
On Convergence Analysis of Stochastic and
Distributed Gradient-Based Algorithms

by

Mengyao Zhang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Applied Mathematics

Waterloo, Ontario, Canada, 2024

© Mengyao Zhang 2024

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the Examining
Committee is by majority vote.

External Examiner: Yongqiang Wang
Associate Professor, Dept. of Electrical and Computer Engineering,
Clemson University

Supervisor(s): Jun Liu
Associate Professor, Dept. of Applied Mathematics, University of
Waterloo
Xinzhi Liu
Professor, Dept. of Applied Mathematics, University of Waterloo

Internal Member: Sue Ann Campbell
Professor, Dept. of Applied Mathematics, University of Waterloo
Lilia Krivodonova
Professor, Dept. of Applied Mathematics, University of Waterloo

Internal-External Member: Sherman Shen
Professor, Dept. of Electrical and Computer Engineering, University
of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Optimization is a fundamental mathematical discipline focused on finding the best solution
from a set of feasible choices. It is vital in various applications, including engineering, eco-
nomics, data science, and beyond. Stochastic optimization and distributed optimization are cru-
cial paradigms in the optimization field. Stochastic optimization deals with uncertainty and vari-
ability in problem parameters, providing a framework for decision-making under probabilistic
conditions. On the other hand, distributed optimization tackles large-scale problems by harness-
ing the collective power of multiple agents or nodes, each with local information and local com-
munication capabilities. This thesis aims to modify and analyze the existing stochastic methods
and develop the algorithms and theory to solve the unconstrained distributed optimization prob-
lem.

For stochastic adaptive gradient-based methods, including Root Mean Square Propagation
(RMSprop), Adaptive Delta (Adadelta), Adaptive Moment Estimation (Adam), Adaptive Gradi-
ent (AdaGrad), Nesterov-Accelerated Adaptive Moment Estimation (Nadam), and Accumulate-
Squared Moving Average Gradient (AMSgrad), which are popular stochastic optimization meth-
ods commonly used in machine learning and deep learning, the Chapter 2 provides a concise and
rigorous proof of the almost sure convergence guarantees towards a critical point in the context
of smooth and non-convex objective functions. To the best of our knowledge, this work of-
fers the first almost sure convergence rates for these stochastic adaptive gradient-based methods.
For non-convex objective functions, we show that a weighted average of the squared gradient
norms in each aforementioned method achieves a unified convergence rate of o(1/t

1
2−θ) for all

θ ∈
(
0, 1

2

)
. Moreover, for strongly convex objective functions, the convergence rates for RM-

Sprop and Adadelta can be further improved to o(1/t1−θ) for all θ ∈
(
0, 1

2

)
. These rates are

arbitrarily close to their optimal convergence rates possible.

As a locking-free parallel stochastic gradient descent algorithm, Hogwild! algorithm is com-
monly used for training large-scale machine learning models. In Chapter 3, we will provide an
almost sure convergence rates analysis for Hogwild! algorithm under different assumptions on
the loss function. We first prove its almost sure convergence rate on strongly convex function,
which matches the optimal convergence rate of the classic stochastic gradient descent (SGD)
method to an arbitrarily small factor. For non-convex loss function, a weighted average of the
squared gradient, as well as the last iterations of the algorithm converges to zero almost surely.
We also provide a last-iterate almost sure convergence rate analysis for this method on general
convex smooth functions.

Another aspect of the research addresses the convergence rate analysis of the gradient-based
distributed optimization algorithms, which have been shown to achieve computational efficiency

iv

and rapid convergence while requiring weaker assumptions. We first propose a novel gradient-
based proportional-integral (PI) algorithm in Chapter 4, and prove that its convergence rate
matches that of the centralized gradient descent method under the strong convexity assump-
tion. We then relax this assumption and discuss the local linear convergence of its virtual state
for strictly convex cost functions. In Chapter 5, we propose the powered proportional-integral
(PI) algorithm and prove its convergence in finite time under the assumption of strict convex-
ity. Then, we discuss the fixed-time convergence of its virtual state for strongly convex cost
functions. Finally, we demonstrate the practicality of the distributed algorithms proposed in this
thesis through simulation results.

v

Acknowledgements

I am immensely grateful to my esteemed supervisors, Prof. Jun Liu and Prof. Xinzhi Liu, for
providing me with invaluable opportunities to pursue a Ph.D.. With their assistance, I have ac-
quired a wealth of research knowledge. I am particularly thankful to Prof. Jun Liu for sponsoring
additional scholarships, for revising my papers word by word, and for his concern.

I would also like to thank my examining committee members Prof. Sue Ann Campbell and
Prof. Lilia Krivodonova, my internal-external examiner Prof. Sherman Shen, and my exter-
nal examiner Prof. Yongqiang Wang for taking their time reading my thesis and providing the
valuable comments.

I am also grateful to my family and my friends for their unconditional support and assistance.

vi

Table of Contents

Examining Committee Membership ii

Author’s Declaration iii

Abstract iv

Acknowledgements vi

List of Figures x

List of Tables xii

List of Abbreviations xiii

List of Symbols xiv

1 Introduction 1

1.1 Background . 1

1.2 Motivation Example . 2

1.3 Stochastic Gradient-based Optimization Methods 4

1.4 Distributed Gradient-based Optimization Methods 6

1.5 Organization of the Thesis . 9

vii

2 On Almost Sure Convergence Rates of Adaptive Stochastic Gradient Methods 12

2.1 Nonconvergence of Adaptive Methods . 12

2.1.1 Motivation Example . 13

2.1.2 Modification on Adaptive Methods . 13

2.2 Assumptions . 20

2.3 Last-iterate Convergence Analysis . 21

2.4 Almost Sure Convergence Rate Analysis . 33

2.5 Summary . 42

3 On Almost Sure Convergence of Hogwild! Algorithm 44

3.1 The Hogwild! Algorithm . 44

3.2 Convergence with Probability One . 45

3.3 Summary . 51

4 Continuous-time Distributed Convex Optimization via a Gradient-based Algorithm 52

4.1 Description of the Algorithm . 52

4.2 Assumptions . 53

4.3 Main Convergence Results . 54

4.3.1 Convergence Analysis under Strongly Convex Cost Function 54

4.3.2 Convergence Analysis under Strictly Convex Cost Function 63

4.4 Simulations . 73

4.4.1 Strongly Convex Case . 74

4.4.2 Strictly Convex Case . 74

4.5 Summary . 76

5 Powered Algorithms for Finite-time and Fixed-time Distributed Optimization 77

5.1 Finite-time PI Algorithm . 77

5.1.1 Convergence Analysis . 78

viii

5.2 Fixed-time PI Algorithm . 82

5.2.1 Convergence Analysis . 83

5.3 Simulations . 90

5.3.1 Strictly Convex Case . 90

5.3.2 Strongly Convex Case . 92

5.4 Summary . 93

6 Conclusion and Future Work 96

6.1 Conclusion . 96

6.2 Future Work . 97

References 98

APPENDICES 107

A Picard’s Theorem 108

B Stability and LaSalle’s Invariance Principle 111

ix

List of Figures

1.1 The left one is the distributed model for Hogwild! algorithm where each circle
represents a processor, and all of them have access to the shared memory x. The
right one is the distributed model for Proportional-Integral (PI) algorithm where
each circle represents a processor, and they are allowed to communicate with
their neighborhood. 3

2.1 Simulations of Adam (left) and RMSprop (right) with different combinations of
constant or time-varying parameters. 15

2.2 Simulations of Nadam with different combinations of constant or time-varying
parameters. 16

2.3 Simulations of Adadelta with different combinations of constant or time-varying
parameters. 16

2.4 Simulations of AMSgrad with different combinations of constant or time-varying
parameters. 18

2.5 Simulations of Adamax with different combinations of constant or time-varying
parameters. 19

4.1 For µ-strongly convex case, the algorithm (4.2) with large β outperforms the
classical PI algorithm (4.1) [78] and the ZGS algorithm [47]. Left: G1 with
β2 = 0.3502. Middle: G2 with β2 = 0.4894. Right: G3 with β2 = 0.3820. 75

4.2 Under the strictly convex case, the algorithms (4.2) converge to some neigh-
borhood of the optimal solution asymptotically, and converges to the optimal
solution afterwards. Increasing β improves the algorithm (4.2) under different
topologies. Left: G1 with β2 = 0.3502. Middle: G2 with β2 = 0.4894. Right: G3
with β2 = 0.3820. 75

x

5.1 State trajectories of all agents using (5.1). 91

5.2 The error of the total objective function . 92

5.3 State trajectories of all agents using (5.19). 93

5.4 The distance between the state and the optimal solution. 94

5.5 The errors of the total objective functions. 94

xi

List of Tables

1.1 Theoretical comparisons with existing results in the literature 9

1.2 Comparison of main results with other algorithms 10

xii

List of Abbreviations

Adadelta Adaptive Delta iv, x, 5, 6, 10, 12, 15–17, 22, 29–32, 36, 42–44, 96

AdaGrad Adaptive Gradient iv, 5, 6

Adam Adaptive Moment Estimation iv, x, 5, 6, 10, 12–15, 17, 19, 28, 36, 42, 44, 52, 96, 97

AMSgrad Accumulate-Squared Moving Average Gradient iv, x, 5, 6, 10, 12, 17, 18, 22, 28, 29,
40–42, 96, 97

ASG Adaptive Stochastic Gradient 1, 12, 20, 22, 33, 42, 44, 46, 96, 97

Nadam Nesterov-Accelerated Adaptive Moment Estimation iv, x, 6, 10, 12, 15–17, 22, 23,
40–42, 96, 97

ODE Ordinary Differntial Equation 8, 12, 21, 23, 28, 30, 31, 41, 97, 108, 111

PI Proportional-Integral x, 2, 3, 8, 10, 11, 52, 53, 72, 74–78, 93, 95, 96

RMSprop Root Mean Square Propagation iv, x, 5, 6, 10, 12, 14, 15, 17, 22, 29, 30, 34, 42, 43,
96

SGD Stochastic Gradient Descent 1, 4–6, 44, 51, 96, 97

xiii

List of Symbols

To ensure clarity, we have compiled a list of frequently used notations along with their respective
meanings below.

• Rn: the set of all n-dimensional real vectors.

• R+: the set of all positive real numbers.

• Cn: the set of all n-dimensional complex vectors.

• Rn×n: the set of all n×n real matrices.

• On×n: the set of all n×n orthogonal matrices.

• x∗: the minimizer of the overall objective function f , i.e.

x∗ = argminx ∈ Rm f (x).

• 1: the all-ones vector in Rn.

• 0: the all-zeros vector in Rn.

• ∥·∥: the Euclidean norm for vectors and spectral norm for matrices.

• ∇2g: the Hessian matrix of a twice differentible function g.

• In : the n-dimensional identity matrix.

• ⊗: the Kronecker product.

• λn, λmin(·) and λmax(·): the n-th largest, smallest and largest eigenvalues of a matrix.

xiv

• C2(Rm,R): the collection of twice differentible functions, where Rm is the domain and R
is the codomain.

• C[α1,α2]: the collection of continuous real-valued functions defined on [α1,α2]⊂ R.

• B(x,r): the set {y ∈ Rdimx |∥x− y∥ ≤ r}, where dimx is the dimension of x.

• Rn: the set of all n-dimensional real vectors.

• Rn
+: the set of all n-dimensional real vectors with nonnegative real elements.

• zi ∈ R (z ∈ RN): the i-th element of z if z ∈ RN .

• zi ∈ Rm (z ∈ Rnm or R2nm): the j-th element of zi is the (im−m+ j)-th elements of z, i.e.,
z = ((z1)T , ...,(zn)T)T or ((z1)T , ...,(z2n)T)T .

• ∥z∥p (z ∈ RN) (p ≥ 1): the p-norm of vector z is

∥z∥p =

(
N

∑
i=1

|zi|p
) 1

p

.

xv

Chapter 1

Introduction

1.1 Background

This thesis aims to formulate and theoretically analyze algorithms designed for solving uncon-
strained optimization problems. The overarching goal is to optimally minimize the objective
function through distributed or stochastic approaches. Emphasis is placed on the enhancement
of existing algorithms and a rigorous analysis of their convergence behaviors for objective func-
tions under various non-convex and convex conditions.

One of the main challenges in solving machine learning problems is the involvement of large
datasets. Stochastic gradient-based methods, by their nature, update the model parameters using
only a small subset (or batch) of the entire dataset at a time. These approaches are far more
efficient than traditional methods that require the entire dataset for each update. The Stochastic
Gradient Descent (SGD) method is the simplest stochastic method for searching for a minimizer.
Stochastic adaptive gradient-based methods and Hogwild! algorithm are both variants of SGD.
The former can dynamically adjust the learning rate during training, which leads to more effi-
cient training and faster convergence. The latter is not only highly scalable, but also allows all
processors access to shared memory and implement SGD without any locking.

Another challenge in machine learning area is the sparseness of dataset. In many real-world
datasets, especially in fields like natural language processing, the data can be highly sparse.
Stochastic gradient-based methods, for example Adaptive Stochastic Gradient (ASG) methods
and Hogwild! algorithm, are particularly effective when dealing with sparse data.

Discussing distributed optimization in machine learning is crucial due to its relevance in han-
dling large-scale data, improving computational efficiency, ensuring scalability, and addressing

1

challenges in privacy and data security. On the one hand, datasets are often too large to be
processed on a single machine in fields like image and video processing, natural language pro-
cessing, and large-scale simulations. On the other hand, training complex models, such as deep
neural networks, requires significant computational resources. Distributed systems allows for
handling such large datasets by dividing the workload across multiple machines, and it provides
the necessary computational power by harnessing the capabilities of multiple machines, leading
to faster training times and more efficient use of resources. Distributed approaches are also in-
herently scalable. As the size of the data or the complexity of the model increases, more nodes
can be added to the system to maintain or improve the performance. In real-world, data might
be collected and processed in distributed environments. Training models on diverse datasets dis-
tributed across multiple nodes can potentially lead to more robust and generalized models, as the
model is exposed to a wider variety of data samples during training. In some cases, data cannot
be centralized due to privacy concerns or regulatory restrictions. Distributed learning allows data
to remain on local nodes while still contributing to the learning of a global model.

Remark 1. As shown in Figure 1.1, Hogwild! and the PI algorithm are distributed algorithms
that cater to different system models. The Hogwild! model resembles centralized systems, fea-
turing a server (or master) with a shared memory x, with each processor acting like a computer
(or slave). The key difference lies in the fact that processors in Hogwild! bypass the need for
a central synchronization point, allowing them to work independently and without waiting for
each other. On the other hand, the PI algorithm is used in a system without shared memory or a
central server (master). This setup involves different nodes sharing hardware, software, or data
and communicating through a shared network without relying on a single point of control for
synchronization.

1.2 Motivation Example

A motivation example is to solve a deep learning problem for image classification with convolu-
tional Neural Networks (CNNs) Scenario. The task is to develop a CNN for classifying images
into various categories, such as distinguishing between different types of animals in a dataset,
and it is usually converted to an unconstrained minimization problem. This is a common prob-
lem in computer vision with applications in areas like automated image tagging, surveillance,
and medical imaging.

Consider the simplest image classification: binary image classification involving single data
point (x′,y(x′)), where x′ is a single feature input of the image and y(x′) is a binary true label
vector. The c-th element of y(x′), yc(x′), denoted by 1 if the class label c is the correct classifica-
tion, and 0 otherwise. In other words, y(x′) is [0,1] if the data point belongs to class 1, and y(x′)

2

Figure 1.1: The left one is the distributed model for Hogwild! algorithm where each circle
represents a processor, and all of them have access to the shared memory x. The right one is the
distributed model for PI algorithm where each circle represents a processor, and they are allowed
to communicate with their neighborhood.

is [1,0] if it belongs to class 2. Let ŷ(x′,x) be the predicted probability distribution vector across
the classes, where x is the parameter to be determined, the c-th element of ŷ, denoted by ŷc(x,x′)
is the predicted probability of class c.

Our objective to find x such that the difference between the predicted probability vector and
true probability vector are minimized, which can be mathematically formulated by

min
x

L(y, ŷ), (1.1)

where L represents some measurement quantifying the difference between y and ŷ. A commonly
used measurement is the cross-entropy loss [7,26,68] of the distribution ŷ relative to a distribution
y, and our goal is to optimize

min
x

L(y(x), ŷ(x)) ∆
=−y1(x) log(ŷ1(x))− y2(x). log(ŷ2(x)) (1.2)

In practice, image datasets are typically vast in scale. For instance, ImageNet comprises
over 14 million images, while ObjectNet contains upwards of 50 thousand images. We now
consider binary image classification involving multiple data points, and extend this problem to a

3

distributed optimization problem, where each machine (node or processor) has access to a small
batch of the large dataset, and only local communication and local computation are allowed.
Each node computes gradients based on its subset of data, and these gradients are then combined
to update the global model parameters. The objective function in a distributed setting is typically
a summation of the local loss functions computed on each node, with an additional term to
ensure regularization or consensus among the nodes. In the context of image classification using
cross-entropy loss, the distributed optimization problem can be formulated as:

min
x

Ldistributed(x)
∆
=

K

∑
k=1

nk

K
Lk(x), (1.3)

where Ldistributed is the global loss function dependent on the model parameter x, K is the total
number of nodes in the distributed system, nk is the number of samples in the k-th node, Lk is the
local loss function for the k-th node, which is the cross-entropy loss function (1.2) for its subset
of data [16, 49].

1.3 Stochastic Gradient-based Optimization Methods

Consider the unconstrained minimization problem

min
x∈Rn

f (x), (1.4)

where f : Rn → R. Here, f may arise from optimizing an expected risk of the form f (x) =
E(f (x;ξ)), where ξ is a source of randomness indicating a sample (or a set of samples), or an
empirical risk of the form f (x) = 1

n ∑
n
i=1 f (x;ξi), where {ξi}n

i=1 are realizations of ξ . For all
x ∈ Rn, we assume that ∇ f (x;ξ) is an unbiased estimator of the actual gradient ∇ f (x), i.e.,

∇ f (x) = E(∇ f (x;ξ)). (1.5)

The SGD is the simplest stochastic method for searching for a minimizer.

As a variant of stochastic gradient descent (SGD), Hogwild! combines the simplicity of
SGD with accelerated learning on multi-core processors. Hogwild! (Higher-Order, Gradient-
Wise learning for the Wild) is designed as a parallelize stochastic gradient descent method for
training machine learning models. Introduced by Niu et al. [63], this distributed and parallel
optimization algorithm removes the constraints of traditional locking mechanisms in SGD, en-
abling multiple CPU cores to update model parameters asynchronously, and scaling up model

4

training in data-intensive applications efficiently. In the next few years, numerous variations
and extensions of Hogwild! algorithm has been proposed. As a variant of Hogwild! algorithm,
Hogwild++ [94] extends the original algorithm by introducing decentralized averaging mecha-
nisms to improve convergence while retaining the asynchrony. It addresses challenges related to
communication overhead as well as non-convex optimization tasks. SPIDER [21] is an exten-
sion of HOGWILD! for non-convex optimization tasks. It combines stochastic gradient methods
with variance-reduction techniques for improved efficiency. BUCKWILD! [15] is designed and
analyzed as an asynchronous SGD algorithm, that uses lower-precision arithmetic. It has been
demonstrated experimentally that BUCKWILD! can achieve speedups of up to 2.3 times over
HOGWILD!-based algorithms for logistic regression.

Another variant of SGD, stochastic adaptive gradient-based methods can adaptively tunes
learning rates for each parameter based on historical gradients. They help accelerate conver-
gence, handle sparse data more effectively, and often lead to better optimization performance for
complex models like deep neural networks and large-scale data analytics [38].

The first adaptive optimization algorithm, AdaGrad, was introduced by Duchi et al. in
2011 [19]. This algorithm proves to be particularly effective for handling sparse data. Over
the next two years, additional methods such as RMSprop [27] and Adadelta [93] were proposed.
RMSprop is an algorithm that rescales the step size using a weighted moving average of the
squared gradient. On the other hand, Adadelta is an extension of RMSprop, designed to tackle the
diminishing learning rate problem by utilizing a running average of past updates. Furthermore,
Adadelta removes the necessity of setting an initial learning rate. In 2014, the Adam method
and Adamax [39] were introduced, combining the strengths of both AdaGrad and RMSprop.
Adam quickly gained popularity as a preferred choice for optimizing deep-learning models. Its
widespread adoption can be attributed to its robustness, rapid convergence, and user-friendly
default parameter settings. The same paper also proposed ‘Adamax,’ a variant of Adam that re-
lies on the infinity norm. In [64], however, a rigorous proof was presented, demonstrating that
there exists a stochastic optimization problem for which Adam fails to converge to the optimal
solution. To address this limitation, AMSgrad was introduced in [64]. A study on the Nesterov-
accelerated Adaptive Moment Estimation (Nadam) method is documented in [18], where the first
momentum of Adam is replaced with the momentum used in Nesterov’s Accelerated Gradient
method (NAG).

For various adaptive optimization methods, some papers have proven the convergence to crit-
ical points in different optimization settings. The first convergence guarantees for adaptive opti-
mization methods might be presented in [14]. This work provides convergence rates for the gra-
dients of deterministic RMSprop and Adam algorithms, where the full gradient is calculated in
each iteration. Additionally, the paper offers a convergence rate for stochastic RMSprop, assum-
ing that all elements in gradients share the same sign. For large-scale non-convex stochastic op-

5

timization, [99] demonstrated the global decays of the gradients in stochastic Adam, RMSprop,
and weighted AdaGrad with exponential moving average momentum (weighted AdaEMA) with
a probability less than one. This paper also provides the convergence rate. In the non-convex
setting, [30] established that the averages of the gradient squares in SHB, Adam, AMSgrad, Ada-
Grad, Adaform, and Adabound converge in expectation, and it provides the convergence rate by
analyzing the Jacobian matrices. Conducting a locally exponential convergence analysis in batch
mode for a deterministic fixed training set, the paper [9] presents insights into the performance
of Adam methods. Moreover, the papers [42] and [85] consider the AdaGrad method as a variant
of SGD with adaptive step size and provide a convergence guarantee for the minimum history
gradient norm. It is proved in [17] that the squared norms of the gradients of Adam and AdaGrad
share the same convergence rate O(ln(N)/

√
N) in expectation.

The research paper [4] introduces some modifications to the Adam optimization method.
These enhancements incorporate the Robbins-Monro Algorithm (RMA), ensuring the modified
Adam method’s almost sure convergence to the critical point of the non-convex objective func-
tion. Addtionally, some methods of proving the almost convergence rates of SGD are proposed
in [45].

Motivated by the above methods, we will apply RMA in proving the last-iterate almost
sure convergences of stochastic adaptive gradient-based methods, including RMSprop, Adadelta,
Adam, Nadam, and AMSgrad, with a more concise and accurate proof, whereas the proof in [4]
has some mistakes.

To the best of our knowledge, the work to be presented in this thesis gives the first almost sure
convergence rates for these stochastic adaptive gradient-based methods and Hogwild! algorithm.
Using the results from [45], we show that a weighted average of the squared gradient norms
for non-convex objective function achieves a unified o(1/t

1
2−θ) convergence rate for all θ ∈

(0, 1
2) For strongly convex objective functions, the convergence rates of RMSprop, Adadelta and

Hogwild! can be improved to o(1/t1−θ) for all θ ∈ (0, 1
2), which are arbitrarily close to their

optimal convergence rates possible.

1.4 Distributed Gradient-based Optimization Methods

The overall objective is to find the value of x that minimizes the average of a collection of ob-
jective functions fi through local communication with neighbors and local computation. Mathe-

6

matically, we express this problem as follows:

min
x∈Rm

f (x) ∆
=

n

∑
i=1

fi(x), (1.6)

Here, the local communication is defined by an undirected communication graph. The coordina-
tion of multi-agent dynamic systems in networks has gained significant attention recently, finding
applications in various fields such as flocking of social insects, formation control, robotics, con-
trol engineering, economics, transportation, and social networks [57, 58, 79, 89].

Consider a network consisting of n agents V = {v1, ...,vn}, each of which has a convex ob-
jective function fi : Rm → R to optimize. Denote by X = {1,2, ...,n} the set of indices of the
agents. A weight matrix W is a symmetric matrix such that wi j ≥ 0 for all i, j ∈ X , and wii = 0
for i ∈ X . We say that a set (vi,v j) is an edge of the graph if and only if wi j > 0, and we de-
note by E = {(vi,v j) |wi j > 0} the collection of all edges. The agents communicate through the
corresponding weighted undirected communication graph G = (V,E,W).

Definition 1. Given a weighted undirected communication graph G=(V,E,W), define the graph
Laplacian matrix L = [li j] of G by

li j =

{
∑

n
k=1,k ̸=i wik, j = i,

−wi j, j ̸= i.
(1.7)

Definition 2. An undirected graph is connected if there is a path between every pair of agents,
where a path is a sequence of consecutive edges.

Definition 3. A network is said to reach consensus if all agents have the same value.

The overall network objective is to find the x∗ which satisfies

f (x∗) = min
x∈Rm

f (x) (1.8)

in a distributed manner, that is to say, an agent vi ∈V is allowed to communicate with its neigh-
borhood Ni = {v j ∈V |(vi,v j) ∈ E} only.

Continuous-time optimization is important because real-world processes, such as physical
systems, economic processes, and financial markets, evolve continuously over time. These pro-
cesses are often described by differential equations that cannot be easily solved analytically.
Continuous-time optimization provides a powerful tool for finding optimal solutions in these
complex systems. Furthermore, continuous-time distributed optimization algorithms can offer a

7

dynamic perspective and provide physical insights that complement their discrete-time counter-
parts [53, 74]. In [95, 97], the authors accelerate the Heavy-ball method and Nesterov’s gradient
method by directly discretizing an Ordinary Differntial Equation (ODE) related to their contin-
uous limits. This approach allows for leveraging the benefits of continuous-time optimization in
the context of discrete-time algorithms.

Among the distributed optimization algorithms, continuous-time ones are often easier to un-
derstand and analyze, and many of them exhibit asymptotic behavior or linear convergence. The
continuous-time distributed gradient descent method [98] is perhaps the simplest continuous-
time distributed optimization algorithm, which is motivated by the discrete-time version and
shares the same convergence rate with the discrete-time distributed and centralized gradient
descent method. Motivated by the feedback control mechanism, Wang and Elia designed the
gradient-based PI control strategy in [78]. Its asymptotic convergence for convex local cost func-
tions [25] and linear convergence for strongly convex local cost functions [37] were discussed.
Building on Kia et al.’s PI framework [37], Guo et al. investigated the distributed optimiza-
tion problem of double-integrator multi-agent systems with unmatched constant disturbances
and time-triggered communication [28]. Lu and Tang proposed the zero-gradient-sum (ZGS)
algorithm, where the sum of the local gradients is always zero, and they proved its exponen-
tial stability for strongly convex cases [47]. Over the past few years, it has been shown that
the ZGS algorithms can also solve the unconstrained optimization problem subject to switch-
ing topology and time-varying communication delays [29, 44]. However, these ZGS algorithms
rely on the inverse of local Hessian matrices and are resource-intensive [29, 44, 47]. Despite the
convergence guarantees of all these algorithms, there is no assurance that they can solve the dis-
tributed optimization problem in finite time. In order to improve traditional processing methods,
stochastic and event-triggered algorithms have been investigated to achieve communication and
computation efficiency [35, 48, 72, 90].

Various finite-time and fixed-time continuous-time distributed algorithms have been pro-
posed [22,34,59,81,83,84]. Finite-time algorithms depend on the initial value, while fixed-time
algorithms have a predetermined settling time. Some distributed finite-time optimization algo-
rithms have been developed based on the assumption that all local cost functions are strongly
convex quadratic functions [22, 59, 81, 84]. These algorithms can handle mismatched distur-
bances or uncertain information. Feng and Hu proposed a finite-time distributed strongly convex
optimization algorithm that incorporates disturbances using the inverse of Hessian matrices of
the objective functions [23]. Wang et al. presented a distributed optimal signal generator that
solves finite-time optimization problems when the local cost functions are quadratic-like and the
overall cost function is strongly convex [83]. Importantly, this algorithm only relies on the gra-
dients of local objective functions and does not require convexity of the global cost functions.
Garg et al. developed two fixed-time distributed algorithms for time-varying topologies: one

8

Methods Convergence Rate Global cost function Local cost functions Computation
[78] asymptotic compact solution set convex gradients

&convex
[98] exponential µ µ-strongly convex µ-strongly convex Hessian matrices
[47] exponential < µ µ-strongly convex µ-strongly convex the inverse of

Hessian matrices
[37] exponential < µ µ-strongly convex µ-strongly convex gradients
Th 9 exponential µ µ-strongly convex µ-strongly convex gradients
Th 10 exponential strictly convex convex gradients

Table 1.1: Theoretical comparisons with existing results in the literature

based on third-order derivatives for strictly convex global cost functions, and another based on
Hessians for strongly convex global cost functions [24]. Song and Chen combined the ZSG al-
gorithm from [47] and the powerball method from [92] to propose a finite-time ZSG algorithm
for strongly convex objective functions [73]. Wu et al. investigated a distributed algorithm for
finite-time and fixed-time optimization problems based on the ZGS framework [87]. Assum-
ing all local cost functions are strongly convex, Shi et al. proposed a finite-time convergent
distributed approach for time-varying distributed optimization [70]. In [46], a predefined-time
multi-agent algorithm for solving multi-objective optimization is presented, where predefined-
time optimization is a method of optimization capable of reaching a state very near to an optimal
solution within a specified time frame. In summary, these algorithms can be computationally
intensive or rely on strong assumptions.

In the Table 1.1, 1.2, we summarize the aforementioned results on finite-time and fixed-time
continuous-time distributed optimization algorithms. It is observed that the algorithms presented
in this thesis have lower computational requirements and are based on more lenient assump-
tions. The computational complexity of these algorithms primarily relies on the gradients of
the objective functions. We rigorously prove the fixed-time convergence of the first proposed
algorithm under the assumption of strong convexity. Additionally, we develop a decentralized
control framework to solve the finite-time optimization problem under the assumption of weak
convexity.

1.5 Organization of the Thesis

The primary goal of this thesis is to contribute to theory and algorithms in the fields of stochastic
and distributed optimization problems. The rest of the thesis is organized as follows.

9

Methods Convergence Global cost function Local cost functions Computation
[59] finite time strongly convex & strongly convex & gradients

quadratic quadratic
[73] finite time strongly convex strongly convex the inverse of

Hessian matrices
[34] finite time strictly convex strictly convex the inverse of

Hessian matrices&
positive Hessians

[82, 83] finite time strongly convex quadratic-like gradients
[24] fixed time strictly convex convex third-order derivatives

of cost functions
fixed time strongly convex convex Hessian matrices

[84] finite time strongly convex strongly convex Hessian matrices
quadratic quadratic

[87] finite time local strongly convex local strongly convex the inverse of
Hessian matrices

fixed time strongly convex & strongly convex & the inverse of
quadratic quadratic Hessian matrices

Th 11 fixed time strongly convex strongly convex gradients
Th 12 finite time strictly convex convex gradients

Table 1.2: Comparison of main results with other algorithms

Chapter 2 presents a detailed proof of the almost sure convergence for popular stochastic
adaptive gradient methods like RMSprop, Adadelta, Adam, Nadam, Adamax,and AMSgrad in
machine and deep learning. This chapter marks the first to offer almost sure convergence rates
for these methods, demonstrating a unified convergence rate of o(1/t

1
2−θ) for non-convex objec-

tives and improved rates for strongly convex objectives. These rates are arbitrarily close to their
optimal convergence rates possible.

In Chapter 3, the Hogwild! algorithm, a parallel stochastic gradient descent method, is an-
alyzed for its almost sure convergence rates under various loss functions. We show its optimal
convergence rate for strongly convex functions and convergence rate to zero for non-convex loss
functions, including a detailed analysis for general convex functions.

Chapter 4 introduces a novel gradient-based PI algorithm, showing its convergence rate under
strong convexity matches centralized gradient descent. We also explore its local linear conver-
gence for strictly convex functions.

10

Chapter 5 discusses the powered PI algorithm, proving finite-time convergence for strictly
convex functions and fixed-time convergence for strongly convex functions, supported by prac-
tical simulation results.

The final Chapter summarizes the main contributions and bring up some related future re-
search directions.

11

Chapter 2

On Almost Sure Convergence Rates of
Adaptive Stochastic Gradient Methods

We have seen the merits and developments of ASG methods in Chapter 1, and there are some
open questions: (1) Adam with fixed learning rate has been proved to fail to converge to the
optimal solution [64]. How could it be modified? Will this flaw influences other ASG methods?
(2) the last-iterate almost sure convergence analysis on Adam has been given [4]. Do the last-
iterates of other ASG methods converge as well? (3) what is the almost sure convergence rate of
these methods?

This chapter points out the existing flaws on the widely-used stochastic adaptive gradient
techniques such as RMSprop, Adadelta, Adam, Nadam, and AMSgrad, and it is confirmed by
simulations. A unified modification to these methods are given Motivated by the almost sure con-
vergence analysis on Adam [4], we construct the limiting ODE of the above-mentioned methods,
analyze their stability, and present last-iterate almost sure convergence analysis on non-convex
smooth functions. Using the conclusions from [45], we provide a unified almost sure conver-
gence rate o(1/t

1
2−ε) (ε ∈ (0,1/2)) for non-convex cost functions, and offer enhanced rates

o(1/t1−ε) ε ∈ (0,1) for strongly convex objective functions.

2.1 Nonconvergence of Adaptive Methods

This section provides an illustrative example where some ASG methods with constant parameters
do not converge toward the critical point. To address this issue, we propose a unified modification
to these methods, resulting in convergence towards the critical point in this case.

12

2.1.1 Motivation Example

Consider the stochastic optimization problem in [64, Theorem 3], the Adam method defined in
Algorithm 1 with constant αt and βt fails to converge to the optimal solution. In this case, the dra-
matic vibration of vt , mt causes them flawed estimations on the first and second raw moments, and
E(xt+1 − xt) might have the same direction as the expected gradient E(−∇ f (xt ;ξ)) =−∇ f (xt),
preventing xt from approaching the optimal solution. As there is no critical point in this exam-
ple, we propose a different stochastic optimization problem such that some adaptive methods
with constant parameters, including Adam method, fail to converge towards the critical point if
αt and βt are constant.

Example 1. Construct a strongly convex optimization problem

f (x;ξ) =

{
5x2 +9x, with probability 0.1,
−1

2x2 − x, with probability 0.9,
(2.1)

and the corresponding stochastic gradient is

∇ f (x;ξ) =

{
10x+9, with probability 0.1,
−x−1, with probability 0.9.

(2.2)

The feasible set is set to be F = [−1,1], i.e., if the xt derived in the iteration exceeds the interval,
we set xt ∈ F to be the value closest to the iteration result. Noting that f (x) = E(f (x;ξ)) =
0.05x2, we know that the optimal solution occurs at the origin.

2.1.2 Modification on Adaptive Methods

Decreasing learning rate in stochastic algorithms is commonly employed. It allows the conver-
gence to an optimal or near-optimal solution, enhances the stability of the optimization process,
gradually balances the trade-off between exploration and exploitation, and so on. Except for the
requirement of a decreasing learning rate, the research paper by Barakat et al. [4] also requires
the increasing hyper-parameters αt and βt , and it is proven that the sequence of xt in this context
of Adam converges to the optimal solution with probability 1.

Motivated by the above arguments, we apply a similar modification as [4] on other adaptive
methods, i.e., we assume the following holds

Assumption 1. The following requirements hold:

13

Algorithm 1: Adam({γt}t ,{αt}t ,{βt}t ,ε)
Data: m0 = v0 = 0
for t = 1,2, ... do

gt = ∇ f (xt−1;ξt);
mt = αtmt−1 +(1−αt)gt ;
vt = βtvt−1 +(1−βt)g⊙2

t ;
m̂t =

mt
1−Πt

i=1αi
(bias correction to mt);

v̂t =
vt

1−Πt
i=1βi

(bias correction to vt);

xt = xt−1 − γt
m̂t√

v̂t+ε1 ;

end

Algorithm 2: RMSprop({γt}t ,{βt}t ,ε)
Data: v0 = 0
for t = 1,2, ... do

gt = ∇ f (xt−1;ξt);
vt = βtvt−1 +(1−βt)g⊙2

t ;
xt = xt−1 − γt

gt√
v̂t+ε1 ;

end

1. ∑t γt =+∞ and ∑t γ
p
t <+∞ for some p ≥ 2.

2. There exist a,b > 0 such that b(1− ε)≤ 4a, limt→∞
1−αt

γt
= a and limt→∞

1−βt
γt

= b.

or

Assumption 2. The following requirements hold:

1. ∑t γt =+∞ and ∑t γ
p
t <+∞ for some p ≥ 2.

2. There exists b > 0 such that limt→∞
1−βt

γt
= b.

For adaptive methods involving parameters αt and βt , such as the Adam method, we assume
the validity of Assumption 1. In cases where only βt is present, such as RMSprop method, we
consider Assumption

14

Figure 2.1: Simulations of Adam (left) and RMSprop (right) with different combinations of
constant or time-varying parameters.

Adam and RMSprop, of which the iterations are given in Algorithms 1 and 2, are conducted
with respect to different settings of the hyper-parameters αt , βt , and γt , and the simulation results
are presented in Figure 2.1. When both αt and βt are kept constant, the values of xt remain
around the ‘worst’ solution within the feasible set F regardless of which step size is employed.
When αt and βt increase and the learning rate γt maintains a constant, the variable xt exhibits a
damping effect, settling around the vicinity of the origin. It appears that using a smaller constant
step size results in smaller oscillations and lower frequency of vibrations. The green lines meet
Assumption 1. This combination demonstrates a more rapid and smoother convergence towards
the optimal solution, and the almost sure convergence of the Adam method agrees with the result
in [4]. In Sections 2.3 and 2.4, we will give the almost sure convergences guarantee and the
almost sure convergence rates for both the Adam and RMSprop methods.

Nadam method [18], of which the iterations are given in Algorithm 3, follows a comparable
argument. Figure 2.2 depicts a simulation of Example 1 conducted using the Nadam method.
When αt and βt are constant, the trajectory converges to a neighbourhood of 1. When comparing
Figure 2.2 with the upper figure in Figrue 2.1, it is evident that the yellow and purple lines exhibit
less frequent damping. The green line, similar to the Adam method, will also be demonstrated to
converge almost surely in Sections 2.3 and 2.4.

The constant value βt also causes the non-convergence issue of the Adadelta method [93],
defined in Algorithm 4. Setting ε to be 10−6, we conduct Adadelta method on Example 1. It is
observed from Figure 2.3 that xt remains around 1 for a constant βt . Increasing βt and γt = 1
result in heavy isolation of xt , and there is no tendency for the amplitude to decrease.

15

Figure 2.2: Simulations of Nadam with different combinations of constant or time-varying pa-
rameters.

Figure 2.3: Simulations of Adadelta with different combinations of constant or time-varying
parameters.

16

Algorithm 3: Nadam ({γt}t ,{αt}t ,{βt}t ,ε)
Data: m0 = v0 = 0
for t = 1,2, ... do

gt = ∇ f (xt−1;ξt);
mt = αtmt−1 +(1−αt)gt ;
vt = βtvt−1 +(1−βt)g⊙2

t ;
m̂t =

αt+1mt

1−Π
t+1
i=1αi

+ (1−αt)gt
1−Πt

i=1αi
(bias correction to mt);

v̂t =
vt

1−Πt
i=1βi

(bias correction to vt);

xt = xt−1 − γt
m̂t√

v̂t+ε1
end

Algorithm 4: Adadelta({γt}t ,{βt}t ,ε)
Data: u0 = v0 = 0
for t = 1,2, ... do

gt = ∇ f (xt−1;ξt);
vt = βtvt−1 +(1−βt)g⊙2

t ;

∆xt =

√
ut−1+ε1√
vt+ε1 gt ;

ut = βtut−1 +∆x2
t (1−βt);

xt = xt−1 − γt∆xt
end

By decreasing the learning rate and increasing βt , the purple line in Figure 2.3 converged to
the optimal solution with decreasing amplitude. This line’s almost sure convergence behaviour
will also be further explained in Sections 2.3 and 2.4.

Remark 2. Unlike other adaptive methods, the Adadelta and RMSprop optimization methods
display less smoothness and a considerable number of peaks in their plots. This disparity arises
from using the term gt in the iteration step of xt instead of m̂t , which represents a weighted aver-
age of historical stochastic gradients. Consequently, the former methods exhibit more stochas-
ticity, lacking the smoothing effect provided by historical gradients.

The AMSgrad method, which iterates according to Algorithm 5, is a modification of the
Adam method introduced in the paper [64]. In Figure 2.4, the red line appears smoother with
smaller amplitudes compared with the red line. Additionally, by modifying αt , βt , and γt , the

17

Algorithm 5: AMSgrad ({γt}t ,{αt}t ,{βt}t ,ε)
Data: m0 = v0 = 0
for t = 1,2, ... do

gt = ∇ f (xt−1;ξt);
mt = αtmt−1 +(1−αt)gt ;
vt = βtvt−1 +(1−βt)g⊙2

t ;
m̂t =

mt
1−Πt

i=1αi
(bias correction to mt);

v̂t = max(v̂t−1,vt);
xt = xt−1 − γt

m̂t√
v̂t+ε1

end

0 1 2 3 4 5

Times of iteration 10
6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.4: Simulations of AMSgrad with different combinations of constant or time-varying
parameters.

18

variable xt converges to the origin more rapidly and consistently. Its almost sure convergence
will be discussed in Sections 2.3 and 2.4 as well.

Algorithm 6: Adamax {γt}t ,{αt}t ,{βt}t ,ε)
Data: m0 = v0 = 0
for t = 1,2, ... do

gt = ∇ f (xt−1;ξt);
mt = αtmt−1 +(1−αt)gt ;
ut = max(βtut−1, |gt |+ ε1);
xt = xt−1 − γt

mt
(1−Πt

i=1αi)ut

end

0 1 2 3 4 5

Times of iteration 10
6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.5: Simulations of Adamax with different combinations of constant or time-varying
parameters.

Figure 2.5 for the Adamax method [39], which updates according to Algorithm 6, exhibits
some similarity to those of the Adam method. The constant βt here also leads to fluctuations in
the variable ut and can hinder the convergence process. Though the convergence of the green
line will not be proven, this example illustrates that the modified parameters can enhance the
performance of the Adamax method.

19

2.2 Assumptions

To analyze the almost sure convergence of the ASG methods, we make the following assumptions
on the objective function.

Assumption 3. The continuously differentiable cost function f : Rn → R satisfies the following:

1. f is coercive, i.e.,
f (x)→ ∞ as ∥x∥→ ∞. (2.3)

2. f has a global minimum value f ∗= f (x∗) =minx∈Rn f (x), where x∗ is the optimal solution.

3. ∇ f is locally Lipschitz, i.e., for any x0 ∈Rn, there exists δ0,L0 > 0 such that ∥x−x0∥ ≤ δ0
implies

∥∇ f (x)−∇ f (x0)∥ ≤ L0∥x− x0∥. (2.4)

Assuming that Assumption 3 is satisfied, and C is a compact set, we can use the Heine-Borel
theorem to demonstrate that ∇ f is Lipschitz continuous with some Lipschitz constant LC > 0
over C, i.e.,

∥∇ f (x)−∇ f (y)∥ ≤ LC∥x− y∥, x,y ∈C. (2.5)

A useful consequence of LC-Lipschitzness of ∇ f is the following inequality from [54, Lemma
1.2.3]:

f (y)≤ f (x)+ ⟨∇ f (x),y− x⟩+ LC

2
∥y− x∥2, x,y ∈C. (2.6)

If we further assume that f is convex on C, i.e.,

f (y)≥ f (x)+ ⟨∇ f (x),y− x⟩, x,y ∈C, (2.7)

then it can be concluded from [54, Theorem 2.1.5] that

f (y)≥ f (x)+ ⟨∇ f (x),y− x⟩+ 1
2LC

∥∇ f (x)−∇ f (y)∥2, x,y ∈C. (2.8)

In Assumption 3, the minimum point x∗ is one of the critical points of f . In the following
assumption, we assume that x∗ is the unique critical point of f .

Assumption 4. The set E P = {x ∈Rn|∇ f (x) = 0}= {x∗} is singleton. There exists some µ > 0
such that the cost function is locally µ-strongly convex around the optimal solution x∗, i.e.,

f (y)≥ f (x)+ ⟨∇ f (x),y− x⟩+ µ

2
∥x− y∥2, x,y ∈ N∗, (2.9)

20

where N∗ is some neighborhood of x∗.

Combining the fact that ∇ f (x∗) = 0 and [54, Theorem 2.1.10], we know that (2.9) implies

f (x)− f ∗ ≤ 1
2µ

∥∇ f (x)∥2, x ∈ N∗. (2.10)

Assumption 5. For all x ∈ Rn, S(x) = E(∇ f (x;ξ)⊙2) is elementwise positive, and locally Lips-
chitz.

This assumption, equivalent to P(∇ f (x;ξ)) = 0 is valid for all x, is often considered a weak
hypothesis in practice.

2.3 Last-iterate Convergence Analysis

Before presenting the primary results, we will provide some contextual information concerning
asymptotic pseudo-trajectories, the Robbins-Monro algorithm, and the Invariance Principle.

A semiflow Φ on the metric space (E,d) is a continuous function from [0,∞)×E to E defined
by (t,x) 7→ Φ(t,x) = Φt(x) such that Φ0 is the identity mapping and Φt+s = Φt ◦ Φs for all
(t,s) ∈ [0,∞)2.

Definition 4. A continuous function z : R+ → M is an asymptotic pseudo-trajectory (APT) for a
semiflow Φ if

lim
t→∞

sup
0≤h≤T

d(z(t +h),Φh(z(t))) = 0, (2.11)

for any T ∈ R

The Robbins-Monro algorithm is a stochastic approximation method [5]. By analyzing the
related ODE, we are able to gain insights into the asymptotic tendencies of a stochastic process.
Consider a discrete time stochastic process {zt}t in Rm (m ∈ N), which updates according to

zt = zt−1 + γt−1(F(zt−1)+Ut +bt), (2.12)

where {γt} is a given sequence of deterministic nonnegative numbers satisfying ∑t γt = ∞ and
limt→∞ γt = 0, the martingale difference noise {Ut} is measurable with respect to Ft for all t ≥ 1
and satisfies E(Ut |Ft−1) = 0, and {bt}t converges to zero almost surely.

The following conclusion is derived from [5, section 4.2].

21

Proposition 1. Let {zt} given by (2.12) be a Robbin-Monro algorithm. Suppose that for some
q ≥ 2

sup
t
E∥Ut∥q < ∞ almost surely (2.13)

and
∑
t

γ
1+q/2
t < ∞. (2.14)

If supt ∥zt∥< ∞, then the interpolated process Z defined by

Z(τt + s) = zt +
s

τt+1 − τt
(zt+1 − zt)(0 ≤ s < γt+1, t ∈ N,τ0 = 0,τt =

t

∑
i=1

γi) (2.15)

is an asymptotic pseudotrajectory of the flow induced by

ż(t) = F(z(t)) (2.16)

with probability 1.

For clarity, we define zt by the state derived from each iteration in (2.12), z(t) by the continuous-
time trajectory induced by (2.16), and Z(t) by the linear interpolation of zt .

This subsequent results establish the almost sure convergence of ASG methods towards the
critical point. To the best of our knowledge, the following theorems provide the first last-iterate
almost sure convergence analysis of xt for Nadam, RMSprop, Adadelta, and AMSgrad in non-
convex settings.

Theorem 1. Suppose that Assumptions 1, 3, and 5 hold. Consider Nadam method described in
Algorithm 3 with almost surely bounded {xt} and {gt}.

1. The sequences of {mt} and {vt} are bounded almost surely.

2. Nadam converges almost surely:

lim
t→∞

 vt
mt
xt

=

S(xc)
0
xc

 (2.17)

for some xc ∈ E P = {x ∈ Rn|∇ f (x) = 0}.

22

Proof. 1. By our assumption, we know that there exist X ,G1 > 0 such that

∥xt∥ ≤ X and ∥gt∥ ≤ G1 almost surely (2.18)

hold for t ≥ 1. By the definition of g⊙2
t , there exists a constant G2 > 0 such that

∥g⊙2
t ∥ ≤ G2 almost surely (2.19)

hold for t ≥ 1. As a result, we can prove by induction that the following hold for all t:

∥mt∥ ≤ G1 almost surely (2.20)

and
∥vt∥ ≤ G2 almost surely. (2.21)

2. For every t ≥ 1, the sequences {mt},{vt} and {xt} generated by Nadam method update
according to

mt
vt
xt

 =

mt−1
vt−1
xt−1

+ γt−1


1−αt

γt
(gt −mt−1)

1−βt
γt

(g⊙2
t − vt−1)(

αt+1mt

1−Π
t+1
i=1αi

+ (1−αt)gt
1−Πt

i=1αi

)(
vt

1−Πt
i=1βi

+ ε1
)−0.5


=

mt−1
vt−1
xt−1

+ γt−1Ft .

(2.22)

To gain a deeper understanding of the Nadam method, it is convenient to analyze the fol-
lowing limit ODE first. As t goes to infinity, the terms 1−Πt

i=1βi and 1−Πt
i=1αi converge to

1 according to [4, Lemma 9.1]. If we further ignore the stochasticity on gradient, the Nadam
method can be considered to be a perturbed version of a time-varying step-size Cauchy-Euler
approximation scheme for numerically solving the initial value problemṁ

v̇
ẋ

=

a(∇ f (x)−m)
b(S(x)− v)
− m√

v+ε1

= F(m,v,x),

m(0)
v(0)
x(0)

=

m0
v0
x0

 ∈ Rn ×Rn
+×Rn. (2.23)

23

The solutions to m and v can be represented as

m(t) = exp(−at)
∫ t

0
exp(at)∇ f (x(t))dt +m0exp(−at), (2.24)

and
v(t) = exp(−bt)

∫ t

0
exp(bt)S(x(t))dt + v0exp(−bt). (2.25)

As each element of S(x) and v0 is positive, every entry of v(t) is positive for t ∈R+, thus ensuring
that 1√

v(t)+ε1
is well-defined for t ∈ R+.

We begin by proving the existence and uniqueness of the solution to (2.23) for t ∈ [0,∞). To
do so, we consider the Lyapunov function V : Rn ×Rn

+×Rn → R derived from [4], defined as
follows:

V (m,v,x) = f (x)+
1
2

∥m∥2
2

a
√

v+ ε1
. (2.26)

Taking derivative on V yields

V̇ =−∇ f (x)T m√
v+ε1 +

amT (∇ f (x)−m)

a
√

v+ε1 − 1
4

∥m∥2
2

a(v+ε1)1.5 b(S(x)− v)

=− ∥m∥2
2√

v+ε1 +
b

4a
∥m∥2

2√
v+ε1 −

b
4a

∥m∥2
2

(v+ε1)1.5 ε1− b
4a

∥m∥2
2

(v+ε1)1.5 S(x)

=− b
4a

∥m∥2
2

(v+ε1)1.5 S(x)− (1− b
4a(1− ε1)) ∥m∥2

2√
v+ε1

(a)
≤ − b

4a
∥m∥2

2
(v+ε1)1.5 S(x),

(2.27)

where (a) is due to Assumption 1.

Existence of the solution to (2.23). According to (2.27), the trajectory of x(t) for t ≥ 0 resides
within the compact set

Ωx = {x| f (x)≤ f (x0)+
1
2

∥m0∥2
2

a
√

v0 + ε1
}. (2.28)

Within this set, both S(x) and ∇ f (x) are continuous and bounded, therefore, the solutions of m
and v given by (2.24) and (2.25) are also bounded.

By the maximal interval of existence theorem [50], the initial value problem admits at least
one solution on t ∈ [0,∞).

Uniqueness of the solution to (2.23). As both S(x) and ∇ f (x) are locally Lipschitz, F inherits
local Lipschitz continuity. Let (v(t∗)T ,m(t∗)T ,x(t∗)T)T be an arbitrary point on the solution.
According to Picard’s Existence and Uniqueness Theorem, there exists a unique solution on the

24

interval [t∗− c, t∗+ c] for some constant c > 0. Since this solution exists for all t ≥ 0 and the
choice of t∗ ≥ 0 is arbitrary, the solution to the system (2.23) is unique.

Therefore, there exists a unique global solution to (2.23) starting from any point in Rn
+×R2n,

which admits a semiflow as mentioned at the beginning of this section.

As x∗ is a critical point of f , the set E P = {x ∈ Rn|∇ f (x) = 0} is nonempty. For all xc ∈
E P , we have that

F(0,S(xc),xc) = (0T ,0T ,0T)T . (2.29)

By Assumption 3, V is bounded below by f ∗.

According to Barbashin-Krasovski-LaSalle Theorem, the trajectory will tend to the largest
invariant set in {m = 0}. Since m remains zero, we have ṁ = a(∇ f (x)−m) = a∇ f (x) = 0 and
ẋ =− m√

v+ε1 = 0. It can be deduced that x stays at some vector xc ∈ E P . That is to say, we have
that

lim
t→∞

x = xc, and lim
t→∞

m = 0. (2.30)

Considering the solution to v in (2.25) and the fact that x approaches xc, we conclude that

lim
t→∞

v = S(xc). (2.31)

In the next step, we will check the fulfillment of conditions in Proposition 1.

Denote by
Ut = Ft −E(Ft |Ft−1) (2.32)

and
bt = E(Ft |Ft−1)−F(mt−1,vt−1,xt−1). (2.33)

Then, the condition E(Ut |Ft−1) = 0 follows directly.

Due to the almost sure boundedness of {xt} and the continuity of ∇ f and S, there exists some
N > 0 such that

∥∇ f (xt)∥ ≤ N and ∥S(xt)∥ ≤ N almost surely (2.34)

for all t ≥ 1.

25

Consider the the first n components in (2.33):

∥E(1−αt
γt

(gt(xt−1)−mt−1)|Ft−1)−a(∇ f (xt−1)−mt−1)∥
= ∥1−αt

γt
(∇ f (xt−1)−mt−1)−a(∇ f (xt−1)−mt−1)∥

≤
∣∣1−αt

γt
−a
∣∣∥mt−1∥+

∣∣1−αt
γt

−a
∣∣∥∇ f (xt−1)∥

≤
∣∣1−αt

γt
−a
∣∣G1 +

∣∣1−αt
γt

−a
∣∣N

→ 0 almost surely,

(2.35)

By a similar argument, we can derive that the second n component converge to zero almost surely
as well, i.e.,

lim
t→∞

E
(

1−βt

γt
(g⊙2

t (xt−1)− vt−1)
∣∣∣Ft−1

)
−b(S(xt−1)− vt−1) = 0 almost surely. (2.36)

As for the last n components in (2.33), we will start with discussing the one-dimensional

26

case, where mt , vt , and xt are scalar. By taking the norm of the difference, we obtain∥∥∥∥E((αt+1mt

1−Π
t+1
i=1αi

+ (1−αt)gt
1−Πt

i=1αi

)(
vt

1−Πt
i=1βi

+ ε

)−0.5 ∣∣∣Ft−1

)
− mt−1√

vt−1+ε

∥∥∥∥
≤

∥∥∥∥ αt+1
1−Π

t+1
i=1αi

E
(

mt

(
vt

1−Πt
i=1βi

+ ε

)−0.5 ∣∣∣Ft−1

)
− mt−1√

vt−1+ε

∥∥∥∥
+(1−αt)

1
(1−Πt

i=1αi)

∥∥∥∥E(gt

(
vt

1−Πt
i=1βi

+ ε

)−0.5 ∣∣∣Ft−1

)∥∥∥∥
≤

∥∥∥∥ αt+1
1−Π

t+1
i=1αi

E
(

mt

(
vt

1−Πt
i=1βi

+ ε

)−0.5 ∣∣∣Ft−1

)
−E

(
mt

(
vt

1−Πt
i=1βi

+ ε

)−0.5 ∣∣∣Ft−1

)∥∥∥∥
+

∥∥∥∥E(mt

(
vt

1−Πt
i=1βi

+ ε

)−0.5 ∣∣∣Ft−1

)
− mt−1√

vt−1+ε

∥∥∥∥+ 1−αt
(1−Πt

i=1αi)
G1√

ε

≤
∣∣∣ αt+1

1−Π
t+1
i=1αi

−1
∣∣∣ G1√

ε
+

∥∥∥∥E(mt

(
vt

1−Πt
i=1βi

+ ε

)−0.5 ∣∣∣Ft−1

)
− mt−1√

vt−1+ε

∥∥∥∥+ 1−αt
(1−Πt

i=1αi)
G1√

ε

=
∣∣∣ αt+1

1−Π
t+1
i=1αi

−1
∣∣∣ G1√

ε
+ 1−αt

(1−Πt
i=1αi)

G1√
ε

+

∥∥∥∥E((αtmt−1 +(1−αt)gt))
(

βtvt−1+(1−βt)g⊙2
t

1−Πt
i=1βi

+ ε

)−0.5 ∣∣∣Ft−1

)
− mt−1√

vt−1+ε

∥∥∥∥
≤

∣∣∣ αt+1
1−Π

t+1
i=1αi

−1
∣∣∣ G1√

ε
+ 1−αt

(1−Πt
i=1αi)

G1√
ε

+

∥∥∥∥E(mt−1

(
βtvt−1+(1−βt)g⊙2

t
1−Πt

i=1βi
+ ε

)−0.5 ∣∣∣Ft−1

)
− mt−1√

vt−1+ε

∥∥∥∥+(1−αt)
G1+G1√

ε

(b)
≤

∣∣∣ αt+1
1−Π

t+1
i=1αi

−1
∣∣∣ G1√

ε
+ 1−αt

(1−Πt
i=1αi)

G1√
ε
+(1−αt)

G1+G1√
ε

+
∥∥∥E(mt−1 (vt−1 + ε)−0.5

∣∣∣Ft−1

)
− mt−1√

vt−1+ε

∥∥∥
+

∥∥∥∥∥∥∥E
1

2mt−1

βt vt−1+(1−βt)g
⊙2
t

1−Πt
i=1βi

−vt−1(
ctvt−1+(1−ct)

βt vt−1+(1−βt)g
⊙2
t

1−Πt
i=1βi

+ε

)1.5

∣∣∣∣∣Ft−1


∥∥∥∥∥∥∥

≤
∣∣∣ αt+1

1−Π
t+1
i=1αi

−1
∣∣∣ G1√

ε
+ 1−αt

(1−Πt
i=1αi)

G1√
ε
+(1−αt)

G1+G1√
ε

+1
2

G1
ε1.5

(∣∣∣ βt
1−Πt

i=1βi
−1
∣∣∣G2 +

1−βt
1−Πt

i=1βi
G2

)
(c)→ 0 almost surely,

(2.37)
where the inequality (b) follows the mean value theorem and ct ∈ (0,1), and (c) is due to
limt→∞ 1−Πt

i=1βi = limt→∞ 1−Πt
i=1αi = 1 from [4, Lemma 9.1] and Assumption 1.

When n > 1, the discussion for each component is the same as the scalar case, and we omit

27

the detailed proof here. Therefore, we can conclude that

bt → 0 as t → ∞ almost surely. (2.38)

On the other hand, all terms in Ut are bounded almost surely, thus, condition (2.13) should
hold for all q ≥ 2. According to Proposition 1, the linear interpolation of the stochastic process
{(vT

t ,m
T
t ,x

T
t)

T}t , is almost surely an APT of the semiflow Φ induced by the system (2.23).

Combining the convergence behaviors in (2.30), (2.31) and the definition of APT, we know
that

lim
t→∞

mt
vt
xt

=

 0
S(xc)

xc

 (2.39)

holds for some xc ∈ E P .

Corollary 1. Adam method described in Algorithm 1 has the same conclusions as Theorem 1

Proof. The proof is similar to that for 1.

Corollary 2. AMSgrad method described in Algorithm 5 has the same conclusions as Theorem
1

Proof. 1. The discussion on the boundednesses of {mt} and {vt} is similar to that for Theorem
1.

2. We again utilize X ,G1,G2 and N as almost sure upper bounds mentioned in (2.18), (2.19),
(2.20), (2.21) and (2.34). Since {v̂t} is non-decreasing and almost surely bounded, it converges
to Vu = sup{v̂t} almost surely.

We derive a corresponding limiting ODE for the AMSgrad method:ṁ
v̇
ẋ

=

a(∇ f (x)−m)
b(S(x)− v)
− m√

Vu+ε1

= F(m,v,x),

m(0)
v(0)
x(0)

=

m0
v0
x0

 ∈ Rn ×Rn
+×Rn. (2.40)

We consider the Lyapunov function

V = f (x)+
1
2

∥m∥2

a
√

Vu + ε1
. (2.41)

28

Taking the derivative of V , we obtain

V̇ =− ∥m∥2
√

Vu + ε1
(2.42)

Similar to the arguments in Section 1, we can use Barbashin-Krasovski-LaSalle Theorem to
derive

lim
t→∞

m = 0, lim
t→∞

v = S(xc), and lim
t→∞

x = xc, (2.43)

for some xc ∈ E P = {x ∈ Rn|∇ f (x) = 0}.

Define Ft for the AMSgrad method in a similar way to (2.22). Similar to the proof of Section
1, we also need to check

E(Ft |Ft−1)−F(mt−1,vt−1,xt−1)→ 0 as t → ∞ almost surely. (2.44)

We begin with considering the scalar case (n = 1). The last n components of (2.44) decays to
zero: ∥∥∥E(mt

(1−Πt
i=1αi)

√
v̂t+ε

∣∣∣Ft−1

)
− mt−1√

Vu+ε

∥∥∥
=

∥∥∥E(βtmt−1+(1−βt)gt
(1−Πt

i=1αi)
√

v̂t+ε

∣∣∣Ft−1

)
− mt−1√

Vu+ε

∥∥∥
=

∥∥∥E((mt−1
(1−Πt

i=1αi)
√

v̂t+ε
− mt−1√

v̂t+ε

)
+ mt−1√

v̂t+ε
+ (1−βt)(gt−mt−1)

(1−Πt
i=1αi)

√
v̂t+ε

∣∣∣Ft−1

)
− mt−1√

Vu+ε

∥∥∥
≤

∥∥∥E(mt−1√
v̂t+ε

− mt−1√
Vu+ε

∣∣∣Ft−1

)∥∥∥+ ∣∣∣ 1
1−Πt

i=1αi
−1
∣∣∣ M√

ε
+
∣∣∣ 1−βt

1−Πt
i=1αi

∣∣∣G+M√
ε

(a)
≤

∥∥∥E((Vu − v̂t)
mt−1

2(v̄t+ε)3/2

∣∣∣Ft−1

)∥∥∥+ ∣∣∣ 1
1−Πt

i=1αi
−1
∣∣∣ M√

ε
+
∣∣∣ 1−βt

1−Πt
i=1αi

∣∣∣G+M√
ε

≤ (Vu − v̂t)
M

2ε3/2 +
∣∣∣ 1

1−Πt
i=1αi

−1
∣∣∣ M√

ε
+
∣∣∣ 1−βt

1−Πt
i=1αi

∣∣∣G+M√
ε
,

(2.45)

where (a) holds for some v̄t ∈ [v̂t ,Vu] due to the mean value theorem. When n > 1, the discus-
sion for each component is the same as the scalar case, and we omit the detailed proof here.
Combining this result and (2.35), (2.36), we can conclude (2.44)

The rest of the proof proceeds in the same way as that of 1.

Since the RMSprop and Adadelta methods do not utilize the first moment estimate mt , the pa-
rameter αt is not involved. Hence, we will adopt Assumption 2 instead of Assumption 1. In line
with the preceding statements, the following theorems demonstrate the almost sure convergence
to a critical point of the non-convex objective function.

29

Theorem 2. Suppose that Assumptions 2, 3, and 5 hold. Consider RMSprop method described
in Algorithm 2 with almost surely bounded {xt} and {gt}.

1. The sequence of {vt} is bounded almost surely.

2. RMSprop converges almost surely:

lim
t→∞

(
vt
xt

)
=

(
S(xc)

xc

)
(2.46)

for some xc ∈ E P = {x ∈ Rn|∇ f (x) = 0}.

Proof. 1. The discussion on the boundedness of {vt} is similar to that for 1.

2. Similar to the proof for 1, we derive a corresponding limiting ODE for the RMSprop
method: (

v̇
ẋ

)
=

(
b(S(x)− v)
− ∇ f (x)√

v+ε1

)
,

(
v(0)
x(0)

)
=

(
v0
x0

)
∈ R+×R. (2.47)

Choose the Lyapunov function to be V = f (x). Taking its derivative, we obtain

dF(x)
dt

=−∥∇ f (x)∥2
√

v+ ε1
(2.48)

According to the Invariance principle stated in Barbashin-Krasovski-LaSalle Theorem, the vir-
tual state will converges to the maximal positive invariant set in E P = {x ∈ Rn|∇ f (x) = 0}.
Within this set, x is a constant vector xc ∈ E P as ẋ = − ∇ f (x)√

v+ε1 = 0, resulting in the asymptotic
behavior

lim
t→∞

x = xc (2.49)

From the solution (2.25), we know that

lim
t→∞

v = S(xc). (2.50)

The rest of the proof proceeds in the same way as Theorem 1.

Theorem 3. Suppose that Assumptions 2, 3, and 5 hold. Consider Adadelta method described
in Algorithm 4 with almost surely bounded {ut}, {xt} and {gt}.

1. The sequence of {vt} is bounded almost surely.

30

2. Adadelta converges almost surely:

lim
t→∞

ut
vt
xt

=

 S(xc)
(S(xc)+ε1)2

S(xc)
xc

 (2.51)

for some xc ∈ E P = {x ∈ Rn|∇ f (x) = 0}.

Proof. 1. The discussion on the boundedness of {vt} is similar to that for Theorem 1.

2. The proof is similar to that for Theorem 1. We first derive a corresponding limiting ODE
for the Adadelta method:v̇

u̇
ẋ

=

 b(S(x)− v)
b(u+ε1

v+ε1 S(x)−u)

−
√

u+ε1√
v+ε1 ∇ f (x)

 ,

v(0)
u(0)
x(0)

=

v0
u0
x0

 ∈ R2n
+ ×R. (2.52)

Positivity of v and u. In the Adadelta method, the positivity of vt and ut (t ≥ 1) can be proven
by induction, ensuring that

√
ut+ε1√
vt+ε1 is always well-defined. We have already demonstrated the

positivity of v in the discussion on (2.25). Define p1(t) = −bS(x(t))
v(t)+ε1 + b and p2(t) =

εbS(x(t))
v(t)+ε1 .

Observing that the second equation in (2.52) can be rewritten as

u̇+ p1(t)u = p2(t), (2.53)

we know that the solution to u is given by

u(t) = u0exp(−
∫ t

0
p1(t)dt)+ exp(−

∫ t

0
p1(t)dt)

∫ t

0
exp(

∫ t

0
p1(t)dt)p2(t)dt, (t > 0). (2.54)

As p2(t) is positive elementment-wise, u(t) is also positive elementment-wise.

We consider the Lyapunov function V1 = f (x), which is lower bounded by f ∗. Taking the
derivative of V1, we obtain

V̇1 =−
√

u+ ε1√
v+ ε1

∥∇ f (x)∥2. (2.55)

Similar to the argument in Section 2.3, we know that

lim
t→∞

x = xc and lim
t→∞

v = S(xc) (2.56)

31

for some xc ∈ E P = {x ∈ Rn|∇ f (x) = 0}. The continuity of S implies that p1 approaches
p1∞ = bε1

S(xc)+ε1 and p2 approaches p2∞ = εbS(xc)
S(xc)+ε1 as t → ∞, therefore, eventually p1(t)≥ 1

2 p1∞.

Let V2 =
1
2∥u− p2∞

p1∞
∥2. Taking its time derivative, we have

V̇2 = ∑i(u− p2∞

p1∞
)i(−p1(t)u+ p2(t))i

=−∑i(p1(t))i(u− p2∞

p1∞
)i(u− p2

p1
)i

≤ ∑i−(p1(t))i(u− p2∞

p1∞
)2

i +
∣∣(p1(t))i(u− p2∞

p1∞
)i(

p2∞

p1∞
− p2

p1
)i
∣∣

≤ ∑i−(p1(t))i(u− p2∞

p1∞
)2

i +
1
2(p1(t))i((u− p2∞

p1∞
)2

i +(p2∞

p1∞
− p2

p1
)2

i)

≤ 1
2 ∑i−(p1(t))i(u− p2∞

p1∞
)2

i +(p1(t))i(
p2∞

p1∞
− p2

p1
)2

i

≤−mini((p1∞)i)V2 +
b
2 maxi((p1∞)i)

∥∥∥ p2∞

p1∞
− p2

p1

∥∥∥2

(2.57)

for sufficiently large t. As
∥∥∥ p2∞

p1∞
− p2

p1

∥∥∥2
decays to zero, V also converges to zero, that is to say,

lim
t→∞

u =
p2∞

p1∞

= S(xc). (2.58)

Define Ft for the Adadelta method in a similar way to (2.22). Similar to the proof of Theorem
1, we need to check

E(Ft |Ft−1)−F(mt−1,vt−1,xt−1)→ 0 as t → ∞ almost surely. (2.59)

The arguments for the first n components are similar to (2.35). We again utilize X ,G1,G2 and
N as almost sure upper bounds mentioned in (2.18), (2.19), (2.21) and (2.34). Let U to be an
almost sure upper bound for {ut}. We begin with considering the scalar case (n = 1). The last
2n components of (2.59) decays to zero:∥∥∥b(ut−1+ε

vt−1+ε
S(xt−1)−ut−1)− 1−βt

γt
(E(ut−1+ε

vt+ε
g⊙2

t |Ft−1)−ut−1))
∥∥∥

≤
∥∥∥ b

vt−1+ε
S(xt−1)− 1−βt

γt

(
E
(

1
vt−1+ε

g⊙2
t |Ft−1

)
− γtE

(
g⊙2

t −vt−1
(1−c2γt)vt−1+c2γtg⊙2

t +ε)2 |Ft

))∥∥∥
∥ut−1 + ε∥

≤ ∥ut−1 + ε∥
∣∣∣b− 1−βt

γt

∣∣∣∥∥∥S(xt−1)
vt−1+ε

∥∥∥+(1−βt)∥ut−1 + ε∥
∥∥∥E(g⊙2

t −vt−1
(1−c2γt)vt−1+c2γtg⊙2

t +ε)2 |Ft

)∥∥∥
≤

∣∣∣b− 1−βt
γt

∣∣∣(U + ε)N
ε
+ |1−βt |(U + ε)2G2

ε2

→ 0 almost surely,
(2.60)

32

and ∥∥∥E(√
ut−1+ε√

vt+ε
gt |Ft−1

)
−

√
ut−1+ε√
vt−1+ε

∇ f (xt−1)
∥∥∥

≤
∥∥∥E(√

ut−1+ε√
vt−1+ε

gt − γt
(g⊙2

t −vt−1)
√

ut−1+ε

2(1−c1γt)vt−1+c1γtg⊙2
t +ε)3/2 gt |Ft−1

)
−

√
ut−1+ε√
vt−1+ε

∇ f (xt−1)
∥∥∥

≤
∥∥∥E(√

ut−1+ε√
vt−1+ε

gt |Ft−1

)
−

√
ut−1+ε√
vt−1+ε

∇ f (xt−1)
∥∥∥

+γt

∥∥∥E((g⊙2
t −vt−1)

√
ut−1+ε

2(1−c1γt)vt−1+c1γtg⊙2
t +ε)3/2 gt |Ft−1

)∥∥∥
= γt

∥∥∥E((g⊙2
t −vt−1)

√
ut−1+ε

2(1−c1γt)vt−1+c1γtg⊙2
t +ε)3/2 gt |Ft−1

)∥∥∥
= γt

2G2
√

U+ε

ε1.5

→ 0 almost surely,

(2.61)

When n > 1, the discussion for each component is the same as the scalar case, and we omit the
detailed proof here.

The rest of the proof proceeds in the same way as Theorem 1.

Remark 3. For the above-mentioned ASG methods, there are multiple choices of γt , such as
γt = O

(1
t

)
, γt = O

(
1

t3/4

)
, and γt = O

(
1

t3/5

)
, ensure the almost sure convergence of xt to the

critical point.

2.4 Almost Sure Convergence Rate Analysis

It is usually more challenging to find the convergence rates of the ASG methods. A nice and
short discussion for the almost sure convergence rates of stochastic gradient descent methods
was made in [45], which relies on the results from Appendix B, i.e. the classical supermartingale
convergence theorem from [67] and its corollaries derived by [45]. Motivated by [45], these two
results will also be utilized in analyzing the almost sure convergence rates for ASG methods.
These rates match the lower bounds for stochastic gradient-based algorithm, O

(1
t

)
for strongly

convex loss function, and O
(

1
t0.5

)
for nonconvex loss function [2], to an ε-factor.

Proposition 2 (Supermartingale Convergence Theorem). Let {Xt}, {Yt}, and {Zt} be three non-
negative sequences of random variables that are adapted to a filtration {Ft}. Let {γt} be a
sequence of nonnegative real numbers such that Π∞

t=1(1+ γt) < ∞. Suppose that the following
conditions hold:

1. E(Yt+1|Ft)≤ (1+ γt)Yt −Xt +Zt for all t > 1.

33

2. ∑
∞
t=1 Zt < ∞ holds almost surely.

Then, ∑
∞
t=1 Xt < ∞ almost surely and Yt converges almost surely.

Corollary 3. Suppose that {Yt} is a sequence of nonnegative random variables that are adapted
to a filtration {Ft}.

1. If {Yt} satisfies
E(Yt+1|Ft)≤ (1− c1γt)Yt + c2γ

2
t , (2.62)

for all t ≥ 1, where γt = O
(

1
t1−θ1

)
for some θ1 ∈ (0, 1

2), and c1,c2 are positive constants.
Then, for any θ2 ∈ (2θ1,1),

Yt = o
(

1
t1−θ2

)
almost surely. (2.63)

2. Let {γt} be a sequence of positive real numbers such that the following holds:

∞

∑
t=1

γtYt < ∞ almost surely, (2.64)

∑
i

γ
2
i < ∞ and

∞

∑
t=1

γt

∑
t−1
i=1 αi

= ∞ (2.65)

Then, we know that

min
1≤i≤t

Yi = o

(
1

∑
t−1
i=1 γi

)
almost surely. (2.66)

To the best of our knowledge, the following provides the first almost sure convergence rates
for adaptive methods on strong convexity, non-convexity and general convexity assumptions.

Theorem 4. Suppose that Assumptions 2, 3, and 5 hold with p = 2. Consider the RMSprop
method described in Algorithm 2 with almost surely bounded {xt} and {gt}. Then, the following
hold:

1. If Assumption 4 also hold and γt = O
(

1
t1−θ1

)
for θ1 ∈ (0, 1

2), then it follows that

f (xt)− f ∗ = o
(

1
t1−θ2

)
almost surely (2.67)

for any θ2 ∈ (2θ1,1).

34

2. If γt satisfies ∑
∞
t=1

γt

∑
t−1
i=1 αi

= ∞, then

min
1≤i≤t

∥∇ f (xi)∥2 = o
(

1
∑

t
i=1 γi

)
almost surely. (2.68)

For example, if it is chosen that γt = O
(

1

t
1
2+θ3

)
for θ3 ∈ (0, 1

2), then

min
1≤i≤t

∥∇ f (xi)∥2 = o
(

1

t
1
2−θ3

)
almost surely. (2.69)

Proof. Given the almost sure boundedness of the trajectory {xt}, there exists a compact set
C ⊂ Rn containing the entire trajectory {xt}. The locally Lipschitz condition of the gradient∇ f
implies that ∇ f is L-Lipschitz with some constant L > 0 on C. We again utilize X ,G1,G2 and N
as almost sure upper bounds mentioned in (2.18), (2.19), (2.21) and (2.34). Using the inequality
(2.6), we have

f (xt) ≤ f (xt−1)− γt⟨∇ f (xt−1),
gt√

vt+ε1⟩+
L
2 (

γt√
vt+ε1)

2∥gt∥2

= f (xt−1)− γt⟨∇ f (xt−1),
gt√

βtvt−1+(1−βt)g⊙2
t +ε1

⟩+O(γ2
t)

= f (xt−1)− γt ∑i ∇ f (xt−1)i
(gt)i√

βt(vt−1)i+(1−βt)(gt)2
i +ε

+O(γ2
t)

(a)
= f (xt−1)− γt ∑i ∇ f (xt−1)i

1√
(vt−1)i+ε

(gt)i

−γt(1−βt)
1
2 ∑i ∇ f (xt−1)i

(vt−1)i−(gt)
2
i

((1−ctiγt)(vt−1)i+ctiγt(gt)2
i +ε)3/2 (gt)i +O(γ2

t)

= f (xt−1)− γt ∑i ∇ f (xt−1)i
(gt)i√

(vt−1)i+ε
+O(γ2

t)

(2.70)

where (a) holds for some cti ∈ (0,1) according to the mean value theorem.

Taking the conditional expectation on (2.70), the following inequality holds with probability
one:

E(f (xt)− f ∗|Ft−1) ≤ f (xt−1)− f ∗− γt ∑i ∇ f (xt−1)i
∇ f (xt−1)i√
(vt−1)i+ε

+O(γ2
t)

≤ f (xt−1)− f ∗− γt√
G1+ε1∥∇ f (xt−1)∥2 +O(γ2

t).
(2.71)

1. When f is µ-strongly convex, (2) implies that xt eventually enter a neighborhood of xc = x∗

35

after finite-time iterations. We can use (2.71) and (2.10) to derive

E(f (xt)− f ∗|Ft−1)≤ (1− γt
2µ√

G1 + ε1
)(f (xt−1)− f ∗)+O(γ2

t) (2.72)

for sufficiently large t. By applying the first conclusion in Corollary 3, we have that f (xt)− f ∗ =
o(1

t1−θ2
) for any θ2 ∈ (2θ1,1).

2. Combining Proposition 2 and (2.71), we know that ∑
∞
t=1 γt∥∇ f (xt−1)∥2 is almost surely

convergent, and the conclusion follows from Corollary 3.

Corollary 4. Suppose that Assumptions 2, 3, and 5 hold with p = 2. Consider the Adadelta
method described in Algorithm 4 with almost surely bounded {ut}, {xt} and {gt}. Then, it has
the same conclusions as Theorem 4.

Proof. We again utilize X ,G1,G2 and N as almost sure upper bounds mentioned in (2.18), (2.19),
(2.21) and (2.34).

Following a similar approach as in (2.70) to (2.71), we apply the mean value theorem and
conditional expectation with respect to Ft−1 on the definition of L-smoothness (2.6) and it gives

E(f (xt)− f ∗|Ft−1) ≤ f (xt−1)− f ∗− γtE(⟨∇ f (xt−1),

√
ut−1+ε1√
vt+ε1 gt⟩+O(γ2

t)∥∇ f (xt−1)∥∥gt∥
+L

2 (
γt√
ε1
)2∥gt∥2|Ft−1)

≤ f (xt−1)− f ∗− γt
√

ε1√
G1+ε1∥∇ f (xt−1)∥2 +O(γ2

t).

(2.73)

The rest of the proof is similar to that of Theorem 4.

Theorem 5. Suppose that Assumptions 1, 3, and 5 hold with p = 2. Consider the Adam method
described in Algorithm 1 with almost surely bounded {xt} and {gt}. It is chosen that αt = 1−aγt ,
βt = 1−bγt and γt . Then, the following hold:

1. If Assumption 4 also hold,

∥mt∥= O(∥∇ f (xt)∥) almost surely, (2.74)

and γt = O
(

1
t1−θ1

)
for θ1 ∈ (0, 1

2), then it follows that

f (xt)− f ∗ = o
(

1
t1−θ2

)
(2.75)

36

for any θ2 ∈ (2θ1,1).

2. If γt satisfies
∞

∑
t=1

γt

∑
t−1
i=1 γi

= ∞ and ∑
t

γtexp

(
−

t

∑
i=1

γi

)
< ∞, (2.76)

then

min
1≤i≤t

∥mi∥2 = o
(

1
∑

t
i=1 γi

)
almost surely. (2.77)

If we further assume that

t

∑
i=1

γi+1∥∇ f (xi)∥2 = O

(
t

∑
i=1

γi+1∥mi∥2

)
almost surely, (2.78)

then we have that

min
1≤i≤t

∥∇ f (xi)∥2 = o
(

1
∑

t
i=1 γi

)
almost surely. (2.79)

For example, if we choose γt =
1

t
1
2+θ3

for θ3 ∈ (0, 1
2), then (2.77) and (2.79) become

min
1≤i≤t

∥mi∥2 = o
(

1

t
1
2−θ3

)
and min

1≤i≤t
∥∇ f (xi)∥2 = o

(
1

t
1
2−θ3

)
almost surely. (2.80)

Proof. We begin by discussing the scalar case (n = 1). By applying the mean value theorem, we
derive

γt√
v̂t+ε

∇ f (xt−1)m̂t
(a)
= 1

1−Πt
i=1(1−aγi)

γt√
v̂t+ε

∇ f (xt−1)mt

= (1+ Πt
i=1(1−aγi)

(1−ctΠ
t
i=1(1−aγi))2)

γt√
v̂t+ε

∇ f (xt−1)mt

= γt√
v̂t+ε

∇ f (xt−1)mt + γtO(Πt
i=1(1−aγi))

≤ γt√
v̂t+ε

∇ f (xt−1)mt + γtO(Πt
i=1exp(−aγi))

= γt√
v̂t+ε

∇ f (xt−1)mt + γtO(exp(−∑
t
i=1 γi)),

(2.81)

where (a) follows the mean value theorem and c2t ∈ (0,1). In a similar way, we could further
derive that

γt√
v̂t+ε

∇ f (xt−1)m̂t =
γt√
vt+ε

∇ f (xt−1)mt + γtO(exp(−∑
t
i=1 γi)). (2.82)

37

Given the almost sure boundedness of the trajectory {xt}, there exists a compact set C ⊂ Rn

containing the entire trajectory {xt}. The locally Lipschitz condition of the gradient ∇ f implies
that ∇ f is L-Lipschitz with some constant L> 0 on C. We again utilize X ,G1,G2 and N as almost
sure upper bounds mentioned in (2.18), (2.19), (2.20), (2.21) and (2.34). It is implied by (2.6)
that

f (xt)+
1

2a
√

vt+ε
|mt |2

≤ f (xt−1)− γt√
v̂t+ε

∇ f (xt−1)m̂t +
L
2 (

γt√
v̂t+ε

)2|m̂t |2 + 1
2a

√
vt+ε

|mt |2
(2.82)
≤ f (xt−1)− γt√

vt+ε
∇ f (xt−1)mt + γtO(exp(−∑

t
i=1 γi))

+L
2 (

γt√
v̂t+ε

)2|m̂t |2 + 1
2a

√
vt+ε

|mt |2

≤ f (xt−1)− (γt√
vt−1+ε

−bγ2
t

|g⊙2
t −vt−1|

2(1−c2tγt)vt−1+c1γtg⊙2
t +ε)3/2)∇ f (xt−1)mt

+γ2
t

L
2(v̂t+ε) |m̂t |2 +(1

2a
√

vt−1+ε
+bγt

vt−1−g⊙2
t

4a((1−c2tγt)vt−1+c1γtg⊙2
t +ε)3/2)|mt |2

≤ f (xt−1)− γt√
vt−1+ε

∇ f (xt−1)mt +
1

2a
√

vt−1+ε
|mt |2

+bγt
vt−1−g⊙2

t
4a((1−c2tγt)vt−1+c1γtg⊙2

t +ε)3/2 |mt |2 +O(γ2
t)+ γtO(exp(−∑

t
i=1 γi))

≤ f (xt−1)− γt√
vt−1+ε

∇ f (xt−1)((1−aγt)mt−1 +aγtgt)

+ 1
2a

√
vt−1+ε

((1−2aγt +a2γ2
t)|mt−1|2 +a2γ2

t |gt |2 +2aγt(1−aγt))⟨gt ,mt−1⟩)

+bγt
vt−1−g⊙2

t
4a((1−c2tγt)vt−1+c1γtg⊙2

t +ε)3/2 (|(1−aγt)mt−1 +aγtgt |2)
+O(γ2

t)+ γtO(exp(−∑
t
i=1 γi))

≤ f (xt−1)+
1

2a
√

vt−1+ε
|mt−1|2 − γt√

vt−1+ε
(∇ f (xt−1)−gt)mt−1

+γt

(
b(vt−1−g⊙2

t)

4a((1−c2tγt)vt−1+c1γtg⊙2
t +ε)3/2 − 1√

vt−1+ε

)
|mt−1|2

+O(γ2
t)+ γtO(exp(−∑

t
i=1 γi))

(2.83)

Taking conditional expectation on the above inequality, we obtain

E(f (xt)+
1

2a
√

vt+ε
|mt |2|Ft−1)

≤ f (xt−1)+
1

2a
√

vt−1+ε
|mt−1|2 ++O(γ2

t)+ γtO(exp(−∑
t
i=1 γi))

+γtE
(

b(vt−1−g⊙2
t)

4a((1−c2tγt)vt−1+c1γtg⊙2
t +ε)3/2 − 1√

vt−1+ε

∣∣∣∣Ft−1

)
|mt−1|2

(2.84)

From the result in Theorem 1, the term E
(

b(vt−1−g⊙2
t)

4a((1−c2tγt)vt−1+c1γtg⊙2
t +ε)3/2

∣∣∣∣Ft−1

)
eventually

38

converges to 0, and E
(
− 1√

vt−1+ε

∣∣∣∣Ft−1

)
eventually converges to − 1√

S(xc)+ε
< 0 almost surely.

That is to say, we have

E
(

b(vt−1−g⊙2
t)

4a((1−c2tγt)vt−1+c1γtg⊙2
t +ε)3/2 − 1√

vt−1+ε

∣∣∣∣Ft−1

)
≤− 3

4
√

vt−1+ε
≤− 1

4
√

S(xc)+ε
− 1

4
√

vt−1+ε

(2.85)
holds almost surely after a finite time of iterations.

1. By assumption (2.74), (2.84) implies that

E(f (xt)− f ∗+ 1
2a

√
vt+ε

|mt |2|Ft−1)

≤ f (xt−1)− f ∗+ 1
2a

√
vt−1+ε

|mt−1|2 +O(γ2
t)+ γtO(exp(−∑

t
i=1 γi))

+γt

(
− 1

4
√

S(x∗)+ε
− 1

4
√

vt−1+ε

)
|mt−1|2

≤ f (xt−1)− f ∗+(1−O(γ)) 1
2a

√
vt−1+ε

|mt−1|2 +O(γ2
t)+ γtO(exp(−∑

t
i=1 γi))

−γt
1

4
√

S(x∗)+ε
|∇ f (xt−1)|2

≤ f (xt−1)+(1−O(γ)) 1
2a

√
vt−1+ε

|mt−1|2 +O(γ2
t)+ γtO(exp(−∑

t
i=1 γi))

−γt
1

4
√

S(x∗)+ε

2
µ
(f (xt−1)− f ∗)

≤ (1−O(γ))
(

f (xt−1)+
1

2a
√

vt−1+ε
|mt−1|2

)
+O(γ2

t)+ γtO(exp(−∑
t
i=1 γi)).

(2.86)

The conclusion follows from Corollary 3.

2. We also obtain

E(f (xt)+
1

2a
√

vt+ε
|mt |2|Ft−1) ≤ f (xt−1)+

1
2a

√
vt−1+ε

|mt−1|2 − γt
1

4
√

S(xc)+ε
|mt−1|2

+O(γ2
t)+ γtO(exp(−∑

t
i=1 γi))

(2.87)

from (2.84) and (2.85).

The approach for the higher-dimensional case proceeds in a similar manner as the scalar case:

E(f (xt)+∑i
1

2a
√

(vt)i+ε
|(mt)i|2|Ft−1)

≤ f (xt−1)+∑i
1

2a
√

(vt−1)i+ε
|(mt−1)i|2 − γt ∑i

1
2
√

(S(xc))i+ε
|(mt−1)i|2

+O(γ2
t)+ γtO(exp(−∑

t
i=1 γi))

≤ f (xt−1)+∑i
1

2a
√

(vt−1)i+ε
|(mt−1)i|2 − γt

1
2
√

(maxi S(xc))i+ε
∥(mt−1)∥2

+O(γ2
t)+ γtO(exp(−∑

t
i=1 γi)).

(2.88)

39

From Proposition 2 and Corollary 3, we have that

∞

∑
i=1

γi+1∥mi∥2 < ∞ almost surely, (2.89)

and the convergence rate for the estimated gradient is given by

min
1≤i≤t

∥mi∥2 = o
(

1
∑

t
i=1 γi

)
almost surely. (2.90)

If we further assume that

t

∑
i=1

γi+1∥∇ f (xi)∥2 = O(
t

∑
i=1

γi+1∥mi∥2) almost surely, (2.91)

we can conclude

min
1≤i≤t

∥∇ f (xi)∥2 = o
(

1
∑

t
i=1 γi

)
almost surely (2.92)

from Corollary 3.

Corollary 5. Nadam method described in Algorithm 3 has the same conclusions as Theorem 5

Proof. The proof on Nadam method is similar to that of Theorem 5. We omitted the details
here.

Corollary 6. AMSgrad method described in Algorithm 5 has the same conclusions as Theorem
5

Proof. We again utilize X ,G1,G2 and N as almost sure upper bounds mentioned in (2.18), (2.19),
(2.20), (2.21) and (2.34). Considering the iteration of v̂t , we have

0 < v̂t−1 ≤ v̂t = max(vt−1 +bγt(g⊙2
t − vt−1), v̂t−1)≤ v̂t−1 +bγt(G2 +G1) a.s., (2.93)

and

1√
(v̂t−1)i + ε

≥ 1√
(v̂t)i + ε

≥ 1√
(v̂t−1)i +bγt(G2 +G1)+ ε

(a)
=

1√
(v̂t−1)i + ε

+O(γt) a.s.

(2.94)
where (a) follows from the mean value theorem.

40

We start with discussing the scalar case (n = 1). Applying (2.6) on f (xt), we have

f (xt)+
1

2a
√

v̂t+ε
|mt |2

≤ f (xt−1)− γt
1√

v̂t+ε
∇ f (xt−1)m̂t + γ2

t
L2

v̂t+ε
|m̂t |2 + 1

2a
√

v̂t+ε
|mt |2

(2.81)
≤ f (xt−1)− γt

1√
v̂t+ε

∇ f (xt−1)mt +
1

2a
√

v̂t+ε
|mt |2 +O(γtexp(−∑

t
i=1 γi))+O(γ2

t)

≤ f (xt−1)− γt
1√

v̂t+ε
∇ f (xt−1)((1−aγt)mt−1 +aγtgt)

+ 1
2a

√
v̂t+ε

((1−aγt)mt−1 +aγtgt)
2 +O(γtexp(−∑

t
i=1 γi))+O(γ2

t)

≤ f (xt−1)− γt
1√

v̂t+ε
∇ f (xt−1)mt−1 +

1
2a

√
v̂t+ε

((1−2aγt)|mt−1|2 +2aγtmt−1gt)

+O(γtexp(−∑
t
i=1 γi))+O(γ2

t)
(2.94)
≤ f (xt−1)+

1
2a

√
v̂t+ε

|mt−1|2 − γt
1√

v̂t−1+ε
∇ f (xt−1)mt−1+

γt
1√

v̂t−1+ε
(−|mt−1|2 +mt−1gt)+O(γtexp(−∑

t
i=1 γi))+O(γ2

t)

(2.94)
≤ f (xt−1)+

1
2a
√

v̂t−1+ε
|mt−1|2 − γt

1√
v̂t−1+ε

(∇ f (xt−1)−gt)mt−1 − γt
1√

v̂t−1+ε
|mt−1|2

+O(γtexp(−∑
t
i=1 γi))+O(γ2

t).
(2.95)

Taking the conditional expectation on both sides, we obtain

E(f (xt)+
1

2a
√

v̂t+ε
|mt |2|Ft−1)≤ f (xt−1)+

1
2a
√

v̂t−1+ε
|mt−1|2 − γt

1√
v̂t−1+ε

|mt−1|2

+O(γtexp(−∑
t
i=1 γi))+O(γ2

t).
(2.96)

The rest of the proof is similar to that of Theorem 5.

Remark 4. (Comments on (2.74) and (2.78)) We proved that the linearly interpolated processes
of (mT

t ,v
T
t ,x

T
t)

T are asymptotic pseudo-trajectories for (mT ,vT ,xT)T in the context of the Adam,
Nadam, and AMSgrad optimization methods. It allows us to consider (mT ,vT ,xT)T as an ap-
proximation of the linearly interpolated processes of (mT

t ,v
T
t ,x

T
t)

T . Notably, when we treat v as
a constant, the limiting ODE (2.23), common to the Adam, Nadam, and AMSgrad methods, takes
the form

ṁ = a(∇ f (x)−m),

ẋ =− m√
v+ ε1

.
(2.97)

This system describes a damped dynamical system with position x, velocity ẋ, and acceleration
ẍ:

ẍ+aẋ+
a√

v+ ε1
∇ f (x) = 0. (2.98)

41

In the context of an underdamped system, the kinetic energy O(|ẋ|2) and the potential energy
f (x) steadily diminish to zero while seamlessly transitioning between one another. The damping
term facilitates the energy exchange, leading to an overall decrease in total energy. For functions
adhering to the condition f (x) = O(∥∇ f (x)∥2), the relationship

O
(∫

∞

t=0
∥∇ f (x)∥2dt

)
= O

(∫
∞

t=0
f (x)dt

)
=
∫

∞

t=0
∥m∥2dt (2.99)

holds. This result agrees with the assumptions stated in (2.78). The underdamped phenomenon
aligns with the illustrated figures in Section 2.1.2. In cases where the system exhibits over-
damping or critical damping, the relationship

|x|= O(|ẋ|) = O(|m|) (2.100)

holds. This result agrees with the assumption stated in (2.74), and further implies (2.78).

On the other hand, it is mentioned in the first paper on Adam method [39] that mt is the esti-
mate of the gradient; therefore, Assumptions 2.74 and 2.78 seem to be reasonable assumptions.

Remark 5. (General convex functions) Consider Adam, Nadam, RMSprop, Adadelta, and AMS-

grad methods. Suppose that the learning rate is chosen to be γt = O
(

1

t
2
3+ε

)
for any ε ∈

(
0, 1

3

)
,

and f is generally convex, then we have that

f (xt)− f ∗ = O
(

1

t
1
3−ε

)
(2.101)

and x → x∗. The proof can be conducted using the mean-value and boundedness techniques in
this section and [45, Lemma 4].

2.5 Summary

The first part of this chapter highlights a significant issue with these methods when parameters
are constant: they fail to converge towards the critical point. To tackle this, we propose a unified
modification for these methods, successfully achieving convergence towards the crucial point
in the given example. This modification addresses a fundamental limitation in current ASG
methodologies.

Building on the ideas presented in [4], this chapter provides a clear and rigorous proof of
almost sure convergence towards a critical point for smooth and non-convex objective functions,

42

while also correcting some errors found in [4]. This represents the first instance of establishing
almost sure convergence rates for these methods. For non-convex objective functions, our find-
ings, influenced by [45], demonstrate that a weighted average of squared gradient norms in these
methods converges at a rate of o(1/t

1
2−θ) for all θ ∈ (0, 1

2). Additionally, for strongly convex
functions, we show that the convergence rates for RMSprop and Adadelta can be improved to
o(1/t1−θ) for all θ ∈ (0, 1

2).

Overall, this chapter makes significant contributions to adaptive gradient-based optimization
methods, particularly in addressing convergence issues and establishing convergence rates for
both non-convex and strongly convex objective functions.

43

Chapter 3

On Almost Sure Convergence of Hogwild!
Algorithm

In the last chapter, we have seen the almost sure convergence of ASG method, for example Adam
and Adadelta. This chapter explores the guaranteed convergence rates of Hogwild! algorithm
for different types of loss functions. Hogwild! algorithm is a lock-free approach to parallelizing
SGD method, and its development can be found in Chapter 1. Considering the strongly convex
overall loss function and convex local loss functions, Nguyen et al. show that the virtual state
converges to the optimal solution with probability one [56]. Up to now, there are some unknown
problems: Is it possible to relex the conditions? What is the almost sure convergence rate?

To answer the posed questions, we will regard Hogwild! as a delayed SGD, and leverage the
findings from [45] to analyze the almost sure convergence. We first explore the Hogwild! algo-
rithm’s convergence rates for different loss functions. We prove its fast convergence on strongly
convex functions, matching the best rates of classic SGD methods with minimal error. For non-
convex functions, we show that both a weighted average of squared gradients and the algorithm’s
later iterations converge to zero. Additionally, we analyze the last-iterate convergence for general
convex smooth functions, providing insights into its efficiency across various settings.

3.1 The Hogwild! Algorithm

The Hogwild! algorithm 7 is a parallel SGD method introduced by Feng et al in the paper [63].
The iteration can be rewritten as

(xt+1)ut = (xt)ut −ηtdξt (∇ f (x̂t ;ξt))ut . (3.1)

44

Algorithm 7: Hogwild! algorithm
Data: x0 ∈ Rn

for t = 0,1,2, ... in parallel do
read current shared memory x̂t ;
generate a random variable ξt and evaluate the stochastic gradient ∇ f (x̂t ;ξt);
for Sample position ut uniformly from the set
Eξ = {positions where ∇ f (xt ;ξt)is nonzero} ⊂ {1,2, ...,n} do

xt+1 = xt −ηtdξt Sξt ,ut ∇ f (x̂t ;ξt)

end
end

Consider a fixed ξ . The scalar dξ represents the number of nonzero entries in ∇ f (·;ξ), and
Sξ ,u is a diagonal matrix equal to 1 on the u-th diagonal and zeros elsewhere. Therefore, dξ ≤ n
for all ξ . The matrix Sξ ,u filters which positions of ∇ f (·;ξ) is nonzero and contributes to the
iteration. For a given ξ , we take the following expectation over u

dξE[Sξ ,u|ξ] = Dξ , (3.2)

and obtain that Dξ is a diagonal 0/1 matrix whose 1-entries corresponds to the non-zero positions
in ∇ f (w;ξ). In other words, for a given ξ , the i-th entry on Dξ ’s diagonal is 1 if and only if the
i-th position of ∇ f (·;ξ) is not a zero function. More details are shown in [56].

3.2 Convergence with Probability One

For the analysis of the almost sure convergence of the Hogwild! methods, the following assump-
tions are made.

Assumption 6. [µ-strongly convex] The objective function f : Rn → R is µ-strongly convex for
some µ > 0, i.e.,

f (x)≥ f (x′)+ ⟨∇ f (x′),x− x′;⟩+ µ

2
∥x− x′∥2 (3.3)

for all x,x′ ∈ Rn.

Combining the fact that ∇ f (x∗) = 0 and [55, Theorem 2.1.10], we know that µ-strong con-
vexity implies

f (x)− f ∗ ≤ 1
2µ

∥∇ f (x)∥2. (3.4)

45

Assumption 7. [L-smoothness] ∇ f (w;ξ) is L-Lipschitz for every realization of ξ ,i.e., there ex-
ists L > 0 such that

∥∇ f (x;ξ)−∇ f (x′;ξ)∥ ≤ L∥x− x′∥ (3.5)

for all x,x′ ∈ Rn.

The L-smoothness of a function f can be implied by equation 7. According to [55], we have
that

f (x)≤ f (x′)+ ⟨∇ f (x′),x− x′⟩+ L
2
∥x− x′∥2 (3.6)

Noting that x̂t is usually a lag state read many clock cycles earlier, i.e., {x̂t = xkt}t is a sub-
sequence of {xt}t . We assume that there exists a constant delay satisfying the following assump-
tion.

Assumption 8. The shared memory is consistent with delay τ for all t, that is to say, kt − t is
always less than or equal to τ .

We assume that there exists a constant delay satisfying this assumption. That is to say, x̂t
might equals to some state in {xt−τ ,xt−τ+1, ...,xt−1}, and it includes some of the update during
the (t −τ)-th to (t −1)-th iterations. We define δt, j (t −τ ≤ j ≤ t −1) to be 1 if the j-th iteration
is included in x̂t , i.e., j ≤ kt and δt, j is 0 elsewise. That is to say,

x̂t = xt−τ −
t−1

∑
j=t−τ

δt, jη jdξ jSξ j,u j∇ f (x̂ j;ξ j) (3.7)

A nice and short discussion for the almost sure convergence rates of stochastic gradient de-
scent methods was made in [45], which relies on the results in Appendix B, i.e., the classical
supermartingale convergence theorem from [67] and its corollaries derived by [45]. Motivated
by [45], these two results will also be utilized in analyzing the almost sure convergence rates for
ASG methods. The rates in (3.13) and (3.24) match the lower bounds for stochastic gradient-
based algorithm, O

(1
t

)
for strongly convex loss function, and O

(
1

t0.5

)
for nonconvex loss func-

tion [2], to an ε-factor.

Lemma 1. [56, Lemma 6]

E[∥dξt Sξt ,ut ∇ f (x̂t ;ξt)∥2|Ft ,ξt]≤ D∥∇ f (x̂t ;ξt)∥2 (3.8)

E[dξt Sξt ,ut ∇ f (x̂t ;ξt)|Ft] = ∇F(x̂t) (3.9)

46

Theorem 6. Suppose that Assumptions 7 and 8 hold. Consider the Hogwild! method described
in Algorithm 7. Then, the following hold:

1. If M0 = maxξ ∥∇ f (w0;ξ)∥ is finite almost surely, and we choose ηt =
1

Ln(2+β)t for some
β > 0, then it follows that

min
1≤i≤t

∥∇ f (xi)∥2 = o
(

1
lnt

)
almost surely. (3.10)

2. If {∥∇ f (x̂t ,ξt)∥} is almost surely bounded and {ηt} is a decreasing sequence of positive
real numbers satisfying

∞

∑
t=1

ηt

∑
t−1
i=1 ηi

= ∞ and ∑
t

η
2
t < ∞, (3.11)

then it follows that

min
1≤i≤t

∥∇ f (xi)∥2 = o
(

1
∑

t
i=1 ηi

)
almost surely. (3.12)

In particularly, if we choose ηt = O
(

1
t1/2+ρ

)
for some 0 < ρ < 1

2 , then

min
1≤i≤t

∥∇ f (xi)∥2 = o
(

1
t1/2−ρ

)
almost surely. (3.13)

Proof. According to (3.6), we have that

f (xt+1)≤ f (xt)−ηt⟨∇ f (xt),dξt Sξt ,ut ∇ f (x̂t ;ξt)⟩+
Lη2

t
2

∥dξt Sξt ,ut ∇ f (x̂t ;ξt)∥2. (3.14)

Taking the conditional expectation on (3.14), the following inequality holds with probability

47

one:

E[f (xt+1)|Ft]

≤ f (xt)−ηt⟨∇ f (xt),E[dξt Sξt ,ut ∇ f (x̂t ;ξt)|Ft]⟩+ LD2η2
t

2 E[∥∇ f (x̂t ;ξt)∥2|Ft]

≤ f (xt)−ηt⟨∇ f (xt),∇ f (x̂t)⟩+ LD2η2
t

2 Eξt [E[∥dξt S
ξt
ut ∇ f (x̂t ;ξt)∥2|Ft ,ξt]]

≤ f (xt)−ηt∥∇ f (xt)∥2 +ηtL∥∇ f (xt)∥∥∑
t−1
j=t−τ

δt, jη jdξt Sξt ,ut ∇ f (x̂ j;ξ j)∥
+

LD2η2
t

2 Eξt [E[∥dξt S
ξt
ut ∇ f (x̂t ;ξt)∥2|Ft ,ξt]]

≤ f (xt)−ηt∥∇ f (xt)∥2 +ηtL∥∇ f (xt)∥∥∑
t−1
j=t−τ

(1−δ t, j)η jdξ jS
ξ j
u j ∇ f (x̂ j;ξ j)∥

+
LD2η2

t
2 nEξt [∥∇ f (x̂t ;ξt)∥2]

≤ f (xt)−ηt∥∇ f (xt)∥2 +ηtL∥∇ f (xt)∥∑
t−1
j=t−τ

η jdξ j∥(1−δt, j)Sξ j,u j∇ f (x̂ j;ξ j)∥
+

LD2η2
t

2 n(maxξ ,0≤ j≤t ∥∇ f (w j;ξ)∥)2

≤ f (xt)−ηt∥∇ f (xt)∥2 +ηtL∥∇ f (xt)∥n∑
t−1
j=t−τ

η j∥∇ f (x̂ j;ξ j)∥
+

LD2η2
t

2 n(maxξ ,0≤ j≤t ∥∇ f (w j;ξ)∥)2

≤ f (xt)−ηt∥∇ f (xt)∥2 +ηtL∥∇ f (xt)∥nτηt−τ(maxξ ,0≤ j≤t−1 ∥∇ f (w j;ξ)∥)
+

LD2η2
t

2 n(maxξ ,0≤ j≤t ∥∇ f (w j;ξ)∥)2

≤ f (xt)−ηt∥∇ f (xt)∥2 + 1
2η2

t L∥∇ f (xt)∥nτ(maxξ ,0≤ j≤t ∥∇ f (w j;ξ)∥)
+

LD2η2
t

2 n(maxξ ,0≤ j≤t ∥∇ f (w j;ξ)∥)2

≤ f (xt)− (ηt −O(η2
t))∥∇ f (xt)∥2 +O(η2

t (maxξ ,0≤ j≤t ∥∇ f (w j;ξ)∥)2)

(3.15)

for sufficiently large t.

1. It is concluded by [56, Lemma 13] that

max
ξ ,0≤ j≤t

∥∇ f (w j;ξ)∥ ≤ M0exp

(
Ln

t−1

∑
i=0

ηi

)
=: Mt almost surely. (3.16)

Based on this conclusion, (3.15) becomes that

E[f (xt+1)|Ft]≤ f (xt)− (ηt −O(η2
t))∥∇ f (xt)∥2 +O(η2

t M2
t). (3.17)

According to (3.16) and the proof of [56, Theorem 5], we have

ηtMt ≤
M0e

1
2+β

2+β
t−

1+β

2+β =
M0e

1
2+β

2+β
t−

1
2−ρ almost surely (3.18)

48

and
∞

∑
i=0

η
2
i M2

i =
∞

∑
i=0

O(i−1−2ρ)< ∞ almost surely. (3.19)

From the Proposition 2 and the Corollary 3, we have that

∑ηt∥∇ f (xt)∥2 < ∞ almost surely, (3.20)

and the convergence rate for the gradient is given by

min
1≤i≤t

∥∇ f (xi)∥2 = o
(

1
∑

t
i=1 ηi

)
= o

(
1

lnt

)
almost surely. (3.21)

2. Assume that ∥∇ f (x̂t ,ξt)∥ is almost surely bounded by M > 0. Then, (3.15) gives

E[f (xt+1)|Ft]≤ f (xt)− (ηt −O(η2
t))∥∇ f (xt)∥2 +O(η2

t). (3.22)

Considering the fact ∑
∞
t=0 O(η2

t)< ∞ and the Proposition 2, we have that

∑ηt∥∇ f (xt)∥2 < ∞ almost surely. (3.23)

The Corollary 3 gives the convergence rate for the gradient.

Remark 6. (Remarks on bounded {∇ f (xt ;ξt)}) A sufficient condition for bounded {∇ f (xt ;ξt)}
is that If we assume that the collection of ξt is a finite set and {xt} is bounded

Theorem 7. Suppose that Assumptions 6 to 8 hold. Consider the Hogwild! method described
in Algorithm 7. If we choose ηt = O

(
1

t1−θ1

)
for θ1 ∈ (0, 1

2) and {∥∇ f (x̂t ,ξt)∥} is almost surely
bounded, then it follows that

f (xt)− f ∗ = o
(

1
t1−θ2

)
(3.24)

for any θ2 ∈ (2θ1,1).

Proof. Assume that ∥∇ f (x̂t ,ξt)∥ is almost surely bounded by M > 0. Then, (3.15) becomes

E[f (xt+1)− f ∗|Ft] ≤ f (xt)− f ∗− (ηt −O(η2
t))∥∇ f (xt)∥2 +O(η2

t M2)
≤ (1−O(ηt))(f (xt)− f ∗)+O(η2

t)
(3.25)

By applying the first conclusion of 3, we have that f (xt)− f ∗ = o
(

1
t1−θ2

)
for any θ2 ∈ (2θ1,1).

49

Lemma 2. Let {bt}, {ηt} be two non-negative sequences and {at} a sequence of vectors in a
vector space X. Let p ≥ 1 and assume ∑

∞
t=1 ηtb

p
t < ∞ and ∑

∞
t=1 ηt = ∞. Assume also that there

exists L ≥ 0 such that

|bt+τ −bt | ≤ L

(
t+τ−1

∑
i=t

ηibi +∥
t+τ−1

∑
i=t

ηiai∥

)
, (3.26)

where at is such that ∥∑
∞
i=1 ηtat∥< ∞. Then, bt converges to 0.

The following proof proceed in a similar way as [45]

Theorem 8. (Last iteration) Suppose that Assumption 7 and 8 hold. Suppose that {∥∇ f (x̂t ,ξt)∥}
is almost surely bounded. Consider the Hogwild! method described in Algorithm 7. Then, the
following hold:

1. If we choose ηt =
1

Ln(2+β)t for some β > 0, then the last time iteration converges almost
surely.

2. If we choose ηt = O
(

1
t1/2+ρ

)
for some 0 < ρ < 1

2 , then the last time iteration converges
almost surely.

Proof. By (3.20), we know that ∑
∞
i=0 η2

i M2
i = ∑

∞
i=0 O(i−1−2ρ) < ∞ almost surely. For any t ′, it

can be implied by the L-smoothness of f that

|∥∇ f (xt+t ′)∥−∥∇ f (xt)∥|
≤ L∥xt+t ′ − xt∥
≤ L

∥∥∥∑
t+t ′−1
i=t ηidξiSξi,ui∇ f (x̂i,ξi)

∥∥∥
≤ L

∥∥∥∑
t+t ′−1
i=t ηidξiSξi,ui(∇ f (xi)+∇ f (x̂i,ξi)−∇ f (xi))

∥∥∥
≤ L∑

t+t ′−1
i=t ηi∥dξiSξi,ui∥∥∇ f (xi)∥+L

∥∥∥∑
t+t ′−1
i=t ηidξiSξi,ui(∇ f (x̂i,ξi)−∇ f (xi))

∥∥∥
≤ Ln∑

t+t ′−1
i=t ηi∥∇ f (xi)∥+L

∥∥∥∑
t+t ′−1
i=t ηidξiSξi,ui(∇ f (x̂i,ξi)−∇ f (xi))

∥∥∥
(3.27)

1. Let mt := ∑
t
i=1 ηidξiSξi,ui(∇ f (x̂i,ξi)−∇ f (xt)). We can verify that it is a martingale by

50

definition. Combining (3.16), (3.20) and the triangle inequality, we have that

∑
∞
t=1E[∥mt −mt−1∥2]

= ∑
∞
t=1 η2

i E[∥dξiSξi,ui(∇ f (x̂i,ξi)−∇ f (xt))∥2]

≤ ∑
∞
t=1 η2

i d2
ξi
E[∥Sξi,ui∥

2(∥∇ f (x̂i,ξi)∥+∥∇ f (xt)∥)2]

≤ 4n2
∑

∞
t=1 η2

i M2
t

< ∞ almost surely.

(3.28)

According to [86], the conclusion (3.28) implies that mt is L 2 bounded and hence converges
almost surely. We conclude that ∇ f (xt) converges to 0 almost surely in view of Lemma 2.

2. Assume that ∥∇ f (x̂t ,ξt)∥ is almost surely bounded by M > 0. Replacing Mt in part 1 by
the constant M, we know that (3.28) becomes

∞

∑
t=1

E[∥mt −mt−1∥2]≤ 4n2
∞

∑
t=1

η
2
i M2 ≤

∞

∑
t=1

O
(

1
t1+2ρ

)
. (3.29)

The rest of the proof proceeds in the same way as part 1.

3.3 Summary

Using the results from [45], we present a comprehensive analysis of the Hogwild! algorithm,
a non-locking, parallelized form of SGD, widely used in training large-scale machine learning
models. The focus of this study is on the algorithm’s almost sure convergence rates under various
conditions related to the loss function.

The chapter begins by establishing the almost sure convergence rate of the Hogwild! al-
gorithm when applied to strongly convex functions. It is demonstrated that this rate matches
the optimal convergence rate of the classic SGD method, achieving convergence to a negligibly
small error margin. Further, this chapter explores the behavior of the Hogwild! algorithm when
dealing with non-convex loss functions. In these cases, it is shown that both a weighted average
of the squared gradient and the outcomes of the algorithm’s final iterations converge to zero with
high certainty.

51

Chapter 4

Continuous-time Distributed Convex
Optimization via a Gradient-based
Algorithm

Chapter 1 delineates the significance of continuous-time optimization and the benefits inherent
in distributed optimization strategies. Different from chapters 2 and 3 concerning discrete-time
stochastic optimization, for example, Adam and Hogwild algorithms, the subsequent discussions
pivot towards exploring continuous-time distributed optimization algorithms.

This chapter proposes a new PI algorithm. As in the previous chapters, we are also inter-
ested in its convergence guarantee under different cost functions. Given the constraints of local
communication, the PI algorithm’s convergence trajectory is anticipated to lag behind that of the
centralized gradient descent (GD) method. By analyzing the derivative of the PI algorithm, we
demonstrate that its convergence rate aligns with that of centralized gradient descent for strongly
convex functions. Additionally, the chapter investigates its local linear convergence when applied
to strictly convex functions.

4.1 Description of the Algorithm

Denote by xi ∈ Rm an estimate of the optimal solution x∗ by agent i ∈ X , and vi ∈ Rm an
adapter for neutralizing the influence caused by the difference of ∇ fi(x∗) (i ∈ X). Let x =
((x1)T , . . . ,(xn)T)T ∈ Rnm, v = ((v1)T , . . . ,(vn)T)T ∈ Rnm, L be the Laplacian matrix of G, and
β be some positive constant.

52

The earliest PI algorithm published in [78] updates according to

ẋ =−L̄x− L̄v−∇(x),
v̇ = L̄x, (4.1)

of which the initial values x(0),v(0) ∈ Rnm are arbitrary, L̄ = L⊗ Im, and ∇(x) =

∇ f1(x1)
...

∇ fn(xn)

 ∈

Rnm.

Intuitively, the convergence rate of (4.1) should be restricted by the consensus coefficient
L̄ and the convergence rate of the centralized gradient descent (GD) method, where the rate of
consensus is determined by the second largest eigenvalue of L [57]. When the eigenvalue is
large enough, the latter limitation dominates, and the convergence rate of the new algorithm is
expected to match that of the continuous-time GD method. By changing L̄ into β L̄, we gain
more flexibility in tuning the eigenvalue and improving the rate of consensus. It is checked by
Definition 1 that βL is also a Laplacian matrix of the given graph G

The novel PI algorithm begins with arbitrary x(0),v(0) ∈ Rnm, and has the following update
rule:

v̇ = β L̄x,
ẋ =−β L̄v−β L̄x−∇(x). (4.2)

4.2 Assumptions

Here are some assumptions that will be utilized to study the behavior of the proposed algorithms.

Assumption 9. All fi ∈C2(Rm,R) (i∈ X) are µ-strongly convex and M-smooth for some µ,M >
0, i.e.

µIm ≤ ∇
2 fi(z)≤ MIm (4.3)

for all z ∈ Rm.

Assumption 10. The graph G = (V,E,W) is connected.

Assumption 11. All objective functions fi ∈ C2(Rm,R) (i ∈ X) are convex, and f (x) is strictly
convex on Rm.

Remark 7. Assumption 11 is weaker than Assumption 9. First, ∇2 f in Assumption 11 does not
necessarily have a positive lower bound, whereas ∇2 f ≥ µIm in Assumption 9 holds for some
µ > 0 on the entire space Rm. Moreover, ∇2 fi in Assumption 11 might vanish for some i, whereas
∇2 fi ≥ µIm in Assumption 9 is always true.

53

4.3 Main Convergence Results

Before discussing the system (4.2), we define l = v̇ = β L̄x and q = ẋ = −β L̄v− β L̄x−∇(x).
Differentiating q and l, we obtain a variation of the algorithm (4.2):(

q̇
l̇

)
=

(
−β L̄−∇2(x) −β L̄

β L̄ 0

)(
q
l

)
=−A(x)

(
q
l

)
, (4.4)

where ∇2(x) = diag(∇2 f1(x1), . . . ,∇
2 fn(xn)) and A(x) =

(
β L̄+∇2(x) β L̄

−β L̄ 0

)
are matrix-valued

functions.

4.3.1 Convergence Analysis under Strongly Convex Cost Function

We will analyze the auxiliary system (4.4), construct the relationship between (4.4) and (4.2),
and conclude that the system (4.2) achieves the convergence rate O(e−µt).

From the result of [57], we can obtain the following lemma.

Lemma 3. Let Assumption (10) hold. Then,

(1) all eigenvalues of L are nonnegative real numbers,

(2) the zero eigenvalue of L is simple, and Null(L) = Null(LT) = span(1),

(3) Null(L̄) = Null(L̄T) = {1⊗α : α ∈ Rm}, and

(4) L and L̄ share the same spectrum.

Proof. (1) Since L is symmetric, all of its eigenvalues are real. According to [57, Theorem 10],
they must be nonnegative real numbers.

(2) From [57, Theorem 9], the zero eigenvalue of L is simple, and thus the right and left null
spaces are one-dimensional. Observing that the column sums and row sums of L are all zeros,
we found that Null(L) = Null(LT) = span(1).

(3) Since L̄(1⊗α) = L1⊗α = 0 and L̄T (1⊗α) = L̄(1⊗α) = 0, we know that

S ⊂ Null(L̄) = Null(L̄T), (4.5)

where S = {1⊗α : α ∈ Rm}, and the equation holds as L̄ is symmetric. Noting that

dim(S) = m, (4.6)

54

we know that dim(Null(L̄)) = dim(Null(L̄T))≥ m.

By [40, Theorem 9], we have that

|L̄|= |L|m|Im|n = |L|m. (4.7)

By Lemma 3 (2), the algebraic multiplicity of L̄ associated with zero eigenvalue is m, which
implies that its geometric multiplicity is no greater than m, i.e.,

dim(Null(L̄)) = dim(Null(L̄T))≤ m. (4.8)

Therefore, we know that

dim(Null(L̄)) = dim(Null(L̄T)) = dim(S), (4.9)

and
Null(L̄) = Null(L̄T) = S. (4.10)

(4) Again, we have that

|L̄−λ Inm|= |L−λ In|m|Im|n = |L−λ In|m (4.11)

by [40, Theorem 9].

Under Assumptions 9 and 10, the following lemma shows that (4.2)) and (4.4)) have the same
convergence rate.

Lemma 4. Assume Assumptions 9 and 10 hold. If the origin of (4.4) is exponentially stable, i.e.,∥∥(qT , lT)T∥∥≤ c1
∥∥(qT (0), lT (0))T∥∥e−µt , (4.12)

for some c1 ≥ 1, all t ≥ 0, and all (qT (0), lT (0))T ∈ R2nm, then the virtual state x in algorithm
(4.2) converges to 1⊗ x∗ globally exponentially with rate no less than µ , i.e.,

∥x−1⊗ x∗∥ ≤ c2
∥∥(qT (0), lT (0))T∥∥e−µt (4.13)

for some c2 ≥ 0 and all t ≥ 0, where c2 relies on the initial value of (4.2), and x∗ is the optimal
solution of problem (1.6).

Proof. Denote Null⊥(L̄) by the orthogonal complement of Null(L̄). For any z ∈Rnm, there exist

55

unique vectors zp ∈ Null⊥(L̄) and zo ∈ Null(L̄) such that z = zp + zo as Null⊥(L̄)⊕Null(L̄) =
Rnm.

Denote β2 by λ2(L), which equals to λm+1(L̄) by Lemma 3. It is also the smallest positive
eigenvalue of L and L̄. Thus, (β2)

2 = λ2(L2) = λm+1(L̄2) as L and L̄ are symmetric and positive
semi-definite. By Courant–Fischer Theorem from [33], we know that

β 2
2 = max

{S⊂Rnm:dimS=mn−m}
min

{z:0 ̸=z∈S}

zT L̄2z
zT z

= max
{S⊂Rnm:dimS=mn−m}

min
{z:0 ̸=z∈S}

(zp + zo)
T L̄2(zp + zo)

(zp + zo)T (zp + zo)

≤ max
{S⊂Rnm:dimS=mn−m}

min
{z:0 ̸=z∈S}

(zp)
T L̄2zp

(zp)T zp

= min
{z:0̸=z∈Null⊥(L̄)}

zT L̄2z
zT z

= min
{z:0 ̸=z∈Null⊥(L̄)}

∥L̄z∥2

∥z∥2 .

(4.14)

We can conclude that x approaches the optimal solution exponentially:

∥x−1⊗ x∗∥ ≤ ∥δx∥+∥1⊗ (x̄− x∗)∥
(4.14)
≤ 1

ββ2
∥l∥+

√
n∑i(x̄− x∗)2

i

≤ 1
ββ2

∥l∥+
√

n∥x̄− x∗∥
≤ 1

ββ2
∥l∥+

√
n

µ
∥∇ f (x̄)∥

≤ 1
ββ2

∥l∥+
√

n
µ
(
∥∥∇ f (x̄)− 1

n ∑i ∇ fi(xi)
∥∥+∥∥1

n ∑i ∇ fi(xi)
∥∥)

(a)
≤ 1

ββ2
∥l∥+

√
nM
µ

∥δx∥+ 1
n

∥∥(1⊗ Im)
T q
∥∥

≤ 1
ββ2

∥l∥+
√

nM
µββ2

∥l∥+ 1√
n∥q∥

≤ c2
∥∥(qT (0), lT (0))T

∥∥e−µt (t ≥ 0), ,

(4.15)

where c2 = c1(
1

ββ2
+

√
nM

µββ2
+ 1√

n), x̄ = 1
n ∑i xi, δx = x−1⊗ x̄ ∈ Rmn is the disagreement vector of

x, and (a) is implied by ∥∥∑i ∇ fi(xi)
∥∥= ∥∥(1⊗ Im)

T ∇(x)
∥∥= ∥∥(1⊗ Im)

T q
∥∥. (4.16)

The following is devoted to proving our first main result.

56

Theorem 9. Suppose that Assumptions 9 and 10 hold, β satisfies

ββ2 >
µ +M

2
, (4.17)

and there exist Di > 0 such that

DiBi +(Bi)
T Di − I − (M−µ)2

4
(Di)

2 ≥ 0, 2 ≤ i ≤ n, (4.18)

where Bi =

(
ββi +

M−µ

2 ββi
−ββi −µ

)
and βi is the i-th largest eigenvalue of L. Let x∗ be the optimal

solution of the problem (1.6). Then, the virtual state x in algorithm (4.2) converges to 1⊗ x∗

globally exponentially with rate no less than µ , i.e.,

∥x−1⊗ x∗∥ ≤ c
∥∥(qT (0), lT (0))T∥∥e−µt , (4.19)

for all t ≥ 0, (xT (0),vT (0))T ∈ R2nm, where l = β L̄x, q = −β L̄v−β L̄x−∇(x), and c > 0 is a
constant.

Proof. Step 1. Before analyzing the convergence behavior of system (4.4), which is a noncon-
stant coefficient linear dynamical system, we will first consider the following linear dynamical
comparison system with constant coefficient:(

q̇
l̇

)
=

(
−β L̄− µ+M

2 Imn −β L̄
β L̄ 0

)(
q
l

)
=−B⊗ Im

(
q
l

)
, (4.20)

where B =

(
βL+ µ+M

2 In βL
−βL 0

)
.

We shall determine the locations of the eigenvalues of B⊗ Im by analyzing the determinants
of B−λ Im and B⊗ Im −λ In ⊗ Im. Let

0 =

∣∣∣∣βL+ µ+M
2 In −λ In βL
−βL −λ In

∣∣∣∣
(a)
=

∣∣λ 2In −λ (µ+M
2 In +βL)+β 2L2

∣∣
=

∣∣(SL)
T (λ 2In −λ (µ+M

2 In +βDL)+β 2(DL)
2)SL

∣∣
=

∣∣(SL)
T
∣∣ ∣∣λ 2 −λ (µ+M

2 +βDL)+β 2(DL)
2)
∣∣ ∣∣SL

∣∣
= Πn

i=1(λ
2 −λ (µ+M

2 +ββi)+β 2(βi)
2)

(4.21)

57

where βi (1 ≤ i ≤ n) is the i-th largest eigenvalues of L, and the eigen-decomposition L =
(SL)

T DLSL holds for some diagonal matrix DL and orthogonal matrix SL. The equation (a)
follows the property ∣∣∣∣A B

C D

∣∣∣∣= ∣∣AD−BC
∣∣ if CD = DC. (4.22)

from [71].

According Lemma 3, it holds that 0= β1 < β2 ≤ ...≤ βn. Assuming that β satisfies the condi-

tions (4.17), We can derive that the eigenvalues of B are 0, µ+M
2 , and µ+M

4 + ββi
2 +i

√
(ββi)2 − (µ+M

4 + ββi
2)2

(i = 2, ...,n).

According to the results in [40, Theorem 9], we can obtain

0 =
∣∣B⊗ Im −λ In ⊗ Im

∣∣
=
∣∣(B−λ In)⊗ Im

∣∣
=
∣∣B−λ In

∣∣m ∣∣Im
∣∣2mn

=
∣∣B−λ In

∣∣m .

(4.23)

Therefore, the eigenvalues of B⊗I are also 0, µ+M
2 , and µ+M

4 + ββi
2 +i

√
(ββi)2 − (µ+M

4 + ββi
2)2 (i=

2, ...,n), and the algebraic multiplicities of eigenvalues 0 and µ+M
2 are m.

In the following, we will rewrite the system (4.20) as an equivalent linear system with Hur-
witz coefficient, of which the eigenvalues are the same as −B⊗ Im except for 0.

Define the matrix P ∈On×n and S = diag
(
P,P
)
∈O2n×2n, which is subject to

PT LP = diag
(
0 β2 · · · βn

)
. (4.24)

Therefore, the matrix B can be decoupled into

J∗ = ST BS =



µ+M
2

. . .
ββn +

µ+M
2

0
. . .

ββn

0
. . .

−ββn


(4.25)

58

Denote by a new variable

r∗ = (S⊗ I)
(

q
l

)
, (4.26)

then the system (4.20) is equivalent to

ṙ∗ = (J∗⊗ I)r∗. (4.27)

By Lemma 3 (2), we know that the first column of P is 1√
n1, therefore, we know that

(r∗)n+1 =
(
1T ⊗ Im

)
l = β (1T L⊗ Im)x = 0. (4.28)

Equations (4.25) and (4.28) implies that (r∗)n+1 and the (n+1)-th row and column of J∗ are
trivial. Discarding these trivial entries, we obtain a reduced system of (4.20)

ṙ =−(J1 ⊗ Im)r. (4.29)

In other words, J1 is obtained by deleting the (n+1)-th column and row from J∗, and r is obtained
by deleting (r∗)n+1 from r∗.

Considering that
Null(B⊗ I)⊂ Null(A(x)),

Null((B⊗ I)T)⊂ Null(A(x)T),
(4.30)

for any x ∈ Rnm, the (mn+ 1)-th to (mn+m)-th columns and rows of the block matrix (S⊗
I)T A(x)(S⊗ I) are all trivial. By conducting the same transformation as we did on (4.20), the
system (4.4) can be reduced to

ṙ =−J2(x)r. (4.31)

Step 2. Now we will prove that there exists a constant positive definite matrix P1 such that

0 = P1(J1 −µI)+(J1 −µI)T P1 − I − (M−µ)2

4
(P1)

2, (4.32)

where I = Im(n−1) for short.

Noticing that −(J1 − µI) is a block Hurwitz matrix, the solution to the continuous-time
Lyapunov equation Q1(J1 − µI)+ (J1 − µI)T Q1 = I is a unique positive definite block matrix

59

Q1 = diag(1
M−µ

I,Q11), which admits

Q1(J1 −µI)+(J1 −µI)Q1 − I − (M−µ)2

4
(Q1)

2 ≤ 0. (4.33)

Let Di =

(
(Di)11 (Di)12
(Di)21 (Di)22

)
and

Q2 =



2
M−µ

(D2)11
. . .

(Dn)11

(D2)12
. . .

(Dn)12
(D2)21

. . .
(Dn)21

(D2)22
. . .

(Dn)22


. (4.34)

For any h,g ∈ Rm(n−1) and any f ∈ R, we have that

(
f hT gT)Q2

 f
h
g


= 2

M−µ
f 2 +∑

n−1
i=1
(
hi gi

)
Di+1

(
hi
gi

)
≥ 0,

(4.35)

where the equality occurs only if f ,h,g are trivial. Therefore, Q2 is positive definite.

For any h,g ∈ Rm(n−1) and any f ∈ R, define f hg =
(

f hT gT)T , and we have that

f hgT
(

Q2(J1 −µI)+(J1 −µI)Q2 − I − (M−µ)2

4 (Q2)
2
)

f hg

= ∑
n
i=2
(
hi gi

)(
DiBi +(Bi)

T Di − I − (M−µ)2

4 (Di)
2
)(hi

gi

)
≥ 0,

(4.36)

which implies that

Q2(J1 −µI)+(J1 −µI)Q2 − I − (M−µ)2

4
(Q2)

2 ≥ 0 (4.37)

60

According to [1, Theorem 4.1.14], equation (4.32) has at least one positive definite Hermitian
solution.

Step 3. This step will focus on analyzing the convergence behavior of system (4.31), which
will be compared with (4.29).

Take a Lyapunov function V = rT P2(t)r, where P2(0) = P1 and P2 updates according to

Ṗ2 = P2(J2 −µI)+(J2 −µI)T P2, (4.38)

then, the derivative of the function V along system (4.4) is given as

V̇ = rT (−P2J2 − JT
2 P2 + Ṗ2)r

=−2µV,
(4.39)

which gives V (t) =V (0)e−2µt .

In view of the facts that

µ −M
2

I2mn ≤ A(x)−B⊗ Im ≤ M−µ

2
I2mn, (4.40)

it can be recognized that

0 ≤ ((S⊗ Im)
T (A(x)−B⊗ Im)(S⊗ Im))

2 ≤ (M−µ)2

4
I2mn. (4.41)

Define ∆J = J2−J1⊗ Im. By step 1, it can be checked that ∆J and (∆J)2 are symmetric diagonal
block matrices, and they are minors of (S⊗ Im)

T (A(x)−B⊗ Im)(S⊗ Im) and (S⊗ Im)
T (A(x)−

B⊗ Im)
2(S⊗ Im). Equation (4.41) gives that

(∆J)2 ≤ (M−µ)2

4
Im(2n−1), (4.42)

and we can derive that(
I ∆J

∆J (M−µ)2

4 I

)
=

(
I 4

(M−µ)2 ∆J
0 I

)
(

I − 4
(M−µ)2 (∆J)2 0

0 (M−µ)2

4 I

)(
I 4

(M−µ)2 ∆J
0 I

)T

≥ 0.

(4.43)

61

According to [1, Theorem 4.1.4], the inequality

(JH)1 =

(
I −(J1 −µI)T

−(J1 −µI) (M−µ)2

4 I

)
≥ (JH)2 =

(
0 −(J2 −µI)T

−(J2 −µI) 0

)
,

(4.44)

which is directly derived from (4.43), implies that P2(t)≥ P1 on [0,∞). Therefore, we have that

λmin(P1)∥r∥2 ≤ rT P1r
≤ rT P2(t)r =V (t)≤V (0)e−2µt

≤ λmax(P1)∥r(0)∥2e−2µt = λmax(P1)∥r∗(0)∥2e−2µt

≤ λmax(P1)∥(S⊗ I)∥2∥∥(qT (0), lT (0))T
∥∥2e−2µt

≤ λmax(P1)
∥∥(qT (0), lT (0))T

∥∥2e−2µt ,

(4.45)

and thus ∥∥(qT lT)T
∥∥≤ ∥S⊗ I∥∥r∗∥

= ∥S⊗ I∥∥r∥= ∥r∥
≤ C1

∥∥(qT (0), lT (0))T
∥∥e−µt ,

(4.46)

for all t ≥ 0, where C1 =
√

λmax(P1)/λmin(P1).

Combining the above inequality with Lemma 2, we complete the proof.

Remark 8. A sufficient condition for (4.18) is that β is sufficiently large. Since we assume
that ββi >

M+µ

2 , 2 ≤ i ≤ n, −Di is a Hurwitz matrix. For each 2 ≤ i ≤ n, the continuous-time
Lyapunov equation diBi+(Bi)

T di = I has a unique solution. Since M
4 − 3µ

4 + ββi
2 > 0 (i= 2, . . . ,n)

are the real parts of the eigenvalues of Bi, every entry of e−Bit is bounded by a linear combination

of tke−(M
4 −

3µ

4 +
ββi

2)t , where k is some nonnegative integer. Due to the fact that
∫

∞

0 tke−atdt = k!
ak+1

for all nonnegative integer k and a > 0, the positive definite matrix

di =
∫

∞

0
e−(Bi)

T te−Bitdt (4.47)

and its eigenvalues would vanish as β goes to infinity. When β > 0 is sufficiently large such that

λmax(di)≤
1

M−µ
, (4.48)

62

we can find a number c = 2
(M−µ)2λ 2

max(Di)
> 0 such that

−c2 (M−µ)2

4
λ

2
max(di)+ c−1 ≥ 0. (4.49)

Letting Di = cdi, we know that

DiBi +(Bi)
T Di − I2 − (M−µ)2

4 (Di)
2

≥ −c2 (M−µ)2

4 λ 2
max(di)I2 + cI2 − I2 ≥ 0.

(4.50)

Remark 9. In [98], a distributed continuous-time algorithm that achieves the same convergence
rate of the centralized gradient descent method was proposed. The iteration of the algorithm
begins with an arbitrary x(0) and si = ∇ fi(xi(0)) and has the following update rule

ẋ =−β L̄x− s,
ṡ =−β L̄s+∇2(x)ẋ =−β L̄s+∇2(x)(−β L̄x− s),

(4.51)

where ∇2(x) = diag(∇2 f1(x1), ...,∇
2 fn(xn)) is a term involving the Hessian matrices of the local

objective functions. The proposed algorithm improves upon the algorithm in [98] by removing
the dependence of these Hessian matrices. It is interesting to note that the proof technique in this
section can also be used to analyze algorithm (4.51) above. To see this, define l = β L̄x, q = ẋ.
Then the above system can be reduced to(

q̇
l̇

)
=

(
−2β L̄−∇2(x) −β L̄

β L̄ 0

)(
q
l

)
. (4.52)

Similar to the proof of Theorem 9, it can be verified that the state x in (4.51) converges exponen-
tially with rate no less than µ if β is sufficiently large.

4.3.2 Convergence Analysis under Strictly Convex Cost Function

With a weaker assumption, we provide a locally exponential convergence result for the algorithm
(4.2). As in the previous section, we will first construct the relationship between (4.4) and (4.2),
analyze the auxiliary system (4.4), and conclude the local exponential convergence of the system
(4.2). Additionally, we will discuss the global asymptotic convergence of the system (4.2) as a
separate part.

The following lemma shows that the system (4.2) converges as (4.4) converges and that they
have the same local convergence behavior, similar to Lemma 4.

63

Proposition 3. Assume that Assumptions 10 and 11 hold. The states q and l were defined in the
last section. Consider a trajectory of (4.2) starting from (xT (0),vT (0))T . Let x∗ be the optimal
solution to (1.6).

(1) The state (qT , lT)T in (4.4) tends to zero if and only if (xT ,vT)T in (4.2) tends to ((1⊗
x∗)T ,(v∗)T)T , i.e.,

lim
x→1⊗x∗

v→v∗

(
q
l

)
=

(
0
0

)
, (4.53)

and

lim
q→0
l→0

(
x
v

)
=

(
1⊗ x∗

v∗

)
, (4.54)

where v∗ is uniquely determined by β L̄v∗ =−∇(1⊗ x∗) and ∑i(v∗)i = ∑i vi(0).

(2) Suppose that the origin of (4.4) is locally exponentially stable, i.e., there exists r1 > 0
such that ∥∥(qT , lT)T∥∥≤ c1

∥∥(qT (0), lT (0))T∥∥e−µt , (4.55)

for some c1 ≥ 1, all t ≥ 0, and all (qT (0), lT (0))T ∈ B(0,r1). If there exists r4 > 0 such that
(xT (0),vT (0))T lies in B(((1⊗ x∗)T ,(v∗)T)T ,r4), then,∥∥((x−1⊗ x∗)T ,(v− v∗)T)T

∥∥
≤ c3

∥∥(qT (0), lT (0))T
∥∥e−µt ,

(4.56)

for all t ≥ 0, where c3 > 0 relies on x(0) and v(0).

Proof. (1) (=⇒) Assume that q, l → 0 holds throughout the =⇒ part.

Step 1. Recall that
q =−v−β L̄x−∇(x),
l = β L̄x. (4.57)

It immediately follows from (4.15) and (4.16) that

∑i ∇ fi(xi)→ 0 and x → 1⊗ x̄, (4.58)

which imply that ∇ fi(xi)→ ∇ fi(x̄) since ∇ fi (i ∈ X) are continuous globally. That is to say, it
can be derived that

∇ f (x̄) = ∑i ∇ fi(x̄)→ 0 and x → 1⊗ x̄. (4.59)

In view of the continuity of ∇ f and the strict convexity of f , we know that x̄ → x∗ and x → 1⊗x∗.

64

Step 2. Next, it will be proved that there exists a unique v∗ satisfying

β L̄v∗ =−∇(1⊗ x∗) and ∑
i
(v∗)i = ∑

i
vi(0). (4.60)

The complete solution to β L̄v∗ =−∇(1⊗ x∗) is

v∗ = vs + vg, (4.61)

where vs is the special solution and vg ∈Null(L̄). Take vg = 1⊗(1
n ∑i vi(0)− 1

n ∑i(vs)
i)∈Null(L̄),

then
∑i(v∗)i = ∑i(vs)

i +(∑i vi(0)−∑i(vs)
i) = ∑i vi(0). (4.62)

We will prove the uniqueness of v∗. Assume that there are v∗ ̸= w∗ that satisfy condition
(4.60). Define δ ∗

v = v∗−w∗, which satisfies ∑i(δ
∗
v)i = 0. We can derive that

∥δ
∗
v ∥

(4.14)
≤ 1

ββ2
∥β L̄δ

∗
v ∥=

1
ββ2

∥β L̄v∗−β L̄w∗∥= 0, (4.63)

which contradicts our assumption.

Step 3. Define δv = v− v∗, which satisfies ∑i(δv)i = 0. We know that

∥δv∥
(4.14)
≤ 1

ββ2
∥β L̄δv∥

= 1
ββ2

∥β L̄v+∇(1⊗ x∗)∥

≤ 1
ββ2

∥q+ l∥+ 1
ββ2

∥∇(x)−∇(1⊗ x∗)∥ (a)→ 0,

(4.64)

where (a) is due to the continuity of ∇(·), q, l → 0, and x → 1⊗ x∗,

(⇐=) Given that v → v∗ as well as x → 1⊗ x∗.

First, it can be checked that

∥l∥= ∥β L̄x∥
= ∥β L̄(x−1⊗ x∗)∥
≤ |β |∥L̄∥∥x−1⊗ x∗∥→ 0.

(4.65)

65

By the continuity of ∇, we know that

∥q+ l∥= ∥β L̄v+∇(x)∥
≤ ∥∇(x)−∇(1⊗ x∗)∥+∥β L̄v−β L̄v∗∥
≤ ∥∇(x)−∇(1⊗ x∗)∥+β∥L̄∥∥v− v∗∥
→ 0+0 = 0.

(4.66)

Thus,
∥q∥ ≤ ∥q+ l∥+∥l∥→ 0 (4.67)

as (xT ,vT)T → ((1⊗ x∗)T ,(v∗)T)T .

(2) According to the part (1), there exists some r2 > 0 such that ∥x−1⊗ x∗∥2 +∥v− v∗∥2 ≤
(r2)

2 implies ∥q∥2+∥l∥2 ≤ (r1)
2. There exists some r3 > 0 such that ∥q∥2+∥l∥2 ≤ (r3)

2 implies
∥x−1⊗ x∗∥2+∥v− v∗∥2 ≤ (r2)

2. There exists some r4 > 0 such that ∥x−1⊗ x∗∥2+∥v− v∗∥2 ≤
(r4)

2 implies ∥q∥2 +∥l∥2 ≤ (r3/c1)
2.

By our assumption, all positive trajectories of (4.4) starting from (qT (0), lT (0))∈ B(0,r3/c1)
lie in B(0,r3). Thus, all positive trajectories of (4.2) starting from (xT (0),vT (0))T ∈ B(((1⊗
x∗)T ,(v∗)T)T ,r4) stay in B(((1⊗ x∗)T ,vT)T ,r2).

For all ∥x−1⊗ x∗∥2 + ∥v− v∗∥2 ≤ (r2)
2, the average x̄ = 1

n ∑i xi lies in the compact set
B(x∗,r2). By Assumption 9, ∇2 f > 0 on the compact set B(x∗,r2). Therefore, there exists
µ ′ > 0 such that ∇2 f (x̄) > µ ′I for all x̄ ∈ B(x∗,r2). For all x in the compact set B(1⊗ x∗,r2),
there exists M′ > 0 such that ∇2(x)< M′I, which implies that all gradients of the local objective
functions ∇ fi (i ∈ X) are M′-Lipschitz on B(1⊗ x∗,r2).

If c2 in (4.15) is replaced by c2 = c1(
1

ββ2
+

√
nM′

µ ′ββ2
+ 1√

n), (4.15) would also hold for (xT ,vT)T ∈
B(((1⊗ x∗)T ,(v∗)T)T ,r2) here.

Denote by the disagreement vector δv = v− v∗. Since

∑i v̇i = (1⊗ Im)
T v̇

= (1⊗ Im)
T (βL⊗ Im)x

= β (1T L⊗ Im)x = 0,
(4.68)

66

we can derive that ∑i(δv)
i = 0. It can be derived that

∥δv∥
(4.14)
≤ 1

β2
∥L̄δv∥

= 1
ββ2

∥β L̄v+∇(1⊗ x∗)∥
≤ 1

ββ2
∥β L̄v+∇(x)∥+ 1

ββ2
∥∇(x)−∇(1⊗ x∗)∥

≤ 1
ββ2

∥q+ l∥+ M′

ββ2
∥x−1⊗ x∗∥

≤ 1
ββ2

∥q∥+ 1
ββ2

∥l∥+ M′

ββ2
c2
∥∥(qT (0), lT (0))T

∥∥e−µt

≤ (2c1
ββ2

+ M′

ββ2
c2)
∥∥(qT (0), lT (0))T

∥∥e−µt (t ≥ 0).

(4.69)

In conclusion, it is verified that∥∥((x−1⊗ x∗)T ,(v− v∗)T)T
∥∥

≤
√
(c2)2 +(2c1

ββ2
+ M′

ββ2
c2)2

∥∥(qT (0), lT (0))T
∥∥e−µt (t ≥ 0)

(4.70)

holds for all trajectories starting from B(((1⊗ x∗)T ,(v∗)T)T ,r4).

Lemma 5. Assume that Assumptions 10 and 11 hold. For all zi ∈ Rm (i ∈ X) and β > 0, the
symmetric matrix L̂ = β L̄+∇2(z) is positive definite if ∇2(z) ̸= 0, where z = (zT

1 , ...,z
T
n)

T .

Proof. Let v = (vT
1 , ...,v

T
n)

T be a real vector in Rmn, where vi ∈ Rm (i = 1, ...,n). Since

vT L̂v = vT
β L̄v+ vT

∇
2(z)v ≥ 0 (4.71)

holds for any z ∈ Rm, the matrix L̂ is positive semi-definite.

Assuming that vT L̂v = 0, we have

vT β L̄v = 0
(vi)T ∇2 fi(zi)vi = 0, (i = 1, ...,n).

(4.72)

Assumption 9 implies that there exists some j ∈ X such that ∇2 f j(z j)> 0, therefore, the second
line of (4.72) indicates that v j = 0. From Lemma 3, the first line of (4.72) indicates that all vi are
the same vector. We can conclude that vT L̂v = 0 occurs only when v = 0.

Lemma 6. Let Assumption 2 holds. If a variable is of the form z1 = L̄z2 ∈Rnm, where z2 ∈Rnm,
then the following are equivalent:

(1) z1 reaches consensus.

67

(2) z2 reaches consensus.

(3) z1 is zero.

Proof. (1) =⇒ (2): Let z1 reach consensus. Then, there exists z3 ∈ Rm such that z1 = L̄z2 =
1⊗ z3. Therefore, we obtain

0 = (1T ⊗ Im)(L⊗ Im)z2
= (1T ⊗ Im)(1⊗ z3)
= nz3,

(4.73)

which implies z1 = L̄z2 = 0, and thus z2 reaches consensus by Lemma 3 (3).

(2) =⇒ (3) =⇒ (1): Assume that z2 reaches consensus. By Lemma 3 (3), we know that
z1 = 0, and it is trivial that z1 reaches consensus as well.

The following is devoted to proving our second main result.

Theorem 10. Assume that Assumptions 10 and 11 hold. Consider a trajectory of (4.2) starting
from (xT (0),vT (0))T ∈ R2mn. Let x∗ be the optimal solution to (1.6).

(1) The trajectory converges to some equilibrium ((1⊗x∗)T ,(v∗)T)T globally asymptotically,
i.e.,

lim
t→∞

(
x
v

)
=

(
1⊗ x∗

v∗

)
. (4.74)

(2) The trajectory converges to some equilibrium ((1⊗ x∗)T ,(v∗)T)T locally exponentially
with rate no less than µ = J− ε , where J is the smallest positive real part in the spectrum of

A(1⊗ x∗) =
(

β L̄+∇2(1⊗ x∗) −β L̄
β L̄ 0

)
, (4.75)

ε is an arbitrarily constant in (0,J), and β is an arbitrary positive constant. That is to say, there
exists some positive constant r such that∥∥((x−1⊗ x∗)T ,(v− v∗)T)T∥∥≤ c

∥∥(qT (0), lT (0))T∥∥e−µt , (4.76)

for all t ≥ 0, (xT (0),vT (0))T ∈ B(((1⊗ x∗)T ,(v∗)T)T ,r), where l = β L̄x, q = −β L̄v− β L̄x−
∇(x), and c > 0 is a constant.

Proof. (1) Denote by V = 1
2∥q∥2+ 1

2∥l∥2 a Lyapunov function. After taking derivative, we obtain

68

that
V̇ = qT q̇+ lT l̇

=

(
q
l

)T (−∇2(x)−β L̄ −β L̄
β L̄ 0

)(
q
l

)
=−qT (∇2(x)+β L̄)q ≤ 0

(4.77)

Now we will prove that ∇2(x) ̸= 0 in E = {x : V̇ = 0} ⊂ {x : q reaches consensus}. Consider
a trajectory in E reaches a point x where ∇2(x) = 0. By Lemma 6, we know that the related q
and q̇ = −β L̄l −β L̄q = −β L̄l reach consensus, which means that l has to reach consensus and
q̇ = 0. Again, using Lemma 6, we know that l = β L̄x has to be zero and x reaches consensus,
which contradicts with our assumption that ∇2(x) = 0.

By LaSalle’s Invariance Principle, the solution will asymptotically approach the largest in-
variant set in E = {x : V̇ = 0}. Lemma 5 and Assumption 9 imply that E = {q = 0}. For any
trajectory in E, q̇=−β L̄l = 0, which implies that l reaches consensus by Lemma 6. Again, using
Lemma 6, we know that l = β L̄x is zero. Therefore, we can conclude that E = {q = l = 0}.

According to Proposition 3 (1), the state (xT ,vT)T in the system (4.2) converges to ((1⊗
x∗)T ,(v∗)T)T globally asymptotically.

(2) We now prove exponential convergence analysis for (4.2), which completes this proof.

Step 1. Similar to the above proof, we will first discuss the following comparison system:(
q̇
l̇

)
=−

(
β L̄+∇2(1⊗ x∗) −β L̄

β L̄ 0

)(
q
l

)
=−A(1⊗ x∗)

(
q
l

)
, (4.78)

where x∗ is the optimal solution of problem (1.6), and A(1⊗ x∗) =
(

β L̄+∇2(1⊗ x∗) −β L̄
β L̄ 0

)
.

Part 1. In this part, we shall discuss the locations of the eigenvalues of A(1⊗ x∗).

Set a Lyapunov function V = 1
2(∥q∥2 +∥l∥2), then V̇ along system (4.78) gives

V̇ (q, l) = q̇T q+ l̇T l
= qT (−β L̄−∇2(1⊗ x∗))q
≤ 0.

(4.79)

Also, we know that the solution to (4.78) is(
q
l

)
= e−A(1⊗x∗)t

(
q(0)
l(0)

)
, (4.80)

69

and
V =

1
2

∥∥∥e−A(1⊗x∗)t(qT (0), lT (0))T
∥∥∥2

≤ 1
2

∥∥(qT (0), lT (0))T∥∥2
. (4.81)

Therefore, the fundamental matrix to (4.78) e−A(1⊗x∗)t has to be bounded on [0,∞), which fur-
ther implies that all eigenvalues of A(1⊗ x∗) have non-negative real parts, and the algebraic
multiplicities of the purely imaginary eigenvalues have to equal to their geometric multiplicities.

Next, we will investigate the purely imaginary eigenvalues of A(1 ⊗ x∗). Let variables
v11,v12,v21,v22 ∈ Rnm, v1 = (vT

11,v
T
12)

T , v2 = (vT
21,v

T
22)

T , and b ∈ R such that

A(1⊗ x∗)(v1 + iv2) = ib(v1 + iv2), (4.82)

which implies {
A(1⊗ x∗)v1 =−bv2,

A(1⊗ x∗)v2 = bv1.
(4.83)

After pre-multiplying the first line by (v1)
T , the second line by (v2)

T , and adding them up, it can
be derived that

0 =−b(v1)
T v2 +b(v1)

T v2
= (v11)

T (β L̄+∇2(1⊗ x∗))v11
+(v21)

T (β L̄+∇2(1⊗ x∗))v21

(4.84)

Combining Lemma 5 with the above equation, the only possibility is that v11 = v21 = 0. Then,
the equation (4.83)) gives(

−β L̄v12
0

)
=−b

(
0

v22

)
and

(
−β L̄v22

0

)
= b

(
0

v12

)
. (4.85)

Assuming that b ̸= 0, we know that v22 = v12 = 0 as well. The associated eigenvector v1 +
iv2 = 0, however, makes non-sense.

Assuming that b = 0, we know that(
β L̄+∇2(1⊗ x∗) −β L̄

β L̄ 0

)(
q
l

)
= 0. (4.86)

Pre-multiplied by (qT , lT), the equation (4.86) reduces into qT (β L̄+∇2(1⊗ x∗))q = 0, which is
equivalent to q = 0 by Lemma 5. Substituting q = 0 into equation (4.86), we can derive that l

70

reaches consensus. Lemma 3 (3) implies that the null space of A(1⊗ x∗) is

Null(A(1⊗ x∗)) = span
{(

0
w⊗ e1

)
, ...,

(
0

w⊗ em

)}
, (4.87)

where {e1, ...,em} is an orthonormal basis for Rm, and w = 1√
n1 ∈ Rn is a unit vector. By a

similar process, it can be checked that

Null(A(1⊗ x∗)T) = Null(A(1⊗ x∗)). (4.88)

We have proved that zero eigenvalue of A(1⊗ x∗) have the same number of algebraic multi-
plicity and geometric multiplicity, and we have shown that its null space is m-dimensional. Thus,
zero eigenvalue of A(1⊗ x∗) has algebraic multiplicity and geometric multiplicity m. Similarly,
it can be verified that zero eigenvalue of A(1⊗ x∗)T has algebraic multiplicity and geometric
multiplicity m as well.

Part 2. In the following, the system (4.78) will be rewritten as an equivalent linear system
with Hurwitz coefficient.

Considering the construction of S, we know that the (nm+1)-th to (nm+m)-th columns and
rows of the block matrix (S⊗ I)A(1⊗ x∗)(S⊗ I)T are all zero vectors. By conducting the same
transformation as we did in the proof of Theorem 9, the system (4.78) can be reduced into

ṙ =−J3r, (4.89)

where r is defined in the proof of Theorem 9, and the sepctrum of J3 is composed of the eigen-
values of A(1⊗ x∗) with positive real parts .

Step 2. This step is devoted to discussing the convergence behavior of system (4.4).

Noticing that {
Null(A(x))⊂ Null(A(1⊗ x∗)),
Null(A(x)T)⊂ Null(A(1⊗ x∗)T),

(4.90)

we can apply the same transformation as step 1 on A(x), and obtain that

ṙ =−J4(x)r, (4.91)

where J4(1⊗x∗) = J3 According to Proposition 3, we know that ∥r∥→ 0 implies that x → 1⊗x∗,
which further implies that J4(x)→ J3, that is to say, for every ε ∈ (0,1], there exists some δ > 0

71

such that
∥r∥ ≤ δ =⇒ ∥J4(x)− J3∥ ≤

ε

2λmax(P3)
. (4.92)

Denote by J the smallest real part in the spectrum of J3, which is also the smallest positive
real part in the spectrum of A(1⊗x∗). Let µ = J−ε . Since −J3+µI(n−1)m is Hurwitz, we know
that there exists a positive definite matrix P3 which is the solution to the Lyapunov equation

P3(J3 −µI(n−1)m)+(J3 −µI(n−1)m)
T P3 = Im(n−1). (4.93)

Let
V (r) = rT P3r. (4.94)

The derivative of V along trajectories of (4.91) is given by

V̇ (r) =−rT (P3J4 + JT
4 P3)r

=−rT (P3J3 + JT
3 P3)r− rT (P3(J4 − J3)

+(J4 − J3)
T P3)r

≤−(1−2λmax(P3)
ε

2λmax(P3)
)∥r∥2 −2µrT P3r

=−(1− ε)∥r∥2 −2µV
≤−2µV

(4.95)

provided that ∥r∥ ≤ δ .

By the Grönwall’s inequality, we have that

V (r)≤V (r(0))e−2µt , (4.96)

and thus ∥∥(qT lT)T
∥∥≤ ∥S⊗ I∥∥r∗∥

= ∥S⊗ I∥∥r∥= ∥r∥
≤ C2

∥∥(qT (0), lT (0))T
∥∥e−µt ,

(4.97)

for all t ≥ 0, where C2 =
√

λmax(P3)/λmin(P3).

Combining the above inequality with Proposition 3 (2), we complete the proof.

Remark 10. The value of v∗ is uniquely determined by β L̄v∗ = −∇(1 ⊗ x∗) and ∑i(v∗)i =

∑i vi(0), which will be mentioned in Proposition 3.

Remark 11. Noting that the algorithm (4.2) with β = 1 is reduced to the classical PI algorithm

72

(4.1), we can prove that the system (4.1) also converges globally asymptotically and locally
exponentially under the same assumptions as the above theorem.

Remark 12. Since Assumption 9 allows ∇2 fi(x∗) = 0 for some i, Theorem 10 is more than a
localization of Theorem 9.

Assume that all objective functions are quadratic. As all Hessian matrices are constant, a
straightforward corollary follows.

Corollary 7. Assume that Assumptions 10 and 11 hold, and the local objective functions fi (i ∈
X) are quadratic functions. Consider a trajectory of (4.2) starting from (xT (0),vT (0))T ∈R2mn.
Let x∗ be the optimal solution to (1.6).

(1) The trajectory converges to some equilibrium ((1⊗x∗)T ,(v∗)T)T globally asymptotically,
i.e.,

lim
t→∞

(
x
v

)
=

(
1⊗ x∗

v∗

)
. (4.98)

(2) The trajectory converges to some equilibrium ((1⊗ x∗)T ,(v∗)T)T globally exponentially
with rate no less than µ , where µ is the smallest positive real part in the spectrum of the constant
matrix

A(x) =
(

β L̄+∇2(x) −β L̄
β L̄ 0

)
, (4.99)

and β is an arbitrary positive constant. That is to say, there exists some positive constant r such
that ∥∥((x−1⊗ x∗)T ,(v− v∗)T)T∥∥≤ ce−µt (t ≥ 0) (4.100)

for all (xT (0),vT (0))T ∈ B(((1⊗ x∗)T ,(v∗)T)T ,r), where c > 0 relies on x(0) and v(0).

4.4 Simulations

In this section, we conduct numerical simulations to illustrate convergence behaviors of the pro-
posed algorithm. For consistency, we discretize the algorithm (4.2) using the Euler’s method
with the same step size for each example and apply it on two objective functions to illustrate the
convergence behavior established in Theorems 1 and 2. The step size is chosen to be 10−3 in the
first example and 10−2 in the second example.

73

4.4.1 Strongly Convex Case

Define some three-dimensional µ-strongly convex and M-smooth functions as

fi(x) =
3

∑
j=1

|x j −ai j|2, i = 1,2, . . . ,20, (4.101)

where µ = M = 2, all entries of ai j, and the initial value x(0) ∈R60 are drawn from independent
standard normal distributions. The first graph, G1, is generated by the Erdős–Rényi model [20]
with connectivity probability 0.75. The second graph, G2, is a 20-cycle graph, which means that
20 agents are arranged into a cycle, and each agent is connected to its left and right agents. The
third graph, G3, is a 4×5 2-D grid.

Figure 4.4.1 illustrates the time history of the distances between x and x∗ in (4.2), which
agrees with the analysis in Section III. As expected in Section III, the simulation results show that
increasing β improves the convergence behavior of the virtual state x in the classical PI algorithm
(4.1) [78]. For a relatively smaller value of β (e.g., β = 1), the corresponding plots are almost
straight lines after a few thousand iterations, which implies asymptotic and locally exponential
convergence, and is consistent with the theoretical expectation in Theorem 10. When β becomes
larger (e.g., β = 10), the simulation results are almost parallel to the dashed line, which implies
that ∥x− x∗∥ = O(e−µt) for all the first twenty thousand iterations. This is consistent with the
conclusion of Theorem 9.

4.4.2 Strictly Convex Case

Define some three-dimensional convex functions

fi(x) =
1
4

3

∑
j=1

bi j|x j −ai j|4, i = 1,2, . . . ,5, (4.102)

where all ai j and all entries of the initial values x(0) ∈R60 are drawn from independent standard
normal distributions, bi j are uniformly distributed random numbers from [0,1], and Assumption
9 is satisfied. The undirected graphs G1 to G3 are the same as before.

Figure 4.4.2 shows the evolution of agents in system (4.2) for different parameters and topolo-
gies G1, G2, and G3, which agrees with the analysis in Section III. As shown in Fig. 2, the virtual
agents x reach a neighborhood of the minimizer after thousands of iterations. Afterwards, the
lines in Figure 4.4.2 decrease exponentially, which agrees with Theorem 10.

74

1 2 3 4

10
4

10
-10

10
-5

10
0

1 2 3 4

10
4

10
-10

10
-5

10
0

1 2 3 4

10
4

10
-10

10
-5

10
0

Figure 4.1: For µ-strongly convex case, the algorithm (4.2) with large β outperforms the classical
PI algorithm (4.1) [78] and the ZGS algorithm [47]. Left: G1 with β2 = 0.3502. Middle: G2
with β2 = 0.4894. Right: G3 with β2 = 0.3820.

0 1 2 3

10
4

10
-10

10
-5

10
0

0 5000 10000 15000

10
-10

10
-5

10
0

0 0.5 1 1.5 2

10
4

10
-10

10
-5

10
0

Figure 4.2: Under the strictly convex case, the algorithms (4.2) converge to some neighborhood
of the optimal solution asymptotically, and converges to the optimal solution afterwards. In-
creasing β improves the algorithm (4.2) under different topologies. Left: G1 with β2 = 0.3502.
Middle: G2 with β2 = 0.4894. Right: G3 with β2 = 0.3820.

75

Figure 4.4.2 also reveals unexpected behavior that surpasses our expectations. Under strictly
convex cases, we did not analyze the influence of β on the convergence rate and settling time.
Fig. 2, however, suggests that increasing β does improve the behavior of algorithm (4.2).

4.5 Summary

This chapter introduces an innovative gradient-based PI algorithm. Rather than directly exam-
ining the behavior of the PI algorithm (4.2), we first construct an auxiliary system (4.4) by dif-
ferentiating the original system. By establishing a connection between (4.4) and (4.2), we can
derive conclusions about the convergence rates of the PI algorithm.

Our findings are significant: We demonstrate that the convergence rate of this novel PI algo-
rithm aligns with that of centralized gradient descent, particularly in scenarios involving strongly
convex functions. Furthermore, the chapter delves into exploring the algorithm’s local linear con-
vergence characteristics when applied to strictly convex functions. This dual analysis provides a
deeper understanding of the algorithm’s performance and potential applications.

76

Chapter 5

Powered Algorithms for Finite-time and
Fixed-time Distributed Optimization

In practical settings, achieving control objectives within a finite time frame is often essential.
Furthermore, finite-time and fixed-time stable systems converge more rapidly and exhibit su-
perior resistance to disturbances compared to those that are merely asymptotically stable [81].
As discussed in the introductory chapter, studying finite-time and fixed-time distributed convex
optimization problems for continuous-time multi-agent systems has evolved significantly.

The exponential convergence of a novel proportional-integral (PI) algorithm is studied in the
previous chapter. Inspired by the Powerball method and some finite-time or fixed-time algo-
rithms [12,24,41,91,92], we have further developed the finite-time and fixed-time PI algorithms.
This chapter confirms the algorithm’s finite-time convergence for strictly convex functions, and
establishes its fixed-time convergence for strongly convex functions. These theories are further
supported by empirical evidence from simulations.

5.1 Finite-time PI Algorithm

The same as chapter 4, denote by xi ∈ Rm an estimate of the optimal solution x∗ by agent i ∈ X ,
and vi ∈ Rn an adapter for neutralizing the influence caused by the difference of ∇ fi(x∗) (i ∈ X).
Let x = ((x1)

T , ...,(xn)
T)T , v = ((v1)

T , ...,(vn)
T)T , L be the Laplacian matrix of G, and β be

some positive constant.

It was introduced in [92] and [91] that powerball function is of the form σ γ(z) = sign(z)|z|γ
(z ∈ R, γ ∈ (0,1)), and σ γ(z) = (σ γ(z1), ...,σ

γ(zn))
T (z = (z1, ...,zn)

T ∈ Rn, γ ∈ (0,1)). Given

77

the intuition of [92] and [91] and the asymptotic convergence of the algorithm (4.1) [78], we
propose a finite-time PI method of the form

v̇ = σ γ(β L̄x),
ẋ =−σ γ(β L̄v+αL̄x+∇(x)), (5.1)

where α and β > 0 and the other notations are the same as before.

5.1.1 Convergence Analysis

Similar to the analysis in chapter 4, we will start with analyzing the convergence of ẋ and v̇. Let
q = ∇(x)+β L̄v+αL̄x and l =−β L̄x. Differentiation on q and l according to (5.1) gives that(

q̇
l̇

)
=

(
−∇2(x)−αL̄ −β L̄

β L̄ 0

)(
σ γ(q)
σ γ(l)

)
, (5.2)

where ∇2(x) = diag
(
∇2 f1(x1) · · · ∇2 fn(xn)

)
∈ Rnm, and Assumption 11 implies that µInm ≤

∇2(x)≤ MInm for all x ∈ Rnm.

The following proposition presents that the algorithm (5.2) has global asymptotic stability.
The convergence behavior of (5.1), however, is not discussed here since we care about x only.

Proposition 4. Under Assumptions 9 and 10, the origin of (5.2) is globally asymptotically stable.

Proof. Denote by V = 1
γ+1∥q∥γ+1+ 1

γ+1∥l∥γ+1 a Lyapunov function. After taking derivative, we
obtain that

V̇ = σ(q)T q̇+σ(l)T l̇

=

(
σ(q)
σ(l)

)T (−∇2(x)−αL̄ β L̄
−β L̄T 0

)(
σ(q)
σ(l)

)
≤−σ(q)T (∇2(x)+αL̄)σ(q)≤ 0

. (5.3)

Now we will prove that ∇2(x) ̸= 0 in E = {x : V̇ = 0} ⊂ {x : q reaches consensus}. Consider
a trajectory in E reaches a point x where ∇2(x) = 0. Then, the related q and q̇ = β L̄σ(l) have to
reach consensus, which means that σ(l) has to reach consensus and q̇= 0 due to Lemma 6. Since
σ(·) is strictly monotone increasing, l also reaches consensus. Recalling that l = β L̄x, we know
that l has to be zero and x reaches consensus, which contradicts our assumption that ∇2(x) = 0.

By LaSalle’s Invariance Principle, the solution will asymptotically approach the largest in-
variant set in E = {x : V̇ = 0}. Lemma 5 and Assumption 10 imply that E = {q = 0}. For

78

any trajectory in E, q̇ =−β L̄σ(l) = 0, which implies that σ(l) reaches consensus by Lemma 6.
Since σ(·) is strictly monotone increasing, l also reaches consensus. Again, using Lemma 6, we
know that l = β L̄x is zero. Therefore, we can conclude that E = {q = l = 0}.

Before the convergence analysis on algorithm (5.1), we need to define homogeneous vector
field first.

Definition 5. A vector field h(x) = (h1(x), ...,hn(x))T is homogeneous of degree k ∈R with dila-
tion (r2, ...,rn) ∈ Rn if

hi(ε
r1x1, ...,ε

rnxn) = ε
k+rih(x) (5.4)

holds for all ε > 0 and all i ∈ {1, ...,n}, where x = (x1, ...,xn)
T .

The following lemma from [32] provides a sufficient condition for finite-time stabilization,
and will be exploited to prove the main result of this section.

Lemma 7. Consider the following system:

ẋ = f (x)+ f̃ (x), x ∈ Rn (5.5)

where f (x) is an n-dimensional continuous homogeneous vector field of degree k < 0 with dila-
tion (r1, ...,rn) satisfying f (0) = 0, and f̃ is also a continuous vector field satisfying f̃ (0) = 0.
Assume that the zero solution of ẋ = f (x) is asymptotically stable. Then, the zero solution of
(5.5) is locally finite-time stable if

lim
ε→0+

f̃i(ε
r1x1, ...,ε

rnxn)/ε
k+ri = 0, i = 1, ...,n, (5.6)

uniformly for any x ∈ {x ∈ Rn : ∥x∥= 1}

Assuming that all objective functions are convex, we provide the finite-time convergence
result for the algorithm (5.1).

Theorem 11. Under Assumptions 9 and 10, the virtual state x of the system (5.1) converges to
1⊗x∗ within a finite time T1 < ∞, where x∗ is the optimal solution of problem (1.6), and α,β > 0.

Proof. Step 1 Given that (xe,ve) is an equilibrium point of system (5.1), i.e.,

β L̄xe = 0,
β L̄xe +β L̄ve +∇(xe) = 0, (5.7)

79

it will be shown that xe = x∗.

From the first equality of (5.7) and Lemma 3 (3), it can be recognized that there exist γ ∈ Rn

such that
xe = 1⊗ γ. (5.8)

Substituting equation (5.8) into the second line of (5.7), and having it left-multiplied by 1⊗ Im,
we have that

∑i ∇ fi(γ) = 0, (5.9)

which implies that γ = x∗ and
xe = 1⊗ x∗. (5.10)

Therefore, it is only left to show the finite time stability of system (5.2) in the following steps.

Step 2. Define

g(q, l) =
(
−∇2(1⊗ x∗)−αL̄ β L̄

−β L̄ 0

)(
σ(q)
σ(l)

)
(5.11)

as well as

g̃(q, l) =
(
−∇2(x)+∇2(1⊗ x∗) 0

0 0

)(
σ(q)
σ(l)

)
, (5.12)

which satisfy g(0,0) = g̃(0,0) = 0, and g(εq,εl) = ε1+(γ−1)g(q, l), i.e. g(q, l) is homogeneous
of degree γ −1 < 0 with dilation (1, ...,1). It has been proved in proposition 1 that (q̇T , l̇T)T =
g(q, l) is globally asymptotically stable.

Step 3. This step is devoted to show that f̃ satisfies (5.6).

Part 1. Let the point (qT , lT)T lie in {z ∈ R2nm : ∥z∥ = 1} and ε > 0 be small enough.
Consider the system {

β L̄vε +αL̄xε +∇(xε) = εq,
β L̄xε = εl.

(5.13)

Since L̄ is not full rank, there exist some xε such that the second equality hold. For the same
reason, there exists some vε solves εq−β L̄xε −∇(xε) = β L̄vε .

Part 2. Now, we will prove that there is δ > 0 such that ∥xε −1⊗ x∗∥≤ cε for ε < δ and some
c > 0, i.e., there exist some neighborhood of 1⊗ x∗ such that xε converges to 1⊗ x∗ uniformly.

By step 1 and the continuity of ∇ fi, there exists δ > 0 such that xε ∈B(1⊗x∗,1) for all ε < δ .
The average of xε is denoted by x̄ε =

1
n ∑i(xε)i. By the definition of B(·, ·), it can be verified that

xε ∈ B(1⊗ x∗,1) implies x̄ε ∈ B(x∗,1). Since B(x∗,1) and B(1⊗ x∗,1) are compact, there exists

80

positive constants M,N > 0 such that

NInm ≤ ∇
2 f (x̄ε), ∇

2 fi((xε)i)≤ MInm. (5.14)

Denote Null⊥(L̄) by the orthogonal complement of Null(L̄). For any z ∈ Rnm, there exist
unique vectors zp ∈ Null⊥(L̄) and zo ∈ Null(L̄) such that z = zp + zo as Null⊥(L̄)⊕Null(L̄) =
Rnm.

Denote β2 by λ2(L), which equals to λm+1(L̄) by Lemma 3. It is also the smallest positive
eigenvalue of L and L̄. Thus, (β2)

2 = λ2(L2) = λm+1(L̄2) as L and L̄ are symmetric and positive
semi-definite. By Courant–Fischer Theorem from [33], we know that

β 2
2 = max

{S⊂Rnm:dimS=mn−m}
min

{z:0 ̸=z∈S}

zT L̄2z
zT z

= max
{S⊂Rnm:dimS=mn−m}

min
{z:0 ̸=z∈S}

(zp + zo)
T L̄2(zp + zo)

(zp + zo)T (zp + zo)

≤ max
{S⊂Rnm:dimS=mn−m}

min
{z:0 ̸=z∈S}

(zp)
T L̄2zp

(zp)T zp

= min
{z:0̸=z∈Null⊥(L̄)}

zT L̄2z
zT z

= min
{z:0 ̸=z∈Null⊥(L̄)}

∥L̄z∥2

∥z∥2 .

(5.15)

When ε < δ , we can conclude that

∥xε −1⊗ x∗∥
≤ ∥δx∥+∥1⊗ (x̄ε − x∗)∥

(5.15)
≤ ε

ββ2
∥l∥+

√
n∑i(x̄ε − x∗)2

i

≤ ε

ββ2
∥l∥+

√
n∥x̄ε − x∗∥

≤ ε

ββ2
∥l∥+

√
n

N ∥∇ f (x̄ε)∥
≤ ε

ββ2
∥l∥+

√
n

N (
∥∥∇ f (x̄ε)− 1

n ∑i ∇ fi(xi
ε)
∥∥

+
∥∥1

n ∑i ∇ fi(xi
ε)
∥∥)

(a)
≤ ε

ββ2
∥l∥+

√
nM
N ∥δx∥+ ε

n

∥∥(1⊗ Im)
T q
∥∥

≤ ε(1
ββ2

∥l∥+
√

nM
Nββ2

∥l∥+ 1√
n∥q∥)≤ cε,

(5.16)

81

where c = 1
ββ2

+
√

nM
Nββ2

+ 1√
n , and (a) is implied by∥∥∑i ∇ fi(xi

ε)
∥∥= ∥∥(1⊗ Im)

T ∇(xε)
∥∥= ∥∥(1⊗ Im)

T εq
∥∥. (5.17)

Then, it is recognized by

|g̃(εq,εl)/εγ | ≤ M∥xε −1⊗ x∗∥∥εq∥γ/εγ

≤ M∥xε −1⊗ x∗∥
≤ cMε,

(5.18)

and we complete checking the last condition (5.6).

Step 4. According to Lemma 7, the origin of protocol (5.2) is locally finite-time stable, i.e.,
there is R > 0 such that any trajectory starting from (qT

1 , l
T
1)

T ∈ B(0,R) would reach the origin in
a finite time T1 = T1(q1, l1).

According to proposition 1, the system (5.2) is globally asymptotically stable, i.e., every
trajectory of (5.2) will encounter B(0,R) in finite-time T2 = T2(q2, l2), where ((q2)

T ,(l2)T)T is
the initial state.

Therefore, every trajectory of (5.2) will approach the optimal solution within finite-time T =
T1(q1, l1)+T2(q2, l2). By step 1, it can be derived that state x in system (5.1) converges to the
optimal solution in finite time T as well.

5.2 Fixed-time PI Algorithm

Motivated by some fixed-time algorithms for distributed optimization [12,24,41], which contain
terms of the form σξ (·) (ξ > 1) and σ γ(·) (0 < γ < 1), we construct the second control scheme

v̇ =−σ γ(β L̄x)−σξ (β L̄x),
ẋ =−σ γ(−β L̄v+αL̄x+∇(x))−σξ (−β L̄v+αL̄x+∇(x)),

(5.19)

where 0 < γ < 1 and ξ > 1. Intuitively, the σξ (·) term would drive the virtual state to some
neighborhood of 1⊗ x∗ in some fixed time, and afterwards, the σ γ(·) term would drive it to the
optimal solution in a fixed time.

82

5.2.1 Convergence Analysis

Define q = ∇(x)−β L̄v+αL̄x and l = β L̄x. Again, we take derivatives on q and l, and obtain a
variation of (5.19)(

q̇
l̇

)
=

(
−∇2(x)−αL̄ −β L̄

β L̄ 0

)((
σ γ(q)
σ γ(l)

)
+

(
σξ (q)
σξ (l)

))
, (5.20)

where m̄ = µ+M
2 . Define ∆(x) = ∇2(x)− m̄Inm. We have that −M−µ

2 Inm ≤ ∆(x) ≤ M−µ

2 Inm by
Assumption 11.

We provide some lemmas that will be helpful for our analysis.

Lemma 8. For any positive semi-definite matrix Q ∈ RN (N ∈ R+), Qz = 0 (z ∈ RN) occurs if
and only if zT Qz = 0.

Proof. (=⇒) Trivial.

(⇐=) Noting that zT Qz = zT Q1/2Q1/2z = ∥Q1/2z∥2 = 0, we have that Q1/2z = 0. Left mul-
tiplying both side by Q1/2 gives the desired inequality.

The proofs of the following lemmas can be found in the Appendix.

Lemma 9. For all ν ,α1,α1 > 0 and z1,z2 ∈ RN (N ∈ N), we have that

(α1)
ν+1(∥z1∥ν+1)

ν+1 +(α2)
ν+1(∥z2∥ν+1)

ν+1

≥ α1(α2)
ν∥z1∥ν+1(∥z2∥ν+1)

ν +(α1)
ν
α2(∥z1∥ν+1)

ν∥z2∥ν+1
(5.21)

Proof. If z1 or z2 is a zero vector, the inequality is trivially true.

If z1 and z2 are trivial, it is checked that

((α1z1)− (α2z2))
T (σν(α1z1)−σν(α2z2))

= ∑i((α1z1)i − (α2z2)i)(σ
ν(α1z1)i −σν(α2z2)i)

≥ 0,
(5.22)

83

therefore, we obtain that

(α1)
ν+1(∥z1∥ν+1)

ν+1 +(α2)
ν+1(∥z2∥ν+1)

ν+1

≥ α1(α2)
ν(z1)

T σν(z2)+(α1)
να2(z2)

T σν(z1)

= α1(α2)
ν (z1)

T σν(z2)

∥z1∥∥z2∥ν
∥z1∥∥z2∥ν

+(α1)
ν
α2

(z2)
T σν(z1)

∥z1∥ν∥z2∥
∥z1∥ν∥z2∥.

(5.23)

We can further derive that

(α1)
ν+1(∥z1∥ν+1)

ν+1 +(α2)
ν+1(∥z2∥ν+1)

ν+1

= α1(α2)
ν∥z1∥∥z2∥ν max

z1,z2 ̸=0

(z1)
T σν(z2)

∥z1∥∥z2∥ν

+(α1)
ν
α2∥z1∥ν∥z2∥ max

z1,z2 ̸=0

(z2)
T σν(z1)

∥z1∥ν∥z2∥
= α1(α2)

ν∥z1∥∥z2∥ν ·1+(α1)
ν
α2∥z1∥ν∥z2∥ ·1

= α1(α2)
ν∥z1∥∥z2∥ν +(α1)

ν
α2∥z1∥ν∥z2∥,

(5.24)

where the maximums are reached when z1 and z2 are parallel and have the same direction.

Lemma 10. 1. For all 1 < µ < 2, z ∈ RN (∀N ∈ R+)

∥z∥µ ≥ ∥z∥2. (5.25)

2. For all µ > 2, z ∈ RN (∀N ∈ R+)

∥z∥2 ≤ ∥z∥µ(N)
µ−2
2µ . (5.26)

Proof. 1. We will prove that |a1 + a2|
µ

2 ≤ |a1|
µ

2 + |a2|
µ

2 holds for all a1,a2 ∈ R. Define the
function g(x) = (|a1|+ x)

µ

2 − |a1|
µ

2 − x
µ

2 (x ∈ R+). Its derivative is g′(x) = µ

2 (a1 + x)
µ

2 −1 −
µ

2 x
µ

2 −1 ≤ 0, and thus, g(x)≤ g(0) = 0 on R+. We conclude that

|a1 +a2|
µ

2 ≤ ||a1|+ |a2||
µ

2 ≤ |a1|
µ

2 + |a2|
µ

2 . (5.27)

84

Using (5.27), we can check that∣∣∣∣∣ N

∑
i=1

(zi)
2

∣∣∣∣∣
µ

2

≤

∣∣∣∣∣N−1

∑
i=1

(zi)
2

∣∣∣∣∣
µ

2

+
∣∣(zN)

2∣∣ µ

2 ≤ ·· · ≤
N

∑
i=1

∣∣(zi)
2∣∣ µ

2 , (5.28)

which gives that

∥z∥2 =

(
N

∑
i=1

|zi|2
) 1

2

≤

(
N

∑
i=1

|zi|µ
) 1

µ

= ∥z∥µ . (5.29)

2. By Hölder’s inequality, we know that(
N

∑
i=1

|zi|2 |1|µ−2

)µ

≤

(
N

∑
i=1

|zi|µ
)2(N

∑
i=1

|1|µ
)µ−2

, (5.30)

which further implies that (
N

∑
i=1

|zi|2
) 1

2

≤

(
N

∑
i=1

|zi|µ
) 1

µ

(N)
µ−2
2µ . (5.31)

Assuming that all objective functions are strongly convex, we provide a fixed-time conver-
gence result for the algorithm (5.19).

Theorem 12. Given Assumptions 10 and 11, when there exists α,β ,c1 > 0 such that

β

(
2µ

M+µ

)γ

> (c1)
γ

(
M−µ

2
1
β2

)γ+1
,

(c1)
γ 2µ

M+µ
> β

(
βn(1+c1β)

m̄+αβn

)γ+1
,

β

(
2µ

M+µ
N− ξ−1

2

)ξ

> (c1)
ξ

(
M−µ

2
1
β2

)ξ+1
,(

c1N− ξ−1
2

)ξ 2µ

M+µ
> β

(
βn(1+c1β)

m̄+αβn

)ξ+1
,

(5.32)

the virtual state x of the system (5.19) converges to 1⊗ x∗ within fixed time T2 < ∞, where x∗ is
the optimal solution of problem (1.6).

85

Proof. Similar to the discussion from equations (5.7) to (5.10), it can be verified that q = l = 0
implies x = 1⊗ x∗. In the following analysis, it is sufficient to prove the fixed-time convergence
of (5.20).

Step 1. Before analyzing the system (5.19), we would like to define the pseudoinverse of L.

Let βi (1 ≤ i ≤ n) be the i-th largest eigenvalues of L, and the eigen-decomposition L =
SLDL(SL)

T holds for some diagonal matrix DL = diag
(
β1 · · · βn

)
and orthogonal matrix SL.

According Lemma 3, it holds that 0 = β1 < β2 ≤ ...≤ βn. Denote the pseudoinverse of L by

L+ = SLdiag
(

0 1
β2

· · · 1
βn

)
(SL)

T . (5.33)

Matrices In, L and L+ commute as they can both be diagonalized by SL. Also, matrices Inm,
L̄ and L̄+ commute as they can both be diagonalized by SL ⊗ Im.

Step 2 Let E =(I+c1β L̄+L̄)(m̄I+αL̄)−1, D= c1L̄+ and C = c1
β

m̄(L̄+)2+ c1
β

αL̄+= c1
β
(L̄+)2(m̄I+

αL̄). We will prove that the Lyapunov candidate function

V (q, l) =
1
2
(
qT lT)(E DT

D C

)(
q
l

)
(5.34)

is positive definite.

We will first show that V is positive semi-definite. Noting that L̄+ + c1β L̄+ ≥ c1β L̄+ is
always true, we obtain

(I + c1β L̄+L̄)(m̄I +αL̄)−1
(

1
β

m̄(L̄+)2 +
1
β

α(L̄+)2L̄
)
≥ (c1)(L̄+)2 (5.35)

by multiplying both sides by c1
β

L+. As (L̄+)2L̄ = L̄+, it is verified that (I + c1β L̄+L̄)(m̄I +

αL̄)−1
(

c1
β

m̄(L̄+)2 + c1
β

αL̄+
)
≥ c1(L̄+)2, i.e., EC−D2 ≥ 0.

To investigate the pre-image of V = 0, it is sufficient to find the null space of

Q :=
(

E DT

D C

)
(5.36)

by Lemma 8. Let {
Eq+DT l = 0,
Dq+Cl = 0.

(5.37)

86

Left multiplying the first equation by m̄I +αL̄ and the second equation by β L̄, we have the
following argument: {

(Inm + c1β L̄+L̄)q+ c1L̄+(m̄I +αL̄)l = 0,
c1β L̄L̄+q+ c1L̄+(m̄I +αL̄)l = 0,

(5.38)

which gives that Inmq = q = 0 and l is consensus. By Lemma 6, we have that l = 0 as well.

Remark 13. Similar to the discussion on (5.15), it can be verified that

0 < λm+1(Q)≤ min
{z:0 ̸=z∈Null⊥(Q)}

zT Qz
∥z∥2 , (5.39)

and thus

V (q, l)≥ λm+1(Q)

2
(
(∥q∥2)

2 +(∥l∥2)
2) . (5.40)

Step 3. The Lie derivative of V along (5.19) is

V̇ = −
(
qT lT)(E DT

D C

)(
m̄Inm +∆+αL̄ β L̄

−β L̄ 0

)(
σ γ(q)
σ γ(l)

)
−
(
qT lT)(E DT

D C

)(
m̄Inm +∆+αL̄ β L̄

−β L̄ 0

)(
σξ (q)
σξ (l)

)
= −Vd1 −Vd2,

(5.41)

where Vd1 represents the first term, and Vd2 represents the second term.

Since L(SL) = SLDL and SL ∈On×n, the first column of P is 1√
n1. By showing

lT (I − L̄+L̄)
= lT (Pdiag(1,0, ...,0)PT)⊗ I
= lT 1

n11T ⊗ I = 0,
(5.42)

we could know that
lT = lT L̄+L̄. (5.43)

87

Therefore, we have that

Vd1 = −
(
qT LT)(E DT

D C

)(
m̄Inm +∆+αL̄ β L̄

−β L̄ 0

)(
σ γ(q)
σ γ(l)

)
≤ −

(
qT lT)(I 1+c1β

m̄I+αL̄β L̄
0 c1β L̄+L̄

)(
σ γ(q)
σ γ(l)

)
+(∥q∥2)

α+1∥E∆∥2 +∥l∥2(∥q∥2)
α∥D∆∥2

(5.43)
≤ −(∥q∥γ+1)

γ+1 + M−µ

M+µ
(∥q∥γ+1)

γ+1 − c1β (∥l∥γ+1)
γ+1

+β
βn(1+c1β)

m̄+αβn
∥q∥2(∥l∥2)

γ + M−µ

2
c1
β2
(∥q∥2)

γ∥l∥2

= − 2µ

M+µ
(∥q∥γ+1)

γ+1 − c1β (∥l∥γ+1)
γ+1

+β
βn(1+c1β)

m̄+αβn
∥q∥2(∥l∥2)

γ + M−µ

2
c1
β2
(∥q∥2)

γ∥l∥2
(a)
≤ − 2µ

M+µ
(∥q∥2)

γ+1 − c1β (∥l∥2)
γ+1

+β
βn(1+c1β)

m̄+αβn
∥q∥2(∥l∥2)

γ + M−µ

2
c1
β2
(∥q∥2)

γ∥l∥2

≤ −c2((∥q∥2)
γ+1 +(∥l∥2)

γ+1)
= −c2(∥(∥q∥2,∥l∥2)∥γ+1)

γ+1

(b)
≤ −c2(∥(∥q∥2,∥l∥2)∥2)

γ+1

≤ −c2

(
2

λmax(Q)V
) γ+1

2
,

(5.44)

where (a) and (b) follow the first property of Lemma 10, and c2 is some positive number. Let α1
and α2 be the solution to {

α1(α2)
γ = β

βn(1+c1β)
m̄+αβn

,

(α1)
γα2 =

M−µ

2
c1
β2
.

(5.45)

According to Lemma 9, we can pick c2 = min{ 2µ

M+µ
− (α1)

γ+1,c1β − (α2)
γ+1} > 0, and the

positivity of c2 is guaranteed by the first two assumptions in (5.32).

Similarly, we obtain that

Vd2 = −
(
qT LT)(E DT

D C

)(
∇(x)+αL̄ β L̄

−β L̄ 0

)(
σξ (q)
σξ (l)

)

88

≤ − 2µ

M+µ
(∥q∥ξ+1)

ξ+1 − c1β (∥l∥ξ+1)
ξ+1

+β
βn(1+c1β)

m̄+αβn
∥q∥2(∥l∥2)

ξ + M−µ

2
c1
β2
(∥q∥2)

ξ∥l∥2
(c)
≤ − 2µ

M+µ
N− ξ−1

2 (∥q∥2)
ξ+1 − c1βN− ξ−1

2 (∥l∥2)
ξ+1

+β
βn(1+c1β)

m̄+αβn
∥q∥2(∥l∥2)

ξ + M−µ

2
c1
β2
(∥q∥2)

ξ∥l∥2

≤ −c3((∥q∥2)
ξ+1 +(∥l∥2)

ξ+1)

= −c3(∥(∥q∥2,∥l∥2)∥ξ+1)
1

ξ+1

(d)
≤ −c3((nm)

− 2ξ+2
ξ−1 ∥(∥q∥2,∥l∥2)∥2)

ξ+1

≤ −c3(nm)
− 2(ξ+1)2

ξ−1
(

2
λmax(Q)V

) ξ+1
2
,

(5.46)

where (c) and (d) follow the second property of Lemma 10, and c3 > 0. The process of deriving
c3 is similar to that of deriving c2.

Combining (5.44) and (5.46), we arrive at the following inequality:

V̇ ≤−c2

(
2

λmax(Q)V
) γ+1

2 − c3(nm)
− 2(ξ+1)2

ξ−1
(

2
λmax(Q)V

) ξ+1
2
. (5.47)

Considering that V̇ ≤−c3(nm)
− 2(ξ+1)2

ξ−1
(

2
λmax(Q)V

) ξ+1
2 , we have

V̇

V
ξ+1

2

≤−c3(nm)
− 2(ξ+1)2

ξ−1

(
2

λmax(Q)

) ξ+1
2

, (5.48)

and integrating both sides yields

c3(nm)
− 2(ξ+1)2

ξ−1

(
2

λmax(Q)

) ξ+1
2

t ≤ 1
ξ+1

2 −1

(
V (q(t), l(t))

1−ξ

2 −V (q(0), l(0))
1−ξ

2

)
. (5.49)

When V reaches the set {V (q, l)≤ 1}, the right hand side of (5.49) is bounded by 1
ξ+1

2 −1
, which

is independent of the initial state. This implies that V reaches this set in a fixed time, denoted t3,
for any q(0), l(0) ∈ Rnm.

89

On the other hand, V̇ is also bounded by −c2

(
2

λmax(Q)V
) 2

γ+1 . We have that

V̇

V
γ+1

2

≤−c2

(
2

λmax(Q)

) γ+1
2

(5.50)

and taking integral from t = t3 gives

c2

(
2

λmax(Q)

) γ+1
2

(t − t3)≤
1

1− 2
γ+1

(
V (t3)

1−γ

γ+1 −V (t)
1−γ

γ+1

)
≤ 1

1− 2
γ+1

(5.51)

After t = t3, V would reach the origin in a fixed time. The fixed-time convergence can be implied
by (5.48) and (5.51).

Remark 14. Some observations on the role of the design parameters α , β and c1 are given
here. We can always find α,β ,c1 > 0 satisfying the condition (5.32). Let β = 1 and let c1 be
sufficiently small to satisfy the first and the third inequalities. Also, we can always let α be
sufficiently large such that the second and the fourth inequalities hold. Moreover, (5.32) is only
a sufficient condition in simulation. When running our numerical examples, we observe that the
algorithm converges in a fixed time for any positive α and β .

5.3 Simulations

In this section, we discretize the algorithms (5.1) and (5.19) using Euler’s method and apply them
to two objective functions to demonstrate the convergence behavior established in Theorems 1
and 2. The step sizes are selected as 0.06 and 0.001 through trial and error.

5.3.1 Strictly Convex Case

Define some three-dimensional convex functions

fi(x) =
1
4

3

∑
j=1

bi j|x j −ai j|4, i = 1,2, ...,8, (5.52)

where all ai j and all entries of the initial values x(0) ∈R60 are drawn from independent standard
normal distributions, bi j are uniformly distributed random numbers from [0,1], and Assumption

90

0 10 20 30 40 50 60

-1

0

1

2

0 2 4 6 8 10

-1

0

1

0 2 4 6 8 10

-1

0

1

2

Figure 5.1: State trajectories of all agents using (5.1).

9 is satisfied. The graph G is a 8-cycle graph, that is to say, 8 agents are arranged into a cycle,
and each agent is connected to its left and right agents.

Figures 5.3.1 and 5.3.1 show the evolutions of agents’ states and the error of the total objective
function in system (5.1), where α = β = 1. We represent the optimal solution using dash-dot

91

0 10 20 30 40 50 60

0

20

40

Figure 5.2: The error of the total objective function

lines. The three components of the optimal states are reached at about 35s, 7s and 8s, and the
overall objective function is minimized at about 40s, which illustrate the finite-time behaviour
guaranteed by Theorem 11.

5.3.2 Strongly Convex Case

Define some three-dimensional µ-strongly convex and M-smooth functions

fi(x) =
1
2

3

∑
j=1

|x j −ai j|2, i = 1,2, ...,8, (5.53)

where all entries of ai j are drawn from independent standard normal distributions, and all entries
of x(0) and v(0) are drawn from independent normal distributions with standard deviations of
10ν (ν = 0,2,4,6) and means of 0. The graph, G, is the same as before

Figure 5.3.2 shows the time evolutions of agents’ states in system (5.19), where α = β = 1,
and ν = 0. They converge in a finite-time, and it agrees with the analysis in Section V.

Figures 5.3.2 and 5.3.2 illustrate the time history of the distances between x and x∗, and the
errors of the Lyapunov functions under different ν . Not surprisingly, the longer the distance
between x(0) and 1⊗ x∗, the more time it takes to reach the minimizer. In the plots, the distance
between x(0) and x∗ would roughly increase by 100 times as ν increases by 2; however, the
settling time grows slower. It is because the upper bound of the settling time is independent of
the initial value, as shown in Theorem 12.

92

0 2 4 6 8

-2

-1

0

1

0 2 4 6 8
-2

0

2

0 2 4 6 8

-2

-1

0

1

Figure 5.3: State trajectories of all agents using (5.19).

5.4 Summary

Combining the PI algorithm (4.2) from the last section with the powered function in [91,92], we
propose a finite-time distributed optimization algorithm (5.1). We are also motivated by some
fixed-time optimization algorithm [12, 24, 41], and construct a fixed-time distributed optimiza-

93

0 5 10 15 20

10
-5

10
0

10
5

10
10

Figure 5.4: The distance between the state and the optimal solution.

0 5 10 15 20

10
0

10
10

Figure 5.5: The errors of the total objective functions.

94

tion algorithm (5.19). Similar to the last chapter, instead of directly discussing the behavior of
the algorithms, we build auxiliary systems by differentiating the original system first, and then
establishing their connections.

The chapter demonstrates that the powered PI algorithm can converge within a finite time
when applied to strictly convex functions. Another crucial aspect is the confirmation of fixed-
time convergence when the algorithm is applied to strongly convex functions. This implies a
consistent and predictable convergence timeline regardless of the initial conditions, enhancing
the algorithm’s practicality and reliability.

95

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis has presented a comprehensive analysis of almost sure convergence rates for ASG
methods, specifically RMSprop, Adadelta, Adam, Nadam, and AMSgrad. By offering a clear and
rigorous proof of almost sure convergence to a critical point, this work contributes significantly
to the field of machine learning optimization. For non-convex objective functions, our findings
reveal that a weighted average of squared gradient norms achieves a unified convergence rate of
O(1

t
1
2−θ

) for all θ ∈ (0, 1
2) Additionally, for strongly convex objectives, we have improved the

convergence rates for RMSprop and Adadelta to O(1
t1−θ) within the same range of θ .

The Hogwild! algorithm, a locking-free parallel stochastic gradient descent method, was also
analyzed under various loss function assumptions. We demonstrated its almost sure convergence
rate for strongly convex functions, matching the optimal rate of classical SGD methods. For
non-convex functions, we proved convergence to zero for both a weighted average of squared
gradients and the algorithm’s last iterations. We further extended our analysis to general convex
smooth functions.

A new algorithm is propsed in chapter 4 for solving the distributed problem. First, with the
assumptions of µ-strongly convex cost optimization function and connected topology, we pro-
pose a gradient-based algorithm whose convergence rate matches that of the centralized gradient
method. Second, we prove the local exponential convergence behavior of this algorithm for
strictly convex cost functions.

In chapter 5, we discuss algorithms for solving finite-time and fixed-time distributed opti-
mization problems. We propose variants of the PI algorithm specifically designed for strictly

96

convex and strongly convex cost functions. These algorithms not only solve the distributed opti-
mization problem but also guarantee finite and fixed settling times.

6.2 Future Work

Several avenues for future research emerge from this study:

• Improving the almost sure convergence rates for ASG methods such as Adam, AMSgrad,
and Nadam presents a compelling challenge. These ASG methods frequently outperform
SGD in practical applications, especially in deep learnin. Despite their practical success,
the almost sure convergence rates for ASG methods, as discussed in Chapter 2, align with
those of SGD noted in [45]. This observation leads to the anticipation of a more efficient
convergence rate for ASG methods.

• Exploring the underlying principles and the physical intuition of ASG methods and under-
standing why they often outperform SGD is a fascinating topic.

To gain a better insight of centralized Nesterov’s Accelerated Gradient Method and Heavy-
ball method, some papers utilize the second order ODE [69,75,96] derived by taking limit
of these methods. Taking advantage of numerous tools from the field of differential equa-
tions and stochastic calculus, some papers use stochastic differential equations (SDEs) of
SGD to gain new insights about non-trivial phenomena in non-convex optimization.

In chapter 2, we have derived the limiting ODEs for ASG methods, providing a framework
to examine the flow dynamics inherent to these approaches. A logical extension of this
work involves delving into the corresponding Stochastic Differential Equations (SDEs)
of ASG. Such an analysis could unveil deeper insights into the mechanisms, potentially
revealing how ASG methods navigate the non-convex optimization with notable efficiency.

• If the cost function exhibits sufficient smoothness, [96] demonstrate that acceleration of
Nesterov can be attained through a stable discretization of the ODE by employing conven-
tional Runge-Kutta integrators. This insight suggests that applying a similar discretization
strategy to the SDGs of ASG methods could potentially yield a more rapid approach.

• An interesting avenue for future research would be to explore whether the proof approaches
in chapters 4 and 5 can be extended to continuous-time distributed stochastic gradient-
based optimization algorithms.

97

References

[1] Hisham Abou-Kandil, Gerhard Freiling, Vlad Ionescu, and Gerhard Jank. Matrix Riccati
Equations in Control and Systems Theory. Birkhäuser, 2012.

[2] Alekh Agarwal, Martin J Wainwright, Peter Bartlett, and Pradeep Ravikumar. Information-
theoretic lower bounds on the oracle complexity of convex optimization. Advances in Neu-
ral Information Processing Systems, 22, 2009.

[3] Radu Balan. An extension of barbashin-krasovski-lasalle theorem to a class of nonau-
tonomous systems. arXiv preprint math/0506459, 2005.

[4] Anas Barakat and Pascal Bianchi. Convergence and dynamical behavior of the adam algo-
rithm for nonconvex stochastic optimization. SIAM Journal on Optimization, 31(1):244–
274, 2021.

[5] Michel Benaı̈m. Dynamics of stochastic approximation algorithms. In Seminaire de prob-
abilites XXXIII, pages 1–68. Springer, 2006.

[6] Dimitri P Bertsekas, Angelia Nedić, and Asuman E Ozdaglar. Convex analysis and opti-
mization. Athena Scientific, 2003.

[7] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning,
volume 4. Springer, 2006.

[8] Julius R Blum. Approximation methods which converge with probability one. The Annals
of Mathematical Statistics, pages 382–386, 1954.

[9] Sebastian Bock and Martin Weiß. A proof of local convergence for the adam optimizer. In
2019 international joint conference on neural networks (IJCNN), pages 1–8. IEEE, 2019.

[10] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. Advances in
neural information processing systems, 20, 2007.

98

[11] Stephen Boyd, Neal Parikh, and Eric Chu. Distributed Optimization and Statistical Learn-
ing via the Alternating Direction Method of Multipliers. Now Publishers Inc, 2011.

[12] Gang Chen and Zhiyong Li. A fixed-time convergent algorithm for distributed convex
optimization in multi-agent systems. Automatica, 95:539–543, 2018.

[13] Weisheng Chen and Wei Ren. Event-triggered zero-gradient-sum distributed consensus
optimization over directed networks. Automatica, 65:90–97, 2016.

[14] Soham De, Anirbit Mukherjee, and Enayat Ullah. Convergence guarantees for rmsprop and
adam in non-convex optimization and an empirical comparison to nesterov acceleration.
arXiv preprint arXiv:1807.06766, 2018.

[15] Christopher M De Sa, Ce Zhang, Kunle Olukotun, and Christopher Ré. Taming the wild:
A unified analysis of hogwild-style algorithms. Advances in neural information processing
systems, 28, 2015.

[16] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed
deep networks. Advances in neural information processing systems, 25, 2012.

[17] Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A simple conver-
gence proof of adam and adagrad. arXiv preprint arXiv:2003.02395, 2020.

[18] Timothy Dozat. Incorporating nesterov momentum into adam. ICLR 2016 workshop, 2016.

[19] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research, 12(7), 2011.

[20] Paul Erdős and Alfréd Rényi. On random graph i. Publ. Math. Debrecen, 6:290–297, 1959.

[21] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-
convex optimization via stochastic path-integrated differential estimator. Advances in neu-
ral information processing systems, 31, 2018.

[22] Zhi Feng and Guoqiang Hu. Finite-time distributed optimization with quadratic objective
functions under uncertain information. In 2017 IEEE 56th Annual Conference on Decision
and Control (CDC), pages 208–213. IEEE, 2017.

[23] Zhi Feng, Guoqiang Hu, and Christos G Cassandras. Finite-time distributed convex opti-
mization for continuous-time multiagent systems with disturbance rejection. IEEE Trans-
actions on Control of Network Systems, 7(2):686–698, 2019.

99

[24] Kunal Garg, Mayank Baranwal, Alfred O Hero, and Dimitra Panagou. Fixed-time dis-
tributed optimization: Consistent discretization, time-varying topology and non-convex
functions. arXiv preprint arXiv:1905.10472, 2019.

[25] Bahman Gharesifard and Jorge Cortés. Distributed continuous-time convex optimization
on weight-balanced digraphs. IEEE Transactions on Automatic Control, 59(3):781–786,
2013.

[26] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning,
volume 1, 2016.

[27] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

[28] Ge Guo and Jian Kang. Distributed optimization of multiagent systems against unmatched
disturbances: A hierarchical integral control framework. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 52(6):3556–3567, 2021.

[29] Zhijun Guo and Gang Chen. Distributed zero-gradient-sum algorithm for convex opti-
mization with time-varying communication delays and switching networks. International
Journal of Robust and Nonlinear Control, 28(16):4900–4915, 2018.

[30] Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. A novel convergence
analysis for algorithms of the adam family. arXiv preprint arXiv:2112.03459, 2021.

[31] Christopher RH Hanusa and Thomas Zaslavsky. Determinants in the kronecker product
of matrices: The incidence matrix of a complete graph. Linear and Multilinear Algebra,
59(4):399–411, 2011.

[32] Yigwruang Hong, Jie Huang, and Yangsheng Xu. On an output feedback finite-time stabi-
lization problem. IEEE Transactions on Automatic Control, 46(2):305–309, 2001.

[33] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge University Press, 2012.

[34] Zilun Hu and Jianying Yang. Distributed finite-time optimization for second order
continuous-time multiple agents systems with time-varying cost function. Neurocomputing,
287:173–184, 2018.

[35] Kun Huang and Shi Pu. Improving the transient times for distributed stochastic gradient
methods. IEEE Transactions on Automatic Control, 2022.

100

[36] Hassan K. Khalil. Nonlinear systems. Prentice Hall, Upper Saddle River, NJ, 3rd ed.
edition, 2002.

[37] Solmaz S Kia, Jorge Cortés, and Sonia Martı́nez. Distributed convex optimization via
continuous-time coordination algorithms with discrete-time communication. Automatica,
55:254–264, 2015.

[38] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[39] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[40] Istvan Kovacs, Daniel S Silver, and Susan G Williams. Determinants of commuting-block
matrices. The American Mathematical Monthly, 106(10):950–952, 1999.

[41] Chaojie Li, Xinghuo Yu, Xiaojun Zhou, and Wei Ren. A fixed time distributed optimiza-
tion: A sliding mode perspective. In IECON 2017-43rd Annual Conference of the IEEE
Industrial Electronics Society, pages 8201–8207. IEEE, 2017.

[42] Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent
with adaptive stepsizes. In The 22nd international conference on artificial intelligence and
statistics, pages 983–992. PMLR, 2019.

[43] Peng Lin, Wei Ren, and Jay A Farrell. Distributed continuous-time optimization: nonuni-
form gradient gains, finite-time convergence, and convex constraint set. IEEE Transactions
on Automatic Control, 62(5):2239–2253, 2016.

[44] Jiayun Liu, Weisheng Chen, and Hao Dai. Distributed zero-gradient-sum (zgs) consensus
optimisation over networks with time-varying topologies. International Journal of Systems
Science, 48(9):1836–1843, 2017.

[45] Jun Liu and Ye Yuan. On almost sure convergence rates of stochastic gradient methods. In
Conference on Learning Theory, pages 2963–2983. PMLR, 2022.

[46] Yang Liu, Zicong Xia, and Weihua Gui. Multi-objective distributed optimization via a
predefined-time multi-agent approach. IEEE Transactions on Automatic Control, 2023.

[47] Jie Lu and Choon Yik Tang. Zero-gradient-sum algorithms for distributed convex optimiza-
tion: The continuous-time case. IEEE Transactions on Automatic Control, 57(9):2348–
2354, 2012.

101

[48] Qingguo Lü, Huaqing Li, and Dawen Xia. Distributed optimization of first-order discrete-
time multi-agent systems with event-triggered communication. Neurocomputing, 235:255–
263, 2017.

[49] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks from decentralized data. In Artifi-
cial intelligence and statistics, pages 1273–1282. PMLR, 2017.

[50] Richard K Miller and Anthony N Michel. Ordinary differential equations. Academic press,
2014.

[51] Aryan Mokhtari, Qing Ling, and Alejandro Ribeiro. An approximate newton method for
distributed optimization. In 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 2959–2963. IEEE, 2015.

[52] Aryan Mokhtari, Qing Ling, and Alejandro Ribeiro. Network newton distributed optimiza-
tion methods. IEEE Transactions on Signal Processing, 65(1):146–161, 2016.

[53] Michael Muehlebach and Michael Jordan. A dynamical systems perspective on nesterov
acceleration. In International Conference on Machine Learning, pages 4656–4662. PMLR,
2019.

[54] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2003.

[55] Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

[56] Lam M Nguyen, Phuong Ha Nguyen, Peter Richtárik, Katya Scheinberg, Martin Takác,
and Marten van Dijk. New convergence aspects of stochastic gradient algorithms. Journal
of Machine Learning Research 20, 2019.

[57] Reza Olfati-Saber and Richard M Murray. Consensus problems in networks of agents with
switching topology and time-delays. IEEE Transactions on Automatic Control, 49(9):1520–
1533, 2004.

[58] Mihaela Oprea. Applications of multi-agent systems. In Information Technology: Selected
Tutorials, pages 239–270. Springer, 2004.

[59] Alessandro Pilloni, Alessandro Pisano, Mauro Franceschelli, and Elio Usai. A discontin-
uous algorithm for distributed convex optimization. In 2016 14th International Workshop
on Variable Structure Systems (VSS), pages 22–27. IEEE, 2016.

102

[60] Guannan Qu and Na Li. Harnessing smoothness to accelerate distributed optimization.
IEEE Transactions on Control of Network Systems, 5(3):1245–1260, 2017.

[61] Guannan Qu and Na Li. Accelerated distributed nesterov gradient descent. IEEE Transac-
tions on Automatic Control, 65(6):2566–2581, 2019.

[62] Salar Rahili and Wei Ren. Distributed continuous-time convex optimization with time-
varying cost functions. IEEE Transactions on Automatic Control, 62(4):1590–1605, 2016.

[63] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent. Advances in neural information pro-
cessing systems, 24, 2011.

[64] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond.
arXiv preprint arXiv:1904.09237, 2019.

[65] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond.
arXiv preprint arXiv:1904.09237, 2019.

[66] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951.

[67] Herbert Robbins and David Siegmund. A convergence theorem for non negative almost
supermartingales and some applications. In Optimizing methods in statistics, pages 233–
257. Elsevier, 1971.

[68] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations
by back-propagating errors. nature, 323(6088):533–536, 1986.

[69] Bin Shi, Simon S Du, Weijie Su, and Michael I Jordan. Acceleration via symplectic dis-
cretization of high-resolution differential equations. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

[70] Xinli Shi, Guanghui Wen, and Xinghuo Yu. Finite-time convergent algorithms for time-
varying distributed optimization. IEEE Control Systems Letters, 2023.

[71] John R Silvester. Determinants of block matrices. The Mathematical Gazette, 84(501):460–
467, 2000.

[72] Navjot Singh, Deepesh Data, Jemin George, and Suhas Diggavi. Sparq-sgd: Event-
triggered and compressed communication in decentralized stochastic optimization. arXiv
preprint arXiv:1910.14280, 2019.

103

[73] Yanfei Song and Weisheng Chen. Finite-time convergent distributed consensus optimisa-
tion over networks. IET Control Theory & Applications, 10(11):1314–1318, 2016.

[74] Weijie Su, Stephen Boyd, and Emmanuel Candes. A differential equation for modeling nes-
terov’s accelerated gradient method: theory and insights. Advances in neural information
processing systems, 27, 2014.

[75] Weijie Su, Stephen Boyd, and Emmanuel J Candes. A differential equation for modeling
nesterov’s accelerated gradient method: Theory and insights. Journal of Machine Learning
Research, 17(153):1–43, 2016.

[76] Rasul Tutunov, Haitham Bou-Ammar, and Ali Jadbabaie. Distributed newton method
for large-scale consensus optimization. IEEE Transactions on Automatic Control,
64(10):3983–3994, 2019.

[77] Eugene E Tyrtyshnikov. A Brief Introduction to Numerical Analysis. Springer Science &
Business Media, 2012.

[78] Jing Wang and Nicola Elia. Control approach to distributed optimization. In 2010 48th
Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages
557–561. IEEE, 2010.

[79] Long Wang and Feng Xiao. Finite-time consensus problems for networks of dynamic
agents. IEEE Transactions on Automatic Control, 55(4):950–955, 2010.

[80] Long Wang and Feng Xiao. Finite-time consensus problems for networks of dynamic
agents. IEEE Transactions on Automatic Control, 55(4):950–955, 2010.

[81] Xiangyu Wang and Guodong Wang. Distributed finite-time optimisation algorithm for
second-order multi-agent systems subject to mismatched disturbances. IET Control Theory
& Applications, 14(18):2977–2988, 2020.

[82] Xiangyu Wang, Guodong Wang, and Shihua Li. Distributed finite-time optimization for
disturbed second-order multiagent systems. IEEE Transactions on Cybernetics, 2020.

[83] Xiangyu Wang, Guodong Wang, and Shihua Li. Distributed finite-time optimization for
integrator chain multiagent systems with disturbances. IEEE Transactions on Automatic
Control, 65(12):5296–5311, 2020.

[84] Xiangyu Wang, Wei Xing Zheng, and Guodong Wang. Distributed finite-time optimiza-
tion of second-order multiagent systems with unknown velocities and disturbances. IEEE
Transactions on Neural Networks and Learning Systems, 2022.

104

[85] Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over
nonconvex landscapes. The Journal of Machine Learning Research, 21(1):9047–9076,
2020.

[86] David Williams. Probability with martingales. Cambridge university press, 1991.

[87] Zizhen Wu, Zhongkui Li, and Junzhi Yu. Designing zero-gradient-sum protocols for finite-
time distributed optimization problem. IEEE Transactions on Systems, Man, and Cyber-
netics: Systems, 2021.

[88] Yijing Xie and Zongli Lin. Global optimal consensus for multi-agent systems with bounded
controls. Systems & Control Letters, 102:104–111, 2017.

[89] Tao Yang, Xinlei Yi, Junfeng Wu, Ye Yuan, Di Wu, Ziyang Meng, Yiguang Hong, Hong
Wang, Zongli Lin, and Karl H Johansson. A survey of distributed optimization. Annual
Reviews in Control, 47:278–305, 2019.

[90] Hao Yu and Tongwen Chen. A new zeno-free event-triggered scheme for robust distributed
optimal coordination. Automatica, 129:109639, 2021.

[91] Ye Yuan, Mu Li, Jun Liu, and Claire Tomlin. On the powerball method: Variants of descent
methods for accelerated optimization. IEEE Control Systems Letters, 3(3):601–606, 2019.

[92] Ye Yuan, Mu Li, and Claire Tomlin. On the powerball method. In 2017 29th Chinese
Control And Decision Conference (CCDC), pages 86–91. IEEE, 2017.

[93] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

[94] Huan Zhang, Cho-Jui Hsieh, and Venkatesh Akella. Hogwild++: A new mechanism for
decentralized asynchronous stochastic gradient descent. In 2016 IEEE 16th International
Conference on Data Mining (ICDM), pages 629–638. IEEE, 2016.

[95] Jingzhao Zhang, Aryan Mokhtari, Suvrit Sra, and Ali Jadbabaie. Direct runge-kutta dis-
cretization achieves acceleration. Advances in neural information processing systems, 31,
2018.

[96] Jingzhao Zhang, Aryan Mokhtari, Suvrit Sra, and Ali Jadbabaie. Direct runge-kutta dis-
cretization achieves acceleration. Advances in neural information processing systems, 31,
2018.

105

[97] Jingzhao Zhang, César A Uribe, Aryan Mokhtari, and Ali Jadbabaie. Achieving acceler-
ation in distributed optimization via direct discretization of the heavy-ball ode. In 2019
American Control Conference (ACC), pages 3408–3413. IEEE, 2019.

[98] Mengyao Zhang, Xinzhi Liu, and Jun Liu. Convergence analysis of a continuous-time
distributed gradient descent algorithm. IEEE Control Systems Letters, 5(4):1339–1344,
2020.

[99] Fangyu Zou, Li Shen, Zequn Jie, Weizhong Zhang, and Wei Liu. A sufficient condition
for convergences of adam and rmsprop. In Proceedings of the IEEE/CVF Conference on
computer vision and pattern recognition, pages 11127–11135, 2019.

106

APPENDICES

107

Appendix A

Picard’s Theorem

Consider an nonautonomous system of ODE

ẋ = f (t,x), (A.1)

where f : D → Rn and D is a subset of R×Rn. For any (t0,x0) ∈ D, system (A.1) and the initial
condition together define the initial value problem (IVP):

ẋ = f (t,x), x(t0) = x0. (A.2)

A function x : J →Rn is said to be a solution of the IVP on an interval J containing t0 if x(t0) = x0
and ẋ = f (x(t)) for all t ∈ J.

Definition 6. Let D be a subset of Rn. A function is said to be

• Lipschitz continuous (or Lipschitz) in x on D, if there exists a constant L > 0 such that

| f (t,x)− f (t,y)| ≤ L|x− y| (A.3)

for all (t,x) and (t,y) in D;

• locally Lipschitz in x at (t0,x0) ∈ D, if there exists a neighborhood U of x0 such that f is
Lipschitz continuous in x on U;

• locally Lipschitz in x on D, if f is locally Lipschitz in x at every (t0,x0) ∈ D;

• globally Lipschitz in x, if f is Lipschitz in x on D = Rn.

108

Local Lipschitz continuity of a function can be checked by the followng proposition.

Proposition 5. Let D ⊂R×Rn be an open set and f (t,x) be a function defined on D and valued
in Rn. Suppose that ∂ f

∂x exists and is continuous on D. Then f is locally Lipschitz in x on D.

The following theorem establishes that local Lipschitz continuity ensures a unique solution
to the IVP in a neighborhood of the initial point.

Theorem 13. (Picard’s Theorem) Let D ⊂ R×Rn be an open set. Suppose that f is continuous
on D and Lipschitz continuous in x on D. For any (t0,x0) ∈ D, there exists a,b > 0 such that the
set

S = {(t,x) ∈ R×Rn : |t − t0| ≤ a,∥x− x0∥ ≤ b} (A.4)

is contained in D. Define

M = max
(t,x)∈S

∥ f (t,x)∥, c = min
(

a,
b
M

)
. (A.5)

Then the initial value problem (A.2) has a unique solution defined on the interval [t0 − c, t0 + c].

Without the Lipschitz condition, Picard’s theorem cannot guarantee the uniqueness of the
solution. Peano’s theorem states that if f (t,x) in (A.2) is continuous in a neighborhood of the
initial point, then at least one solution exists locally around the initial point.

Theorem 14. (Peano’s Existence Theorem) Let D ⊂ R×Rn be an open set. Suppose that f :
D →Rn is continuous on D. For any (t0,x0) ∈ D, let a > 0 and b > 0 be chosen such that the set

S = {(t,x) ∈ R×Rn : |t − t0| ≤ a,∥x− x0∥ ≤ b} (A.6)

is contained in D. Define

M = max
t,x

∈ S∥ f (t,x)∥, c = min
(

a,
b
M

)
. (A.7)

Then the initial value problem (A.2) has a solution defined on the interval [t0 − c, t0 + c].

Example. (Leaky Bucket) Consider the leaky bucket described by

ḣ(t) =−a ·
√

h(t), h(t0) = 0, (A.8)

109

where h(t) represents the height of the water in the bucket at any time t, and a is a positive
constant that depends on factors such as the size of the hole in the bucket. The initial value
means that the bucket is empty at time t0.

It can be verified that

h(t) =

{
a2

4 (t −α)2, t < α ≤ t0,
0, t > α,

(A.9)

is a solution to the IVP for any α ∈ (−∞, t0]. Because −a
√

h is not locally Lipschitz at h = 0,
Picard’s theorem does not hold in this context. As a result, the uniqueness of the solution to the
differential equation fails in this scenario.

110

Appendix B

Stability and LaSalle’s Invariance Principle

Consider an autonomous system of ODE

ẋ = f (x), (B.1)

where f : D →Rn and D is a subset of Rn. For any x0 ∈ D, system (B.1) and the initial condition
together define the initial value problem (IVP):

ẋ = f (x), x(0) = x0. (B.2)

A function x(·,x0) : J → Rn is said to be a solution of the IVP on an interval J containing t0 if it
meets (B.1) for all t ∈ J. In this chapter, we assume the solution is unique.

Suppose that there exists some x̄ ∈ D such that f (x̄) = 0, then x̄ is called the equilibrium
point (or equilibrium) of (B.1). We can always use a change of variable to transform a non-zero
equilibrium point to a zero one. Therefore, we can assume that the origin is an equilibrium point
without loss of generality.

Definition 7. The equilibrium point x = 0 of (B.2) is said to be

• stable, if for every ε > 0, there exists some δ > 0 such that

∥x0∥ ≤ δ =⇒ ∥x(t,x0)∥ ≤ ε (B.3)

for all t ≥ 0;

111

• asymptotically stable, if it is stable and there exists some ρ > 0 such that

∥x0∥ ≤ ρ =⇒ lim
t→∞

x(t,x0) = 0; (B.4)

• globally asymptotically stable, if it is stable and

lim
t→∞

x(t,x0) = 0 (B.5)

for all x0 ∈ Rn;

• unstable, if it is not stable.

A reliable technique for checking stability is through the Lyapunov stability theorem.

Theorem 15. (Lyapunov Stability Theorem for Autonomous System) Let D ⊂ Rn be open and
contain the origin. Suppose that x = 0 be an equilibrium point of (B.2). Let V : D → R be
continuously differentiable and positive definite on D.

• If V̇ is negative semidefinite, then x = 0 is stable.

• If V̇ is negative definite, then x = 0 is asymptotically stable.

• If V̇ is negative definite and V is radially unbounded (with D = Rn), then x = 0 is globally
asymptotically stable.

A set Ω ⊂ D is said to be positively invariant if all solutions x(t,x0) starting from Ω stay in
Ω for all t ≥ 0. Similarly, a set Ω ⊂ D is said to be invariant if all solutions x(t,x0) starting from
Ω stay in Ω for all t.

Another approach for checking stability is the Barbashin–Krasovskii-LaSalle Theorem, where
LaSalle’s Invariance Principle us used to check the asymptotic tendency.

Theorem 16. (LaSalle’s Invariance Principle) Suppose that V : D →R is continuously differen-
tiable. Let Ω ⊂ D be a positively invariant compact set of (B.2). If V̇ (x)≤ 0 for all x ∈ Ω. Then,
for any x0 ∈ Ω, we have that everey solution starting in Ω approaches the largest invariant set in

E = {x ∈ Ω : V̇ = 0}. (B.6)

Theorem 17. (Barbashin–Krasovskii-LaSalle Theorem) Let D ⊂ Rn be open and contain the
origin. Suppose that x = 0 be an equilibrium point of (B.2). Let V : D → R be continuously

112

differentiable and positive definite on D. Suppose that V̇ (x) ≤ 0 for all x ∈ D. Let S = {x ∈
D : V̇ = 0}. Suppose that no solution can stay identically in S except the trivial solution x = 0.
Then x = 0 is asymptotically stable. If the above conditions hold with D = Rn and V is radially
unbounded, then x = 0 is globally asymptotically stable.

Remark 15. In 2005, the Invariance Principle presented in [3, Theorem 2] extends the Barbashin-
Krasovski-LaSalle Theorem to a class of non-autonomous Systems.

113

	Examining Committee Membership
	Author's Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Background
	Motivation Example
	Stochastic Gradient-based Optimization Methods
	Distributed Gradient-based Optimization Methods
	Organization of the Thesis

	On Almost Sure Convergence Rates of Adaptive Stochastic Gradient Methods
	Nonconvergence of Adaptive Methods
	Motivation Example
	Modification on Adaptive Methods

	Assumptions
	Last-iterate Convergence Analysis
	Almost Sure Convergence Rate Analysis
	Summary

	On Almost Sure Convergence of Hogwild! Algorithm
	The Hogwild! Algorithm
	Convergence with Probability One
	Summary

	Continuous-time Distributed Convex Optimization via a Gradient-based Algorithm
	Description of the Algorithm
	Assumptions
	Main Convergence Results
	Convergence Analysis under Strongly Convex Cost Function
	Convergence Analysis under Strictly Convex Cost Function

	Simulations
	Strongly Convex Case
	Strictly Convex Case

	Summary

	Powered Algorithms for Finite-time and Fixed-time Distributed Optimization
	Finite-time PI Algorithm
	Convergence Analysis

	Fixed-time PI Algorithm
	Convergence Analysis

	Simulations
	Strictly Convex Case
	Strongly Convex Case

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	References
	APPENDICES
	Picard's Theorem
	Stability and LaSalleâ•Žs Invariance Principle

