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Abstract

This study delves into a comprehensive exploration of driver performance by compar-
ing the effects of a 3-level graded collision warning system with those of a 2-level graded
system. Employing a within-between-subject design, the experiment seeks to unravel the
impact of graded warning levels (2-stage and 3-stage) on driving performance in both nor-
mal and critical driving conditions. Forty participants were recruited to undergo precise
testing within a controlled driving simulator environment.
The experimental setup involves dividing participants into two groups, each exposed to dis-
tinct collision warning paradigms. The first group experiences a two-level graded warning
system, while the second group encounters a three-level graded warning system, structured
based on Time to Collision (TTC) metrics. Each participant drove eight scenarios, includ-
ing four normal and four critical scenarios. This strategic design allows for a comprehensive
evaluation of the influence of warning system intricacies on various facets of driving behav-
ior. The study encompasses an array of dependent variables, including eye-tracking data,
wristband-derived physiological metrics, driver response times, and the incidence of colli-
sions. This multifaceted approach ensures a holistic understanding of the drivers’ reactions
under different collision warning paradigms.

Results indicated that the 3-level graded system significantly reduced response times
and collision frequencies compared to the 2-level system across both normal and criti-
cal driving conditions. Additionally, the 3-level system demonstrated better mitigation
of driver distraction. While driving conditions did not significantly affect eye-tracking
data, the warning level had a significant impact, with the 3-level system showing supe-
rior results. However, neither warning level nor driving condition significantly affected
physiological data, including Electrodermal Activity (EDA), Heart Rate (HR) and Heart
Rate Variability (HRV). Subjective evaluations highlighted the impact of collision warnings
on driver performance, particularly in high-speed scenarios. Moreover, auditory warning
modalities were preferred by a majority of participants.

These findings provide valuable insights for the development of advanced collision warn-
ing systems, emphasizing the importance of multi-level warnings and preferred warning
modalities in enhancing driver safety and reducing collision risks in diverse driving envi-
ronments.
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Chapter 1

Introduction

1.1 Background

The safety of our roads is a major concern in the modern world, with road collisions
representing a significant and persistent threat to public safety. According to data from
Transport Canada, there were 1,922 fatalities and 9,494 severe injuries resulting from
motor vehicle accidents on Canadian roads in 2018 [1]. Disturbingly, distracted driving
has emerged as a primary contributing factor to the increasing incidence of accidents [2].
In the past decade alone, fatalities resulting from crashes have witnessed an alarming 28%
increase since 2005, underscoring the urgent need for effective countermeasures to address
this growing threat [3].

Distracted driving occurs when drivers shift their focus from driving to other activities,
causing a significant lapse in attention. [4, 5]. This diversion of attention profoundly im-
pacts a driver’s ability to perceive the dynamic driving environment, make timely decisions,
and execute precise actions [6]. Distracted driving poses an increasing risk to traffic safety
worldwide. Over the past approximately twenty years, it has been recognized as a signifi-
cant contributor to pedestrian-vehicle collisions on a global scale [7]. As per the Canadian
Automobile Association (CAA), driver distraction accounted for 16% of all documented
motor vehicle accidents, 10% of fatalities, and 18% of injuries [8]. Nearly four million mo-
tor vehicle collisions are attributed to distracted driving annually in North America, with
an upward trend happening [9].

The increase in electronic devices worsens this issue, amplifying concerns regarding
distracted driving and its widespread impact on road safety. In this era of increasing
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reliance on technology, the alarming rise in distracted driving incidents calls for innovative
solutions to identify and mitigate the risks associated with this dangerous behavior. The
use of electronic devices while driving has become ubiquitous, and as a result, finding
effective methods to counteract distracted driving is critical for ensuring public safety [10].

The driver’s performance is directly influenced by their reaction [11]. The faster a driver
can react to a potential hazard, the greater their chances of avoiding a collision. This critical
emphasis on reaction time is rooted in the dual nature of cognitive and physical demands in
the driving task. Cognitively, drivers must always monitor and interpret their environment,
adeptly assess potential hazards, and make informed decisions accordingly [12]. Physically,
drivers are tasked with responding promptly and accurately to sudden shifts in road or
traffic conditions. Research has consistently shown that reaction time is influenced by
factors such as fatigue and distraction [13, 14]. Drivers who are fatigued, or distracted,
typically have slower reaction times, which can increase their risk of being involved in a
collision. Therefore, it can be concluded that early detection and recognition of potential
hazards is crucial to improve driver performance and reduce the risk of collisions.

In response to this matter, collision warning systems have emerged as promising tech-
nological interventions, designed to proactively alert drivers to potential hazards and save
them precious moments for a more considered reaction. By providing drivers with an early
warning regarding potential hazards, these systems hold the promise of augmenting reac-
tion times and mitigating the risk of collisions. However, the effectiveness of these collision
warning systems remains an area requiring further exploration and refinement.

1.2 Problem Statement

Despite advancements in collision warning systems, there remains a critical gap in un-
derstanding the comparative efficacy of two and three-level graded systems in enhancing
driver performance under conditions of distracted driving.

Several studies have investigated the levels of warning in collision warning systems in
terms of finding a balance between simplicity and better performance [5]. A system with
fewer warning levels offers simplicity and ease of understanding for drivers, reducing cog-
nitive load and potential confusion in critical moments. On the other hand, a system with
more levels of warning, has the potential to enhance drivers’ responsiveness by enhancing
their understanding and confidence in the system [15]. Studies suggest that incorporating
additional warning levels can widen the safety buffer, thereby offering an increased margin
of safety [16, 17]. However, empirical evidence regarding their impact on driver behavior,
physiology, and performance in simulated real-world scenarios is lacking.
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Addressing this gap is essential for informing the ongoing research on road safety and
optimizing the design and implementation of collision warning systems by gaining a deeper
understanding of how these collision warning systems affect driver behavior, decision-
making, and overall performance, to mitigate the risks associated with distracted driving,
and providing a safer and more secure driving environment for all road users [5].

1.3 Research Objectives

The primary objective of this research is to investigate and compare the efficacy of a 3-
level graded collision warning system against a 2-level graded system in enhancing driver
performance across critical and normal driving scenarios [5]. By precisely examining driver
behavior under distracted conditions in simulated scenarios, we seek to recognize the impact
of the additional warning provided in the middle of the warning hierarchy (at TTC=12 s)
in the 3-level system. The goal is to distinguish the potential advantages and drawbacks
of these distinct warning systems under conditions of distracted driving, with the ultimate
aim of contributing valuable insights to the ongoing research on road safety.

To achieve this, the study is designed with a within-between subjects approach, em-
ploying a robust methodology to generate empirical evidence. Participants engage in a
simulated driving environment carefully crafted to replicate real-world scenarios, where
they are exposed to potential distractions. The controlled nature of the simulation allows
for a systematic investigation into how drivers respond to different collision warning sys-
tems under conditions that simulate the actual road environments. The simulated scenarios
cover various driving situations, including normal and critical situations that demand more
attention and rapid decision-making [5]. These conditions are not random; instead, they
depend on the level of risk, the various potential hazards, and the amount of attention
and caution demanded from the driver [5, 18, 19]. This diversity ensures a comprehen-
sive evaluation of the warning systems across different potential real-world scenarios where
distractions and collision risks may vary. Each participant experiences either the 3-level
graded collision warning system or the 2-level graded system, providing a clear basis for
comparative analysis. The study carefully collects data to unravel the intricate interplay
between driver behavior and the warning systems employed. This data includes physiolog-
ical responses measured through advanced wearable technology, eye-tracking data offering
insights into visual attention dynamics, and performance metrics such as response times
and collision frequencies.

In summary, this research aims to extend the current understanding of collision warning
systems’ impact on driver behavior, physiology, and performance. By addressing these

3



objectives, the study aims to make a significant contribution to the field of road safety,
providing a detailed perspective on the comparative effectiveness of two and three-level
graded collision warning systems under conditions of distracted driving.

1.4 Thesis Organization

The remainder of the thesis is structured as follows:

1. Chapter 2 provides an overview of the relevant literature, focusing on topics such as
driver distraction, collision warning systems, and driving performance. It synthesizes
existing research to establish a foundation for the experiment and analysis.

2. In Chapter 3, the hypotheses are defined, and the experimental protocol is outlined.
The methodological approach, experiment materials, experimental design, variables,
driving scenarios, and secondary tasks are discussed in detail to provide insight into
the experimental setup.

3. Chapter 4 presents the findings of the study, including analysis of driving simulator
data, physiological data, eye-tracking data, and subjective evaluation results. Each
finding is analyzed and interpreted to provide insights into the effectiveness of collision
warning systems.

4. Chapter 5 discusses the implications of the findings, interprets their significance in
the context of existing literature, and summarizes the conclusions drawn from the
research. Additionally, it explores potential ways for future research in the field.
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Chapter 2

Literature Review

2.1 Driver Distraction

Driving involves the simultaneous utilization of diverse cognitive, physical, sensory, and
psychomotor skills, making it a complex task which needs driver attention [20]. Cognitive
ergonomics views ”attention” as a resource crucial for information processing, recognizing
that stress and multitasking can disturb this resource, resulting in divided attention. [21,
22]. Recent driving studies have illuminated the pervasive impact of inattention on road
safety, revealing that nearly 80% of crashes and 65% of near-crashes attribute inattention as
a contributing factor [23]. Inattention occurs in various situations where the driver neglects
the demands of driving, such as when a drowsy driver falls asleep. Inattention signifies
a reduced focus on activities crucial for safe driving when there is no competing activity
[24]. Driver inattention is broadly categorized into distraction and mental fatigue [25].
Distinguishing between the two is crucial; distraction involves explicit activities competing
for attention, such as dialing a cell phone, while mental fatigue results in diminished
capacity to attend to the roadway [24].

The distinction between distraction and mental fatigue takes center stage in several
studies that interchangeably use distraction with workload. Workload, defined in terms of
mental resources or the capacity for information processing dedicated to a task [26, 27, 28].

As the use of electronic devices while driving continues to increase, distracted driv-
ing is becoming an even greater concern. Young and colleagues [29] have identified three
types of distraction sources, namely related to technology, not related to technology, and
outside of the vehicle. Related to technology distraction includes the utilization of com-
munication systems within the vehicle, such as mobile phones, texting, emailing, or using
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GPS. Not related to technology distractions include activities like talking to passengers,
eating, drinking, smoking, or attempting to navigate. These can cause multiple types of
distractions, such as visual and cognitive distraction, and can increase the cognitive load
on the main task of driving. Outside of the vehicle distractions involve visual and cognitive
attention while driving, such as looking at events, people, or billboards. It is clear that
distracted driving has a significant impact on road safety. These various distractions can
impact drivers in different ways [30]. In recent decades, Advanced Driver Assistance Sys-
tems (ADAS) have promised improved driving performance and safety by assuming various
vehicle control tasks. However, as these systems progressively assume more aspects of driv-
ing, drivers may transition into a more passive supervisory role or cause distraction. This
raises concerns about the potential for increased engagement in non-driving-related activ-
ities, potentially undermining the expected safety benefits of ADAS [31, 32]. It has been
explored in contexts such as baseline driving, driving with a single secondary task, and
driving with two secondary tasks. Notably, heightened workload, particularly evident when
managing two secondary tasks simultaneously, underscores the delicate balance required in
allocating attentional resources during driving [33]. While driving, individuals must con-
sistently distribute their attentional resources between both driving and non-driving tasks.
Due to the automation of many aspects of the driving task through experience, drivers can
often divide their attention among simultaneous tasks without significant consequences to
driving performance or safety. However, under specific conditions, these adaptive behav-
iors may fail, leading to a notable decline in driving performance [20]. It is clear that
driving safety is significantly affected by distraction. As environmental cues and task de-
mands fluctuate constantly, drivers must make continuous decisions. Hence, if distraction
by a competing task causes important cues to go unnoticed, situational awareness can be
adversely affected [34].

Consequently, many studies have been done on driver distraction using a secondary task
[35, 36, 37] and have shown engaging in secondary tasks unrelated to the safe operation
of a vehicle can also impair the ability to predict hazards, identification of objects in the
line of sight, decision Making, Situation Awareness (SA) and execution of a response in
the driving environment [38]. These results highlight the importance of understanding the
complex nature of driver distraction. This emphasizes the need for a closer look at collision
warning systems in the following sections.

6



2.2 Collision Warning Systems

Distracted driving significantly contributes to vehicular accidents. In order to prevent a
collision, the driver needs to recognize and address potentially dangerous situations. The
effective handling of hazards is closely connected to the driver’s capacity to accurately
identify crucial situations, those that may lead to a collision without the driver’s timely
intervention. However, drivers frequently come across non-urgent scenarios situations that
do not progress into immediate threats and consequently do not demand intervention from
the driver [39]. Drivers who tend to overlook potential collisions could profit from a alarm
system that issues alerts to forewarn them of an impending collision [40, 41, 42, 43, 44].
Such alerts can include notifying the driver of a braking vehicle in front (rear-end collision
warning [39, 45, 16, 46, 47]), warning the drivers as they are beginning to depart from the
road (road departure warning [48, 49, 50]) or lane-keeping support system [50].

The kinematic model is constructed with the aim of reducing collision risk through
the optimization of Time Headway (THW), Space Headway (SHW), and TTC [51]. The
effectiveness of collision warning systems is contingent upon two essential elements. Firstly,
the system must encourage the driver to react in a timely and suitable manner. Secondly,
minimizing annoyance linked to false alarms and gaining the trust of drivers are necessary
for their acceptance of the system [52, 53]. If the alarms go off too often and too soon,
the driver might find them annoying and may choose to ignore them or even turn off the
device. Drivers tend to brake more swiftly when they receive early alerts, as opposed to
situations where they drive without any assistance [54]. Nonetheless, there is a contention
that warnings given too early in potential crash scenarios are often perceived as false
alarms [55, 56]. In this situation, the system would not fulfill its intended purpose. When
designing active systems, it is crucial to strike a balance and avoid alerting too soon while
ensuring enough reaction time. This way, the driver has the necessary time and space to
either prevent a collision or minimize its impact. [46].

Numerous studies have explored the impact of driving warning systems on driving
performance, often using a secondary task to simulate distraction. Performance or func-
tionality defines the actions of the automation, indicating the system’s capability to assist
the driver in avoiding collisions [39]. The development of an advanced collision warning
system for vehicles is part of the collaborative efforts between automobile manufactur-
ers and the National Highway Traffic Safety Administration to reduce the car crashes
[57, 58, 59, 60, 61]. The mitigation strategies such as distraction warning systems, have
shown a generally positive effect on driver performance [62], shorter driver reaction time
[17], and improved drivers’ headway estimation [63].

Additionally, some researchers have studied single-stage [43, 45, 64, 65] and graded
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[51, 66, 67, 68, 69, 70, 71] warnings. A graded warning gives a signal that corresponds to
the level of danger, like making the auditory signal louder as the driver gets closer to a lead
vehicle. On the other hand, a single-stage warning only signals when the danger surpasses a
certain level. Using a graded warning could improve how drivers respond by preparing them
and increasing their comprehension and trust in the system [15]. Research indicates that
graded warnings, specifically 2-level warnings, provide a greater safety margin compared
to single-stage warnings [16, 17]. This suggests that warning systems with multiple levels
of alertness might offer enhanced safety benefits, a crucial aspect to explore further in the
context of distracted driving.

2.2.1 Warning Modalities

Another crucial feature of the interface that might impact how well the driver performs and
accepts it is the sensory modality in which the warning is presented [16]. Collision warning
systems utilize auditory, visual, and haptic cues. Human-Machine interfaces, requiring a
delicate balance between driver acceptance and effectiveness in providing sufficient reaction
time [40].

Various research studies have utilized visual [72, 73], auditory [10, 39, 50, 63] feed-
back, or combination of them [40, 16, 62]. Some studies have compared different warning
approaches [16, 45], indicating the effectiveness of both visual and auditory interfaces
[74].Among these, an auditory tone emerged as the most efficient modality [75]. However,
auditory feedback is often found irritating, which may result in the abandonment of the
system [66].

Other research results suggest that haptic alerts, like a vibrating, were perceived as
less annoying and more appropriate [16] and had the shortest mean response time [45].
Haptic signals provide a potential and not extensively studied option compared to auditory
warnings. These signals could potentially quicken response times and minimize irritation.
Notably, kinesthetic cues based on torque showed faster reaction times than auditory signals
[76], and vibrotactile cues improved reaction times to visual signals [77]. However, auditory
strategies provided better benefits compared to visual strategies [62], suggesting that a
combination of audio and haptic warning modalities might be the most effective strategy
[78].
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2.3 Driving Performance

Driving is a multifaceted activity, involving more than 1,600 distinct tasks across five
behavioral tiers [79]. This requires drivers to simultaneously manage the vehicle, modulate
speed and direction, navigate hazards, monitor progress towards their destination, and
execute strategic choices such as route planning. driving behavior is predominantly goal-
oriented, with drivers juggling various objectives (such as safety, speed, and fuel efficiency)
that may occasionally be at odds with one another [80]. In response to these dilemmas,
drivers assess the situation and manage their driving tactics accordingly. Consequently,
this complex interplay of objectives and strategies in driving has spurred extensive research
into driving performance [81, 82, 83].

Many techniques and metrics are available for assessing driving performance, such as
longitudinal control indicators like speed and headway, lateral control criteria including
vehicle positioning and steering wheel control, metrics for measuring response times, eval-
uations of gap acceptance, analyses based on eye tracking, and various workload assessment
methods, which are categorized into subjective assessments, physiological evaluations, and
performance-based analyses [84].

In our study, we assess driver performance utilizing a range of metrics: driver response
time, eye movement measures, physiological assessments, and subjective evaluations.

2.3.1 Driver Response Time

Response time refers to the duration required for a driver to notice and react to unforeseen
circumstances [85]. Response time metrics are gaining popularity due to their correla-
tion with accident risk. Various measures, such as missed events, incorrect responses,
reaction time, and reaction distance, can be analyzed. As intelligent communication tech-
nologies grow, a significant safety issue arises from the potential for increased response
times, thereby hindering drivers’ ability to promptly respond to potential dangers [86].
The ability of drivers to detect and react to unexpected incidents is often hindered by
distractions within the vehicle, especially from complex devices. Numerous studies have
demonstrated that a distraction like using phones while driving leads to increased response
times [87, 88, 89, 90, 13]. Additionally, research has investigated how demographic factors
like age and gender affect response times in distracted conditions. Studies showed that
both older and younger drivers have slower reactions when they are distracted [91, 92].
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2.3.2 Eye Movement Measures

The employment of eye-tracking technology in driving simulator experiments has gained
popularity, yet it is crucial to acknowledge several inherent challenges that necessitate care-
ful consideration. Techniques such as analyzing fixations, saccades, pupil positioning, and
smooth pursuit movements are instrumental in detecting visual and cognitive distractions.
Fixations represent moments when the gaze remains relatively static, with the location
and duration of these fixations shedding light on the direction of attention and the depth
of information gathered from the observed point [93]. Saccades, characterized by rapid
eye movements transitioning between points of fixation, facilitate the shift in gaze. Con-
versely, smooth pursuits are observed when the gaze follows a moving object, like a car
passing by, enabling the stabilization of the object’s image on the retina for continuous
perception despite its motion relative to the observer. Within the driving domain, smooth
pursuits play a crucial role in capturing data from the evolving road scene. Both fixations
and smooth pursuits can reveal the extent to which cognitive distractions impact drivers’
visual information intake [94].

2.3.3 Physiological Responses

The physiological assessment of workload is grounded in the empirical observation that
heightened mental demands elicit more pronounced physical responses from the body [95]).
This approach to measuring workload focuses on the continuous monitoring of the body’s
physical reactions. Most research focuses on five physiological areas to measure workload:
cardiac activity, respiratory activity, eye activity, speech measures, and brain activity.
Cardiac metrics include heart rate, variability in HR, EDA, and blood pressure, offering
insights into the heart’s response under varying levels of mental exertion. Respiratory
analysis involves tracking the volume of air inhaled and the frequency of breaths, reflecting
changes in breathing patterns associated with different workload levels. Eye measures
primarily cover horizontal eye movements, the rate of blinking, and the duration of eye
closures, although additional, less conventional indicators also exist. Speech measures
assess workload through parameters such as pitch, speaking rate, volume, and variations
in voice quality, including jitter and shimmer. Brain activity is typically gauged using
electroencephalography (EEG) or electro-oculography (EOG), tools that provide a window
into the neurological responses to workload [96]. Physiological metrics are acknowledged
for their precision [97] and consistency [98]. Numerous research studies have portrayed
physiological metrics as credible means for assessing the cognitive state of individuals [99].
Also, EDA has a extensive track record of being utilized as an indicator of attention and
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arousal [100]. Research showed that higher values of HR and EDA while driving indicate
greater mental demand and increased attention [101].

2.3.4 Subjective Evaluation

The assessment of workload levels on a subjective basis employs rankings or scales to
gauge the perceived workload of an individual. These subjective measures of workload
predominantly rely on an intermittent format of question-and-answer responses to various
workload intensities. Subjective workload assessment is categorized into two primary scale
types: unidimensional and multidimensional scales [96]. Unidimensional scales, recognized
for their simplicity and ease of use, do not require complex analysis methods. These
scales focus on a single aspect of workload measurement, often resulting in greater sensi-
tivity compared to their multidimensional counterparts [102]. To capture an individual’s
perceived mental workload, a variety of straightforward subjective scales have been devel-
oped, finding application especially within the driving context. Prominent scales include
the NASA-Task Load Index (TLX), the Rating Scale Mental Effort (RSME), the Situation
Awareness Global Assessment Technique, and the Driving Activity Load Index (DALI)
[96].

2.4 Gap in the Literature

While existing literature has extensively examined the impact of 2-level graded warnings
on driving performance compered to single stage warnings, there remains a notable gap
in understanding the effectiveness of 3-level graded warnings. Previous studies have con-
sistently demonstrated that 2-level graded warnings yield superior results in terms of en-
hancing driving performance. However, the specific contribution and potential advantages
of a three-level graded warning system, particularly one that introduces an additional level
before the initial warning, are yet to be comprehensively explored.

In our research, we seek to address this gap by undertaking a comparative analysis
between two-level and three-level graded warnings. Our focus is on evaluating whether
the inclusion of an extra warning level, strategically positioned between two other levels,
can yield further improvements in driving performance. By investigating the differences
between these warning configurations, we contributed valuable insights that extend the
current understanding of collision warning systems.
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In this study, we aim to compare 2-level and 3-level graded warning to see if adding
another level which will be added before the first level and makes the warning start earlier,
can make a better impression on driving performance. Moreover, this study investigates
collision warning systems, specifically examining the potential benefits and drawbacks of
2-level and 3-level graded warnings under distracted driving conditions. As we explore
this area, we expect uncovering new perspectives that could influence the design and im-
plementation of future collision warning systems, ultimately enhancing overall road safety
[5].

The following chapter provides a detailed account of the methodology and experimental
design employed in our study. Additionally, it elucidates the technical specifications of the
equipment used, laying the foundation for a rigorous and comprehensive investigation.
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Chapter 3

Human Experiment

3.1 Hypothesis and Overview

This study investigates the impact of warning level variations, specifically comparing the
effectiveness of 2-level and 3-level graded collision warning systems under distinct driving
conditions, namely critical and normal scenarios. The investigation is particularly relevant
in the context of drivers concurrently engaged in secondary tasks, a common occurrence
in real-world driving scenarios.
Critical driving conditions:

H0 (Null Hypothesis): There is no significant difference in driving performance within
the 2-level and 3-level graded collision warning systems across critical driving conditions.

HA (Alternative Hypothesis): The 3-level system results in better driving performance
compared to the 2-level system across critical driving conditions.
Normal driving conditions:

H0 (Null Hypothesis): There is no significant difference in driving performance within
the 2-level and 3-level graded collision warning systems across normal driving conditions.

HA (Alternative Hypothesis): The 3-level system results in better driving performance
compared to the 2-level system across normal driving conditions.

The rationale behind these hypotheses lies in the need to explore whether the introduc-
tion of an additional warning level (three-level system) brings about measurable improve-
ments in driving performance, particularly when drivers are faced with critical or normal
driving conditions. The examination of both scenarios adds depth to our understanding of
how these warning systems operate under varying levels of stress and complexity.
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As we embark on this empirical investigation, the subsequent sections outline the
methodology employed, detailing the experimental design, participant recruitment, and the
specific parameters considered. Additionally, the instrumentation and technical aspects of
the experiment are thoroughly expounded upon to ensure transparency and reproducibility
in our research endeavors.

3.2 Methods and Materials

3.2.1 Participants

For this research, 40 participants were recruited through targeted emails sent to both cur-
rent students and alumni of the University of Waterloo. Prior to recruitment, G*Power
3.1.9.7 [103] was used to determine the number of participants. The parameters used for
the ‘ANOVA: Repeated measures, between factors’ statistical test were α = 0.05, statisti-
cal power of 1-β = 95%, effect size f = 0.51 as it is considered to be a large effect [104], 2
groups, 4 measurements and 0.5 correlation among repeated measures. It was calculated
that a minimum of 34 participants would be required to detect significant effects. How-
ever, to enhance the reliability and accuracy of the study, and considering the potential
for participant dropouts, a sample size of 40 participants was chosen. This decision en-
sures a sufficient margin to accommodate any unforeseen circumstances and increases the
robustness of the study’s findings.

Participants were included from the age group of 23-44 years, with the majority falling
within 25-34 range. However, to ensure representation across a broader age spectrum,
four participants aged 23 (in the age group of 18-24) and two participants aged 35-44
were evenly distributed across the groups assigned to 2-level and 3-level warning systems.
Gender distribution was also carefully balanced, with an equal number of male and female
participants in each group. This stratification aims to neutralize any potential confounding
effects related to age and gender on participants’ performance. Regarding driving expe-
rience, participants were required to possess a valid Canadian driver’s license and have
at least one year of driving experience. To assess whether driving experience significantly
differed between the two groups, a t-tests was conducted, comparing the mean years of
driving experience for participants assigned to the 2-level and 3-level warning systems. The
t-test results yield a t-statistic of approximately -0.83 and a p-value of about 0.41. This
p-value indicates that there is not a statistically significant difference in driving experience
between the two groups with different levels of warnings. Thus, the difference in driving
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Table 3.1: Analyzed sample demographics

Demographics Participants (n=40)

Age
Minimum-Maximum 23-44
Gender n(%)
Female 18 (45%)
Male 22 (55%)
Driver’s license n(%)
G∗ 14 (35%)
G2∗∗ 26 (65%)
Driver’s experience (years)Minimum-Maximum 1-17
Mean (SD) 6.85 (4.92)

*G: In Ontario, the G license is a fully unrestricted driver’s license [105].
**G2: part of the Ontario graduated licensing system’s Level Two, grants
holders the ability to drive independently, with certain conditions [105].

experience between participants receiving 2-level and 3-level warnings is not statistically
significant at 0.05 significance level.

Clear or corrected vision, achieved through contacts, was a prerequisite for participa-
tion. Exclusion criteria were established to ensure the safety and well-being of participants.
Individuals with a history of vertigo or motion sickness were excluded due to their height-
ened susceptibility to simulator sickness, which could potentially compromise the integrity
of the experimental results.

The final participant count stood at 40 individuals. The gender distribution included
18 females and 22 males. Each participant devoted approximately 60 minutes to the study,
receiving a remuneration of $20 for their time and contribution.

Ethical considerations were paramount, and the study obtained clearance (ORE #
45394) from the University of Waterloo Office of Research Ethics. The experimental pro-
cedures strictly adhered to the approved protocols to guarantee the ethical conduct of the
research.

3.2.2 Procedure

To ensure clarity and transparency in the experimental process, participants were thor-
oughly briefed on the study’s purpose, benefits, procedures, and anticipated duration
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Figure 3.1: Experimental flow for each participant

through remote communication. Only those who willingly chose to participate provided
their informed consent by signing a consent form before the commencement of the study.
A demographics questionnaire (refer to Appendix A) was then administered, capturing es-
sential information such as age, driving experience, and any prior encounters with motion
sickness.

Prior to initiating the main experiment, participants engaged in a training scenario
using a car simulator. This simulation replicated a suburban road environment devoid of
traffic but featuring multiple turns. The training session lasted between 5 to 15 minutes
and ended when the participant announced they were ready. The purpose of this exercise
was to familiarize participants with the simulator’s operation and ensure a baseline level
of proficiency. Throughout this training phase, participants wore a physiological sensor
to collect baseline data including EDA and HR data. Following the training, participants
were outfitted with an eye-tracker, which underwent calibration concurrently with the
physiological sensor. The experimental procedure is illustrated in Figure 3.1.

The main experimental phase involved participants navigating through eight distinct
road scenarios, described in the following sections. Each scenario was precisely designed
to represent various driving environments and speed limits. All scenarios were approxi-
mately of equal length, and vehicle parameters, including speed, throttle, steer and brake
data were closely monitored throughout the trials. Following the completion of these
scenarios, participants were invited to share their insights and experiences through a post-
questionnaire survey (refer to Appendix B). This survey served as a crucial component of
the post-experiment data collection, capturing subjective perspectives and feedback from
the participants.

The meticulous execution of these procedures aimed to provide a robust foundation for
analyzing the impact of warning level variations on driving performance under critical and
normal driving conditions.
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3.2.3 Apparatus

For the comprehensive assessment of driver behavior, this research harnessed information
from diverse sources, employing a multifaceted approach that incorporated physiological
data, eye-tracking technology, and vehicle kinematics. The experimental setup involved a
driving task wherein participants were directed to follow specific instructions and adhere to
traffic regulations. All experiments took place in a closed room devoid of windows, ensuring
a controlled environment. The lighting within the room remained consistent throughout
the experiments, with only the experimenter and the participant present.

The controlled environment, free from external distractions, ensured that the data col-
lected were reflective of the participants’ responses to the experimental conditions. To
prioritize participant comfort and ethical considerations, participants were explicitly in-
formed that they retained the right to halt the experiment at any point based on their
comfort level with the equipment. This emphasis on participant agency contributes to
the ethical conduct of the study and helps establish a trusting relationship between the
experimenter and the participants.

The following equipment was used for this study:

1. Carla Driving Simulator: Carla is a simulator for driving research that is open-
source, offering freely accessible digital assets such as urban layouts, buildings, and
vehicles. The simulation platform allows for flexible customization of sensor suites
and environmental conditions. [106].It is shown in Figure 3.2.

2. E4 Empatica wristband: This inconspicuous physiological monitoring device records
data on HR at 1Hz, EDA at 4Hz, a 3-axis accelerometer at 32Hz, skin temperature
at 4Hz and Inter-Beat interval (IBI) [107]. The wristband can wirelessly connect to
any computing device through Bluetooth, for real-time data transfer. It is shown in
Figure 3.3.

3. AdHawk MindLink: This wearable eye tracking device has a listed glance direction
accuracy of 1 degree and its tracking field of view of 40×25 degrees. The eye cameras
operate at a sampling rate of 60-500 Hz. Also, the front camera has a resolution of
1280× 720 pixels [108].It is shown in Figure 3.4.

4. Dayton Audio Tactile Transducer Mini Bass Shaker and Nobsound Mini Power Am-
plifier: This mini base shaker has been installed on the driver’s chair to provide
vibration for haptic warnings. For the haptic warning, a sound with a 40 Hz fre-
quency was played through the shaker using the amplifier. No sound could be heard;
it only produced vibrations. They are shown in Figure 3.5.
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Figure 3.2: Driving simulator

Figure 3.3: E4 Empatica wristband, Source: [107]
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Figure 3.4: AdHawk MindLink Eye tracker, Source: [109]

[a] [b]

Figure 3.5: a) Dayton Audio Tactile Transducer Mini Bass Shaker, Source: [110] b) Nob-
sound Mini Power Amplifier, Source: [111]

19



3.3 Experimental Design

The experimental design employed in this study was a mixed factorial design (2 × 2)
incorporating two key factors: the number of warning levels (2 levels versus 3 levels) as the
between-subjects independent variable and the driving condition (critical versus normal) as
the within-subjects independent variable. The experiment aimed to study the interactions
between the warning system variations and driving conditions, providing a comprehensive
understanding of their combined impact on driving performance [5].

Each participant navigated through all eight scenarios, ensuring a comprehensive expo-
sure to diverse driving conditions. To eliminate the potential influence of scenario repetition
on driving behavior, no participant encountered a repeated scenario. Each scenario was
characterized by a specific speed limit, which was clearly communicated through simu-
lation signboards and verbally announced before the commencement of each drive. This
approach aimed to standardize the experimental conditions, providing a consistent basis
for evaluating the impact of warning levels under varied driving circumstances.

The utilization of this mixed factorial design allowed for a detailed exploration of the
interplay between warning levels and driving conditions, contributing to the depth and
validity of the study’s findings.

3.4 Variables and Metrics

The dependent and independent variables adopted are summarized in Table 3.2. These
variables aim to capture diverse aspects of driver behavior and response under varying
warning levels and driving conditions.

The data collected for this study were analyzed using a combination of descriptive statis-
tics and Analysis of Variance (ANOVA). Descriptive statistics were employed to summarize
the characteristics of the variables under investigation. These included measures such as
mean, standard deviation, and range to provide a comprehensive overview of the data dis-
tribution. ANOVA was utilized to examine the relationships between the independent and
dependent variables. This statistical technique allowed for the comparison of means across
multiple groups, providing insights into any significant differences or relationships present
in the data.
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3.4.1 Independent Variables

The primary independent variable is the Number of Warning Levels, manipulated as a
between-subjects factor. Participants are exposed to either a 2-level or 3-level graded
collision warning system, allowing for a comparison of their driving performance under
these different warning configurations.

The second independent variable is the Driving Condition, manipulated as a within-
subjects factor. Participants navigate through scenarios representing both critical and
normal driving conditions, enabling an exploration of how warning levels interact with
different driving complexities.

3.4.2 Dependent Variables

1. Response Time: A driver’s response time, comprises two components Perception
Reaction Time (PRT) and Maneuver Time (MT). PRT is the duration it takes for the
driver to recognize the necessity for a reaction based on road conditions, determine the
suitable maneuver (such as stopping the vehicle in the case of a rear-end collision),
and commence the maneuver by releasing the accelerator and applying the brake
pedal [112]. MT, alternatively referred to as movement time, represents the time
required to execute the maneuver, including decelerating and bringing the vehicle to
a halt [113]. The duration it takes for a driver to notice and react to unexpected
situations is a critical metric, holding significance for roadway system designers and
often playing a crucial role in litigation arising from motor vehicle accidents [85].
Response time, measured in seconds, serves as a key dependent variable, providing
insights into the efficacy of warning systems in facilitating timely responses.

2. Number of Collisions: The number of recorded collisions during driving serves as a
crucial metric for evaluating warning effectiveness. This metric encompasses colli-
sions with obstacles and instances of driving off the road, offering a comprehensive
assessment of the system’s ability to prevent or mitigate collisions.

3. EDA and HR: Collected from the E4 Empatica wristband, EDA and HR values offer
insights into participants’ physiological responses. These responses are particularly
relevant, as driver distraction can influence physiological features [114, 115]. Mon-
itoring EDA and HR provides a glimpse into the physiological impact of warning
systems on driver arousal and stress levels.
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Table 3.2: Overview of dependent and independent variables
Construct Type of variable Unit

Number of warning levels
Independent variable

Count
Driving condition Normal / Critical
Response time

Dependent variable

Seconds
Collision frequency Count
Pupil position degree
HR bpm
HRV Seconds
EDA Micro-Siemens (µS)

4. HRV: HRV is a measure of the variance in the duration between successive heartbeats.
It is calculated from the IBI time series data, collected from the E4 Empatica wrist-
band. There are different ways in which to calculate HRV using IBI: time-domain
analysis, frequency-domain analysis, and non-linear analysis [116, 117, 118]. In this
study, time-domain analysis is chosen and calculated by computing the SDNN of IBI,
employing a custom Python script designed for this particular analysis.

5. Pupil position: Obtained through the eye tracker, eye data and pupil position can
capture visual attention patterns. Given that driver distraction can significantly
affect visual features, this variable allows for an in-depth analysis of how warning
systems influence participants’ visual attention during the driving scenarios.These
variables collectively form a comprehensive set of metrics, providing a rich dataset for
evaluating the multifaceted impact of warning levels on driving behavior. The subse-
quent chapters elucidate the analysis and interpretation of these variables, providing
insights into the complex interplay observed during the experimental investigation.

3.5 Driving Scenarios

The driving scenarios constitute a pivotal component of this experimental investigation,
providing a realistic and varied backdrop to evaluate the impact of warning levels on
driving performance. The comprehensive overview of these scenarios is presented in Table
3.3, highlighting the intricacies embedded in the experimental design.
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Table 3.3: Driving scenarios
Scenario No. Condition Scenario Description

Scenario 1

Critical

Foggy city, an obstacle on the road, high traffic volume
Scenario 2 Foggy highway, an obstacle on the road, high traffic volume
Scenario 3 City, an obstacle on the road, rainy night, high traffic volume
Scenario 4 Highway, an obstacle on the road, night, high traffic volume
Scenario 5

Normal

City with an intersection without a traffic light in the daytime
Scenario 6 City with an intersection without a traffic light and an obstacle
Scenario 7 City with an obstacle on the road in the daytime
Scenario 8 Highway with an obstacle on the road in the daytime

3.5.1 Scenario Composition

In total, there are 16 distinct driving scenarios, strategically divided into two groups: 8
scenarios featuring 2-level graded warnings and another 8 scenarios incorporating 3-level
graded warnings. Participants were randomly assigned to one of these groups, ensuring
a balanced distribution of participants across the different warning configurations. Each
participant engaged in a total of 8 driving scenarios, further evenly distributed into 4
instances of normal driving conditions and 4 instances of critical driving conditions.

Participants operated a manual vehicle, traveling at 90 km/h on a three-lane highway
and at a speed of 30 km/h on an urban non-highway road. Moderate pre-planned traf-
fic conditions were maintained in all scenarios to simulate real-world driving conditions.
Adding an element of distraction, participants were engaged in a secondary task during
each scenario, mirroring the challenges of multitasking while driving.

3.5.2 Normal Driving Conditions

Scenarios unfolding under normal driving conditions presented a scenario mirroring ideal
circumstances. These conditions included clear weather, optimal visibility, stable road
conditions, and a moderate traffic flow. Participants encountered situations such as nego-
tiating an intersection lacking a traffic light or maneuvering through a road blocked by an
obstacle which is a crashed car, demanding a complete stop from the driver. The normal
scenarios are shown in Figure 3.6.
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Figure 3.6: Normal Scenarios: a) City with an intersection without a traffic light in the
daytime b) City with an intersection without a traffic light and an obstacle c) City with
an obstacle on the road in the daytime d) Highway with an obstacle on the road in the
daytime
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Figure 3.7: Critical Scenarios: a) Foggy city, an obstacle on the road, high traffic volume
b) Foggy highway, an obstacle on the road, high traffic volume c) City, an obstacle on the
road, rainy night, high traffic volume d) Highway, an obstacle on the road, night, high
traffic volume

3.5.3 Critical Driving Conditions

Conversely, critical driving conditions injected an additional layer of complexity into the
scenarios. Challenges included navigating higher traffic volumes demanding rapid decision-
making, driving during rainy nights, and contending with foggy weather that significantly
diminished visibility. An obstacle strategically placed in these scenarios posed a consider-
able challenge, with participants able to identify it only when in close proximity. To avert
a collision, drivers had the option to either reduce speed or come to a stop within their
current lane or swiftly switch to another lane. The scenario order was counterbalanced
across subjects to mitigate any potential sequence biases. The critical scenarios are shown
in Figure 3.7.
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Table 3.4: Overview of warning timeline
Warning Type Warning level Warning threshold Warning modality

2-Level
Level 1 TTC=20 Visual
Level 2 TTC=5 Visual + Haptic + Auditory

3-Level
Level 1 TTC=20 Visual
Level 2 TTC=12 Visual + Haptic
Level 3 TTC=5 Visual + Haptic + Auditory

3.5.4 Warning Issuance

Warnings were strategically issued based on TTC values. The TTC stands as one of
the most commonly utilized safety metrics, serving as an indicator of crash risk [46]. It
signifies the duration until a potential collision between two vehicles would have transpired
had their courses and speed differentials remained constant [119]. In the 3-level graded
warning scenarios, warnings were triggered at specific TTC values with varying modalities.
Initially, a visual warning in the form of an alert message ”Warning” was displayed on
the screen when TTC reached 20 seconds. Subsequently, at TTC=12 seconds, both visual
and haptic warnings were simultaneously introduced, providing a dual sensory alert to
the driver. Finally, at TTC=5 [119] seconds, a comprehensive warning comprising visual,
haptic, and auditory elements was activated, aiming to maximize driver attention and
response. Each warning modality persisted for a duration of 3 seconds.

Similarly, in the 2-level graded warning scenarios, warnings were also issued based on
TTC values. At TTC=20 seconds, a visual warning identical to the one in the 3-level
scenario was presented. Subsequently, at TTC=5 seconds, the comprehensive warning
consisting of visual, haptic, and auditory elements was deployed. As in the 3-level scenario,
each warning modality persisted for 3 seconds. These are summarized in Table 3.4.

One of the primary goals of our experiment was to examine not only the efficacy of
warning systems in alerting drivers to potential hazards but also to closely monitor changes
in driver performance and physiological responses. Given this focus, we deliberately chose
TTC thresholds that provided extended warning times well beyond what would typically
be encountered in real-world driving scenarios. By selecting higher TTC values, we aimed
to create longer time margins, allowing for more comprehensive observation and analysis
of driver behavior and physiological responses. This approach enabled us to capture sub-
tle variations in performance and physiological indicators, which may not be as readily
observable in shorter time frames.

In the event that drivers did not react to the warnings, no additional actions were
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triggered, allowing the scenario to continue without interruption. After successfully nav-
igating past the obstacle or intersection, participants continued to manually drive for an
additional 30 meters, marking the conclusion of each scenario. This design element aimed
to simulate a seamless transition back to regular driving conditions after encountering a
potential hazard or critical situation.

The arrangement of these driving scenarios allows for an examination of how different
warning levels affect driver behavior in different driving conditions. Subsequent section
will explain more about the secondary task.

3.6 Secondary Task

In the realm of realistic driving scenarios, sometimes drivers are not consistently focused
on the primary driving task due to engagement in non-driving-related secondary activ-
ities. Engaging in secondary tasks that divert drivers’ attention from the road ahead
[120, 121] can diminish their visual scanning abilities [122] and escalate cognitive strain,
posing heightened risks [123]. In a 2006 study analyzing findings from a 100-car field test
[124], it was revealed that nearly 80% of all accidents and 65% of near-accidents occurred
when drivers diverted their gaze away from the road shortly before the event. As a result,
the inclusion of a standardized secondary task becomes imperative to simulate the atten-
tional demands placed on drivers in experimental settings. To authentically replicate such
scenarios, participants undertook the Surrogate Reference Task (SuRT) [125], carefully
integrated into the experimental design.

The SuRT , a well-established driver distraction task, was chosen to mirror real-world
attentional demands. Participants received thorough practice in adherence to ISO Stan-
dards for the task, ensuring familiarity before engaging in the primary experimental scenar-
ios. The task was presented on a 14-inch laptop notebook, offering a standardized platform
for task execution.

Participants were instructed to perform the secondary task during driving scenarios at
their own pace, with an emphasis on completing as many tasks as possible while prioritizing
safety. The SuRT involves a visual search and manual input task, where participants
identify a larger (target) circle among circles of the same size (distractor) using the left
and right keypad buttons. The difficulty level of the task can vary, ranging from easy to
hard, depending on the size difference between the target circle and surrounding circles.
Target and distractors are presented as white circles against a black background, with
correct selections indicated by a green flash and incorrect ones marked with red.
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Figure 3.8: SURT interface with distractors and target

For this experiment, the easy version of the SuRT task was employed, aligning with
the manual driving requirements [126]. Figure 3.8 visually represents the interface of
the DominionSURT software [127] , a crucial component of this study’s secondary task
execution.

The incorporation of the SuRT as a secondary task within the experimental framework
provides a detailed understanding of how attentional demands impact driving performance.
In the subsequent chapters, the analysis of collected data, interpretations, and insights
derived from the interplay between the primary driving task and the secondary task is
expounded upon, shedding light on the intricate dynamics of distracted driving, derived
from this experimental framework.
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Chapter 4

Data Analysis and Results

4.1 Driving Simulator Data

In this chapter, we embark on a comprehensive analysis of the collected data, focusing on
descriptive statistics to provide a clear overview of the dataset. Additionally, we use a 2×2
mixed ANOVA which is a statistical test, to explore the effects of different warning levels
and driving conditions on our dependent variables. This analysis will be conducted using
the Python programming language.

4.1.1 Response Time

Each participant underwent eight scenarios, each lasting around 2 minutes. Using Carla’s
recorder function, all scenarios were initially captured. The simulator produced diverse
data such as speed, throttle, brake, steering commands, and collision events. The response
time of the drivers was extracted from both the eye-tracker video data and the simulator
data. It represents the duration taken by the driver to perceive and react to unforeseen
situations [85]. The descriptive statistics of the driver response time is presented in Table
4.1. Furthermore, Figure 4.1 illustrates the comparison between different warning levels
and driving conditions.

A two-way repeated measures ANOVA was conducted, to test the effect of the warning
level (2-level, 3-level) between-subjects factor, and the driving condition (normal, critical)
within-subjects factor on driver response time.

29



Table 4.1: Descriptive statistics of the driver response time

Warning Type Condition
Driver Response Time

Mean SD Median

2-Level
Critical 2.81 0.22 2.77
Normal 2.23 0.22 2.24

3-Level
Critical 2.21 0.32 2.16
Normal 1.8 0.23 1.7

Figure 4.1: Analysis of driver response time (s) for 2-level and 3-level warning under normal
and critical driving condition

Table 4.2: ANOVA table for driver response time
Variable df F-value p-value

Warning level (1,19) 51.544 < 0.0001
Driving condition (1,19) 148.1534 < 0.0001
Interaction between Warning Level and Driving Condition (1,19) 4.0899 0.0574
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Table 4.3: Descriptive data for number of collisions
Warning Type Condition Number of Collisions Total

2-Level
Critical 10

17
Normal 7

3-Level
Critical 5

7
Normal 2

According to the Table 4.2, there is a significant effect of the warning levels and the
driving condition on driver response time. However, the interaction effect between the
warning system and driving condition on response time is not statistically significant.

4.1.2 Collision Frequency

There was a total of 24 collisions that occurred in the driving scenarios (see Table 4.3).
17 participants collided with the hazard in 2-level warning scenarios (10 in critical and 7
in normal driving condition), while this number was 7 for 3-level warning scenarios (5 in
critical and 2 in normal driving condition).

4.2 Physiological Sensor Data

Various factors influence driving behavior, encompassing traffic conditions and diverse
driver characteristics such as age, emotional state, and aggressiveness. The influence of
mental state and stress significantly affects driver behavior, particularly at intersections.
Stress levels are gauged using physiological indicators like HR and skin conductance, also
known as EDA [128]. These signals, detectable by sensors, are employed in this research.

The study’s measurements were obtained using the E4 Empatica wristband worn by
participants, both before the experimental drive (baseline data) and during their driving
sessions with the simulator, using a button on the wristband.

4.2.1 EDA

The EDA values are compared with the baseline data for 2-level and 3-level warnings in
normal and critical driving conditions, shown in Table 4.4 and Figure 4.2 to Figure 4.5.
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Table 4.4: Descriptive statistics of the driver’s EDA
Warning Type Condition Mean SD

2-Level
Baseline 1.11 1.23
Critical 2.03 0.37
Normal 1.78 0.33

3-Level
Baseline 0.57 0.44
Critical 1.16 0.36
Normal 1.53 0.25

Figure 4.2: Analysis of EDA for 2-level warning for baseline and under normal driving
condition

In 2-level warning group, there are instances where the EDA response under critical
conditions peaks significantly above the baseline, suggesting episodes of higher stress or
arousal. For most participants, EDA responses under critical conditions seem to be slightly
above the baseline. However, most EDA responses in normal conditions tend to stay close
to the baseline levels. In 3-level warning group, EDA responses are mostly consistent with
the baseline. Also, it is observed that the 2-level system may elicit slightly higher EDA
responses in both conditions compared to the 3-level system.

The EDA values are also compared between warning levels and driving conditions in
Figure 4.6. For the 2-level warning system, the median EDA response for the critical
condition is slightly higher than for the normal condition. However, for the 3-level warning
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Figure 4.3: Analysis of EDA for 2-level warning for baseline and under critical driving
condition

Figure 4.4: Analysis of EDA for 3-level warning for baseline and under normal driving
condition
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Figure 4.5: Analysis of EDA for 3-level warning for baseline and under critical driving
condition

system, the median EDA response for the critical condition is slightly lower than for the
normal condition. Although, the difference is not as pronounced. Furthermore, there are
several outliers in both conditions for the 2-level warning system. In contrast, there are
fewer outliers in the 3-level warning system.

Given the divergent results observed, we conducted a two-way ANOVA to assess the
significance of the factors on EDA responses. According to Table 4.5 which provides
ANOVA results of test condition EDA, the p-value for the warning system level effect
is approximately 0.249, indicating that there is no significant difference in mean EDA
between the 2-Level and 3-Level warning systems across all conditions. Similarly, the p-
value for the condition effect is approximately 0.621, suggesting that there is no significant
difference in mean EDA between Normal and Critical conditions across all participants.
Furthermore, the p-value for the interaction effect is approximately 0.018, suggesting that
there is a significant interaction effect between the condition and warning system level on
mean EDA. It suggests that the effectiveness of the warning system in influencing EDA
differs depending on the driving condition.
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Figure 4.6: Analysis of EDA for 2-level and 3-level warnings, under normal and critical
driving condition

Table 4.5: ANOVA table for driver EDA
Variable df F-value p-value

Warning level (1,19) 1.4113 0.249
Driving condition (1,19) 0.2525 0.621
Interaction between Warning Level and Driving Condition (1,19) 6.746 0.018
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Table 4.6: Descriptive statistics of the driver’s HR
Warning Type Condition Mean SD

2-Level
Baseline 76.75 5.8
Critical 77.97 5.7
Normal 77.25 7.37

3-Level
Baseline 76.5 6.41
Critical 79.64 6.52
Normal 77.19 8.64

Figure 4.7: Analysis of HR for 2-level warning for baseline and under normal driving
condition

4.2.2 HR

The HR values are compared with the baseline data for 2-level and 3-level warnings in
normal and critical driving conditions, shown in Figure 4.7 to Figure 4.10.
The Table 4.6 indicates that, on average, participants’ HR during both critical and normal
driving conditions were close to or slightly above their baseline HR across both warning
systems. This indicates a subtle variation in HR in response to the driving experiment
conditions. However, in 3-level warning systems, participants’ HR is higher than baseline
in both driving conditions.

The HR values are also compared between warning levels and driving conditions in
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Figure 4.8: Analysis of HR for 2-level warning for baseline and under critical driving
condition

Figure 4.9: Analysis of HR for 3-level warning for baseline and under normal driving
condition
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Figure 4.10: Analysis of HR for 3-level warning for baseline and under critical driving
condition

Table 4.7: ANOVA table for HR
Variable df F-value p-value

Warning level (1,19) 0.0487 0.828
Driving condition (1,19) 0.0899 0.768
Interaction between Warning Level and Driving Condition (1,19) 0.0487 0.828

Figure 4.11. The box-plot illustrates that there does not seem to be a dramatic difference
in the central tendency (median) of heart rates between 2 and 3-level warnings for critical
driving condition. However, in the 2-level warning system, the median heart rates for
normal conditions appear to be slightly higher than other conditions. The range of heart
rates is also similar between the two warning levels, which implies that the extremities of
heart rate responses do not change much between warning levels, except for the 2-level
normal scenarios which showed a wider range.

Additionally, a two-way ANOVA was conducted to assess the significance of the factors
on HR values. According to Table 4.7, the results showed that there is no significant
effect of the warning level, driving condition or interaction effect between warning level
and driving condition on the HR mean.
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Figure 4.11: Analysis of HR for 2-level and 3-level warning under normal and critical
driving conditions

4.2.3 HRV

As we couldn’t extract useful findings from HR data, an analysis was conducted on the
HRV data as well. The 2-level and 3-level group HRV values are compared in normal
and critical driving conditions, shown in Figure 4.12 and Figure 4.13. Analysis indicates
that, on average, 2-level warning group had slightly higher HRV values compared to 3-level
warning group in both normal and critical driving conditions.

Additionally, a two-way ANOVA was conducted to assess the significance of the factors
on HRV values. According to the results shown in Table 4.8, the results showed that there
is no significant effect of the warning level, driving condition or interaction effect between
warning level and driving condition on the HRV mean, as the P-value is more than 0.05.

4.3 Eye Data

As eye data, encompassing gaze and pupil position data [129], can provide valuable insights
due to the visual distraction, they were collected using the Adhawk eye tracker worn by
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Figure 4.12: Analysis of HRV for 2-level and 3-level warning under normal driving condition

Figure 4.13: Analysis of HRV for 2-level and 3-level warning under critical driving condition

Table 4.8: ANOVA table for HRV
Variable df F-value p-value

Warning level (1,19) 1 0.331
Driving condition (1,19) 0.75 0.398
Interaction between Warning Level and Driving Condition (1,19) 0.7879 0.387
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Table 4.9: ANOVA table of pupil position for warning level factor
Variable df F-value p-value

Pupil Pos X Right 1 14.24 0.0027
Pupil Pos Y Right 1 103.11 < 0.0001
Pupil Pos X Left 1 23.90 0.0004
Pupil Pos Y Left 1 0.11 0.05

Table 4.10: ANOVA table of pupil position for driving condition factor
Variable df F-value p-value

Pupil Pos X Right 1 1.06 0.3243
Pupil Pos Y Right 1 0.46 0.5089
Pupil Pos X Left 1 1 0.3369
Pupil Pos Y Left 1 0.52 0.4853

participants in this study.

A two-way ANOVA was conducted to understand the significance effects of the warning
level and driving condition on the pupil position. According to F-value and p-value showed
in Table 4.9, there is a significant effect of the warning system type on the mean pupil
position, suggesting that the mean pupil position differs significantly between the 2-level
and 3-level warning systems. However, the driving condition (Critical vs. Normal) does
not have a significant effect on the pupil position at the conventional 0.05 significance
level (Table 4.10). Additionally,the interaction effect is not significant, indicating that the
difference between the 2-level and 3-level warning systems on the pupil position does not
depend significantly on whether the driving condition is critical or normal (Table 4.11).

In our analysis of distraction from eye data, we compared baseline pupil position data
for each participant, representing their pupil position when focusing on the monitor while

Table 4.11: ANOVA table of pupil position for interaction between warning level and
driving condition

Variable df F-value p-value

Pupil Pos X Right 1 1.34 0.2696
Pupil Pos Y Right 1 0.83 0.3814
Pupil Pos X Left 1 0.07 0.8007
Pupil Pos Y Left 1 0.1 0.7519
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Figure 4.14: Comparing mean pupil position during 2-level warning normal and critical
scenarios and baseline pupil position

Table 4.12: Difference Between Mean Pupil Position During Scenarios and Baseline Pupil
Position

Warning type Normal condition Critical condition

2-level Warning 1.364 1.147
3-level Warning 1.248 1.077

driving, with the mean pupil position during both critical and normal scenarios (Figure
4.14 and Figure 4.15).

The proximity of this mean to the baseline indicates the participant’s level of focus
on driving and degree of distraction. The difference between the mean pupil position
during scenarios and the baseline was calculated and presented in Table 4.12. The smaller
difference observed in the 3-level warning group compared to the 2-level warning group in
both normal and critical driving conditions.

4.4 Subjective Evaluation

At the end of the experiment, each participant was tasked with completing a comprehensive
survey aimed at gauging the workload and their perceptions of the warnings provided. The
survey covered various aspects, including the clarity of the warnings, the level of annoyance
experienced, the perceived effectiveness of the warnings, and preferences regarding different
modalities. Participants were encouraged to express their feedback and insights on these
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Figure 4.15: Comparing mean pupil position during 3-level warning normal and critical
scenarios and baseline pupil position

key dimensions to provide a well-rounded evaluation of their overall experience during the
experiment.

The survey results provide valuable insights into their effectiveness and areas for im-
provement. The results revealed that 80% of participants identified the critical highway
scenarios as the most demanding and risky, highlighting the increased necessity for effective
warnings under high-speed conditions. Conversely, 88% considered the normal city scenar-
ios as lower risk and less demanding. A substantial majority found the warnings to be clear,
with 52.5% rating them as very clear and 35% as clear, demonstrating that the warnings
were generally well-understood. Moreover, 93% of participants felt that the warnings posi-
tively influenced their refocusing on driving, and 88% reported an improvement in driving
performance, especially during highway scenarios. However, the feedback also pinpointed
challenges, notably that 37.5% of participants found one of the warnings to be distracting
or annoying at times, suggesting that while the warnings were clear, their presentation or
modality may have impacted the participants’ driving experience negatively.

Additionally, the preference for warning modalities varied among participants, with
45% favoring auditory and 25% preferring haptic warnings, emphasizing the need for cus-
tomizable warning systems to accommodate individual preferences.

Regarding the challenge posed by secondary tasks, 48% of participants found them to
be demanding, indicating a significant portion experienced an increased cognitive load.
Yet, a considerable number rated these tasks as neutral or not challenging, suggesting
variability in participants’ capacity to manage additional tasks alongside driving.
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Chapter 5

Discussion and Conclusion

5.1 Discussion

This study compared 2-level and 3-level collision warning systems under both normal and
critical driving conditions, particularly when the driver is distracted by a secondary task.

The insights gained from the previous chapter provide us with an understanding of the
variables influencing the driver performance. Statistical analysis has been conducted to
determine whether to retain or reject the null hypotheses.

5.1.1 Response Time

The descriptive statistics presented in Table 4.1 reveal notable differences in response times
between the two warning systems. In critical driving conditions, participants subjected to
the 3-level warning system exhibited a mean response time of 2.21 seconds, whereas those
under the 2-level warning system had a mean response time of 2.81 seconds. Similarly, in
normal driving conditions, participants in the 3-level warning group demonstrated a mean
response time of 1.8 seconds, compared to 2.23 seconds for those in the 2-level warning
group. These findings suggest that the 3-level warning system consistently outperformed
the 2-level system in terms of response time across both critical and normal driving condi-
tions. This reject our null hypotheses (H0) and supports our alternative hypotheses (HA),
indicating that the 3-level system indeed led to better driving performance compared to
the 2-level system.
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Furthermore, the analysis highlights the influence of driving conditions on response
time. Participants faced with critical driving scenarios exhibited longer response times
compared to those in normal driving conditions, irrespective of the warning system em-
ployed. This observation aligns with existing literature, which suggests that reduced vis-
ibility and increased traffic volume, attention, and cognitive load associated with critical
driving situations can impede reaction times [130, 131, 132, 133].

The interaction effect between warning levels and driving conditions, while not statisti-
cally significant, is noteworthy. Although the difference in response time between the two
warning systems varied across driving conditions, the magnitude of this difference did not
significantly change. This implies that while the warning level influences response time,
its impact remains consistent regardless of the driving context.

5.1.2 Collision Frequency

As depicted in Table 4.3, participants in the 2-level warning group experienced a higher
number of collisions compared to those in the 3-level warning group. Specifically, in critical
driving conditions, 10 collisions occurred among participants in the 2-level warning group,
while only 5 collisions occurred among those in the 3-level warning group. Similarly, in
normal driving conditions, participants in the 2-level warning group experienced 7 colli-
sions, whereas only 2 collisions occurred among those in the 3-level warning group. These
findings suggest that the 3-level warning system was more effective in reducing the fre-
quency of collisions compared to the 2-level system across both critical and normal driving
conditions. This reject our null hypotheses (H0) and aligns with our alternative hypothe-
ses (HA), indicating that the 3-level system indeed led to a lower number of collisions
compared to the 2-level system.

Additionally, the analysis underscores the influence of driving conditions on collision
frequency. Participants in critical driving scenarios experienced a higher number of col-
lisions compared to those in normal driving conditions, regardless of the warning system
employed. This observation is consistent with the heightened cognitive load, and reduced
visibility, associated with critical driving situations, which can weaken driver performance
and elevate the risk of accidents or crashes. [134, 135, 136, 137].

5.1.3 EDA

The descriptive statistics presented in Table 4.4 showed interesting patterns in EDA re-
sponses between baseline and driving conditions. In the 2-level warning group, partici-
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pants generally exhibit higher EDA responses under critical driving conditions, indicated
by peaks above the baseline. This suggests increased stress or arousal levels [138] when
faced with potential hazards or critical situations. Conversely, EDA responses in normal
driving conditions tend to remain closer to baseline levels, indicating relatively lower stress
levels during routine driving tasks. Furthermore, participants in the 3-level warning group
exhibited higher EDA values in both normal and critical driving conditions compared to
the baseline, indicating increased stress or arousal levels in response to the driving ex-
periment conditions. However, the 3-level group showed slightly higher EDA responses in
normal driving conditions compared to critical ones.

The boxplot (Figure 4.6) analysis further explores the differences in EDA responses
between the two warning systems under different driving conditions. It is observed that the
3-level system has a more consistent EDA response between critical and normal conditions,
whereas the 2-level system shows more variability. The median EDA response for the
normal condition is higher in the 3-level system compared to the 2-level system, which
might suggest that the additional level of warning in the 3-level system engages participants
more even during normal driving conditions. Moreover, the critical condition elicits a
higher median EDA response than the normal condition for 2-level warning systems. This
could indicate that the critical driving scenarios with 2-level warnings might have been
more engaging or demanding in terms of attention, leading to higher arousal as measured
by EDA. However, participants showed unexpectedly opposite results in 3-level warning
group. Finally, there are several outliers in both conditions for the 2-level warning system,
indicating that some participants had EDA responses that were notably different from the
rest. In contrast, there are fewer outliers in the 3-level warning system, suggesting more
consistent responses among participants.

The results of the 2-way ANOVA provide insights into the significance of warning sys-
tem levels and driving conditions on mean EDA responses. The p-value for the warning
system level effect indicates that there is no significant difference in mean EDA between
the 2-level and 3-level warning systems across all conditions. Similarly, the p-value for the
condition effect suggests no significant difference in mean EDA between normal and critical
conditions. This results fail to reject the null hypotheses (H0) that there is no significant
difference in driving performance within the 2-level and 3-level graded collision warning
systems across normal and critical driving conditions. However, the significant interaction
effect between warning level and driving condition on mean EDA indicates that the rela-
tionship between these factors is not straightforward. This highlights the importance of
considering the combined influence of warning systems and driving conditions on drivers’
physiological responses.
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5.1.4 HR

The comparison of HR values between baseline and driving conditions reveals subtle vari-
ations in participants’ physiological states during the experiment. Across both 2-level and
3-level warning systems, participants generally exhibit HR values close to or slightly above
their baseline HR during critical and normal driving conditions. This indicates a modest
increase in heart rate in response to the driving experiment conditions.

The boxplot (Figure 4.11) analysis further explores the differences in HR responses
between the two warning systems under different driving conditions. The central tendency
(median) of HR values does not show significant differences between 2-level and 3-level
warning systems for critical driving condition. Similarly, the range of HR values remains
consistent between the two warning levels, indicating similar physiological responses across
warning systems, except for 2-level normal condition. Within 3-level warning system, the
median HR values for critical and normal conditions are comparable, with a tendency
towards higher median HR in critical conditions. However, it showed opposite results in
2-level warning system with a higher median in normal condition.

The results of the two-way ANOVA provide insights into the significance of warning
levels and driving conditions on mean HR values. The lack of significant effects for warning
level, driving condition, or their interaction suggests that these factors do not have a pro-
nounced impact on participants’ HR responses during the driving scenarios. This indicates
that the differences observed in HR values between warning levels and driving conditions
are not statistically significant.

Analyzing the physiological data shows that adding another level to collision warning
systems has not a significant effect on driver’s stress levels.

5.1.5 HRV

The analysis of HRV data was conducted to reveal intriguing insights into the physiological
responses during different driving conditions. Despite encountering challenges in deriving
meaningful conclusions from HR, we extend HRV data analysis for a deeper examination of
autonomic nervous system dynamics. The comparison between 2-level and 3-level warning
groups under both normal and critical driving conditions, as illustrated in Figure 4.12 and
Figure 4.13, unveiled noteworthy trends. It was observed that, on average, participants in
the 2-level warning group exhibited slightly higher HRV values than those in the 3-level
warning group across both driving conditions.
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Furthermore, a rigorous statistical analysis was conducted to evaluate the significance
of various factors influencing HRV values. Employing a two-way ANOVA methodology
enabled a comprehensive assessment of the impact of warning level, driving condition, and
their interaction effect on HRV means. As delineated in Table 4.8, the results of the analysis
suggest that there is no statistically significant effect of warning level, driving condition,
or their interaction on HRV means. This inference is substantiated by the observation
that the computed P-values exceed the conventional threshold of 0.05, indicating a lack of
significant differences attributable to these factors.

5.1.6 Eye Data

A driver must gather visual information from various locations. A significant portion of
the cognitive effort involved in comprehending the surrounding environment is dedicated to
predicting its near-future state [139, 140]. This holds especially true for the road environ-
ment, where making predictions with reasonable chances of success is feasible [141]. Pupil
position data provide insights into the visual focus and cognitive engagement of drivers
during the experimental driving scenarios [142]. The comparison of mean pupil position
between 2-level and 3-level warning systems reveals significant differences, as indicated by
the results of the two-way ANOVA. Specifically, the mean pupil position differs significantly
between the two warning systems, suggesting that drivers may exhibit distinct patterns
of visual attention and cognitive processing [143] based on the number of warning levels
presented.

In contrast to the significant effect of warning system type, the driving condition (crit-
ical vs. normal) did not show a significant effect on pupil position. This suggests that
drivers’ visual attention, as reflected by pupil position data, may not vary substantially
between critical and normal driving conditions within the context of this study. The non-
significant interaction effect between warning level and driving condition indicates that
the difference in mean pupil position between 2-level and 3-level warning systems is consis-
tent across both critical and normal driving conditions. This suggests that the impact of
warning system complexity on driver visual attention and cognitive load remains relatively
consistent regardless of the driving context.

Additionally, the comparison of mean pupil position during scenarios with baseline
pupil position data, which is the pupil position when the driver is looking to the monitor
and is focused on driving, provides insights into driver distraction. The smaller difference
observed in the 3-level warning group compared to the 2-level warning group (Table 4.12).
This indicates that participants in the 3-level warning group were less distracted and more
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focused on driving. This reject our null hypotheses (H0), and aligns with our alternative
hypotheses (HA), suggesting that the additional warning levels may have helped maintain
driver attention and reduce cognitive distraction, contributing to improved performance.

5.1.7 Subjective Evaluation

The subjective evaluation component of the study offers valuable insights into participants’
perceptions of the warning systems and their overall driving experience. The survey results
reflect participants’ recognition of the varying levels of risk and demand across different
driving scenarios. The majority identifying critical highway scenarios as the most demand-
ing and risky aligns with expectations, highlighting the importance of effective warnings
in high-speed environments where the margin for error is reduced. Conversely, the per-
ception of normal city scenarios as lower risk and less demanding underscores the need for
context-sensitive warning systems that adapt to different driving environments.

The positive ratings for the clarity and effectiveness of the warnings indicate that par-
ticipants generally understood and appreciated the warnings provided during the driving
scenarios. The high percentage of participants who felt the warnings positively influenced
their refocusing on driving and improved driving performance underscores the potential
benefits of collision warning systems in enhancing driver attention and responsiveness,
particularly in critical situations.

Despite the overall positive feedback, a notable proportion of participants found certain
warnings to be distracting or annoying at times. This highlights a crucial consideration
in warning system design: the balance between providing clear alerts and avoiding undue
distraction or annoyance. The variation in preference for warning modalities further em-
phasizes the importance of customizable systems that cater to individual user preferences
and mitigate potential negative effects on driving experience.

The survey results regarding secondary task demands offer insights into participants’
multitasking abilities and the impact of concurrent cognitive tasks on driving performance.
The finding that nearly half of the participants found secondary tasks demanding suggests
the presence of increased cognitive load, which can potentially affect driving performance
and safety. However, the variability in participants’ perceptions of task difficulty under-
scores the complex interplay between individual factors and task characteristics in deter-
mining cognitive workload.
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5.2 Conclusion

In this study, we investigated the effectiveness of 2-level and 3-level graded collision warning
systems under different driving conditions, namely critical and normal scenarios. Through
a combination of objective data analysis and subjective evaluations, we aimed to gain
insights into the performance and usability of these warning systems in real-world driving
contexts.

The objective data analysis revealed significant findings regarding driver response time,
number of collisions, physiological responses (such as electrodermal activity and heart
rate), and eye data (including pupil position). Overall, the results indicated that both
warning systems had a measurable impact on driving performance, with variations observed
across different driving conditions. Notably, the 3-level warning system showed promising
outcomes, particularly in reducing response time and mitigating collisions under critical
driving conditions.

The subjective evaluation provided insights into participants’ perceptions of the warning
systems, their clarity, effectiveness, and potential areas for improvement. While partici-
pants generally responded positively to the warnings and acknowledged their influence on
driving behavior, challenges such as distraction and variability in task demands were also
identified. These findings underscore the importance of designing warning systems that
strike a balance between providing clear alerts and minimizing distraction.

In conclusion, this study contributes to our understanding of the effectiveness and
usability of different levels of collision warning systems in enhancing driver safety and
performance. By integrating objective data analysis with subjective evaluations, we have
gained valuable insights into the complex interplay between warning system design, driver
behavior, and driving context. Moving forward, continued research in this area is essential
to further refine warning system designs and ultimately improve road safety for all drivers.

5.2.1 Implication

The findings of this study have several implications for the design and implementation of
collision warning systems in real-world driving scenarios. By understanding the factors
that influence driver behavior and perception, future iterations of warning systems can be
tailored to better meet the needs and preferences of users. This includes considering 3-
level graded warnings, exploring customizable warning modalities, and refining algorithms
to adapt to dynamic driving environments.
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5.2.2 Limitations

It is important to acknowledge the limitations of this study. While efforts were made
to simulate controlled driving scenarios, the findings may not fully generalize to all real-
world driving situations. As the research took place in a lab-based low-fidelity driving
simulator, it may not accurately mirror real-world conditions. During the practice sessions,
some participants initially remarked that the Logitech G29 steering wheel and pedals felt
distinct from the real vehicles they have driven. Additionally, the acceleration behavior
in the CARLA software diverged from that of a real vehicle, as releasing the accelerator
pedal would swiftly bring the speed to zero. Consequently, participants had to apply
additional effort to sustain their speed [126]. Moreover, the implementation of a supervised
simulator experiment, coupled with the utilization of wearable sensors, is expected to
influence driver performance differently when contrasted with a naturalistic study [144,
145]. Furthermore, the absence of Area of Interest (AOI) analysis limits the depth of
understanding of participants’ gaze patterns and inhibits direct comparisons with existing
literature.

Another limitation of this study is the age distribution of the participants, which pre-
dominantly skewed towards younger individuals. The recruitment process primarily tar-
geted university students and alumni, resulting in a sample that predominantly represents
a younger demographic. Consequently, the study lacks representation from older drivers,
which limits the generalizability of the findings across age groups. The absence of older
participants prevents a comprehensive understanding of how age-related factors, such as
cognitive decline or differing reaction times, may influence the effectiveness of collision
warning systems.

5.2.3 Future Work

Future research stemming from this study could explore deeper into several key areas
to advance the understanding and effectiveness of collision warning systems, particularly
focusing on 3-level graded warnings. One avenue for future work involves the adoption of
high-fidelity simulators to enhance the accuracy and reliability of data and results. High-
fidelity simulators offer more advanced features and realistic driving scenarios compared to
conventional simulators, providing a more immersive and authentic driving experience for
participants. By leveraging these technologies, researchers can collect more detailed data
on driver behavior and performance, leading to deeper insights into the efficacy of collision
warning systems.
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Another important consideration for future studies is the recruitment of participants
from a broader age range to address the limitation of predominantly young participants
in this study. Actively recruiting older drivers would ensure a more representative sample
and enhance the applicability of the study’s findings to diverse driver populations.

Additionally, investigating the integration of artificial intelligence and machine learning
techniques could pave the way for the development of adaptive warning systems. These
systems would be capable of learning from real-time driving data to tailor warnings to indi-
vidual drivers’ preferences and situational contexts, thereby maximizing their effectiveness.

Furthermore, as semi-autonomous and autonomous vehicles become increasingly preva-
lent, future research could explore the interoperability of collision warning systems with
these advanced technologies. Understanding how collision warning systems can comple-
ment semi-autonomous and autonomous driving features could lead to synergistic advance-
ments in overall safety and user experience. By addressing these avenues for future research,
scholars can contribute to the ongoing evolution and improvement of collision warning sys-
tems, ultimately enhancing road safety for all drivers.
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Naufal M Saad, and Frédéric Mérienne. Selection of measurement method for detec-
tion of driver visual cognitive distraction: A review. IEEE Access, 5:22844–22854,
2017.

[35] Johan Engström. The tactile detection task as a method for assessing drivers’ cog-
nitive load. Performance Methods for Assessing Driver Distraction: The Quest for
Improved Road Safety, pages 90–103, 2010.

[36] Christopher JD Patten, Albert Kircher, Joakim Östlund, and Lena Nilsson. Using
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Appendix A

Questionnaires

The questionnaires filled by the participants before starting the experiment are given below-
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Appendix B

Surveys

The surveys filled by the participants after finishing the experiment are given below-
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DATE CONVERSATION LABEL PROMPT RESPONSE ACTION

2
0
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0

2
4

sophisticated 

Warning System 

Advancement

Improve the writing:

Choosing between fewer or more warning 

levels in collision systems has been always a 

question. It is important to balances 

simplicity with better performance.

The debate between fewer levels of warning 

versus more levels of warning in collision 

warning systems underscores a delicate 

balance between simplicity and better 

performance.

Final sentences I used in the document:

Several studies have investigated the levels of 

warning in collision warning systems in terms of 

finding a balance between simplicity and better 

performance.

Paraphrase this:

Driver distraction is the voluntary or 

involuntary diversion of attention from the 

primary driving tasks not related to 

impairment where the diversion occurs 

because the driver is performing an 

additional task and temporarily focusing on 

an object, event, or person not related to 

the primary driving tasks.

Distracted driving, in essence, manifests as 

a critical form of attention lapse wherein 

drivers divert their focus from the primary 

task of driving to engage in secondary 

activities.

Final sentences I used in the document:

Distracted driving occurs when drivers shift their 

focus from driving to other activities, causing a 

significant lapse in attention.

Improve the writing:

By studying how collision warning systems 

influence driver performance and decision 

making, we aim to improve and customize 

these systems further.

By gaining a deeper understanding of how 

these collision warning systems affect 

driver behavior, decision-making, and 

overall performance, we aspire to pave the 

way for the development of more 

sophisticated and tailored warning systems.

Final sentences I used in the document:

Addressing this gap is essential for informing the 

ongoing research on road safety and optimizing 

the design and implementation of collision 

warning systems by gaining a deeper 

understanding of how these collision warning 

systems affect driver behavior, decision-making, 

and overall performance, to mitigate the risks 

associated with distracted driving, and providing a 

safer and more secure driving environment for all 

road users.

Improve the writing:

This study aims to compare two types of 

collision warning systems: one with 2 levels 

and another with 3 levels, to understand 

their effectiveness better.

The focus of this study is to delve into the 

nuanced dynamics of collision warning 

systems, specifically comparing the efficacy 

of two distinct approaches: a 2-level graded 

warning system and a 3-level graded 

warning system.

Final sentences I used in the document:

The primary objective of this research is to  

investigate and compare the efficacy of a 3-level 

graded collision warning system against a 2-level 

graded system in enhancing driver performance 

across critical and normal driving scenarios.

GenAI Documentation 
Platform: ChatGPT
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Improve the writing:

This study compares a 3-level graded 

collision warning system to a 2-level one in 

real-world driving conditions to see which 

works better. For this purpose, this study 

use simulated driving situations, examining 

both critical and normal driving conditions.

The goal of this study lies in a deliberate and 

systematic examination of the comparative 

effectiveness of a 3-level graded collision 

warning system against a 2-level graded 

counterpart. This investigation extends 

beyond the realm of mere theoretical 

scrutiny, delving deep into the crucible of 

both critical and normal driving conditions.

Final sentences I used in the document:

The controlled nature of the simulation allows for 

a systematic investigation into how drivers 

respond to different collision warning systems 

under conditions that simulate the actual road 

environments. The simulated scenarios cover 

various driving situations, ranging from normal 

driving to critical situations that demand more 

attention and rapid decision-making.

Improve the writing:

These differences aren't random; they're 

based on the risk level, potential hazards, 

and how much attention and caution the 

driver needs.

The distinctions between these conditions 

are not arbitrary; rather, they pivot on the 

level of risk, the array of potential hazards, 

and the requisite degree of attention and 

caution demanded from the driver.

Final sentences I used in the document:

These conditions are not random; instead, they 

depend on the level of risk, the various potential 

hazards, and the amount of attention and caution 

demanded from the driver.

Improve the writing:

As we explore this new area, we expect to 

find insights that can shape future collision 

warning systems, making roads safer.

As we delve into this unexplored territory, 

we anticipate uncovering new perspectives 

that could influence the design and 

implementation of future collision warning 

systems, ultimately enhancing overall road 

safety.

Final sentences I used in the document:

As we explore this area we expect uncovering new 

perspectives that could influence the design and 

implementation of future collision warning 

systems, ultimately enhancing overall road safety.

Improve the writing:

This multi purpose experiment design aimed 

to examine how different warning systems 

and driving conditions interact, helping us 

understand how they affect driving 

performance.

This intricate design aimed to scrutinize the 

nuanced interactions between the warning 

system variations and driving conditions, 

providing a comprehensive understanding 

of their combined impact on driving 

performance.

Final sentences I used in the document:

The experiment aimed to study the interactions 

between the warning system variations and 

driving conditions, providing a comprehensive 

understanding of their combined impact on 

driving performance.
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