
A Representational Response
Analysis Framework For

Convolutional Neural Networks

by

Andrew Hryniowski

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Systems Design Engineering

Waterloo, Ontario, Canada, 2024

© Andrew Hryniowski 2024

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Neil Bruce
Associate Professor, School of Computer Science,
University of Guelph

Supervisor: Alexander Wong
Professor, Dept. of Systems Design Engineering,
University of Waterloo

Internal Member: John Zelek
Associate Professor, Dept. of Systems Design Engineering,
University of Waterloo

Internal Member: David Clausi
Professor, Dept. of Systems Design Engineering,
University of Waterloo

Internal-External Member: Fakhri Karray
Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of
Contributions included in the thesis. This is a true copy of the thesis, including any required
final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

The follow papers are used in this thesis. I was the primary co-author on all of these
works, including: research, design, implementation, experimentation, and writing.

A. Hryniowski, A. Wong “Inter-layer Information Similarity Assessment of Deep Neural
Networks Via Topological Similarity and Persistence Analysis of Data Neighbour Dynamics”,
New In ML, Conference on Neural Information Processing Systems (NeurIPS), 2020.

This paper is incorporated in Chapters 3 and 8 of this thesis.

A. Hryniowski, A. Wong. “Systematic Architectural Design of Scale Transformed Atten-
tion Condenser DNNs via Multi-Scale Class Representational Response Similarity Analysis”,
Fourth workshop on Neural Architecture Search, Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2023.

This paper is incorporated in Chapters 6 and 7 of this thesis.

iv

Abstract

Over the past decade, convolutional neural networks (CNNs) have become the defacto
machine learning model for image processing due to their inherent ability to capitalize on
modern data availability and computational resources. Much of a CNN’s capabilities come
from their modularity and flexibility in model design. As such, practitioners have been
able to successfully tackle applications not previously possible with other contemporary
methods. The downside to this flexibility is that it makes designing and improving upon a
CNN’s performance an arduous task.

Designing a CNN is not a straightforward process. Model architecture design, learning
strategies, and data selection and processing must all be precisely tuned for a researcher
to produce even a non-random performing model. Finding the correct balance to achieve
start-of-the-art can be its own challenge requiring months or years of effort. When building
a new model, researchers will rely on quantitative metrics to guide the development process.
Typically, these metrics revolve around model performance characteristic constraints (e.g.,
accuracy, recall, precision, robustness) and computational (e.g., number of parameters,
number of FLOPS), while the learned internal data processing behaviour of a CNN is
ignored.

Some research investigating the internal behaviour of CNNs has been proposed and
adopted by a niche group within the broader deep learning community. Because these
methods operate on extremely high dimensional latent embeddings (between one to three
orders of magnitude larger than the input data) they are computationally expensive to
compute. In addition, many of the most common methods do not share a common root
from which downstream metrics can be computed, thus making the use of multiple metrics
prohibitive.

In this work we propose a novel analytic framework that offers a broad range of
complementary metrics that can be used by a researcher to study the internal behaviour of
a CNN, and whose findings can be used to guide model performance improvements. We call
the proposed framework Representational Response Analysis (RRA). The RRA framework
is built around a common computational kNN based model of the latent embeddings of
a dataset at each layer in a CNN. Using the information contained within these kNNs,
we propose three complementary metrics that extract targeted information and provides
a researcher with the ability to investigate specific behaviours of a CNN across all of its
layers.

For this work we focus our attention on classification based CNNs and perform two
styles of experiments using the proposed RRA framework. The first set of experiments

v

revolve around better understanding RRA hyper-parameter selection and the impacts on
the downstream metrics with regards to observed characteristics of a CNN. From this first
set of experiments we determine the effects of adjusting specific RRA hyper-parameters,
and we propose general guidelines for selecting these hyper-parameters. The second set of
experiments investigates the impact of specific CNN design choices. To be more precise, we
use RRA to investigate the consequences on a CNN’s latent representation when training
with and without data augmentations, and to understand the latent embedding symmetries
across different pooled spatial resolutions. For each of these experiments RRA provides
novel insights into the internal workings of a CNN.

Using the insights from the pooled spatial resolution experiments we propose a novel
CNN attention-based building block that is specifically designed to take advantage of key
latent properties of a ResNet. We call the proposed building block the Scale Transformed
Attention Condenser (STAC) module. We demonstrate that the proposed STAC module
not only improves a model’s performance across a selection of model-dataset pairs, but that
it does so with an improved performance-to-computational-cost tradeoff when compared to
other CNN spatial attention-based modules of similar FLOPS or number of parameters.

vi

Acknowledgements

I would like to thank my advisor Dr. Alexander Wong for being my mentor, providing
me with guidance, and being patience with me as I completed my PhD part-time.

I would like to thank both Prof. John Zelek, Prof. David Clausi, and Prof. Fakhri
Karray for serving on my PhD examining committee, and Prof. Neil Bruce for serving as
my external examiner.

I would to thank DarwinAI for providing me with some of the computational resources
I used to perform experiments in this work, and for allowing me flexibility in my working
hours when required.

Finally, I would like to thank my loving parents and friends who have always given me
the emotional support I have needed.

vii

Table of Contents

Examining Committee Membership ii

Author’s Declaration iii

Statement of Contributions iv

Abstract v

Acknowledgements vii

List of Figures xi

List of Tables xiii

List of Abbreviations xiv

List of Symbols xv

1 Introductions 1

1.1 Motivation . 1

1.2 CNN Analytic Metrics . 2

1.3 Challenges and Objectives . 3

1.4 Representational Response Analysis Framework 5

viii

1.5 Contributions . 6

1.6 Thesis Structure . 7

2 Background 10

2.1 Neural Networks . 10

2.2 Feedforward Convolutional Neural Networks 11

2.3 CNN Design Methods . 11

2.4 General CNN Measures . 16

3 Representational Response Analysis 22

3.1 RRA Framework Scope . 22

3.2 RRA Framework . 24

3.3 Considerations for Approximating a Manifold 30

3.4 Summary . 31

4 Applying Representational Response Analysis 33

4.1 Experimental Setup and Results . 34

4.2 Intrinsic Dimensionality . 36

4.3 Nearest Neighbour Class Similarity . 38

4.4 Intra-Layer Nearest Neighbour Layer Similarity 39

4.5 Inter-Layer Nearest Neighbour Layer Similarity 42

4.6 Discussion . 45

5 The Effects of the Number of Sample and Number of Neighbours on the
Observed Representational Response 48

5.1 Effects on Intrinsic Dimensionality . 49

5.2 Effects on Nearest Neighbour Class Similarity 53

5.3 Effects on Nearest Neighbour Layer Similarity 58

5.4 Discussion . 63

ix

6 The Effects of Feature Dimensionality on the Observed Representational
Response 66

6.1 Dimensionality Reduction . 67

6.2 Multi Scale Representational Response Analysis 67

6.3 MS-RRA and ID . 68

6.4 MS-RRA and NNCS . 72

6.5 MS-RRA and Intra-NNLS . 76

6.6 MS-RRA and Inter-NNLS . 79

6.7 Discussion . 82

7 Spatial Transformed Attention Condensers 85

7.1 Spatial Transformed Attention Condenser (STAC) Modules 86

7.2 Results . 87

7.3 Ablation Results . 90

7.4 Discussion . 94

8 Conclusions and Future Directions 96

8.1 Summary of Contributions . 96

8.2 Limitations . 98

8.3 Future Work . 99

References 102

x

List of Figures

1.1 Hierarchy of analytic methods . 3

1.2 A framework for CNN representational response analysis 9

2.1 Dropout example . 12

2.2 Depthwise convolution example . 13

2.3 Group lasso example . 15

2.4 Unsupervised data labelling . 16

2.5 Loss surface comparison . 18

3.1 Toy example of the TwoNN ID esitmator 26

3.2 Toy example of the nearest neighbour layer similarity metric 27

3.3 Toy example of class cluster distance’s effect on class similarity 29

3.4 NN generation method comparison . 30

3.5 Neighbour graph directionality comparison 31

4.1 ID and NNCS of a ResNet20 CIFAR10 model 36

4.2 NNLS of a ResNet20 CIFAR10 model . 40

4.3 Inter-NNLS comparison . 43

4.4 Comparing the diagonals of an inter-NNLS matrices 47

5.1 TwoNN neighbour ratio distributions vs. number of dataset samples 50

5.2 ID vs. number of dataset samples . 51

xi

5.3 CIFAR10 - NNCS vs. number of kNN neighbours 55

5.4 ImagenNet64x64-50 - NNCS vs. number of kNN neighbours 56

5.5 Intra-NNLS matrices . 59

5.6 The JSD between CIFAR10 intra-NNLS matrics and effects on NDR 61

5.7 The JSD between ImageNet64x64-50 intra-NNLS matrices and effects on NDR 62

6.1 ID curves for ResNet20-CIFAR10 . 69

6.2 ID curves for ResNet20 ImageNet64x64-50 71

6.3 NNCS curves for ResNet20 CIFAR10 . 73

6.4 NNCS curves for ResNet20 ImageNet64x64-50 75

6.5 Multi-Scale Intra-NNLS . 77

6.6 Multi-Scale Inter-NNLS . 80

7.1 A performance comparison of CNN attention mechanisms 86

7.2 An illustration of a Scaled Transformed Attention Condenser (STAC) Module. 87

7.3 Examples of STAC module placement. 89

xii

List of Tables

1.1 Qualitative high level tradeoffs between analytic metrics 4

3.1 Computational runtime of the RRA framework 32

4.1 ResNet20-CIFAR10 Layer Feature Map Size 34

4.2 ResNet20-CIFAR10 Training Augmentations 34

4.3 ResNet20-CIFAR10 Training Results . 35

4.4 ResNet20-CIFAR10 Augmentation Ablation Results 35

5.1 ResNet20 Training Results . 49

7.1 Model Comparison - Top-1 Accuracy, FLOPS, Number of Parameters . . . 88

7.2 STAC Kernel Size - ResNet20 . 91

7.3 STAC Stage Location - ResNet20 . 92

7.4 STAC Condenser Size - ResNet20 . 93

7.5 STAC Optimal Intervention - ResNet20 . 94

7.6 STAC Parameterization Selection Strategies - ResNet20 94

xiii

List of Abbreviations

CCA Canonical Correlation Analysis

CKA Centered Kernel Alignment

CNN Convolutional Neural Network

HSIC Hilbert-Schmidt Independence Criterion

ID Intrinsic Dimensionality

LP Linear Probing

LS Layer Similarity

MS-RRA Multi-Scale Representational Response Analysis

NDR Neighbour Density Ratio

NNLS Nearest Neighbour Layer Similarity

RR Representational Response

RRA Representational Response Analysis

STAC Scale Transformed Attention Condenser

TDA Topological Data Analysis

xiv

List of Symbols

E A set of relationships between contiguous functions in a CNN

G A CNN

H A k-nearest neighbour graph

K A set of ordered sets of neighbours in a k-nearest neighbour graph

M A manifold

Q A nearest neighbour class similarity function

R A distance function used in k-nearest neighbour graph

V A set of functions within a CNN

W A set of all weights that parameterize the functions within a CNN

X A set of data

Y A set of output feature vectors produced by some function within a CNN

d The dimensionality of a vector

e A relationships between two contiguous functions in a CNN

n The number of samples in a set of data

v A function within a CNN

w A set of weights that parameterize a single function within a CNN

x A single sample of data

y A feature vector produced by some function within a CNN for a single data sample

xv

Chapter 1

Introductions

Convolutional Neural Networks (CNNs) are an important tool for solving image-based
challenges for modern machine learning practitioners. Inspired by the human visual system,
modern CNNs started with solving problems in handwritten digit recognition [50] and have
since demonstrated incredible results across several applications, including: distinguishing
between 1000 classes [14], localizing objects within an image [67], and synthesizing new
images [28]. The spread of CNNs can be attributed to multiple factors, including: the
wide spread availability of high quality images [14], an increase in CNN model sizes [85],
advanced CNN model architectures [78], and improved learning procedures [75]; all of
which are downstream consequences of cheap computational resources. Despite these recent
advances, CNNs are in principle large computational black boxes [56], making it prohibitive
for a practitioner to compare CNNs beyond basic performance metrics, improve a CNN’s
performance, or adapt existing methods to new problem spaces.

1.1 Motivation

Designing a new CNN or improving upon a one can be an intensive task involving a
wealth of specialized knowledge, skill in hypothesis generation, and a time intensive cycle
of experimental trial and error. For a given problem, determining which components or
processes should be modified, removed, or added generally comes down to a practitioner’s
intuition and quantitative experimentation measured by performance-based metrics (e.g.,
accuracy, recall, precision). However, the use of other analytic metrics that assess intrinsic
qualities of a CNN (e.g., explainability [54,57,68], statistical [49,65], adversarial robustness
metrics [29, 54, 60], 2D/3D latent feature projections [58, 76]) are infrequently employed,

1

reported on, or used in a substantive manner. The modern CNN design life cycle contains
no ubiquitous measure that plays an important role in the CNN design process. No intrinsic
analytic metric has been found to be widely applicable, computationally tractable, and low
effort to apply. Methods that fill this gap can propel the field of deep learning forward by
streamlining the CNN development life cycle.

1.2 CNN Analytic Metrics

The choice of metrics used for evaluation directly affects the nature of potential insights.
In this work we put forward a conceptual three tier nested hierarchy of CNN evaluation
methods.

1. Zeroth Order: Metrics which rely on the direct output of a model. These metrics
provide targeted knowledge about a model’s output and are the most common form
of analysis. Output of CNN classification models can include logits, a probability
distribution, or an energy map. Example metrics derived using a CNN’s output
include accuracy, recall, precision, and training loss.

2. First Order: Metrics which directly use the internal latent representations of
data produced by a CNN. For CNNs the latent representations can be the input
or output of a layer in the CNN, or even a representation from within a specific
layer of a CNN. These metrics provide knowledge about latent distributions and a
mechanism for comparing them (often focusing on similarity metrics). Examples
include statistical measures such as Canonical Correlation Analysis (CCA) [34],
Hilbert-Schmidt Independence Criterion (HSIC) [32], and Centered Kernel Alignment
(CKA) [49].

3. Second Order: Metrics which build models on top of a CNN’s latent representations,
and then extract meaningful insights. These metrics typically use models to distil
information present in first order methods but provide a more convenient and targeted
set of tools for analyzing a CNN. Examples include Intrinsic Dimensionality (ID) [3],
linear probing [2], Topological Data Analysis (TDA) [7], and adversarial detection [60].
Most of the novel methods proposed in this work fall into this category.

Figure 1.1 depiction of the hierarchy of methods and where the proposed common analytic
model (highlighted in red) is situated.

2

Figure 1.1: A depiction of the nested hierarchy analytic methods used on CNNs. Each
order contains representative methods. Novel research in this work falls in the second order
category.

1.3 Challenges and Objectives

The three categories of metrics each come with their own set of benefits and challenges.
Zeroth order metrics are great iterative tools, often require only a single forward pass of a
CNN (per sample), and are generally limited to operating on feature vectors smaller than a
few thousand dimensions. These benefits require that CNNs be treated as black box entities.
First order methods do away with the black box constraint by directly using a CNN’s internal
latent representations which allows for the direct analysis of specific sections, blocks, layers,
or even functions within any given CNN. Operating directly on these representations can
require orders of magnitude more system memory and computational overhead. Because of
the added development and compute time required, anything beyond zeroth order methods
are often overlooked, or are used in a limited capacity (e.g., only operating on a few select
layer outputs). Another difficulty using first order methods is that they are operating on

3

Table 1.1: Qualitative high level tradeoffs between analytic metrics

Metric Order Initial Cost Repeat Cost Is CNN Black Box Interpretability

Zeroth Low Low Yes High
First High High No Medium
Second High Low No High

raw CNN features making the metrics difficult to interpret. Second order methods extend
first order methods by imposing a model on top of the raw CNN latent representations. The
modelling process moves much of the computational cost incurred by first order methods to
a one-time cost of modelling the latent representations. Using the common latent model
then allows for derivative models to be applied in a tractable manner. The tradeoffs between
these methods are qualitatively summarized in Table 1.1.

Each category of metric has its own unique place in the development of CNNs, but
knowing in which situation to use them presents its own challenge. Zeroth order metrics
are great for rapid iteration, first order metrics are a direct reflection of a CNN’s latent
representation, and second order metrics allow for more targeted and interpretable aspects
of a CNN’s latent representation to be distilled. However, each of these categories contains
multiple metrics with their own focus and that may require a different set of calculations to
be computed.

In general, there is no one metric that will suffice for building or improving a classification
CNN. A model’s designer will have to choose from a selection of approaches spanning
the different categories of metrics. Though, in practice modern classification CNN’s are
developed with little more in mind than classification accuracy. The overarching goal of
this work is to propose a set of complementary analytic metrics (comprising of second order
metrics) that are feasible to use during CNN model development, and which demonstrate
the ability to provide actionable insights for CNN model improvement. More concretely,
the core objectives of this work are:

• To propose a unified model of a CNN’s latent representations from which analytic
metrics (both existing and novel) can be efficiently computed,

• To perform a multi-modal analysis to see how these metrics are complementary, and

• To generate novel CNN structures using outcomes from the proposed analytic methods.

This work achieves these objectives by formalizing an analytic framework called Repre-
sentational Response Analysis (RRA) (Chapter 1.4). The proposed framework utilizes a

4

kNN to model each data manifold within a given CNN (Chapter 3). Using the common
model we develop a series of novel metrics for measuring specific aspects of a CNN’s
latent representations (Chapters 3, 6). Using insights from our RRA analysis we propose
an improved ResNet attention module and demonstrate that it generalizes on different
classification datasets and ResNet style architectures (Chapter 7).

1.4 Representational Response Analysis Framework

All three orders of CNN analysis rely on extracting information from the latent representa-
tions of a dataset (zeroth order trivially so). In this section we formally lay out a framework
from which most other CNN analysis can be derived; we call this framework RRA. How
other forms of analysis are derived from the RRA framework is discussed throughout this
work.

Let xi ∈ X be a set of input samples of shape n× d, and let G = (V,E,W), represent
a CNN, where V = {v} is a set of sub-functions (e.g., layers), E = {e} is a set of edges
that represent the sub-function’s i/o relationships, and W = {w} is a set of weights that
parameterize the sub-functions. Let the output of some sub-function vv for the xi sample
be defined as yvi = vv(xi;Gv), where Gv ⊆ G contains all required sub-functions, edges,
and weights to calculate yvi. Let the output of a given function Yv = {yv}x∈X .

Data passed through a CNN G is mapped from one space to another; at each layer
salient information is preserved and combined to form new representations, while irrelevant
information is discarded. The relationship between samples in each layer forms an intrinsic
structure known as a manifold. In this work we study the structure of individual manifolds,
how manifolds between layers in a CNN can change, and the relationship between manifolds
of different CNNs.

For a given CNN G and data samples X, let the Representational Response (RR) of a
CNN G acting on a set of data X be defined as the set of manifolds {M v}v∈V generated by
G at each layer (or sub-layer) as data samples are propagated throughout G (including the
base manifold of the raw dataset X).

RRG
X = MX ∪ {Mv}v∈V (1.1)

Throughout this work, when discussing the RR of a CNN, assume it is about the CNN
operating on some dataset unless explicitly stated otherwise. For notational convenience
we assign the input manifold MX = M0 and all other manifolds to some index i > 0.

RRG
X = {Mi}0≤i<|V | (1.2)

5

As previously noted, aspects of a RRG
X have been studied in a piecemeal manner through

metrics such as CKA, ID, etc. The contents of this work furthers the study of the RR of
a CNN through a systematic approach using the proposed RRA framework, an analytic
model of RRG

X, and a collection of novel metrics which extract information from RRG
X.

From a practical perspective RRG
X is a set of latent space models that approximate the

underlying data manifold’s interactive with a CNN. We approximated each layer’s manifold
using the latent embeddings of a dataset at that layer. Throughout this work we model
each layer’s manifold using kNNs trained on the dataset’s latent embeddings at each layer.
Then, we measure aspects of the set of kNNs using three core metrics. See Figure 1.2 for a
generalized depiction of the modelling approach used in this work.

Using preexisting terminology, the closest phrase to describe a CNN’s representational
response would be something like “a dataset’s latent embeddings within a CNN”. While
this is an adequate description in many cases, it falls short in a few areas:

1. The phrase doesn’t explicitly include the input data embedding (e.g., raw images),

2. The term “latent embedding” is often used to refer to the final feature embeddings of
a CNN, and

3. There is no implied focus on studying the interrelations between progressively deeper
latent embeddings.

Throughout this work we use the term latent embeddings to describe specific instantiations
of feature vectors produced at any given layer in a CNN by passing a data sample (or a set
of data samples) through a CNN. The term representational response is used to specifically
imply the study of how a collection of latent embedding relates to one another.

1.5 Contributions

The following are the key contributions of this work:

1. Representational Response Analysis (RRA)(Chapter 3, 5) A novel framework
for analyzing CNNs. The proposed RRA framework utilizes a manifold modelling
technique that enables a set of multi-modal complementary analytic methods to be
efficiently calculated and used to study targeted aspects of the internal workings
of a CNN. To the best of the author’s knowledge this is the first deep learning

6

analytic framework to explicitly consider an efficient approach for using multiple
complementary metrics in a computationally efficient manner. The three metrics are:
1) Intrinsic Dimenionality (ID), 2) Nearest Neighbour Class Similarity (NNCS), and
3) Nearest Neighbour Layer Similarity (NNLS). NNCS and NNLS are novel methods
proposed in this work.

2. RRA on the Effects of Applying Augmentation During Training (Chapter 4)
We apply RRA to compare CNNs trained with and without augmentations to demon-
strate the utility of RRA and to better understand the impacts of augmentation on
the latent representation structure of CNNs. By using RRA we are able to detect
novel phenomena within a CNN’s latent structure, show how this structure compares
between training and validation data partitions, and how the novel phenomena changes
when augmentations are either applied or withheld during training.

3. Multi-Scale Representational Response Analysis (MS-RRA): (Chapter 6)
A novel type of representational response analysis that identifies the importance of
features at varying spatial scales across the layers of a CNN. Built on top of RRA,
MS-RRA compares the latent manifolds of a dataset at different spatial scales, and
investigates how the similarity of the manifolds changes as the spatial resolution of
each manifold is altered.

4. Scale Transformed Attention Condenser (STAC): (Chapter 7) Using insights
gained from MS-RRA we propose STAC modules, a novel instantiation of attention
condenser modules which are designed to emphasize the spatial similarity found in
latent embeddings. When a STAC module is used within a CNN it provides improved
model performance while requiring fewer parameters and FLOPS compared to existing
attention mechanisms.

1.6 Thesis Structure

Chapter 2 presents a formulation of CNNs and provides a literature review of common deep
learning design methodologies used to evaluate CNNs. Chapter 3 formulates the proposed
RRA framework and derives three complementary metrics from the RRA framework; each
of which are each designed to study targeted aspects of a CNN’s RR. Chapter 4 uses RRA
to compare CNNs trained with and without augmentation during the training process.
Chapter 5 investigates how the number of samples and number of neighbours per sample
used to construct the underlying nearest neighbour graph affects observations from the RR

7

metrics. Chapter 6 proposes multi-scale representational response analysis (MS-RRA), an
approach which applies RRA across multiple spatial scales. Chapter 7 proposes a novel
CNN module derived from insights from MS-RRA. Chapter 8 ties together the observations
from this work, draws conclusions, and suggests future directions for this research.

8

Figure 1.2: An overview of the framework used in this work to analyze the RR of a CNN.
The following steps are performed every time an aspect of the CNN is changed: A) All
samples in a dataset X are run through a CNN. At each layer (or at each operation in
each layer, depending on the level of analysis) the feature maps for each sample in X are
recorded. B) All feature maps at each layer are vectorized. C) The set of vectorized feature
maps for each layer are used to create a model of the layer’s latent manifold. D) The
model of each manifold is used to investigate properties of a CNN in one of three categories
of analysis: 1) aspects of an individual representation manifold, 2) differences between
manifolds within a single CNN, and 3) differences between manifolds of different CNN’s.

9

Chapter 2

Background

2.1 Neural Networks

Neural networks are a type of machine learning model designed to learn a mapping function
f of information from one domain x ∈ X to another domain y ∈ Y. The mapping function
can be decomposed into a graph of functions G = (V,E,W). The process for selecting V ,
E, and W depends on the application. It is standard for V and E to be hand designed and
refined through trial and error by a deep learning practitioner, and for the weights W to be
trained using a gradient descent-based algorithm [51]. The objective for both procedures is
described by

V,E,W = arg min
V,E,W

∑
i

L(yi, ŷi) (2.1)

where L(·) is some error metric for the task at hand (e.g., percent error, cross-entropy,
mean squared error, number of connections). The specific form of training W depends on
the application. Applications fall into one or more of the following categories: i) supervised
learning, ii) unsupervised learning, and iii) reinforcement learning. Supervised learning
applications are when each input in a training set xi has a known output yi. Unsupervised
learning is when the outputs for a training set are unknown. Reinforcement learning is
when the objective being learnt is unknown or too hard to mathematically describe.

The type of neural network is determined by the sub-functions V and their relations to
one another as described by E. Different types of neural networks include feedforward [51],
convolutional [52], and recurrent [42]. In this work we only consider primarily supervised
feedforward convolutional neural networks (CNNs).

10

2.2 Feedforward Convolutional Neural Networks

The class of operations within G for a simple feedforward CNN are a combination of
atomic operations, including convolution, non-linear functions, pooling, batchnorms [44],
matrix multipliers, and a softmax for classification models. Most of these operations appear
multiple times within G for most CNNs. The operations within G are connected via
feedforward edges E (i.e., no subset of edges Ei ⊆ E can contain a cycle). The tuple (V,E)
forms a poset (partial ordered set) of operations. The poset (V,E) often contains repeated
structures of atomic operations that only differ in their parameterization (i.e., the weights
associated with each operation). A common structure within a CNN is the sequential chain
of operations

(2.2)

Such structures are called layers of the CNN. Like atomic operations, layers can also exist
within other more complex layers. Below is an example of a ResNet [39] layer (the defacto
layer design for most modern image classification CNNs)

(2.3)

As the name denotes, convolution is a central part of a CNN’s graph G. Convolutional
operations are used in neural networks because convolution exploits translation invariance; a
property common in many forms of data, (e.g., natural images, audio signals) thus allowing
an efficient encoding of local feature detectors (i.e., weight sharing). In addition, stacking
a series of convolutional operations allows for an effective means of detecting hierarchical
features.

2.3 CNN Design Methods

2.3.1 Standard Design Methods

Over time the types of layers used within CNNs has grown to provide a diverse set for a
practitioner to choose from. Originally, CNNs weren’t very deep compared to contemporary
designs and took a long time to train, if they trained at all. A large part of the problem was
that back propagation (backprop) updates parameters near the input, which can have a
large impact on downstream layers. Ioffe et al. [44] proposed the batchnorm layer design to
alleviate this issue by normalizing the data distribution periodically throughout a network.

11

(a) Dropout during training (b) Dropout during inference

Figure 2.1: An illustration of dropout during (a) training and (b) inference. In this example the
drop rate is 0.5. During training at every update, a random 50% of all connections are set to 0, as
depicted by the dotted connections. During inference all connections are scaled by 1

2 to keep the
average activation the same.

Perhaps the greatest paradigm shift in CNN design was a result of the skip connection
(also known as a residual connection) design pattern as introduced by He et al. [39]. If a
layer within a CNN is defined as function H(x), then a skip connection layer is defined as
F(x) = H(x) + x. Adding the input x to the output of a layer H(x) allows the information
within x to propagate deeper within a CNN. A common use of the skip connection design
is shown in Equation 2.3.

A common thread of the above approaches is their use of a regularization technique
proposed by Srivastava et al. [72] called dropout. Dropout attempts to simulate an ensemble
of models within a single model by randomly setting a percentage of activations in a CNN to
zero during training. During inference the activations are scaled by the drop percentage to
keep the average activation strength consistent. Dropout has been shown to be an effective
method for increasing the generalization of a single model at the cost of training time. An
example of dropout is shown in Figure 2.1.

The standard form of convolution in most CNNs still follows the same design as
presented by LeCun et al. [52] over 20 years ago. Some attempts have been made to
replace this design in niche applications. For domains where computational limitations
are important it is common to decompose the convolution into smaller components. One
way to decompose a convolutional operation is to spatially factor convolutional kernels
into row and column vectors as proposed by Szegedy et al. [74]. Another method for
decomposing convolutional operations is decomposing along the channel dimension using
depthwise separable convolutions as proposed by Chollet [11]. Figure 2.2 shows an example
of decomposing convolution.

12

Figure 2.2: An example of a depthwise separable convolution layer. In this example there are
two filters, one for spatial convolution of shape (3, 3, 6), and one for inter-channel combination of
shape (6, 4). The channel multiplier dm = 2 means that each input channel is convolved with 2
filters. A normal convolution layer with the same input-output channel size would have a single
filter of shape (3, 3, 6, 4).

2.3.2 Architectural Design Methods

Designing a CNN can be a time-consuming process due to the number of possible configu-
rations and the time required to train each configuration. One must not only decide on
the type of architecture (e.g., CNNs, recurrent neural networks (RNNs) [42], etc.), but the
detailed architecture design as well(e.g., number of layers, the type of layers to use, number
of neurons per layer, type of activation function to use, etc.). To tackle the bottleneck in
network architecture design, recent research efforts have focused on automating the search
for optimal network architectures.

There are two general types of automated design approaches for macro-architecture
search, a bottom-up approach where one continually adds new operations to a network,
and a top-down approach where one starts with an over parameterized model and removes
redundant operations. The bottom-up approach can be further divided into evolutionary
approaches and reinforcement learning approaches.

Evolutionary approaches follow standard evolutionary based algorithms in which vari-
ations on a base architecture are trained, each architecture is measured using a fitness
function, and superior architectures are bred with random mutation [73]. The performance
of evolutionary methods is heavily tied to the population size, resulting in extreme com-
putational requirements for larger network architectures. Reinforcement approaches, on
the other hand, do not directly learn the architecture for a target task, but instead learn a
generating network which produces other networks for the target task [87]. Overall, both
approaches are prohibitive in practice for practitioners that do not have access to computing
clusters.

13

Top-down approaches use a seed model architecture as a constraint from which to search
for new architectures. The most common top-down approaches use an over parameterized
model and selectively remove channels. Wen et al. [80] added a regularization constraint,
called group lasso, during training that slowly decreases the magnitude of multiple groups of
kernels. Eventually some kernels are close to zero and can be pruned without consequence.
An example of group lasso is shown in Figure 2.3. Shafiee et al. [70] takes an evolutionary
approach in which every network in a population samples a subset of connections from the
seed network, trains to convergence, and inter-breeds. At every iteration the model size of
each network in the population progressively decreases.

Instead of only looking at smaller models Gordon et al. [31] uses an approach that
iteratively shrinks and grows a model. Wong et al. [83] proposes a method of fusing
successive layers in an architecture instead of relying on pruning to remove a layer from a
network thereby allowing for an expedited model reduction and allowing new layer modules
to be used.

Unlike automated macro-architecture design, automated micro-architecture design
methodologies have not received the same amount of research focus. A recent approach
to neuron design is to use an intelligent brute force search scheme in which designs are
iteratively tested and improved upon [66]. Other research in this area has focused on
extending classic neuron designs by parameterizing the neurons with scaling parameters [38],
or by using ensemble methods [35]. These methods are either static or restricted to limited
change. To expand the scope of possible learnable neuron designs, piecewise activation
functions have also been explored [1, 46,69]. A common theme to the learnable activation
functions is that they combine piecewise coefficients with a combination of non-linear
elements.

Often information within a data sample is irrelevant for the task at hand. Attention based
models use a specific style of building block that allows a model to more easily focus on a
specific subset of features for any given sample. Squeeze and excitation network (SENet) [43]
based designs introduce an attention module that allows an easy method of highlighting
specific channels of a feature maps using global feature context. With the use of minimal
additional computation, the SENet module improves network performance on the ImageNet
dataset [14] on all base architectures it is applied too. Several derivative methods, including
Bottleneck Attention Module (BAM) [61] and Spatial and Channel-wise CNNs (SCA-
CNNs), expand on the SENet module by adding a separate spatial attention mechanism in
a parallel and sequential manner, respectively. Attention Condensers (ACs) [82] unify these
approaches in a common framework that combines channel attention, and spatial attention
into a single module design. The specific parameterization of AC modules is determined
using Generative Synthesis [84] based design exploration.

14

Figure 2.3: An example of group lasso regularization applied to a single layer in a CNN. The
group in this example contains all weights used to calculate a single output channel. Each purple
rectangular prism is a group. During training each group is sparsified because of having Rg applied
to it. After training, groups that are sufficiently sparsified are pruned.

2.3.3 Data Design Methodologies

Without enough data, or without data of sufficient quality, a machine learning model will fail
to learn the underlying intrinsic distribution. Techniques like data augmentation implicitly
integrates different types of invariances directly into a CNN’s model while providing more
data points for a model to learn from. For images, common data augmentation techniques
include flipping vertically or horizontally, scaling, and randomly cutting out sections from
an image [15].

Data augmentation are commonly combined in a stochastic manner. However, it does
not always make sense to use each type of augmentation equally across the entire dataset.
To alleviate these issues, Cubuk et al. [13] proposed a method of dynamically learning
desirable augmentations on a per sample basis. Such approaches are still limited to hand
designed types of augmentation and significantly increase computational costs during
training. Instead of augmenting existing images, many attempts have been made to learn a
generative CNN from which one could sample images that follow the same distribution as
the base dataset [27].

Augmentation does not only have to be performed on the input data, but can also
be performed on the output data. Hinton et al. [40] uses a technique called knowledge
distillation in which imperfect label predictions of a trained teacher model are used to
train another smaller student model. The imperfect labels are not as sparse as the original
one-hot labels, but also capture inter-class dependencies. Lin et al. [55] extended this work
by demonstrating that knowledge distillation can also be used to augment the input data
directly. That is, a pre-trained model is used to remove unneeded information from input
samples, thereby allowing a student model to learn with improved performance.

15

Figure 2.4: An example of using an ensemble of data augmentations to predict an unlabelled
sample’s true label.

Normally a training dataset is an incomplete representation of the world being modelled; a
large part of data augmentation is focused on filling in the missing holes. Often augmentation
alone is insufficient, and obtaining more labelled data is required. Using ideas from label
smoothing and data augmentation Berthelot et al. [6] created a method in which one can
label unlabelled data in a semi-supervised manner. By combining multiple augmentations of
the same unlabelled sample one can estimate the true underlying label. Figure 2.4 depicts
this approach.

The order in which data is presented to a model during training can greatly impact
a model’s final performance. Bengio et al. [5] demonstrated that it can be beneficial to
gradually increase the difficulty of samples throughout training using curriculum learning.
In a similar approach, Jiang et al. [45] uses the loss of a sample as a proxy for difficulty
and only performs backprop using difficult samples.

2.4 General CNN Measures

2.4.1 Performance and Heuristic Based Measures

CNNs are generally analyzed with respect to some performance measure. For image
classification, typical measures include classification accuracy, precision, recall, F1 score,
and Receiver Operating Characteristic (ROC) curves. Such measures are not useful for
training during gradient descent as they are not sample independent measures. Loss
measures are used to provide a direct proxy method of measuring a model’s performance

16

on a single sample. By independently optimizing on a per-sample basis, one indirectly
optimizing for a performance measure.

Performance measures are the optimal goal to maximize when designing a model.
Unfortunately, they do not generally incorporate aspects of model design. Some heuristic
based measures expand the scope of model performance by explicitly including model
architecture descriptors, including number of FLOPS, number of parameters, and number of
layers in a model. Such measures are easy to calculate but provide limited (and sometimes
counterproductive) guidance for improving a model’s performance. For example, Nakkiran
et al. [59] demonstrated uniformly increasing the number of parameters can both increase
and decrease a model’s performance. To address the issues associated with simplistic
measures, Wong [81] proposed a method of combining several measures to determine the
tradeoff between different model architectures from a more holistic perspective. These
heuristic based measures allow considerations beyond mere decision performance, but are
only capable of providing guidance through trial and error.

2.4.2 Loss Surface

An important design consideration of a CNN is the ease with which it can be trained
in a tractable manner. A network’s loss and the loss’s behavior throughout training are
important contributing factors to a network’s trainability. To better understand these
aspects, it is often useful for a practitioner to study the loss surface of a neural network.
The loss surface is a scalar field where each point describes the performance of a CNN
given a specific model parameterization. The loss surface is of particular interest to CNN
practitioners because it is the space in which a learning algorithm must navigate during
the training process.

Ideally, the loss surface of a neural network would be convex, thus ensuring a global
optimum can be found [26]. Unfortunately, convex loss surfaces are only guaranteed for
linear neural networks [26]. For non-linear neural networks (including CNNs) the loss
surface is generally highly non-convex [41]. Given the complexity and infinite size of a loss
surface researchers have focused on studying a loss surface’s local features, including flat
minima and sharp minima. Hochreiter et al. [41] defines the degree of local flatness as the
area of an approximately uniform region around a local minimum below a given threshold
in the loss surface. The concept of flatness has been used to describe many phenomena. For
example, Hochreiter et al. [41] observed that networks that occupy flat regions are shown to
correlate with better generalization behavior. Another now well-known example by Kesker
et al. [47] is that larger batch sizes result in poorer performing models and demonstrated

17

(a) Flat Loss Surface (b) Sharp Loss Surface

Figure 2.5: An example of two general types of loss surfaces.

that larger batch sizes also cause models to converge to sharp minima. He et al. [36]
further demonstrated that the convergence to sharp minima is in fact a result of the batch
size to learning rate ratio (for specific model designs).

Using loss landscape visualization, one can visually confirm the effect of various compo-
nents on the loss surface. Goodfellow et al. [30] take a visualization approach by uniformly
sampling the loss surface between an randomly initialized model and a model after training.
They experimentally demonstrated that there exists a smooth and monotonically decreasing
path between these two points in the loss surface. Furthermore, it is observed that the loss
surface directly between two samples can contain parameter solutions with high loss. Li
et al. [53] extended the work of Goodfellow et al. [30] by using normalized basis vectors
to project the loss landscape to a 2D surface. Through visualization they demonstrated
that both skip connections and small batch sizes produce smoother surfaces for ResNet
models. In addition, Li et al. [53] demonstrate that as a model increases in depth the loss
surface transitions from a mostly convex shape to a chaotic space filled with convex pockets.
The transition between these two states is marked by a significant drop in generalization
performance.

2.4.3 Intra-layer and Inter-layer Comparison Methods

The methods discussed so far have primarily been focused on the global nature of a CNN.
FLOPS and parameters are generally counted at a network level. Loss surface is investigated
from a specific weight instantiation. Methods that study CNN models at a finer resolution
are primarily focused on measuring the properties of data as it moves from a network’s
input to a network’s output. One type of method studies how the performance of a CNN
progressively changes throughout a CNN. Alain et al. [2] proposes a method called linear
probing in which a linear classifier is used to measure the classification performance of a
CNN at each layer in the model. This style of method provides a rough estimate on which

18

parts of a model are most impactful to the overall task at hand. The features used to
calculate linear separability have also been used for more non-linear kNN based methods.
Methods such as Hierarchical Nucleation [17] and methods proposed throughout this work
use kNNs to study how the latent representations of samples gradually cluster with like
samples as the layers get progressively deeper. Papernot et al. [60] use kNNs to study a
model’s confidence, credibility, and robustness.

Another type of method studies the intrinsic dimensionality (ID) of the data within the
layers of a network. ID metrics effectively serve as a measure of complexity; the higher the
ID the more relevant degrees of freedom the manifold has. There are many ways to measure
the ID of a set of data. One approach is based on the study of dominate eigenvalues in a
local region [22], while another approach uses topological methods that focus on calculating
the density of data within a local region [20,63].

Gong et al. [25] uses a topological approach to estimate the ID of a given dataset by
comparing nearest neighbour geodesic distances of a dataset to that of an m-dimensional
hypersphere with samples following a Gaussian distribution. Since the true ID of data
is often unknown, Gong et al. [25] validate their approach using a k-NN classifier on the
intrinsic data representation. Unfortunately, knowing the intrinsic dimension of a dataset is
only broadly useful for bounding the size of a CNN required for a given task. A more useful
approach for CNN analysis is investigating the ID of dataset representation throughout a
network (i.e., at each layer). Ansuini et al. [3] demonstrate that the ID of a dataset in a
classification model across a variety of architectures generally follows a hunchback pattern
(i.e., starts off low, quickly spikes, and gradually decreases towards the output). Another
interesting find from this approach is that classification error negatively correlates with the
ID of a dataset at the final layer of a CNN.

Intrinsic dimensionality methods are focused on performing analysis on a local scale.
Other approaches such as topological data analysis (TDA) study the structure of data
across all ranges of localities [7]. TDA uses a structure called a simplicial complex (think
sets of high dimensional triangles) to measure how the relation between sets of data changes
as the local region under consideration expands. To demonstrate the efficacy of TDA for
CNNs Carlsson et al. [8] studied the structure of all 3 × 3 convolutional filters for each
layer in a network across a variety of models (instead of the data at each layer directly).
Through qualitative and quantitative analysis Carlsson showed that each layer in a CNN
displayed a distinct internal structure.

Despite providing a method of looking at the structure of a network across layers, TDA
is still a relatively new field of study and has had limited adoption by the deep learning
community. Statistical measures, in contrast, have been used in deep learning since its

19

inception to study many problems, including inter-layer similarity. Dot product-based
methods are the basis for most statistical measures that compare a dataset’s representation
between layers

sdot(X,Y) =∥ YTX ∥2 (2.4)

where sdot is the similarity, X ⊂ Rn×d0 and Y ⊂ Rn×d1 are assumed to have zero mean along
the feature dimension, n is the number of samples, and d0 and d1 are number of features
for set X and Y, respectively. Here the ith row in X and Y are vectorized layer outputs for
the xth and yth layer of a network, respectively. If one normalizes Equation 2.4 by dividing
by (n− 1)2 one gets the linear case of the Hilbert-Schmidt Independence Criterion [32]

slinear HSIC(X,Y) =
∥ YTX ∥2

(n− 1)2
=∥ cov(XT ,YT) ∥2 (2.5)

An attractive property of the similarity measures in Equations 2.4 and 2.5 is that
they are invariant to orthogonal transforms on either set of data. In other words sdot and
slinear HSIC will produce the same similarity even if one or both sets of data are rotated in
some higher dimension. On the other hand, a problem with such transforms is that they
are not invariant to isotropic scaling, nor to invertible linear transforms. From a CNN
perspective, both types of transforms have no impact on the CNN’s operational structure.
That is, one can easily insert both transforms followed by their inverse anywhere in a CNN
without affecting its performance.

A measure that has all three properties is a measure called Canonical Correlation
Analysis (CCA) [34]. At a high level CCA works by finding a pair of linear transforms such
that X and Y maximally correlate with one another. Note that solving for the transforms
is subject to orthogonality requirements. To achieve a scalar number one then takes the
mean of the correlation coefficients of the transformed sets of data. The CCA measure can
be defined as

sCCA(X,Y) =
tr(Ỹ

T
X̃)

min(d0, d1)
(2.6)

where X̃ and Ỹ are zero meaned transformed sets of data, and tr(·) is the matrix trace
operator. A problem with CCA is that it doesn’t distinguish between noisy features and
important features. To solve this issue Raghu et al. [65] proposed a method call Singular
Vector CCA (SVCCA) in which SVD is applied to both X and Y, such that 99% of
the variance is accounted for, prior to applying CCA. Like CCA, SVCCA is invariant to
invertible linear transforms, orthogonal transforms, and isotropic transforms.

The statistical approaches discussed so far argue that invariance to invertible linear
transforms is an important feature to have. However, from a topological perspective

20

invertible linear transforms can completely change properties of the manifold that the data
sits in. Kornblith et al. [49] propose an approach called Centered Kernel Alignment (CKA)
to solve this issue. To remove invariance to invertible linear transforms, CKA normalizes
the HSIC similarity between two sets of data by the HSIC similarities between each set of
data independently. The linear case of CKA is defined as

slinear CKA(X,Y) =
slinear HSIC(X,Y)√

slinear HSIC(X,X)slinear HSIC(Y,Y)
=

∥ YTX ∥2F
∥ XTX ∥F∥ YTY ∥F

(2.7)

Of the statistical approaches discussed, CKA demonstrates the greatest ability to detect
similarly between layers in a CNN [49].

21

Chapter 3

Representational Response Analysis

Introduced in Chapter 1, the Representational Response (RR) of a CNN captures a CNN’s
behaviour as it operates on a set of data. By definition the RR contains all discrete latent
representations that a CNN produces in the form of a set of manifolds for each function
in a CNN. In its raw form the wealth of information contained within the RR presents a
practical challenge as the sheer volume of data produced by even a shallow CNN operating
on a small dataset (in both number of samples and dimensionality of data) can result in
gigabytes of information to process. This volume of data limits a researcher’s ability to
directly interface with the RR and to understand a CNN’s behaviour. Thus, distilling the
information contained within a CNN’s RR is essential for making use of this information.

Many of the existing analytic methods discussed in Chapters 1 and 2 have already
been designed to extract targeted information from a CNN’s RR. In this chapter we first
discuss how these existing methods extract information from a CNN’s RR with a focus on
limitations when using each of these methods. From this comparison we identify important
analytic qualities to include in a generalizable analytic framework for studying CNNs. We
then propose a method of modelling the RR of a CNN using these qualities as a guide.
Finally, we propose a set of three quantitative metrics, derived from the underlying RR
model, which we use throughout this work to study the progression of complexity, similarity,
and performance throughout a CNN.

3.1 RRA Framework Scope

The information contained within a CNN’s RR can be used to study a variety of key aspects
of a CNN’s behaviour. The following are broad categories of analysis:

22

1. Sequential analysis: Investigating the change in local or global structure of a RR’s
manifolds across a CNN (i.e., from input to output of a CNN).

2. Comparative analysis: Comparing two discrete RRs to one another. For example,
investigating the effects of changing a CNN’s architecture.

3. Training analysis: Comparing the RR of a given CNN throughout its training
process and looking for discrete state changes in the properties of the RR.

4. Data sensitivity analysis: Investigating the effect of altering the data distribution
a CNN is operating on.

5. Adversarial analysis: Looking for how a CNN responds to adversarial attacks.

This list of analytic methods is extensive and highlights why comprehensively studying
a CNN is so difficult. In this work we focus on using sequential and comparative analysis
techniques.

3.1.1 Existing RRA Metrics

Many existing deep learning analytic metrics fit neatly into the proposed RR formulation.
However, these metrics have practical limitations which prevent their wide scale adoption,
including: knowing which metric to use is not necessarily clear, such metrics are generally
computationally expensive to compute, the computation of such metrics are disjoint, and
there is limited research on using these RR metrics in unison. Below we expand on a
selection of existing RR metrics, which were already presented in Chapter 2, to better
contextualize benefits and limitations of each metric as relevant to this research.

Intrinsic Dimensionality (ID) methods [3, 20] are an example of sequential RRA. The
manifold of each layer in a CNN has its dimensionality independently estimated by aggre-
gating pairwise nearest neighbour distance statistics. Using the ID at each layer one can
see the change in ID as the depth of the layer’s manifold increases. Knowing the ID of the
manifold and how it changes when a CNN’s design is changed can illuminat interesting
characteristics of a model, like how the manifold of a CNN changes when the brightness
of all data used with a CNN is increased [3]. Lacking from ID analysis is any concept of
distance between ID measures of different layers. One is left to draw conclusions from the
general trend in the ID.

Layer Similarity (LS) measures [32, 34,49,65] are examples of comparative RRA. These
metrics are designed to directly compare information representations and allows one to gain

23

direct insight into differences between layers in a CNN in the form of a bounded metric;
often between 0 (not similar) and 1 (the same). An important difference between existing LS
metrics and ID metrics is that ID metrics use only local information (i.e., comparing nearest
neighbours) while LS measures use global information (i.e., all features are compared to
every other feature). LS measures are able to use global information since they only measure
zeroth degree dependencies. Using global information for higher degree dependencies quickly
becomes computationally infeasible. In addition, using global information is not always
necessary (e.g., comparing distance between all points on a spiral-like manifold).

Linear Probing (LP) [2] provides both a sequential analysis and comparative analysis
component. Linear probing calculates an accuracy score (via a linear classifier) independent
of other layers, where the score is normalized and human interpretable allowing a researcher
to directly compare accuracy scores between CNN layers. The tradeoff with LP is that it
requires a unique linear classifier to be learned for each manifold in a CNN. These auxiliary
models can easily be larger than the CNN itself.

Topological Data Analysis (TDA) [7] is another dual-purpose metric providing both
a sequential analysis and comparative analysis component. The topological barcodes
generated for each stage provide insight into each manifold’s topological features, and
comparing the barcodes allows the similarity between layers to be measured. An attractive
aspect of TDA is that it can be used to compare disjoint manifolds (e.g., manifolds of two
different datasets). However, computing these barcodes is O(n3) making it computationally
prohibitive for larger datasets. In addition, there is limited research into how TDA can be
used to guide CNN design choices.

3.2 RRA Framework

One of the goals in this work is to propose a useful framework for analyzing classification
based CNNs. As such, the framework must include a variety of metric types that are
collectively easy to compute (relatively speaking). Throughout this work we focus on three
forms of metrics:

1. A metric that measures the complexity of a layer’s manifold,

2. A metric that measures the similarity between manifolds (either within a single
CNN or between CNNs), and

3. A metric that quantifies the classification performance (or a proxy) within each
manifold.

24

A complexity measure is used to provide an indication on the scope of information a
CNN is computing (e.g., what layers in a CNN are responsible for distinguishing a larger
variety of patterns). A similarity measure is used to provide both an intra-model method
for layer redundancy detector (e.g., are layers at different points in a CNN computing the
same patterns), and an inter-model method of similarity (e.g., do two distinct CNNs have
the same progression of pattern detection). Finally, a performance metric is used to better
understand which points in a model provide the best absolute classification performance,
and which layers contribute the most to relative performance improvements.

The list of metrics discussed in Chapter 3.1 individually covers either the complexity,
similarity, or performance metric types. However, all these methods are expensive to compute
individually, and many are calculated disjointly, further increasing the computational burden.
To reduce the computational requirements we focus on developing a set of metrics that can
all be derived from the same computational model of a layer’s manifold.

3.2.1 Manifold Approximation via Neighbour Graphs

Until now we have only discussed the analysis of a CNN’s RR in vague terms around
using computational models constructed from latent embeddings within a CNN to quantify
targeted characteristics of interest. Before introducing the specific methods used in this
work, we first elaborate on how we transform a set of latent embeddings into a common
model of the CNN’s manifolds.

The choice of the underlying model is dependent on the target metrics. While within
this work we focus on the use of three metrics, it is important not to limit the proposed
RRA framework to obscure metrics, but instead have the framework be generalizable.
Looking at the metrics discussed in Chapter 3.1 one common underlying computational
requirement is the need to calculate the distance between local neighbours in each of the
latent embeddings. For example, the ID metric requires knowing the distance between the
two nearest neighbours, and the TDA metric and CKA [49] metric (a type of LS metric)
require calculating the distance between all samples.

Given the common requirement of needing to calculate the distance between samples,
we base the proposed RRA framework on the concept of nearest neighbour graphs. More
formally, let Yv = vv(X;Gv) be a one-to-one mapping of samples from the input space
to the space of layer vv of a CNN. For a given layer vv with a set of outputs Yv, let
Hv = (Yv, Dv) be the graph of neighbours for layer vv, where Yv are the vertices of the
graph, and Dv are the set of all edges between pairs of samples yvi,yvj ∈ Yv. Let Kvi ⊆ Yv

be an ordered set of nearest neighbours of sample yvi. The distance between two points

25

(a) 1D manifold in a 2D space (b) 2D manifold in a 2D space

Figure 3.1: Examples of using the TwoNN estimator to approximate the intrinsic dimensionality
of each respective manifold. Each image shows a set of points on a manifold with noise added. The
left example is of a 1D sine wave in a 2D space. The right example is of a 2D uniform plane in 2D
space. The TwoNN estimator predicts an ID of 1, and 2, respectively, for the two distributions.

yvi and yvj in the ambient space Rv (i.e., the feature space of layer vv) is measured by the
distance metric R(yvi,yvj) = rvij . In this work we use the Euclidean distance for R. Design
considerations around Kvi are explored further in Chapter 3.3. Through the remainder of
this section, we provide specifics on the complexity, similarity, and performance metrics
used for CNN analysis in this work.

3.2.2 A Complexity Metric Through Intrinsic Dimensionality

The purpose of the complexity metric within the framework is to provide a measure for
the variety of unique features that a CNN is processing at any given point. A complexity
metric like VC dimensionality [77] provides a bound on potential complexity that can be
learned but does not necessarily reflect on how the capacity within a layer of a CNN is
being used. Naively counting the number of weights of a given layer of a CNN produces a
similar result. In this work we use the TwoNN estimator proposed by Facco et al. [20] and
used by Ansuini et al. [3] to study the ID progression of various CNN architectures. The
TwoNN ID estimator is defined as

ID = arg max
ID

IDN

N∏
i

[
r2i
r1i

]−(ID+1)

(3.1)

where r1i and r2i are the distances between the first and second closest nearest neighbour
of the ith sample, and ID is the intrinsic dimensionality of the dataset. Figure 3.1 shows
examples of using the ID estimator.

26

(a) Manifold 1 (b) Manifold 2

(c) Manifold 3 (d) NNLS matrix

Figure 3.2: An example of using the NNLS metric to compare three different manifolds. Each
set of data has a red class and a blue class. These classes are Gaussian distributions. Manifold 1
has the red and blue class mostly separated. Manifold 2 slides the blue class down so that it has
a greater intersection with the red class. Manifold 3 uses the same global class distributions of
Manifold 1 but with the samples shuffled within the classes. The bottom right image contains the
3× 3 symmetric NNLS matrix. Notice the high degree of similarity between Manifolds 1 and 2,
but the dissimilarity between Manifold 3 and other manifolds.

27

3.2.3 A Similarity Metric Through Nearest Neighbour Layer
Similarity

For the similarity measure we are looking for the ability to compare manifolds within a
CNN, and manifolds between CNNs. One prominent layer similarity metric CKA [49]
provides both of these abilities. CKA comes in two primary variants: RBF CKA and Linear
CKA. RBF CKA requires that the distance between every sample is known and stored for
the final similarity metric to be calculated; for modern datasets an n× n distance matrix
can quickly overwhelm a computer’s memory capacity. However, Linear CKA allows one to
avoid direct distance calculation through algebraic simplification. Much like CKA, all other
CNN layer similarity metrics also demonstrate similar incompatibilities with the proposed
kNN model in that all inter-sample distances are required and not just a subset.

Now we develop a novel similarity metric designed to be directly compatible with
the underlying kNN-based manifold model. Let Q(Ha, Hb) = qab measure the inter-layer
similarity between layers va and vb using their respective neighbour graphs Ha and Hb.
To compare a single sample across layers we propose a sample-wise similarity function
Qs(Kai, Kbi) where Kai and Kbi are sample xi’s nearest neighbours in layers a and b,
respectively. We bound an individual sample’s inter-layer similarity to the range of 0.0 to
1.0 to ensure that samples are equally represented. Let Q(Ha, Hb) be defined as

Q(Ha, Hb) =
1

n

n∑
i

Qs(Kai, Kbi) (3.2)

Using Kai and Kbi one can calculate a variety of useful statistical measures, including the
mean sample, and the deviation from the core sample in each layer yai and ybi, respectively.
However, the neighbours for a given sample may not be the same between layers (for some
k << n), this makes it difficult to normalize and compare intra-layer measures. To avoid
this issue, we directly measure the difference of the neighbours between layers through
intersection-over-union. Let the per-sample inter-layer similarity function be defined as

Qs(Hai,Hbi) =
|Kai ∩Kbi|
|Kai ∪Kbi|

(3.3)

Note that Qs(Hai,Hai) = 1. Due to the formulation of Qs(·), Q(·) can be framed as the
mean IOU (mIOU) of nearest neighbours between layers. Let the layer similarity metric Q
be called Nearest Neighbour Layer Similarity (NNLS). Figure 3.2 shows an example of how
NNLS is used.

28

(a) Sample CS Transitions (b) CS Transition Curve

Figure 3.3: A toy example of how the NNCS is affected as the distance between two linearly
separable class clusters changes. Figure 3.3a shows the transition as two linearly separable classes
approach one another. On the left at the transition state of 0.0 there is a clear separation between
the clusters. As the transition state approaches 1.0 the average intra-class distance between points
begins to outweigh the average inter-class distance. Note that at a transition state of 1.0 the two
classes are still linearly separable along the x-axis. Figure 3.3b shows the observed NNCS for the
toy dataset as the transition state moves from 0.0 to 1.0. When the transition state is 0.0 the
NNCS equals 1.0. By the time the transition state reaches 1.0 the NNCS has reduced to almost
0.9.

3.2.4 A Performance Metric Through Nearest Neighbour Class
Similarity

For the performance metric we are interested in measuring how the classification ability of
a CNN changes across it. Linear probing [2] is directly designed to achieve this. However,
LP does not use a kNN, but instead requires an auxiliary linear model to be trained. The
auxiliary model requires an additional f × c parameters, where f is the number of features
of a given layer and c is the number of classes. Instead of using a linear classifier to measure
global class separability, we propose using a kNN based strategy to measure the change in
local class separability.

For any given kNN of layer i in a CNN, let the class similarity score NNCSi be defined
by

NNCSi = NNCS(Gi, Z) =
1

MN

∑
n

∑
m

1(Zn, Zm) (3.4)

where 1(·) is an indicator function, and Zn and Zm are the ground truth classes for the
nth sample in N and the mth nearest neighbour of the nth sample, respectively. Figure 3.3
shows an example of class similarity.

29

(a) Smaller fixed radius (b) Larger fixed radius (c) Directional

Figure 3.4: Examples of nearest neighbour graphs generated using three different strategies. Left
shows a nearest neighbour generated using a fixed small radius. Center shows a nearest neighbour
generated using a fixed large radius. Right shows a nearest neighbour generated using a fixed
number of neighbours.

3.3 Considerations for Approximating a Manifold

In this work we represent the data manifold using a graph of relations between samples.
The effect of how we design the graph of relationships has a potential to change what we
can see as we investigate properties of a CNN’s RR. Below we discuss the implications of
specific design decisions and what practical considerations must be used to create a useful
and computationally tractable RRA framework.

3.3.1 Neighbouring Regions

The goal of the kNN graph is to represent localized information from the samples. As
such, a metric for measuring distance between two samples in each layer is required. In
general, there are two common methods used. The first approach uses a distance threshold
to find all samples yvj ∈ Kvi that are within some fixed radius rv of sample yvi, where rv
is constant for the entire graph. Using this approach the set Kvi for a single layer vv can
contain a variable number of neighbours. The second approach uses a variable radius but
with a fixed number of samples k in Kvi for each sample yvi. Such an approach is called a
k nearest neighbour (kNN) graph. For this work a kNN based approach is used to ensure
that each sample yvj ∈ Yv has a neighbour (i.e., |Kvi| > 0). Note that it would be possible
to find the smallest radius such that every sample has at least one neighbour, but this
would also allow for an unlimited number of neighbours (e.g., when there is one extreme
outlier). Figure 3.4 shows examples of neighbours graphs generated from the two graph
generation methods.

30

(a) Directional (b) Intersection (c) Union

Figure 3.5: An example of the neighbour graphs generated using three different neighbour
selection criteria. Left shows a neighbour graph generated using directional connections. Center
shows a neighbour graph generated using an intersection approach. Right shows a neighbour
graph generated using a union approach.

3.3.2 Directionality

To build a kNN graph one must choose if connections are directed or un-directed, what
distance metric to use, and the number of neighbours. For an un-directed kNN graph,
if sample yvi is a neighbour of yvj, then yvj must also be a neighbour of yvi. However,
the un-directed nature of connections would require a loosening of the fixed number of
neighbours inherent to kNN graphs as a kNN graph with k un-directed edges per sample
may not exist.

One way to loosen the neighbourhood criteria is to perform an intersection such that
two samples are un-directed neighbours iff both samples are directed neighbours of each
other; this effectively sets an upper bound to the number of neighbours to k. Such an
approach undermines the choice of a kNN graph in that some samples might not have
neighbours. Another way to solve the issue is to perform a union where by two samples are
un-directed neighbours iff either sample is a directed neighbour of one another; effectively
setting k as the lower bound to the number of neighbours. This approach can result in
some samples having orders of magnitude more neighbours than other samples. A third
option to loosen the neighbourhood criteria is to just use directed edges, thereby ensuring
every sample has the same number of neighbours. In this work directed edges are used for
nearest neighbour graph construction. Figure 3.5 shows kNNs generated using each of the
three neighbour criteria.

3.4 Summary

In this chapter we introduced the core focus of this work, a RRA framework that emphasizes
the use of complementary RR metrics to extract useful information about a CNN’s behaviour.
The proposed framework consists of first modelling the manifolds of a CNN using kNN

31

Parameterization kNN Calculation ID NNCS NNLS

Nsamples O(s2) O(s) O(s) O(s)
Nneighbours O(n log n) O(1) O(n) O(n)
Nlayers O(l) O(l) O(l) O(l2)
Data Dimensionality O(d)

Table 3.1: The computational runtime of the RRA framework. For a typically use case the
kNN calculation is the most expensive computational operation by a large margin, and is
primarily gated by the number of samples for large dataset, or the data dimensionality.

graphs, and then analyzing the kNN graphs using a set of three metrics. These metrics focus
on 1) the complexity of each manifold using the TwoNN ID estimator, 2) the similarity
between layer manifolds using NNLS, and 3) the performance of each layer using NNCS. To
the best of our knowledge, this is the first proposed CNN-focused analytic framework which
tries to unify a heterogeneous set of RR metrics. The proposed framework is designed to
front load the majority of the computation into modeling each of the manifolds, and then
running the proposed RRA metrics directly on the kNN graphs. This order of operations
is designed to allow for a more seamless CNN analysis when compared to using similar
metrics but which are calculated in a disjoint manner. Table 3.1 includes the computational
runtime of a the proposed RRA framework.

32

Chapter 4

Applying Representational Response
Analysis

Chapter 3 formulated both representational response analysis and the three metrics that will
be used throughout this work. We now apply RRA to study the behavior of ResNet20 [39]
and its latent representations as data travels through the model under various conditions.
The focus of this chapter is to demonstrate the utility of RRA. We do this by studying the
effects that applying data augmentation to a dataset during the training process has on the
resulting latent structure of a CNN.

Applying augmentations during a CNN’s training process is a standard technique used
to prevent overfitting on the training dataset and to improve a model’s generalization.
If the augmentations are chosen correctly, they typically improve a model’s performance
on unseen data. When new augmentations are introduced, standard practice is to use
the augmentations on a variety of model-dataset combinations and perform a series of
hyper-parameter ablation tests. However, these tests often focus on measuring model
performance, and perhaps a metric for which the new augmentations were designed to
improve (e.g., robustness). Often the internal representational workings of a model are
ignored. In this chapter we demonstrate the utility of RRA by investigating how a model’s
internal representational behaviour changes when augmentations are used during the training
process.

33

Table 4.1: ResNet20-CIFAR10 Layer Feature Map Size

Input Neck Stage 1 Stage 2 Stage 3 GAP Classifier

Layer 0 1 2 3 4 5 6 7 8 9 10 11 12

channels 3 16 16 32 64 64 10
h,w∗ 32 32 32 16 8

features 3072 16384 16384 8192 4096 64 10

∗h and w are the height and width, respectively

Table 4.2: ResNet20-CIFAR10 Training Augmentations

Augmentation Setting

Translate 4 pixels
Horizontal Flip 50%
Random Rotation ±15 degrees
Brightness∗ 0.4 @ 80%
Contrast∗ 0.4 @ 80%
Saturation∗ 0.2 @ 80%
Hue∗ 0.1 @ 80%
Grayscale 20%
Gaussian Blur (0.1, 2.0)

∗the coefficients correspond to PyTorch [62] augmentation hyperparameters

4.1 Experimental Setup and Results

In this experiment we compare a ResNet20 model trained on two different versions of the
CIFAR10 dataset. The first model (model A) is trained on the CIFAR10 dataset without
using data augmentation, and the second model (model B) is trained on the CIFAR10
dataset with random data augmentations applied throughout training (See Table 4.2 for a
complete list of augmentations). Both model variations are trained 8 separate times (using
different seeds for each run). The results in this chapter (and throughout this work) are the
averaged between these 8 runs unless otherwise noted. For each model type we investigate
the RR for both the training partition and the validation partition. No augmentations are
applied during the actual RRA.

The number of layers and specifics on each layers’ feature map size is shown in Table 4.1.
The following is the training procedure used on both model A and model B: the optimizer
is stochastic gradient descent with a momentum rate of 0.9, the base learning is 0.01, with
a cosine decay rate that ends at 1% the initial learning rate, training for 100 epochs, and a
linear warm up period of 10 epochs.

34

Table 4.3: ResNet20-CIFAR10 Training Results

Model Training Acc. (%) Validation Acc. (%)

Model A (No Aug.) 1.0 ± 0.0 81.0 ± 0.46
Model B (With Aug.) 95.6 ± 0.2 89.8 ± 0.2

Table 4.4: ResNet20-CIFAR10 Augmentation Ablation Results

Augmentation No Aug. Translate Rotation H-Flip Colour Jitter Grayscale Blur

Mean Acc. 81.0 88.0 87.0 85.1 82.0 80.6 78.8
Std. 0.46 0.21 0.33 0.37 0.40 0.44 0.34

The specific parameterization of the kNN used to model the manifolds will have con-
sequences for the measure quantities of the three RR metrics. Such parameters include:
directionality of connections, the number of data samples used to model the manifold, and
the number of neighbours per sample. The consequences of these considerations are explored
in Chapter 3.3 for directionality, and Chapter 5. In this section we limit our investigation to
a single parameterization of the kNNs to a class balanced random selection of 15000 samples
with each sample having 150 neighbours for the training partition, and 10000 samples (i.e.,
the entire partition) with each sample having 100 neighbours for the validation partition;
note that this parameterizations keeps the ratio between the number of samples and the
number of neighbours consistent between the two partitions (the importance of keeping
this ratio consistent is explored further in Chapter 5).

The training accuracy results for the two models on both of the data partitions are
shown in Figure 4.3. Unsurprisingly, model B has a higher performance on the validation
set (i.e., data not seen during training) by 6.7% while also overfitting less. In a typical
deep learning paper proposing a novel set of data augmentations (or some other model
improvement) one might perform an ablation test on how the different augmentations
impacted performance results, leaving an investigation on the internal workings of the
model narrowly addressed, or left to be addressed in future work. Throughout the remainder
of this chapter, we investigate how training with and without data augmentations manifests
itself in the underlying RR of each model. For the sake of completeness, the results of an
augmentation ablation test are shown in Table 4.4. Note that Colour Jitter contains all four
colour augmentations in Table 4.2. In the remainder of this chapter we look at the incites
that each of the three RRA metrics provide. We separate NNLS into two comparisons: one
that compares layers within a model, and one that compares layers between models.

35

(a) ResNet20-CIFAR10 ID Comparison (b) ResNet20-CIFAR10 NNCS Comparison

Figure 4.1: Example of applying the RRA metrics to ResNet20 CNNs trained on the CIFAR10
dataset with and without data augmentation applied during training. The left image shows the
ID curves, and the right image shows NNCS curves. Each figure contains curves for both the
CIFAR10 training partition and validation partition.

4.2 Intrinsic Dimensionality

The ID training and validation curves for model A (w/o augmentation during training)
and model B (w/ augmentation during training) are shown in Figure 4.1a. Overall, there
are a few key patterns that stand out. The first noticeable pattern is that the training
and validation ID curves for a given model closely follow one another. For most layers,
regardless of the model, the validation ID is ∼5% above the training ID curves. While
interesting, the validation ID curve being consistently higher than the training ID curve
could be a numerical artifact from our choice of hyper-parameters for RRA and will need
further examination. For most layers, the variation is near 0.

The similarity between the training and validation curves holds true for both model
A and model B despite the differences in classification performance; model A overfits by
19% and model B overfits by 5.8%. The difference in performance between the training
partition and validation partition means that neither model fully generalize (i.e., they
overfit), however the similarity between the training and validation ID curves indicates that
each of the models is not inherently processing the two partitions of data differently. Thus,
implying that the distributions of the training partition and the validation partition are
sufficiently like one another as seen by the model. We further validate this observation by
progressively adding Gaussian noise to the training partition until the partition consists of

36

only images of random noise. The resulting ID curves progressively grow larger, loses its
characteristic shape, and diverges from the validation ID curve. The important take away
is that if the training ID curve and validation ID curve differ significantly then there is
likely data drift between the partitions (or the model has learned a pathological behaviour
during training).

Looking closer at the stage structure of the ResNet20 model (shown in Table 4.1), one
can see that many of the major changes in ID are associated with a transition between the
stages. Both models peak at layer 4 (the end of stage 1), and experience large drops in
ID between layers 7 and 8 (the transition to stage 3) and between layers 10 and 11 (the
transition to the fully connected stage). Note that the association of changes does not
exclusively happen between stages. For example, model A experiences a large drop in ID
between layers 9 and 10, both of which layers are in stage 3. We will see in subsequent
sections that the stage transitions also affect our other RR metrics.

Looking at the ID curves within a model for different data partitions can clearly be
informative, but it is not until we compare the curves between models that the impact
of using augmentation during training is apparent. In general, both models exhibit the
hunchback shape but with unique characteristics. Model A’s peak is lower but held at near
peak levels for over twice as long (in number of layers) as model B. Conversely, the ID of
Model B has a higher peak (also at layer 4) value but immediately decreases by over 25%
and remains lower than model A for most of the remaining layers.

What is interesting is that the increase in ID happens in model B on the same peak
ID layer as model A. At this point in the CNN the focus is on detecting the low-level
features [51] (e.g., line, edges, parts of objects). Ansuini et al. [3] showed that a key function
of the early layers in a CNN is to remove numerically dominant but irrelevant information
(e.g., brightness of an image for number classification). From this we can conclude exactly
which parts of a CNN are responsible for filtering out the additional irrelevant information
to achieve better generalizable performance. Note that this does not necessarily imply
that model A was unable to identify those additional features as it may have happened
later in the model. While it makes intuitive sense that the early layers could be capable
of removing the basic data variations introduced through data augmentations, it is not
clear from the ID alone why the front loading of low-level feature removal is inherently
learned at the initial stages in the ResNet20 models. One hypothesis is that the model
naturally learns this to make better use of the overall learning capacity of CNN by allowing
the deeper layers to focus more directly on higher level object features.

37

4.3 Nearest Neighbour Class Similarity

The NNCS curves for model A and model B are shown in Figure 4.1b. Each of the NNCS
curves at layer 0 start at just below 0.2, experience a decrease in NNCS during stage 1,
increases back to approximately 0.2 at layer 5, begins to increase and sees a sharp increase
between layers 9 and 10, and finally levels off between layers 10 and 12. Like with the
ID curves, there is a high degree of similarity between the training and validation NNCS
curves, which are near identical until layer 9 for model A and layer 10 for model B. Once
again, the variation on each of the curves is near 0.

Interestingly, the upward trend in NNCS is not monotonic across the model; between
layers 0 to 3 we see a small but non-trivial decrease in the NNCS curves before the NNCS
curves begin to trend upwards. We refer to this phenomenon as the initial CS contraction.
The initial CS contraction is experienced by both models, with model B seeing a slightly
greater decrease in ID during the contraction. Looking more closely, we see that the location
of the initial NNCS contraction coincides in the same layer of the CNN as the initial ID
peak observed in Figure 4.1a. Considering both ID and NNCS, we are given three pieces
of novel insights into a CNN’s behavior through the first stage of a ResNet20 CNN. First,
that the removal of low-level irrelevant information is harmful to the local separability of
classes. Second, the more aggressively a model removes the irrelevant features, the larger
the negative impact on class similarity (i.e., in the early layers as ID increases, NNCS
decreases). And finally, that the SGD learning algorithm allows a model to learn functional
operations that are locally destructive to class similarity.

Importantly, this third insight appears to conflict with the finding from Alain et al. [2]
which states, that “... the level of linear separability increases monotonically as we go to
deeper layers” (with respect to ResNet style architectures). But we must remember that
linear probing is looking at linear separability while NNCS is reflective of local (non-linear)
separability. This distinction is important because it is direct evidence that the SGD
learning algorithm (and its interactions with a ResNet style architecture) inherently allows
a model to balance making seemingly local negative changes to the latent space while
allowing the global objective function to be optimized. Keep in mind that this tradeoff
happens early in the model and still allows for the model to optimize for both local and
global separability at the deeper layers. But this observation leaves one to wonder what
a learning strategy that allowed short term declines in both local and global separability
could achieve or if such a strategy is even desirable.

At layer 5, all the curves have returned to approximately their initial NNCS values,
while having larger IDs. From layer 5 onward the NNCS curves for each model begin to

38

exhibit different trends. The curves for model A experience a minor decrease until stage
7, and at layer 8 the training and validation curves for model A diverge. Both curves
experience a large spike between layers 9 and 10, at which point the two curves have diverge
substantially. While the training NNCS hits 1.0 (the same as model A’s training accuracy),
the validation NNCS plateaus at 0.74, which is 6% lower than model A’s validation accuracy.
Unlike model A, after layer 5 the curves for model B immediately begin to increase, and
do not begin to diverge until the dramatic increase in NNCS between layers 9 and 10. For
model B the training curve and the validation curve go on to differ by up to 0.07.

Comparing the validation curves between models we see two regions of interest after layer
5. The first region is between layers 5 and 10, and the second being layers 10 and onward.
In the first region the validation curve for both models begins and ends at approximately
the same location, but during the second region model B’s validation curve once again pulls
a head. The increased NNCS curve during the first region for model B (relative to model
A) supports the hypothesis that the upfront removal of the low-level feature allows the
model to focus on improved classification throughout the remaining layers. While model B
has higher NNCS for both curves during this first region, it is not until layer 10 that we see
a large difference in how the two distributions of data are being processed in each CNN.
For model A the training and validation curves differ significantly, while the difference for
model B is under a third as big. The beginning of the large difference between the two
curves for model A is a clear indication where in the model is responsible for overfitting.

As noted above, there is a large increase in the observed NNCS between layer 8 to
layer 10. We refer to this change as the NNCS cluster spike. Unlike the initial NNCS
contraction, the NNCS cluster spike begins in a layer whose output is structurally different
from its input layer, with layer 8 having half the height and width while having double the
number of channels, thus resulting in half the total number of features per sample than
layer 7 has. Like with the initial NNCS contraction, the NNCS cluster spike corresponds
with noticeable change in ID across the layers of interest. In this instance the NNCS cluster
spike is inversely correlated with the change in ID. However, this correlation does not
continue on into layer 11 and layer 12, while the ID continues to decrease changes in the
NNCS curve are minimal.

4.4 Intra-Layer Nearest Neighbour Layer Similarity

The intra-NNLS matrices for model A and model B are shown in Figure 4.2 for both
the training and validation partitions. A given cell in any of the matrices represents the
similarity between a given layer-pair’s RR. When a layer is compared to itself it has a

39

(a) NNLS - Train, No Aug. (b) NNLS - Train, With Aug.

(c) NNLS - Val., No Aug. (d) NNLS - Val., With Aug.

Figure 4.2: An example calculating the NNLS matrix using four different combinations for
model-dataset pairs. The left figures are of a model trained with no augmentations, the right
figures are of a model trained with augmentations, the top figures are generated using the CIFAR10
training partition, and the bottom figures are generated using the CIFAR10 validation partition.

similarity of 1.0 as we are applying NNLS analysis between layers of a single model. As such,
the bottom left to top right diagonal cells are equal to 1.0 since each layer is self-similar.
We refer to this diagonal as the self-layer diagonal.

Figure 4.2a depicts the NNLS matrix for model A generated from the training dataset.
In general, the closer a cell is to the diagonal the higher the similarity. Looking at the
backbone layers (i.e., stages 1, 2, and 3) we observe a high degree of similarity between
stages 1 and 2 (layers 2 to 7). Within this region the layers in stage 1 have an additional
degree of self-similarity, and layers within stage 2 show the same pattern. Interestingly, the
intra-stage self-similarity trend does not hold for stage 3 even though the structure of stage
3 is almost identical to stages 1 and 2. While layers 8 and 9 share a similarity of 0.44, the
similarity between layers 9 and 10 drops to 0.16. The lack of similarity between layers in

40

stage 3 correlates to both the drastic decrease in ID and a drastic increase in NNCS (we
will see in Chapter 6 why this difference exists).

Comparing the NNLS matrices between the training and validation partitions we see
that the difference between them is surprisingly small. The largest absolute difference
between the matrices is 0.0023 for model A, and 0.002 for model B. The similarity between
the NNLS matrices of the training and validation partition is a strong indication that the
models are processing the two distributions in a near identical manner. We now have two
pieces of information that indicates that the distributions between the two partitions of
data are highly correlated. Firstly, the similarity between the ID curves is calculated using
distance ratios, and secondly the NNLS matrices which uses a ratio of relative neighbour
similarities. In addition, we have the observation from NNCS which showed the training
and validation class similarities are near identical until at least layer 8.

Another interesting observation is that the similarity between the training and validation
partitions persists regardless of whether augmentations are used during training. Thus,
we have an indication that the augmentations used during training were not necessarily
specialized to the data symmetries found exclusively in the training partition. If the
augmentations were specialized it would be expected that the model would learn specialized
behaviour for only samples in the training set and would result in NNLS matrices that
differ between the two respective partitions for a given model. Remember that the NNCS
curves are still different between the partitions in the deeper sections of the models for
both models. This is because the models are drawing the decisions boundaries and learning
feature detectors in a way that is overfit to the specifics of the training distribution, and
not to the overall target distribution shared between the training and validation partitions.
The NNLS matrix does not notice the overfitting because the models are still manipulating
the two near-identical partition distributions in a consistent manner that does not affect
the distributions of nearest neighbours.

When comparing the matrices for model A with model B we can see that the qualitative
block structure is still present. However, there are a few notable differences. The most
extreme difference in similarity is that between layers 11 and 12. For the training partition
in model A the layer similarity is 0.72 while for model B the corresponding layer similarity
drops to 0.45. The high layer similarity for model A tells us that the linear classifier is not
changing the neighbour structure of each sample on average. Since it is a linear operation
there are only a few things that it can do to the 64-dimensional embedding vector as
it gets mapped to a 10 class logit. Specifically, the linear operation could be stretching
(multiplying), shifting (add a bias), collapsing (zeroing out), and/or skewing (multiplying
features differently) the embeddings. Given that we are using Euclidean distance to calculate
the kNN, only collapsing or skewing could be causing the large decrease in similarity between

41

layers 11 or 12. Why augmentations are reliably causing this change between layers 11 and
12 is not clear from our experiments.

The general similarity decrease experienced between layer 11 and 12 is also experienced
between most consecutive layers when augmentation is applied during training. The overall
decrease in similarity between neighbours supports the above hypothesis that the model is
making fuller use of its discriminating capabilities, as the lower similarity between layers
implies a greater degree of changes in local manifold structure. Interestingly, only the
similarity between layers 9 and 10 experiences a non-negligible increase in similarity when
augmentation is applied during training. Looking at the ID and NNCS curves in Figure 4.1
we see that the ID curves for model A experience a significant drop, and the NNCS curves
experience part of the class cluster spike. But for model B the ID curves only experience a
slight change, and the NNCS curves still experience part of the class cluster spike. Our
hypothesis is that model A must learn to impose a large drop in ID to reach the ID required
10 classes at the output of the model. This large drop in ID caused by a drastic non-linear
alteration to the underlying manifold is then observed by a small NNLS value (in cell 9-10
in Figures 4.2a and 4.2b). But because model B already has a low ID a drastic change in
the underlying manifold is never learned.

4.5 Inter-Layer Nearest Neighbour Layer Similarity

In the last section we used NNLS analysis for comparing layers within a model to one
another. We now consider NNLS analysis for comparing the manifolds between different
models. The NNLS for a single layer, as shown in Equation 3.2, is

Q(Ha, Hb) =
1

n

n∑
i

Qs(Kai, Kbi) (4.1)

Now the nearest neighbour graphs Ha and Hb are no longer generated from the same CNN.
Note, that Kai and Kbi are an order set of nearest neighbor embeddings sample data, but
now contain latent embeddings generated from different models. For each partition of data
we perform three different comparisons:

1. Comparing models trained without augmentation to all other models trained without
augmentation (for a total of 56 model comparisons).

2. Comparing models trained with augmentation to all other models trained with
augmentation (for a total of 56 model comparisons).

42

Partition No Aug. vs. No Aug. With Aug. vs. With Aug. With Aug. vs. No Aug.

Train

Val.

Figure 4.3: Results from an inter-model similarity comparison using NNLS matrices. For each
dataset partition 3 comparisons are performed. On the left are matrices comparing models trained
without augmentations to one another, in the middle are matrices comparing models trained with
augmentations to one another, and on the right are matrices comparing models trained without
augmentations to models trained with augmentations. For the left and center matrices no models
are compared to themselves.

3. Comparing models trained without augmentation to all other models trained with
augmentation (for a total of 64 model comparisons).

Figure 4.3 shows the average NNLS matrices for each comparison on both the training
and validation partitions. Figure 4.4 shows a selection of data extracted from the NNLS
matrices in Figure 4.3. Given the similarity between the training and validation matrices
we focus our investigation on the NNLS matrices for the training partition unless otherwise
stated.

In the previous intra-NNLS experiment models were only ever compared to themselves.
Now that we are comparing the similarity between different models (i.e., models produced
through separate training runs) the self-layer diagonal is no longer the identity (i.e., equal to

43

1.0). The only cell that is still 1.0 is the input layer. In this experiment we see a gradually
diminishing similarity between layers in all the NNLS matrices the deeper the layer is.
Despite this difference the block structure between stages is still present. Here we learn
that the local structure learned between models with different initialization after training
is relatively stable throughout the model, but to a diminishing degree relative to depth.
The takeaway is that the ResNet20 models are not finding some arbitrary structure in the
dataset, but instead the models learn to consistently find similar RR.

Continuing to focus on the self-layer diagonal we see that models trained with augmenta-
tion have a similarity that is equal to or higher than models trained without augmentation
across all layers. The self-layer diagonals for the training partition are shown in Figure 4.4a.
The difference between the curves gradually (but erratically) grows the deeper the layer.
Figure 4.4c shows the difference between with and without augmentation curves for both
the training and validation partitions. Here we learn that training with augmentations
allows a model to learn the same RR more consistently. Note that the absolute difference
is not particularly important here as it’s an artifact of our choice in the number of samples
relative to the number of neighbours used to construct the kNN.

There is a small difference between the training and validation matrices in general, but
the difference is not as small as it was in the previous intra-NNLS experiment. Looking at
the differences in similarity along the self-layer diagonal between training and validation
partitions we see that training without augmentation results in a lower similarity later in
the model, specifically from layers 10 and onward. The difference between the training
and validation curves is shown in Figure 4.4d. The larger difference in these final layers
corresponds to the observation made about the NNCS in the final layers of the model
trained without augmentation which is that the models are overfitting primarily in the
final layers of a model. Thus, NNLS is still capable of detection overfitting when used to
compare models.

Comparing models trained with augmentations to models trained without augmentations
we see an asymmetry in the matrices. The asymmetry in these matrices is expected as
the model along the x-axis and y-axis use different training strategies. What is interesting
about the asymmetry is that earlier layers in model B remain more like later layers in
model A, but not vise-versa. The most noticeable occurrences are 1) within stage 1, 2)
between stage 1 of model B and stage 2 of model A, and 3) between stage 2 of model B
and stage 3 of model A. More surprising is that the similarity between layers 3 and 4 in
model B and the layers in stage 2 of model A increase the deeper the layers in model A are.
For example, layer 4 in model B is more similar to layer 7 than to layer 6 by 0.03 which is
a 10% relative increase in similarity. These are the only examples in our NNLS matrices of
a non-negligible increase in similarity when depth between layers increases. The increased

44

similarity earlier on in model B is another point of evidence which supports our hypothesis
that augmentation allows a model to learn to shift certain feature detectors to earlier in
the model. Note, we suspect that the shift is greater than what we can measure, as new
feature detectors are likely being learned to take the place of ones that got shifted to earlier
in the model thereby obscuring the impact.

4.6 Discussion

In this chapter we compared a CNN trained with and trained without augmentations to one
another on both the training and validation partitions. By using RRA we gained several
novel insights into the behavior of a ResNet20 model trained on CIFAR10, and on the
impacts to the model when using augmentations during training.

The first novel insight is that the training and the validation RRs have a high degree
of similarity as measured by ID, NNCS, intra-NNLS, and inter-NNLS. This informs us
that the model is not inherently processing the two data distributions differently from
one another. For ID, the ID curves closely followed one another, with the validation
curves remaining consistently higher than the training curves. For NNCS, the training
and validation curves are nearly identical for the first two thirds of the model. And for
intra-NNLS and inter-NNLS, the NNLS matrices differed by under 1%. The similarities are
independent of whether the model was trained with augmentations. The one significant
difference between the training and validations curves is observed using NNCS in the last
third of the model, where we see evidence of overfitting occurring. Using these observations,
we know exactly where to focus our efforts to improve model performance.

The second novel insight from our application of RRA is that using augmentations
during training allows a model to learn the same RR more consistently. By using inter-NNLS
the average similarity between different runs of the same model configuration increased
when augmentation is applied. The increased similarity is important because it tells us
that the model is not learning different behaviour from the augmentations but instead
converging on a more general way of extracting useful latent information. On the other
hand, if augmentations were used and the model similarities diverged, we would know that
the learning processes were travelling unique paths in the weight space.

The third insight from using RRA is that the layer design of each layer has an impact
on the transition between distinct phases in a model’s RR. While this has been shown using
other layer similarity metrics, to the best of our knowledge no other work as shown that
the effects of the model architecture are not consistent between latent embedding-based

45

metrics, and that the depth of the given layer is a crucial factor on how the metrics are
affected.

Finally, the fourth and most significant insight from our RRA is that we show compelling
evidence that adding augmentations during the training process allows a CNN to better
learn lower-level feature detectors earlier in the model’s layers and opens model capacity to
learn additional feature detectors in the deeper layers. This observation is demonstrated
through the increase in ID in the early layers, the increase NNCS in the middle layers,
the decrease in intra-NNLS between sequential layers, and elevated inter-NNLS between
early layers of a model trained with augmentation and the deeper layers of a model trained
without augmentation. Knowing the internal effects that augmentations have on a CNN
could allow for a more cohesive design strategy to be employed instead of only considering
performance-based outcomes.

Overall, the experiments and the corresponding observations within this chapter show
the need for a cohesive analytic framework capable of measuring a wide variety of aspects of
a CNN’s behaviour. Had we only relied on a single metric for analysis many of the effects of
augmentation on the training and validation partitions would have been missed. While our
analysis covered many aspects of a CNN, the underlying kNN model still allows for many
additional pieces of information to be extracted. But first we focus on better understanding
how the construction of the kNN effects the subsequent metrics used in this chapter.

46

(a) NNLS Train (b) NNLS Val

(c) NNLS No Aug. vs. With Aug. (d) NNLS Train vs. Val

Figure 4.4: Trends extracted from the NNLS matrices in Figure 4.3. Figure 4.4a and Figure 4.4b
compares the self-layer similarities (i.e., the bottom left to top right cells) for the training partition
and validation partition, respectively. Figure 4.4c shows the difference between the self-layer
similarity of models trained with augmentations and without augmentation. Figure 4.4d shows
how the training and validation self-layer similarities compare to one another.

47

Chapter 5

The Effects of the Number of Sample
and Number of Neighbours on the
Observed Representational Response

When building the kNN for RRA one must choose the number of samples and the number
of neighbours per sample. In Chapter 4 we used a specific number of samples and number
of neighbours to construct the kNN used for RRA when analyzing the ResNet20 CIFAR10
model. Before progressing with our study of a CNN’s RR, we first explore how the choice
of these kNN hyperparameters impact the downstream RR metrics. In this chapter we
focus on the interplay between the number of samples, the number of neighbours, and
how altering these properties of the kNNs affects the quantities observed from each RR
metric under consideration. Performing this analysis is critical for three reasons. First,
to better understand how the RRA metrics will behave as the characteristics of a dataset
changes. Second, to see if using a complete dataset is required for RRA analysis or if a
representative subset is sufficient allowing for substantial computational savings. Third,
to understand how the considered locality (controlled through the number of neighbours)
affects the RRA metrics. Note that the constructions used in Chapter 4 were derived from
results of this chapter. We felt it appropriate to introduce the reader to a concrete example
of RRA before analyzing the intricacies of RRA kNN construction.

We extend our analysis to using both the CIFAR10 dataset and a 50-class subset of
the ImageNet64x64 dataset [12]. ImageNet64x64 is a spatial down sampling of all images
in the ImageNet dataset to 64 by 64 pixels. We refer to our 50-class subset as either
ImageNet64x64-50 or Img64-50 for short. ImageNet64x64-50 has 1000 samples for each

48

Table 5.1: ResNet20 Training Results

Model Training Acc. (%) Validation Acc. (%)

CIFAR10 1.0 ± 0.0 81.0 ± 0.46
Img64-50 1.0 ± 0.0 57.8 ± 0.1

class as to maintain a class balance. We selected 50 classes so that the total number of
samples is the same as the CIFAR10 dataset. We use a ResNet20 for both datasets. Images
in ImageNet64x64-50 have a height and width of 64. As such, the resulting feature maps
for all layers in the ResNet20 model with a spatial dimension have double the height and
double the width compared to applying the ResNet20 on CIFAR10. See Table 4.1 for
the number of features per layer when applying ResNet20 to the CIFAR10 dataset. No
augmentations are used during training for the experiments in this chapter as to allow for a
more controlled set of experiments, however all samples are still used for training regardless
of the number of samples used to construct the kNN. Like with most figures in this work,
figures and numbers are averaged across 8 unique runs for any given model configuration.
In this chapter we leave out the standard deviation bars in the figures given the number
of curves per figure. The training and validation accuracy for both datasets are shown in
Figure 5.1.

5.1 Effects on Intrinsic Dimensionality

We begin our analysis by investigating the effect the number of samples has on the measured
ID at various points in a CNN. Since the ID approximator we use is only concerned with a
sample’s two nearest neighbours it will be unaffected by changes in the number of neighbours.
As such we limit our investigation to changes in the number of samples. The seminal work
by Ansuini et al. [3] used ID on a CNN to only investigate the effects of changing the
number of samples had on the later layers of a CNN. Specifically, they noted that the
number of samples used to construct the kNN has minimal effect on the calculated ID.
A limitation of their analysis is that they limited their scope to the last few layers of a
CNN. We extend this initial investigation to a spanning subset (from the input data to
the last layer) of feature representations. A core component to the TwoNN estimator is
the reliance on ratio between the second closest neighbour to the first closest neighbour
for every sample in the kNN. Our first experiment investigates the distribution of TwoNN
neighbour ratios as the number of samples is increased. Figure 5.1 visualizes the likelihood
distributions for the 0th (raw data), 7th, 8th, and 12th layers’ two-nearest-neighbour ratios
µ = r2

r1
for different number of samples used to construct the kNNs.

For each of the layers we visualize the two-nearest-neighbour ratio distributions between
1 and 1.05 as over 90% of the distributions lie within this bound. The distributions for each

49

(a) Layer 0 (b) Layer 7

(c) Layer 8 (d) Layer 12

Figure 5.1: A visualization of the two nearest neighbour distance ratios for a selection of layers in
a ResNet20 model applied to a CIFAR10 dataset. The distribution for each layer is shown when
using a varying number of samples to generate the underlying kNN.

layer all follow a similar trend starting midrange in the likelihood values at a ratio of 1,
quickly peaking at approximately 1.002, then quickly diminishing towards a likelihood of 0.
Of interest is the fact that the ratio at which the likelihood peaks is consistent across all
layers despite different feature map dimension sizes, intrinsic dimension of the layer (discuss
below, and shown in Figure 5.2), and feature representations within each layer (i.e., what
the feature within a layer represents). This trend is consistent across all layers not just the
ones shown in Figure 5.1.

One aspect where the trends differ between layers is the magnitude of the initial likelihood
(at a ratio of 1.0), the peak likelihood (near a ratio of 1.002), and the size of the likelihood’s
tail (as the ratio moves towards infinity). Initial layers and later layers in the CNN have

50

(a) CIFAR10 (b) ImageNet64x64-50

Figure 5.2: ID curves vs. the number of samples used to generate the underlying kNN. The left
figure shows the ID curves for the CIFAR10 dataset, and the right figure shows the ID curves for
the ImageNet64x64-50 dataset.

‘shorter’ and ‘wider’ ratio distributions while layers in the middle of the CNN have ‘taller’
and ‘narrower’ ratio distributions. A notable difference between our visualization of the
ratio distribution and the theoretical underpinnings of the TwoNN ID approximator is the
assumed form of the distribution. The TwoNN ID approximator assumes that the nearest
neighbour ratio distributions have an exponential form (i.e., λe−λx for x > 0). However,
our experiments deviate from an exponential distribution in the lower ratios with a lower
likelihood than the distribution’s peak. This observation is consistent for ResNet20 models
trained on CIFAR10 and ImageNet64x64-50 datasets (not depicted).

Another difference between the likelihood distributions between layers is how these
distributions change as the number of samples used to construct the kNN increases. Looking
specifically at peak likelihood, the early layers and later layers follow a similar trend where
the peak likelihood gradually monotonically increases as the number of samples used to
construct the kNN increases; such a tread is visible in layer 0 (Figure 5.1a) and layer 12
(Figure 5.1d). However, we observe a mix of patterns in the middle layers of the CNN. Layer
7 (Figure 5.1b) follows the monotonic trend until the number of samples used is over 10000,
while Layer 8 (Figure 5.1c) shows no such trend. On average, most layers stick closely with
the monotonically increasing trend with minor deviation. The results for the CIFAR10
model are more consistent with monotonically increasing trends than ImageNet64x64-50.

Next, we look at ID curves for the ResNet20 model trained separately on CIFAR10
(Figure 5.2a) and on ImageNet64x64-50 (Figure 5.2b), respectively. The focus of this

51

experiment is to determine whether it is necessary to use all the samples from a dataset to
accurately measure the ID of a CNN. Previous works [3] focus on consistency was limited to
the last few layers of the network they investigated. Moreover, previous work limited such
inquiry to a synthetic dataset on a limited number of samples (i.e., under 1440 samples [3]).
We intentionally focus on more realistic image classification datasets and consider datasets
consisting of up to 50000 samples.

The set of ID curves for CIFAR10 follow the known hunchback pattern where the
ID is lower early in the model, quickly increases and peaks in the first few layers, then
gradually decreases as one moves towards the later layers in the network. The middle of
the model exhibits more dynamic patterns as the number of samples increases. Starting
with 1000 samples (the blue curve) we observe that the ID curve still captures the main
hunchback trend. In the first 4 layers (layers 0 to 3) the ID curve increases from 24 to 63.
The ID curves increase as the number of samples used increases beyond 2500. However,
at 40000 samples the ID curve for the early layers once again settles closer to the initial
1000 sample ID curve. Moving to the middle layers of the CNN, the general trend in the
middle of the CNN has the ID curve’s magnitude progressively decrease as the number
of samples increases. Unlike the initial layers and end layers, the middle layers show no
sign of converging to consistent ID values indicating that the CIFAR10 data might not be
representative of the true underlying distribution. The consistent downward trend in the
middle of the CNN only appears above 10000 samples. Looking at global ID curve trends
on curves 10000 and above we see the emergence of a previously unobserved pattern in
which the ID curve levels off for layers 6, 7, and 8 before decreasing again. We call this
pattern the double-hunchback pattern. The emergence of this new pattern as the number
of samples is increased demonstrates how the choice in the kNN’s parameterization affects
what phenomenon are observable.

The set of ID curves for ImageNet64x64-50 in Figure 5.2b follows a similar hunchback
progression (in that the curves starts low, increase throughout the CNN, and finally decreases
towards the minimal ID) as CIFAR10. In the initial layers for ImageNet64x64-50 (layers 0
to 2) there is a consistent increase in ID curves; the curves do not decrease as the number
of samples reaches the size of the dataset.

The main differences between CIFAR10 and ImageNet64x64-50 are primarily in how
the middle layers’ ID curves change as the number of samples used to construct the kNNs
increase. Curves constructed with samples between 1000 and 5000 all follow a similar
pattern, except for a deviation in the 3rd layer where the ID is lower than the other two
curves. The curve constructed with 10000 has a significantly higher ID between layer 5 and
layer 8, but this difference again diminishes with the curve constructed with 20000 samples.
The most interesting curve transition is between 20000 and 30000 samples. At 30000

52

samples there is a dramatic change in layers 5 to 9 where the ID curve has lower values.
It is during this transition that the same double hunchback emerges. The characteristic
plateau of the double hunchback pattern appears in the same region of the CNN as it did
with the CIFAR10 dataset (albeit one layer earlier). The initial progression of the double
hunchback for both datasets starts with a decrease in observed ID between the 4th and 5th

layers. For ImageNet64x64-50 the drop off is more proportionally pronounced.

Like the tests performed on CIFAR10 by Ansuini et al. [3], their tests on ImageNet
are also limited to a small subset of 3.5k samples out of the entire dataset of over 1.2M
samples. While ImageNet64x64-50 is still a subsampled dataset (in both feature map size
and number of samples), we demonstrate that expanding the ID calculation to a more
representative subset over 14x the size (50k samples instead of 3.5k) reveals the existence
of the same double-hunchback pattern that was observed in the ResNet20 model trained on
CIFAR10. Overall, our experiments reveal that ID is indeed sensitive to a change in the
number of samples used to construct the kNNs.

5.2 Effects on Nearest Neighbour Class Similarity

Now we investigate how the choice in number of samples and the number of neighbours used
to construct the kNN affects the observed NNCS in the ResNet20 model. Because we are
using a classification CNN it is expected that samples within a class become more clustered
as the features move deeper in the CNN. We must determine under what parameterization
and to what degree this phenomenon is observable to ensure we do not obscure basic
information contained within the kNN while studying a CNN’s representational response.

As the parameters under investigation vary between extremes, the observed NNCS
will undergo large changes. As one transitions from the beginning to end of a CNN it is
expected that the NNCS transitions from a low number, near 1

Nclasses
, to a value near the

classification accuracy of the model. More specifically, we expect the initial NNCS values
to be slightly above 1

Nclasses
since some inter-class similarity in the raw pixel values will

correlate. As the data representation progresses deeper in the CNN, we expect the NNCS
to increase in value and approach the performance of the CNN’s classification accuracy (as
seen with the related approach linear probing [2]).

For many of the trends we predict that the nature of the change will be conditional on
the relative ratio between the number of neighbours per samples Nneighbours and the number
of samples Nsamples in the dataset. Such a ratio represents important information with
respect to the local verse global inherent bias within the kNN. For example, if Nneighbours

53

is decreased, a more local region in the feature manifold is modelled and a corresponding
increase in the overall trend line (across layers) of NNCS is expected since the closest
neighbours to a given samples are more likely to be from the same class in a non-random
classifier. If Nsamples is then decreased to keep the ratio consistent then it is expected to
have the observed NNCS trend to adjust back to near the original observed trend line. For
a given kNN let the ratio between the number of neighbours per sample to the number
of samples in the data partition, which we call the Neighbour Density Ratio (NDR), be
defined as

NDR =
Nneighbours

Nsamples

(5.1)

where the NDR is bounded between 2
Nsamples

and 1.0.

One trend where NDR will have a large effect on the observed NNCS is in the later layers
of the CNN when the NDR is proportional to or lower than 1

Nclasses
(assuming a balanced

dataset). When NDR is above 1
Nclasses

then the enforced clustering of classes (learned

through training) will be imprecisely measured. For example, with a perfect classifier with
large margins between class clusters it is guaranteed that the neighbours of any given
sample will contain at least one sample from another class if the NDR is above 1

Nclasses
. As

we consider more locally constrained kNNs (i.e., a smaller NDR) it is expected that the
observed NNCS will increase to represent the true NNCS of the underlying data manifold
(i.e., the NNCS measured if an infinite i.i.d. data distribution was sampled).

We expect the number of samples used in a kNN to have gradually diminishing effects
on the change in observed NNCS while keeping NDR constant. The reasoning for this is
that Nsamples >> Nclasses for both the CIFAR10 dataset and the ImageNet64x64-50 dataset.
But since ImageNet64x64-50 has more classes, we suspect that the stabilization period
of the NNCS will take additional samples when compared to CIFAR10. An extension of
NDR could be to include the number of classes as a relevant variable, but we leave this
consideration for future experiments as we do not control which classes are sampled from
ImageNet64x64 to create ImageNet64x64-50 in this set of experiments.

Figure 5.3 depicts the results for CIFAR10 and Figure 5.4 depicts the results for
ImageNet64x64-50. The plot in each figure contains the NNCS trend lines for a fixed
number of neighbours across all layers in the CNN. Each dataset is tested on using a
1000 sample class balanced subset, and a 10000 sample class balanced subset. The set of
number of neighbours used to construct the kNN for CIFAR10 follows the exponential
pattern total samples

10x/3
where x ranges from 0 to 6 in integer increments; at x = 3 the number

of neighbours per sample equals the number of samples per class. Since ImageNet64x64-50
has more classes we adjust the increment pattern to total samples

50x/2
where x ranges from 0 to 4

54

(a) NNCS - CIFAR10 - 1000 Samples (b) NNCS - CIFAR10 - 10000 Samples

Figure 5.3: NNCS curves vs. the number of kNN neighbours used to generate the underlying
kNN for the CFIAR10 dataset. The left and right figures shows the NNCS curves when 1000 and
10000 data samples are used in the kNN, respectively.

in integer increments. Now the number of neighbours per sample is equal to the samples
per class at x = 2. Less steps are taken for ImageNet64x64-50 as to have each step remain
meaningful.

Looking at Figure 5.3a we see the seven NNCS curves, one for each Nneighbours under
consideration. As Nneighbours increases there is a monotonic decrease in the observed NNCS.
The degree of the decrease varies depending on the layer of the CNN. The layers between
layer 0 to layer 8 experience moderate amounts of change. Amongst this group of layers,
layer 3 experiences the least change, while layer 8 experiences the greatest change. Each
successive step in Nneighbours results in an approximately uniform decrease in NNCS. All
layers in the CNN settle at a NNCS of 0.1 (as expected in a balanced dataset with 10
classes). Layer 9 breaks the moderate change in NNCS trend as it starts with a higher
NNCS of 0.72, has a larger variation in NNCS increments, but then still settling at a NNCS
of 0.1. Layers 10 and onward starts at or near a NNCS of 1.0, but these layers do not
see a significant change in NNCS until the third Nneighbours value of 46. There is a major
inflection point in NNCS increments when NDRi≥10

1000 = 0.1; that is, the relative difference
between the NNCS at Nneighbours = 46 and Nneighbours = 100 is over five times smaller than
the difference between the NNCS at Nneighbours = 100 and Nneighbours = 215.

Moving from layer 0 to layer 12, there is an upward trending change in the NNCS curves.
The initial NNCS contraction is present in all of the non-pathological curves (i.e., when
the number of samples equals the number of neighbours). Of note is that the initial NNCS

55

(a) NNCS - Img64-50 - 1000 Samples (b) NNCS - Img64-50 - 10000 Samples

Figure 5.4: NNCS curves vs. the number of kNN neighbours used to generate the underlying
kNN for the ImagenNet64x64-50 dataset. The left and right figures shows the NNCS curves when
1000 and 10000 data samples are used in the kNN, respectively.

contraction is present when as little as 1000 samples are used, while the peak in ID only
becomes consistently observable with 5000 or more samples. Like with the contraction, the
NNCS cluster spike is also visible in all non-pathological curves.

When moving from 1000 samples (Figure 5.3a) to 10000 samples (Figure 5.3b) we make
the same corresponding order of magnitude increase to the respective number of neighbours
used for each NNCS curve. For example, 10 turns into 100, and 215 turns into 2154, etc.
Note that the 10000 sample subset of the CIFAR10 dataset is not a strict superset of the
1000 sample CIFAR10 subset. Comparing the respective curves, we see a limited change in
the NNCS trend curves, with each respective point on each of the NNCS curves changing
less than 0.01 NNCS on average. All major trends observed for NNCS curves generated
using 1000 samples are also present in the NNCS curves generated using 10000 samples,
including the initial NNCS contraction and the NNCS cluster spike.

The NNCS trend curves for ImageNet64x64-50 are shown in Figure 5.4a and Figure 5.4b,
with 1000 samples and 10000 samples used to construct the kNNs, respectively. Looking at
the ImageNet64x64-50 NNCS curves in Figure 5.4a, one can see several commonalities when
compared to the respective curves generated using the CIFAR10 dataset in Figure 5.3a.
Note the curve generated with Nneighbours = 2 breaks the establish exponential cadence
discussed above as to ensure that the ID can still be calculated from the kNN.

At layer 0 the NNCS curves start low. When Nneighbours = 2 the NNCS is equal to 0.042,
approximately double 1

Nclasses
. At layer 1 there is a small upward step in the observed NNCS

56

before experiencing a decrease in NNCS. With respect to the initial NNCS contraction
the minimum NNCS in the contraction is now at layer 4 instead of layer 3. The shift in
the contraction’s minimum also lengthens the number of layers with which the contraction
takes place. After the contraction’s minimum, the NNCS curves experience a small increase
to where the NNCS is about equal to the NNCS values before the contraction. Once the
feature maps hit layer 8 the NNCS curves undergo a quick rise in NNCS values. Like with
the initial NNCS contraction, the rise in NNCS values appears similar to the NNCS cluster
spike observed in the CIFAR10 experiments. In the CIFAR10 NNCS cluster spike the rate
of change between the 10th and 11th layer is minor compared to the rate of change between
the previous layers. But with ImageNet64x64-50 the rate of change between the 10th and
11th layer is observed to be greater than the preceding rates of change. In the last two
layers of the CNN the rate of NNCS change between layers is substantially reduced. Unlike
with CIFAR10 the NNCS values do not come close to 1.0, nor do they remain as stable (at
least when Nneighbours is greater than or equal to the neighbour inflection point) despite the
classifier itself achieving a perfect accuracy on the training data.

Comparing the NNCS curves for ImageNet64x64-50 generated with 10000 samples to
1000 samples we see the same transitory patterns discussed above but with some subtle
differences. First there is a general increase in the observed NNCS between all respective
non-pathological curves. The increase is non-trivial for the three curves constructed with
Nneighbours ≤ 20, with Nneighbours = 4 experiencing the most pronounced change. The
change for Nneighbours = 4 is likely because the neighbourhood size of 4 now more closely
fits in to the exponential cadence between neighbourhood sizes. The increase at layer 0 no
longer follows the observed trend in which the NNCS was approximately double 1

Nclasses
.

Looking closer at Nneighbours = 4 at layer 6 and layer 7, a new trend becomes more
apparent in which the NNCS curves show a decrease greater than 0.02 NNCS. While the
decrease is also present when 1000 samples are used, the decrease is relatively insignificant
when compared to other phenomenon observed along the NNCS curves. At 10000 samples
the new phenomenon is still relatively small, but is now no longer hidden by the lack
of precision. At 10000 samples all non-pathological NNCS curves experience a greater
difference between layer 6 and layer 7. The final notable difference is a large increase in
observed NNCS at layer 11 and layer 12, but despite the increase the observed NNCS still
fails to approach the performance of the classifier on the training data.

57

5.3 Effects on Nearest Neighbour Layer Similarity

So far, we have demonstrated that the ID and NNCS metrics observe different qualities
depending on the number of samples used to construct the kNN and the number of
neighbours used for each sample. We continue our analysis by looking at the effects these
hyper-parameters have on the NNLS’s ability to observe properties of a CNN’s RR. In
Figure 5.5 we look at the qualitative properties of the intra-NNLS matrix when Nsamples and
Nneighbours are changed. During this qualitative comparison we will be looking at general
trends as one or both variables are altered, and what are the global trends within the NNLS
matrix and which if any regions of the matrix are most impacted. The goal is to understand
what patterns of a CNN’s RR are visually observable at various kNN parameterizations.

In the top row of Figure 5.5 Nsamples is held constant while Nneighbours is increased from
20 on the left to 700 on the right. Here we see that most high similarity layers lie on or
near the diagonal. With 20 neighbours per sample, we see the same block structure that
reflects the stage structure of the ResNet20 model. The further a layer comparison is from
the self-layer diagonal the lower the similarity. Layers on opposite sides of the CNN have
near 0 similarity. As the number of neighbours increases to 70 in Figure 5.5b there is an
overall increase of average similarity between layers. The largest difference is the inter-layer
similarities between layers 9 to 12 which now appear to form a more definitive block like
group. Unlike other block groups (e.g., layer 2 to 4, and layers 5 to 7) layers 9 to 12 do not
all have the same feature map dimensionality. At 100 samples in Figure 5.5c the NDR is
now equal to the 1

C
. Much like the last transition there is an overall increase in both average

inter-layer similarity and minimum inter-layer similarity. All the main block structures are
still visually intact. The same pattern continues for Nneighbours = 300 and Nneighbours = 700
where both the average and minimum increase, but with the block structure becoming less
pronounced as both the average and minimum similarity trend towards 1.0. Note, when
Nneighbours = Nsamples each layer comparison in NNLS matrix would be 1.0.

In the middle row of Figure 5.5 Nsamples is increased from 1000 samples to 50000 samples
while Nneighbours is held constant. Qualitatively from the perspective of the NNLS matrix
increasing Nsamples has the same effect as decreasing the Nneighbours. On the right of the
middle row in Figure 5.5j we see a similar pattern to that of Figure 5.5a. As Nneighbours

decreases to 1000 in Figure 5.5f the NNLS matrix more closely resembles Figure 5.5d. In
general, the closer two matrices’ NDR values are the more visually similar they appear
to one another. For example, Figure 5.5c in the top row and Figure 5.5g in the middle
appear visually identical; both NNLS matrices are built from kNNs with NDR ratios of 0.1.
The figures in the bottom row of Figure 5.5 provide additional evidence of this observation.
Each figure in the bottom row is built with a kNN constructed with an NDR value of 0.01.

58

(a
)
(1
K
,
20
)

(b
)
(1
K
,
7
0
)

(c
)
(1
K
,
1
0
0
)

(d
)
(1
K
,
3
0
0
)

(e
)
(1
K
,
7
0
0
)

(f
)
(1
K
,
25
0)

(g
)
(2
.5
K
,
25
0
)

(h
)
(5
K
,
2
5
0
)

(i
)
(1
0
K
,
2
5
0
)

(j
)
(5
0
K
,
2
5
0
)

(k
)
(1
k
,
10
)

(l
)
(2
.5
k
,
25
)

(m
)
(5
k
,
5
0
)

(n
)
(1
0
k
,
1
0
0
)

(o
)
(2
0
k
,
2
0
0
)

F
ig

u
re

5.
5:

E
x
a
m
p
le
s
o
f
in
tr
a
-N

N
L
S
m
a
tr
ic
es
,
ea
ch

ca
lc
u
la
te
d
fr
o
m

a
d
iff
er
en
t
k
N
N

p
a
ra
m
et
er
iz
a
ti
o
n
.
T
h
e
tu
p
le

(N
sa

m
p
le
s
,N

n
ei
g
h
bo
u
r
s
)
in

th
e
ti
tl
e
fo
r
ea
ch

p
lo
t
in
d
ic
a
te
s
th
e
n
u
m
b
er

o
f
sa
m
p
le
s
u
se
d
to

co
n
st
ru
ct

th
e
k
N
N

a
n
d

th
e
n
u
m
b
er

o
f
n
ei
g
h
b
o
u
rs

fo
r
ea
ch

sa
m
p
le

in
th
e
k
N
N
.
T
h
e
in
d
ic
es

a
lo
n
g
ea
ch

a
x
is

sp
ec
if
y
th
e
ID

o
f
th
e
la
y
er

in
a

R
es
N
et
20

m
o
d
el
.
T
h
e
co
lo
u
r
sp
ec
tr
u
m

of
th
es
e
m
at
ri
ce
s
ar
e
th
e
sa
m
e
as

ot
h
er

N
N
L
S
fi
gu

re
s.

59

From results in Chapter 5.2 it was demonstrated that NNCS is invariant to changes
in either Nsamples and Nneigbhours as long as the NDR remained constant, and as long as
Nsamples is sufficiently large. In Figure 5.5 the same observation is made across a set of
different NNLS matrices. We now take a more rigours look at the NDR’s role in the kNN’s
ability to measure a CNN’s NNLS. To measure the difference between a given NNLS matrix
Mp with parameterization p, and another NNLS matrix Mq with parameterization q we
use the Jenson-Shannon Divergence (JSD) to compare individual values within the matrix,
and then take the mean of all the JSD calculations. Let the similarity between two NNLS
matrices Mp and Mq be defined as

NNLS SIM(Mp,Mq) =
1

lplq

∑
i,j

JSD(Mp(i, j)||Mq(i, j)) (5.2)

where the parameterizations p and q describe the CNN, dataset, and kNN settings used
to generate each NNLS matrix, respectively. Let Mp(i, j) and Mq(i, j) be the NNLS of
layer i in CNN p and layer j in CNN q. Finally, let lp and lq be the number of layers
under consideration for the CNNs p and q, respectively. We compare NNLS matrices to
one another using two methods: first, by holding Nsamples constant and comparing NNLS
matrices with similar Nneighbours to one another (Figure 5.6a), and second by holding NDR
constant and comparing NNLS matrices with similar Nsamples to one another (Figure 5.6b).

Let {si} ∈ S be an ascending ordered set where each element is the number of samples
used to construct a kNN, and let {nj} ∈ N be an ascending ordered set where each element
is the number of neighbours used to construct a kNN. For given (CNN, dataset) pair a
NNLS matrix is calculated for each (si, nj) tuple. For the tuple (si, nj) let nj be derived
using some function f which takes the index in the set j and the number of samples in the
tuple si as input. In other words, let the tuple for a given NNLS matrix parameterization
be defined as (si, nj = f(si, j)). Let the NDR for a given tuple (si, nj) be defined as
ri,j =

nj

si
. Let the set of NDR which exists for a given si be defined as R = {ri,j|si}. In the

following experiments let each NDRs for any si be equal. For example, if S = {10, 100}
and R = {0.3, 0.5, 0.7}, then N10 = {3, 5, 7}, and N100 = {30, 50, 70}, for a total of 6 unique
NNLS parameterizations.

We aggregate the set of all NNLS parameterizations into sub-groups using two different
methods. The first approach groups the NNLS matrices based on the number of samples
used to generate the kNN, while the second approach groups the NNLS matrices based on
the NDR. Using the above example, the first aggregation approach would contain 2 groups
of 3 matrices, while the second approach would contain 3 groups of 2 matrices. In the
following experiment NNLS SIM is applied between neighbouring pairs of matrices. For

60

(a) NNLS SIM - Holding Nsamples Constant (b) NNLS SIM - Holding NDR Constant

Figure 5.6: The JSD between CIFAR10 intra-NNLS matrics as the number of samples and the
number of neighbours used to generate the underlying kNN are changed. The left figure holds the
number of samples constant and changes the number of neighbours resulting in different NDR
values. The right figure holds the ratio between the number of samples and number of neighbours
constant.

a given subset of matrices, a NNLS matrix’s neighbour is the NNLS matrix to the left if it
along the non-static parameterization variable (e.g., for the first approach the non-static
variable is NDR). In the boundary case the NNLS matrix’s right neighbour is used. In the
following experiments S = {1000, 2500, 5000, 10000}, N = {0.01, 0.03, 0.1, 0.3, 1.0} is the
set of the NDRs for the CIFAR10 dataset, and N = {0.002, 0.004, 0.02, 0.14, 1.0} is the set
of the NDRs for the ImageNet64x64-50 dataset. Note that the median value of each set N
equals 1

C
.

The results for the first aggregation approach on the CIFAR10 dataset is shown in
Figure 5.6a. The curve for each subset of data has a high degree of overlap. Moving
from left to right there is an approximately linear increase in the NNLS SIM between
neighbouring NNLS matrices. Note that the x-axis is logarithmic, meaning that the relative
difference in NDR between neighbouring matrices grows exponentially. For smaller NDR
there is negligible change in the information content of the NNLS matrix even though
the number of samples used to construct the kNN is tripled. The only significant change
is between the two right most NNLS matrices. Thus, it is the change in the number of
neighbours relative to the number of samples (i.e., the absolute change in NDR) which has
the principal impact on the divergence between NNLS matrices.

The results for the second aggregation approach on the CIFAR10 dataset are shown in

61

(a) NNLS SIM - Holding Nsamples Constant (b) NNLS SIM - Holding NDR Constant

Figure 5.7: The JSD between ImageNet64x64-50 intra-NNLS matrices as the number of samples
and the number of neighbours used to generate the underlying kNN are changed. The left figure
holds the number of samples constant and changes the number of neighbours. The right figure
holds the ratio between the number of samples and number of neighbours constant.

Figure 5.6b. Two main trends emerge when the NDR is kept constant in a given subset of
NNLS matrices. The first trend is that as the number of samples increases the observed
dissimilarity between neighbouring NNLS matrices decrease. The second trend is that the
rate of change in NNLS SIM between neighbouring NNLS matrices is negatively correlated
with the NDR. That is, changing the number of samples used to construct a kNN has a
larger impact on the NNLS matrix the smaller the NDR. Overall, the difference between
any NNLS matrix with the same NDR is less than 1e-4, an order of magnitude smaller than
any change observed between NNLS matrices with different NDR in Figure 5.6a.

The results for ImageNet64x64-50 for the first aggregation approach and for the second
aggregation approach are shown in Figure 5.7a and Figure 5.7b, respectively. Note for
ImageNet64x64-50 the step progression for the NDR is changed such that the smallest NDR
results limit the number of neighbours per samples to 2 for all kNNs. In Figure 5.7a we see
the same trends that are observed with CIFAR10 with respect to the increasing divergence
between NNLS matrices the larger the NDR, and that the divergence trend is still relatively
invariant to the number of neighbours used to construct the kNN. The main variance in
the trends is with NDRs at or below 1

C
. This means when you look at a local region the

more samples you have the more reliable the NNLS matrix will be. For ImageNet64x64-50
it is likely that the smaller number of samples used per class (due to there being more
classes) is related to this observation. Figure 5.7a also demonstrates many similarities with

62

the respective CIFAR10 figure. First the NDR negatively correlates with the magnitude
of the divergence between NNLS matrices of the same NDR. Second, the NNLS matrices
for ImageNet64x64-50 for a given NDR are more like one another the larger the number
of samples. Finally, the relative divergence between NNLS matrices with the same NDR
but different number of samples is over an order of magnitude smaller than the relative
divergence between NNLS matrices with the same number of samples but with different
NDRs.

For this work we choose JSD as the core metric to compare NNLS SIM . There were
many other viable options which we did not explore beyond a cursory review. Alternatives
metrics to JSD include Kullback–Leibler divergence, L1 distance, and L2 distance. JSD
was chosen because it is bounded, symmetric, and qualitatively showed a good balance
being sensitive to larger differences while reducing, but not ignoring the impact of small
differences. On the limitations of using JSD, naively taking the mean across all JSD values
has the potential to hide, or at least under represent, the effects of changing either Nsamples

or Nneighbours. Looking at any of the plots in Figure 5.5 one will see that the most similar
NNLS values lay along layers that are compared to themselves. As one moves further from
the diagonal the similarity drops off dramatically. As such, comparing elements far from
the identity will naturally result in a lower divergence as measured by JSD. For example,
layer 3 and layer 11 will naturally have a low NNLS value. The low similarity will be true
for most parameterizations of the kNN since the layers are far apart in the CNN.

5.4 Discussion

Throughout this chapter we produced four novel contributions to better understanding the
proposed RRA framework. First, that the proposed RRA generalizes beyond a ResNet20
CIFAR10 combination. Second, that the three proposed RRA metrics are sensitive to
changes in Nsamples and Nneighbours. Third, holding a consistent neighbour density ratio
results in consistent measurements for NNCS and NNLS. Fourth, that representative RR
information can be measured using a fraction of the overall dataset.

The two datasets used in this experiment were both used in a classification context
and trained on a ResNet20 model. While CIFAR10 and ImageNet64x64-50 consist of
the same number of samples, ImageNet64x64-50 has 5 times the number of classes and
is also 4 times the total number of pixels per image. These similarities and differences
between these two datasets were detected (to some extent) by the proposed RRA framework.
Overall, the general trends of each of the three RR metrics across the two datasets were
consistent with one another and behaved in the same manner as Nsamples or Nneighbours was

63

changed. However, ImageNet64x64-50 still showed important differences when compared to
CIFAR10. For ID ImageNet64x64-50 showed a higher peak ID and required more samples
before the double hunchback pattern emerged. For NNCS ImageNet64x64-50 showed curves
consistently lower when compared to CIFAR10. Finally, for NNLS ImageNet64x64-50
showed diminished similarity between neighbouring layers. Each one of these differences is
expected given the increased complexity required to distinguish 5x more classes, the extra
number of classes in the dataset, and the reduced performance of the ResNet20 model
on the ImageNet64x64-50 dataset. These observations strengthen the evidence for the
applicability of RRA. Future work will include testing RRA on additional model-dataset
pairs.

The ID curves experienced unique behaviour depending on the depth of the layer as
Nsamples is increased. In the initial layers the ID increased before returning to initial values,
the middle layers experienced some increase before decreasing with no sign of converging,
and the final layers experienced a slight increase. Noticeably, in contrast to prior work, our
experiments identify the importance of using enough samples when calculating the ID. If
too few samples are used then the measured ID is not reflective of the true underlying ID
distribution, which results in key trends in the ID curves being obscured. However, once
enough samples are used, the trend in the curve showed minor change. Identifying the
appropriate number of samples to use for ID calculation is left for future work.

Unlike the ID curves, both NNCS and NNLS are sensitive to changes in both Nsamples

and Nneighbours. For each of these metrics increasing Nsamples or decreasing Nneighbours results
in a similar change to the measured quantities. For NNCS, an increase in Nsamples results
in an increase to the observed NNCS, and an increase in Nneighbours results in a decrease in
the observed NNCS. Conversely, for NNLS an increase in Nsamples results in a decrease in
similarity between neighboring layers, and an increase in Nneighbours results in a decrease in
similarity between layers. By knowing how ID, NNCS, and NNLS are sensitive to changes
in Nsamples and Nneighbours we are better equipped to pick appropriate values to observe the
desired quantities. Through our investigation we identified key features that only emerge
under specific values of Nsamples and Nneighbours (e.g., the ID double hunchback, or the
initial NNCS contraction). But more analysis is required to know what other features of
interest are relevant for analysis of CNNs and under what Nsamples and Nneighbours values
they emerge.

A key observation in this chapter is that if Nsamples and Nneighbours are changed propor-
tionally to one another (i.e., if the same NDR is used) then NNCS and NNLS produce near
identical results (but where the larger Nsamples is, the more stable the observed values) even
when the NDR is below 0.01 or close to 1.0. The invariance of NNCS and NNLS to Nsamples

and Nneighbours for a constant NDR informs us that we can reliably use a reduced number

64

of samples during the kNN calculation. Unfortunately, this potential for computational
savings is hindered by the need of ID to have a sufficiently large number of samples to get
a stable measurement. Where the ID relies on actual distances between neighbours, the
NNCS and NNLS simply rely on discrete relations between neighbours (i.e., binary relations
of are they the same class, or are they neighbours in more than one layer). Perhaps a more
suitable complexity measure that is more invariant to the number of samples exists or can
be derived (e.g., the distribution of nearest neighbour occurrences [64]). We leave these
considerations to future work.

While we do not propose a generalized strategy for picking Nsamples and Nneighbours for
all datasets, we observed the point at which most trends became qualitatively stable for
the datasets under consideration. For ID, the curves for CIFAR10 and ImageNet64x64-50
stabilized at 10000 samples and 30000 samples, respectively. For NNCS, the curves stabilized
at NDR values sufficiently above 1

C
(where C is the number of classes in the dataset). For

NNLS, the NNLS matrices preserved similarity along the diagonal but showed minimal
similarity between layers on opposing ends of a model when the NDR was below 0.01.
Given this information we set Nneighbours =

Nsamples

10∗Nclasses
for the remainder of this work, and

leave a more rigorous selection process for future work. This heuristic provides a balance
between limiting computational costs while providing relevant and informative information
on the RRA for the models under consideration. Based on when the ID curves stabilize
for each dataset, we use 15000 randomly selected samples with 150 neighbours per sample
for CIFAR10, and 30000 randomly selected samples with 60 neighbours per sample for
ImageNet64x64-50. The samples used are kept consistent between each of the 8 models for
a given model-dataset pair.

65

Chapter 6

The Effects of Feature Dimensionality
on the Observed Representational
Response

In the last chapter it was shown that changing either the Nsamples or Nneighbours affects the
values observed by the RR metrics. We now expand our analysis to include alterations to
the dimensionality of individual samples. The size of the feature maps throughout a CNN
take on a variety of sizes. For the ResNet20 model trained on CIFAR10 the smallest feature
map size is only 10 features at the model’s head. The largest feature map in this model is
(32, 32, 16) = 16, 384 features large. When the model is trained on ImageNet64x64-50 the
largest feature map is 4 times as large. In practice, when large CNNs are used on higher
resolution images, the size of a feature can easily surpass tens of millions of features. If
the dataset has a few thousand samples then calculating the kNN using these large feature
maps requires expensive computational resources.

Other approaches that work directly with the feature maps throughout a CNN, such
as linear probing [2], have also identified the large dimensionality of CNN features to be
computationally problematic and that reducing the size of the feature map is a necessary
practical compromise. In this chapter we investigate the consequences of using various
dimensionality reduction operations on a dataset’s features for a given layer in a CNN, and
how different degrees of dimensionality reduction affects 1) the quality of the kNN, and 2)
the values observed by the RR metrics.

66

6.1 Dimensionality Reduction

There are a host of potential data dimensionality reduction techniques, some require the
calculation of a transformation matrix like PCA [21]. Methods like PCA require the
calculation of eigenvectors which is an expensive calculation that also requires more unique
samples than there are features. Random projection addresses this issue by randomly
sampling a transformation matrix from a specific distribution that guarantees that the
distance between samples is preserved within an upper bound. However, both PCA and
random projection require storing a large transformation matrix. For deeper CNNs with
larger feature maps, the storage of numerous transformation matrices can be storage and
memory prohibitive. Non-parametric methods like TNSE [76] and UMAP [58] avoid the
storage of the transformation matrix by reducing the dimension of the data in an iterative
process that considers both the local and global structure of the dataset. These methods
are computationally expensive to use, and require the entire mapping to be re-calculated
when additional samples are added to the dataset. Other approaches like pooling make
use of simple, easy-to-compute heuristics that leverage apriori knowledge of the ambient
manifold for which the individual dataset samples are embedded in. For images, pooling
assumes a spatial relationship between features, and assumes some level of local redundancy
of the information in features near one another. In this chapter we investigate the effects
of applying average pooling and max pooling to a layer’s feature maps prior to the kNN
calculation in RRA.

6.2 Multi Scale Representational Response Analysis

We now introduce Multi-Scale Representational Response Analysis (MS-RRA). At a high
level the proposed method investigates how the similarity between latent representations
at different spatial scales changes. More specifically, for a given set of data X we first
extract latent representations of X for each operation of interest in the CNN. Each latent
representation Yi is independently spatially down sampled for each scale s ∈ S. Let
Y s
i = P (Yi, s) be the scaled latent representation of X output by operation vv and down

sampled by scale s using some function P . Then for each Y s
i a kNN Ks

i is calculated and
used for RRA. The complete process is described in Algorithm 1.

For the purposes of this work we only explore spatial pooling-based operations. By
spatial, we mean the pooling operation is only applied along the height and width of the
feature maps, and not the channel dimension. We investigate two spatial pooling-based
operations 1) average pooling, and 2) max pooling. For each of these methods we explore

67

Algorithm 1 MS-RRA
Input: X, Z, F
Output: {IDs

i }, {NNCSs
i }, {NNLSs

i }
1: for i do ▷ For each operation in CNN F of interest
2: Yi ← fi(X) ▷ Extract features at operation i
3: for s do ▷ For each scale
4: Y s

i ← P (Yi, s) ▷ Scale the features
5: Ks

i ← g(Y s
i) ▷ Calculate the kNN

6: IDs
i ← ID(Ks

i) ▷ Calculate ID
7: NNCSs

i ← NNCS(Ks
i , Z) ▷ Calculate class similarity

8: NNLSs
i ← NNLS(Ks

i , K
s
i) ▷ Calculate intra-NNLS

9: end for
10: end for

the following non-overlapping windows sizes: 2, 4, 8, and global, where the window size
refers to the side length of a square window. For global pooling the entire feature map
height and width is pooled to a single value per channel. Each size is independently applied
to the full-sized features at each layer in the same ResNet20 model used in the last section.
No pooling operation is applied if a given feature map only has a channel dimension. The
algorithm is shown in Algorithm 1.

Within this chapter we limit our investigation to a single parameterization of the kNN. For
the CIFAR10 dataset Nsamples = 15000, and for ImageNet64x64-50 data Nsamples = 30000.

For both datasets we use Nneighbours =
Nsamples

10∗Nclasses
; while somewhat arbitrary, this choice of

Nneighbours allows the novel phenomenon observed in Chapter 5 to be observable in the
baseline (i.e., unpooled) RR metrics values. Thus, for CIFAR10 Nneighbours = 150, and for
ImageNet64x64-50 Nneighbours = 60.

6.3 MS-RRA and ID

Conceptually, it is expected that the pooling operations do two things, first that it will
directly reduce the ambient dimension of the feature map it was applied to, and second
it will either smooth out or directly remove local features thereby reducing the intrinsic
dimensionality of the feature space. As such, we hypothesize that all layers for which
pooling is applied will see a reduction in the observed ID. Comparing average pool to
max pool, it is expected that average pooling will result in an overall greater reduction in

68

(a) CIFAR10 - Average Pooling (b) CIFAR10 - Max Pooling

Figure 6.1: The ID curves for a ResNet20 trained on CIFAR10. The left and right figures show
the ID curves when pooling is applied to the features maps at different window sizes for average
pooling and max pooling, respectively.

observed ID as the averaging operation will smooth out the intrinsic manifold the dataset
is embedded in, whereas max pooling will naturally preserve the salient features for a given
window size to a greater extent. By extension, as the window size of the pooling operation
is increased it is expected that max pooling will also retain the salient features for longer.

Figure 6.1 shows the impact to the observed ID when the respective variants of pooling
are applied to the base feature maps of the ResNet20 models. Each plot has 5 curves:
the blue curve is the ID for unaltered features, and the orange curve, green curve, red
curve, and purple curve are IDs for 2x, 4x, 8x, and global pooling, respectively. In general,
the greater the pooling window size the large the decrease in observed ID. However, the
decrease in ID is neither proportionally uniform across all layers, nor strongly correlated
with the pooling window size.

Looking at average pooling to CIFAR10 in Figure 6.1a, one can see the double hunchback
pattern in blue that was discussed in previous experiments. When 2x average pooling is
applied there is a general decrease in the magnitude, but the double hunchback pattern is
still well defined. The ID decrease is most substantially in the middle layers of the CNN
with the largest decline occurring at layer 5. Note, layer 5 already contains a natural 2x
reduction in the feature map height and width. Moving to 4x average pooling, all layers
continue to experience a decline in observed ID; now the general shape of the ID curves is
altered. Layers between layer 0 to layer 4 see a large enough relative drop where the peak
of the first hunch drops below the peak of the second hunch, with layers 5, 6, and 7 now

69

firmly forming an ID valley between the two peeks. The decrease in the latter layers of the
CNN experience the smallest relative drop.

When 8x average pooling is applied the ID curve continues to lose the double hunchback
shape, though it does not disappear entirely. When 8x is applied to layers 8, 9, and 10
they are reduced to features maps with only a channel dimension of size 64. Now the
features in each of these three layers can be viewed as containing only global information.
Between layer 8 to layer 12 (i.e., the feature maps containing only global information) the
ID monotonically decreases. Note, applying 8x average pooling to layer 10 is the same as
the GAP operation performed at layer 11. Finally, when global average pooling is applied
to layer 0 it only has 3 dimensions, layer 1 to 4 have 16 dimensions, layer 5 to layer 7 have
32 dimensions, layer 8 to 11 have 64 dimensions, and layer 12 has 10 dimensions. The first
3 of these layer groups are associated with a narrow range of IDs. Layer 0 has an ID of 3,
layer 1 to layer 4 have an ID between 8 to 10, and layer 5 to layer 7 have an ID between
23 to 35. Across this set of layers, the ID monotonically increases with large jumps in ID
happening between feature maps of different dimensions. It is not until the final ResNet
stage that a decrease in ID is observed. For global average pooling the trend for layer 8
and beyond is the same as 8x average pooling.

When global average pooling is applied to a feature map, it inherently removes all
spatial information. So, when we calculate the ID for these feature maps, we are considering
the complexity of the global presents of the features within a layer. The smaller the ID the
more dominated a set of features are relative to the entire set. Conversely, the larger the ID
the more balanced the features are being used. The increasing ID up to layer 8 indicates
that the model is gradually increasing its effective use of unique features on average. As
expected, there is a larger increase in ID as the model has more channels to work with.
What is interesting is that the ID (at a global level) begins to decrease after the first layer
in stage 3, just like the ID curve with no pooling applied. The decrease in the GAP curve
tells us that the model is focusing on a specific subset of features to make the final class
prediction. If we were to subtract the base ID curve from the global average pool curve, we
could approximate what component of the feature space complexity in each layer is global
information, and what component is local information.

Like average pooling, max pooling causes an overall decrease in the observed ID; the
larger the window the greater reduction in observed ID. However, for a given window size,
the reduction in ID is less substantial for max pooling. For 2x max pooling the double
hunchback shape is still well defined. The magnitude in reduction for every layer that
experiences a reduction is smaller than the reduction experienced during 2x average pooling.
The layers 5, 6, and 7 drop enough relative to layer 8 to make the local maximum of layer
8 more pronounced than it was for 2x average pooling. Layers 9 and beyond experience a

70

(a) Img64-50 - Average Pooling (b) Img64-50 - Max Pooling

Figure 6.2: The ID curves for a ResNet20 trained on ImageNet64x64-50. The left and right
figures show the ID curves when pooling is applied to the features maps at different window sizes
for average pooling and max pooling, respectively.

maximum reduction of 3 dimensions, showing that the key features the CNNs are considering
are sparse. When 4x max pooling is applied, the first hunch is almost flattened to the point
where the global maximum ID is now in the second hunch peak at layer 8. Layers 8 onward
continue to experience negligible reduction in ID. It is not until 8x max pooling that the
double hunchback pattern completely disappears. Now, with 8x max pooling, the ID curve
follows a single concave like shape, which is much closer in shape (but not magnitude) to
ID curves created with a smaller number of samples which are shown in Figure 5.2a. Unlike
previous transitions, layers 8 and onward experience a non-negligible decline; the decline
is significant enough to make layer 7 the peak ID. Note, the feature map at layer 7 still
has a height and width, while layer 8 is reduced to having only a channel dimension. With
8x max pooling layer 10 is not equivalent to layer 11 like it is with average pooling. This
shows the contrast between smoothing out features verse keeping only dominate ones. A
similar step wise pattern emerges when global max pooling is applied to all layers between
layer 0 and layer 7. However, now the steps have higher ID but less variation in ID.

The results for average pooling applied to the feature maps of ImageNet64x64-50 are
shown in Figure 6.2a. As a reminder the ImageNet64x64 images have double the height
and width of CIFAR10. When 2x average pooling is used the ID curve sees a small but
consistent reduction across all layers. Like with CIFAR10 2x average pooling the double
hunchback pattern is still well defined. However, in contrast to with CIFAR10 2x average
pooling, the relative reduction experienced by ImageNet64x64-50 is significantly smaller.

71

The limited change does not persist to 4x average pooling where the ID curve experiences
20 or above decrease in ID for layers between layer 1 and layer 9. The more substantial
change still leaves the double hunchback pattern intact. 8x average pooling continues to
see a drop in ID across all layers. While the double hunch back pattern is still visible, its
general shape is diminished. By this point with CIFAR10 the double hunchback pattern is
less visible than it is with ImageNet64x64-50. Throughout all the fixed average pooling
windows, the layer with the global peak in layer 4 and local peak in layer 7 does not change.
It is not until global average pooling is applied across the entire CNN for these peaks to
either disappear or be shifted. We observe the same global average pooling trend as we
observed with CIFAR10, where the ID monotonically increases until it peaks at layer 8,
from which the ID monotonically decreases until the final layer in the CNN.

The ID curves for max pooling ImageNet64x64-50 are shown in Figure 6.2b. 2x
maxpooling on ImageNet64x64-50 is the first and only example of the ID curve increasing
at any layer above the original pooling-free ID curve. This happens between layer 1 to layer
4 and at layer 8. The increase at layer 8 results in shifting the local peak in the double
hunchback to this layer. Note that the first set of layers that experience an increase all
have the same feature map dimensionality of (64, 64, 16). All other layers experience a
decrease of under 10 dimensions. Despite the increase in ID the double hunchback pattern
is still well defined. Like with average pooling, applying 4x max pooling results in a large
decrease in ID across most layers. The location of the local peaks at layer 4 and layer 7
continues to persist. 8x max pooling continues the trend of decreased ID in general with no
other substantial changes. Like with CIFAR10, for a constant pooling window size, max
pooling results in a higher ID at any given layer when compared to average pooling. Finally,
when global max pooling is applied the ID curve experiences a large reduction in observed
ID. Unlike with average pooling, the observed ID for ImageNet64x64-50 in the first two
ResNet stages form discrete steps. The ID still peaks at layer 8, but now at a larger ID,
then monotonically decreases until the final layer of the CNN.

6.4 MS-RRA and NNCS

Above it was shown that pooling the feature maps before the kNN is calculated can have a
range of consequences on the observed ID. We now investigate the effects various types of
pooling can have on the NNCS throughout a CNN. We expect that a layer’s NNCS will be
heavily influenced by the types of discriminating features a CNN learns to separate the
classes in the dataset. In this context, three important characteristics of a dataset are 1) if
the classes have similar features, 2) what the distribution of the features are, and 3) what

72

(a) CIFAR10 - Average Pooling (b) CIFAR10 - Max Pooling

Figure 6.3: The NNCS curves for a ResNet20 trained on CIFAR10. The left and right figures
show the NNCS curves when pooling is applied to the features maps at different window sizes for
average pooling and max pooling, respectively.

level of hierarchical features are used to distinguish the various classes. The similarity of
the features will determine how hard two given classes are to distinguish from one another.
The distribution of the features (both spatially and rate of occurrence) will determine how
the types of pooling interact with NNCS. Finally, the hierarchical nature of the features
will determine where in the CNN specific classes are more likely to become separable from
one another.

The results for applying average pooling on CIFAR10 are shown in Figure 6.3a. The
colour coding with respect to the size of the pooling is the same as the ID experiments.
We now briefly review the NNCS curve when pooling is not applied (i.e., the blue curve).
Starting at layer 0 (i.e., the raw dataset) one can see that the NNCS starts at 0.2, goes
through an initial NNCS contraction until layer 3, from which the NNCS gradually increases
until layer 8, at which point the NNCS spikes, and then NNCS at and beyond layer 10
approaches or equals 1.0. When 2x average pooling is applied the NNCS curve sees a small
increase for the first 5 layers. With 2x average pooling there is now only a negligible decrease
in NNCS during the layers that originally experienced the initial NNCS contraction. During
the second ResNet stage (i.e., layers 5, 6, and 7) the NNCS curve jumps between 0.12 to 0.16
NNCS. The subsequent transition between feature map sizes (i.e., between layer 7 and layer
8) also experiences a non-negligible increase in NNCS. The largest increase between layers
still happens between layer 8 and layer 9. When the average pooling window is increased to
4x the NNCS for every layer continues to increase. In addition, the subtleties in the NNCS

73

curve are diminished as the NNCS curve between layer 0 and layer 8 begins to resemble a
linearly increasing line. However, the first 5 layers still have a smaller rate of increase, and
a jump in NNCS still happens between layer 4 and layer 5. At 8x average pooling there is
no longer a general increase in NNCS values, but now some layers experience a decrease.
Despite this, the curve between layer 0 and layer 7 now more closely approximate a line.
At layer 9 the NNCS now equals 0.92 indicating a higher level of class clustering in the
latent structure of the dataset then what can be detected solely from the base (unpooled)
domain. Once all layers are pooled to only their channels using global average pooling the
NNCS between layer 0 and layer 7 (i.e., layers that still had non-channel dimensions) all
see a 0.04 to 0.07 decrease in NNCS relative to the 8x pooling curve. For layer 0, we see the
only instance of the NNCS decreasing below the identity curve. This is the first instance
where pooling window increases but NNCS decreases.

As with previous experiments, max pooling shares many common trends with average
pooling but with some key differences. In 2x max pooling layer 0 to layer 4 experience
approximately the same change in ID as 2x average pooling did; however, the jump in
NNCS between layer 4 and layer 5 is not as large. With 4x max pooling, layers between
layer 1 to layer 9 all increase between 0.03 to 0.06 NNCS when compared to 2x average
pooling. Layer 0 to layer 1 now experiences a more noticeable NNCS jump of 0.06 when
compared to 4x average pooling. However, now the NNCS between layers 1 to 4 does not
show a significant upward trend. The increasing trend does not emerge until after the layer
4 to layer 5 jump in NNCS. When 8x pooling is applied the curve between layer 1 and layer
7 finally begins to approximate a linearly increasing curve. Between layers 5 to 8 there
is a significant drop in NNCS. However, the most substantial drop in NNCS occurs once
max global pooling is applied. Most layers which experienced an increase in ID because of
max pooling see their NNCS value for global max pooling fall back to approximately the
NNCS value of the unpooled NNCS curve. The two notable exceptions are layer 0 where
the NNCS is noticeably lower, and layer 8 which remains elevated; layers beyond 8 never
experience significant changes for any pooling window size.

The results for applying average pooling to ImageNet64x64-50 are shown in Figure 6.4a.
Like with CIFAR10, we see that the identity NNCS curve contains both the initial NNCS
contraction, and the NNCS cluster spike. The main differences compared to CIFAR10 are
the reduced magnitude of the NNCS curve, that the NNCS cluster spike happens over a
larger range of layers, and that the spike doesn’t approach 1.0. With 2x average pooling
layers 0 to 4 experience minor change, layers 5 to 7 see a more substantial jump, and layer 8
sees the largest increase in NNCS out of all the layers. The increase in NNCS for subsequent
layers diminishes until only negligible change is seen in layers 11 and 12. The 4x curve
sees all NNCS values increase relative to the 2x NNCS curve, with the trend continuing

74

(a) Img64-50 - Average Pooling (b) Img64-50 - Max Pooling

Figure 6.4: The NNCS curves for a ResNet20 trained on ImageNet64x64-50. The left and right
figures show the NNCS curves when pooling is applied to the features maps at different window
sizes for average pooling and max pooling, respectively.

between 4x and 8x. Looking at the global average pooled NNCS curve, one can see that
the NNCS decreases relative to the 8x pooled curve for layers 0 to 7, but then increases
between layers 8 to 10. In general, average pooling affects ImageNet64x64-50 in a similar
manner to CIFAR10, but where the changes induced by average pooling are delayed by
one window size. That is, the shape of the NNCS curves tend to be more correlated with
the feature map size of the pooled feature map than with the magnitude of the pooling
window. In fact, when comparing pooled CIFAR10 curves and ImageNet64x64-50 curves
the average correlation coefficient between curves with equal average window size is 0.952,
and with equal feature map size is 0.969. This trend is consistent with the ID experiments
where the ID for ImageNet64x64-50 is largely unaffected by 2x pooling.

Moving to max pooling in ImageNet64x64-50, shown in Figure 6.4b, the pooled NNCS
curves are depressed relative to their average pooled counter parts for the same pooling
window size. As the pooling window size increases up to 8x the corresponding increase in
NNCS is more consistent at preserving the general trend of the identity NNCS curve. As
with CIFAR10 max pooling, the ImageNet64x64-50 max pooled curve magnitude between
layer 0 to layer 8 experiences a moderate drop in NNCS, while seeing minor changes in
latter layers. The decrease in NNCS during the early layers causes it to align with the 2x
max pooled curves. Interestingly, the global max pooled curves for both CIFAR10 and
ImageNet64x64-50 align with the NNCS curves generated using feature maps of the same
dimensionality (since 2x max pooled ImageNet64x64-50 has the same dimensionality as the

75

identity CIFAR10).

6.5 MS-RRA and Intra-NNLS

From our ID analysis we know that the complexity of the embeddings reduces as the
pooling window increases, and from our NNCS analysis we know that using increasing
global information (from larger pooling window sizes) produces greater intra-class clustering
at most points throughout a model. In this experiment we investigate how the structure
of information changes throughout a model using intra-NNLS analysis. The intra-NNLS
matrices for the CIFAR10 and ImageNet64x64-50 datasets for each pooling scale are shown
in Figure 6.5. The intra-NNLS matrix when no pooling is applied is also shown for both
models.

Looking at the identity intra-NNLS matrix for CIFAR10 we see the same similarity
block structure as discussed in Chapter 4.4. There is a non-negligible similarity between the
layers within the first and second stages, and between layers in the third stage and beyond.
The similarity between these layers is greater if they are closer to one another. All pooling
scales produce at least some change to the observed NNLS. When 2x average pooling is
applied to the features of the CIFAR10 dataset we observe a noticeable decrease in the
similarity between layers in the first two stages of the ResNet20 model. The further the
layers are from one another the greater the decrease in similarity. The decrease in similarity
is to be expected since high frequency spatial features are averaged away. As the pooling
window is increased there continues to be a decrease in overall similarity between all layers.
However, the similarity does not completely diminish and many of the trends partially
remain. Once global average pooling is applied the block like pattern disappears in the
first two stages of the ResNet20 model. The stark difference between the base intra-NNLS
matrix and the global average pool matrix indicates that it is the local spatial features
responsible for the broader similarity between the first two stages in the model.

The partial invariance to feature map size produced by average pooling in the intra-
NNLS matrices provides two potential benefits. First, that value can be extracted from
NNLS matrices without requiring the calculation of the RR kNNs using the full resolution
dataset, and second, that there is coherent structure in the manifold formed by the pooled
features. Whether the pooled manifold structure is the same structure as the base manifolds
is to be seen. We hypothesize that the structure of the manifolds between the different
scales gradually reduces the larger the pooling window. Based on the results from the ID
curves within this chapter we suspect that the structure in the early stages of the model is
most impacted.

76

Identity 2x 4x 8x Global

CIFAR10
Average
Pooling

CIFAR10
Max

Pooling

Img64-50
Average
Pooling

Img64-50
Max

Pooling

Figure 6.5: Intra-NNLS matrices computed from the latent embeddings of pooled features. The
top half of the figure shows intra-NNLS matrices for the CIFAR10 dataset, and the lower half of
the figure shows intra-NNLS matrices for the ImageNet64x64-50 dataset. For each dataset, there
is a base intra-NNLS matrix without pooling applied, and a matrix for 2x, 4x, 8x, and global
pooling windows for both average pooling and max pooling.

77

Unlike average pooling, max pooling better preserves the blocks structure between the
early layers. For 2x max pooling on the CIFAR10 dataset we see that the inter-stage
similarity between stages 1 and 2 is largely preserved; for average pooling this inter-stage
similarity was significantly degraded when as little as a 2x pooling window size is applied.
The deeper layer similarities are unaffected. Surprisingly, the inter-stage similarity remains
when 4x max pooling is applied, but at 8x max pooling only the intra-stage block structures
remain. Once global max pooling is applied all inter-layer similarity becomes negligible
except for the layers with no spatial resolution to begin with. The lack of similarity for
global max pooling tells us that a single dominate feature does not carry forward between
contiguous layers. Max pooling is different from average pooling in that max pooling
perseveres important local information, whereas average pooling removes them. Since
average pooling caused the inter-stage similarity to quickly diminish while max pooling
allows it to persist for several additional pooling sizes, we have evidence that it is the local
features that are responsible for the block structure within the base intra-NNLS matrix.

The average similarity between the layers in stage 1 and the layers in stage 2 is 0.32
for the base CIFAR10 intra-NNLS matrix. This average similarity between stages tells us
that regardless of the operations in stage 2, 32% of the structure in the latent manifolds
between the first layer of stage 1 (i.e., layer 2) to the last layer of stage 2 (i.e., layer 7) does
not experience substantial change; while the numerical values may change, the relations
between latent embeddings do not. From the max pooling experiment, we know that this
inter-stage similarity is caused by persistent local features.

The intra-NNLS matrices for the ImageNet64x64-50 dataset exhibits many of the trends
shown in the CIFAR10 analysis, but with some superficial differences. The main general
difference between the two datasets is that the average similarity in all ImageNet64x64-50
NNLS matrices have a decreased similarity; this is caused by the kNN parameterization. By
increasing the NDR it would be possible to match the similarities. When 2x average pooling
is applied the average inter-stage similarity between stages 1 and 2 is almost completely
removed while the block intra-stage similarity remains. With CIFAR10, the inter-stage
similarities were not diminished to this degree. Further experimentation is required to
determine if this difference is a result of the kNN parameterization or is an intrinsic
characteristic to the ImageNet64x64 dataset. Like with CIFAR10, as 4x to 8x average
pooling is applied the overall intra-NNLS structure is consistent. The NNLS consistency
means that the ImageNet64x64-50 latent embeddings experience the same spatial invariance.
It is not until global average pooling where the inter-layer similarities see a large decrease.
The max pooling experiments also demonstrate similar trends to the CIFAR10 max pooling,
including the preservation of elevated inter-stage similarity for 2x to 8x window sizes, and
the removal of almost all inter-layer similarity for global max pooling.

78

6.6 MS-RRA and Inter-NNLS

In the last section we applied pooling operations to the latent features and measured the
RR’s characteristics using intra-NNLS matrices. From this analysis we observed three
main things, first that pooled latent features have structure, second that the structure is
qualitatively similar to the unpooled intra-NNLS matrices but with the similarly diminishing
the greater the pooling window, and finally that the type of pooling effects the properties of
the similarity. We now examine whether the structure between the base latent embeddings
and the pooled latent embeddings are either the same (or similar), or if the structures are
substantially different from one another. This distinction is important as it will inform us
to what degree the latent structure is imposed by the model architecture, and if the latent
structure is inherently preserved across different spatial resolutions.

The following equation calculates the similarity between the base latent embeddings of
a layer and the pooled latent embeddings of another layer within the same model

Q(H1
a , H

c
b) =

1

n

n∑
i

Qs(K
1
ai, K

c
bi) (6.1)

where H1
a is kNN graph for layer a for some model generated from layer a’s features maps

at 1x scale, and Hc
b is a kNN graph for layer b in the same model generated from layer b’s

features maps at a pooled window size of c using some pooling function. Let yc
i refer to a

given set of feature embeddings at layer i and pooled with window size c, and let sci refer to
a given set of layers in stage i of a model and who’s layer features have each been pooled
with window size c.

The results of this experiment for both the CIAFR10 and ImageNet64x64-50 using
average and max pooling across different pooling window sizes are shown in Figure 6.6.
Similar to the figure in the last section, the base intra-NNLS matrix is shown on the left
for both datasets in Figure 6.6. For all other inter-NNLS matrices in Figure 6.6 the y-axis
represents the embeddings of the base unpooled features, and the x-axis represents the
embeddings for the pooled features. The window sizes used for each of the pooled layers
are displayed along the top of each column.

Looking at the inter-NNLS matrix for CIFAR10 2x average pooling we see a stark
decrease in similarity displayed in the CIFAR10 self-layer diagonal. The diagonal ones
found in the base matrix have been replaced by a convex like curve. Starting at layer 0 we
see an immediate decrease to 0.86 similarity. The self-layer similarity continues to decrease
hitting a global minimum (along the diagonal) of 0.33 at layer 5 from which it begins to

79

Identity 2x 4x 8x Global

CIFAR10
Average
Pooling

CIFAR10
Max

Pooling

Img64-50
Average
Pooling

Img64-50
Max

Pooling

Figure 6.6: Inter-NNLS matrices computed from the latent embeddings of pooled features. In
each figure the x-axis is for a model at the indicated pooling window size, and the y-axis is for the
unpooled model. The top half of the figure shows inter-NNLS matrices for the CIFAR10 dataset,
and the lower half of the figure shows inter-NNLS matrices for the ImageNet64x64-50 dataset.
For each dataset there is a base inter-NNLS matrix without pooling applied, and a matrix for 2x,
4x, 8x, and global pooling windows for both average pooling and max pooling.

80

increase back towards 1.0. At layer 11 (i.e., a layer with no spatial dimension) the similarity
once again equals 1.0.

The similarity for layers 9 and 10 experience a larger preserved similarity compared
to layer 8. Throughout this work we have noticed that while layers 8, 9, and 10 have the
same feature dimension they have behaved differently across a host of RRA experiments.
MS-RRA has shown that layer 9 is where the model begins to remove spatial aspects from
the feature vectors. Looking at 4x average pooling for layers 8 to 10 (i.e., stage 3) we
see y4

8 has negligible similarity compared to y1
8, but y4

9 and y4
10 still maintain meaningful

similarity with their respective unpooled features. Once 8x pooling is applied only y8
10

has a non-negligible similarity with its unpooled features. From this set of observations
we hypothesize that layer 9 and layer 10 have each learned a form of 2x pooling (but not
necessarily average pooling). Remember that the layers in stage 3 have a spatial feature
size of 8 by 8. To make the transition between 8 by 8 the ResNet architecture includes a
global average pooling operation (i.e., layer 11). But MS-RRA shows direct evidence that
the model does not solely rely on the forced mapping to remove spatial information but
instead preemptively removes spatial information.

Moving back to 2x average pooling, comparing the off-diagonal regions between stage
1 and stage 2, we see that the similarities between s21 and s12 experience a small decrease
whereas the similarities between s11 and s22 drop to near zero. The large decrease between
s11 and s22 is expected as these two groups of features have a 4x spatial difference in spatial
resolution. What is surprising is the negligible change between s21 and s12. While these sets of
features now share the same spatial resolution, the features in s12 have gone through several
additional layers in the model. We hypothesize that the increase in similarity indicates that
there are spatial features relevant to the model that are either not detectable (or not as
detectable) or not operated on by the model until the features are at the appropriate scale.
Keep in mind that the convolution kernels in each layer are 3 by 3 and that each layer
contains 2 convolution operations. Thus, the model is fully capable of learning to detect
and operate on these larger spatial features. But, instead of changing the feature’s latent
position it is preserving the larger spatial features until stage 2. This aligns with the model
primarily filtering out irrelevant information within stage 1 of the model, as observed in
Chapter 4. The same increase is also experienced between the pooled features of stage 2
and unpooled features in the early layers of stage 3.

Interestingly, the features y1
1 are more similar to the features in s21 than to s11 by an

average of 0.05. These increases in similarity are the only instance of an increase in similarity
in the lower diagonal of the inter-NNLS matrix. The increase in similarity gives direct
evidence that the model is primarily acting on small local features throughout stage 1.
If this was not the case then average pooling would not provide a boost to similarity.

81

We suspect that future unpooled layers do not experience an increase in similarity with
downstream pooled layers because the complexity of the feature detectors changes from
basic edge and line detectors to more complex object detectors.

As the pooling window scale increases to 4x most similarity between layers approaches
0. The exception is the initial layers and the final layers without any spatial resolution. At
8x this trend continues and with global average pooling all similarity between all but the
final layers are gone. We know from the intra-NNLS matrices in Figure 6.5 that each of
the spatial pooled sets of features still has inherent structure. But importantly, we now
know that the structure in each of the pooled representations is generally different from the
representation of the unpooled features, where the larger the pooling window is the greater
the difference between representations. Looking at max pooling for CIFAR10 there is only
a minor difference in the change in similarity between the unpooled features and the max
pooled features compared to average pooling.

Overall, the inter-NNLS matrices for ImageNet64x64-50 follow similar trends as the
pooling window is increased for both average pooling and max pooling, including: 1) the
asymmetry in similarity between stages 1 and 2, 2) the increased similarly of the unpooled
layer 1 with the averaged pooled stage 2 layers for 2x average pooling, 3) the lingering
similarity in layers 9 and 10, and 4) the complete fall off of similarity in the spatial layers
for 4x, 8x, and global pooling. Looking at the 2x pooling window size for ImageNet64x64-50
inter-NNLS matrices we observe a distinct difference between average pooling and max
pooling. For average pooling there is a distinct drop off in similarity between the pooled
and unpooled stage 2 layers, but for max pooling this drop off in similarity is instead
experienced between the pooled and unpooled stage 1 layers. We expect the root cause of
this difference is related to stage 1 focusing on the removal of localized features (e.g., noise)
for which average pooling would naturally ignore, and stage 2 focusing on detecting more
discriminate features for which max pooling would naturally preserve but average pooling
would remove.

6.7 Discussion

The experiments above demonstrate that reducing the feature map size via pooling has
an effect on a models’ RR. In general, ID, NNCS, NNLS, and the feature map size are
relatively correlated with one another, where ID decreases, NNCS increases, and the
similarities in the various NNLS matrices decrease as the dimensionality of the feature
maps are reduced through pooling. For smaller reductions in feature map size the RRA
metrics do not make major deviations from the trends of their respective identity curves.

82

But as the pooling magnitude increases many trends of these identity curves gradually or
dramatically disappear, potentially being replaced by new trends that are specific to these
lower granularity feature maps. The one exception is with the inter-NNLS matrices where
the similarity between pooled and unpooled feature map latent structure is largely affected
by any pooling. The relative invariance to low levels of pooling indicates that one does not
need to use the full feature map size to gain actionable information from the RRA metrics,
and that this holds for both CIFAR10 and ImageNet64x64-50.

Even though RRA may be performed reliably at a lower spatial resolution there are
still many insights one can gain from performing MS-RRA. For ID we were able to plot the
model’s transition from focusing on local features to focusing on global features. Specifically,
by comparing the unpooled ID curve to a globally pooled curve we are able to separate the
effects of the number of features (or channels) that a layer may have, and to what degree
the model is processing local features verses global features. While a model’s focus on
gradually more abstract features is known, the ID curves in MS-RRA directly show where
the focus on these types of features changes. For NNCS we showed the local separability
changes as one considers different spatial resolutions at each layer in a model. Importantly,
we showed that as one considers larger spatial regions (through larger pooling windows) the
local separability between classes increases, and that there is an optimal pooling window
size of maximum separability depending on the layer’s depth in the model. Using such
information has the potential to improve a model’s performance by introducing a larger
spatial content earlier in a model’s layer progression (we explore this in Chapter 7).

When we performed intra-NNLS analyses we saw that each pooling scale (with di-
minishing returns) preserved a similar block like structure for each of the ResNet stages.
By considering both average pooling and max pooling we were able qualitatively detect
behavioral differences between several of the stages. From multi-scale average pooling
we know that the average structure between consecutive layers is the same regardless of
spatial resolution. From multi-scale max pooling we know that the structure of the most
dominate features is stable at higher spatial resolutions (smaller pooling window), but with
the structure changing drastically at lower spatial resolutions. By comparing pooled and
unpooled representations of the same model through inter-NNLS we were able to show that
the structure of the latent embeddings is not the same. The larger the pooling window
applied the greater the difference with the base latent representation. The fact that the
structure is not the same tells us that a model may benefit from using this information
through explicitly adding additional pooling operations to the ResNet model. When we
combine this observation with the increased NNCS curves when pooling is applied, we
have strong evidence that using pooled information in a classifier could improve a model’s
performance. One of the exceptions to this differing structure in scale was at layers 9 and

83

10. By using multi-scale inter-NNLS we showed that both layers 9 and 10 were partially
invariant to pooling operations, indicating that they are directly learning some sort of
implicit pooling operation that isn’t explicitly average or max pooling.

84

Chapter 7

Spatial Transformed Attention
Condensers

In the last chapter MS-RRA revealed to what degree different spatial resolutions of features
result in more coherent class groupings as measured by NNCS. In general, the larger the
pooling window used on a sample’s features the closer the sample is to samples from the
same class. This observation holds for any pooling window size across most CNN layers.
However, peak class similarity for each layer often occurs with a pooling window that
is smaller than a global pooling window size. In addition, we observed that the latent
structure of pooled features are inherently different from unpooled features. In this chapter
we propose spatial transformed attention condenser (STAC) modules, a specific instantiation
of attention condensers [82], which is designed to take advantage of the heightened class
similarity observed at specific spatial resolutions.

Designing targeted CNN architectures is a common method for achieving desired trade-
offs between performance and efficiency requirements. Adding self-attention modules can
be an efficient method for improving the performance-efficiency trade-offs of a deep neural
network [82]. Knowing which self-attention module to use is often hard to determine and
can require extensive hyperparameter testing. Using insights gained from MS-RRA we
propose the Spatial Transformed Attention Condenser (STAC) module, a novel attention-
condenser based self-attention module. We show that adding STAC modules to ResNet
style architectures can result in up to a 1.6% increase in top-1 accuracy compared to vanilla
ResNet models and up to a 0.5% increase in top-1 accuracy compared to SENet models
on the ImageNet64x64 dataset, at the cost of up to 1.7% increase in FLOPS and 2x the
number of parameters. In addition, we demonstrate that results from MS-RRA analysis can

85

Figure 7.1: A comparison between six ResNet34 based architectures trained on the Ima-
geNet64x64 dataset. The proposed STAC based model achieves the highest performance
while requiring a fraction of FLOPS and a similar number of parameters (proportional to
the associated circle area) compared to the next closest model. The precise numbers can
be found in Table 7.1. The STAC, SENet, and BAM models in this figure use standard
module placement.

be used to select an effective parameterization of the STAC module resulting in competitive
performance compared to an extensive parameter search.

7.1 Spatial Transformed Attention Condenser (STAC)

Modules

The proposed STAC module is constructed as follows. Given an input feature map
Y i, a condenser operation Qi = P (Y i) spatially reduces the size of Y i. Then a set of
attention operations A identifies the important regions of Qi and produces an attention map
Ki = A(Qi). An expansion layer E spatially increases the attention map Ki to a full-focus

86

Figure 7.2: An illustration of a Scaled Transformed Attention Condenser (STAC) Module.

self-attention map T i = E(Ki) which matches Y i’s spatial resolution. Finally, the full-focus
self-attention map T i is element-wise multiplied with Y i to output the spatially transformed
attention feature map Y j = Y i × T i. The STAC module is depicted in Figure 7.2.

In this work P is an average pooling operation where the stride size and pooling window
are equal, A is multi-layer sub-network with convolution, ReLU, convolution, sigmoid
operations sequentially applied, and E is a nearest neighbour upsampler. Conceptually the
proposed STAC module follows a similar construction to a sequence and excitation network
(SENet) but with the condenser operation having a limited window size and with, the
addition of an expansion operation to match the input feature map size. We hypothesize
that the structural bias designed into the STAC module will allow a CNN to better make
use of the intrinsic spatial features found at specific spatial resolutions within a dataset,
and will result in improved model performance with negligible increase in computation.

We explore two different placement locations of the STAC module, following the notation
used in (Hu et al.) [43], 1) standard placement where the STAC module is placed after
the residual block but before the skip connection, and 2) post placement where the STAC
module is placed after the skip connection.

7.2 Results

We now compare CNNs using the proposed STAC module to models using other self-
attention modules as well as standard ResNet models adjusted to have a similar number of
FLOPS or parameters. The other self-attention modules include SENet [43] modules and
BAM [61] modules (note that we use the module design but not the macro-architecture
placement of these modules as presented in (Park et al.) [61]). Each of the three self-
attention modules are tested in both the standard and post placement stategies described
in (Hu et al.) [43] (see Figure 7.3). For the STAC module we use a pooling window of 8

87

T
ab

le
7.

1:
M

o
d

el
C

om
p

ar
is

on
-

T
op

-1
A

cc
u

ra
cy

,
F

L
O

P
S

,
N

u
m

b
er

of
P

ar
am

et
er

s

R
e
sN

e
t2

0
-
C
IF

A
R
1
0

R
e
sN

e
t3

4
-
Im

a
g
e
N
e
t6

4
x
6
4
-5
0
R
e
sN

e
t3

4
-
Im

a
g
e
N
e
t6

4
x
6
4

M
o
d
e
l

T
o
p
-1

A
c
c
.
F
L
O
P
S

P
a
ra

m
.
T
o
p
-1

A
c
c
.
F
L
O
P
S

P
a
ra

m
.

T
o
p
-1

A
c
c
.
F
L
O
P
S

P
a
ra

m
.

B
a
se

[3
9]

8
9.
9
±

0.
2

4
1.
5M

27
2K

76
.8
±

0.
5

4.
65

B
21

.3
M

61
.2
±

0.
1

4.
65

B
21

.8
M

B
a
se

-
2x

-D
ee
p

9
0.
7
±

0.
5

8
5.
7M

56
4K

76
.5
±

0.
5

9.
50

B
44

.0
M

62
.4
±

0.
3

9.
50

B
44

.4
M

B
a
se

-
√
2x

-W
id
e

9
1
.2
±

0.
2

7
8.
5M

52
2K

7
7
.4
±

0.
6

9.
07

B
41

.6
M

6
2
.7
±

0.
1

9.
19

B
42

.6
M

S
E
N
et

[4
3
]
-
S
ta
n
d
a
rd

9
0.
5
±

0.
2

4
1.
7M

30
5K

77
.6
±

0.
5

4.
66

B
23

.8
M

62
.3
±

0.
2

4.
66

B
24

.3
M

B
A
M

[6
1]

-
S
ta
n
d
ar
d

9
0.
5
±

0.
2

8
6.
6M

61
4K

75
.2
±

0.
7

9.
76

B
47

.7
M

62
.0
±

0.
1

9.
76

B
48

.2
M

S
T
A
C

-
S
ta
n
d
a
rd

(O
u
rs
)

9
0
.6
±

0.
2

4
2.
3M

56
3K

7
7
.7
±

0.
4

4.
73

B
43

.9
M

6
2
.8
±

0.
1

4.
73

B
44

.4
M

S
E
N
et

[4
3
]
-
P
o
st

9
0.
4
±

0.
2

4
1.
7M

30
5K

75
.7
±

0.
5

4.
66

B
23

.8
M

61
.7
±

0.
2

4.
66

B
24

.3
M

B
A
M

[6
1]

-
P
os
t

9
0
.7
±

0.
3

8
6.
6M

61
4K

*
9.
76

B
47

.7
M

*
9.
76

B
48

.2
M

S
T
A
C

-
P
os
t
(O

u
rs
)

9
0.
4
±

0.
2

4
2.
3M

56
3K

7
6
.6
±

0.
4

4.
73

B
43

.9
M

6
2
.2
±

0.
2

4.
73

B
44

.4
M

*I
n
th
es
e
co
n
fi
gu

ra
ti
on

s
th
e
B
A
M

m
o
d
u
le

b
as
ed

m
o
d
el
s
w
er
e
u
n
st
a
b
le

w
it
h
th
e
m
a
jo
ri
ty

o
f
th
e
ru
n
s
re
m
a
in
in
g
n
ea
r
ra
n
d
o
m

p
er
fo
rm

a
n
ce
.

88

Figure 7.3: Examples of STAC module placement.

(since it provides the highest overall CS scores as observed in Figure 6.3a). For the BAM
module we use a dilation factor of 4 (for a similar receptive field as the STAC module) and
a compression factor of 4. The standard ResNet models include a vanilla ResNet model, a
2x-deep ResNet model, and a

√
2-wide ResNet model.

We compare the performance of these nine different models on three model-dataset pairs,
including: ResNet20-CIFAR10, ResNet34-ImageNet64x64-50, and ResNet34-ImageNet64x64,
where the ResNet34 model is the normal size model from (He et al.) [39]. Note that the
final model-dataset pair is trained on the entire 1000 class ImageNet64x64 dataset [12].
The first model is trained for 100 epochs, a base learning rate of 0.1, and batch size of
128. The second model is trained for 100 epochs, a base learning rate of 0.01, and a batch
size of 128. The third model is trained for 40 epochs, a base learning rate of 0.01, and a
batch size of 256. The learning rates were selected to maximize the performance of the base
ResNet model configuration for each dataset. All model configurations use the same set of
crops, flip, rotation, colour jitter, grayscale, and blur augmentations as shown in Table 4.2.
Results comparing the accuracy, FLOPS, and number of parameters of these models is
shown in Figure 7.1. The accuracy results for each model are an average of 8 training runs.

In all cases the use of the STAC-Standard module resulted in improved performance
over the base model by 0.7%, 0.9%, and 1.6% on the CIFAR10, ImageNet64x64-50, and
ImageNet64x64 datasets, respectively, at a small increase to FLOPS but over double the
number of parameters. For CIFAR10 both the 2x-deep and

√
2x-wide models outperformed

the STAC-standard module, but both models require at least 1.85x more FLOPS with
a similar number of parameters. However, for ImageNet64x64-50 and ImageNet64x64
the STAC-Standard module outperformed both variants of the base model with similar

89

differences in FLOPS and parameter count. Amongst the self-attention modules using
standard placement the STAC module outperformed the other two designs on all three
datasets. On CIFAR10 and ImageNet64x64-50 the STAC module narrowly outperformed
SENet, while on ImageNet64x64 the STAC module outperformed SENet by 0.5% at the
cost of 1.5% additional FLOPS and almost 2x the number of parameters.

In all but one case all module variants using post placement underperformed standard
placement, with the one exception being the BAM-post module trained on CIFAR10. In
this instance the BAM-post module outperformed all other self-attention configurations but
still underperformed the

√
2x-wide base model variant. All other configurations using the

BAM-post module were unstable during training using the selected training parameters.
As a reminder, the training parameters used in this experiment were selected to optimize
the respective base ResNet models. Overall, the highest performing model for CIFAR10
was ResNet20

√
2x-wide, and for ImageNet64x64-50 and ImageNet64x64 was the ResNet34

models using the STAC module in standard placement.

7.3 Ablation Results

Above it was shown that the STAC module can increase the performance of a variety of
ResNet model sizes trained on datasets with different properties at the cost of a small
increase in FLOPS and doubling of the number of parameters compared to standard ResNet
models. In this section we perform a series of ablation tests on STAC based models. Each
experiment is performed on a ResNet20 model trained on either CIFAR10 of ImageNet64x64-
50 using the same training parameters from Chapter 4.1 with augmentations. The tests
in this section are explored using only the standard location of the STAC module. Unless
stated otherwise, the default configuration for all ResNet20 models in this section use STAC
modules, standard placement, and with a condenser window size of 8. All results in this
section are from 8 independently trained models.

7.3.1 Self-Attention Receptive Field

The condenser operation (average pooling) used to reduce the spatial feature size for the
downstream self-attention operations has the consequence of increasing the self-attention
operation’s receptive fields; namely the two convolutional operations in each STAC module.
The 3x3 spatial shape of these kernels further expands the STAC module’s receptive field
such that each feature in the output attention map is dependent on a larger portion of the

90

original input feature map. Table 7.2 shows the results of changing the spatial feature size
of both the first convolution kernel C1 and the second convolution kernel C2 from a 3x3
kernel to a 1x1 kernel for all modules in the ResNet20 model.

Table 7.2: STAC Kernel Size - ResNet20

Dataset C1 C2 Top-1 Acc. FLOPS Params.

CIFAR10 1 1 90.3 ± 0.2 41.7M 305K
1 3 90.4 ± 0.1 42.0M 434K
3 1 90.6 ± 0.3 42.0M 434K
3 3 90.6 ± 0.2 42.3M 563K

Img64-50 1 1 73.3 ± 0.4 167M 308K
1 3 73.4 ± 0.5 168M 437K
3 1 73.6 ± 0.6 168M 437K
3 3 73.6 ± 0.5 169M 566K

A kernel configuration of (1, 1) has marginally more FLOPS but the same number of
parameters as a model using SENet modules and performs within ±0.3% of the respective
SENet modules (see the respective GAP rows in Table 7.4). For both datasets the kernel
configuration (3, 1) showed marginal performance benefits over (1, 3), with (3, 1) matching
the average performance of configuration (3, 3) but with marginally higher standard variation.
For both datasets the configurations (1, 3) and (3, 1) are attractive options to use in a
model given the limited performance implications while significantly reducing the number
of parameters.

7.3.2 Location of STAC Module

As shown in Chapter 6 the stages of a ResNet model have different effects on the increase
(or decrease) of the observed NNCS. We now explore to what degree (if any) each stage of a
ResNet model benefits from using the STAC module, as well as the associated computational
costs of each configuration. Table 7.3 shows the results for a normal ResNet20 model, when
the layers in only a single stage of a ResNet20 use the STAC module, and when all layers
in a ResNet20 model use the STAC module.

For CIFAR10 the STAC module provides a performance benefit when applied to all
layers individually and has the most impact when applied to stage 2, falling 0.2% short of the
complete configuration. Stages 1 and 3 provide accuracy gains even through the configuration

91

Table 7.3: STAC Stage Location - ResNet20

Dataset S1 S2 S3 Top-1 Acc. FLOPS Params.

CIFAR10 89.9 ± 0.2 41.5M 272K
× 90.1 ± 0.2 41.8M 286K
× 90.4 ± 0.3 41.8M 328K
× 90.1 ± 0.2 41.8M 494K

× × × 90.6 ± 0.2 42.3M 563K

Img64-50 71.6 ± 0.5 166M 275K
× 71.7 ± 0.6 167M 289K
× 72.2 ± 0.7 167M 330K
× 73.0 ± 1.0 167M 496K

× × × 73.6 ± 0.5 169M 566K

requires significantly more parameters. Using STAC modules with ImageNet64x64-50 shows
a different pattern where the deeper the stage the more impact the STAC modules provides.
Unlike with CIFAR10, when trained on ImageNet64x64-50 no single stage configuration
approaches the performance of using the STAC module throughout the model.

7.3.3 Condenser Size

The size of the condenser window used in Section 7.2 (i.e., P = 8) was derived through
observations made from the NNCS curves in Section 6.2. We now explore a wider range of
condenser windows sizes to see how this choice affects the computational tradeoffs of using
the STAC module. Table 7.4 shows the result of changing the condenser window size from
1 (i.e., no pooling) to using global average pooling on the entire input feature map (i.e.,
resulting in SENet).

Most STAC module windows sizes for both datasets perform near peak performance.
For CIFAR10 all window sizes achieve within 0.2% of peak performance, even though the
number of FLOPS is significantly increased for smaller condenser window sizes (i.e., the
feature maps in the STAC module are larger). The highest performing window size is 1,
which requires over double the number of FLOPS as using GAP pooling. However, for
ImageNet64x64-50 the top performing window sizes fall between 2 to 16, with the larger
window sizes requiring less FLOPS but with greater variation in performance between runs.
Both the smallest and largest window sizes under perform by at least 0.5%.

92

Table 7.4: STAC Condenser Size - ResNet20

Dataset P Top-1 Acc. FLOPS Params.

CIFAR10 1 90.7 ± 0.3 84.2M 563K
2 90.6 ± 0.2 52.3M 563K
4 90.5 ± 0.2 44.3M 563K
8 90.6 ± 0.2 42.3M 563K

GAP 90.5 ± 0.2 41.7M 305K

Img64-50 1 73.1 ± 0.5 337M 566K
2 73.7 ± 0.2 209M 566K
4 73.6 ± 0.2 177M 566K
8 73.6 ± 0.5 169M 566K
16 73.6 ± 0.6 167M 566K

GAP 73.0 ± 0.5 167M 308K

7.3.4 Intervention Strategies

It was shown in Section 7.3.2 that the STAC module location is an important consideration in
performance tradeoffs, and in Section 7.3.3 that various condenser sizes provide comparable
accuracy. We now consider three different strategies for selecting the condenser window
size used for any given stage in a ResNet model. The first approach uses a greedy strategy
where we repeat the stage location experiment from Section 7.3.2 but for every viable
window size (Table 7.5), then each stage is assigned the highest performing window size for
each respective stage. The second strategy assigns the window size corresponding to the
maximum CS observed in Figure 6.3a for each respective dataset. The third strategy uses
the largest possible uniform window size (i.e., the feature map spatial length in the final
ResNet stage). The window size, accuracy, and FLOPS for these three strategies are shown
in Table 7.6.

Overall, each of the placement strategies results in similar performance. For CIFAR10
the greedy strategy produced the best accuracy, costing an additional 13M FLOPS, while
the three strategies for ImageNet64x64-50 demonstrated comparable performance. For both
datasets the greedy strategy followed a similar progression of window sizes, with the first
stage using the largest window size and getting progressively smaller as the stages progress.
The maximum NNCS strategy favoured similar window sizes across all three stages for both
datasets, with the last stage using the equivalent of global pooling.

93

Table 7.5: STAC Optimal Intervention - ResNet20

Dataset S1 S2 S3 1 2 4 8 16 32 64

CIFAR10 × 90.1 90.0 90.1 90.1 90.2 90.2
× 90.0 90.1 90.1 90.4 90.2
× 90.4 90.2 90.2 90.1

Img64-50 × 71.6 71.9 72.0 71.7 72.0 72.3 71.9
× 71.8 71.8 72.4 72.2 72.3 72.1
× 72.4 73.0 72.7 73.0 72.6

Table 7.6: STAC Parameterization Selection Strategies - ResNet20

Dataset Strategy S1 S2 S3 Top-1 Acc. FLOPS

CIFAR10 Greedy 16 8 1 90.8 ± 0.2 56.0M
CIFAR10 Max CS 8 4 8 90.5 ± 0.2 43.0M
CIFAR10 Max Uni. 8 8 8 90.6 ± 0.2 42.3M

Img64-50 Greedy 32 4 2 73.5 ± 0.6 184M
Img64-50 Max CS 8 8 16 73.4 ± 0.4 168M
Img64-50 Max Uni. 16 16 16 73.5 ± 0.5 167M

7.4 Discussion

In this chapter using the observations gained through MS-RRA we proposed STAC modules
(Section 7.1), a self-attention model designed to improve a CNN’s ability to learn class-based
feature detectors. We demonstrated that this evidence based self-attention design results in
improved performance in general over base models, outperforms other self-attention modules
in most cases, and who’s performance gains required less additional FLOPS compared to
larger variants of base models for similar performance gains (Section 7.2).

We investigated a large assortment of STAC module parameterizations. Section 7.3.1
showed that using a more limited receptive field within a self-attention model can achieve
performance on par with a SENet style module that uses GAP sized attention windows.
In addition, it was shown that connecting the local fields with 3x3 convolutions, to form
medium size receptive fields, is likely to be beneficial for model performance. In Section 7.3.2
the results were inconclusive as to which stage in a ResNet model would most benefit
from the STAC module, but regardless, the use of the STAC module improved model
performance over a vanilla ResNet model. In addition, it was demonstrated that using

94

STAC modules throughout a model consistently results in the overall best performance
compared to targeted placement. Section 7.3.3 showed that the condenser size used for the
STAC modules is forgiving with regards to performance, and that the computational cost
drops off quadratically with the window size. As such choosing a middle of the road window
size is likely a reasonable strategy for an initial parameter selection. Section 7.3.4 further
supported this result as three unique selection strategies were explored, and all resulted
in performance within 0.3% of each other. However, this finding only holds if the STAC
module is used throughout a model. If limited placement is used, then specific window
sizes demonstrate superior performance depending on the stage.

Overall, we found that the performance gains from using the STAC module to be
relatively robust in the selection of hyperparameters when the STAC module is used
throughout a model. In general, to see desirable performance increases we recommend that
STAC modules should be used throughout a model with condenser window sizes chosen
with the aid of MS-RRA. For CIFAR10 and ImageNet64x64-50, this range is approximately
between 4 to 16. Under these conditions our experiments demonstrate that STAC module
is a viable building block for ResNet based classification CNNs.

95

Chapter 8

Conclusions and Future Directions

This chapter summarizes the contributions within this thesis, discusses the limitations of
the proposed methods, and presents future areas of investigation.

8.1 Summary of Contributions

8.1.1 Representational Response Analysis Framework

In Chapter 3 we presented a novel analytic framework, called representational response
analysis (RRA), for analyzing the latent structure within a CNN. To the best of our
knowledge RRA is the first multifaceted framework designed to jointly study the latent
structure of a CNN in a computationally efficient manner. The proposed RRA framework
models the relationships between the latent embeddings of the data samples at each layer
in a CNN through the use of a kNN graph. The proposed RRA framework uses three
core metrics to study the complexity and performance of a model at each layer, and a
similarity metric to compare the structure between layers. For the complexity metric we
use the TwoNN intrinsic dimensionality estimator, for the performance metric we proposed
NNCS to measure the average class similarity of each sample to its neighbours, and for the
similarity metric we proposed NNLS to measure the average neighbour similarity between
layers. Each of these metrics was designed to be computationally efficient to compute from
the underlying set of kNN graphs.

In Chapter 5 we study aspects of the kNN hyper-parameterization on the three RRA
metrics. We discovered that one can significantly reduce the size of the kNN by limiting both

96

the number of samples used to 1) construct the kNN and 2) the number of neighbours per
sample in the kNN, while still being able to detect most of the relevant latent information
provided ratio between these two values is kept constant. These insights will allow researchers
to apply the RRA framework on larger model-dataset pairs, more quickly gain insights into
their model designs, and to more quickly iterate on these CNN model designs.

8.1.2 RRA and Applying Augmentation During Training

In Chapter 4 we demonstrate the utility of the RRA framework by studying the effects of
applying augmentations during training to a CNN’s latent representations. We choose this
problem as applying augmentations to improvement a CNN’s performance is one of the
most basic and common place design choices a researcher can make. However, studying the
effects of augmentations is typically limited to studying the effect on CNN classification
performance, or external behavioral traits (e.g., characterizing the types of mistakes a model
will make). By using the RRA framework we demonstrated that studying the interactions
between CNN design choices and the internal latent characteristics of a CNN can be a
powerful tool for better understanding the impacts of specific design choices. For using
augmentations during training our primary contributions were showing strong evidence
that CNNs trained with augmentations will remove more irrelevant features early on in the
shallower layers and allows for the deeper layers to focus more on class discrimination.

8.1.3 MS-RRA

In Chapter 6 we introduced multi-scale representational response analysis (MS-RRA)
and studied the impacts of spatial pooling the feature maps for each layer prior to kNN
calculation. By doing so we were able to study the impacts of using a coarser spatial
resolution on our ability to detect changes in a CNNs latent representations. Four novel
observations from our MS-RRA include: 1) some spatial pooling can be applied to the
latent feature maps without a major loss of precision in the RRA metric (with the exception
of inter-NNLS), 2) there exists an optimal scale at which samples are most class-wise similar
to one another, 3) that the peak scale at which samples are most class-wise similar changes
throughout a model, and 4) that the final layers in a ResNet20 model naturally learn
to pool features before the CNN enforces it through a global average pooling operation.
The implications of these observations are that (1) RRA can be performed with less
computations, (2 and 3) it is beneficial to build modules into a model to make use of the
elevated NNCS, and (4) it may be better to manually enforce pooling instead of having the
model learn pooling.

97

8.1.4 Spatial Transformed Attention Condensers

In Chapter 7 we designed STAC modules to take advantage of our findings from Chapter 6
that showed that pooled features maps have improved class clustering throughout most a of
CNN, and that the pooled features have a different latent structure compared to unpooled
feature maps. We hypothesized that building a network architecture to take advantage of
these finds from MS-RRA would result in improved model performance. To that effect,
the proposed STAC modules provide a computationally efficient attention mechanism to
each layer through the use of pooling operations. We show that adding STAC modules to
ResNet style architectures can result in up to a 1.6% increase in top-1 accuracy compared
to vanilla ResNet models and up to a 0.5% increase in top-1 accuracy compared to SENet
models on the ImageNet64x64 dataset, at the cost of up to 1.7% increase in FLOPS and 2x
the number of parameters. In addition, we demonstrate that results from MS-RRA analysis
can be used to select an effective hyper parameterization of the STAC module resulting in
competitive performance compared to an extensive hyper parameter search. A key takeaway
from this chapter is that RRA can be an effective tool to guide the improvement of a CNN.

8.2 Limitations

One of the limitations in this work is the sole focus of applying RRA to image classification
CNNs. In general, RRA is not inherently restricted to just classification models. For most
fixed feature length model types (e.g., object detection, tabular data) the calculation of
the kNNs, ID, and NNLS would be unaffected. Just NNCS would have to be modified for
non-classification only models. For variable length models (e.g., sequence-based tasks) RRA
would need to be extended to be able to handle comparing feature maps of different sizes.

Despite the computational benefits of using a common kNN model on downstream
metrics, the upfront calculation of the kNNs is still computationally expensive on two fronts.
The calculation of each data sample’s feature maps for every layer of interest requires a
forward inference pass of a CNN and the storage of the features. Within this work we
used a maximum image size (for ImageNet64x64-50) of (64, 64, 3) = 12288 features, and
the largest ResNet20 feature map size of (64, 64, 32) = 131072. If we were to perform
RRA on the full ImageNet dataset at full resolution on a standard ResNet50 the storage
required for all feature maps for a single layer would reach over 100 terabytes of disk space.
Even on enterprise servers this is not a trivial number of resources to occupy. The other
challenging factor is the distance comparisons required to calculate the kNNs. In this work
we used a brute force approach which was only feasible given the relatively small number of

98

samples (as many as 50000). Applying a brute force approach on over one million samples
in ImageNet at full resolution would require a massive amount of expensive computers to
complete in any reasonable amount of time (considering that the brute force is O(n2)).

In this work our application of RRA has been limited to primarily investigating the
latent structure of the output of ResNet blocks. Each of these blocks contains several
internal operations, including: convolutions, batchnorms, the addition of two feature maps,
and ReLU activation functions. The output block of each ResNet block is a ReLU activation
function. While convenient, the choice of investigating only the output of ResNet blocks is
arbitrary and was chosen in this work as it is the main point of focus for most other other
latent embedding analysis methods. The focus on the output of the blocks and specifically
on ReLU activation functions has the potential to bias the analysis and obfuscated other
internal aspects of the ResNet blocks. Specifically, it was noted in [23] that the internal
layer operations can behave in unique manners despite the global consistency between
layers. Applying RRA to the internals of a layer could potentially provide valuable insight.

8.3 Future Work

The proposed RRA framework is highly versatile. As such, we were only able to explore
a limited subset of potential uses in this work. Below we present a small list of potential
areas of future research for which we believe RRA would provide useful insights if applied.
We also present potential improvements and extensions to the proposed RRA framework.

8.3.1 Applications of RRA

For this work we used RRA in two primary ways, first to investigate the effects of applying
augmentation during training, and second to investigate the similarity of a CNN’s feature
maps at different spatial resolutions. However, the proposed RRA framework has the
capability to be applied is a wide range of A/B testing scenarios with regards to CNN model
construction. Such possibilities include a more in-depth analysis of specific augmentations,
when during a model’s training process the model learns specific discriminative abilities,
and differences between model architectures beyond ResNets such as with transformer
models [19, 78].

For data augmentation we only explored the effects of augmentation as an all or nothing
approach, but RRA allows one to perform a more detailed investigation of the effects of
each individual augmentation, and the consequence of specific augmentation parameter

99

selection. In addition, one would be able to investigate the specific locations within a CNN
where a model becomes invariant to each augmentation. Doing so would provide a model
designer with the required insight to adjust a model’s architecture or training procedure to
have specific behaviour with respect to data invariances.

Of particular interest is the recent advances in training CNNs using self-supervised
learning. Such approaches include pretext learning [16, 24], contrastive methods [9, 37],
non-contrastive methods [4,10,86], and semi-supervised methods [48]. Some research has
been done to better understand how the latent representations a self-supervised CNN differ
those of a supervised CNN [33,71, 79]. However, such efforts are limited in scope in similar
ways that supervised models have been studied in isolation. Future work will include
applying RRA to better understand the differences between the latent embeddings learned
from supervised and self-supervised training methods.

A largely ignored line of research for classification models is the study of the dynamics
of within a model’s latent space during the training process. Some approaches choose to
study the flatness or sharpness of the loss landscape by interpolating between two sets
of weights at different points during training [30,53]. With the RRA framework one can
instead perform RRA at different points during training and measure the change observed
within any given RRA metric. By doing so one could design a tailored learning algorithm
for the problem at hand.

8.3.2 Improvements to RRA

Future work for improvements to the core RRA framework will revolve around making
RRA more tractable for larger CNN model-dataset pairs. The first set of improvements
will include making the computation of the underlying kNN more efficient. In this work we
employed a brute force approach while calculating the kNN. The brute force approaches is
O(n2) with respect to the number of samples in the dataset. One approach for approximating
a kNN is called nearest neighbour descent proposed by Dong et al. [18], and only costs
approximately O(n1.14). The nearest neighbour descent algorithm achieves between 0.89
to 0.99 percent recall on the datasets they investigate. We would begin our analysis by
measuring how accurate the nearest neighbour descent algorithm is on CNN feature maps,
then continue on to measure the impacts of the approximations on the RRA metrics. If
successful then there are additional tricks that can be employed to further reduce the kNN
calculation time, such as providing the nearest neighbour descent algorithm a good starting
point by making use of previously calculated kNNs from other layers of the CNN.

The second improvement to the core RRA framework will be to investigate potential

100

alternatives to the complexity estimator. Throughout this work we used the TwoNN
estimator to approximate a layer’s intrinsic dimensionality. However, we showed in Chapter 5
that the TwoNN estimator requires enough samples to be used for an accurate ID curve
to be calculated across all layers in a CNN. The minimum required number of samples is
higher than the other two RRA metrics. As such, a complexity measure that required less
samples to be accurately calculated would allow RRA to be more rapidly used.

8.3.3 Extensions to RRA

Reducing the similarity between two layers (i.e., NNLS) to a single value provides a useful
measure for high level model design decisions (e.g., layer removal). On the other hand, such
reduction also removes most of the inter-sample relationship information, thereby reducing
one’s ability to study the complex interactions between layers throughout a network. While
one cannot perform classical topological data analysis on the kNNs (due to limited number
of neighbour distances being tracked), the kNN graphs used in RRA still allow for higher
order relationships between samples to be studied. For example, it would be possible to
study when pairs of samples become neighbours in a CNN, properties of the pairs while
they are neighbours, and when pairs of samples are no longer neighbours. When considering
the entire dataset using this approach one can see the interactions between layers. For
example, aspects of a network like connection-cancellation would become evident (i.e., if
one layer moves a lot of samples near each other and a down stream layer moves those
samples apart). By studying how layers interact with each other on a more granular level
(when compared to scalar layer similarity measures) one can tailor a CNN’s design.

Another way to make use of the set of kNN graphs generated through RRA is for
data visualization techniques such as TSNE [76] or UMAP [58]. Both of these techniques
effectively project kNN graphs from high dimensional feature space to a lower dimensional
space (typically 2D or 3D for visualization). Often these projections are used by researchers
to gain an intuitive sense of what a model is doing and how data is clustering. Normally
TSNE and UMAP operate on a single set of features, but with RRA we have a set of
features (and corresponding kNNs) for each layer in a CNN. With this set of kNNs one
could apply the data visualization methods at each layer in a model. We also hypothesize
that one could create a meta-kNN of sorts, from which one could then apply TSNE or
UMAP too. By doing so one could visualize a more representative relational image of how
a model processes a set of data and not just how these approaches see the data in a single
layer.

101

References

[1] Forest Agostinelli, Matthew Hoffman, Peter Sadowski, and Pierre Baldi. Learning
activation functions to improve deep neural networks. arXiv preprint arXiv:1412.6830,
2014. 14

[2] Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear
classifier probes. arXiv preprint arXiv:1610.01644, 2016. 2, 18, 24, 29, 38, 53, 66

[3] Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. Intrinsic
dimension of data representations in deep neural networks. In Advances in Neural
Information Processing Systems (NIPS), 2019. 2, 19, 23, 26, 37, 49, 52, 53

[4] Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance
regularization for self-supervised learning. arXiv preprint arXiv:2105.04906, 2021. 100

[5] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum
learning. In Proceedings of the 26th Annual International Conference on Machine
Learning (ICML), pages 41–48. ACM, 2009. 16

[6] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver,
and Colin A Raffel. Mixmatch: A holistic approach to semi-supervised learning. In
Advances in Neural Information Processing Systems, 2019. 16

[7] Gunnar Carlsson. Topology and data. Bulletin of the American Mathematical Society,
2009. 2, 19, 24

[8] Gunnar Carlsson and Rickard Brüel Gabrielsson. Topological approaches to deep
learning. arXiv preprint arXiv:1811.01122, 2018. 19

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple
framework for contrastive learning of visual representations. In International conference
on machine learning, pages 1597–1607. PMLR, 2020. 100

102

[10] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 15750–15758, 2021. 100

[11] François Chollet. Xception: Deep learning with depthwise separable convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017. 12

[12] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of
imagenet as an alternative to the cifar datasets. arXiv preprint arXiv:1707.08819,
2017. 48, 89

[13] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le.
Autoaugment: Learning augmentation strategies from data. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019. 15

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. IEEE, 2009. 1, 14

[15] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional
neural networks with cutout. arXiv preprint arXiv:1708.04552, 2017. 15

[16] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation
learning by context prediction. In Proceedings of the IEEE international conference on
computer vision, pages 1422–1430, 2015. 100

[17] Diego Doimo, Aldo Glielmo, Alessio Ansuini, and Alessandro Laio. Hierarchical
nucleation in deep neural networks. Advances in Neural Information Processing
Systems, 2020. 19

[18] Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest neighbor graph construction
for generic similarity measures. In Proceedings of the 20th international conference on
World wide web, pages 577–586, 2011. 100

[19] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiv:2010.11929, 2020. 99

103

[20] Elena Facco, Maria d’Errico, Alex Rodriguez, and Alessandro Laio. Estimating the
intrinsic dimension of datasets by a minimal neighborhood information. Scientific
Reports, 2017. 19, 23, 26

[21] Karl Pearson F.R.S. Liii. on lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
1901. 67

[22] Keinosuke Fukunaga and David R Olsen. An algorithm for finding intrinsic dimension-
ality of data. IEEE Transactions on Computers, 1971. 19

[23] Robert Geirhos, Kantharaju Narayanappa, Benjamin Mitzkus, Matthias Bethge, Fe-
lix A Wichmann, and Wieland Brendel. On the surprising similarities between super-
vised and self-supervised models. arXiv preprint arXiv:2010.08377, 2020. 99

[24] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation
learning by predicting image rotations. arXiv preprint arXiv:1803.07728, 2018. 100

[25] Sixue Gong, Vishnu Naresh Boddeti, and Anil K Jain. On the intrinsic dimensionality
of image representations. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019. 19

[26] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press, 2016.
17

[27] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, 2014. 15

[28] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.
Communications of the ACM, 2020. 1

[29] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014. 1

[30] Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qualitatively characterizing
neural network optimization problems. arXiv preprint arXiv:1412.6544, 2014. 18, 100

[31] Ariel Gordon and et al. Morphnet: Fast & simple resource-constrained structure
learning of deep networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018. 14

104

[32] Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring
statistical dependence with hilbert-schmidt norms. In International Conference on
Algorithmic Learning Theory. Springer, 2005. 2, 20, 23

[33] Tom George Grigg, Dan Busbridge, Jason Ramapuram, and Russ Webb. Do self-
supervised and supervised methods learn similar visual representations? arXiv preprint
arXiv:2110.00528, 2021. 100

[34] David R Hardoon, Sandor Szedmak, and John Shawe-Taylor. Canonical correlation
analysis: An overview with application to learning methods. Neural Computation,
2004. 2, 20, 23

[35] Mark Harmon and Diego Klabjan. Activation ensembles for deep neural networks.
arXiv preprint arXiv:1702.07790, 2017. 14

[36] Fengxiang He, Tongliang Liu, and Dacheng Tao. Control batch size and learning rate
to generalize well: Theoretical and empirical evidence. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems (NIPS). 2019. 18

[37] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast
for unsupervised visual representation learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 9729–9738, 2020. 100

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV), 2015. 14

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016. 11, 12, 33, 88, 89

[40] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015. 15

[41] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 1997.
17

[42] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computa-
tion, 1997. 10, 13

105

[43] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation network. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018. 14, 87,
88

[44] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. Proceedings of The 32nd International
Conference on Machine Learning (ICML), 2015. 11

[45] Angela H Jiang, Daniel L-K Wong, Giulio Zhou, David G Andersen, Jeffrey Dean,
Gregory R Ganger, Gauri Joshi, Michael Kaminksy, Michael Kozuch, Zachary C Lipton,
et al. Accelerating deep learning by focusing on the biggest losers. arXiv preprint
arXiv:1910.00762, 2019. 16

[46] Xiaojie Jin, Chunyan Xu, Jiashi Feng, Yunchao Wei, Junjun Xiong, and Shuicheng
Yan. Deep learning with s-shaped rectified linear activation units. In 13th AAAI
Conference on Artificial Intelligence, 2016. 14

[47] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and
Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap
and sharp minima. arXiv preprint arXiv:1609.04836, 2016. 17

[48] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip
Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning.
Advances in neural information processing systems, 33:18661–18673, 2020. 100

[49] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity
of neural network representations revisited. arXiv preprint arXiv:1905.00414, 2019. 1,
2, 21, 23, 25, 28

[50] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exd-
b/mnist/, 1998. 1

[51] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 2015. 10,
37

[52] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 1998. 10, 12

[53] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the
loss landscape of neural nets. In Advances in Neural Information Processing Systems
(NIPS), 2018. 18, 100

106

[54] Zhong Qiu Lin, Mohammad Javad Shafiee, Stanislav Bochkarev, Michael St Jules,
Xiao Yu Wang, and Alexander Wong. Do explanations reflect decisions? a machine-
centric strategy to quantify the performance of explainability algorithms. arXiv preprint
arXiv:1910.07387, 2019. 1

[55] Zhong Qiu Lin and Alexander Wong. Progressive label distillation: Learning input-
efficient deep neural networks. arXiv preprint arXiv:1901.09135, 2019. 15

[56] Octavio Loyola-Gonzalez. Black-box vs. white-box: Understanding their advantages
and weaknesses from a practical point of view. IEEE access, 2019. 1

[57] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
Advances in neural information processing systems, 30, 2017. 1

[58] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approxi-
mation and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.
1, 67, 101

[59] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya
Sutskever. Deep double descent: Where bigger models and more data hurt. arXiv
preprint arXiv:1912.02292, 2019. 17

[60] Nicolas Papernot and Patrick McDaniel. Deep k-nearest neighbors: Towards confident,
interpretable and robust deep learning. arXiv preprint arXiv:1803.04765, 2018. 1, 2,
19

[61] Jongchan Park, Sanghyun Woo, Joon-Young Lee, and In So Kweon. Bam: Bottleneck
attention module. arXiv preprint arXiv:1807.06514, 2018. 14, 87, 88

[62] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc.,
2019. 34

[63] Karl W Pettis, Thomas A Bailey, Anil K Jain, and Richard C Dubes. An intrinsic
dimensionality estimator from near-neighbor information. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 1979. 19

107

[64] Milos Radovanovic, Alexandros Nanopoulos, and Mirjana Ivanovic. Hubs in space:
Popular nearest neighbors in high-dimensional data. Journal of Machine Learning
Research, 2010. 65

[65] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca:
Singular vector canonical correlation analysis for deep learning dynamics and inter-
pretability. In Advances in Neural Information Processing Systems (NIPS), 2017. 1,
20, 23

[66] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions.
In 6th International Conference on Learning Representations (ICLR), Workshop Track
Proceedings, 2018. 14

[67] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. 1

[68] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should i trust you?”
explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pages 1135–1144,
2016. 1

[69] Simone Scardapane, Michele Scarpiniti, Danilo Comminiello, and Aurelio Uncini.
Learning activation functions from data using cubic spline interpolation. In Italian
Workshop on Neural Nets. Springer, 2017. 14

[70] Mohammad Javad Shafiee, Akshaya Mishra, and Alexander Wong. Deep learning with
darwin: Evolutionary synthesis of deep neural networks. Neural Processing Letters,
2018. 14

[71] Shashank Shekhar, Florian Bordes, Pascal Vincent, and Ari Morcos. Objectives
matter: Understanding the impact of self-supervised objectives on vision transformer
representations. arXiv preprint arXiv:2304.13089, 2023. 100

[72] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 2014. 12

[73] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through
augmenting topologies. Evolutionary Computation, 2002. 13

108

[74] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. 12

[75] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. In International conference on machine learning, pages 6105–6114.
PMLR, 2019. 1

[76] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal
of machine learning research, 9(11), 2008. 1, 67, 101

[77] Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of relative
frequencies of events to their probabilities. In Measures of complexity: festschrift for
alexey chervonenkis, pages 11–30. Springer, 2015. 26

[78] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017. 1, 99

[79] Kirill Vishniakov, Zhiqiang Shen, and Zhuang Liu. Convnet vs transformer, supervised
vs clip: Beyond imagenet accuracy. arXiv preprint arXiv:2311.09215, 2023. 100

[80] Wei Wen and et al. Learning structured sparsity in deep neural networks. 2016. 14

[81] Alexander Wong. Netscore: Towards universal metrics for large-scale performance
analysis of deep neural networks for practical on-device edge usage. In International
Conference on Image Analysis and Recognition (ICIAR). Springer, 2019. 17

[82] Alexander Wong, Mahmoud Famouri, Maya Pavlova, and Siddharth Surana.
Tinyspeech: Attention condensers for deep speech recognition neural networks on
edge devices. arXiv preprint arXiv:2008.04245, 2020. 14, 85

[83] Alexander Wong, Mahmoud Famuori, Mohammad Javad Shafiee, Francis Li, Brendan
Chwyl, and Jonathan Chung. Yolo nano: A highly compact you only look once
convolutional neural network for object detection. arXiv preprint arXiv:1910.01271,
2019. 14

[84] Alexander Wong, Mohammad Javad Shafiee, Brendan Chwyl, and Francis Li. Ferminets:
Learning generative machines to generate efficient neural networks via generative
synthesis. arXiv preprint arXiv:1809.05989, 2018. 14

109

[85] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016. 1

[86] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins:
Self-supervised learning via redundancy reduction. In International conference on
machine learning, pages 12310–12320. PMLR, 2021. 100

[87] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning.
In 5th International Conference on Learning Representations (ICLR), Conference
Track Proceedings, 2017. 13

110

	Examining Committee Membership
	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introductions
	Motivation
	CNN Analytic Metrics
	Challenges and Objectives
	Representational Response Analysis Framework
	Contributions
	Thesis Structure

	Background
	Neural Networks
	Feedforward Convolutional Neural Networks
	CNN Design Methods
	General CNN Measures

	Representational Response Analysis
	RRA Framework Scope
	RRA Framework
	Considerations for Approximating a Manifold
	Summary

	Applying Representational Response Analysis
	Experimental Setup and Results
	Intrinsic Dimensionality
	Nearest Neighbour Class Similarity
	Intra-Layer Nearest Neighbour Layer Similarity
	Inter-Layer Nearest Neighbour Layer Similarity
	Discussion

	The Effects of the Number of Sample and Number of Neighbours on the Observed Representational Response
	Effects on Intrinsic Dimensionality
	Effects on Nearest Neighbour Class Similarity
	Effects on Nearest Neighbour Layer Similarity
	Discussion

	The Effects of Feature Dimensionality on the Observed Representational Response
	Dimensionality Reduction
	Multi Scale Representational Response Analysis
	MS-RRA and ID
	MS-RRA and NNCS
	MS-RRA and Intra-NNLS
	MS-RRA and Inter-NNLS
	Discussion

	Spatial Transformed Attention Condensers
	Spatial Transformed Attention Condenser (STAC) Modules
	Results
	Ablation Results
	Discussion

	Conclusions and Future Directions
	Summary of Contributions
	Limitations
	Future Work

	References

