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Abstract 

The rapid advancement of autonomous vehicles (AVs) underscores the necessity for high-

definition (HD) maps, with road lane information being crucial for their navigation. The 

widespread use of Earth observation data, including aerial imagery, provides invaluable 

resources for constructing these maps. However, to fully exploit the potential of aerial 

imagery for HD road map creation, it is essential to leverage the capabilities of artificial 

intelligence (AI) and deep learning technologies. Conversely, the domain of remote 

sensing has not yet fully explored the development of specialized models for road lane 

extraction, an area where the field of computer vision has made significant progress with 

the introduction of advanced semantic segmentation models. 

This research undertakes a comprehensive comparative analysis of twelve deep learning-

based semantic segmentation models, specifically to measure their skill in road lane 

marking extraction, with a special emphasis on a novel dataset characterized by partially 

labeled instances. This investigation aims to examine the models' performance when 

applied to scenarios with minimal labeled data, examining their efficiency, accuracy, and 

ability to adapt under conditions of limited annotation and transfer learning. 

The outcome of this study highlights the distinct advantage of Transformer-based models 

over their Convolutional Neural Network (CNN) counterparts in the context of extracting 

road lanes from aerial imagery. Remarkably, within the state-of-the-art models, such as 

Segmenting Transformers (SegFormer), Shifted Window (Swin) Transformer, and Twins 

Scaled Vision Transformer (Twins-SVT) exhibit superior performance. The empirical 

results on the Waterloo Urban Scene dataset mark substantial progress, with mean 

Intersection over Union (IoU) scores ranging from 33.56% to 76.11%, precision from 

64.33% to 77.44%, recall from 66.0% to 98.96%, and F1 scores from 44.34% to 85.35%. 

These findings underscore the benefits of model pretraining and the distinctive attributes 

of the dataset in strengthening the effectiveness of models for HD road map development, 

announcing new possibilities in the advancement of autonomous vehicle navigation 

systems. 
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Chapter 1 Introduction  

 

1.1 Background and Motivation  

The rapid development of autonomous driving technologies heralds a new era in 

transportation, underpinned by the critical need for high-definition (HD) maps (Azimi et 

al., 2019a). These maps, rich in detail and precision, are pivotal for the safe and efficient 

operation of autonomous vehicles (AVs), offering an unparalleled level of navigational 

accuracy far beyond traditional navigation tools. HD maps encompass a comprehensive 

array of environmental data, including the traffic signals, road features, and especially 

precise lane markings, which are particularly important (Zhou et al, 2o21). This detailed 

representation is essential for enabling AVs to understand their surroundings, make 

informed decisions, and navigate safely. 

The surge in the availability of various earth observation data types has provided a 

powerful resource for the creation of these essential HD road maps (Azimi et al., 2019a). 

Data sources such as the Light Detection and Ranging (LiDAR) point clouds and satellite 

images offer valuable insights, yet they come with their limitations (Zhou et al, 2o21). On 

the one hand, LiDAR, for example, may suffer from uneven point distribution and various 

densities, leading to a lack of uniform detail in various regions and potential information 

gaps (Azimi et al., 2019a). On the other hand, satellite imagery often faces challenges like 

lower spatial resolution, which hinders the capture of subtle details, and its infrequent 

revisit may fail to reflect the most current changes on the roads (Azimi et al., 2019b). 

In contrast, aerial imagery, such as those from drones or unmanned aerial vehicles 

(UAVs), distinguishes itself with higher resolution and clarity, along with more adaptable 

data collection methods, significantly outperforming satellite imagery and LiDAR (Azimi 

et al., 2019a). Among its many advantages is the high-resolution capability that allows for 

capturing intricate details such as lane markings. Additionally, there is flexibility in data 

collection, which permits targeted gathering of information at the best possible times and 

from the most effective angles to ensure optimal lighting and weather conditions. These 

examples illustrate how aerial imagery overcomes the limitations of LiDAR and satellite 

imagery, making it exceptionally suitable for creating HD maps. 
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However, the full potential of aerial imagery in creating HD road maps cannot be realized 

without the aid of Artificial Intelligence (AI) or deep learning algorithms (Rehman et al., 

2023). These algorithms play a crucial role in processing and interpreting the complex 

data contained within aerial images, enabling the automated extraction of essential 

elements such as lane markings. The complexity and variability of road environments 

demand sophisticated deep learning models that can accurately identify and classify road 

features across diverse conditions, underscoring the necessity of integrating deep 

learning algorithms into the HD map creation process. 

Despite the advantages offered by deep learning, existing methods for the automated 

extraction of lane markings in aerial images are fraught with challenges (Azimi et al., 

2019a). These include difficulties in dealing with the high variability of road conditions, 

the complexity of interpreting dense urban environments, the need for high levels of 

accuracy in feature extraction, and the added complexity posed by the narrow width of 

road lanes. The limitations of current deep learning approaches highlight the need for 

ongoing research and development to refine and enhance these technologies for better 

performance in the specific context of HD map creation. 

In the field of remote sensing, the methodologies available for automated lane markings 

extraction are limited and often not optimized for the unique challenges posed by aerial 

imagery. Conversely, the field of computer vision boasts a wealth of advanced semantic 

segmentation models that have shown great promise in various applications. However, 

these remain underexplored for their potential in remote sensing tasks such as lane 

markings extraction. This discrepancy between available technologies and their 

application in enhancing HD maps points to a significant gap in current research efforts. 

Addressing this gap requires a focused comparative study of semantic segmentation 

models derived from the field of computer vision, specifically tailored to the task of 

extracting road lane markings from aerial imagery. Such a study is imperative to identify 

the most effective models that can overcome the existing limitations and significantly 

improve the accuracy and efficiency of HD map creation. This research endeavor seeks to 

fill this void by systematically evaluating these models, thereby contributing to the 
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advancement of autonomous driving technologies through the development of more 

detailed and reliable HD road maps. Through this comparative analysis, we aim to 

establish a benchmark for future innovations in the field, ensuring that AVs navigate with 

unparalleled precision and safety. 

 

1.2 Objectives of the Study 

  

This study is driven by the principal aim of performing an exhaustive comparative 

experimental analysis of twelve deep learning-based semantic segmentation models to 

thoroughly evaluate their effectiveness in the task of road lane extraction. 

 

• The first objective is to study the models' performance and relevance, offering in-

sights into their performance, efficiency, and parameters.  

 

• The second objective is to test the capabilities of state-of-the-art deep learning -

based segmentation models on a newly created dataset with partial labels under 

few-shot and transfer learning conditions, comparing efficiency, accuracy, and 

ability to learn and adapt to datasets with only a small portion of labeled data 

(e.g., 1%).  

 

1.3 Structure of the Thesis  

  

The thesis is structured into the following five chapters:  

   

Chapter 1 sets the study's groundwork by outlining motivations, identifying research gaps, 

and defining objectives, thus framing the inquiry.  

 

Chapter 2 offers a concise review of semantic segmentation in road lane detection, 

structured into four main sections: the advancement of aerial view road detection 

techniques, dataset evaluation for model training, the development of segmentation 

models with an emphasis on deep learning, and the shift from conventional to deep 

learning-based lane detection methods.  
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Chapter 3 delves into the methodology with a structured exposition, starting with an 

overview of the general workflow. It then elaborates on the dataset used for analysis, 

dataset preprocessing, a thorough examination of each model's architecture and features, 

exploration of transfer learning strategies, and the selected evaluation metrics. 

 

Chapter 4 begins with an overview of the training environment, followed by a detailed 

discussion on model training, encompassing training procedures, parameter 

configurations, optimization process, data partitioning, and fine-tuning processes. The 

chapter showcases both the quantitative assessments of model performance and 

qualitative visual representations of findings across two separate datasets, concluding 

with a discussion section. 

 

Chapter 5 concludes the thesis and summarizes the significant insights gained from the 

study, highlights the limitations and challenges encountered, and proposes the directions 

for future research. 
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Chapter 2 Related Works 

 

This chapter provides a focused review of semantic segmentation for road lane detection 

across four sections.  Section 2.1 examines road lane marking extraction methods with its 

definition and characteristics, comparing ground-level detail to aerial coverage, and 

evaluating manual, machine learning, and deep learning approaches for detection and 

analysis. Section 2.2 evaluates available aerial view datasets for model training. Section 

2.3 explores the evolution of semantic segmentation models, emphasizing the impact of 

deep learning advancements. Lastly, Section 2.4 examines the progression of aerial view 

road lane detection methods, transitioning from traditional to deep learning-based 

approaches. 

 

 2.1 Road Lane Marking Extraction Methods and Perspectives 

 

Road lanes are crucial elements within road infrastructure, delineating paths for vehicle 

movement and promoting smooth traffic circulation while also communicating key 

information about traffic regulations. These lanes are marked by a variety of symbols on 

the road surface, which can vary greatly in shape, size, length, and color (Gao et al., 2006), 

reflecting the diversity of traffic rules and cultural norms across countries (Shinar et al., 

2003). From dashed lines to solid lines, and from arrows to pedestrian crossings, each 

symbol serves a specific role. Geometrically, lane markings are crafted with clear 

boundaries to ensure they are easily distinguishable (Liu et al., 2012). The variety in lane 

markings, with their unique shapes and the broad spectrum of colors (ranging from the 

standard white and yellow to more distinctive hues in certain areas), highlights the critical 

need for precise and accurate lane extraction for a wide range of applications, especially 

autonomous driving technologies (Azimi et al., 2019a).  

 

Transitioning from theoretical significance to practical applications of road lane 

information, ground-level observation emerges as a primary method of inquiry. It's 

common for people to see and recognize lane markings at ground level as guides for 

navigation and safety on the road. At this ground perspective, traditional in-site surveying 

and mapping techniques become important, offering a lens to view and capture the 
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intricate details of lane markings with high resolution. Yet, this approach has its 

downsides: its reach is limited by a narrow field of view, and lane markings can be hidden 

by obstacles or vehicles, making the process time-consuming and expensive (Wu et al., 

2014). Additionally, it can also be influenced by bad weather conditions, further 

complicating the accuracy and efficiency of the system. While in-site surveying offers 

unmatched detail and precision in data collection, its applicability and efficiency are 

greatly reduced by these challenges. 

 

Alternatively, aerial imagery offers a means to collect road lane information from above. 

Though the resolution might be slightly lower than that achieved through in-site 

surveying, the advantage of aerial imagery lies in its extensive coverage and the ability to 

capture spectral features and information across the red, green, and blue (RGB) bands, 

which are sufficient for extracting road information (Azimi et al., 2019b). Aerial views 

provide a comprehensive perspective of road layouts, revealing patterns and alignments 

that ground-level surveying cannot match. Within aerial imagery, three primary methods 

emerge for extracting road lane markings. 

 

The first method is manual interpretation and editing, using tools like the Geographic 

Information Systems (GIS) to carefully label road lane markings. This technique is known 

for its accuracy, drawing on the detailed analysis of skilled professionals (Long et al., 

2021). However, its drawbacks are noteworthy: it is labor-intensive, costly, and 

impractical for large-scale projects due to the requirement for expert knowledge and 

significant time and financial investment. Following manual techniques, traditional 

machine learning methods offer an alternative, employing algorithms to recognize 

patterns and classify road features. Despite their utility, these methods also necessitate 

expert knowledge for feature selection and algorithm tuning, and they struggle with 

generalization across varied environments, limiting their scalability and adaptability. 

 

In contrast, deep learning emerges as a powerful method for the automated extraction of 

road lane markings from aerial photos (Long et al., 2021). This approach reduces the 

dependency on manual intervention and expertly crafted features, showcasing strong 

generalization across various environments. These models require comparatively lower 
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computational power, offering speed and efficiency that enable the processing of large 

datasets. Deep learning's ability to learn from vast amounts of data and its adaptability to 

new, unseen environments make it an invaluable tool for contemporary and future 

applications in road lane extraction, setting a new standard for accuracy and efficiency in 

this critical task.  

 

2.2 Datasets for Lane Segmentation 

 

In the context of enhancing lane segmentation model performance, the selection of 

training datasets plays a pivotal role. For models to accurately capture lane markings, 

datasets must offer high-resolution images that reveal detailed features of lanes, provide 

annotations for a variety of lane types, be readily accessible for research purposes, and be 

large enough to support effective model training and validation (Long et al., 2021). 

 

Before selecting a dataset for analysis, it is crucial to confirm that the aerial imagery offers 

a resolution that allows for clear visibility of road lane markings. To determine the 

suitable resolution, the Nyquist-Shannon sampling theorem needs to be applied (Por et 

al., 2019). This theorem mandates that the sampling rate must be at least twice the size of 

the smallest detail that needs to be accurately reconstructed in the data. Therefore, 

identifying the smallest feature of interest in the imagery is essential. For example, if the 

smallest discernible feature in a dataset is a zebra crossing stripe measuring 30cm in 

width, the resolution must be at least 15cm to capture this feature effectively. Such a 

resolution is necessary to accurately reconstruct the image or signal from the sampled 

data. Choosing the right resolution is vital to ensure the dataset includes enough detail to 

accurately represent real-world features, thus maintaining data integrity and ensuring 

that important information is not lost during data processing. 

 

Currently, the collection of HD map data predominantly utilizes mobile mapping systems 

equipped with sensor-laden vehicles, including LiDAR and digital cameras. Datasets 

obtained at ground level are abundantly accessible, serving the needs of analyses based 

on the perspective of vehicle-mounted cameras. Notable examples of such datasets 

include the TuSimple Lane Detection Challenge Dataset (Yoo et al., 2o2o), the Road and 
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Lane Dataset from the Karlsruhe Institute of Technology and Toyota Technological 

Institute (KITTI) (Geiger et al., 2013), the California Institute of Technology (Caltech) 

Lanes Dataset (Chao et al., 2019), and the Berkeley Deep Drive 100K (BDD100K) dataset 

(Yu et al., 2020). Nonetheless, these datasets are mainly designed to support models that 

adopt a driver's viewpoint, lacking the comprehensive coverage essential for thorough 

traffic management and analysis. This approach faces challenges in data analysis due to 

the restricted field of view of the sensors and physical obstructions. Additionally, the task 

of mapping extensive urban areas using this technique proves to be both time-consuming 

and demanding in terms of resources. 

 

In contrast, aerial image datasets play a crucial role in providing a comprehensive 

perspective on traffic patterns, making them invaluable for the implementation of large-

scale traffic management systems. As outlined in Section 2.1, despite the availability of 

numerous aerial imagery sources that could potentially meet the outlined requirements, 

there exists a notable scarcity of aerial datasets that offer detailed annotations of lane 

markings. The process of annotating a substantial volume of datasets to the extent 

required for effective deep learning training entails significant expenditure of time and 

financial resources. Furthermore, while numerous aerial imagery benchmarks featuring 

annotations may appear appropriate for tasks like lane extraction within the realm of 

semantic segmentation, as investigated by the Long et al. in their survey about benchmark 

dataset for aerial image, the majority do not meet the precise requirements of this 

undertaking. For instance, datasets such as the International Society for Photogrammetry 

and Remote Sensing (ISPRS) Potsdam and Vaihingen (Rottensteiner et al., 2014) provide 

high-resolution images yet fall short in delivering lane-specific information. Similarly, the 

Massachusetts Roads (Azimi et al., 2019b) and SpaceNet datasets (Van Etten et al., 2021) 

present urban annotations but lack the requisite granularity for precise lane segmentation. 

 

The SkyScapes dataset, an aerial image resource, stands out with its 13 cm resolution 

images coupled with detailed annotations that encompass a wide variety of lane markings 

across 12 classes, encompassing both urban and suburban environments (Azimi et al., 

2019b). Furthermore, it is freely accessible, making it an invaluable asset for the accurate 

detection and classification of road lanes from an aerial perspective. 
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This review underscores a noticeable gap in detailed aerial-level datasets compared to 

ground-level offerings, emphasizing the SkyScapes dataset's role. Its detailed annotations 

and high-resolution imagery position it as a key resource for developing sophisticated 

multi-class road lane detection models. Accordingly, this thesis will focus on leveraging 

the SkyScapes dataset to devise and refine road lane detection methodologies, setting a 

robust foundation for subsequent model development discussions. 

 

2.3 Existing Semantic Segmentation Models 

 

In the field of computer vision, semantic segmentation performs pixel-wise labeling and 

is well suited for complex real-world tasks. This technique divides an image into distinct 

segments corresponding to various objects or regions. Deep learning has significantly 

transformed this area, moving away from traditional methods based on clustering and 

contours (Weinland et al., 2011; Sonka et al., 2013). By enabling accurate segmentation 

of unknown images at a pixel level, deep learning algorithms not only enhance precision 

but also provide a richer understanding of visual scenes (Guo et al., 2018).  

 

There are two primary categories of existing semantic segmentation models: 

Convolutional Neural Network (CNN)-based models and Transformer-based models. 

These models represent distinct approaches in the field, each leveraging unique 

architectures to analyze and interpret image data effectively. 

 

2.3.1 CNN-based Models 

 

Following the advancements brought by CNN in semantic segmentation, the field 

witnessed a significant shift with the advent of Encoder-Decoder architecture. The 

Encoder-Decoder model, initially conceptualized for neural machine translation 

(Sutskever et al., 2014) to map sequences from one domain to another, offered a novel 

approach to semantic segmentation (Badrinarayanan et al., 2017; Ronneberger et al., 

2015). It consists of two parts: an encoder that compresses the input into a feature-rich 

representation, and a decoder that reconstructs the target output from this representation 
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(Sutskever et al., 2014). 

 

The selection of CNN-based models in semantic segmentation is based on their 

contributions to the field, highlighted by innovative structures and methods that have 

significantly shaped further research. Models are selected for historical importance, 

unique architecture, and influence on later studies, and performance, offering a 

benchmark with a blend of models with exceptional performance and models with 

historically significant impact on the development of semantic segmentation. These 

models are briefly described in this section:  

 

FCN (Fully Convolutional Network): This model modifies CNNs to process full 

images directly. By substituting fully connected layers with convolutional layers, it 

outputs spatial maps suitable for inputs of any size, a significant advancement over 

traditional CNNs that demand fixed-size inputs (Long et al., 2015). This "fully 

convolutional" design enables adaptable and size-invariant segmentation.  

 

FastFCN (Fast Fully Convolutional Network): This model introduces critical 

innovations over conventional CNN approaches (Wu et al., 2019). Its main advancement 

is the Joint Pyramid Upsampling (JPU) module, which efficiently merges multi-scale 

features, bypassing the extensive pooling and upsampling layers typical of CNNs and 

FCNs. This allows for high-resolution semantic segmentation with reduced 

computational demand, facilitating quicker processing speeds than traditional models. 

 

U-Net: This model leverages a convolutional neural network (CNN) in an encoder-

decoder framework (Ronneberger et al., 2015). Its notable feature, "skip connections," 

concatenates feature maps from the encoding path with the decoder's upsampled output, 

enhancing detail localization. This structure effectively maintains spatial context, 

addressing the common challenge of detail loss in deeper layers found in traditional CNN 

segmentation approaches. 

 

MobileNetV3: This model innovates within CNN architectures, optimizing for mobile 

device constraints without compromising performance (Howard et al., 2019). By 
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integrating Hardware-Aware Network Architecture Search (NAS) and the NetAdapt 

algorithm, it fine-tunes its structure for optimal functionality on mobile CPUs. 

MobileNetV3 introduces architectural enhancements, such as the Lite Reduced Atrous 

Spatial Pyramid Pooling (LR-ASPP), to improve semantic segmentation efficiency. 

Additionally, a streamlined segmentation decoder is incorporated to boost performance 

in dense pixel prediction tasks, ensuring computational efficiency is maintained. 

 

ANN (Asymmetric Non-local Neural Networks): This model is a CNN-based 

framework that introduces two innovations: the Asymmetric Pyramid Non-local Block 

(APNB) and the Asymmetric Fusion Non-local Block (AFNB) (Zhu et al., 2019). APNB 

reduces computation and memory usage by applying pyramid sampling to non-local 

blocks, maintaining performance while addressing the high resource demands of 

traditional non-local operations. AFNB improves segmentation by fusing multi-level 

features and addressing long-range dependencies, overcoming typical CNN limitations in 

capturing these dependencies efficiently. 

 

DeepLabV3: This model marks a notable development in semantic segmentation, 

integrating atrous convolutions and Atrous Spatial Pyramid Pooling (ASPP) within a CNN 

architecture (Chen et al., 2017a). Atrous convolutions are employed to broaden the 

receptive field, preserving the resolution of feature maps, and enhancing the model's 

ability to assimilate expansive contextual details without downsampling. The ASPP 

module leverages atrous convolutions at varied dilation rates to efficiently capture 

information across multiple scales, ensuring precise segmentation of objects of different 

sizes. 

 

DeepLabV3+: This model enhances DeepLabV3 by adding an encoder-decoder 

structure for better detail and edge precision in semantic segmentation (Chu et al., 2021). 

It improves on outlining object boundaries and pixel labeling by refining the ASPP 

module with a decoder to efficiently capture object edges. Depth-wise separable 

convolution in the ASPP and decoder minimizes computational complexity, ensuring 

efficient, high-performance segmentation. 
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Pyramid Scene Parsing Network (PSPNet): This model employs a CNN-based 

structure, elevating scene parsing through its Pyramid Pooling Module, which aggregates 

multi-scale contextual information for superior global comprehension (Zhao et al., 2017). 

Utilizing features from four distinct pyramid scales, it captures a wide array of global 

details, essential for the precise parsing and interpretation of complex scenes. This 

strategic approach overcomes the challenge of fusing global contextual insights, 

significantly boosting scene parsing accuracy by thoroughly analyzing the interconnected 

relationships present within images. 

 

SegNeXt: This model is CNN-based and introduces a novel convolutional attention 

mechanism to enhance computational efficiency (Guo et al., 2022). It leverages 

convolutional operations for spatial hierarchy management and local feature extraction, 

key for segmentation, avoiding the computational load of transformers' self-attention. 

This mechanism efficiently encodes spatial context with specialized convolutions, aiming 

to balance computational and parameter efficiency with high segmentation accuracy 

across various datasets. 

 

2.3.2 Transformer-based Models 

 

The landscape of semantic segmentation underwent another significant transformation 

with the introduction of Transformer-Based Models. Originally designed for natural 

language processing (Vaswani et al., 2017), the Transformer architecture, with its self-

attention mechanism, offered a novel approach to handling image data in semantic 

segmentation tasks (Dosovitskiy et al., 2020; Ranftl et al., 2021; Zheng et al., 2021). This 

transition marked an exciting development in the field, leveraging the ability of 

Transformers to model long-range dependencies and global context effectively (Strudel 

et al., 2021). 

 

A key milestone in this evolution was the adaptation of the Vision Transformer (ViT) for 

semantic segmentation. Pioneered by Dosovitskiy et al., ViT departed from conventional 

convolutional approaches, treating images as sequences of patches, and applying the self-

attention mechanism to capture complex spatial relationships across the entire image 
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(Dosovitskiy et al., 2020). This approach allowed for a more complete understanding of 

the image context, leading to improvements in segmenting intricate scenes where global 

comprehension is crucial (Dosovitskiy et al., 2020).  

 

Subsequent models built on the Transformer architecture further refined its application 

in semantic segmentation (Ranftl et al., 2021; Zheng et al., 2021). These models 

demonstrated an enhanced ability to segment objects and scenes with a high degree of 

accuracy, particularly in challenging scenarios involving occlusions, varying object scales, 

and complex backgrounds. By effectively capturing both local and global features through 

self-attention, Transformer-Based Models have set new benchmarks in the field (Strudel 

et al., 2021). The integration of Transformer technology into semantic segmentation 

represents a significant leap forward, underscoring the field's dynamic nature and its 

continuous pursuit of more advanced, efficient, and accurate segmentation methods. 

Transformer-based models are briefly described here: 

 

Twins-SVT: This model, particularly through its variants Twins Pooled Convolutional 

Pyramid Vision Transformer (Twins-PCPVT) and Twins Scaled Vision Transformer 

(Twins-SVT), revolutionizes spatial attention in vision transformers with a novel and 

streamlined design (Chu et al., 2021). This innovation is marked by a simplified yet potent 

spatial attention mechanism that stands in contrast to the complex and resource-

intensive approaches of traditional models. By employing a direct and efficient spatial 

attention strategy, both Twins-PCPVT and Twins-SVT architectures achieve high 

computational efficiency through optimized matrix multiplications, ensuring robust 

model performance without the burden of excessive computational demands. 

 

Segmenting Transformers (SegFormer): This model is transformer-based and 

capitalizes on self-attention mechanisms to grasp global dependencies for improved scene 

understanding (Xie et al., 2021). It innovatively omits positional encoding, avoiding 

issues related to varying input image resolutions during testing. Additionally, SegFormer 

integrates a lightweight Multi-Layer Perceptron (MLP) decoder to blend multiscale 

features from the encoder, efficiently marrying local and global context for accurate 

segmentation outcomes. 
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Shifted Window (Swin) Transformer: This model is transformer-based and 

features a novel shifted window design that diverges from the fixed-size patches (Liu et 

al., 2021). This design enables adaptive feature extraction across scales, essential for 

semantic segmentation. It achieves linear computational complexity with image size, 

improving upon the quadratic complexity of standard transformers. Its hierarchical 

structure facilitates efficient processing of images at different resolutions, effectively 

extracting local and global features with enhanced accuracy and scalability. 

 

Despite their strengths, these models' application in road lane detection remains 

underexplored, highlighting the necessity for a comparative study. Accordingly, this 

thesis undertakes a comprehensive evaluation of both CNN and Transformer-based 

models to identify their efficacy in road lane detection, addressing a critical research gap. 

 

2.4 Evolution of Lane Marking Detection Methods  

 

This section explores the progression of lane marking detection techniques, initially 

discussing the challenges associated with traditional road lane extraction methods from 

aerial imagery. It then transitions to deep learning, examining the application in general 

road extraction before focusing on its use for road lane extraction from aerial imagery. 

 

Before the advent of deep learning, significant efforts were made in the realm of aerial 

imagery analysis to extract road lanes using traditional computational methods. However, 

compared to deep learning, traditional methods have notable limitations. The manual 

feature engineering process, requiring extensive domain expertise, contrasts with the 

automatic feature learning of deep learning, offering a more efficient and adaptive 

approach to lane detection (Li et al., 2021). Traditional techniques' sensitivity to 

environmental changes often led to inconsistent effectiveness, highlighting a significant 

gap that deep learning methods bridge with their robustness and precision. This 

advancement is crucial for autonomous vehicle development, where accurate and reliable 

lane detection under diverse conditions is paramount. Deep learning's superiority in 

handling complex scenarios significantly pushes the boundaries beyond the capabilities 
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of traditional approaches. 

 

The exploration of deep learning methods to extract features from aerial imagery has 

surged, yielding significant advancements across various applications. Among these, road 

extraction serves as a pivotal area closely aligned with the challenges of road lane 

identification. For instance, Gao et al. (2018) leveraged a multi-feature pyramid network 

(MFPN) to adeptly handle roads of various widths in aerial imagery. A method refined by 

the same team with semantic segmentation and tensor voting to connect disjointed road 

segments (Gao et al., 2019). Concurrently, Wei et al. used of the Generative Adversarial 

Networks (GANs) for extracting both road pavement and centerlines (2020). The 

innovative approaches by Zhang et al (2019) and another Zhang et al in GAN-based road 

feature and obscured road reconstruction (2019), showcases the evolving capabilities of 

deep learning in comprehensive road network mapping. These advancements underscore 

the dynamic progression of deep learning applications. Yet, they also highlight an 

unexplored opportunity in applying such technologies for road lane extraction from aerial 

imagery, a critical area with substantial implications for automated navigation and urban 

planning. 

 

However, research on road lane detection using aerial imagery, as of January 2024, 

remains limited, with a few seminal contributions, notably by Azimi et al (2019a; 2019b). 

Their Aerial LaneNet, unveiled in 2018, utilizes the Symmetric Fully Convolutional 

Neural Networks (FCNN) augmented with Wavelet Transforms to address the unique 

challenges of aerial imagery (Azimi et al., 2019a). The strategic use of the Discrete Wavelet 

Transforms (DWTs) with FCNNs is key in maintaining high-frequency details vital for 

lane marking identification, addressing the complexity of segmenting small features like 

lane markings from high-altitude images. This methodology enhances the model's multi-

resolution analysis capability, crucial for accurate lane marking recognition across 

backgrounds. 
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                      (a)                                                          (b)                                                (c) 

Figure 2.1: Examples of results using Aerial LaneNet approach with the best performance. (a) Input aerial 

images, (b) Ground truth lane markings, and (c) Predictions of the extracted lane markings, adapted from 

Azimi et al. (2019a). 

 

Despite its pioneering approach, Aerial LaneNet's performance, achieving a mean 

Intersection over Union (mIoU) of 77.98%, sets a benchmark in the domain (Azimi et al., 

2019a). However, it is primarily configured for binary classification, distinguishing 

between lane markings and the background. This limitation highlights the need for future 

research directed towards multi-class segmentation to effectively tackle more complex 

scenarios in aerial view road lane detection. 

 

Building on the Aerial LaneNet foundation, Azimi et al. (2019b) introduced SkyScapesNet 

to delve into urban infrastructure complexities through aerial imagery. This model 

addresses the critical need for detailed and precise segmentation of urban landscapes, 

crucial for autonomous driving and urban planning. Specifically designed to segment 

multiple classes of road lanes and accurately identify small-scale urban features, 

SkyScapesNet utilizes a multi-task approach. By combining dense semantic segmentation 

with semantic edge detection, it leveraged the SkyScapes dataset, which comprises 31 

semantic categories, to enhance the segmentation of densely populated urban areas.  

 

SkyScapesNet, based on the Fully Convolutional DenseNet (FC-DenseNet) architecture, 

includes features designed for aerial images and uses a multi-task approach to improve 

object boundaries and feature identification (Azimi et al., 2019b). With an IoU of 40.13% 

and precision of 65.93%, it effectively classifies urban features, marking progress in aerial 



 

17 
 

urban segmentation.  

 

The limited research on road lane detection using aerial imagery, highlighted by notable 

contributions from Azimi et al. (2019a, 2019b), reveals a significant gap in the field, 

especially in multi-class segmentation challenges. With only two main studies addressing 

this area, there is a clear need for comparative research to evaluate and advance deep 

learning techniques for aerial imagery. Such studies are crucial for improving 

autonomous driving providing more accurate and detailed segmentation of road lanes 

from aerial perspectives. 

 

This section has outlined the evolution of lane marking detection from traditional 

computational techniques to advanced deep learning approaches, highlighting the shift 

towards more sophisticated methods in aerial imagery analysis. While traditional 

methods provided a foundation, deep learning has introduced unparalleled precision and 

adaptability, significantly advancing road lane extraction. Despite notable contributions, 

particularly from Azimi et al., there remains a crucial need for further research, especially 

in multi-class segmentation for comprehensive aerial view analysis. 
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Chapter 3 Methodology for Automated Lane Marking Extraction 

 

This chapter outlines the methodology employed for automated lane marking extraction. 

Initially, the focus is on introducing the two primary training datasets utilized in this 

study. Subsequently, a graphical representation detailing the general workflow is 

presented to provide a clear overview. Following this, the chapter delves into the training 

environment setup, before progressing to the imaging pre-processing techniques 

employed. An in-depth description of the models' training process is then provided, 

leading to an explanation of the transfer learning approach adopted. Finally, the 

evaluation metrics used to assess the effectiveness of the extraction methodology are 

detailed. 

 

3.1 Description of Training Datasets  

 

3.1.1 SkyScapes Dataset 

 

The SkyScapes Dataset is a comprehensive set of aerial images taken over Munich, 

Germany (Azimi et al., 2019b). Munich is the capital of Bavaria and the third-largest city 

in Germany, stands as a pivotal economic and transportation hub in the region. With an 

extensive area of over 310 km² and a population exceeding 1.5 million, the city showcases 

an advanced public transportation system. The presence of well-defined road lane 

markings further enhances traffic flow and safety, highlighting Munich's crucial role in 

linking major European transportation corridors. 

 

Within this context, the SkyScapes Dataset provides a detailed aerial perspective of 

Munich. Captured using a helicopter-mounted Digital Single-Lens Reflex (DSLR) camera 

system (Azimi et al., 2019b), it consists of 16 RGB images with a resolution of 5,616×3,744 

pixels and offers a ground sampling distance of approximately 13 cm per pixel. Spanning 

an area of 5.7 km², the dataset covers both urban and rural environments as shown in the 

Figure 3.1, meticulously showcasing traffic conditions and the interplay of Munich's 

comprehensive transportation infrastructure with its geographical landscape.  

 



 

19 
 

 

Figure 3.1: An example of the SkyScapes Dataset. Aerial image (left), semantic annotation (centre), and 

training image input (right) (Azimi et al., 2019b). 

 

This dataset includes 31 carefully annotated semantic categories, with a primary focus on 

elements found in urban areas (Azimi et al., 2019b). These categories cover a variety of 

features such as low vegetation, different types of roads and parking places, bikeways, 

sidewalks, entrance/exit points, danger zones, buildings, various vehicle types including 

cars, trailers, vans, trucks, large trucks, buses, as well as clutter, impervious surfaces, trees, 

and 12 different lane-marking types. The lane marking types are specified as dash-line, 

long-line, small dash-line, turn sign, plus sign, other signs, crosswalk, stop-line, zebra 

zone, no parking zone, parking zone, and other lane-markings. These categories are 

selected for their direct relevance to real-world urban scenarios, with a particular 

emphasis on road-associated objects to support applications like urban planning and 

autonomous driving. 

 

Annotations for the dataset were created through a meticulous manual process aimed at 

ensuring high precision, a necessity for applications such as autonomous vehicle 

navigation (Azimi et al., 2019b). The labor-intensive annotation required approximately 

200 man-hours for each image, highlighting the dataset's detail and the accuracy of its 
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annotations. 

 

Overall, the SkyScapes dataset comprises more than 70,000 instances spread across its 

31 classes, demonstrating a wide variety of class sizes and complexities (Azimi et al., 

2019b). Additionally, it offers an in-depth examination of lane markings through the 

specific SkyScapes-Lane task, enriching its utility for detailed urban analysis. 

 

Table 3.1: Number of annotated pixels (filled) per class in SkyScapes, multi-lane. 

Class Pixel Count 

Background 167,817,849 

Dash line 74,502 

Long line 237,217 

Small dash line 10,523 

Turn signs 4,915 

Other signs 7,914 

Crosswalk 4,422 

Stop line 5,428 

Zebra zone 29,290 

No parking zone 2,960 

Parking space 5,154 

Other lane-marking 10,258 

  

3.1.2 Waterloo Urban Scene Dataset 

 

Waterloo is a city located in Ontario, Canada, is part of the Region of Waterloo 

metropolitan region, which features an extensive network of roads, including significant 

highways that improve its connection with the Greater Toronto Areas and nearby areas. 

The complex system of highways and city streets is essential for ensuring smooth traffic 

movement and safety, making Waterloo a suitable place for conducting research on road 

lane extraction. 

 

Building on this, the Waterloo Urban Scene Dataset, extracted from the readily available 

Waterloo Building Dataset, presents high-resolution aerial ortho imagery of the 
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Kitchener-Waterloo region, as shown in Figure 3.2 and 3.3. With its extensive area 

coverage of 205.8 km² and a fine spatial resolution of 12 cm per pixel, this dataset serves 

as a perfect platform for urban and traffic semantic segmentation projects (He et al., 

2022). The dataset's detailed imagery and broad accessibility have been crucial factors in 

its selection for this study, offering a detailed and expansive foundation for analytical 

endeavors. 

 

 

Figure 3.2 An example of the Waterloo Urban Scene dataset raw image. 
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Figure 3.3 The annotation of 14 road lane marking class and background for Figure 3.2. 

 

 To adapt the Waterloo Urban Scene Dataset for this study, it was enriched with a series 

of manually added annotations to form a robust ground truth, crucial for evaluating the 

developed model's effectiveness across diverse datasets. Given the original dataset's lack 

of specific urban and traffic classifications, 14 classes were introduced, including road, 

vehicle, sidewalk, crosswalk, various lane markings, and traffic islands. This addition of 
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classes and annotations aligns the dataset with the practical demands of urban and traffic 

contexts, facilitating precise model testing and development. 

   

 

Figure 3.4: Illustrations from the Waterloo Urban Scene Dataset featuring annotated overlays.  

 

These classes were organized into three main categories to enhance clarity and specificity. 

Facility types, including background, road, traffic island, and sidewalk, form the first 

group. The second group encompasses road lane markings, while the third is focused on 

vehicles. This organization mirrors real-world conditions for accurate model testing. 
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Table 3.2: Number of annotated pixels (filled) per class in the Waterloo Urban Scene Dataset. 

Class Pixel Count 

Background 421,098,771 

Road 58,305,344 

Traffic Island 2,211,212 

Sidewalk 15,421,199 

Crosswalk 122,878 

Dash line 138,418 

Single solid line 833,854 

Small dash line 14,050 

Turn sign 16,990 

Stop line 76,384 

Zebra line 25,748 

Parking line 477,782 

No parking zone 300,028 

Other 10,072 

Vehicle 4,788,038 

 

An essential aspect of our annotation process was establishing a priority system for 

overlapping classes in the imagery. This hierarchy was crucial for resolving cases where a 

pixel belonged to multiple classes, such as a vehicle overlapping a dash line on a road. The 

hierarchy ensuring clarity and consistency in the annotations:  

 

Vehicles Group: Given top priority, this category includes all vehicle types, reflecting 

their non-occlusion by roads or lanes. 

 

Road Lane and Signs Class: Occupying the second level. This group encompasses the 

following sequence: Dash Line, Single Solid Line, Small Dash Line, Turn Sign, Stop Line, 

Zebra Line, Parking Line, No Parking Zone, and others. 

 

Facility Types: The lowest tier, consisting of infrastructure elements. This group 

includes the following classes: Road, Traffic Island/Roundabout, Sidewalk, Background 

(Undefined Features, e.g., trees, buildings, waterbody). Although these elements form the 

fundamental structure of urban landscapes, they are assigned the lowest priority in the 
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context of this specific research objective.  

 

The annotation process posed significant challenges, particularly due to the intricacies of 

aerial imagery (Azimi et al., 2019b). Factors such as small object size, shadows, occlusion, 

and unclear boundaries added complexity to the task. To facilitate detailed annotation, 

all the images are annotated by the 14 research assistants and group members from the 

Waterloo Geospatial Intelligence and Mapping Laboratory (GIM Lab) with expertise in 

geomatics. We employed GIS fishnet techniques to segment large images. As illustrated 

in Figure 3.3, it displays a 17×17 grid structure. The numeration and directional arrow 

depict the methodology employed to segment the image using the fishnet approach, 

subsequently allocating a unique identifier to each subsection for future annotation 

purposes. The numbering of cells follows a serpentine pattern, beginning with 0 in the 

bottom left corner and concluding with 16 in the bottom right corner. The final cell, 

numbered 289, is in the top right corner. In the Waterloo region, for instance, each large 

image was divided into 86 smaller images with 8,350×8,350 pixels. Each larger image in 

the dataset is segmented into 289 smaller images, with most measuring 512×512 pixels, 

except the last row and column. After annotation, these images underwent three rounds 

of quality checks. 



 

26 
 

 

Figure 3.5: Aerial Perspective of an Urban Region with Fishnet Grid Overlay. This illustration displays a 

17×17 grid structure with numeration and a directional arrow to depict the segmentation methodology. 
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3.2 Description of the General Workflow 

 

As depicted in Figure 3.4 below, this section outlines the workflow of the experiment. 

Initially, there was preparation involving two datasets: the Skyscapes Dataset and the 

Waterloo Urban Scenes Dataset. Both datasets underwent data augmentation and 

parameter calculation before entering the training phase. In data augmentation, original 

images in Red Green Blue (RGB) format with three channels were flipped and cropped to 

increase the size of the dataset. For parameter calculation, the mean and standard 

deviation were computed on the training images to normalize the inputs for the training 

phase, which helps reduce training time and computational resources. 

 

 

Figure 3.6: General workflow of the experiment 

 

Following this, twelve comparative models were trained using the Skyscapes dataset and 

evaluated to produce performance metrics on the Skyscapes test dataset. Then, these 

twelve models, preloaded with weights from their training on the Skyscapes dataset, were 

fine-tuned using the Waterloo Urban Scenes dataset, after which their performance 

metrics were generated for this dataset. 
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3.3 Training Environment 

 

The training was conducted using NVIDIA RTX 3080 GPU. Learning rate was chosen 

based on pretrained model setups with proven convergence from toolbox. Given the 

intensive computational requirements, a batch size of 2 was opted to most model training 

setup. The models were trained around 20 epochs, a duration determined to be sufficient 

for converging to a stable solution without overfitting, based on the validation 

performance. 

 

3.4 Imaging Pre-processing 

 

The comparative study utilized the SkyScapes and the Waterloo Urban Scene datasets, 

which are composed of high-resolution aerial imagery. The SkyScapes dataset includes a 

total of 10 images, divided into 8 training and 2 validation images, each with dimensions 

of 5,616×3,744 pixels (Azimi et al., 2019b). The Waterloo Urban Scene dataset, on the 

other hand, consists of images with a resolution of 8,350×8,350 pixels (He et al., 2021). 

To facilitate the analysis of ground truth and predictions, distinct palettes were developed 

to represent different classes. The grayscale ground truths were converted into palette-

labeled images for ease of use. 

 

Given the large size of the original images and the memory limitations of Graphics 

Processing Units (GPU), the raw images were segmented into smaller patches measuring 

512×512 pixels. This patch size, chosen based on the SkyScapes study, represents a 

compromise between preserving adequate contextual information and ensuring a 

manageable computational load. 

 

To enhance model robustness and account for various orientations, the datasets 

underwent augmentation through horizontal flips, vertical flips, and combined flips. 

These techniques expanded the diversity of the training data without necessitating 

additional labeled images. To further maximize data utility, adjacent patches were 

overlapped by 50% in both vertical and horizontal dimensions. This approach aimed to 

provide exhaustive coverage of the imagery and minimize information loss at patch 
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boundaries. Consequently, the training sets for both the SkyScapes dataset and the 

Waterloo Urban Scene dataset comprised approximately 8,000 images each. 

 

Prior to training, the images were standardized to normalize the data distribution. The 

mean and standard deviation of the training set, which was calculated from the SkyScapes 

training dataset, was applied to both training and test datasets. Considering the Waterloo 

Urban Scene dataset was fine-tuned from the SkyScapes dataset, it was subjected to the 

same standardization parameters to ensure consistency in model training. 

 

3.5 Models Training 

 

This section outlines the enhanced procedures for training the model, detailing settings 

for parameters, strategies for optimization, and techniques for managing data. 

Modifications are made in response to initial experiments and the distinct features of the 

datasets being examined, specifically the SkyScapes and Waterloo Urban Scene dataset. 

 

Parameter Settings 

Models were initialized with parameters derived from two sources: pre-trained ImageNet 

1K backbones and settings identified through preliminary experimentation. This hybrid 

approach ensured a solid foundation for feature extraction, supplemented by adjustments 

tailored to the unique demands of aerial imagery analysis. Learning rates were 

individually set for each model to accommodate their sensitivity to large adjustments. 

Here are detailed learning rate settings for each model: ANN and Twins used 0.0001; 

DeepLabV3, DeepLabV3+, FCN, FastFCN, MobileNetV3, PSPNet, U-Net used 0.01; 

SegFormer, SegNeXt, and Swin used 0.00006.  A common strategy across all models was 

the employment of a warm-up phase, constituting approximately half an epoch, where 

learning rates were minimized to stabilize the models at the beginning. Subsequently, a 

Poly Learning Rate schedule with a power of 0.9 was applied to systematically decrease  

learning rate, optimizing the training progression. The batch size was set at 2 for most of 

the models except for MobileNetV3, which had a batch size of 4, a decision dictated by the 

large input size of 512x512 pixels and the constraints of memory usage. Smaller batch size 

necessitated careful management of learning dynamics to maintain model effectiveness. 
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Optimization Strategies 

The training routine for the SkyScapes dataset extends across 20 epochs, a period during 

which most models typically achieve convergence, signifying optimal performance in 

feature extraction from the dataset. The training for the Waterloo Urban Scene requires 

fewer epochs because the models have already gained a general understanding of scenes 

from the SkyScapes dataset, and only need to adjust this knowledge to a similar domain 

through fine-tuning. The research employed AdamW and Stochastic Gradient Descent 

(SGD) optimizers to leverage their unique advantages in managing sparse gradients and 

momentum. Specifically, AdamW was the optimizer of choice for SegFormer, SegNeXt, 

Swin, and Twins, while the remaining models were optimized using SGD. A diverse suite 

of loss functions, including cross-entropy loss, soft IoU loss, dice loss, and focal loss, was 

combined with varying weights. Further information on the loss functions employed for 

both datasets across the 12 models can be found in Appendix C, specifically in Table C.1. 

This approach allowed for a detailed learning process, accommodating the complex 

spatial relationships and varying object scales present in aerial images. 

 

Data Splits 

The SkyScapes dataset, publicly available with predefined splits, comprises 8 training, 2 

validation, and 6 test images. This split was adopted without modification to ensure 

consistency with public benchmarks. In contrast, the Waterloo Urban Scene dataset, 

featuring larger original images than the SkyScapes dataset, included 1 original image for 

both training and validation phases. These were further segmented, with a training-

validation split of 80:20 applied to the cropped images, facilitating a focused examination 

of urban landscapes. 

 

This detailed account of the model training methodology integrates specific parameter 

adjustments, optimization strategies, and a tailored approach to data management, 

reflecting the complexity and specificity of applying transfer learning to aerial imagery 

analysis. Through this rigorous and methodically adjusted training process, the study 

aims to provide a robust and reproducible framework for analyzing diverse landscapes 
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and urban scenes. 

 

3.6 Transfer Learning Approaches 

 

This study employs a strategic transfer learning approach to leverage pre-existing 

knowledge from a broad dataset to enhance the performance on specific urban and 

SkyScapes scenes. The methodology is structured around the application of transfer 

learning from a general dataset to the SkyScapes dataset and subsequently transferring 

the learned features to the Waterloo Urban Scene dataset. 

 

Pre-Trained Backbone Models: At the core of our transfer learning strategy lie twelve 

models, each utilizing a backbone pre-trained on the ImageNet 1K dataset. These 

backbones include, but are not limited to, ResNet-50, ResNet-101, and Vision ViT. The 

choice of these models is predicated on their proven efficacy in various image recognition 

tasks and their ability to serve as robust feature extractors for diverse visual domains. 

 

Training on SkyScapes Dataset: Initially, the models are fine-tuned on the SkyScapes 

dataset, a comprehensive collection of diverse SkyScapes images. To accommodate the 

unique learning capabilities and preferences of each model, a variety of loss functions 

were employed. A simple preliminary experiment was conducted to identify the optimal 

combination of loss functions and the learning rate tailored for each specific model. 

Furthermore, the models were trained over slightly different numbers of epochs to 

achieve the best equivalent effects, ensuring a customized and efficient learning process 

that aligns with the distinct characteristics of each model. This tailored approach ensures 

that the models not only learn effectively but also adapt to the specific details of SkyScapes 

imagery.  

 

Fine-Tuning for Waterloo Urban Scene Dataset: Upon achieving satisfactory 

performance on the SkyScapes dataset, the models undergo a subsequent phase of fine-

tuning for the Waterloo Urban Scene dataset. This dataset, focusing on urban scenes in 

Waterloo, presents a distinct set of challenges and characteristics compared to SkyScapes. 
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The fine-tuning process is meticulously designed to leverage the SkyScapes-based pre-

training, allowing the models to transfer and adapt their learned features to urban scenes 

effectively. Fine-tuning on the Waterloo Urban Scene dataset involved a faster decline of 

the learning rate compared to the SkyScapes dataset, acknowledging the models' pre-

existing familiarity with related scenes. In this stage, the training duration was controlled 

more flexibly by using iterations, which means batches, instead of being limited by a fixed 

number of batches in each epoch. The optimizers were reduced while the combination of 

loss functions from the initial training phase were retained from those in the SkyScapes 

dataset, ensuring continuity in the optimization logic while accommodating the datasets' 

differing characteristics. 

 

This dual-stage transfer learning approach, from a generalized dataset to the SkyScapes 

dataset and subsequently to the Waterloo Urban Scene dataset, underscores the flexibility 

and effectiveness of leveraging pre-trained models for domain-specific tasks. By fine-

tuning pre-existing models, powerful representational capabilities are utilized, 

significantly enhancing performance on targeted tasks within the areas of urban and 

SkyScapes scene analysis. 

 

3.7 Evaluation Metrics 

 

The evaluation of semantic segmentation models, particularly in remote sensing imagery, 

prioritizes segmentation accuracy due to its critical role in application effectiveness. A set 

of evaluation metrics is used to assess segmentation methodologies' performance, 

offering insights into the precision of pixel classification. The selected metrics include: 

 

All Pixel Accuracy (aAcc): This metric calculates the overall accuracy of the 

segmentation across the entire dataset. It is defined as the ratio of correctly classified 

pixels to the total number of pixels. aAcc provides a high-level overview of model 

performance but may be biased towards dominant classes in unbalanced datasets. 
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    (3.1) 

 

Mean Pixel Accuracy (mAcc): This metric calculates the accuracy for each class 

individually and then averages these accuracies. This metric offers insight into the 

model's consistency across different classes. 

 

    (3.2) 

 

Mean Intersection over Union (mIoU): IoU is a metric that measures the overlap 

between the predicted segmentation and the ground truth, normalized by the union of 

these two areas. mIoU is calculated for each class and then averaged, providing a balanced 

view of the model's precision and recall.  

 

True Positives (TP) refers to the instances where both predicted and actual values are 

positive. False Positives (FP) refers to the instances where predicted value is positive but 

actual value is negative. True Negatives (TN) refers to the instances where both predicted 

and actual values are negative. False Negatives (FN) refers to the instances where 

predicted value is negative but actual value is positive. 

 

   (3.3) 

 

   (3.4) 

 

Precision: Precision, or the positive predictive value, quantifies the ratio of true positive 

pixels to the sum of true positive and false positive pixels for each class, averaged across 

all classes. It reflects the model's ability to exclude false positives from the segmentation. 

Mean precision is the mean value over all classes’ precisions. 
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            (3.5) 

 

Recall: Recall, also known as sensitivity, measures the ratio of true positive pixels to the 

sum of true positive and false negative pixels for each class, averaged across classes. This 

metric highlights the model's capability to correctly identify all relevant pixels of a class. 

Mean recall is the mean value over all classes’ recalls. 

 

     (3.6) 

 

F1-Score: The F1-score is the harmonic mean of precision and recall. It serves as a single 

metric that balances the trade-off between precision and recall, providing a 

comprehensive measure of the model's overall performance. The mean F1-score is 

computed by averaging the F1-scores obtained for each class. 

 

   (3.7) 

 

Each of these metrics addresses different aspects of segmentation performance, from 

general accuracy to class-specific precision and recall. By utilizing this multifaceted 

evaluation framework, we aim to provide a thorough and detailed analysis of the 

segmentation models under study.  
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Chapter 4 Results and Discussion 

 

This chapter presents the outcomes of the conducted experiments and engages in further 

discussions. Section 4.1 details the experimental results of two datasets. Section 4.2 

focuses on the visualization of these results. In-depth discussions based on these findings 

are provided in Section 4.3. 

 

4.1 Model Performance and Adaptation 

   

4.1.1 SkyScapes Dataset 

 

This section presents a comprehensive analysis of 12 models' performance on the 

SkyScapes dataset. The evaluation employs a suite of metrics, including mIoU, mAcc, 

overall Accuracy, mean Recall, mean Precision, and mean F1 score, to facilitate a detailed 

examination of each model's effectiveness. Key insights and noteworthy observations 

from the comparative assessment are highlighted, with additional detailed class-based 

quantitative results available in Appendix A for a deeper understanding of performance 

differences. 

 

Based on Table 4.1 below, transformer-based models outperform CNN-based models. 

Within the transformer category, models such as SegFormer, Swin, and Twins achieve 

superior results compared to traditional CNN models, highlighting the effectiveness of 

attention mechanisms over non-attention-based approaches. Notably, SegNeXT, even 

without employing a transformer structure, achieves the second-best result in terms of 

MIoU among the 12 models through its unique CNN attention mechanism. Among the 

evaluated models, SegFormer leads in performance with a mIoU of 33.56%, mAcc of 

99.92%, overall Accuracy of 99.59%, mean Precision of 64.33%, and an F1 score of 44.34%. 

The highest mean Recall is achieved by ANN at 66.00%. 
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Table 4.1: Benchmark of the state of the art on the SkyScapes-Lane task over all 12 classes (in %). 

Method Base IoU Accuracy  Confusion  F1  

  mean mAcc aAcc mRecall mPrecision  

FCN ResNet101 10.68 98.87 93.21 13.53 11.38 13.53 

FastFCN ResNet50 16.33 99.77 98.61 31.10 21.02 22.36 

U-Net - 14.98 99.24 95.43 50.45 18.97 21.80 

DeepLabV3 ResNet101 10.24 98.79 92.72 35.32 11.12 12.69 

DeepLabV3+ ResNet101 18.08 99.84 99.02 34.62 23.58 24.91 

ANN ResNet101 20.94 99.41 96.47 66.00 22.92 29.88 

MobileNetV3 Large 11.74 98.91 93.47 54.55 12.45 15.25 

PSPNet ResNet101 8.68 97.55 85.29 32.24 10.09 10.65 

SegNeXt Base   32.26 99.86 99.14 49.96 48.98 44.20 

Twins Base 30.11 99.85 99.08 45.79 51.81 41.87 

Swin Base 30.51 99.84 99.02 60.03 40.27 42.97 

SegFormer Base 33.56 99.92 99.50 43.85 64.33 44.34 

 

Generally, Recall exceeds Precision across the models, except for Twins and SegFormer, 

which display higher mean Precision than mean Recall. This suggests their predictions 

tended to minimize false negatives over false positive to achieve high recall, perhaps over 

predicting pixels as positives. The F1 score, a harmonic mean of Precision and Recall, 

serves as a balanced metric, emphasizing that both Precision and Recall need to improve 

proportionally to enhance the F1 score. It reflects the overall prediction quality without 

bias towards either Precision or Recall. The mIoU metric quantifies the overlap between 

predicted and actual class pixels, providing a direct measure of prediction accuracy in 

relation to the ground truth. Like the F1 score in its construction but with different 

coefficients, IoU and F1 scores generally exhibit parallel trends in model performance 

evaluation. 

 

All models demonstrate exceptionally high Accuracy, with each model achieving at least 

97.55% mAcc and some nearing 99.92%. This phenomenon is attributed to the dominant 

presence of background pixels, where accurate background prediction significantly 

influences the Accuracy metric, leading to scale imbalance and diminished result 

sensitivity. Further interpretation of these results will be elaborated in discussion chapter. 
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Within the class-based analysis of the SkyScapes dataset involving all 12 models from 

Table 4.2 below, it is observed that the background class universally achieves the highest 

results across all evaluation metrics. Detailed per-model per-class metrics can be found 

in appendix A.1. This trend is attributable to most pixels that the background class 

constitutes, enabling models to master its prediction more easily. This ease of learning for 

the background prediction is particularly pronounced when models encounter difficulties 

in discerning minor variations in loss attributed to predictions of other classes, indicating 

a general propensity for models to excel in background identification when faced with 

complex class distinctions. 

 
 
Table 4.2: Evaluation metrics for 12 different models on the performance of background extraction using 
the SkyScapes Dataset. 

 
 

Based on Table 4.2, we can see that PSPNet and Mobilenetv3 have mean IoUs of 85.64% 

and 93.59%, respectively. This deviation suggests a tendency for these models to 

misclassify more pixels as non-background classes, pointing towards a distinct behavior 

in handling class predictions that diverges from the norm observed in other models.  

 
 

Furthermore, a detailed examination reveals that each model exhibits a distinct 

preference for certain classes beyond the background, manifesting in varied performance 
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metrics from Table 4.3 to 4.13. Referencing to Table 4.3, which details the metrics for 

crosswalk identification, it is noteworthy that several models, despite exhibiting lower 

scores across other metrics, achieve notable high recall rates, particularly U-Net, which 

reaches a recall of 100%. This phenomenon is primarily attributed to overestimation of 

overlap, coupled with a resultant decrease in precision. Due to the limitations inherent in 

the models' capabilities, they tend to predict a much broader area than the actual 

crosswalk, merging it into a unified block. This results in a significantly low number of 

False Positives, which is a critical factor in the recall's denominator, alongside the 

quantity of correct predictions. Among the models, those based on ANN secure the 

highest scores in recognizing crosswalks, suggesting that ANNs may possess structural 

advantages or have been more finely optimized for detecting crosswalk features compared 

to their transformer-based counterparts. 

 
 
Table 4.3: Evaluation metrics for 12 different models on the performance of crosswalk extraction using 
the SkyScapes Dataset 

 
 
 

Table 4.4 provides an in-depth analysis of the performance metrics related to the 

detection of dashed lines, indicating a notably high proficiency across models in this 

specific area, surpassing their effectiveness in several other categories. Models that 
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integrate attention mechanisms are particularly distinguished, invariably ranking within 

the top quartile for performance metrics. Notably, the U-Net model demonstrates 

exceptional performance, achieving consistently high average scores that position it just 

below the leading models. This achievement highlights U-Net's adeptness in capturing 

the intricate details of object contours accurately. Transitioning to the examination 

presented in Table 4.5, the analysis of the detection capabilities for longer lines 

corroborates the trends observed in dashed line detection, further evidencing the models' 

proficiency in identifying distinct and continuous line elements. This consistency 

evidences a comprehensive capability among the models, especially those akin to U-Net, 

in reliably discerning and precisely classifying various types of line-based road markings. 

 
 
Table 4.4: Evaluation metrics for 12 different models on the performance of dash line extraction using the 
SkyScapes Dataset. 
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IoU 12.47 7.91 24.19 19.36 7.11 13.69 5.14 51.19 34.71 36.61 40.24 26.83

Acc 98.95 98.80 99.74 99.53 98.72 99.22 98.94 99.88 99.74 99.73 99.78 99.79

Precision 12.92 8.49 35.83 22.43 7.63 14.79 5.84 67.33 39.87 40.05 45.03 43.78

Recall 78.43 53.87 42.66 58.51 50.99 64.67 29.95 68.09 72.85 81.01 79.09 40.93

F1 Score 22.18 14.66 38.95 32.43 13.27 24.08 9.78 67.71 51.54 53.60 57.39 42.30
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Table 4.5: Evaluation metrics for 12 different models on the performance of long line extraction using the 
SkyScapes Dataset. 

 
 
 
 
Table 4.6: Evaluation metrics for 12 different models on the performance of no parking zone extraction 
using the SkyScapes Dataset. 
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Table 4.6 delves into the performance metrics for detecting no parking zones, revealing a 

pattern consistent with that observed in the detection of dash lines, although with a 

notable deviation where U-Net exhibits a diminished performance in this category. 

Moving forward to Table 4.7, which outlines the performance metrics for various other 

lane marking classes, a parallel trend to that observed with dash lines emerges, with 

Twins models outperforming others to secure the top position in overall performance. 

Furthermore, Table 4.8 focuses on the performance metrics for the 'other sign' category, 

highlighting SegNeXt as the leading model among those based on transformer 

architectures. Remarkably, ANN models also demonstrate formidable performance, with 

their metrics nearly matching, and in some cases closely competing, those achieved by 

transformer-based models, illustrating their efficacy and competitive edge in this domain. 

 
 
Table 4.7: Evaluation metrics for 12 different models on the performance of other lane marking extraction 
using the SkyScapes Dataset. 
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Table 4.8: Evaluation metrics for 12 different models on the performance of other signs extraction using 
the SkyScapes Dataset. 

 
 
 
Table 4.9: Evaluation metrics for 12 different models on the performance of parking space extraction 
using the SkyScapes Dataset. 
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Table 4.9 focusing on the assessment metrics for parking space, reveals that transformer-

based models significantly outperform others in terms of precision, where they secure the 

highest figures compared to all other models. In contrast, select CNN-based models 

distinguish themselves by obtaining higher recall values. Moving to Table 4.10, which 

examines the evaluation metrics for small dashed lines, it is observed that PSPNet 

registers the lowest recall rate, marked at 12.87%, a figure significantly below the next 

lowest recall value of 43.47% recorded by other models. In this context, SegFormer 

emerges as the leader in terms of scoring, with DeeplabV3+, a model rooted in CNN 

technology, trailing closely behind, showcasing competitive performance. 

 
 
Table 4.10: Evaluation metrics for 12 different models on the performance of small dash line extraction 
using the SkyScapes Dataset. 
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Table 4.11: Evaluation metrics for 12 different models on the performance of stop line extraction using the 
SkyScapes Dataset. 

 
 

 

Table 4.11, presenting the evaluation metrics for stop line detection, indicates that models 

incorporating attention mechanisms consistently lead in performance. Notably, FastFCN 

achieves a ranking above DeeplabV3+, defying initial expectations. In Table 4.12, which 

examines the metrics for turn sign detection, it is evident that models leveraging attention 

mechanisms, along with U-Net, markedly surpass other models in precision. Swin 

distinguishes itself as the model with the highest comprehensive scores. Furthermore, 

Table 4.13, which outlines the metrics for zebra zone detection, demonstrates that 

SegNeXt and Swin perform similarly, with SegNeXt delivering a more evenly balanced 

performance. Twins are observed to be considerably less effective in comparison, whereas 

ANN secures the third position, surpassing SegFormer in performance. 
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Table 4.12: Evaluation metrics for 12 different models on the performance of turn sign extraction using 
the SkyScapes Dataset. 

 
 
 
Table 4.13: Evaluation metrics for 12 different models on the performance of zebra zone extraction using 
the SkyScapes Dataset. 
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LabV3

Deep
LabV3

+

Fast
FCN FCN

Mobile
NetV3

PSP
Net

Seg
Former

Seg
NeXt Swin Twins U-Net

IoU 7.21 0.52 1.09 5.25 1.94 1.88 1.65 7.52 8.76 22.97 13.60 8.21

Acc 99.94 99.95 99.97 99.96 99.57 99.87 99.80 99.98 99.97 99.97 99.97 99.97

Precision 10.41 1.08 8.54 10.32 2.02 2.28 1.85 73.74 56.02 47.33 53.28 28.30

Recall 19.02 0.99 1.23 9.65 33.35 9.65 13.21 7.73 9.41 30.86 15.44 10.36

F1 Score 13.45 1.03 2.15 9.97 3.82 3.69 3.24 13.99 16.12 37.36 23.94 15.17
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IoU 21.38 0.10 1.51 6.57 0.92 0.10 0.04 14.01 36.63 38.22 3.37 0.57

Acc 99.96 99.83 99.98 99.97 99.42 99.35 99.72 99.99 99.99 99.99 99.99 99.51

Precision 21.97 0.11 2.67 9.80 0.93 0.10 0.05 58.64 53.14 47.28 58.63 0.58

Recall 88.87 1.56 3.34 16.59 47.47 5.77 1.07 15.55 54.11 66.60 3.46 24.59

F1 Score 35.23 0.20 2.97 12.32 1.83 0.20 0.09 24.58 53.62 55.30 6.53 1.13
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In conclusion, examining 12 models on the SkyScapes dataset provides valuable insights 

into how transformer-based and CNN-based models perform across various metrics. The 

analysis showed that predicting the background class was generally the easiest task for all 

models, mainly because it makes up most pixels. However, PSPNet and MobileNetV3 

stood out for their lower mean IoU scores for the background, suggesting they might 

incorrectly classify more pixels as belonging to other classes. The study also revealed 

differences in how models perform in specific classes, which can be traced back to their 

architecture, the settings of their optimizers, and their loss functions. These results 

highlight the critical role of careful model selection and adjustment to meet the demands 

of specific tasks and the distinct advantages and challenges presented by different model 

architectures. The detailed examination of these differences and their reasons will be 

further discussed in the discussion section. 

 

4.1.2 Waterloo Urban Scene Dataset 

 

This section extends the comparative analysis of model performance from the SkyScapes 

dataset to the Waterloo Urban Scene dataset, aiming to understand how different models 

perform across diverse urban imaging domains. Employing uniform evaluation metrics, 

such as mIoU, mAcc, among others, the study presents tables showcasing the 

performance of 12 models based on these criteria. Furthermore, it elucidates and 

emphasizes notable outcomes derived from class-based table analyses of certain models, 

offering insights into their performance across specific classes. 

 

The results section from Table 4.14 below showcases a notable improvement across all 

metrics on the Waterloo Urban Scene dataset, with mIoU scores now ranging between 

33.56% to 76.11% and F1 scores spanning from 44.34% to 85.35%. This marks a 

significant enhancement in model performance compared to previous benchmarks, 

potentially attributed to the advantages of pretraining on the SkyScapes dataset and the 

unique characteristics of the Waterloo Urban Scene dataset itself. 
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Table 4.14: Benchmark of the state of the art on the Waterloo Urban Scene Dataset over all 15 classes (in %). 

Method Base IoU Accuracy  Confusion  F1  

  mean mAcc aAcc mRecall mPrecision  

FCN ResNet101 44.40 99.58 96.84 93.55 47.06 56.38 

FastFCN ResNet50 50.48 99.76 98.16 98.54 51.46 62.07 

U-Net - 44.64 99.52 96.37 91.14 46.95 56.62 

DeepLabV3 ResNet101 47.55 99.63 97.22 93.97 49.44 60.31 

DeepLabV3+ ResNet101 51.03 99.65 97.34 95.34 53.2 63.74 

ANN ResNet101 46.5 99.67 97.54 96.30 47.91 58.23 

MobileNetV3 Large 34.94 99.37 95.26 89.89 37.44 46.03 

PSPNet ResNet101 50.48 99.72 97.87 96.73 51.90 62.29 

SegNeXt Base 65.77 99.66 97.45 96.81 67.24 77.60 

Twins Base 62.86 99.23 94.24 88.15 68.64 76.01 

Swin Base 60.22 99.84 98.78 98.96 60.84 72.48 

SegFormer Base 76.11 99.77 98.27 97.94 77.44 85.35 

 

In line with the trends observed on the SkyScapes dataset, transformer-based models 

continue to outperform traditional CNN-based models on the Waterloo Urban Scene 

dataset based on Table 4.14. Specifically, SegNeXt, with its CNN attention mechanism, 

achieves the second highest mIoU, trailing only behind SegFormer. SegFormer leads in 

mIoU, mean precision, and F1 score, with impressive scores of 76.11%, 77.44%, and 

85.34%, respectively. Swin, on the other hand, excels in mAcc, overall accuracy, and mean 

recall, recording the highest values at 99.84%, 98.74%, and 98.96%, respectively. Most 

models demonstrate exceptionally high recall values, exceeding 90%, with the exception 

of MobileNetV3 and Twins, which record slightly lower recalls at 89.89% and 88.15%, 

respectively. This trend suggests that models, in general, tend to predict more pixels 

outside the actual ground truth area than fewer pixels within it, as evidenced by the lower 

precision scores compared to recall scores. 

 

Drawing on the insights from the SkyScapes dataset, the analysis of model performance 

on the Waterloo Urban Scene dataset reveals distinct trends. Detailed per-model per-class 

results can be found in appendix A.2. Contrary to the findings from the SkyScapes dataset, 

the analysis of models on the Waterloo Urban Scene dataset reveals enhanced 

performance in the sequence of Road, Traffic Island, Sidewalk, and Vehicle classes. This 



 

48 
 

shift in performance hierarchy suggests a different weighting of class importance within 

the Waterloo Urban Scene dataset, with these four classes playing a more significant role 

in overall model evaluation metrics. 

 

Table 4.15: Evaluation metrics for 12 different models on the performance of background extraction using 
the Waterloo Urban Scene Dataset after fine-tuning. 

 

 

Referring to Table 4.15, which outlines the background metrics, it is observed that all 

models report satisfactory outcomes, except for Twins. This model exhibits noticeably 

poorer performance across all metrics compared to its counterparts. Table 4.16, detailing 

the evaluation metrics for crosswalks, indicates that attention-based models achieve 

superior outcomes, although Swin ranks as the least effective among these. Traditional 

CNN-based models display comparable performance. Notably, the recall rates across all 

models are significantly higher relative to other classes, a trend also observed in the 

crosswalk category of skyscape datasets. This could be attributed to the challenges posed 

by thin and densely packed dashed lines, leading to a tendency for models to overpredict. 
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IoU 98.34 98.01 97.72 98.84 97.39 96.24 98.45 98.63 97.93 99.19 94.68 96.86

Acc 98.59 98.31 98.06 99.01 97.76 96.79 98.69 98.84 98.24 99.31 95.45 97.30

Precision 99.84 99.63 99.25 99.72 98.37 99.19 99.76 99.93 99.92 99.91 98.99 98.62

Recall 98.49 98.37 98.45 99.11 98.99 97.00 98.69 98.70 98.01 99.27 95.60 98.19

F1 Score 99.16 99.00 98.85 99.42 98.68 98.08 99.22 99.31 98.95 99.59 97.27 98.40
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Table 4.16: Evaluation metrics for 12 different models on the performance of crosswalk extraction using 
the Waterloo Urban Scene Dataset after fine-tuning. 

 

 
Table 4.17: Evaluation metrics for 12 different models on the performance of dash line extraction using 
the Waterloo Urban Scene Dataset after fine-tuning. 
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IoU 23.91 24.27 35.78 33.98 31.61 31.86 31.29 70.33 55.52 43.41 61.53 30.40

Acc 99.95 99.95 99.97 99.97 99.97 99.97 99.97 99.99 99.99 99.98 99.99 99.97

Precision 23.92 24.30 35.84 34.00 31.79 32.41 31.29 70.74 56.81 43.41 70.18 31.28

Recall 99.95 99.50 99.51 99.87 98.26 94.96 99.95 99.17 96.08 99.97 83.30 91.46

F1 Score 38.60 39.06 52.70 50.73 48.04 48.32 47.66 82.58 71.40 60.54 76.18 46.62
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IoU 25.19 24.59 42.47 29.58 28.25 27.19 26.47 65.87 48.87 46.15 65.75 38.28

Acc 99.92 99.92 99.96 99.94 99.93 99.93 99.92 99.99 99.97 99.97 99.99 99.96

Precision 25.25 24.61 42.55 29.60 28.31 27.33 26.49 66.24 49.25 46.19 70.96 39.16

Recall 99.07 99.71 99.54 99.75 99.27 98.18 99.71 99.17 98.45 99.78 89.94 94.45

F1 Score 40.24 39.47 59.62 45.65 44.06 42.75 41.86 79.43 65.65 63.15 79.33 55.37
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In Table 4.17, which shows the metrics for dash line detection, a consistent pattern 

emerges where models exhibit high recall rates, a trend that aligns with their performance 

in smaller classes. This suggests that the loss function might be influencing models to 

prioritize extensive coverage, possibly at the expense of precision. Moving on to Table 

4.18, an examination of the no parking zone metrics displays uniform trends across 

models, despite differences in their scores. In this category, FCN, MobileNetV3, and U-

Net are identified as the models with the lowest performance, whereas SegFormer, 

SegNeXt, and PSPNet stand out as the top performers. Lastly, Table 4.19, which focuses 

on metrics for other lane classes, indicates that models leveraging attention mechanisms 

once again achieve the highest scores. Contrary to expectations, Swin performs 

comparably to DeeplabV3, the latter being a prominent traditional CNN-based model and 

illustrating a deviation in performance for Swin from its anticipated outcomes. 

 
Table 4.18: Evaluation metrics for 12 different models on the performance of no parking zone extraction 
using the Waterloo Urban Scene Dataset after fine-tuning. 
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FCN Mobile
NetV3
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Net
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Seg
NeXt

Swin Twins U-Net

IoU 65.30 56.50 52.99 67.60 17.49 25.63 72.34 82.83 80.91 70.23 48.53 32.05

Acc 99.98 99.98 99.98 99.98 99.84 99.95 99.99 99.99 99.99 99.99 99.97 99.95

Precision 70.13 60.08 62.48 67.97 17.61 35.84 75.54 83.70 84.82 70.53 53.69 37.67

Recall 90.45 90.47 77.72 99.21 96.20 47.35 94.48 98.77 94.62 99.40 83.47 68.26

F1 Score 79.01 72.21 69.27 80.67 29.77 40.80 83.95 90.61 89.45 82.51 65.35 48.55
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Table 4.19: Evaluation metrics for 12 different models on the performance of other lane marking 
extraction using the Waterloo Urban Scene Dataset after fine-tuning. 

 

 
 
Table 4.20: Evaluation metrics for 12 different models on the performance of parking line extraction using 
the Waterloo Urban Scene Dataset after fine-tuning. 
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Seg
NeXt

Swin Twins U-Net

IoU 5.83 22.58 11.37 12.71 4.33 0.46 12.11 85.17 65.87 25.20 78.85 0.90

Acc 99.99 100.00 100.00 100.00 99.99 99.88 100.00 100.00 100.00 100.00 100.00 99.94

Precision 5.83 24.53 11.37 12.71 4.34 0.46 12.12 89.11 67.49 25.20 89.78 0.90

Recall 100.00 73.94 100.00 100.00 94.37 100.00 99.65 95.07 96.48 100.00 86.62 100.00

F1 Score 11.01 36.84 20.42 22.56 8.30 0.91 21.61 91.99 79.42 40.26 88.17 1.78
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IoU 23.04 24.31 31.56 22.27 27.37 16.73 27.36 32.16 26.74 38.89 27.81 26.60

Acc 99.78 99.79 99.84 99.70 99.82 99.63 99.81 99.82 99.78 99.87 99.83 99.81

Precision 24.90 26.24 33.95 22.42 29.70 17.29 29.23 32.66 27.62 39.68 30.96 28.55

Recall 75.52 76.74 81.77 97.11 77.75 83.91 81.03 95.45 89.39 95.09 73.27 79.62

F1 Score 37.45 39.11 47.98 36.43 42.98 28.67 42.97 48.66 42.20 56.00 43.52 42.03
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In Table 4.20, which assesses the performance metrics for parking lines, a uniform level 

of achievement is observed across all models, each characterized by exceptionally high 

recall rates. Moving to Table 4.21, the evaluation of road metrics demonstrates a 

uniformity in performance among all models as well, with each model exhibiting 

remarkably high precision values. This elevated precision suggests that model predictions 

are generally more cautious, often erring on the side of underestimating compared to the 

actual ground truth. Table 4.22, focusing on the evaluation of sidewalk metrics, reveals 

that the performances of the models are largely comparable and well-balanced, with the 

notable exception of the Twins model, which performs significantly worse than the rest. 

 
Table 4.21: Evaluation metrics for 12 different models on the performance of road extraction using the 
Waterloo Urban Scene Dataset after fine-tuning. 
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NeXt Swin Twins U-Net

IoU 87.00 85.01 85.56 89.19 80.20 77.52 88.68 91.54 87.24 93.36 74.60 79.86

Acc 98.51 98.26 98.32 98.78 97.75 97.34 98.70 99.03 98.49 99.25 96.77 97.68

Precision 95.81 94.84 94.76 97.83 96.62 92.26 95.77 96.29 93.20 97.98 85.01 95.31

Recall 90.44 89.14 89.81 90.99 82.51 82.92 92.30 94.89 93.18 95.19 85.90 83.12

F1 Score 93.05 91.90 92.22 94.29 89.01 87.34 94.00 95.58 93.19 96.56 85.45 88.80
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Table 4.22: Evaluation metrics for 12 different models on the performance of sidewalk extraction using 
the Waterloo Urban Scene Dataset after fine-tuning. 

 

 
 
Table 4.23: Evaluation metrics for 12 different models on the performance of single solid line extraction 
using the Waterloo Urban Scene Dataset after fine-tuning. 
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IoU 77.44 74.03 75.38 85.27 79.25 62.59 79.40 80.16 74.39 88.59 46.98 70.48

Acc 99.28 99.14 99.21 99.57 99.40 98.60 99.36 99.38 99.15 99.68 97.54 99.00

Precision 78.79 75.68 78.25 86.17 85.87 65.70 80.83 80.98 75.28 90.00 50.76 73.41

Recall 97.85 97.13 95.35 98.79 91.14 92.96 97.82 98.75 98.43 98.27 86.32 94.64

F1 Score 87.29 85.07 85.96 92.05 88.42 76.99 88.52 88.99 85.31 93.95 63.93 82.68
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IoU 30.29 31.45 44.37 38.62 33.99 37.82 39.04 55.47 39.57 53.18 56.50 44.26

Acc 99.67 99.69 99.82 99.77 99.72 99.77 99.78 99.89 99.78 99.87 99.90 99.82

Precision 30.42 31.58 44.58 38.76 34.07 38.41 39.40 55.73 39.82 53.33 59.44 44.97

Recall 98.61 98.74 98.94 99.10 99.31 96.10 97.73 99.18 98.49 99.45 91.94 96.55

F1 Score 46.49 47.85 61.47 55.72 50.73 54.88 56.16 71.36 56.71 69.43 72.20 61.36
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Table 4.24: Evaluation metrics for 12 different models on the performance of small dash line extraction 
using the Waterloo Urban Scene Dataset after fine-tuning. 

 

 

In Table 4.24, the focus is on the metrics for small dashed lines, showcasing that models 

with attention mechanisms excel, particularly SegFormer, which stands out by achieving 

outstanding metrics above all others. Transitioning to Table 4.25, which evaluates stop 

line detection, a pattern emerges where all models demonstrate exceptionally high recall 

rates. Within this framework, MobileNetV3 is identified as the least effective, with U-Net 

marginally better in terms of overall performance. This observation is consistent with a 

broader trend of high recall rates observed across various classes, indicating a general 

strength in model detection capabilities. 
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IoU 11.12 12.06 11.45 13.12 12.09 4.81 7.41 78.11 42.36 30.48 57.50 7.89

Acc 99.99 99.99 99.99 99.99 99.99 99.99 99.99 100.00 100.00 100.00 100.00 99.99

Precision 11.12 12.06 11.45 13.12 12.36 4.91 7.41 81.12 42.83 30.48 79.10 8.16

Recall 100.00 100.00 100.00 100.00 85.03 70.07 100.00 95.46 97.51 100.00 67.80 70.98

F1 Score 20.01 21.52 20.54 23.20 21.58 9.17 13.80 87.71 59.52 46.72 73.02 14.63
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Table 4.25: Evaluation metrics for 12 different models on the performance of stop line extraction using the 
Waterloo Urban Scene Dataset after fine-tuning. 

 

 
 
Table 4.26: Evaluation metrics for 12 different models on the performance of traffic island extraction 
using the Waterloo Urban Scene Dataset after fine-tuning. 
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IoU 42.18 37.94 52.21 46.42 44.05 14.78 47.40 89.74 77.83 59.87 78.27 21.82

Acc 99.99 99.98 99.99 99.99 99.99 99.95 99.99 100.00 100.00 99.99 100.00 99.97

Precision 42.33 38.17 52.30 46.43 44.29 14.79 47.50 90.96 78.47 59.88 80.41 21.88

Recall 99.19 98.49 99.68 99.96 98.81 99.68 99.53 98.54 98.96 99.98 96.71 98.62

F1 Score 59.33 55.01 68.60 63.41 61.16 25.75 64.31 94.59 87.53 74.90 87.81 35.82
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IoU 81.71 82.53 80.65 88.39 81.16 50.81 84.76 90.32 86.84 90.64 57.92 74.48

Acc 99.90 99.91 99.90 99.94 99.91 99.61 99.92 99.95 99.93 99.95 99.68 99.85

Precision 82.09 85.93 83.47 88.80 88.70 53.35 85.33 90.84 87.30 90.86 58.33 75.55

Recall 99.44 95.43 95.98 99.49 90.52 91.44 99.22 99.38 99.39 99.74 98.80 98.14

F1 Score 89.93 90.43 89.29 93.84 89.60 67.39 91.75 94.92 92.95 95.09 73.35 85.37
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Table 4.27: Evaluation metrics for 12 different models on the performance of turn sign extraction using 
the Waterloo Urban Scene Dataset after fine-tuning. 

 

 
 

Table 4.27 examines the metrics for turn sign detection, showing that models employing 

attention mechanisms are at the forefront of performance, with Swin slightly surpassing 

PSPNet, the top performer among the conventional CNN-based models. Notably, all 

models achieve exceptionally high recall rates in this category. In Table 4.28, the analysis 

of vehicle metrics reveals a pattern like that seen with the traffic island class. However, 

MobileNetV3 and Twins display performances that align more closely with the rest of the 

models, marking a deviation from their usual standings. Table 4.29 evaluates the metrics 

for the zebra zone, where MobileNetV3 is identified as the weakest performer, ranking 

near the bottom. Contrary to expectations, U-Net achieves results comparable to those of 

leading models such as SegFormer, SegNeXt, and Twins, even exceeding Swin's 

performance, and is distinguished by its exceptionally high recall rate. 
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IoU 28.95 30.93 29.57 33.59 27.57 20.42 35.47 79.58 68.89 42.35 77.20 20.27

Acc 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Precision 28.95 30.93 29.57 33.59 27.57 20.42 35.47 80.33 69.17 42.35 80.65 20.27

Recall 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.83 99.42 100.00 94.75 100.00

F1 Score 44.90 47.25 45.64 50.29 43.23 33.91 52.37 88.63 81.58 59.50 87.13 33.71
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Table 4.28: Evaluation metrics for 12 different models on the performance of vehicle extraction using the 
Waterloo Urban Scene Dataset after fine-tuning. 

 

 
 
Table 4.29: Evaluation metrics for 12 different models on the performance of zebra line extraction using 
the Waterloo Urban Scene Dataset after fine-tuning. 
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IoU 66.12 64.91 70.69 74.65 69.70 54.91 70.52 73.30 68.42 76.52 57.44 65.24

Acc 99.53 99.52 99.63 99.69 99.62 99.26 99.63 99.66 99.58 99.71 99.35 99.51

Precision 68.28 68.86 74.48 77.91 74.75 56.96 75.88 74.51 71.00 77.60 60.91 67.47

Recall 95.43 91.89 93.29 94.69 91.17 93.85 90.89 97.83 94.96 98.21 90.97 95.18

F1 Score 79.60 78.72 82.83 85.49 82.15 70.89 82.71 84.60 81.25 86.70 72.96 78.97

50

60

70

80

90

100

Pe
rc

en
ta

ge
 %

Vehicle Metrics of 12 Models on Waterloo Urban Scene 
Dataset

IoU Acc Precision Recall F1 Score

ANN
Deep

LabV3

Deep
LabV3

+

Fast
FCN FCN

Mobile
NetV3

PSP
Net

Seg
Former

Seg
NeXt Swin Twins U-Net

IoU 31.04 44.16 43.63 22.92 31.58 2.32 36.47 68.38 65.12 45.27 59.34 60.21

Acc 99.99 100.00 100.00 99.99 99.99 99.85 99.99 100.00 100.00 100.00 100.00 100.00

Precision 31.04 44.16 43.63 22.92 31.58 2.32 36.47 68.44 65.68 45.27 60.47 61.00

Recall 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.89 98.72 100.00 96.93 97.88

F1 Score 47.38 61.27 60.75 37.29 48.01 4.53 53.44 81.22 78.88 62.32 74.48 75.16

0

20

40

60

80

100

Pe
rc

en
ta

ge
 %

Zebra Line Metrics of 12 Models on Waterloo Urban Scene 
Dataset

IoU Acc Precision Recall F1 Score



 

58 
 

The evaluation of the Waterloo Urban Scene dataset reveals nuanced differences in model 

performance across various urban imaging domains, which, when compared with 

previous findings from the SkyScapes dataset, highlight the importance of dataset 

diversity in understanding model behavior. The enhanced accuracy observed in classes 

with a larger presence in the imagery, such as Road, Traffic Island, Sidewalk, and Vehicle, 

can be directly attributed to their alignment with the core objectives of semantic 

segmentation models tailored for ground view scene analysis. This congruence leads to a 

notable improvement in model performance for these categories, underscoring the 

effectiveness of these models in recognizing and processing larger object classes within 

urban scenes. 

 

Conversely, classes characterized by smaller or linear features, like Dash Lines and Long 

Lines, showcase a divergent trend, with less pronounced performance enhancements, 

suggesting a variability in model effectiveness across different class types within the 

Waterloo Urban Scene dataset. These observations not only complement the insights 

gained from the SkyScapes dataset but also set the stage for a deeper examination in the 

subsequent discussion chapter.  

 

4.2 Visualization of Results  

 

4.2.1 SkyScapes Dataset 

 

This section provides visual representations of the predictions generated by 12 models on 

the SkyScapes dataset. Through side-by-side comparisons with input images and ground 

truth labels, this section offers insights into the accuracy and details of each model's 

semantic segmentation. Highlighting main characteristics and key findings, quantitative 

metrics with qualitative analysis are complemented. Additional visualization results are 

available in Appendix B.1. 

 

Among the visualized predictions, the initial focus is drawn towards PSPNet and 

MobileNetV3, where misclassification errors are significant, particularly in the 

background class. This observation aligns with their previously noted lower accuracy on 
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background class segmentation. Conversely, despite SegNeXt achieving the second 

highest mIoU, it is noteworthy that transformer-based models such as SegFormer, Swin, 

and Twins exhibit superior visualization results. These transformer-based models 

demonstrate remarkable fidelity to the ground truth, exhibiting minimal distortion in 

lane thickness and negligible irrelevant errors. Furthermore, U-Net's performance is 

notable for its adeptness in delineating boundaries; however, it appears to weak in 

classifying multiple classes. This limitation may stem from U-Net's original design 

intended for binary classification tasks in medical imagery, suggesting its potential 

inadequacy in handling the complexity of multi-class semantic segmentation tasks. 

 

These findings underscore the strengths and weaknesses inherent in each model's 

architecture and highlight the importance of considering the original design objectives 

when assessing their performance across diverse tasks. Such insights gained from the 

visual analysis offer valuable perspectives for further refinement and optimization of 

semantic segmentation models. 

 

In the visual analysis depicted in Figure 4.1, the ground truth includes various line 

markings, such as dashed, solid, stop lines, and turn signs. Examination of the visual 

outputs from several models reveals that models like ANN, DeepLabV3, FastFCN, FCN, 

MobileNetV3, and PSPNet produce road lane markings that are significantly thicker than 

those in the ground truth. This observation is supported by data in Table 4.1, where a 

notable difference is observed between recall and precision for these models, with recall 

significantly higher than precision. Conversely, all transformer-based models, along with 

SegNeXt and U-Net, tend to create lane markings that are finer and closer to the ground 

truth. Most models are accurate in capturing both long and dashed lines. Additionally, 

ANN, DeepLabV3+, FastFCN, SegFormer, SegNeXt, Swin, and Twins are capable of 

correctly identifying stop lines. Only the transformer models and SegNeXt accurately 

identify turn signs. However, some models, particularly MobileNetV3 and PSPNet, 

struggle with a high rate of background misclassification, while DeepLabV3 and FCN also 

exhibit minor issues with background misclassification. This issue with background 

misclassification is further validated by Table 4.2, where these models' background mIoU 

is low. 
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Figure 4.1 A comparative visualization of road lane detection by 12 different models on a SkyScapes dataset 

sample. Each model's output is showcased alongside the original image and the ground truth for reference. 
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Figure 4.2: A comparative visualization of road lane detection at a highway by 12 different models on a 

SkyScapes dataset sample. Each model's output is showcased alongside the original image and the ground 

truth for reference. 

 

In the highway scenario depicted in Figure 4.2, various roads feature both long and 

dashed lines. Most models accurately identify these lines, though models like ANN, 

DeepLabV3, and FCN generate lines that are noticeably thicker compared to the ground 
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truth markings. Additionally, some models, including MobileNetV3, FCN, and U-Net, 

incorrectly classify elements of the background. Among the twelve models evaluated, 

SegFormer, SegNeXt, Swin, and Twins outperform the others by accurately and finely 

mapping the road lanes. This superior performance is corroborated by data in Table 4.1, 

showing that the mIoU for these models exceeds 30%, significantly higher than that of 

the other models, which fall below this threshold. 

 

Figure 4.3 depicts a highway scene featuring various lane markings, including zebra zones, 

dashed lines, and long lines. It is observed that most of the models successfully identify 

the long and dashed lines, although some models, like ANN, DeepLabV3, and FCN, depict 

these lines thicker than intended. The detection of zebra zones presents a challenge for 

several models; however, DeepLabV3+, SegFormer, SegNeXt, Swin, and Twins 

demonstrate the capability to accurately recognize the zebra zone. 
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Figure 4.3 A comparative visualization of road lane detection at a highway with zebra zone by 12 different 

models on a SkyScapes dataset sample. Each model's output is showcased alongside the original image and 

the ground truth for reference. 
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4.2.2 Waterloo Urban Scene Dataset 

 

In the complex intersection scenario shown in Figure 4.4 below, the road lane 

classifications include features such as stop lines, crosswalks, turn signs, single solid lines, 

dashed lines, and small dashed lines. The figure also presents classes for vehicles, 

sidewalks, and roads. Given the scene's complexity, while many models capture the 

overall appearance, certain elements like turn signs are depicted with excessive thickness, 

making them difficult to discern. Swin stands out by accurately classifying most of the 

scene without significant background misclassifications, although small dashed lines and 

turn signs are somewhat indistinct. SegFormer also performs well, effectively identifying 

road lanes despite some confusion in classifying certain background areas as roads. This 

is deemed acceptable given that these areas share similar color and texture with the road, 

as verified by the ground truth. 

 

In the parking area depicted in Figure 4.5, parking lines are the primary feature within 

the road lane classification. Other identified classes include sidewalks, vehicles, traffic 

islands, and roads. Swin stands out among all the models for its performance, producing 

thin road lanes that are all accurately classified. In Figure 4.6, which depicts a partial 

intersection, the road lane classes include crosswalk, stop line, single solid line, dash line, 

and turn sign. Additional features present are the traffic island, sidewalk, and the road 

itself. Among the 12 models evaluated, Swin stands out for its performance, effectively 

distinguishing the thin lane against a clear background and accurately classifying all the 

mentioned classes.  

 

In the road scene with parked vehicles depicted in Figure 4.8, the road lane classification 

primarily includes single solid lines. Additionally, the scene contains traffic islands, 

sidewalks, roads, and vehicles. Once again, Swin emerges as the top performer in road 

lane extraction among all twelve models. Some of the figures above clearly show 

significant noise in these aerial view images, particularly in Figure 4.7 where numerous 

vehicles parked on the road obscure the lane markings. Despite this, models like Swin are 

still able to successfully extract the road lane markings. 
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Figure 4.4: A comparative visualization of road lane detection at an intersection by 12 different models on 

a Waterloo Urban Scene dataset sample. Each model's output is showcased alongside the original image 

and the ground truth for reference. 
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Figure 4.5: A comparative visualization of road lane detection at a parking zone by 12 different models on a 

Waterloo Urban Scene dataset sample. Each model's output is showcased alongside the original image and 

the ground truth for reference. 
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Figure 4.6: A comparative visualization of road lane detection at an intersection by 12 different models on 

a Waterloo Urban Scene dataset sample. Each model's output is showcased alongside the original image 

and the ground truth for reference. 
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Figure 4.7: A comparative visualization of road lane detection at a road with parked vehicles by 12 different 

models on a Waterloo Urban Scene dataset sample. Each model's output is showcased alongside the original 

image and the ground truth for reference. 

 

 

 



 

69 
 

In contrast to the SkyScapes dataset, the visual analysis of the Waterloo Urban Scene 

dataset reveals different performance trends among the models. More visualization 

results are covered in appendix B.2. MobileNetV3, U-Net, and Twins appear to be the 

least effective models, showing misclassifications and inconsistencies in scene 

interpretation, especially when roads are covered by shadows or vegetation. On the other 

hand, SegFormer and Swin consistently perform well, accurately capturing scene details. 

   

One notable observation is that SegNeXt sometimes produces strange background 

predictions around the Dash Line class, which is not seen in other models. This suggests 

the need for careful interpretation of model outputs. Moreover, CNN-based models 

generally perform better on the Waterloo Urban Scene dataset compared to the SkyScapes 

dataset, particularly in simpler scenes. These models show improved accuracy in 

identifying large objects like sidewalks, roads, and vehicles. These findings reinforce the 

importance of considering both quantitative metrics and qualitative visual assessments 

when evaluating model performance across different datasets and scene complexities. 

 

4.3 Discussion 

 

Transformer vs. CNN Based Models: 

Transformer-based models exhibit an advantage in capturing long-range dependencies, 

which is crucial for understanding complex scenes in remote sensing imagery. Unlike 

CNNs, which primarily focus on local dependencies, transformers can efficiently learn 

relationships between distant pixels. However, transformers require intensive training to 

extract features effectively. The absence of inherent knowledge about pixel distributions 

and local relations necessitates pre-trained backbones for transformers to achieve robust 

performance, particularly in smaller datasets with simpler scenes. 

 

Recent research has shown that CNNs can emulate the long-range dependency capturing 

capability of transformers through the integration of attention mechanisms (Liu et al., 

2022). Models like SegNeXt demonstrate the efficacy of this approach, suggesting that 

CNNs can rival transformers in certain tasks (Guo et al., 2022). Additionally, 

incorporating special pooling layers after CNNs can further enhance performance while 
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reducing computational complexity and runtime. 

 

Recall and Precision: 

Recall and precision are fundamental metrics in evaluating semantic segmentation 

performance. As recall increases, precision tends to decrease, and vice versa. For example, 

in SkyScapes dataset, ANN demonstrates a recall of 66.0% and a precision of 22.92%, 

while SegFormer, a transformer-based model, exhibits a recall of 43.85% and a precision 

of 64.33%. Achieving a balance between these metrics is essential for accurate detection. 

Strategies to improve recall and precision include refining prediction boundaries to better 

match ground truth objects and minimizing over-predictions or under-predictions. 

Utilizing the F1 score, which combines both recall and precision, provides a 

comprehensive assessment of model performance, particularly in tasks where balancing 

these metrics is challenging. 

 

IoU and F1 Score: 

IoU and F1 score evaluate the overlap between predicted and ground truth regions, 

considering both shape and location. They provide nuanced insights into the accuracy of 

object detection algorithms. While both metrics incorporate true positives, false positives, 

and false negatives, they use different coefficients to weigh these components. In a 

comparative study of model performance on SkyScapes dataset, DeepLabV3, ANN, and 

Swin achieved mIoU scores of 10.24%, 20.94%, and 30.51%, respectively, with 

corresponding F1 scores of 12.96%, 29.88%, and 42.97%. A subsequent evaluation on 

Waterloo Urban Scene Dataset revealed mIoU scores of 60.31%, 58.23%, and 72.48%, 

with F1 scores 47.55%, 46.5%, and 72.48% paralleling with IoU changes, demonstrating 

the consistency in both mIoU and F1 metrics across models. Understanding these 

differences aids in interpreting the performance of models across various datasets and 

scenarios. 

 

Accuracy: 

Accuracy metrics may be skewed by class imbalances, particularly in datasets where 

certain classes dominate, such as backgrounds in remote sensing imagery. This 

dominance inflates accuracy scores, potentially masking performance issues in other 
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classes. For instance, in SkyScapes dataset analysis, the SegFormer model achieved a 

mAcc of 99.92%, with an all accuracy of 99.50%. In contrast, evaluations on the Waterloo 

Urban Scene Dataset yielded accuracies of 99.77% and 98.27%, respectively. The variance 

can be attributed to SkyScapes' larger background pixel proportion, leading to a higher 

rate of correct background predictions. The Waterloo Urban Scene Dataset, with a lower 

background pixel proportion, exhibits reduced accuracy, highlighting the impact of class 

distribution on accuracy metrics. Addressing class imbalances is essential for obtaining 

meaningful accuracy assessments and ensuring that models generalize well across diverse 

classes. 

 

Distribution Differences: 

Differences in datasets, as observed between the Waterloo Urban Scene and SkyScapes 

datasets, can significantly influence model performance. A more balanced distribution, 

as seen in the Waterloo Urban Scene dataset, facilitates better learning by the model, 

leading to improved performance. Additionally, higher-resolution datasets like Waterloo 

Urban Scene may present larger class objects, simplifying the learning task for models 

designed for ground-view applications. Understanding dataset characteristics is crucial 

for optimizing model training and performance evaluation in remote sensing tasks. When 

examining pixel counts across datasets, it's evident that the Waterloo Urban Scene 

Dataset encompasses a wider range of classes, and less skewed class distribution 

contributing to the observed differences. 

 

Noise in Aerial View Imagery: 

Aerial images frequently include various obstructions such as trees, vehicles, and shadows, 

which can obscure critical details. Figure 4.8 illustrates how background features in aerial 

views, such as road lane markings, often become obscured by trees and utility poles. 

Consequently, the SkyScapes dataset adopts a questionable annotation practice that only 

marks road lane markings that are visible in the aerial images, ignoring their actual 

existence. This method leads to ground truth annotations and training data where road 

lane markings appear fragmented, as depicted in Figure 4.9.  
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Figure 4.8 A raw aerial image from the SkyScapes dataset where trees and utility poles obstruct the 

visibility of road lane markings. 

 

Despite these challenges, some models have demonstrated an ability to overcome such 

data limitations. Figure 4.10 showcases how the Swin model, for example, effectively 

discerns the spatial relationships between adjacent road lane marking pixels. This 

capability allows the model to reconstruct the continuity of road lane markings, thus 

compensating for the gaps and discontinuities present in the source aerial images. This 

adaptability highlights the potential of advanced deep learning models to mitigate the 

effects of noise in aerial imagery, thereby enhancing the reliability of the data derived 

from these images for various practical applications. 
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Figure 4.9 The ground truth image from Figure 4.8 of the SkyScapes dataset, illustrating that road lane 

markings are annotated as discontinuous rather than continuous due to obstructions. 

 

 

Figure 4.10 Prediction result from the Swin model on the SkyScapes test dataset, showing relatively 

continuous road lane markings. 
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Chapter 5 Conclusions and Recommendations 

 

5.1 Conclusion 

 

The rapid progress of AVs underscores the critical necessity for HD maps, where precise 

road lane detection is fundamental for their navigation. To generate HD maps, utilizing 

aerial imagery combined with deep learning techniques presents an effective method for 

the lane marking extraction task. This thesis has conducted an extensive comparative 

analysis to explore the performance of both CNN-based and transformer-based state-of-

the-art models in semantic segmentation for road lane extraction tasks. A total of 12 

models were evaluated using various performance metrics on the SkyScapes Dataset, and 

further fine-tuning was undertaken on the Waterloo Urban Scene Dataset.  

 

Through thorough analysis of metric results across different models and specific 

categories within each model, it was found that the SegFormer model achieved the highest 

mIoU of 76.11% and an F1 score of 85.35% in the Waterloo Urban Scene dataset post-fine-

tuning. Additionally, visual examination of prediction outputs provided substantial 

insights. It was noted that transformer-based models, such as Swin and SegFormer, 

perform well in road lane extraction tasks, particularly with more commonly occurring 

lane marking classes such as single solid lines or dashed lines. Despite challenges such as 

noise interference from trees or shadows in aerial imagery, some models demonstrated 

the ability to discern the continuous relationships between pixels, thereby ensuring the 

continuity of road lane marking predictions. 

 

This study contributes to a more profound comprehension of the strengths and 

limitations of various semantic segmentation models in the context of aerial view road 

lane segmentation. It also suggests directions for future research, particularly the need to 

address issues arising from unbalanced datasets. Additionally, this research guides 

subsequent improvements and developments in model design and specificity, as well as 

the adoption of transfer learning procedures. Furthermore, the results will inform the 

design and annotation of training datasets, ensuring the provision of high-quality data to 

foster advancements in aerial view road lane extraction. 
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In conclusion, this comparative analysis clarifies the performance capabilities of semantic 

segmentation models and establishes a foundation for future research dedicated to 

enhancing road lane extraction algorithms in aerial view scenarios. This research 

contributes to developing more comprehensive and effective solutions in autonomous 

navigation and HD mapping, thus improving the functionality of HD maps for AV 

navigation in aerial imagery. 

 

5.2 Recommendations for Future Research 

 

In this section, recommendations are provided based on the limitations and challenges 

discussed in the preceding discussion section, which specifically addresses the task of 

road lane marking extraction from aerial imagery using deep learning methodologies. 

Considering AI's rapid evolution, additional potential research directions are suggested 

to enhance this task, with examples drawn from diffusion models and generative AI. 

  

Unbalanced Class Distribution 

Unbalanced class distribution is a significant challenge in semantic segmentation tasks, 

particularly in remote sensing where most of the data often comprises the background. In 

the SkyScapes dataset, the background class dominates significantly, comprising 

167,817,849 of the total 168,210,432 pixels, which accounts for a staggering 99.77% of the 

dataset, as shown in Figure 5.1. Conversely, in the Waterloo Urban Scene dataset, the 

background constitutes 421,098,771 out of 503,840,768 total pixels, representing 83.58%, 

as illustrated in Figure 5.2. This imbalance can skew the model's learning process, leading 

to a bias towards the majority class and potentially ignoring the minority classes, which 

are often of greater interest.  

 

To address this issue, advanced techniques such as weighted loss functions and 

oversampling of minority classes can be employed to balance the class distribution and 

ensure that the model pays equal attention to all classes. For instance, in SkyScapes, the 

weighting assigned to the background class was set at 0.08, while more critical, under-

represented classes such as the no parking zone, dash line, and long line received 
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significantly higher weights of 4,371.37, 173.68, and 54.55, respectively. Similarly, in the 

Waterloo Urban Scene Dataset, weights were adjusted to reflect the skewed distribution, 

with background at 0.08, road at 0.58, traffic island at 15.19, and no parking zone at 111.95. 

These methods can help mitigate the dominance of background classes and improve the 

detection of finer details in the datasets. 

 

The phenomenon of models predicting more adjacent pixels for minority classes reflects 

a significant challenge in semantic segmentation, particularly in the context of remote 

sensing and similar fields where the precision of spatial predictions is crucial. The 

underlying issue stems from the differential impact of accuracy improvements across 

classes due to the weighted loss. Specifically, enhancing accuracy for a minority class, 

which carries a higher weight, results in a more substantial reduction in the loss score 

compared to similar improvements in the majority class. Consequently, models are 

incentivized to increase the prediction area of minority classes, as doing so can decrease 

the overall loss more effectively than by correctly predicting the majority class's extent. 

This dynamic leads to an undesirable trade-off: the model achieves lower loss scores 

which suggests better performance at the expense of spatial accuracy, especially 

concerning the delineation of minority class boundaries. 

 

To mitigate this issue, it's essential to explore alternative strategies that maintain the 

balance between addressing class imbalance and preserving spatial accuracy. Approaches 

such as focal loss, which modulates the loss contribution from each sample based on the 

correctness of the prediction, could offer a more detailed way to handle class imbalance 

by reducing the incentive for the overprediction of minority classes. Additionally, 

incorporating spatial context into the loss function, either through post-processing 

techniques like Conditional Random Fields (CRFs) or through novel loss functions that 

explicitly penalize spatial inaccuracies, could help in aligning the model's predictions 

more closely with the true spatial distribution of classes. These strategies aim to refine 

the model's learning process, ensuring that it not only balances the representation of 

classes but also accurately captures their spatial characteristics, leading to more precise 

and realistic segmentation results. 
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Figure 5.1 Logarithmic scale pixel count for various classes in the SkyScapes dataset. 

 

 

Figure 5.2 Logarithmic scale pixel count for various classes in the Waterloo Urban Scene dataset. 
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Transfer Learning Procedure 

The observation that SkyScapes and Waterloo Urban Scene datasets have a similar 

distribution suggests an opportunity for leveraging transfer learning more effectively. 

Instead of treating fine-tuning on Waterloo Urban Scene datasets as a mere interpolation 

task, considering the distinct background percentages (99.77% and 83.58%) and 

weighted classes between SkyScapes and Waterloo Urban Scene Dataset indicates a 

nuanced relationship; they share similarities in their disproportionate background 

representation but also differ in the specific weights assigned to other classes, suggesting 

a complex landscape for model adaptation rather than a straightforward one. More 

sophisticated transfer learning strategies can be explored that explicitly account for the 

similarities and differences between datasets. Techniques such as domain adaptation or 

meta-learning can be particularly useful here. These methods can help in adjusting the 

model's parameters to better capture the unique characteristics of each dataset, thus 

improving the model's ability to generalize from one domain to another. 

 

Model Design and Specificity 

The limitation of general semantic segmentation models in handling fine, thin, and long 

objects points to a need for specialized model architectures or enhancements tailored to 

the unique requirements of remote sensing data. Incorporating modules designed to 

capture fine-grained details or employing architectures that better model spatial 

relationships can improve performance on such datasets. Additionally, exploring novel 

neural network architectures, such as transformers that are inherently better at capturing 

long-range dependencies, might offer significant improvements for the specific 

challenges of remote sensing imagery. 

 

Labeling Errors and Spatial Information 

The presence of labeling errors in the SkyScapes dataset, such as discontinuous labeling 

of objects obscured by obstacles, as shown in Figure 5.3 and 5.4, underscores the 

importance of high-quality, accurate labeling for training robust models. Developing 

semi-automated labeling tools that leverage model predictions to suggest labels, which 

are then verified and corrected by human annotators, can improve label accuracy. 
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Furthermore, enhancing models with mechanisms to infer spatial continuity and context 

can help in overcoming the limitations posed by incomplete or incorrect labels. 

Techniques such as CRFs integrated into deep learning frameworks, or attention 

mechanisms that allow models to learn spatial relationships, can enable models to better 

understand the scene rather than treating it as a mere pixel-to-pixel mapping task. 

 

 
Figure 5.3 Obstructions covering road lane markings in the SkyScapes dataset. 

 

 
Figure 5.4 The annotation error of discontinuous road lane markings in the SkyScapes Dataset. 
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Addressing these challenges requires a multifaceted approach that combines advanced 

machine learning techniques, tailored model architectures, and improved data processing 

and labeling strategies. By focusing on these areas, researchers can develop more accurate, 

robust, and generalizable models for semantic segmentation tasks in remote sensing, 

thereby overcoming the limitations identified in this study. 

 

Diffusion models and Generative 3D AI 

In the ongoing evolution of artificial intelligence, the integration of diffusion models and 

generative AI could possibly be highly beneficial for enhancing the detection and 

extraction of lane markings, a pivotal aspect in the development of AVs' navigation 

systems. These advanced AI techniques hold the promise to refine the training of both 2D 

and 3D models, facilitating a more detailed understanding of complex environments. 

Specifically, diffusion models have the potential to transform the training process for 2D 

models in lane detection, by synthesizing/adapting training images with different 

conditions, such as fluctuations in lighting, weather changes, and the presence of dynamic 

obstacles.  

 

Concurrently, 3D generative AI is promising for crafting sophisticated simulations of 

urban environments, supporting the thorough training of autonomous vehicles through 

the provision of realistic, intricate 3D city models and maps. These maps could include 

crucial information beyond mere topography, like obscured views and elevation profiles, 

thereby offering a more comprehensive dataset for AV systems to navigate safely and 

efficiently. 

 

Further exploration into the cooperative application of these AI technologies could lead 

to significant advancements in how AVs interpret and interact with their surroundings. 

Generating detailed 3D representations of urban landscapes from aerial views, these AI 

models not only enhance the environmental awareness of AVs but also hold potential for 

urban planning and the establishment of smart cities. The creation of more precise and 

informative 3D maps, capturing real-time conditions and environmental variables, could 
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transform urban mobility and infrastructure management. Therefore, the continuous 

research and deployment of diffusion models and generative AI for lane markings 

detection and urban modeling stand to make significant contributions to the domains of 

autonomous driving and smart city initiatives. 
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Appendices 

 

Appendix A. Benchmark of all 12 models on the SkyScapes Lane Dataset over 
all 12 classes [4.3] 
 

Table A.1: Class-specific performance outcomes of the FCN model trained on the SkyScapes Dataset and 
assessed through a range of evaluation metrics. 

Class 
IoU 
(%) 

Acc 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

Background 93.39 93.43 96.58 99.89 93.49 

Dash line 7.11 98.72 13.27 7.63 50.99 

Long line 8.13 98.00 15.04 8.70 55.46 

Small dash line 3.40 99.37 6.57 3.55 43.47 

Turn signs 1.94 99.57 3.82 2.02 33.35 

Other signs 2.95 99.80 5.73 3.09 40.03 

Crosswalk 1.54 99.90 3.04 1.56 55.85 

Stop line 6.92 99.76 12.95 7.12 71.72 

Zebra zone 0.92 99.42 1.83 0.93 47.47 

No parking zone 1.19 99.92 2.36 1.21 40.29 

Parking space 0.17 98.56 0.33 0.17 36.54 

Other lane-marking 0.44 99.96 0.88 0.67 1.27 

 
 
 
 

Table A.2: Class-specific performance outcomes of the FastFCN model trained on the SkyScapes Dataset 
and assessed through a range of evaluation metrics. 

Class 
IoU 
(%) 

Acc 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

Background 98.68 98.69 99.34 99.63 99.04 

Dash line 19.36 99.53 32.43 22.43 58.51 

Long line 10.58 99.43 19.13 17.48 21.12 

Small dash line 11.10 99.75 19.98 11.95 60.74 

Turn signs 5.25 99.96 9.97 10.32 9.65 

Other signs 4.64 99.97 8.88 9.84 8.08 

Crosswalk 6.02 99.98 11.36 6.58 41.69 

Stop line 27.92 99.97 43.65 38.81 49.87 

Zebra zone 6.57 99.97 12.32 9.80 16.59 

No parking zone 0.01 100.00 0.01 0.62 0.01 

Parking space 5.22 99.99 9.93 16.04 7.19 

Other lane-marking 0.68 99.98 1.35 8.72 0.73 
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Table A.3: Class-specific performance outcomes of the U-Net model trained on the SkyScapes Dataset and 

assessed through a range of evaluation metrics. 

Class 
IoU 
(%) 

Acc 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

Background 95.65 95.67 97.77 99.91 95.73 

Dash line 26.83 99.79 42.30 43.78 40.93 

Long line 23.64 99.42 38.24 29.08 55.81 

Small dash line 12.45 99.71 22.14 12.84 80.37 

Turn signs 8.21 99.97 15.17 28.30 10.36 

Other signs 2.22 99.43 4.34 2.23 83.12 

Crosswalk 0.16 98.33 0.32 0.16 100.00 

Stop line 9.49 99.87 17.33 10.25 56.19 

Zebra zone 0.57 99.51 1.13 0.58 24.59 

No parking zone 0.23 99.6 0.46 0.23 37.01 

Parking space 0.32 99.56 0.64 0.32 21.34 

Other lane-marking 0.00 99.99 0.00 0.00 0.00 

 
 
 
 
 

Table A.4: Class-specific performance outcomes of the DeepLabV3 model trained on the SkyScapes Da-
taset and assessed through a range of evaluation metrics. 

Class 
IoU 
(%) 

Acc 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

Background 92.95 92.99 96.34 99.88 93.05 

Dash line 7.91 98.80 14.66 8.49 53.87 

Long line 10.83 98.93 19.54 12.84 40.83 

Small dash line 2.04 98.51 4.00 2.07 60.50 

Turn signs 0.52 99.95 1.03 1.08 0.99 

Other signs 1.57 99.60 3.09 1.61 40.65 

Crosswalk 0.44 99.91 0.88 0.45 15.71 

Stop line 5.11 99.82 9.73 5.54 39.68 

Zebra zone 0.10 99.83 0.20 0.11 1.56 

No parking zone 0.39 99.87 0.78 0.40 21.26 

Parking space 0.91 99.70 1.81 0.93 43.06 

Other lane-marking 0.08 97.55 0.15 0.08 12.68 
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Table A.5: Class-specific performance outcomes of the DeepLabV3+ model trained on the SkyScapes Da-

taset and assessed through a range of evaluation metrics. 

Class 
IoU 
(%) 

Acc 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

Background 99.12 99.13 99.56 99.71 99.41 

Dash line 24.19 99.74 38.95 35.83 42.66 

Long line 20.90 99.48 34.57 28.81 43.21 

Small dash line 22.44 99.91 36.66 28.02 52.99 

Turn signs 1.09 99.97 2.15 8.54 1.23 

Other signs 7.43 99.98 13.83 18.65 10.99 

Crosswalk 3.82 99.95 7.36 3.88 71.05 

Stop line 22.96 99.94 37.34 25.65 68.62 

Zebra zone 1.51 99.98 2.97 2.67 3.34 

No parking zone 3.22 100.00 6.23 6.90 5.68 

Parking space 8.14 99.99 15.05 20.13 12.02 

Other lane-marking 2.15 99.97 4.22 4.20 4.23 

 
 
 
 
 
 
Table A.6: Class-specific performance outcomes of the ANN model trained on the SkyScapes Dataset and 

assessed through a range of evaluation metrics. 

Class 
IoU 
(%) 

Acc 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

Background 96.54 96.56 98.24 99.92 96.62 

Dash line 12.47 98.95 22.18 12.92 78.43 

Long line 13.99 98.47 24.55 14.56 78.21 

Small dash line 7.11 99.37 13.27 7.13 94.83 

Turn signs 7.21 99.94 13.45 10.41 19.02 

Other signs 28.56 99.97 44.43 33.10 67.54 

Crosswalk 29.07 100.00 45.04 35.14 62.71 

Stop line 19.30 99.94 32.35 21.79 62.78 

Zebra zone 21.38 99.96 35.23 21.97 88.87 

No parking zone 5.93 99.97 11.19 6.07 70.69 

Parking space 4.08 99.98 7.84 6.08 11.03 

Other lane-marking 5.66 99.85 10.71 5.87 61.30 
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Table A.7: Class-specific performance outcomes of the MobileNetV3 model trained on the SkyScapes Da-
taset and assessed through a range of evaluation metrics. 

Class 
IoU 
(%) 

Acc 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

Background 93.59 93.63 96.69 99.96 93.63 

Dash line 13.69 99.22 24.08 14.79 64.67 

Long line 13.21 98.28 23.34 13.61 82.00 

Small dash line 6.36 99.38 11.96 6.45 81.70 

Turn signs 1.88 99.87 3.69 2.28 9.65 

Other signs 0.42 98.12 0.84 0.43 51.34 

Crosswalk 1.70 99.85 3.34 1.70 95.24 

Stop line 6.13 99.70 11.55 6.24 78.16 

Zebra zone 0.10 99.35 0.20 0.10 5.77 

No parking zone 2.74 99.95 5.32 2.80 52.59 

Parking space 0.88 99.72 1.74 0.89 38.43 

Other lane-marking 0.14 99.85 0.28 0.15 1.40 

 
 
 
 
 
 
 

Table A.8: Class-specific performance outcomes of the PSPNet model trained on the SkyScapes Dataset 
and assessed through a range of evaluation metrics. 

Class 
IoU 
(%) 

Acc 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

Background 85.64 85.72 92.26 99.90 85.71 

Dash line 5.14 98.94 9.78 5.84 29.95 

Long line 3.80 98.25 7.32 4.40 21.66 

Small dash line 0.55 98.80 1.09 0.57 12.87 

Turn signs 1.65 99.80 3.24 1.85 13.21 

Other signs 0.62 99.86 1.24 0.70 5.69 

Crosswalk 0.71 99.75 1.41 0.71 67.31 

Stop line 5.75 99.89 10.87 6.77 27.65 

Zebra zone 0.04 99.72 0.09 0.05 1.07 

No parking zone 0.11 98.49 0.23 0.11 68.99 

Parking space 0.11 97.83 0.23 0.11 38.03 

Other lane-marking 0.03 93.53 0.07 0.03 14.80 
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Table A.9: Class-specific performance outcomes of the SegNeXt model trained on the SkyScapes Dataset 
and assessed through a range of evaluation metrics. 

Class 
IoU 
(%) 

Acc 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

Background 99.18 99.19 99.59 99.80 99.38 

Dash line 34.71 99.74 51.54 39.87 72.85 

Long line 33.29 99.59 49.95 40.67 64.70 

Small dash line 23.31 99.87 37.81 24.99 77.58 

Turn signs 8.76 99.97 16.12 56.02 9.41 

Other signs 45.24 99.99 62.30 56.32 69.70 

Crosswalk 28.94 100.00 44.89 70.02 33.03 

Stop line 47.93 99.98 64.8 74.05 57.61 

Zebra zone 36.63 99.99 53.62 53.14 54.11 

No parking zone 21.50 100.00 35.39 26.80 52.12 

Parking space 1.73 99.99 3.40 21.97 1.84 

Other lane-marking 5.85 99.98 11.05 24.11 7.17 

 
 
 
 
 
 

Table A.10: Class-specific performance outcomes of the Twins model trained on the SkyScapes Dataset 
and assessed through a range of evaluation metrics. 

Class 
IoU 
(%) 

Acc 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

Background 99.14 99.14 99.57 99.86 99.27 

Dash line 40.24 99.78 57.39 45.03 79.09 

Long line 29.04 99.41 45.00 32.10 75.27 

Small dash line 34.23 99.92 51.00 36.91 82.46 

Turn signs 13.60 99.97 23.94 53.28 15.44 

Other signs 31.14 99.99 47.49 58.17 40.12 

Crosswalk 17.93 100.00 30.41 44.89 23.00 

Stop line 45.76 99.99 62.79 84.82 49.84 

Zebra zone 3.37 99.99 6.53 58.63 3.46 

No parking zone 25.89 100.00 41.13 34.83 50.22 

Parking space 4.98 99.99 9.49 43.56 5.32 

Other lane-marking 16.06 99.98 27.67 29.64 25.95 
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Table A.11: Class-specific performance outcomes of the Swin model trained on the SkyScapes Dataset and 
assessed through a range of evaluation metrics. 

Class 
IoU 
(%) 

Acc 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

Background 99.08 99.09 99.54 99.90 99.19 

Dash line 36.61 99.73 53.60 40.05 81.01 

Long line 35.72 99.57 52.64 40.65 74.65 

Small dash line 20.35 99.81 33.82 20.64 93.63 

Turn signs 22.97 99.97 37.36 47.33 30.86 

Other signs 34.55 99.98 51.35 37.48 81.53 

Crosswalk 13.20 100.00 23.31 56.46 14.69 

Stop line 30.07 99.95 46.23 30.58 94.69 

Zebra zone 38.22 99.99 55.30 47.28 66.60 

No parking zone 16.30 99.99 28.03 18.81 55.03 

Parking space 12.89 99.99 22.83 30.61 18.21 

Other lane-marking 6.17 99.98 11.62 13.40 10.25 

 
 
 
 
 

Table A.12: Class-specific performance outcomes of the SegFormer model trained on the SkyScapes Da-
taset and assessed through a range of evaluation metrics. 

Class 
IoU 
(%) 

Acc 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

Background 99.56 99.56 99.78 99.80 99.75 

Dash line 51.19 99.88 67.71 67.33 68.09 

Long line 41.94 99.71 59.10 53.16 66.53 

Small dash line 43.55 99.95 60.67 50.26 76.53 

Turn signs 7.52 99.98 13.99 73.74 7.73 

Other signs 38.45 99.99 55.54 57.14 54.04 

Crosswalk 3.51 100.00 6.78 65.70 3.58 

Stop line 59.31 99.99 74.46 75.79 73.18 

Zebra zone 14.01 99.99 24.58 58.64 15.55 

No parking zone 32.84 100.00 49.45 48.84 50.07 

Parking space 9.35 99.99 17.10 74.90 9.65 

Other lane-marking 1.48 99.99 2.92 46.66 1.51 
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Appendix B. Benchmark of all 12 models on the Waterloo Urban Scene 
Dataset over all 15 classes [4.4] 
 

 
Table B.1: Class-specific performance outcomes of the FCN model trained on the Waterloo Urban Scene 

Dataset and assessed through a range of evaluation metrics. 
 

Class 
IoU 
(%) 

Acc 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

Background 97.39 97.76 98.68 98.37 98.99 

Road 80.20 97.75 89.01 96.62 82.51 

Traffic Island 81.16 99.91 89.60 88.70 90.52 

Sidewalk 79.25 99.40 88.42 85.87 91.14 

Crosswalk 31.61 99.97 48.04 31.79 98.26 

Dash line 28.25 99.93 44.06 28.31 99.27 

Single solid line 33.99 99.72 50.73 34.07 99.31 

Small dash line 12.09 99.99 21.58 12.36 85.03 

Turn sign 27.57 100.00 43.23 27.57 100.00 

Stop line 44.05 99.99 61.16 44.29 98.81 

Zebra line 31.58 99.99 48.01 31.58 100.00 

Parking line 27.37 99.82 42.98 29.70 77.75 

No parking zone 17.49 99.84 29.77 17.61 96.20 

Other 4.33 99.99 8.30 4.34 94.37 

Vehicle 69.70 99.62 82.15 74.75 91.17 
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Table B.2: Class-specific performance outcomes of the FastFCN model trained on the Waterloo Urban 
Scene Dataset and assessed through a range of evaluation metrics. 

Class 
IoU 
(%) 

Acc 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

Background 98.84 99.01 99.42 99.72 99.11 

Road 89.19 98.78 94.29 97.83 90.99 

Traffic Island 88.39 99.94 93.84 88.80 99.49 

Sidewalk 85.27 99.57 92.05 86.17 98.79 

Crosswalk 33.98 99.97 50.73 34.00 99.87 

Dash line 29.58 99.94 45.65 29.60 99.75 

Single solid line 38.62 99.77 55.72 38.76 99.10 

Small dash line 13.12 99.99 23.20 13.12 100.00 

Turn sign 33.59 100.00 50.29 33.59 100.00 

Stop line 46.42 99.99 63.41 46.43 99.96 

Zebra line 22.92 99.99 37.29 22.92 100.00 

Parking line 22.27 99.70 36.43 22.42 97.11 

No parking zone 67.60 99.98 80.67 67.97 99.21 

Other 12.71 100.00 22.56 12.71 100.00 

Vehicle 74.65 99.69 85.49 77.91 94.69 

 

Table B.3: Class-specific performance outcomes of the U-Net model trained on the Waterloo Urban Scene 
Dataset and assessed through a range of evaluation metrics. 

Class 
IoU 
(%) 

Acc 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

Background 96.86 97.30 98.40 98.62 98.19 

Road 79.86 97.68 88.80 95.31 83.12 

Traffic Island 74.48 99.85 85.37 75.55 98.14 

Sidewalk 70.48 99.00 82.68 73.41 94.64 

Crosswalk 30.40 99.97 46.62 31.28 91.46 

Dash line 38.28 99.96 55.37 39.16 94.45 

Single solid line 44.26 99.82 61.36 44.97 96.55 

Small dash line 7.89 99.99 14.63 8.16 70.98 

Turn sign 20.27 100.00 33.71 20.27 100.00 

Stop line 21.82 99.97 35.82 21.88 98.62 

Zebra line 60.21 100.00 75.16 61.00 97.88 

Parking line 26.60 99.81 42.03 28.55 79.62 

No parking zone 32.05 99.95 48.55 37.67 68.26 

Other 0.90 99.94 1.78 0.90 100.00 

Vehicle 65.24 99.51 78.97 67.47 95.18 
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Table B.4: Class-specific performance outcomes of the DeepLabV3 model trained on the Waterloo Urban 
Scene Dataset and assessed through a range of evaluation metrics. 

Class 
IoU 
(%) 

Acc 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

Background 98.01 98.31 99.00 99.63 98.37 

Road 85.01 98.26 91.90 94.84 89.14 

Traffic Island 82.53 99.91 90.43 85.93 95.43 

Sidewalk 74.03 99.14 85.07 75.68 97.13 

Crosswalk 24.27 99.95 39.06 24.30 99.50 

Dash line 24.59 99.92 39.47 24.61 99.71 

Single solid line 31.45 99.69 47.85 31.58 98.74 

Small dash line 12.06 99.99 21.52 12.06 100.00 

Turn sign 30.93 100.00 47.25 30.93 100.00 

Stop line 37.94 99.98 55.01 38.17 98.49 

Zebra line 44.16 100.00 61.27 44.16 100.00 

Parking line 24.31 99.79 39.11 26.24 76.74 

No parking zone 56.50 99.98 72.21 60.08 90.47 

Other 22.58 100.00 36.84 24.53 73.94 

Vehicle 64.91 99.52 78.72 68.86 91.89 

 

Table B.5: Class-specific performance outcomes of the DeepLabV3+ model trained on the Waterloo Urban 
Scene Dataset and assessed through a range of evaluation metrics. 

Class 
IoU 
(%) 

Acc 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

Background 97.72 98.06 98.85 99.25 98.45 

Road 85.56 98.32 92.22 94.76 89.81 

Traffic Island 80.65 99.90 89.29 83.47 95.98 

Sidewalk 75.38 99.21 85.96 78.25 95.35 

Crosswalk 35.78 99.97 52.70 35.84 99.51 

Dash line 42.47 99.96 59.62 42.55 99.54 

Single solid line 44.37 99.82 61.47 44.58 98.94 

Small dash line 11.45 99.99 20.54 11.45 100.00 

Turn sign 29.57 100.00 45.64 29.57 100.00 

Stop line 52.21 99.99 68.60 52.30 99.68 

Zebra line 43.63 100.00 60.75 43.63 100.00 

Parking line 31.56 99.84 47.98 33.95 81.77 

No parking zone 52.99 99.98 69.27 62.48 77.72 

Other 11.37 100.00 20.42 11.37 100.00 

Vehicle 70.69 99.63 82.83 74.48 93.29 
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Table B.6: Class-specific performance outcomes of the ANN model trained on the Waterloo Urban Scene 
Dataset and assessed through a range of evaluation metrics. 

Class 
IoU 
(%) 

Acc 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

Background 98.34 98.59 99.16 99.84 98.49 

Road 87.00 98.51 93.05 95.81 90.44 

Traffic Island 81.71 99.90 89.93 82.09 99.44 

Sidewalk 77.44 99.28 87.29 78.79 97.85 

Crosswalk 23.91 99.95 38.60 23.92 99.95 

Dash line 25.19 99.92 40.24 25.25 99.07 

Single solid line 30.29 99.67 46.49 30.42 98.61 

Small dash line 11.12 99.99 20.01 11.12 100.00 

Turn sign 28.95 100.00 44.90 28.95 100.00 

Stop line 42.18 99.99 59.33 42.33 99.19 

Zebra line 31.04 99.99 47.38 31.04 100.00 

Parking line 23.04 99.78 37.45 24.90 75.52 

No parking zone 65.30 99.98 79.01 70.13 90.45 

Other 5.83 99.99 11.01 5.83 100.00 

Vehicle 66.12 99.53 79.60 68.28 95.43 

 
 

Table B.7: Class-specific performance outcomes of the MobileNetV3 model trained on the Waterloo Urban 
Scene Dataset and assessed through a range of evaluation metrics. 

Class 
IoU 
(%) 

Acc 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

Background 96.24 96.79 98.08 99.19 97.00 

Road 77.52 97.34 87.34 92.26 82.92 

Traffic Island 50.81 99.61 67.39 53.35 91.44 

Sidewalk 62.59 98.60 76.99 65.70 92.96 

Crosswalk 31.86 99.97 48.32 32.41 94.96 

Dash line 27.19 99.93 42.75 27.33 98.18 

Single solid line 37.82 99.77 54.88 38.41 96.10 

Small dash line 4.81 99.99 9.17 4.91 70.07 

Turn sign 20.42 100.00 33.91 20.42 100.00 

Stop line 14.78 99.95 25.75 14.79 99.68 

Zebra line 2.32 99.85 4.53 2.32 100.00 

Parking line 16.73 99.63 28.67 17.29 83.91 

No parking zone 25.63 99.95 40.80 35.84 47.35 

Other 0.46 99.88 0.91 0.46 100.00 

Vehicle 54.91 99.26 70.89 56.96 93.85 
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Table B.8: Class-specific performance outcomes of the PSPNet model trained on the Waterloo Urban 
Scene Dataset and assessed through a range of evaluation metrics. 

Class 
IoU 
(%) 

Acc 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

Background 98.45 98.69 99.22 99.76 98.69 

Road 88.68 98.70 94.00 95.77 92.30 

Traffic Island 84.76 99.92 91.75 85.33 99.22 

Sidewalk 79.40 99.36 88.52 80.83 97.82 

Crosswalk 31.29 99.97 47.66 31.29 99.95 

Dash line 26.47 99.92 41.86 26.49 99.71 

Single solid line 39.04 99.78 56.16 39.40 97.73 

Small dash line 7.41 99.99 13.80 7.41 100.00 

Turn sign 35.47 100.00 52.37 35.47 100.00 

Stop line 47.40 99.99 64.31 47.50 99.53 

Zebra line 36.47 99.99 53.44 36.47 100.00 

Parking line 27.36 99.81 42.97 29.23 81.03 

No parking zone 72.34 99.99 83.95 75.54 94.48 

Other 12.11 100.00 21.61 12.12 99.65 

Vehicle 70.52 99.63 82.71 75.88 90.89 

 

Table B.9: Class-specific performance outcomes of the SegNeXt model trained on the Waterloo Urban 
Scene Dataset and assessed through a range of evaluation metrics. 

Class 
IoU 
(%) 

Acc 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

Background 97.93 98.24 98.95 99.92 98.01 

Road 87.24 98.49 93.19 93.20 93.18 

Traffic Island 86.84 99.93 92.95 87.30 99.39 

Sidewalk 74.39 99.15 85.31 75.28 98.43 

Crosswalk 55.52 99.99 71.40 56.81 96.08 

Dash line 48.87 99.97 65.65 49.25 98.45 

Single solid line 39.57 99.78 56.71 39.82 98.49 

Small dash line 42.36 100.00 59.52 42.83 97.51 

Turn sign 68.89 100.00 81.58 69.17 99.42 

Stop line 77.83 100.00 87.53 78.47 98.96 

Zebra line 65.12 100.00 78.88 65.68 98.72 

Parking line 26.74 99.78 42.20 27.62 89.39 

No parking zone 80.91 99.99 89.45 84.82 94.62 

Other 65.87 100.00 79.42 67.49 96.48 

Vehicle 68.42 99.58 81.25 71.00 94.96 
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Table B.10: Class-specific performance outcomes of the Twins model trained on the Waterloo Urban 
Scene Dataset and assessed through a range of evaluation metrics. 

Class 
IoU 
(%) 

Acc 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

Background 94.68 95.45 97.27 98.99 95.60 

Road 74.60 96.77 85.45 85.01 85.90 

Traffic Island 57.92 99.68 73.35 58.33 98.80 

Sidewalk 46.98 97.54 63.93 50.76 86.32 

Crosswalk 61.53 99.99 76.18 70.18 83.30 

Dash line 65.75 99.99 79.33 70.96 89.94 

Single solid line 56.50 99.90 72.20 59.44 91.94 

Small dash line 57.50 100.00 73.02 79.10 67.80 

Turn sign 77.20 100.00 87.13 80.65 94.75 

Stop line 78.27 100.00 87.81 80.41 96.71 

Zebra line 59.34 100.00 74.48 60.47 96.93 

Parking line 27.81 99.83 43.52 30.96 73.27 

No parking zone 48.53 99.97 65.35 53.69 83.47 

Other 78.85 100.00 88.17 89.78 86.62 

Vehicle 57.44 99.35 72.96 60.91 90.97 

 
 

Table B.11: Class-specific performance outcomes of the Swin model trained on the Waterloo Urban Scene 
Dataset and assessed through a range of evaluation metrics. 

Class 
IoU 
(%) 

Acc 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

Background 99.19 99.31 99.59 99.91 99.27 

Road 93.36 99.25 96.56 97.98 95.19 

Traffic Island 90.64 99.95 95.09 90.86 99.74 

Sidewalk 88.59 99.68 93.95 90.00 98.27 

Crosswalk 43.41 99.98 60.54 43.41 99.97 

Dash line 46.15 99.97 63.15 46.19 99.78 

Single solid line 53.18 99.87 69.43 53.33 99.45 

Small dash line 30.48 100.00 46.72 30.48 100.00 

Turn sign 42.35 100.00 59.50 42.35 100.00 

Stop line 59.87 99.99 74.90 59.88 99.98 

Zebra line 45.27 100.00 62.32 45.27 100.00 

Parking line 38.89 99.87 56.00 39.68 95.09 

No parking zone 70.23 99.99 82.51 70.53 99.40 

Other 25.20 100.00 40.26 25.20 100.00 

Vehicle 76.52 99.71 86.70 77.60 98.21 
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Table B.12: Class-specific performance outcomes of the SegFormer model trained on the Waterloo Urban 
Scene Dataset and assessed through a range of evaluation metrics. 

Class 
IoU 
(%) 

Acc 
(%) 

F1-score 
(%) 

Precision 
(%) 

Recall 
(%) 

Background 98.63 98.84 99.31 99.93 98.70 

Road 91.54 99.03 95.58 96.29 94.89 

Traffic Island 90.32 99.95 94.92 90.84 99.38 

Sidewalk 80.16 99.38 88.99 80.98 98.75 

Crosswalk 70.33 99.99 82.58 70.74 99.17 

Dash line 65.87 99.99 79.43 66.24 99.17 

Single solid line 55.47 99.89 71.36 55.73 99.18 

Small dash line 78.11 100.00 87.71 81.12 95.46 

Turn sign 79.58 100.00 88.63 80.33 98.83 

Stop line 89.74 100.00 94.59 90.96 98.54 

Zebra line 68.38 100.00 81.22 68.44 99.89 

Parking line 32.16 99.82 48.66 32.66 95.45 

No parking zone 82.83 99.99 90.61 83.70 98.77 

Other 85.17 100.00 91.99 89.11 95.07 

Vehicle 73.30 99.66 84.60 74.51 97.83 
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Appendix C. Loss Functions for All 12 Models  
 

 
Table C.1: Loss functions utilized across all 12 models. 

Loss 

Model 

Cross 

Entropy 

Dice Focal Tversky 

FCN ✓ ✓   

FastFCN ✓ ✓   

U-Net ✓ ✓   

DeepLabV3 ✓ ✓   

DeepLabV3+ ✓ ✓   

ANN ✓ ✓ ✓  

MobileNetV3 ✓ ✓   

PSPNet ✓ ✓   

SegNeXt ✓   ✓ 

Twins ✓   ✓ 

Swin ✓ ✓ ✓  

SegFormer ✓   ✓ 

 
 

Formula for per-pixel loss: The loss is calculated by summing across different classes, 

represented by the index 𝑐. For each class, 𝑦𝑐 is the binary ground truth indicator for a 

pixel, where 1 indicates the pixel belongs to class 𝑐 and 0 indicates it does not. 𝑦^𝑐 

represents the predicted probability that the pixel belongs to class 𝑐. These individual 

pixel losses are then averaged across the entire image to determine the overall loss. 

 

Cross-Entropy Loss: This function assesses the precision with which a classification 

model predicts probabilities for each class. It involves a comparison between these 

probabilistic predictions and the actual class labels. A lower value of the cross-entropy 

loss signifies enhanced model performance, rendering this function particularly advan-

tageous for tasks centered on category prediction. 
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        (C.1) 

 

Dice Loss:  This function is particularly relevant for image segmentation tasks, as it 

measures the overlap between predicted and actual segments. It is highly valued for ap-

plications that require precise segmentations. 

 

      (C.2) 

 

Focal Loss: This variant of cross-entropy loss increases focus on correcting misclassi-

fied examples, making it particularly effective for training on imbalanced datasets. It is 

often utilized in object detection scenarios where certain objects may appear infre-

quently. 

 

     (C.3) 

 

Where αc is a weighting factor for class 𝑐c, which helps in adjusting the importance of 

each class in the loss function. γ is the focusing parameter, which adjusts the rate at 

which easy examples are down weighted. The higher the value of γ, the more the focus is 

on hard, misclassified examples. 

 

Tversky Loss: Serving as a replacement for the frequently cited Soft IoU Loss, Tversky 

loss emphasizes the overlap between predicted and actual areas, particularly in object 

detection tasks. Its smooth and differentiable nature makes it ideal for gradient-based 

optimization, thereby enhancing object localization accuracy. 
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     (C.4) 

 

Where α weights the false positives (the penalty for predicting a class when it is not pre-

sent), and β weights the false negatives (the penalty for not predicting a class when it is 

present). 

 


