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Abstract

Total variation plays an important role in the analysis of stability and convergence of
numerical solutions for one-dimensional scalar conservation laws. However, extending this
approach to two or more spatial dimensions presents a formidable challenge. Existing lit-
erature indicates that total variation diminishing solutions for two-dimensional hyperbolic
equations are limited to at most first-order accuracy.

The presented research contributes to overcoming the challenges associated with ex-
tending total variation to higher dimensions, particularly in the context of hyperbolic
conservation laws. By addressing the limitations of conventional discrete total variation
definitions, we seek answers to critical questions associated with the total variation di-
minishing property of solutions of scalar conservation laws in multiple spatial dimensions.
We adopt a more accurate dual discrete definition of total variation, recently proposed in
[40], for measuring the total variation of grid-based functions. Dual total variation can be
computed as a solution to a constrained optimization problem. We propose a set of con-
ditions on the coefficients of a general five-point scheme so that the numerical solution is
total variation diminishing in the dual discrete sense and validate that through numerical
experiments.

Apart from the contributions to the analysis of numerical methods for two-dimensional
scalar conservation laws, we develop an algorithm to efficiently compute the dual discrete
total variation and develop an imaging method, based on this algorithm. We study its
performance in computed tomography image reconstruction and compare it with the state-
of-the-art total variation minimization-based imaging methods.
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Chapter 1

Introduction

Total variation (TV) is a convex functional that became a common choice for regulariza-
tion in imaging methods. There is much evidence for its effectiveness in addressing such
problems as denoising, image recovery from noisy measurements, and image analysis. Total
variation of a characteristic function of a set is related to the length of the boundary. This
has been successfully employed for image segmentation problems. In particular, it can be
used to express minimal surface problems. In the domain of computer vision, for instance,
TV became a fundamental tool for object recognition, and its recent applications in ma-
chine learning algorithms showcase its contribution to feature selection and dimensionality
reduction.

In the field of scientific computing, total variation plays a crucial role as a tool to
ensure the nonlinear stability of high-order numerical schemes for solving hyperbolic partial
differential equations (PDEs). These equations often involve sharp discontinuities that
require careful handling to maintain accuracy and stability. TV is used in a special class
of schemes to address this challenge by ensuring that the total variation of the numerical
solution, a measure of its fluctuations, does not increase over time. This effectively prevents
the growth of oscillations near discontinuities. We will introduce two main uses of TV that
found the most success. First, we will introduce the TV as a property of the solutions of
scalar conservation laws.

Physical laws dictate that key quantities, including mass, momentum and others, are
globally conserved. Over time, these quantities evolve by mathematical expressions known
as conservation laws, which appear in various practical applications.

Let u = u(x, t) ∈ RN × [0,∞) represent the density of a physical quantity, for instance,
mass density. Let t represent time, and x ∈ RN be a spatial variable. Then a conservation
law can be written in an integral form as

d

dt

∫
Ω

u dx = −
∫
Σ

f · n dS (1.1)

Here, Σ is the boundary of Ω, f = f(u,x, t) is a smooth nonlinear mapping, which denotes
the flux of the conserved quantity, and n is the unit outer normal to the boundary of Σ.
The expression indicates that, in the absence of flux, u is preserved in the domain, and
any changes in u over time result from the inflow or outflow across the boundary of Σ.

Assume that f(u,x, t) is sufficiently smooth. Then we can rewrite (1.1) as∫
Ω

(
du

dt
+∇xf

)
dx = 0,
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which yields the following differential equation

ut +∇xf = 0, (1.2)

that must hold for all x ∈ RN , t > 0. This is also known as the differential form of the
conservation law.

If we consider Ω = RN and complement the PDE (1.2) with an appropriate initial
condition, we will arrive at Cauchy problem

ut +∇xfdx = 0, x ∈ RN , t > 0, (1.3)

u(x, 0) = u0, x ∈ RN . (1.4)

It is well known that this Cauchy problem may not have smooth solutions due to the
nonlinear structure of the eigenvalues. Moreover, the solution may be non-unique, i.e. it
is possible for many solutions to share the same initial data. This is due to the inaccuracy
of the differential equation expressing the physical law.

While solving hyperbolic equations can be used as a powerful tool, we must ensure
the problem has a unique and physically accurate weak solution by imposing additional
constraints. Naturally, we would want the solution to match the vanishing viscosity limit
of a proper viscous equation. However, directly applying this in the hyperbolic context
proves challenging. Instead, a variety of other conditions admissibility conditions, have
been developed. These can be directly applied to weak solutions of hyperbolic equations
to verify their physical validity.

In this work, we will restrict our attention to hyperbolic scalar conservation laws with
strictly convex entropy. It was established that such problems have unique weak solutions,
satisfying the entropy criterion. For this class of PDEs, it was established that TV of the
weak solutions is a non-increasing function of time [60, 39]. This fact was used to a great
extent to develop high-order accurate numerical methods for scalar conservation laws in
one spatial dimension.

The second major use of TV is as a regularization tool for image reconstruction or
recovery from noisy data. A classic example of the TVminimization-based imaging problem
is the Rudin-Osher-Fatemi (ROF) model [114].

Let us consider a bounded domain Ω ∈ R2. Given v : Ω → R find u : Ω → R such that∫
Ω

|∇u| dx+ λ

∫
Ω

(u− v)2 dx (1.5)

is minimized. In (1.5), v is an approximation of the desired solution u, obtained in an
experiment or by any other means. The term

∫
Ω
|∇u| dx is the total variation for a differ-

entiable function u and λ > 0 is the regularization parameter that balances the trade-off
between data fidelity and the smoothness of the reconstructed image.

In this context, the TV functional measures the variation in intensity within a grayscale
image u and minimal TV corresponds to the smallest possible oscillations in the image,
i.e. lowest levels of random noise. The goal of (1.5) is to remove noise from the image u
by minimizing the total variation under the fidelity constraints. The solution to (1.5) finds
a piecewise constant approximation to u, preserving its important features, such as sharp
edges. The ROF problem has had a profound impact on image processing and related
fields.
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In most practical applications (1.5) is solved for discrete images and therefore, the
solution requires discretization of the TV functional. Despite its simplicity, the ROF
model remains widely employed across various applications and serves as a benchmark for
evaluating the efficiency of contemporary learning-based image reconstruction approaches.
More details can be found in [114], [22]. A noteworthy extension of this model is TV-based
denoising and processing for color images, known as Colour TV [12].

The accuracy of TV estimation depends heavily on the chosen discrete TV definition or
discretization scheme. This thesis focuses on studying the properties of TV discretizations
when applied to solutions of two-dimensional scalar conservation laws. The majority of
existing literature relies on TV discretizations that use finite difference approximations
of the gradient. Notably, only a handful of contributions explore alternative approaches
[5, 70, 133, 40]. The work of [5] proposes a discrete approximation of total variation
using discretization of the Raviart-Thomas dual field which are conforming finite element
approximations of divergence on the square grid [110]. Recently, [26] proposed a different
discrete total variation, based on the approximation with Crouzeix–Raviart finite element
space. This approach has the advantage of having the error depending only on the local
curvature of the mesh and not on grid orientation as in conventional discretizations.

This idea was used to formulate several definitions of discrete TV, e.g. [70, 40]. In
[70] the authors considered a staggered grid approximation of the divergence operator and
enforce the constraints on the dual field at two points per pixel. Then a constrained
optimization is solved to find TV. This approach based on the optimization problem for
discrete grid function is referred to as the discrete dual TV. Since TV is a convex functional,
the resulting optimization problem has a global maximum and can efficiently be solved by
standard iterative algorithms. The convergence of discrete dual TV under mesh refinement
has been shown in [28, 27].

We particularly focus here on the discrete TV definition proposed in [40], as it is
superior to other discrete dual TV definitions, as shown in several studies, e.g. [27, 28].
This definition has been developed and studied in application to image analysis but has
not yet been applied to stability analysis of numerical schemes.

By exploring different approaches to TV discretization we aim to obtain a better def-
inition for discrete TV as a tool for studying stability of numerical schemes. We aim to
improve existing techniques, with the overarching goal of contributing to various fields,
including the stability of numerical methods for hyperbolic conservation laws in multiple
dimensions, imaging algorithms, and broader computational contexts.

1.1 Weak solutions of hyperbolic conservation laws

Nonlinear hyperbolic equations are known to develop shocks over time. To resolve discon-
tinuous solutions, a weak solution to (1.6)-(1.7) is usually considered.

In one-dimensional space, let us assume that f = f(u) and set u(·, 0) = u0 to obtain
the following Cauchy problem

ut + f(u)x = 0, x ∈ R, t > 0 (1.6)

u(x, 0) = u0, x ∈ R. (1.7)

We multiply the differential equation (1.6) by a test function φ ∈ C1
c (R; [0,∞)) and inte-

3



grate over space and time to obtain∫ ∞

0

∫ ∞

−∞
φut + φf(u)xdxdt = 0. (1.8)

Next, apply integration by parts to (1.8) to get∫ ∞

0

∫ ∞

−∞
φtu+ φf ′(u)uxdxdt = −

∫ ∞

−∞
φ(x, 0)u(x, 0)dx. (1.9)

We call u a weak solution of the hyperbolic equation (1.6) if (1.9) holds for all φ ∈
C1

c (R; [0,∞)). Notice that a function u does not need to be differentiable or even continuous
for it to satisfy (1.9).

The notion of a weak solution is not strict enough to determine a unique solution
to a Cauchy problem for the scalar conservation law [60]. Let us recall that a function
η : Ω → [0,∞) defined on an open domain Ω ⊂ RN is an entropy for (1.6) with entropy
flux q : Ω → R if all smooth solutions with range in Ω satisfy

η(u)t + q(u)x = 0. (1.10)

Most of the conservative laws in continuum mechanics are endowed with a globally defined
strictly convex entropy [87].

For the class of equation of the form (1.6), endowed with a strictly convex entropy η,
the following entropy criterion is postulated. A solution u with a range in Ω is admissible
if

η(u)t + q(u)x < 0. (1.11)

We require weak solutions to satisfy the entropy inequality (1.11) for all entropy func-
tions η of (1.6) to establish uniqueness. The existence of the entropy solution for scalar
conservation laws is obtained by the vanishing viscosity method while uniqueness was es-
tablished in [79], which also shows that the solution has a finite domain of dependence.

As for the numerical methods to solve (1.6)-(1.7), modern theory for conservation laws
has three major classes of methods that found the most use in practice. They are finite-
difference methods (FDMs), finite-volume methods (FVMs), and finite-element methods
(FEMs). Additionally, several semidiscrete methods like the method of lines and conser-
vative front-tracking methods can be employed.

Finite-difference methods are commonly used for solving hyperbolic conservation laws
like equations. They approximate the partial derivatives in (1.6) using function values on
a discrete grid of points. This transforms the partial differential equation into a system
of algebraic equations that can be solved efficiently. The key advantage of FDMs is their
simplicity and computational efficiency, making them particularly well-suited for large-scale
simulations. However, applying FDMs effectively requires careful consideration, especially
when dealing with the concept of conservative form. The difficulty lies in ensuring that the
discretized terms, built from function values at grid points, still represent the net flux of
the conserved quantity across the boundaries of each computational cell. Non-conservative
schemes can introduce artificial sources or sinks for the conserved quantity within the
computational domain, leading to inaccurate solutions that violate the conservation law.
Several strategies exist to construct conservative finite-difference schemes. These often
involve careful manipulation of the discretized terms to ensure they cancel out within
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each cell, which aims to implement the idea of a net flux. Popular approaches include
Lax-Wendroff schemes and Godunov schemes. However, these methods can become more
complex to implement, particularly in higher dimensions or when dealing with complex
boundary conditions.

First-order FVMs employ piecewise constant approximations to flux, typically ensuring
stability, but at the cost of significant numerical diffusion, which mitigate sharp disconti-
nuities. Higher-order FV methods use polynomials of higher degree, to reduce smearing,
i.e. smoothing of discontinuous profiles. However, this may produce spurious oscillations
in the solution regions that contain discontinuities. A common strategy that is used to
capture the solution behaviour near shocks and retain the stability of the numerical scheme
is to use a high-order scheme on regions where the solution is smooth and a lower order ap-
proximation around discontinuities. There are many known methods of this type, such as
Godunov methods and the monotonic upstream-centered schemes [131], wave propagation
methods [89, 90], the central difference schemes [103], and the essentially non-oscillatory
and weighted essentially non-oscillatory schemes [116, 118].

Conservative front-tracking methods combine the FDM/FVM with the standard front-
tracking [59]. These methods are use a high-order FDM/FVM scheme and in addition they
track the location of the discontinuities, essentially treating them as moving boundaries.
The complexity of the problem increases with the number of shocks to be tracked. The
computational complexity grows quickly as these shock interact which makes these methods
too complex in practice. Moreover, predicting the shock formation and its location is a
very tedious task.

Discontinuous Galerkin (DG) methods, prevalent in Finite Element Method (FEM)
settings, use finite element spatial discretization with piecewise polynomial approxima-
tions. This approach allows for discontinuities at cell boundaries. DG method found a
lot of success in problems involving nonuniform domains and complex boundaries. Some
numerical methods can be directly extended to the multidimensional case. Evaluating the
performance of numerical algorithms typically involves solving benchmark problems, for
which we have limited theoretical understanding beyond scalar conservation laws. Addi-
tionally, constructing efficient high-order numerical methods for systems of conservation
laws in both one and multiple spatial dimensions remains a formidable challenge.

We will now formulate the general framework for FVMs for scalar conservation laws.

1.2 Finite volume methods

Finite volume methods in one spatial dimension are based on the division of the domain
Ω into a number of subdomains, called finite volumes, or cells.

Let the computational domain Ω ∈ R be divided uniformly into elements Ωi with left,
xi−1/2, and right, xi+1/2, end points, where ∆x = xi+1/2 − xi−1/2 is the grid step size. The
elements Ωi are commonly called finite volumes. The FV method, akin to FD, ensures the
conservation of u(x, t) within these finite volumes. Assume that the numerical solution is
given by a grid function {Un}Ni=1, that approximates cell averages of u(x, tn) at cell centers
{x0, x1, . . . , xN+1} at t = tn.

We integrate the conservation law (1.6) over the cell Ωi

d

dt

∫
Ωi

u(x, t) dx = f(ui−1/2)− f(ui+1/2), (1.12)
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where ui−1/2 = u(xi−1/2, t). Let

Un
i =

1

∆x

∫
Ωi

u(x, tn) dx.

We can use this expression to develop an explicit scheme. For first order accuracy in time
scheme we can find U i

n+1, the average value of u over Ωi at t = tn+1 from the given cell
averages U i

n at time t = tn. Integrate (1.12) in time from tn to tn+1 to get∫
Ωi

u(x, tn+1) dx−
∫
Ωi

u(x, tn) dx =

∫ tn+1

tn

f(ui−1/2, t)− f(ui+1/2, t) (1.13)

The equation (1.13) gives us the formula to update the cell average of u after a single time
step. However, we cannot evaluate the time integral on the right-hand side of (1.13) exactly,
since u(xi±1/2, t) varies with time along each edge of the cell. However, this suggests that
we should look for the numerical schemes of the form

Un+1
i = Un

i − ∆t

∆x
(F n

i+1/2 − F n
i−1/2), (1.14)

where ∆t = tn+1 − tn and F n
i−1/2 is an approximation to the average flux F (Un, tn) along

x = xi−1/2 boundary of the finite volume

F n
i−1/2 ≈

1

∆t

∫ tn+1

tn

f(ui−1/2, t) dt. (1.15)

For hyperbolic problems, we can approximate this average flux based on the values of U
to obtain a fully discrete method. Let us assume that for some k ≥ 1

F n
i−1/2 = F

(
Un
i−k+1, . . . , U

n
i+k

)
.

We call a scheme conservative if the flux entering a given volume is identical to that leaving
the adjacent volume. Finite volume schemes are conservative by construction. It follows
from (1.14) that

∑
Un+1
i =

∑
Un
i up to boundary fluxes.

We call a scheme flux-consistent, if its numerical flux satisfies

F (u, . . . , u) = f(u), ∀u ∈ R. (1.16)

The importance of this formalization of the conservative condition is expressed by the
following fundamental theorem.

Theorem 1.2.1 ([87]). If the solution U of the flux-consistent and conservative scheme
(1.14) is bounded and converges almost everywhere to some function u(x, t) as ∆x,∆t→ 0,
then u(x, t) is a weak solution of (1.6)-(1.7).

This theorem guarantees that when the numerical solution converges, it will converge
to a solution of the conservation law, that satisfies the Rankine-Hugoniot relations in the
presence of discontinuities.

In two dimensions Ω ⊂ R2, which is subdivided into N2 non-intersecting square sub-
domains Ωi,j. These subdomains are often referred to as finite volumes, also called cells.
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Assuming each cell contains a point of the grid we write the typical 2D FV method as

Uij −
1

∆x∆y

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

u(x, y) dx dy, (1.17)

where i = 1, . . . , Nx − 1, j = 1, . . . , Ny − 1 and the Ui,j denotes the i, j-th cell average of
u. The corresponding semi-discrete scheme for two-dimensional scalar conservation law

ut + f(u)x + g(u)y = 0, x, y ∈ Ω (1.18)

can be written as

Un+1
i,j = Un

i,j −
∆t

∆x
(F n

i+1/2,j − F n
i−1/2,j)−

∆t

∆y
(Gn

i,j+1/2 −Gn
i,j−1/2), (1.19)

where F n
i−1/2 is an approximation to the average flux along x = xi−1/2

F n
i−1/2,j ≈

1

∆t∆y

∫ tn+1

tn

∫ yj+1/2

yj−1/2

f(ui−1/2) dydt. (1.20)

where ui−1/2 = u(xi−1/2, y, t) and G
n
j−1/2 is an approximate flux along y = yj−1/2

Gn
i,j−1/2 ≈

1

∆t∆x

∫ tn+1

tn

∫ xi+1/2

xi−1/2

g(uj−1/2) dxdt (1.21)

where uj−1/2 = u(x, yj−1/2, t).

The generalization of the Theorem 1.2.1 to multiple dimensions is straightforward: the
above conditions must hold separately for all components of the flux.

In the subsequent sections, we investigate the consistency and convergence of FV meth-
ods and consider second-order FVMs.

1.3 Stability of one-dimensional numerical schemes

As it was mentioned in the previous section, weak solution is not strict enough to determine
a unique solution to a scalar conservation law. Weak solutions must satisfy additional
restrictions. We say that a weak solution u is admissible if and only if any curve of
discontinuity for u is a shock curve.

Let u be a weak solution of (1.6)-(1.7), and let u have a discontinuity at x = γ(t), but u
is smooth on the rest of the real line.

Assume that u− is the limit of u at γ(t), approaching from the left, i.e. u−(t) =
limε→0 u(γ(t) − ε, t) and let u+ be the limit of u at γ(t) approaching from the right, i.e
u+(t) = limε→0(γ(t) + ε, t). Let f(u) in (1.6) be strictly convex, then it follows from (1.9)
that ∫ T

0

∫ ∞

−∞
φtu+ φf ′(u)uxdxdt+

∫ ∞

−∞
φ(x, 0)u(x, 0)dx = 0. (1.22)
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We denote

Ω− = {(x, t) : 0 < t < T, −∞ < x < γ(t)},
Ω+ = {(x, t) : 0 < t < T, γ(t) < x <∞},

and rewrite (1.22) as∫ ∫
Ω−
φtu+ φf ′(u)uxdxdt+

∫ ∫
Ω−
φtu+ φf ′(u)uxdxdt+

∫ ∞

−∞
φ(x, 0)u(x, 0)dx = 0.

Choosing φ(x, 0) = 0, we apply the divergence theorem to get∫ ∫
Ω−
φtu+φf

′(u)uxdxdt = −
∫ ∫

Ω−
(ut+f(u)x)φdxdt+

∫
x=γ(t)

u−φν2+f(u
−)φν1ds = 0,

and∫ ∫
Ω+

φtu+φf
′(u)uxdxdt = −

∫ ∫
Ω+

(ut+f(u)x)φdxdt−
∫
x=γ(t)

u+φν2+f(u
+)φν1ds = 0,

where (ν1, ν2) is the outward normal to Ω−.

By assumption, u is a weak solution and since u is smooth on any interval containing
x = γ(t), then u∫ ∫

Ω−
φtu+ φf ′(u)uxdxdt =

∫ ∫
Ω+

φtu+ φf ′(u)uxdxdt = 0.

Combining this with the expressions above yields∫
x=γ(t)

u−φν2 + f(u−)φν1ds =

∫
x=γ(t)

u+φν2 + f(u+)φν1ds = 0.

It follows that
u−ν2 + f(u−)ν1 = u+ν2 + f(u+)ν1,

which implies
f(u−)− f(u+)

u− − u+
= −ν2

ν1
.

The slope at the discontinuity is given by

dt

dx
=

1

γ′(t)
= −ν1

ν2
.

Hence γ(t) must satisfy
1

γ′(t)
=
f(u−)− f(u+)

u− − u+
,

which is called the Rankine-Hugoniot jump condition.

Now, we use the uniform convexity of the flux. In particular, this means if f ′(u) is
strictly increasing, then u will satisfy the entropy condition (1.11) if and only if u− > u+

at any discontinuity. Therefore, for uniformly convex flux, u is an admissible weak solution
to (1.6)-(1.7) if and only if u satisfies the Rankine-Hugoniot conditions and u− > u+ along
any curves of discontinuity.
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Finally, the following entropy conditions can be derived

f ′(u+) < γ′(t) < f ′(u−), (1.23)

where s = γ′(t) is the speed of propagation of the discontinuity. The inequality (1.23) is
known as Lax entropy condition and it is necessary for the stability of the solution in the
linear case.

For the numerical method for (1.6) to be convergent, the numerical solution should
converge to exact solution of the differential equation as the grid is refined. For linear
methods to be convergent we require the method to be consistent with the differential
equation and stable.

We call a FV scheme given by an operator F : RN → RN stable on (0, T ] if there exists
a function τ : R+ → R+, which we refer to as the maximal time step for a given mesh size
∆x, such that:

∀∆x > 0, ∆t ∈ (0, τ(∆x)], ∀n, 0 ≤ n∆t ≤ T.

The following inequality holds:

∥(Id+∆tF )n∥ < K, (1.24)

where Id is an identity operator and K is a certain constant that depends on the norm of
the operator F only. The inequality

∆t < τ(∆x) (1.25)

is referred to as the Courant-Friedrich-Lewy (CFL) stability condition.

The numerical solutions of high-order numerical schemes may produce spurious oscilla-
tions near discontinuities. This leads to nonlinear instabilities and unbounded (numerical)
solutions. Physically, this may produce nonphysical solutions such as negative pressures
or temperatures. This can lead to physical instabilities and hence non-feasible solutions,
such as the well-known Gibbs phenomenon [74].

For nonlinear equations stability and consistency of the numerical method do not guar-
antee convergence. Instead, a number of different approaches have been developed to
ensure convergence. One convergent set of schemes is the schemes that maintain a mono-
tonic solution or monotone scheme. We say that a scheme is monotone if F (U) in (3.2)
is a monotone nondecreasing function of each of its arguments. These schemes are typi-
cally limited to first-order accuracy, requiring fine meshes for accurate computations over
extended periods of time [65]. The characteristic property of such schemes is that they rep-
resent the solution with an excessive amount of dissipation. The goal of the construction
of a high-order method is to produce a numerical solution with neither excessive diffusion
nor non-physical oscillations. Several techniques or combinations of several techniques are
known to achieve that.

The standard approach is to suppress oscillations by adding artificial viscosity or dif-
fusion terms into the equation (1.6). These terms are added to dampen the growth of
spurious oscillations and mimic the effects of viscosity. Introducing artificial viscosity into
(1.6) results in

ut + f(u)x = σuxx,

where σ > 0 is a small number that represents the artificial viscosity coefficient.

We conjecture that the entropy-admissible solutions of (1.6), can be obtained as a limit
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of solutions of the parabolic equation (1.3). This approach aids in stabilizing the numerical
solution at the cost of severely affecting the rates of convergence and requires careful tuning
of the viscosity parameter to balance stability and accuracy [90, 137]. A common problem
with the the application of artificial viscosity to the solution of nonlinear problems is that
they are either not robust or not accurate enough, or both.

A more popular slope-limiting technique is a nonlinear procedure, that constructs a
numerical scheme that may exhibit both high-order accuracy and monotonic behavior
simultaneously. Most common limiting methods (limiters) compare slopes or curvatures
of the solution on each element of the grid (pointwise or cell-wise) with the neighboring
elements [130, 68, 122, 37]. To avoid the occurrence of spurious solution behavior the
limiter would check a certain relation between the function values or derivatives. Once the
measured relation for a particular element exceeds a specified threshold, the limiter would
modify the value of the solution locally to get the relation below the threshold value. In
other words, limiters identify oscillations and suppress them by changing the solution at
a point and/or neighboring values. For example, the limiters for FV methods reconstruct
the slope without changing the average value in the given element.

There is a common problem for most limiters in use. Different limiters may often
incorrectly select an element or a whole region near a smooth extrema of the numerical
solution as an element or a region that requires limiting [69]. This leads to the reduction
of the solution accuracy, ultimately reducing the convergence rate of the method. Since
most limiting techniques commonly control the solution gradient within an element, it is a
logical choice for second-order numerical methods, particularly in the context of FV meth-
ods. The resulting schemes exhibit second-order accuracy, as assessed through truncation
error analysis, and genuinely demonstrate nonlinearity, see [68] and numerical experiments
mentioned therein.

A special class of limiters, that is particularly efficient is based on the total variation
diminishing (TVD) property of the solutions of (1.6). In the framework of numerical
schemes, a discrete definition for TV has been successfully used to develop high-order
methods in one-dimension [122, 66, 67, 123]. The TVD property, when imposed on the
numerical solution, prevents the creation of spurious oscillations. The limiters are designed
to ensure the solution lies within the Sweby region, a specific range of solution slopes that
guarantees non-increasing total variation. More specifically, this region is characterized as
an intersection of the TVD region and the high-order scheme accuracy region.

The set of TVD schemes contains monotone schemes, as detailed in [66]. However, in
contrast to monotone schemes, a TVD scheme does not automatically have consistency with
the entropy inequality (1.11). An extension of the idea of TVD limiting is total variation
bounded (TVB) methods. These methods allow for a controlled increase in the TV of
the numerical solution. This approach retains the concept of total variation diminishing
(TVD) schemes by introducing a weaker criterion for limiting to ensure the reduction of
numerical oscillations [115]. Other notable contributions to this area include [38, 69, 104].
These studies have demonstrated the effectiveness of TVB methods in maintaining stability.
TVB methods into numerical schemes represent a significant advancement in the pursuit of
accurate and stable high-order methods, providing a valuable tool for various applications
in computational mathematics and fluid dynamics.
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1.4 Stability in multiple spatial dimensions

In one dimension, TVD schemes, frequently used as slope limiters to ensure a non-increasing
total variation of the solution over time, have been used to a great extent. While in two
dimensions, enforcing a TVD property can lead to schemes with at most first-order accuracy
[61]. In absence of a solid theoretical basis for the TVD property in high dimensions,
most practical limiters rely on geometrical arguments or directly extend one-dimensional
concepts, such as enforcing that solution values at specific points don’t surpass the average
within a chosen neighborhood [6, 83].

The lack of high-order limiters may stem from limitations in analytical tools. While
Harten’s TVD theory led to powerful second-order limiters in one dimension, it reduces
to first-order accuracy near smooth extrema [104, 105]. Alternative constructions exist for
piecewise parabolic solutions in one dimension that are TVD in a different sense, consid-
ering the total variation of the entire function including jumps between cells [68, 97].

Alternatively, enforcing a local maximum principle (LMP) on the numerical solution
offers a weaker yet more productive approach to the development of limiters for second-
order methods [54, 56]. LMP-based limiting is particularly beneficial for scalar problems,
where the LMP allows to ensure bounded solution averages throughout the computation,
which enhances the solution’s stability. However, we know of no result on the sufficiency
of LMP for scheme stability in two dimensions for a general scalar conservation law.

The main principle here is to ensure that the maximum value within an element of
the mesh remains bounded by the maximum values in neighboring elements, preventing
overshoots and maintaining solution stability. A popular LMP-based limiter involves re-
constructing the solution as the sum of the cell mean and slope, followed by scaling the
slope to limit the solution within a predetermined interval [98]. This approach, while
effective, can be computationally expensive for complex meshes.

Unlike one dimension, higher dimensions lack unique directions for limiting gradients
and introduce additional complexity due to mixed derivatives. As a result, limiting in
multiple dimensions is significantly more challenging. For this purpose, several approaches
were developed, for example, directional derivative limiters and moment limiters [54, 56].
These techniques aim to limit partial derivatives along specific directions to ensure the
solution falls within a locally defined interval. While effective on structured meshes, these
approaches may not be easily adaptable to unstructured meshes.

FV limiters have been successfully adapted for the construction of stable and high-
order Discontinuous Galerkin (DG) methods. Additionally, DG-specific limiters have been
developed [11, 83, 2]. Examples include WENO reconstruction [139, 118], hierarchical
limiting [136, 84], and limiting along medians [19]. However, existing limiters for the DG
method often suffer from limitations like computational cost, restrictiveness, or lack of
robustness, requiring problem-dependent tuning parameters. Modern areas of study focus
on tailoring limiters to specific problem characteristics or leveraging problem structure
could potentially improve efficiency and robustness.

In summary, the literature showcases various strategies employed to stabilize numerical
solutions to hyperbolic PDEs in multiple dimensions, ranging from artificial viscosity and
limiting methods to shock-capturing schemes. The choice of approach often depends on
the specific characteristics of the problem at hand, reflecting the ongoing pursuit of robust
and efficient numerical methodologies in the face of high-dimensional challenges.
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1.5 Outline

In this work, we consider the following problem for two-dimensional hyperbolic scalar
conservation laws

ut + f(u)x + g(u)y = 0, (x, y) ∈ Ω, t > 0, (1.26)

u(x, 0) = u0, (1.27)

and appropriate boundary conditions. We denote by f(u) and g(u) the flux components
in the x- and y-directions, respectively. Assuming f(u) and g(u) depend on the function u
only, we study TV of the numerical solutions to (1.26) under several discrete TV definitions.
The main goal of the present work is to challenge the long-standing negative result of J.
Goodman and R. LeVeque [61] and to demonstrate that the limitation on the order of
accuracy of the TVD schemes in multiple dimensions can be overcome by changing the
discrete TV definition to a more accurate one, more suitable for measuring TV of u ∈ L1(Ω)
solutions of (1.26)-(1.27).

For this purpose, we adopt a relatively recent alternative discrete TV definition, pro-
posed in [40] in the context of image processing, more precisely for image denoising, and
restoration. We study its properties in Chapter 2 and discuss dual discrete TV stability
for a general two-dimensional scheme in Chapter 3. We suggest a set of limiting condi-
tions on a five-point finite volume scheme coefficients, to guarantee non-increasing TV of
the scheme in the sense of the new dual discrete TV. We provide numerical evidence to
support the claim, including a consistent second-order scheme for scalar conservation laws
and randomly generated schemes in two dimensions.

The applications of the dual definition are not limited to the study of the stability
properties of the numerical schemes for scalar conservation laws. Its use is complicated by
the fact that dual TV discretization requires solving the associated optimization problem.
We give details on how it can efficiently be done in Chapter 4. Then, we extend its use to
formulate a modified version of the projection onto convex sets (POCS) imaging algorithm
for computed tomography (CT) image reconstruction in Chapter 5. This allows us to
enhance and refine state-of-the-art POCS algorithms for sparse-view, low-dose, and limited-
angle CT applications. We show that the use of the dual discrete TV allows us to surpass
the limitations associated with conventional TV discretizations, suppress artifacts, and
improve the quality of reconstruction. The proposed DTV-ASD-POCS imaging algorithm
has the potential to contribute significantly to the advancement of CT scan reconstruction,
offering a new promising approach to enhancing the overall effectiveness of medical imaging
techniques. We provide conclusions in Chapter 6.

The organization of this manuscript is as follows Chapter 2: Total variation and its
discretizations; Chapter 3: Total variation stability of numerical methods for scalar con-
servation laws; Chapter 4: A primal-dual algorithm for computing dual discrete total
variation; Chapter 5: Applications to image reconstruction; Chapter 6: Conclusions.
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Chapter 2

Total variation and its discretizations

2.1 Total variation in one spatial dimension

We begin by introducing a definition of the total variation of a function u = u(x).

Definition 2.1.1. Let u be a real-valued function defined on an open interval I ⊂ R. Its
total variation TV (u) is defined as

TV (u) = sup
∑
i

|u(xi)− u(xi−1)|, (2.1)

where the supremum is taken over all partitions {x1 < x2 < · · · < xN} of I. We define the
space BV (I) as a space of functions on I with finite total variation. If TV (u) < ∞, we
say that u is of bounded variation on I and write u ∈ BV (I).

If u ∈ BV (I), then for any ε > 0 we have

1

ε

∫
I

|u(x+ ε)− u(x)|dx ≤ TV (u).

Then, it can be shown that

TV (u) = lim sup
ε→0

{
1

ε

∫
I

|u(x+ ε)− u(x)|dx
}
. (2.2)

While (2.1) and (2.2) hold for any function u on I, for a differentiable u we have a simpler
expression

TV (u) =

∫
I

|u′(x)| dx. (2.3)

For a non-differentiable u, we define Du, a distributional (or weak) derivative. We call
Du a weak derivative of u ∈ L1(I) if the following holds for all φ ∈ C1

c (I)∫
I

uφ′ dx = −
∫
I

Du φdx.

If u ∈ BV (I), then TV (u) can be written as

TV (u) = sup
φ∈C1

c (I), |φ|≤1

{
−
∫
I

u φ′dx

}
=

∫
I

|Du|dx. (2.4)
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Figure 2.1 shows three functions: u,v, and w. The first two are not differentiable at
the middle points. It is clear from (2.1) that these three functions have the same TV,
i.e. TV (u) = TV (v) = TV (w) = 2. For one-dimensional BV functions, the geometric
representation of their TV is the sum of distances between consecutive minimum and
maximum values.

Figure 2.1: Total variation of functions u, v, w are TV (u) = TV (v) = TV (w) = 2.

Total variation is widely used in analysis of solutions of one-dimensional conservation
laws. Below we list some relevant results and provide references. In this and next chapters
we use citation after the number of the theorem to distinguish between the known results
and the new results proven here.

Theorem 2.1.1 ([18] Helly’s theorem). Let {un} be a sequence of functions un : R → R
such that

TV (un) ≤ C and |un(x)| ≤M, ∀x ∈ R, n = 1, 2, . . . ,

with some constants C and M . Then there exists a function u and a subsequence {unk
}

such that
lim

nk→∞
unk

(x) = u(x), for each fixed x ∈ R,

TV (u) ≤ C, |u(x)| ≤M.

Theorem 2.1.1 implies that BV is a compact space. Unfortunately, the convergence
here is pointwise and not uniform.

Theorem 2.1.2 ([18]). Let {un} be a sequence of functions un : R× [0,∞) → R such that

TV (un) < C and |un(x, t)| ≤M∫ ∞

−∞
|un(x, t)− un(x, s)|dx ≤ L|t− s|, ∀t, s ≥ 0,

with some constants C, M, L. Then, there exists a subsequence {unk
} that converges in

L1 to a locally L1-integrable function u, such that∫ ∞

−∞
|u(x, t)− u(x, s)|dx ≤ L|t− s|, ∀t, s ≥ 0,

TV (u) ≤ C, |u(x, t)| ≤M.
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This theorem establishes that we can construct an approximation to u(x, t) at each
moment in time t ≥ 0 using bounded functions from BV (R), and it will hold at all
but countably many points x. Finally, we state the existence of BV solutions of scalar
conservation laws.

Theorem 2.1.3 ([60]). Let f(u) be locally Lipschitz continuous and let u0 ∈ BV (R). he
following theorem establishes the BV property of the unique entropy solution. Then, the
Cauchy problem (1.6)-(1.7) has a unique weak entropy solution u ∈ L∞(RN×(0, T )), which
satisfies for almost all t ∈ [0, T ]

∥u(·, t)∥L∞ ≤ ∥u0∥L∞ a.e. for x ∈ RN . (2.5)

Moreover, if u and v are the entropy solution of (1.6) associated with initial conditions u0
and v0, respectively, such that u0 ≥ v0, then we have

u(·, t) ≥ v(·, t) a.e. (2.6)

Finally, if u0 belongs to L∞(RN) ∩BV (RN), then u(·, t) belongs to BV (RN) with:

TV (u(·, t)) ≤ TV (u0). (2.7)

Theorem 2.1.3 states that the total variation of weak solutions of (1.6)-(1.7) is a
bounded function.

2.2 Total variation in multiple spatial dimensions

TV definition (2.2) can be naturally extended to multiple spatial dimensions.

Definition 2.2.1. Let u : Ω → R, where Ω ⊂ R2 is an open set. Then its TV can be
defined as

TV (u) = lim sup
ε→0

{
1

ε

∫
Ω

|u(x+ ε, y)− u(x, y)|+ |u(x, y + ε)− u(x, y)| dxdy
}
. (2.8)

For a differentiable u, (2.8) can be rewritten as

TV (u) =

∫
Ω

|ux|+ |uy|dxdy. (2.9)

While the definition (2.8)-(2.9) is straightforward, it is not rotation invariant. For functions
in L1(Ω), we can introduce a different definition. Similarly to the one-dimensional case
(2.4), we introduce the weak derivative Du as∫

Ω

u∇ ·φ dxdy = −
∫
Ω

Du φ dxdy, φ ∈ C1
c (Ω). (2.10)

where φ = (φ, ψ) is a differentiable test function with compact support. Then we can
define TV as
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Definition 2.2.2.

TV (u) = sup
φ∈C1

c (Ω)

{
−
∫
Ω

u∇ ·φ dxdy : ∥φ∥∞ ≤ 1

}
=

∫
Ω

|Du| dxdy, (2.11)

where, the norm ∥ · ∥∞ is defined by

∥φ∥∞ = sup
(x,y)∈Ω

∥φ(x, y)∥2 = sup
(x,y)∈Ω

√
φ(x, y)2 + ψ(x, y)2. (2.12)

This is known as TV definition in weak sense. If we again assume that u is differentiable,
(2.11) becomes

TV (u) =

∫
Ω

√
u2x + u2y dxdy. (2.13)

TV (2.13) is commonly referred to as isotropic TV. We indicate this by the subscript ”is”.
The name is due to the fact that the Euclidean norm used in (2.13) is invariant under
rotation of the coordinate system. For TVa(u) we can easily see that it is not rotation
invariant. For instance, a vector (ux, uy) = (0, 1) will have |ux| + |uy| = 1, where ∥ · ∥1
stands for the L1-norm. Then, if we rotate it by π/4 we will get |ux| + |uy| =

√
2. In the

following sections we will see how this can cause imaging artifacts and significant errors in
the value of TV.

In two and more spatial dimensions, analogues of Theorems 2.1.1 and 2.1.2 hold for
(2.11). We will now state some properties of total variation and the space of functions of
bounded variation that are important for the discussion in Chapter 3.

Theorem 2.2.1 (Convexity of TV [29]). Let u1, u2 ∈ L1(Ω) and α ∈ [0, 1], then

TV (αu1 + (1− α)u2) ≤ αTV (u1) + (1− α)TV (u2).

The proof follows from (2.11) and properties of supremum.

Theorem 2.2.2 (L1-lower semicontinuity [29]). Suppose un → u in L1. Then

TV (u) =

∫
Ω

|Du| dx dy ≤ lim inf
n→∞

∫
Ω

|Dun| dx dy.

In particular, if {un} is a sequence of bounded functions such that un ∈ BV (Ω), then
u ∈ BV (Ω), ∀n.

For any φ ∈ C1
c (Ω) that satisfies ∥φ∥∞ ≤ 1 we have by the assumption the theorem

and (2.11) ∫
Ω

u∇ ·φ dx dy = lim
n→∞

∫
Ω

un∇ ·φ dx dy ≤ lim inf
n→∞

∫
Ω

|Dun| dx dy. (2.14)

Taking supremum over φ of (2.14), yield

sup
φ∈C1

c (Ω), ∥φ∥∞≤1

{∫
Ω

u∇ ·φ dx dy
}

= sup
φ∈C1

c (Ω), ∥φ∥∞≤1

{
−
∫
Ω

u∇ ·φ dx dy
}

≤ lim inf
n→∞

∫
Ω

|Dun| dx dy.
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Noticing that the middle expression is equal to TV (u) concludes the proof.

Next we show that BV (Ω) equipped with a norm

∥u∥BV =

∫
Ω

|u(x, y)| dx dy +
∫
Ω

|Du| dx dy, (2.15)

is a Banach space. It follows from (2.15) that BV (Ω) is a subset of L1(Ω). To establish
completeness, we consider a bounded sequence {un} that is Cauchy under ∥ · ∥BV . Then
{un} is also Cauchy in L1. Let u ∈ L1 be its limit. Then, by the semicontinuity property,
u ∈ BV (Ω).

Next, we apply the semicontinuity argument again to {um − un}, where {um} is a
subsequence of {un}. For each um we can write∫

Ω

|Dum −Du| dx dy ≤ lim inf
n→∞

∫
Ω

|Dum −Dun| dx dy.

Since {un} is a Cauchy sequence, we have that

lim inf
n→∞

∫
Ω

|Dum −Dun| dx dy = 0.

Thus um → u in BV (Ω).

Another key property of the BV space is its closeness to W 1,1(Ω).

Theorem 2.2.3 (Mollification of BV [29]). For any u ∈ BV (Ω), we can find a sequence
of approximations {un} such that:

(a) un ∈ C∞(Ω) for n = 1, 2, . . .

(b) un → u in L1(Ω) as n→ ∞,

(c)
∫
Ω
|Dun| dx dy →

∫
Ω
|Du| dx dy.

Theorem 2.2.4 (Weak Compactness of BV [29]). Let {un} ∈ BV (Ω), where Ω is a
Lipschitz domain, be a bounded sequence. Then, there exists a subsequence that converges
in L1(Ω).

It follows from Theorem 2.2.3, that for each un there exists wn ∈ W 1,1(Ω) approximating
it such that∫

Ω

|un − wn| dx dy ≤ 1

n
and

∫
Ω

|∇wn| dx dy ≤
∫
Ω

|Dun|+ 1 dxdy.

Therefore the sequence {wn} must be bounded in W 1,1(Ω). Due to the weak compactness
of W 1,1(Ω) (or the Rellich theorem [112, 45]), {wn} will contain a subsequence {wnk

}, that
will converge in L1(Ω). Then the subsequence of {un} with the same indices nk, i.e. {unk

}
must also converge in L1(Ω).

Finally, we state an important result for application of TV to solutions of hyperbolic
conservation laws. Let us consider a scalar conservation law in N -dimensional space

ut +∇ · f(u,x, t) = q(u,x, t), (x, t) ∈ RN × [0,∞), (2.16)

u(x, 0) = u0(x), (2.17)
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where f and q are Lipshitz continuous flux and source term, respectively. This Cauchy
problem has a unique weak entropy solution [79].

Let ∇ · f = ∂uf · ∇u + ∇x · f , where ∇xf denotes the gradient of f with respect
to the spatial variables only. Assume that ∂tfu, ∂t(∇x · f), fu,∇x · fu, ∂tq, q − ∇x · f ,
∂u(q −∇x · f), (q −∇x · f) ∈ L∞(RN), f ∈ C2(RN), q ∈ C1(RN) and∫ T

0

∫
RN

∥∇x(q −∇x · f)∥∞dxdt <∞, ∀T > 0.

Then the following theorem holds.

Theorem 2.2.5 (Theorem 2.5 of [39]). Let u0 ∈ BV (RN) be bounded. Then, the weak
entropy solution u of (2.16)-(2.17) is of bounded variation, i.e. u ∈ BV (RN) for all t > 0.

Moreover, if
κ0 = N ·WN ((2N + 1)∥∇x∂uf∥∞ + ∥qu∥∞)

with WN given by

WN =

∫ π/2

0

(cos(θ))N dθ,

then for all T > 0,

TV (u(x, T )) ≤ TV (u0)e
κ0T +N ·WN

∫ T

0

eκ0(T−t)

∫
RN

∥∇x(q −∇x · f)∥∞dx dt. (2.18)

In this work we consider problems with f = f(u), i.e. with the flux that does not
depend explicitly on x, t, and the source term q = 0. In this case κ0 = 0, and the integral
in right hand side of (2.18) is zero. Then we get the following bound for the total variation
of the solution: TV (u(x, T )) ≤ TV (u0).

Geometric interpretation of TV.

While total variation has an easy geometric interpretation for functions of one variable,
it is more challenging to visualize it in higher dimensions. In particular, (2.11) does not
allow an easy interpretation. Below we will try to get some insight into this issue.

First, we will analyze a simple case of a smooth function u(x, y) and then state a general
result.

Let u(x, y), (x, y) ∈ Ω, describe a smooth surface in three-dimensional space and let
u(x, y) = λ be a level curve for some λ ∈ R. Assume that some point (x0, y0) is lying on
the curve and ∇u(x0, y0) ̸= 0. Then the level curve (x, y(x, λ)) can be parameterized as

x = x(s, λ) and y = y(s, λ),

where s is the arc length. In a local neighborhood of (x0, y0), we can relate

u(x, y) = λ ⇐⇒ y = y(x, λ).

This change of variables is well-defined at least locally, and the following relations hold

λ = u(x(s, λ), y(s, λ)) and x2s + y2s = 1. (2.19)
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Figure 2.2: Level set γλ (in red) for a smooth function of two variables.

Computing partial derivatives of the first expression with respect to s and λ yields

0 = (xs, ys) · ∇u and 1 = (xλ, yλ) · ∇u. (2.20)

The first expression in (2.20) results in ∇u = ±|∇u|(−ys, xs). Then we can rewrite the
second expression in (2.20) as

1 = ±|∇u|(xsyλ − ysxλ) = ±|∇u|∂(x, y)
∂(s, λ)

. (2.21)

Then ∫
Ω

|∇u| dx dy =

∫
Ωs,λ

|∇u|
∣∣∣∣∂(x, y)∂(s, λ)

∣∣∣∣ ds dλ =

∫
Ωs,λ

ds dλ.

Above, we changed variables in the first integral. In the second integral the integrand is
equal to one by (2.21).

Let γλ denote the λ-level curve (Figure 2.2), then∫
γλ

ds = length(γλ).

Assuming that length(γλ) = 0 if the level curve is an empty set, we obtain∫
Ω

|∇u| dx dy =

∫ ∞

−∞
length(γλ) dλ. (2.22)

Therefore, we can interpret total variation of a smooth shape as the sum of the lengths of
all level curves.

For a general u ∈ BV the level curve γλ might not be regular. So, for such nonsmooth
functions formula (2.22) has to be adjusted. Let us define the level domain Eλ = {(x, y) ∈
Ω : u < λ} and its characteristic function

ιEλ
=

{
1 if (x, y) ∈ Eλ,

0 otherwise.

19



We further can define the perimeter of the level domain as

Per(Eλ) =

∫
Ω

|DιEλ
| dxdy,

where DιEλ
denotes the weak derivative of ιEλ

. Then TV of a function can be computed
by integrating the perimeter of all lower level domains.

Theorem 2.2.6 ([57]). Suppose u ∈ BV (Ω), then

TV (u) =

∫ ∞

−∞
Per(Eλ)dλ. (2.23)

The expression in (2.2.6) is known as the co-area formula. It was first proposed in [50] and
then proved in [57].

Remark 2.2.6. For a smooth function, the expressions for the surface area

S(u) =

∫
Ω

√
1 + u2x + u2y dxdy and TV (u) =

∫
Ω

√
u2x + u2y dxdy.

are similar. In particular, for problems where we need to minimize surface area, any
solution that minimizes S(u) would give the minimal value of TV (u). Also any oscillations
in u would increase both the surface area and the value of total variation.

While in one spatial dimension TV depends on the values of the extrema and the shape
of u is not relevant (Figure 2.1), this is not the case in two dimensions. Consider two
smooth convex functions u and v defined on Ω = {(x, y) ∈ R2 : x2 + y2 ≤ 1}

u = x2 + y2, v = (x2 + y2)2,

see Figure 2.3. First we compute TV defined by (2.13). They are

(a) u = x2 + y2 (b) v = (x2 + y2)2

Figure 2.3: Convex functions u(x, y) and v(x, y) defined inside the circle x2 + y2 ≤ 1.

TVis(u) =

∫
Ω

√
4x2 + 4y2 dxdy =

∫ 1

0

∫ 2π

0

2r2 dθdr =
4πr3

3

∣∣∣1
0
=

4π

3
.
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and

TVis(v) =

∫
Ω

√
(4x(x2 + y2))2 + (4y(x2 + y2))2 dxdy

=

∫ 1

0

∫ 2π

0

4r4
√

(cos θ)2 + (sin θ)2 dθdr =
8πr5

5

∣∣∣1
0
=

8π

5
.

We observe that TV (u) and TV (v) have different values. Similarly, for TV defined by (2.9)
we have

TVa(u) =

∫
Ω

|ux|+ |uy| dxdy =

∫
Ω′
|2x|+ |2y| dxdy

=

∫ 1

0

∫ 2π

0

2r2 (| cos(θ)|+ | sin(θ)|) dθdr = 16

3
,

and

TVa(v) =

∫
Ω

|4x(x2 + y2)|+ |4y(x2 + y2)| dxdy

=

∫ 1

0

∫ 2π

0

4r4 (| cos(θ)|+ | sin(θ)|) dθdr = 32

5
,

which also have different values. We conclude here that TV in two dimensions and inher-
ently its discretizations will be sensitive to the curvature of a function. For two smooth
functions that have the same maximal and minimal values, TV can be different without
introducing new extrema. This distinguishes the one-dimensional TV and TV in multiple
dimensions and its discretizations.

Rotational and translational invariance of total variation.

Let u have a finite support in Ω. Consider geometric translation: x′′ = x + x′, y′′ =
y+y′, with some constant x′, y′ such that u(x′′, y′′) is fully contained in Ω after translation.
Then

TV (u(x+ x′, y + y′)) = sup
φ∈C1

c (Ω)

{
−
∫
Ω

u(x+ x′, y + y′)∇x,y ·φ dxdy : ∥φ∥∞ ≤ 1

}
= sup

φ∈C1
c (Ω)

{
−
∫
Ω

u(x′′, y′′)∇x′′,y′′ ·φ dx′′dy′′ : ∥φ∥∞ ≤ 1

}
= TV (u),

since the divergence operator is invariant to translation of coordinates, i.e. ∇x,y · φ =
∇x′′,y′′ ·φ.

The rotational invariance of total variation follows from the co-area formula (Theorem
2.2.4) and the fact that perimeter Per(Eλ) of any domain in two dimensions does not
change under rotation.

2.3 Discrete total variation in multiple spatial dimen-

sions

In this section we will introduce several conventional definitions of TV of discrete functions
in one and two dimensions. Then we will investigate their properties and point out the
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differences between them. Finally, we will describe an alternative approach to defining
discrete TV and study its properties.

For a one-dimensional grid function U , which is a vector of size N , discrete TV is
defined as

TV (U) =
N∑
i=1

|Ui+1 − Ui|. (2.24)

In two dimensions, we consider a grid function U defined on a N × N grid of cells
Ωi,j = [xi−1/2, xi+1/2] × [yj−1/2, yj+1/2] with constant values Ui,j in each cell. We associate
Ui,j with cell centers (xi, yj). First order forward difference discretization of (2.9) results
in the following discrete TV

TVa(U) =
∑
i,j

∆xi|Ui+1,j − Ui,j|+∆yj|Ui,j+1 − Ui,j|, (2.25)

where the sum is taken over all cells in the grid. For uniform square grids we have ∆xi =
∆yj = ∆x, and (2.25) can be written as

TVa(U) = ∆x
∑
i,j

|Ui+1,j − Ui,j|+ |Ui,j+1 − Ui,j|. (2.26)

The TV defined by (2.26) is referred to in the literature as ”anisotropic TV”, hence the
subscript ”a”.

Discretization of (2.13) results in the following discrete TV

TVis(U) =
∑
i,j

∆xi∆yj

√
1

∆x2i
(Ui+1,j − Ui,j)2 +

1

∆y2j
(Ui,j+1 − Ui,j)2.

On a uniform square grid, TVis(U) simplifies to

TVis(U) = ∆x
∑
i,j

√
(Ui+1,j − Ui,j)2 + (Ui,j+1 − Ui,j)2. (2.27)

Several other discrete TV definitions have been proposed in the literature. For example,
Vitali-Lebesgue-Fréchet-de la Vallée Poussin TV [33]

TVV (U) =
∑
i,j

|∆11Ui,j|, (2.28)

and Fréchet TV [33]

TVF (U) = max
ϵi,ϵ̃j=±1

∑
i,j

ϵiϵ̃j∆11Ui,j, (2.29)

where the maximum is taken over all vectors ϵ, ϵ̃ ∈ RN−1 with components equal to ±1 and
∆11Ui,j = Ui+1,j+1 −Ui+1,j +Ui,j −Ui,j+1. These definitions are based on a finite difference
approximation of the divergence of u.

Other definitions start with a given u(x, y). We use the oscillation of u(x, y) inside each
cell Ωi,j, given by ωi,j = sup(x,y)∈Ωi,j

(u(x, y)) − inf(x,y)∈Ωi,j
(u(x, y)) as in [33]. Then the

22



Pierpont TV is defined by

TVP (U) = D
∑
i,j

ωi,j, (2.30)

where D is some constant depending on the size of the grid only. Hahn’s version of the
definition given by

TVH(U) =
∑
i,j

ωi,j

N2
. (2.31)

A comprehensive discussion of these definitions, together with a proof of their equiv-
alence, can be found in [33]. Higher-order versions of TV discretizations (2.26), (2.27)
are sometimes used. They are obtained by using second and higher order finite difference
approximations to the gradient.

Discrete TV under rotation and translation.

Consider u(x, y) defined on a square domain Ω = [−1, 1]× [−1, 1]. Let U be its projection
onto a N × N grid with Ui,j being the average of u in Ωi,j. While we do not expect any
discrete TV to be rotation invariant. It is reasonable to expect that TVis(U) and TVd(U) to
be both rotation and translation invariant under mesh refinement, i.e. as ∆x→ 0, as they
approximate a rotation-invariant TV (2.11). It appears that this is not the case for TVis(U)
as can be seen from the numerical experiments in Section 2.4 of this chapter. One possible
explanation is that rotation of a continuous function and rotation of the grid function are
two different transformations, that result in different functions. In other words, rotating
a projection of a function on the grid is not the same as rotating the function itself and
then taking its projection onto a grid. Hence, there is no one-to-one mapping between a
function and its projection.

Consider a square pulse given by

u(x, y) =

{
1, if x ∈ [−1/2, 1/2], y ∈ [−1/2, 1/2],

0, otherwise.

We project u(x, y) onto a square, 8×8 mesh as shown on Figure 2.4 (left). Then, we rotate
u counterclockwise about the origin by an angle π/6 and call the result a new function
v. Next, we project v onto the grid to get a discrete function V (Figure 2.4 (right)).
Computing TV of U and V

TVa(U) = 16∆x = 4, TVa(V ) ≈ 4.9558,

we observe that the value of TV is not preserved. This is expected as TVa(u) ̸= TVa(v).

Next, we consider a smooth function

u = e−10(x2+y2). (2.32)

and find its projection U onto the grid (Figure 2.5 (left)). Translating u by ∆x/2 in
the horizontal direction and ∆x in the vertical direction we obtain a new function v. Its
projection on the grid is given by

Vi,j =
1

∆x2

∫
Ωi,j

e−10((x−∆x
2

)2+(y−∆x)2)dxdy.

We plot V in Figure 2.5 (right).
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Figure 2.4: Projections U (left) and V (right) of square pulse functions u and v onto a
8× 8 mesh. Black and white correspond to 0 and 1, respectively. Dark gray and light gray
correspond to intermediate values between 0 an 1.

In this example, we use TVis to find the TV of U and V

TVis(U) ≈ 1.6262, TVis(V ) ≈ 1.5996.

Therefore, both TVa and TVis depend on the orientation of the function u with respect
to grid and may change under translation and rotation. Moreover, discrete TV depends
on grid size. Similar results can be expected for other discrete TV definitions.

Figure 2.5: Projections U (left) and V (right) of the bell shape functions u and v onto a
8 × 8 square mesh. Black and white correspond to 0 and 1, respectively. Dark and light
gray correspond to intermediate values between 0 an 1.

We will now introduce an alternative approach, proposed in [70], to construct a defini-
tion of dual discrete TV, that is based directly on the optimization problem (2.11).
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Dual discrete total variation.

Let u ∈ BV (Ω), then it has a distributional derivative Du. Let a test function φ = (φ, ψ)
be a differentiable vector field. We will further assume that ∥φ(x, y)∥ ≤ 1, ∀(x, y) ∈ Ω,
and (φ · n⃗) = 0 on ∂Ω, where n⃗ is the unit normal vector along the boundary ∂Ω. We
start with TV defined by (2.11), that we rewrite as

TV (u) = sup
φ∈C1

c (Ω)

{∫
Ω

φDu dxdy : ∥φ(x, y)∥ ≤ 1, ∀(x, y) ∈ Ω

}
.

Assuming for simplicity that Ω is square, we discretize it into a uniform N ×N grid of
square elements Ωi,j, of size ∆x2. Using (2.10) we write∫

Ω

u∇ ·φ dxdy ≈
∑
i,j

Ui,j

(
φi+1/2,j − φi−1/2,j

∆x
+
ψi,j+1/2 − ψi,j−1/2

∆x

)
∆x2, (2.33)

where Ui,j is the average of u in Ωi,j, φi+1/2,j = φ(xi+1/2, yj), ψi,j+1/2 = ψ(xi, yj+1/2),
φi−1/2,j = φ(xi−1/2, yj), ψi,j−1/2 = ψ(xi, yj−1/2).

Next, we apply summation by parts to the right hand side of (2.33) to obtain a discrete
analogue of (2.10)

∆x
∑
i,j

Ui,j

(
(φi+1/2,j − φi−1/2,j) + (ψi,j+1/2 − ψi,j−1/2)

)
=−∆x

∑
i,j

φi+1/2,j(Ui+1,j − Ui,j) + ψi,j+1/2(Ui,j+1 − Ui,j) = −∆x
∑
i,j

⟨DUi,j,φi,j⟩,
(2.34)

where ⟨·, ·⟩ denotes the Euclidean inner product of vectors in R2, andDUi,j = (D1Ui,j, D
2Ui,j),

with
D1Ui,j = Ui+1,j − Ui,j, D2Ui,j = Ui,j+1 − Ui,j.

DUi,j can be viewed as a forward difference approximation of the gradient of u at the
centroid of Ωi,j, up to division by ∆x. Alternatively, D1Ui+1/2,j can be viewed as a centered
approximation of the partial derivative of u with respect to x at (xi+1/2, yj), the midpoint
of the right edge of Ωi,j, and D2Ui,j+1/2 as the partial derivative with respect to y at
(xi, yj+1/2), the upper edge’s midpoint, up to division by ∆x. Similarly, φi+1/2,j and ψi,j+1/2

are combined into vector φi,j = (φi+1/2,j, ψi,j+1/2). Note that although the values of φ and
ψ are computed at edge midpoints, we associate φi,j with Ωi,j and summation over i and
j in (2.34).

Thus, for a discrete function U we can write a semi-discrete version of (2.11)

TV (U) = max
φ∈C1

c (Ω)

{
∆x
∑
i,j

⟨DUi,j,φi,j⟩ : ∥φ(x, y)∥ ≤ 1, ∀(x, y) ∈ Ω

}
. (2.35)

Since computation of the inner products in (2.35) requires values of the continuous func-
tion φ at edge midpoints only, φ can be replaced with a discrete function φ̃, with
φ̃i,j = (φi+1/2,j, ψi,j+1/2) defined on a (N +1)× (N +1) grid of edge midpoints (xi+1/2, yj),
(xi, yj+1/2).

To obtain a fully discrete expression for TV (U), the constraint ∥φ(x, y)∥ ≤ 1 on φ
should be replaced with an equivalent constraint on entries of φ̃. In [28, 40, 70], this idea

25



has been extensively studied and used to construct fully discrete dual TV definitions for
TV-regularization based optimization with application to imaging problems.

There are many ways to impose the bound on the norm of the discrete test function φ̃.
An obvious constraint results from the bounds on the entries of φ at edge midpoints,

i.e.
√
φ2
i+1/2,j + ψ2

i+1/2,j ≤ 1 and
√
φ2
i,j+1/2 + ψ2

i,j+1/2 ≤ 1. However, by the derivation

above ψi+1/2,j and φi,j+1/2 are not included in φ̃. Since these values are not available, they
need to be defined outside of the definition (2.35). We follow the work of [70] and define
them by linear interpolation. For example, the value of ψi+1/2,j on a uniform grid can be
approximated using by an average of ψi,j+1/2, ψi+1,j+1/2, ψi,j−1/2, and ψi+1,j−1

ψi+1/2,j =
ψi,j+1/2 + ψi,j−1/2 + ψi+1,j+1/2 + ψi+1,j−1/2

4
,

see Figure 2.6 and Figure 2.7 (right). We can write this in operator notation by setting
(φi+1/2,j, ψi+1/2,j) ≡ (P 1φ̃)i,j where

(P 1φ̃)i,j =
(
(P 1φ̃)xi,j, (P

1φ̃)yi,j
)

=

(
φi+1/2,j,

ψi,j+1/2 + ψi,j−1/2 + ψi+1,j+1/2 + ψi+1,j−1/2

4

)
. (2.36)

Figure 2.6: The stencil of the discrete test function in the dual definition (2.39) on
Ωi,j = [xi−1/2, xi+1/2] × [yj−1/2, yj+1/2]. Components of φ̃ are shown in black, interpolated
values are shown in red and blue.

In P 1(φ̃), the first component is the identity operator. The second component averages
the entries of ψ on the four horizontal edges around the point (xi+1/2, yj) and assigns this
value to ψi+1/2,j, see Figure 2.7 (right). Similarly, we define (φi,j+1/2, ψi,j+1/2) ≡ (P 2φ̃)i,j,
where the first component is the average of the entries of φ on the four vertical edges
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Figure 2.7: Interpolation stencils for φi,j+1/2 (left), φi,j, and ψi,j (center), ψi+1/2,j (right).
Components of φ̃ are shown in black, interpolated values are shown in red and blue.

around the point (xi, yj+1/2) and the second component is the identity operator, see Figure
2.7 (left). Finally, we define the centroid value (φi,j, ψi,j) ≡ (P 3φ̃)i,j, as an average of edge
values in the horizontal and vertical directions, see Figure 2.7 (center). The operators P 2

and P 3 are defined as

(P 2φ̃)i,j =
(
(P 2φ̃)xi,j, (P

2φ̃)yi,j
)

=

(
φi+1/2,j + φi+1/2,j+1 + φi−1/2,j + φi−1/2,j+1

4
, ψi,j+1/2

)
, (2.37)

(P 3φ̃)i,j =
(
(P 3φ̃)xi,j, (P

3φ̃)yi,j
)

=

(
φi+1/2,j + φi−1/2,j

2
,
ψi,j+1/2 + ψi,j−1/2

2

)
. (2.38)

We note here, that the operators (2.36)-(2.38) linearly interpolate the grid function φ̃, given
on the grid of edge midpoints (xi+1/2, yj), (xi, yj+1/2), on a twice finer grid (xi, yj),(xi, yj+1/2),
(xi+1/2, yj).

Since φ was assumed to satisfy (φ · n⃗) = 0 on ∂Ω, we require (φ̃ · n⃗) = 0, which means
that the boundary entries of φ̃ are equal zero, i.e. φ1/2,j = φN+1/2,j = ψi,1/2 = ψi,N+1/2 = 0,
0 ≤ i ≤ N, 0 ≤ j ≤ N . Then, using the constraints and notations developed above, we
arrive at a fully discrete expression for the dual total variation [40]

TVd(U) = max
φ̃:(φ̃·n⃗)=0

{
∆x
∑
i,j

⟨DUi,j, φ̃i,j⟩ :
√
φ2
i+1/2,j + ψ2

i+1/2,j ≤ 1,

√
φ2
i,j+1/2 + ψ2

i,j+1/2 ≤ 1,
√
φ2
i,j + ψ2

i,j ≤ 1, ∀i, j

}
, (2.39)

where the subscript d stands for “dual”. Let us define a vector space P

P =
{
φ = (φ, ψ), φ, ψ ∈ R(N+1)×(N+1) :

(φ · n⃗) = 0, ∥(P kφ)i,j∥2 ≤ 1, k = 1, 2, 3, ∀i, j
}
, (2.40)

where ∥·∥2 denotes the Euclidean norm of vectors (P 1φ̃)i,j, (P
1φ̃)i,j, (P

3φ̃)i,j in R2. Then
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the dual discrete TV (2.39) can be rewritten as

TVd(U) = max
φ̃∈P

∆x
∑
i,j

⟨DUi,j, φ̃i,j⟩. (2.41)

Notice that computation of (2.41) cannot be done via an explicit formula and requires
numerical computation of the maximizer φ. We discuss the algorithm for computing φ in
Chapter 4. In one spatial dimension (2.41) reduces to (2.24).

Establishing the consistency of this approach to discretizing the TV with the TV func-
tional (2.11) is not as straightforward as it is for more conventional discretizations. A
different approach to assessing the consistency should be used, the Γ-convergence, that
ensures that minimizers of the discrete total variation (together with other lower-order
terms) will converge to a minimizer of the exact TV as the mesh size ∆x approaches zero.
While this does not provide specific convergence rates or error bounds, it does guarantee
the overall consistency of the dual discretizations. The main motivation behind this ap-
proach to TV discretization is the fact that the discrete dual definition considered here has
been shown to exhibit better accuracy of approximation of the value of TV given by (2.11)
on the grid and proper asymptotic behaviour in practical applications when compared to
conventional definitions for discrete TV, see [40, 28, 76] and numerical examples therein.

The new discretization (2.41) can be extended to a three-dimensional cube Ω by using
forward differences

D1Ui,j = Ui+1,j,l − Ui,j,l, D2Ui,j,l = Ui,j+1,l − Ui,j,l, D3Ui,j,l = Ui,j,l+1 − Ui,j,l (2.42)

to get DUi,j,l = (D1Ui,j,l, D
2Ui,j,l, D

3Ui,j,l), and

P ′ =
{
φ̃ = (φ, ψ, χ), φ, ψ, χ ∈ R(N+1)×(N+1)×(N+1) :

(φ · n⃗) = 0, ∥(P kφ)i,j,l∥2 ≤ 1, k = 1, . . . , 4, ∀i, j, l
}
. (2.43)

Then
TVd(U) = max

φ̃∈P ′
∆x
∑
i,j

⟨DUi,j,l, φ̃i,j,l⟩, (2.44)

where φ̃i,j,l = (φi+1/2,j,l, ψi,j+1/2,l, χi,j,l+1/2). Additional constraints ∥P kφ̃∥2 ≤ 1 should be
imposed and with projection operators P k, k = 1, . . . , 4 defined as

(P 1φ̃)i,j,l =

(
φi+1/2,j,l,

ψi,j+1/2,l + ψi,j−1/2,l + ψi+1,j+1/2,l + ψi+1,j−1/2,l

4
,

χi,j,l+1/2 + χi,j,l−1/2 + χi+1,j,l+1/2 + χi+1,j,l−1/2

4

)
,

(P 2φ̃)i,j,l =

(
φi+1/2,j,l + φi+1/2,j+1,l + φi−1/2,j,l + φi−1/2,j+1,l

4
, ψi,j+1/2,l,

χi,j,l+1/2 + χi,j+1,l+1/2 + χi,j,l−1/2 + χi,j+1,l−1/2

4

)
,
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(P 3φ̃)i,j,l =

(
φi+1/2,j,l + φi+1/2,j,l+1 + φi−1/2,j,l + φi−1/2,j,l+1

4
,

ψi,j+1/2,l + ψi,j+1/2,l+1 + ψi,j−1/2,l + ψi,j−1/2,l+1

4
, χi,j,l+1/2

)
,

(P 4φ̃)i,j,l =

(
φi+1/2,j,l + φi−1/2,j,l

2
,

ψi,j+1/2,l + ψi,j−1/2,l

2
,

χi,j,l+1/2 + χi,j,l−1/2

2

)
.

We will limit our analysis to the two-dimensional case.

2.4 Numerical experiments

Here we provide several simple numerical tests designed to point out the features that
distinguish conventional and dual TV discretizations. In this section we use a square
domain Ω = [−2, 2] × [−2, 2]. In this section and in all further numerical experiments
presented in this thesis, except for the numerical examples of Chapter 5, we use a laptop
with a 2.3 GHz CPU and 8 GB RAM running MATLAB ver. R2022b under the University
of Waterloo license.

TV of a bell shape.

We begin the numerical study of the discrete TV definitions from a continuous bell shape
function discretized of the sequence of grids of decreasing grid element size ∆x. The main
purpose of the following example is to test the accuracy of TVd computation and to tune
the hyperparameters, including the stopping criterion. Let

u = e−10(x2+y2), ∀(x, y) ∈ Ω. (2.45)

Since u ∈ W 1,1(Ω) we can use (4.10) to find its TV

TV (u) =

∫
Ω

√
u2x + u2y dxdy ≈ 1.76086 (2.46)

We now project the function on the square N ×N grid by averaging over each cell Ωi,j and
the grid size ∆x = ∆y = 4

N
to get

Ui,j =

∫
Ωi,j

u(x, y)dxdy (2.47)

forming a grid function given by U ∈ RN×N . Then we compute its’ TV according to three
discrete TV definitions: TVa(U), TVis(U), and TVd(U). TVd is computed via Algorithm
1, we found ε = (∆x)−2 to be sufficient level of tolerance so that the Algorithm error is
always lower than the discretization error for the TVd.

We note here that even though the function u in this case is different from zero on the
boundary of the domain Ω, numerically its’ value is an order of magnitude smaller than
10−16, i.e. the machine error, which makes it zero in the numerical experiment. We report
the obtained values in Table 2.1.
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N TVa(U) TVis(U) TVd(U) δTVa δTVis δTVd

10 1.3498 1.2428 1.3012 0.4111 0.5181 0.4597
20 2.0068 1.6922 1.7023 0.2460 0.0686 0.0586
40 2.1838 1.7498 1.7547 0.4229 0.0110 0.0061
80 2.2277 1.7588 1.7593 0.4668 0.0020 0.0015
160 2.2385 1.7604 1.7601 0.4776 0.0004 0.0007
320 2.2411 1.7608 1.7605 0.4803 0.0001 0.0003

Table 2.1: TV values for the bell shape function, δTV = |TV (U) − TV (u)|, where the
value of TV (u) is given by (2.46).

We observe that TVa and TVis, TVd converge to a different limiting values, which are
TV (u) given by (2.9) and TV (u) given by (2.13) respectively. We gave the approximate
value for the latter above and observe that both TVis, TVd converge to that limit, which is
expected for a smooth function u. While we don’t give an approximate value for the limit
of TVa(U) it is clear that this value will always be greater than the one given by given by
(2.13), i.e. TVis(U) ≤ TVa(U).

Remark 2.4.1. We argue that TVis(U) ≤ TVa(U) and TVd(U) ≤ TVa(U), for any grid
function U . These statements are obvious if we recall what constraints on the test functions
φ correspond to each of the definitions. Any test function that satisfies the constraint for
the dual discrete TV or isotropic Tv will immediately satisfy the constraints for anisotropic
TV, i.e. |φ| ≤ 1. We conclude here that the space of the test function for dual discrete
TV or isotropic TV is the subset of the one for anisotropic TV and therefore TVa(U) is an
upper bound on the value of TVd(U).

Rotation of a square step.

Next we consider a discontinuous function, and investigate how the discrete TV of its
projection onto a Cartesian grid varies under rotation. Consider a square pulse defined on
Ω by

u(x, y) =

{
1, if x ∈ [−1/

√
2, 1/

√
2], y ∈ [−1/

√
2, 1/

√
2],

0, otherwise.
(2.48)

After projecting u onto the square grid we obtain U ∈ RN×N (Figure 2.8 (A)). For simplicity
we choose N to be a multiple of 4. Then Ui,j takes three distinct values: Ui,j = 1 in the
interior of the square, Ui,j = {N/(4

√
2)} on the elements containing the edges of the pulse

and Ui,j = {N/(4
√
2)}2 on the elements containing the corners. Here, {·} denotes the

fractional part of a real number. By (2.26), the TVa is equal to

TVa(U) = 4(2⌊N/(4
√
2)⌋+ 2{N/(4

√
2)})∆x,

where ⌊·⌋ is the floor function. Under mesh refinement, i.e. as N → ∞, TVa(U) tends to
4
√
2. Using (2.27), it is straightforward to show that TVis(U) also converges to 4

√
2 as N →

∞. The values of TVa(U), TVis(U), and TVd(U) are reported in Table 2.2. We observe
that all of them converge to the same value.

Next, we consider function v(x, y) = u(x cos θ + y sin θ,−x sin θ + y cos θ), which is
a counterclockwise rotation of u by the angle θ. Since rotation does not change TV (u)
given by (2.11), we have TV (v) = TV (u). Choosing θ = π/4, we obtain a square pulse
whose diagonals are aligned with the coordinate axes. Using the same meshes as above,
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we construct discrete functions V from v (Figure 2.8 (B)). Vi,j takes three values: 0 in the
exterior of the square, 1 in the interior, and 0.5 on the elements containing edges of the
pulse. We calculated the value of TVa to be

TVa(V ) = (2N − 4)∆x = 8− 16/N,

which tends to 8 as N → ∞. Then, at the limit TVa(V ) is greater than the limit of
TVa(U) by a factor of

√
2. Similarly,

TVis(V ) = ((3
√
2 + 2)N/4− 5

√
2/2 + 2)∆x,

converges to 3
√
2 + 2 ≈ 6.24, as N → ∞, which is greater than the limit of TVis(U) by a

factor of (3 +
√
2)/4 ≈ 1.1.

(a) Function U , square pulse. (b) Function V , rotated square pulse.

Figure 2.8: Projection of the square pulse onto 40-by-40 mesh.

N TVa(U) TVis(U) TVd(U) TVa(V ) TVis(V ) TVd(V ) δTVd

20 5.1125 5.0280 5.0758 7.2000 6.0991 5.8569 0.7811
40 5.3916 5.3402 5.3628 7.6000 6.1727 5.7543 0.3915
80 5.5259 5.4919 5.5018 7.8000 6.2081 5.7050 0.2031
160 5.5918 5.5709 5.5763 7.9000 6.2255 5.6808 0.1045

Table 2.2: TV values for the square pulse U and the rotated square pulse V ,
δTVd = |TVd(U)− TVd(V )|.

2.5 Properties of the dual discrete total variation

We study the dual definition of TV (2.41) introduced in Section 2.3 and provide results on
the convexity of the test function space P and other properties. An essential tool for this
section is Jensen’s inequality in the finite form.

Jensen’s inequality.
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For a real convex function g(x) : R → R, a set of real numbers x1, x2, . . . , xm in its domain,
and a set of positive weights a1, a2, . . . , am, Jensen’s inequality states that

g

(∑m
i=1 aixi∑m
i=1 ai

)
≤
∑m

i=1 aig(xi)∑m
i=1 ai

.

We apply the above inequality to g(x) = x2 to obtain(
m∑
i=1

aixi

)2

≤

(
m∑
i=1

ai

)(
m∑
i=1

aix
2
i

)
. (2.49)

Let us consider the space P defined in (2.40), with projection operators P k defined in
(2.36)-(2.38). The following lemma establishes convexity of P .

Lemma 2.5.1. Let φ1 = (φ1, ψ1) and φ2 = (φ2, ψ2) belong to P. Then for any α ∈ [0, 1]
we have αφ1 + (1− α)φ2 ∈ P , i.e. P is convex.

Proof. For any α ∈ [0, 1], consider φ = αφ1 + (1 − α)φ2. To establish that φ belongs to
P we need to show that ∥(P kφ)i,j∥2 ≤ 1, ∀i, j, k = 1, 2, 3. The first operator norm can
be written as

∥(P 1φ)i,j∥22 = (φi+1/2,j)
2 +

(
ψi,j+1/2 + ψi,j−1/2 + ψi+1,j+1/2 + ψi+1,j−1/2

4

)2

= (αφ1 + (1− α)φ2)2i+1/2,j +

(
(αψ1 + (1− α)ψ2)i,j+1/2 + (αψ1 + (1− α)ψ2)i,j−1/2

4

+
(αψ1 + (1− α)ψ2)i+1,j+1/2 + (αψ1 + (1− α)ψ2)i+1,j−1/2

4

)2

,

We apply Jensen’s inequality (2.49) to both squared terms in the right hand side to get

∥(P 1φ)i,j∥22 ≤ α(φ1
i+1/2,j)

2 + (1− α)(φ2
i+1/2,j)

2 + α

(
ψ1
i,j+1/2 + ψ1

i,j−1/2 + ψ1
i+1,j+1/2 + ψ1

i+1,j−1/2

4

)2

+ (1− α)

(
ψ2
i,j+1/2 + ψ2

i,j−1/2 + ψ2
i+1,j+1/2 + ψ2

i+1,j−1/2

4

)2

.

Combining terms with α and (1− α) yields

∥(P 1φ)i,j∥22 ≤ α

(φ1
i+1/2,j)

2 +

(
ψ1
i,j+1/2 + ψ1

i,j−1/2 + ψ1
i+1,j+1/2 + ψ1

i+1,j−1/2

4

)2


+ (1− α)

(
(φ2

i+1/2,j)
2 +

(
ψ2
i,j+1/2 + ψ2

i,j−1/2 + ψ2
i+1,j+1/2 + ψ2

i+1,j−1/2

4

)2)
.

Noticing that the expressions in brackets are ∥(P 1φ1)i,j∥22 and ∥(P 1φ2)i,j∥22, we use ∥(P 1φ1)i,j∥2 ≤
1 and ∥(P 1φ2)i,j∥2 ≤ 1, ∀i, j to conclude that

∥(P 1φ)i,j∥22 ≤ α∥(P 1φ1)i,j∥22 + (1− α)∥(P 1φ2)i,j∥22 = 1.
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Similarly, for the second and third norm we have

∥(P 2φ)i,j∥22 = (ψi,j+1/2)
2 +

(
φi+1/2,j + φi+1/2,j+1 + φi−1/2,j + φi−1/2,j+1

4

)2

= (αψ1 + (1− α)ψ2)2i,j+1/2 +

(
(αφ+ (1− α)φ2)i+1/2,j + (αφ+ (1− α)φ2)i−1/2,j+1

4

+
((αφ+ (1− α)φ2)i−1/2,j + (αφ+ (1− α)φ2)i+1/2,j+1

4

)2

and

∥(P 3φ)i,j∥22 =
(
φi+1/2,j + φi−1/2,j

2

)2

+

(
ψi,j+1/2 + ψi,j−1/2

2

)2

=

(
(αφ1 + (1− α)φ2)i+1/2,j + (αφ1 + (1− α)φ2))i−1/2,j

2

)2

+

(
(αψ1 + (1− α)ψ2)i,j+1/2

2
+

(αψ1 + (1− α)ψ2))i,j−1/2

2

)2

.

We apply Jensen’s inequality to get

∥(P 2φ)i,j∥22 ≤ α(ψ1
i,j+1/2)

2 + (1− α)(ψ2
i,j+1/2)

2 + α

(
φ1
i+1/2,j + φ1

i+1/2,j+1 + φ1
i−1/2,j + φ1

i−1/2,j+1

4

)2

+ (1− α)

(
φ2
i+1/2,j + φ2

i+1/2,j+1 + φ2
i−1/2,j + φ2

i−1/2,j+1

4

)2

and

∥(P 3φ)i,j∥22 ≤ α

(
φ1
i+1/2,j + φ1

i−1/2,j

2

)2

+ α

(
ψ1
i,j+1/2 + ψ1

i,j−1/2

2

)2

+ (1− α)

(
φ2
i+1/2,j + φ2

i−1/2,j

2

)2

+ (1− α)

(
ψ2
i,j+1/2 + ψ2

i,j−1/2

2

)2

.

We use the properties of φ1 and φ2 to conclude that

∥(P 2φ)i,j∥22 ≤ α

(ψ1
i,j+1/2)

2 +

(
φ1
i+1/2,j + φ1

i+1/2,j+1 + φ1
i−1/2,j + φ1

i−1/2,j+1

4

)2


+ (1− α)

(ψ2
i,j+1/2)

2 +

(
φ2
i+1/2,j + φ2

i+1/2,j+1 + φ2
i−1/2,j + φ2

i−1/2,j+1

4

)2


≤ α + (1− α) = 1
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and

∥(P 3φ)i,j∥22 ≤ α

(φ1
i+1/2,j + φ1

i−1/2,j

2

)2

+

(
ψ1
i,j+1/2 + ψ1

i,j−1/2

2

)2


+ (1− α)

(φ2
i+1/2,j + φ2

i−1/2,j

2

)2

+ (1− α)

(
ψ2
i,j+1/2 + ψ2

i,j−1/2

2

)2


≤ α + (1− α) = 1.

Therefore, we have shown that φ ∈ P .

Lemma 2.5.1 can be extended to an arbitrary number of functions.

Lemma 2.5.2. Let φ1,φ2, . . . ,φm ∈ P, then their convex combination is also in P.

Proof. Similarly to Lemma 2.5.1, the statement follows from constraints (2.36)-(2.38) by
direct application of Jensen’s inequality.

Lemma 2.5.3. Consider φ1 = (φ1,0), φ2 = (φ2,0), . . . , φm = (φm,0) ∈ P. Let
α1,α2, . . . ,αm ∈ [0, 1]N×N be such that

∑m
k=1 α

k
i+1/2,j = 1, ∀i, j ∈ [1, N ]. Let φ be defined

as

φi,j = (φi+1/2,j, 0) = (α1
i+1/2,jφ

1
i+1/2,j + α2

i+1/2,jφ
2
i+1/2,j + · · ·+ αm

i+1/2,jφ
m
i+1/2,j, 0).

Then φ belongs to P.

Proof. Similarly to the proof of Lemma 2.5.1, we check the constraints (2.36)-(2.38). Con-
sider ∥(P 1φ)i,j∥22

∥(P 1φ)i,j∥22 = (φi+1/2,j)
2 +

(
ψi,j+1/2 + ψi,j−1/2 + ψi+1,j+1/2 + ψi+1,j−1/2

4

)2

.

Since all components in the second term are identically zero, we have

∥(P 1φ)i,j∥22 =

(∑
k

αk
i+1/2,jφ

k
i+1/2,j

)2

.

Applying Jensen’s inequality, yields

∥(P 1φ)i,j∥22 ≤
∑
k

αk
i+1/2,j(φ

k
i+1/2,j)

2 ≤
∑
k

αk
i+1/2,j = 1,

because (φk
i+1/2,j)

2 ≤ 1. Next, we show that ∥(P 2φ)i,j∥2 ≤ 1 and ∥(P 3φ)i,j∥2 ≤ 1.
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∥(P 2φ)i,j∥22 = ψ2
i,j+1/2 +

(
φi+1/2,j + φi+1/2,j+1 + φi−1/2,j + φi−1/2,j−1

4

)2

=
1

4

(∑
k

αk
i+1/2,jφ

k
i+1/2,j + αk

i+1/2,j+1φ
k
i+1/2,j−1

+ αk
i−1/2,jφ

k
i−1/2,j + αk

i−1/2,j+1φ
k
i−1/2,j+1

)2

≤ 1

16

(∑
k

αk
i+1/2,j(φ

k
i+1/2,j)

2 +
∑
k

αk
i+1/2,j+1(φ

k
i+1/2,j+1)

2

+
∑
k

αk
i−1/2,j(φ

k
i−1/2,j)

2 +
∑
k

αk
i−1/2,j+1(φ

k
i−1/2,j+1)

2

)

≤ 1

4

(∑
k

αk
i+1/2,j

)
+

1

4

(∑
k

αk
i+1/2,j+1

)
+

1

4

(∑
k

αk
i−1/2,j

)
+

1

4

(∑
k

αk
i−1/2,j+1

)
≤ 1

and

∥(P 3φ)i,j∥22 =
(
φi+1/2,j + φi−1/2,j

2

)2

+

(
ψi,j+1/2 + ψi,j−1/2

2

)2

=

(∑
k α

k
i+1/2,jφ

k
i+1/2,j +

∑
k α

k
i+1/2,jφ

k
i−1/2,j

2

)2

≤ 1

2

(∑
k

αk
i+1/2,j(φ

k
i+1/2,j)

2 +
∑
k

αk
i+1/2,j(φ

k
i−1/2,j)

2

)
≤ 1.

We conclude that φ ∈ P .

Remark 2.5.3. Lemma 2.5.3 is a more general statement than Lemma 2.5.2, but it can
be applied only to φ of specific form,i.e. only to φ with one component equal zero. The
Lemma can also be written for φ = (0, ψ) with a similar proof. This lemma will be useful
in Chapter 3.

Remark 2.5.4. We observe that

TVa(U) = max
φ∈R2 : (φ·n⃗)=0

{
∆x
∑
i,j

⟨DUi,j,φi,j⟩ : |φi+1/2,j| ≤ 1, |ψi,j+1/2| ≤ 1 ∀i, j

}
,

and

TVis(U) = max
φ∈R2 : (φ·n⃗)=0

{
∆x
∑
i,j

⟨DUi,j,φi,j⟩ :
√
φ2
i+1/2,j + ψ2

i+1/2,j ≤ 1 ∀i, j

}
,

and we have an explicit formula for the maximizer

(φa)i,j =
(
sgn(D1Ui,j), sgn(D

2Ui,j)
)
,
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for anisotropic TV, where sgn(·) denotes the function that returns 1 for positive arguments
and −1 for negative. Similarly

(φis)i,j =

(
D1Ui,j√

(D1Ui,j)2 + (D2Ui,j)2
,

D2Ui,j√
(D1Ui,j)2 + (D2Ui,j)2

)
,

for isotropic TV, while for the dual discrete TV (2.41) we have no explicit formula.

2.6 Results

The first example compares the accuracy of various discrete Total Variation (TV) dis-
cretizations. For smooth functions, the error between the discretized TVis(U), TVd(U) and
TV (u) is due to the averaging of the function only. Additionally, TVd computation involves
an error term not present in TVis. We observe that the discretization error for TVd scales
as O(∆x). While TVa converges to a different value (the integral of the L1-norm as defined
in (2.9)), both TVis and TVd converge to the exact value given by (1.6), as expected.

The second example focuses on a discontinuous square shape. We find that TV (U) ̸=
TV (V ) for all considered TV definitions, which is unsurprising since U and V represent
different projections. However, we’re interested in how these values converge asymptoti-
cally. Notably, out of the three TVs studied, only TVd(V ) exhibits diminishing differences
between the original and rotated functions (represented by δTV = |TVd(U)− TVd(V )|) as
the mesh is refined (as shown in the last column of Table 2.2).

Both TVa and TVis change with rotation of the discontinuous pulse, and this dependence
remains even with mesh refinement. In contrast, while the TVd also changes under rotation,
this difference diminishes under mesh refinement and therefore the error due to rotation
can be reduced by using a finer grid. This sensitivity to rotation suggests that TVa and
TVis might not be suitable for accurately capturing the total variation of grid functions.

Finally, we establish several important properties of the space of dual test functions of
the dual discrete TV.

2.7 Summary

In this chapter, we have introduced the definition of TV of grid functions in one spa-
tial dimension. We then explored several definitions for discrete TV in two dimensions,
highlighting the key differences between each approach and the continuous definition.

Several illustrative examples were presented to differentiate between the continuous def-
initions (2.11) and (2.8), along with their corresponding discretizations. We also observed
and discussed the lack of translational and rotational isotropy in conventional discrete TV
definitions.

Next, an alternative approach, based on an optimization problem ((2.11)), to TV dis-
cretization was introduced. This approach was then used to derive a definition for the
discrete dual TV given in [40]. Numerical experiments were conducted to evaluate the
accuracy of the dual TV computation compared to conventional discrete definitions. The
results demonstrate that, unlike conventional anisotropic and isotropic TV definitions, the
dual TV achieves rotational invariance under mesh refinement.
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Finally, we investigate the properties of the dual discrete TV, focusing on the convexity
of the test function space and the collinearity of the maximizer vector with the forward
difference vector. Proofs for these results are provided in Section 2.5.
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Chapter 3

Total variation stability of numerical
methods for scalar conservation laws

In this chapter, we discuss stability properties of numerical methods used for solution of
scalar conservation laws.

Non-increasing total variation is a key property of the exact solution, which holds in
one and multiple space dimensions. Theorem 2.1.3 in Chapter 2 proves this in one spatial
dimension and Theorem 2.2.5 extends the result to multiple dimensions. This property
of the exact solution is highly desirable to have when designing higher-order numerical
methods. As was discussed in the introduction, numerical solutions might have spurious
oscillations near discontinuities that increase the total variation. One way to suppress
oscillations is by enforcing the TVD property on the numerical solution at each time step.

3.1 Total variation diminishing schemes in one spatial

dimension

In one spatial dimension, we consider scalar conservation laws of the form

ut + f(u)x = 0, x ∈ I (3.1)

with appropriate initial and boundary conditions.

Let Ī be a uniform grid of N elements of I. A one-step discretization scheme for solution
of (3.1) can be written as

Un+1 = F (Un), (3.2)

where Un is the numerical solution at t = tn.

Since the TV of the exact solution does not increase with time we require the TV of
the numerical solution to not increase at each time step. Let ∆tn denote the time step size
at step n, then tn+1 = tn +∆tn.

Definition 3.1.1. A consistent method is called total variation diminishing (TVD) if for
any Un approximating the solution u(x, t) on Ī at the time level t = tn, the values Un+1 at
the next time level t = tn+1 satisfy

TV (Un+1) ≤ TV (Un). (3.3)
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Note that the condition (3.3) requires TV to be non-increasing. Initially, it was called
”total variation non-increasing” (TVNI) by Harten [67]. Now it is referred to as TVD.

We call a numerical scheme total-variation stable if TV (Un) is uniformly bounded for
all n. If the scheme is TV-stable, then all numerical solutions lie in some compact set and
we have the following convergence result.

Theorem 3.1.1 ([66]). Let us assume that the scheme Un+1 = F (Un) is consistent with
the conservation law (3.1) and its entropy inequality (1.11). If the resulting numerical
approximation is TV-stable, then the scheme is convergent in the L1-norm, and its limit is
the unique weak solution of (3.1) that satisfies the entropy inequality (1.11).

Definition 3.1.2. A method is called monotonicity-preserving (MP) if Un
i ≥ Un

i+1 for all
i implies that Un+1

i ≥ Un+1
i+1 for all i.

This definition implies that if a numerical solution is monotone at t = tn, it will remain
monotone for all future time steps.

Theorem 3.1.2. Any TVD method for the solution of (3.1) is monotonicity preserving.

Proof. Let us assume Un
i ≥ Un

i+1 for all i and TV (Un) <∞. Then we must have

TV (Un) = |UR − UL|,

where UL is the minimal value of Un on the grid and UR is the maximum value.

Suppose Un+1 is not monotone. Then it has at least one local minimum U ′ and one
local maximum U ′′. Then

TV (Un+1) ≥ |U ′′ − U ′|+ |UR − UL| ≥ TV (Un),

which contradicts the assumption that the scheme is TVD.

The case of Un+1
i ≤ Un+1

i+1 has a similar proof. It is unclear how to extend the monotone-
preserving property to two and more spatial dimensions, therefore, there is no known
version of Theorem 3.1.2 in two or more dimensions. For more details, see example in
Chapter 2 (page 20).

Any oscillation appearing in a monotone solution would necessarily increase its total
variation, hence a TVD method must be MP and the set of monotone schemes contains
TVD schemes in one spatial dimension [67].

3.2 Harten’s Lemma

In [67] Harten considered a class of non–linear one-dimensional schemes of the form

Un+1
i = Un

i + Cn
i DU

n
i −Dn

i−1DU
n
i−1, (3.4)

where DUn
i = Un

i+1−Un
i and the coefficients Cn

i , D
n
i−1 are assumed to be non-constant and

dependent on Un. Harten proved the following important result.
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Theorem 3.2.1 (Harten’s Lemma). For any scheme of the form (3.4) for solving (3.1)
with periodic boundary conditions, the following restrictions on coefficients are sufficient
for the scheme to be TVD

Ci ≥ 0, Di ≥ 0, 0 ≤ Ci +Di ≤ 1. (3.5)

Proof. We write (3.4) for Un+1
i and Un+1

i+1

Un+1
i = Un

i + Cn
i DU

n
i −Dn

i−1DU
n
i−1,

and
Un+1
i+1 = Un

i+1 + Cn
i+1DU

n
i+1 −Dn

i DU
n
i .

Subtract Un+1
i from Un+1

i+1 , to get

Un+1
i+1 − Un+1

i = (1− Cn
i −Dn

i )DU
n
i + Cn

i+1DU
n
i+1 +Dn

i−1DU
n
i−1.

Taking absolute values of both sides and applying the triangle inequality yields

|Un+1
i+1 − Un+1

i | ≤ |1− Cn
i −Dn

i ||DUn
i |+ |Cn

i+1||DUn
i+1|+ |Dn

i−1||DUn
i−1|.

Using assumption (3.5), we obtain

|Un+1
i+1 − Un+1

i | ≤ (1− Cn
i −Dn

i )|DUn
i |+ Cn

i+1|DUn
i+1|+Dn

i−1|DUn
i−1|.

Summing the inequalities over grid points i, we get∑
i

|Un+1
i+1 − Un+1

i | ≤
∑
i

|Un
i+1 − Un

i | −
∑
i

Cn
i |Un

i+1 − Un
i | −

∑
i

Dn
i |Un

i+1 − Un
i |

+
∑
i

Cn
i+1|Un

i+2 − Un
i+1|+

∑
i

Dn
i−1|Un

i − Un
i−1|.

After changing the index of summation in the second and fourth sums on the right–hand
side, we see that they sum up to zero. And so do the third and fifth sums, leading to

TV (Un+1) =
∑
i

|Un+1
i+1 − Un+1

i | ≤
∑
i

|Un
i+1 − Un

i | = TV (Un).

Theorem 3.2.2 ([128] Godunov’s theorem). Linear monotone numerical schemes for so-
lution of (3.1) are at most first-order accurate.

It can be shown that any linear TVD scheme is monotone and any monotone linear
scheme is TVD [67]. Hence, a linear TVD scheme can be at most first-order accurate.
Harten’s lemma can be used for construction of nonlinear, high-order, TV-stable numerical
schemes, overcoming the restriction of Godunov’s theorem.

Theorem 3.2.3 ([66]). Assume that the scheme (3.4)-(3.5) is consistent with the conser-
vation law (3.1) and its entropy inequality (1.11). If the resulting numerical approximation
is TV stable, then the scheme is convergent and its limit is the unique weak solution of
(3.1) that satisfies (1.11).

By construction, TVD schemes are only first-order accurate at solution extrema [104,
105] and can be second-order accurate in the rest of the domain. In a later study [107], a
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trade-off between second-order accuracy and the TVD requirement was demonstrated for
schemes equipped with non-linear TVD limiters.

3.3 Total variation stability for higher order methods

In Chapter 1 we have discussed a simple FV method that was based on piecewise constant
approximation. Most schemes of this form are at most first-order accurate. To achieve
higher-order spatial accuracy, piecewise linear or higher-order reconstruction is needed.

Monotone upstream-centered schemes for conservation laws (MUSCL) [131, 86] are one
of the most popular methods for the solution of (3.1). We give a short derivation of the
second-order MUSCL scheme with a limiter for solution of the linear advection equation.
We use a scheme of this type for numerical experiments in Section 3.5.

Consider the following Cauchy problem

ut + aux = 0, x ∈ R, (3.6)

u(x, 0) = u0(x). (3.7)

We discretize the equation using a finite volume formulation as in (1.14). A MUSCL-type
numerical scheme uses piecewise linear reconstruction to achieve second-order accuracy.
Let us consider the case a > 0, the case of a < 0 is similar. Let Un

i be an approximation
of the average of u(x, tn) on the interval [xi−1/2, xi+1/2] at t = tn. We write a linear
reconstruction formula in the i-th cell as

Ũn(x) = Un
i + σn

i (x− xi), for x ∈ [xi−1/2, xi+1/2], (3.8)

where σn
i is the reconstructed slope. The cell average of Ũn(x) in (3.8) over [xi−1/2, xi+1/2]

is equal to Un
i for any σn

i .

The exact solution to (3.6)-(3.7) at t = tn is given by u(x, tn) = u0(x − atn). We also
have that u(x, tn+1) = u(x − a∆t, tn). Using (3.8),(1.14) and (1.15), the piecewise linear
FV approximation to the solution at t = tn+1 can be computed as

Ũn+1(x) = Ũn(x− a∆t).

Then, after cell-averaging we obtain

Un+1
i = Un

i − ν(Un
i − Un

i−1)−
ν(1− ν)

2
∆x(σn

i − σn
i−1), (3.9)

where ν = a∆t
∆x

. It is possible to extend (3.8) to higher-order reconstructions, e.g. parabolic
interpolation in [81] results in a third-order accurate scheme.

The slope in (3.8) can be reconstructed in multiple ways, for example we can ap-

proximate the slope with σn
i =

Un
i −Un

i−1

∆x
on a uniform grid. However, this may result in

oscillations or an unstable solution.

We look for slopes in the following form

σn
i =

Un
i+1 − Un

i

∆x
ϕ(θni ),
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where ϕ(θi) is the limiter function and θni =
Un
i −Un

i−1

Un
i+1−Un

i
. The limiter function ϕ(θ) aims to

restrict the slope to ensure that the solution is TVD. With this choice, we write (3.9) as

Un+1
i = Un

i − ν(Un
i − Un

i−1)−
ν(1− ν)

2
(ϕ(θni )(U

n
i+1 − Un

i )− ϕ(θni−1)(U
n
i − Un

i−1)). (3.10)

In (3.10), the flux limiter ϕ(θ) can be reinterpreted as a slope limiter.

The scheme will satisfy the TVD condition provided that 0 ≤ ν ≤ 1 (the CFL condition)
and the following inequality holds [90]∣∣∣∣ϕ(θ1)θ1

− ϕ(θ2)

∣∣∣∣ ≤ 2, ∀θ1, θ2 ∈ R. (3.11)

In the case θ ≤ 0, we have an extremum. In order to retain the TVD property, we must
set ϕ(θ) = 0 for θ1 and θ2. When θ > 0, we need to have ϕ(θ) > 0, since we would like to
preserve the sign of the slope when applying the limiter. Then we must require

0 ≤ θ · ϕ(θ) ≤ 2 and 0 ≤ ϕ(θ) ≤ 2, ∀θ ≥ 0.

These constraints define the TVD region in the θ-ϕ plane (Figure 3.1 (left)). For second-
order accuracy, we additionally require ϕ(1) = 1, i.e. that a linear solution is not limited.
The admissible limiter region for second-order TVD schemes is known as the Sweby region
(Figure 3.1 (right)).

Figure 3.1: TVD and Sweby (second order TVD) regions in the ϕ-θ plane.

There are many choices for the limiting function ϕ(θ). One of the first limiters, mono-
tonized central-difference (MC), was proposed in [131] and is given by

ϕ(θ) = max

(
min

(
2θ,

1 + θ

2
, 0

)
, 0

)
,

or in the slope-limiter form

σn
i = minmod

(
2
Un
i+1 − Un

i

∆x
,
Un
i+1 − Un

i−1

2∆x
, 2
Un
i − Un

i−1

∆x

)
,
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where minmod(·, ·, ·) is defined by

minmod(a, b, c) =
1

2
(sgn(c) + sgn(minmod(a, b)))min (|c|, |minmod(a, b)|) ,

minmod(a, b) =
1

2
(sgn(a) + sgn(b))min (|a|, |b|) . (3.12)

A good example of a second-order MUSCL scheme is the Kurganov-Tadmor (KT)
scheme that we use for numerical experiments in Section 3.5. This scheme employs the
following variation of the MC limiter

σn
i = minmod

(
r
Un
i+1 − Un

i

∆x
,
Un
i+1 − Un

i−1

2∆x
, r
Un
i − Un

i−1

∆x

)
,

where 1 ≤ r ≤ 2 is a parameter.

KT scheme is TVD in one spatial dimension and satisfies the local maximum principle
in two spatial dimensions [82]. We provide more details on KT scheme in two spatial
dimensions in Section 3.5. The full derivation of the algorithm can be found in the original
paper [82]. The approach can also be extended to third-order schemes [81]. We will
demonstrate on a number of numerical examples in Section 3.5 that KT method is TVD
in the dual TV sense.

3.4 Total variation stability in two spatial dimensions

We consider a scalar nonlinear conservation law

ut + f(u)x + g(u)y = 0 (3.13)

with an appropriate initial condition, and periodic boundary conditions in x and y direc-
tions. We discretize it with a five-point stencil scheme on a uniform N × N mesh with
discretization step ∆x > 0, using

Un+1
i,j = Un

i,j + An
i,j(U

n
i+1,j − Un

i,j) +Bn
i−1,j(U

n
i−1,j − Un

i,j)

+ Cn
i,j(U

n
i,j+1 − Un

i,j) +Dn
i,j−1(U

n
i,j−1 − Un

i,j), (3.14)

where

An
i,j = An

i,j(. . . U
n
i,j−1, . . . , U

n
i−1,j, U

n
i,j, U

n
i+1,j, . . . , U

n
i,j+1, . . . ), ∀i, j ∈ [1, N ],

and, similarly, Bn
i−1,j, C

n
i,j, and Dn

i,j−1 depend on Un. The coefficients are related to the
partial derivatives of flux functions f and g. In the simpler case of first-order scheme, the
relation between the coefficients Ai,j, B

n
i−1,j, C

n
i,j, D

n
i,j−1 and fluxes f and g can be found in

[67]. For a general nonlinear scheme the relation cannot be written explicitly, because of
the presence of a limiter function ϕ, for example (3.10).

We can rewrite (3.14) in the following compact form

Un+1
i,j = Un

i,j + An
i,jD

1Un
i,j −Bn

i−1,jD
1Un

i−1,j + Cn
i,jD

2Un
i,j −Dn

i,j−1D
2Un

i,j−1, (3.15)

using the forward difference notation introduced in Section 2.3.
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In two spatial dimensions imposing the limiting conditions of Harten’s Lemma in each
space dimension is insufficient to guarantee non-increasing total variation. Goodman and
LeVeque [61] showed that except in certain trivial cases any method of the form (3.15)
that is TVD is at most first-order accurate [61], if the anisotropic definition of TV ((2.26))
is used. To prove this, an associated one-dimensional scheme with the same order of
accuracy as the two-dimensional scheme and special initial data were considered. If the
two-dimensional scheme is TVD in definition (2.26), then the one-dimensional scheme
should be monotone at least on certain initial data and, therefore, should be at most
first-order accurate. Thus, the original two-dimensional scheme is also at most first-order
accurate.

For steady-state solutions of (3.13), the local maximum principle (LMP) property

min(Un
i−1,j, U

n
i+1,j, U

n
i,j−1, U

n
i,j+1) ≤ Un+1

i,j ≤ max(Un
i−1,j, U

n
i+1,j, U

n
i,j−1, U

n
i,j+1)

has been proven [121] under the following set of conditions on scheme coefficients

An
i,j ≥ 0, Bn

i,j ≥ 0, Cn
i,j ≥ 0, Dn

i,j ≥ 0, (3.16)

An
i,j +Bn

i−1,j + Cn
i,j +Dn

i,j−1 ≤ 1. (3.17)

LMP is a weaker property than monotonicity or TVD, but it is easier to prove. It has been
shown that many conventional methods are LMP, e.g. FVM [7] and DG [54].

Several first-order schemes can be written in the form (3.15), e.g. upwind, Godunov,
and Lax-Friedrichs methods. Additionally, a variety of second-order schemes have been
developed for solution of scalar conservation laws in two dimensions, see e.g. Nessyahu-
Tadmor [103, 109], Osher-Tadmor [105], Bouchut [14], Kurganov-Tadmor [82], discontinu-
ous Galerkin (DG) [116, 75].

We rewrite (3.15) in a matrix-vector form as

Un+1 = LUn, L ∈ RS×S, (3.18)

where we write the numerical solution as a vector U of size S = N2 by traversing the mesh
columns

U =

(
U1,1, U2,1, . . . , UN,1, U1,2, U2,2, . . . , UN,2, . . . , U1,N , U2,N , . . . , UN,N

)T

.

Generally, the matrix L is not constant as its elements will change from one time step
to another, but for simplicity we omit the superscript n for it.

Then the rows of L = (l1, l2, . . . , lS)
T are given by

ls =

(
0, . . . , Dn

i,j−1, . . . , B
n
i−1,j, 1 − An

i,j − Bn
i−1,j − Cn

i,j − Dn
i,j−1, A

n
i,j, . . . , C

n
i,j, . . . , 0

)
,

for s = i + (j − 1)N, 1 < i < N, 1 < j < N , with non-zero entries Dn
i,j−1 located at

i+(j− 2)N , Bn
i−1,j at i− 1+ (j− 1)N , 1−An

i,j −Bn
i−1,j −Cn

i,j −Dn
i,j−1 at i+(j− 1)N , An

i,j

at i+ 1+ (j − 1)N , and Cn
i,j at i+ jN . The entries of L that correspond to the cells lying

on the boundary of the domain must be handled separately. We make adjustments to such
entries, i.e. i = 1, i = N or j = 1, j = N , to account for periodic boundary conditions, see
Appendix A.
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Using (3.15), we compute D1Un+1
i,j = Un+1

i+1,j − Un+1
i,j as follows

D1Un+1
i,j = (Un

i+1,j − Un
i,j) + An

i+1,j(U
n
i+2,j − Un

i+1,j)− (An
i,j +Bn

i,j)(U
n
i+1,j − Un

i,j)

+Bn
i−1,j(U

n
i,j − Un

i−1,j) + Cn
i+1,j(U

n
i+1,j+1 − Un

i+1,j)− Cn
i,j(U

n
i,j+1 − Un

i,j)

−Dn
i+1,j−1(U

n
i+1,j − Un

i+1,j−1) +Dn
i,j−1(U

n
i,j − Un

i,j−1). (3.19)

This can be written as

D1Un+1
i,j = (1− An

i,j −Bn
i,j)D

1Un
i,j + An

i+1,jD
1Un

i+1,j +Bn
i−1,jD

1Un
i−1,j

+ Cn
i+1,jD

2Un
i+1,j − Cn

i,jD
2Un

i,j −Dn
i+1,j−1D

2Un
i+1,j−1 +Dn

i,j−1D
2Un

i,j−1. (3.20)

Similarly, for D2Un+1
i,j = Un+1

i,j+1 − Un+1
i,j we have

D2Un+1
i,j = (Un

i,j+1 − Un
i,j) + Cn

i,j+1(U
n
i,j+2 − Un

i,j+1)− (Cn
i,j +Dn

i,j)(U
n
i,j+1 − Un

i,j)

+Dn
i,j−1(U

n
i,j − Un

i,j−1) + An
i,j+1(U

n
i+1,j+1 − Un

i,j+1)− An
i,j(U

n
i+1,j − Un

i,j)

−Bn
i−1,j+1(U

n
i,j+1 − Un

i−1,j+1)) +Bn
i−1,j(U

n
i,j − Un

i−1,j) (3.21)

or

D2Un+1
i,j = (1− Cn

i,j −Dn
i,j)D

2Un
i,j + Cn

i,j+1D
2Un

i,j+1 +Dn
i,j−1D

2Un
i,j−1

+ An
i,j+1D

1Un
i,j+1 − An

i,jD
1Un

i,j −Bn
i−1,j+1D

1Un
i−1,j+1 +Bn

i−1,jD
1Un

i−1,j. (3.22)

We concatenate D1Un+1 and D2Un+1 into a single vector of length 2S as follows

DUn+1 =

(
D1Un+1

1,1 , D1Un+1
2,1 , . . . , D1Un+1

N,1 , D
1Un+1

1,2 , . . . , D1Un+1
N,2 , . . . D

1Un+1
N,N ,

D2Un+1
1,1 , D2Un+1

2,1 , . . . , D2Un+1
N,1 , D

2Un+1
1,2 , . . . , D2Un+1

N,2 , . . . D
1Un+1

N,N

)T

. (3.23)

Then we can rewrite (3.23) in matrix form

DUn+1 =MDUn,

whereM is a 2S-by-2S multi-diagonal matrix. The rows of matrixM = (m1,m2, . . . ,m2S)
T

in the upper half of the matrix, i.e for 1 ≤ s ≤ S, are of the following form

ms =

(
. . . , Bn

i−1,j, 1− An
i,j −Bn

i,j, A
n
i+1,j, . . . ,

Dn
i,j−1,−Dn

i+1,j−1, . . . ,−Cn
i,j, C

n
i+1,j, . . .

)
, (3.24)

where s is related to indices i, j as s = i+ (j − 1)N, 1 < i < N, 1 < j < N . The non-zero
entries Bn

i−1,j are located at i − 1 + (j − 1)N , 1 − An
i,j − Bn

i,j at i + (j − 1)N , An
i+1,j at

i− 1+ jN , Dn
i,j−1 at i+ jN , −Dn

i+1,j−1 at S + i+ (j− 2)N , −Cn
i,j at S + i+ (j− 1)N , and

Cn
i+1,j at S + i + jN . In the lower half of the matrix M , i.e for s = S + i + (j − 1)N , we
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have

ms =

(
. . . , Bn

i−1,j,−An
i,j, . . . ,−Bn

i−1,j+1, A
n
i,j+1, . . . ,

Dn
i,j−1, . . . , 1− Cn

i,j −Dn
i,j, . . . , C

n
i,j+1, . . .

)
, (3.25)

where non-zero entries Bn
i−1,j are located at i−1+(j−1)N , −An

i,j at i+(j−1)N , −Bn
i−1,j+1

at i−1+ jN , An
i,j+1 at i+ jN , Dn

i,j−1 at S+ i+(j−2)N , 1−Cn
i,j −Dn

i,j at S+ i+(j−1)N ,
and Cn

i,j+1 at S+ i+ jN . Matrix entries that correspond to the cells lying on the boundary
of the domain must be handled separately. We make adjustments to such entries, i.e.
i = 1, i = N or j = 1, j = N , to account for periodic boundary conditions, see Appendix
A.

We begin the discussion of stability of two-dimensional schemes (3.15) with an analogue
of Harten’s Lemma. We show that schemes (3.15) are TVD in the dual TV sense on
essentially one-dimensional data.

Lemma 3.4.1. Let Un+1 = LUn be a scheme of the form (3.15) and let

D2Un
i,j = 0, ∀i, j. (3.26)

Assume that the coefficients satisfy the following conditions

An
i,j ≥ 0, Bn

i,j ≥ 0, Cn
i,j ≥ 0, Dn

i,j ≥ 0, (3.27)

An
i,j +Bn

i−1,j ≤ 1, and Cn
i,j +Dn

i,j−1 ≤ 1, ∀i, j ∈ [1, N ], ∀n. (3.28)

Then the total variation of the solution does not increase with time, i.e.

TVd(U
n+1) ≤ TVd(U

n).

Proof. We consider

TVd(U
n)− TVd(U

n+1) = ∆x
∑
i,j

⟨DUn
i,j,φ

n
i,j⟩ −∆x

∑
i,j

⟨DUn+1
i,j ,φn+1

i,j ⟩

= ∆x
∑
i,j

⟨DUn
i,j,φ

n
i,j⟩ −∆x

∑
i,j

⟨MDUn
i,j,φ

n+1
i,j ⟩

= ∆x
∑
i,j

⟨DUn
i,j,φ

n
i,j⟩ −∆x

∑
i,j

⟨DUn
i,j,M

Tφn+1
i,j ⟩

= ∆x
∑
i,j

⟨DUn
i,j,φ

n
i,j −MTφn+1

i,j ⟩,

where φn and φn+1 are maximizers for Un and Un+1 concatenated into one-dimensional
vectors in the same way as DU . We proceed by examining the components of MTφn+1.
We will omit the superscript n in scheme coefficients for brevity. Using (3.24) and (3.25)
we write

(MTφn+1)s = Ai,jφ
n+1
i−1/2,j + (1− Ai,j −Bi,j)φ

n+1
i+1/2,j +Bi,jφ

n+1
i+3/2,j

+ Ai,jψ
n+1
i,j−1/2 −Bi,jψ

n+1
i+1,j−1/2 − Ai,jψ

n+1
i,j+1/2 +Bi,jψ

n+1
i+1,j+1/2, (3.29)
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for s = i+ (j − 1)N and

(MTφn+1)s = Ci,jψ
n+1
i,j−1/2 + (1− Ci,j −Di,j)ψ

n+1
i,j+1/2 +Di,jψ

n+1
i,j+3/2

+ Ci,jφ
n+1
i−1/2,j −Di,jφ

n+1
i−1/2,j+1 − Ci,jφ

n+1
i+1/2,j +Di,jφ

n+1
i+1/2,j+1, (3.30)

for s = S + i + (j − 1)N . We split MTφn+1 into a sum of two vectors pn+1 and qn+1 as
MTφn+1 = pn+1 + qn+1, where we define

pn+1
s = Ai,jφ

n+1
i−1/2,j + (1− Ai,j −Bi,j)φ

n+1
i+1/2,j +Bi,jφ

n+1
i+3/2,j,

for s = i+ (j − 1)N , and

pn+1
s = Ci,jψ

n+1
i,j−1/2 + (1− Ci,j −Di,j)ψ

n+1
i,j+1/2 +Di,jψ

n+1
i,j+3/2, (3.31)

for s = S + i+ (j − 1)N. We define

qn+1
s = Ai,jψ

n+1
i,j−1/2 −Bi,jψ

n+1
i+1,j−1/2 − Ai,jψ

n+1
i,j+1/2 +Bi,jψ

n+1
i+1,j+1/2, (3.32)

for s = i+ (j − 1)N , and

qn+1
s = Ci,jφ

n+1
i−1/2,j −Di,jφ

n+1
i−1/2,j+1 − Ci,jφ

n+1
i+1/2,j +Di,jφ

n+1
i+1/2,j+1, (3.33)

for s = S + i+ (j − 1)N .

Using (3.22) we establish that for one-dimensional data (3.26) we have D2Un+1
i,j = 0

at t = tn+1 and all subsequent steps of the scheme. Without loss of generality, we can
assume that for D2Un+1

i,j = 0, the corresponding values of the test function ψn+1
i,j+1/2 = 0, as

this does not contradict the fact that φn+1 is the maximizer for Un+1 in (2.41). Since the
assumption (3.26) holds at every point, we conclude that ψn+1

i,j+1/2 = 0, ∀i, j. This yields

pn+1
s = 0 for s = i + (j − 1)N + S in (3.31) and qn+1

s = 0 for s = i + (j − 1)N in (3.32).
Then we have

∆x
∑
i,j

⟨DUn
i,j, q

n+1
i,j ⟩ = ∆x

∑
i,j

⟨D1Un
i,j, 0⟩

+∆x
∑
i,j

⟨0, (Ci,jφ
n+1
i−1/2,j −Di,jφ

n+1
i−1/2,j+1 − Ci,jφ

n+1
i+1/2,j +Di,jφ

n+1
i+1/2,j+1)⟩ = 0.

Moreover, since pn+1
s = 0 for s = S + i + (j − 1)N , then pn+1 ∈ P under assumptions

(3.27)-(3.28) by Lemma 2.5.3. This yields

TVd(U
n)− TVd(U

n+1) = ∆x
∑
i,j

⟨DUn
i,j,φ

n
i,j −MTφn+1

i,j ⟩

= ∆x
∑
i,j

⟨DUn
i,j,φ

n
i,j⟩ −∆x

∑
i,j

⟨DUn
i,j,p

n+1
i,j + qn+1

i,j ⟩

= ∆x
∑
i,j

⟨DUn
i,j,φ

n
i,j⟩ −∆x

∑
i,j

⟨DUn
i,j,p

n+1
i,j ⟩ −∆x

∑
i,j

⟨DUn
i,j, q

n+1
i,j ⟩

= ∆x
∑
i,j

⟨DUn
i,j,φ

n
i,j⟩ −∆x

∑
i,j

⟨DUn
i,j,p

n+1
i,j ⟩.
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Since φn is the maximizer in (2.41), we have

∆x
∑
i,j

⟨DUn
i,j,φ

n
i,j⟩ −∆x

∑
i,j

⟨DUn
i,j,p

n+1
i,j ⟩ ≥ 0,

and
TVd(U

n)− TVd(U
n+1) ≥ 0 (3.34)

The case D1Un
i,j = 0, ∀i, j is similar.

Notice that Lemma 3.4.1 is valid for TVa(U) and TVis(U) with one dimensional data
(3.26), since the conditions ∥P kφ∥2 ≤ 1, k = 1, . . . , 3, ∀i, j imposed on the dual functions
φn,φn+1 reduce to |φn

i+1/2,j| ≤ 1, |φn+1
i+1/2,j| ≤ 1 ∀i, j. In this case, there is no difference

between the anisotropic, isotropic and dual discrete TVs.

Next, let us consider the linear advection equation

ut + aux + buy = 0, a, b > 0, (x, y) ∈ Ω,

with a suitable initial condition and periodic boundary conditions, discretized with the
upwind scheme on a uniform grid

Un+1
i,j = Un

i,j −
a∆t

∆x
(Un

i,j − Un
i−1,j)−

b∆t

∆y
(Un

i,j − Un
i,j−1), (3.35)

which is (3.15) with An
i,j = 0, Bn

i−1,j =
a∆t
∆x
, Cn

i,j = 0, Dn
i,j−1 =

b∆t
∆y

.

Lemma 3.4.2. Assume that the coefficients satisfy Bn
i−1,j+D

n
i,j−1 ≤ 1, Bn

i−1,j ≥ 0, Dn
i,j−1 ≥

0, , ∀i, j ∈ [1, N ], ∀n, i.e.

a∆t

∆x
+
b∆t

∆y
≤ 1,

a∆t

∆x
≥ 0,

b∆t

∆y
≥ 0. (3.36)

Then the (3.35) is TVD in the dual sense

TVd(U
n+1) ≤ TVd(U

n).

Proof. Since Bi−1,j and Di,j−1 are constant we write (3.35) as

DUn+1
i,j = (1−B −D)DUn

i,j +BDUn
i−1,j +DDUn

i,j−1.

Therefore

TVd(U
n)−TVd(Un+1) = ∆x

∑
i,j

⟨DUn
i,j,φ

n
i,j⟩ −∆x

∑
i,j

⟨DUn+1
i,j ,φn+1

i,j ⟩

= ∆x
∑
i,j

⟨DUn
i,j,φ

n
i,j⟩ −∆x

∑
i,j

⟨ (1−B −D)DUn
i,j +BDUn

i−1,j +DDUn
i,j−1,φ

n+1
i,j ⟩

= ∆x
∑
i,j

⟨DUn
i,j,φ

n
i,j⟩ − (1−B −D)∆x

∑
i,j

⟨ DUn
i,j,φ

n+1
i,j ⟩ −B∆x

∑
i,j

⟨ DUn
i−1,j,φ

n+1
i,j ⟩

−D∆x
∑
i,j

⟨DUn
i,j−1,φ

n+1
i,j ⟩.
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Since by assumption, (1 − B − D), B and D are nonegative numbers and φn is the
maximizer in (2.41), we have the following

−B∆x
∑
i,j

⟨ DUn
i−1,j,φ

n+1
i,j ⟩ ≥ −B∆x

∑
i,j

⟨ DUn
i−1,j,φ

n
i−1,j⟩,

and similar inequalities for the other two terms. Then

TVd(U
n)−TVd(Un+1) ≥ ∆x

∑
i,j

⟨DUn
i,j,φ

n
i,j⟩ − (1−B −D)∆x

∑
i,j

⟨ DUn
i,j,φ

n
i,j⟩

−B∆x
∑
i,j

⟨ DUn
i−1,j,φ

n
i−1,j⟩ −D∆x

∑
i,j

⟨DUn
i,j−1,φ

n
i,j−1⟩ ≥ 0,

since
TVd(U

n) = ∆x
∑
i,j

⟨DUn
i−1,j,φ

n
i−1,j⟩ = ∆x

∑
i,j

⟨DUn
i,j−1,φ

n
i,j−1⟩.

The upwind scheme (3.35) is only first-order accurate. It is stable under the CFL
condition |a∆t

∆x
|+ | b∆t

∆y
| ≤ 1, which is satisfied under assumption of Lemma 3.4.2. Then the

scheme is stable and TVD under Harten’s-like conditions.

The conditions on the coefficients used in Lemma 3.4.2 are not sufficient to guarantee
the TVD property of the schemes of the form (3.15) in the dual discrete sense. For nonlinear
schemes, the conditions need to be more restrictive. The following example is of particular
interest as it presents a set of necessary conditions on the coefficients of the scheme of the
form (3.15) to be TVD in the dual discrete sense.

Necessary TVD conditions.

Let Un+1 = LUn be a scheme of the form (3.15) and assume that its coefficients in the
first time step satisfy

A0
i,j +B0

i−1,j ≤ 1/4, C0
i,j +D0

i,j−1 ≤ 1/4, (3.37)

A0
i,j ≥ 0, B0

i−1,j ≥ 0, C0
i,j ≥ 0, D0

i,j−1 ≥ 0, , ∀i, j ∈ [1, N ]. (3.38)

Let the initial condition be given by

U0
i.j =

{
1, if i = p, j = q,

0, otherwise,
(3.39)

for some p, q, such that (xp, yq) is not lying on the boundary of the domain. Then we have

TVd(U
1) ≤ TVd(U

0).

To show that TVd(U
1) ≤ TVd(U

0), we compute DU0

D1U0
p,q = −1, D1U0

p−1,q = 1, D2U0
p,q = −1, D2U0

p,q−1 = 1.

Using (2.41) we find that TVd(U
0) = 4∆x. Then, using (3.19)-(3.22), after one step of the
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scheme we obtain

D1U1
p,q = −1 + Ap,q +Bp,q +Bp−1,q + Cp,q +Dp,q−1,

D1U1
p−2,q = Ap−1,q,

D1U1
p+1,q = −Bp,q,

D1U1
p−1,q = 1− Ap−1,q −Bp−1,q − Ap,q − Cp,q −Dp,q−1,

D1U1
p−1,q+1 = Dp,q, D1U1

p,q+1 = −Dp,q, D1U1
p−1,q−1 = Cp,q−1 D1U1

p,q−1 = −Cp,q−1,

D2U1
p,q = −1 + Cp,q +Dp,q +Dp,q−1 + Ap,q +Bp−1,q,

D2U1
p,q−2 = Cp,q−1,

D2U1
p,q+1 = −Dp,q,

D2U1
p,q−1 = 1− Cp,q−1 −Dp,q−1 − Cp,q − Ap,q −Bp−1,q,

D2U1
p+1,q−1 = Bp,q, D2U1

p+1,q = −Bp,q, D2U1
p−1,q−1 = Ap−1,q, D2U1

p−1,q = −Ap−1,q,

where we omitted the superscript index 0 in the coefficients for brevity. Under conditions
(3.37)-(3.38) we can determine the signs of forward differences

D1U1
p,q ≤ 0, D1U1

p+1,q ≤ 0, D1U1
p−2,q ≥ 0, D1U1

p−1,q ≥ 0,

D1U1
p−1,q+1 ≥ 0, D1U1

p,q+1 ≤ 0, D1U1
p−1,q−1 ≥ 0, D1U1

p,q−1 ≤ 0,

D2U1
p,q ≤ 0, D2U1

p,q+1 ≤ 0, D2U1
p,q−2 ≥ 0, D2U1

p,q−1 ≥ 0,

D2U1
p+1,q−1 ≥ 0, D2U1

p+1,q ≤ 0, D2U1
p−1,q−1 ≥ 0, D2U1

p−1,q ≤ 0. (3.40)

Omitting the superscript 1 for the test function and substituting the expressions for the
forward differences into the formula for TV yields

TVd(U
1) = ∆x

∑
i,j

⟨DU1
i,j,φ

1
i,j⟩

= −(1− Ap,q −Bp,q −Bp−1,q − Cp,q −Dp,q−1)φp+1/2,q

+ (1− Ap−1,q −Bp−1,q − Ap,q − Cp,q −Dp,q−1)φp−1/2,q

+ (1− Cp,q−1 −Dp,q−1 − Cp,q − Ap,q −Bp−1,q)ψp,q−1/2

− (1− Cp,q −Dp,q −Dp,q−1 − Ap,q −Bp−1,q)ψp,q+1/2

− Ap−1,qφp−3/2,q +Bp,qφp+3/2,q −Dp,qφp−1/2,q+1 +Dp,qφp+1/2,q+1

+ Cp,q−1φp+1/2,q−1 − Cp,q−1ψp,q−3/2 +Dp,qψp,q+3/2 −Bp,qψp+1,q−1/2

− Ap−1,qψp−1,q−1/2 + Ap−1,qψp−1,q+1/2 +Bp,qψp+1,q+1/2 − Cp,q−1φp−1/2,q−1. (3.41)

We look for the maximum value in 3.41 when the scheme coefficients and test functions
satisfy (3.37)-(3.38), (2.36)-(2.38). Differentiating with respect to φp+1/2,q, we find that the
maximum cannot be achieved inside the domain given by the above restrictions. Thus, the
maximum must lie on the boundary of the domain. By checking the boundaries, we we
find that the maximum in (3.41) is obtained when all of the scheme coefficients are equal
to zero. Hence, we obtain

TVd(U
1) ≤ (−φp+1/2,q + φp−1/2,q − ψp,q−1/2 + ψp,q+1/2)∆x ≤ 4,

where the second inequality follows from the constraints on φ.
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Since we have already established that TVd(U
0) = 4∆x, we conclude that

TVd(U
1) ≤ TVd(U

0)

. Conditions (3.37) can be relaxed to the following

A0
i,j +B0

i−1,j ≤ 1/3, C0
i,j +D0

i,j−1 ≤ 1/3.

Similarly, we can show that under the same set of constraints on the Un+1 = LUn

scheme coefficients and a special initial condition

U0
i.j =

{
1, if p1 ≤ i ≤ p2, q1 ≤ j ≤ q2,

0, otherwise,
(3.42)

for some p1, p2, q1, q2, such that (xp1 , yq1), (xp1 , yq2), (xp2 , yq1), (xp2 , yq1) are not lying on the
boundary of the domain, we have

TVd(U
1) ≤ TVd(U

0).

Remark 3.4.1. Note that for TVa(U) we cannot guarantee TVa(U
0) ≤ TVa(U

1) under
(3.37)-(3.38). Similarly to TVd(U

0), we can compute TVa(U
0) = 4∆x. Then, after one

step of the scheme, we get

TVa(U
1) = ∆x

∑
i,j

|D1U1
i,j|+ |D2U1

i,j|

= ∆x
[
| − 1 + Ap,q +Bp,q +Bp−1,q + Cp,q +Dp,q−1|+ |Ap−1,q|+ | −Bp,q|

+ |1− Ap−1,q −Bp−1,q − Ap,q − Cp,q −Dp,q−1|+ |Dp,q|+ | −Dp,q|
+ |Cp,q−1|+ | − Cp,q−1|+ | − 1 + Cp,q +Dp,q +Dp,q−1 + Ap,q +Bp−1,q|
+ |Cp,q−1|+ | −Dp,q|+ |1− Cp,q−1 −Dp,q−1 − Cp,q − Ap,q −Bp−1,q|

+ |Bp,q|+ | −Bp,q|+ |Ap−1,q|+ | − Ap−1,q|
]

= ∆x[4− 4Ap,q − 4Bp−1,q − 4Cp,q − 4Dp,q−1 + 2Ap−1,q + 2Bp,q + 2Dp,q + 2Cp,q−1].

It is clear that TVa(U
1) can be greater than TVa(U

0) = 4∆x, for some combination of
coefficients from the given range, which means that TVa(U) may increase. Similarly, it can
be shown that TVis(U) may increase on these initial data.

One common approach to stability of the numerical schemes is examining the spectrum
of the discretization matrices L and M . The stability of the scheme is closely tied to the
properties of the eigenvalues of these matrices.

We proceed with the following lemma on the spectrum of matrices L and M , which
connects the TVD property with stability of numerical schemes (3.18).

Lemma 3.4.3. Assume the following conditions on the coefficients (3.15) hold

An
i,j +Bn

i−1,j < 1/4, Cn
i,j +Dn

i,j−1 < 1/4, (3.43)

An
i,j ≥ 0, Bn

i−1,j ≥ 0, Cn
i,j ≥ 0, Dn

i,j−1 ≥ 0, , ∀i, j ∈ [1, N ]. (3.44)

Then the matrices L and M for this scheme are strictly row diagonally dominant, their

51



eigenvalues µk(L) and µs(M) have positive real parts and the following estimates hold

0 < |µk(L)| ≤ 1, 0 < |µs(M)| ≤ 2, 1 ≤ k ≤ S, 1 ≤ s ≤ 2S. (3.45)

We write conditions on coefficients (3.43)-(3.44) for the interior points of the domain
and omit conditions for the boundary points, since they are given by similar expressions.

Proof. The diagonal elements of matrix L are given by

|Lss| = |1− An
i,j −Bn

i−1,j − Cn
i,j −Dn

i,j−1|,

where s = i+ (j − 1)N, 1 < i, j < N . By assumption (3.43), Lss is positive. We observe
that with (3.44) matrix L is strictly row diagonally dominant

|Lss| −
∑
k ̸=s

|Lsk| = |1− An
i,j −Bn

i−1,j − Cn
i,j −Dn

i,j−1| − |An
i,j| − |Bn

i−1,j| − |Cn
i,j| − |Dn

i,j−1|

= 1− 2An
i,j − 2Bn

i−1,j − 2Cn
i,j − 2Dn

i,j−1 > 1− 2 · 1
4
− 2 · 1

4
> 0,

Therefore and all eigenvalues of L have positive real parts.

We look for estimates of the smallest µmin(L) and largest µmax(L) in magnitude eigen-
values of L. We use Gelfand’s formula

ρ(L) ≤ ∥L∥∞

for the spectral radius ρ(L) = maxk |µk(L)|. Then we get

∥L∥∞ = max
1≤k≤S

S∑
p=1

|Lkp|

= max
i,j

{1− An
i,j −Bn

i−1,j − Cn
i,j −Dn

i,j−1 + An
i,j +Bn

i−1,j + Cn
i,j +Dn

i,j−1} = 1.

Then ρ(L) ≤ 1 and we conclude that 0 < |µk(L)| ≤ 1, k ∈ [1, S].

Similarly for M we have

|Mss| = |1− An
i,j −Bn

i,j| = 1− An
i,j −Bn

i,j,

for s = i+ (j − 1)N and

|Mss| = |1− Cn
i,j −Dn

i,j| = 1− Cn
i,j −Dn

i,j,

for s = S + i+ (j − 1)N . Then by assumptions (3.43)-(3.44) we have

|Mss| −
∑
l ̸=s

|Msl| = (1− An
i,j −Bn

i,j)−Bn
i−1,j − An

i+1,j −Dn
i,j−1 −Dn

i+1,j−1 − Cn
i,j − Cn

i+1,j

= 1− (An
i,j +Bn

i−1,j)− (An
i+1,j +Bn

i,j)− (Cn
i,j +Dn

i,j−1)− (Cn
i+1,j +Dn

i+1,j−1) > 0,
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for s = i+ (j − 1)N and

|Mss| −
∑
l ̸=s

|Msl| = (1− Cn
i,j −Dn

i,j)−Bn
i−1,j − An

i,j −Bn
i−1,j+1 − An

i,j+1 −Dn
i,j−1 − Cn

i,j+1

= 1− (Cn
i,j +Dn

i,j−1)− (An
i,j +Bn

i−1,j)− (An
i,j+1 +Bn

i−1,j+1)− (Cn
i,j+1 +Dn

i,j) > 0,

for s = S + i+ (j− 1)N . Thus, M is strictly row dominant, and all of its eigenvalues have
positive real parts.

We now look for the magnitude of the smallest µmin(M) and largest µmax(M) eigen-
values of M . We use another variant of Gelfand’s formula

ρ(M) ≤ ∥M∥1

to obtain the following estimate

∥M∥1 = max
1≤l≤2S

2S∑
s=1

|Msl| = max
i,j

{1− An
i,j −Bn

i,j + An
i,j +Bn

i,j + An
i,j +Bn

i,j + An
i,j +Bn

i,j}

= max
i,j

{1 + 2An
i,j + 2Bn

i,j} ≤ 2,

for 1 ≤ l ≤ S and

∥M∥1 = max
1≤l≤2S

2S∑
s=1

|Msl| = max
i,j

{1− Cn
i,j −Dn

i,j + Cn
i,j +Dn

i,j + Cn
i,j +Dn

i,j + Cn
i,j +Dn

i,j}

= max
i,j

{1 + 2Cn
i,j + 2Dn

i,j} ≤ 2,

for l > S.

Therefore ρ(M) ≤ 2. We conclude that 0 < |µs(M)| ≤ 2, s ∈ [1, 2S].

Remark 3.4.2. Under the conditions of Lemma 3.4.3 matrices L and M are invertible.

Lemma 3.4.4. Assume the following conditions on the coefficients in (3.15) hold

An
i,j +Bn

i,j < 1/4, Cn
i,j +Dn

i,j < 1/4, (3.46)

An
i,j ≥ 0, Bn

i−1,j ≥ 0, Cn
i,j ≥ 0, Dn

i,j−1 ≥ 0. (3.47)

Then the matrices LT and MT are strictly row diagonally dominant, their eigenvalues
µk(L

T ) and µs(M
T ) have positive real parts and the following estimates hold

0 < |µk(L
T )| ≤ 1, 0 < |µs(M

T )| ≤ 3

2
, 1 ≤ k ≤ S, 1 ≤ s ≤ 2S. (3.48)

The proof is similar to that of Lemma 3.4.4. The conditions (3.46)-(3.47) resemble those
of Harten’s lemma (3.5).

Remark 3.4.3. The necessary TVD conditions we use in Lemma 3.4.3 and 3.4.4 are
motivated by the relations on the coefficients of the KT scheme [81], a second order MUSCL
scheme, for which it can be shown that An

i,j+B
n
i−1,j ≤ 15/64, Cn

i,j+D
n
i,j−1 ≤ 15/64, ∀n.
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3.5 Numerical experiments

In this section, we present numerical experiments to verify the TVD property of numerical
solutions of scalar conservation laws using the KT scheme. We compute TV using TVa,
TVis and TVd discrete definitions. TVd was computed using Algorithm 1, that is described
in Chapter 4, with tolerance ε = 10−6.

All problems are solved on a square domain Ω = [−2, 2]× [−2, 2] discretized into square
N × N meshes with elements Ωi,j. The initial condition U0 is computed by averaging of
u0(x, y) in each cell.

A five-point scheme with random coefficients.

First, consider schemes of the form (3.15) with randomly generated and limited coefficients.

We use

u0(x, y) =

{
1, if x ∈ [−1, 1], y ∈ [−1, 1],

0, otherwise,
(3.49)

as an initial condition. We look for restrictions on the scheme coefficients An
i,j, B

n
i−1,j, C

n
i,j,

and Dn
i,j−1 that would not result in increase of TVd(U) after one time step. We seek

constraints α, β on the coefficients such that

A0
i,j +B0

i−1,j ≤ α, C0
i,j +D0

i,j−1 ≤ α, (3.50)

or
A0

i,j +B0
i−1,j + C0

i,j +D0
i,j−1 ≤ β, (3.51)

We also require the coefficients to be non-negative. The possible bounds are given by the
time step restrictions of the DG and KT methods. For KT scheme, it follows from the CFL
condition (3.57) that (3.50) is satisfied with α = 15/64. This and the results of Section 3.4
(Lemma 3.4.3, 3.4.4) motivate using α = 1/4. To check this hypothesis, we drew S = 106,
N × N matrices A,B,C,D from the uniform multivariate distribution using the rand(·)
function in MATLAB. Then, we scaled the entries of the matrices so that the conditions
(3.50) are satisfied. i.e.

A0
i,j +B0

i−1,j = α, C0
i,j +D0

i,j−1 = α, ∀i, j.

Numerical experiments with different values of N were performed. We report here result
of computations on a coarse grid, as large cell size results in more spreading and therefore
larger changes in TV. In the presented examples we used N = 20. The initial condition in
(3.49) was chosen to be a discontinuous function because TV of the discontinuous shape
after one step of a scheme would change more than that of a smooth initial condition.
Random coefficients represent many possible combinations of numerical fluxes f(u) and
g(u) in (3.1).

We compute U1 using (3.15) for each sample set of scaled matrices A,B,C,D. We then
run Algorithm 1 to compute TVd(U

0) and TVd(U
1) and compare these two values (Figure

3.2 (left)). We report that the largest value of α for which the condition TVd(U
1) ≤

TVd(U
0) is satisfied for all 106 random sets of scheme coefficients is α ≤ 1/4. We note that

both TVa and TVis fail this test. We also note that higher values of α result in growth of
all three TVs.
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Then we repeat the tests on the same set of matrices A,B,C,D, which we scale to
satisfy restrictions (3.51) with β = 1/3, i.e.

A0
i,j +B0

i−1,j + C0
i,j +D0

i,j−1 = β, ∀i, j.

We conduct the numerical experiments and report the value of δTV 1,0
d = TVd(U

1)−TVd(U0)
for all 106 sets of scaled scheme coefficients in Figure 3.2 (right).

Figure 3.2: δTV 1,0
d (U) = TVd(U

1) − TVd(U
0) for S = 106 cases under conditions (3.50),

α = 1/4 (left) and (3.51), β = 1/3 (right).

Thus, we hypothesize that (3.50) and (3.51) with α = 1/4 and β = 1/3, respectively, are
good candidates for possible sufficient conditions for a scheme to be TVD in the TVd sense.

Next, we solve (3.1) with KT scheme and compute TV of the obtained solution using
three definitions.

TV of numerical solutions for Kurganov-Tadmor scheme.

We apply a second-order central finite-difference scheme of Kurganov and Tadmor with
MUSCL flux [82] to (1.6)

Un+1
i,j = Un

i,j−
∆tn

∆x

(
Hx

i+1/2,j(t
n)−Hx

i−1/2,j(t
n)
)
−∆tn

∆y

(
Hy

i,j+1/2(t
n)−Hy

i,j−1/2(t
n)
)
, (3.52)

where Hx(t), Hy(t) are numerical fluxes given by

Hx
i+1/2,j(t) =

f(U+
i+1/2,j(t)) + f(U−

i+1/2,j(t))

2
−
axi+1/2,j(t)

2

(
U+
i+1/2,j(t)− U−

i+1/2,j(t)
)
,

(3.53)

Hy
i,j+1/2(t) =

g(U+
i,j+1/2(t)) + g(U−

i,j+1/2(t))

2
−
ayi,j+1/2(t)

2

(
U+
i,j+1/2(t)− U−

i,j+1/2(t)
)
. (3.54)

Here, axi+1/2,j(t), a
y
i,j+1/2(t) are lthe ocal wave speeds given by (4.19) in [82], U±

i+1/2,j(t), U
±
i,j+1/2(t)

are linearly reconstructed values at cell edge midpoints

U±
i+1/2,j(t) = Ui+1/2±1/2,j ∓

∆x

2
(Ux)

n
i+1/2±1/2,j(t),

U±
i,j+1/2(t) = Ui,j+1/2±1/2 ∓

∆y

2
(Uy)

n
i,j+1/2±1/2(t).
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The slopes of the numerical solution are computed using the MC function (3.12) as

(Ux)
n
i,j(t) = minmod

(
r
Un
i+1,j − Un

i,j

∆x
,
Un
i+1,j − Un

i−1,j

2∆x
, r
Un
i,j − Un

i−1,j

∆x

)
, (3.55)

(Uy)
n
i,j(t) = minmod

(
r
Un
i,j+1 − Un

i,j

∆y
,
Un
i,j+1 − Un

i,j−1

2∆y
, r
Un
i,j − Un

i,j−1

∆y

)
. (3.56)

The two-dimensional scheme considered here satisfies the local maximum principle for
1 ≤ r ≤ 2, under the following CFL condition

max

(
∆tn

∆x
max

u
|f ′(u)|, ∆t

n

∆y
max

u
|g′(u)|

)
≤ 1

8
. (3.57)

We set r = 1.5 in the numerical examples below. We use the classical second-order Runge-
Kutta scheme for time integration with (3.52). A detailed derivation of the algorithm and
its analysis can be found in [82].

Example 1 (Rotation of a square pulse).
We consider the rotation of a square pulse around the origin described by

ut + 2πyux − 2πxuy = 0, (3.58)

and

u0(x, y) =

{
1, if x ∈ [−0.5, 0.5], y ∈ [−0.5, 0.5],

0, otherwise.
(3.59)

with outflow boundary conditions.

We solve the problem for t ∈ [0, 1] on N = 40, 80, 160 meshes. We plot the values
of TVa, TVis and TVd as a function of time in Figure 3.4. TV at selected times are also
reported in Table 3.1.

TV of the exact solution does not change in time. However, we observe that the TVa
do not decrease with time. In fact, there are intervals with marked increases in TV. The
plot has a scallop-like shape with peaks at t = 0.25, 0.5, . . . corresponding to rotation by
π/4, 3π/4, etc. and troughs corresponding to rotation by π/2, π, etc., see Figure 3.5
(bottom right). This demonstrates the behavior of TVa discussed in Chapter 2. That is,
the computed TVa value at the first peak is greater than that at the initial moment by
a factor approaching

√
2, as we observe an increase in peak values with mesh refinement.

The decrease in peak values with time can be attributed to the numerical diffusion of the
scheme and the spreading of the solution.

The plot of TVis shows similar behavior. The value of TVis grows on the interval [0, 0.06]
and diminishes after t = 0.06 for N = 40, 80. Thus, the scheme is not TVD in the TVa and
TVis sense. Finally, the computed dual TV forms a monotonically decreasing sequence for
all meshes. We observe that the limited solution of (3.58) is oscillation-free (Figure 3.3)
and is TVD in the TVd sense (Figure 3.4). Finally, we compute the L1,L∞ errors at T = 1
using the exact solution, i.e a rotated square pulse. and report the convergence rate of the
error in Table 3.3.
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Figure 3.3: Initial condition (left) and numerical solution (right) of (3.58)-(3.59) on N = 80
mesh, at t = 0.125.

Figure 3.4: TV of the solutions of (3.58),(3.59) on N = 40, 80, 160 meshes, for t ∈ [0, 0.2].
The lower right figure shows all three TVs computed on N = 160 mesh for t ∈ [0, 1]. TVi
stands for isotropic TV.
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Example 2 (Burgers’ equation).
We consider the inviscid Burgers’ equation

ut + uux + uuy = 0 (3.60)

with the initial condition

u0(x, y) =

{
1, if x ∈ [−1, 0], y ∈ [−1, 0],

0, otherwise.
(3.61)

We solve the problem for t ∈ [0, 0.5] on N = 40, 80, 160 meshes. We plot TVa, TVis and
TVd in Figure 3.5. TV values at selected times are presented in Table 3.2. We compute
the L1,L∞ errors at T = 0.5 using the numerical solution on the N = 1280 mesh as ground
truth and report the convergence rate of the error in Table 3.3.

Figure 3.5: TV of the solutions of (3.60),(3.61) on N = 40, 80, 160 meshes, for t ∈ [0, 0.5]
The lower right figure shows the three TVs computed on N = 160 mesh for t ∈ [0, 0.1].
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Similarly to Example 1, we observe (Table 3.2) that TVd monotonically decreases with
time while TVa does not. The growth of TVa is mainly due to bad approximation of solution
gradients on the edges of the pulse. In contrast to the previous example, the TVis values
do not grow with time and mesh refinement. Additionally, the refinement process does not
reduce the initial increase in the TVa value.

3.6 Results

We study a five-point scheme for two-dimensional scalar conservation laws and propose a
set of conditions on scheme coefficients that guarantee several desirable properties and are
a good candidate for imposing TV-stability in the dual discrete TV sense.

We use the proposed set of conditions both analytically and numerically. We test
conditions (3.50) as well as an independent set of conditions (3.51) to limit the solution
of the five-point scheme with random coefficients. We demonstrate numerically that these
conditions deliver a solution with non-increasing dual discrete total variation after one step
of the scheme on a statistically large set of data. Notably, these constraints are closely
related to the CFL conditions of KT and DG schemes. Consequently, we can conclude
that less dissipative second-order schemes, and potentially higher-order schemes, which
are TVD in the dual discrete sense, should exist.

Finally, we have presented numerical evidence that the KT scheme (a second-order
order fully-discrete scheme) exhibits the TVD property in the dual discrete TV sense.
These results hold when measuring TV using definition (2.39). Hence, we provide an
example of a scheme that is both TVD and second-order accurate.

3.7 Summary

In this chapter, we have reviewed the approach taken by Harten to ensure the stability of
high-order nonlinear schemes for hyperbolic conservation laws in one spatial dimension and
discussed the MUSCL limiting technique to construct such schemes. We have described the
main features of the limiters commonly used to enforce the TVD property in one spatial
dimension.

We adopt a new definition for discrete TV to be used as a criterion to be checked for
the TVD property of a numerical scheme in two dimensions. We formulate the necessary
conditions on the scheme coefficients to guarantee the TVD property in the dual discrete
sense for a five-point scheme. We first show the TVD property in the new sense for one-
dimensional data and a two-dimensional scheme and then for a special initial data.

In the numerical experiments section, we study the TVD property in different definitions
under the proposed conditions on the coefficients. We consider several scalar conservation
laws and use a KT scheme that is of second order and is not TVD in the anisotropic TV
sense. We demonstrate in these experiments that the second order scheme can be of second
order and TVD in the sense of the dual discrete TV, while the anisotropic and isotropic
TVs increase. This chapter is a crucial part of the thesis, containing the most interesting
results, challenging the long-standing assertion of Goodman and LeVeque, which can have
an extensive impact on future research endeavors.
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Chapter 4

A primal-dual algorithm for
computing dual discrete total
variation

While gradient-based TV discretizations, such as (2.26) and (2.13), are given by explicit
formulas that are easy and straightforward to implement, the dual TV discretization re-
quires solving an associated optimization problem.

We begin by introducing the terms in which the optimization problem for dual discrete
TV (2.41) can be expressed.

Fenchel’s duality theorem.

For functions f : RN → R, the Legendre–Fenchel transform is defined by

f ∗(m) = sup
x∈RN

{⟨m,x⟩ − f(x)}, (4.1)

where m ∈ RN and ⟨m,x⟩ denotes the dot product of m and x in RN . The domain of f ∗ is

X∗ =

{
x∗ ∈ RN : sup

x∈RN
(⟨x∗, x⟩ − f(x)) <∞

}
. (4.2)

We state the Fenchel’s duality theorem for functions and then use it to derive a numer-
ical procedure to find the dual total variation numerically.

Theorem 4.0.1 (Fenchel’s duality theorem [94]). Let X and Y be Banach spaces,
f : X → R and g : Y → R be convex functions and A : X → Y be a bounded linear
operator. Then the Fenchel’s primal

p∗ = inf
x∈X

{f(x) + g(Ax)}

and dual
d∗ = sup

y∗∈Y ∗
{−f ∗(A∗y∗)− g∗(−y∗)}

problems satisfy weak duality, i.e., p∗ ≥ d∗. Above Y ∗ is the domain of g∗ and A∗ is the
adjoint operator for A, i.e ⟨Ax, y⟩ = ⟨x,A∗y⟩.

If f , g, and A are such that they satisfy one of the conditions
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(a) f and g are lower semi-continuous, and 0 is an element of the algebraic interioir of
(dom g − A dom f), where dom f = {x : f(x) <∞}, or

(b) A dom f ∩ cont g ̸= ∅, where cont g denotes the points where the function g is contin-
uous.

Then the strong duality holds, i.e., p∗ = d∗.

If additionally d∗ is finite, then the supremum is attained. In finite-dimensional spaces,
we can replace supremum and infimum with maximum and minimum.

The Fenchel’s duality theorem guarantees that the optimal value of the dual problem
provides a lower bound on the optimal value of the primal problem (the original mini-
mization problem). Similarly, the primal objective function evaluated at a feasible point
provides an upper bound on the optimal value. Iterative algorithms can be designed that
solve both the primal and dual problems simultaneously. As the solutions progress, the
lower bound and upper bound converge towards the true optimal value.

4.1 Primal-dual formulation

Computing the maximizer φ of the constrained optimization problem (2.41) with conven-
tional optimization techniques is a difficult task. For this reason we derive an equivalent
saddle-point formulation [113]. We will use Fenchel-Rockafellar duality to state the primal-
dual problem.

We will first introduce v = (v1,v2,v3) ∈ R3×2×N×N , with vk = (vxk , v
y
k) ∈ R2×N×N ,

k = 1, 2, 3, that approximates ∇u on grid of points (xi+1/2, yj), (xi, yj+1/2) and (xi, yj), i.e.
on the grid with twice as many points as the original discretization of Ω (Figure 4.1). Let
v ∈ V , where

V = {v : ∥v∥1,1,2 < +∞}, (4.3)

∥v∥1,1,2 =
∑
k

∥vk∥1,2, ∥vk∥1,2 =
∑
i,j

∥(vk)i,j∥2 =
∑
i,j

√
(vxk)

2
i,j + (vyk)

2
i,j. (4.4)

We set v = 0 at the boundary of the domain.

We use the notation of [40] and define the coarsening operator
F : V → R2×N×N : Fvi,j = ((F 1v)i,j, (F

2v)i,j)
T , with components

(F 1v)i,j

=

(
(vx1 )i+1/2,j +

(vx2 )i,j+1/2 + (vx2 )i,j−1/2 + (vx2 )i+1,j+1/2 + (vx2 )i+1,j−1/2

4
+

(vx3 )i,j + (vx3 )i+1,j

2

)
,

(4.5)

(F 2v)i,j

=

(
(vy2)i+1/2,j +

(vy1)i+1/2,j + (vy1)i+1/2,j+1 + (vy1)i−1/2,j + (vy1)i−1/2,j+1

4
+

(vy3)i,j + (vy3)i,j+1

2

)
.

(4.6)

The first component of Fvi,j, i.e. (F 1v)i,j is assigned to midpoints (xi+1/2, yj) of
vertical edges and the second component (F 2v)i,j to midpoints (xi, yj+1/2) of horizontal
edges.
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Figure 4.1: The grid of cells Ωi,j = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2] (black) and a twice finer
grid for components of v. v1 are shown in blue, v2 in blue and v3 in green.

The operator F is a projection of v onto a coarser grid of edge midpoints (Figure 2.6).
As with DU , we will construct a single vector Fv via concatenation

Fv =

(
(F 1v)1,1, (F

1v)2,1, . . . , (F
1v)N−1,1, (F

1v)1,2, (F
1v)2,2, . . . , (F

1v)N−1,2, . . . , (F
1v)1,N−1,

(F 1v)2,N−1, . . . , (F
1v)N−1,N−1, (F

2v)1,1, (F
2v)2,1, . . . , (F

2v)N−1,1, (F
2v)1,2,

(F 2v)2,2, . . . , (F
2v)N−1,2, . . . , (F

2v)1,N−1, (F
2v)2,N−1, . . . , (F

2v)N−1,N−1,

)T

.

We begin with the TV definition (2.36)-(2.41) and rewrite it using an objective L(v,φ)

TVd(U) =max
φ∈P

∆x
∑
i,j

⟨DUi,j,φi,j⟩

= max
φ∈P

min
v∈V

L(v,φ) = max
φ∈P

min
v∈V

{
∆x
∑
i,j

⟨DUi,j,φi,j⟩ − ⟨v,Pφ⟩V + ∥v∥1,1,2

}

≤ min
v∈V

max
φ∈P

{
∥v∥1,1,2 +

∑
i,j

⟨Fvi,j −DUi,j,φi,j⟩

}
, (4.7)

where ⟨·, ·⟩V denotes the inner product in the space V and Pφ is the concatenation of
vectors P 1φ,P 2φ,P 3φ.

Observe that ∥v∥1,1,2 in (4.7) is lower-semicontinuous and its convex conjugate is the
characteristic of P , provided the last minimum is infinity if the feasible set {v : Fv = DU}
is empty. Then we get

min
v∈V

max
φ∈P

{
∥v∥1,1,2 +

∑
i,j

⟨Fvi,j −DUi,j,φi,j⟩

}
= min

v : Fv=DU
∥v∥1,1,2. (4.8)
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Hence, the discrete dual TV can be written as a minimization problem

TVd(U) = min
v∈V

{
∆x∥v∥1,1,2 : Fv = DU

}
. (4.9)

Note that v is then an approximation of the gradient of u on the twice finer grid, see
Chapter 2 for the meaning of u. By convention, the statement of the optimization problem
(4.9) is called primal, and (2.41) is its dual problem.

There many ways to define projection operators P k and F . A particular choice of P k

and F made here, i.e. (2.36)-(2.38), and (4.5)-(4.6), allows us to establish consistency in
the sense of Γ-convergence with the exact TV (2.11), see Theorem 2.4 of [28].

The strong duality between (2.41) and (4.9) holds, see Proposition 1 of [40] for a proof
based on the Fenchel’s duality theorem. That is, if φ† is a maximizer of the primal problem
and v† is a minimizer of the dual problem, then we have

TVd(U) = ∆x
∑
i,j

⟨DUi,j,φ
†
i,j⟩ = ∆x∥v†∥1,1,2. (4.10)

A number of methods for solving (2.41),(4.9) have been proposed in the literature. In
most practical applications the first-order methods are viewed as most reliable and effi-
cient. These methods fall into four principal classes: forward-backward [53, 129], double-
backward [106], Peaceman-Rachford, and Douglas-Rachford [92]. We will focus on the
”Douglas-Rachford” class, which has been shown to have most general convergence prop-
erties.

In this case, a solution to the primal-dual problem (2.41), (4.9) can be computed by
pointwise shrinkage operations, such as the alternating direction method of multipliers
(ADMM) [43]. An augmented Lagrangian for this problem is given by

Lµ(v,φ) = ∆x∥v∥1,1,2 − ⟨φ,Fv −DU⟩ − 1

2µ
∥Fv −DU∥22,

where µ > 0 is a penalty parameter and the ADMM iterations can be written as

vn+1 = argmin
v

(
∆x∥vn∥1,1,2 +

1

2µ
∥Fvn −DU − µφn∥22

)
, (4.11)

φn+1 = φn − (Fvn+1 −DU)/µ. (4.12)

with suitably chosen initial values for v0, φ0. For convex objective functions, it has been
shown to converge globally [44, 52], estimates on the convergence rate have been derived
in [13]. The use of ADMM requires one to solve a number of subproblems in (4.11) to find
the next iterate vn+1, see [43]. This is computationally expensive. Instead, we use the
approach taken in [95] and use an approximation to the general ADMM algorithm, called
an alternating proximal gradient method (APGM). This method replaces the optimization
problem (4.11) with proximal mapping

prγµ (wi,j) = wi,j −
wi,j

max (∥wi,j∥2/γµ, 1)
. (4.13)

A particular form of the proximal mapping operator (4.13) for this problem was derived
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in [40]. Then, the APGM algorithm is given by

vn+1
k = prγµ

(
vn
k − γP k (DU − Fvn + µφn)

)
, (4.14)

φn+1 = φn
i,j −

(
Fvn+1 −DU

)
/µ, (4.15)

where k = 1, 2, 3 denotes the component of vn+1 and γ, µ are hyperparameters. This
algorithm is shown to be convergent in [95].

We use two stopping criteria for a given tolerance ε. The distance between consecutive
iterations of v

∥vn+1 − vn∥1,1,2 ≤ ε,

and the distance between the approximate optimal values of (2.41) and (4.9)∣∣∣∥vn+1∥1,1,2 −
∑
i,j

⟨DUi,j,φ
n
i,j⟩
∣∣∣ ≤ ε.

The algorithm is described below as Algorithm 1.

Algorithm 1 Modified APGM.

1: v0 := ((D1U,0), (0, D2U), (0,0)), φ0 := 0 µ0 := µ, n := 0

2: while ∥vn+1 − vn∥1,1,2 > ε and
∣∣∣∥vn+1∥1,1,2 −

∑
i,j⟨DUi,j,φ

n
i,j⟩
∣∣∣ > ε do

3: for k := 1 . . . 3 do
4: vn+1

k := (vn
k + γP k(DU − Fvn + µφn))(1− 1/[max(|vn

k |/γµ, 1)])
5: end for
6: φn+1 := φn + (DU − Fvn+1)/µn

7: µn+1 := θµn

8: if rem(n, 100) = 0 then
9: µn+1 := µ
10: end if
11: n := n+ 1
12: end while

Algorithm 1 is a modification of the original APGM algorithm that uses a progressive
step size µ. To speed up convergence and avoid tuning of µ, we use µn+1 = θµn with µ0 = 1,
and θ = 0.96. The function rem(x, y) on line 8 denotes the remainder of the division of
x by y. We use γ = 1/3, as suggested in [40]. The Algorithm 1 converges globally when
γ∥F ∥2 < 1 and µ > 0 [28], where ∥F ∥ is the operator norm of F and ∥F ∥2 ≤ 3, see
Lemma 3.1 of [95]. The only hyperparameter of Algorithm 1 left to choose is ε. The
accuracy of discrete TV as an estimate of the value of the exact TV depends not only
on the definition, but also on the mesh resolution. Choosing ε = (∆x)2 yields sufficient
accuracy for our purposes. As such a choice provides an error in computed value of the
dual TV at least by an order of magnitude smaller than the error due to mesh resolution.
The MATLAB implementation of the algorithm can be can be found at MATLAB Codes.

Remark 4.1.1. The idea of progressive stepping is not new, similar approach have been
used to improve convergence of the Lagrange multipliers method. This modification allows
us to reduce the number of iterations by at least a factor of 2-2.5, see Appendix B. However
this does not eliminate the dependence of the convergence rate on the mesh size, which
should be accounted for. We investigate the convergence of the modified algorithm in the
next section.
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4.2 Numerical experiments

The global linear convergence of ADMM was established in [95] for strongly convex ob-
jective with a Lipschitz gradient. The result can be extended to various generalizations
of ADMM, including the APGM. Iteration of APGM with a constant step size lead to
diminishing updates of the numerical solution. Because of that and despite the proven
convergence estimates, without tuning of parameters, the algorithm may stall and fail to
converge.

The proposed adaptive step size in the modified version reduces the risk of stalling or
at least postpones it. We show that this enhancement is essential to achieve an accurate
result and to reliably compute dual discrete TV.

We test convergence on the function we used in Section 2.4

u = e−10(x2+y2), ∀(x, y) ∈ Ω = [−2, 2]× [−2, 2]. (4.16)

We use cell-averaged values of u to compute its projection U ∈ RN×N onto a grid. Then we
run the APGM with µ = 0.01, 0.1, 0.5, 1, 10 and compare it to Algorithm 1 for K = 1000
iterations. We report TVd(U) at k = 100, 500, 600, 700, 800, 900, 1000 iterations in Figure
4.2 and Table 4.1.

We compute the error of the k-th iterate using

∆TVk = ∆x
∣∣∣∑

i,j

⟨DUi,j,φ
k
i,j⟩ − ∥vk∥1,1,2

∣∣∣. (4.17)

Then we plot the loss function ∆TVk in Figure 4.3. The final error ∆TVK is reported in
the last row of Table 4.1.

We observe that µ = 0.01 yields the best overall result for APGM on the grid with
N = 128. It has the smallest error and arrives at the computed value with fewer iterations.
The final error of Algorithm 1 is smaller than that of APGM with constant step for all but
one value of constant step size µ = 0.01. For other choices of µ, Algorithm 1 outperforms
the APGM. The run time is about 4s for K = 1000 iteration both APGM and Algorithm
1. It does not depend on the constant step size. If we would perform computation up
to the given tolerance, Algorithm 1 would outperform APGM because it would converge
faster to the desired accuracy.

We note that the choice of µ influences the performance of the APGM method. The
convergence for all algorithms slows down as iterations progress. Notice that the values
of TV monotonically increase with iterations as previously discussed. An arbitrary chosen
µ > 0 may result in TVd(U) far from the exact value even on fine grids. The optimal step
size depends on a number of variables, e.g. mesh size and properties of function u. Thus a
suitable µ can be only determined experimentally. While µ = 0.01 works the best in this
example, it will not necessarily be optimal for other problems. To show that the modified
version of the algorithm efficiently eliminates the need for careful tuning of the step size
we repeat the computation on the refined grid with N = 256 and report the results in
Table 4.2. We observe that, in this case, Algorithm 1 yields the best solution and we also
note that in this case the best choice for the step size is µ = 0.1, is different from the case
N = 128. Since the error for the best choice of µ is greater than that for the case with
N = 128, we conclude that we are far from the optimal value of µ.

The use of the modified APGM results in better accuracy than most constant rate
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(a) TVd(U) over 1000 iterations. (b) TVd(U) iterations 50 to 300.

Figure 4.2: TVk(U) and ∆TVk(U) for APGM with different µ and for modified APGM
(Alg1).

(a) ∆TVk, over 1000 iterations. (b) ∆TVk, iterations 50 to 300.

Figure 4.3: TVk(U) and ∆TVk(U) for APGM with different µ and for modified APGM
(Alg1).

results and saves time by eliminating the need for careful tuning of the step size of APGM.
The best possible reconstruction is achieved when using values of θ closer to one and larger
ranges of µn.

4.3 Summary

In this chapter we have discussed the primal-dual approach for computation of the dual
TV given by (2.41). We have consider the APGM [95] that is a fast and efficient version
of alternating directions method of multipliers. We have proposed a modification to the
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k Alg1 µ = 10 µ = 1 µ = 0.5 µ = 0.1 µ = 0.01

100 1.7533 0.4944 1.6482 1.7062 1.7504 1.7602
500 1.7599 1.5234 1.7392 1.7512 1.7592 1.7605
600 1.7600 1.5665 1.7432 1.7522 1.7592 1.7606
700 1.7600 1.5964 1.7451 1.7533 1.7595 1.7607
800 1.7601 1.6173 1.7471 1.7541 1.7597 1.7607
900 1.7601 1.6340 1.7490 1.7555 1.7599 1.7607
1000 1.7601 1.6471 1.7502 1.7561 1.7599 1.7607

∆TVK 0.0008 0.1173 0.0112 0.0053 0.0011 0.0002

Table 4.1: Computed TV k
d (U) after k iterations of Algorithm 1 (column 2) and the APGM

algorithm with various values of µ (columns 3–7) for N = 128. The bottom row shows the
error ∆TVK defined in (4.17) after K = 1000 iterations for both algorithms.

k Alg1 µ = 10 µ = 1 µ = 0.5 µ = 0.1 µ = 0.01

100 1.7446 1.2518 1.7167 1.7390 1.7567 1.7556
500 1.7578 1.3520 1.7244 1.7425 1.7573 1.7564
600 1.7583 1.4162 1.7296 1.7455 1.7579 1.7571
700 1.7589 1.4633 1.7333 1.7475 1.7582 1.7576
800 1.7595 1.4985 1.7367 1.7488 1.7586 1.7580
900 1.7598 1.5266 1.7389 1.7501 1.7588 1.7582
1000 1.7603 1.6717 1.7522 1.7565 1.7601 1.7598

∆TVK 0.0006 0.0892 0.0087 0.0043 0.0007 0.0010

Table 4.2: Computed TV k
d (U) after k iterations of Algorithm 1 (column 2) and the APGM

algorithm with various values of µ (columns 3–7) for N = 256. The bottom row shows the
error ∆TVK defined in (4.17) after K = 1000 iterations for both algorithms.

APGM that uses a progressively diminishing step size. We conduct numerical experiments
demonstrating the performance of the proposed algorithm and compare it to APGM. Fi-
nally, we show that the proposed algorithm outperforms the original version in terms of
accuracy with a fixed number of iterations if the step-size of APGM is not fine-tuned. We
observe similar accuracy of the proposed algorithm to that of the APGM with optimal
step. The modified version allows us to significantly reduce the number of steps required
to achieve a given accuracy of TV computation and hence the computational time. We
implement both algorithms in MATLAB, see Appendix B. The modified algorithm elim-
inates the need of tuning and allows to construct a fast and accurate imaging algorithm
for application in computed tomography image reconstruction that we consider in the next
section.
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Chapter 5

Applications to image reconstruction

In many imaging applications, the aim is to find a discrete image using given measurements.
The relation between the image U ∈ RN2

and a vector of measured projection data f ∈ RM ,
can be represented by a linear system

f = AU, (5.1)

where A is a linear projection operator matrix of size M ×N2. The entries of A depend on
the configuration of the imaging apparatus and the mathematical model that describes the
imaging method. The relationship between the measurement and the image for parallel
beam computed tomography (CT) can be described by the Radon transform with A being
the Radon transform matrix. In other settings A can have a different form, e.g. for
two-dimensional fan beam CT it models a ray transform [16].

In imaging applications, matrix A is large, usually ill-posed, and often underdetermined.
The ill-posedness of (5.1) can originate from multiple sources, most common of these
are insufficient coverage, projection data truncation, and under-sampling, i.e. M ≪ N2.
Additionally, measurements f might be polluted by noise. For example, for the parallel
beam CT that we will consider here, all of these issues are present. It makes it difficult to
solve (5.1) directly using linear algebra tools.

Instead of directly solving (5.1), we can look for an approximation of U by minimizing

min
U

∥AU − f∥22. (5.2)

The norm above is called the least-squares objective function. The problem has a closed-
form solution U = (ATA)−1ATf for M ≥ N2, but due to poor conditioning of A it is
severely polluted by noise in the directions corresponding to small singular values of A. In
the case of an underdetermined system, i.e. M < N2, solutions of (5.2) are not unique.
For this reason, a regularization approach is more commonly used. It consists of solving a
modified minimization problem

min
U

∥AU − f∥22 + λTV (U), s.t. U ≥ 0, (5.3)

where ∥AU − f∥22 is the least-squares error or data fidelity, λ > 0 is a regularization
parameter, and TV (U) is the penalty term aiming to reduce the impact of noise on the
approximate solution and as a result to obtain a satisfactory CT reconstructed image. We
require U in (5.3) to be non-negative because U in this model represents the attenuation
coefficient, which is always positive. The model is based on the Lambert-Beer law of
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radiation attenuation. The reconstructed image can be viewed as a representation of the
spatial distribution of the attenuation coefficient in an object. Since different materials in
the object have different values of the coefficient, we can distinguish between them. When
the matrix A has full column rank, the norm in (5.3) is a strictly convex function and
TV (U) is a convex function. Therefore, their sum is strictly convex for λ > 0. Hence, (5.3)
always has a unique minimizer.

Total variation as a penalty term in image reconstruction was first considered by L.
Rudin, S. Osher, and E. Fatemi in [114]. Even though isotropic TV used in [114] is not
accurate in approximating the exact TV of non-smooth functions, as shown in Chapter
2, it can still offer improved accuracy in the solution of (5.1). This approach has been
shown to accurately restore edges in images while preserving boundaries and eliminating
noise and other artifacts. In later years, TV has been extensively used as a regularizer for
inverse and ill-posed problems.

In the next sections, we show how the TV regularization approach can be used for
parallel beam computed tomography applications and how more accurate approximations
of TV result in better image reconstruction quality.

5.1 Computed tomography by total variation mini-

mization

We are interested in reconstructing images for two-dimensional parallel beam CT with
sparse and noisy measurements that can be described by (5.1). The right-hand side of
(5.1), f , is given by experimental measurements. U is a square image that we want to
reconstruct. U can be naturally described as a square N × N matrix with elements Ui,j,
where each value Ui,j corresponds to the center of (i, j)-th pixel. We also use a concatenated
version of U , a vector of length N2 with elements Us, 1 ≤ s ≤ N2, which is constructed by
traversing the matrix row by row. We will be using U in both senses. It will be clear from
the subscript when we view U as a vector and when as a matrix.

A two-dimensional parallel beam CT can be described as follows. The scanning ap-
paratus shoots X-ray beams from M directions. Each of the directions corresponds to a
location of a source emitting X-rays and a detector capturing the attenuated radiation
levels (Figure 5.1). Then the measurements are stored as components of fm, 1 ≤ m ≤M .

Assuming that within each beam all rays follow the same line (Figure 5.1), Amn is an
attenuation length of the n-th pixel, 1 ≤ n ≤ N2, for the m-th line, 1 ≤ m ≤ M . In
other words, an element Amn corresponds to the contribution of the n-th pixel to the m-th
measurement. That is, Amn is the depth of penetration into the material at which the
intensity of X-rays falls by a factor 1/e from its value at the surface.

As we have mentioned in the introduction, the result of the product AU is the Radon
transform of U . For a function g(x, y) defined on Ω = [−1, 1] × [−1, 1] and a given line,
the Radon transform of g is the value of its integral along the line. This models the total
attenuation of X-rays along this line.

Next, we describe the discrete Radon transform of U . In our model, lines correspond
to the directions of X-ray beams. For each beam, we replace the integration along the
line with a summation of the entries of U along it. An arbitrary line in the plane can be
described by an equation in the form y = sx + t or x = s̄y + t̄. Between the two, we
pick the expression with the slope less than one (Figure 5.2 (left)). We start with the case
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Figure 5.1: X-ray computed tomography configuration. The dashed rectangles show the
positions where measurements are taken.

y = sx+ t, |s| ≤ 1 (Figure 5.2 (right)). For each cell Ωi,j, we take x = xi, i.e. the centroid
of the cell, and find the corresponding point on the line, (xi, y(xi)). We approximate U

at this point by Ũ1(xi, sxi + t) which is a trigonometric polynomial interpolation based on
the entries of U in the corresponding column

Ũ1(xi, y) =
N∑
j=1

Ui,jDN (y − yj) , (5.4)

where DN is the Dirichlet kernel given by

DN(y) =
sin(πy)

(2N + 1) sin (πy/(2N + 1))
. (5.5)

For the points (xi, sxi+ t) that lie outside of Ω we set Ũ1(xi, y) = 0. Additionally, trigono-
metric interpolation requires the periodicity of data. Normally U in CT applications is
zero on the boundary of the domain. If this is not the case we can use periodic padding.

We haveM directions that can be parametrized with slopes sm and intercepts tm. Then
we compute the discrete Radon transform of U along the line y = smx+ tm as

(AU)m =
N∑
i=1

Ũ1(xi, smxi + tm). (5.6)

Similarly, for lines of the form x = s̄y + t̄, |s̄| ≤ 1 we interpolate U at points (x(yj), yj)
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using the data from row j

Ũ2(x, yj) =
N∑
i=1

Ui,jDN (x− xi) , (5.7)

where the kernel DN is given by (5.5). Then

(AU)m =
N∑
j=1

Ũ2(s̄myj + t̄m, yj). (5.8)

Figure 5.2: Line equations over the image domain (left) and interpolation at a point on
the line y = sx+ t (right), the column values used for interpolation are shown in gray, no
padding applied.

It can be shown that using M = 2N equiangular projections, which correspond to the
Nyquist frequency, ensures that the discrete Radon transform is invertible. However, in
practice, the number of projections is severely limited and much smaller than the number
of pixels in the image, i.e. M ≪ 2N .

In the following sections, we propose to employ the dual discrete TV (2.41) in sparse-
view CT, low-dose CT, and limited-angle CT applications. We implement a new version of
the adaptive steepest descent projection onto convex sets (ASD-POCS) algorithm with the
dual discrete TV. We demonstrate that the improvement in approximating the gradient of
TV increases the accuracy of projection onto convex sets (POCS) algorithms. This allows
us to enhance image quality in medical diagnostics and reduce artifacts that arise due to
the flaws of conventional TV discretizations.

5.2 Projection onto convex sets algorithms

The projection onto convex sets method for constrained TV minimization uses a different
approach to solve (5.1). It is based on the idea that for noisy data f the data fidelity ∥AU−
f∥22 will never be zero. Instead, we consider the TV as the functional to be minimized,
while the data fidelity ∥AU − f∥22 ≤ ε is used as a constraint. That is a solution to
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the constrained optimization problem that has the smallest TV and will agree with the
available data up to an admissible error ε. Thus, we look for U , an approximate solution
of (5.1) in the form

min
U≥0

TV (U) s.t. ∥AU − f∥22 ≤ ε. (5.9)

A number of algorithms for numerical solution of (5.9) have been proposed. Among the
most common are the steepest gradient descent (SGD), alternating direction method of
multipliers (ADMM), and Chambolle-Pock algorithms.

We use a version of the steepest gradient descent algorithm that was proposed in [120],
which consists of two independent steps. In the first step, the simultaneous algebraic
reconstruction technique (SART), which is an iterative algorithm for solving AU = f , is
applied. SART is an improved version of the algebraic reconstruction technique (ART).
Which in turn is a version of Kaczmarz’s algorithm,

At the (k + 1)-st iteration of ART we look for Uk+1, a minimizer of

min
U

1

2
∥U − Uk∥22, s.t. AT

mU = fm, (5.10)

where Uk is the previous iterate and Am is the m-th row of A. The Lagrangian for (5.10)
is given by

Lβ(U, β) =
1

2
∥U − Uk∥22 + β(AT

mU − fm), β > 0. (5.11)

The next iterate Uk+1 is the stationary point of the Lagrangian. To find it, we compute
the partials of L(U, β) and set them to zero

∇UL(U, β) = Uk+1 − Uk + βAm = 0,

∂βL(U, β) = AT
mU

k+1 − fm = 0.

It follows from the first equation that

Uk+1 = Uk − βAm. (5.12)

Substituting (5.12) into the second equation, we get

AT
m(U

k − βAm)− fm = 0. (5.13)

Then

β =
AT

mU
k − fm

AT
mAm

=
1∑N2

s=1A
2
ms

(
N2∑
s=1

AmsU
k
s − fm

)
. (5.14)

Therefore, the formula to update Uk can be written as

Uk+1 = Uk +

∑N2

s=1Ams∑N2

s=1A
2
ms

(
N2∑
s=1

AmsU
k
s − fm

)
. (5.15)

The difference between the measured and projected data fm −
∑N2

s=1AmsU
k
s is used here

as the correction term. SART differs from ART in that we compute the average of the
individual corrections first and then update the reconstructed image [3]. Then SART is
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written as

Ûk+1
s = Uk

s − λk∑M
m=1Ams

M∑
m=1

Ams∑N2

l=1Aml

(
fm −

N2∑
s=1

AmsU
k
s

)
, s = 1, . . . , N2. (5.16)

where elements Ams are defined in (5.4),(5.7). The term
∑N2

s=1A
2
ms in the denominator

of (5.15) was replaced in (5.16) with
∑N2

l=1Aml for uniformity of reconstruction. We also
introduced λk ∈ (0, 1), an optional relaxation parameter. Relaxation parameters of POCS
depend on the M/N ratio. It increases computation time but can improve the signal-to-
noise ratio in the reconstructed image. The original SART was stated with λk = 1.

SART iterations aim to find Uk+1 such that ∥AU − f∥22 ≤ ε [63]. The convergence of
the algorithm was shown in [72] for λk ∈ (0, 1) under the following conditions

Ams ≥ 0, ∀m, s,
M∑

m=1

Ams > 0, ∀s,
N2∑
s=1

Ams > 0, ∀m.

The first condition is satisfied because in our model Ams is an attenuation length in this
configuration and therefore it is nonnegative. The next,

∑M
m=1Ams > 0 means that there is

at least one nonzero element in each column of A. In other words, there is a contribution to
the measurement from each pixel of U is measured at each pixel. Finally, the last condition
requires at least one nonzero element in each row of A, i.e. every measurement fm carries
a certain amount of information about U . We use a shorthand notation SART (Uk) for
(5.16) in the algorithm description below.

SART, when applied alone is known to converge to the solution of AU = f [72].
However, this solution will not have the smallest TV. Additionally, it is not guaranteed
that all entries of Ûk+1 are positive. We correct this by setting negative entries of Ûk+1

equal to zero after each SART update.

The second step of a POCS algorithm is the gradient descent. For (5.9) it is given by

Uk+1 = Ûk+1 − µTV
∂UTV (Ûk+1)

|∂UTV (Ûk+1)|
, (5.17)

where µTV > 0 is the step size or learning rate, and we use the notation ∂UTV (Ûk+1) for the
subgradient of the discrete TV with respect to image pixel values. This process minimizes
the TV of the image. Since TV minimization does not create new extrema, the image
remains non-negative. Thus the POCS algorithm consists of alternating (5.16)-(5.17). In
practical applications, the second step is often repeated several times before performing
step (5.16). We note here that the parameters of the algorithms need to be determined
empirically and may generally depend on several features, such as image size, noise level,
and others.

In [120], anisotropic discrete TV was used to compute the gradient in (5.17). A number
of modifications to the original POCS algorithm have been proposed in the literature
[30, 126, 93, 100]. In [30] a prior image-constrained compressed sensing model was used.
In [126] an edge-preserving TV was proposed for low-dose CT applications. Then a more
accurate adaptively-weighted isotropic TV image reconstruction was proposed in [93]. More
recently, a non-local total generalized variation method for sparse-view X-ray CT was
proposed in [100] and achieved better reconstruction quality relative to the previous TV
definitions.
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These improved TV definitions have gained a lot of attention and led to improved
reconstruction quality for sparse-view, low-dose, and limited-angle CT applications. How-
ever, most of these methods are still prone to producing blocky artifacts, line artifacts, and
other spurious effects. An artifact is any systematic discrepancy between the reconstructed
image and the true attenuation of the object. Artifacts could be any features appearing
in the reconstructed image that are not present in the real object. Since the image is re-
constructed using an optimization model, these artifacts are specific to each penalty term
(TV definition) used.

The versions of the POCS algorithm differ by the definition of discrete TV they use in
the second step. Below we derive the the expressions for ∂UTV (U) for a few of them, com-
pare the algorithms on several cases, and report the results in the numerical experiments
section (Section 5.4).

First, we consider the original TV penalty term that is used in [120], i.e. TVa(U). The
components of ∂UTVa are given by

∂TVa(U)

∂Ui,j

= ∆x (−sgn (Ui+1,j − Ui,j) + sgn (Ui,j − Ui−1,j))

+ ∆x (−sgn (Ui,j+1 − Ui,j) + sgn (Ui,j − Ui,j−1)) . (5.18)

Next, consider the adaptively weighted TV, a modified version of TVis(U).

TVaw(U) = ∆x
∑
ij

√
w1

i,j(D
1Ui,j)2 + w2

i,j(D
2Ui,j)2, (5.19)

where w1, w2 ∈ RN×N are weight matrices with components given by

w1
i,j = exp

(
−
(
D1Ui,j

σ

)2
)
, w2

i,j = exp

(
−
(
D2Ui,j

σ

)2
)
.

The parameter σ > 0 controls the amount of smoothing of sharp edges in the image.
This TV is used in adaptively weighted ASD-POCS algorithm (Aw-ASD-POCS) [93]. Its
gradient is given by

∂TVaw(U)

∂Ui,j

= ∆x

 2w1
i−1,jD

1Ui−1,j + 2w2
i,j−1D

2Ui,j−1√
w1

i−1,j(D
1Ui−1,j)2 + w2

i,j−1(D
2Ui,j−1)2


−∆x

 2w1
i,jD

1Ui,j√
w1

i,j(D
1Ui,j)2 + w2

i+1,j−1(D
2Ui+1,j−1)2


−∆x

 2w2
i,jD

2Ui,j√
w1

i−1,j+1(D
1Ui−1,j+1)2 + w2

i,j(D
2Ui,j)2

 . (5.20)

The parameter σ should be chosen carefully, as large values of σ will result in gradient
values very close to that of TVis(U), while small values tend to give low weights to almost
every pixel, which makes Aw-ASD-POCS inefficient in removing noise and artifacts. The
partial derivatives of (5.20) may not be properly defined in the regions where U is close to
zero. To avoid division by zero, a small positive constant δ is introduced in the denominator
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of (5.20)

∂TVaw(U)

∂Ui,j

≈∆x

 2w1
i−1,jD

1Ui−1,j + 2w2
i,j−1D

2Ui,j−1√
δ + w1

i−1,j(D
1Ui−1,j)2 + w2

i,j−1(D
2Ui,j−1)2


−∆x

 2w1
i,jD

1Ui,j√
δ + w1

i,j(D
1Ui,j)2 + w2

i+1,j−1(D
2Ui+1,j−1)2


−∆x

 2w2
i,jD

2Ui,j√
δ + w1

i−1,j+1(D
1Ui−1,j+1)2 + w2

i,j(D
2Ui,j)2

 .

Above, we use an approximate sign due to the added δ. Unfortunately, this approximation
of the gradient also introduces over-smoothing in the regions near sharp edges.

We propose a version of the ASD-POCS algorithm that uses discrete dual TV as the
objective function. Let φ = (φ, ψ) be the computed maximizer for TVd(U) in (2.41). Then
the partial subderivatives of TV with respect to Ui,j can be computed as

∂TVd(U)

∂Ui,j

=
∂

∂Ui,j

(
∆x
∑
i,j

⟨DUi,j,φi,j⟩

)
= −∆x(φi+1/2,j − φi−1/2,j + ψi,j+1/2 − ψi,j−1/2). (5.21)

The expression (5.21) is the result of formal differentiation of the product ⟨DUi,j,φi,j⟩,
which does not account for the fact that φ depends on U .

Computing the dual TV is expensive especially when it needs to be repeated for many
iterations and may result in an unreasonably long computational time. We fix this by
using the maximize from the previous iteration φ as an initial guess for the next iteration.
This results in an algorithm that is a magnitude faster.

Assume that we have computed a saddle-point φ,v for the primal-dual problem (2.41)-
(4.9) for a given image U . Then on the first step of the new iteration, we set φk+1 = φk.
This way we take into account that the image U is static, and the new maximizer φk+1 ≈
φk. Therefore, the number of steps required for the algorithm to converge is significantly
reduced as opposed to recomputing the maximizer from zero initial guesses.

5.3 Parallel implementation of the DTV-ASD-POCS

While CT can achieve great results in terms of image quality and resolution, reconstruction
of CT images remains a computationally intensive task, demanding a lot of time. In recent
years, computing on Graphics Processing Units (GPUs) has become a popular source for
accelerating imaging methods, including CT image reconstruction via TV minimization.

In [9, 10] parallel versions of ASD-POCS and AwASD-POCS algorithms were imple-
mented using a multi-GPU approach for parallel beam and fan-beam three-dimensional
CT. This acceleration allowed for real-time CT reconstruction. Here we propose a parallel
version for the proposed DTV-ASD-POCS algorithm and compare its performance with
ASD-POCS and AwASD-POCS on real experimental data. Our goal is to show the impact
the change of discrete TV definition makes on the image reconstruction quality. We also
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show that this result is achieved in approximately the same computational time as other
POCS-type algorithms.

Pseudo-code for the parallel version of DTV-ASD-POCS algorithm.

We employ the modified APGM, i.e. Algorithm 1 described in Section 4.1, and parallelized
it (Algorithm 3). Algorithm 3 is used in the second step of DTV-ASD-POCS. The pseudo-
code for the parallel version of the DTV-ASD-POCS algorithm is given below as Algorithm
2.

Algorithm 2 DTV-ASD-POCS

1: α := 0.2, αred := 0.95, θ := 0.96, γ := 1/3, λ := 1.0, λred := 0.995
2: rmax := 0.95, Niter , NTV , ε
3: U := 0, U0 := 0, A, f , v0 := ((D1U,0), (0, D2U), (0,0)), φ0 := 0, µ0 = µ
4: for k = 1, . . . , Niter do
5: U := SART(U) (perform SART)
6: for i = 1, . . . , N2 do
7: if Ui < 0 then
8: Ui := 0 (enforce positivity)
9: end if
10: end for
11: r := |AU − f |
12: if iter == 1 then
13: µTV := α · |U − U1|
14: end if
15: ru = |U − Uk|
16: Uk := U
17: for i = 1, . . . , NTV do
18: φk+1,vk+1 := APGM(U,φk, θ, γ, µ0)
19: ∂Û := ∂TVd(U)
20: ∂Û := ∂Û / |∂Û |
21: U := U − µTV · ∂Û
22: φk := φk+1

23: vk := vk+1

24: end for
25: δU := |U − Uk|
26: if δU > rmax · rU and r > ε then
27: µTV := µTV · αred

28: end if
29: λ := λ · λred
30: end for
31: return U

In Algorithm 2 APGM(U,φk) stands for Algorithm 1, initialized with U and φk. At
each iteration, we use the maximizer that was computed for Uk as an initial guess for
φk+1, line 18. Algorithm 1 (lines 4 – 15) is run on GPU with one thread per pixel. We
improve the computational efficiency by performing Nth steps of the algorithm on each
thread before updating the vectors vk+1,φk+1. The parallelized version of Algorithm 1 is
shown below.

We do not specify values of parametersNiter, NTV , ε as they are problem-dependent. We
will provide them in the numerical experiments section. Other parameters α, αred, λ, λred, rmax, ε
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Algorithm 3 Modified APGM (parallelized version).

1: v0 := ((D1U,0), (0, D2U), (0,0)), φ0 := 0 µ0 := µ, n := 0

2: while ∥vn+1 − vn∥1,1,2 > ε and
∣∣∣∥vn+1∥1,1,2 −

∑
i,j⟨DUi,j,φ

n
i,j⟩
∣∣∣ > ε do

3: load a copy of vn,φn to each thread of GPU
4: for it = 1 . . . Nth do
5: for k := 1 . . . 3 do
6: (vn+1

k )i,j := prγµ (v
n − γP (DU − Fv + µφn+1))

7: (vnk )i,j := (vn+1
k )i,j

8: end for
9: (φn+1)i,j := (φn)i,j + (DU − Fvn+1)/µn



in parallel
10: (φn)i,j = (φn+1)i,j
11: µn+1 := θµn

12: if rem(n, 100) = 0 then
13: µn+1 := µ
14: end if
15: end for
16: collect all entries of vn+1,φn+1

17: n := n+ 1
18: end while

control the accuracy of the algorithm and have to be tuned for particular applications [120].
The parameters µ, θ, γ are as in Algorithm 1.

The reconstructed image is initialized with zeros in line 3. Algorithm 2 is run for each
pixel of the image U on a separate processor multiple times. In each run of the algorithm,
the pixel values are updated, processors are synchronized and the updated image is stored
in memory before it is used in the next run of the algorithm. The main loop performs
Niter > 1 iterations. We choose the number of iterations for the main loop based on the
required accuracy of the reconstruction or available computational time. Inside the main
loop, we perform the two main steps of the algorithm. First, we make SART, which adjusts
the image to satisfy the data fidelity. The relaxation parameter λ is initialized with 1 and
slowly decreases to 0 over iterations. Then in lines 6–10, the positivity of the pixel values
of the reconstructed image is enforced.

The data residuals are recomputed in line 11. In lines 12–14 the step-size for TV
gradient descent is initialized. The change in the image due to POCS is computed in line
15. Lines 17–24 implement the TV-steepest descent towards the direction with minimal
dual discrete TV value. The reconstructed image after each step of the main loop is stored
in U . Additionally, φk,vk are stored for the next gradient descent steps. In practice, we
find that it is sufficient to make a few steps of the TV update for each POCS step, and then
the image and the dual function φ need to be updated. Then, we compute the residual
after a step of the steepest descent with the change in the image after SART and compare
the two by computing their ratio. If the ratio is greater than rmax, we reduce the step size
of the gradient descent by αred. Every time the ratio is large enough, the step size will be
decreased. Finally, in line 29, the SART relaxation parameter is reduced. Finally, if λ is
too small, the iteration is stopped.

CUDA code implementation for the DTV-ASD-POCS can be found at CUDA Codes
(requires TIGRE framework).
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5.4 Numerical experiments

In this section, we provide three numerical examples of CT image reconstruction from
sparse-view, noisy, and limited-angle projections. We reconstruct images using the fol-
lowing TV minimization-based imaging methods: ASD-POCS, OS-ASD-POCS, Aw-ASD-
POCS, SART-TV, and DTV-ASD-POCS. We have discussed ASD-POCS, Aw-ASD-POCS,
and DTV-ASD-POCS in Section 5.2. Ordered subset ASD-POCS (OS-ASD-POCS) and
simultaneous algebraic reconstruction with TV minimization (SART-TV) can be found in
[134] and [32] respectively. We refer to [9, 10] for details on the implementation. OS-ASD-
POCS a faster version of ART, named OS-SART, and SART-TV is not a POCS algorithm
and is considered here only for a broader comparison [138].

We use parallel implementations of ASD-POCS, OS-ASD-POCS, Aw-ASD-POCS, and
SART-TV algorithms from the TIGRE package, a GPU-based CT reconstruction software
repository that contains a wide variety of iterative algorithms and image analysis methods
released under the BSD License [9, 10]. We implemented the parallel version of the DTV-
ASD-POCS algorithm in Compute Unified Device Architecture (CUDA). Then we merged
the algorithm into the TIGRE framework package to perform computations and assess the
image quality of the images reconstructed by different algorithms. The codes were run on
a Windows GPU server provided by the University of Waterloo with Intel Xeon Gold 6254,
a 3.10GHz processor, and 3 NVIDIA Tesla T4 16GB GPUs.

In all examples in this section, we set the stopping criterion of Algorithm 1 to 10−5 and
use NTV = 5. We set σ = 10−7 for Aw-ASD-POCS, i.e in (5.20). We choose Niter = 50 for
ASD-POCS, while for the rest of the algorithms, we choose Niter to match the computation
time to that of ASD-POCS. To assess the quality of reconstructed images we will measure
signal-to-noise ratio (SNR) and root-mean-square error (RMSE)

SNR = 10 log10

( ∑
i,j U

2
i,j∑

i,j(Ui,j −Gi,j)2

)
, RMSE =

√√√√∑
i,j

(Ui,j −Gi,j)2

N
, (5.22)

where Ui,j are pixel values of the image found by an optimization algorithm and Gi,j

are pixel values of the ground truth image. When comparing two methods, a better
reconstruction is usually determined by the higher SNR value and lower RMSE. We test
the quality and accuracy of obtained reconstructions of POCS-type algorithms against the
proposed DTV-ASD-POCS algorithm.

Shepp-Logan phantom.

Shepp-Logan phantom is a conventional benchmark problem with known parameters.
It represents a human head and is commonly used for CT tuning and calibration pur-
poses. The model with all specifications can be found in the MATLAB package. We
use phantom(’Shepp-Logan’,128) command to generate a 128-by-128 pixel image of the
phantom, which we use as a ground truth G image for error evaluation and image quality
assessment.

We use G to generate the projection data f via discrete Radon transform (5.6)-(5.8).
Then the data is used to reconstruct the image of the phantom. We then add white
Gaussian noise to f using awgn(x,10,’measured’) command, which corresponds to the
signal-to-noise ratio of 10dB or 10% of noise in the data.

We compare the performance of ASD-POCS, OS-ASD-POCS, Aw-ASD-POCS, SART-
TV, and DTV-ASD-POCS on sparse (120 projections, full 360 degree view angle) simulated
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data without noise and with added noise. We first run the algorithms until they converge
to ε = 0.005, which is the maximum normalized L2-error 1

N2∥AU − f∥2 to accept an image
as valid. We demonstrate the reconstructed images in Figures 5.3-5.4 and report the total
computational time T , SNR and RMSE in Table 5.1.

Then, we restrict the number of iteration of ASD-POCS to 50, check the total running
time and compute SNR and RMSE of the reconstructed image. Then we choose the
number of iterations and other parameters for the rest of the algorithms to match the
total time of computation to that of ASD-POCS. This approach allows us to compare
the quality of reconstructions obtained with different algorithms in approximately equal
reasonable time. We demonstrate the reconstructed images in Figures 5.5-5.9 and report
the total computational time T , SNR and RMSE in Table 5.2.

Figure 5.3: Reconstructed CT scan images for Shepp-Logan phantom, no noise, full-view
angle, M = 120 projections, scaled to [0, 0.1].

SNR, dB RMSE T , min Niter ∥AUK − f∥2/N2

ASD-POCS 15.0746 0.0255 41.8 97 0.0048
OS-ASD-POCS 14.3309 0.0278 32.6 48 0.0048
Aw-ASD-POCS 16.8855 0.0169 44.1 79 0.0047
DTV-ASD-POCS 16.9420 0.0166 46.4 62 0.0047
SART-TV 14.2851 0.0264 41.1 119 0.0049

Table 5.1: Shepp-Logan phantom CT reconstruction by TV minimization based methods,
convergence test with ε = 5 · 10−3, M = 120, no noise. The UK denotes the reconstucted
image obtained after Niter iteration and ∥AUK − f∥2 is its data fidelity.

The computational time of the ASD-POCS in the first test is 41.8 min. The rest of the
algorithms ran for 32-47 min. Among the considered algorithms the OS-ASD-POCS and
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Figure 5.4: Absolute error of reconstructed CT scan images for Shepp-Logan phantom, no
noise, full-view angle, M = 120 projections, scaled to [0, 0.1].

Figure 5.5: Reconstructed CT scan images for Shepp-Logan phantom, no noise, full-view
angle, M = 120 projections, no scaling applied.

SART-TV are the fastest and least accurate, while DTV-ASD-POCS is the most accurate
and the slowest one to converge. Note that it took DTV-ASD-POCS the least number of
iterations to converge (Table 5.1), almost twice as little the number of iterations of ASD-
POCS. However each iteration of DTV-ASD-POCS requires more time to compute than
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Figure 5.6: Reconstructed CT scan images for Shepp-Logan phantom, no noise, full-view
angle, M = 120 projections, scaled to [0, 0.1].

Figure 5.7: Absolute error of reconstructed CT scan images for Shepp-Logan phantom, no
noise, full-view angle, M = 120 projections, scaled to [0, 0.1].

for other algorithms.

The computational time of the ASD-POCS algorithm in the following tests is approxi-
mately 14 min for both experiments, i.e. with and without noise. The rest of the algorithms
ran for 10-16 min. Among the considered algorithms the OS-ASD-POCS is the fastest and
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Figure 5.8: Reconstructed CT scan images for Shepp-Logan phantom, 10% noise, full-view
angle, M = 120 projections, scaled to [0, 0.1].

Figure 5.9: Absolute error of reconstructed CT scan images for Shepp-Logan phantom,
10% noise, full-view angle, M = 120 projections, scaled to [0, 0.1].

least accurate, while DTV-ASD-POCS is the most accurate. Since the Shepp-Logan phan-
tom image has low contrast it is hard to visually inspect the difference in the reconstructed
images. We scale the image to the interval [0, 0.1], i.e. we find Umax the maximal value
of U , and map all other pixels to [0, 0.1Umax] interval. We plot the normalized version in
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M = 120, no noise M = 120, 10% noise

SNR, dB RMSE T , min SNR, dB RMSE T , min

ASD-POCS 12.6025 0.0483 14.3 12.5675 0.0508 14.2
OS-ASD-POCS 11.2790 0.0504 10.8 11.1991 0.0510 11.1
Aw-ASD-POCS 14.2532 0.0373 13.1 14.2268 0.0374 13.5
DTV-ASD-POCS 14.3832 0.0370 14.0 14.3631 0.0371 14.4
SART-TV 12.0001 0.0461 13.8 11.9830 0.0462 14.0

Table 5.2: Shepp-Logan phantom CT reconstruction by TV minimization based methods.

Figure 5.6. We use the shorthand notation ”scaled to [0, 0.1]” to state that the scaling was
applied as described above. Then we plot the absolute error, i.e. |U − Û | scaled to [0, 0.1]
in Figure 5.7. The absolute error for noisy data is shown in Figure 5.9.

We observe there is not only a difference in accuracy but a qualitative difference be-
tween the images obtained with considered algorithms and the proposed DTV-ASD-POCS
algorithm. More specifically, the proposed method delivers a reconstructed image that does
not have the line artifacts, that are clearly visible in Figures 5.6 and 5.8 for ASD-POCS,
OS-ASD-POCS, and less severe line artifacts with Aw-ASD-POCS. We note here that these
artifacts are not due to the noise, as they are present on both noisy and noiseless data. We
also note that line artifacts appear only for POCS algorithms and are not present on the
image reconstructed with SART-TV. While SART-TV images are artifact-free, they have
significantly lower contrasts and no sharp edges when compared to POCS algorithms. The
line artifacts are due to the sparsity of measured data, they only appear for conventional
POCS algorithms and not for the proposed method.

Finally, we see that DTV-ASD-POCS and SART-TV images are much less noisy for the
chosen noisy data, though SART-TV results in a loss of contrast. The difference in image
quality and the presence of artifacts can be observed through SNR and RMSE values,
see Table 5.1. While the SNR and RMSE for Aw-ASD-POCS and DTV-ASD-POCS are
quite close, we will see in the following experiments that this is not always the case, as
the performance of the Aw-ASD-POCS depends on the tuning of the parameter σ and can
quickly degrade for other images.

Head phantom.

In this example we use a RANDO head phantom dataset, which is a high-quality copy
of a real human head. The dataset was obtained in Christie Hospital in Manchester and
is available with the TIGRE software package. It consists of 360 projections over a full
rotation. The dataset contains a set of noisy measurements together with scan parameters
set up for head low-dose CT, i.e. low-intensity X-rays (exact parameters of which are
unknown). In the absence of the exact solution, we use the full dataset to generate a
256-by-256 pixel image via 50 iterations of ASD-POCS, which we use as a ground truth.
Then we use a limited number of projections that fall into a 120 degree angle. We limit
the angle of measurements to compare the performance of algorithms on incomplete data.
There is no need to add noise to the data, as it was measured in the experiment and already
contains noise.

We compare the performance of five imaging methods using limited view angle (120
projections over 120 degree view angle) data and sparse (90 projections over 120 degree
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view angle) data. We show the reconstructed images in Figures 5.10-5.13 and report the
total computational time T , SNR, and RMSE in Table 5.3.

M = 90 M = 120

SNR, dB RMSE T , min SNR, dB RMSE T , min

ASD-POCS 12.0018 0.0935 9.9 12.2102 0.0806 13.7
OS-ASD-POCS 11.4943 0.0965 8.3 12.0323 0.0869 12.5
Aw-ASD-POCS 12.8912 0.0737 10.1 13.7062 0.0682 13.8
DTV-ASD-POCS 13.1603 0.0699 10.2 14.0942 0.0679 14.9
SART-TV 12.6924 0.0712 10.3 13.2655 0.0684 14.2

Table 5.3: RANDO head CT reconstruction by TV minimization based methods.

Figure 5.10: RANDO head CT scan images using M = 120 projections, over a 120 degree
view-angle.

The computational time for the SART-TV is the greatest, while DTV-ASD-POCS
provides the best reconstruction in terms of SNR and RMSE, with approximately 30%−
40% smaller errors. However, the quality of reconstruction is just slightly better than that
of other POCS algorithms. The reconstructed images for RANDO head CT scan images
using M = 120 projections, over 120 degree view-angle are depicted in Figure 5.10, and
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Figure 5.11: Absolute error of reconstructed RANDO head CT scan, using M = 120
projections, over a 120 degree view-angle, scaled to [0, 0.1].

we plot the absolute error in Figure 5.11. The reconstructed images for RANDO head CT
scan images using M = 90 projections, over 120 degree view-angle are depicted in Figure
5.12 and the absolute error in Figure 5.13.

We observe that it is impossible to eliminate the artifacts in this case due to the limited
view angle. However, there are fewer blurry artifacts in the lower part of the image with the
proposed DTV-ASD-POCS algorithm, than for other algorithms. We have less smearing
of hollow regions with Aw-ASD-POCS and DTV-ASD-POCS than with other algorithms
inside the head. It can also be seen in Figure 5.11 that DTV-ASD-POCS reduces error
in the edges of the skull when compared to other algorithms. Aw-ASD-POCS delivers a
similar solution in this case. It is important to note that artifacts protruding beyong the
skull, which are due to the limited angle data are also significantly reduced when using
Aw-ASD-POCS and DTV-ASD-POCS algorithms.

We compute T , SNR, and RMSE for sparse data, i.e. RANDO head CT scan images
obtained usingM = 90 projections, over 120 degree view-angle and show the reconstructed
images in Figure 5.12, we plot the absolute error, i.e. |U − Û | in Figure 5.13. We note that
in the case of limited-angle tomography, none of the algorithms used here can eliminate
the artifacts in the images.

SophiaBeads dataset.

SophiaBeads dataset was collected specifically for testing and comparing reconstruction
methods for X-ray computed tomography. The dataset was acquired using the Nikon
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Figure 5.12: RANDO head CT scan images using M = 90 projections, over a 120 degree
view-angle.

Custom Bay machine, located in the Manchester X-ray Imaging Facility. The dataset and
the codes for processing the raw data are publicly available [35, 34].

The object is a plastic tube with a diameter 25 mm, filled with uniform Soda-Lime glass
(SiO2-Na2O) beads with diameters of 2.5 mm. The dataset contains measurements of X-
ray intensity. We use a higher resolution, i.e. 512 projections, and perform 15 iterations
of conjugate gradient least squares (CGLS) algorithm to compute the ground truth image.
We use it to compare performances of TV minimization-based methods with 256 and 128
projections. This allows us to demonstrate differences in errors for these methods in the
absence of the exact solution and study their quality on sparse data.

First, we use 256 projections and full-view angle and then we use 128 projections over
full-view angle. There is no need to add additional noise to the data, as it was measured
and already contains noise. We use the ground truth image resized to 256×256 pixel images
and then to 128× 128 to match the size of the reconstructed images and to compute SNR
and RMSE. We demonstrate the resized CGLS reconstruction together with the images
reconstructed with TV minimization-based algorithms in Figure 5.14-5.17 and report the
total computational time T , SNR and RMSE in Table 5.4.

In this experiment, SART-TV provides the worst reconstruction both visually and ac-
cording to the values of SNR, RMSE. The image quality for Aw-ASD-POCS significantly
deteriorated. This can be explained by the fact that the same value of σ for Aw-ASD-
POCS in all imaging experiments, and is not optimal. We can observe over-smoothing of
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Figure 5.13: Absolute error of reconstructed RANDO head CT scan, using M = 90 pro-
jections, over a 120 degree view-angle, scaled to [0, 0.1].

M = 128 M = 256

SNR RMSE T , min SNR RMSE T , min

ASD-POCS 4.8927 0.1134 15.7 5.4567 0.1134 31.1
OS-ASD-POCS 4.9230 0.1178 14.6 5.5051 0.1178 30.2
Aw-ASD-POCS 3.7672 0.0732 15.1 4.0697 0.0579 32.6
DTV-ASD-POCS 5.5581 0.0923 15.5 6.9682 0.0754 36.6
SART-TV 1.7308 0.2021 16.6 2.1568 0.1445 30.5

Table 5.4: Glass beads image reconstruction by TV minimization based methods.

bead edges here due to this fact and reduced SNR value. While in the previous experi-
ments, the quality of reconstruction using Aw-ASD-POCS was comparable to that of the
proposed method, in this experiment we observe a significant difference in quality between
them.

The RMSE value for Aw-ASD-POCS in this example did not change significantly,
which can be explained by the fact that RMSE is not very sensitive to the smoothing
of the edges. If we compare the SNR value for example, we see that Aw-ASD-POCS
reconstruction provides lower SNR than DTV-ASD-POCS, because SNR is more suitable
to measure the accuracy reconstructions of object boundaries. DTV-ASD-POCS again
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outperforms other methods and delivers at least 10% bigger SNR values. However, it is
clear from Figures 5.14-5.17 that the bad choice of the smoothing parameter σ for Aw-
ASD-POCS method here leads to a totally smeared reconstruction without visible edges.

Finally, the DTV-ASD-POCS method among other POCS methods provides a recon-
struction that suppresses the line artifacts the most, as can be seen in Figures 5.14, 5.16.

Figure 5.14: Glass beads reconstructed CT scan images using M = 256 projections, full-
view angle, scaled to [0, 0.25].

5.5 Results

In the numerical tests of Section 5.4, we have considered three different cases for CT image
reconstruction problems. Our main goal was to demonstrate the efficiency of the proposed
algorithm and qualitative improvement in the reconstructions obtained with DTV-ASD-
POCS when compared to known POCS-type methods.

In the first experiment, we aim to reconstruct the Shepp-Logan phantom image given
sparse and noisy data. We use the ground truth image to compute the measurements f ,
then we use this data with and without added noise. We observe in both scenarios that
the DTV-ASD-POCS algorithm eliminates line artifacts and improves the overall quality
of reconstructions. Moreover, among POCS-type algorithms, DTV-ASD-POCS is the only
one that achieves reconstruction without line artifacts and sharp edges. We note that
even though all algorithms we consider here converge for the given data tolerance ε, they
converge to different approximations of U and we should compare RMSE and SNR as
true measures of reconstructed image quality.

In the second example, we use the RANDO head phantom and test the reconstruction
quality for limited-angle CT. We observe comparable performance of the DTV-ASD-POCS
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Figure 5.15: Absolute error of reconstructed glass beads CT scan, using M = 256 projec-
tions, full-view angle, scaled to [0, 0.25].

Figure 5.16: Glass beads reconstructed CT scan images using M = 128 projections, full-
view angle, scaled to [0, 0.25].
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Figure 5.17: Absolute error of reconstructed glass beads CT scan, using M = 128 projec-
tions, full-view angle, scaled to [0, 0.25].

method to that of ASD-POCS, OS-ASD-POCS, and Aw-ASD-POCS, with slightly better
SNR and RMSE values for the proposed algorithm, however at the cost of increased
computational time when compared to other algorithms. Note, that in the limited angle
tomography, the artifacts remain in the image no matter what definition of the gradient of
the TV norm is used. We conclude that the change of TV definition alone in this scenario
is not sufficient to achieve significantly better reconstruction results.

In the third example, the glass beads image was reconstructed from real experimental
data. In this experiment, we use very sparse measurements to test the worst-case per-
formance of the considered algorithms. We demonstrate that DTV-ASD-POCS achieves
superior quality of reconstructions and similarly to the Shepp-Logan phantom significantly
reduces artifacts and preserves sharp edges. In this case, we also see no artifacts for Aw-
ASD-POCS reconstructions, however, the quality of the reconstructed images with this
method is very low. This is due to the fact that we did not tune the parameter for this
algorithm and therefore observe the over-smoothing effects.

We observe in all experiments that the change in the discrete TV definition leads to
better reconstruction quality and more importantly it allows to suppress of artifacts in the
reconstructed images, which was not possible with other definitions. We note here that
the computational time can be further reduced using a multi-GPU approach and possibly
a more efficient implementation of the algorithm.
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5.6 Summary

In this chapter, we considered the application of the dual discrete TV to computed tomog-
raphy image reconstruction for noisy and sparse data. We consider a number of projections
onto convex sets imaging algorithms for TV minimization-based CT scan reconstruction
and propose a new POCS-type algorithm that minimizes dual discrete TV of the image.
Then we developed a GPU-accelerated version for fast computation of the dual discrete
TV (Algorithm 2). Finally, we compare DTV-ASD-POCS to the other POCS algorithms
on several examples, including both simulated and real experimentally measured data. We
show numerically the proposed algorithm’s effectiveness and discuss its potential advan-
tages over existing methods.
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Chapter 6

Conclusion

In this thesis, we have presented discrete total variation as a tool for ensuring the nonlinear
stability of high-order numerical schemes for scalar conservation laws. We have reviewed
the theory behind the total variation diminishing numerical methods in one space dimen-
sion and made considerable extensions for the two-dimensional schemes both numerically
and theoretically.

In Chapter 2 we provided background theory for total variation and its discretization
and introduced the recent developments in this field, including the dual discrete total
variation. Several examples of the behavior of the TV functional discretizations on finite
grids have been demonstrated. We also made a clear distinction between the properties of
one-dimensional discrete total variation and that of the two-dimensional ones. We establish
several new theoretical results for the dual discrete total variation.

Chapter 3 contains the main numerical and theoretical evidence for the existence of
second-order TVD numerical schemes in two space dimensions. We provide substantial
numerical evidence that demonstrates that the KT scheme as well as other schemes of a
certain class, equipped with a limiter retain the theoretical convergence rate for smooth
solutions and eliminate spurious oscillations in the presence of discontinuities. We tested
three different discrete TV definitions for the solutions of the KT scheme on a number of
numerical examples and we demonstrated that KT and some special numerical schemes do
not increase the dual discrete total variation. It is important to note here that we used
different settings and several scalar laws to establish that, as well as the fact that conven-
tional discrete total variations do increase for these schemes. This led us to formulate a
hypothesis, that the dual discrete TV presented in Chapter 2 allows us to avoid the conjec-
ture of J. Goodman and R. LeVeque on the accuracy of TVD schemes in two dimensions.
We analyze the scheme to establish sufficient conditions for the numerical method to have
the TVD property in two spatial dimensions and prove them under certain simplifying
assumptions.

The numerical results of Chapter 3 rely on the stable and accurate estimation of the
conventional discrete TV and dual discrete TV value of the numerical solution. More
specifically the dual TV can only be computed via an iterative process as a solution to an
optimization problem. In Chapter 4, we presented the general framework for the ADMM
algorithm to find the value of dual discrete TV and we also introduce the simpler and more
efficient APGM algorithm and its improved version for dual TV computation. We then
test its accuracy and convergence. The performance of the modified APGM algorithm
proposed here is compared to that of the original APGM algorithm. In this process, we
also arrive at a good heuristic rule for the choice of algorithm hyperparameters. As a result,
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the total computation time of the modified APGM is drastically reduced when compared
to the original one. Finally, a parallel version of the proposed algorithm is developed
and its implementation is used to formulate a new imaging algorithm in Chapter 5 of the
manuscript.

In Chapter 5, we have discussed a different area of interest as an application of discrete
total variation – image reconstruction from noisy and incomplete measurements by TV
minimization. The problem of computed tomography imaging was considered and a new
algorithm based on the new discrete TV definition was proposed. We use the parallel
version of the modified APGM of Chapter 4 and compare it with other state-of-the-art TV
minimization-based projection-onto-convex-sets algorithms. We conduct numerical tests
to demonstrate the superiority of the new imaging method in low radiation and limited
angle imaging configurations.

Future work involves the development of theory for high-order TVD schemes in mul-
tiple space dimensions using the new discrete TV definition. Including, but not limited
to possible extensions for general limited schemes, an analogue of Harten’s lemma, and
possible extensions to three spatial dimensions. It would be interesting to study extensions
of the algorithm to compute dual discrete TV in three dimensions or find an alternative
approach to computing TV and establish its convergence. Finally, designing more efficient
imaging methods based on the dual discrete TV is of great interest.
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Appendix A

An example of matrices L, M .

Figure A.1: Sparse structure of the matrices L (left) and M (right) with randomly gen-
erated coefficients satisfying conditions of Lemma 3.4.3., on N = 4 mesh. Matrix L has
5 main diagonals, 2 diagonals that account for periodic boundary conditions and 2 more
entries in the first and in the last row. Matrix M is divided into 4 matrices, each of them
has has 3-4 main diagonals, and 2 diagonals that account for periodic boundary conditions.
The structure of each of the matrices is given below.
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Appendix B

B.1 APGM algorithm (L. Condat’s version)

The following MATLAB listing is L. Condat’s code to compute TV of a 32 × 32 image
using 2000 steps of APGM algorithm with a constant step size µ = 0.5. The original code
is available in the supplementary material to [40] at M107524 01.zip.

function main

Nbiter= 2000 ;
sigma = 0 . 99/3 ;
mu = 0 . 5 ;

S=32;
[ n1 , n2]=meshgrid ( 1 : S , 1 : S ) ;

Pattern = 3 ;
switch Pattern

case 1 , x=double ( ( n1−S/2)>=1);
case 2 , x=double ( ( n1−S/2)+(n2−S/2)>=1);
case 3 , x=double ( ( n1−S/2)+(n2−S/2)>=1);

idx=find ( ( n1−S/2)+(n2−S/2)==1);
x ( idx)= 0 . 5 ;

end

opDx = cat ( 3 , [ d i f f (x , 1 , 1 ) ; zeros (1 , s ize (x , 2 ) ) ] , . . .
[ d i f f (x , 1 , 2 ) zeros ( s ize (x , 1 ) , 1 ) ] ) ;

opDadj = @(u) −[u ( 1 , : , 1 ) ; d i f f (u ( : , : , 1 ) , 1 , 1 ) ] − . . .
[ u ( : , 1 , 2 ) d i f f (u ( : , : , 2 ) , 1 , 2 ) ] ;

prox mu sigma g = @( t ) t−bsxfun ( @rdivide , t , . . .
max( sqrt (sum( t . ˆ 2 , 3 ) ) / (mu∗ sigma ) , 1 ) ) ;

u = zeros ( [ s ize ( x ) 2 ] ) ;
v = zeros ( [ s ize ( x ) 2 3 ] ) ;
tmp = opDx ;
v ( : , : , 1 , 1 ) = tmp ( : , : , 1 ) ;
v ( : , : , 2 , 2 ) = tmp ( : , : , 2 ) ;
fpr intf ( ’ 0 %f \n ’ ,sum(sum(sum( sqrt (sum( v . ˆ 2 , 3 ) ) ) ) ) ) ;
for i t e r = 1 : Nbiter
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v = . . .
prox mu sigma g (v−sigma∗opL(−opDx+opLadj ( v)−mu∗u ) ) ;
u = u−(−opDx+opLadj ( v ) )/mu;
i f mod( i t e r ,400)==0
%we d i s p l a y the primal and dua l co s t func t ions ,

%which reach equa l va l u e s at convergence
fpr intf ( ’%d %f %f \n ’ , i t e r , . . .

sum(sum(sum( sqrt (sum( v . ˆ 2 , 3 ) ) ) ) ) , . . .
sum(u ( : ) . ∗ opDx ( : ) ) ) ;

end
end

end

function t = opL(u)
[ height , width , d]= s ize (u ) ;
t=zeros ( height , width , 2 , 3 ) ;
t ( : , : , 1 , 1 )=u ( : , : , 1 ) ;
t ( 1 : end−1 ,2:end , 2 ,1)=(u ( 2 : end , 1 : end−1 ,2)+. . .
u ( 1 : end−1 ,1:end−1 ,2)+. . .
u ( 2 : end , 2 : end ,2)+u ( 1 : end−1 ,2:end , 2 ) ) / 4 ;
t ( 1 : end−1 ,1 ,2 ,1)=(u ( 1 : end−1 ,1 ,2)+u ( 2 : end , 1 , 2 ) ) / 4 ;
t ( : , : , 2 , 2 )=u ( : , : , 2 ) ;
t ( 2 : end , 1 : end−1 ,1 ,2 )=. . .

(u ( 2 : end , 1 : end−1,1)+u ( 1 : end−1 ,1:end−1 ,1)+. . .
u ( 2 : end , 2 : end ,1)+u ( 1 : end−1 ,2:end , 1 ) ) / 4 ;
t ( 1 , 1 :end−1 ,1 ,2)=(u ( 1 , 1 :end−1,1)+u ( 1 , 2 :end , 1 ) ) / 4 ;
t ( 2 : end , : , 1 , 3 ) = (u ( 2 : end , : , 1 ) + . . .
u ( 1 : end−1 , : , 1 ) ) /2 ;
t ( 1 , : , 1 , 3 ) = u ( 1 , : , 1 ) / 2 ;
t ( : , 2 : end , 2 , 3 ) = (u ( : , 2 : end ,2)+u ( : , 1 : end−1 ,2))/2 ;
t ( : , 1 , 2 , 3 ) = u ( : , 1 , 2 ) / 2 ;

end

function u = opLadj ( t )
[ he ight , width , d , c ]= s ize ( t ) ;
u=zeros ( height , width , 2 ) ;
u ( 1 : end−1 ,2:end ,1)= t ( 1 : end−1 ,2:end , 1 , 1 )+ . . .
( t ( 1 : end−1 ,2:end , 1 , 2 )+ . . .
t ( 1 : end−1 ,1:end−1 ,1 ,2)+ t ( 2 : end , 2 : end , 1 , 2 )+ . . .
t ( 2 : end , 1 : end−1 ,1 ,2))/4+( t ( 1 : end−1 ,2:end , 1 , 3 )+ . . .
t ( 2 : end , 2 : end , 1 , 3 ) ) / 2 ;
u ( 1 : end−1 ,1 ,1)= t ( 1 : end−1 ,1 ,1 ,1)+( t ( 1 : end−1 ,1 ,1 , 2 )+. . .
t ( 2 : end , 1 , 1 , 2 ) )/4+( t ( 1 : end−1 ,1 ,1 , 3 )+. . .
t ( 2 : end , 1 , 1 , 3 ) ) / 2 ;
u ( 2 : end , 1 : end−1,2)= t ( 2 : end , 1 : end−1 ,2 ,2 )+. . .
( t ( 2 : end , 1 : end−1 ,2 ,1 )+. . .
t ( 1 : end−1 ,1:end−1 ,2 ,1)+ t ( 2 : end , 2 : end , 2 , 1 )+ . . .
t ( 1 : end−1 ,2:end , 2 , 1 ) )/4+( t ( 2 : end , 1 : end−1 ,2 ,3 )+. . .
t ( 2 : end , 2 : end , 2 , 3 ) ) / 2 ;
u ( 1 , 1 :end−1,2)= t ( 1 , 1 :end−1 ,2 ,2)+( t ( 1 , 1 :end−1 ,2 ,1 )+. . .
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t ( 1 , 2 :end , 2 , 1 ) )/4+( t ( 1 , 1 :end−1 ,2 ,3 )+. . .
t ( 1 , 2 :end , 2 , 3 ) ) / 2 ;

end

B.2 Modified APGM (Algorithm 1)

Here we provide the MATLAB listing for Algorithm 1, to compute TV of 32× 32 images
used in the Appendix B.1. For ease of comparison with the original code of L. Condat we
provide here a simplified implementation of Algorithm 1, without the stopping criterion.
We also omit the repetition of opL and opLadj functions declaration here for brevity. The
number of steps Nbiter = 800 in this case, because the proposed algorithm achieves the
same accuracy of the solution with 2.5 times less iterations. The MATLAB codes used for
other numerical experiments presented in this work can be found at MATLAB Codes.

function main

Nbiter= 800 ;
sigma = 0 . 99/3 ;
mu0 = 1 ;
mu = mu0 ;
theta = 0 . 9 6 ;

S=32;
[ n1 , n2]=meshgrid ( 1 : S , 1 : S ) ;

Pattern = 3 ;
switch Pattern

case 1 , x=double ( ( n1−S/2)>=1);
case 2 , x=double ( ( n1−S/2)+(n2−S/2)>=1);
case 3 , x=double ( ( n1−S/2)+(n2−S/2)>=1);

idx=find ( ( n1−S/2)+(n2−S/2)==1);
x ( idx)= 0 . 5 ;

end

opDx = cat ( 3 , [ d i f f (x , 1 , 1 ) ; zeros (1 , s ize (x , 2 ) ) ] , . . .
[ d i f f (x , 1 , 2 ) zeros ( s ize (x , 1 ) , 1 ) ] ) ;

opDadj = @(u) −[u ( 1 , : , 1 ) ; d i f f (u ( : , : , 1 ) , 1 , 1 ) ] − . . .
[ u ( : , 1 , 2 ) d i f f (u ( : , : , 2 ) , 1 , 2 ) ] ;

prox mu sigma g = @( t ,mu) t−bsxfun ( @rdivide , t , . . .
max( sqrt (sum( t . ˆ 2 , 3 ) ) / (mu∗ sigma ) , 1 ) ) ;

u = zeros ( [ s ize ( x ) 2 ] ) ;
v = zeros ( [ s ize ( x ) 2 3 ] ) ;
tmp = opDx ;
v ( : , : , 1 , 1 ) = tmp ( : , : , 1 ) ;
v ( : , : , 2 , 2 ) = tmp ( : , : , 2 ) ;
fpr intf ( ’ 0 %f \n ’ ,sum(sum(sum( sqrt (sum( v . ˆ 2 , 3 ) ) ) ) ) ) ;
for i t e r = 1 : Nbiter
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v = . . .
prox mu sigma g (v−sigma∗opL(−opDx+opLadj ( v)−mu∗u ) ,mu) ;
u = u−(−opDx+opLadj ( v ) )/mu;
mu = theta ∗mu;
i f mod( i t e r ,100)==0
mu = mu0 ;
%we d i s p l a y the primal and dua l co s t func t ions ,

%which reach equa l va l u e s at convergence
fpr intf ( ’%d %f %f \n ’ , i t e r , . . .

sum(sum(sum( sqrt (sum( v . ˆ 2 , 3 ) ) ) ) ) , . . .
sum(u ( : ) . ∗ opDx ( : ) ) ) ;

end
end

end
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