used to estimate
the tail part of the dataset, is a possible threshold. It is possible to choose k by detecting
the change of slope in the mean excess plot (Embrechts et al., 1997) or the first “stable” re-
gion of the Hill plot which is based on the hill estimator (Hill, 1975 and Drees et al., 2000).
However, the most critical issue of these graphical diagnostics is that the results are sub-
jective. A glance ahead to Figure 1.1 will indicate why this is so. To avoid these problems,
completely programmed estimators that can automatically choose the k are widely studied
(Caeiro and Gomes, 2016). Hall and Welsh (1985) derived a formula by minimizing the
asymptotic mean squared error (AMSE) of the Hill estimator to find the optimal k. How-
ever, it requires extra knowledge of an unknown second-order parameter. The estimation
of the second-order parameters has been studied in several papers, like Gomes and Pestana
(2007) and Caeiro and Gomes (2014). Bootstrap methods based on the minimization of
the AMSE criterion are also developed due to the need to know the prior knowledge of the
second order parameter (Hall, 1990; Draisma et al., 1999; Danielsson et al., 2001; Gomes
and Oliveira, 2001; Gomes et al., 2012). However, the goal of these AMSE minimization
approaches is to find an optimal k that balances the bias and variance of the tail index
estimator which focuses on the tail part. They are not designed to estimate the transition
region between the bulk and tail parts.

Besides these, some papers compared the empirical distribution of data above a thresh-
old k with the fitted generalized Pareto distribution (GPD) by using some goodness-of-fit
tests (Northrop and Coleman, 2014; Bader et al., 2018; Schneider et al., 2021), others mini-
mized the distance between the L-moments of the datasets and the fitted GPD (Silva Lomba
and Fraga Alves, 2020) or a standard Exponential distribution (Kiran and V., 2021). These
approaches are also not designed to study the transition region. They aim to find a k such
that the empirical distribution of data above the k certainly fits the GDP. In EVT, k is
reasonable as long as the tail part gives enough information to estimate the tail index, so
the bulk part is ignored and a fixed k is acceptable. But, the threshold is a fixed number
only if the bulk part and tail part can be fully separated, which is much less likely to hap-
pen. Otherwise, we cannot find a fixed number threshold, because the transition between
the two parts is gradual. Although extreme value mixture models, which combine a model
of the bulk distribution with an extreme value tail model, treat k as a parameter and use
the information from the bulk part, the major purpose of these models is also not to study
the threshold. Moreover, these models might lack of robustness of the bulk and tail fits to
each other and are the computational complexity and implementation difficult (Scarrott
and MacDonald, 2012).

To study the transition, we propose an approach based on the Empirical Likelihood
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(EL) method. In the transition region, the likelihood of a variable falling in the tail part
increases with the value of the variable, whereas the likelihood of a variable falling in the
bulk part increases as the value of the variable decreases. Naturally, the threshold can
be viewed as a random variable K with a density function representing the likelihood of
possible values of K that separate the bulk and tail parts.

EL, as a non-parametric method (Owen, 1988; Owen, 1990; Imbens (2002)) is a good
candidate for analyzing datasets with a heavy-tailed histogram, since these datasets are
usually not amenable to a known distribution. EL assigns weights to each observation
of the sample dataset without parametric assumptions through an empirical likelihood
ratio function under certain constraints. By imposing the right restrictions, we expect
these weights to shed light on the transition region and indicate where the heaviness of a
distribution starts.

In addition, we view the heaviness as a relative concept. Many concepts only make sense
when relative to a benchmark. For example, what height is considered tall? The answer to
this question is very subjective without a benchmark. Also, the choice of benchmark should
align with the specific characteristics and goals of the research. Therefore, our approach
allows researchers to choose benchmarks based on their specific research questions. For
example, in environmental science, the choice of benchmark may depend on the type of
pollutant or environmental variable being studied. In finance, different benchmarks might
be used to assess or compare tail risk in various financial products or asset classes.

The rest of the paper is structured as follows. Section 1.2 describes the methodology
proposed. Section 1.3 reports and analyzes the simulation results. Section 1.4 presents an
application of our method to an empirical dataset. Section 1.5 concludes the study.

1.2 EL-based algorithm

We model the transition between the bulk and tail parts through the empirical likelihood
ratio function (2), i.e.,

max
w1,...,wn

{
n

∏
i=1

wi ∣
n

∑
i=1

wim(Xi, θ) = 0,wi ≥ 0,
n

∑
i=1

wi = 1} ,

where m(X,θ) is a set of appropriately chosen restrictions that link the dataset of interest
to the benchmark. We should provide the intuition behind our procedure: by aligning the
“center” and “spread” of the benchmark and data of interest, the weights implied by the
pre-specified constraints disclose the relative rareness of realizations with similar values.
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Accordingly, the variance constraint is used in this chapter. Other constraints related to
the “spread” of the datasets also work. As an exposition, we pick the benchmark to be
an Exponential random variable and we only focus on the right tail. Our method can be
summarized as follows:

(a) From a random sample of F , we obtain its estimated mean (µ̂) and variance (σ̂2).

(b) Under the “variance restriction”, the empirical likelihood ratio function becomes

max
w1,...,wn

{
n

∏
i=1

wi ∣
n

∑
i=1

wi (Xi − µ̂)2 = σ̂2,wi ≥ 0,
n

∑
i=1

wi = 1} ,

and the weight function for Xi’s are

wi = n−1 (1 + λ [(Xi − µ̂)2 − σ̂2])−1 , (1.1)

where the Lagrange multiplier λ can be found by numerical search. Denote the
weights of Xi’s by {wX}ni=1.

(c) Simulate a random sample Y1, . . . , Yn from an Exponential distribution with mean
being Q̂/ ln 2, where Q̂ is the sample median of Xi’s.

(d) Calculate weights of Yi’s by substituting Yi’s, its true mean, Q̂/ ln 2 and true variance,
(Q̂/ ln 2)2, into the left side of equation (1.1), denoted as {wY }ni=1.

(e) Sort {wX}ni=1 and {wY }ni=1 in ascending order, respectively. Denote the sorted weights

as {wX
(i)
}
n

i=1
and {wY

(i)
}
n

i=1
.

(f) Find the set of crossing points Ic between {wX
(i)
}
n

i=1
and {wY

(i)
}
n

i=1
by collecting the

index numbers j such that the sign of wX
(j)
−wY

(j)
differs from the sign of wX

(j+1)
−wY

(j+1)
,

for j = 1, . . . , n − 1.

(g) Select the minimum value kc of Ic that is bigger than n/2.

(h) Repeat (c)-(g) m times.

This procedure gives {kc1, . . . , kcm} that is the set of all possible values of the threshold
K which models the transition region, denoted as R(K). Now we are ready to address all
the assumptions we have imposed through the following remarks.
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Remark 1.2.1. This algorithm does not require F itself to have µ and/or σ because the
sample mean and variance, which are well-defined, can serve as the same device. Also, we
can replace the “variance restriction” with restrictions in terms of a combination of low
and high quantiles, which always exist.

In the chapter, the mean and variance are estimated by the bootstrap method.

Remark 1.2.2. The median of the benchmark sample Yi’s is equal to the median of the
random sample Xi’s.

The choice of the benchmark should be based on the researchers’ interests and sample
datasets. The next two remarks are from the perspective of numerical stability, and we
drop some simulated samples if the conditions within are not met.

Remark 1.2.3. As the weight function is monotone in X (Y ) when exceeding its mean,
the maximum crossing point is well-defined. We let kc be the smallest value that is bigger
than n/2.

Remark 1.2.4. The {wY
(i)
}
n

i=1
is comparable to {wX

(i)
}
n

i=1
only if the sign of λ in the weight

function of Xi’s equals to the sign of λ in the weight function of Yi’s.

In many studies, researchers would prefer a simplified version ofK, e.g., a representative
number, denoted by τ , from K. There are many possible choices for τ and in the current
paper,

Remark 1.2.5. τ is defined to be the average of K.

Further inference is now feasible because τ has variance attached to it.

1.3 Simulation studies

We focus on the heaviness of two types of distributions: Pareto distribution and mixed
distribution, which is a linear combination of Pareto and Normal distributions. A Pareto
distribution is defined by its scale and shape parameters. Here, we fix the scale parameter
to be 1 and will only change the value of the shape parameter.

We consider four cases, each with 10000 observations. Of the first two, one involves
Pareto distribution where the mean and variance exist (shape = 6) and the other focuses
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on truncated Pareto distribution. The truncated Pareto distribution is a truncated version
of the Pareto distribution, which is truncated at 0.99 quantile of the Pareto distribution
with shape = 1.5. We denote them as Pareto(6) and TPareto(1.5), respectively. For a
Pareto distribution, the tail index is the inverse of the value of the shape parameter. Thus,
the tail index γ is around 0.1667 for Pareto(6) and around 0.667 for TPareto(1.5). The
other two cases are mixed distributions: 90% of a Pareto(6) or TPareto(1.5) and 10% of
a Normal random variable. Using Pareto(6) as an example, since we are interested in
the right tail, we let the 40th and 45th percentile values of the Normal distribution equal
the same percentiles of the Pareto(6) so that the shape of the right part of the mixed
distribution is not distorted. We denote this mixed distribution as Mixed(6). Similarly,
Mixed(1.5) for the other mixed distribution.

Figure 1.1: An example of the Hill plot

Figure 1.1 provides an example of a TPareto(1.5) Hill plot to explain why graphical
methods can be subjective. Three intervals, [420,550], [700,950] and [2200,3000], are
indicated in the bottom panel of Figure 1.1 with different types of lines. All of these
three intervals can be selected as the first “stable” region under different standards. Thus,
the result computed from the first “stable” region is not objective. With substantial
expertise, it is possible to choose an acceptable unique solution. For example, the minimum
value of the largest intervals [2200,3000] can be selected. However, it requires expert
experience and is time-consuming when there are many datasets. More Hill plots for
Pareto distribution and Mixed distribution are provided in Appendix A.1.
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The results for the four cases with 1000 replicates can be found in the first four rows
of Table 1.1, and are illustrated in A.2. In this chapter, τ̂ is selected as the mean of K
and m = 100. To make the value of τ̂ easier to interpret, we present it in a percentage
format. For example, τ̂ is 86.1% for Pareto(6), meaning that the heaviness starts at the top
13.9% of Pareto(6), that is the 0.861 quantile of the Pareto(6) distribution. The difference
between the values of τ̂ for Pareto and mixed distributions is very small (less than 0.31%),
since the heaviness is only driven by the Pareto component. As a side result, the table also
presents the estimated tail-index, γ̂, by using τ̂ as the tail parameter in Hill’s tail-index
estimator. Given the true value of the tail index, we calculate the mean squared error
(MSE) of γ̂. The last column of Table 1.1 shows that the MSE for all cases is fairly small.
Though it is not our goal in this paper to propose another tail parameter estimator, which
is one of the focal points in EVT, our approach can be viewed as an addition to that
literature. For the sake of completeness, we leave the preliminary information on EVT in
Appendix A.3.

Table 1.1: Simulation results for the variance restriction

Target distribution Benchmark τ̂ γ̂ MSE

Pareto(6) Exponential 86.10% 0.1694 0.00002
Mixed(6) Exponential 86.24% 0.1562 0.00018

TPareto(1.5) Exponential 84.97% 0.5477 0.01428
Mixed(1.5) Exponential 85.28% 0.5185 0.02205
TPareto(1.5) Pareto(6) 86.67% 0.4865 0.03258
Beta(2,5) Exponential 81.20% 0.0603 0.00436

Next, we set Pareto(6) instead of an Exponential distribution as the benchmark for
TPareto(1.5). In Table 1.1, the value of τ̂ is 84.97% when the target is TPareto(1.5) and
the benchmark is an Exponential distribution, whereas the value of τ̂ is 86.67% when the
benchmark is Pareto(6). The tail of Pareto(6) is heavier than the tail of Exponential dis-
tribution, therefore, the heaviness starts at a higher quantile. Then, the γ̂ for TPareto(1.5)
is calculated by setting the tail parameter in Hill’s tail-index estimator to be 84.97% and
86.67%, respectively. More interestingly, when the benchmark is an Exponential distri-
bution, the estimated shape parameter is 1.826, which implies that the distribution has
an infinite variance; whereas, the estimated shape parameter is 2.055, meaning that the
distribution has a finite variance when the benchmark is Pareto(6).

Note that if we force TPareto(1.5) to be the benchmark and Pareto(6) to be the dis-
tribution of interest, we get 86.67% back. The “role reversal” property of our algorithm
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ensures relative heaviness. In addition, the tail index of the target distribution and bench-
mark are both allowed to be non-positive. For example, we can force a Beta distribution
with two shape parameters (2,5) which has a negative tail index, denoted by Beta(2,5),
to be the target distribution and an Exponential distribution which has a zero tail index
to be the benchmark. Then, it gives the threshold K of the Exponential distribution with
benchmark Beta(2,5) by the “role reversal” property, since the tail of the Exponential dis-
tribution is heavy relative to a Beta distribution. The results are shown in the last row of
Table 1.1. The value of τ̂ is 81.20% and γ̂ is 0.0603 which is close to 0. Note that the γ̂
in this case is the estimated tail-index of the Exponential distribution and is calculated by
using the Moment tail-index estimator since the Hill estimator only works for γ > 0.

Table 1.2: Simulation results for the multiple restrictions

Target distribution Benchmark τ̂ γ̂ MSE

Pareto(6) Exponential 66.68% 0.1678 0.00001
Mixed(6) Exponential 67.61% 0.1529 0.00018

TPareto(1.5) Exponential 72.04% 0.5899 0.26473
Mixed(1.5) Exponential 71.18% 0.5496 0.26474
TPareto(1.5) Pareto(6) 79.39 % 0.5711 0.00926
Beta(2,5) Exponential 71.05% 0.0822 0.00724

The choice of restriction of the EL ratio function is also based on the specific research
questions and will affect the result. We add a median restriction to the empirical likelihood
ratio function. The median restriction can be written as m(X,p, q) = 1Xi≤q − p, where
−∞ < q <∞ and 0 < p < 1. Then, the results for all cases by using the median and variance
restriction can be found in Table 1.2. Again, the difference between the values of τ̂ for
Pareto and mixed distributions is very small. The values of τ̂ by using the median and
variance restriction are all smaller than the values of τ̂ by using only variance restriction,
since a median restriction is not sensitive to the presence of outliers.

Although τ̂ and k are two different concepts, we still present the value of k in Table 1.3.
Two approaches are considered: 1. method by Caeiro and Gomes (2016), denoted as
DAMSE; 2. method by Gomes et al. (2012) and Caeiro and Gomes (2016), denoted GC.
DAMSE and GC perform best for Pareto(6) which is a standard Pareto distribution with
finite variance, because DAMSE and GC depend on the AMSE minimization of the Hill
estimator.
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Table 1.3: Threshold selection by approaches from EVT

Target distribution Method k γ̂

Pareto(6) DAMSE 81.32% 0.1660
Mixed(6) DAMSE 50.84% 0.1525

TPareto(1.5) DAMSE 98.38% 0.2756
Mixed(1.5) DAMSE 96.92% 0.3634
Pareto(6) GC 90.26% 0.1659
Mixed(6) GC 25.30% 0.1528

TPareto(1.5) GC 94.85% 0.4343
Mixed(1.5) GC 78.07% 0.5557

1.4 An empirical example

We apply our approach to a U.S. household asset value dataset, which draws from the 2018
Survey of Income and Program Participation (SIPP) and contains 743,753 observations.
The SIPP, sponsored by the U.S. Census Bureau, collects information on households’ eco-
nomic status, such as assets and liabilities. Table 1.4 presents descriptive statistics of the
household-level total asset values. The top panel of Figure 1.2 shows a histogram of the
complete dataset and the bottom panel presents the values up to 6 million to make the
histogram’s trends easier to see.

Table 1.4: Summary statistics of SIPP total asset values

Minimum Mean Maximum Skewness Kurtosis

1 690,824 142,631,700 21 897

From the table and histograms, we see that total asset values tend to have a large
number of observations with large values and its kurtosis is fairly large; that is, the dataset
is heavy-tailed. Figure 1.3 shows the log-log plot of household-level total asset values. The
horizontal axis is the log value of household-level total asset values and the vertical axis is
the log value of its survival probability. The tail part of the log-log plot is almost a straight
line, which suggests that this portion of the dataset is a member of the Pareto distribution
family.

Again, we set Exponential distribution to be the benchmark and align the median. The
summary statistics of K are reported in Table 1.5 with m = 1000 and Figure 1.4 is the

14



Figure 1.2: Histograms of household-level total asset values

Figure 1.3: The log-log plot of household-level total asset values

corresponding Hill plot. Two intervals, [2700,4200] and [5500,7000], are chosen as the
“first” possible stable region, where one is between dotted lines, and the other is between
two dashed lines. The two intervals are [99.44%,99.64%] and [99.06%,99.26%] in terms of
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Table 1.5: Summary statistics of K

Min. 1st Qu. τ̂ Median 3rd Qu. Max.

50.04% 75.65% 75.66% 76.28% 76.57% 97.65%

percentiles. Any numbers in those two intervals are admissible choices of the threshold for
the EVT method. If we denote the middle points by kdotted = 99.54% and kdashed = 99.16%
and together with τ̂ = 75.56% and R(K) = [50.04%,97.65%], five vertical lines (dotted,
dashed, solid and two long dashes) are added to the aforementioned log-log plot, as shown
in the Figure 1.3. In addition, the k is 99.50% by using DAMSE and is 97.52% by using
GC.

An encouraging finding is that the solid line and longdash lines, which represent τ̂
and K are close to the turning point, beyond which Pareto distribution becomes a good
approximation.

Figure 1.4: The Hill plot of the SIPP dataset
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1.5 Conclusion

We propose a novel approach based on EL to characterize the transition between the bulk
and tail parts of a dataset. There are many desirable features attached to this method.
It remains to show the convergence rate and limiting distribution of τ̂ (or some other
important statistics of K). We defer those topics to future research projects.
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Chapter 2

An Algorithm Based on Empirical
Likelihood to Identify Outliers1

2.1 Introduction

Empirical likelihood (EL) first proposed by Owen (1988) has been used to find efficient
estimators and construct confidence regions. As a nonparametric method, EL is versatile,
as it can be used to deal with incomplete data, sampling bias, and information from
multiple sources (Owen, 2001).

Applications of EL have been suggested for many statistical problems: diagnostic mea-
sures (Zhu et al., 2008), generalized linear models (Xi Chen and Cui, 2003; Li and Pan,
2013), heaviness identification (Chen and Zhang, 2022), and time series analysis (Fan et al.,
2012; Chen and Huang, 2021), just to name a few. Of particular interest to us is apply-
ing EL to outlier detection which is an important problem in data analysis. Methods
for outlier detection can be classified into three types based on the availability of labels:
supervised outlier detection, semi-supervised outlier detection, and unsupervised outlier
detection. Supervised outlier detection methods require the training set to include both
labelled normal2 observations and labelled outliers. However, labelled data is very costly
and can be scarce in the real world.

The semi-supervised outlier detection methods utilize either only normal observations
or outliers. Nevertheless, it is difficult to collect only normal observations or cover all

1This chapter is co-authored with Tao Chen.
2To avoid confusion, we use the word ‘normal’ only for data points that are usual values in the dataset

in this Chapter. For distributions, we use the word ‘Gaussian’.
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possible types of unusual behaviours. Although some semi-supervised methods allow the
dataset to contain an extremely small amount of outliers (Schölkopf et al., 1999; Tax and
Duin, 2004; Binbusayyis and Vaiyapuri, 2021), the performance of these methods might
be affected by the outliers. Furthermore, semi-supervised methods require a train phasing
before identifying outliers so they are mainly used in the detection of additional outliers.
In general, both supervised and semi-supervised outlier detection methods are hard to
implement in the real world due to the high cost of labelled data. Therefore, unsupervised
outlier detection methods are often employed to avoid this issue.

A variety of unsupervised outlier detection methods have been developed, such as k-
nearest neighbour (KNN) based methods (Hautamaki et al., 2004; Chen et al., 2010) and
Isolation Forest (Liu et al., 2008). KNN-based methods determine outliers according to
the k nearest neighbourhood of each observation. Isolation Forest detects outliers based
on the idea that outliers are more susceptible to isolation than normal observations. How-
ever, KNN-based methods can be computationally expensive when the dataset is very
large, while Isolation Forest might need a sufficient amount of data to provide reliable
identifications.

This paper develops an unsupervised method based on EL to identify outliers without a
training phase. Unlike KNN and Isolation Forest, which need to carefully select parameters
to fit datasets, this method only requires to calculate a bootstrap mean as the parameter.
In addition, we utilize a chi-squared test instead of selecting a threshold to distinguish
outliers from normal observations.

Some earlier works have used EL to detect outliers in the autoregressive time series
(Baragona et al., 2016) and regression models (Baragona et al., 2018). They examine the
influence of an observation based on the asymptotic behaviour of EL statistics, which is
computed by using the EL ratio function with constraints for the autoregressive parameters
and regression parameters, respectively. In contrast, this paper uses EL weights that are
assigned to each observation of the dataset under the bootstrap mean constraint. This
constraint allows us to take advantage of the fact that outliers can distort the mean,
while normal observations generally do not. We show that EL weights have different
behaviours for normal observations and outliers under the bootstrap mean constraint.
Since EL weights are assigned to each observation, the distribution of EL weights is more
sensitive to the influence of each outlier than the EL statistic. We measure the goodness
of fit between the distribution of EL weights and a uniform distribution by the chi-squared
test. In contrast to the EL statistic, the influence of outliers is amplified in the chi-
squared statistic. Additionally, EL weights also provide a measure of outlierness for all
observations, which might reduce the cost of time of our method, especially for large and
high-dimensional datasets.
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The article is organized as follows. Section 2.2 describes the methodology proposed.
Section 2.3 reports and analyzes the simulation results. Section 2.4 concludes.

2.2 Methodology

2.2.1 Algorithm

Let X1,X2, . . . ,Xn ∈ Rd be independent random vectors with E(Xi) = µx, denoted as
{X}ni=1, and let {w}ni=1 be the corresponding EL weights which are assigned to each obser-
vation in {X}ni=1 by the EL ratio function (2), i.e.,

max
w1,...,wn

{
n

∏
i=1

wi ∣
n

∑
i=1

wim(Xi, θ) = 0,wi ≥ 0,
n

∑
i=1

wi = 1} , (2.1)

where m(X,θ) is a set of appropriately chosen constraints. We propose a method to
identify outliers in {X}ni=1 based on the {w}ni=1. The intuition behind our method is that
the EL weights of datasets with or without outliers under proper conditions are significantly
different.

Now, we don’t have prior information regarding the presence or quantity of outliers. In
this chapter, the outlier is defined as an observation that is far removed from the rest of
the observations, as provided by Maddala (1992). To identify all outliers in the dataset, we
first assume there are m outliers in {X}ni=1, denoted as {Xo}ms=1, where m ∈ N and m << n.
The value of m is much less than the value of n by the definition of outliers. Note that
m is usually unknown in practice, we will discuss the choice of m in Section 2.2.2. Let
{X}n−mj=1 be a subset of {X}ni=1 obtained by removing all elements in {Xo}ms=1 from {X}ni=1.
Then {X}n−mj=1 only contains normal observations, i.e., the null hypothesis is that

H0 ∶ {X}n−mj=1 does not contains outliers. (2.2)

The alternative hypothesis is that

H1 ∶ {X}n−mj=1 contains one or more outliers, (2.3)

In this paper, the corresponding EL weights of {X}n−mj=1 , which is denoted as {w}n−mj=1 ,
is utilized in the test for (2.2). {w}n−mj=1 are calculated by the EL ratio function under the
mean constraint (1), that is,
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max
w1,...,wn−m

{
n−m

∏
j=1

wj ∣
n−m

∑
j=1

wj (Xj − µx) = 0,wj ≥ 0,
n−m

∑
j=1

wj = 1} ,

Then, from Owen (1990), We readily get:

Lemma 2.2.1. Let X1,X2, . . . ,Xn ∈ Rd be independent and identically distributed random
vectors with E(Xi) = µx and V ar(Xi) <∞. Let w1,w2, ...,wn ∈ R be the corresponding EL

weights of {X}ni=1 where wi ≥ 0, ∑n
i=1wi = 1 and ∑n

i=1wi (Xi − µx) = 0. Then, ∣wi − 1
n ∣

P→ 0 as
n→∞ for i = 1,2, ..., n.

Under the mean constraint in Lemma 2.2.1, ∣wi − 1
n ∣

P→ 0 as n → ∞ for all i whenever
{X}ni=1 contains outliers or not. If there are outliers in {X}ni=1, the outliers are actually
treated as normal observations. This is because the value of µx is distorted by the outliers,
consequently affecting the mean constraint.

To avoid this problem, assuming the mean of normal observations is known, we employ
it in the mean constraint. In this case, Lemma 2.2.1 still holds for {X}ni=1 without outliers
since the mean of normal observations is µx. Note that a constant can be thought of as
following a Discrete Uniform distribution that assigns equal mass 1

n to each observation in
the dataset with sample size =n. We denote the Discrete Uniform distribution by DU(k),
where k is the number of distinct observations, as from Balakrishnan and Nevzorov (2004).

Theorem 2.2.1. Let X1,X2, . . . ,Xn−m ∈ Rd be independent and identically distributed
random vectors with E(Xj) = µx and V ar(Xj) <∞. Let w1,w2, ...,wn−m ∈ R be the corre-
sponding EL weights of {X}n−mj=1 where wj ≥ 0, ∑n−m

j=1 wj = 1 and ∑n−m
j=1 wj (Xj − µx) = 0. If

(2.2) be true, wj
D→DU(1) as n −m→∞ for j = 1,2, ..., n −m.

Now, if {X}ni=1 contains outliers, the µx does not equal to the mean of normal observa-
tions. Then, Lemma 2.2.1 does not hold, and we have

Lemma 2.2.2. Let X1,X2, . . . ,Xn ∈ Rd be independent and identically distributed random
vectors with E(Xi) = µx, which consists of m outliers and n − m normal observations.
Assume the mean of normal observations in {X}ni=1 is finite, that is, µnormal < ∞, and
µnormal ≠ µx. Let w1,w2, ...,wn ∈ R be the corresponding EL weights of {X}ni=1 where wi ≥ 0,
∑n

i=1wi = 1 and ∑n
i=1wi (Xi − µnormal) = 0. Assume m

n ↛ 0 as n → ∞, then ∣wi − 1
n ∣

P↛ 0 as
n→∞ for i = 1,2, ..., n.

Theorem 2.2.2. Let X1,X2, . . . ,Xn−m ∈ Rd be independent and identically distributed
random vectors. Assume the mean of normal observations in {X}n−mj=1 is finite, that is,
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µnormal <∞, and µnormal ≠ E(Xj). Let w1,w2, ...,wn−m ∈ R be the corresponding EL weights
of {X}n−mj=1 where wj ≥ 0, ∑n−m

j=1 wj = 1 and ∑n−m
j=1 wj(Xj− µnormal) = 0. Assume (2.3) is

true and there exists k outliers in {X}n−mj=1 where k << n−m by the definite of outliers and

k
n−m ↛ 0 as n −m→∞. Then, wj

D↛DU(1) as n −m→∞ for j = 1,2, ..., n −m .

From Theorem 2.2.1 and Theorem 2.2.2, the {w}n−mj=1 demonstrates a Discrete Uniform

distribution with [ 1
n−m ,

1
n−m] under the null hypothesis, whereas this uniformity is disrupted

when the alternative hypothesis is true. If {X}n−mj=1 contains outliers, the distribution of
{w}n−mj=1 depends on the distribution of {X}n−mj=1 .

These suggest that a test for (2.2) can be obtained by comparing the distribution of EL
weights with a Uniform distribution. One possible statistic for testing (2.2) is Pearson’s
chi-squared statistic which tests whether an observed frequency distribution differs from a
theoretical distribution. The Pearson’s chi-squared statistic is

χ2 =
b

∑
i=1

(Oi −Ei)2

Ei

, (2.4)

where observations are divided among b bins. Oi and Ei are the observed frequency and
expected frequency in each bin, respectively.

Theorem 2.2.3. Assume the observations w1,w2, . . .wn are divided among b bins inde-
pendently of each other with probabilities p1, p2, . . . pb, where b ∈ N, b < n and ∑b

i=1 pi = 1.
Let Ei be the expected frequency, npi, in each bins for i = 1, ..., b. Let Oi be the observed

frequency in each bin for i = 1, ..., b. We have ∑b
i=1
(Oi−Ei)

2

Ei

D→ χ2
b−1.

In this paper, we measure how closely the observations resemble a Discrete Uniform
distribution. Hence, our outliers identification test for (2.2) can be defined as

χ2
o =

b

n −m

b

∑
i=1

(Oi −
n −m
b
)
2

. (2.5)

Of course, in practice, the mean of normal observations is unknown and has to be
estimated. We employ the estimated mean of normal observations, µ̂normal, instead. This
estimation problem will be discussed later in Section 2.2. Additionally, the m potential
outliers are unobserved as they are to be identified, we use m̂ potential outliers that are
suggested by {w}ni=1 instead. Then, our test statistic becomes

χ̂2
o =

b

n − m̂

b

∑
i=1

(Ôi −
n − m̂
b
)
2

, (2.6)
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where Ôi is the observed frequency for EL weights, which is calculated based on the EL
ratio function under mean constraints with µ̂normal, in each bin. Now, if m observations in
{X}ni=1 have been selected as outliers already. Then, we have

Theorem 2.2.4. Let the conditions in Theorem 2.2.1 hold and w1,w2, . . . ,wn−m are divided
among b bins independently of each other with probabilities p1, p2, . . . pb, where b ∈ N is a
fixed number and b < n −m and ∑b

i=1 pi = 1. If (2.2) be true,

(i) χ2
o

D→ χ2
b−1.

(ii) Assume plim(µ̂normal) = µnormal, χ̂2
o

D→ χ2
b−1.

Theorem 2.2.5. Let the conditions in Theorem 2.2.2 hold and w1,w2, . . . ,wn−m are divided
among b bins independently of each other with probabilities p1, p2, . . . pb, where b ∈ N is a
fixed number and b < n −m and ∑b

i=1 pi = 1. If (2.3) be true,

(i) limn→∞ χ2
o =∞ w.p.a.1.

(ii) Assume plim(µ̂normal) = µnormal, limn→∞ χ̂2
o =∞ w.p.a.1.

Theorem 2.2.4 and 2.2.5 state that, as the sample size increase, under (2.2) the distri-
bution of χ̂2

o is approximated by χ2
b−1 distribution and under (2.3) χ̂2

o goes to∞. Therefore,
the null hypothesis (2.2) is rejected if the observed value of χ̂2

o is large enough. In this
chapter, we use the 5% critical value. However, multiple testing corrections can be used,
especially for datasets that have a possibility of a higher number of outliers. To improve
readability, all proofs are placed in Appendix B.

Now, let us discuss the selection of potential outliers. If {X}ni=1 contains outliers. The
value of Xi − µnormal for outliers is either much larger or smaller than those for normal
observations, so is the value of wi = n−1 (1 + λ (Xi − µnormal))−1 with λ ≠ 0. Hence, there is
a disparity in the values of ∣wi− 1

n ∣ between outliers and normal observations. The suggested
potential outlier is Xo

s ∈ {X}ni=1 such that ∣wo
s − 1

n ∣ is among the m largest values, where
s ∈ N and s <= n.

Note that the value of m is dependent on n, which only affects the computation time
and is also discussed in Section 2.2.2. If {Xo}ms=1 do not contains all outliers in {X}ni=1,
implying {X}n−mj=1 still contains some outliers, H0 will be rejected. Otherwise, H0 will be
accepted. When H0 is accepted, {Xo}ms=1 is allowed to contain some normal observations.

Thus, test for {X}n−(m−k)j=1 are required, where k ∈ N, k < m and {X}n−(m−k)j=1 is a subset of

{X}ni=1 obtained by removing all elements in {Xo}m−ks=1 from {X}ni=1. To identify {Xm}ms=1
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which exclusively consists of all outliers from {X}ni=1, we need H0 of absence of {Xm}ms=1 is
accepted, while H0 of absence of {Xo}m−ks=1 is rejected for any k < m. Our method can be
summarized as follows:

(a) Obtain an estimated mean vector µ̂ of {X}ni=1 by using resample method.

(i) Randomly select l observations from {X}ni=1. Then, calculate the average of
{X}li=1, denoted as µ̂1.

(ii) Repeat (i) B times. Let µ̂ be the average of µ̂1, ..., µ̂B.

(b) Assign the weight to Xi by using the EL ratio function with the bootstrap mean
constraint. Under the bootstrap mean constraint, i.e., m(X, µ̂) =X−µ̂, the empirical
likelihood ratio function becomes

max
w1,...,wn

{
n

∏
i=1

wi ∣
n

∑
i=1

wi (Xi − µ̂) = 0,wi ≥ 0,
n

∑
i=1

wi = 1} ,

and the weight function for Xi’s are

wi = n−1 (1 + λ (Xi − µ̂))−1 , (2.7)

where the Lagrange multiplier λ can be found by numerical search. Denote the
weights of Xi’s by {w}ni=1.

(c) Test if the distribution of {w}ni=1 is close to a uniform distribution by using the outlier
identification test. If it is close to a uniform distribution, then all observations in
{X}ni=1 are normal. Otherwise, follow the steps below to detect outliers.

(d) Calculate di = ∣wi -
1
n ∣ and sort {w}ni=1 according to the ascending sort of di. Denote

the sorted weights as {w(i)}
n

i=1
and w(i) is the weight assigned to X(i) for i = 1, ..., n.

(e) Remove X(n−m+1), ...,X(n) from {X(i)}
n

i=1
, then test if the distribution of {w(i)}

n−m

i=1
is

close to a uniform distribution by using the outlier identification test. If it is close to

a uniform distribution, test {w(i)}
n−m+1

i=1
. Otherwise, we proceed with further testing.

(f) Repeat (e) until the test result shows that {w(i)}
n−q

i=1
is not close to a uniform distri-

bution and {w(i)}
n−q−1

i=1
is close to a uniform distribution, where q = 0,1, ..., n−1. The

outliers are X(n−q), ...,X(n).
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2.2.2 The implementation problems

We now turn to discuss some implementation problems. First, we should note that this
chapter uses the mean constraint since it allows us to take advantage of the fact that
outliers can distort the mean, while normal observations generally do not. However, the
mean constraint can be replaced by other constraints m(X,θ) on the condition that θ is
affected by outliers.

Next, we need to estimate the mean of normal observations in {X}ni=1. The sample
mean of {X}ni=1 is not suitable in this case because it is highly distorted by the outliers.

Remark 2.2.1. If w1,w2, ...,wn ∈ R, wi ≥ 0, ∑n
i=1wi = 1, and ∑n

i=1wi(Xi − 1
n ∑

n
i=1Xi) = 0,

then the function ∏n
i=1wi is maximized by taking wi = 1

n for all i.

In this paper, we employ a bootstrap mean which is less distorted by outliers compared
to the sample mean such that the outliers are not treated as normal observations. The
estimation error from using the estimated mean of normal observations instead of the true
mean of normal observations affects the value of wi, so that we might have wi ≠ 1

n for
the dataset without outliers for some i. However, the difference in EL weights between
datasets with and without outliers is still significant as long as the estimated mean of
normal observations is less distorted than the sample mean. The reason behind this is that

the function ∏n
i=1wi is maximized when (wi − 1

n
)2 is minimized given the conditional of

Remark 2.2.1. When employing the estimated mean of normal observations for the dataset
without outliers, it is unnecessary for the values of wi for normal observations to offset the
effects of outliers as in the dataset with outliers. This suggests that the shift caused by
estimation error is considerably smaller.

Due to the estimation error, the distribution of the EL weights for the dataset without
outliers also might not exactly follow a Uniform distribution. Hence, the next implemen-
tation problem is about measuring the goodness of fit between the distribution of the EL
weights and a Uniform distribution. We compare them by partitioning the EL weights into
bins and testing if the EL weights are equally distributed among the bins using our outlier
identification test. Employing a strict criterion for the test might lead to detecting normal
observations as outliers when the distribution of the EL weights is only close to but does
not exactly follow a Uniform distribution, particularly for datasets with highly skewed or
heavy-tailed. The strictness of the test can be modified by the selection of b. To impose
a loose restriction for the test, we select a high value for b. In this paper, we impose a
loose restriction for the test with b = n −m. Additionally, the value of b does not require
change as removing potential outliers each time, since the number of potential outliers is
much smaller than n by the definition of outliers.
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Finally, we present three remarks which are for reducing the computational burden.
In this paper, m is the number of outliers we initially assumed. Since m is an estimated
number of outliers, it is possible that {X}n−mj=1 contains outliers or {Xo}ms=1 contains normal
observations. However, the initially selection ofm does not affect the result of identification
since we repeat the test until all outliers are detected. So, m only impacts the time cost.
In this chapter, we determine the value of m based on the Interquartile Range (IQR), that
is, the difference between the upper quartiles (Q3) and lower quartiles (Q1).

Remark 2.2.2. Calculate the IQR of {wi}ni=1, and find the number of weights that less
than Q1− 1.5× IQR and more than Q3+ 1.5× IQR. This number is denoted as Noutlier. If
Noutlier <= 50, set m = 1. Otherwise, m equals the round of the Noutlier/100.

Remark 2.2.3. For large datasets, the {wi}n−m+1i=1 and {w(i)}
n−m−1

i=1
in step (e) can be

replaced by {w(i)}
n−m+k

i=1
and {w(i)}

n−m−k

i=1
for k = 1,2, ...,m− 1 to reduce the time cost. Note

that the smaller the value of k, the more accurate the result becomes.

Although this algorithm is designed to detect outliers that might already exist in the
input dataset, it can effectively examine the new observation.

Remark 2.2.4. Suppose a large dataset without outliers is given, denoted as X. To reduce
the cost of time for examining the influence of a new observation, a subset Xsubset is
randomly selected from X. Then, add the new observation into Xsubset instead of X and
then implement the examination.

2.3 Simulation

In this section, we present results for 1D and 2D simulation studies, both including cases
with and without outliers. Of the 1D datasets, one case consists of 9990 normal obser-
vations drawn from a Gaussian distribution with mean 2 and variance 1 and 10 outliers
drawn from another Gaussian distribution with mean 20 and variance 5, denoted asX. The
other one is outliers free, which only contains 10000 observations drawn from a Gaussian
distribution with mean 2 and variance 1, denoted as X

′
.

Using the method introduced in the previous section, we found that the EL weights
of normal observations are around 1/n, that is, 1/10000 in both X and Xnormal. However,
the EL weights of outliers are relatively larger than 1/10000. The plot of the EL weigths
for X is shown in Appendix B.1. The first column of Table 2.1 is the number of removed
elements from the datasets, which is mentioned in the algorithm step (e). The second
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column presents the p-value of our outliers identification test for {X(i)}
n−1

i=1
, ...,{X(i)}

n−12

i=1
,

respectively. The p-values of EL weights of {X(i)}
n−1

i=1
, ...,{X(i)}

n−9

i=1
are statistically sig-

nificant so that their distributions are not close to uniform distributions. Starting from

the {X(i)}
n−10

i=1
, the p-values are not significant. This is because all outliers are removed

so that their EL weights are around 1/n. Thus, our method gives that the outliers in X
are X(n),X(n−1), ...,X(n−9). The third column of Table 2.1 shows the p-value from the chi-

square test of EL weights for {X ′
(i)
}
n−1

i=1
, ...,{X ′

(i)
}
n−12

i=1
, which are all not significant since

X
′
does not contain outliers.

Table 2.1: P-value of the outliers identification test for 1D cases

Num of Removed elements P-value for X P-value for X
′

1 1.2265e-280 0.9999
2 3.5797e-268 0.9999
3 4.9536e-261 0.9999
4 6.2142e-210 0.9999
5 4.6449e-209 0.9999
6 9.1252e-199 0.9999
7 6.9710e-146 1
8 1.0750e-96 1
9 7.1828e-31 1
10 0.9999 1
11 0.9999 1
12 0.9999 1

For the 2D datasets, one case consists of 9990 normal observations drawn from a bi-
variate Gaussian distribution with mean [2,5] and variance-covariance matrix [1 0

0 1
] and

10 outliers drawn from another bivariate Gaussian distribution with mean [20,30] and
variance-covariance matrix [5 0

0 5
], denoted by Y . The other one only contains 10000 ob-

servations drawn from the bivariate Gaussian distributions with mean [2,5] and variance-
covariance matrix [1 0

0 1
], denoted by Y

′
.

Again, the EL weights for normal observations are around 1/10000 in both Y and Y
′
,

which are much smaller than the EL weights for outliers. The plot of the EL weights for Y
is shown in Appendix B.3. Table 2.2 shows that the p-value of our outliers identification

test for {Y(i)}
n−1

i=1
, ...,{Y(i)}

n−9

i=1
are statistically significant so that their distributions are not
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Table 2.2: P-value of the outliers identification test for 2D cases

Num of Removed elements P-value for Y P-value for Y
′

1 1.1612e-196 0.9999
2 0 0.9999
3 5.683e-197 0.9999
4 0 0.9999
5 0 0.9999
6 0 0.9999
7 0 0.9999
8 6.3346e-153 0.9999
9 0 0.9999
10 0.9999 0.9999
11 0.9999 0.9999
12 0.9999 1

close to uniform distributions. The p-values of the outliers identification test for Y are not
monotonically increasing as the number of removed elements increased in Table 2.2, because
EL weights in Y are contributed by two variables from different dimensions. However,

the p-values are still not significant starting from {Y(i)}
n−10

i=1
. Thus, the outliers in Y

are Y(n), Y(n−1), ..., Y(n−9). The third column of Table 2.2 shows the p-value of the outliers

identification test for {Y ′
(i)
}
n−1

i=1
, ...,{Y ′

(i)
}
n−12

i=1
, which are all not significant since Y

′
is outlier

free.

Furthermore, the difference between the behaviours of EL weights for normal obser-
vations and outliers is also found by other indicators of EL weights for these four cases,
such as skewness or kurtosis. Here we just present the kurtosis of the EL weights for the
simulated datasets, the skewness of the EL weights for the simulated datasets is presented
in Appendix B.1 and B.2. Table 2.3 and 2.4 present the kurtosis of EL weights for all four
cases. For both X

′
and Y

′
, the kurtosis of EL weights does not have significant change.

However, the kurtosis of EL weights for X decreases rapidly as the number of removed
elements increases in the first 10 rows of Table 2.3, since the tailedness is reduced by re-

moving outliers. In addition, the decreasing of kurtosis becomes slow from {X(i)}
n−10

i=1
since

the normal observations X(n−11) and X(n−12) do not distort the kurtosis. Therefore, we also
get that X(n),X(n−1), ...,X(n−9) are outliers by using the change of kurtosis. The second
column of Table 2.4 shows that the kurtosis of EL weights for Y is not monotonically de-
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creasing as the number of removed elements increased because EL weights in the 2D case
are contributed by two variables from different dimensions. However, the change of kur-

tosis still becomes small starting from {Y(i)}
n−10

i=1
. Thus, it also gives that the outliers are

Y(n), Y(n−1), ..., Y(n−9) in Y . Again, the reason is that EL weights for outliers heavily affect
the value of kurtosis whereas EL weights for normal observations generally do not distort
the kurtosis. A test based on the skewness or kurtosis of the EL weights for comparing
datasets with and without outliers is an opportunity for further exploration.

Table 2.3: Kurtosis of EL weights for 1D cases

Num of Removed elements Kurtosis of X Kurtosis of X
′

1 66.1735 2.9957
2 53.9540 2.9821
3 42.1980 2.9720
4 31.2103 2.9612
5 25.7994 2.9509
6 17.2385 2.9410
7 9.9809 2.9322
8 5.2887 2.9239
9 3.3157 2.9157
10 2.9041 2.9074
11 2.8921 2.8995
12 2.8835 2.8923

2.4 Conclusion

This chapter explores the use of EL weights for identifying outliers. The EL weights are
computed by the EL ratio function with bootstrap mean constraint. In this paper, the
mean constraint is used due to the fact that outliers distort the mean whereas normal ob-
servations generally do not. This leads the EL weights for outliers and normal observations
to behave differently. The distribution of EL weights for datasets without outliers is close
to a Discrete Uniform distribution, while EL weights for datasets with outliers do not.
Different constraints are also effective as long as they are influenced by outliers. We test

29



Table 2.4: Kurtosis of EL weights for 2D cases

Num of Removed elements Kurtosis of Y Kurtosis of Y
′

1 247.0733 2.9763
2 118.1280 2.9978
3 87.3886 3.0620
4 153.5379 2.9452
5 6.6021 2.9911
6 186.0335 2.9882
7 124.2261 2.9920
8 47.3130 3.0367
9 34.6328 2.9129
10 2.9485 3.0086
11 2.9535 2.9494
12 3.015 2.9597

the distribution of EL weights by Pearson’s chi-squared test. The selection of tests might
be investigated in future work.
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Chapter 3

A Clustering Algorithm Based on
Empirical Likelihood

3.1 Introduction

Clustering is an important problem in data mining, aiming to group datasets into different
clusters based on their similarities. Compared to classification, clustering is more chal-
lenging since it is an unsupervised learning problem, that is, the datasets are unlabelled.
In the real world, labelling datasets usually are very expensive or hard to collect. Thus,
clustering has wide applications in many fields, such as biomedical science (Wiwie et al.,
2015), education (Abdullah et al., 2011; Dutt et al., 2015), social networks (Handcock
et al., 2007; Chang et al., 2017), and climatology (Benmouiza and Cheknane, 2019).

Various clustering methods have been proposed (Ezugwu et al., 2022). Two primary
types of clustering are partitional clustering and hierarchical clustering. Partitional clus-
tering includes methods that iterative partition groups based on the similarity of datasets.
Two of the most well-known methods in this type are K-means (Steinhaus, 1956; Forgy,
1965; MacQueen, 1967) and K-medoids (Kaufman and Rousseuw, 1990; Park and Jun,
2009). K-means assigns each observation into K clusters according to the centroid of the
clusters, while K-medoids relocates observations according to the medoid of the clusters.
Both require specifying the number of clusters (K), the centroid/medoid of each cluster,
and the distance metric. The value of K and the initial setting of centroids/medoids
highly affect the results. Some papers have discussed the selection of optimal K (Makles,
2012) However, they require several runs for different K with different selections of initial
centroids/medoids, which might be computationally expensive when the dataset is very
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large (Ikotun et al., 2023). Additionally, the standard K-means or K-medoids use the Eu-
clidean distance metric to measure the similarity. Then, they have a challenge in detecting
arbitrary-shaped clusters.

Regarding hierarchical clustering, it groups clusters in a hierarchical format, which is
a dendrogram that reveals the dataset’s structure. Hierarchical clustering can be divided
into two types based on the direction of clustering, that is, agglomerative methods, which
are bottom-up approaches, and divisive methods, which are top-down approaches. None of
them need to specify the number of clusters, however, they require a distance threshold to
customize the number of clusters. In addition, the performance of hierarchical clustering
depends on the selection of the distance function and linkage criteria. The most widely used
distance functions are the Euclidean distance function, and the popular linkage criteria are
average (Sokal and Michener, 1958), complete (Sokal and Michener, 1948), single (Sneath,
1957), and Ward’s (Ward, 1963). Moreover, it is well-known that they are sensitive to
outliers and computationally expensive.

Besides these two primary types of clustering, other types of clustering have also been
developed. For example, density-based clustering is designed to deal with arbitrary-shaped
clusters. A representative method of this type is DBSCAN (Ester et al., 1996; Schubert
et al., 2017). It does not require a parameter to specify the number of clusters. However, it
is sensitive to the choice of two parameters, the distance that specifies the neighbourhoods
(Eps) and the minimum number of data points to define a cluster (MinPts). Furthermore,
it is not suitable for the case of varied-density clusters. Next, parametric model-based
clustering algorithms, such as the Gaussian Mixture Model, are also well-known (Melnykov
and Maitra, 2010). They group the clusters based on the mixture of pre-defined models
where each model represents a cluster. It works better for datasets with complex structures.
However, it requires prior information about the models, and the performance is poor if
the models are misspecified.

In this paper, we present a clustering method based on the Empirical likelihood (EL)
introduced by Owen (1988). EL is a non-parametric method, implying it is a good candi-
date for analyzing datasets with little or even no prior information. EL has been employed
in clustering problems by Melnykov and Shen (2013) who propose an EL-based iterative
algorithm. However, their method is designed to identify which cluster a new observation
belongs to. Our method uses the EL weights assigned to each observation to group the
clusters, since the behaviour of EL weights for different clusters differs under appropriate
constraints. Although a threshold that customizes the number of clusters is required, the
difference between the EL weights for each cluster makes selecting a threshold relatively
easy. Additionally, our method is available to work on datasets with outliers.
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The article is organized as follows. Section 3.2 describes the proposed EL-based al-
gorithm. Section 3.3 reports and discusses the performance of simulation datasets using
the proposed clustering algorithm. Section 3.4 applies the method to the celebrated Iris
dataset. Section 3.5 provides a conclusion.

3.2 Methodology

3.2.1 Algorithm

We begin by recalling some necessary preliminaries on EL, i.e. the EL ratio function (2)
and EL weight function (3). Let {X}ni=1 be a collection of n independent and identically
distributed random vectors with unknown distribution F . The EL ratio function is

max
w1,...,wn

{
n

∏
i=1

wi ∣
n

∑
i=1

wim(Xi, θ) = 0,wi ≥ 0,
n

∑
i=1

wi = 1} ,

where {w}ni=1 is the corresponding EL weights that are assigned to each observation in
{X}ni=1, and m(X,θ) is a set of appropriately chosen constraints that depend on the pa-
rameter θ and the true parameter value of θ should satisfy E[m(X,θ)] = 0.

Using a Lagrange multiplier method, the EL weight function for Xi’s are

wi = n−1 (1 + λm(X,θ))−1 ,

where the Lagrange multiplier λ can be found by numerical search.

We propose a clustering method based on the EL weights {w}ni=1. The intuition be-
hind our method is that the EL weights for different clusters are behaviour different under
appreciated constraints. Without constraints, all EL weights are equal to 1

n by the in-
equality of arithmetic and geometric means. When constraints are added, the constraint
function m(X,θ) changes the EL weights based on certain criteria related to the behaviour
of observations. If the constraint function m(X,θ) correctly captures similarities between
observations, the EL weights will deviate from 1

n in a distinct manner for each cluster and
close to EL weights within the same cluster. Thus, the clusters of the datasets can be
detected based on their corresponding EL weights.

The utilization of constraint in this EL-based clustering method might closely resemble
the utilization of distance metric or linkage metric in other clustering methods. The purpose
of utilizing them is to capture the inherent structure of the datasets. The selection of them
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influences clustering results, however, there is no best constraint or metric for clustering.
Different type of datasets or the researchers’ questions requires different constraints or
metrics. In this chapter, we discuss mean constraint and variance constraint as exposition.

Let Xk i is the ith observation from the kth cluster for k = 1, ...,K and i = 1, ..., n. Let
µk be the mean of each cluster and µ be the overall mean of X. The EL ratio function for
the mean is (1) and the EL weights can be written as

wi = n−1 (1 + λ(Xi − µ))−1 ,

where µ is the expected value of X, that is, E(Xi) = µ. When the mean constraint is
appropriate for the dataset, the observations within a cluster are closer to the center of
that cluster than to the centers of other clusters, that is, ∣Xk,i−µk∣ is smaller than ∣Xk,i−µj ∣.
Thus, Xk,i−µ is closer to µk−µ than µj −µ for j ≠ k. When µk−µ is not equal to µj −µ, the
difference of EL weights from different clusters is smaller than those in the same clusters.
In other words, the EL weights from different clusters contribute differently to satisfy the
constraints. Additionally, to solve (1), all EL weights are as close to 1/n as possible,
as previously stated. Therefore, the difference in EL weights from the same clusters is
compressed to meet the constraints. Similar to the variance constraints.

In general, our method to group the clusters in the dataset X can be summarized as
follows:

(a) Assign the EL weight to Xi using the EL ratio function under constraint m(X, θ̂).
Denote the EL weights of Xi’s by {w}ni=1.

(b) Sort {w}ni=1 in ascending order, denote the sorted weights as {w(i)}
n

i=1
and w(i) is the

weight assigned to X(i) for i = 1, ..., n.

(c) Calculate the differences between the consecutive values in the sorted EL weights
{w(i)}

n

i=1
, denoted as {d(i)}n−1i=1 . Then, d(i) is the difference between w(i) and w(i+1).

(d) Find all d(i) which is bigger than a threshold D, and their index values in {d(i)}n−1i=1 .
Denote the index values as {rj}mj=1.

(e) Split the {w(i)}
n

i=1
into m + 1 clusters based on {rj}mj=1. Then, the m + 1 clusters

contains values in X whose indices range from 1 to r1, r1 + 1 to r2,..., rm−1 + 1 to rm
and rm + 1 to n, respectively.

(f) Check the length of each cluster. If the length of the cluster j is smaller than a
selected number, MinNum, the observations in the cluster will be treated as outliers
or merged into the cluster j − 1 or j + 1, if they exist.
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(g) If cluster j−1 and j+1 both exist, merge the cluster j to the cluster j−1 if d(rj−1) < d(rj).
Otherwise, merge it to the cluster j + 1.

3.2.2 The implementation problems

We now turn to discuss some implementation problems. First, to compute the EL weights,
we need to select the θ for constraint m(X,θ), denoted by θ̂. The selection of θ influences
the clustering results. For example, the sample mean is not suitable in this case of the
mean constraint because it makes the EL weights view all observations as in one cluster.
Numerically, it is ∑n

i=1wiXi = 1
n ∑

n
i=1Xi which makes the λ = 0 and wi = 1

n for all i. For
some well-separated clusters, it is accepted to use the bootstrap method for determining
the value of θ. Other selections of θ are also available depending on the datasets. Note
that we do not need to accurately estimate θ, since the purpose for selecting θ is to give
constraint for clustering. In this chapter, we use the bootstrap method to select θ for
simulated datasets, while the 3rd quantile of the dataset is used for the empirical dataset
which contains both well-separated clusters and non-disjoint clusters.

Next, let us consider the selection of threshold D, which affects the proposed number
of clusters. For well-separated clusters, there are usually some huge gaps between the
sorted EL weights of different clusters, which suggests the number of clusters. Therefore,
the threshold D can be easily selected. However, it is relatively complex to select the
threshold D for non-disjoint clusters which is also a challenging problem for many other
clustering methods. For non-disjoint clusters, the observations within a cluster might
share some characteristics with the observations from other clusters. Unlike well-separated
clusters, the change in the sorted EL weights occurs relatively gradually. Therefore, there
may not be huge individual differences in the sorted EL weights that directly give the
splitting point for non-disjoint clusters. Then, the threshold D is strategically set to
capture distinct variations in the sorted EL weights for different clusters. We present
examples of non-disjoint clusters in detail in the following section.

Finally, the value ofMinNum must also be chosen for the EL-based clustering method.
The selection of MinNum might depend on the sample size of the dataset. When the
sample size of a cluster is smaller than the value of MinNum, the observations in the
cluster are either outliers or located at the outer boundaries of another cluster. Thus, this
EL-based clustering method is able to deal with datasets with outliers, and it is possible
to identify outliers when grouping clusters.
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3.3 Simulation studies

In this section, we identify similar groups of synthetic datasets using the EL weights. As
an exposition, we present three datasets with well-separated clusters that can be grouped
by EL weights under the mean constraint or variance constraint. Then, we discuss two
datasets with non-disjoint clusters.

3.3.1 Well-separated clusters

Mixture of three Gaussian distributions

We consider three bi-variate Gaussian clusters with different sizes, variances, and co-
variances. The parameters of the employed mixture model are presented in Table 1. The
nk, µk and Σk are the size, mean vector, and covariance matrix of the kth cluster of the
synthetic dataset, respectively.

Table 3.1: The parameters of three bi-variate Gaussian clusters

Parameters Black Green Red

nk 500 300 300

µk (4
4
) ( 8

10
) (12

4
)

Σk ( 1 −0.1
−0.1 1

) (0.1 0
0 0.1

) ( 0.3 −0.3
−0.3 0.31

)

We standardize the dataset and then compute the EL weights under the mean constraint
with the bootstrap mean, while a result by using the mean constraint with 3rd-quantile of
the dataset is presented in Appendix 3.2. The left panel of Figure 3.1 shows the plot of
sorted EL weights. There are 2 gaps in the sorted EL weights that split the weights into
3 parts, so our method indicates the dataset includes 3 clusters. The gaps are detected
by setting the threshold D as the 99.9%-quantile of the difference of sorted EL weights.
The plot for the differences of the sorted EL weights is provided in Appendix C.1. The
clustering result obtained by the EL weights is shown in the right panel of Figure 3.1.
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Figure 3.1: The plots of mixture of Gaussian distributions

3D atom dataset

We present another simulation study for the 3D atom dataset defined in Ultsch (2004). As
shown in the right panel of Figure 3.2, the 3D atom dataset contains two clusters where
each cluster contains 400 observations and is indicated by different symbols. The shape of
this atom dataset is a core enclosed by a hull, which is a completely overlapping convex
hull (Steinhaus, 2020). Thus, the mean constraint cannot deal with this problem, and we
use the variance constraint with the bootstrap variance.

Figure 3.2 presents the sorted EL weights and the clustering result for the dataset after
standardization. By setting the threshold D to be the 99.9%-quantile of differences of
sorted EL weights, the sorted EL weights are split at the 400th EL weight. The plot for
the differences of the sorted EL weights is presented in Appendix C.2. Thus, the 3D atom
dataset is split into 2 clusters (shown as red and black) based on EL weights.

Mixture of Von Mises-Fisher distributions

We simulate a spherical dataset with two clusters, each containing 100 observations. The
first cluster follows a Von Mises-Fisher distribution with the mean direction being (−1,1)
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Figure 3.2: The plots of the 3D atom dataset

and the concentration parameter being 1, and the second cluster follows a Von Mises-Fisher
distribution with the mean direction being (1,−1) and the concentration parameter being
1. Then, we scale the first cluster 15 times, so that the two clusters have the same center
and the radius of the outer cluster is 15 times the radius of the inner cluster. In addition,
four observations are added in four corners, that is, {(-15, -15), (-15, 15), (15, -15), (15,
15)}. We might treat them as outliers or observations from a small cluster.

As we can see from the left panel of Figure 3.3, there are three relatively large gaps for
the sorted EL weights of the dataset after standardization. The gaps are at the 1st, 3rd

and 104th EL weights. The plot for the differences of the sorted EL weights is presented
in Appendix C.3. Then, we split the EL weights into four groups. The first group only
contains one element and the second contains two. The number of EL weights in these two
groups is too small to be a cluster. Additionally, these three EL weights are far away from
the remaining EL weights. Then, the first three EL weights might be treated as outliers
or observations from a small cluster when MinNum <= 3. If MinNum > 3, they might be
treated as a part of the outer cluster. In this chapter, we set MinNum = 2 and treat the
four additional observations as outliers. Then, our method gives that the synthetic dataset
consists of 2 clusters and three outliers. The observations are grouped by the corresponding
EL weights and are shown in the right panel of Figure 3.3, which shows that our method
only detects three outliers and treats one outlier as the observation of the outer cluster.
The undetected outlier might be because of the significant density inequality, implying the
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varied density might affect the result.

Figure 3.3: The plots of the mixture of Von Mises-Fisher distributions

We also compare the performance with those obtained using other popular algorithms,
including k-means, k-medoids, DBSCAN, and hierarchical clustering with average, single
and complete linkages for this dataset. Figure 3.4 and 3.5 provides the results of using
k-means, k-medoids, and hierarchical clustering with average and complete linkages with
K = 2 and K = 3. These four methods fail to group the clusters correctly. The dendrogram
of hierarchical clustering with average and complete linkages is provided in Appendix C.5
and C.6.

Figure 3.6 shows the results of using DBSCAN with different parameters (Eps and
MinPts). Additional results with a broader range of parameters are provided in Ap-
pendix C.4. As we know, DBSCAN is not suitable for the dataset with varied density
clusters and is very sensitive to the value of Eps and MinPts (Chauhan, 2014). If this
dataset does not include the outliers, DBSCAN can group the clusters correctly with
appropriate parameters. However, with the four outliers, DBSCAN might be unable to
correctly group the clusters.

Figure 3.7 illustrates the results using hierarchical clustering with single linkage with
different threshold settings. Its dendrogram is provided in Appendix C.7. Again, if this
dataset does not include the outliers, it can group the clusters correctly with an appropriate
threshold. However, hierarchical clustering approaches are usually sensitive to outliers. In
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Figure 3.4: Results for the 2D spherical dataset using k-means and k-medoids

this case, it detects either all outliers as observations of the outer cluster or an observation
of the outer cluster as an outlier.

3.3.2 Non-disjoint clusters

Non-disjoint cluster is a challenging issue in clustering since it allows an observation to
belong to more than one cluster. We now turn to discuss two examples of non-disjoint
clusters.

First, we simulate two bi-variate Gaussian clusters, one containing 500 observations

with the mean vector (1.5
1.5
) and the covariance matrix (1 0

0 1
), and the other containing

500 observations with the mean vector (5
5
) and the covariance matrix (1 0

0 1
). The right

40



Figure 3.5: Results for the 2D spherical dataset using hierarchical clustering with average
and complete linkages

panel of Figure 3.8 shows that these two clusters are slightly overlapped, where circle and
triangle symbols indicate the two clusters, respectively.

Then, we calculate the EL weights of the dataset and present the sorted EL weights in
the left panel of Figure 3.8. There is no huge gap in the sorted EL weights since the two
clusters are non-disjoint. We visualize the differences between all consecutive values of the
sorted EL weights. In the middle panel of Figure 3.8, the red line indicates the threshold D
which is the 99%-quantile of differences of sorted EL weights. After combining the clusters
with lengths less than 5, we partition the dataset into two clusters (red and black), as
shown in the right panel of Figure 3.8. The precision and recall are both 0.978 for each
cluster.

Next, we consider non-disjoint clusters with different sample sizes and densities. We
simulate two bi-variate Gaussian clusters, one containing 1000 observations with the mean
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Figure 3.6: Results for the 2D spherical dataset using DBSCAN

Figure 3.7: Results for the 2D spherical dataset using hierarchical clustering with single
linkage
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Figure 3.8: The plots of non-disjoint clusters with the same sample size and densities

vector (1
1
) and the covariance matrix ( 3 −0.9

−0.9 3
) and the other containing 50 observa-

tions with the mean vector (5
5
) and the covariance matrix ( 1 0.9

0.9 1
). From Figure 3.9,

we see that these two clusters are slightly overlapped, where the two clusters are indicated
by the circle and triangle symbols, respectively.

Figure 3.9: The plots of non-disjoint clusters with different sample sizes and densities
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Again, we calculate the EL weights of the dataset and present the sorted EL weights in
the left panel of Figure 3.9. From the middle panel of Figure 3.9, we find that the variations
in the initial segment of the differences between all consecutive values of the sorted EL
weights are relatively larger than those in the remaining part. In this case, the threshold
is not selected to find the value of differences that can directly split the clusters, but to
capture the change of variations in the sorted EL weights for different clusters. We set the
threshold D to be the 98%-quantile of differences of sorted EL weights, indicated by the
blue line in Figure 3.9. Since most difference values in the initial segment are larger than
D, the dataset is split into two clusters (red and black) after combining the clusters with
lengths less than 5. The result is provided in the right panel of Figure 3.9. The precision
and recall for the red cluster are 0.995 and 0.996, and for the black cluster are 0.918 and
0.9, respectively.

3.4 An empirical example

We apply our method to the famous Iris dataset (Anderson, 1935; Fisher1936), which
consists of 3 species (Setosa, Virginica, and Versicolor) with 50 samples and 4 features
(the length and the width of the sepals and petals) from each species. As can be seen
from Figure 3.10, Setosa (black) is well-separated from the others, while Virginia (blue)
and Versicolor (red) overlap considerably. Thus, clustering for the Virginia and Versicolor
groups is a well-known challenge problem.

The Iris dataset contains 4 features, however, some features might contain redundant or
little information. Thus, feature selection is suggested in clustering (Alelyani et al., 2014;
Witten and Tibshirani, 2010). For the Iris dataset, the length and the width of petals are
usually selected as the relevant features to help group clusters (Dash et al., 2002). Then,
we compute the EL weights for these two features under mean constraints using a vector
value of (0.7602,0.7880) which is the 3rd quantile of the dataset after standardization.

There is a huge gap and some relatively large gaps in the sorted EL weights, as shown
in Figure 3.11. We set the threshold D to be the 10th largest value of the difference of
sorted EL weights. After merging clusters with observations less than 10, the iris dataset
is split into three clusters in the dataset. The Setosa group is partitioned correctly, while
the Virginia and Versicolor groups are split with 4 misclassified observations.

Then, we show the performance of using other clustering methods to compare with the
above results, and these results are plotted in Appendix C. DBSCAN might suggest there
are two clusters in the Iris dataset, which identifies the Virginia and Versicolor groups
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Figure 3.10: The scatterplot of the iris dataset

as one cluster. Moreover, the dendrogram of hierarchical clustering may yield different
suggestions about the number of clusters. Given the number of clusters is three, K-means
and K-medoids might give 6 misclassified observations from Virginia and Versicolor groups.
Therefore, our EL-based clustering method is a feasible competitor to these methods in
this case.

3.5 Conclusion

This paper introduces a clustering algorithm based on the EL weights. The proposed
algorithm does not require specifying the number of clusters. Although a threshold of
the difference of sorted EL weights is required, it is easy to select for the well-separated
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Figure 3.11: The results of the iris dataset

clusters. Moreover, this algorithm is less sensitive to the outliers. It might detect the
outliers while grouping the dataset into clusters. In addition, this paper focuses on the
EL weights under mean or variance constraint as exposition. However, the selection of
constraints is a potential future work. Future research might also explore the feature
selection for clustering based on the EL method.
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Society, 59, 2–5.

Anderson, P. L. and M. M. Meerschaert (1998): “Modeling river flows with heavy
tails,” Water Resources Research, 34, 2271–2280.

Bader, B., J. Yan, and X. Zhang (2018): “Automated threshold selection for extreme
value analysis via ordered goodness-of-fit tests with adjustment for false discovery rate,”
The Annals of Applied Statistics, 12, 310–329.

Bai, Y., W. Fung, and Z. Zhu (2010): “Weighted empirical likelihood for generalized
linear models with longitudinal data,” Journal of Statistical Planning and Inference, 140,
3446–3456.

Balakrishnan, N. and V. Nevzorov (2004): A primer on statistical distributions,
New Jersey: Wiley.

47



Barabási, A. (2005): “The origin of bursts and heavy tails in human dynamics,” Nature,
435, 207–211.

Baragona, R., F. Battaglia, and D. Cucina (2013): “Empirical likelihood for break
detection in time series,” Electronic Journal of Statistics, 7, 3089–3123.

——— (2016): “Empirical likelihood for outlier detection and estimation in autoregressive
time series,” Journal of Time Series Analysis, 37, 315–336.

——— (2018): “Empirical likelihood for outlier detection in regression models,” Journal
of Statistical Theory and Practice, 12, 255–281.

Benmouiza, K. and A. Cheknane (2019): “Clustered ANFIS network using fuzzy
c-means, subtractive clustering, and grid partitioning for hourly solar radiation forecast-
ing,” Theoretical and Applied Climatology, 137, 31–43.

Bernardara, P., D. Schertzer, E. Sauquet, I. Tchiguirinskaia, and M. Lang
(2007): “The flood probability distribution tail: how heavy is it?” Stochastic Environ-
mental Research and Risk Assessment, 22, 107–122.

Binbusayyis, A. and T. Vaiyapuri (2021): “Unsupervised deep learning approach for
network intrusion detection combining convolutional autoencoder and one-class SVM,”
Applied Intelligence, 51, 7094–7108.

Caeiro, F. and M. I. Gomes (2014): “A semi-parametric estimator of a shape second-
order parameter,” in New Advances in Statistical Modeling and Applications, Springer,
137–144.

——— (2016): “Threshold selection in extreme value analysis,” Extreme Value Modeling
and Risk Analysis: Methods and Applications, 1, 69–86.

Cai, S. and J. Chen (2018): “Empirical likelihood inference for multiple censored sam-
ples,” The Canadian Journal of Statistics, 46, 212–232.

Chang, J., S. X. Chen, and X. Chen (2015): “High dimensional generalized empirical
likelihood for moment restrictions with dependent data,” Journal of Econometrics, 185,
283–304.

Chang, Y. H., K. K. Lai, C. Y. Lin, F. P. Su, and M. C. Yang (2017): “A hybrid
clustering approach to identify network positions and roles through social network and
multivariate analysis,” Scientometrics, 113, 1733–1755.

48



Chauhan, R. (2014): “A comprehensive study of various clustering techniques,” Inter-
national Journal of Advanced Research in Computer Science, 5.

Chen, J., A. Variyath, and B. Abraham (2008): “Adjusted empirical likelihood and
its properties,” Journal of Computational and Graphical Statistics, 17, 426–443.

Chen, K. and R. Huang (2021): “Robust empirical likelihood for time series,” Journal
of Time Series Analysis, 42, 4–18.
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Appendix A

Appendices of Chapter 1

A.1 Additional Hill plots

This appendix provides additional examples of Hill plots for Pareto and Mixed distribu-
tions. As we know, k can be chosen from the “first stable” region in the Hill plot, such
as randomly selecting a fixed number from the region or using the average of the number
value in the region. However, the selection of the “first stable” region in the Hill plot is
very subjective. To choose an optimal k based on the Hill plot, we sometimes need to
change the range a few times.

The top panels of Figure A.1 and A.2 display the Hill plots for Pareto and Mixed
distributions with the entire dataset range. However, it’s not easy to detect the pattern
and find the “first stable” region in the top panels of Figure A.1 and A.2. We might change
the range for better clarity, as shown in the bottom panels of Figure A.1 and A.2. Even if
a “first stable” region is found in the Hill plots of datasets with the entire dataset range,
the selection of this region might change after zooming in on the Hill plots. This is because
additional fluctuations that were not visible at a broader scale might be uncovered.

Moreover, researchers might study a bundle of datasets at one time. Then, it is an
exceedingly heavy workload and extremely time-consuming to check each Hill plot and
find the “first stable” region. Thus, a region might be chosen for the Hill plot for the
entire bundle of datasets. Typically, k is bigger than 10%n and smaller than 20%n. For
example, if n = 500, we might select k from [10,11, ...,100]; if n = 1000, we might select
k from [20,21, ...,200]; if n = 2000, we might select k from [50,52, ...,250]. In Figure A.3,
we present the Hill plots for a bundle of Pareto(6) with 10000 observations, and the region
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Figure A.1: The Hill plots for Mixed distribution

[500,1000] is indicated by two solid lines. From Figure A.3, we can see that the region
[500,1000] is not the optimal selection for all the datasets, even though the datasets are
generated from the same distribution with the same sample size. For example, the region
[500,1000] could be the “first stable” region for the first plot in the top panel of Figure A.3,
however, the “first stable” region of the next plot seems should be [250,400].
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Figure A.2: The Hill plots for Pareto(6)

A.2 The plots for simulation results

This section plots the probability for simulation datasets and adds lines indicating threshold
K to each plot to enhance the visibility of the results, as illustrated in Figure A.4 and A.5.
The two dashed lines indicate the minimum and maximum value of threshold K, while the
solid line indicates the representative number τ̂ , that is, the mean of K.

Figure A.4 includes four plots, which are the probability plots for Pareto(6), TPareto(1.5),
Mixed(6) and Mixed(1.5). In these four plots, the threshold K is estimated using our EL
weights-based method, with the benchmark set as Exponential distribution. We see that
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Figure A.3: The Hill plots with the selected region

the value of K is close to the turning point for all cases. Note that the mixed distribution is
a mixture of 90% Pareto distribution and 10% Normal distribution such that the heaviness
of the mixed distribution is only driven by the Pareto component. Thus, the difference
between the results for Pareto and mixed distributions is very small.

Next, the Exponential distribution benchmark is replaced by Pareto(6) for the tar-
geted dataset TPareto(1.5). The tail of Pareto(6) is heavier than the tail of Exponential
distribution, therefore, the heaviness starts at a higher quantile, as shown in the first plot
of Figure A.5. Then, if we force TPareto(1.5) to be the benchmark and Pareto(6) to be
the distribution of interest, we get the same K due to the “role reversal” property of our
algorithm.

Moreover, our method allows the tail index of the target distribution and benchmark
both to be non-positive numbers. We force a Beta(2,5) which has a negative tail index
to be the target distribution and an Exponential distribution which has a zero tail index
to be the benchmark. Since the tail of the Exponential distribution is heavy relative to a
Beta distribution, it gives the threshold K of the Exponential distribution with benchmark
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Figure A.4: Plots for simulation data with exponential benchmark

Beta(2,5) by the “role reversal” property. The results for Beta(2,5) with Exponential as
the benchmark and Exponential with Beta(2,5) as the benchmark are shown in the two
plots at the bottom of Figure A.5.

A.3 The EVT method

In this section, we give preliminary information on EVT. EVT studies the behaviour of
extreme events, that is, the tail distribution. As early as 1709, the idea of EVT was
mentioned by Niclas Bernouilli (Kotz and Nadarajah, 2000). EVT was first applied to study
massive floods, such as 100 years flood, by Fuller, 1914. Then, the theoretical properties
of EVT were developed by numerous works (Gnedenko, 1943; Juncosa, 1949 and Gumbel,
1958). As a consequence, EVT has been widely used in many fields, such as engineering
(Chryssolouris et al., 1994; Scarf and Laycock, 1994), environmental science(Katz, 1999;
Toulemonde et al., 2015), finance (McNeil, 1999; Diebold et al., 2000; Gencay and Selçuk
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Figure A.5: Plots for simulation data with other benchmarks

(2004)), and sports (Einmahl and Magnus, 2008; Raggiotto et al., 2019; Adam and Tawn,
2016).

Let X1,X2, ...,Xn be independent and identically distributed random variables with the
same cumulative distribution function F . Let X1,n,X2,n, ...,Xn,n be the associated order
statistics, where Xn,n is the maximum. Then, we have

P (Xn,n ≤ x) = P (X1,n ≤ x,X1,n ≤ x, ...,Xn,n ≤ x) = F n(x).

Based on EVT, we have that if the maximum Xn,n, with appropriate centring and scaling,
converges to a nondegenerate random variable, then

P (
Xn,n − bn

an
≤ x) = F n(anx + bn)→ Gγ(x) (A.1)

as n→∞, where
Gγ(x) ∶= exp(−(1 + γx)−1/γ)
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from some γ ∈ R with x such that 1 + γx > 0, and {an} and {bn} are sequences of constant
with an > 0. We say that F is in the domain of attraction of the extreme value distribution
functionGγ(x), and γ is the extreme value index or tail index which quantifies the heaviness
of the tail part of the distributions. In general, the larger the tail index, the heavier the
tail, implying that extreme events are more likely to occur.

Then, we can have

lim
t→∞

t(1 − F (atx + bt)) = − logGγ(x) = (1 + γx)−1/γ, Gγ(x) > 0,

where t ∈ R+, at and bt are defined by interpolation.

Let F̄ (1 − 1/t) ∶= inf{x ∶ F (x) ≥ 1 − 1/t} with t > 1. Then, the equation A.1 can be
written as

lim
t→∞

U(tx) −U(t)
a(t)

= ψγ(x) =∶ {
xγ−1
γ γ ≠ 0

lnx γ = 0,

where
U(t) ∶= F̄ (1 − 1/t)

for all x > 0.

This is known as the first-order condition. However, a first-order condition is in general
not sufficient to study the properties of estimators for tail parameters. Therefore, the
second-order condition and third-order condition are required.

The second-order condition is about the rate of convergence, and is defined as follows,

lim
t→∞

U(tx)−U(t)
a(t) − ψγ(x)

A(t)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
ρ (

xρ−1
ρ − lnx) γ = 0, ρ ≠ 0

1
γ (xγ lnx −

xγ−1
γ ) γ ≠ 0, ρ = 0,

ln2 x/2 γ = ρ = 0,
1
ρ (

xγ+ρ−1
γ+ρ −

xγ−1
γ ) otherwise,

for all x > 0, where ρ is a second-order parameter and A is a function possibly not
changing in sign and A→ 0 as t→ 1.

The rate of convergence is also specified by the third-order condition,

U(t) = Ctγ (1 +A(t)/ρ + ηA2(t) + o(A2(t))) ,
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where A(t) ∶= γβtρ, with γ > 0, ρ < 0 and β, η ≠ 0. Note that, β and η0 can more
generally be slowly varying functions.

Now, let us discuss the estimation of γ, at and bt. Since EVT focuses on the tail part
whose behaviour might differ from the bulk part, we might not use the whole datasets
to estimate γ, at and bt. Let k be the tail parameter, which is the number of upper
observations used to estimate the tail part of the dataset. We assume k →∞ and k/n→ 0
as n→∞.

There are different methods to estimate γ for different types of the extreme value
distribution function Gγ(x). The types of Gγ(x) are presented as follows:

Fréchet with γ > 0 ∶ Φγ = {
0 x < 0
exp (−x−1/γ) x ≥ 0,

Weibull with γ < 0 ∶ Ψγ = {
exp (−(−x)−1/γ) x ≤ 0
1 x > 0,

Gumbel with γ = 0 ∶ λγ = exp (− exp(x)γ) x ∈ R.

In this appendix, we only present two estimators mentioned in Chapter 1: Hill estimator
and Moment estimator. We refer to Gomes and Guillou (2015) for a review of EVT
estimation.

First, the Hill estimator introduced by Hill (1975) is the most famous estimator for
γ > 0. It is defined as

γ̂Hk,n ∶=
1

k

k−1

∑
i=0

logXn−i,n − logXn−k,n.

Second, the Moment estimator is an alternative estimator proposed by Dekkers et al.
(1989). It does not restrict to the case γ > 0, and is defined as

γ̂Mk,n =M
(1)
k,n + 1 −

1

2

⎛
⎜⎜
⎝
1 −
(M (1)

k,n )
2

M
(2)
k,n

⎞
⎟⎟
⎠

−1

, (A.2)

where

M
(j)
k,n ∶=

1

k

k−1

∑
i=0

(logXn−i,n − logXn−k,n)j , j = 1,2.
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One might find that M
(1)
k,n ≡ γ̂Hk,n.

Then, estimators for an,k, and bn,k are defined as follow

âk,n =
⎧⎪⎪⎨⎪⎪⎩

M
(1)
k,nXn−k,n(1 − γ̂), γ̂ ≤ 1

M
(1)
k,nXn−k,n, γ̂ > 1,

and
b̂k,n =Xn−k,n.

We should note that the estimated γ̂, âk,n and b̂k,n are dependent on the selection of
the tail parameter k. Ideally, the results for estimating γ should not be highly sensitive
to small changes in the value of k. However, this is not always the case, especially for
Hill estimator. If k is too large, γ̂ is a biased estimator. If k is too small, γ̂ is a volatile
estimator. This might lead to a very peaked mean square error. Hence, some works, such
as (Hall and Welsh, 1985), derived a formula by minimizing the asymptotic mean squared
error for selecting k to balance the variance and bias.

For k →∞ and k/n→ 0,
√
kA(nk )→ λ as n→∞,

√
k(γ̂ − γ) dÐ→ γN + λ

ρ
,

where N is the standard normal distribution. Then, the asymptotic variance is

γ2

k
,

and the asymptotic bias is
A2(t)
(1 − ρ)2

.

Nowm, we have the asymptotic mean squared error of γ is defined as

A2(t)
(1 − ρ)2

+ γ
2

k
.

Then, the k minimized the asymptotic mean squared error of γ is defined as

kγ̂(n) = argmin
k
( A2(t)
(1 − ρ)2

+ γ
2

k
)
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.

To minimize kγ̂(n), the knowledge of the second-order parameter ρ is required. There
are several methods to estimate ρ and find an optimal k based on minimizing the asymptotic
mean squared error. In this thesis, we only present the results using the method discussed
in Gomes et al. (2012) and Caeiro and Gomes (2016).
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Appendix B

Appendices of Chapter 2

B.1 Proof of Lemma 2.2.1

Proof. By using the Lagrange multiplier method, we have wi = n−1 (1 + λ (Xi − µx))−1,
where the Lagrange multiplier λ is the unique solution of

f(λ) = 1

n

n

∑
i=1

Xi − µx

1 − λ(Xi − µx)
.

From Owen (1990), we have that

∣∣λ∣∣ = OP (n−1/2),

Therefore,
(1 + λ (Xi − µx))→ 1 as n→∞.

Recall that wi = n−1 (1 + λ (Xi − µx))−1. Thus, ∣wi− 1
n ∣

P→ 0 as n→∞ for i = 1,2, ..., n.

B.2 Proof of Theorem 2.2.1

Proof. Generally, we say the distribution of a constant follows Degenerate or Point Mass
distribution. But, a constant can also be thought of as following a Discrete Uniform
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distribution. By the definition of Discrete Uniform distribution, the probability mass
function (PMF) and cumulative distribution function (CDF) can be expressed as

PX(X = x) =
⎧⎪⎪⎨⎪⎪⎩

1
k if x = a, a + 1, ..., b − 1, b,
0 otherwise,

(B.1)

and

FX(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if x < a,
⌊x⌋−a+1
b−a+1 if x = a, a + 1, ..., b − 1, b,
1 if x > b,

(B.2)

where a, b ∈ N with a ≥ b and k = b − a + 1.
Let a = b = 1

n−m , then k = 1. It gives PX(X = x) = 1 if x = 1
n−m , and 0 otherwise.

Similarly, FX(x) = 1 if x ≥ 1
n−m , and 0 otherwise. The constant 1

n−m follows a Discrete
Uniform distribution with [ 1

n−m ,
1

n−m].

Based on Lemma 2.2.1, we have ∣wj − 1
n−m ∣

P→ 0 as n −m → ∞ for j = 1,2, ..., n −m.
Therefore, wj

D→DU(1) for j = 1,2, ..., n −m.

B.3 Proof of Lemma 2.2.2

Proof. Similar to the proof of Lemma 2.2.1, wi = n−1 (1 + λ (Xi − µnormal))−1, where the
Lagrange multiplier λ is the unique solution of

f(λ) = 1

n

n

∑
i=1

Xi − µnormal

1 − λ(Xi − µnormal)
.

It remains to show that λ↛ 0 as n→∞. Again, from Owen (1990), we have that

λ = S−1(X̄ − µnormal) + oP (n−1/2),

where S = 1
n ∑(Xi − µnormal)(Xi − µnormal)′.

If m
n ↛ 0 as n →∞, µx ↛ µnormal as n →∞ since µx is highly distorted by the outliers,

implying that λ
P↛ 0.
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B.4 Proof of Theorem 2.2.2

Proof. From Lemma 2.2.2, we know that

wj =
1

n −m
1

1 + λ (Xj − µnormal)
,

where λ
P↛ 0, so that PX(X = 1

n−m) ≠ 1.

B.5 Proof of Theorem 2.2.3

Proof. Pearson’s limit theorem gives that the random variable ∑b
i=1
(Oi−Ei)

2

Ei
converges in

distribution to a chi-square random variable with b − 1 degrees of freedom as the sample
size n increases to infinity.

B.6 Proof of Theorem 2.2.4

Proof. Theorem 2.2.3 leads immediately to this result.

B.7 Proof of Theorem 2.2.5

Proof. When (2.3) is true, pi ≠ 1
b for some i. Then,

Oi − (n −m)/b√
n −m/b

= Oi − (n −m)pi + (n −m)(pi − 1/b)√
n −m/b

=
√
bpi

Oi − (n −m)pi√
(n −m)pi

+
√
n −mpi − 1/b√

1/b
.

The first term converges to N (0, b(1−pipi
) and the second term diverges to ∞, which implies

(Oi−(n−m)/b)
2

n−m/b →∞ as n −m→∞. Similarly, this divergence occurs in the (Ôi−(n−m̂)/b)
2

n−m̂/b .

72



B.8 Proof of Remark 2.2.1

Proof. We first recall the inequality of arithmetic and geometric mean. For a set of non-
negative real numbers X1+, ...,+Xn, we have

X1+, ...,+Xn

n
≥ n
√
X1⋅, ..., ⋅Xn.

And, the equality holds if and only if X1 =X2, ...,=Xn.

From the inequality of arithmetic and geometric means, we have
n

∏
i=1

wi ≤ (
∑n

i=1wi

n
)
n

,

and the equality holds if and only if w1 = w2 = ⋅ ⋅ ⋅ = wn. Thus, ∏n
i=1wi is maximized when

w1 = w2 = ⋅ ⋅ ⋅ = wn. Since ∑n
i=1wi = 1, we have wi = 1

n .

If a sample mean constraint is added, the optimal result for maximizing the function

∏n
i=1wi is still wi = 1

n for all i since the sample mean constraint is actually ∑n
i=1wiXi =

1
n ∑

n
i=1Xi.

B.9 Skewness of EL weigths

This section provides the skewness of EL weights for all four cases in the simulation section
of Chapter 2.

Table B.1 presents the skewness of EL weights for the 1D datsets, while Table B.2
presents the skewness of EL weights for the 2D datsets. The sign of the skewness of EL
weights is not consistent, but we only focus on the absolute value of the skewness of EL
weights. The absolute values of the skewness of EL weights for both X ′ and Y ′ do not have
significant change, since these two datasets only contain normal observations. However,
the absolute values of the skewness of EL weights for X decrease rapidly as the number
of removed elements increases in the first 10 rows of Table B.1, similar to the absolute
values of the skewness of EL weights for Y in the first 10 rows of Table B.2. In addition,

the decreasing of the absolute values of the skewness becomes slow from {X(i)}
n−10

i=1
and

{Y(i)}
n−10

i=1
since the normal observations do not distort the skewness. Therefore, we also

get that X(n),X(n−1), ...,X(n−9) and Y(n), Y(n−1), ..., Y(n−9) are outliers for X and Y using the
change of the skewness, respectively.
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Table B.1: Skewness of EL weights for 1D cases

Num of Removed elements Skewness of X Skewness of X
′

1 3.3377 0.0260
2 -2.8334 -0.0246
3 -2.3622 -0.0299
4 1.8709 0.0339
5 1.4601 -0.0299
6 1.0414 -0.0264
7 -0.6215 0.0345
8 -0.2670 -0.0279
9 -0.1231 0.0260
10 -0.0239 0.0271
11 -0.0280 -0.0212
12 -0.0251 0.0248

Table B.2: Skewness of EL weights for 2D cases

Num of Removed elements Skewness of Y Skewness of Y
′

1 -10.6779 0.0124
2 -5.9027 0.0460
3 4.5306 -0.015
4 6.7020 -0.0396
5 -0.3912 0.0222
6 7.0295 -0.0175
7 -4.8056 0.0221
8 -2.0485 0.0241
9 -1.3487 0.0254
10 -0.0062 0.0281
11 0.0168 0.0037
12 0.0003 0.0071

B.10 Plot of EL weights

The plot of the EL weights for the four simulated datasets is provided in this section.
The EL weights for normal observations are indicated by gray points, while the outliers
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are indicated by blue points. The red lines indicated 1/n, that is, 1/10000 for each case.
Figure B.1 and B.3 show the EL weights for datasets with outliers. Figure B.2 and B.4
show the EL weights for datasets without outliers. From the figures, we find that the
EL weights for normal observations are located around 1/10000, while the EL weights for
outliers are relatively far from 1/10000.

Figure B.1: The plot of EL weights of the 1D dataset with outliers

B.11 Additional simulations

In this section, we provide additional 1D and 2D simulation studies. Both 1D and 2D cases
include datasets with and without outliers. For the 1D datasets, the case without outliers
consists of 9990 and 10 outliers. The normal observations are drawn from a Gaussian
distribution with mean 15 and variance 3. The 10 outliers are generated from two different
distributions, where 5 outliers are drawn from a Gaussian distribution with mean 70 and
variance 5 and the other 5 outliers are drawn from a Gaussian distribution with mean
−10 and variance 2. Let us denote this 1D dataset as A. The case without outliers only
contains 10000 observations drawn from a Gaussian distribution with mean 25 and variance
3, denoted as A

′
.
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Figure B.2: The plot of EL weights of the 1D dataset without outliers

Figure B.3: The plot of EL weights of the 2D dataset with outliers
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Figure B.4: The plot of EL weights of the 2D dataset without outliers

The EL weights for A and A
′
are illustrated in Figure B.5 and B.6, respectively. Fig-

ure B.5 shows the EL weights for A, where the outliers and normal observations are indi-
cated by blue points and gray points, respectively. Figure B.6 shows the EL weights for
A
′
. Since A

′
does not contains outliers, all observations in A

′
are around 1/10000 indicated

by red lines. For both A and A
′
, normal observations are around 1/10000, while outliers

are relatively far from the 1/10000. Moreover, the outliers which are generated from two
different distributions deviate 1/10000 in different directions.

Table B.3 presents the p-value of our outliers identification test for A and A
′
. The

first column is the number of removed elements from the datasets. The second column
presents the p-value of our outliers identification test for {A(i)}

n−1

i=1
, ...,{A(i)}

n−12

i=1
, respec-

tively. The p-values of EL weights of {A(i)}
n−1

i=1
, ...,{A(i)}

n−9

i=1
are statistically significant,

implying the distribution of EL weights for them are not close to uniform distributions.
After removing A(n),A(n−1), ...,A(n−1), the distribution of the EL weights starts to close

to the uniform distribution. Thus, the p-values of EL weights of {A(i)}
n−10

i=1
, ...,{A(i)}

n−15

i=1
in Table B.3 are not significant. Therefore, our method gives that the outliers in A are
A(n),A(n−1), ...,A(n−9). The third column of Table B.3 shows the p-value from our outliers

identification test of EL weights for {A′
(i)
}
n−1

i=1
, ...,{A′

(i)
}
n−15

i=1
, which are all not significant
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Figure B.5: Plots of EL weights for additional 1D cases with outliers

Figure B.6: Plots of EL weights for additional 1D cases without outliers
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since A
′
does not contain outliers.

Table B.3: P-value of the outliers identification test for additional 1D cases

Num of Removed elements P-value for A P-value for A
′

1 0 1
2 0 0.9999
3 8.2659e-309 1
4 2.1776e-284 1
5 3.4658e-59 1
6 3.2365e-51 1
7 2.3321e-54 1
8 5.3877e-27 0.9999
9 6.7099e-19 1
10 0.9999 0.9999
11 0.9999 0.9999
12 1 1
13 1 1
14 1 1
15 1 1

The skewness and kurtosis of the EL weights for both A and A′ are presented in
Table B.4 and B.5, respectively. For the dataset A′, the skewness and kurtosis of EL weights
do not significantly change as removing observations from the datasets. The kurtosis of
EL weights for the dataset A is shown in the second column of Table B.5. We find that
the kurtosis of EL weights in the first 6 row is relatively large. Although the kurtosis value
in the 7th row to 9th row is close to those in the 10th row to 15th row, the difference of

kurtosis in 9th and the 10th is still relatively large. Starting from {A(i)}
n−10

i=1
, the difference

of kurtosis is about 0.01, while the difference between kurtosis of EL weights for {A(i)}
n−9

i=1

and for {A(i)}
n−10

i=1
is 0.169. It is one decimal point greater than 0.01. Similar results hold

for the skewness.

Next, we generate two 2D datasets, one case consists of 9990 normal observations drawn
from a bivariate Gaussian distribution with mean [30,25] and variance-covariance matrix
[1 0
0 1

] and 10 outliers are from two different distributions. Of the 10 outliers, 7 outliers

drawn from a bivariate Gaussian distribution with mean [60,70] and variance-covariance
matrix [5 0

0 5
] and 3 outliers drawn from a bivariate Gaussian distribution with mean [1,1]
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Table B.4: Skewness of EL weights for additional 1D cases

Num of Removed elements Skewness of A Skewness of A
′

1 1.2850 -0.0023
2 0.8622 0.0007
3 -0.4514 -0.0019
4 0.0846 -0.0034
5 -0.2660 0.0057
6 0.2053 0.0043
7 0.1506 0.0004
8 0.0999 0.0075
9 -0.0638 0.0124
10 0.0395 0.0105
11 0.0470 -0.0035
12 0.0436 0.0024
13 0.0496 0.0062
14 0.0438 0.0039
15 -0.0353 -0.0033

and variance-covariance matrix [1 0
0 1

]. We denote this 2D dataset by B. The other case
only contains 10000 observations drawn from the bivariate Gaussian distributions with
mean [30,25] and variance-covariance matrix [1 0

0 1
], denoted by B

′
.

The EL weights for B and B
′
are illustrated in Figure B.7 and B.8, respectively. Again,

the outliers are indicated by blue points, while normal observations are indicated by gray
points. For both B and B

′
, we find that the EL weights for normal observations are

around 1/10000 indicated by red lines. The EL weights of outliers deviate 1/10000 in
different directions since they come from two different distributions. The distance between
EL weights for normal observations and 1/10000 is much smaller than the distance between
EL weights for outliers and 1/10000.

Table B.6 shows that the p-value of our outliers identification test for {B(i)}
n−1

i=1
, ...,

{B(i)}
n−9

i=1
are statistically significant so that their distributions are not close to uniform

distributions. The p-values of the outliers identification test for B are not monotoni-
cally increasing as the number of removed elements increased in Table B.6, because EL
weights in B are contributed by two variables from different dimensions. However, the

p-values are still not significant starting from {B(i)}
n−10

i=1
. Thus, the outliers in B are
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Table B.5: Kurtosis of EL weights for additional 1D cases

Num of Removed elements Kurtosis of A Kurtosis of A
′

1 27.9327 3.0069
2 21.4092 2.9967
3 15.2061 2.9869
4 9.8338 2.9775
5 4.7951 2.9696
6 4.2682 .9619
7 3.8262 2.9534
8 3.4112 2.9494
9 3.2074 2.9416
10 3.0384 2.9350
11 3.0175 2.9288
12 3.0072 2.9223
13 2.9966 2.9160
14 2.9868 2.9097
15 2.9780 2.9038

B(n),B(n−1), ...,B(n−9). The third column of Table B.6 shows the p-value of the outliers

identification test for {B′
(i)
}
n−1

i=1
, ...,{B′

(i)
}
n−12

i=1
, which are all not significant since B

′
is out-

lier free.

Furthermore, the skewness and kurtosis of the EL weights for the both B and B′ are
presented in Table B.7 and B.8. We see that both skewness and kurtosis of EL weights
do not have significant change for the dataset B′. Again, the second column of Table B.7
and Table B.8 shows that the skewness and kurtosis of EL weights for the dataset B are
not monotonically decreasing as the number of removed elements increased, because EL
weights in the 2D case are contributed by two variables from different dimensions. However,

the change of skewness and kurtosis still becomes relatively small starting from {B(i)}
n−10

i=1
.

Thus, it also gives that the outliers are B(n),B(n−1), ...,B(n−9) in B.
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Figure B.7: Plots of EL weights for additional 2D cases with outliers

Figure B.8: Plots of EL weights for additional 2D cases without outliers

82



Table B.6: P-value of the outliers identification test for additional 2D cases

Num of Removed elements P-value for B P-value for B
′

1 0 0.9999
2 0 0.9999
3 0 0.9729
4 8.3614e-89 0.9999
5 0 0.9908
6 3.5455e-310 1
7 0 1
8 1.1956e-60 0.9999
9 3.9790e-109 0.9999
10 0.9961 0.9999
11 0.9810 0.9999
12 1 0.9999
13 0.9635 0.9999
14 0.9999 0.9985
15 0.9999 0.9999
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Table B.7: Skewness of EL weights for additional 2D cases

Num of Removed elements Skewness of B Skewness of B
′

1 -1.4004 0.0054
2 15.6738 -0.0041
3 10.8835 -0.024
4 -0.2982 -0.0003
5 -0.6475 -0.0197
6 1.1077 -0.0109
7 -8.7595 0.0207
8 -0.1627 -0.0162
9 0.2041 -0.0063
10 0.0258 0.0138
11 0.0197 -0.0279
12 0.0253 0.0102
13 0.0102 0.0261
14 0.0089 -0.0311
15 -0.0004 0.0383
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Table B.8: Kurtosis of EL weights for additional 2D cases

Num of Removed elements Kurtosis of B Kurtosis of B
′

1 570.1453 3.0069
2 632.2354 2.9797
3 569.8329 3.0892
4 5.8513 2.9857
5 324.4267 3.0646
6 21.7094 2.9485
7 273.0982 2.9304
8 4.4007 3.0478
9 5.2599 2.9863
10 2.9859 2.9824
11 3.01988 3.0906
12 3.0094 2.9678
13 2.9859 2.9820
14 2.9736 3.0400
15 2.9711 3.178
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Appendix C

Appendices of Chapter 3

C.1 The difference plots for well-separated clusters

In this section, Figure C.1, C.2 and C.2 illustrate the differences of sorted EL weights
for the three well-separated clusters discussed in the simulation section of Chapter 3,
respectively. The red lines in these three figures indicate the threshold D. From these
figures, we find that selecting threshold D is relatively easy for well-separated clusters.

Figure C.1 is for the three bi-variate Gaussian cluster case. The 2 large different values
at around the 250th and 600th index are obvious. Thus, we can the threshold can be easily
selected such that these two difference values are bigger than the threshold. Thus, it gives
the dataset containing 3 clusters.

Next, the differences of sorted EL weights for the 3D atom dataset is shown in Fig-
ure C.2. There is a huge difference value located at the 400th index. It suggests that the
dataset contains 2 clusters and the sample size of the two clusters is the same.

Then, Figure C.3 presents the differences of sorted EL weights for the mixture Von
Mises-Fisher case. The selection of the threshold D is also easy since there are 3 large
difference values. It implies the dataset has 4 clusters. However, the first huge difference
value is positioned next to the second one. Then, the first and second clusters are too small
to be the individual clusters. Thus, the elements in these two clusters might be treated as
outliers or observations from one small cluster.
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Figure C.1: The difference plot for the mixture Gaussian case

Figure C.2: The difference plot for the 3D atom dataset
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Figure C.3: The difference plot for the mixture Von Mises-Fisher case

C.2 Results for mixture Gaussian with different pa-

rameters

This appendix presents the result for the three bi-variate Gaussian cluster cases with mean
constraint by setting mean be the 3rd-quantile of the dataset. In Figure C.4, there are 3
huge difference values in the middle plot. Then, the dataset first be split into 4 clusters.
However, the sample size of the last cluster is small, so it is merged into another cluster.
Although the EL weights in Figure C.4 differ from those obtained using bootstrap mean,
the clustering results do not change.

C.3 The hierarchical clustering dendrogram

In this section, we show the dendrogram of hierarchical clustering with complete, average
and single linkage for the case that generated from two Von Mises-Fisher distributions
with four additional observations, respectively. The horizontal axis of the dendrogram
shows the clusters, while the vertical axis represents distance between the clusters. From
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Figure C.4: The plots for well-separated Mixture Gaussian cases

Figure C.5, C.6 and C.7, we see that it is relatively subjective to select the threshold to
customize the number of clusters in hierarchical clustering dendrogram.

In Figure C.5, it is reasonable to choose a threshold that splits the dataset into 2 or 4
clusters. In Figure C.6, the selection of threshold is more difficult since the tree structure
is tighter. The reasonable threshold could be the value that splits the dataset into 2 to 5
clusters. Then, Figure C.7 seems to suggest that the datasets should be grouped into 2
clusters.

C.4 Additional results for mixture Von Mises-Fisher

case using DBSCAN

Since DBSCAN is sensitive to the choice of two parameters: Eps andMinPts, this section
provides additional results for DBSCAN with a broader range of parameters to improve
reliability for claiming that DBSCAN does not perform well in the mixture Von Mises-
Fisher case. Now, the value of Eps takes from the set {0.01,0.05,0.1,0.2,0.3, ...,0.8,1,1.5}
and MinPts takes values from the set {2,5,10}.

The Eps indicates the distance that specifies the neighbourhoods, so that the observa-
tions within the distance Eps to each other are viewed as neighbours. Generally, a smaller
value of Eps gives a higher number of clusters and each cluster is tighter, while a larger
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Figure C.5: The dendrogram with complete linkage

Figure C.6: The dendrogram with average linkage
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Figure C.7: The dendrogram with single linkage

value of Eps potentially leads to a lower number of clusters. The results in Figure C.9 to
Figure C.11 align with this pattern pattern.

However, if the value of Eps is too small, we might have a smaller number of clusters.
This is because most observations do not have any neighbours when the value of Eps is
too small. Then, the setting of MinPts makes the isolated observations merged. Thus,
the number of clusters in the top panel of Figure C.8, which with Eps = 0.01, is less than
the number of clusters in the other figures. Further, if the value of Eps is too large, some
details might be lost, as shown in the bottom panel of Figure C.11. Additionally, the
value of MinPts should be bigger than the number of features and smaller than half of
the sample size.

From the figures in this section, we find that DBSCAN with these parameters all fail
to correctly group the clusters. The relatively better one from the additional results is
produced by DBSCAN with (1.5,2) or (1.5,5), as shown in the bottom panel of Fig-
ure C.11. They detect there are 2 clusters, while the 4 additional observations are detected
as elements from the outer cluster.
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Figure C.8: Additional results for mixture Von Mises-Fisher case using DBSCAN (1)

C.5 K-based methods for the iris dataset

This appendix presents the results using K-means and K-medoids with different K. From
Figure C.12, we can see that the results using K-means and K-medoids are highly dependent
on the selection of the number of clusters. When we have the correct number of clusters,
they can detect the Setosa groups. However, they give 6 misclassified observations for the
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Figure C.9: Additional results for mixture Von Mises-Fisher case using DBSCAN (2)

Virginia and Versicolor groups.
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Figure C.10: Additional results for mixture Von Mises-Fisher case using DBSCAN (3)

C.6 Hierarchical clustering for the iris dataset

Although hierarchical clustering methods do not require the number of clusters, they need
to set a threshold to customize the number of clusters. This section presents the results
using hierarchical clustering methods with different thresholds.
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Figure C.11: Additional results for mixture Von Mises-Fisher case using DBSCAN (4)

The selection of the threshold is based on the dendrogram. For hierarchical clustering
with complete linkage, any threshold that makes the number of clusters be 2 and 4 is
highly possible based on the structure of the dendrogram, as shown in Figure C.13. For
hierarchical clustering with average linkage, a threshold which causes the number of clusters
to equal 2 or 3 is more likely to be chosen, as shown in Figure C.14. Then, Figure C.15
provides the dendrogram of hierarchical clustering with single linkage, it seems highly
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Figure C.12: Results for the iris dataset using K-based methods

suggest the number of clusters should be 2 is most suitable. However, these selections are
subjective.

Here, we present the results using hierarchical clustering with complete, average and
single linkages when the number of clusters is 2,3,4,5, respectively. From Figure C.16, we
can see that hierarchical clustering with complete and single linkages is not suitable for
this dataset.
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From Figure C.16, we can see that hierarchical clustering with single linkages is not
suitable for this dataset. It can not correctly detect the Setosa group when the number
of clusters is 2. Also, when the threshold is selected to make the number of clusters be
3, it falls to split the Virginia and Versicolor groups. Then, hierarchical clustering with
complete linkages is better than with single linkages. But, it gives around 20 misclassified
observations from the Virginia and Versicolor groups. Hierarchical clustering with average
linkage performs best, which gives 3 misclassified observations from the Virginia and Ver-
sicolor groups if we correctly select the threshold. However, it is most possible to select a
threshold such that the number of clusters is 2 which mixes Versicolor and Setosa groups.

Figure C.13: The dendrogram for the iris dataset with complete linkage

C.7 DBSCAN for the iris dataset

Again, this appendix provides the results using DBSCAN with different parameters to
improve reliability to calim DBSCAN method does not perform well in this case, since
the results using DBSCAN is very sensitive to the value of parameters. Now, the value
of Eps takes from the set {0.02,0.05,0.1,0.2,0,4,0.6,0.8,1,1.2,1.5,2} and MinPts takes
values from the set {5,20}. Unlike K-based methods or hierarchical clustering, DBSCAN
automatically gives the number of clusters, but the performance of results in Figure C.17
and C.18 are all poor.
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Figure C.14: The dendrogram for the iris dataset with average linkage

Figure C.15: The dendrogram for the iris dataset with single linkage
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Figure C.16: Results for the iris dataset using hierarchal clustering methods
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Figure C.17: Results for the iris dataset using DBSCAN with MinPts = 5
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Figure C.18: Results for the iris dataset using DBSCAN with MinPts = 10
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