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Abstract

The rapid evolution of Large Language Models (LLMs) has marked the beginning of a
new age in AI capabilities, particularly in the domain of natural language understanding
and processing. Among the forefront of these advancements is the exploration of in-context
learning, a paradigm that enables models to adapt to new tasks without explicit retraining.
This thesis embarks on a comprehensive investigation into the in-context learning capa-
bilities of LLMs, guided by two pivotal studies: KB-BINDER’s deployment in Question
Answering over Knowledge Bases (KBQA) and the evaluation of LLMs’ performance on
LongICLBench, a self-curated benchmark for long-context understanding.

The first facet of this investigation, embodied by KB-BINDER, addresses the challenge
of generalizing LLMs to diverse KBQA tasks without task-specific training. KB-BINDER
pioneers a novel few-shot in-context learning approach, utilizing Codex to generate logical
forms and employing BM25 for draft binding, demonstrating remarkable efficacy across
heterogeneous KBQA datasets. We believe KB-BINDER can serve as an important base-
line for future research in utilizing the few-shot capability of LLMs to resolve the problem
of KBQA.

Complementing this, the second study introduces LongICLBench, a specialized bench-
mark designed to test long-context LLMs in processing long, context-rich sequences across
extreme-label classification tasks with in-context learning. Through evaluation with tasks
of increasing difficulty level, an obvious performance threshold is identified, highlighting
the current limitations of LLMs in handling extensive context windows and revealing a bias
towards labels positioned towards the input’s end after grouping the instances with the
same labels in demonstration. This underscores a crucial gap in the current long-context
LLMs’ ability to reason over long sequences, paving the way for further enhancements in
long-context comprehension.

Together, these studies form the cornerstone of this thesis, encapsulating the dynamic
landscape of in-context learning within LLMs. Through a detailed examination of KB-
BINDER and LongICLBench, this work not only charts the current capabilities and bound-
aries of LLMs but also lays the groundwork for future advancements in making LLMs more
adaptable and proficient in handling a wide array of complex tasks.
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Chapter 1

Introduction

Leveraging the transformative power of large language models (LLMs) for in-context learn-
ing heralds a significant advancement in artificial intelligence, extending the frontier of
tasks that can be tackled without further fine-tuning [105, 16, 30]. This thesis delves into
the broad spectrum of capabilities enabled by in-context learning in LLMs, focusing on
two distinct yet interconnected domains: Knowledge Base Question Answering (KBQA)
and the evaluation of long-context LLMs through extreme-label classification tasks. By
harnessing the in-context learning prowess of LLMs, we aim to address complex challenges
or explore potential limitations across these domains, showcasing the models’ versatility
and their latent deficiency when dealing with natural language processing tasks.

The realm of KBQA has long been a focal point of AI research [7, 115], driven by the
quest to make vast repositories of structured knowledge accessible through natural language
queries [108, 52, 39]. Despite the progress, the sheer volume and variety of knowledge
bases present formidable challenges, notably in terms of data intensiveness and dataset
specificity as detailed as follows: 1) Data intensiveness: larger knowledge bases require
ever larger quantities of annotated data to allow fine-tuned models to generalize well over
them. [116, 93, 38]. 2) Dataset specificity: For relatively small-scale KBQA datasets,
the fully-trained models tend to overfit to a specific schema, and can hardly generalize to
knowledge base questions in unseen domains [88, 126, 89]. Traditional approaches often
depend on the need for extensive annotated data and struggle to generalize across diverse
knowledge domains. These challenges are more likely to be overcome with the potential
of LLMs, such as GPT-3 and Codex, which have demonstrated remarkable adaptability
through few-shot in-context learning [10, 18]. These models, capable of generating draft
logical forms from a handful of examples [103, 107, 128, 23, 127, 92], inspire us to devise
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Figure 1.1: Overview of KB-BINDER pipeline. There are two primary stages in our
method: 1) Generate the drafts as preliminary logical forms; 2) Bind the drafts to the
executable ones with entity and relation binders grounded on the knowledge base. The
final answer can be obtained after the execution of the final candidates.

a new framework KB-BINDER(i.e. generate-then-bind as demonstrated in Figure 1.1) to
KBQA, which is training-free and resource-efficient, yet powerful in its generalizability.

Simultaneously, the landscape of LLMs has evolved to embrace long-context process-
ing [42, 19, 76, 79, 110], a development critical for applications that require understanding
extensive sequences of text, such as long-document question-answering and multi-document
summarization. Despite this advancement, there is a notable absence of benchmarks ca-
pable of rigorously evaluating the models’ comprehension over lengthy inputs. Traditional
evaluation metrics fall short, as they often do not reflect the models’ true capacity to
process and reason over long, complex sequences as presented in Figure 1.2.

Historically, evaluations and benchmarks for long sequences have predominantly con-
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Figure 1.2: Comparison extreme-label ICL with the existing evaluation tasks. Passkey
Retrieval is a synthetic task. Long-document Question-answering does not require reading
the entire document to find the answer. In extreme-label ICL, the model needs to scan
through the entire demonstration to understand the whole label space to make the correct
prediction.

centrated on three types of assessments:

1. Perplexity measurements on lengthy documents, which is a common metric utilized
across numerous studies.

2. Tasks like passkey retrieval or needle-in-a-haystack [69, 19, 56, 95, 33], which involve
identifying specific pieces of information inserted randomly into extensive sequences. This
task has seen several LLMs surpassing a 99% success rate, indicating its synthetic nature.

3. Answering questions or summarizing content from extensive documents, such as those
found in the Qasper dataset [24].

To address these limitations, our work introduces in-context learning with extreme-label
classification tasks as a pioneering benchmark. This new benchmark challenges models to
fully comprehend extensive inputs and navigate complex label spaces. Such tasks not only
push the boundaries of what current LLMs can achieve with lengthy contexts but also
can serve as a crucial platform for improving their capabilities in processing long-range
information.
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Generally, the core contribution of this thesis is the exploration of in-context learning
as a unifying framework that can effectively tackle both KBQA challenges and serve as a
rigorous evaluation tool for long-context comprehension in LLMs. In KBQA, we leverage
in-context learning to navigate the complexities of diverse knowledge bases without the
need for extensive training data, thereby mitigating the challenges of data intensiveness
and dataset specificity. Through the development of methods like KB-BINDER, we demon-
strate the feasibility of training-free, few-shot in-context learning in generating semantically
precise logical forms for KBQA, overcoming the limitations of existing approaches.

In parallel, the introduction of extreme-label classification tasks as a benchmark for
evaluating long-context LLMs underscores the necessity of comprehensive input under-
standing. By requiring models to process and reason over entire demonstrations to accu-
rately identify labels from a vast space, we push the boundaries of what is expected from
long-context processing capabilities. This dual focus not only highlights the versatility of
in-context learning across different applications but also catalyzes advancements in LLMs’
ability to comprehend and interact with lengthy sequences of text.

The fusion of in-context learning with LLMs opens new avenues for addressing sophis-
ticated natural language processing tasks. By articulating how in-context learning can
revolutionize KBQA and provide a robust framework for evaluating long-context capabili-
ties, this thesis lays the groundwork for future innovations in the field. Through the lens of
these two applications, we not only showcase the potential of LLMs to transcend traditional
limitations but also chart a course for their evolution, towards models that are increasingly
adaptable, efficient, and capable of understanding the nuances of human language.

4



Chapter 2

Background

This section delves into the pivotal studies and frameworks that have shaped our under-
standing of in-context learning with large language models (LLMs), particularly focusing
on knowledge base question answering (KBQA), reasoning with LLMs, and the nuanced
domain of long in-context learning alongside the evaluation of LLMs for handling long-
context inputs. Each of these areas contributes to the foundation upon which this thesis
is built, highlighting the innovative strides made in the field and identifying the gaps that
our research aims to fill.

2.1 In-context Learning with Large Languag Models

In-context learning has revolutionized the application of LLMs across various NLP tasks
[10], showcasing remarkable few-shot performance on question answering [23], information
extraction [32], and numerical reasoning [55], etc. This capability allows LLMs to perform
tasks based on a small set of examples provided directly in their input context, eliminating
the need for explicit retraining.

2.1.1 Exploratory Study on In-context Learning with LLMs

Previous works have deepen the understanding of the underlying principles of this phe-
nomenon. For instance, a study has highlighted the utility of designing prompts by pairing
inputs with their corresponding labels [68]. Another line of works have analysed the perfor-
mance of in-context learning with respect to the number of examples provided, along with
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retrieving relevant examples to enhance prompt construction [62]. Other recent work takes
investigation on how distinct types of explanations, instructions, and controls can affect
zero-shot and few-shot performance [50]. These insights form the backbone of our method-
ology in applying in-context learning to both KBQA and the evaluation of long-context
LLM capabilities.

2.1.2 Reasoning with LLMs

Recently, a variety of techniques have been developed to enhance the reasoning abilities
of large language models (LLMs) [10, 48]. Among these, Chain of Thought Prompting
(CoT) has proven effective by encouraging models to generate intermediate steps in their
output, thereby improving reasoning accuracy [106]. Building on this concept, several
approaches have introduced the direct creation of formal programs to tackle specific tasks,
marking significant advancements in this area [21, 71, 34, 23]. Particularly notable in
the context of question answering is the work on Binder, which involves prompting LLMs
to perform text-to-SQL conversions to fetch answers from SQL databases [23]. However,
simply utilizing SQL table headers to prompt LLMs falls short when confronted with
the vast complexity of knowledge bases, which contain thousands of relationships and
millions of entities. The proposed framework KB-BINDER addresses this gap through
a novel approach that includes the generation of preliminary drafts and a subsequent
schema binding process, effectively navigating the extensive search space of knowledge
base. Therefore, our approach aligns with this trajectory by exploring generate-then-
bind strategies in KBQA, pushing the boundaries of what LLMs can achieve in complex
reasoning tasks.

2.1.3 Long In-Context Learning on LLMs

As the scale of pre-trained language models expands, in-context learning (ICL) has be-
come increasingly popular for tackling diverse tasks without significant fine-tuning [30].
Research indicates that augmenting the number of example demonstrations can improve
ICL outcomes [63, 109]. However, findings also suggest that overly long input prompts
might reduce performance, as the capabilities of earlier large language models (LLMs)
are limited by their training on sequences of maximum length[65]. Additionally, it has
been observed that LLMs equipped with ICL may struggle with tasks that require de-
tailed specifications, attributed to their limited proficiency in processing extensive texts
[77]. In response to these challenges, recent studies have explored memory augmentation
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and extrapolation methods, aiming to bolster ICL with a broader array of demonstrations,
thereby enhancing model performance in handling complex tasks [59, 102].

2.2 Knowledge Base Question Answering

The majority of cutting-edge KBQA models rely on semantic parsing techniques, trans-
forming natural language questions into corresponding logical forms within a knowledge
base (KB) [52, 39]. This process confronts the challenge of navigating through an im-
mense search space, exemplified by databases like Freebase, which is home to 45 million
entities and 3 billion facts [9]. Recent advancements leverage the robust generalization
capabilities of language models (LMs) to efficiently explore this vast, previously untapped
space [20, 40, 114, 84]. These approaches offer greater data efficiency and improved han-
dling of the search space compared to traditional methods based on the independent and
identically distributed (i.i.d) assumption [115, 29]. Nonetheless, they typically necessitate
thousands of labeled examples for fine-tuning, leaving the potential of few-shot KBQA
relatively unexplored due to its perceived complexity and the formidable challenge of mas-
tering the expansive search space with minimal training data. Among the few explorations
into this domain, one notable attempt involves training a meta-model to adapt swiftly
to new queries using a limited set of examples, though it still requires a substantial ini-
tial dataset, thus falling short of a genuine few-shot scenario [44]. In contrast, another
concurrent study adopts a unique approach by harnessing the discriminative, rather than
generative, capabilities of LLMs for few-shot KBQA [37]. Our work introduces a pioneering
effort to facilitate true few-shot learning in KBQA through a generate-then-bind strategy
with LLMs, potentially unlocking new avenues for efficient and practical KBQA in settings
constrained by data availability.

2.3 Long Context LLMs

This subsection ventures into the domain of long-context LLMs, highlighting research fo-
cused on overcoming the challenges and developing techniques for processing extensive
textual sequences. We examine the latest methodologies employed by contemporary long-
context LLMs, aimed at improving their capacity for managing, reasoning with, and gen-
erating lengthy text passages. Furthermore, we assess the evaluation mechanisms and
benchmarks designed to measure these models’ efficacy and constraints when dealing with
long texts. A pivotal element of our discussion is the task of extreme-label classification,

7



a naturally long-context scenario necessitated by its extensive label array. This task crit-
ically evaluates LLMs’ understanding abilities and acts as a proving ground for refining
long-context processing techniques. Our goal is to shed light on the progress and per-
sisting obstacles in utilizing LLMs for sophisticated, long-range text comprehension and
production tasks.

2.3.1 Long Context Techniques on LLMs

The performance of Transformer-based models faces limitations due to the quadratic rise
in computational demands as sequence lengths increase, especially when processing inputs
with extensive contexts. To overcome this obstacle, recent research has introduced a va-
riety of strategies. Some efforts focus on further fine-tuning LLMs with extended context
lengths, thereby conditioning these models to better handle elongated sequences [81, 99].
Meanwhile, other initiatives employ methods like position extrapolation and interpolation,
utilizing relative rotary positional embeddings, to increase the range of input lengths that
models can process post-training [87, 78, 19]. To address computational challenges, tech-
niques including the use of sliding memory windows and segmenting input into chunks
have been suggested [42, 79, 129]. In addition, novel model architectures that deviate from
the traditional Transformer framework, such as selective-state-space models — a variant
of recurrent neural networks — have been investigated for their innate suitability for long-
input processing [75, 36]. Collectively, these varied techniques aim to significantly improve
the efficiency of LLMs in managing long-context information.

2.3.2 Long Context Evaluation

Responding to the critical need for evaluating long-range capabilities in large language
models, a suite of benchmarks dedicated to long-context assessments has been developed.
The Long-Range Arena benchmark features tasks with sequences spanning from 1,000
to 16,000 tokens, designed to test the efficiency of fast Transformers in processing long
texts[94]. LongBench includes 21 bilingual datasets across six task categories, with an
average text length of 6,000 words, formatted for streamlined [6]. The L-Eval Benchmark
offers support for 20 different sub-tasks, featuring input lengths that range from 3,000 to
200,000 tokens [3]. LooGLE targets summarization and various long dependency question-
answering tasks, with instances surpassing 100,000 words [57]. The most recent addition,
∞Bench, presents 12 tasks derived from realistic, auto-generated, and manually annotated
datasets, with an average text length of 200,000 tokens [124]. While these benchmarks
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assess a broad spectrum of capabilities, none specifically address the unique challenges
posed by long in-context learning within vast label spaces, a stark contrast to traditional
long-document comprehension or synthetic tasks like needle in a haystack. To bridge
this gap, we introduce our benchmark, LongICLBench, aimed at providing a thorough
long-context evaluation framework for LLMs, particularly focusing on their performance
in scenarios requiring extensive in-context learning with a wide range of labels.

2.3.3 Extreme-label Classification

Extreme-label classification entails assigning data to one among a significantly large set
of labels, which is a process integral to numerous practical fields such as text-based emo-
tion detection, named entity extraction, and the prediction of biological functionalities
[125, 85, 25, 27]. These applications demand accurate classification within expansive label
spaces. Approaches to addressing extreme-label classification are varied, spanning from
embedding-oriented methods to refined retrieval techniques [8, 101], all aimed at effec-
tively navigating and utilizing broad label landscapes. However, the incorporation of these
tasks with long-context large language models introduces unique challenges. The extensive
nature of label spaces in extreme-label classification poses a substantial challenge to the
in-context learning abilities of LLMs, which must accurately distinguish between closely
related labels over lengthy textual inputs [66]. Given these intricacies, our proposed bench-
mark, LongICLBench, with its increasing levels of difficulty, can offer an ideal platform for
assessing the proficiency of LLMs in long-context comprehension.
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Chapter 3

Few-show KBQA with In-context
Learning

In this section, we introduce KB-BINDER, a novel approach facilitating training-free, few-
shot knowledge base question answering(KBQA) with the utilization of in-context learning,
which markes a significant advancement in the field. Our method unfolds in two stages,
beginning with the generation of a preliminary draft from a small set of KBQA question-
and-answer pairs with in-context learning. This draft, while initially imprecise in its entities
and relations, serves as a foundational step. Subsequently, KB-BINDER refines this draft
through a lexicon-based similarity search across the KB, aligning preliminary entities and
relations with their accurate counterparts to produce refined logical forms. These are then
executed against the KB to derive answers. In addition, we also develop an enhanced
version, KB-BINDER-R, to incorporate additional exemplars for improved accuracy.

Unlike prior approaches that depend on specific heuristics tailored to the KB schema,
KB-BINDER leverages the broad applicability of LLMs, eliminating the need for such
heuristics. After introducing the framework design in details, we will present the perfor-
mance of KB-BINDER across four public datasets. These results indicate that in-context
learning can resolve complicated reasoning problems after integrating with binder mecha-
nism.

3.1 Methodology

In this first exploration for the reasoning capability of in-context leaning, our KB-BINDER
utilizes a large language model (LLM) to generate an initial logical form or draft in response
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to a new question. These drafts, while not immediately executable due to their preliminary
nature and potential deviation from the specific vocabulary and structure of the knowledge
graph, provide valuable insights into the semantic relationships between entities. This
insight effectively narrows down the search for accurate entities and schema terms, which
are essential for refining the draft into an executable logical form.

Figure 3.1: KB-BINDER framework: Given a question, the LLM will first generate its
corresponding preliminary logical forms as the drafts, imitating the exemplary demonstra-
tion. Then the entity and relation binders will operate on the drafts to ground the entities
and relations on KB respectively, which produces the final candidates.

3.1.1 Drafts Generator

Utilizing Codex’s in-context learning ability, we create drafts by presenting the LLM with
random samples from the training set, formatted as question and logical form pairs as
shown in Prompts block in Figure 3.1. It’s important to highlight the challenge posed by
machine identifiers (MIDs) in these forms, which lack interpretability. By replacing MIDs
with their descriptive names in our prompts, we facilitate a more intuitive understanding
for the LLM, enhancing its ability to produce semantically rich and structurally coherent
drafts.
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3.1.2 Knowledge Base Binder

The next step involves binding the draft with specific and truly-existed details from the
knowledge base (KB), so that it can be actually executed against the target knowledge
base. This process is as the follows:

Entity Binder: To accurately determine the machine identifiers (MIDs) for entities
referenced in questions, our process begins with extracting the entities’ surface names
essentially from the preliminary drafts generated by the LLM. Initially, we look for a direct
match between the extracted surface names and the friendly names of entities within the
knowledge base. If there’s a match, we gather all corresponding MIDs for these friendly
names. From this collection, we select the most frequently occurring MIDs, based on
a frequency count (FACC1), to ensure we’re considering the most relevant entities. In
cases where a surface name doesn’t directly match any friendly name in the knowledge
base, we turn to BM25, which is a text retrieval technique to find the closest resembling
entity within the KB. This identified entity serves as a pivot or anchor to facilitate the
extraction of potential MID candidates, essentially guiding us toward the most plausible
matches based on the similarity. When the draft mentions several entities, we address each
surface name separately to identify potential MIDs for each one. This step ensures that
we accurately represent each entity in the question. After identifying MIDs for individual
entities, we explore all possible combinations of these MIDs to cover different ways the
entities might relate to each other in the context of the question.

Relation Binder: The preliminary relations that emerge in the drafts we generate
are often not direct matches for relations within the knowledge base. However, we expect
these initial relations to share a similar logical structure path and semantic essence with
those that do exist within the knowledge base, inspired by the examples shown in the
prompts. We take each mentioned relation from the draft and pair it with the original
question to form a search query. This query is then used with the BM25 algorithm to find
the most analogous relations within the entire collection of the knowledge base’s relations.
To increase the chances that our logical form will execute successfully, we focus on the most
promising relations. Specifically, we look only at two-hop relation items that can connect
entities through a sequence of two relations and select the top m relations based on their
relevance scores from the BM25 search. This selection is made from the pool of relations
connected to the current set of entity MIDs we select in Entity Binder. Relations that don’t
fit within this two-hop framework are set aside, keeping only those most likely to form a
executable logical form. For every possible combination of entities, we explore all m top-
retrieved relation candidates. This exhaustive approach ensures that we consider all viable
ways the entities could be interconnected according to the knowledge base’s structure,
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significantly improving our chances of constructing an accurate and executable logical form.
By applying this generate-then-bind method, we bind vague, preliminary relations into
precise, knowledge base-compatible relations. This transformation is essential for moving
from a draft that only approximates the answer to a fully formed query that can retrieve
accurate information from the knowledge base. It also provides a general framework for
in-context learning to be applied to KB-dependent or other analogous applications.

3.1.3 Majority Vote

Following our generate-then-bind method, each draft we produce is associated with numer-
ous possible logical forms. Each of these forms can be translated into a SPARQL query,
which is then run against the knowledge base (KB) to fetch answers. We meticulously
collect all logical forms that yield answers, alongside the answers themselves. Given that
maintaining self-consistency in the model’s predictions can significantly enhance their re-
liability [104], we iterate this process K times for the top K candidates obtained from
in-context learning. Through this repetition, we employ a majority voting mechanism to
determine the most consistently obtained answer and its corresponding logical form. This
technique ensures that our final selection is not just a random pick but is supported by
a pattern of recurrence across multiple attempts. We refer to this version of the model,
which emphasizes self-consistency across the top K drafts, as KB-BINDER(K).

3.1.4 Retrieved Exemplars

. To enhance our approach without additional training, we develop a variant called KB-
BINDER(K)-R. Unlike the original version where the examples in demonstration prompt
are chosen at random, KB-BINDER(K)-R uses the BM25 algorithm to find the N most
similar questions to the one being asked. This ensures that, in the demonstrations, the
logical forms of these N questions are closely related to or exactly match the schema of
the target question. By doing so, we’re more effectively targeting the specific elements
needed to answer the question, particularly benefiting questions that are independent and
identically distributed (I.I.D.). This tailored selection process is designed to significantly
improve our method’s performance by focusing on examples that are directly relevant to
the question at hand.
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Dataset Train Dev Test

GrialQA 44,337 6,763 13,231
WebQSP 3,098 − 1,639
GraphQA 2,381 − 2,395
MetaQA-1hop 96,106 9,992 9,947
MetaQA-2hop 118,980 14,872 14,872
MetaQA-3hop 114,196 14,274 14,274

Table 3.1: Dataset statistics.

3.2 Experiments

In this section, we provide an overview of the benchmarks utilized to assess the effective-
ness of our framework. We detail the specific configuration of KB-BINDER and present
its performance on various datasets, comparing it to that of fully-trained baseline mod-
els. Finally, we analyze how different design decisions impact performance, exploring the
reasons behind these effects.

3.2.1 Datasets

We evaluate KB-BINDER on four public KBQA datasets as follows:

GrailQA [38] is a diverse KBQA dataset built on Freebase. It encompasses a vast array of
knowledge, with 32,585 entities and 3,720 relations across 86 domains. GrailQA is carefully
designed to evaluate KBQA models across three levels of generalization: identical instance
distribution (I.I.D.), compositional, and zero-shot, offering a comprehensive test of model
adaptability.

GraphQA [88] Like GrailQA, GraphQA spans a broad spectrum of domains, generated
through sentence-level paraphrasing from graph queries. It specifically aims to test a
model’s ability to understand and generalize across compositional queries, challenging the
model’s capacity to handle complex, multi-step reasoning.

WebQSP [116] Derived from the WebQuestions dataset and answerable through Freebase,
WebQSP focuses on i.i.d. generalization but with simpler questions. This dataset provides
a benchmark for evaluating how well a model can handle straightforward queries.

MetaQA [126] Centered around a movie ontology taken from the WikiMovies Dataset,
MetaQA features question-answer pairs across three tiers of complexity, assessing a model’s
performance within a specialized domain.
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Table 3.1 offers a detailed breakdown of the training, development, and test splits for these
datasets. Our evaluation is conducted on all the available test sets, and we further explore
the parameter setting of KB-BINDER through ablation studies on a subset of GrailQA’s
development set, consisting of 500 examples selected at random.

3.2.2 Baselines

We benchmark our method against models listed on the official leaderboards of each
dataset, taking their results directly from their respective publications and using the same
evaluation criteria for a fair comparison. It’s important to note that all the baseline meth-
ods we compared against have used the full training dataset for supervision.

3.2.3 Implementation Details

During the draft generation phase, we utilize the code-davinci-0021 model from the
OpenAI API to create the top K drafts for each question. We explore scenarios where
K = 1 and K = 6, which we denote as KB-BINDER(1) and KB-BINDER(6), respectively.
Specifically, we randomly select N = 100 example questions from the training datasets of
both WebQSP and GraphQA. For GrailQA, due to its extensive test dataset and longer
inference times, we limit our sample to N = 40 exemplars. While MetaQA necessitates only
5 sample questions for demonstrations due to its smaller knowledge base. Each experiment
is repeated three times, with the average performance being reported. In the binding
phase, we set n = 15 for the entity binder across all questions. To match originally
unmatched friendly names and identify the top relation items, we employ a combination of
BM25 and Contriever[45] provided by Pyserini2 as a hybrid search approach. Once we’ve
globally ranked the relations, our focus shifts to those that can be connected through 2-hop
relations from the identified entities. We examine the top 10 relation candidates (m = 10)
within this 2-hop limit for GrailQA, WebQSP, and GraphQA, and only the top candidate
(m = 1) for MetaQA. Following this process, the generated drafts, which are linked with
potential candidates, are converted into SPARQL queries for execution on the Virtuoso
server following the instructions3.

1https://openai.com/blog/openai-codex/
2https://github.com/castorini/pyserini
3https://github.com/dki-lab/Freebase-Setup
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Overall

Method EM F1

GloVe + Transduction [38] 17.6 18.4
QGG [53] - 36.7
BERT + Transduction [38] 33.3 36.8
GloVe + Ranking [38] 39.5 45.1
BERT + Ranking [38] 50.6 58.0
ReTraCk [20] 58.1 65.3
S2QL [119] 57.5 66.2
ArcaneQA [40] 63.8 73.7
RnG-KBQA [114] 68.8 74.4
DecAF [118] 68.4 78.7
TIARA [84] 73.0 78.5

Few-shot in-context
KB-BINDER(1) 47.0 51.6
KB-BINDER(6) 50.6 56.0
KB-BINDER(6)-R 53.2 58.5

Table 3.2: 40-shot Results of KB-BINDER/KB-BINDER-R and baselines on GrailQA.

3.2.4 Main Result

In our evaluation, we show how KB-BINDER performs across the test sets of four distin-
guished public KBQA datasets, as detailed in Tables 3.2, 3.3, 3.4, and 3.5 for GrailQA, We-
bQSP, GraphQA, and MetaQA, respectively. The model variant KB-BINDER(1) operates
in a default setting, generating the top draft for further binding step, while KB-BINDER(6)
applies a mass voting strategy across the top six drafts for enhanced self-consistency. An
advanced version, KB-BINDER(6)-R, incorporates retrieved exemplars for further opti-
mization, as discussed in Section 3.1.4.

For all datasets, each version of KB-BINDER demonstrates robust performance. Specif-
ically, we observe that KB-BINDER(6) typically surpasses KB-BINDER(1), confirming our
initial hypotheses about the efficacy of leveraging mass vote mechanism. Moreover, KB-
BINDER(6)-R often boosts performance even more significantly. Notably, our few-shot
methodology competes with, and in some cases even exceeds, the fully-supervised state-
of-the-art (SOTA) performances on WebQSP, GraphQA, and MetaQA. It also delivers
competitive results against a BERT-ranking baseline on GrailQA [38].
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Method F1

ReTraCk [20] 71.0
QGG [53] 74.0
ArcaneQA [40] 75.6
PullNet [89] 62.8
RnG-KBQA [114] 75.6
TIARA [84] 76.7
DecAF [118] 78.8

Few-shot in-context
KB-BINDER(1) 52.5
KB-BINDER(6) 53.2
KB-BINDER(6)-R 74.4

Table 3.3: 100-shot Results of KB-BINDER/KB-BINDER-R and baselines on WebQSP.

Focusing on GrailQA, as shown in Table 3.2, KB-BINDER(6) achieves a 50.6 EM
score with just 40 examples, equating to the BERT + Ranking setting, which was fine-
tuned with approximately 45k annotations. This parity in performance showcases our
model’s superior generalization on compositional and zero-shot queries as highlighted in
Table 3.6. For GraphQA and MetaQA, KB-BINDER(1) and KB-BINDER(6) outperform
previous SOTAs by significant margins, as detailed in Tables 3.4 and 3.5, underscoring
KB-BINDER’s adeptness in specific scenarios. In the instance of GraphQA, the dataset
is characterized by a limited number of training examples, totaling 2,381. However, the
questions within the test set are predominantly compositional. This compositionality poses
a challenge for models that have been fine-tuned on the available data, making it difficult
for them to adapt to new combinations of schema items. On the contrary, large language
models (LLMs) find it comparatively easier to generalize in such scenarios, thanks to their
broad pre-training corpus [11, 49]. Regarding MetaQA, which draws from the relatively
concise WikiMovies knowledge base featuring only a handful of unique relations within a
single domain, the alignment between the demonstration context and the target questions
is direct and precise. Consequently, just five demonstrations are sufficient for an LLM to
produce highly accurate initial relation candidates, illustrating the effectiveness of LLMs
in scenarios with tightly defined knowledge domains.

However, improvements with KB-BINDER(K)-R are not uniform across all datasets.
For example, on GrailQA, the increase is relatively small, and on GraphQA, performance
slightly declines. Yet, on WebQSP, KB-BINDER(K)-R significantly elevates the F1 score.
This variability underscores the distinct characteristics of each dataset and the complex

17



Method F1

AUDEPLAMBDA [80] 17.7
SPARQA [91] 21.5
BERT + Ranking [38] 25.0
ArcaneQA [40] 31.8

Few-shot in-context
KB-BINDER(1) 39.3
KB-BINDER(6) 39.5
KB-BINDER(6)-R 38.7

Table 3.4: 100-shot Results of KB-BINDER/KB-BINDER-R and baselines on GraphQA.

Method 1-hop 2-hop 3-hop

KV-Mem [67] 96.2 82.7 48.9
VRN [126] 97.5 89.9 62.5
GraftNet [90] 97.0 94.8 77.7
PullNet [89] 97.0 99.9 91.4
Emb [82] 97.5 98.8 94.8
NSM [43] 97.1 99.9 98.9

Few-shot in-context
KB-BINDER(1) 93.5 99.6 96.4
KB-BINDER(1)-R 92.9 99.9 99.5

Table 3.5: 5-shot Results of KB-BINDER/KB-BINDER-R and baselines on MetaQA.

interplay between dataset specificity and the effectiveness of retrieved exemplars.

In essence, the detailed performance analysis across these datasets reveals that in-
context learning approaches like KB-BINDER(K) can match or even surpass fully-trained
SOTAs in KBQA tasks, particularly when faced with limited training data or when tasks
require nuanced multi-hop reasoning. This performance highlights both the strengths
and areas for improvement in applying in-context learning to diverse KBQA or similar
challenges.
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IID Compositional Zero-shot

Method EM F1 EM F1 EM F1

GloVe + Transduction [38] 50.5 51.6 16.4 18.5 3.0 3.1
BERT + Ranking [38] 59.9 67.0 45.5 53.9 48.6 55.7
RnG-KBQA [114] 86.2 89.0 63.8 71.2 63.0 69.2
TIARA [84] 87.8 90.6 69.2 76.5 68.0 73.9

Few-shot in-context
KB-BINDER(6) 51.9 57.4 50.6 56.6 49.9 55.1
KB-BINDER(6)-R 72.5 77.4 51.8 58.3 45.0 49.9

Table 3.6: Results of KB-BINDER/KB-BINDER-R and baselines on different question
types of GrailQA.

3.2.5 Ablation Study

To analyze how the number of examples shown during the draft generation affects the
final performance, we carried out ablation studies. Limited by the long inference time
required to process all test questions, we assessed our model’s performance on a subset
of 500 questions randomly selected from the GrailQA development set. We varied the
number of few-shot exemplars from 1 to 100, analyzing both the coverage and the EM
score for each configuration. Coverage is defined as the proportion of questions that can
be associated with at least one executable logical form out of the total in the subset. The
results, illustrated in Figure 3.2, clearly indicate a positive correlation between the number
of examples and improvements in both coverage and EM score.

Additionally, we examined how the performance of KB-BINDER(K) changes with dif-
ferent numbers of top drafts generated by Codex for majority voting. With 40 examples
for reference, the outcomes depicted in Figure 3.3 suggest that increasing drafts from 1 to 6
boosts coverage by 19% and the EM score by 5.6%. It implies that more drafts allow for a
wider variety of logical form structures and schema item formats to be initially considered.

However, higher numbers of examples and drafts lead to longer inference times and
higher costs for operating KB-BINDER. Consequently, we only report results based on 40
exemplars and the top 6 drafts for GrailQA, highlighting the inherent trade-off between
accuracy and computational resource. This suggests the potential for further enhancing
KB-BINDER’s performance by adjusting these parameters.

Further analysis in Table 3.6 reveals a significant disparity in EM scores between I.I.D.
questions and other types among fully supervised models, with scores dropping between 10
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Figure 3.2: KB-BINDER coverage and EM scores trend with shot number.

to 47.5 points. In contrast, KB-BINDER maintains consistent performance across different
question types. This is due to the fact that only part of the target questions of I.I.D have
been seen in the demonstration for few-shot setting, so there is rarely bias among the three
types.

3.2.6 Case Study

In Figure 3.4, we present examples of both successful and unsuccessful outcomes from the
KB-BINDER output. For instance, Question P1 showcases a scenario where the logical
form produced aligns perfectly with the expected target. Moreover, Question P2 illustrates
a situation where, despite correct logical structuring, the draft includes fabricated entity
names and relations, necessitating further steps to pinpoint the correct executable logi-
cal form. Conversely, Question N1 represents a case where the draft’s logic is incorrect.
Meanwhile, Question N2 demonstrates accurate draft logic yet unfortunately associates
with incorrect entities or relations.

We evaluated the efficacy of individual components within our pipeline, specifically
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Figure 3.3: KB-BINDER coverage and EM scores trend with top K self-consistency.

focusing on the accuracy of identifying correct MIDs and relations (recall) before and after
applying the Entity and Relation Binders. Additionally, we examined the accuracy of the
logical framework established in the draft. On a subset of 500 questions from the GrailQA
development set, using 40 examples (shots), KB-BINDER(1) achieved recall of 0.9 for
entity binding and 0.78 for relation binding, with the logical framework’s recall at 0.66 for
the top draft, which primarily account for the errors observed. Comparing these results to
those obtained prior to the application of the binders under the same conditions, we noted
initial recall rates of 0.78 for MIDs and 0.0 for relations. The introduction of our Entity
and Relation Binders led to improvements of 12% and 78% in recall rates for MIDs and
relations, respectively, revealing the significant impact of these components on enhancing
model performance.
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Figure 3.4: Positive and negative examples generated by KB-BINDER.
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Chapter 4

Long LLMs evaluation with
In-context Learning

After enabling in-context learning for complex reasoning task like KBQA, we further ex-
plore its possibility on long-context evaluation as large language models have already en-
tered the era of long texts. We propose to utilize in-context learning for extreme-label
classification tasks as a means to evaluate the capabilities of long-context LLMs. This ap-
proach differs from previous tasks by requiring LLMs to thorough the entire input to grasp
the extensive label space, thus demanding a comprehensive understanding from the models
for accurate predictions. The large size of the label space often naturally results in long
task demonstrations. For instance, the Discovery dataset includes 174 classes, with each
example averaging 61 tokens, leading to demonstrations exceeding 10,000 tokens for just
one example per class. Typically, LLMs require more than a single example per class to
accurately distinguish among the subtle differences of such a broad label spectrum, making
this task an ideal benchmark for evaluating long-context comprehension.

To methodically explore how these capabilities impact model performance in extreme-
label text classification with in-context learning, we curate a benchmark as LongICLBench,
which comprises six tasks of different difficulty, categorized by context length and label
space complexity. Our evaluation of 13 long-context LLMs reveals a general trend where
model performance decreases as tasks become more challenging, notably with the need
for longer demonstrations, as illustrated in Figure 4.1. Some models, such as Qwen and
Mistral, show a linear decline in performance relative to the increase in input length.
However, most models demonstrate potential benefits from detailed demonstrations within
a certain threshold. Beyond this point, extended inputs may detract from or destabilize
performance, as depicted in Figure 4.2. Further analysis into the distribution of label
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Figure 4.1: Results for representative models across different evaluation datasets. The
performance greatly decreases as the task becomes more challenging. Some models even
decay linearly w.r.t the demonstration length.

Dataset Task Type # Classes # Tokens/Shot # Total Tokens

GoEmotion Emotion Classification 28 28 [1K, 4K]
BANKING77 Intent Classification 77 28 [2K, 11K]
TacRED Relation Extraction 41 80 [4K, 18K]
Few-NERD Entity Recognition 66 61 [5K, 23K]
DialogRE Relation Extraction 36 226 [8K, 32K]
Discovery Discourse Marker Classification 174 61 [10K, 50K]

Table 4.1: Statistics of the collected sub-dataset in LongICLBench. We evaluate from
1-shot/label to 5-shot/label, which results in the shown #total token range.

positions sheds light on how this aspect significantly impacts the long in-context learning
capabilities of the models, including those like GPT-4 turbo, indicating that the position
of instances in the prompt crucially influences performances for some models.

In this chapter, we will introduce the benchmark, evaluated models, evaluation results
and the exploratory study regarding to the arrangement of instances in demonstrations.

4.1 Long In-context Benchmark

To facilitate the assessment of long in-context learning across extreme-label classification
tasks spanning various domains and levels of difficulty, we compile six datasets with context
lengths ranging from short to long. To achieve a balance between sequence token length
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Figure 4.2: LLM performance on long in-context benchmark across different lengths. We
curate datasets with different difficulty levels. As we increase the difficulty of the dataset,
LLMs struggle to understand the task definition and suffer from significant performance
degradation. On the most difficult Discovery dataset, none of the LLMs is able to under-
stand the long demonstration, leading to zero accuracy.

and the objective of evaluating long in-context learning, we evenly sample the examples
from each class to create evaluation sets designed for 1 to 5 rounds, with each round
comprising a comprehensive set of examples that include all the unique labels. We aim
to minimize bias related to label distribution by evenly sampling instances across these
classes. Detailed statistics for these datasets are provided in Table 4.1.

GoEmotions [25] is the largest manually annotated dataset of 58k English comments
from Reddit, which is labeled into 27 emotion categories or Neutral. There are 27 types of
emotion types and drop the rare ones with few examples. Each selected example contains
28 tokens on average.

BANKING77 [13] is focused on intent detection within the banking sector, containing
13,083 annotated examples spanning 77 intents. We retain all intent types for this dataset,
with individual instances averaging about 28 tokens.

Few-NERD [27] is a large-scale human-annotated name entity recognition dataset
with a hierarchy of 8 coarse-grained and 66 fine-grained entity types. Each of the instances
is a paragraph with approximately 61 tokens on average and contains one or multiple entity
names as the ground truth answer. There are 66 types of entities in the collection.

TacRED [125] is a comprehensive relation extraction dataset featuring 106,264 exam-
ples derived from news and web texts, where each sentence is labeled with a single relation
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out of 41 possible types. The average length per example is 80 tokens, making it a good
resource for relation-type classification.

DialogRE [117] is an annotated dataset based on dialogue, specifically 1,788 dia-
logues from the popular American TV show Friends. It identifies 36 potential relation
types between pairs of arguments within the dialogues, with an average token count of
226 per example. It offers a unique challenge in understanding relational dynamics in
conversational contexts.

Discovery [85] stands out for its emphasis on discourse markers, which are discovered
automatically across sentence pairs to form a substantial collection containing 174 discourse
markers. Each discourse marker has at least 10,000 examples. The average token count
per example is 61, making it the most challenging dataset due to its fine-grained label
distinctions.

4.2 Model and Experimental Setup

Model Size Initialization Strategy Train Support

Gemma-7B-base [96] 7B Gemma RoPE + LF 8K 8K
LLaMA-2-7B-32K [65] 7B LLaMA-2 Position Interpolation 32K 32K
ChatGLM3-6B-32K [121] 6B ChatGLM Position Encoding Scheme 32K 32K
Qwen-1.5-7B-base [5] 7B Qwen NTK-Aware Interpolation 32K 32K
Mistral-7B-v0.2-base [46] 7B Mistral LF 32K 32K
LLaMA-2-7B-LongLora [22] 7B LLaMA-2 Shifted Short Attention 100K 100K
Yi-6B-200K [2] 6B Yi Position Interpolation +LF 200K 200K
InternLM2-7B-base [12] 7B InternLM Dynamic NTK 32K 200K
Long-LLaMA-code-7B [99] 7B LLaMA-2 Focused Transformer 8K 256K

RWKV-5-World [75] 3B RWKV Attention-free Model 4K ∞
Mamba-2.8B [36] 2.8B Mamba State Space Model 2K ∞

Gemini-1.0-Pro [95] - Gemini Ring Attention 32K 32K
GPT4-turbo [1] - GPT-4 - - 128K

Table 4.2: The overview of the evaluated models. We utilize base models before instruction-
tuning except Gemini and GPT4-turbo. LF means fine-tuning the model on longer-context
corpus after pre-training.

In our investigation of in-context learning within the realm of extreme-label classifica-
tion, we carry out an in-depth evaluation of 13 current long-context language models, each
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of which has approximately 7 billion parameters. This evaluation includes cutting-edge
models like Gemini and GPT-4-turbo. Table 4.2 outlines the models under review, empha-
sizing the architectural advancements they introduce to accommodate the long contexts.
It’s evident from this review that various approaches have been adopted to increase the
context window capacity of these models, with some designed to support training within
larger context windows and others capable of length extrapolation. Notably, RWKV [75]
and Mamba [36], which adopt RNN-like architectures, aim to simplify the computational
demands of attention mechanisms, thereby facilitating the processing of much longer inputs
with improved efficiency in terms of time and memory.

For each dataset, we design a prompt based on a standardized template, detailed in
Table 4.3. This allows us to conduct a fair comparison across both open-source models and
those available via API, using input sequences of varying lengths. We ensure a balanced
representation of examples for all models by selecting an even distribution of labels for the
in-context demonstrations. For instance, a single round of input will cover a complete set of
examples across all label types, while five rounds will revisit each label type five times. Our
test sample consists of 500 examples from each dataset’s test set, with careful attention to
maintaining an equitable distribution of label types. The open-source models are accessed
through HuggingFace1, whereas the API-based models are utilized as per instructions in
their official documentation2.

4.3 Evaluation Results

The core findings of our evaluation are presented across Tables 4.4, 4.5, 4.6, and 4.7,
4.8, 4.9. We apply the F1 score as a measure for datasets focusing on entity recogni-
tion and relationship extraction, whereas accuracy serves as the metric for other types of
datasets. The results generally indicate that Transformer-based models outperform their
RNN counterparts across all datasets tested. Nevertheless, none of these models can match
the performance levels of sophisticated API-based models, such as GPT-4-turbo.

For simpler tasks like BANKING77, which has context lengths ranging from 2K to
14K tokens across 1 to 5 rounds, most models see improvements with longer contexts and
more demonstration examples. As depicted in Figure 4.2 and Table 4.4, accuracy either
significantly increases or drastically drops for most open-source models when moving from

1https://huggingface.co
2https://platform.openai.com/docs/guides/text-generation/chat-completions-api, https:

//cloud.google.com/vertex-ai/generative-ai/docs/multimodal/overview
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2K to 4K tokens. Beyond three rounds, the addition of more examples yields either little
or diminishing returns.

In contrast, for more complex tasks such as TacRED and DialogRE, detailed in Ta-
bles 4.5 and 4.6, which demand a deeper understanding of long contexts, the performance
of all few-shot models declines compared to BANKING77. As shown in Figure 4.2, GPT-4-
turbo is the exception, continually benefiting from additional demonstrations, while other
models peak with context lengths around 20K tokens.

The Discovery dataset presents an extreme challenge with its vast label space of 174
classes, which illustrates the limits of current models. A single round covering all label
possibilities already accumulates a context length of 10K tokens, where all models, includ-
ing GPT-4-turbo, struggle to differentiate among the nuanced categories, resulting in a
score of 0. This outcome implies that the capabilities of models to process different task
vary depend on the complexities, suggesting a threshold of complexity that even the most
advanced LLMs, such as GPT-4-turbo, cannot surpass, positioned somewhere between the
complexities of DialogRE and Discovery.

Another notable insight is the predictable performance pattern of some LLMs on
extreme-label in-context learning tasks. As highlighted in Figure 4.1, the performance
of models like Qwen and Mistral aligns almost linearly with the length of the demonstra-
tion. This pattern hints at a potential mathematical relationship between performance
and task complexity in in-context learning scenarios.

4.4 Exploratory Study

Motivated by the Lost in the Middle phenomenon [65], we conduct analytical experiments
to assess if the placement of instances within the prompt impacts performance in long
in-context learning tasks, especially for extreme-label classification.

4.4.1 Scattered Distribution

Our exploratory work includes pilot studies using the TacRED dataset, characterized by
medium complexity. We demonstrate each label type three times, resulting 123 unique
instances. In the default scattered distribution, instances with identical labels are randomly
dispersed, creating a scattered layout. We monitored the relative position of each instance
within the prompt and its label, then calculated the accuracy for every label class. As
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Figure 4.3: Visualization of accuracy for every class when instances from the same class
are scattered V.S. grouped in the demonstration prompt.

depicted in the upper row of Figure 4.3, the accuracy visualization for each label, plotted
against its position in the prompt, reveals performance variance across different label types.
In conditions where instances are scattered, some models, like InternLM2-7B-base, achieve
about 60% accuracy only on certain labels, as indicated by a red circle in Figure 4.3,
regardless of where the instances are positioned. In contrast, models such as ChatGLM3-
6B-32K exhibit strong performance across many labels. Notably, the GPT4-turbo model
consistently achieves over 80% accuracy across most labels, with only a few exceptions.

4.4.2 Grouped Distribution

For a direct comparison between scattered and grouped distributions, we arranged instances
of the same label to be near by each other in the demonstration prompts. Table 4.10 com-
pares model performances before and after this reorganization, revealing a widespread
decline in accuracy when instances are grouped by label. Models like Mistral-7B-v0.2-base
and InternLM2-7B-base show significant drops in accuracy, indicating a particular sensi-
tivity to how instances are arranged. Further investigation through visualizing accuracy
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for grouped labels, as shown in Figure 4.3, illustrates that same-class instances, marked by
color-coded dots, are positioned close to each other. It’s clear that some models, such as
InternLM2-7B-base, are highly sensitive to instance distribution, performing well only when
labels are near the end of the prompt. Meanwhile, other models like ChatGLM3-6B-32K,
despite a modest accuracy decline of 3.3%, demonstrate resilience against changes in in-
stance distribution, maintaining similar performance. Interestingly, even the GPT4-turbo
model is not immune to the impact of grouped distributions, experiencing a significant
performance reduction of 20.3%. This trend of decreased performance does not correlate
with the specific label positions within the prompt.
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Dataset Prompt

GoEmotion Given a comment, please predict the emotion category of this comment.
The prediction answer must come from the demonstration examples with
the exact format. The examples are as follows:
{comment: [comment]
emotion category: [emotion]} × repeat n times

BANKING77 Given a customer service query, please predict the intent of the query.
The predicted answer must come from the demonstration examples with
the exact format. The examples are as follows:
{service query: [service]
intent category: [intent]} × repeat n times

TacRED Given a sentence and a pair of subject and object entities within the
sentence, please predict the relation between the given entities. The
examples are as follows:
{sentence: [sentence], the subject is [subject], the object is [object]
the relation between the two entities is: [relation] } × repeat n times

Few-NERD Given the sentence, please find the name entities in the sentence and
their corresponding entity types in the strict format of the given exam-
ples as following (Entity: EntityType):
{[entity]: [entity type]} × repeat n times

DialogRE Given the dialogue, please find the name pair entities in the dialogue and
their corresponding relation types in the strict format of given examples
as following (note that the number of entities has to strictly have the
same value as the number of respective relation):
{Dialogue: [dialogue]
The list of entity pairs are (subject1, object1), (subject2, object2), etc
The [number of pairs] respective relations between each entity pair are:
[relation, relation2, etc} × repeat n times

Discovery Given two sentence1 and sentence2, please predict the conjunction word
between the two sentences. The predicted answer must come from the
demonstration examples with the exact format. The examples are as
follows:
{[sentence1] ( ) [sentence2]
the conjunction word in ( ) is [conjunction]} × repeat n times

Table 4.3: The data prompt format of each dataset. Each dataset has a unique prompt
format to effectively utilize the context and format of its respective data to get the best
output response.
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Model Param Support 1R 2R 3R 4R 5R

Context Tokens 2K 4K 7K 9K 14K

Gemma-7B-base 7B 8K 0 0 0 0 0
LLaMA-2-7B-32K 7B 32K 30.2 70.4 72.0 75.6 77.2
ChatGLM3-6B-32K 6B 32K 16.6 23.2 22.4 22.8 8.8
Qwen-1.5-7B-base 7B 32K 21.6 52.8 61.4 66.0 67.8
Mistral-7B-v0.2-base 7B 32K 29.8 43.6 66.4 67.8 64.0
LLaMA-2-7B-LongLora 7B 100K 0 0 0 0 0
Yi-6B-200K 6B 200K 25.8 0 0 0 1.2
InternLM2-7B-base 7B 200K 5.6 0 0 0 0
Long-LLaMA-code-7B 7B 256K 3.0 19.4 28.0 31.6 32.6

RWKV-5-World 7B 4K 8.6 21.2 0.4 0 0
Mamba-2.8B 2.8B 2K 0 0 0 0 0

Gemini-1.0-Pro N/A 32K 33.4 41.4 40.6 45.6 50.2
GPT4-turbo N/A 128K 73.5 80.5 82.0 83.5 84.4

SoTA (RoBERTA + ICDA) N/A - 94.4

Table 4.4: BANKING77 result with respect to increasing context length. 1R represents
one round of traversing all the instances with unique label.

Model Param Support 1R 2R 3R 4R 5R

Context Tokens 4K 7K 10K 14K 18K

Gemma-7B-base 7B 8K 0.4 0.4 0 0 0
LLaMA-2-7B-32K 7B 32K 0 0.4 0.4 0.8 0.4
ChatGLM3-6B-32K 6B 32K 29.7 36.1 38.9 40.1 25.2
Qwen-1.5-7B-base 7B 32K 38.7 47.3 45.2 43.6 40.6
Mistral-7B-v0.2-base 7B 32K 53.3 53.1 51.6 48.0 42.3
LLaMA-2-7B-LongLora 7B 100K 0 0 0 0 0
Yi-6B-200K 6B 200K 5.6 1.9 8.0 9.5 2.0
InternLM2-7B-base 7B 200K 29.6 27.2 15.5 10.7 8.0
Long-LLaMA-code-7B 7B 256K 3.8 7.1 4.1 6.6 4.9

RWKV-5-World 7B 1K 2.3 2.6 1.0 0 1.2
Mamba-2.8B 2.8B 2K 0 0 0 0 0

Gemini-1.0-Pro N/A 32K 71.4 77.8 78.2 77.4 76.8
GPT4-turbo N/A 128K 74.4 76.5 79.5 80.4 84.2

SoTA (DeepStruct) N/A - 76.8

Table 4.5: TacRED result with respect to increasing context length.
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Model Param Support 1R 2R 3R 4R 5R

Context Tokens 8K 13K 19K 25K 32K

Gemma-7B-base 7B 8K 16.3 0 0 0 0
LLaMA-2-7B-32K 7B 32K 6.9 13.9 6.3 5.7 5.9
ChatGLM3-6B-32K 6B 32K 5.1 8.9 8.8 12.4 10.4
Qwen-1.5-7B-base 7B 32K 14.4 18.4 15.5 16.4 13.2
Mistral-7B-v0.2-base 7B 32K 24.3 23.2 23.4 22.3 21.2
LLaMA-2-7B-LongLora 7B 100K 0 0 0 0 0
Yi-6B-200K 6B 200K 0 0 0.8 0.8 0
InternLM2-7B-base 7B 200K 12.2 13.4 6.4 2.1 1.1
Long-LLaMA-code-7B 7B 256K 4.0 3.8 3.0 6.4 2.2

RWKV-5-World 7B 4K 0 0 0 0 0
Mamba-2.8B 2.8B 2K 0 0 0 0 0

Gemini-1.0-Pro N/A 32K 23.6 29.2 33.2 26.1 17.3
GPT4-turbo N/A 128K 43.5 48.8 53.6 60.2 60.9

SoTA (HiDialog) N/A - 77.1

Table 4.6: DialogRE result with respect to increasing context length.

Model Param Support 1R 2R 3R 4R 5R

Context Tokens 10K 20K 30K 40K 50K

Gemma-7B-base 7B 8K 0 0 0 0 0
LLaMA-2-7B-32K 7B 32K 0 0 0 0 ✗

ChatGLM3-6B-32K 6B 32k 0 1.0 0 ✗ ✗

Qwen-1.5-7B-base 7B 32K 0 0 0 0 0
Mistral-7B-v0.2-base 7B 32K 0 0 0 0 0
LLaMA-2-7B-LongLora 7B 100K 0 0 0 0 0
Yi-6B-200K 6B 200k 0 0 0 0 0
InternLM2-7B-base 7B 200K 0 0 0 0 0
Long-LLaMA-code-7B 7B 256K 0 0 0 0 0

RWKV-5-World 7B 4K 0 0.2 0 0 0
Mamba-2.8B 2.8B 2K 0 0 0 0 0

Gemini-1.0-Pro N/A 32K 0 0 0 ✗ ✗

GPT4-turbo N/A 128K 1.5 0.5 0.5 0.5 0.5

SoTA (MTL) N/A - 87.4

Table 4.7: Discovery result with respect to increasing context length.
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Model Param Support 1R 2R 3R 4R 5R

Context Tokens 0.8K 1.6K 2.4K 3.2K 4K

Gemma-7B-base 7B 8K 0 0 0 0 0
LLaMA-2-7B-32K 7B 32K 0 0 0 0.2 0.2
ChatGLM3-6B-32K 6B 32K 22.0 17.0 15.0 12.6 10.6
Qwen-1.5-7B-base 7B 32K 14.8 18.2 18.6 19.0 14.2
Mistral-7B-v0.2-base 7B 32K 2.6 11.4 7.4 11.6 12.4
LLaMA-2-7B-LongLora 7B 100K 0 0 0 0 0
Yi-6B-200K 6B 200K 0 0 0.8 4.0 4.0
InternLM2-7B-base 7B 200K 0 0 0 0 0
Long-LLaMA-code-7B 7B 256K 0 0 0 0.2 0.4

RWKV-5-World 7B 4K 8.8 7.4 4.6 5.2 4.0
Mamba-2.8B 2.8B 2K 0 0 0 0 0

Gemini-1.0-Pro N/A 32K 20.3 21.4 22.4 24.4 24.0
GPT4-turbo N/A 128K 36.5 34.4 35.0 33.3 32.0

SoTA (BERT) N/A - 58.9

Table 4.8: GoEmotion result with respect to increasing context length.

Model Param Support 1R 2R 3R 4R 5R

Context Tokens 5K 9K 14K 19K 24K

Gemma-7B-base 7B 8k 44.0 44.2 0 0 0
LLaMA-2-7B-32K 7B 32k 36.9 40.8 41.1 41.6 41.3
ChatGLM3-6B-32K 6B 32k 24.1 9.3 23.6 10.4 1.1
Qwen-1.5-7B-base 7B 32k 40.0 46.4 47.6 47.3 47.8
Mistral-7B-v0.2-base 7B 32K 42.2 47.4 48.9 50.0 50.0
LLaMA-2-7B-LongLora 7B 100K 0 0 0 0 0
Yi-6B-200K 6B 200k 34.3 40.2 44.8 42.3 43.2
InternLM2-7B-base 7B 200k 43.6 46.2 46.5 47.8 48.3
Long-LLaMA-code-7B 7B 256K 22.3 25.5 26.5 29.4 27.0

RWKV-5-World 7B 1k 13.9 0 0 0.7 9.9
Mamba-2.8B 2.8B 2k 0 0 0 0 0

Gemini-1.0-Pro N/A 32k 36.8 26.1 28.5 27.4 28.4
GPT4-turbo N/A 128k 53.4 55.3 56.2 55.6 56.8

SoTA (PL-Marker) N/A - 70.9

Table 4.9: Few-NERD result with respect to increasing context length.
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Model Param Support Scatter Grouped ∆

Context Tokens 10K

Gemma-7B-base 7B 8K 0 0 0
LLaMA-2-7B-32K 7B 32K 0.4 3.0 +2.6
ChatGLM3-6B-32K 6B 32K 38.9 35.6 -3.3
Qwen-1.5-7B-base 7B 32K 45.2 33.0 -12.2
Mistral-7B-v0.2-base 7B 32K 51.6 5.1 -46.5
LLaMA-2-7B-LongLora 7B 100K 0 0 0
Yi-6B-200K 6B 200K 8.0 0 -8
InternLM2-7B-base 7B 200K 15.5 4.8 -9.7
Long-LLaMA-code-7B 7B 256K 4.1 0 -4.1

RWKV-5-World 7B 4K 1.0 3.6 +2.6
Mamba-2.8B 2.8B 2K 0 0 0

GPT4-turbo N/A 128K 79.5 59.2 -20.3

Table 4.10: Exploratory Result on TacRED 3 Round. Grouped means forcing the same-
typed demonstration examples near by each other instead of randomly distributing in the
prompt.
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Chapter 5

Conclusion

In this thesis, we have conducted a comprehensive exploration of the in-context learning
capabilities of Large Language Models (LLMs), focusing on two distinct areas: Knowledge
Base Question Answering and the evaluation of long-context LLMs through extreme-label
classification tasks. Through the lens of KB-BINDER and LongICLBench, we discover
the potential and limitations of LLMs, showcasing their ability to adapt to and excel in
complex natural language processing tasks without the need for extensive retraining.

KB-BINDER, as our novel framework for KBQA, leverages the in-context learning
prowess of LLMs to generate logical forms from few examples, demonstrating remarkable
efficiency and generalizability across various KBQA tasks. This approach not only allevi-
ates the data intensiveness and dataset specificity challenges inherent in traditional KBQA
methodologies but also underscores the feasibility of employing in-context learning tech-
niques to foster advancements in this field. Complementarily, LongICLBench served as a
rigorous benchmark for evaluating the long-context comprehension capabilities of LLMs,
challenging them to process and reason over extensive sequences of text within extreme-
label classification scenarios. Our evaluation reveals a performance threshold, highlighting
the models’ struggles with increasing context complexity and illuminating a path toward
enhancing long-context processing abilities.

I hope the insights obtained from these studies can shed light on the current landscape
of in-context learning within LLMs, identifying both the strengths and areas for improve-
ment. KB-BINDER’s success in KBQA exemplifies the potential of few-shot learning
in overcoming domain-specific and grounding-required challenges, while LongICLBench’s
findings point to the necessity for further advancements in LLMs’ ability to navigate and
reason over lengthy texts.
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In a nutshell, we find that in-context learning can offer a promising avenue for advancing
the field of natural language processing, pushing the boundaries of what LLMs can achieve.
This thesis strengthens the foundation for future explorations, aiming to enhance LLMs’
adaptability and efficiency across a broader spectrum of complex tasks. Through contin-
uous innovation and research, we anticipate the emergence of more sophisticated models
capable of surpassing the current limitations, further revolutionizing our interaction with
and understanding the performance of large language models.
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