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Abstract

Optimization is a fundamental mathematical discipline focused on finding the best solution
from a set of feasible choices. It is vital in various applications, including engineering, eco-
nomics, data science, and beyond. Stochastic optimization and distributed optimization are cru-
cial paradigms in the optimization field. Stochastic optimization deals with uncertainty and vari-
ability in problem parameters, providing a framework for decision-making under probabilistic
conditions. On the other hand, distributed optimization tackles large-scale problems by harness-
ing the collective power of multiple agents or nodes, each with local information and local com-
munication capabilities. This thesis aims to modify and analyze the existing stochastic methods
and develop the algorithms and theory to solve the unconstrained distributed optimization prob-
lem.

For stochastic adaptive gradient-based methods, including Root Mean Square Propagation
(RMSprop), Adaptive Delta (Adadelta), Adaptive Moment Estimation (Adam), Adaptive Gradi-
ent (AdaGrad), Nesterov-Accelerated Adaptive Moment Estimation (Nadam), and Accumulate-
Squared Moving Average Gradient (AMSgrad), which are popular stochastic optimization meth-
ods commonly used in machine learning and deep learning, the Chapter 2 provides a concise and
rigorous proof of the almost sure convergence guarantees towards a critical point in the context
of smooth and non-convex objective functions. To the best of our knowledge, this work of-
fers the first almost sure convergence rates for these stochastic adaptive gradient-based methods.
For non-convex objective functions, we show that a weighted average of the squared gradient
norms in each aforementioned method achieves a unified convergence rate of o(1/ t%_e) for all
0 (0, %) Moreover, for strongly convex objective functions, the convergence rates for RM-
Sprop and Adadelta can be further improved to o(1/¢'~9) for all & € (0,3). These rates are
arbitrarily close to their optimal convergence rates possible.

As a locking-free parallel stochastic gradient descent algorithm, Hogwild! algorithm is com-
monly used for training large-scale machine learning models. In Chapter 3, we will provide an
almost sure convergence rates analysis for Hogwild! algorithm under different assumptions on
the loss function. We first prove its almost sure convergence rate on strongly convex function,
which matches the optimal convergence rate of the classic stochastic gradient descent (SGD)
method to an arbitrarily small factor. For non-convex loss function, a weighted average of the
squared gradient, as well as the last iterations of the algorithm converges to zero almost surely.
We also provide a last-iterate almost sure convergence rate analysis for this method on general
convex smooth functions.

Another aspect of the research addresses the convergence rate analysis of the gradient-based
distributed optimization algorithms, which have been shown to achieve computational efficiency
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and rapid convergence while requiring weaker assumptions. We first propose a novel gradient-
based proportional-integral (PI) algorithm in Chapter 4, and prove that its convergence rate
matches that of the centralized gradient descent method under the strong convexity assump-
tion. We then relax this assumption and discuss the local linear convergence of its virtual state
for strictly convex cost functions. In Chapter 5, we propose the powered proportional-integral
(PI) algorithm and prove its convergence in finite time under the assumption of strict convex-
ity. Then, we discuss the fixed-time convergence of its virtual state for strongly convex cost
functions. Finally, we demonstrate the practicality of the distributed algorithms proposed in this
thesis through simulation results.
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Chapter 1

Introduction

1.1 Background

This thesis aims to formulate and theoretically analyze algorithms designed for solving uncon-
strained optimization problems. The overarching goal is to optimally minimize the objective
function through distributed or stochastic approaches. Emphasis is placed on the enhancement
of existing algorithms and a rigorous analysis of their convergence behaviors for objective func-
tions under various non-convex and convex conditions.

One of the main challenges in solving machine learning problems is the involvement of large
datasets. Stochastic gradient-based methods, by their nature, update the model parameters using
only a small subset (or batch) of the entire dataset at a time. These approaches are far more
efficient than traditional methods that require the entire dataset for each update. The Stochastic
Gradient Descent (SGD) method is the simplest stochastic method for searching for a minimizer.
Stochastic adaptive gradient-based methods and Hogwild! algorithm are both variants of SGD.
The former can dynamically adjust the learning rate during training, which leads to more effi-
cient training and faster convergence. The latter is not only highly scalable, but also allows all
processors access to shared memory and implement SGD without any locking.

Another challenge in machine learning area is the sparseness of dataset. In many real-world
datasets, especially in fields like natural language processing, the data can be highly sparse.
Stochastic gradient-based methods, for example Adaptive Stochastic Gradient (ASG) methods
and Hogwild! algorithm, are particularly effective when dealing with sparse data.

Discussing distributed optimization in machine learning is crucial due to its relevance in han-
dling large-scale data, improving computational efficiency, ensuring scalability, and addressing
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challenges in privacy and data security. On the one hand, datasets are often too large to be
processed on a single machine in fields like image and video processing, natural language pro-
cessing, and large-scale simulations. On the other hand, training complex models, such as deep
neural networks, requires significant computational resources. Distributed systems allows for
handling such large datasets by dividing the workload across multiple machines, and it provides
the necessary computational power by harnessing the capabilities of multiple machines, leading
to faster training times and more efficient use of resources. Distributed approaches are also in-
herently scalable. As the size of the data or the complexity of the model increases, more nodes
can be added to the system to maintain or improve the performance. In real-world, data might
be collected and processed in distributed environments. Training models on diverse datasets dis-
tributed across multiple nodes can potentially lead to more robust and generalized models, as the
model is exposed to a wider variety of data samples during training. In some cases, data cannot
be centralized due to privacy concerns or regulatory restrictions. Distributed learning allows data
to remain on local nodes while still contributing to the learning of a global model.

Remark 1. As shown in Figure 1.1, Hogwild! and the PI algorithm are distributed algorithms
that cater to different system models. The Hogwild! model resembles centralized systems, fea-
turing a server (or master) with a shared memory x, with each processor acting like a computer
(or slave). The key difference lies in the fact that processors in Hogwild! bypass the need for
a central synchronization point, allowing them to work independently and without waiting for
each other. On the other hand, the PI algorithm is used in a system without shared memory or a
central server (master). This setup involves different nodes sharing hardware, software, or data
and communicating through a shared network without relying on a single point of control for
synchronization.

1.2 Motivation Example

A motivation example is to solve a deep learning problem for image classification with convolu-
tional Neural Networks (CNNs) Scenario. The task is to develop a CNN for classifying images
into various categories, such as distinguishing between different types of animals in a dataset,
and it is usually converted to an unconstrained minimization problem. This is a common prob-
lem in computer vision with applications in areas like automated image tagging, surveillance,
and medical imaging.

Consider the simplest image classification: binary image classification involving single data
point (x',y(x")), where x’ is a single feature input of the image and y(x’) is a binary true label
vector. The c-th element of y(x'), y.(x), denoted by 1 if the class label c is the correct classifica-
tion, and 0 otherwise. In other words, y(x’) is [0, 1] if the data point belongs to class 1, and y(x')

2
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Figure 1.1: The left one is the distributed model for Hogwild! algorithm where each circle
represents a processor, and all of them have access to the shared memory x. The right one is the
distributed model for PI algorithm where each circle represents a processor, and they are allowed
to communicate with their neighborhood.

is [1,0] if it belongs to class 2. Let $(x’,x) be the predicted probability distribution vector across
the classes, where x is the parameter to be determined, the c-th element of §, denoted by . (x,x)
is the predicted probability of class c.

Our objective to find x such that the difference between the predicted probability vector and
true probability vector are minimized, which can be mathematically formulated by

minL(y, ), (1.1)
X

where L represents some measurement quantifying the difference between y and y. A commonly
used measurement is the cross-entropy loss [7,26,68] of the distribution ¥ relative to a distribution
v, and our goal is to optimize

A

minL(y(x), $(x)) = —y1(x)log (1 (x)) —y2(x).log($2(x)) (1.2)

X

In practice, image datasets are typically vast in scale. For instance, ImageNet comprises
over 14 million images, while ObjectNet contains upwards of 50 thousand images. We now
consider binary image classification involving multiple data points, and extend this problem to a



distributed optimization problem, where each machine (node or processor) has access to a small
batch of the large dataset, and only local communication and local computation are allowed.
Each node computes gradients based on its subset of data, and these gradients are then combined
to update the global model parameters. The objective function in a distributed setting is typically
a summation of the local loss functions computed on each node, with an additional term to
ensure regularization or consensus among the nodes. In the context of image classification using
cross-entropy loss, the distributed optimization problem can be formulated as:

[I>

K

. ni

min Lgisgributed (x) Z — Ly (x)7 (1.3)
* - K

where Lgisiributed 18 the global loss function dependent on the model parameter x, K is the total

number of nodes in the distributed system, ny is the number of samples in the k-th node, Ly is the

local loss function for the k-th node, which is the cross-entropy loss function (1.2) for its subset
of data [16,49].

1.3 Stochastic Gradient-based Optimization Methods

Consider the unconstrained minimization problem

min f(x), (1.4)
xeR”
where f : R" — R. Here, f may arise from optimizing an expected risk of the form f(x) =
E(f(x;&)), where & is a source of randomness indicating a sample (or a set of samples), or an
empirical risk of the form f(x) = 1Y | f(x;&;), where {&}/_, are realizations of &. For all
x € R", we assume that V f(x; &) is an unbiased estimator of the actual gradient Vf(x), i.e.,

Vf(x) =E(Vf(x:8)). (1.5)

The SGD is the simplest stochastic method for searching for a minimizer.

As a variant of stochastic gradient descent (SGD), Hogwild! combines the simplicity of
SGD with accelerated learning on multi-core processors. Hogwild! (Higher-Order, Gradient-
Wise learning for the Wild) is designed as a parallelize stochastic gradient descent method for
training machine learning models. Introduced by Niu et al. [63], this distributed and parallel
optimization algorithm removes the constraints of traditional locking mechanisms in SGD, en-
abling multiple CPU cores to update model parameters asynchronously, and scaling up model



training in data-intensive applications efficiently. In the next few years, numerous variations
and extensions of Hogwild! algorithm has been proposed. As a variant of Hogwild! algorithm,
Hogwild++ [94] extends the original algorithm by introducing decentralized averaging mecha-
nisms to improve convergence while retaining the asynchrony. It addresses challenges related to
communication overhead as well as non-convex optimization tasks. SPIDER [21] is an exten-
sion of HOGWILD! for non-convex optimization tasks. It combines stochastic gradient methods
with variance-reduction techniques for improved efficiency. BUCKWILD! [15] is designed and
analyzed as an asynchronous SGD algorithm, that uses lower-precision arithmetic. It has been
demonstrated experimentally that BUCKWILD! can achieve speedups of up to 2.3 times over
HOGWILD!-based algorithms for logistic regression.

Another variant of SGD, stochastic adaptive gradient-based methods can adaptively tunes
learning rates for each parameter based on historical gradients. They help accelerate conver-
gence, handle sparse data more effectively, and often lead to better optimization performance for
complex models like deep neural networks and large-scale data analytics [38].

The first adaptive optimization algorithm, AdaGrad, was introduced by Duchi et al. in
2011 [19]. This algorithm proves to be particularly effective for handling sparse data. Over
the next two years, additional methods such as RMSprop [27] and Adadelta [93] were proposed.
RMSprop is an algorithm that rescales the step size using a weighted moving average of the
squared gradient. On the other hand, Adadelta is an extension of RMSprop, designed to tackle the
diminishing learning rate problem by utilizing a running average of past updates. Furthermore,
Adadelta removes the necessity of setting an initial learning rate. In 2014, the Adam method
and Adamax [39] were introduced, combining the strengths of both AdaGrad and RMSprop.
Adam quickly gained popularity as a preferred choice for optimizing deep-learning models. Its
widespread adoption can be attributed to its robustness, rapid convergence, and user-friendly
default parameter settings. The same paper also proposed ‘Adamax,” a variant of Adam that re-
lies on the infinity norm. In [64], however, a rigorous proof was presented, demonstrating that
there exists a stochastic optimization problem for which Adam fails to converge to the optimal
solution. To address this limitation, AMSgrad was introduced in [64]. A study on the Nesterov-
accelerated Adaptive Moment Estimation (Nadam) method is documented in [ 1 8], where the first
momentum of Adam is replaced with the momentum used in Nesterov’s Accelerated Gradient
method (NAG).

For various adaptive optimization methods, some papers have proven the convergence to crit-
ical points in different optimization settings. The first convergence guarantees for adaptive opti-
mization methods might be presented in [14]. This work provides convergence rates for the gra-
dients of deterministic RMSprop and Adam algorithms, where the full gradient is calculated in
each iteration. Additionally, the paper offers a convergence rate for stochastic RMSprop, assum-
ing that all elements in gradients share the same sign. For large-scale non-convex stochastic op-
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timization, [99] demonstrated the global decays of the gradients in stochastic Adam, RMSprop,
and weighted AdaGrad with exponential moving average momentum (weighted AdaEMA) with
a probability less than one. This paper also provides the convergence rate. In the non-convex
setting, [30] established that the averages of the gradient squares in SHB, Adam, AMSgrad, Ada-
Grad, Adaform, and Adabound converge in expectation, and it provides the convergence rate by
analyzing the Jacobian matrices. Conducting a locally exponential convergence analysis in batch
mode for a deterministic fixed training set, the paper [9] presents insights into the performance
of Adam methods. Moreover, the papers [42] and [85] consider the AdaGrad method as a variant
of SGD with adaptive step size and provide a convergence guarantee for the minimum history
gradient norm. It is proved in [ | 7] that the squared norms of the gradients of Adam and AdaGrad
share the same convergence rate O(In(N)/+/N) in expectation.

The research paper [4] introduces some modifications to the Adam optimization method.
These enhancements incorporate the Robbins-Monro Algorithm (RMA), ensuring the modified
Adam method’s almost sure convergence to the critical point of the non-convex objective func-
tion. Addtionally, some methods of proving the almost convergence rates of SGD are proposed

in [45].

Motivated by the above methods, we will apply RMA in proving the last-iterate almost
sure convergences of stochastic adaptive gradient-based methods, including RMSprop, Adadelta,
Adam, Nadam, and AMSgrad, with a more concise and accurate proof, whereas the proof in [4]
has some mistakes.

To the best of our knowledge, the work to be presented in this thesis gives the first almost sure
convergence rates for these stochastic adaptive gradient-based methods and Hogwild! algorithm.
Using the results from [45], we show that a weighted average of the squared gradient norms
for non-convex objective function achieves a unified o(1 /t%_e) convergence rate for all 6 €
(0, %) For strongly convex objective functions, the convergence rates of RMSprop, Adadelta and
Hogwild! can be improved to o(1/¢!~9) for all 6 € (0,3), which are arbitrarily close to their
optimal convergence rates possible.

1.4 Distributed Gradient-based Optimization Methods

The overall objective is to find the value of x that minimizes the average of a collection of ob-
jective functions f; through local communication with neighbors and local computation. Mathe-



matically, we express this problem as follows:

min f(x) 2 Y. fix), (1.6)

xeRM

Here, the local communication is defined by an undirected communication graph. The coordina-
tion of multi-agent dynamic systems in networks has gained significant attention recently, finding
applications in various fields such as flocking of social insects, formation control, robotics, con-
trol engineering, economics, transportation, and social networks [57, 58,79, 89].

Consider a network consisting of n agents V = {vy,...,v,}, each of which has a convex ob-
jective function f; : R™ — R to optimize. Denote by X = {1,2,...,n} the set of indices of the
agents. A weight matrix W is a symmetric matrix such that w;; > 0 for all i, j € X, and w;; = 0
for i € X. We say that a set (v;,v;) is an edge of the graph if and only if w;; > 0, and we de-
note by E = {(v;,v;)|w;; > 0} the collection of all edges. The agents communicate through the
corresponding weighted undirected communication graph G = (V,E,W).

Definition 1. Given a weighted undirected communication graph G = (V,E,W), define the graph
Laplacian matrix L = [I;;] of G by

n . P
lij = {Zkz.l',k#iwlk7 .] l.7 (17)

Definition 2. An undirected graph is connected if there is a path between every pair of agents,
where a path is a sequence of consecutive edges.

Definition 3. A network is said to reach consensus if all agents have the same value.

The overall network objective is to find the x* which satisfies

F(x*) = min £(x) (1.8)
xeRm

in a distributed manner, that is to say, an agent v; € V is allowed to communicate with its neigh-

borhood N; = {v; € V|(v;,v;) € E} only.

Continuous-time optimization is important because real-world processes, such as physical
systems, economic processes, and financial markets, evolve continuously over time. These pro-
cesses are often described by differential equations that cannot be easily solved analytically.
Continuous-time optimization provides a powerful tool for finding optimal solutions in these
complex systems. Furthermore, continuous-time distributed optimization algorithms can offer a
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dynamic perspective and provide physical insights that complement their discrete-time counter-
parts [53,74]. In [95,97], the authors accelerate the Heavy-ball method and Nesterov’s gradient
method by directly discretizing an Ordinary Differntial Equation (ODE) related to their contin-
uous limits. This approach allows for leveraging the benefits of continuous-time optimization in
the context of discrete-time algorithms.

Among the distributed optimization algorithms, continuous-time ones are often easier to un-
derstand and analyze, and many of them exhibit asymptotic behavior or linear convergence. The
continuous-time distributed gradient descent method [98] is perhaps the simplest continuous-
time distributed optimization algorithm, which is motivated by the discrete-time version and
shares the same convergence rate with the discrete-time distributed and centralized gradient
descent method. Motivated by the feedback control mechanism, Wang and Elia designed the
gradient-based PI control strategy in [78]. Its asymptotic convergence for convex local cost func-
tions [25] and linear convergence for strongly convex local cost functions [37] were discussed.
Building on Kia et al.’s PI framework [37], Guo et al. investigated the distributed optimiza-
tion problem of double-integrator multi-agent systems with unmatched constant disturbances
and time-triggered communication [28]. Lu and Tang proposed the zero-gradient-sum (ZGS)
algorithm, where the sum of the local gradients is always zero, and they proved its exponen-
tial stability for strongly convex cases [47]. Over the past few years, it has been shown that
the ZGS algorithms can also solve the unconstrained optimization problem subject to switch-
ing topology and time-varying communication delays [29,44]. However, these ZGS algorithms
rely on the inverse of local Hessian matrices and are resource-intensive [29,44,47]. Despite the
convergence guarantees of all these algorithms, there is no assurance that they can solve the dis-
tributed optimization problem in finite time. In order to improve traditional processing methods,
stochastic and event-triggered algorithms have been investigated to achieve communication and
computation efficiency [35,48,72,90].

Various finite-time and fixed-time continuous-time distributed algorithms have been pro-
posed [22,34,59,81,83,84]. Finite-time algorithms depend on the initial value, while fixed-time
algorithms have a predetermined settling time. Some distributed finite-time optimization algo-
rithms have been developed based on the assumption that all local cost functions are strongly
convex quadratic functions [22, 59, 81, 84]. These algorithms can handle mismatched distur-
bances or uncertain information. Feng and Hu proposed a finite-time distributed strongly convex
optimization algorithm that incorporates disturbances using the inverse of Hessian matrices of
the objective functions [23]. Wang et al. presented a distributed optimal signal generator that
solves finite-time optimization problems when the local cost functions are quadratic-like and the
overall cost function is strongly convex [83]. Importantly, this algorithm only relies on the gra-
dients of local objective functions and does not require convexity of the global cost functions.
Garg et al. developed two fixed-time distributed algorithms for time-varying topologies: one



Methods Convergence Rate Global cost function Local cost functions Computation

[78] asymptotic compact solution set convex gradients
&convex

[98] exponential U u-strongly convex u-strongly convex  Hessian matrices

[47] exponential < u  u-strongly convex u-strongly convex the inverse of
Hessian matrices

[37] exponential < p-strongly convex u-strongly convex  gradients

Th9 exponential U u-strongly convex  u-strongly convex gradients

Th 10 exponential strictly convex convex gradients

Table 1.1: Theoretical comparisons with existing results in the literature

based on third-order derivatives for strictly convex global cost functions, and another based on
Hessians for strongly convex global cost functions [24]. Song and Chen combined the ZSG al-
gorithm from [47] and the powerball method from [97] to propose a finite-time ZSG algorithm
for strongly convex objective functions [73]. Wu et al. investigated a distributed algorithm for
finite-time and fixed-time optimization problems based on the ZGS framework [87]. Assum-
ing all local cost functions are strongly convex, Shi et al. proposed a finite-time convergent
distributed approach for time-varying distributed optimization [70]. In [46], a predefined-time
multi-agent algorithm for solving multi-objective optimization is presented, where predefined-
time optimization is a method of optimization capable of reaching a state very near to an optimal
solution within a specified time frame. In summary, these algorithms can be computationally
intensive or rely on strong assumptions.

In the Table 1.1, 1.2, we summarize the aforementioned results on finite-time and fixed-time
continuous-time distributed optimization algorithms. It is observed that the algorithms presented
in this thesis have lower computational requirements and are based on more lenient assump-
tions. The computational complexity of these algorithms primarily relies on the gradients of
the objective functions. We rigorously prove the fixed-time convergence of the first proposed
algorithm under the assumption of strong convexity. Additionally, we develop a decentralized
control framework to solve the finite-time optimization problem under the assumption of weak
convexity.

1.5 Organization of the Thesis

The primary goal of this thesis is to contribute to theory and algorithms in the fields of stochastic
and distributed optimization problems. The rest of the thesis is organized as follows.



Methods Convergence Global cost function  Local cost functions  Computation

[59] finite time strongly convex & strongly convex & gradients
quadratic quadratic
[73] finite time strongly convex strongly convex the inverse of
Hessian matrices
[34] finite time strictly convex strictly convex the inverse of

Hessian matrices&
positive Hessians

[82,83] finite time strongly convex quadratic-like gradients
[24] fixed time strictly convex convex third-order derivatives
of cost functions
fixed time strongly convex convex Hessian matrices
[34] finite time strongly convex strongly convex Hessian matrices
quadratic quadratic
[87] finite time local strongly convex local strongly convex the inverse of
Hessian matrices
fixed time strongly convex & strongly convex & the inverse of
quadratic quadratic Hessian matrices
Th 11 fixed time strongly convex strongly convex gradients
Th 12 finite time strictly convex convex gradients

Table 1.2: Comparison of main results with other algorithms

Chapter 2 presents a detailed proof of the almost sure convergence for popular stochastic
adaptive gradient methods like RMSprop, Adadelta, Adam, Nadam, Adamax,and AMSgrad in
machine and deep learning. This chapter marks the first to offer almost sure convergence rates
for these methods, demonstrating a unified convergence rate of o(1/ t%_e) for non-convex objec-
tives and improved rates for strongly convex objectives. These rates are arbitrarily close to their
optimal convergence rates possible.

In Chapter 3, the Hogwild! algorithm, a parallel stochastic gradient descent method, is an-
alyzed for its almost sure convergence rates under various loss functions. We show its optimal
convergence rate for strongly convex functions and convergence rate to zero for non-convex loss
functions, including a detailed analysis for general convex functions.

Chapter 4 introduces a novel gradient-based PI algorithm, showing its convergence rate under
strong convexity matches centralized gradient descent. We also explore its local linear conver-
gence for strictly convex functions.
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Chapter 5 discusses the powered PI algorithm, proving finite-time convergence for strictly
convex functions and fixed-time convergence for strongly convex functions, supported by prac-
tical simulation results.

The final Chapter summarizes the main contributions and bring up some related future re-
search directions.
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Chapter 2

On Almost Sure Convergence Rates of
Adaptive Stochastic Gradient Methods

We have seen the merits and developments of ASG methods in Chapter 1, and there are some
open questions: (1) Adam with fixed learning rate has been proved to fail to converge to the
optimal solution [64]. How could it be modified? Will this flaw influences other ASG methods?
(2) the last-iterate almost sure convergence analysis on Adam has been given [4]. Do the last-
iterates of other ASG methods converge as well? (3) what is the almost sure convergence rate of
these methods?

This chapter points out the existing flaws on the widely-used stochastic adaptive gradient
techniques such as RMSprop, Adadelta, Adam, Nadam, and AMSgrad, and it is confirmed by
simulations. A unified modification to these methods are given Motivated by the almost sure con-
vergence analysis on Adam [4], we construct the limiting ODE of the above-mentioned methods,
analyze their stability, and present last-iterate almost sure convergence analysis on non-convex
smooth functions. Using the conclusions from [45], we provide a unified almost sure conver-
gence rate o(1/ t%’g) (¢ € (0,1/2)) for non-convex cost functions, and offer enhanced rates
o(1/t'=€) e € (0,1) for strongly convex objective functions.

2.1 Nonconvergence of Adaptive Methods

This section provides an illustrative example where some ASG methods with constant parameters
do not converge toward the critical point. To address this issue, we propose a unified modification
to these methods, resulting in convergence towards the critical point in this case.

12



2.1.1 Motivation Example

Consider the stochastic optimization problem in [64, Theorem 3], the Adam method defined in
Algorithm 1 with constant o; and ; fails to converge to the optimal solution. In this case, the dra-
matic vibration of v;, m, causes them flawed estimations on the first and second raw moments, and
E(x;+1 —x;) might have the same direction as the expected gradient E(—Vf(x:;&)) = =V f(x),
preventing x; from approaching the optimal solution. As there is no critical point in this exam-
ple, we propose a different stochastic optimization problem such that some adaptive methods
with constant parameters, including Adam method, fail to converge towards the critical point if
o, and B are constant.

Example 1. Construct a strongly convex optimization problem

5x*+9x, with probability 0.1,

8 2.1
f(x:8) {—%xz—x, with probability 0.9, —

and the corresponding stochastic gradient is

10x+9, with probability 0.1,

heE) 2.2
f(x€) {_x_1, with probability 0.9. >

The feasible set is set to be # = [—1, 1], i.e., if the x; derived in the iteration exceeds the interval,
we set x; € .Z to be the value closest to the iteration result. Noting that f(x) = E(f(x;§)) =
0.05x%, we know that the optimal solution occurs at the origin.

2.1.2 Modification on Adaptive Methods

Decreasing learning rate in stochastic algorithms is commonly employed. It allows the conver-
gence to an optimal or near-optimal solution, enhances the stability of the optimization process,
gradually balances the trade-off between exploration and exploitation, and so on. Except for the
requirement of a decreasing learning rate, the research paper by Barakat et al. [4] also requires
the increasing hyper-parameters ¢ and f3;, and it is proven that the sequence of x; in this context
of Adam converges to the optimal solution with probability 1.

Motivated by the above arguments, we apply a similar modification as [4] on other adaptive
methods, i.e., we assume the following holds

Assumption 1. The following requirements hold:

13



Algorithm 1: Adam({y };,{c}s,{B:}:,€)
Data: my =vy =0
forr=1,2,...do

g =Vfx-1:&);

my = omy—1 + (1 — 04) g3

Vt:Btvt 1+(1 —ﬁt> 2,

my = T (bias correction to m;);
=1 l

V= bias correction to v
r — 1— Hl lﬁ ( l)

Xt = Xp—1 — th,
end

Algorithm 2: RMSprop({ % }+,{B: }+,€)
Data: vo =0
forr=1,2,...do
8t = Vf(xt—ugt);
vi=Bvi—1+(1 _Bt> @2;

Xt = Xp—1 — %m,
end

1. Y, % =+oand ¥,y < +oofor some p > 2.

2. There exist a,b > 0 such that b(1 — €) < 4a, lim;_,c FT% = a and limy_c I_Ttﬁ’ =b.

or

Assumption 2. The following requirements hold:

L Y, % =+oand ¥, Y < +oo for some p > 2.

2. There exists b > 0 such that lim;_,c l;ﬁ t=bh.

For adaptive methods involving parameters o; and f3;, such as the Adam method, we assume
the validity of Assumption 1. In cases where only f; is present, such as RMSprop method, we
consider Assumption

14
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Figure 2.1: Simulations of Adam (left) and RMSprop (right) with different combinations of
constant or time-varying parameters.

Adam and RMSprop, of which the iterations are given in Algorithms 1 and 2, are conducted
with respect to different settings of the hyper-parameters oy, 3;, and ¥;, and the simulation results
are presented in Figure 2.1. When both ¢ and fB; are kept constant, the values of x; remain
around the ‘worst’ solution within the feasible set .# regardless of which step size is employed.
When o and fB; increase and the learning rate % maintains a constant, the variable x; exhibits a
damping effect, settling around the vicinity of the origin. It appears that using a smaller constant
step size results in smaller oscillations and lower frequency of vibrations. The green lines meet
Assumption 1. This combination demonstrates a more rapid and smoother convergence towards
the optimal solution, and the almost sure convergence of the Adam method agrees with the result
in [4]. In Sections 2.3 and 2.4, we will give the almost sure convergences guarantee and the
almost sure convergence rates for both the Adam and RMSprop methods.

Nadam method [ 18], of which the iterations are given in Algorithm 3, follows a comparable
argument. Figure 2.2 depicts a simulation of Example 1 conducted using the Nadam method.
When o; and f3; are constant, the trajectory converges to a neighbourhood of 1. When comparing
Figure 2.2 with the upper figure in Figrue 2.1, it is evident that the yellow and purple lines exhibit
less frequent damping. The green line, similar to the Adam method, will also be demonstrated to
converge almost surely in Sections 2.3 and 2.4.

The constant value B, also causes the non-convergence issue of the Adadelta method [93],
defined in Algorithm 4. Setting € to be 107, we conduct Adadelta method on Example 1. It is
observed from Figure 2.3 that x, remains around 1 for a constant ;. Increasing f3; and % = 1
result in heavy isolation of x;, and there is no tendency for the amplitude to decrease.
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Figure 2.2: Simulations of Nadam with different combinations of constant or time-varying pa-
rameters.

A=097=1

A =08,y =101 /t05
B=1-1/6054 =1
B=1- 1/ = 104108

xt

14 L L L 1 1
0 2 4 6 8 10

Times of iteration %10°

Figure 2.3: Simulations of Adadelta with different combinations of constant or time-varying
parameters.
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Algorithm 3: Nadam ({3 };,{ }+,{B}:,€)
Data: my =vy =0
forr=1,2,...do

g =Vfx-1:&);

my = omy—1 + (1 — 04) g3

Vi = Btvt—l + (1 —ﬁt)gt@;

A Oy (1—o4)g: . . .
m; = bias correction to m

S e T %
V; = —=— (bias correction to v;);

1_H,':1Bi

_ _ ny

A R e |
end

Algorithm 4: Adadelta({y; };,{B: }+,€)
Data: up=vy =0
forr=1,2,...do

8t = Vf(xt—l;ét);

ve =Bt + (1-Bg’%;

AX[ — A Ju;—1+€l

Joitel 8t
= Py + A (1—By);
X =X—1 — Y1Ax;
end

By decreasing the learning rate and increasing f3;, the purple line in Figure 2.3 converged to
the optimal solution with decreasing amplitude. This line’s almost sure convergence behaviour
will also be further explained in Sections 2.3 and 2.4.

Remark 2. Unlike other adaptive methods, the Adadelta and RMSprop optimization methods
display less smoothness and a considerable number of peaks in their plots. This disparity arises
from using the term g, in the iteration step of x; instead of 1, which represents a weighted aver-
age of historical stochastic gradients. Consequently, the former methods exhibit more stochas-
ticity, lacking the smoothing effect provided by historical gradients.

The AMSgrad method, which iterates according to Algorithm 5, is a modification of the

Adam method introduced in the paper [64]. In Figure 2.4, the red line appears smoother with
smaller amplitudes compared with the red line. Additionally, by modifying ¢, fB;, and ¥, the
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Algorithm 5: AMSgrad ({7}, {0}, {B:},€)
Data: my=vy =0
fort=1,2,...do
8t = Vf(xt—l;‘;:t);
my = 0y + (1 — O‘z)gt;
vi=Bvi1+(1 —ﬁt)gt®2§
my; = (bias correction to m;);

my

1 .
1-TT_, o
Vi = max(vt—lavt);
1y

Xt =X—1— V% o +el
end
’
a=p=009,7=0.001
0.8 a=p3=1-1/t"y=0.001
a=pf=1-1/t"%y=15/t8
o

-0.4 -
-0.6 -
-0.8 -
1 . . . . |

0 1 2 3 4 5
Times of iteration %108

Figure 2.4: Simulations of AMSgrad with different combinations of constant or time-varying
parameters.
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variable x; converges to the origin more rapidly and consistently. Its almost sure convergence
will be discussed in Sections 2.3 and 2.4 as well.

Algorithm 6: Adamax {7y };,{c}:,{B:}:,€)
Data: my=vo=0
forr=1,2,...do
g =Vfx-1:&);
my = Ogmy—1 + (1 — 04) g3
w, = max (B —1,|g| +€1);
=t =W
end

0.9,y = 0.001
0.9, = 15/t%8 B
1—1/t%8 v = 0.005

1—1/t°8y =0.001 | |
1—1/t98,y =15/108

0.8

w e @
[ | A T 1

=

P
F

@

f

0.6

80 Q00

04} 1

-0.6 |- b

-0.8 ¢ B

0 1 2 3 4 5
Times of iteration %108

Figure 2.5: Simulations of Adamax with different combinations of constant or time-varying
parameters.

Figure 2.5 for the Adamax method [39], which updates according to Algorithm 6, exhibits
some similarity to those of the Adam method. The constant 3; here also leads to fluctuations in
the variable u#; and can hinder the convergence process. Though the convergence of the green
line will not be proven, this example illustrates that the modified parameters can enhance the
performance of the Adamax method.
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2.2 Assumptions

To analyze the almost sure convergence of the ASG methods, we make the following assumptions
on the objective function.

Assumption 3. The continuously differentiable cost function f : R" — R satisfies the following:

1. fis coercive, i.e.,
f(x) = oo as ||x|| — eo. (2.3)

2. f has a global minimum value f* = f(x*) = min,crn f(x), where x* is the optimal solution.

3. Vfislocally Lipschitz, i.e., for any xo € R", there exists 8y, Ly > 0 such that ||x — xp|| < &
implies
IVf(x) = Vf(x0)[| < Lollx —xol|. (2.4)

Assuming that Assumption 3 is satisfied, and C is a compact set, we can use the Heine-Borel
theorem to demonstrate that V f is Lipschitz continuous with some Lipschitz constant L > 0
over C, i.e.,

IVFx) = VIO < Lellx=yll, xyeC. (2.5)

A useful consequence of Lc-Lipschitzness of Vf is the following inequality from [54, Lemma
1.2.3]:

Le
FO) SO+ VF(,y=x)+ Sy =%, xyec. (2.6)
If we further assume that f is convex on C, i.e.,

fO) = f(x)+(Vf(x),y—x), xyeC, (2.7)

then it can be concluded from [54, Theorem 2.1.5] that

£O) > )+ (VF@).y—) + inww _VIO)E xmyec. 2.8)

In Assumption 3, the minimum point x* is one of the critical points of f. In the following
assumption, we assume that x* is the unique critical point of f.

Assumption 4. The set &P = {x e R"|Vf(x) =0} = {x*} is singleton. There exists some L >0
such that the cost function is locally W-strongly convex around the optimal solution x*, i.e.,

£0) 2 £0) + (V@) =)+ Syl xy eV, 29)
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where N* is some neighborhood of x*.

Combining the fact that V f(x*) = 0 and [54, Theorem 2.1.10], we know that (2.9) implies

* 1 *
f@) = f < IVF@IF, xeN. (2.10)
Assumption 5. For all x € R", S(x) = E(Vf(x;&)?) is elementwise positive, and locally Lips-
chitz.

This assumption, equivalent to P(V f(x;&)) = 0 is valid for all x, is often considered a weak
hypothesis in practice.

2.3 Last-iterate Convergence Analysis

Before presenting the primary results, we will provide some contextual information concerning
asymptotic pseudo-trajectories, the Robbins-Monro algorithm, and the Invariance Principle.

A semiflow ® on the metric space (E,d) is a continuous function from [0,0) x E to E defined
by (t,x) — ®(t,x) = ®;(x) such that &y is the identity mapping and P, = D; o D, for all
(t,5) € [0,0)2.

Definition 4. A continuous function z : Ry — M is an asymptotic pseudo-trajectory (APT) for a

semiflow ® if
lim sup d(z(t+h),®y(z(t))) =0, (2.11)

1= 0<p<T

forany T € R

The Robbins-Monro algorithm is a stochastic approximation method [5]. By analyzing the
related ODE, we are able to gain insights into the asymptotic tendencies of a stochastic process.
Consider a discrete time stochastic process {z }; in R” (m € N), which updates according to

z2=z-1+%-1F(z-1)+U +b), (2.12)

where {7} is a given sequence of deterministic nonnegative numbers satisfying ¥, 7 = e and
lim; ;. % = 0, the martingale difference noise {U, } is measurable with respect to .%, for all > 1
and satisfies E(U;|-%,_1) = 0, and {b, }; converges to zero almost surely.

The following conclusion is derived from [5, section 4.2].
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Proposition 1. Ler {z;} given by (2.12) be a Robbin-Monro algorithm. Suppose that for some
g>2

supE||U;||? < oo almost surely (2.13)
1
and o
Y % <o (2.14)
7
If sup, ||z¢|| < oo, then the interpolated process Z defined by
t
s
Z(t+s) =2+ T]—T(Zt—i-l —7)(0<s <41, €N =0,7, = Z %) (2.15)
t+1— 4 i=1

is an asymptotic pseudotrajectory of the flow induced by
z(t) = F(z(t)) (2.16)

with probability 1.

For clarity, we define z, by the state derived from each iteration in (2.12), z(¢) by the continuous-
time trajectory induced by (2.16), and Z(¢) by the linear interpolation of z;.

This subsequent results establish the almost sure convergence of ASG methods towards the
critical point. To the best of our knowledge, the following theorems provide the first last-iterate
almost sure convergence analysis of x; for Nadam, RMSprop, Adadelta, and AMSgrad in non-
convex settings.

Theorem 1. Suppose that Assumptions 1, 3, and 5 hold. Consider Nadam method described in
Algorithm 3 with almost surely bounded {x;} and {g,}.

1. The sequences of {m;} and {v;} are bounded almost surely.

2. Nadam converges almost surely:

v S(x)
im (m | =] 0 2.17)
t—ro0 c

Xt X

for some x“ € £ = {x € R"|Vf(x) =0}.
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Proof. 1. By our assumption, we know that there exist X, G| > 0 such that
||lx¢|| < X and ||g;|| < G; almost surely (2.18)
hold for # > 1. By the definition of g2, there exists a constant G, > 0 such that
g2%|| < G, almost surely (2.19)
hold for # > 1. As a result, we can prove by induction that the following hold for all ¢:
||m:|| < Gy almost surely (2.20)

and
|lv¢|]| < G, almost surely. (2.21)

2. For every t > 1, the sequences {m,},{v;} and {x;} generated by Nadam method update
according to

1—oy
m m Y% t(gl‘ _mtfl)
! =1 -5 2
e — Vs
Vr =\ vi—1 | +%-1 (& 1)
Xt Xt—1 117 + (1-a)g ( v +81>_0.5
-y =TT 0 ) \1-TT_ B; (2.22)
m—1
= | vie1 | + %=1k
Xr—1

To gain a deeper understanding of the Nadam method, it is convenient to analyze the fol-
lowing limit ODE first. As ¢ goes to infinity, the terms 1 —IT:_, B; and 1 —II}_, o; converge to
1 according to [4, Lemma 9.1]. If we further ignore the stochasticity on gradient, the Nadam
method can be considered to be a perturbed version of a time-varying step-size Cauchy-Euler
approximation scheme for numerically solving the initial value problem

i a(Vf(x)—m) m(0) mo
v | = bSG)—v) | =F(mvx), [v0)]|=|w | eR'xRLxR". (223
X — x(0) Xo
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The solutions to m and v can be represented as

m(t) = exp(—at) /Ot exp(at)V f(x(t))dt + moexp(—at), (2.24)

and
v(r) = exp(—bt)/o exp(bt)S(x(t))dt +voexp(—bt). (2.25)

As each element of S(x) and vy is positive, every entry of v(¢) is positive for t € R, thus ensuring
1 . A
that N is well-defined fort € R..
We begin by proving the existence and uniqueness of the solution to (2.23) for ¢ € [0,0). To
do so, we consider the Lyapunov function V : R" x R x R" — R derived from [4], defined as
follows:

L lml3
Vimvx)=f(x)+ - —=—. 2.26
Taking derivative on V yields
v T_m am” (Vf(x)=m) 1 _ |ml}3
v = _Vf(x) Vv+el T avvrel Za(v+€12)1'5b(5(x) —V)
o AmE b AmlE b i3 _ b _|ml3 S(x)
T Vel | daftel  da(v+el)!d 4a (v+€1)13 2.27)

b lmll3 b |13
“daprenso @) — (1= g5 (1 —el)) o=

b Iml3 S(x)
4a (v+81)1~5 )

INE

where (a) is due to Assumption 1.

Existence of the solution to (2.23). According to (2.27), the trajectory of x(¢) for r > 0 resides
within the compact set

1 2
Q, = {x|f(x) < f(xo0) + Ea\ﬂ% : (2.28)

Within this set, both S(x) and V f(x) are continuous and bounded, therefore, the solutions of m
and v given by (2.24) and (2.25) are also bounded.

By the maximal interval of existence theorem [50], the initial value problem admits at least
one solution on z € [0, o).

Uniqueness of the solution to (2.23). As both S(x) and V f(x) are locally Lipschitz, F inherits
local Lipschitz continuity. Let (v(t*)T,m(t*)T,x(t*)T)T be an arbitrary point on the solution.
According to Picard’s Existence and Uniqueness Theorem, there exists a unique solution on the
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interval [t* — ¢,t* + ¢] for some constant ¢ > 0. Since this solution exists for all # > 0 and the
choice of t* > 0 is arbitrary, the solution to the system (2.23) is unique.

Therefore, there exists a unique global solution to (2.23) starting from any point in R} x R?",
which admits a semiflow as mentioned at the beginning of this section.
As x* is a critical point of f, the set &% = {x € R"|Vf(x) = 0} is nonempty. For all x* €
&, we have that
F(0,5(x),x) = (07,07 07T, (2.29)
By Assumption 3, V is bounded below by f*.

According to Barbashin-Krasovski-LaSalle Theorem, the trajectory will tend to the largest
invariant set in {m = 0}. Since m remains zero, we have m = a(V f(x) —m) = aVf(x) =0 and

. __ . m _ c :
X=—g = 0. It can be deduced that x stays at some vector x¢ € & <. That is to say, we have
that
limx = x, and limm = 0. (2.30)
[—yoo —>o0

Considering the solution to v in (2.25) and the fact that x approaches x, we conclude that

limv = S(x°). (2.31)

t—ro0

In the next step, we will check the fulfillment of conditions in Proposition 1.

Denote by
Uy = F,—E(F|Z_1) (2.32)

and
by =E(F|% 1) — F(mi_1,vi—1,%_1). (2.33)

Then, the condition E(U;|.%;_1) = 0 follows directly.

Due to the almost sure boundedness of {x;} and the continuity of Vf and S, there exists some
N > 0 such that
IV£(x)|| <N and ||S(x;)|| < N almost surely (2.34)

forallr > 1.
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Consider the the first n components in (2.33):

”E(FT%(gt(xz—l) —my_1)|Fi—1) —a(Vf(x—1) —me—1)||

I 1—%05, (VE(xe—1) —m—1) —a(Vf(x—1) —my—y)||

|52 = al e[|+ [ 5% = al[|V £ (k1) | (2.35)
|FT% —a|G1 + ‘%—a’N

— 0 almost surely,

IN A

By a similar argument, we can derive that the second n component converge to zero almost surely
as well, i.e.,

1 _
limE (Tﬁz(gt@z(xt_l) —Vi—1) ‘5‘}_1) —b(S(x,—1) —v;—1) =0 almost surely.  (2.36)
1

{00

As for the last n components in (2.33), we will start with discussing the one-dimensional
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case, where my, vy, and x; are scalar. By taking the norm of the difference, we obtain

IN

IN

IN

INE

IN

@

where the inequality (b) follows the mean value theorem and ¢, €
lim; oo 1 —1II

E Oy 11M +(1_O‘f)gt < Vv _}_8>_0'5£—5 ) - my_
- e 1-T 0 ) \1-TT_ B 1= Ve

Q1 —0:5
1— Ht+1 ]E’ ml<1 Ht 1ﬁ1+8)

tl’

o e
i/’t_l \/V[71+€

—05
E (g, <1*Hv{:1ﬁi +8> ’9}_1) ’

+

1
(=) a)

Or i1 —0.5 o v -0.5 o
i E (e (s 1@*8) Fit) —E(m (g re) |
Vi g -4 Gy
+ ‘E (m[ (1,1‘[{:1!3[ +8> ‘gt—l> \/Vt71+£ + (1 Hi lal) \/E
G 1| Gy B (i (e te) |y ) - e[y
e Ve AN LY =1 ) T e || T O )
%1 _ 1|61 1—oy G1
-1 o 1 \F+(1 T_ )
-0.5
Brve—1+(1-B)g m_
N E<(%mtl+ (1=ane ( R Im_ lti e Tt ) = e
%1 q G + -0
1-TI " oy Ve T (1T 10‘:)x/5
—-0.5
Brvi—1+(1— ﬁz) ar g G +G;
* E<ml_1< 1-IT,_, B; +6 Fi-1 Vi—1+E€ +(1 OC;) Ve
Oy 11 _ G 1—o; _ G1+G,
-1 Tg Wt oo T 105,)\[—’_(1 o) e
+ ]E my_1 (thl‘i'g) </’171>—\/%
Brve—1+(1—B s> Y
1 1T Bi ! a
B | 271 o 15 | -1
(Ctvt 1+(1*Cz)‘ﬁm 11;1(: 71%:& +8)
Gy 4 l-a G _ )\ G11Gy
e [ e G (- w0
161 B _ 1-5
+2z0s <‘1—H§:1Bi 1‘G2+1 _B )
0 almost surely,

(2.37)

(0,1), and (c) is due to
L Bi=1lim; e 1 —IT_, @; = 1 from [4, Lemma 9.1] and Assumption 1.

When n > 1, the discussion for each component is the same as the scalar case, and we omit
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the detailed proof here. Therefore, we can conclude that

b; — 0ast — oo almost surely. (2.38)

On the other hand, all terms in U; are bounded almost surely, thus, condition (2.13) should
hold for all g > 2. According to Proposition 1, the linear interpolation of the stochastic process

{(vI',m!' xI')T},, is almost surely an APT of the semiflow ® induced by the system (2.23).

Combining the convergence behaviors in (2.30), (2.31) and the definition of APT, we know
that

my 0
tli_>r£1° ve | = [ S(x°) (2.39)
X x°
holds for some x¢ € & . ]

Corollary 1. Adam method described in Algorithm 1 has the same conclusions as Theorem 1

Proof. The proof is similar to that for 1. [

Corollary 2. AMSgrad method described in Algorithm 5 has the same conclusions as Theorem
1

Proof. 1. The discussion on the boundednesses of {m;} and {v;} is similar to that for Theorem
1.

2. We again utilize X, Gy, G, and N as almost sure upper bounds mentioned in (2.18), (2.19),
(2.20), (2.21) and (2.34). Since {¥,} is non-decreasing and almost surely bounded, it converges
to V,, = sup{?; } almost surely.

We derive a corresponding limiting ODE for the AMSgrad method:

1t a(Vf(x)—m) m(0) mo
v | = b(Sx)—v) | =F(m,vx), |[v(0) | =] | eR*xRLxR".  (2.40)
X —ﬁ X(O) X0

We consider the Lyapunov function

_ 1 lml?
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Taking the derivative of V, we obtain

V= —ﬂ (2.42)
vVi+el
Similar to the arguments in Section 1, we can use Barbashin-Krasovski-LaSalle Theorem to
derive
limm=0, limv=S(x‘), and limx=x", (2.43)

t—ro0 t—oo {—>o0
for some x“ € £ = {x € R"|Vf(x) =0}.

Define F; for the AMSgrad method in a similar way to (2.22). Similar to the proof of Section
1, we also need to check

E(F|-Z—1) —F(my_1,v;—1,x—1) — 0ast — c almost surely. (2.44)
We begin with considering the scalar case (n = 1). The last n components of (2.44) decays to
Zero:
m—1

(1—T1_ 1oc, NGEES /’ 1) Vote
B +(1-B)gr ﬁr )& | o )_ ny_|

By i
E( —1
(1-TT_ o) /% +€ JVite
_ ny_y my_y my_1 (A=B)(gr—mi_1) | g7 o my
- E(( 1-TT,_ ltoc, VVi+E \/vt,+£> + \/vl,+£+ (1-TL._, o;)\/V+€ ‘j’_1> Vtu+s 545
< E ny_1 m, 1 97 + 1 -1 M 1-B G+M ( : )
— te 1-TT_ o \[ 1-TT_ 0| €
(i) E((V,—;)-2=ls + 1= |G+M
> u Jrg)3/2 1— n§ e 1-TT_ 04 | e
1 Mo |1 B |G+M

< (- >w+\1nua,—1\ \lngia,\ﬁv

where (a) holds for some v, € [V;,V,] due to the mean value theorem. When n > 1, the discus-
sion for each component is the same as the scalar case, and we omit the detailed proof here.
Combining this result and (2.35), (2.36), we can conclude (2.44)

The rest of the proof proceeds in the same way as that of 1. [
Since the RMSprop and Adadelta methods do not utilize the first moment estimate m,, the pa-
rameter ¢ is not involved. Hence, we will adopt Assumption 2 instead of Assumption 1. In line

with the preceding statements, the following theorems demonstrate the almost sure convergence
to a critical point of the non-convex objective function.
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Theorem 2. Suppose that Assumptions 2, 3, and 5 hold. Consider RMSprop method described
in Algorithm 2 with almost surely bounded {x;} and {g;}.

1. The sequence of {v;} is bounded almost surely.

2. RMSprop converges almost surely:
lim (Vf) = <S(’ﬁ. )) (2.46)
t—oo \ Xp X
for some x“ € £ = {x € R"|Vf(x) =0}.

Proof. 1. The discussion on the boundedness of {v;} is similar to that for 1.

2. Similar to the proof for 1, we derive a corresponding limiting ODE for the RMSprop

method:
C) _ (’9(5% V)) | (;Eg;) _ (;g) ER, xR. (2.47)

Choose the Lyapunov function to be V = f(x). Taking its derivative, we obtain

aF() _ VIR
dt Jvtel (2:48)

According to the Invariance principle stated in Barbashin-Krasovski-LaSalle Theorem, the vir-

tual state will converges to the maximal positive invariant set in &% = {x € R"|V f(x) = 0}.
V&)

Within this set, x is a constant vector x° € &% as X = el 0, resulting in the asymptotic
behavior
lim x = x¢ (2.49)
t—roo
From the solution (2.25), we know that
limv = §(x°). (2.50)
[—yo0
The rest of the proof proceeds in the same way as Theorem 1. O

Theorem 3. Suppose that Assumptions 2, 3, and 5 hold. Consider Adadelta method described
in Algorithm 4 with almost surely bounded {u, }, {x;} and {g}.

1. The sequence of {v;} is bounded almost surely.
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2. Adadelta converges almost surely:

S(x)
N (S0 +el)?
lim [ v | = x€) (2.51)
t—o0
Xt xc

for some x* € £ = {x € R"|Vf(x) =0}.

Proof. 1. The discussion on the boundedness of {v; } is similar to that for Theorem 1.

2. The proof is similar to that for Theorem 1. We first derive a corresponding limiting ODE
for the Adadelta method:

y b(S(x) —v) v(0) Vo
_ b@iﬂS() W, [u0) | =[u | eR¥xR. (2.52)
X ¢j—§1 Vf(x) x(0) X0

Positivity of v and u. In the Adadelta method, the positivity of v; and u; (f > 1) can be proven
vV 14[+£1

by induction, ensuring that is always well-defined. We have already demonstrated the

Vi +el
positivity of v in the discussion on (2.25). Define p;(t) = — (()jfg)% +b and py(t) = Evl’(f)(+(€)1).
Observing that the second equation in (2.52) can be rewritten as
i+ pi(t)u = pa(1), (2.53)

we know that the solution to u is given by

u(t) = uoexp(—/otpl(t)dt) —|—exp(—/0tp1(t)dt) /Ot exp(/otpl(t)dt)pz(t)dt, (t>0). (2.54)

As po(t) is positive elementment-wise, u(t) is also positive elementment-wise.

We consider the Lyapunov function V| = f(x), which is lower bounded by f*. Taking the
derivative of V|, we obtain

W =Y 9w, (2.55)
Vv+el
Similar to the argument in Section 2.3, we know that
limx = x“ and limv = S(x°) (2.56)
t—>o0 —>o0
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for some x‘ € £ = {x € R"|Vf(x) = 0}. The continuity of S implies that p; approaches

bS(x
Ploo = S(b);lsl and p, approaches pr., = S‘CE)—(&?I as t — oo, therefore, eventually p;(r) > % Dloo-

Let Vo = Hju— % |?. Taking its time derivative, we have

Vo =Yi(u—L=)i(=pi(t)u+p2(t))i
= — (P ()il — 22w~ 22,
<X —(p1(0))i(u— %)2 ( 1(#))i(u— =), (fn% — 22|
o . - o o _ P22 (2.57)
<K~ (pulu— B+ 3= BT (B2 B
< 5 Xi—(p1())iu— B2 + (p1 (1)) (5= — )2
< —mini((p1eo)i) V2 + 5 maxi((p1o)i) || 52 — 22
2
for sufficiently large . As ‘ ﬁ?: — ;;—? decays to zero, V also converges to zero, that is to say,
lim u = 222 = §(x°). (2.58)
—roo Pl

Define F; for the Adadelta method in a similar way to (2.22). Similar to the proof of Theorem
1, we need to check

E(F|Z—1) —F(my—1,v;—1,%—1) — 0ast — o almost surely. (2.59)

The arguments for the first n» components are similar to (2.35). We again utilize X, G,G> and
N as almost sure upper bounds mentioned in (2.18), (2.19), (2.21) and (2.34). Let U to be an
almost sure upper bound for {u;}. We begin with considering the scalar case (n = 1). The last
2n components of (2.59) decays to zero:

DAL (xp-1) = 1) — R (B2 Fim) — )|
= thl’+8S(x,,1)—l;B’ <]E<"t 1+5gt2|ft 1>_%E<(1 Cz%)fztnl-i-vctz;r Pite)? |L%>>H
[ ,
<l +el o= 52| [SE] 0= ol -+ ell[B (i g2 |
< ‘b l_t‘(U+8) +1-B (U +€)%3
— 0 almost surely,

(2.60)
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and

B (sl 7ia) — e Vst

Viite VIITE
= | <%gt %30 (clc;):tvtligﬁg 3/2gt‘1%71> - %Vf(x,,l)”
< |B(yiealsi y@w )|
e (it e )| 2o
= e (e 3/2g,|%_1)H
— %2028\1/21?

— 0 almost surely,

When n > 1, the discussion for each component is the same as the scalar case, and we omit the
detailed proof here.

The rest of the proof proceeds in the same way as Theorem 1. 0

Remark 3. For the above-mentioned ASG methods, there are multiple choices of Y, such as
Y% =0 (%) Y = < 3/4>, and Y = < 31/5>, ensure the almost sure convergence of x; to the

critical point.

2.4 Almost Sure Convergence Rate Analysis

It is usually more challenging to find the convergence rates of the ASG methods. A nice and
short discussion for the almost sure convergence rates of stochastic gradient descent methods
was made in [45], which relies on the results from Appendix B, i.e. the classical supermartingale
convergence theorem from [67] and its corollaries derived by [45]. Motivated by [45], these two
results will also be utilized in analyzing the almost sure convergence rates for ASG methods.
These rates match the lower bounds for stochastic gradient-based algorithm, O (%) for strongly

convex loss function, and O ( ) for nonconvex loss function [2], to an €-factor.

Proposition 2 (Supermartingale Convergence Theorem). Let {X;}, {Y;}, and {Z;} be three non-
negative sequences of random variables that are adapted to a filtration {%#}. Let {y} be a
sequence of nonnegative real numbers such that IT;? | (14 ) < eo. Suppose that the following
conditions hold:

1. EYn| %) < (W +%)Y — X+ Z; forall t > 1.
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2. Y72 Z; < o0 holds almost surely.

Then, Y'° | X; < oo almost surely and Y; converges almost surely.

Corollary 3. Suppose that {Y;} is a sequence of nonnegative random variables that are adapted
to a filtration {.Z}.

1. If{Y;} satisfies
E(Y1| %) < (1—cip)Y + o), (2.62)

forallt > 1, where vy = O (ﬁ) for some 6 € (0, %) and cy,cy are positive constants.

Then, for any 6, € (201,1),

1
Y,=o0 <t1—92) almost surely. (2.63)

2. Let {y} be a sequence of positive real numbers such that the following holds:

Z YY; < oo almost surely, (2.64)

Zyz < oo and Z = (2.65)

— l]OC,

Then, we know that

) 1
min Y; = o — almost surely. (2.66)
1<i<r Z 1 Y:

To the best of our knowledge, the following provides the first almost sure convergence rates
for adaptive methods on strong convexity, non-convexity and general convexity assumptions.

Theorem 4. Suppose that Assumptions 2, 3, and 5 hold with p = 2. Consider the RMSprop
method described in Algorithm 2 with almost surely bounded {x,} and {g;}. Then, the following
hold:

1. If Assumption 4 also hold and ¥; = O <t1,191 ) for 6y € (0, %) then it follows that

1
fx)—f =0 <t1—92) almost surely (2.67)
for any 6, € (26y,1).
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2. If y satisfies Y72 I_Lfla — oo, then

Z[:l i
min |[Vf(x)||> =0 ! almost surel (2.68)
1<i<t SO LY Y- '
For example, if it is chosen that ¥, = O ( lieg) for 63 € (0, %) then
t2
min |Vf(x)||* =0 ! almost surel (2.69)
1<i<t YT\ 4165 . '

Proof. Given the almost sure boundedness of the trajectory {x;}, there exists a compact set
C C R” containing the entire trajectory {x, }. The locally Lipschitz condition of the gradientV f
implies that V f is L-Lipschitz with some constant L > 0 on C. We again utilize X, G1,G, and N
as almost sure upper bounds mentioned in (2.18), (2.19), (2.21) and (2.34). Using the inequality
(2.6), we have

o0 < Flien) = VG i) + S Pl
= flo-1) = m(VSf(x-1), \/B,v,,1+(fiﬁt)g®2+£1> + 0(73)
= S C) WL )i s+ OU)
a ’ 2.70
@ flo—1)—nY Vf(xz—l)iﬁ(gz)i 2.70)

Vi—1)i—\8¢ ?
—#(1=p)3 X Vf(x”l)"((1—c:m)((wf11)),~+c(5%)égz)?+e)3/2 ()i +00r)

Fi1) = W E VS ()i e 1 0(7)

where (a) holds for some ¢;; € (0, 1) according to the mean value theorem.

Taking the conditional expectation on (2.70), the following inequality holds with probability
one:

E(f(x) =1 F1) < Flu) = =L Vn)i~L2= 4 o)

(V,,1),‘+£

(2.71)
< St~ = S IV o) 2+ 0.

1. When f is p-strongly convex, (2) implies that x; eventually enter a neighborhood of x© = x*
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after finite-time iterations. We can use (2.71) and (2.10) to derive

2u

E(f(x)—f 1% 1) <(1—Y%——=)f(x—1) = f)+O0 2.72

for sufficiently large ¢. By applying the first conclusion in Corollary 3, we have that f(x;) — f* =
O(ﬁ) for any 6, € (26;,1).

2. Combining Proposition 2 and (2.71), we know that ¥'° ; %||V.f(x,_1)||? is almost surely
convergent, and the conclusion follows from Corollary 3. [

Corollary 4. Suppose that Assumptions 2, 3, and 5 hold with p = 2. Consider the Adadelta
method described in Algorithm 4 with almost surely bounded {u;}, {x;} and {g;}. Then, it has
the same conclusions as Theorem 4.

Proof. We again utilize X, G1,G; and N as almost sure upper bounds mentioned in (2.18), (2.19),
(2.21) and (2.34).

Following a similar approach as in (2.70) to (2.71), we apply the mean value theorem and
conditional expectation with respect to .%; _| on the definition of L-smoothness (2.6) and it gives

E(f(0) = S| Fiet) < Flama) = = WAV i), e o)1V £ o) ]
(g i)

< fla) = £ = EELV (o) [P+ O(R).

(2.73)
The rest of the proof is similar to that of Theorem 4. [

Theorem 5. Suppose that Assumptions 1, 3, and 5 hold with p = 2. Consider the Adam method
described in Algorithm 1 with almost surely bounded {x; } and {g;}. It is chosen that o4 = 1 —ay,
B = 1 — by, and ;. Then, the following hold:

1. If Assumption 4 also hold,

|lmy|| = O(||Vf (x;)||) almost surely, (2.74)
and 3 = O (ﬁ) for 6 € (0, %) then it follows that
. 1
fla)—f"=o -6, (2.75)
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forany 6, € (26;,1).
2. If v satisfies

b t
Z ltl = oo and Z}/texp (— Z %) < oo, (2.76)

t=1 Zi 1 Yi t i=1
then |
min ||m;||* = o (t—> almost surely. (2.77)
1<i<t i=1 i
If we further assume that
t , t
Z Yir1||Vf(x)]” = Z Vi1 ||m,|| almost surely, (2.78)
then we have that
1
1r£111<1t IVF(x)||> =0 ( - %) almost surely. (2.79)
For example, if we choose y; = 1 for 05 € (0, ) then (2.77) and (2.79) become

1 _ ) 1
min ||m;||> = o (”93) and ]ngl}gtHVf(xi)H = 0( 163) almost surely.  (2.80)

1<i<¢y 13

Proof. We begin by discussing the scalar case (n = 1). By applying the mean value theorem, we
derive

\/gt/t?Vf(X[_ 1 )ﬁ’lt

—
)
=

St 1 Y
=TI (may) vae VS e-1)m
IT_, (1—ay) %
(1 + (1= Cfngzl(l_a%))z)\/\7;+£Vf(xt_1)mt (2.81)

= VIl m 7O (1 )

=V (i—1)my + $O(IT_exp(—ar;))

\/‘;}f?vf( 1— 1)mt +%0(€xp(—25:1 %))7

where (a) follows the mean value theorem and ¢y, € (0,1). In a similar way, we could further
derive that

IN

(x—1)m; +%0(exp(—Xi_, %)) (2.82)

ngre Vf(xt—l>7ht =
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Given the almost sure boundedness of the trajectory {x;}, there exists a compact set C C R”
containing the entire trajectory {x; }. The locally Lipschitz condition of the gradient V f implies
that V f is L-Lipschitz with some constant L > 0 on C. We again utilize X, G|, G, and N as almost
sure upper bounds mentioned in (2.18), (2.19), (2.20), (2.21) and (2.34). It is implied by (2.6)
that

f(xt) + Za\/iT’ l‘|2

< f(xtfl)_\/ivf(xt Dy + 5 (ﬁ) g > + W—VT|mt|2
(2.82)
< flu- 1) Vf(xe—1)m + %O0(exp(—Xi_ %))
( ) m,|2 %\/—VTW’HZ .
g% =vi1|
< (xt 1) ( Vi l+g Yt 2(1—cop)vie 1+C1'}’lr +8)3/21Vf<xl—l)mt
1 Vi t
Ytzz(ﬁ,+e)’mt’2 (2a\/v,,1+e+b%4a((1 CZt’}/t)thl‘fC]%g\)2+g 3/2)’ t’2
< flun) = V) + 5 Il
Vo182 2.83
Y ey o i+ O(07) + HO(exp(— Tioy ) 25
< flu- 1) va(xt 1)((L—ay)m—1 +avg)
toagmere (1= 2a% + @) m1 P+ @ g > + 2a% (1 — an))(gr,mi—1))
Vi—1— z®2
gt a1~ +ang )
+0(%) + %0 (exp(— ,17))
<

Jlxe—1)+ za\/ﬁlml 1| W(Vf(xtfl) —&)m—

b(vi—1—g) | 2
+ (4“((1*%%)\/17#01%8?2+3)3/2 \/thl"‘g) e
+0(1) + %O0(exp(— i 1))

Taking conditional expectation on the above inequality, we obtain

E(f () + ggrg i | Zi-1)
< flu1) + e lm1 P+ +0(F) + %0(63619(—2?:1 %) (2.84)

+%E b(vi1—g%) PR
' 40((1_CZt%)Vt71+C1%g?2+€)3/2 N ]+8 f— e
i b(V _17g®2)
From the result in Theorem 1, the term E 1 ) 7z eventuall
<4a((1C2r}’t)Vt—1+C|)/,gt\)2+g)3/2 t—1 y
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1
\/V[71+8

1
S(x¢)+¢e

< 0 almost surely.

converges to 0, and E (— ftq) eventually converges to —

That is to say, we have

- ( b1 -2) i i

a < _ 3 < _ 1 .
/’1) = 4 te — 4\/S(xc)+e 4/vi—1+€

da((1—cppvi1+erng 2 +€)3?  vi-ite

(2.85)
holds almost surely after a finite time of iterations.
1. By assumption (2.74), (2.84) implies that
E(f(x)—f"+ za\/i,?|mt‘2|%*l)
< fla—1)—f"+ Whﬂr—l >+ O0(%) +%O0(exp(=Li_, %))
_ 1 _ 1 2
i ( 44/S(r)+e  Hi-1tE o1
< S =+ (0= O(YZ)WWH > +0(%) +1O0(exp(—Li_i 1)) (2.86)
|

—%W\Vﬂxt—l)
fOa—1)+ (1= O(Y))ﬁ\mt—l 4+ 0(%) + 10(exp(— Xi_1 %))
— 2 (f(x—1) = f7)

L4y /S() e i
< (1-0(7) (f(xt—l) + Wﬁh”t—ﬂz) +O0(1) +%O0(exp(—Li_; 1))-

IN

The conclusion follows from Corollary 3.

2. We also obtain

E(f(x) + 5mglmi Pl Fio1) < flam1) + g lme [P — %W]m,_l\z 2.87)
+0(7) + 1O0(exp(— Lizy 1)
from (2.84) and (2.85).

The approach for the higher-dimensional case proceeds in a similar manner as the scalar case:

E(f(x) +Zim|(mt)i|2|yt71)
S S 12— R S |12
< f(xtfl +3 za\/mumtfl” %212 (S(xc))i+8|(mt71)l|
+O(%) + %O(exp(= L1 %)) (2.83)
<

1 12 1 2
fx—1) + X za\/metflM %2\/(max,~5(xc)),-+s | (m—1)||
+O(%) + %0(exp(—= iz %))-

39



From Proposition 2 and Corollary 3, we have that
Y i ||m;]|> < oo almost surely, (2.89)
i=1

and the convergence rate for the estimated gradient is given by

1
ln<112l |mil|* = o (W) almost surely. (2.90)

If we further assume that

t 1
Z%H“Vf x)|? = (Z Yit1 ||mi||?) almost surely, (2.91)
i=1 i=1
we can conclude .
2
lringt IVf(x)l|* =0 ( — %) almost surely (2.92)
from Corollary 3. [

Corollary 5. Nadam method described in Algorithm 3 has the same conclusions as Theorem 5

Proof. The proof on Nadam method is similar to that of Theorem 5. We omitted the details
here. O

Corollary 6. AMSgrad method described in Algorithm 5 has the same conclusions as Theorem
5

Proof. We again utilize X, G, G, and N as almost sure upper bounds mentioned in (2.18), (2.19),
(2.20), (2.21) and (2.34). Considering the iteration of V;, we have

0 < V1 <0 =max(v—1 +b%(gr> —vi—1), 1) < V1 +b%(G2+Gy) as., (2.93)

and

1 1 1 (a) 1
- > ——= > ——= = —= +0(1) as.
VOite JOite VOitbn(GtG)te Oite

where (a) follows from the mean value theorem.
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We start with discussing the scalar case (n = 1). Applying (2.6) on f(x;), we have

Jx) + Zaﬁ’ t|2
< flr-) - " FTE v+ =V f(x- l)ml+%v+g’mt‘2 2a\/vT|m"2
2 Fl) — UV (e + e I+ O(exp(— Xy 1))+ O()
< flaor) - \f+g Vfa-1)(1—an)m—1 +avg:)
+aa7ne (L —am)m—1 +ayg)* + O(vexp(— Xizy %)) + O(%})
< fla-r) - %me(x, 1)my— 1+2a\/ﬁ((1_2‘1%)|mt—1|2+207’tmt—lgt)

+0(pexp(=Xi_, %)) +O(%)
(2.94)

< fla-1)+ 2“\/+T‘ ’2_%ﬁvf(xz 1)me—1+
Wz (= lme1 |+ 1) + O(hexp(— Xy %)) + O()
Vi—11+€
(2.94) 1

< f(xt—l) \/—| t— 1‘ \/ﬁ(vf(xt—l)_gt)mt—l_’}/t\/‘ﬁv’/‘t—l‘z
+0(%exz9( Yio1 %) +O(%).

(2.95)

Taking the conditional expectation on both sides, we obtain

1 2
E(f () + sgzgelme "1 Fi1) < fa1) + \/—’ 11> = \/—| 1] (2.96)
+0(%exp( Y1 1) +0(%).

The rest of the proof is similar to that of Theorem 5. [l
Remark 4. (Comments on (2.74) and (2.78)) We proved that the linearly interpolated processes
of (m!I' vI' . xIT are asymptotic pseudo-trajectories for (m* ,v!' ,x")T in the context of the Adam,

Nadam, and AMSgrad optimization methods. It allows us to consider (m’ vI ,x")T as an ap-

proximation of the linearly interpolated processes of (m! ,vI' xI')T. Notably, when we treat v as
a constant, the limiting ODE (2.23), common to the Adam, Nadam, and AMSgrad methods, takes

the form

o m (2.97)
Vvrel
This system describes a damped dynamical system with position x, velocity X, and acceleration
a
X+ax+ Vf(x)=0. 2.98
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In the context of an underdamped system, the kinetic energy O(|x|?) and the potential energy
f(x) steadily diminish to zero while seamlessly transitioning between one another. The damping

term facilitates the energy exchange, leading to an overall decrease in total energy. For functions
adhering to the condition f(x) = O(||Vf(x)||?), the relationship

0 ( I HVf(x)szt) 0 ( /:Of(X)dt) = [ miPa 2.99)

holds. This result agrees with the assumptions stated in (2.78). The underdamped phenomenon
aligns with the illustrated figures in Section 2.1.2. In cases where the system exhibits over-
damping or critical damping, the relationship

x| = O(|x]) = O(|ml) (2.100)

holds. This result agrees with the assumption stated in (2.74), and further implies (2.78).

On the other hand, it is mentioned in the first paper on Adam method [39] that m; is the esti-
mate of the gradient; therefore, Assumptions 2.74 and 2.78 seem to be reasonable assumptions.

Remark 5. (General convex functions) Consider Adam, Nadam, RMSprop, Adadelta, and AMS-
grad methods. Suppose that the learning rate is chosen to be y; = O (%) forany € € (0, %)
137

and f is generally convex, then we have that

1

f(xt)—f*:0( , ) (2.101)
137¢

and x — x*. The proof can be conducted using the mean-value and boundedness techniques in

this section and [45, Lemma 4].

2.5 Summary

The first part of this chapter highlights a significant issue with these methods when parameters
are constant: they fail to converge towards the critical point. To tackle this, we propose a unified
modification for these methods, successfully achieving convergence towards the crucial point
in the given example. This modification addresses a fundamental limitation in current ASG
methodologies.

Building on the ideas presented in [4], this chapter provides a clear and rigorous proof of
almost sure convergence towards a critical point for smooth and non-convex objective functions,
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while also correcting some errors found in [4]. This represents the first instance of establishing
almost sure convergence rates for these methods. For non-convex objective functions, our find-
ings, influenced by [45], demonstrate that a weighted average of squared gradient norms in these
methods converges at a rate of o(1/ t%_e) for all 6 € (0, %) Additionally, for strongly convex
functions, we show that the convergence rates for RMSprop and Adadelta can be improved to
o(1/t'79) for all 6 € (0, 7).

Overall, this chapter makes significant contributions to adaptive gradient-based optimization
methods, particularly in addressing convergence issues and establishing convergence rates for
both non-convex and strongly convex objective functions.
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Chapter 3

On Almost Sure Convergence of Hogwild!
Algorithm

In the last chapter, we have seen the almost sure convergence of ASG method, for example Adam
and Adadelta. This chapter explores the guaranteed convergence rates of Hogwild! algorithm
for different types of loss functions. Hogwild! algorithm is a lock-free approach to parallelizing
SGD method, and its development can be found in Chapter 1. Considering the strongly convex
overall loss function and convex local loss functions, Nguyen et al. show that the virtual state
converges to the optimal solution with probability one [56]. Up to now, there are some unknown
problems: Is it possible to relex the conditions? What is the almost sure convergence rate?

To answer the posed questions, we will regard Hogwild! as a delayed SGD, and leverage the
findings from [45] to analyze the almost sure convergence. We first explore the Hogwild! algo-
rithm’s convergence rates for different loss functions. We prove its fast convergence on strongly
convex functions, matching the best rates of classic SGD methods with minimal error. For non-
convex functions, we show that both a weighted average of squared gradients and the algorithm’s
later iterations converge to zero. Additionally, we analyze the last-iterate convergence for general
convex smooth functions, providing insights into its efficiency across various settings.

3.1 The Hogwild! Algorithm

The Hogwild! algorithm 7 is a parallel SGD method introduced by Feng et al in the paper [63].
The iteration can be rewritten as

(xH-l)Mz = (xf)uz - ntdét(vf(ﬁt"gt»uz (31)
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Algorithm 7: Hogwild! algorithm
Data: xy € R"
fort=0,1,2,... in parallel do
read current shared memory £;;
generate a random variable & and evaluate the stochastic gradient V f(%;;&);
for Sample position u; uniformly from the set
Eg = {positions where V f(x;; & )is nonzero} C {1,2,...,n} do
\ Xe41 = X¢ — Tltdg,sg,,u,vf(fr; &)
end
end

Consider a fixed §. The scalar dg represents the number of nonzero entries in Vf(-;&), and
S, 1s a diagonal matrix equal to 1 on the u-th diagonal and zeros elsewhere. Therefore, dg <n
for all £. The matrix S¢ , filters which positions of V f (+;&) is nonzero and contributes to the
iteration. For a given &, we take the following expectation over u

deE[Sg ,|E] = D¢, (3.2)

and obtain that D¢ is a diagonal 0 /1 matrix whose 1-entries corresponds to the non-zero positions
in Vf(w;&). In other words, for a given &, the i-th entry on D¢’s diagonal is 1 if and only if the
i-th position of Vf(-;£) is not a zero function. More details are shown in [56].

3.2 Convergence with Probability One

For the analysis of the almost sure convergence of the Hogwild! methods, the following assump-
tions are made.

Assumption 6. [Li-strongly convex] The objective function f : R" — R is u-strongly convex for
some 1L >0, i.e.,

F0) = F0) + (V) x5y + e | (33)

for all x,x' € R".

Combining the fact that V f(x*) = 0 and [55, Theorem 2.1.10], we know that p-strong con-

vexity implies
) =" < 57 (3.4)
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Assumption 7. [L-smoothness] V f(w;&) is L-Lipschitz for every realization of &,i.e., there ex-
ists L > 0 such that

IVF(x6:8) = V(59 < Lix— | (3.5)
for all x,x' € R".

The L-smoothness of a function f can be implied by equation 7. According to [55], we have
that

£ < S0) (VI e =) + S =P (6

Noting that %, is usually a lag state read many clock cycles earlier, i.e., {£; = xz, }; is a sub-
sequence of {x; };. We assume that there exists a constant delay satisfying the following assump-
tion.

Assumption 8. The shared memory is consistent with delay T for all t, that is to say, k; —t is
always less than or equal to 7.

We assume that there exists a constant delay satisfying this assumption. That is to say, X;
might equals to some state in {x;_z,X;—¢+1,...,X—1}, and it includes some of the update during
the (r — 7)-th to (r — 1)-th iterations. We define &, ; (t —7 < j <t —1) to be 1 if the j-th iteration
is included in %, i.e., j < k; and & ; is O elsewise. That is to say,

t—1

j=t—7

A nice and short discussion for the almost sure convergence rates of stochastic gradient de-
scent methods was made in [45], which relies on the results in Appendix B, i.e., the classical
supermartingale convergence theorem from [67] and its corollaries derived by [45]. Motivated
by [45], these two results will also be utilized in analyzing the almost sure convergence rates for
ASG methods. The rates in (3.13) and (3.24) match the lower bounds for stochastic gradient-

based algorithm, O (%) for strongly convex loss function, and O (%) for nonconvex loss func-
tion [2], to an &-factor.

Lemma 1. /56, Lemma 6]
E(llde, Se, .,V G &), &) < DV fGs &) (3.8)

E[dé,Sé,,utVf(fz;gt)L%] = VF (%) (3.9)
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Theorem 6. Suppose that Assumptions 7 and 8 hold. Consider the Hogwild! method described
in Algorithm 7. Then, the following hold:

1. If My = max¢ ||V f(wo; &) | is finite almost surely, and we choose 1; = m for some
B > 0, then it follows that

1
min |Vf(x)||* =0 <%> almost surely. (3.10)

1<i<t

2. If {|IVf (%, )} is almost surely bounded and {n;} is a decreasing sequence of positive
real numbers satisfying

— :ooand ’)’]2<c>o7 (311)
t:ZI Yo ni Zz: t
then it follows that
min |[Vf(x)||* =0 : almost surel (3.12)
lsizs o i—1 i g .

In particularly, if we choose 1, = O <t1/++P> for some 0 < p < %, then

1
mmin Vi) =0 (tl/Z—p) almost surely. (3.13)

Proof. According to (3.6), we have that

L 2
SFa1) < ) =MV (xr),dg Se, V(&3 6)) + %||d§,5.§,,u,vf(ft;§t)||2- (3.14)

Taking the conditional expectation on (3.14), the following inequality holds with probability
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one:

&=

[f (xr1) [ 7]

< ) = (V£ x0). Eld g, V(50| 2]) 4+ BV (5 60) |2 2

< Fx) = (V) V() + 22 SR [E [||déS§,§Vf(£t;@)Hz\gﬂ,ét]]

< fla) =V (Xz)\|2+nzLIIVf(Xz)HIIZ] 8. mde S, V(3558
+ 2R (B[ de, S5V £ (5 &) |17, & |

<) = VO P+ LV o) [ 51— B, )y 859 £ (5558 |
+ 2B [V f (5360 1)

< S VSO LI FOIEL i 11 = 8085, 15585
2 p(max o< o, |V £ (02 6) )2

< ) = Wl ML) Iy IV (528
2 (max oo IV £ (0762

< £0) 9 £GP+ LV ) s o g V£ (00 €)1
+£ 2n (maxé,ogjgz||Vf(Wj§§)||)2

< () = MV ()P + SPLIVF () Int(maxg o< e, |V £ (02 E))

LD2 2
e n(maxg o< i< IVF(w;)l)?

< fla) = (= 0V ()P + O(nF(maxe o< j; V(w2 E)1)?)

for sufficiently large 7.

1. It is concluded by [56, Lemma 13] that

£,0<j<t =0

Based on this conclusion, (3.15) becomes that

Elf (x40 71] < f0i) = (0 = O IV (1) |? + O(nZM7).

According to (3.16) and the proof of [56, Theorem 5], we have

1 1

2+PB 1+8 2+B
Mpye T Mye

1
t~27P almost surel
21 B 2+ Y

niM; <
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max ||[Vf(w;;&)|| < Mpexp <Ln Z n,) =: M; almost surely.

(3.15)

(3.16)

(3.17)

(3.18)



and -
Y n’m? = Z 0(i"'72P) < o0 almost surely. (3.19)

From the Proposition 2 and the Corollary 3, we have that

ZntHVf(xt) |? < eo almost surely, (3.20)

and the convergence rate for the gradient is given by

1 1
min ||[V£(x;)|> =0 ( - ) =0 (—) almost surely. (3.21)

1<i<t i Ni Int
2. Assume that |V f(%,& )] is almost surely bounded by M > 0. Then, (3.15) gives
E[f (1) F) < f () = (0 = OV () 1P + O(n?). (3.22)
Considering the fact Y5, O(1?) < e and the Proposition 2, we have that

Y IV f(x) ||? < oo almost surely. (3.23)

The Corollary 3 gives the convergence rate for the gradient. [

Remark 6. (Remarks on bounded {V f(x;;&)}) A sufficient condition for bounded {V f (x;; &)}
is that If we assume that the collection of & is a finite set and {x;} is bounded

Theorem 7. Suppose that Assumptions 6 to 8 hold. Consider the Hogwild! method described
in Algorithm 7. If we choose 1, = < ) for 61 € (0, 2) and {||Vf(%,&)||} is almost surely
bounded, then it follows that

1
fa)—fr=o (—,1—92) (3.24)
forany 6, € (26y,1).

Proof. Assume that ||V f(%,&)|| is almost surely bounded by M > 0. Then, (3.15) becomes

Ef(s41) 1] < f0) = f = (= 0D IVAE)IP+0mMY) oo
< (1=0(m))(f(x) — ) + O(n?) |

By applying the first conclusion of 3, we have that f(x,) — f* =0 (rl 92> for any 6, € (26;,1).
[
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Lemma 2. Let {b;}, {n:} be two non-negative sequences and {a;} a sequence of vectors in a
vector space X. Let p > 1 and assume ¥;> | ;b < o0 and ¥'; | 1)y = oo. Assume also that there
exists L > 0 such that

t+7—1 t+7—-1
bryc—b| <L Y mbi+| Y, mail |, (3.26)
i=t i=t
where a; is such that || Y. | Niat|| < eo. Then, by converges to 0.

The following proof proceed in a similar way as [45]

Theorem 8. (Last iteration) Suppose that Assumption 7 and 8 hold. Suppose that {||V f (%, & )| }
is almost surely bounded. Consider the Hogwild! method described in Algorithm 7. Then, the

following hold:

1. If we choose 1y = m for some B > 0, then the last time iteration converges almost
surely.

2. If we choose 1y = O <N++P> for some 0 < p < % then the last time iteration converges

almost surely.

Proof. By (3.20), we know that Y'° ( n?M? = ¥, O(i"172P) < oo almost surely. For any ', it
can be implied by the L-smoothness of f that

IVf o) [| = IV )]

< Lfxesy — x|

< L §+,t,_lnid§,55,u,Vf()?iaé')

< L||T T i g (VF(5) + VA (80,6) V()| (3.27)
< LY Mg S IV A ) |+ L £ midg S, (V£ (&) — V£ ()|

< LX) |+ LB midg S, (V£ (1 6) — V()|

1. Let m; := Y NidgSe, ,,,(Vf(£,8) — Vf(x:)). We can verify that it is a martingale by
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definition. Combining (3.16), (3.20) and the triangle inequality, we have that

Yo Elllmy —my—y ||2]

Y MPE[(lde S, (V (81, 6) = Vf(0) )

Y 07 E(]1Se [P (VS R0 8l + 1V Ger)l])?] (3.28)
n’ Y M}

oo almost surely.

AN N

According to [86], the conclusion (3.28) implies that m; is #? bounded and hence converges
almost surely. We conclude that V f(x;) converges to 0 almost surely in view of Lemma 2.

2. Assume that ||V f(%,& )] is almost surely bounded by M > 0. Replacing M; in part 1 by
the constant M, we know that (3.28) becomes

[e5)

> > 1
Y Ellm—m 1 |*) <4n® Y niM® < Zo(m). (3.29)
t=1

=1 =1

The rest of the proof proceeds in the same way as part 1. [

3.3 Summary

Using the results from [45], we present a comprehensive analysis of the Hogwild! algorithm,
a non-locking, parallelized form of SGD, widely used in training large-scale machine learning
models. The focus of this study is on the algorithm’s almost sure convergence rates under various
conditions related to the loss function.

The chapter begins by establishing the almost sure convergence rate of the Hogwild! al-
gorithm when applied to strongly convex functions. It is demonstrated that this rate matches
the optimal convergence rate of the classic SGD method, achieving convergence to a negligibly
small error margin. Further, this chapter explores the behavior of the Hogwild! algorithm when
dealing with non-convex loss functions. In these cases, it is shown that both a weighted average
of the squared gradient and the outcomes of the algorithm’s final iterations converge to zero with
high certainty.
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Chapter 4

Continuous-time Distributed Convex
Optimization via a Gradient-based
Algorithm

Chapter 1 delineates the significance of continuous-time optimization and the benefits inherent
in distributed optimization strategies. Different from chapters 2 and 3 concerning discrete-time
stochastic optimization, for example, Adam and Hogwild algorithms, the subsequent discussions
pivot towards exploring continuous-time distributed optimization algorithms.

This chapter proposes a new PI algorithm. As in the previous chapters, we are also inter-
ested in its convergence guarantee under different cost functions. Given the constraints of local
communication, the PI algorithm’s convergence trajectory is anticipated to lag behind that of the
centralized gradient descent (GD) method. By analyzing the derivative of the PI algorithm, we
demonstrate that its convergence rate aligns with that of centralized gradient descent for strongly
convex functions. Additionally, the chapter investigates its local linear convergence when applied
to strictly convex functions.

4.1 Description of the Algorithm

Denote by x' € R™ an estimate of the optimal solution x* by agent i € X, and v/ € R™ an
adapter for neutralizing the influence caused by the difference of Vf;j(x*) (i € X). Let x =
(DO, 6T e R vy = ((WHT,...,(v)T)T € R, L be the Laplacian matrix of G, and
B be some positive constant.
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The earliest PI algorithm published in [78] updates according to

i=—Lx—Lv—V(x),
. 4.1

Vfi(xr)

of which the initial values x(0),v(0) € R™ are arbitrary, L = L® I, and V(x) =
V (xn)

S
R,

Intuitively, the convergence rate of (4.1) should be restricted by the consensus coefficient
L and the convergence rate of the centralized gradient descent (GD) method, where the rate of
consensus is determined by the second largest eigenvalue of L [57]. When the eigenvalue is
large enough, the latter limitation dominates, and the convergence rate of the new algorithm is
expected to match that of the continuous-time GD method. By changing L into SL, we gain
more flexibility in tuning the eigenvalue and improving the rate of consensus. It is checked by
Definition 1 that BL is also a Laplacian matrix of the given graph G

The novel PI algorithm begins with arbitrary x(0),v(0) € R, and has the following update
rule: -
v = pLx,

% =—BLv—BLx—V(x). (4.2)

4.2 Assumptions

Here are some assumptions that will be utilized to study the behavior of the proposed algorithms.

Assumption 9. All f; € C2(R™ R) (i € X) are u-strongly convex and M-smooth for some 1,M >
0, ie.
ul, <V fi(z) < My, (4.3)

forall z € R™.
Assumption 10. The graph G = (V,E,W) is connected.

Assumption 11. All objective functions f; € C*(R™,R) (i € X) are convex, and f(x) is strictly
convex on R™.

Remark 7. Assumption 11 is weaker than Assumption 9. First, V2 f in Assumption 11 does not
necessarily have a positive lower bound, whereas V*f > ul, in Assumption 9 holds for some
w > 0 on the entire space R™. Moreover, V2 f; in Assumption 11 might vanish for some i, whereas
V2 f; > ul, in Assumption 9 is always true.
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4.3 Main Convergence Results

Before discussing the system (4.2), we define [ = v = BLx and ¢ = x = —Lv — BLx — V(x).
Differentiating ¢ and [/, we obtain a variation of the algorithm (4.2):

(- BG-mal)

where V2(x) = diag(V*f1(x1),..., V2 /(%)) and A(x) = (BZ+V2(X) BL

functions.

) are matrix-valued

4.3.1 Convergence Analysis under Strongly Convex Cost Function

We will analyze the auxiliary system (4.4), construct the relationship between (4.4) and (4.2),
and conclude that the system (4.2) achieves the convergence rate O(e *').

From the result of [57], we can obtain the following lemma.
Lemma 3. Let Assumption (10) hold. Then,

(1) all eigenvalues of L are nonnegative real numbers,

(2) the zero eigenvalue of L is simple, and Null(L) = Null(L") = span(1),

(3) Null(L) = Null(L") = {1® o : @ € R™}, and

(4) L and L share the same spectrum.
Proof. (1) Since L is symmetric, all of its eigenvalues are real. According to [57, Theorem 10],
they must be nonnegative real numbers.

(2) From [57, Theorem 9], the zero eigenvalue of L is simple, and thus the right and left null
spaces are one-dimensional. Observing that the column sums and row sums of L are all zeros,
we found that Null(Z) = Null(LT) = span(1).

(3)Since L@ a)=L1@a=0and L' (1® «) = L(1® &) = 0, we know that
S C Null(L) = Null(LT), (4.5)

where S = {1® a : a € R™}, and the equation holds as L is symmetric. Noting that
dim(S) = m, (4.6)
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we know that dim(Null(L)) = dim(Null(LT)) > m.
By [40, Theorem 9], we have that

L] = [L|" " = |L|™. 4.7)

By Lemma 3 (2), the algebraic multiplicity of L associated with zero eigenvalue is m, which
implies that its geometric multiplicity is no greater than m, i.e.,

dim(Null(L)) = dim(Null(L?)) < m. (4.8)
Therefore, we know that
dim(Null(L)) = dim(Null(L")) = dim(S), 4.9)
and
Null(L) = Null(LT) = S. (4.10)
(4) Again, we have that
\L—ALyn| = |L—AL|"|Ly|" = |L — AL|" 4.11)
by [40, Theorem 9]. L] L]

Under Assumptions 9 and 10, the following lemma shows that (4.2)) and (4.4)) have the same
convergence rate.

Lemma 4. Assume Assumptions 9 and 10 hold. If the origin of (4.4) is exponentially stable, i.e.,
(g™, 1) || < e1]|(g"(0),17(0))"[e™H, (4.12)

for some ¢; > 1, allt >0, and all (g7 (0),17(0))T € R*"™, then the virtual state x in algorithm
(4.2) converges to 1 R x* globally exponentially with rate no less than U, i.e.,

Ix—1@x"|| < c2|(¢" (0),17(0))"||eH (4.13)

for some co > 0 and all t > 0, where ¢, relies on the initial value of (4.2), and x* is the optimal
solution of problem (1.6).

Proof. Denote Null*(L) by the orthogonal complement of Null(L). For any z € R™", there exist
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unique vectors z, € Null*(L) and z, € Null(L) such that z = z), +z, as Null*(L) ® Null(L) =
R,

Denote 3, by A»(L), which equals to Ayy1(L) by Lemma 3. It is also the smallest positive
eigenvalue of L and L. Thus, (82)?> = A2(L?) = A,y 1(L?) as L and L are symmetric and positive
semi-definite. By Courant-Fischer Theorem from [33], we know that
T2

2 <

Bs = max min
{SCR’"” dimS=mn—m} {z:0#z€S} 2z
T72
L
max min <Zp+Z0) T (ZP+Z0)
{SCR™:dim S=mn—m} {z:0#z€S} (2p +20)! (2p + 20)
T72
L
< max min (ZP)—TZP
{SCR™:dim S=mn—m} {z:0#z€S} (2p)72)p
e L
Tz {eokzeNuit (D)} ||z

(4.14)

= min
{ZO#zeNullL( )} 2

We can conclude that x approaches the optimal solution exponentially:

lx—1@x 18]l + 11 (x—x*)]

g Il /(T —x)7

g 1l + vl e — x|

ﬁHlllJrﬁHVf(‘)H

s+ (| V) = L VA + 13 5 VA
g+ 18+ k)]

g -+ £M||z||+ Llql
e O ) 1> 0),

N

INIAIA I/\gl/\

(

(4.15)

—
)
=

IAIA A

where ¢; = ¢} (ﬁﬁz + p{ﬁ% + \/ﬁ) i=1 Lyx', 6, =x—1®x € R™ is the disagreement vector of
x, and (a) is implied by

1% VA =A@ 5)"V(x)|| = [|A© L) 4] (4.16)

O

The following is devoted to proving our first main result.
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Theorem 9. Suppose that Assumptions 9 and 10 hold, B satisfies

M
B> 1, @.17)
and there exist D; > 0 such that
M— 2
DB+ (B)'D; —I— %(Di)2 >0,2<i<n, (4.18)

BB+ BB
where B; = ( ! B [32 ,ul> and P; is the i-th largest eigenvalue of L. Let x* be the optimal
—BB; _

solution of the problem (1.6). Then, the virtual state x in algorithm (4.2) converges to 1 @ x*
globally exponentially with rate no less than U, i.e.,

Ix—1@x*|| < c[|(g"(0),17(0))"|[e ™, (4.19)

forall t >0, (xT(0),v7(0))T € R?", where | = BLx, g = —BLv— BLx—V(x), and c >0 is a
constant.

Proof. Step 1. Before analyzing the convergence behavior of system (4.4), which is a noncon-
stant coefficient linear dynamical system, we will first consider the following linear dynamical
comparison system with constant coefficient:

(z) < ﬁL—[g‘;—M nn —([)E) <611) — B, (?) (4.20)

BL+M1, BL

—BL 0/

We shall determine the locations of the eigenvalues of B ® I, by analyzing the determinants
of B—AlL,and B®1I, — AL, ®1,. Let

where B = (

L+, AL, BL

“BL — Al
A0, — A (21, + BL) + B2L? @21)
(S)" (A%, M“ 21,4 BDL) + B (DL )SL| '
ST A2 =2 “+M+ﬁDL>+ﬁ (DL)?)|[St]
= I (A%~ (“+M+l3ﬁz)+l32(ﬁz))

—
)
=
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where B; (1 <i < n) is the i-th largest eigenvalues of L, and the eigen-decomposition L =
(8.)T DS, holds for some diagonal matrix Dy and orthogonal matrix S;. The equation (a)
follows the property

‘A B

. D‘ = |AD—BC|if CD = DC. (4.22)

from [71].

According Lemma 3, it holds that 0 = 8} < 5, < ... < B,. Assuming that f satisfies the condi-

tions (4.17), We can derive that the eigenvalues of B are 0, L2 +M ,and &% +M +5 BB: \/ BB — (= +M %)2
(i=2,...,n).

According to the results in [40, Theorem 9], we can obtain

0 = B®Im—lln®lm}

= |(B=2A8) & 1| (4.23)
= B A" |1 '
= |B—AL|".
Therefore, the eigenvalues of B® 1 are also 0, “+M ,and “+M—l—ﬁﬁ’ +i \/ BBi)?— —M %)2 (i=
2,...,n), and the algebraic multiplicities of elgenvalues 0 and &% +M are m.

In the following, we will rewrite the system (4.20) as an equlvalent linear system with Hur-
witz coefficient, of which the eigenvalues are the same as —B ® I,,, except for 0.

Define the matrix P € O"*" and S = diag (P,P) € O?"*?", which is subject to

P'LP =diag(0 B, -+ Bu). (4.24)

Therefore, the matrix B can be decoupled into

p+M
= 0

. ) .
J* = STBS = BB+ L5 BBx (4.25)

—BBx
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Denote by a new variable
r=(S®I) (?) : (4.26)
then the system (4.20) is equivalent to
= eI)rr. (4.27)

By Lemma 3 (2), we know that the first column of P is \/Lﬁl, therefore, we know that
()"t = (1" @ 1y) = BA'L& 1y)x=0. (4.28)

Equations (4.25) and (4.28) implies that (#*)"*! and the (n+ 1)-th row and column of J* are
trivial. Discarding these trivial entries, we obtain a reduced system of (4.20)

F=—(J1Q1Ly)r. (4.29)
In other words, J; is obtained by deleting the (n+ 1)-th column and row from J*, and r is obtained
by deleting (r*)"*! from r*.

Considering that
Null(B®1) C Null(A(x)),
Null(BeD)T) ¢ Null(A(x)7),
for any x € R™, the (mn+ 1)-th to (mn+ m)-th columns and rows of the block matrix (S ®

DTA(x)(S®1) are all trivial. By conducting the same transformation as we did on (4.20), the
system (4.4) can be reduced to

(4.30)

F=—JD(x)r. (4.31)

Step 2. Now we will prove that there exists a constant positive definite matrix P; such that

M — 2
0=Pi(Ji —ul)+ () —ul)' P —T— %(H )%, (4.32)
where I = I,,(,, 1) for short.

Noticing that —(J; — ul) is a block Hurwitz matrix, the solution to the continuous-time
Lyapunov equation Q1 (J; — ul) + (J; — uI)T Q1 = I is a unique positive definite block matrix
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Q1 = diag(3;7-—-1,0Q11), which admits

M-

Lai= ({1

Or =

For any h,g € R™("=1 and any f € R, we have that

2
01—+ (1 —une 1~ M B 02 <0 (433)
(D)
(D,)zlé) and
2
M—u
(D2)11 (D2)12
(Dp)11 (D) 12 (4.34)
(D2)21 (D2)22
(Dn)21 (Dn)22
f
(f A" g")0x | h
g (4.35)

1

_ h;
= ﬁf2+ " (hi g)Div1 (g) >0,

where the equality occurs only if f,h, g are trivial. Therefore, Q5 is positive definite.

For any h,g € R~ and any f € R, define fhg = (f h” gT)T, and we have that

fhg” (@21 — i)+ (= u1)Q2 1= “E(02)2) fig

= Yo (ki &) (DiBi+(Bi)TDi—I——(MZ”)Z(Di)2> (hl>
> 0,

which implies that

M —
Qa(/y = pl) + (N = pl) Qo =1 = =
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According to [ 1, Theorem 4.1.14], equation (4.32) has at least one positive definite Hermitian
solution.

Step 3. This step will focus on analyzing the convergence behavior of system (4.31), which
will be compared with (4.29).

Take a Lyapunov function V = r! P5(¢)r, where P,(0) = P; and P> updates according to
Pz = P2(J2 - ‘LLI) + (Jz — [,LI)TPQ, (4.38)
then, the derivative of the function V' along system (4.4) is given as

V = I’T(—PQJQ —J2TP2 +P2)r

_ ouv (4.39)
which gives V (¢) = V (0)e2H.
In view of the facts that
B b <A) B Iy < L, (4.40)
it can be recognized that
0< (ST (A(x) =B®1,)(S®1,))* < Mbm. (4.41)

4

Define AJ = J, —J; ®I,,. By step 1, it can be checked that AJ and (AJ)? are symmetric diagonal
block matrices, and they are minors of (S®1,)! (A(x) —B®1,)(S®1,) and (S®1,)" (A(x) —
B®1,)*(S®1,). Equation (4.41) gives that

M — 2
(a7)* < %Imn_l), (4.42)

and we can derive that

I AJ I 2 SA
(AJ —“”4‘”21):(0 nh )

. 4 2 4 r
=G (&) 0 (e s
0 @[ 0 I
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According to [ 1, Theorem 4.1.4], the inequality

1 —(Jp—un?
(JH)l == (M*,Ll)z
—(i—ul) =L (4.44)
0 —(h—ul )T>
> (JH)y =
> o= (Ll M),
which is directly derived from (4.43), implies that P>(¢) > P; on [0,). Therefore, we have that
ﬂ,mm(Pl)HrH <r'pr
< TRt r=V() <V(0)e 2
< Amax (P)|r(0)[7e 2 = lmax(Pl)Hr (0 0)[|%e =2+ (4.45)
< Amax(P[(S@ DI (" )T |%e 2
< A«naX(Pl)H(qT(O)JT H e—2ut,

and thus
[ )| < s/~
= IS/ = [ (4.46)
< Cif[(¢"(0),17(0))" || e,

for all £ > 0, where C; = \/Amax (P1)/Amin(P1)-

Combining the above inequality with Lemma 2, we complete the proof. O

Remark 8. A sufficient condition for (4.18) is that B is sufficiently large. Since we assume
that Bf; > I#, 2 <i<n, —D;is a Hurwitz matrix. For each 2 < < n, the continuous-time
Lyapunov equation d;B; + (Bi)Tdi =1 has a unique solution. Since M - + BB >0(i=2,...,n)
are the real parts of the eigenvalues of B;, every entry of e B is bounded by a lmear comblnatlon

M 3u ﬁﬁ . . . oo _
of the=(G—F T where k is some nonnegative integer. Due to the fact that |, the=4dt = a,{%

for all nonnegative integer k and a > 0, the positive definite matrix
d; = / “Bitgy (4.47)
and its eigenvalues would vanish as B goes to infinity. When B > 0 is sufficiently large such that

)L'max (di ) S

4.48
T (4.48)

62



we can find a number ¢ = W > 0 such that

‘max (DI)

2(M—H)2;Lz

— T A (d) Fe =120, (4.49)

Letting D; = cd,;, we know that

N2
DB+ (By)! Dy — I — ME (D)

1
Z _C2 (M*Il)zxz

(4.50)
4 max(di)12+012—12 > 0.

Remark 9. In [98], a distributed continuous-time algorithm that achieves the same convergence
rate of the centralized gradient descent method was proposed. The iteration of the algorithm
begins with an arbitrary x(0) and s; = V f;(x'(0)) and has the following update rule

s';—ﬁLs-l—Vz(x)X:—BZ,S+V2(X)(_[3ZX_S)’ (4.51)

where V?(x) = diag(V?f1(x1), ..., V> fu(x,)) is a term involving the Hessian matrices of the local
objective functions. The proposed algorithm improves upon the algorithm in [98] by removing
the dependence of these Hessian matrices. It is interesting to note that the proof technique in this
section can also be used to analyze algorithm (4.51) above. To see this, define | = BLx, ¢ = .
Then the above system can be reduced to

O-( B e

Similar to the proof of Theorem 9, it can be verified that the state x in (4.51) converges exponen-
tially with rate no less than W if B is sufficiently large.

4.3.2 Convergence Analysis under Strictly Convex Cost Function

With a weaker assumption, we provide a locally exponential convergence result for the algorithm
(4.2). As in the previous section, we will first construct the relationship between (4.4) and (4.2),
analyze the auxiliary system (4.4), and conclude the local exponential convergence of the system
(4.2). Additionally, we will discuss the global asymptotic convergence of the system (4.2) as a
separate part.

The following lemma shows that the system (4.2) converges as (4.4) converges and that they
have the same local convergence behavior, similar to Lemma 4.
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Proposition 3. Assume that Assumptions 10 and 11 hold. The states q and | were defined in the
last section. Consider a trajectory of (4.2) starting from (xT (0),vT (0))T. Let x* be the optimal
solution to (1.6).

(1) The state (q",17)T in (4.4) tends to zero if and only if (x" ,vI)T in (4.2) tends to (1 ®

)T ()T e,
im (4) = (Y)Y, (4.53)
x—>1®*x* [ 0
V—v

lim (X) _ <1 ox > , (4.54)
q—0 \V \%

-0
where v* is uniquely determined by BLv* = —V (I @x*) and ¥;(v*); = ¥;v'(0).

and

(2) Suppose that the origin of (4.4) is locally exponentially stable, i.e., there exists ri > 0
such that
1(g", 1) < e1]|(g"(0),17(0))T || e, (4.55)

for some ¢c1 > 1, all t >0, and all (g7 (0),17(0))T € B(0,ry). If there exists r4 > 0 such that
(xT(0),vT ()T lies in B((12x*)T,(v))T,ry), then,

H(x 1®x ,( v*)T)TH

< al|(q" (0).7(0))" [, (4:30)
forallt >0, where c3 > 0 relies on x(0) and v(0).
Proof. (1) (=) Assume that g,/ — 0 holds throughout the — part.
Step 1. Recall that
lq:B_V_ﬁLx V), (4.57)
It immediately follows from (4.15) and (4.16) that
Y Vfi(x') = 0and x - 1 ®F, (4.58)

which imply that V£;(x') — V£;(%) since Vf; (i € X) are continuous globally. That is to say, it
can be derived that
VX)) =Y;Vfi(X) > 0and x = 1®X. (4.59)

In view of the continuity of V f and the strict convexity of f, we know that ¥ — x* and x — 1 ®x™.
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Step 2. Next, it will be proved that there exists a unique v* satisfying

BLv* = —V(1®x*) and Z(v*)i = Zv" (0). (4.60)

The complete solution to fLv* = —V(1®x*) is
Vi = vs+ v, 4.61)

where v; is the special solution and v, € Null(L). Take vy = 1® (£ ¥,;v/(0) — 2 ¥ (vy)") € Null(L),
then
Li(v)' = Ei(vs)' + (Eiv'(0) = Li(vs)') = Liv'(0)- (4.62)

We will prove the uniqueness of v*. Assume that there are v* # w* that satisfy condition
(4.60). Define 0 = v* —w*, which satisfies } ;(6,); = 0. We can derive that

1
BB
which contradicts our assumption.

Step 3. Define §, = v —v*, which satisfies };(5,); = 0. We know that

1
BB

(4.14) L L
1671 < IBLSY || = 2o [[BLV" — BLw™|| =0, (4.63)

(4.14) | _
= g lBLv+V(1ex)| (4.64)

oy @
< gllg i+ 5 V0 - vaes)| o,
where (a) is due to the continuity of V(+), ¢,/ — 0, and x — 1 ®x",

(<) Given that v — v* as well as x — 1 ®x*.

First, it can be checked that

1] = 1B Lx]
= lIBLx—1@x")] (4.65)
< B[IL|[}x = 1@x*|| = 0.
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By the continuity of V, we know that

lg+1 = IBLv+ VI
< V() = V(A @x")|[+ ] BLy — BLv"|

N = N (4.66)
< [[V(x)=VA@ex")[|+BIL|[v—v|
— 04+0=0.
Thus,
gl < llg+1I+ 7] —0 (4.67)

as (7 W) > (Lox)T, ()T

(2) According to the part (1), there exists some r, > 0 such that ||x—1 ®x*g2 + v —v¥|]* <
(rp)? implies lgl|>+ ||z||2 < (r1)2. There exists some r3 > 0 such that ||g||*+||{||* < (r3)? implies
lx—1@x*||*+ Hv *H < (rp)?. There exists some r4 > 0 such that ||x — 1@ x*||* + [|lv — v*||* <
(r4)* implies [|q|| +[|1[|* < (r3/e1)?.

By our assumption, all positive trajectories of (4.4) starting from (¢ (0),17(0)) € B (0 r3/ci)
lie in B(0,r3). Thus, all positive trajectories of (4.2) starting from (x” (0),v"(0))" € B((1®
)T, (v ) stay in B((1ex)" w11 ).

For all x—1®x*||> +|[v—v*||* < (r2)2, the average ¥ = Ly xi lies in the compact set
B(x*,r;). By Assumption 9, V2f > 0 on the compact set B(x*,r,). Therefore, there exists
u’ > 0 such that V2f(x) > u'I for all & € B(x*,r;). For all x in the compact set B(1®x*,r2),
there exists M’ > 0 such that V?(x) < M'I, which implies that all gradients of the local objective
functions Vf; (i € X) are M'-Lipschitz on B(1®x*,rp).

If ¢; in (4.15) is replaced by ¢> = ¢ (ﬁﬁ + ;\1/;3% \[) (4.15) would also hold for (x” v €
B(1@x)T, (v)1)T,r,) here.

Denote by the disagreement vector 6, = v — v*. Since
(1@ L)'
(1@ 1) (BL® Iy )x (4.68)
BA'L®1,)x =0,
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we can derive that Y;(8,)" = 0. It can be derived that

@14
ﬁHﬁLv—FV(l@x*)H

1 T 1 *
< @quuw [x—1ox H
< 7”‘1”4’/33 H”H’/}/} CTZH > ) ‘e_w
< ( +ﬁﬁzc2 H (0),1 He HE(t>0).
In conclusion, it is verified that
H((x_1®x* T v_v*)T)T”
< 2 2¢y M 2 T 0 lT 0 T||,—ut >0 (470)
= (c2) (ﬁﬁz‘l’gﬁch) H(CI (0),17(0)) ||€ (t>0)
holds for all trajectories starting from B(((1®x*)T, (v)1)T,ry). O

Lemma 5. Assume that Assumptions 10 and 11 hold. For all z; € R™ (i € X) and B > 0, the
symmetric matrix L = BL+ V?(z) is positive definite if V?(z) # 0, where z = (z1,...,z0)T.

Proof. Letv = (vI,....vI)T be a real vector in R™", where v/ € R (i = 1,...,n). Since

VILy =vIBLy 4T V2 (z)v >0 4.71)
holds for any z € R™, the matrix L is positive semi-definite.
Assuming that v/ Ly = 0, we have

vIBLy =0

IV iz =0, (i=1,...,n). (4.72)

Assumption 9 implies that there exists some j € X such that V2 f i(zj) > 0, therefore, the second
line of (4.72) indicates that v; = 0. From Lemma 3, the first line of (4.72) indicates that all v' are
the same vector. We can conclude that v Ly = 0 occurs only when v = 0. [

Lemma 6. Let Assumption 2 holds. If a variable is of the form z; = Lzp € R™, where 75 € R™™,
then the following are equivalent:

(1) z1 reaches consensus.
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(2) zp reaches consensus.

(3) z1 is zero.

Proof. (1) = (2): Let z; reach consensus. Then, there exists z3 € R such that z; = Lz, =
1 ® z3. Therefore, we obtain
0 =17 ®L)(L®In)2
=1 ®L,)12z) (4.73)
= nz3,

which implies z; = Lz, = 0, and thus z; reaches consensus by Lemma 3 (3).
(2) = (3) = (1): Assume that 7 reaches consensus. By Lemma 3 (3), we know that

z1 = 0, and it is trivial that z; reaches consensus as well. O

The following is devoted to proving our second main result.

Theorem 10. Assume that Assumptions 10 and 11 hold. Consider a trajectory of (4.2) starting
from (xT(0),v7(0))T € R?™". Let x* be the optimal solution to (1.6).

(1) The trajectory converges to some equilibrium ((12x*)", (v))T globally asymptotically,

ie.,
fim (x) - (1 X ) . (4.74)
f—oo \ V 1%

(2) The trajectory converges to some equilibrium ((1 2x*)T,(v))))T locally exponentially
with rate no less than L = J — €, where J is the smallest positive real part in the spectrum of

L Ve B
A(1®x*):(5L+VBél® ) (ﬁ)L)

€ is an arbitrarily constant in (0,J), and B is an arbitrary positive constant. That is to say, there
exists some positive constant r such that

(4.75)

[((x—1 x), (v— v*)T)T” < cH(qT(O),lT(O))THefm, (4.76)

forall t >0, (xT(0),v7(0))T € B((1 2x)T,(v")!)Tr), where | = BLx, ¢ = —BLv — BLx —
V(x), and ¢ > 0 is a constant.

Proof. (1) Denote by V = %||q||2 + 3 1| a Lyapunov function. After taking derivative, we obtain
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that . .
V. =ql¢+1T]

) i 0

= —¢" (V*(x)+BL)g <0

Now we will prove that V?(x) #0in E = {x: V = 0} C {x: g reaches consensus}. Consider
a trajectory in E reaches a point x where V2(x) = 0. By Lemma 6, we know that the related ¢
and ¢ = —B LI — BLg = —BLI reach consensus, which means that / has to reach consensus and
g = 0. Again, using Lemma 6, we know that / = Bl_,x has to be zero and x reaches consensus,
which contradicts with our assumption that V2(x) = 0.

By LaSalle’s Invariance Principle, the solution will asymptotically approach the largest in-
variant set in E = {x: V = 0}. Lemma 5 and Assumption 9 imply that E = {g = 0}. For any
trajectory in E, ¢ = —B LI = 0, which implies that [ reaches consensus by Lemma 6. Again, using
Lemma 6, we know that [ = ﬁix is zero. Therefore, we can conclude that E = {g =1 =0}.

According to Proposition 3 (1), the state (x”,v7)7 in the system (4.2) converges to ((1®

)T, (v)T)T globally asymptotically.
(2) We now prove exponential convergence analysis for (4.2), which completes this proof.

Step 1. Similar to the above proof, we will first discuss the following comparison system:

g\ _  (BL+V*(1®x*) —BL\ (q\ _ N
(9) - (P B () aen(3). e
o, o
where x* is the optimal solution of problem (1.6), and A(1®x*) = (ﬁL + Vﬁlgl ®x") ([)3L> :

Part 1. In this 