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Abstract

A Real-Time Bidding (RTB) network is a real-time auction market, primarily used for
advertising space sales. Within this environment, clients participate by bidding on pre-
ferred items and subsequently purchasing them upon winning. This thesis addresses the
problem of optimal real-time bidding within a second-price Vickrey auction setting, where
the distribution of prices is unknown. Our focus centers on second-price auction mecha-
nisms, which offers unique properties that enable the development of compelling algorithms.
We introduce the concept of a demand-side platform (DSP), acting as an intermediary rep-
resenting clients in the auction market. With no prior knowledge of typical prices, the DSP
must determine optimal bidding strategies for each item and distribute won items among
clients to fulfill their contracts while minimizing expenses. When the distribution of the
prices of items is known, this optimal bidding problem can be solved by classic convex
optimization algorithms such as ADMM. However, market properties may vary over time,
and access to competitor behavior or bidding information is limited. Consequently, the
DSP must continually update its information about the price distribution, while adapt-
ing bidding estimations in real-time. Our primary contribution lies in devising efficient
online optimization algorithms that accurately find the optimal bids. To tackle this, we
employ tools from convex optimization analysis, including duality, along with stochastic
optimization algorithms, notably stochastic approximation. Moreover, techniques such as
projection and penalty term methods are utilized to enhance algorithm performance.
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Chapter 1

Introduction

The present work is motivated by problems arising within a particular advertising mech-
anism known as real-time bidding (RTB) [13, 40]. RTB is the mechanism for placing ads
on web pages visited by users, with the current objective being to target ads based on
user profiles, leveraging the growing availability of user information. The defining feature
of RTB is that advertisers can bid on every individual impression (i.e., the right for their
chosen message to be displayed to a desirable user, also referred to generically in this thesis
as an item), as opposed to fixed advertising contracts specifiying a-priori a service-level
agreement.

In this thesis, we focus on real-time, sealed-bid, and second-price auctions, due to
their ubiquity in the context of ad placement on web pages and wireless phones. These
are referred to as Vickrey auctions [36]). The auctions are facilitated by ad exchanges
(e.g.,Google AdX [30], OpenX, Index Exchange, etc.) that provide the technology to match
buyers to sellers and implement the auction. The winner of the auction (that is always
the highest bidder) for a particular item gains the right to have their content displayed to
the user, and pays the amount corresponding to the second highest bid. Given the scale of
the industry and the rapidity of these auctions, the development of computational bidding
algorithms is essential.

The complexity of the bidding process has led to the emergence of consolidators or
intermediaries who act on behalf of advertisers. These intermediaries are called Demand
Side Platforms or DSPs. The economic benefits these intermediaries can provide to ad-
vertisers are numerous: the advertiser can offload the risk of adverse price movements,
relieve themselves of the need to maintain their own complex bidding infrastructure, make
more certain up-front spending estimates, potentially access a wider array of advertising
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channels, etc. These motivations and the contract design problem are studied in [3].

The problem we address in this thesis uses the framework of [26] which considers how
these intermediaries can manage a collection of contracts demanding that the DSP acquire
items having certain characteristics at a specified rate. The goal of the intermediary is to
fulfill these contracts at minimum cost, hence maximizing their profit. In [26] a theoretical
framework is presented where the market price characteristics are known to the bidder. In
reality such characteristics are unknown and it can be assumed that the so-called supply
characteristics of ad types (ads that target specific profiles) are drawn from an unknown
distribution. In this thesis we develop algorithms that do not make use of any prior
estimates of typical prices, and require only the censored price observations (prices that
are only revealed when the bids are successful) obtained through the process of bidding.
That is, the DSP can bid, learn, and optimize simultaneously.

1.1 Overview and Contributions

The formulation of our main problem is similar to [26], but considers the setting where there
is no prior information about prevailing market prices. The goal of the DSP is to acquire
items having some specified average value to the advertiser. This is as opposed to planning,
using prior information, for fulfilling a contract over some fixed time horizon. In practice,
these approaches are complementary: the optimal item acquisition rates estimated by a
long-term plan with prior information can be used as set-points for an adaptive algorithm.
We assume that the type space for items is finite and is in fact without loss of generality
valid for second price auctions. A type is an attribute associated with contracts and might
be common to many contracts. An example of a type could be the age profile that an ad
might target, the gender, location, etc. Typical contracts might specify many targeting
criteria or types. Thus a given item might satisfy the criteria of many contracts.

The main tool used in this thesis is stochastic approximation (SA) [33, 28, 5, 37] , a
formalism for analyzing adaptive algorithms operating in a stochastic environment when
the underlying statistics are unknown. First, we develop a quadratic penalty stochastic
approximation method on two time-scales (see e.g.,[34, 38]): A fast time-scale is used
to calculate what bid should be placed in order to win items at a specified rate , and a
slow time-scale which determines the actual rates at which items should be allocated to
contracts (Section 2.2.2). The fast time-scale of our SA solves a problem similar to that of
[23, 43, 22], where some given set-point needs to be maintained. The slow time-scale of our
algorithm globally coordinates the bidding process in a way that is roughly analogous to
the E-step in [44]. Then, drawing on duality theory [10] and employing convex optimization
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methods [39, 27, 9] like Subgradient Descent and Projected Gradient Descent, we refine our
approach by formulating an enhanced convex problem. This reformulation enables us to
directly updating of optimal bids, ensuring an effective optimization process for real-time
bidding in auction settings.

We note that the key fact regarding the correspondence between optimal bids and
objective function derivatives only holds for second price auctions – this suggests a relevant
direction for future research: and a question remains as to whether (or to what extent)
the methods developed here can be extended to more general auction mechanisms. In [26]
it is shown that under further assumptions, like log-concavity, both the first and second
price cases correspond to convex optimization problems that are different. In this thesis we
focus on the second price case, that is more common and does not require log-concavity.

1.2 Outline

We begin by defining a market model and contract management for the Real-Time auctions
setup in Section 2.1.1, where we introduce the concept of a supply curve in Definition 2.1.1.
This curve describes the probability of winning an item of a particular type. The contract
management problem is then formulated in Definition 2.1.2, where we describe the Real-
Time Bidding (RTB) problem as a convex optimization problem with contract constraints
represented as equality conditions.

In Section 2.2, we derive a Two Timescale Stochastic Approximation algorithm capa-
ble of solving the contract management problem without prior knowledge of the supply
curve. This algorithm is divided into two parts. First, in Section 2.2.1, we present a
stochastic approximation algorithm for estimating the bids required to win and acquire a
specified amount of item supply rate. Then, in Section 2.2.2, we focus on designing an-
other stochastic approximation algorithm to solve the convex optimization problem, and
find the optimal bids, which the demand side platform (DSP) need to bid to fulfill the
contracts. Finally, we combine these two components into a Two Timescale SA algorithm.
This algorithm operates entirely online, allowing the Demand Side Platform (DSP) to bid,
learn, and optimize simultaneously.

In Chapter 3, we analyze the duality of the convex optimization model of the contract
management problem. Utilizing properties of duality [10], we construct a new convex
problem in Section 3.1 and make observations to aid in developing an algorithm to solve
the dual problem. Sections 3.2, 3.3, and 3.4 detail the development of three separate
algorithms to solve the dual problem. In each section, we prove the convergence of these
algorithms and validate their performance through simulations.
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Finally, we conclude in Chapter 4. The theorems utilized throughout the thesis to prove
convergence are provided in the Appendices.
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Chapter 2

Problem Definition and Learning
Acquisition rates

In this chapter, we begin by reviewing the earlier work [26, 25, 24], where they addressed
the modeling and formulation of Real-Time Bidding problems. In Section 2.1, we present a
model for the market, item arrival dynamics, and price distribution, formulating Real-Time
Bidding as a convex optimization problem.

However, the classic convex optimization algorithms are inadequate when the price
distribution is unknown. Therefore, we employ an improved stochastic approximation
algorithm to update the bids while learning the supply rates. In Section 2.2, we introduce
our first algorithm aimed at addressing this challenge.

2.1 Market Modeling and Contract Management

2.1.1 Market Pricing Distribution

In earlier work [26], the Real-Time Bidding process was formulated as an Online Convex
Optimization problem where the cost was a function of the probability of winning the
items, instead of the amount of bid itself. This formulation required a precise model of
how individual prices are distributed and how items arrive in the market.

First, let’s model the arrival of items. Suppose there is an auction market with M item

types denoted as [M ]
∆
= {1, . . . ,M}, where items of random types arrive according to a
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random marked point process with a rate of λ > 0. The inter-arrival times, denoted by
τ1, τ2, . . ., are independent and identically distributed with mean 1/λ and a finite variance.
The marks correspond to the types ϕn ∈ [M ] of the nth arriving item are drawn indepen-
dently from a distribution P{ϕn = j} = ηj > 0, and thus the rate of arrivals of items of
type j ∈ [M ] is itself a random process of rate λj = ηjλ.

Now, let’s model the price distribution: The price (i.e., highest competing bid) of
the nth arriving item is distributed, conditional on ϕn = j, according to the cumulative
distribution functionWj on R, assumed to have densityW ′

j(x). That is, (pn | ϕn = j) ∼ Wj.
The probability of winning an item of type j with a bid of x is given by Wj(x) = P{pn ≤
x | ϕn = j} and thus the rate of items of type j won at auction by an exogenous agent
placing a constant bid x ≥ 0 is λjWj(x).

The function

fj(x)
∆
= E[pn1(pn ≤ x) | ϕn = j] =

∫ x

0

uW ′
j(u)du (2.1)

is the cost curve and measures the expected cost of bidding x on an item of type j. The
function

Λj(q)
∆
= fj ◦W−1

j (q)
(a)
=

∫ q

0

W−1
j (u)du (2.2)

is the acquisition cost curve and measures the expected cost of bidding to win an item
of type j with probability q ∈ [0, 1]. The equality (a) can be established through an
elementary change of variables. The derivative of Λj is W

−1
j on (0, 1), is monotone increas-

ing, and hence the function Λj is convex on [0, 1]. When extended to all of R to satisfy
Λj(s) = 0 ∀s ≤ 0 and Λj(s) =∞ ∀s > λj it is also lower semicontinuous. The implications
of these properties are developed in detail by [26], but the details pertinant to this thesis
are summarized in the following Proposition 2.1.1. Before presenting this proposition, we
first formalize important assumptions and conventions for the function W in the following
definition.

Definition 2.1.1 (Supply Curve). For some fixed item type j ∈ [M ], omitted from the
notation, we refer to the function x 7→ W (x) as the supply curve for items of type j. This
supply curve is assumed to be continuous on R and differentiable on the interval (0, x̄j),
where x̄j is a finite value representing the maximum bid that any individual is willing to pay,
therefore W (x) = 1 for x > x̄j . The derivative of the supply curve, W ′(x), is uniformly
bounded and satisfies 0 < ϵ ≤ W ′(x) ≤ 1

ϵ
< ∞, for all x ∈ (0, x̄j) and for some ϵ > 0.

Thus, W (x) is strictly monotone and Lipschitz on the interval (0, x̄j). Therefore, due to
the strict monotonicity, the inverse of W is defined in the usual manner within the interval
(0, x̄j). It is convenient to extend this function to all of R as follows:
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W−1(q) =


0 if q ≤ 0

x such that W (x) = q if 0 < q < 1

x̄ if q ≥ 1

(2.3)

Proposition 2.1.1 (Convex Acquisition Costs [26]). Let W (x) be a supply curve. Then,
in a second price auction, the acquisition cost function Λ2nd(q) = f2nd ◦W−1(q) is given by∫ q

0
W−1(u)du on q ∈ [0, 1]. If this is extended to:

Λ̃2nd(q)
∆
=


0 if q ≤ 0∫ q

0
W−1(u)du if 0 < q < 1,

f(x̄) + (q − 1)x̄ if q ≥ 1

(2.4)

then Λ̃2nd is a proper, lower semi-continuous, non-decreasing, and convex function on R.
Moreover, Λ̃2nd is strictly convex over [0, 1], differentiable, and the derivative of it is the
extended W−1(q).

Other than the fact that Λ̃j is a convex function, the key observation to make from

Proposition 2.1.1 is that the derivative satisfies Λ̃′
j(q) = W−1(q). The implication of this

relation is that the bid xj = W−1
j (q) required to win an item of type j is exactly equal to

the derivative of the function Λ̃j. This is the key fact that we exploit in this thesis, and is
used in Section 2.2.

2.1.2 Formulating the Contract Management Problem

In the context of real-time bidding, we will define a contract i ∈ [N ] as a tuple
(
Ci, (vij)j∈[M ]

)
where vij ≥ 0 represents the value of an item of type j for contract i, and Ci > 0 is a
target rate at which item value should be acquired. The values vij can be interpreted as
conversion probabilities if they are constrained to vij ∈ [0, 1] (though this constraint is not
essential), in which case the interpretation of the contract is that conversions should be
acquired at the rate Ci.

Precisely, the contract management problem is a convex optimization problem that
models the goal of a DSP to fulfill N contractual obligations at minimum cost:
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minimize
R

M∑
j=1

λjΛj(
1

λj

N∑
i=1

Rij)

subject to
M∑
j=1

vijRij = Ci

Rij ≥ 0.

(P )

The variable Rij indicates the number of items of type j that should be acquired and

allocated towards contract i per unit time. Given an optimal matrix R, 1
λj

∑N
i=1Rij rep-

resents the portion of type j items that need to be acquired, which can be interpreted as
the probability of winning item j. Consequently, the optimum bids xj to place on items of

type j can be calculated by xj = W−1
j

(
1
λj

∑N
i=1 Rij

)
.

Therefore, the average cost of acquiring item j is λjΛj(
1
λj

∑N
i=1 Rij), and by minimizing

the sum of all these average costs, we can determine the optimum cost. A detailed anal-
ysis of this problem, including a thorough analysis of duality and the associated bidding
interpretations, is available in [26]. It is shown there that the following assumption is
essential:

Assumption 2.1.1 (Adequate Supply). We suppose that there exists a strictly feasible
point R ∈ RN×M for Problem (P ), satisfying R > 0,

∑M
j=1 vijRij = Ci and

∑N
i=1Rij < λj.

Under Assumption 3.1.1, solutions to Problem (P ) exist and are such that the optimum
bids are finite: xj <∞.

Problem (P ) can be slightly simplified. Indeed, the array vij can be expected to be
sparse (many contracts may have zero valuation for certain item types). This motivates
the definition for the set of usable items and the set of fulfillable contracts

Ai
∆
= {j ∈ [M ] | vij > 0},

Bj
∆
= {i ∈ [N ] | vij > 0},

(2.5)

respectively. Clearly, optimal solutions will have Rij = 0 whenever j /∈ Ai so that the

actual dimensionality of R ∈ RN×M is given only by d =
∑N

i=1 |Ai| =
∑M

j=1 |Bj| ≥ N ,
rather than MN , and we would generally expect d≪MN .

8



2.2 Optimizing Bids and Acquisition Rates in the Pri-

mal Problem

To address problem P , we adopt an algorithm inspired by [39], which explores an algo-
rithm for finding approximate solutions to a convex optimization problem with inequality
conditions. In our approach, we augment the objective function with quadratic penalty
terms to penalize violations of the inequality constraints.

Specifically, we consider the objective function with a penalty parameter µ > 0:

Lµ(R) =
M∑
j=1

λjΛ̃j

( 1

λj

∑
i∈Bj

Rij

)
+

1

2
µ

M∑
j=1

[∑
i∈Bj

(Rij)
2
− +

(∑
i∈Bj

Rij − λj

)2
+

]
, (2.6)

where the penalty terms are added to ensure that Rij remains positive, and
∑

i∈Bj
Rij is

less than λj.

In addition to this term, it can be expected that Problem (P ) admits multiple solutions.
Indeed, it can be the case that there are many ways of fulfilling contracts with the same
item acquisition rates. For example, if contracts i and i′ have the same valuations for item
types j and j′, the proportions of those types of items allocated to those contracts makes
no difference for the cost function. To ensure a unique solution, we adopt the ”least norm”
approach, where we select the solution R⋆ such that, out of all other solutions, ||R⋆||2 is
minimized.

Therefore, the final cost function will be:

Lµ(R) =
M∑
j=1

λjΛ̃j

( 1

λj

∑
i∈Bj

Rij

)
+

1

2µ
||R||22

+
1

2
µ

M∑
j=1

[∑
i∈Bj

(Rij)
2
− +

(∑
i∈Bj

Rij − λj

)2
+

]
,

(2.7)

In order to approximate solutions of Problem (P ), consider the following simplified
optimization problem

minimize
R

Lµ(R)

subject to
∑
j∈Ai

vijRij = Ci.
(P µ)
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Minimizers of Problem (P µ), which will be denoted Rµ, act as approximate solutions
of Problem (P ). moreover, Rµ → R⋆ as µ → ∞, where R⋆ is the least norm solution of
Problem (P ). In some instances it can hold that Rµ = R⋆ for each µ ≥ µ⋆ for some µ⋆ ≥ 0,
see [17].

2.2.1 Updating the Bids

To solve P when Λj are unknown, we will develop an algorithm that updates the bids at
each step using an approximation of the cost function, which itself will be updated while
bidding.

We develop an algorithm to calculate the optimal array R that solves Problem (P µ),

and hence it enables us to determine the required supply rates sj
∆
=

∑
i∈Bj

Rij, which
feedback into the first algorithm for bid calculation.

The bid xj will be calculated on a fast timescale and the estimation of R on a slow
timescale; the meaning of these terms is to be clarified. The key to this algorithm is that
the aforementioned bid xj is exactly equal to the derivative of the extended acquisition

function Λ̃j at sj/λj.

Throughout this section we assume that we have in hand an array R, which optimizes
Problem (P µ). Consequently, we can determine sj =

∑
i∈Bj

Rij, representing the total
optimal supply rate for item of type j. Given the supply rates, it is still necessary to
compute the appropriate bids xj such that λjWj(xj) = sj. In principle, this bid can be
calculated given knowledge of Wj, but this function is unknown apriori. To address this
problem we use a stochastic approximation algorithm which, for a particular target supply
sj, attempts to find the corresponding bid value.

Since the problem of calculating the bid xj given a desired supply sj is separable across
j, let us fix some item type j ∈ [M ] that we focus on. Throughout this section we will
consider only this single item type and therefore omit the j subscript from the notation:
W instead of Wj, λ instead of λj, etc. Recalling the notation from Section 2.1, items of this
type will be supposed to arrive according to a random process at the rate λ > 0, and we
will denote the independent and identically distributed inter-arrival times τn. Additionally,
each item is marked with independent prices pn ∼ W . It will often be convenient to write
τ̄ = Eτn = 1/λ, which is the mean inter-arrival time. The c.d.f. W is not assumed to
be known. Instead, we rely on the only feedback we get from the market regarding the
outcome of the last bid, specifically whether the bid was successful in winning the auction
or not (an item is won if pn+1 ≤ x(n)). We represent this information using the function
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1(pn+1 ≤ x(n)). Thus, the algorithm is robust to the censoring of prices wherein only the
winning bidder learns what the item sold for.
The following algorithm

x(n+ 1) = x(n) + an
[
sτn+1 − 1(pn+1 ≤ x(n))

]
,

with some arbitrary initial point x(0) = x0, and an as a non-negative step size, is known
as a stochastic approximation (SA), see [5]. By re-writing this recursion as

x(n+ 1) = x(n) + an
[
sτ̄ −W (x(n))

]
+ an

[(
sτn+1 − sτ̄ +W (x(n))− 1(pn+1 ≤ x(n))

)]
,

Now, as long as s ∈ (0, λ), it can be shown that the ODE ẋ = sτ̄ −W (x) has a unique
globally asymptotically stable equilibrium W−1(s/λ), and therefore x(n) can be expected
to converge to this point. In fact, we can establish the convergence of a slightly more
sophisticated algorithm which simultaneously approximates τ̄(the interarrival time of the
items) as well. We will again use an approximation parameter µ > 0. We consider the Bid
Adaptation iterations:

τ̂(n+ 1) = τ̂(n) + an
[
τn+1 − τ̂(n)

]
,

x(n+ 1) = x(n) + an
[
sτ̂(n)− 1(pn+1 ≤ x(n))− 1

µ
[(x(n)− x̄)+ − (x(n))−]

]
,

(BA)

where the penalty terms (x)− and (x(n)−x̄)+ are used to keep the iterates within the range
[0, x̄](interval [0, x̄] is the compact support of the distribution W (x)). As µ approaches
infinity, the equilibrium of this ordinary differential equation (ODE) will tend toW−1(s/λ).

We establish the convergence of this algorithm in the following proposition.

Proposition 2.2.1 (Bid Adaptation). Suppose that τn, pn are drawn according to the mar-
ket model described in Section 2.1.1 and for a fixed type j ∈ [M ] (omitted from the no-
tation) with (differentiable) supply curve W . If an satisfies the Robbins-Monro conditions∑∞

n=1 an =∞ and
∑∞

n=1 a
2
n <∞ and µ > 0, s ∈ R are fixed, then the iterations described

in bid adaptation Equation (BA), converges almost surely:

(τ̂(n), x(n))
a.s.→ (τ̄ , x∗) as n→∞, (2.8)

where Wµ(x)
∆
= W (x) + 1

µ
[(xn − x̄)+ − (xn)−] is strictly increasing on R. Additionally,

Wµ(x
∗) = s/λ, and τ̄ = 1/λ.

11



Proof. Consider the stochastic approximation (BA), which can be rewritten in the canon-
ical form

τ̂(n+ 1) = τ̂(n) + an
[
τ̄ − τ̂(n) +

(
τn+1 − τ̄

)]
, (2.9)

x(n+ 1) = x(n) + an
[(
W

(
x(n)

)
− 1(pn+1 ≤ x(n))

)
+
(
sτ̂(n)−W

(
x(n)

)
− 1

µ
[(x(n)− x̄)+ − (x(n))−])]

(2.10)

= x(n) + an
[
(sτ̂(n)−Wµ

(
x(n)

)
)
]
+ an

[(
W

(
x(n)

)
− 1(pn+1 ≤ x(n))

)]
. (2.11)

In more abstract terms, the recursions can be written as

z(n+ 1) = z(n) + an[h(z(n)) +Mn+1],

where zn = (τ̂(n), x(n)), h is the function

h(τ, x) =
(
τ̄ − τ, sτ −Wµ

(
x
)
)

which summarizes the dynamics, and

Mn+1 =
(
τn+1 − τ̄ ,W

(
x(n)

)
− 1

(
pn+1 ≤ x(n)

))
is the noise term.
In order to establish convergence, we need to verify the assumptions required by Theorem
A.1.1. In particular, we show that h is Lipschitz, Mn is a uniformly square integrable
martingale difference sequence, and a Lyapunov function exists. Furthermore, due to
strict monotonicity of Wµ(x), the equation Wµ(x) = sτ̄ has a unique solution, denoted as
x∗. Additionally, since for all x ∈ [0, x̄], W ′

µ(x) = W ′(x) < 1/ϵ (see Definition 2.1.1), and
for all x outside [0, x̄], W ′

µ(x) = 1/µ; we can conclude that W ′
µ(x) ≤ min(1/ϵ, 1/µ) = c1,

establishing the Lipschitz property of Wµ(x). Similar reasoning shows that W ′
µ(x) ≥

max(ϵ, 1/µ) = c2 .In addition, the linearity of s(τ−τ̄) implies that the functions
(
τ̄−τ, sτ−

sτ̄
)
and

(
τ̄ − τ,Wµ

(
x∗)−Wµ

(
x
))

are both Lipschitz, and their sum remains Lipschitz as
well. In addition, E[Mn+1 |Fn] = 0

(
since E[τn+1 |Fn] = τ̄ and E[1(pn+1 ≤ x(n)) |Fn] =

W (xn)
)
, and E[||Mn+1||2 |Fn] = var(τ) +W (x(n))(1−W (x(n))) ≤ var(τ) + 1 = σ2 <∞.

We have demonstrated that equation (BA) satisfies first four conditions in Theorem A.1.1.
Now, to establish the stability, it is necessary to find a Lyapunov function that satisfies
the properties mentioned in 5th condition of Theorem A.1.1.
let us define the vector θ = (τ − τ̄ , kx − kx∗), and θ∗ = (0, 0), where k is a constant .
Consequently, h(τ, x) = 0 when θ = θ∗. We can express the derivative of θ as,

θ̇ = (τ̇ , kẋ) = (τ̄ − τ, ksτ − kWµ(x)).

12



In addition, we define the Lyapunov function as V (θ) = ||θ−θ∗||2
2

. Thus, we have:

V̇ (θ) = ⟨θ − θ∗, θ̇⟩ =
〈(

τ − τ̄ , kx− kx∗
)
,
(
τ̄ − τ, ks(τ − τ̄)− k

(
Wµ(x)−Wµ(x

∗)
))〉

By simplifying the terms and using the fact that |Wµ(x)−Wµ(x
∗)| ≥ c2|x−x∗| , we optain

V̇ ≤ −
[
(τ − τ̄)2 − ks(τ − τ̄)(kx− kx∗) + c2(kx− kx∗)2

]
≤ −⟨(θ − θ∗), P (θ − θ∗)⟩,

where P =

[
1 −1

2
ks

−1
2
ks c2

]
. And by selecting 0 < k <

√
4c2
s2

one can demonstrate that

P ≻ 0, and therefore V̇ (θ) ≤ −
√

λmin(P ) ||θ − θ∗||2 = −b||θ − θ∗||2.
Finally, we showed that equation (BA) satisfies all the conditions in Theorem A.1.1 there-
fore, (τ, x) will converges almost surely.

2.2.2 Solving the Primal Problem

The previous section describes a method which, given a desired target supply sj, estimates
the bid xj = W−1

j (sj/λj) which attains sj supply. Using this information, we want to
estimate the solution R ∈ RN×M of Problem (P ), and hence derive the supply requirement
sj =

∑
i∈Bj

Rij which feeds into the stochastic approximation of Section 2.2. Recall from

Proposition 2.1.1 that the derivative of Λ̃j, for q ∈ R, is given by W−1
j (q) for the extended

inverse function of Equation (2.3), which is equal to xj, the bid required to win items
of type j with probability q. It is this property that we exploit in deriving a stochastic
approximation for the solution of Problem (P ): since it is necessary to estimate the bid
xj that attains the supply rate sj, the derivative of the objective function comes to us
for free. Motivated by this derivative property, we will analyze a first order projected
stochastic gradient algorithm for solving Problem (P µ), and thus obtaining approximate
solutions to the contract management problem (P ). The derivatives of the objective Lµ(R)
are given by

∂Lµ

∂Rij

(R) = W−1
j

( 1

λj

∑
i∈Bj

Rij

)
+

1

µ
Rij + µ

[
(Rij)− +

(∑
i∈Bj

Rij − λj

)
+

]
, 1 (2.12)

1(
∑

i∈Bj
Rij − λj

)
+
:= max(0,

∑
i∈Bj

Rij − λj)

13



if j ∈ Ai and 0 otherwise. And, projection ΠSC
(R) of R onto the convex set

SC = {R ⊆ RM×N |
∑
j∈Ai

vijRij = Ci}

is given by the Affine mapping

[ΠSC
(R)]ij = Rij −

(∑
j∈Ai

vij
)−1[∑

j∈Ai

vijRij − Ci

]
,

which can be written as ΠSC
(R)ij = ΠS0(R)ij + Uij. where Uij =

(∑
j∈Ai

vij
)−1

Ci, and

ΠS0(R) is a linear mapping over the subspace S0 = {R ⊆ RM×N |
∑

j∈Ai
vijRij = 0}, i.e,

[ΠS0(R)]ij = Rij −
(∑
j∈Ai

vij
)−1[∑

j∈Ai

vijRij].

Recall that we have an i.i.d. sequence (θn, pn) of (type, price) pairs modelling the
items arriving at auction. Specifically, we have P{θn = j} = ηj > 0 and pn | θn ∼ Wθn

(see Section 2.1.1). The stochastic approximation estimating the bid xj(n) for items of
type j will be updated upon each arrival of an item of type j; in this sense the algorithm
is asynchronous – only a single component is updated at once, and there are time delays
between updates. To model this, we use the indicator function 1j(θ) which takes the value
1 if θ = j and 0 otherwise.

Using this notation, and combining the derivatives in Equation (3.5) with the bid adap-
tation algorithm of Equation (BA), a complete asynchronous and two timescale stochastic
approximation algorithm for learning solutions to Problem (P ) is specified by Algorithm 1.

The first two steps of Algorithm 1 are used to provide adaptive estimates of the gradient
of each Λ̃j, as well as τ̂j used in penalty term (sj(n)− 1

τ̂j(n)
)+, to constraint the supply sj.

The remaining lines carry out a projected stochastic gradient to estimate Rµ.

Proposition 2.2.2 (Primal Algorithm Convergence). Suppose there is adequate supply
(Assumption 3.1.1) for Problem (P ). As well, suppose that both an, bn satisfy the Robbins-
Monro conditions and bn/an → 0 as n → ∞. Then, for µ > 0, the iterates R(n) → Rµ

converge almost surely to the solution of Problem (P µ) as n→∞.

Proof. First, we establish that the iterates for Rij follows a stochastic approximation:

Rn+1 = ΠSC
(Rn − bn∇Lµ(Rn))

= ΠS0(Rn − bn∇Lµ(Rn)) + U

= ΠSC
(Rn)− bnΠS0(∇Lµ(Rn))

= Rn − bnΠS0(∇Lµ(Rn)).
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Algorithm 1: Online Bidding

1 for Each Arriving Item τn+1, θn+1, pn+1 do

2 # Update interarrival time estimates:

3 τ̂j(n+ 1) = τ̂j(n) + an1j(θn+1)
[
τ jn+1 − τ̂j(n)

]
4 τ̂(n+ 1) = τ̂(n) + an

[
τn+1 − τ̂(n)

]
5 # Place bid xj(n) observe 1(pn+1 ≤ xj(n)) and update bid:
6 xj(n+ 1) = xj(n) + an1j(θn+1)∆xj(n),

7 ∆xj(n) = sj(n)τ̂j(n)− 1(pn+1 ≤ xj(n))− 1
µ
[(xj(n)− x̄j)+ − (xj(n))−]

8 # Take a gradient step for Lα(R):

9 R̃ij(n+ 1) = Rij(n)− bn1j(θn+1)∆Rij(n),

10 ∆Rij(n) = xj(n) +
1
µ
Rij(n) + µ

[
(Rij(n))− +

(
sj(n)− 1

τ̂j(n)

)
+

]
11 # Linear projection of R̃(n+ 1) on SC :
12 R(n+ 1) = ΠSC

(R̃ij(n+ 1))

13 # Keep track of total supply targets:
14 sj(n+ 1) =

∑
i∈Bj

Rij(n+ 1)

15



We used the fact thatRn ∈ SC . Consequently, the iterations involving the vectors (x, τ̂) and
R are equivalent to a two timescale asynchronous Stochastic Approximation. As a result, in
order to establish convergence, we must verify the conditions outlined in Theorem A.1.4, as
indicated by Proposition A.1.1(which deals with the asynchronous nature of Algorithm 1).

By Proposition 2.2.1, for fixed sj ∈ RM , the iterates τ̂j(n), xj(n) converge almost surely
to 1/λj, and W−1

j (sj/λj) respectively, which are globally asymptotically stable equilibrium
of the associated ODEs; notice that the separability of these equations means that the
1j(θn+1) terms can only impact the rate of convergence, and not the asymptotic value.

Hence, we have successfully established the stability of τ̂j(n) and xj(n) for a fixed sj
which fulfils the first condition in Theorem A.1.4. Next, it is necessary to verify the stabil-
ity of of R(n) and confirming the satisfaction of the second condition. For this purpose, we
observe that the iterates of Rij(n) approximate the ordinary differential equation (ODE),

Ṙ = −ΠS0∇Lµ(R),

which is obtained by substituting the asymptotic values of τ̂j, xj into the limiting ODE
for the iterates Rij.

Furthermore, Lµ(R) is convex, proper, lower semi-continuous, and coercive. Addi-
tionally, the set SC is a convex, nonempty, and closed set, and SC ∩ domLµ(R) ̸= ∅
(from assumption 3.1.1). Consequently, Lµ|VC

has a minimizer, denoted Rµ. Moreover,
due to the strong convexity of Lµ(R) (which results from the quadratic penalty 1

µ
||R||2F ),

Rµ is unique. Furthermore, minimizing Lµ(R) under the constraint R ∈ SC is equiva-
lent to minimizing Lµ(R) + iSC

(R). By applying the Fermat rule, it can be shown that
0 ∈ ∂(Lµ(R

µ)+iSC
) which implies that −∇Lµ(R

µ) ∈ NSC
(Rµ). Therefore, we can conclude

ΠSC
(Rµ −∇(Lµ(R

µ)) = Rµ which implies that ΠS0(∇Lµ(R
µ)) = 0. Hence Rµ satisfies (I)

ΠS0(∇Lµ(R
µ)) = 0, and (II) ΠSC

(Rµ) = Rµ.
Moreover ∇Lµ is L-Lipschitz, and due to the linearity of ΠS0 , so is ΠS0(∇Lµ).

Finally, we will show that the solution Rµ of Problem (P µ) is a unique globally asymp-
totically stable equilibrium for this ODE. By applying Theorem A.1.1, our objective
is to show that R(n)

a.s.→ Rµ. To this end, we apply Lyapunov’s direct method. Let
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V (R) = 1
2
||R−Rµ||2F , which is a coercive function. We have

V̇ (R) = ⟨R−Rµ,−ΠS0∇Lµ(R)⟩ (2.13)

(a)
= ⟨R−Rµ,ΠS0∇Lµ(R

µ)− ΠS0∇Lµ(R)⟩ (2.14)

(b)
= −⟨R−Rµ,∇Lµ(R)−∇Lµ(R

µ)⟩ (2.15)

(c)

≤ − 1

µ
||Rµ −R||2F , (2.16)

where (a) follows by the fact that ΠS0∇Lµ(R
µ) = 0 , (b) follows by the orthogonality

principle for subspace projections (R − Rµ ∈ S0, and ⟨s, h− ΠS0(h)⟩ = 0 or ⟨s,ΠS0(h)⟩ =
⟨s, h⟩ for any s ∈ S0), and (c) follows by strong convexity. Therefore by Theorem A.1.4,
R will converge almost surely to Rµ.

Also V̇ (R) ≤ − 1
µ
V (R) gives V (t) ≤ V0e

− tn
µ . Therefore the rate of convergence is ||Rµ −

R|| ∼ O(e−
∑

bn/2µ). And when bn = 1/n we have convergence is ||Rµ−R|| ∼ O( 1
n1/2µ )

We observed that ||Rµ − R(n)|| decreases at a rate of ∼ O( 1
n1/2µ ) . Moreover, the ap-

proximation error between Rµ (the optimal solution of problem (P µ)) and R∗ (the optimal
solution of problem P ) is ||Rµ −R∗|| ∼ O( 1

µ
), , a relationship proven in the work of [21].

Hence, we have ||R∗−R(n)|| ∼ O( 1
n1/2µ ) +O( 1

µ
). And in the case that µ is scaled with

n through the function µ(n) = (1 + δ)n, we have ||R∗ −R(n)|| ∼ O( 1
nϵ ).
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Chapter 3

Dual Optimization

Previously, we discussed the primal problem of optimal Real Time Bidding :

minimize
R

M∑
j=1

λjΛj(
Sj

λj

)

subject to
M∑
j=1

vijRij = Ci

N∑
i=1

Rij = Sj, Rij ≥ 0.

(P )

To find the optimal value in the case where no prior information about the bidding Density
Functions is available, we utilized the Two Timescale Asynchronous Stochastic Approxi-
mation method. Furthermore, the optimization variable, allocation rates Rij (determining
the distribution of each winning item to each contract), enabled us to ascertain the supply
rates sj and the optimal bids xj for each item.

This algorithm demonstrated that supply rates was updated at a slower time scale
compared to allocation rates. This slower update is advantageous when the demand side
platform (DSP) prioritizes contract aspect. However, it becomes a drawback when the
focus shifts towards the market. Thus, this chapter proposes a new algorithm specifically
focus on updating the bids and supply rates.

In this chapter, we tackle the dual problem of the convex optimization problem. We
begin this chapter in Section 3.1, where we formulate the dual problem, followed by a
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analysis of duality properties. Moreover, leveraging the principle of strong convexity [10,
7], we will demonstrate that both the primal and dual problems converge to the same
optimal solution for the Real-Time Bidding (RTB). Furthermore, we will present several
observations critical for the algorithms designed to solve the dual problem.

While various convex optimization algorithms exist for minimizing a convex function
subject to linear equality and inequality constraints, our problem presents unique chal-
lenges. We lack access to the cost function due to the absence of prior information on the
distributions of item prices Wj(xj) and arrival rates λj. Consequently, we cannot directly
utilize functions such as Λj and Λ∗

j . However, we do have access to noisy derivatives of the
cost function, derived from previous bids and the outcomes of won and lost bids. These
limitations restrict the algorithmic options available to us.

In the following sections, we will solve the dual problem using various algorithms.
Specifically, we will explore the Penalty Term Method for Inequality Constraints in Section
3.2, followed by the Projected Noisy Gradient Descent method in Section 3.3, and finally,
the Subgradient Method in Section 3.4.

For each of these algorithms, we will first outline the algorithmic steps, followed by a
mathematical proof demonstrating its convergence. Subsequently, we will conduct simu-
lations to compare the convergence rates of these algorithms in Section 3.4.3. Finally, we
will compare the primal and dual problems.

3.1 Dual Analysis

In this section, we analyze the dual of the problem (P ). We start by constructing the
Lagrangian function:

L(S,R, µ, ρ, θ) =
M∑
j=1

λjΛj(
Sj

λj

) +
N∑
i=1

ρi(Ci −
M∑
j=1

Rijvij) +
M∑
j=1

µj(
N∑
i=1

Rij − Sj)−
N∑
i=1

M∑
j=1

θijRij

=
N∑
i=1

ρiCi +
M∑
j=1

(λjΛj(Sj/λj)− µjSj) +
N∑
i=1

M∑
j=1

Rij(µj − θij − vij)

(3.1)

Here, the variables ρ ∈ RN and µ ∈ RM are associated with the equality constraints
concerning contract rates and supply rates, respectively. Additionally, matrix θ is asso-
ciated with the non-negativity constraints for the acquisition rates. Consequently, the

19



dual problem is subject to the constraint θ ≥ 0 and, arises from simplifying the max-min
expression as follows:

maximize
ρ,µ,θ≥0

inf
s,R

L(s, R, µ, ρ, θ). (3.2)

To this end, we first minimize the Lagrangian function L with respect to s. To minimize L
over s, we only need to minimize the term Λj(

Sj

λj
)− µj

Sj

λj
over Sj, which gives the Fencgel

conjucate of Λj. Moreover, due to convexity of Λj, we have µj = Λ
′
j(s

∗
j/λj) = W−1

j (s∗j/λj)
,where s∗ is the optimal value of s.
Therefore we have,

L(s∗, R, µ, ρ, θ) =
N∑
i=1

ρiCi −
M∑
j=1

λjΛ
∗
j(µj) +

N∑
i=1

M∑
j=1

Rij(µj − θij − vijρi). (3.3)

Now we minimize L over R. In order to prevent the infimum from being −∞, we have
µj − θ∗ij − vijρi = 0, for all i ∈ [N ] and j ∈ [M ]. This condition combined with dual
non-negativity constraint θ > 0 gives that for all i ∈ [N ] and j ∈ [M ] we have µj ≥ vijρi.
Consequently, we can eliminate the variable θ from the dual problem.
Therefore, we arrive at the following formulation for the dual problem:

minimize
ρ,µ

M∑
j=1

λjΛ
∗
j(µj)−

N∑
i=1

ρiCi

subject to vijρi ≤ µj ∀i ∈ N, j ∈M

(D)

Problem D is the dual to problem P . So their respective values, D∗ and P ∗ have the
relation D∗ ≤ P ∗.

Before analyzing problem P , we introduce an assumption:

Assumption 3.1.1 (Adequate Supply). We suppose that there exists a strictly feasible
point R ∈ RN×M for Problem (P ), satisfying R > 0,

∑M
j=1 vijRij = Ci and

∑N
i=1 Rij < λj.

Under Assumption 3.1.1, solutions to Problem (P ) exist and are such that the optimum
bids are finite,i.e. xj <∞.

In the following proposition, we demonstrate that under Assumption 3.1.1, Problem
(D) is guaranteed to have a unique solution as well.
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Proposition 3.1.1 (Existence of dual solution). There exists a unique solution, ρ∗ and µ∗

to problem D, and the duality gap between the two problem D and problem P is zero.

Proof. We begin by establishing the existence of an optimal solution to Problem (P ). From

our previous analysis, we know that the cost function
∑M

j=1 λjΛj(
Sj

λj
) is proper, convex,

coercive, and lower semicontinuous.

Additionally, the feasible set V = {s, R |
∑M

j=1 vijRij = Ci,
∑N

i=1 Rij = Sj, Rij ≥ 0} is
a closed, convex, nonempty set.

Now if we show that dom L(s, R) ∩ V ̸= ∅ then by Key Minimum Existence Theorem
[10], there exist an optimal solution R∗ to problem P .

To show this we have domL(s, R) = {s |0 ≤ Sj ≤ λj}, and therefore domL(s, R)∩V =

{s, R |
∑M

j=1 vijRij = Ci,
∑N

i=1Rij ≤ λj, Rij ≥ 0}, which by assumption 3.1.1 is non empty.

Furthermore, due to the strong convexity of
∑M

j=1 λjΛj(
Sj

λj
) with respect to s, the Sj

values are unique (note that Rij may not be unique).

Utilizing the strong duality theorem and the existence of a Slater point, we conclude
that ρ∗ and µ∗ exist, and the duality gap is zero.

Finally, by minimizing the Lagrangian function with respect to s, we find that µ∗
j =

W−1
j (s∗j/λj).

Since the function W−1
j is monotone, and we already show that s∗j are unique, then µ∗

j

is unique.

Moreover, as we will demonstrate in the next proposition that ρ∗i = min
j
(
µ∗
j

vij
), leading

to the uniqueness of ρ∗i as well.

This proposition establishes the existence and uniqueness of the solution to Problem
(D) under the assumption of adequate supply.

Now, we proceed to make some observations on the dual problem that will be utilized
further in this chapter.

Proposition 3.1.2 (Observations). Suppose Assumption 3.1.1 holds. Let R∗ and s∗ be
optimal solutions of problem (P ), and µ∗, ρ∗, θ∗ are the optimal values for (D). Finally,
let xj be the optimal bid to acquire item of type j with optimal supply rate of S∗

j (i.e.

xj = W−1
j (S∗

j /λj)). Then:

1. there exist unique solution for problem (D), µ∗, ρ∗.
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2. the duality gap is zero.

3. (optimal bids): µ∗
j is equal to the optimal bid xj which is equal to W−1

j (Sj/λj).

4. if θij > 0 then Rij = 0 and if Rij > 0 then θij = 0.

5. ∀j ∈ [M ] there exists i ∈ [N ] s.t ρ∗i =
µ∗
j

vij
, or in another word, µ∗

j = max
i∈Bj

(vijρ
∗
i ).

6. ∀i ∈ [N ] there exists j ∈ [M ] s.t µ∗
j = vijρ

∗
i , or in another word, ρ∗i = min

j∈Ai

(
µ∗
j

vij
).

7. (positive values): ∀i, j, ρ∗i , µ∗
j > 0

Proof. We have already established the proofs for the first three observations.
To prove observation 4, we used the complementary slackness [10, 7] and we have θijRij = 0.

Observation 6 stems from the monotonicity of
∑M

j=1 λjΛ
∗
j(µj). When minimizing the cost

function with fixed ρi values, µj must be minimized until, for at least one j, µj = vijρ
∗
i .

Similarly, Observation 5 is derived from the monotonicity of −
∑N

i=1 ρiCi.
Finally, the domain of Λ∗

j(µj) consists of positive µj values; otherwise, the function becomes
infinite. Therefore, µ∗

j ≥ 0, and observation 6 further gives ρ∗j ≥ 0.

3.2 Penalty Term Method for Inequality Constraints

In this section, motivated by [39, 1],we will analyze the first algorithm, the Penalty Term
Method. The concept involves changing the cost function by adding a quadratic form of
the constraint functions, gi(x)+

1, as a penalty, thereby to minimize the new cost function
the optimal point need to be as close as possible to the feasible points.

Consequently, the new cost function is defined as:

fα(x) = f(x) +
α

2

m∑
i=1

(gi(x))
2
+

Now, with gi(x) representing convex functions and gi(x) ≤ 0 denoting the inequality con-
straints, it’s important to note that the new optimization problem remains convex. This
is because (gi(x))

2
+ are also convex functions.

1(gi(x))+ := max(0, gi(x))
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Since there are no constraints in this new optimization problem, it can be efficiently
solved using a stochastic approximation algorithm.

Furthermore, as α tends to infinity, the augmented cost function fα(x) behaves as
follows:

lim
α→∞

fα(x) =

{
f(x), x feasible
+∞, otherwise

;

Here, feasible points are defined as the points x where gi(x) ≤ 0 for all i ∈ 1, ...,m.

Therefore, by increasing α to infinity, we can enforce the constraints and reach the
same solution as the dual problem. This proposition will be further elaborated and proven
in Proposition 3.2.1.

3.2.1 Algorithm and convergence

For solving the dual problem D, to construct the new cost function, we incorporate penalty
terms for the inequality conditions gij(µ, ρ) = vijρi − µj ≤ 0. Additionally, we introduce
regularization to the cost function by including the norm of the variables. This regulariza-

tion term, ||µ||2+||ρ||2
2α

, enhances the speed of the algorithm by transforming the cost function
into a strongly convex function. Finally, as α tends to infinity, this regularization term
becomes negligible, ensuring that its inclusion does not impact the convergence point.

Consequently, the updated cost function is expressed as follows:

Lα(µ, ρ) =
M∑
j=1

λjΛ
∗
j(µj)−

N∑
i=1

ρiCi +
α

2

M∑
j=1

N∑
i=1

(vijρi − µj)
2
+ +

M∑
j=1

µ2
j

2α
+

N∑
i=1

ρ2i
2α

, (3.4)

Moreover the objective derivatives of this cost function will be:

∂Lα

∂µj

(µ, ρ) = λjWj

(
µj)− α

N∑
i=1

(vijρi − µj)+ +
µj

α

∂Lα

∂ρi
(µ, ρ) = −Ci + α

M∑
j=1

vij(vijρi − µj)+ +
ρi
α

(3.5)

Now, we make use of the fact that Wj(µj) = E[1[pn+1 ≤ µj(n)]]. Due to the lack of
access to Wj(µj), we replace it with its noisy version 1[pn+1 ≤ µj(n)]. With access to these
derivatives, we can now outline the stochastic approximation update steps:
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ρi(n+ 1) = ρi(n)− an
[
α

M∑
j=1

vij(vijρi − µj)+ − Ci +
ρi(n)

α

]
µj(n+ 1) = µj(n)− an

[
λj1[pn+1 ≤ µj(n)]− α

N∑
i=1

(vijρi − µj)+ +
µj(n)

α

] (PT/SA)

In the following proposition we will prove that these steps will converge to the optimal
solution of problem D.

Proposition 3.2.1. [Penalty method convergence]
The update steps for µ(n), ρ(n) in the penalty term algorithm converge to a unique solution
µα, ρα that minimizes Lα(µ, ρ).

This solution can also be found by solving the following equations:

∂Lα

∂µj

(µα, ρα) = λjWj

(
µα
j )− α

N∑
i=1

(vijρ
α
i − µα

j )+ +
µα
j

α
= 0

∂Lα

∂ρi
(µα, ρα) = −Ci + α

M∑
j=1

vij(vijρ
α
i − µα

j )+ +
ραi
α

= 0

(3.6)

Furthermore, µα, ρα will converge to µ∗, ρ∗ as α tends to infinity, where µ∗, ρ∗ represent
the solution to problem D.

Proof. We first address the latter part of the proposition. Lα(µ, ρ) is a convex, coercive,
and proper function. These properties guarantee the existence of a unique minimum.
Moreover, Given the differentiability of Lα(µ, ρ), we have ∂Lα

∂µ
= ∂Lα

∂ρ
= 0 at the minimum

point.

As α becomes significantly large, the regularization terms
ρ2i
2α

and
µ2
j

2α
tend towards zero

and the penalty term α
2

∑M
j=1

∑N
i=1(vijρi − µj)

2
+ enforces the constraints vijρi − µj = 0, to

avoid the cost function escalating towards infinity. Therefore, this optimizing problem will
become the same as problem D as α goes to infinity.

In conclusion, using Proposition 3.1.1, which establishes the existence of a unique solu-
tion for problem D, we can deduce that µα, ρα will converge to µ∗, ρ∗ as α goes to infinity.

Now, to demonstrate the convergence of the steps outlined in PT/SA to µα, ρα, it is
essential to apply the principles from Theorem A.1.1 and Theorem A.1.2.
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Here, the stochastic approximation variable is the vector z = [µ, ρ] ∈ R(N+M). We now
proceed to find the noise vector and the ordinary differential equations (ODEs).

The noise vector is given by:

M(n+ 1) = [ λjWj

(
µj)− λj1[pn+1 ≤ µj(n)] , 0]

Calculating the noise mean and variance, we have:

||M(n+ 1)||2 =
M∑
j=1

(
λjWj

(
µj)− λj1[pn+1 ≤ µj(n)]

)2

E[ ||M(n+ 1)||2| Fn] =
M∑
j=1

λ2
jWj

(
µj)(1−Wj

(
µj)) ≤

M∑
j=1

λ2
j

E[M(n+ 1)| Fn] = 0 , E[ ||M(n+ 1)||2| Fn] ≤ σ2

The mean is zero and the variance limited. Thus, the third condition is satisfied.

Moreover, the ODEs are formulated as follows:

µ̇j = −
µj

α
− λjWj

(
µj) + α

N∑
i=1

(vijρi − µj)+ = −∂Lα

∂µj

(3.7)

ρ̇i = −
ρi
α

+ Ci − α
M∑
j=1

vij(vijρi − µj)+ = −∂Lα

∂ρi
(3.8)

ż = h(µ, ρ) =

[
−µj

α
− λjWj

(
µj) + α

∑N
i=1(vijρi − µj)+

−ρi
α
+ Ci − α

∑M
j=1 vij(vijρi − µj)+

]
(3.9)

Here, the function h(µ, ρ) represents the gradient of Lα(µ, ρ). Given that the term
∑M

j=1

µ2
j

2α
+∑N

i=1
ρ2i
2α

is 1
α
-smooth, and the other terms being convex, Lα(µ, ρ) is

1
α
-smooth.

Consequently, h is 1
α
-Lipschitz, satisfying the second condition.

Now, to demonstrate the convergence of the ODEs, we employ Theorem A.1.2. To do
that, we need define the function h∞(µ, ρ) as follows:

h∞(µ, ρ) = lim
c→∞

h(cµ, cρ)

c
=

[
−µj

α
+ α

∑N
i=1(vijρi − µj)+

−ρi
α
− α

∑M
j=1 vij(vijρi − µj)+

]
(3.10)
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We observe that h∞(µ, ρ) is the gradient of the function α
2

∑M
j=1

∑N
i=1(vijρi − µj)

2
+ +∑M

j=1

µ2
j

2α
+
∑N

i=1
ρ2i
2α
, which is L-smooth.

To establish that the new ODE,[
µ̇
ρ̇

]
=

[
−µj

α
+ α

∑N
i=1(vijρi − µj)+

−ρi
α
− α

∑M
j=1 vij(vijρi − µj)+,

]
(3.11)

has has the origin as its unique globally asymptotically stable equilibrium, we apply Lya-
punov’s direct method.

The chosen Lyapunov function, V (µ, ρ) is chosen as the norm of z, and is defined as:

V (µ, ρ) =
||µ||2

2
+
||ρ||2

2

The derivative of V , denoted V̇ , is:

V̇ = ⟨µ , µ̇⟩+⟨ρ , ρ̇⟩ =
M∑
j=1

(
−
µ2
j

α
+α

N∑
i=1

µj(vijρi−µj)+

)
+

N∑
i=1

(
−ρ2i

α
−α

M∑
j=1

vijρi(vijρi−µj)+

)

V̇ = −
M∑
j=1

µ2
j

α
−

N∑
i=1

ρ2i
α
− α

N∑
i=1

M∑
j=1

(vijρi − µj)(vijρi − µj)+

V̇ (µ, ρ) = −
( ||µ||2

α
+
||ρ||2

α
+ α

N∑
i=1

M∑
j=1

(vijρi − µj)
2
+

)
≤ 0.

We have V̇ (µ, ρ) ≤ 0, and V̇ (µ, ρ) = 0 gives µ = 0, ρ = 0. Therefore the origin is
unique globally asymptotically stable equilibrium of the ODE ż = h∞(z). Therefore, using
Theorem A.1.2, we have µ(n) and ρ(n) will converge.
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By integrating an update step for arrival times (in case that the arrival rates λj are
unknown as well), and combining it with the bid adaptation algorithm of Equation PT/SA,
a complete stochastic approximation algorithm for learning solutions to Problem D is
specified by Algorithm 2.

Algorithm 2: SA and penalty method

1 for Each Arriving Item τn+1, θn+1, pn+1 do

2 # Update inter-arrival time estimates,

3 τ̂j(n+ 1) = τ̂j(n) + an
[
1j(θn+1)τn+1 − τ̂j(n)

]
4 τ̂(n+ 1) = τ̂(n) + an

[
τn+1 − τ̂(n)

]
5 # Place bid xj(n) observe 1[pn+1 ≤ xj(n)] and update µj,

6 µj(n+ 1) = µj(n)− an
[1j(θn+1)

τ̂(n)
1[pn+1 ≤ µj(n)]− α

∑N
i=1(vijρi − µj)+ +

µj(n)

α

]
7 # Update ρi

8 ρi(n+ 1) = ρi(n)− an
[
α
∑M

j=1 vij(vijρi − µj)+ − Ci +
ρi(n)
α

]
9 # Keep track of total supply targets

10 sj(n+ 1) = sj(n) + an1j(θn+1)
[

1
τ̂j(n)

1[pn+1 ≤ µj(n)]− sj(n)
]

The first step of Algorithm 2 is used to provide adaptive estimates of the τj (used in
penalty term 1

τ̂j(n)
1[pn+1 ≤ µj(n)], when updating µj and sj). The remaining steps update

the bids and the supply rates.

3.2.2 Simulation

In order to illustrate the performance of our methods, we have carried out numerical
simulations for an example contract management problem with M = 5 distinct item types,
and N = 6 contracts. The prices (denominated in arbitrary monetary units) p(n) =(
pj(n), j ∈ [M ]

)
for each type are drawn i.i.d. from Gamma distributions and arrive

according to Poisson processes of rates (having units of Hz) λ =
(
λj, j ∈ [M ]

)
. The

specific parameters are given by

λ = (3.0, 16.0, 18.0, 17.0, 18.0),

E[p(n)] = (20, 23, 26, 29, 32),

Var[p(n)] = (20, 18, 16, 14, 12),

(3.12)
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which is enough to fully specify the market model. The item type j = 1 is the cheapest,
yet has by far the lowest supply and has a high variance – these parameters stress the
stochastic approximation since the optimal solution is likely to require nearly all of the
supply of type j = 1 that is available. The N = 6 contracts are specified through the sets
A =

(
Ai, i ∈ [N ]

)
and C =

(
Ci, i ∈ [N ]

)
as

V =


1 0 0 0 1
0 1 0 1 1
0 0 1 0 1
1 0 1 0 1
0 0 1 1 1
0 1 0 1 1

 ,

C =
(
6.0, 5.1, 2.7, 9.9, 6.6, 7.8

)
.

(3.13)

Despite being the most expensive, item 5 is also the most frequent and in high demand
(V [i, 5] = 1), suggesting that its optimal supply rate may not differ significantly from that
of other items.

In order to initialize Algorithm 2, an initial array µ(0) needs to be specified. In principle,
since the Algorithm is convergent for any starting point, the algorithm can be initialized at
random or arbitrarily (e.g., at zero). However, superior initialization methods are available.

Firstly, if prior information is available, then the nominal solution of Problem (D)
can be solved with standard convex optimization software (e.g., [14]) using an appropriate
model of Λj which captures this prior knowledge [24], and then the solution of this program
can be used as the initialization. Moreover, For the purposes of our simulation we have
used an = 10 ∗ n−1.

Finally, the parameter α needs to be taken large, but using too large of a value of
α can easily cause numerical overflow at the early stages of the approximation. α can
be increased (e.g., via α ← (1 + κ)α, κ > 0) throughout the simulation (perhaps up to
some large maximum value) whenever the iterates are detected to be infeasible. This latter
method has been used in our simulations in order to avoid any unusual discontinuous jumps
in the algorithm, with the value κ = 0.01, up to a maximum of α < 104. This maximum
value seems to be reasonable based on simulation evidence of [17].

Numerical results are given in Figure 3.1 and 3.2. With reference to Code , we have
calculated
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Figure 3.1: Convergence of Bids and supply Rates
Convergence of the bids for the Penalty Term Algorithm for Inequality Constraints. The

iterates are extremely noisy, but they start converging after 100000 iteration.
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Figure 3.2: Convergence of the Cost Functions and Supply Rates
Convergence of the two component of the cost function and the total cost function for the

Penalty Term Algorithm for Inequality Constraints, is shown.
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bids =[28.66 26.52 27.98 27.80 28.66]

supply rates =[2.67 12.87 12.59 6.55 3.11]

ρ =[28.65 26.51 27.97 27.96 27.78 26.51]

R =


2.78 0 0 0 3.22
0 5.11 0 0 0
0 0 2.71 0 0
0 0 9.92 0 0
0 0 0 6.6 0
0 7.81 0 0 0


Total cost = 888.45

We finally see from both of these figures that the algorithms have converged after to
approximately 100, 000 item arrivals. According to statistics reported by [46], these arrival
rates should accurate within reasonable orders of magnitude. Still, the actual arrival rates
will be highly dependent upon how the type of an item is characterized.
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3.3 Projected Noisy Gradient Descent

In section 3.1, we expressed the dual problem as a minimization of a convex function subject
to linear inequality constraints. All the feasible points which satisfy the constraints are
denoted as G. And, in this case, G is equal to the set {z ∈ RN+M | gk(z) ≤ 0, k =
1, ..., NM}, where gk : RN+M → R are linear functions, with g(i,j)(µ, ρ) = Vijρi − µj

(gij(z) = Vijzi+M − zj). The set G is convex, nonempty, and closed.

Utilizing this observation, we aim to apply the Projected Gradient Descent algorithm
to address the dual problem and solve for the optimal point.

In this section, we will implement the Projected Gradient Descent algorithm [5, 27].
Then to show the convergence of this algorithm , we will use Theorem A.1.3, which estab-
lishes that with some extra assumptions on G, the Projected Stochastic Approximation
steps will converge to the optimal solution of Problem D.

The Projected Gradient Descent is applicable to convex optimization problems in the
form of:

min
z

f(z) subject to z ∈ G;

where f is a convex differentiable function and G is a convex set. The update steps are
given by z(n+ 1) = ΠG(z(n)− an∇f(x)). 2

3.3.1 Algorithm and convergence

Now Given the cost function in D, we can derive the update steps for µ and ρ as follows:

ρ̃i(n+ 1) = ρi(n) + anCi,

µ̃j(n+ 1) = µj(n)− anλj1[pn+1 ≤ µj(n)]

[
µ(n+ 1)
ρ(n+ 1)

]
= ΠG

([µ̃(n+ 1)
ρ̃(n+ 1)

]) (PGD)

The following proposition shows the convergence of PGD steps.

Proposition 3.3.1. [Projected Noisy Gradient Descent convergence]
The steps µ(n), ρ(n) in the equations PGD converge to a unique solution µ∗, ρ∗, where
µ∗, ρ∗ represent the optimal solution to problem D.

2ΠG(x) denotes the projection of the point x onto the convex set G, i.e., ΠG(x) = inf
z∈G
||z − x||
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Proof. To prove the convergence of this algorithm, we use Theorem A.1.3 and verify that
all the conditions are satisfied. For the first two conditions we need to show the properties
for set G. We can express G as:

G = {z ∈ RN+M | Az ≤ 0},
G = {z ∈ RN+M | gk(z) ≤ 0, k = {1, ..., NM}},

(3.14)

where A ∈ RNM×(N+M) is a matrix with the kth row being the vector a ∈ RN+M ,
a = [0, ...,−1, ..., 0 | 0, ..., vij, ..., 0] (−1 is at the jth position, and vij at i

th).

We observe that G is a convex, non-empty, and closed set. Additionally, gk(z) = aT z
are continuously differentiable linear functions, and therefore the gradients of the active
constraints are linearly independent (2nd condition).

The remaining conditions are satisfied similarly to the proof for Proposition 3.2.1. we
only need to demonstrate that support of the conditional distribution of Mn is a closed
bounded set, A(zn). We have:

Mj(n+ 1) = λjWj

(
µj)− λj1[pn+1 ≤ µj(n)]

which implies, −λ ≤M(n) ≤ λ or Mn(zn) ∈ A(zn) = [−λ, λ].
Consequently, µn and ρn will converge to the point µ∗, ρ∗, where µ∗, ρ∗ are in the set:

KT = {z ∈ G | ∀k = {1, ..., NM} , ∃λk ≤ 0 such that : λkgk(z) = 0,−h(z)+
NM∑
i=1

λk∇gk(z) = 0}.

to show that µ∗, ρ∗ are also the solution to problem D, we use theorem A.2.1.
Each point in the set KT satisfies all four conditions in the Karush-Kuhn-Tucker (KKT)
Conditions. Moreover, since the functions gk(z) = aT z are unbounded linear functions,
there exist a slater point 3. For example, in any point with µj > 0 and ρi < 0, we have
g(i,j)(µ, ρ) = Vijρi − µj < 0; and therefore it is a Slater point.

Therefore µ(n), ρ(n) will converge to the optimal solution to problem D.

3Slater point is defined as follows: (∃y ∈ Rd)(∀i ∈ {1, . . . ,m}). gi(y) < 0
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By adding an update step for arrival times (in case that the arrival rates λj are un-
known as well), and combining it with the bid adaptation algorithm of Equation PGD, a
complete projected stochastic approximation algorithm for learning solutions to Problem
D is specified by Algorithm 3.

Algorithm 3: Projected SA

1 for Each Arriving Item τn+1, θn+1, pn+1 do

2 # Update inter-arrival time estimates,

3 τ̂j(n+ 1) = τ̂j(n) + an
[
1j(θn+1)τn+1 − τ̂j(n)

]
4 τ̂(n+ 1) = τ̂(n) + an

[
τn+1 − τ̂(n)

]
5 # Place bid xj(n) observe 1[pn+1 ≤ xj(n)] and update µj, ρi,

6 µ̃j(n+ 1) = µj(n)− an
1j(θn+1)

τ̂(n)
1[pn+1 ≤ µj(n)]

7 ρ̃i(n+ 1) = ρi(n) + anCi

8 # Project µ and ρ on G,

9

[
µ(n+ 1)
ρ(n+ 1)

]
= ΠG

([µ̃(n+ 1)
ρ̃(n+ 1)

])
10 # Keep track of total supply targets,

11 sj(n+ 1) = sj(n) + an1j(θn+1)
[

1
τ̂j(n)

1[pn+1 ≤ µj(n)]− sj(n)
]

Remark 3.3.1. Projection of a point x onto the set G, when G = {x ∈ RN+M | Ax ≤ 0},
does not have a closed form solution.
Instead, it is a convex optimization problem, formulated as: min

y
||x−y||2 subject toAy ≤ 0.

Hence, within each step of this algorithm, we need to solve another convex optimization.

Fortunately, this problem takes the form of quadratic convex optimization problem with
linear inequality constraints, and can be solved with Quadratic programming algorithms.

During simulations, we simply employ the CVXPY library in Python, which offers a
fast step for our use.

3.3.2 Simulation

To compare the results of the algorithms, we will set all the market and contract variables
similar to those used in the last algorithm. Furthermore, in this algorithm, there does
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Figure 3.3: Convergence of Bids and supply Rates
Convergence of the bids for the Projected Noisy Gradient Descent. The iterates start

converging after 10000 iteration.
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Figure 3.4: Convergence of the Cost Functions and Supply Rates
Convergence of the two component of the cost function and the total cost function for the

Projected Noisy Gradient Descent, is shown.
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not exist any hyperparameter α to determine. However, we need to create a function in
Python using the CVXPY library to combine µ and ρ and then project them onto the set
G. And again, For the purposes of our simulation we have used an = 10 ∗ n−1.

Numerical results are given in Figure 3.3 and 3.4. With reference to Code, we have
calculated :

bids =[28.72 26.36 27.96 27.78 28.72] (3.15)

supply rates =[2.89 12.64 12.53 6.61 3.13] (3.16)

ρ =[28.72 26.36 27.96 27.96 27.78 26.36] (3.17)

Total cost = 889.01 (3.18)

R =


2.96 0 0 0 3.03
0 5.09 0 0 0
0 0 2.69 0 0

0.06 0 9.7 0 0.13
0 0 0.16 6.43 0
0 7.58 0 0.21 0

 (3.19)

We finally see from both of these figures that the algorithms have converged after approx-
imately 10, 000 item arrivals.

As predicted, the supply rate for item 1 closely matches its arrival rate, indicating that
the algorithm attempts to purchase all items of type 1. And interestingly, despite being
the most expensive, the supply rate for the last item is comparable to that of the others
due to its high demand.
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3.4 Subgradiant Method

In this part, we utilize the fact that the optimal solution to problem D, denoted as µ∗ and

ρ∗, satisfies the property µ∗
j = max

i
(vijρ

∗
i ) and ρ∗i = min

j
(
µ∗
j

vij
) (as mentioned in observation

5 in proposition 3.1.2).
The aim is to reformulate the cost function solely in terms of µ and eliminate the inequality
condition.

3.4.1 Algorithm and convergence

In problem D, we seek to minimize the function L(µ, ρ) over the closed linear set
S = {µ, ρ | vijρi ≤ µj,∀i ∈ N, j ∈M}.
We introduce another set S̃ = {µ, ρ | µj = max

i∈Bj

(vijρi), ρi = min
j∈Ai

(
µj

vij
),∀i ∈ N, j ∈ M}. It is

evident that S̃ ⊂ S. Moreover, based on observations 1,5 in proposition 3.1.2, we conclude
that min

µ,ρ∈S
L(µ, ρ) has a unique solution µ∗, ρ∗, where µ∗, ρ∗ ∈ S̃.

Therefore, we deduce that min
µ,ρ∈S̃

L(µ, ρ) also has a unique solution, which is equal to the

solution of problem D.
Consequently, we can minimize the cost function over the smaller subject set, thereby sim-
plifying the algorithm.

We introduce a new problem formulation:

minimize
ρ,µ

M∑
j=1

λjΛ
∗
j(µj)−

N∑
i=1

ρiCi

subject to µj = max
i∈Bj

(vijρi), ρi = min
j∈Ai

(
µj

vij
),∀i ∈ N, j ∈M

(3.20)

The advantage of this form of the dual problem is that we can express the cost function
solely in terms of either µ or ρ. Consequently, we have:

minimize
µ

M∑
j=1

λjΛ
∗
j(µj)−

N∑
i=1

Cimin
j∈Ai

(
µj

vij
) (D̃)

38



Now that the function is solely a function of µ, it benefits from the advantage of no longer
having a condition on the optimization. However, it also presents a disadvantage: it is no
longer differentiable, thus rendering stochastic approximation ineffective due to the absence
of a gradient for the function f .
Considering these factors, we recommend utilizing the subgradient method to solve problem
D̃. This method is particularly suitable for optimizing non-differentiable functions and can
efficiently handle the absence of a gradient in this context.
Given that we now have a convex optimization problem and access to noisy subgradients
of the cost function, we will use the subgraiadent method. In this method, we iteratively
update the step iterations using the subgradient.
Before proceeding further, we present a proposition outlining the conditions required for
the convergence of the subgradient method to the minimum point of the cost function.

Proposition 3.4.1 (subgradient convergence [9]). Suppose f : Rn → R is a non differen-
tiable convex function with a noisy subgradiant vector g̃ ∈ Rn.
The stochastic subgradient method uses the standard update

x(k+1) = x(k) − αkg̃
(k) (3.21)

where x(k) is the kth iterate, αk > 0 is the kth step size, and g̃(k) is a noisy subgradient of
f at x(k),

E
(
g̃(k) | x(k)

)
= g(k) ∈ ∂f

(
x(k)

)
.

Moreover we will define the minimum of all the f(x(i)) as,

f
(k)
min = min

{
f
(
x(1)

)
, . . . , f

(
x(k)

)}
.

If the following conditions hold:

• (Robbins-Monro)
∑∞

n=0 an =∞,
∑∞

n=0 a
2
n <∞.

• There exist G where E
∥∥g(k)∥∥2

2
≤ G2 for all k.

• There exist R where E
∥∥x(1) − x⋆

∥∥2

2
≤ R2

Then the algorithm will converge and we have

lim
k→∞

f
(k)
min = f ⋆
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Proof. We have

E
(∥∥x(k+1) − x⋆

∥∥2

2
| x(k)

)
= E

(∥∥x(k) − αkg̃
(k) − x⋆

∥∥2

2
| x(k)

)
=

∥∥x(k) − x⋆
∥∥2

2
− 2αkE

(
g̃(k)T

(
x(k) − x⋆

)
| x(k)

)
+ α2

kE
(∥∥g̃(k)∥∥2

2
| x(k)

)
=

∥∥x(k) − x⋆
∥∥2

2
− 2αkE

(
g̃(k) | x(k)

)T (
x(k) − x⋆

)
+ α2

kE
(∥∥g̃(k)∥∥2

2
| x(k)

)
≤

∥∥x(k) − x⋆
∥∥2

2
− 2αk

(
f
(
x(k)

)
− f ⋆

)
+ α2

kE
(∥∥g̃(k)∥∥2

2
| x(k)

)
Here, we utilize the fact that E

(
g̃(k) | x(k)

)
= g(k) ∈ ∂f

(
x(k)

)
and the subgradient property,

for the inequality. Now we take expectation to get

E
∥∥x(k+1) − x⋆

∥∥2

2
≤ E

∥∥x(k) − x⋆
∥∥2

2
− 2αk

(
Ef

(
x(k)

)
− f ⋆

)
+ α2

kG
2,

and by summing up over k, we arrive at,

0 ≤ E
∥∥x(k+1) − x⋆

∥∥2

2
≤ E

∥∥x(1) − x⋆
∥∥2

2
− 2

k∑
i=1

αi

(
Ef

(
x(i)

)
− f ⋆

)
+G2

k∑
i=1

α2
i .

Thus, we establish

min
i=1,...,k

(
Ef

(
x(i)

)
− f ⋆

)
≤ R2 +G2∥α∥22

2
∑k

i=1 αi

,

which shows that mini=1,...,k Ef
(
x(i)

)
converges to f ⋆. Finally, we note that by Jensen’s

inequality and concavity of the minimum function, we have

Ef
(k)
min = E min

i=1,...,k
f
(
x(i)

)
≤ min

i=1,...,k
Ef

(
x(i)

)
,

so Ef
(k)
min also converges to f ⋆.

To demonstrate the applicability of Proposition 3.4.1 to the dual problem D̃, we first
check the three conditions. The cost function in problem D̃ is,

L̃(µ) =
M∑
j=1

λjΛ
∗
j(µj)−

N∑
i=1

Cimin
j∈Ai

(
µj

vij
).
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The derivative of the first term λjΛ
∗
j(µj) is λjW

∗
j (µj) = Sj. However, since we lack prior

information about the market, we replace Sj with the function λj1[pn+1 ≤ µj(n)].
Next, to compute the subgradient of the term min

j∈Ai

(
µj

vij
), we need to first define the set,

A∗
i = {j ∈ Ai | j ∈ argmin

j∈Ai

(
µj

vij
)}. The derivative is then given by:

∂(min
j∈Ai

(
µj

vij
)) = convex hull

⋃
j∈A∗

i

[0, ...,
1

vij
, ..., 0].

This set is either singleton or has more than one component. In the case of the latter
we can arbitrarily choose one of the j ∈ A∗

i to represent A∗
i in the convex hull (convex hull

is any linear combination of vectors with j ∈ A∗
i ).

Therefore, the resulting noisy subgradient is:

∂jL̃(µ) = λj1[pn+1 ≤ µj(n)]−
N∑
i=1

Ci

vij
1[j ∈ A∗

i ] (subgradiant)

To update the µ’s in our algorithm, we proceed as follows:

µj(n+ 1) = µj(n)− bn
(
λj1[pn+1 ≤ µj(n)]−

N∑
i=1

Ci

vij
1[j ∈ A∗

i ]
)

(SG)

Where bn satisfies the Robbins-Monro conditions. To demonstrate the convergence of
the subgradient update given by Equation SG, we us Proposition 3.4.1. It suffices to show
that the average squared norm of the noisy subgradient is bounded.
we can write the subgradient as:

∂jL̃(µ) = λj1[pn+1 ≤ µj(n)]−
N∑
i=1

Ci

vij
1[j ∈ A∗

i ] = (λj1[pn+1 ≤ µj(n)]−Sj)+(Sj−
N∑
i=1

Ci

vij
1[j ∈ A∗

i ])

We define the first term, (λj1[pn+1 ≤ µj(n)]−Sj), as noise and denote it as the vector Mn.
Thus, we have:

Mj(n) = λj1[pn+1 ≤ µj(n)]− Sj = λj

(
1[pn+1 ≤ µj(n)]− E

(
1[pn+1 ≤ µj(n)]

))
Hence, we have E (Mj(n) | µj(n)) = 0 and,

V ar (Mj(n) | µj(n)) = λ2
j

(
E
(
1[pn+1 ≤ µj(n)]

)
− E2

(
1[pn+1 ≤ µj(n)]

))
= λ2

jWj(µj(n))
(
1−Wj(µj(n))

)
≤ λ2

j

(3.22)
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Therefore E ∥Mn∥22 ≤
∑M

j=1 λ
2
j .

Likewise we have a upper bound for the deterministic part of subgradiant which is
∑M

j=1 λ
2
j+∑M

j=1(
∑N

i=1
Ci

vij
)2

So there exist G2 = 2
∑M

j=1 λ
2
j +

∑M
j=1(

∑N
i=1

Ci

vij
)2 where E

∥∥∥∂L̃(n)∥∥∥2

2
≤ G2 for all n.

By Proposition 3.4.1, the algorithm described in Equation SG will converge. Consider-
ing the aforementioned analysis in the beginning of this section, we conclude that the
convergence point will be the same as the solution of problem D.

Combining the derivatives in Equation SG with a stochastic approximation algorithm
to update Sj’s and τj’s, we obtain a complete one-timescale algorithm for learning solutions
to Problem D. This algorithm is specified by Algorithm 4.

Algorithm 4: Subgradiant step for µ

1 for Each Arriving Item τn+1, θn+1, pn+1 do

2 # Update inter-arrival time estimates,

3 τ̂j(n+ 1) = τ̂j(n) + an
[
1j(θn+1)τn+1 − τ̂j(n)

]
4 τ̂(n+ 1) = τ̂(n) + an

[
τn+1 − τ̂(n)

]
5 # Find the set A∗

i (n) and randomly choose one of its components ,

6 A∗
i (n) = {j ∈ Ai | j ∈ argmin

j∈Ai

(
µj(n)

vij
)}

7 # Place bid xj(n) observe 1[pn+1 ≤ xj(n)] and update µj,

8 µj(n+ 1) = µj(n)− an
[1j(θn+1)

τ̂(n)
1[pn+1 ≤ µj(n)]−

∑N
i=1

Ci

vij
1[j ∈ A∗

i (n)]
]

9 # Keep track of total supply targets

10 Sj(n+ 1) = Sj(n) + an1j(θn+1)
[

1
τ̂j(n)

1[pn+1 ≤ µj(n)]− Sj(n)
]

11 # Keep track of total ρi
12 ρi = min

j∈Ai

(
µj

vij
)

Here we omitted a derivative step for updating ρ and instead directly applied the fact

that ρ∗i = min
j∈Ai

(
µ∗
j

vij
).
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3.4.2 Simulation

To compare the results of the algorithms, we will set all the market and contract variables
similar to those used in the last algorithm.

Numerical results are given in Figure 3.5 and 3.6. With reference to Code, we have
calculated :

bids =[28.76 26.56 27.95 27.79 28.76] (3.23)

supply rates =[2.85 12.87 12.61 6.58 3.17] (3.24)

ρ =[28.76 26.57 27.93 27.93 27.78 26.57] (3.25)

Total cost = 886.83 (3.26)

R =


2.86 0 0 0 3.14
0 5.1 0 0 0
0 0 2.7 0 0
0 0 9.86 0 0
0 0 0 6.55 0
0 7.76 0 0 0

 (3.27)

We finally see from both of these figures that the algorithms have converged after to
approximately 10, 000 item arrivals.

By comparing µ and ρ, we can construct the matrix Θ, where θij = µj − vijρi:

Θ =


0 26 27 27 0
28 0 27 1 2
28 26 0 27 0
0 26 0 27 0
28 26 0 0 0
28 0 27 1 2


Drawing from Observation 3.1.2, if vij > 0 and θij > 0, then it follows that Rij = 0. As a
result, we establish:

A =
(
{1, 5}, {2, 4, 5}, {3, 5}, {1, 3, 5}, {3, 4, 5}, {2, 4, 5}

)
,

A∗ =
(
{1, 5}, {2}, {3, 5}, {1, 3, 5}, {3, 4, 5}, {2}

)
.

(3.28)

The matrix R contains MN = 36 variables. By examining matrix V , we can immediately
reduce this to d =

∑N
i=1 |Ai| = 16 nonzero components. Applying the observation 3.1.2

and considering Θ, we can further reduce the dimensionality to d∗ =
∑N

i=1 |A∗
i | = 12.

Ultimately, simulations reveal that the actual number of nonzero components in R is 7.
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Figure 3.5: Convergence of Bids and supply Rates
Convergence of the bids for the Sub-Gradient Descent. The iterates start converging after 10000

iteration.
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Figure 3.6: Convergence of the Cost Functions and Supply Rates
Convergence of the two component of the cost function and the total cost function for the

Sub-Gradient Descent, is shown.
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3.4.3 Comparison Between The Algorithms

This section evaluates the performance of the three algorithms presented in this chapter,
highlighting their advantages and disadvantages based on variable management, conver-
gence speed, computational demands, and proximity to optimal bids.

Variable Management: The Penalty Term method and Projected Gradient Descent
(PGD) algorithms involve N + M variables, as they can not separate updates of µ from
ρ. This contrasts with the Subgradient Descent algorithm, which uniquely benefits from
variable separation, directly updating µ (equal to the bids, which is our primary variable of
interest). Thus, in terms of variable management, Subgradient Descent offers a significant
advantage by focusing updates on only N variables.

Convergence Speed and Noise: Our simulations indicate that the Penalty Term
algorithm is approximately ten times slower in convergence rate than the others and have
the highest noise levels. This algorithm’s initial iterations are particularly impacted by the
large penalty term, and to manage this we need to limit the bids to a boundary. Between
Subgradient Descent and PGD, PGD achieves faster convergence. However, Subgradient
Descent results in a smoother final value (in PGD, the noise is projected on the constraint
set as well, which will increase the noise level).

Computational Demands: PGD is computationally more intensive due to the ne-
cessity of solving a projection convex problem at every step using CXVPY. Conversely,
the Penalty Term algorithm’s primary computational challenge lies in optimizing the extra
hyperparameter α, which must increase over time. The rate of this increase significantly
influences the convergence speed, presenting an additional layer of complexity in algorithm
tuning.

Proximity to Optimal Bids: When evaluating which algorithm’s outcomes most
closely approximate the optimal bids, we can compare their cost functions. The Subgradi-
ent Descent algorithm exhibits the lowest cost, suggesting its final bids are nearest to the
optimal solutions.

In summary, while PGD offers quicker convergence and Subgradient Descent provides
a smoother final value with less computational overhead, the Penalty Term algorithm
struggles with slower convergence and additional complexity due to hyperparameter tuning.
Subgradient Descent emerges as the most effective in approximating optimal bids, striking
a balance between efficiency and computational demand.
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3.5 Optimal Cost and Acquisition Rates

In the previous sections, we explored three online convex optimization algorithms designed
to use item arrival data for updating the bid values and supply rates.

In this section, we present methods for estimating the Optimal Cost and Acquisition
Rates. The dual problem formulation eliminated Acquisition Rates as a variable, focusing
solely on bid values. However, we need to accurately estimate the Acquisition Rates to
distribute the wining items among the contracts, and ensure that each contract receives
items in a manner that minimize the overall cost function.

Additionally, knowing the cost function’s value at each sequence helps us to check the
convergence of these algorithms towards the optimal solution of problem D. It also allows
for a comparison between the dual and primal optimal values, to see if the duality gap is
in fact zero, as was shown previously in section 3.1.

For estimating the optimal cost, we present an adaptive algorithm, which updates the
cost using each new item bid. (similarly the the supply rates)

On the other hand, for estimating the Acquisition Rates, we suggest an offline algorithm
that provide estimates of Acquisition Rates at any step, without knowing the previous data.

3.5.1 Stochastic approximation for Optimal Cost

The cost function of the dual problem is
∑M

j=1 λjΛ
∗
j(µj)−

∑N
i=1 ρiCi. Calculating the term

Λ∗
j(µj) is not possible since the price distribution is unknown. Therefore, we need to find

an estimation for it.
We have:

Λ∗(µ) =

∫ µ

0

W (u)du = µW (µ)−
∫ µ

0

uW
′
(u)du

Where W (x) denotes the cumulative distribution function (CDF) of the price distribution.
i.e.,

W (µ) = P(p ≤ µ) = Ep(1[p ≤ µ]).

we can the rewrite the term
∫ µ

0
uW

′
(u)du as

∫ µ

0
xfp(x)dx =

∫∞
0

x1[x ≤ µ]fp(x)dx ,
where fp is the density function of p distribution. This integral is equal to Ep(p1[p ≤ µ]).
Therefore, we have:

Λ∗(µ) = µEp(1[p ≤ µ])− Ep(p1[p ≤ µ]),

Λ∗(µ) = Ep[(µ− p)1[p ≤ µ]] = Ep[(µ− p)+].
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In the real market, we do not have access to W or Λ, and are only provided with
information regarding the type of the arrived items (1j(θn+1)), the bid amount for the
item (µj(n))), whether we won the bid or not (1[pn+1 ≤ µ(n)]) , and in case we won the
auction , the price we need to pay, which in second price actions is pn+1 (if unsuccessful,
pn+1 remains unknown).
Consequently, we can determine the function µj(n)− pn+1, if we win the bid on item j. In
other words, our data at each iteration is represented as:

[µj(n)− pn+1]1j(θn+1)1[pn+1 ≤ µj(n)] = (µj(n)− pn+1)+1j(θn+1).

Before proceeding further, we will introduce a proposition that will aid us in the esti-
mating the cost.

Proposition 3.5.1 (Cost Function Convergence). Suppose pn, n ∈ N are Independent and
identically distributed random variables, where p ∈ L2.
Additionally, suppose we have the stochastic process µn, where µn is Fn = σ(p1, .., pn)
measurable, and µn

a.s−→ µ∗.
And the additional condition is E

∑∞
i=0(µn − µ∗)2 < ∞ or E[

∑∞
i=0(µn − µ∗)2|Fn−1] < ∞.

Then: ∑n
i=1(µi − pi)+

n

a.s−→ Ep[(µ− p)+]

Using this proposition, we can estimate The cost function
∑M

j=1 λjΛ
∗
j(µj) by expressing

it as:

M∑
j=1

λjΛ
∗
j(µj) =

M∑
j=1

λPθjΛ
∗
j(µj)

=
M∑
j=1

λEθ[Epj [1j(θn+1)(µj(n)− pj(n+ 1))+]]

= λEθ,pj [
M∑
j=1

1j(θn+1)(µj(n)− pj(n+ 1))+]

= λEθ,pj [(µθn+1(n)− p(n+ 1))+],

Were Pθj represents the probability that the arriving item belongs to type j.

In the previous section, we showed that in all of the algorithms, the bids will converge
almost surely to the optimal value. Leveraging this fact, and using Proposition 3.5.1, we
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can deduce that the empirical average of the variable (µθn+1(n)− p(n+ 1))+ will converge
to its expectation. Thus, we can estimate the first term of the cost function from the
following update step.

Ln+1 = Ln +
λ(µθn+1(n)− p(n+ 1))+ − Ln

n
(3.29)

And finally, the entire cost estimation will Ln −
∑N

i=1 ρiCi .

3.5.2 Finding Acquisition Rates with Quadratic Programming

In this section, we discuss how to find Acquisition Rates using Quadratic Programming.

Since we have the optimal bids and corresponding supply rates (S̃j), we can estimate
the Acquisition Rates. Unlike the bid and supply rates estimation, which was a online
convex optimization problem, finding optimal acquisition rates is an offline problem, and
do not use the previous bidding data. To find the optimal acquisition rates, we have a best
estimation of supply rates, and we only need to solve a set of linear equations.

These equations for the acquisition rates will ensure that both the contract rates and
the supply rates constraints are satisfied:

M∑
j=1

vijRij = Ci,
N∑
i=1

Rij = S̃j

Here we haveN+M equations andNM variables. Therefore, this set of linear equations
can have more than one feasible solution. However, we can select the set of Rijs such that
the square norm of R is minimized. Furthermore, there must be a condition that all rates
are positive.

Overall, the optimization problem can be formulated as follows:

minimize
R

∑M
j=1

∑N
i=1R

2
ij

2

subject to
M∑
j=1

vijRij = Ci

N∑
i=1

Rij = S̃j, Rij ≥ 0.

(R− update)
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The cost function of this convex optimization problem is strongly convex with respect
to R. Additionally, the set of constraints on R is nonempty (as per assumption 3.1.1).
Consequently, there exists a unique solution to this optimization problem.

From observation 3.1.2, we knew that if vij = 0 or vij > 0, θij > 0, then we have Rij = 0.
Therefore, we can limit the set of non-zero R values to a subset on RNM , denoted as I,
where I = {i, j|vij > 0, θij = 0}. By doing so, we restrict our optimization problem to
solve only for Rij where (i, j) ∈ I. This limitation of the constraints can improve algorithm
efficiency. And now the algorithm has d (size of set I) variables to optimize, and usually
we have d << NM , which will speed up the algorithm significantly.

So at each iteration of the bidding process, solving this quadratic optimization problem
provides access to the acquisition rates. While this optimization problem can be solved
using tools like CVXPY in Python, we introduce a simple algorithmic solution for it as
well.

We define sets S1 = {Rij|
∑M

j=1 vijRij = Ci}, S2 = {Rij|
∑N

i=1 Rij = S̃j}, S3 = RNM
+ .

The projection of Rij on these three sets will be:

PS1(Rij) = Rij −
vij(

∑M
j=1 vijRij − Ci)∑M

j=1 v
2
ij

PS2(Rij) = Rij −
(
∑N

i=1Rij − S̃j)

N
PS3(Rij) = (Rij)+

Proof. We will prove the correctness of the first projection, and the proof for the other
projections follows similarly. First, we need to show that PS1(Rij) ∈ S1. We have:

M∑
j=1

vijPij =
M∑
j=1

vijRij −
∑M

j=1 v
2
ij(
∑M

j=1 vijRij − Ci)∑M
j=1 v

2
ij

= Ci

So, PS1(Rij) satisfies the constraint
∑M

j=1 vijPij = Ci, thus PS1(Rij) ∈ S1.
Next, we need to show that for any cij ∈ S1, ⟨Pij −Rij, Pij − cij⟩ ≤ 0. We have:
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⟨Pij −Rij, Pij − cij⟩ = ⟨
−vij(

∑M
j=1 vijRij − Ci)∑M

j=1 v
2
ij

, Pij − cij⟩

= −
N∑
i=1

M∑
j=1

vij(
∑M

j=1 vijRij − Ci)∑M
j=1 v

2
ij

(Pij − cij)

= −
N∑
i=1

(
∑M

j=1 vijRij − Ci)∑M
j=1 v

2
ij

M∑
j=1

(vijPij − vijcij) = 0

Therefore, ⟨Pij −Rij, Pij − cij⟩ ≤ 0, which completes the proof.

So the update steps will be:

Rij(k + 1) = [Rij(k)−
vij(

∑M
j=1 vijRij(k)− Ci)∑M

j=1 v
2
ij

− (
∑N

i=1 Rij(k)− S̃j)

N
]+

This method is called method of alternating projections (MAP), and the sequence of
alternating projections will converge to the solution of R− update.
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Algorithm 5: Cost and Acquisition Rates estimation

1 for Each Arriving Item τn+1, θn+1, pn+1 do

2 # Update inter-arrival time estimates,

3 # Place bid xj(n) observe 1[pn+1 ≤ xj(n)] and update µj(n), ρi(n)

4 # Keep track of total supply targets

5 Sj(n+ 1) = Sj(n) + an1j(θn+1)
[

1
τ̂j(n)

1[pn+1 ≤ µj(n)]− Sj(n)
]

6 # Update the cost function
7 Ln+1 = Ln + an(λ [µθn+1(n)− pn+1]+ − Ln),

8 cost(n+ 1) = Ln+1 −
∑N

i=1 ρi(n+ 1)Ci

9 # Update the Acquisition Rates

10 R
(0)
ij = Rij(n),

11 for k = 1 : N0 do

12 R
(k+1)
ij = [R

(k)
ij −

vij(
∑M

j=1 vijR
(k)
ij −Ci)∑M

j=1 v
2
ij

− (
∑N

i=1 R
(k)
ij −Sj(n+1))

N
]+

13 Rij(n+ 1) = R
(N0+1)
ij
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Chapter 4

Conclusion

4.1 Summary

In this thesis, we addressed the problem of Real-Time Bidding (RTB) in a second-price
Vickrey auction setting with multiple item types and unknown price distributions. We
proposed and analyzed various algorithms to tackle this optimization problem.

First, in Chapter 2, we developed a two-time scale Projected Stochastic Approximation
algorithm to solve the primal problem. This algorithm efficiently updated the Acquisition
Rates while learning the bids.

In Chapter 3, we focused on solving the dual problem using three different algorithms:
Penalty Term method, Projected Gradient Descent (PGD), and Subgradient Descent. We
discussed the convergence conditions and convergence rates of these algorithms and con-
firmed their convergence through simulations and and compare their convergence rates as
well.

Finally, we compared these algorithms and discussed their advantages and disadvan-
tages. We found that PGD offers faster convergence, while Subgradient Descent provides
smoother final values with less computational overhead. Notably, both PGD and Subgra-
dient Descent surpassed the Penalty Term method in performance. Therefore, when con-
sidering computational efficiency, the choice between Projected Gradient Descent (PGD)
and Subgradient Descent depends on the computational power available and the speed at
which final bids need to be adapted. PGD offers faster convergence, making it suitable
when computational power is not limited and rapid bid adjustments are necessary. Con-
versely, Subgradient Descent is preferable in scenarios where computational time per step
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exceeds the arrival rate of new items, as often encountered in large-scale advertising space
sales.

Now, we will compare the primal and dual problems. In terms of formulation, the
primal problem involves a convex optimization with NM variables and N + M linear
equality constraints, while the dual problem comprisesN+M variables withNM inequality
constraints. Typically, solving the primal problem appears more straightforward due to
the simplicity of equality conditions and the algorithms that can solve them. However, as
discussed in Section 3.4, we demonstrated a new dual problem, where we encountered a
non-differentiable convex optimization problem with no constraints and only N variables.
Moreover, the variable ρ in the dual problem can be eliminated. And that’s an advantage
since our primary interest lies in µ, which is equivalent to optimal bids.

Another distinction lies in the focus of each problem. The primal problem centers on
Acquisition Rates, beneficial for optimizing item distribution among contracts when the
items are already won. In contrast, the dual problem solely concentrates on bids, which
suffices when the DSP’s priority lies in winning items with optimal bids, without necessarily
considering efficient distribution among contracts.

Additionally, the dual problem offers the advantage of finding the optimal sets A∗,
which reduce the dimensions of non-zero components in Acquisition Rates. This results in
solving the optimization problem in a more compact set. Moreover, in the dual problem,
the convex optimization problem is offline and do not utilize any previous data, enabling
the algorithm to estimate the Acquisition Rates at any step just by knowing the supply
rate estimation.

The algorithms themselves, in each case of primal and dual, exhibit differences. In
the primal approach, we employed a two-time scale Projected Stochastic Approximation,
whereas for the dual, we utilized Subgradient Gradient Descent. The key distinction lies
in the properties of the dual problem, which allowed for a one-time scale algorithm, sim-
plifying the process. In contrast, the two-time scale Projected Stochastic Approximation
required determination of two functions for each step sequences to ensure efficient opera-
tion. Additionally, the two-time scale Projected Stochastic Approximation involved other
hyperparameters such as α, which could influence the convergence of the algorithm. The
dynamics of these two algorithms are different as well; in the primal problem, bids are up-
dated on the fast time scale, while the supply rates and Acquisition Rates are on the slow
time scale. However, in the dual problem, the bids and supply rates are on one timescale,
while the Acquisition Rates are updated offline.

Finally, in simulations, we observed that the primal algorithm is slower and noisier.
Additionally, in theory, we demonstrated that the convergence rate of the primal algorithm
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is on the order of 1/nϵ (Section 2.2.2), while for the dual algorithm, it was 1/ log(n) (Section
3.4.1), which is faster.

4.2 Future work and related problems

In this thesis, our focus was on second-price Vickrey Auctions due to their properties that
facilitated the development of our algorithms. However, Real-Time Bidding (RTB) can
be analyzed in other auction settings such as first-price auctions, third-price auctions, or
All-Pay Auctions [31]. Additionally, exploring bidding theory settings where other bidders
have bidding strategies instead of being modeled as random variables could provide valuable
insights.

Furthermore, our modeling of the RTB processes as a discrete process, where every bid
is independent of the last one, may not fully capture the dynamics of real-world scenarios.
Every Bid in practice influence future bids, suggesting the need for modeling the system as
a continuous process, which would transform the optimization problem into a continuous
optimization problem.

A challenge that may arise for demand side platform (DSP) is when many items with
similar arrival rates (and same priority for contracts), arrive simultaneously. In such a
scenario, the optimization algorithm may choose the cheaper item over the more expensive
one to minimize the total cost function. However, the more expensive item could potentially
be more valuable, as it may represent a more visited ad space, leading to higher bids from
the other bidders. Losing such ads could lead to dissatisfaction among clients. To address
this issue, we can extend the problem to include conditions on the priority of each item
for each customer, optimizing the total number of clicks and the value of items received by
each customer.

Finally, the techniques developed in this thesis can be applied to similar stochastic
problems discussed in related literature [26], such as Budget Constrained Optimal Bid-
ding, Limit Order Book Aware Markowitz Portfolio, Statistical Arbitrage Mining, and The
Dark Pool Liquidation Problem. Exploring these applications could further advance our
understanding and application of optimization techniques in Real-Time auction networks.
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Appendix A

Some Useful Theorems

In this appendix we will mention theorems that we used to proof the convergence of the
algorithms in the chapter 2 and 3. The proof of these theorems are all showed in the
refrences that has been produced.

A.1 Stochastic Approximation

we summarize some basic results on stochastic approximation, derived from [5, 37].

Theorem A.1.1 (Stochastic Approximation [5, 37]). Consider the random sequence, called
a stochastic approximation, beginning with an arbitrary x0 ∈ Rd

xn+1 = xn + an[h(xn) +Mn+1], n ∈ Z+, (A.1)

where an ∈ R is a deterministic sequence, and Mn is a random sequence. Let Fn =
σ(M1,M2, . . . ,Mn) be the σ-algebra generated by the Mn. Assume the following conditions

1. the equation h(x) = 0 has the unique solution x∗

2. h : Rd → Rd is globally Lipschitz-continuous with constant L.

3. (Robbins-Monro)
∑∞

n=0 an =∞,
∑∞

n=0 a
2
n <∞.

4. Mn is a martingale difference sequence, i.e., E[Mn+1 | Fn] = 0, and square-integrable,
i.e., E[||Mn+1||2 | Fn] ≤ σ2(1 + ||xn − x∗||2) a.s.
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5. (Globally Asymptotically Stable (GAS) equilibrium) There exists a C2 Lyapunov func-
tion V : Rd → R+ for the ODE ẋ = h(x), that satisfies the following conditions:

• There exists constant a > 0 such that ∀x ∈ Rd , V (x) = a∥x− x∗∥2.
• There exists a function ϕ ∈ classB (ϕ : R+ → R+ and ϕ(x) attains the value of
zero exclusively at x = 0) such that V̇ ≤ −ϕ(∥x− x∗∥).

Then, xn
a.s.→ x⋆ as n→∞.

Theorem A.1.2 (Borkar-Meyn [6]). Consider a stochastic approximation with limiting
ODE ẋ = h(x) which satisfies all the first 4 assumptions of Theorem A.1.1 and let hc(x) =
1
c
h(cx). If there exists a Lipschitz continuous function h∞ : Rd → Rd such that hc → h∞

as c → ∞, uniformly on compacts, and the ODE ẋ = h∞(x) has the origin as its unique
globally asymptotically stable equilibrium, then the associated stochastic approximation will
converge.

A.1.1 Projected Stochastic Approximation

In section 3.3 we used the Projected Gradient Descent algorithm to solve the dual problem.
The following theorem shows that this algorithm will converge if the set of inequalities G,
be a convex nonempty and closed set. It has been proven that with some extra assumptions
on G we can show that the Projected Stochastic Approximation will converge to a feasuble
point in G.

Theorem A.1.3 (Projected Stochastic Approximation [5, 27]). Consider the random se-
quence xn ∈ Rd, starting at arbitrary point x0 ∈ Rd and generated by,

x̃n+1 = xn + an[h(xn) +Mn+1],

xn+1 = ΠG(x̃n+1), n ∈ Z+,
(A.2)

Where G is a nonempty convex set and ΠG(x) is the projection of point x on set G. (G
need to be convex for the projection to have a unique solution) This sequece will converge
as n→∞, if we have the following conditions holds.

1. G must be a convex closed nonempty set and every point in G can be described as G =
{x ∈ Rd | gi(x) ≤ 0, i = 1, ..., s}, where gi : Rd → R are continuous1y differentiab1e
functions.
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2. at each x ∈ ∂G (G \ intG),the gradients of the active constraints are linearly inde-
pendent.

3. h : Rd → Rd is globally Lipschitz-continuous with constant L.

4. h : Rd → Rd can be writen as h = −∇xf(x), where f : Rd → R is a is a continuously
differentiable function.

5. (Robbins-Monro)
∑∞

n=0 an =∞,
∑∞

n=0 a
2
n <∞.

6. Mn is a martingale difference sequence, i.e., E[Mn+1 | Fn] = 0, and square-integrable,
i.e., E[||Mn+1||2 | Fn] ≤ σ2(1 + ||xn − x∗||2) a.s.

7. support of the conditional distribution of Mn+1 given Fn is a closed bounded set A(xn)
depending on xn.

Moreover xn will converge to a point which satisfies the Kuhn-Tucker necessary condi-
tion for a constrained minimum. where the Kuhn-Tucker points is

KT = {x ∈ Rd | ∃λi ≤ 0, i = 1, ..., s, such that, λigi(x) = 0,−h(x) +
s∑

i=1

∇xgi(x) = 0}.

For every point x ∈ G and vector V (x) we can define a function denote a vector field on
G,

Π̄(V (x)) = lim
δ→0+

(
ΠG(x+ δV (x))− x

δ
).

By the definition one can see that, for x ∈ intG, Π̄(V (x)) = 0. In case of G being a convex
closed set the limit has a unique solution and Π̄(V (x)) has a finite value for every x ∈ ∂G.
Finally we have that the corresponding ODE to this sequence is

ẋ = Π̄(h(x))

ḟ(x) = ⟨∇f(x) , Π̄(−∇f(x))⟩

A.1.2 Multiple Timescales and Asynchronous Updates

The stochastic approximation algorithm used in algorithm 1 is more general case of The-
orem A.1.1, as there are two separate step-size sequences an, bn, and only components
corresponding to the type of the arriving item are updated. Thus, we propose the utiliza-
tion of asynchronous two timescale Stochastic Approximation.
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Theorem A.1.4 (Two Timescale Stochastic Approximation [5]). Consider two random
sequence, xn ∈ Rd, yn ∈ Rk, called two timescale Stochastic Approximation, with iterations

xn+1 = xn + an[h(xn, yn) +M1
n+1], (A.3)

yn+1 = yn + bn[g(xn, yn) +M2
n+1], (A.4)

where h, g are Lipschitz continuous functions, the deterministic sequences an, bn both sat-
isfy the Robbins-Monro conditions with bn/an → 0. Suppose that M1

n,M
2
n are square in-

tegrable martingale difference sequences (w.r.t. the σ-algebras generated by the history of
all M1

n,M
2
n) in the sense that E[M i

n+1 | Fn] = 0 and E[||M i
n+1||22 | Fn] ≤ K(1 + ||x(n)||2 +

||y(n)||2) for some K ∈ R. Moreover, assume the following conditions:

1. the ODE ẋ(t) = h(x(t), y) has a GAS equilibrium λ(y), where λ : Rk → Rk is
Lipschitz.

2. the ODE ẏ(t) = h(λ(y), y(t)) has a GAS equilibrium y∗

Then, xn
a.s.→ x⋆ and yn

a.s.→ y⋆ as n→∞.

Proposition A.1.1 (Two Timescale Asynchronous Stochastic Approximation). Consider
a two-timescale asynchronous stochastic approximation

xj(n+ 1) = xj(n) + an1j(θn+1)[hj(x(n), y(n)) +M j
n+1],

yi(n+ 1) = yi(n) + bn1i(ϕn+1)[gi(x(n), y(n)) +N i
n+1],

where i ∈ [N ], j ∈ [M ], θn ∈ [M ], ϕn ∈ [N ] are drawn i.i.d. from categorical distributions
P{θn = j} = ηj > 0, P{ϕn = i} = pi > 0. Suppose that these iterations satisfy all the
conditions in Theorem A.1.4. then x, y will converge a.s

Proof. We can re-write the algorithm as

xj(n+ 1) = xj(n) + an[ηjhj(x(n), y(n)) + M̃ j
n+1] j ∈ [M ]

yi(n+ 1) = yi(n) + bn[pigi(x(n), y(n)) + Ñ i
n+1] i ∈ [N ],

where

M̃ j
n+1 = 1j(θn+1)M

j
n+1 +

(
1j(θn+1)− ηj

)
hj(x(n), y(n))

Ñ i
n+1 = 1i(ϕn+1)N

i
n+1 +

(
1i(ϕn+1)− pi

)
gi(x(n), y(n)).
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Since θn, ϕn are drawn independently, we have

E[
(
1j(θn+1)− ηj

)
hj(x(n), y(n)) | Fn] (A.5)

= hj(x(n), y(n))E[1j(θn+1)− ηj] = 0, (A.6)

and similarly for ϕn. As well,

E[||M̃n+1||22| Fn] =
M∑
j=1

(
E[1j(θn+1)

2(M j
n+1)

2 | Fn] (A.7)

+ E[(1j(θn+1)− ηj)
2hj(x(n), y(n))

2|Fn]
)

(A.8)

≤
M∑
j=1

(
E[(M j

n+1)
2 + hj(x(n), y(n))

2|Fn]
)

(A.9)

(a)

≤ (K + L)(1 + ||x(n)||22 + ||y(n)||22) (A.10)

where (a) is uses the Lipschitz constant L of h. As well, E[M̃n+1 | Fn] = 0. The
conclusion is now a direct consequence of Theorem A.1.4

A.2 Duality

In the proof of Proposition 3.3.1, we rely on the equivalence between the optima solutions
of problem (D) and KT points. This equivalence is supported by the following theorem:

Theorem A.2.1 (Karush-Kuhn-Tucker Conditions[10]). We assume that Consider the
optimization problem (P ) to be

minimize
x

f(x)

subject to gi(x) ⩽ 0, ∀i ∈ {1, . . . ,m} (A.11)

where f, g1, . . . , gs are convex functions from Rd to R.
Suppose that there exists a Slater point, i.e.:

(∃y ∈ Rd)(∀i ∈ {1, . . . ,m}) gi(y) < 0.
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Then there exists x ∈ Rd which solves (P ) if and only if there exists λ ∈ Rm such that
the following hold:

(∀i ∈ {1, . . . ,m}) gi(x) ⩽ 0 (A.12)

(∀i ∈ {1, . . . ,m}) λi ⩾ 0 (A.13)

0 ∈ ∂f(x) +
m∑
i=1

λi∂gi(x) (A.14)

(∀i ∈ {1, . . . ,m}) λigi(x) = 0 (A.15)
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Appendix B

Python Codes

This section provides concise listings of select Python programs used in core parts of the
thesis. Various non-essential pieces have been omitted for brevity.

B.1 Projected Gradient Descent Method For Dual

Problem

The following Python code represents the projection onto the constraint set used in Algo-
rithm 3:

1 coefficients = []

2 for i in range(N):

3 for j in range(M):

4 l1 = [0]*(M+N)

5 l1[j] = -1

6 l1[M+i] = V[i,j]

7 coefficients.append(l1)

8 A = np.array(coefficients)

9

10 def project_onto_convex_set(A, N, M, y):

11 x = cp.Variable(N+M)

12 objective = cp.Minimize(cp.norm(y - x))
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13 constraints = [A @ x <= 0]

14 # Create the problem instance and solve it

15 problem = cp.Problem(objective, constraints)

16 problem.solve()

17 # Return the projected vector

18 projected_vector = x.value

19 return projected_vector

B.2 Subgradient Method For Dual Problem

Here’s the Python code for a Two-Time Scale Subgradient Descent algorithm tailored for
the special case when V ∈ {0, 1} and the arrival rates are known:

1 def GD(supply,avtimes,ru,mu,C,V,arrival_rates,arv_times,

2 arv_types,arr_prices,ans,bns,alpha,cost1,cost_tot):

3 #update the cost function

4 lamda_t=sum(arrival_rates)

5 j = arv_types

6 avtimes_new[j] = avtimes[j] + ans * (arv_times - avtimes[j])

7 if arr_prices < mu_new[j]:

8 cost1_new = cost1-bns*(sum(arrival_rates)*(mu_new[j]-arr_prices)+cost1)

9 else:

10 cost1_new = cost1 + bns *(0-cost1)

11 cost_tot_new = cost1_new

12 for i in range(N):

13 cost_tot_new = cost_tot_new + C[i] * ru[i]

14 # update supply rates

15 if arr_prices < mu_new[j]:

16 supply_new2[j] =supply_new[j]+ans*(arrival_rates[j]*1-supply_new[j])

17 else:

18 supply_new2[j] =supply_new[j]+ans*(arrival_rates[j]*0-supply_new[j])

19 #update mu

20 for j in range(M):

21 mu_new2[j] = mu_new[j] - bns * (supply_new2[j])

22 for i in range(N):
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23 allmu = []

24 for j in range(M):

25 if V[i, j] == 1:

26 allmu.append(mu_new[j])

27 g = mu_new * 0

28 for j in range(M):

29 if V[i, j] == 1:

30 if mu_new[j] == min(allmu):

31 g[j] = 1

32 mu_new2 = mu_new2 + bns * C[i] * g / np.sum(g)

33 #update ru

34 for i in range(N):

35 muall = []

36 for j in range(M):

37 if V[i, j] == 1:

38 muall.append(mu_new2[j])

39 ru_new2[i] = min(muall)

40 return avtimes_new, supply_new2, ru_new2, mu_new2, cost1_new, cost_tot_new

B.3 Finding Acquisition Rates

The following Python code is for is algorithm 5 to find Acquisition Rates, where supply
rates are known.

1 def project_S1(R, C, s, V):

2 R_new = np.zeros((N, M))

3 for i in range(N):

4 for j in range(M):

5 R_new[i,j] = R[i,j]- (np.sum(R, axis=0)[j] - s[j]) /N

6 - V[i,j] *(np.sum(V*R,axis=1)[i] -C[i]) /np.sum(V*V, axis=1)[i]

7 return R_new

8

9 def projection(R, C, s, V):

10 R_new = np.zeros((N, M))

11 R_new = project_S1(R, C, s, V)
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12 for i in range(N):

13 for j in range(M):

14 R_new[i, j] = max(R_new[i, j], 0)

15 return R_new

16
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