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Abstract 

The topic of in-cabin health care monitoring within vehicles has recently garnered significant attention. 

This technology serves two primary applications in a vehicle. First is the monitoring of the vital signs of 

drivers and passengers. Given the significant amount of time individuals spend driving daily, it is essential 

to monitor their vital signs to identify potential health issues at an early stage. If there is a health condition, 

autopilot mode of vehicle can be used. Second, it facilitates occupancy detection, which is crucial in 

detecting instances of a child being left behind in a vehicle. As a result, the need for in-cabin health care 

monitoring is rapidly increasing. 

   Radar technology is particularly popular for use in health monitoring systems due to a number of reasons, 

one of which is the privacy concern. While vision and thermal cameras can also be used for health 

monitoring, they may be perceived as invasive to an individual's privacy. Additionally, radar-based health 

monitoring systems are contactless, making them more suitable for in-vehicle applications where 

maintaining a certain distance from the subject is necessary. In addition, radar technology is often more 

cost-effective than other types of sensors. 

   In this thesis, frequency-modulated continuous wave (FMCW) radar systems are employed for in-cabin 

health monitoring. A dual radar system has been developed to monitor breathing patterns during driving, 

with a specific focus on detecting potential breathing issues. Because abdominal breathing may result in 

reduced chest displacement, it's essential to monitor both the chest and abdomen for early detection of any 

breathing abnormalities. In this system, separate radars are employed to monitor the movements of the chest 

and abdomen simultaneously. Various breathing abnormalities, including Tachypnea, Bradypnea, Biot, 

Cheyne–stokes, and Apnea, are explored. The proposed algorithm can detect the mentioned breathing 

abnormalities through breathing rate (BR) estimation and breath-hold period detection. In addition, the 

proposed method in this thesis estimates BR based on the multiple range bins. The experimental results 

demonstrate a maximum BR error of 1.9 breaths per minute using the proposed multi-bin technique. In 

addition, the dual radar fusion system can detect breath-hold periods with minimal false detections. 

Secondly, multi-input-multi-output (MIMO) FMCW radars have been developed to monitor multiple 

people inside the vehicle in two different applications, including vital sign monitoring and occupancy 

detection. For vital sign monitoring, digital beamforming algorithms are explored to monitor various angles 

inside the vehicle. Different scenarios involving either a single subject or multiple subjects were deployed. 

The results indicate that the proposed system can monitor the breathing patterns of multiple subjects 

simultaneously when they are seated in the same row. However, when they are seated in different rows, the 
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reflected signals from subjects in the second row are combined with the subjects in the first row due to the 

multipath inside the vehicle. For occupancy detection, a novel approach that involves detecting the occupied 

space in each seat is presented in this thesis. The variance of detected points is suggested as an indicator of 

volume occupancy. In the conducted experimental study, which covers 70 different scenarios involving 

both single-subject and multi-subject situations, each seat is categorized into one of three labels: adult, 

baby, or an empty seat. The proposed approach achieves an overall accuracy of 96.7% using an AdaBoost 

classifier. Additionally, a miss-detection rate of 1.3% is achieved when detecting babies. The proposed 

approach demonstrates better robustness to multipath compared to the more commonly used energy-based 

approaches. 

Thirdly, a radar system operating at 60 GHz and using FMCW technology is positioned behind a seat to 

monitor an individual's heart waveforms. The suggested algorithm accurately recognizes specific patterns 

in healthy subjects' heart waveforms, depicting two peaks followed by a valley in each cycle. High-

frequency components related to breathing, often present in the heart band, are eliminated through 

variational mode decomposition (VMD) to refine the reconstructed heart waveform. The proposed method 

effectively detects and compensates body movements in seated individuals in the time domain, utilizing 

multiple range bins to identify and remove signals affected by strong body movements. A comprehensive 

investigation into heart rate variability (HRV) and heart rate (HR) estimation yields a median interbeat 

interval (IBI) estimation error of 30 ms and an average relative error of 4.8% for HR estimation using the 

VMD and multi-bin approach. Furthermore, the study focuses on analyzing a group of older adults to detect 

heart conditions, with those exhibiting a prolonged corrected QT interval (QTc) showing distinct heart 

waveforms compared to those without this condition. This specific heart waveform can serve as an indicator 

for detecting the mentioned heart condition. Additionally, the research delves into human body vibrations 

within vehicles, particularly in the presence of car body vibrations induced by road defects like cracks and 

potholes. A threshold based on z-axis acceleration is set to detect these road defects; exceeding 12 m/s² 

leads to the omission of the corresponding signal, followed by employing an autoregressive integrated 

moving average (ARIMA) model with forward forecasting to reconstruct the omitted sections. The 

experiments reveal a median IBI estimation error of 37 ms and an average relative error of 5.9% for HR 

estimation
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Chapter 1 
Introduction 

The field of in-cabin monitoring is rapidly emerging as a crucial aspect and popular area of study in the 

realm of smart car technology, both in terms of comfort and safety. This is primarily driven by the increasing 

amount of time we are spending on our daily commutes. This highlights the need for implementing 

measures to monitor the vital signs and physiological state of drivers and passengers, such as BR, HR, and 

HRV. There are several technologies available for in-vehicle occupancy detection. Among these, 

mechanical sensors that can measure weight, force, acceleration, or pressure are the most commonly used. 

These sensors can detect the presence and position of the occupants in the vehicle and can also be used to 

adjust the vehicle's settings, such as airbag deployment, seat belt tension, and climate control [1], [2]. 

Mechanical sensors can be divided into three common categories, including resistive [3], inductive [4], and 

capacitive [5]. Both resistive and inductive sensors have difficulty discriminating between humans and 

objects [6]. Capacitive sensors that can detect electric dispersion effects on human tissues are prone to high 

false detections [7]. Other commonly used technologies include camera vision [8], [9], and infrared (IR) 

sensors [10]. Although these sensors are more reliable, they pose privacy issues and are sensitive to sunlight 

and illumination levels. To overcome these challenges, radar technology can be employed. 

In recent years, several innovative monitoring technologies have been proposed and developed inside the 

vehicles. One such technology is radar-based monitoring, which offers two major advantages over 

conventional camera-based or optical sensors: the ability to detect and monitor subjects through non-

metallic objects [11] and the inherent privacy-preserving nature of its operation [6]. These benefits can be 

leveraged for applications beyond safety-related ones by continuously monitoring the postures and vital 

signs of vehicle occupants, such as airbag deployments or the detection of children left behind. This 

technology can also be used for functionalities such as controlling the air conditioning, gesture recognition 

for the human-machine interface of the vehicle infotainment system, and advanced health monitoring [6], 

[12], [13]. 

As noted earlier, radar-based sensors are one of the most promising ways to address the issues of dead 

spots in camera vision and dependence on environmental factors. This is why radars are now often explored 

to monitor people in different places, such as seniors homes [14], [15], vehicle cabins [16], and hospitals 
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[17]. In the automotive industry, Hyundai and Toyota have reportedly developed a radar-based monitoring 

system able to detect whether children have been left behind in the rear seat’s dead spot [18], [19]. 

Table 1-1 represents various key applications of radar inside a vehicle based on the indexed papers and 

patents found on Google Scholar. The number of papers on occupant status monitoring and occupancy 

detection has increased in recent years. Occupant status monitoring is the most studied application, as 

research on driver health monitoring can help prevent car accidents. The primary approach in this 

application is to estimate BR and HR. Most studies have focused on accurate BR and HR estimation. 

However, deciding after BR and HR estimation can be more beneficial. One of the benefits of in-cabin 

radars is to detect drowsy drivers by identifying low BR or Apnea [20], [21], [22]. According to statistics, 

almost 30% of fatal car accidents involving deaths are caused by drowsy drivers [20]. 

Table 1-1: Different in-cabin monitoring applications by radar. 

Key application Main approach Case study Reference 

Occupant status 

monitoring  

BR and/or HR estimation 

None 
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], 

[34], [35], [36], [37], [38], [39], [40], [41], [42] 

Sensor placement for 

accurate BR estimation 
[43], [44], [45] 

Vital sign monitoring in 

an ambulance 
[46] 

Drowsy driving detection [20], [22], [47], [48], [49], [50] 

Biometric driver seat [44] 

Angry driver [51] 

Multiple targets' vital 

sign monitoring 
[52], [53] 

Car vibrations 

suppression 
[25], [54], [55], [56] 

Changes in the reflected power 

Distracted driver 

detection by cellphone 
[47] 

Random body movement 

cancellation 
[25], [45], [57] 

Airbag  [58] 

Range-doppler map Distracted/drowsy driver 

based on head motion 
[59], [60], [61], [62], [63], [64] 

Range Doppler map, Changes in 

the phase of signals 

Drowsy driver based on 

eye blink frequency 
[21], [65], [66], [67], [68], [69] 
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Occupancy 

detection 

Range-doppler map or time-

frequency spectrum 

Artificial intelligence 

(AI) to detect occupied 

seats 

[6], [7], [70], [71], [72], [73], [74], [75], [76], [77], [78], 

[79], [80], [81], [82], [83], [84], [85], [86], [87], [88], [89], 

[90], [91], [92], [93], [94], [95] 

The amplitude of reflected 

signals 
Left-behind child 

[11], [96], [97], [98], [99], [100], [101], [102], [103], [104], 

[105], [106], [107], [108], [109], [110], [111] 

BR and HR difference  BR and HR estimation [112], [113], [114] 

Gesture recognition 

to assist drivers Micro-doppler features AI to detect gestures [115], [116], [117], [118], [119], [120], [121], [122], [123] 

 

The purpose of this thesis is to develop radar technology for in-cabin applications focusing on vital signs 

monitoring of drivers and passengers, including BR, HR, and HRV. In addition, this thesis proposes a novel 

approach to occupancy detection based on occupied volume. 

1.1 Motivation 

The technology of in-cabin vehicle health monitoring is rapidly becoming an essential component of 

passenger and vehicle safety. A number of monitoring technologies have been proposed and developed for 

this purpose, including RGB cameras [124], thermal cameras [125], and radars [126]. Among these 

technologies, radars offer a significant advantage over other sensors by allowing for subject detection and 

health monitoring without violating privacy. This benefit can be utilized for continuous monitoring of 

people’s postures and vital signs. Many potential applications exist for radar-based technologies inside a 

vehicle [127]. As more precise radar-based occupant monitoring technologies are developed, it will be 

possible to enable a range of functionalities, such as controlling the air conditioner, gesture recognition for 

human-machine interfaces, and health monitoring. Health monitoring is the most crucial application of 

these functionalities inside a vehicle, as it allows for the estimation of vital signs such as BR, HR, and HRV 

[128]. 

   Monitoring an individual’s breathing and cardiac can be an important factor in determining their health 

and well-being during driving. Since driving accounts for a considerable amount of our daily lives, it is 

essential to track the status of drivers and passengers consistently to identify potential safety problems as 

early as possible. Driver status monitoring is the most practical factor that can enable advanced driver 

assistance systems to control the vehicle in emergencies, such as situations when the driver encounters 

Apnea, fatigue, stroke, trauma, or stress [45]. Breathing and heart patterns can provide important 

information about an individual’s level of relaxation, stress, or fatigue, all of which can impact their ability 
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to operate a vehicle safely. As a result, monitoring the breathing and cardiac health of drivers and passengers 

is a crucial task that can be accomplished by contact and non-contact sensors.  

   The global population has witnessed a growing incidence of fatalities attributed to chronic and 

cardiovascular condition [129], [130]. Electrocardiography and echocardiography are the established 

standards for monitoring heart activity. Electrocardiograms (ECGs) track the heart’s electrical activity, 

while echocardiograms provide insights into the heart’s structure and blood vessels[131], [132]. These tools 

are effective for detecting cardiovascular conditions but come at a significant cost and require specialized 

training to operate. FMCW radar, a highly motion-sensitive sensor, offers a cost-effective and user-friendly 

alternative for certain conditions. Despite operating at millimeter wavelengths with limited skin penetration 

[43], FMCW radar can still detect skin vibrations caused by heartbeats. By correlating these movements 

with the ECG signal, which associates heart motions with P, Q, R, S, and T-waves, employing cardiological 

insights in conjunction with radar sensors is attainable. Recent studies primarily focusing on HR estimations 

are documented in references [133], [134], [135], [136], [137]. 

1.2 Objectives 

The first objective of this Ph.D. thesis is to develop an advanced wireless sensor system utilizing mm-wave 

signals to monitor the health conditions of both drivers and passengers. Most recent studies are designed 

for use in an office or home [138], [139], [140]. Monitoring vital signs inside a vehicle is a challenging task 

due to the presence of various sources of noise that can degrade the quality of the signals being measured. 

FMCW radars provide a high-range resolution signal that can be used to overcome these challenges [141], 

[142], [143], [144] and enable monitoring of vital signs in a vehicle. 

   However, there are several challenges in using radars for health care monitoring inside vehicles. Due to 

the confined space inside a vehicle, the passengers’ reflections can interfere with the driver’s reflections. 

These interferer reflections pose a challenge in the detection of abnormal breathing and heart patterns [25]. 

Since the driver is non-vibrant during a breath-hold period, an interfering reflection from a vibrant 

passenger can be misinterpreted as a driver’s reflection. This challenge can be addressed either by designing 

an optimum signal or an optimum setup. 

   The second objective of this thesis is to monitor breathing and heart patterns during normal driving 

activities, such as turning the wheel and shoulder checking, even when these activities are not periodic [57]. 

Some of the studies employed an expensive and intricate system to mitigate the effect of these movements 

[145], [146]. These studies used a less practical package size for this purpose, which adds discomfort for 



 

 5 

the drivers. Therefore, it is crucial to use an affordable system to monitor individuals inside the vehicle. 

The aim of this thesis is to monitor the health condition of people while driving using off-the-shelf mm-

wave radars, known for their compact size. These radars can sweep a high-frequency bandwidth. As the 

human body captures more than one range bin in these radars inside the vehicle, multiple range bins can be 

used for breathing patterns and heart waveform estimation. 

   Another objective of this thesis is to monitor the heart waveforms of individuals inside the vehicle as they 

can reveal crucial information. However, real-world scenarios present four major challenges that need to 

be addressed: high-frequency harmonics of breathing, body movements, range bin selection, and car body 

vibrations. In [132], [147], [148], [149], [150], [151], [152], [153], the participants were asked to hold their 

breath or breathe shallowly while seated to mitigate issues related to high-frequency harmonics of breathing 

and body movements. Additionally, in [154], [155], [156], some signal processing approaches have been 

employed to remove high-frequency harmonics of breathing and compensate for body movements. 

However, range bin selection is still a challenge in these investigations. Regarding car body vibrations, a 

mathematical investigation in [54] refines signals corrupted by car vibrations. However, this work lacks 

real-life scenario evaluation.  

   This thesis will delve into the technical aspects of utilizing mm-wave radars for in-cabin health 

monitoring. The goal of this thesis is to develop a novel, non-contact solution for vital sign monitoring in 

driving scenarios by using mm-wave radars. Additionally, it is crucial to monitor unhealthy participants, as 

recent studies have primarily focused on healthy participants only.  

1.3 Thesis Outline 

This thesis is structured as follows. In the second chapter, an overview of the existing literature concerning 

in-cabin health monitoring using radar technology is provided, including occupant status monitoring, 

occupancy detection, and gesture recognition for driver assistance. Additionally, important case studies for 

vital sign monitoring are reviewed. 

In the third chapter, a novel method based on multi-bin breathing rate estimation using a dual radar 

system is presented. The proposed signal processing chain capable of detecting a wide range of breathing 

abnormalities, including Tachypnea, Bradypnea, Biot, Cheyne–stokes, and Apnea is explored. 

Additionally, different driving scenarios are tested by a dual radar system, and the results of the proposed 

breathing rate estimation are compared with those of conventional techniques. 
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In the fourth chapter, the monitoring of multiple individuals using a MIMO radar technology is 

investigated. The beamforming algorithm is employed to analyze radar data with known angles and ranges, 

enabling the extraction of breathing waveforms within the vehicle. The objective is to monitor multiple 

individuals inside the vehicle, considering variations in distance or angle from the radar. Furthermore, the 

chapter explores occupancy detection within the vehicle using a MIMO radar, with a specific focus on 

detecting children left behind. 

In the fifth chapter, the heart waveform estimation system is proposed by a single radar installed behind 

the seat. First, a specific heart waveform is introduced as a healthy heart waveform. Other vibrations that 

can corrupt heart waveform are suppressed such as human body movements, breathing harmonics, and car 

body vibrations. Second, this specific heart waveform is also explored in people with QTc condition. 

In the sixth chapter, the main findings of this study are concluded, and future works are highlighted. 

Firstly, the summary of contributions is highlighted, including novel dual radar fusion approach for 

breathing monitoring and exploration of heart waveform patterns in both healthy and unhealthy subjects. 

Secondly, the societal impact of this research is discussed. Thirdly, limitations of this research are 

acknowledged, and potential future works are introduced. Finally, publications of this research are listed.  

In the appendices, there is a comprehensive review of recent studies in sensor selection, employed ground 

truth for in-cabin applications, most commonly used radars, and some studies based on micro-Doppler 

signatures for occupancy detection and gesture recognition. In addition, the proposed BR estimation 

approach is compared with the conventional one in some areas in Appendix F. 
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Chapter 2 
Literature Review 

This chapter presents a review of the literature on in-cabin health monitoring by radar, including occupant 

status monitoring, occupancy detection, and gesture recognition for driver assistance. For more details 

about the advantages of radar over other sensors in BR estimation, refer to Appendix A. 

2.1 Different Applications of Radar Inside a Vehicle 

Table 1-1 summarizes different in-cabin applications of radar, main approaches, and literature case studies. 

Figure 2.1 depicts the distribution of different approaches. The majority of studies have focused on occupant 

status monitoring. The number of publications showed a significant increase in 2021 and 2022, especially 

on occupant status monitoring approaches.  

Figure 2.1: Distribution of recent studies in different approaches over the years. 

2.1.1 Occupant Status Monitoring 

Recent investigations mostly focused on occupant status monitoring for various reasons. Status monitoring 

is a major factor in assessing a person’s health and detecting emergencies due to respiratory distress and 

heart attacks. Monitoring vital signs like BR can also reveal crucial information about a person’s well-being 

and may reveal a variety of health conditions [157]. As the body tries to maintain the amount of oxygen 

available to the tissues, a change in BR is typically the first indication of a health issue [158], [159]. As 
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driving is increasingly becoming an inevitable part of our day, monitoring a driver’s vital signs can enable 

early detection of health issues. This could enhance road safety. 

Monitoring drivers can also alert them if they are experiencing stress or sleepiness, which can impact the 

risk of accidents. [25]. There are some ways to determine if the driver is sleepy. Most papers used HR and 

BR monitoring. A sudden decrease in BR and HR is indicative of driver drowsiness [20], [22], [47], [48], 

[49]. Additionally, head motion and eye blink frequency also can be monitored to detect sleepy drivers [21], 

[59], [60], [61], [65], [66], [67], [68], [69]. Recent studies have primarily utilized features extracted from 

micro-Doppler signatures. In [66], [68], a 77 GHz radar has recorded signals from eyeblink. They have 

used ensemble empirical mode decomposition to remove unnecessary information. Based on useful 

information, the signals were reconstructed and fed to a short-time Fourier transformation. Finally, a cell-

average constant false alarm rate (CFAR) technique was applied to detect eye blinks. In [69], heartbeat and 

respiration signals were filtered before applying CFAR. 

There are many ways to identify distracted drivers by radars. The most common solution is the use of 

micro-doppler signatures, especially head motions [59], [60], [61]. In [61], different head motions have 

been classified based on velocity-time maps by a neural network generated from a millimeter wave radar 

at 77 GHz placed in front of the driver. In [59], the range-time maps have been utilized to monitor head 

movements by a 60 GHz radar. Another common distraction is mobile usage. A distracted driver using a 

mobile can be recognized by scanning the reflected energy over time [47]. Anger issues can also be 

addressed by radars. In [51], the authors have focused on detecting an angry driver. They rely on changes 

in breathing rhythm and HR. If the detected anger exceeds the threshold value, the device sends a signal to 

the voice device mounted on the vehicle to play music to relieve anger. 

It can be seen in Table 1-1 that a large number of recent works focused on measuring BR and HR 

accurately. In [23], [24], [25], [26], [27], [32], [160], the authors used different methods to reach this 

objective. When it comes to pulmonary diseases, respiratory rates may be used together with breathing 

patterns to both diagnose and track a person’s health concerns. While the average resting respiratory rate 

varies from person to person, it generally ranges between 12 and 20 breaths per minute [161]. Apnea 

(cessation of breathing), Bradypnea (low respiratory rate), and Tachypnea (high respiratory rate) are the 

three types of abnormal respiratory rates [162]. Other atypical breathing patterns have been documented in 

[157]. 
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     Many aspects should be considered in system and signal design for abnormal driver and passenger 

behavior detection. For more information about ground truth, radar brand and/or package size, and some 

related works in breathing rate estimation, refer to Appendix B, Appendix C, and Appendix D, respectively.  

2.1.2 Occupancy Detection 

The importance of occupancy detection by radar is further accentuated within the context of a vehicle. The 

detection of occupants is a crucial step as it enables other applications, such as status monitoring, to be 

activated [6]. This is due to the high computational cost associated with vital sign estimation. Therefore, 

when a seat is unoccupied within a vehicle, it is unnecessary to apply vital sign estimation, reducing 

computational cost and increasing system efficiency. 

Researchers have proposed some assumptions for occupancy counting by radars. Most in-use systems 

have been evaluated with groups of individuals that were well-spaced apart from one another in a wide 

area. Additionally, the locations of the individuals were not determined, and some systems could only 

estimate the number of people. Hence, most existing approaches for estimating the population in a large 

space using radars need quite complicated signal processing techniques that result in high 

computational costs [6].  

A simple approach by radar for occupancy detection is to count Individuals entering and leaving at the 

entrance. In [163], [164], [165], it is demonstrated how to count several people moving through a broad 

entrance or passageway at once. Their suggested approaches relied on patterns of received signals according 

to the population while the radar was mounted at a height of 2.3 meters on the roof to cover a large area. 

This methodology employs a simpler approach to counting occupants. 

There are three main approaches by radar inside a vehicle cabin for occupancy detection. In the most 

common approach, researchers rely on the extracted features from micro-doppler signatures [6], [7], [70], 

[71], [72], [73], [74], [75], [76], [77], [78], [79]. This approach employs AI to detect and classify occupied 

seats after feature extraction. In fact, these features are fed to AI to be used in classification. These 

signatures can also appear in different other types of data like time–frequency [71], [72], [73], [77], [79]. 

On the other hand, other researchers employed the reflected energy to detect occupancy. The most 

common usage for this approach is the left-behind children detection to save children and pets and 

avoid death in excessively hot or cold conditions [11], [73], [96], [97], [98], [99], [100], [101], [102], [103], 

[104]. Some studies have used this approach to detect a single occupied seat [25]. These studies focused on 

driver detection before vital signal monitoring. Finally, in the third approach, researchers proposed to use 
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vital sign signals to count occupied seats [77], [112]. This approach presents the most reliable solution for 

the left-behind problem. 

In [166], an occupancy detection approach based on occupied space is introduced. While this method is 

less reliant on the distance from the radar, the radar setup lacks symmetry inside the vehicle. Consequently, 

it was imperative to collect data from each seat individually for machine learning. Furthermore, when the 

first row is occupied, multipath reflections may create false targets in the second row. 

There are some factors for sensor selection in occupancy detection by radars inside a vehicle. One of the 

most important factors is frequency selection. Most in-cabin sensing investigations by radar for occupancy 

detection have used millimeter wave radar (60 GHz and over). As we discussed earlier, millimeter wave 

radar has several benefits over centimeter wave radars and low carrier frequency radars. Regarding sensor 

placement, because the radar should be placed under the car roof in occupancy detection applications, the 

dimensions of the radar package are less important in comparison to vital sign monitoring applications. For 

more information, refer to Appendix D. 

2.1.3 Gesture Recognition to Assist Drivers. 

Potential distracting factors for drivers have increased due to crowded roads in addition to the enhanced 

infotainment functionality and vehicle’s ability to interact with its driver. Visual, cognitive, physical, and 

auditory factors are among the main causes of driving distraction. Visual and physical distractions, when 

combined, have the biggest impact on driving performance [116]. Researchers have conducted extensive 

studies to address the aforementioned issues. Non-contact human-computer interaction has been proposed 

and developed recently, and the topic of contactless human-computer interaction using hand-based gesture 

recognition has been extensively explored recently. 

Several sensors can be employed in hand-based gesture recognition. Camera-based sensors raise privacy 

concerns and have high computing costs due to considerable signal processing, and are sensitive to changes 

in background color, and light intensity [167], [168]. In very dim light conditions, the accuracy rate 

decreases by 30% [169][117]. IR sensors can also be employed to detect hand gestures inside the vehicle. 

However, they do not preserve privacy and are sensitive to illumination levels [170]. Depth-based sensors 

are excellent at sensing location changes, but they are unable to identify hand forms or orientations [171]. 

Wearable technology restricts system input to the person who is wearing the device [116]. Alternatively, 

radars can identify particular hand and finger movements and are unaffected by illumination variations 

while effectively ensuring in-cabin privacy [121]. Recent radar-based gesture recognition investigations 
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have relied on micro-doppler signatures. These investigations employed either range-doppler [116], [117] 

or time-frequency [115], [118], [119], [120], [121], [122]. 

Despite the benefits of radars, the fundamental issue with radar-based gesture detection systems is their 

dependence on distance and direction [121]. In [121], the time of arrival information has been fed to a 

learning approach to address this issue, while in [115], different angles and ranges have been examined. 

The maximum tilt from the perpendicular angle and maximum range to have reliable results are 15 degrees 

and 100 centimeters, respectively. 

The choice of a particular radar system has a direct impact on the efficiency of radar for hand-based 

gesture recognition. For example, the number of receivers in the radar system determines the angular 

resolution of the radar. More receiver channels will result in better angular resolution. In [70], [78], [79], 

the authors could use more channels to have better angular resolution and reliable results. However, they 

have employed a radar sensor with only one receiver to collect data. By one receiver, the FMCW radar 

cannot discriminate targets located in the same range, even at different angles accurately [124]. Another 

important parameter is the carrier frequency. Recent papers have mostly used mm-wave radar to achieve 

accurate detections. Higher frequencies are more sensitive to small radar cross-section changes and would 

have better results [115]. The range resolution of radar is also one of the key factors since better range 

resolution will result in better discrimination [143]. For more information, refer to Appendix D. 

2.2 Important Case Studies for Vital Sign Monitoring 

Vital sign monitoring is the most important case study for in-cabin monitoring by radar. Monitoring a 

driver’s vital signs can alert them to stress or drowsiness, reducing the risk of accidents. Another addressed 

issue by vital sign monitoring is left-behind child detection. The breathing monitoring of passengers can be 

used to avoid these problems[25]. 

   Table B.1 compares different recent works according to their setup for in-cabin radar applications to 

monitor vital signs. These studies are compared based on the following criteria: sensor placement, 

frequencies, ground truth data, and radar brand or package size. As is apparent from the table, the rearview 

mirror is the most common location in which to attach the radar in recent studies. In [43], there is also a 

deep investigation into sensor placement. The findings indicate that the rearview mirror is identified as the 

optimal location for monitoring the driver’s BR, as shown in Figure 2.2. 

   Frequency selection is also a crucial task in achieving accurate BR and HR estimations. One of the most 

significant factors in frequency selection is body surface reflection. Less penetration can provide more 
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accurate vital sign monitoring by radar. In [43], [168], it was demonstrated that higher frequencies can 

penetrate less into the human body. Various experiments were conducted, demonstrating that body motion 

at higher frequencies has a greater impact on signal reflection than changes in skin surface impedance [133]. 

   Additionally, the higher the carrier frequency, the higher the sensitivity of radar on small movements 

[135]. Hence, radar can estimate human body vibration accurately. However, phase wrapping is more 

possible in higher frequencies, resulting in a more complicated signal processing chain. When the phase of 

the slow-time signal exceeds the phase range (-π, π), phase wrapping occurs. Since the chest wall 

displacement can reach 12 mm and the wavelength of the most commonly used carrier frequency, 60 GHz, 

is almost 5 mm, this problem can occur frequently [124]. 

   Figure 2.3 illustrates the distribution of recent studies on frequency selection for vital sign monitoring 

inside vehicles using radar, indexed on Google Scholar over the years. Recent studies have predominantly 

utilized mm-wave radar, specifically frequencies of 60 GHz and higher, for monitoring vital signs inside 

vehicles. It is noteworthy that the Federal Communications Commission (FCC) currently prioritizes the 60 

GHz band for use in health applications [172]. 

Another critical factor in sensor selection is package size. The compact dimensions of radar systems for 

in-cabin applications are crucial due to limited space within vehicles. Hardware integration plays a 

significant role in reducing package dimensions. Higher carrier frequencies enable the creation of smaller 

devices and circuit components, facilitating hardware integration [173]. Recent studies have utilized small-

package radar systems with dimensions less than 50×70 mm[20]. 

 

Figure 2.2: Different radar placements inside a vehicle for driver BR estimation [43]. The rear-view 

mirror (D) has the best results. 
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There are several considerations to bear in mind when aiming to enhance vital sign monitoring accuracy. 

These include the signal processing chain, cancellation of human body motion and vehicle vibration, clutter 

removal, multipath removal, beam steering, phase unwrapping, and harmonic analysis. Table 2-1 compares 

various published papers on in-cabin vital sign monitoring, focusing on their signal processing chains. 

To improve the quality of vital sign signals inside a vehicle, random human body cancellation has been 

studied [25], [45], [57]. A slow-time envelope modulation results from the breathing-related vibrations of 

the chest and the random human body motion. The breathing signal can be filtered to prevent significant 

frequency interferences, but if there are a lot of random human body motions, the interferences will appear 

in the breathing frequency range. Intermodulation distortions can also occur in this frequency range [174]. 

In [57], the driver’s motions are calculated from the Doppler-time map and used to develop a signal 

distortion compensation. This measure helps to remove the signal distortion that the driver’s 

motions make while driving. In recent studies, the human body motion, whether by simple filtering [43], 

[112] or a specific filter design [25], [45], [47], [54], [55], [57], cannot be removed reliably when the human 

body motion is within the breathing spectrum which is less than 0.5 Hz [175]. In [176], the use of a camera 

system combined with a microwave sensor has been investigated to develop an approach for canceling 

random body movements. The phase shift in the radar sensor was compensated for using the random body 

motions captured by the camera. 

The main cause of car body vibrations in a moving vehicle is the changes in the road surface. Depending 

on the type of vehicle, the power spectrum density has a significant amount of content in the range between 

 

Figure 2.3: Distribution of recent studies in frequency selection for vital sign monitoring inside a 

vehicle by radar over the years. 
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1 Hz and 100 Hz [177]. A mathematical framework was proposed in [54], [55] whereby an accelerometer 

was attached to a radar-based sensor, allowing for the recording of acceleration. By reconstructing the 

movement of the seat and the passenger using this data, the corresponding Doppler was calculated. The 

signal received by radar was then denoised using the Doppler, which resulted from the unwanted vibrational 

motion. 

The clutter Inside a vehicle reflects signals similar to those of a human, but it remains stationary over 

time. Therefore, clutter cancellation for ultra-wideband (UWB) radars is crucial as these radars measure 

human body displacements based on the amplitude of signals. Strong clutter reflections can affect human 

body displacements in UWB signals. Clutters are typically suppressed using filtering techniques such as 

motion filter [14], IIR moving average filter [47], [178], and Pseudo-Bi-Dimensional Ensemble Empirical-

Mode Decomposition [34]. 

Due to the confined space inside a vehicle, there are multipath signals. This issue is rarely addressed 

because most studies focus on the vital sign monitoring of drivers. As radars can be installed close to the 

driver, the multipath effect is insignificant. Few studies on multiple target monitoring have mentioned this 

issue. In [53], the correlation coefficients between obtained vital signals in various locations are analyzed 

to choose the corresponding vital signs. In [179], the proposed method was able to distinguish the 

respiration signals of five participants seated close to one another [53]. In this approach, each seat has a 

specific distance from the radar, which is different from other seats. Hence, the radar should not be placed 

on the line of symmetry of the car. In [43], the authors conducted extensive research on sensor placement 

to improve the accuracy of vital sign monitoring for a driver. 

HR estimation by radar suffers from multiple challenges. The most important one is the higher harmonics 

of breathing vibrations. This issue becomes prevalent as this indicator interferes with the heartbeat signal. 

One solution to recognize HR from higher harmonics of breathing is harmonic analysis. It is based on the 

pulse train theory [135]. Estimating HR without harmonic analysis produces inaccurate and unreliable 

results because breathing harmonics can have stronger amplitudes than the HR peak in the frequency 

domain [135]. It has also been demonstrated that the heart vibrations in the frequency domain can be 

between two sequential harmonics of breathing vibration and have less amplitude. This creates difficulty in 

HR estimation. Some studies have used simple filtering to remove breathing harmonics [44], [45], [47], 

[48], [52], [53], [112], [160], [180]. 

Some studies developed approaches to detecting abnormal breathing. In [175], the human vibration signal 

has been filtered up to 0.5 Hz, or 30 breaths per minute, to estimate the breathing signal. This indicates that 
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the estimation technique only considers the primary peak. As a result, higher frequency information is 

omitted in the reconstructed breathing signal after filtering, and the breathing signal resulting from 

abnormal breathing with sharp peaks will be smoothed. Consequently, this adds a level of complexity to 

the detection of abnormal breathing. 

The suppression of breathing vibrations, in service of garnering accurate HR estimation, has been studied 

extensively. In [173], the authors employed ensemble empirical mode decomposition (EEMD) and 

principal component analysis (PCA) to reduce the effect of breathing vibrations on heart vibrations. An 

iterative notch filter has also been employed to suppress breathing harmonics [135], [181]. 

Table 2-1: Comparison between the different in-cabin published papers for vital sign monitoring in the 

signal processing chain. 

 

                                                      
1 Human body motion cancellation 
2 Vehicle vibration cancellation 
3 Peak of FFT of target's vibration 
4 Peak counting in the time domain 

Reference HBMC1 VVC2 
Clutter 

removal 

Multipath 

removal 

Beam 

steering 

Phase 

unwrapping 

Harmonic 

analysis 

Estimation 

method 

[25] Yes Yes Yes No No No No PFTV3 

[34] Yes No Yes No No No No PFTV 

[43] Yes Yes Yes No No No No PFTV 

[53] No No Yes Yes No No No 
Correlation 

coefficients 

[52] No No Yes No No Yes No PFTV 

[47] Yes No Yes No No No No PFTV 

[20] No No Yes No No No No PCTD4 

[48] No No Yes No No No No PCTD  

[57] Yes No Yes No No No No PFTV 

[45] Yes Yes Yes No Yes Yes No PFTV 

[54], [55] Yes  Yes Yes No Yes  No No PFTV 

[44] No No Yes No Yes No No PCTD 

[51] No No Yes No No No No PFTV 

[112] Yes No Yes No No No No PFTV 
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The fast Fourier transform (FFT) and continuous wavelet transform (CWT) are regarded as highly 

fundamental techniques for obtaining the BR [182], [183], [184], [185], [186], [187], [188], [189], [190]. 

With respect to the peak of the spectrum in a certain frequency band, these techniques can estimate the BR. 

For vital sign monitoring inside a vehicle, the most common estimation technique is the peak of the FFT of 

the target’s vibration. The HR can also be estimated from its peak after taking FFT [133]. As discussed 

before, due to the presence of breathing harmonics close to the HR peak and other interferers, harmonic 

analysis is required for in-cabin applications [135]. Other estimation techniques, like the maximum 

likelihood estimator (MLE), can be employed to estimate BR [191]. Cyclostationary analysis is another 

method to improve the radar sensor’s ability to detect vital signs [187], [192]. 

   Another potential application of radar technology is in the estimation of heart waveforms to detect heart 

conditions. Despite operating at millimeter wavelengths with limited skin penetration [43], FMCW radar 

systems are capable of detecting skin movements caused by heartbeats. By correlating these movements 

with the ECG signal, which associates specific heart motions with P, Q, R, S, and T waves, it becomes 

feasible to leverage cardiological insights in conjunction with radar sensors. However, recent studies have 

predominantly focused on HR estimations rather than exploring the broader potential of radar technology 

in analyzing heart waveforms [133], [134], [135], [136], [137]. 

   Recently, several studies have delved into the estimation of heart waveforms using radar signals, which 

can be instrumental in HR and HRV estimation. Some of these investigations have employed neural 

networks and machine learning techniques to derive ECG patterns from radar data [131], [193], [194], 

[195], [196], [197], [198], [199]. However, these methodologies are trained on data from individuals 

without cardiovascular conditions. 

   Prolonged QTc intervals have been identified as a risk factor contributing to sudden cardiac deaths in the 

general population. The QT interval on an ECG measures the time from the beginning of the Q wave to the 

end of the T wave. This duration represents the full cycle of electrical activity during ventricular contraction 

and relaxation in the heart [200]. Therefore, monitoring individuals with this heart condition becomes 

increasingly valuable. Recent studies mostly investigated their algorithms in healthy subjects for HR and 

HRV estimation [149], [150], [151], [152], [155], [156], [193], [194], [195], [201]. However, individuals 

with prolonged QTc may exhibit normal HR and HRV levels [200]. 

   Table 2-2 compares in-cabin published papers for vital sign monitoring across four important factors, 

including the selected vital signs, accuracy or advantages, limitations, and the number of subjects. The 

results of different papers demonstrated that up to two breaths error was acceptable. 
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Table 2-2: Comparison between the different in-cabin published papers for vital sign monitoring based on 

four important factors, namely, the selected vital signs, accuracy or advantages, limitations, and the number 

of subjects. 

Reference The 

vital 

sign 

Accuracy or advantages Limitations Number of 

subjects being 

monitored 

simultaneously 

[16] BR • A metasurface lens 
antenna is designed to 
accurately steer beams 
towards human targets 
while considering their 
relative positions within 
the vehicle. 

• The proposed tags exhibit 
both retroreflection and 
polarization selection 
characteristics to mitigate 
the impact of strong 
clutter and multipath 
reflections in the in-
vehicle environment. 

• Lack of accuracy analysis 
• Improper frequency 

selection 
• Lack of addressing body 

movement and vehicle 
vibrations in the signal 
processing chain. 

2 

[79] BR 

• The maximum BR error: 
±2 breaths 

• Proposing two 
applications, including 
occupancy detection and 
BR estimation  

• In-cabin measurements 
and considering real 
situations like Including a 
car seat for infants 

• The accuracy of the 
amplitude approach in 
UWB radars is dependent 
on the range since 
amplitude drops by range to 
the power of four based on 
the radar equation. 

1 

[43] BR 

• Maximum BR error: ±2 
breaths 

• A deep investigation of 
sensor placement in 16 
radar positions 

• Decent research on 
frequency selection based 
on reflected power from 
human skin. 

• Two different signal 
processing approaches 
for online and offline 
analysis  

• Lack of real-time 
processing 

1 
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• Investigate the impact of 
the time window length 
on BR estimation 

[53] 

BR 

and 

HR 

• The HR error: 12.5%, 
Multiple targets. 

• Proposes a location-
based Variational Mode 
Decomposition to 
identify the vital signs of 
different subjects. 

• Background removal by 
filtering 

• Harmonic analysis might be 
applied to increase the 
accuracy of HR estimations. 

2 

[52] 

BR 

and 

HR 

• The BR and HR errors: 
7% and 5% respectively. 

• Multi-subject vital sign 
monitoring 

• Using w-band for 
automotive radars 

• Lack of practical measures 
within the vehicle 

• The accuracy of the 
amplitude approach in 
UWB radars is dependent 
on the range since 
amplitude drops by range to 
the power of four based on 
the radar equation. 

• Harmonic analysis might be 
applied to increase HR 
estimations. 

2 

[47] 

BR 

and 

HR 

• The maximum BR and 
HR error: ±1.2 breaths 
and ±2.5 beats. 

• Identifying the key 
factors that cause car 
crashes, such as 
distracted driving and 
phone use. 

• Proposing an accurate 
fitting approach using the 
R-square value 

• Harmonic analysis might be 
applied to increase HR 
estimations 

1 

[20] BR 

• The maximum BR error: 
±1 breath 

• Accuracy of drowsiness 
detection: 87% 

• Comparing various 
machine learning 
classifiers 

• Lack of collected data in 
real driving environments 

1 

[48] 

BR 

and 

HR 

• The accuracy of 
drowsiness: 71% 

• A significant amount of 
collected data 

• Harmonic analysis might be 
applied to increase HR 
estimations. 

• Estimating breathing 
signals without appropriate 
ground truth 

• Insufficient diversity 
among volunteers 

1 



 

 19 

  

[57] BR 

• The maximum BR error: 
±2.96 breaths 

• Adaptive driver’s 
movement compensation 
by a motion 
quantification index 

• Lack of collected data in 
real driving environments. 

• Phase wrapping issue for 
high chest wall 
displacement 

1 

[45] 

BR 

and 

HR 

• The median BR and HR 
error: 0.16 breaths and 
0.82 beats, respectively. 

• Phase wrapping issue for 
high chest wall 
displacement 

1 

[44] 

BR 

and 

HR 

• The maximum HR error: 
±2 beats 

• A novel driver’s motion 
compensation 

• Investigate the impact of 
the window length on 
HRV. 

• Examine the effects of 
many factors, such as the 
device locations, the 
pavement conditions, and 
the motion types 

• No harmonic analysis to 
estimate HR 

1 

[30] HR 

• The maximum HR error: 
±4 beats 

• A comprehensive study 
of processing window 
size 

• Harmonic analysis might be 
applied to increase HR 
estimations. 

• No ground truth for the BR 
• The HR is assumed to be 60 

to 120. But it could be more 
than 120 [72]. 

 

[51] 

BR 

and 

HR 

• Anger prediction 
accuracy: 92.83% 

• Unique hardware design 
for online monitoring of 
driver 

• Collecting data from 100 
people 

• PCA to feature selection 

• Lack of diversity in 
collected data (data 
collected based on only two 
states, such as the calm state 
and the angry state) 

1 

[112] 

BR 

and 

HR 

• Age classification 
accuracy: 96.25% 

• Collecting a valuable 
database 

• Lack of collected data in 
real driving environments 

1 
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Chapter 3 
Multi-Bin Breathing Pattern Estimation by Radar Fusion for Enhanced 

Driver Monitoring 

Monitoring the status of the driver is a crucial aspect of health monitoring inside vehicles as it helps to 

identify potential health or safety risks that could affect a driver’s ability to operate a vehicle safely. This 

includes monitoring for fatigue, distraction, or impairment, among other things, which can potentially cause 

car crashes. Among many possible radar configurations, mm-wave FMCW radars can accurately detect 

range and monitor displacements that are essential in breathing pattern monitoring. Breathing pattern 

monitoring is one of the key signatures of the driver’s health. An accurate estimation of the breathing pattern 

enables the detection of breathing abnormalities, including Tachypnea, Bradypnea, Biot, Cheyne–stokes, 

and Apnea. The breathing pattern can be estimated from both the chest and abdomen. For this purpose, two 

60 GHz FMCW radars are employed in this study. The proposed algorithm is capable of detecting the 

mentioned breathing abnormalities through BR estimation and breath-hold period detection. In addition, 

the proposed method in this thesis estimates BR based on the multiple range bins. To determine the accurate 

number of range bins for BR estimation, a study on the human radar geometry problem inside a vehicle is 

conducted. In this chapter, the details of multi-bin breathing pattern monitoring by a dual radar system 

inside the vehicle are discussed. 

3.1 Relevance 

Estimating breathing patterns by mm-wave FMCW radars encounter some challenges for in-cabin 

applications. Firstly, breathing patterns can be estimated from the chest and abdomen displacements. 

However, due to the low amplitude of chest wall displacements during abdominal breathing, both the chest 

and abdomen should be monitored by a dual radar to prevent false detections. Nevertheless, recent in-cabin 

investigations employed a single radar for estimating breathing patterns [202]. 

   Secondly, due to the confined space inside a vehicle, the passengers’ reflections can interfere with the 

driver’s reflections. These interferer reflections pose a challenge in the detection of abnormal breathing 

patterns that involve a breath-hold period [25]. Since the driver is non-vibrant during a breath-hold period, 

an interfering reflection from a vibrant passenger can be misinterpreted as a driver’s reflection. 

   Thirdly, normal driving activities like turning the wheel around and shoulder checking can distort the 

breathing pattern even when they are not periodic [57]. Some of the studies employed an expensive and 

intricate system to mitigate the effect of these movements [145], [146]. These studies used a less practical 
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package size for this purpose, which adds discomfort for the drivers. Off-the-shelf mm-wave radars offer a 

compact size radar that is capable of sweeping a high-frequency bandwidth. Consequently, this high-

frequency bandwidth leads to improved range resolution [141], [142], [143], [144]. As the human body 

captures more than one range bin in these radars inside the vehicle, multiple range bins can be used for 

breathing pattern estimation. The proposed multi-bin approach estimates breathing patterns from different 

human body parts, which can be used for body motion detection.  

3.2 Multi-bin BR Estimation 

In this chapter, the proposed signal processing chain for BR estimation is presented and compared with the 

conventional one. The main idea behind the proposed method came from the capability of radar to produce 

a high-range resolution signal caused by high-frequency bandwidth. 

   FMCW radar divides the range into smaller units by range resolution. Each unit is called a bin. The human 

body in front of a high-range resolution radar captures more than one range bin, especially when a human 

is close to the radar. In the proposed method, several range bins around the main range bin of the target are 

employed to have accurate estimations. If the radar is in front of the subject’s chest, the main range bin is 

the range of the middle of the chest from the radar, which is the closest part of the body to the radar. Other 

organs of the human body capture further range bins. If the estimated BR from one of the range bins is 

incorrect, it may be removed from estimations by outlier removal in the final step. This wrong estimation 

can be caused by random body movement, noise, and the absence of a fully recovered wrapped phase. As 

a result, this multi-bin approach addresses these issues. Another multi-bin approach is also explored in [45], 

where the multiple bins are selected from the rang-azimuth map. However, in this thesis, due to the 

limitations of the selected off-the-shelf radar, which lacks high azimuth resolution, only range bins are 

utilized for breathing pattern estimation. High azimuth resolution radars, such as the TI cascade radar [203], 

are not cost-effective due to their requirement for multiple receivers. 

   The rest of this section discusses the analog and digital signal processing chains for breathing pattern 

estimation by dual radar. 

3.2.1 Signal Processing Chain Before ADC 

Figure 3.1 shows a simplified homodyne block diagram of the FMCW radar prior to the ADC [133]. The 

receiver amplifies received signals from objects in the environment. These reflected signals are influenced 

by the properties of the objects, like range and radar cross-section. Then, a mixer correlates the transmitted 

and received signals. This mixer produces both low-frequency and high-frequency components. A low-pass 
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filter is applied to select the low-frequency components in the next step. Finally, an ADC converts analog 

signals to discrete signals. 

   This study uses the BGT60TR13C FMCW radar from Infineon Technologies. This sensor can generate 

an FMCW signal from 58 GHz to 63.5 GHz modulated by the sawtooth wave. The employed analog-to-

digital converter (ADC) has a 12-bit resolution, providing a 74 dB dynamic range, and its sampling rate 

can reach up to 4 Mega samples per second [204]. 

3

 

Figure 3.1: The simple block diagram of an FMCW radar before ADC. 

3.2.2 Geometry of Multi-bin BR Estimation  

The human body in front of a high-range resolution radar captures more than one range bin, especially when 

it is close to the radar [45]. Therefore, several range bins around the main range bin of the target can be 

employed to improve breathing pattern estimation accuracy. If the radar is in front of the subject’s chest, 

the main range bin is the range of the middle of the chest from the radar, which is the closest part of the 

body to the radar. Other organs of the human body capture additional range bins. If the estimated BR from 

one of the range bins is incorrect due to the random body movement and noise, it can be removed from 

estimations. 

   Figure 3.2 represents a radar in front of the subject’s chest. The farthest part of the human body which is 

influenced by lung movements in the chest radar, is the shoulder. Assuming that the radar is positioned at 

r1 from the middle of the chest and that the distance from the middle of the chest to the shoulder is b1, the 

Pythagorean theorem can be used to calculate the distance between the radar and the shoulder as follows: 
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The human body captures the radar range profile from r1 to R1. Consequently, the number of range bins that 

can be employed for breathing pattern estimation is as follows: 

where ΔR is the range resolution of radar and ⌈ . ⌉ is the sign of the ceiling function. Assuming that r1, b1, 

and ΔR are 20 cm, 26 cm, and 3 cm, respectively, n equals 4. 

 

 

Figure 3.2: Chest radar geometry for multi-bin approach. 

3.2.3 Dual Radar Placement 

Abdominal breathing causes low chest wall displacement, which can lead to false estimations of the breath-

hold period. Therefore, abdomen and chest displacements should be monitored separately by two distinct 

radars to eliminate these false detections. Figure 3.3 displays dual radar placement in front of the chest and 

abdomen to separate them based on the covered area. The a1 and a2 spots should not overlap to accomplish 

this separation. As a result, the inequality between a1, a2, and torso length is given by: 

 

where H is the human torso length. The torso length is greater than 40 cm for adults [205]. Then, a1 and a2 

can be calculated as follows: 

R1 = �r12 + b12. (3.1) 

n = �
R1 − r1
ΔR

�, (3.2) 

a1 + a2 > H, (3.3) 
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where θ is half power beamwidth in the H-plane (HPBW-H) of the antenna. The HPBW-H of 

BGT60TR13C is 35° [141]. The chest radar distance from the middle of the chest (r1 in Figure 3.3) is 20 

cm, and the abdominal radar distance from the abdomen (r2 in Figure 3.3) is 40 cm. a1 and a2 are 6.4 and 

12.8 cm based on (4), respectively. The summation of a1 and a2 is less than the torso length. Therefore, this 

design satisfies (3), and the chest radar and abdominal radar are separated based on the covered area. 

Nevertheless, since both radars are at the same frequency and close together, cross-interference appears in 

their receivers if they operate simultaneously. 

 

Figure 3.3: Dual radar placement in front of chest and abdomen. 

3.2.4 Dual Radar Signal Design 

There are two approaches to fusing two FMCW radars. The first approach involves selecting separate 

carrier frequencies without frequency overlap. Since the employed radars are identical, the operational 

frequency bandwidth can be divided between them. However, the drawback of this division is the loss of 

range resolution by at least 50%. The second approach entails applying time division multiplexing, where 

a1 = r1 . tan �
θ
2
�, 

 

a2 = r2 . tan �
θ
2
� , 

(3.4) 
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one radar is switched off while the other is switched on, and vice versa. However, this approach introduces 

a time delay between the radars, which should be minimized as the goal is to use both radars to make 

decisions. Therefore, by calculating and minimizing the time delay in the system, both radars can benefit 

from high-range resolution signals without interference. 

   Both pulse repetition frequency (PRF) and pulse duration should be considered to calculate the minimum 

delay between radars. The maximum frequency of breathing is almost 0.6 Hz [124]. Hence, the sampling 

frequency should be greater than 1.2 Hz based on the Nyquist theorem. Because only one chirp signal, 

which is the average of all received chirps, is employed from each pulse, the sampling of the breathing 

vibration is equal to pulse repetition frequency. As a result, the pulse repetition frequency should be greater 

than 1.2 Hz. Higher PRF provides more samples from breathing vibration, which enhances breathing pattern 

estimation and can be beneficial in phase unwrapping [133]. However, higher PRF reduces inter-pulse 

repetition time, and the hardware should be able to generate that PRF. Because two radars are employed in 

this study, the inter-pulse repetition should be longer than the pulse duration. The pulse repetition frequency 

is set to 20 in this thesis. 

   The pulse duration can be determined according to several parameters of the target. The first parameter 

is the range resolution as follows: 

 

where c is the light velocity in free space, and B is frequency bandwidth [144]. The maximum frequency 

bandwidth should be employed to have accurate results. The maximum frequency bandwidth of 

BGT60TR13C is almost 5 GHz [141] which results in a 3 cm range resolution. Another parameter to 

determine chirp time is the number of samples per chirp, which depends on the maximum range and range 

resolution as follows: 

Rmax is the maximum range of the target (96 cm in this thesis). The linear chirp slope is defined as follows: 

 

 

ΔR =
c

2B
 , (3.5) 

N =
2. Rmax

ΔR
. 

 

3.6) 

k =
B
T

 , (3.7) 
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where T is active chirp time. In this thesis, the chirp slope is set to 78.128 MHz/µs, with 64 samples per 

chirp. Hence, the ADC sample rate is 1 MHz, and the active chirp time is 64 µs. Because breathing is a 

slow activity, the reflected chirps in a pulse are very similar to each other. Eight chirps for each pulse are 

considered. The minimum delay between radars based on all the discussed parameters is as follows: 

 

 

where Nc is the number of chirps per pulse, fs is the ADC sample rate, and Tidle is the idle time. The minimum 

delay based on (3.8) is 0.552 ms with an inter-pulse repetition time of 49.5 ms. Table 3-1 summarizes the 

designed signal parameters to achieve minimum delay. In conclusion, fusing multiple radars can achieve 

finer range resolution without interference by designing a tailored signal. This provides significant benefits 

in precision-critical applications such as remote sensing and target tracking. However, optimization is 

crucial for optimal performance. 

 

Table 3-1: Designed signal parameters. 

 

 

 

 

 

 

 

 

 

 

 

3.2.5 Signal Processing Chain After ADC 

The FMCW radar is capable of generating periodic signals to scan the surrounding environment. In doing 

so, the radar produces a chirp signal that sweeps from a low frequency to a high frequency. A group of 

chirps generated periodically with an idle time between two sequential chirps is called a frame. The radar 

τmin = Nc. �
2. Rmax

ΔR. fs
+ Tidle�, (3.8) 

Parameter Value 

PRF 20 Hz 

B 5 GHz 

∆R 3 cm 

Rmax 96 cm 

N 64 

fs 1 MHz 

chirp slope 78.128 MHz/µs 

Tidle 5 µs 
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sensor can generate several frames per second. As a result, the received signals transmitted back from the 

environment are three-dimensional, comprising information on range, slow time, and frame. 

   Figure 4.1 depicts the conventional and proposed signal processing chains after ADC. First, the DC value 

of the signal needs to be removed; otherwise, the phase quality is affected [133]. Second, the first FFT, 

which is called fast-time FFT, is applied to a chirp signal to generate a range profile map. The range profile 

map is discretized by the range resolution of the FMCW radar. Then, a 3D cube of chirps is reconstructed, 

and all the information captured is in different ranges. 

   In the proposed method for multiple range bin BR estimation, four range bins, including the main range 

bin and those around it, are employed to ensure accurate estimations in the chest radar. The reflected signal 

from the middle of the chest, which is the first reflection in the chest radar, may appear one range bin before 

the detected peak. Other organs of the human body capture further range bins. To avoid unnecessary 

computations for empty range bins, The range bins captured by the human body can be determined. 

   After fast time FFT or range FFT, the range of the target can be determined to avoid unnecessary 

computations. In [133], the range bin of the target was selected after phase unwrapping and vibration FFT. 

These calculations are unnecessary since a target captures few range bins in a fast time signal. As a result, 

it is not necessary to monitor all the range bins.  

   A robust novel algorithm is presented in this thesis to detect the main range bin of the target. First, clutter 

cancellation is applied to remove zero-doppler reflections [133]. Since the human body is generally less 

dynamic, clutter cancellation is applied to the chirps across frames in a processing window. If the clutter 

cancellation was applied through the slow time on the chirps in a frame, the target’s signals would be 

suppressed since the time difference between the chirps within a frame is small.  

   Finally, outlier removal is applied to the detected main range bins from multiple chirps. In terms of outlier 

removal, if an estimated range bin falls outside the following interval, it is considered an outlier. 

 

  

where R is the mean of all detected range bins and σR is their standard deviation. After removing outliers, 

the mean of all range bins after outlier removal is selected as the main range bin of the target for breathing 

pattern estimation. 

 

 

�R − σR , R + σR�, 3.9) 
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   The breathing pattern, which corresponds to displacement, is the phase of the beat signal in a specific 

range bin. The phase can wrap when the displacements are large. If the target’s phase changes between -π 

 

(a) 

 

(b) 

         Figure 3.4: The signal processing chains after ADC (a) the conventional signal processing chain [133] and 

             (b) the proposed signal processing chain. 
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and +π, there is no phase wrapping. Phase wrapping occurs when the target’s displacement exceeds half of 

the wavelength. It can be calculated using the following formula: 

 

 
Since a human’s chest wall displacement can reach 12 mm [124], the phase wrapping can usually occur at 
60 GHz.  
   The obtained signal after phase unwrapping is called the vibration signal, which contains all the vibrations 

in the selected range bin. The constant range of the target adds a constant phase in the breathing signal, 

which can be removed by mean subtraction. The breathing signal can be achieved by canceling undesired 

vibrations like heartbeat and random body motion. A 4th-order Butterworth bandpass filter with cutoff 

frequencies of 0.1 Hz to 0.7 Hz is applied to remove the unwanted vibrations in this thesis. The detected 

peak from the FFT of the breathing signal determines the BR. 

   The amplitude of the displacement is a criterion that can determine if there is a breath hold. The bandpass 

filter suppresses vibrations outside of the desired band in the vibration signal. Therefore, the estimated 

frequency by peak detection is often in the breathing frequency band. Since peak detection determines a 

peak in the breathing band in the frequency domain, there is a detected peak even when the input signal is 

noise. As a result, the amplitude of this detected peak should be compared with a threshold. This threshold 

discriminates between breathing periods and breath-hold periods. 

   The threshold level determination needs to be done statistically by collecting data from different 

participants. These participants were asked to hold their breath while there were no other body movements. 

The amplitude of the detected peak from the filtered vibration signal obtained for 20 seconds is considered 

indicative of a breath-hold period. Approximately 300 measurements were collected from each of the 8 

participants to estimate statistical parameters. 

   Since the amplitude of the detected peak in a breath-hold scenario is non-negative, its distribution is log-

normal [206]. The mean and standard deviation of data on a millimeter scale after taking natural logarithm 

are -4.6 and 0.9, respectively. The threshold level can be determined using the empirical rule. Since missing 

a breath-hold period has more cost than having some false detections, the threshold level should be higher 

than almost all the amplitudes. According to the empirical rule, 99.7% of the amplitudes fall within three 

standard deviations of the mean [207]. The threshold based on the three-sigma rule of thumb is -1.89, which 

is approximately equivalent to 0.15 after applying the exponential function to the mean log-normal value. 

−π < 4π
λ

(R0 + R(t))<π⇒− λ
4
− R0 < R(t) < λ

4
− R0 ⇒∆Rmin = λ

2
. (3.10) 
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Therefore, if the amplitude of the detected peak is less than 0.15 millimeters, this period is considered a 

breath-hold.  

   The estimated BRs from multiple range bins are compared with each other to determine an accurate 

estimation in the next step. An outlier removal, which can remove the corrupted range bin by random body 

motions is applied to the estimated BRs. Finally, the mean of all the remaining estimations determines the 

BR. If the estimated BR is below 12 bpm or above 20 bpm, the breathing patterns are classified as abnormal 

according to predefined thresholds. For further discussion, refer to Appendix G. 

3.3 Experiments 

The experimental setup, experimental protocols, and the abnormal breathing algorithm are discussed in this 

section. 

3.3.1 Experimental Setup 

The sensor selection is based on two factors, including the carrier frequency and the size of the radar's 

package. First, higher carrier frequencies have a better signal-to-noise ratio (SNR) due to the noise power 

reduction by increasing the carrier frequency. The FCC also supports the 60 GHz band to be used in in-

cabin applications [172]. As a result, the 60 GHz band is selected for proof-of-concept. Second, 

BGT60TR13C from Infineon is employed in this thesis. The dimensions of the whole package of this radar 

are 64 mm x 25.4 mm [141]. Due to its compact dimensions, it can be placed inside the vehicle without 

causing discomfort to drivers.  

   The sensor placement has a direct effect on the measured displacements by radar. Three factors should 

be considered, including the angle between the radar and the human body, the distance between the radar 

and the human body, and signal blockage by other objects inside the vehicle. First, if the radar is placed in 

front of the displacement, it can estimate displacement accurately since the radar measures radial 

displacements. A displacement with a high amplitude may be less affected by noise. Second, the reflected 

power in the radar equation is related to distance by a power of four. Therefore, radar measurement can be 

less affected by noise at low distances. Third, if a portion of radar signals, before reflecting from the human 

body, is blocked by objects, especially metallic ones, the SNR of the signal from the human body decreases 

over a longer range. As a result, a radar placed in front of the displacement at the closest range without 

being blocked by any objects can estimate displacements more accurately. 

   Figure 3.5 depicts the displacements of the chest and abdomen walls of a sitting human while breathing 

in and out. Due to the angle between chest displacements and the horizontal axis, the chest radar should be 
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attached to the ceiling while tilted toward the chest. This area is almost unused inside the vehicle. However, 

the abdomen radar cannot be placed properly since the best placement is under the wheel, which can block 

most radiated signals. Figure 3.6(a) shows the chest and abdomen radar placements in this thesis. The 

abdomen radar is tilted toward the middle of the abdomen as can be seen in Figure 3.6(b). The distance 

between the chest radar and the central point of the chest equates to approximately 20 centimeters, while 

the distance between the abdominal radar and the midpoint of the abdomen measures approximately 40 

centimeters. The chest radar is affixed to the ceiling via adhesive tape, while the abdominal radar is securely 

fastened to a holder, allowing for adjustable angulation towards the abdominal center. 

 

 
Figure 3.5:  The displacements of the chest and abdomen walls of a sitting human during breathing in and 

out [208]. 
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Figure 3.6: Radar placement: (a) The chest and abdomen radars placements in experimental studies and (b) 

abdomen radar tilted toward participants’ abdomen. 

3.3.2 Experimental Protocol 

Eight subjects (four females and four males; age:  30 ± 6 years; weight: 75 ± 20 kg; height: 172 ± 13 cm; 

BR: 17 ± 8 bpm) without having any respiratory disease participated in these experiments. The participants 

were asked to sit behind the wheel as a driver and mimic different breath patterns using an online 

metronome [209] in a single-subject or dual-subject scenario while wearing a heavy jacket or shirt. In 

addition, various driving scenarios, including shoulder check (left then right), turning the wheel 90 degrees, 

and drinking a can, are examined in this study. The participants were asked to do these activities every 30 

seconds. In the shoulder check scenario, the participants checked the left shoulder first. After 30 seconds, 

they did a right shoulder check. In the drinking a can scenario, the participants first picked a can from the 

drink holder inside the vehicle, mimicked drinking, and then returned the can to the drink holder. The entire 

scenario lasted approximately 4-5 seconds.     

   The estimated BR is compared with the actual BR based on the root mean square error (RMSE). The 

RMSE can be calculated as follows: 

 

Chest radar

Abdomen radar

Abdomen radar 
on the holder

(a)
(b)
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where N is the number of data, y(n) is the nth measurement, and ŷ(n) is its corresponding prediction. 

3.3.3 The Recognition of Abnormal Breathing Patterns 

Five abnormal breathing patterns, including Tachypnea, Bradypnea, Biot, Cheyne–stokes, and Apnea are 

investigated in the driving scenario in this study. Tachypnea is characterized by a BR of more than 20 bpm. 

On the other hand, Bradypnea is low BR, which is characterized by less than 12 bpm. Biot is characterized 

by some shallow breath patterns followed by some periods of Apnea. Cheyne–stokes is characterized by 

two stages. First, there is a progressive increment in both deepness and rate. Then, both the deepness and 

rate reduce gradually, which results in Apnea at the end [210].  

   Figure 3.7 illustrates two straightforward approaches for detecting different abnormal breathing patterns: 

BR estimation and breath-hold detection. BR estimation can be used to detect both Tachypnea and 

Bradypnea, characterized by BRs of more than 20 bpm and less than 12 bpm, respectively. Breath-hold 

detection can be employed to diagnose three different abnormalities: Biot, Cheyne–Stokes, and Apnea. 

Both Biot and Cheyne–Stokes include an Apnea period. Therefore, all three of these abnormalities can be 

diagnosed by breath-hold detection. It is worth noting that this study focuses on detecting these 

abnormalities in various driving scenarios. 

 
Figure 3.7:  Approaches to detect different abnormal breathing patterns in this thesis. 
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3.4 Results and Discussion 

3.4.1 Validation of the Proposed Algorithm 

Figure 3.8 compares the effect of two different clutter cancellations, including clutter cancellation on chirps 

through all the frames and clutter cancellation on a frame on target detection in the chest radar. The target 

cannot be detected if the clutter is canceled in a frame because target reflections are also suppressed by 

clutter cancellation. However, if the clutter is suppressed through all the frames, it can detect the target in 

a true range after suppressing clutter reflections. Clutter cancellation applied on the range profile is only 

deployed for accurate range detection. However, clutter cancellation can affect the estimated breathing 

pattern. Figure 3.9 evaluates the effect of clutter cancellation applied on range profile in breathing pattern 

estimation. Although the measurement has a breath-hold period, the processed signals by clutter 

cancellation cannot represent any breath-hold period. However, while the chest wall displacement is low, 

unprocessed signals accurately represent the breath-hold period. 

 
Figure 3.8: The comparison between different clutter cancellation approaches on the target detection in 

chest radar. 
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Figure 3.9: The effect of clutter cancellation on breathing pattern estimation while there is a breath-hold in 

the scenario: (a) The estimated breathing pattern with clutter cancellation and (b) The estimated breathing 

pattern without clutter cancellation. 

 

   Figure 3.10 depicts the various reflections in different ranges in both the chest and abdomen radars over 

time. There is a breath-hold in this scenario, which is accurately specified in both radars. First, both radars 

represent the target in the correct range as they are at 20 cm and 40 cm, respectively. Second, radar detects 



 

 36 

multiple range bins for a subject as it is close to the subject. The chest radar can detect 4 range bins for a 

subject in this study. Third, both radars are not impacted by interference like other subjects’ reflections 

since they are out of maximum range. Fourth, the chest radar is less affected by multiple reflections than 

the abdomen radar. As a result, the chest radar is reliable for multi-bin breathing pattern estimation, and the 

abdomen radar can complement the chest radar in detecting breath-hold periods. 

   An intuitive way to improve frequency resolution is to increase the processing window length. A longer 

processing window is also less susceptible to interference, such as body motions. Although a longer 

processing window is more robust to interference, it is less adaptive to BR changes. Given that the minimum 

normal BR is 12 bpm, the duration of one breath is 5 seconds. The minimum window length is 20 seconds 

by considering 4 cycles of this breathing pattern. Figure 3.11 illustrates the consistency of BR estimation 

over 35 seconds with a BR of 16 for various processing window lengths, including 20 seconds, 30 seconds, 

40 seconds, and 50 seconds. The BR is estimated every second for these window lengths. A participant was 

asked to turn the wheel every 30 seconds in this measurement while mimicking different BRs. The results 

indicate that a window length of 40 seconds can estimate BR by approximately a maximum error of less 

than 1 breath per minute. For longer windows, the accuracy would be slightly higher than 40 seconds. 

However, longer windows are unable to detect breath-hold periods accurately. If the minimum duration of 

breath-hold is assumed to be 20 seconds, a window length of 40 seconds covers 50% of this period. 

Consequently, longer windows may lead to missing breath-hold periods. 

   To examine the interference effect in a dual radar system depicted in Figure 3.6(a), three disparate 

measurements are performed. First, the radars started to radiate signals simultaneously, but there was no 

metallic surface in front of the abdomen radar. Therefore, the radars interfered with each other, and the 

power level of interference in the chest radar obtained from the range-doppler map after zero-doppler 

cancellation exceeds -30 dB in the chest range, as shown in Figure 3.12(a). Second, the metallic surface 

was placed in front of the abdomen radar to avoid interference while the time delay was still zero. Figure 

3.12(b) illustrates the suppression of the interference level by almost 3.5 dB. Finally, the metallic surface 

was removed, and a time delay of 5 µs was set between two radars. Figure 3.12(c) demonstrates a 3 dB 

suppression in the power level of interference after considering this time delay. 

   Table 3-2 compares the single-bin and multi-bin approaches based on the average RMSE in different BRs 

inside the vehicle while the subject had a slight body movement. Four subjects participated in the data 

collection for each BR. The length of measurement for each BR was 3 minutes. The multi-bin approach 

exhibits lower RMSE in most cases, especially in high BRs. However, the proposed multi-bin approach 

exhibits a slight degradation in BR estimation when BR values are 14 or 16. Nevertheless, the introduced  
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Figure 3.10: Reflection analysis in dual radar fusion over time: (a) chest radar and (b) abdomen radar. 
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error is negligible. The maximum error in the multi-bin approach reaches 1.2 bpm. However, the RMSE 

of the single-bin approach exceeds 2 bpm when BR is high. 

   Table 3-4 represents the average RMSE of various BRs in driving scenarios obtained from the chest radar. 

Four different scenarios are examined in this study, including turning the wheel, shoulder check, shoulder 

check while wearing a thick jacket, and drinking a can. Eight subjects participated in this measurement for 

3 minutes for each BR. The participants were asked to do these activities every 30 seconds. Among the 

examined scenarios, turning the wheel is the most challenging one, especially in high BRs. In addition, 

wearing a thick jacket does not affect vibration signals since electromagnetic waves can penetrate through 

the clothes. 

   Figure 3.13 depicts the amplitude of the detected peak in the breathing pattern in the frequency domain 

over time while there were 5 breath-hold periods in this measurement from chest and abdomen radars, 

respectively. Both chest and abdomen radars can detect these breath-hold periods. However, two false 

detections with low displacements were detected in only one of the radars. As a result, reliable breath-hold 

detection can be achieved by a dual radar fusion system. Radar signals are sensitive to movements and can 

detect all breath-hold periods accurately. They tend to overestimate breath-hold periods, but the use of dual 

radar improves accuracy. 

 
Figure 3.11: The consistency of BR estimation in 35 seconds while BR is 16 for various processing window 

lengths, including 20 seconds, 30 seconds, 40 seconds, and 50 seconds. 
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Figure 3.12: The power level of interference on the range-velocity map in different measurements: (a) no 

time delay and no metallic surface, (b) no time delay and a metallic surface, and (c) a proper time delay 

and no cupper surface. 

Table 3-2: Comparison between single-bin and multi-bin approaches based on average RMSE(bpm) in 

various BRs inside the vehicle. 

BR Single-bin approach Multi-bin approach 
9 1.7 0.6 
11 0.8 0.23 
14 0.77 0.32 
16 0.48 0.54 
18 0.25 0.4 
22 1.74 0.7 
24 2.21 1.2 
26 2.65 0.88 
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Figure 3.13: The amplitude of the detected peak in the breathing pattern in the frequency domain over time 

while there were five breath-hold periods in this measurement: (a) chest radar and (b) abdomen radar. 
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Table 3-3: Average RMSE(bpm) of chest radar in different BRs in driving scenarios. 

BR Turning the 
wheel 

Shoulder 
check 

Shoulder check while wearing a thick 
jacket 

Drinking a 
can 

9 0.91 0.7 0.28 0.36 
11 0.88 0.47 0.35 0.67 
14 0.79 1.18 0.92 0.65 
16 0.87 0.8 0.56 0.49 
18 0.64 1.02 0.43 0.77 
22 1.61 0.58 1.3 0.94 
24 1.42 1.1 0.69 0.86 
26 1.23 0.52 0.36 0.83 

 

3.4.2 Discussion 

Table 3-4 presents a comparison between the approaches utilized in this thesis and those described in 

recently published papers. Firstly, it is noteworthy that most papers report a maximum estimation error for 

BR of less than 2 breaths per minute. Similarly, the multi-bin approach proposed in this thesis also 

demonstrates an error within this range. Secondly, the processing window length is another important 

criterion addressed in this study. While many recent papers suggest a window length of 60 seconds, a 

window length of 40 seconds is proposed. This choice is motivated by the fact that a longer window fails 

to accurately detect breath-hold periods. Additionally, it is worth mentioning that the analysis of driving 

scenarios, such as steering wheel movements, is a focus in recent studies. 

Table 3-4: Comparison between the employed approaches in this thesis and recently published papers. 

Reference Maximum BR 
error (breaths) 

Processing 
window length 

Driving 
scenarios 

Breathing 
abnormality detection 

[45] ±2 60 s Yes No 
[43] ±2 Not specified Yes Yes 

[47] ±1.2 5 s Yes No 
[25] ±2  30 s Yes No 
[57] ±2.96 60 s Yes No 

Single- bin ±4.36 40 s Yes Yes 
Multi-bin ±1.9 40 s Yes Yes 

 

   Furthermore, previous studies mainly focused on accurately estimating BR rather than on detecting 

abnormalities. Similar to the proposed approach in this study, many of these studies achieved an RMSE of 

less than 2 bpm in BR estimation. The proposed approach achieved a maximum estimation error of 1.9 bpm 
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in BR. It is worth noting that BR estimation without considering the chest wall and abdomen wall 

displacements cannot detect breath-hold periods and breathing abnormalities. The chest radar incorrectly 

identified 37 periods as breath-hold, while the abdomen radar incorrectly identified 26 periods as breath-

hold periods. However, no false breath-hold periods were detected by the proposed dual radar approach. 

   The proposed approach in this thesis has limitations in handling high random body motions within a 

processing window. One of the challenging body motions inside the vehicle is turning the wheel, which is 

a periodic movement [43]. If this activity lasts more than 10 seconds, the BR estimation is challenging, 

especially when the actual BR is more than 20. Although the BR usually drops to less than 10 bpm and 

RMSE is high, the abnormality is detected even if mislabeled. This phenomenon commonly occurs when 

the driver is stressed and steers the wheel sharply. 

   This study focused on the detection of abnormal breathing by dual radar. However, the application of 

dual radar is not limited to the detection of breathing pattern estimation. The abdomen radar in the proposed 

setup in this thesis can be employed for drowsy driver detection. Since normal breathing is a non-stop 

activity, the detection of drowsy drivers based solely on BR is less reliable. Because people are less active 

during sleep, the second radar can be employed for activity recognition. As a result, if the driver is less 

active than normal and the BR is also low, it can be considered indicative of a drowsy driver. 

3.5 Conclusion 

Radar, as a contactless sensor, offers the benefit of operating in various environmental conditions while 

preserving privacy. This study employed a dual 60 GHz radar fusion system to monitor the respiratory 

patterns of drivers. This system can detect five breathing abnormalities that can occur in drivers, including 

Tachypnea, Bradypnea, Biot, Cheyne–Stokes, and Apnea. Two features extracted from breathing patterns 

to detect these abnormalities are BR and displacement amplitude. The maximum error of BR estimation in 

this thesis by the multi-bin method reached 1.9 breaths in the driving scenarios. However, the error for a 

single-bin approach was 4.36 breaths. The proposed dual radar system can recognize the breath-hold period 

without false detections. These fused radars have less interference with each other, benefiting from the 

finest range resolution. Furthermore, proper signal design can mitigate the effect of passengers’ reflections, 

which could otherwise interfere with the driver’s reflections. Although the dual radar system demonstrated 

promising results, its cost remains a drawback. Alternatively, employing a single MIMO radar offers a more 

cost-effective solution for monitoring individuals. 
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Chapter 4 
Multiple People Monitoring by a MIMO Radar 

4.1 Relevance 

 Although employing multiple radars to monitor an individual offers several advantages, certain challenges 

persist. Firstly, installing multiple radars within a vehicle may lead to distractions for drivers, potentially 

increasing the risk of car accidents. Secondly, the intricate wiring required presents a challenge and adds 

complexity to cabin design. Lastly, the overall cost is substantially higher than that of using a single MIMO 

radar. 

   This chapter explores the monitoring of multiple individuals using a MIMO radar. Initially, the algorithm 

is validated using a corner reflector and a protractor mat at various angles. Subsequently, the beamforming 

algorithm is applied to radar data with known angles and ranges, extracting breathing waveforms within 

the vehicle. The aim is to monitor multiple individuals inside the vehicle at different distances or the same 

distance with varying angles from the radar. Additionally, occupancy detection inside the vehicle by a 

MIMO radar focusing on left-behind child detection is explored. 

4.2 Radar Sensor. 

For data collection in this chapter, the Texas Instrument (TI) mm-wave MIMO FMCW radar sensors are 

used (IWR6843ISK and AWR6843AOP) [211], operating within the 60 GHz to 64 GHz frequency range. 

These radars, designed for mm-wave MIMO FMCW operations, offer both range-azimuth details of 

subjects and capture their vibrations. Given their capabilities, these radars prove to be an ideal choice for 

in-cabin applications [211]. 

    The considerations for choosing the appropriate radar sensor were: 

• The MIMO FMCW radar stands out among radar systems due to its distinctive features. This type 

of radar enables simultaneous detection of range, angle, and vibrations, making it well-suited for 

diverse applications. 

• The notable benefits of the latest generation of these radars include being cost-effective, budget-

friendly, and scalable. 

• The radar sensor operates at low power levels, with transmitted signals having a power level of less 

than 10 dBm. This contrasts with Wi-Fi signals, which exceed 20 dBm, and cellphones typically 
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operating around 30 dBm. In terms of power consumption, this system is considerably more 

energy-efficient than other wireless devices, minimizing potential negative health effects and 

making it suitable for long-term use. Operating at 60 GHz, this mm-wave radar utilizes non-

ionizing radiation, unlike X-rays that ionize body molecules. Additionally, mm-waves, absorbed 

by water and not penetrating the body, result in electromagnetic absorption at frequencies over 10 

times less than those used in cellular bands and Wi-Fi, further enhancing its health-safety profile. 

4.3 Beamforming for Multiple People Monitoring. 

For multiple people's breathing monitoring, it is crucial to employ a digital beamforming approach, 

especially if there is a symmetric scenario like inside a vehicle. By using digital beamforming and knowing 

the subject’s angles and ranges, the antenna beam can be steered toward the subject. Therefore, it is crucial 

to make sure that the beamforming algorithm works accurately. 

 

Figure 4.1: The compassion between different beamforming approaches, including DAS, MVDR, and 

MUSIC, while there is a target in front of radar. 

   There are various digital beamforming algorithms for the receiver side in the literature. In this study, three 

common algorithms are discussed, including delay and sum (DAS), minimum variance distortionless 

response (MVDR), and multiple signal classification (MUSIC). As can be seen in Figure 4.1, MUSIC and 
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MVDR approaches have 5 dB and 5.5 dB better main lobe to side lobe ratio than DAS, respectively. 

However, the MVDR approach has less computational cost than MUSIC. As a result, the MVDR approach 

is used for beamforming in this thesis. 

4.3.1 Beamforming Algorithm Verification 

To verify the beamforming algorithm, a corner reflector on a protractor mat at different angles can be used. 

Figure 4.2 depicts an IWR6843ISK radar in the center of the protractor mat while the corner reflector is at 

an angle of 40 degrees. Both radar and corner reflector have the same height from the ground surface. In 

addition, the distance between the radar and the corner reflector is almost 80cm. In this study, most angles 

are examined to verify algorithm accuracy. 

 

Figure 4.2: A corner reflector on a protractor mat to examine the digital beamforming algorithm. 

4.3.1.1 Single Reflector with Various Virtual Channels 

Figure 4.3 and Figure 4.4 display the beamforming results for a corner reflector at 90 degrees and 125 

degrees, respectively, with the radar situated roughly 80 cm away from the target while different virtual 

channels have been used for beamforming. The estimated angles exhibit considerable accuracy with 4 and 

8 virtual channels. However, the estimated peak in 8 virtual channel beamforming exhibits a narrower and 

stronger peak than 4 virtual channel beamforming. In addition, the reflected signal's amplitude from the 90-
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degree angle is 1.74 dB higher than that from the 125-degree angle. This variation can be attributed to the 

antenna gain pattern, which is weaker on side angles. As a result, by using more virtual channels, the system 

is enabled to detect and discriminate targets.  

 

(a) 

 

(b) 

Figure 4.3: The result of MVDR beamforming for a corner reflector by 4 virtual channels: (a) 90 degrees 

and (b) 125 degrees. 
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(a) 

 

(b) 

Figure 4.4: The result of MVDR beamforming for a corner reflector by 8 virtual channels: (a) 90 degrees 

and (b) 125 degrees. 
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4.3.1.2 Dual Reflector Separation 

Figure 4.5 displays the beamforming results for two corner reflectors at different angles, with the radar 

situated roughly 25 cm away from the target while 8 virtual channels have been used for beamforming. The 

results indicate that when the angle difference between targets is more than the angle resolution of a system, 

which is 14 degrees, the corner reflectors can be separated, as can be seen in Figure 4.5(a) and Figure 4.5(b). 

In addition, the estimated angles have a 1-to-2-degree error, which is negligible for this study. However, 

when the angle difference between corner reflectors is less than the angle resolution of the system, the 

system cannot separate these two targets. As can be seen in Figure 4.5(c), the system is not able to separate 

two targets with an angle difference of 10 degrees. Instead, it displays a single target in the middle of these 

two targets. It seems that the reflections of these two targets are positively summed up and made a fake 

target.   

 

(a) 
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(b) 

 

(c) 

Figure 4.5: The result of MVDR beamforming for two corner reflectors by 8 virtual channels: (a) the 

angles of corner reflectors are 70 and 120, (b) the angles of corner reflectors are 75 and 110, and (c) The 

angles of corner reflectors are 85 and 95. 
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4.4 In-vehicle Applications of MIMO Radars 

4.4.1 In-Vehicle Multiple People Breathing Monitoring 

Figure 4.6 depicts the in-vehicle radar setup for breathing monitoring. The employed off-the-shelf radar is 

IWR6843ISK from TI which has 3 transmitters and 4 receivers at 60 to 64 GHz. However, since the second 

transmitter covers elevation angles, only two transmitters have been used. Therefore, there are 8 virtual 

channels for beamforming [211]. In addition, radar is installed on the rear-view mirror which is the best 

place to monitor vital signs [127]. To evaluate the algorithm, single and multiple-people scenarios inside 

the vehicle were considered. The length of the processing window is 40 seconds, and the multi-bin approach 

is employed. The data has been collected from different scenarios, which are described below. 

 

 

(a) 

 

 

 

(b) 

Figure 4.6: The In-cabin monitoring setup: (a) the installed system on the rear-view mirror in-vehicle for 

breathing monitoring and (b) IWR6843ISK [211]. 
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4.4.1.1 Single Person Scenarios 

In this subsection, the single-person scenarios are examined for left-behind human applications. Two 

different scenarios are examined in this section, including left-behind adults and babies. Figure 4.7 depicts 

the scenario of the left-behind adult in which seat number 4 is occupied. As can be seen in the beamforming 

results, the detected peak for the adult appears at 70 degrees at 176 cm from radar. There is also another 

peak which is reflected from the car body as the angle of the peak is 164 degrees. Table 4-1 represents the 

average RMSE in various BRs inside the vehicle for this scenario. The maximum average RMSE is 0.9 

breaths per minute in this table.  

Table 4-1: Average RMSE in various BRs inside the vehicle for Figure 4.7.  

BR Multi-bin approach 
9 0.8 
12 0.54 
15 0.64 
18 0.74 
21 0.9 

 

 

(a) 

 

(b) 

Figure 4.7: The left adult scenario in the back seat: (a) the scenario and the occupied seat and (b) 

beamforming results. 
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    Figure 4.8 depicts a left-behind baby scenario in which seat number 4 is occupied by a doll. There is also 

another peak which is reflected from the car body as the angle of the peak is 164 degrees. As can be seen 

in the beamforming results, the detected peak for the baby appears at 59 degrees at 184 cm from the radar. 

The BR of the doll is set at 20 breaths per minute. The average RMSE for this BR is 0.65 breaths per minute. 

 

(a) 

 

(b) 

Figure 4.8: The left baby scenario in the back seat: (a) the scenario and the occupied seat and (b) 

beamforming results. 

4.4.1.2 Multiple People Scenarios 

In this subsection, five different scenarios in which multiple people are examined. Figure 4.9 depicts the 

first scenario in which the first row is occupied by two adults. As can be seen in the beamforming results, 

the detected peak for the driver appears at 125 degrees at 75 cm from radar, and the adult in the second seat 

also appears at 55 degrees and 56 cm from radar. Table 4-2 represents the average RMSE in various BRs 

inside the vehicle for the driver. The maximum average RMSE is 1.3 breaths per minute in this scenario. 

For the second seat, the BR of the adult is set at 15 breaths per minute in the whole scenario. The average 

RMSE is 1.8 breaths per minute for this scenario.  

Figure 4.10 depicts the second scenario in which the first and third seats are occupied by two adults. As 

can be seen in the beamforming results, the detected peak for the driver appears at 129 degrees at 78 cm 
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from radar, and the adult in the second seat also appears at 118 degrees and 191 cm from radar. However, 

there are multiple reflections from the first seat, which are combined with the second subject’s signals; as 

can be seen, the second subject’s reflections are stronger than the first subject ones, although the driver is 

closer to the radar, and has a larger body mass.  

Table 4-3 represents the average RMSE in various BRs inside the vehicle for the driver in the scenario 

shown in Figure 4.10. The maximum average RMSE is 1.4 breaths per minute. For the Third seat, the BR 

of the adult was set at 15 breaths per minute in the whole scenario. However, the average RMSE is 3.4 

breaths per minute for this scenario. It seems that the driver’s multipath reflections are sometimes dominant 

when combined with the second subject’s reflections. 

 

(a) 

 

(b) 

Figure 4.9: Dual adult scenario occupied the first row: (a) the scenario and the occupied seats and(b) 

Beamforming results. 
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(a) 

 

(b) 

Figure 4.10: Dual adult scenario occupied the first and the third seats: (a) the scenario and the occupied 

seats and (b) beamforming results. 

 

 

Table 4-2: Average RMSE in various BRs inside the vehicle for Figure 4.9.  

BR Multi-bin approach 
9 0.74 
12 0.84 
15 0.79 
18 1.1 
21 1.3 

 

Table 4-3: Average RMSE in various BRs for the driver in Figure 4.10.  

BR Multi-bin approach 
9 0.95 
12 0.73 
15 0.65 
18 1.2 
21 1.4 
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Figure 4.11 depicts three dual-people scenarios in which only one seat from each row is occupied. Table 

4-4 represents the average RMSE in various BRs inside the vehicle for the subjects in the first row in these 

scenarios. The maximum average RMSE is 1.31 breaths per minute. The second seat has a higher rate of 

error than the first seat. It is because of antenna gain, which is stronger on the right side. For the fourth seat, 

the BR of an adult is set at 15 breaths per minute, or the BR of the baby is set at 20 breaths per minute in 

the whole scenario. However, the average RMSE is 5.1, 5.6, and 6.2 breaths per minute for these scenarios, 

respectively. It seems that the driver’s multipath reflections are sometimes dominant when combined with 

the second subject’s reflections. 

 

   

(a) (b) (c) 

Figure 4.11: Dual people scenarios: (a) the first and fourth seats are occupied by an adult and a baby, 

respectively, (b) the second and fourth seats are occupied by an adult and a baby, respectively, and (c) 

the second and fourth seats are occupied by two adults. 

In conclusion, using a single MIMO radar for monitoring multiple people in multiple rows due to the 

multipath effect of in-cabin environments is challenging. Therefore, MIMO radars can effectively 
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monitor multiple people who are seated in a row. Using a multi-beam approach may help reduce the 

effect of multipath inside a vehicle. 

Table 4-4: Average RMSE in various BRs inside the vehicle for the subjects in the first row in the scenarios 

of Figure 4.11. 

BR Figure 4.11(a) Figure 4.11(b) Figure 4.11(c) 
9 0.75 1.1 0.66 
12 0.63 1.2 0.84 
15 0.43 0.95 0.98 
18 0.86 0.91 1.21 
21 1.12 1.31 1.14 

 

4.4.2 In-Vehicle Occupancy Detection 

Three common kinds of radars are employed for in-cabin applications, including CW radars, UWB radars, 

and FMCW radars. CW radars cannot provide a sufficient range resolution for in-vehicle applications. 

UWB radars generate a short-time pulse which leads to distinguishing between reflected signals of the 

nearby targets [127], [142], [143], [144], [212], [213], [214], [215]. However, these radar systems operate 

based on the amplitude of signals. Therefore, they can be affected by clutter reflection, especially inside a 

vehicle. FMCW radars sweep from a low frequency to a high frequency to cover a wide frequency range 

and provide a high-resolution system [149], [216]. MIMO FMCW radars represent the state-of-the-art 

technology for in-cabin applications, as they are capable of range detecting and angle differentiation of 

targets [15], [127], [217], [218]. 

    There are different signal processing techniques to detect occupancy. The most straightforward approach 

is to use reflected energy. This technique is commonly used for detecting left-behind children and pets, 

especially in cold or hot conditions [11], [73], [96], [97], [98], [99], [100], [101], [102], [103], [104], [127]. 

The most common approach is based on the extracted features of micro-doppler [6], [7], [70], [71], [72], 

[73], [74], [75], [76], [77], [78], [79], [127] due to the human body motions. Then, AI is employed to detect 

individuals. These features are usually extracted from a time-frequency map [71], [72], [73], [77], [79], 

[127], a range-azimuth map [6], [74], [127], or a range-doppler map [80], [127]. In conclusion, recent 

studies mostly focused on energy-based approaches for occupancy detection. 

    However, energy-based approaches are highly dependent on the range of targets from radar based on the 

radar equation [144]. Therefore, these approaches need to have a separate database for each seat, which 

adds complexity to the classification. In addition, the multipath reflections can affect energy-based 
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approaches, especially when the front seats are occupied by adults. In this thesis, a volume-based occupancy 

detection approach based on the detected point cloud is proposed. This approach is less dependent on the 

range of targets from radar and uses only 3 labels, including adult, baby, and empty. This approach is more 

robust to multiple reflections from other seats compared to energy-based approaches. 

4.4.2.1 Experimental Setup 

Figure 4.12 represents the placement and relative spacing of the transmitter and receiver antennas and the 

equivalent antenna array in AWR6843AOP. The angle resolution (θres) of a MIMO radar when targets are 

in front of the radar can be determined as follows: 

 

where NTx and NRx represent the number of transmitters and receivers, respectively. The azimuth and 

elevation angle resolutions by using all the transmitters equals 28.6° when targets are in front of the system. 

Figure 4.13 shows the AWR6843AOP radar sensor mounted above the headrest of the first-row seats while 

tilted slightly toward the second row. It is capable of detecting across two rows of a vehicle with about 120-

degree azimuth and 120-degree elevation field of view. Table 4-5 describes the key parameters of the radar 

system used in this thesis. AWR6843AOP sensor with a start frequency of 60 GHz is used for overhead 

mount occupancy detection. 

Table 4-5: The key parameters of the used system [82]. 

parameter Configuration 
 

Device AWR6843AOP 
Number of transmitters 3 

Number of receivers 4 
Field of view 120° horizontal, 120° 

vertical 
Maximum range 2.7 m 
Range resolution 5.3 cm 

Maximum velocity 1.7 m/s 
Velocity resolution 1.5 cm/s 
Frame periodicity 200 ms 

 

𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 =
2

𝑁𝑁𝑇𝑇𝑇𝑇 .  𝑁𝑁𝑅𝑅𝑅𝑅
  (4.1) 
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Figure 4.12: MIMO antenna array: (a) antenna positions and (b) equivalent virtual array. λ represents 

wavelength which is equal to 5 mm at 60 GHz [82]. 
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Figure 4.13: Radar setup inside the vehicle for occupancy detection. 

    70 different scenarios, including single-subject and multi-subject scenarios, are implemented. 4 subjects 

were involved in tests from age 12 to 50, with weights from 35 Kg to 90 Kg and heights from 130cm to 

180cm. Bella Rose baby doll from Ashton Drake is also used to mimic a baby [219]. 

4.4.2.2 Signal Processing Chain for Point Cloud Detection 

Figure 4.14 shows the signal processing chain for point cloud detection. First, an FFT is applied to the beat 

signals to obtain range information. Then, the radar cube is reconstructed from the received chirp signals 

over time. Since occupants inside the vehicle are non-stationary, zero velocity clutter removal is performed, 

and 2D Capon is used in the next step. Then, the CFAR method is used to distinguish between targets and 

noise and generate a point cloud. The produced point cloud has a range, azimuth angle, elevation angle, and 

SNR for each point. 
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Figure 4.14: The signal processing chain for point cloud detection. 

4.4.2.3 Results and Discussion 

Three different occupancy detection approaches are used in this thesis. The first approach is the mean SNR 

of all the detected points for each seat. The number of detected points for each seat is considered the second 

approach. The proposed method to detect occupancy uses the location variance of the detected points for 

each seat as the last approach. All the detected points are divided between different seats based on the 

defined zones on the x-z plane. 

    The proposed approach demonstrates more robustness against false detections caused by multipath 

signals. The SNR-based approach may determine the occupancy correctly if those false points have low 

SNR. The in-cabin applications of radar, however, often suffer from a high amplitude of falsely detected 

points due to the low range of targets from radar. Consequently, in such scenarios, the SNR-based approach 

misclassifies empty seats as occupied. However, the proposed variance-based approach remains accurate 

due to the low location variance of those falsely detected points. 

    Figure 4.15 represents the detected points for an adult in seat 2 in a single target scenario. The majority 

of detected points are located inside the designated zone for seat 2. It also shows that the other seats are 

empty in this scenario. On the other hand, Figure 4.16 shows a falsely detected point due to the multipath 

in seat 5. Figure 4.16 displays that the mean SNR of detected points for this empty seat, even over time, is 

like an occupied seat. However, the variance-based approach indicates this seat is empty. 
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Figure 4.15: The detected points for an adult in seat 2 in a single target scenario: (a) without multipath issue 

and (b) with multipath issue. 
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Figure 4.16: The multiple reflections from seat 2 on seat 5: (a) the location variance of detected points and 

(b) the mean SNR. 

    Figure 4.16Figure 4.17 shows the number of detected points in all seats for both adults and babies over 

28 seconds (140 frames). In general, adults exhibit a higher number of detected points compared to babies 
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across different seats. Therefore, this indicator can identify the occupancy type of each seat individually. 

However, seat 3 shows fewer detected points for both an adult and a baby. Therefore, data collection needs 

to be conducted for each seat separately, resulting in the utilization of 17 labels for this indicator. 

    Figure 4.18 shows the mean SNR of detected points in all seats for both adults and babies over 28 seconds 

(140 frames). The SNR can distinguish between adults and babies in different seats. However, seat 4 

exhibits a higher SNR for both an adult and a baby compared to other seats. The SNR of a baby in seat 4 

has almost the SNR level as the SNR of adults in other seats. This indicator is inversely proportional to the 

range of the power of 4, as specified in the radar equation [144]. As a result, The SNR indicator also needs 

separate data collection for each seat, resulting in the utilization of 17 labels. 

    Figure 4.19 shows the location variance of detected points in different seats for both adults and babies 

over 28 seconds (140 frames). The location variance of detected points can differentiate between adults and 

babies in all seats. Unlike SNR, the location variance indicator exhibits less dependency on the range. 

Therefore, all seats represent the same amount of location variance for different occupancy types. 

Consequently, separate data collection for each seat is unnecessary. 

    Figure 4.17, Figure 4.18, and Figure 4.19 depict that all the methods presented in this thesis display 

fluctuations over time. Firstly, due to the low activity level of the human body before both inhalation and 

exhalation, human body reflections are suppressed by clutter cancellation. Secondly, occupancy type should 

be decided over time rather than relying on a single frame. In addition, all the indicators can distinguish 

between an empty seat and an occupied seat accurately. This capability allows the radar to differentiate 

between a left-behind baby case and an empty seat.  

    In the last step, a machine learning approach is employed to accomplish the classification task. To address 

the class imbalance, the synthetic minority oversampling technique is applied before training and testing. 

This technique mitigates the bias of classification by generating new data for minor labels. Nine different 

features, including minimum, maximum, mean, skewness, kurtosis, median, entropy, shape factor, and 

impulse factor, are extracted from each measurement. For training purposes, 80% of the data is utilized, 

while the remaining 20% is reserved for testing. Minimizing the miss-detection of babies is crucial to 

prevent heatstroke-related fatalities. The AdaBoost algorithm achieves a low miss-detection rate of just 

1.3%, ensuring a high level of accuracy in identifying babies. Moreover, its overall detection accuracy 

stands at 96.7%. 
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Figure 4.17: Number of detected points over 140 frames (28 seconds). 

 
Figure 4.18: Mean SNR of the detected points over 140 frames (28 seconds). 
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4.5 Conclusion 

In conclusion, radars as non-contact sensors offer various applications inside the vehicle while preserving 

privacy. In this thesis, two important applications, including multiple-person vital sign monitoring and 

occupancy detection, are explored. Monitoring multiple individuals across multiple rows using a single 

MIMO radar presents challenges due to the multipath effect within in-cabin environments. Hence, MIMO 

radars offer effective monitoring solutions for individuals seated in a single row. Additionally, MIMO 

FMCW represents state-of-the-art technology that is capable of detecting occupancy even in dead spots. 

Recent studies proposed different approaches based on analyzing the reflected energy across range, angle, 

or frequency. These approaches are highly dependent on the range of occupants on the radar, requiring a 

separate database for each seat for occupancy detection. In addition, the energy-based approaches are 

susceptible to interference from multipath reflections. However, the proposed volume-based occupancy 

detection approach is seat-agnostic. Consequently, there are 3 labels, including adult, baby, and empty, in 

the classification task. 

 
Figure 4.19: Location variance of detected points over 140 frames (28 seconds). 

0 50 100 150

Frame number

0

0.5

1

1.5

2

2.5

3

3.5

4

Lo
ca

tio
n 

va
ria

nc
e 

of
 d

et
ec

te
d 

po
in

ts

Seat2

Baby Adult

0 50 100 150

Frame number

0

0.5

1

1.5

2

2.5

3

3.5

4
Seat3

Baby Adult

0 50 100 150

Frame number

0

0.5

1

1.5

2

2.5

3

3.5

4
Seat4

Baby Adult

0 50 100 150

Frame number

0

0.5

1

1.5

2

2.5

3

3.5

4
Seat5

Baby Adult



 

 67 

Chapter 5 
Cardiac Health Monitoring Using Mm-Wave Radar 

Utilizing radar technology to monitor the health of individuals within smart seats offers a practical solution 

to assess their well-being. While a couple of health monitoring systems have been proposed, many of them 

deal with issues related to user convenience and privacy. Radars present themselves as an appealing 

alternative due to their non-contact nature, ability to preserve privacy, adaptability to various environmental 

conditions, and high precision. Among the radar configurations, FMCW radars excel in accurately tracking 

crucial body vibrations, rendering them particularly suitable for heart waveform monitoring—a vital health 

indicator for the early detection of cardiac irregularities. In this study, a 60 GHz FMCW radar system is 

placed strategically behind a seat, facilitating the monitoring of heart waveforms. The proposed algorithm 

adeptly identifies distinctive heart waveform patterns for healthy subjects characterized by the sequential 

emergence of two peaks followed by a valley in each cycle. However, individuals with the prolonged 

corrected QT interval (QTc) have shown different heart waveform patterns. 

   The effects of three different sources of distortion are explored in this chapter, including breathing 

harmonics, body movements, and car body vibration. Breathing harmonics and body movements are 

explored in smart homes. High-frequency components of breathing, potentially with high amplitude in the 

heart band, are suppressed in heart waveform reconstruction after decomposing by variational mode 

decomposition (VMD). Additionally, the impact of body movements in seated individuals was mitigated 

within the time domain. The proposed body movement detection approach successfully identifies all strong 

body movements. Finally, this system was implemented inside a running vehicle to monitor both drivers 

and passengers. Significant car vibrations caused by road defects were detected using IMU data. Finally, a 

comprehensive study focused on HRV and HR estimation is conducted. 

5.1 Relevance 

The utilization of a single MIMO radar for monitoring multiple individuals across multiple rows in in-cabin 

environments presents challenges, primarily due to the multipath effect. Furthermore, for accurate 

monitoring of heart and breathing vibrations to detect heart and breathing conditions, strategic radar 

placement is essential to minimize interference from other sources of vibration, such as hand and head 

movements. Therefore, positioning the radar behind the seat can effectively monitor heart and breathing 

movements while also reducing distractions for drivers, allowing them to focus on driving. 
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Furthermore, recent studies have primarily concentrated on the detection of HR, BR, and HRV. However, 

utilizing radar measurements to analyze heart waveforms presents a promising avenue for identifying heart 

conditions such as prolonged QTc. Individuals with this condition may exhibit normal HR and HRV, 

making it challenging to detect solely based on these parameters. Therefore, detecting such conditions 

requires additional efforts, including the extraction and analysis of heart waveforms. 

Finally, it is crucial to explore the impact of additional interferences, even with the radar placed behind 

the seat. These interferences may include body movements, deep and shallow breathing, and car body 

vibrations. Mitigating these interferences is essential to obtain accurate heart waveforms, which are crucial 

in detecting heart conditions. Therefore, a thorough investigation is warranted to effectively mitigate the 

effects of these interferences in this thesis. 

5.2 The Heart Functionality 

The heart is typically divided into four main chambers: the right atrium (RA), right ventricle (RV), left 

atrium (LA), and left ventricle (LV), as shown in Figure 5.1. The atria and ventricles are divided by 

atrioventricular valves, while the left and right ventricles are separated by the ventricular septum. The left 

ventricle is linked to the aorta through the aortic valve, and the right ventricle is connected to the pulmonary 

artery through the pulmonary valve [220]. 

In a healthy individual, the heart's electrical and mechanical activities follow a specific pattern. It starts 

with an electrical signal, the depolarization wave, originating in the right atrium, leading to atrial 

contraction (P wave on the ECG). This atrial contraction is known as atrial systole. Following this, the 

depolarization of the right and left ventricles (marked by the QRS complex on the ECG) triggers their 

contraction, initiating ventricular systole. Repolarization of the ventricular muscle cells occurs in two 

phases, spanning from the end of the QRS complex to the end of the T wave. The cardiac cycle is completed 

with the T wave. Because the ventricles are larger and depolarize more quickly than the atria, their 

contraction during ventricular systole is more forceful and rapid [220]. The key stages of the cardiac cycle 

and their alignment with ECG waves are illustrated in Figure 5.2. 
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Figure 5.1: Anatomy of the heart. 

 

Figure 5.2: ECG waves and their relation to the cardiac cycle. 

5.3 Signal and System Design to Estimate the Heart Waveform. 

5.3.1 Signal Design 

In this section, the designed signal in 3.2.4 is used. The primary alteration lies in the number of chirps, 

directly impacting signal quality. Given the gradual nature of breathing and heart movements, the reflected 
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chirps within a frame exhibit high similarity. Therefore, by averaging all chirps within a frame, signal phase 

noise can be enhanced. In this study, a configuration of 32 chirps per pulse was adopted. 

5.3.2 Undesired Harmonics and Body Movement Effects 

The first step in accurately monitoring heart waveform is to understand other movements, including 

breathing and body movements. Firstly, it is necessary to estimate BR since breathing harmonics could be 

stronger than heart waveform components. If the strongest harmonic in the heart frequency band, which is 

0.8 Hz to 6 Hz, is an integer multiple of the BR frequency, it should be disregarded. In addition, the 

intermodulation harmonics can be generated because of the non-linear relation between breathing and heart 

displacements. These components are not stronger than the heart waveform since the effect of each 

displacement is based on the Bessel function of the first kind, which is less than one [221].  

Secondly, body movements have a direct effect on the measurement of breathing and heart waveforms. 

Since these movements usually have greater displacements than breathing and heart displacements, they 

can spoil human vibration signals in the frequency domain. Figure 5.3 shows the effect of torso movements 

on the unfiltered vibration signal when the radar is behind a seat. As can be seen in Figure 5.3(a), the body 

movement effect resembles a narrow, strong pulse. Therefore, its frequency response resembles a sinc 

function which has strong low-frequency components. These low-frequency components can make BR and 

HR estimations difficult. In addition, since it has a strong amplitude, it can generate strong high-frequency 

components that might affect the estimated heart waveform as well. Figure 5.3(b) and Figure 5.3(c) show 

positive and negative DC offsets, respectively. These DC offsets can affect all the frequencies and can make 

BR, HR, breathing waveform, and heart waveform estimations incorrect. 
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Figure 5.3: Torse movements impact on the unfiltered vibration signal: (a) strong pulse, (b) positive DC 

offset, and (c) negative DC offset. 

 

Figure 5.4 depicts the STFT of different activities in which the signal is filtered by a high pass filter with a 

cutoff frequency of 0.1 Hz. In all the measurements except sitting, the participant was breathing. Normal 

and deep breathing does not exhibit significant high-amplitude components, as demonstrated in Figure 

5.4(a) and Figure 5.4(b), respectively. However, other activities in which the torso moves forward or 

backward have high-amplitude displacement and can make strong frequency components, especially in 

lower frequencies. Therefore, body movements can distort breathing and heart displacements. As a result, 

since these body movements cannot be mitigated by filtering and can affect BR and HR estimations, they 

should be compensated in the time domain. By taking a derivative from an unfiltered signal and setting a 

threshold for the spikes, those spikes can be detected and compensated. The threshold can be determined 

by studying different participants with different BRs and depths. 
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(a) Normal breathing 

 
(b) Deep breathing 

 
(c) Standing 
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(d) Sitting 

 
(e) Torso movements 

 
(f) Random body movements 
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Figure 5.4:  The STFT of different activities in which the signal is filtered by a high pass filter with a cut-

off frequency of 0.1 Hz: (a) normal breathing, (b) deep breathing, (c) standing, (d) sitting, (e) torso 

movements, (f) random body movements, (g) hitting the chair, and (h) swinging the chair. 

5.4 Smart Home Monitoring 

5.4.1 Signal Processing Chain to Reconstruct Heart Waveform. 

Figure 5.5 depicts the signal processing chain used to reconstruct heart waveforms from human body 

vibrations. In this thesis, after DC removal and fast-time FFT, multiple range bins are employed to 

reconstruct the heart waveform. Since the torso width is more than 40 cm for adults [205] and the radar is 

placed in the middle of the back, 6 range bins (from range bin number 4 to 9) are chosen, considering a 3 

cm range resolution [222]. Then, the phase of each bin is extracted to reconstruct body vibrations. Due to 

the high amplitude of human body vibrations in comparison to wavelength, which is almost 5 mm, it is 

necessary to unwrap the phase. In the next step, body movements should be detected and compensated. 

 
(g) Hitting the chair 

 
(h) Swinging the chair 
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Figure 5.5:  The signal processing chain to reconstruct heart waveform from human body vibrations. 

 

Multiple steps should be taken to mitigate the high amplitude body movements in the time domain, as 

provided in Algorithm 1. Firstly, the derivative of the signal is taken to find spikes in the vibration signal. 

In the next step, a threshold is used to determine the spikes in the signal. The threshold level determination 

needs to be done statistically by collecting data from different participants. These participants were asked 

to breathe shallowly and deeply while seated. Approximately 300 measurements were collected from a 

group of 4 participants to estimate statistical parameters. The threshold level based on the empirical rule 

[207] is determined to be 0.48 mm/sample. If the amplitude of the differentiated movement is more than 

this threshold, the derivative of the signal is set to zero. Finally, the cumulative sum reconstructs the body 

vibration signal with compensated body movements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1: Body movements compensation algorithm  

 

Input: Body Vibration Signal After Phase Unwrapping 

Output: Body Vibration Signal with Compensated 

Movements  

 

Derivative Signal = Derivative of Input 

for counter = 0 to Length of Derivative Signal 

     if              Derivative Signal (counter) > Threshold: 

 Derivative Signal(counter) = 0 

 

return Cumulative Summation of Derivative Signal 
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Algorithm 2: Heart waveform reconstruction  

 

Input: IMFs from VMD and estimated BR 

Output: The Reconstructed Heart Waveform  

 

Derivative Signal = Derivative of Body Vibration Signal 

for i = 0 to Number of Remained Range Bins after Outlier Removal 

     Heart_Waveform (i) = [] 

     for j = 9 to 0 

          Selected_IMF = IMF (j) 

          if   HR of Selected_IMF != integer   multiple of BR 

               HR = HR of Selected_IMF 

               Heart_Waveform (i) = Selected_IMF 

               First_Harmonic = j 

               break 

 

     for k = First_Harmonic to 0 

          Selected_IMF = IMF (k) 

          if   HR of Selected_IMF != integer   multiple of BR and Rate  

of Selected_IMF == integer multiple of HR 

                    Heart_Waveform (i) += Selected_IMF 

Final_Heart_Waveform = sum (Heart_Waveform) 

return HR and Final_Heart_Waveform 

 

After body movement compensation, the body vibration signal can be used for BR, HR, and HRV 

estimations. Since breathing waveform is the second interferer after body movement compensation for heart 

waveform reconstruction, breathing waveform should not be involved in heart waveform reconstruction. 

Due to the periodic nature of breathing, BR estimation can determine breathing harmonics. Therefore, the 

body vibration signal without body movements is filtered by a bandpass filter from 0.1 Hz to 0.8 Hz. In 

addition to this human body movement compensation, an outlier removal is applied to remove distorted 

range bins as 3.2. 
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To estimate HR and HRV, the main harmonic of the breathing waveform can be filtered by a band pass 

filter from 0.8 Hz to 6 Hz. A narrower bandpass filter removes heart waveform details. However, higher 

frequency harmonics of breathing waveform still can interfere with heart waveform, especially during deep 

breathing. VMD approach can be employed to decompose different harmonics after bandpass filtering. In 

this thesis, the filtered signal is decomposed into 10 intrinsic mode functions (IMF). The strongest IMF, 

which is not an integer multiple of BR, is the main harmonic of the heart waveform. As was discussed 

earlier, nonlinear harmonics generated from breathing and heart displacements cannot be stronger than the 

main harmonic of the heart. If the higher harmonics of the heart waveform are not an integer multiple of 

BR, they can be used for heart waveform reconstruction. The heart waveform should be reconstructed by 

at least two harmonics. Otherwise, the heart waveform cannot be reconstructed. Finally, HRV can be 

estimated based on the reconstructed waveform. In this thesis, HRV metrics, such as the root mean square 

of successive differences (RMSSDs), the standard deviation of the RR interval (SDRR), and the percentage 

of successive IBIs that differ by more than 50 ms (pNN50) are derived [154]. Algorithm 2 provides the 

heart waveform reconstruction. 

5.4.2 Experimental Setup and Protocol  

In this study, the BGT60TR13C radar module developed by Infineon is employed. This radar module 

operates at 60 GHz and can provide almost 5 GHz bandwidth. The overall dimensions of this radar package 

measure 64 mm x 25.4 mm [141]. Due to its compact size, this radar module can be integrated into smart 

furniture without causing any inconvenience to occupants. 

The placement of the sensor has a significant impact on the radar's ability to accurately measure 

displacement. There are two key factors to consider in sensor placement. First, the angle and distance 

between the radar and the human body play a crucial role. Placing the radar in front of the displacement 

enables precise estimation because the radar measures radial displacements, and high-amplitude 

displacements are less susceptible to noise interference. Moreover, the radar equation shows that reflected 

power increases significantly with shorter distances to the fourth power, making radar measurements less 

susceptible to noise at close ranges. Therefore, for the most precise displacement estimates, it is advisable 

to position the radar in front of the displacement at the closest possible range. 

Secondly, for individuals in a seated position, the radar can be placed either on the desk in front of the 

chest or behind the seat. The desk-mounted radar can effectively measure chest and abdomen wall 

displacements, which typically exhibit higher amplitudes compared to back wall displacement. However, 

it may be more susceptible to interference from other human body movements, such as hand and head 
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movements. In contrast, the seat-mounted radar operates at a closer range, resulting in a stronger signal-to-

noise ratio. Furthermore, it offers a more stable setup compared to the desk-mounted radar, which can be 

easily altered due to its position on the desk. As a result, the use of seat-mounted radar technology for 

monitoring seated individuals proves to be a reliable choice. 

Figure 5.6 illustrates the experimental setup for data collection. Participants were asked to sit on a chair 

and were given the option to either work with their laptops or take a rest. Figure 5.6(a) and Figure 5.6(b) 

depict a young subject and an elderly subject, respectively. Figure 5.6(c) depicts the experimental setup for 

the interference effect from wall radar with and without synchronization. To evaluate seat radar results, two 

different belts, including Frontier X for ECG data collection [223] as can be seen in Figure 5.6(d), and 

BioRadio piezo electric respiratory effort belt for respiratory data collection [224] as can be seen in Figure 

5.6(e), are employed. 

In the first data campaign, the accuracy of HRV and HR estimation are evaluated. Eight healthy subjects 

(four females and four males; age:  30 ± 11 years; weight: 70 ± 20 kg; height: 164 ± 14 cm) participated in 

these experiments. The duration of the main measurement was around 20 minutes. Additionally, body 

movement detection in human body vibrations is investigated in a separate measurement. 

 

  
(a) 

 
(b) 

  
 

(c) 

 
(d) 

 

 
(e) 

 
Figure 5.6:  The experimental setup: (a) the participant is working with a laptop, (b) the participant is 
taking a rest, (c) the interference test setup in the presence of wall radar, (d) Frontier X for ECG data 
collection, and (e) BioRadio piezo electric respiratory effort belt for respiratory data collection. 
 

In the second data campaign, the evaluation focused on studying the heart waveform in senior subjects 

with and without cardiac conditions. The subject group consisted of 15 subjects with an average age of 
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75 years (±5 years), average weight of 65 kg (±10 kg), and average height of 167 cm (±9 cm). These 

individuals actively engaged in the experiments while in a seated position, and the measurement duration 

was approximately 12 minutes. Notably, among these participants, five were identified with heart issues 

based on ECG data. Specifically, one participant exhibited tachycardia, while the remaining four had a 

prolonged QTc. The research ethics office at the university approved the study for data collection (ORE 

#: 43843). 

5.4.3 Results and Discussion 

5.4.3.1 Heart Waveform Verification 

In this thesis, the investigations of radar signals measuring heart waveform indicate a periodic pattern on 

the skin. Figure 5.7 represents a heart waveform filtered from 0.8 Hz to 3 Hz in a breath-hold period, 

synchronized with ECG data. In this measurement, the radar is placed in the middle of the back of the seat, 

and its z-height is equal to the heart's height. Based on [132], it is concluded that T waves correspond to 

valleys in radar displacements after synchronization, which is compatible with the findings in this thesis. 

Figure 5.7 also shows that P-waves can correspond to the peak value of displacements. However, wider 

bandwidth might be required for more details [149]. 

Figure 5.8 represents the heart waveform filtered from 0.8 Hz to 6 Hz while the radar is located behind 

the seat and has the same height as the heart during a breath-hold. Each heart cycle by radar signals has two 

sequential peaks and one valley. If valleys correspond to T waves, the second peaks correspond to P-waves. 

Furthermore, when the participant is in a seated, calm state, the second peak is predominantly stronger than 

the first peak. However, when the radar is located on the chest and attached to the shirt by adhesive tape, 

the second peaks do not correspond to P-waves in the heart waveform with the same filtering as can be seen 

in Figure 5.9. Additionally, the investigation into the influence of radar height revealed that similar heart 

waveforms are obtained when the radar height is within the range of HH +5 to HH -10, where HH represents 

heart height. 
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Figure 5.7: Heart waveform filtered from 0.8 Hz to 3 Hz in a breath-hold period compared with ECG data. 
The green and pink dashed lines correspond to T and P-waves, respectively. 

 
Figure 5.8: The heart waveform filtered from 0.8 Hz to 6 Hz while radar is located behind the seat and has 
the same height as the heart during a breath-hold. The green and pink dashed lines correspond to T and P-
waves, respectively. 
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Figure 5.10 represents the heart waveform of a participant during a breath-hold after a jugging while the 

radar is located behind the seat at almost the same height as the heart. The heart waveform pattern resembles 

that of a calm state, although HR is 98 beats per second. However, the first peak is mostly stronger than the 

second peak in the heart displacements. In addition, the amplitude of the heart waveform is almost 7 dB 

greater than during a calm state, which is a physiological response to physical activities. Furthermore, P-

waves in this measurement do not correspond to the second peak when T waves are aligned with valleys. 

As a result, while the heart waveform is a quasi-periodic signal, its valley can be reliably used for HRV 

estimation in different radar locations. 

 

 
Figure 5.9: The heart waveform filtered from 0.8 Hz to 6 Hz while radar is located on the chest and attached 
to the shirt by an adhesive tape and has the same height as the heart during a breath-hold. The green and 
pink dashed lines correspond to T and P-waves, respectively. 

5.4.3.2 Validation of the Radar Setup 

Figure 5.11 represents BR estimation by seat and desk radars. In this scenario, the participant is asked to 

follow an online metronome [209] for different BRs, including 9, 12, 15, and 17, while the participant did 

not have body movements. These BRs cover normal and abnormal range of BRs. Between two different 

rates, there is a 20 to 30-second breath-hold period in which BR drops during a breath-hold period and 

displacement is less than 0.15 mm [222]. Table 5-1 compares the average RMSE of BR estimation for both 
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radars. The results indicate that both radars have average RMSE of less than 1.12, while the seat radar is 

slightly better than the desk radar in various BRs. However, body movements like head and hand movement 

can affect BR and HR estimations in desk radar more than seat radar. Furthermore, the estimated back wall 

displacements are less than chest wall displacements. Therefore, they might be affected by phase noise. 

Figure 5.12 compares synchronized desk and seat radar results with ECG data for HR estimation. Both 

radars can track HR when there is no body movement. However, when there are head and hand movements, 

which are quite possibly happening for seated people, the desk radar is affected more than the seat radar. 

As can be seen in Figure 5.12, desk radar estimations for HR spikes incorrectly when there are body 

movements. However, seat radar is not affected by hand and head movements and can track HR accurately. 

The average absolute error for the desk and chair radars are 7.9 beats and 4.1 beats, respectively. However, 

it cannot compare these two radars in terms of false estimations made by body movements. As a result, 

using radar behind the seat might reduce some kinds of body movement effects like head and hand 

movements. 

 

 
Figure 5.10: The heart waveform of a participant during a breath-hold followed an exercise, with the radar 
positioned behind the seat at chest height. The green dashed lines correspond to T-waves. 
 



 

 84 

 

Figure 5.11: BR estimations were conducted using a dual radar setup at various BRs, including 9, 12, 15, 

and 17, under conditions where the participant remained without significant body movements: (a) desk 

radar and (b) seat radar. 
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Figure 5.12: The comparison between the desk and the seat radars estimations for HR estimation based on 
ECG results. 

 
Figure 5.13: Comparing heart waveforms captured by two synchronized radars from different positions, 
one situated at the heart height and the other behind the participant's waist. 

Figure 5.13 compares heart waveforms resulting from two synchronized radars from behind the seat when 

there is no interference between them. The first radar is located at the same height as the heart. The second 

radar is located behind the participant’s waist. The second radar results are almost different from the first 
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radar. Firstly, the valleys in the second radar are not strong enough to be reliably used for HRV estimation, 

and the amplitude of displacement is also lower than that of the first radar. Secondly, the second radar 

results are less quasi-periodic. However, the time distance between the valleys of the first and the second 

radars remained constant. 

One of the challenges in using radars is the effect of interference when there are a couple of radars in 

smart homes. In this thesis, the effect of interference is evaluated by a dual radar setup, including seat radar 

and wall radar as can be seen in Figure 5.6(c). In the first experiment, the wall radar is blocked by a metallic 

sheet to have minimum effect from this radar on the seat radar while radars are sending signals without a 

time delay. In the second experiment, the wall radar is not blocked by a metallic sheet, and the time delay 

between radars is also zero. In the final experiment, radars are working with a 5 ms delay while the wall 

radar has not been blocked by a metallic sheet. This delay is almost two times the actual timing of a frame 

in each radar. Therefore, radars are separately sending signals in the time domain to have less interference 

effect. The average power in zero Doppler in the second experiment is 0.7 dB greater than in the first 

experiment. However, the power difference between the first and the last experiments is almost zero. As a 

result, this time delay configuration can solve interference issues in smart home monitoring when multiple 

radars operate at the same carrier frequency simultaneously. 

Table 5-1: The average RMSE of BR estimations in different BRs for desk and seat radars. 
 

BR Desk radar average RMSE 
(breaths per minute) 

Seat radar average RMSE 
(breaths per minute) 

9 1.12 0.81 

12 0.35 0.12 

15 0.57 0.47 

17 0.85 0.65 

5.4.3.3 Validation of the Proposed Algorithm 

Figure 5.14 represents seat radar results in different range bins for HR estimation. The seat radar estimation 

is based on these 4 range bins. Therefore, false estimations might be removed by using an outlier removal 

algorithm. However, using a single range bin could be affected by random body movements. Since the 

human body captures more than one range bin when the radar is close to the human body, especially behind 

the seat, using multiple range bins can improve HR and heart waveform estimations. 
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Figure 5.15 compares the phase noise of a single chirp and averaged chirps in a frame. By taking an 

average of 32 chirps in a frame, the phase noise is suppressed by almost 10 dB. Since breathing 

displacements are much stronger than phase noise, using a single chirp can estimate displacements [124]. 

However, the heart waveform might be affected by the phase noise of a single chirp. As seen in Figure 5.12, 

heart displacements reach 0.02 mm, which could be affected by phase noise. As a result, using an average 

of multiple chirps in a frame can effectively improve heart waveform estimations. 

Figure 5.16 depicts the heart displacement harmonics of a participant during a breath-hold while the radar 

is located behind the seat at almost the same height as the heart. The lower and upper cut-off frequencies 

of the bandpass filter are 1 Hz and 3 Hz, respectively [225]. The estimated HR based on the radar results is 

108 beats per second. However, the actual HR based on the ECG data is 55 beats per second. It seems that 

the estimated HR by radar is two times the actual value. Therefore, the first peak, which is the actual HR, 

is suppressed by the rising edge of the bandpass filter. As a result, it is necessary to reduce the lower cut-

off frequency of the bandpass filter. In this thesis, the bandpass filter was applied from 0.8 Hz to 6 Hz. 

Figure 5.17 shows different IMF results, with the participant having shallow breathing and the BR having 

17 breaths per minute. Therefore, the strongest IMF, which is also the lowest frequency component, results 

from heart displacements. As a result, the HR is 60 beats per minute. The second harmonic of heart 

displacement is 120 beats per minute. Since this rate is not among the detected IMFs, it might be distorted 

by other harmonics. The third and fourth harmonics’ rates are 180 and 240, respectively. IMF 5 and IMF 3 

correspond for the third and the fourth harmonics rate, respectively. The reconstructed heart waveform 

based on this harmonic analysis is shown in Figure 5.18. The valleys can be aligned with T waves. However, 

the waveform does not have two sequential peaks all the time, like during breath-hold. As a result, the 

reconstructed waveform during shallow breathing can estimate HRV based on the valleys. 

Figure 5.19 shows different IMF results while the participant had deep breathing, and the BR was 17 

breaths per minute. The strongest IMF, which is IMF10 resulted from the second harmonic of breathing 

vibrations since it is two times the actual BR. IMF 9 is the main harmonic of Heart displacements. The 

second harmonic of heart displacements is interfered with other harmonics and cannot be recovered. 

However, the third harmonic of Heart displacements is IMF4. The reconstructed heart waveform based on 

these harmonics is shown in Figure 5.20. The reconstructed heart waveform has two peaks. However, when 

valleys align with T-waves, P-waves do not align with the second peak. Therefore, during deep breathing, 

valleys correspond to T-waves and can be utilized for HRV estimation, like shallow breathing. 
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Figure 5.14: The comparison between the different range bins in the seat radar for HR estimation with 
ECG. 

 
Figure 5.15: Comparison between phase noise of a single chirp and averaged chirps in a frame with 32 
chirps. 
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Figure 5.16: The heart displacements in the frequency domain during the breath-hold while the lower and 
upper cutoff frequencies of the bandpass filter are 1 Hz and 6 Hz, respectively. 

 

 

Figure 5.17: Different IMFs results while the participant had shallow breathing, and the BR was 17 

breaths per minute. 
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Figure 5.18: The reconstructed heart waveform based on the harmonic analysis compared with ECG data 

while the participant had shallow breathing, and the BR was 17 breaths per minute. 

 

Figure 5.19: Different IMFs results while the participant had deep breathing, and the BR was 17 breaths 

per minute. 

0 1 2 3 4 5 6

Time (s)

-500

0

500

1000

EC
G

 v
ol

ta
ge

 (m
V)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

D
is

pl
ac

em
en

t (
m

m
)

TTTTTTTT

P P P P P P P



 

 91 

Figure 5.21 compares back wall displacements measured by radar from behind the seat before and after 

body movement compensation. As can be seen, body movements cause spikes in a short period. These 

spikes should be mitigated before heart waveform reconstruction. Otherwise, due to the strong amplitude, 

they spoil the breathing band and heart band. The proposed approach for body movement detection can 

effectively detect all body movements. Figure 5.22 depicts the body movement compensation effect on BR 

estimation when the actual BR is 24. As can be seen, due to the body movements, the estimated BR drops 

to almost 10 breaths per minute. Table 5-2 compares the average RMSE of BR for different BRs during the 

body movements. As can be seen, when BR is high, the average RMSE of BR increases significantly. 

Table 5-2: The average RMSE of BR estimations in different BRs during the body movements. 

BR Average RMSE  
(breaths per minute) 

9 0.9 

11 1.1 

14 2.9 

16 5.7 

18 8.1 

22 11.5 

24 13.2 

 
Figure 5.20: The reconstructed heart waveform while the participant had deep breathing and BR was 17 
breaths per minute. 
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Figure 5.21: Displacements from behind the seat when radar has the same height as the heart: (a) before 
body movements compensation and (b) after body movements compensation. 

 

Figure 5.22: BR estimation when actual BR is 24 from behind the seat: (a) before body movements 

compensation and (b) after body movements compensation. 
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5.4.3.4 Heart Waveform in Subjects with Heart Conditions 

Figure 5.23 depicts the heart waveform of a senior subject with tachycardia condition, resulting in an 

elevated HR even during periods of rest. As illustrated, the heart waveform displays two peaks followed by 

a single valley in each cycle, with a resting HR of 101 beats per minute. Healthy subjects exhibit a similar 

heart waveform, with a normal HR during rest. In addition, the first peak is stronger than the second peak, 

which is similar to healthy subjects’ heart waveform after physical exercise.  

Figure 5.24 illustrates the heart waveform of a senior subject with a prolonged QTc. The depicted 

waveform deviates from the typical pattern observed in healthy subjects, where two peaks are followed by 

a valley. In contrast, the subject with a prolonged QTc displays three peaks followed by a valley. This 

divergence from the norm suggests a potential heart condition. Therefore, variations in the derived heart 

waveform can serve as an indicator of underlying cardiac issues in comparison to the waveform observed 

in healthy individuals. Notably, all four subjects with a prolonged QTc have normal HR and HRV in these 

experiments. 

 
Figure 5.23: The heart waveform of a senior subject with tachycardia condition. 
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Figure 5.24: The heart waveform of a senior subject with a prolonged QTc condition. 

5.4.3.5 Discussion 

Figure 5.25 compares the impact of different signal processing methods on the absolute IBI estimation 

error. The pairwise comparisons using t-tests between the four methods revealed statistically significant 

differences, with all p-values less than 0.001. The combination of the multi-bin approach with VMD 

demonstrates a median error reduction of approximately 20 ms compared to the multi-bin approach without 

VMD. Notably, the maximum error also exhibits significant improvement, with a reduction of 57 ms. 

Additionally, the utilization of multiple bins also directly influences both the median and maximum IBI 

estimation errors. When VMD is also applied, there is an enhancement of approximately 8.2 ms in the 

median error and 20 ms in the maximum error. Furthermore, it is crucial to highlight that the 75th percentile 

error for the multi-bin approach combined with VMD remains below 50 ms. This finding underscores the 

effectiveness of the proposed method in this thesis. 

To evaluate the proposed method's robustness across diverse users, Figure 5.26 depicts a comprehensive 

illustration of the distribution of absolute errors in IBI estimation for all eight participants. The findings 

reveal that the proposed method yields varying IBI estimation errors among different users, with median 

errors ranging from 17.5 to 42.8 ms. These variations can be attributed to a range of factors, including 

differences in individual physiological traits, such as body mass and variations in cardiac strength. 

Importantly, it is evident that the 75th percentile error for all participants consistently remains below 62 
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ms. In addition, Table 5-3 also compares the absolute estimation error of HR for all participants. The results 

indicate that the absolute relative error for HR estimation reached 4.8%. To assess the accuracy of HRV 

estimation,  

Table 5-4 presents the estimated HRV metrics, including RMSSD, SDRR, and pNN50 for 8 participants. 

The results indicate that the proposed method achieves an average error of 6.1 ms for RMSSD, 6.7 ms for 

SDRR, and 6.3 % for pNN50. These observations underscore the method's resilience and effectiveness 

when applied to a diverse group of subjects. 

Table 5-5 compares this study with recent publications across four criteria: body movement 

compensation, breathing harmonic cancellation, range bin sensitivity, and resultant outcomes. Emphasizing 

the necessity of addressing body movements and breathing harmonics in signal processing for realistic 

applications, the study highlights their significant impact on estimated vital signs. Additionally, the stability 

of radar integrated into furniture provides resilience against human manipulation, suggesting a reduced 

necessity for specific range bin selection in signal processing for the radar positioned behind the seat. The 

study’s outcomes show reliable results based on HRV metrics and HR errors. 

 

Table 5-3: The average absolute errors of HR estimations in different participants by the proposed method. 
 

User ID Relative error (%) 
1 5.2 

2 5.1 

3 4.6 

4 2.9 

5 5.9 

6 5.4 

7 4.6 

8 4.7 
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Table 5-4: HRV estimation errors in terms of RMSSD, SDRR, and pNN50 for 8 subjects. 
 

Metrics 
User ID 

1 2 3 4 5 6 7 8 

RMSSD (ms) 5.9 6.4 3.4 8.3 7.3 5.6 4.5 7.3 

SDRR (ms) 11.2 5.8 3.8 7.6 6.5 7.2 5.3 6.5 

pNN50 (%) 6.1 11.1 4.6 6.5 4.5 4.2 6.1 7.3 

 

Table 5-5: The comparison between this study and the recently published papers based on four factors, 

including body movement compensation, breathing harmonic cancellation, sensitivity to range bin 

selection, and achieved results. 

Ref Body 
movement 

compensation 

Breathing 
harmonic 

cancellation 

Sensitivity 
to range 

bin 
selection 

HRV 
metrics 

HRV error HR 
error 
(%) 

[132] No No Yes NA NA NA 

[149] No No No RMSSD NA 2.42 

[150] No No Yes SDNN, 

RMSSD, 

LF, and HF 

NA 2.07 

[151] No No Yes NA NA 1.3 

[152] No No Yes NA NA NA 

[153] No No Yes LF and HF NA NA 

[154] Yes Yes Yes Mean IBI, 

RMSSD,  

SDRR,  

and pNN50 

3.89 ms,  

6.43 ms, 

6.44 ms, 

2.55% 

NA 

[155] Yes Yes Yes SDNN and 

RMSSD 

NA NA 

[156] Yes Yes Yes SDNN 6 ms 3 

This 
study 

Yes Yes No RMSSD,  

SDRR,  

and pNN50 

4.5 ms,  

6.1 ms, 

6.7 ms,  

6.3 % 

4.8 
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Figure 5.25: The impact of different signal processing approaches on the error in absolute IBI estimation. 

 

 
Figure 5.26: Influence of user diversity on the error in absolute IBI estimation. 
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5.5 In-Vehicle Heart Monitoring 

In-vehicle heart waveform monitoring is a challenging task due to car body vibrations compared to smart 

home heart monitoring. Figure 5.27 illustrates the z-axis acceleration in the frequency domain up to 10 Hz. 

The predominant frequency of vibrations, approximately 1.5 Hz, poses challenges for heart waveform 

reconstruction. These vibrations are usually caused by road defects. Therefore, it is crucial to detect these 

sources of vibrations, particularly based on z-axis acceleration [226].  

 
Figure 5.27: The z-axis acceleration in the frequency domain. 

5.5.1 Singal and System Design 

As a proof of concept, a compact 38 mm × 13.2 mm baseboard (Infineon, DEMO BGT60TR13C) with a 

built-in USB interface for radar module configuration and data acquisition is positioned on the car seat, 

covered by a thick layer of foam. Six healthy subjects (three females and three males; age: 28 ± 8 years; 

weight: 72 ± 18 kg; height: 164 ± 14 cm) participated in these experiments, with each session lasting 

approximately 20 minutes. To validate the proposed approach, the Fourth Frontier (Frontier X) was worn 

beneath the clothing, in direct contact with the skin on the upper abdomen for heart monitoring. 

Additionally, a BioRadio piezoelectric respiratory effort belt was worn over the clothing for respiratory 

monitoring (refer to Figure 5.6). In addition, the signal design is as 5.3.1 where the heart waveform is 

explored in smart homes. 
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Figure 5.28 represents the signal processing chain for BR, HR, HRV, and heart waveform in the presence 

of two significant sources of interference, including car body vibration and human body movements. To 

address interferences from car body vibration, distinguishing between different vibrations is essential, 

particularly based on z-axis acceleration [226]. By utilizing this acceleration data, HRV may be eliminated 

from estimations. The ARIMA model can be employed to reconstruct human vibrations when car body 

vibrations interfere. In this thesis, ARIMA model forward forecasting is used. Compensation for human 

body movements is also addressed based on a study conducted inside smart homes. Additionally, a multi-

bin approach is employed to improve the estimations as discussed in Chapter 3. 

 
Figure 5.28: Signal processing chain for BR, HR, HRV, and heart waveform in the presence of two 
significant sources of interference, including car body vibration and human body movements. 

5.5.2 Experimental Studies 

Road defects like cracks and potholes can cause car body vibration, causing human body vibrations [54]. 

In [227], it is shown that when a vehicle is running on a smooth road, the z-axis acceleration can reach up 

to almost 12 m/s2. However, road defects and speed bumps can cause stronger z-axis acceleration. In this 

thesis, the z-axis acceleration is used to detect road defects and speed bumps. After detecting road defects, 

it is crucial to remove those parts from human vibration and use forecasting approaches. In [228], different 

forecasting approaches have been utilized, and the ARIMA forward forecasting model is introduced as an 

optimum model for reconstructing spoiled human vibrations. In this thesis, this model is used for this 

purpose.  

Figure 5.29 illustrates the effects of different driving situations on human body vibrations estimated by 

radar. Road defects are detected based on z-axis accelerations, and the signal is reconstructed using ARIMA 

model forward forecasting. In Figure 5.29(a), when the vehicle passed over a crack, a spike in human body 

vibrations was observed, with the affected portion identified based on z-axis acceleration. Similarly, in 

Figure 5.29(b), when the vehicle encountered a pothole, the signal was also compromised. In Figure 5.29(c), 

when the car traversed a speed bump, the signal distortion lasted for a shorter duration compared to other 

road defects. Hence, road defects have a greater impact on the signal than speed bumps. Finally, in Figure 

5.29(d), when the car traverses multiple potholes, the signal is distorted for a longer duration. 
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Figure 5.30 illustrates the heart waveform of a healthy subject inside a running vehicle on a smooth 

pavement. Remarkably, the extracted heart waveform closely resembles that of a healthy subject in an in-

home environment. This similarity suggests that findings from in-home settings can be applied to in-cabin 

applications for detecting individuals with heart conditions. However, on uneven pavement with road 

defects, the extracted heart waveform may not be reliable. 

To evaluate the proposed method's robustness across diverse users, Figure 5.31 depicts a comprehensive 

illustration of the distribution of absolute errors in IBI estimation for all six participants. The findings reveal 

that the proposed method yields varying IBI estimation errors among different users, with median errors 

ranging from 21.6 to 45.8 ms. These variations can be attributed to a range of factors, including differences 

in individual physiological traits, such as body mass and variations in cardiac strength. Importantly, it is 

evident that the 75th percentile error for all participants consistently remains below 66 ms. In addition, Table 

5-6 also compares the absolute estimation error of HR for all participants. The results indicate that the 

absolute relative error for HR estimation reached 5.9%. To assess the accuracy of HRV estimation, Table 

5-7 presents the estimated HRV metrics, including RMSSD, SDRR, and pNN50 for 8 participants. The 

results indicate that the proposed method achieves an average error of 7.3 ms for RMSSD, 7.7 ms for SDRR, 

and 7.7 % for pNN50. These observations underscore the method's resilience and effectiveness when 

applied to a diverse group of subjects. 

 

Table 5-6: The average absolute errors of HR estimations in different participants by the proposed method 
in the running vehicle measurement. 

 
User ID Relative error (%) 

1 6.3 

2 6.1 

3 5.8 

4 3.8 

5 7.1 

6 6.4 
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Table 5-7: HRV estimation errors in terms of RMSSD, SDRR, and pNN50 for 8 subjects. 
 

Metrics User ID 
1 2 3 4 5 6 

RMSSD (ms) 6.4 6.9 6.2 9.2 8.6 6.4 

SDRR (ms) 13.2 5.5 4.3 6.5 7.9 8.8 

pNN50 (%) 7.3 12.2 5.3 5.9 8.9 6.8 
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(b) 
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(d) 

Figure 5.29: The effects of different driving situations on human body vibrations estimated by radar: (a) 
crack, (b) pothole, (c) speed bump, and (d) multiple potholes. 

 
Figure 5.30: The heart waveform of a healthy subject inside a running vehicle on a smooth pavement. 
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Figure 5.31: Influence of user diversity on the error in absolute IBI estimation for inside the vehicle. 

5.6 Conclusion 

In this investigation into cardiac health monitoring within smart furniture using a mm-wave radar, this study 

reveals distinctive heart waveform patterns for healthy individuals, even during breathing, when the radar 

is strategically positioned behind the subjects. This specific pattern includes two peaks and a valley in each 

cycle, offering reliable HRV estimation, particularly with the valleys. Additionally, the heart waveform 

extracted from individuals with prolonged QTc is compared to that of healthy individuals. The comparison 

reveals distinguishable differences, indicating that those with this condition exhibit a different heart 

waveform compared to their healthy counterparts. Consequently, this distinctive heart waveform serves as 

a potential indicator for the detection of underlying heart issues. As a result, this system provides a low-

power, cost-effective, and non-contact solution for monitoring heart issues in elderly individuals who may 

forget to wear sensors, all while ensuring privacy. The experiments demonstrate a median IBI estimation 

error of 30 ms and an average relative error of 4.8% for HR estimation using the proposed VMD and multi-

bin approach. Furthermore, the study addresses seated individuals' body movements using a time-domain 

approach, effectively detecting and mitigating these movements. Finally, the impact of car body vibrations 

within vehicle applications is investigated. The proposed signal processing chain enables the detection of 

road defects and speed bumps, facilitating accurate heart monitoring. This results in a median IBI estimation 

error of 37 ms and an average relative error of 5.9% for HR estimation. 
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Chapter 6 
Conclusions and Future Works 

Technologies capable of detecting and estimating health conditions can play a crucial role in preventing 

serious issues and sudden deaths. Such technologies are particularly useful in vehicles and smart homes, 

where people spend a significant portion of their day. Given the privacy concerns in these environments, 

radars are a preferred option for these applications. Mm-wave FMCW radars can monitor human health 

conditions. Their ability to radiate short-wavelength waves enables the estimation of human body vibrations 

that can be utilized to estimate breathing and heart waveforms. These waveforms can be employed to 

estimate vital signs such as BR, HR, HRV, and heart waveform. Ultimately, these criteria can be utilized 

to detect health conditions. 

6.1 Summary of Contributions 

• Novel Dual Radar Fusion Approach for Breathing Monitoring 

A novel dual radar fusion approach for accurate monitoring of drivers’ breathing patterns is presented. The 

proposed method utilizes two radars that are separated both in the time domain and in the covered spots to 

avoid interference and improve accuracy. Time domain separation is based on the signal parameters, 

specifically tailored for the driver status monitoring application. Additionally, the radars are placed in 

distinct positions to separate covered spots. The use of dual radar fusion with these separation techniques 

can provide more reliable and precise monitoring of breathing patterns, which is crucial for ensuring the 

health and safety of drivers. To the best of our knowledge, the proposed approach represents the first 

instance in which dual radar fusion, incorporating both time and space separations, has been employed for 

driver status monitoring inside a vehicle. 

In signal processing chains, a comprehensive framework that encompasses all the necessary steps for 

estimating BR and detecting breath-hold periods using a dual radar system is presented. The proposed 

algorithm for breathing monitoring can detect a range of breathing abnormalities, including Tachypnea, 

Bradypnea, Biot, Cheyne-stokes, and Apnea. Although most in-cabin papers focused on BR estimation 

[23], [24], [26], [28], [29], [45], this thesis focuses on the detection of these abnormalities while driving. It 

is worth noting that the proposed signal processing chain employs multiple range bins to estimate vital signs 

to be more robust to other interfering vibrations. 

• Exploration of Heart Waveform Patterns in both Healthy and Unhealthy Subjects 
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A novel signal processing chain is proposed to estimate the heart waveform using a single radar 

positioned behind the seat, eliminating the need for range bin selection and vulnerability to noise effects. 

However, the proposed signal processing chain faces various challenges, such as body movements, shallow 

breathing, and deep breathing. The body movements investigation indicates that body movements usually 

cause spikes in estimated movements by radar signal introducing interferences across a wide range of 

frequency bands, covering both breathing and heartbeat frequencies. Consequently, it is imperative to 

employ time-domain approaches to effectively address and mitigate the interferences caused by these 

movements. The investigation into removing deep and shallow breathing effects from heart displacements, 

utilizing a heuristic approach with the VMD algorithm and harmonic analysis, suggests that even with deep 

breathing, it is feasible to reconstruct heart waveforms using only two harmonics.  

The investigation into the heart waveform of healthy subjects reveals that heart displacements on the skin 

have two peaks sequenced with one valley in each cycle. This pattern is verified in different situations, 

including body movements, shallow breathing, and deep breathing. Additionally, in individuals with the 

prolonged QTc condition, the previously mentioned typical heart waveform pattern is no longer applicable. 

Consequently, this distinctive heart waveform can serve as an effective indicator for detecting heart-related 

issues. 

Finally, the in-home monitoring signal processing chain is enhanced with road defect detection based on 

z-axis acceleration for utilization inside the running vehicle. It is worth noting that the proposed signal 

processing chains employ multiple range bins to estimate vital signs to be more robust to other interfering 

vibrations. 

6.2 Comparison Between Different Proposed Methods 

Table 6-1 compares different proposed setups in this thesis based on price issue, wiring difficulty, 

computation difficulty, multipath issue, hand and head movement issue, and false detection issue. While 

MIMO radar presents an economical and simplified wiring solution, it faces significant challenges with 

multipath reflections. Both dual radar and MIMO radar systems are susceptible to issues with hand and 

head movements due to their frontal positioning relative to subjects. In contrast, seat radar technology 

effectively mitigates multipath issues without requiring intricate signal processing algorithms for target 

detection. Furthermore, in terms of cost-effectiveness, seat radar emerges as a more financially viable 

alternative compared to dual radar systems. 
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Table 6-1: Comparison between different proposed setups. 
 

 Price 

issue 

Wiring 

difficulty 

Computation 

difficulty 

Multipath 

issue 

Hand and head 

movement issue 

False detection 

issue 

Dual 

radar  

Worse Worse Moderate Moderate Moderate Moderate 

MIMO 

radar  

Great Great Worse Worse Worse Worse 

Seat 

Radar 

Moderate Moderate Great Great Great Great 

 

6.3 Impact of This Research 

Monitoring the driver's condition is crucial for ensuring safety within vehicles, as it aids in identifying 

potential health or safety hazards that may compromise the driver's ability to operate the vehicle safely. 

This includes vigilance for fatigue, distraction, or impairment, all of which can precipitate vehicular 

accidents. While numerous solutions for health monitoring in private vehicles have been proposed, many 

are impractical or pose risks of privacy infringement. Radars offer a promising avenue to address these 

concerns, given their inherent privacy protection, contactless operation, accuracy, convenience, 

affordability, and resilience to environmental factors. Among various radar configurations, mm-wave 

FMCW radars stand out for their ability to detect range precisely and monitor displacements, which is 

crucial for health monitoring. 

Breathing pattern monitoring serves as a vital indicator of the driver's health. A precise estimation of 

breathing patterns facilitates the detection of various abnormalities, such as Tachypnea, Bradypnea, Biot, 

Cheyne–Stokes, and Apnea. These patterns can be assessed from both chest and abdomen movements. In 

this study, two 60 GHz FMCW radars are utilized for this purpose. The proposed algorithm effectively 

detects these abnormalities by estimating BRs and identifying breath-hold periods. 

Integrating radar technology into smart furniture and seats offers a practical way to monitor health. In 

this thesis, an mm-wave radar system placed strategically behind a seat is introduced, along with an 

algorithm that can identify unique heart waveform patterns in healthy individuals. These patterns typically 

include two peaks followed by a valley in each cycle, allowing for accurate heart waveform monitoring. 



 

 108 

The findings indicate that individuals with prolonged corrected QT intervals have different heart 

waveforms. Therefore, the proposed system can be employed to detect these heart conditions. 

6.4 Limitations and Future Directions 

The research presented in this thesis has also several limitations. Firstly, the proposed approach for 

breathing and heart waveforms monitoring struggles with handling high random body movements. If such 

activity persists for more than 10 seconds, estimating the BR becomes challenging, especially when the 

actual BR is more than 20. This phenomenon commonly occurs when the driver is stressed and steers the 

wheel sharply. 

Secondly, the extracted heart waveform from individuals with prolonged QTc conditions is visually 

compared with those from healthy individuals. Consequently, it is crucial to collect data from individuals 

with various HRs to enable the use of machine-learning approaches for detection. Otherwise, the detection 

may be unreliable. 

Thirdly, employing a MIMO radar for occupancy detection presents several challenges, particularly due 

to the similarity between adults and children older than 5 years old. In this thesis, the occupied volume in 

each seat is used as an indicator to detect occupancy. However, it becomes essential to incorporate multiple 

features beyond just occupied volume. This necessitates collecting data from children within this age range. 

Additionally, relying solely on z-axis acceleration for road defect detection is not a reliable approach, as 

this method is employed in this thesis. This task requires studying various features of IMU data and 

collecting data from different road defects and vehicles to ensure accuracy and robustness. In this way, AI 

can be used for road defect identification. 
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Appendices 

Appendix A 
Comparison Between Different BR Estimation Sensors 

In this part, different BR estimation techniques have been compared for in-cabin sensing applications. 

Figure A.1 represents different techniques to estimate BR, whether contact-based or remote-based. 

   Sound sensing is one of the earliest sorts of medical tests. However, it is not accurate and proper for 

continuous monitoring [229], [230]. A thermistor under the nose is used in the temperature sensing 

approach to measure the temperature differential between the air being breathed and exhaled [231]. In the 

pressure sensing method, when the airflow is supplied to the sensor, the sensor deforms, and its resistance 

varies. The sensor output voltage changes linearly because of this [232]. By measuring the amount of 

carbon dioxide (CO2) that the person has exhaled, one may determine their BR. The most used technique 

for calculating the quantity of CO2 in gas samples is IR spectroscopy [233]. A humidity sensor positioned 

close to the patient's nose or mouth can be used to monitor BR since the expelled air is more humid than 

the air inhaled [234]. In chest movement estimation, a thin sheet of the piezoelectric substance can be used 

to quantify how much the body volume changes while breathing [235]. Another approach to estimating 

chest wall activity among contact sensors is the accelerometer. Using the accelerometer and/or gyroscope 

sensors, it is possible to track the movements of the thoracic and/or abdominal cavities to identify breathing 

activity [236]. An optical, non-invasive technique used to measure blood perfusion across tissues is called 

photoplethysmography (PPG). It is based on using IR light to illuminate blood vessels, often through the 

patient's finger. The quantity of IR light reflected or absorbed by blood is then measured by a PPG sensor, 

which indicates changes in blood volume [237]. Devices for ECG track the electrical field in the chest that 

the heart and breathing make [238].  

   IR thermography is an approach to measuring BR since the temperature near the nostrils changes during 

the breathing cycle (it is 31.17°C during inspiration and 31.44°C during expiration) [239]. Analysis of 

chest movements in various ROIs recorded by a video camera might be used to derive BRs [240]. In the 

Ultrasound approach, the sensor's attenuation characteristics are used to calculate the sensor's distance from 

the subject. Then, based on the phase of the detected peak, the BR can be estimated [241]. In addition, 

acoustic waves are unable to travel over great distances and can be quickly disrupted by mechanical motion 

[95]. Hence, it is not a suitable selection for in-cabin monitoring applications. Using radars has been 
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investigated widely to estimate BRs in several applications. The reflected signal from the chest wall can be 

used to estimate BR [242].  

   Table A. 1 compares different BR monitoring techniques. This evaluation is based on some parameters 

that can be applied to continuous monitoring. Based on several factors in [243], a radar sensor is the best 

solution inside a vehicle, especially because of its comfort level and protection of privacy. Doppler radars 

based on phase shift are capable of detecting human body vibration. Chest wall displacement caused by 

breathing and heart vibrations can be sensed to monitor people inside a car [25]. To achieve this goal, many 

aspects should be investigated. 

Table A. 1: Comparison between different BR monitoring techniques [243]. 

 

 

Method Integrated 

solution 

Installation on 

the body  

The comfort level for 

continuous monitoring 

Privacy 

issues 

Price 

issue 

Sound sensing No Direct contact High Yes No 

Temperature 

sensing 

No Direct contact Low No No 

CMOS MEMS-

based 

Yes Direct contact Low No Yes 

CO2 sensing No Direct contact Low No No 

Humidity sensing No Direct contact Low No No 

Piezoelectric 

transducer 

Yes On a dress or bed 

mattress 

Low No No 

Accelerometer  No Direct contact Low No No 

Impedance 

fluctuation sensing 

No On a dress or 

chair 

High No No 

IR thermography  No No contact High Yes No 

Ultrasound No No contact/ 

contact 

High No No 

radar Yes No contact High No No 
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Figure A.1: BR monitoring techniques  [243], [244]. 
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Appendix B 
Ground Truth 

Different investigations used different types of ground truths to assess their proposed algorithms for vital 

sign monitoring inside a car. As can be seen in Table B.1, the most common ground truth for the evaluation 

of estimated BR is pulse oximetry. Figure B. 1 shows the Pulse oximeter used in [20]. It is a non-intrusive 

way to measure oxygen saturation, which can lead to BR and HR [52], [245], [246]. 

 

Figure B. 1: Pulse oximeter used in [20]. 

 

Table B. 1: Comparison between the different in-cabin published papers for vital sign monitoring based on 

their setup, namely, sensor place, frequency, ground truth, and Radar brand and/or package size. 

Reference Sensor place Frequency 

(GHz) 

Ground truth Radar brand and/or 

package size  

[25] 
Mobile holder (right 

side of steering wheel) 
60 

Airflow, 

Temperature sensor 

XM132 

(25×20 mm) 

[28], [32] 
In front of the chest of 

the main subject 
60 ECG XM112 

[34] on the steering wheel 4.3 Edan iM50 Not specified 
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[43] Rearview mirror 7.25 

A USB pressing button to 

count breaths as a ground 

truth 

X2M200 

(50×70 mm) 

[53] 
The upper left of the 

windshield  
7.5 Pulse oximetry 

X4M300 

(50×70 mm) 

[52] 
In front of the chest of 

the main subject 
77 Pulse oximetry Not specified 

[47] 
Under the steering 

wheel 
6.8 

Nasal breath sound recordings 

from a smartphone, ECG 

(PSL-iECG2) 

X2 

(50×70 mm) 

[20] 
The upper left of the 

windshield 

7.29 and 

8.748 
Pulse oximetry 

X4M300 

(50×70 mm) 

[48] 
The lower left of the 

steering wheel 
2.4 

Self-assessment of the 

participant for being drowsy 
Not specified 

[57] Behind the seat 60 
A pressure sensor is worn on 

the abdomen 
50×50 mm 

[45] 
Under the steering 

wheel  
77 ECG, Respiration belt IWR1843BOOST 

[44] Behind the seat 24 ECG Not specified 

[51] In the driver's seat 
Millimeter 

wave 

Camera, Wearable 

physiological detection 

instrument 

Not specified 

[30] Rearview mirror 77 Polar H10 heart monitor AWR1642BOOST 

[31] Rearview mirror 120 Spirometer Not specified 

[112] 
The left top side of the 

subjects’ chest  
60 

A clinical reference sensor 

BSM6501K 
IWR6843 



 

 137 

Appendix C 
Radar Brand and/or Package Size 

The most common brand used by recent investigators is XeThru. Their dimensions are less than 50×70 mm. 

Hence, it is a suitable selection for in-cabin applications. Figure C. 2 shows the used radar and radar setup 

inside a vehicle for vital sign monitoring of the driver [20].  

  

(a) (b) 

Figure C. 2:  X4M300 used in [20]: (a) radar board and (b) radar setup inside a car for vital sign 

monitoring of driver. 
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Appendix D 
Micro-Doppler Signatures for In-Cabin Applications 

Micro-doppler signatures inside a vehicle can be used in different applications, including abnormal driver 

behavior detection, occupancy detection, and gesture recognition for driver assistance. 

   One of the solutions to detect drowsy and distracted drivers is based on micro-doppler signatures, 

especially head motions [59], [60], [61]. In [61], different head motions have been classified based on 

velocity-time maps by a neural network. A millimeter wave radar in 77 GHz has been placed in front of the 

driver to monitor the driver’s head, as seen in Figure D. 1. In [59], the range-time maps, on the other hand, 

have been utilized to monitor the head movements by a 61 GHz radar. Distracted drivers by mobile have 

been investigated along with vital sign monitoring [47]. It is shown that using mobile while driving can be 

detected based on reflected signals after suppressing clutter.  

 

Figure D. 1: The eye blink radar setup [65]. 

   Another approach to detecting the drowsy driver is based on monitoring eyeblinks [21], [65], [66], [67], 

[68], [69]. In [66], [68], a 77 GHz radar was used for recording signals from eyeblink. They have used 

ensemble empirical mode decomposition to decompose signals. Based on useful information, the signals 

were reconstructed and fed to a short-time Fourier transformation. Finally, a cell average CFAR has been 
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applied to detect eye blinks. However, in [69], other vital signs like heartbeat and respiration were filtered 

before applying CFAR. Figure D. 2 shows the eye blink in the time-frequency spectrum.  

 

Figure D. 2: The eye blink in the time-frequency spectrum [68]. 

 

 

Figure D. 3: Distribution of recent studies in frequency selection for occupancy detection inside a vehicle 

by radar over the years. 

   Occupancy detection is one of the most popular in-cabin applications. Recent studies have mostly 

focused on micro-doppler signatures. These signatures will appear in processed raw signals. Most recent 

studies extracted features from processed raw radar signals [7], [11], [25], [70], [73], [75], [78], [98], [99], 

[100], [102]. These features are fed to an AI approach to be used in classification. These signatures can also 
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appear in different types of data like time–frequency [71], [72], [73], [77], [79]. Another factor in occupancy 

detection application by radar inside a vehicle is frequency selection. As seen in Table D. 1 and Figure D. 

3, most in-cabin sensing investigations by radar for occupancy detection have used millimeter wave radar 

(60 GHz and over). Regarding sensor placement, because the radar should be placed under the car roof in 

occupancy detection applications, the dimensions of the radar package are less important in comparison to 

vital sign monitoring applications. More details about the recent works can be found in Table D. 1.  

Table D. 2 compares the different in-cabin published papers for occupancy detection based on their 

accuracy or advantages and limitations by radar. All the recent investigations have reached more than 90% 

accuracy, but some limitations should be addressed in the next publications. One of the most important 

limitations is the use of inappropriate methods to estimate vital signs in occupancy detection. In [77], [79], 

the assumed HR does not cover children's HR properly, and there is no harmonic analysis for HR estimation. 

The HR of children can be more than 120 beats per minute [112]. In [77], the BR is also considered to be 

less than 18, while it can be higher for children [112]. 

   In [6], [71], to train the AI approach, all gathered data are pooled and shuffled. Although this method 

might offer extremely high accuracy, the evaluation method cannot be used for new measurements. Because 

radar has many samples per second, combining all samples and selecting a part of them to test would not 

guarantee that test samples were fully invisible to the model. 

   Some studies have designed their occupancy detection algorithms to detect a single occupied seat [25]. 

Hence, their proposed method cannot be used for multiple-person occupancy detection. These algorithms 

are applied before vital sign monitoring, especially for the driver vital sign monitoring application [25].  

   The employed radar system has a direct effect on efficiency. The number of receivers determines the 

angular resolution of the radar. More receiver channels will result in better angular resolution and better 

discrimination. In [70], [78], [79], the authors could use more channels to have better angular resolution 

and reliable results. However, they have used one receiver to collect data. By one receiver, the FMCW radar 

cannot discriminate targets in the same range accurately [124]. As seen in Figure D. 4, seat 4 and seat 3 

have the same time distance from the radar. A radar with more receivers can discriminate against them. 
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Figure D. 4: The radar setup in [70]. Seat 3 and seat 4 have the same time distance from the radar. 

The discrimination of these two seats is possible by having more receivers. 

Table D. 1: Comparison between the different in-cabin published papers for occupancy detection based on 

setup frequency and methodology by radar. 

Reference Frequency 

(GHz) 

Data representation Approach Other considerations 

[77] 7.29 

Spatial-temporal-

circulated gray level 

co-occurrence matrix 

Stochastic gradient 

descent using 3 

different classifiers 

• Extracted features by 
singular value ratio from 
vital signs, including BR, 
and HR 

[70] 6.8 
Processed raw radar 

signals 
Deep neural network 

• The model has been 
evaluated by changing the 
activation function, the 
number of nodes in hidden 
layers, and the number of 
layers 

[78] 6.8 

Extracted statistical 

features from raw 

radar signals 

Bagging with decision 

tree 

• A feature selection 
approach based on 
neighborhood component 
analysis is used to select the 
best features. 

[7] 61 

The spectral power 

and Wiener entropy 

of processed raw 

radar signals 

Linear discriminant 

analysis and maximum 

likelihood estimation 

 

[6], [74] 77 Range-azimuth 
KNN, SVM, and 

random forest 
 

[75] 60 Point cloud map 
An enhanced 

Euclidean clustering 

• Adaptive monitoring of 
target presence by an 
enhanced Euclidean 
clustering as well as a state 
machine technique 
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[11], [73] 77 
Processed raw radar 

signals 

KNN, SVM, and 

random forest 

• For the left-behind human 
detection, a novel approach 
based on correlation has 
been employed 

[72] 2.45 Time-frequency Binary decision tree 

• There are three specific 
extracted features based on 
the degree of scattering 
points and vital signs to 
detect people.  

[71] 77 Range-azimuth SVM  

[79] 61 Time-frequency 

AUC, SMD, 

Bhattacharyya 

coefficient and 

Hellinger distance 

 

[80] 60 Range-doppler  

Regression predictions 

based on a novel loss 

function, namely 

Label-Aware Ranked 

loss 

 

[25] 60 
Processed raw radar 

signals 

The standard deviation 

of the envelope 

amplitude 
 

[98], [99] 24 
Processed raw radar 

signals 
Cross-correlation  

[100] 80 
Processed raw radar 

signals 
Peak detection • An antenna design for in-

cabin sensing 

[102] 24 
Processed raw radar 

signals 
Peak detection • A patch antenna design for 

in-cabin sensing 

[97] 0.868   • A patch antenna design for 
occupancy detection 

[101] 24   
• Simulation of the in-cabin 

environment to study the 
multipath effect on 
reflected signals. 
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Table D. 2: Comparison between the different in-cabin published papers for occupancy detection based on 

their accuracy or advantages and limitations of radar. 

Reference Accuracy or advantages Limitations 

[77] 

• In counting the number of occupied 
seats in a stationary and moving 
vehicle, the accuracy is 97.5% and 
97%, respectively. 

• A novel feature extraction method 
based on spatial-temporal-circulated 
gray-level co-occurrence matrix. 

• Collecting a valuable database 

• No harmonic analysis to estimate HR. 
• The BR is assumed to be 12 to 18. But it 

could be more than 18 [112]. 
• The HR is assumed to be 60 to 120. But it 

could be more than 120 [112]. 

[70] 
• Classification accuracy by deep 

neural network: 99.5% 
• Collecting a valuable database 

• The designed radar system works with a 
single receiver. More receivers are required 
to discriminate targets from different 
angles. 

[78] 
• Classification accuracy: More than 

90%. 
• A deep investigation of statistical 

feature extraction 

• The designed radar system works with a 
single receiver. More receivers are required 
to discriminate targets from different 
angles. 

• lower age diversity in experiments 

[7] 
• The average accuracy of linear 

discriminant analysis and MLE: 
96.14% and 98.88%, respectively. 

• The designed radar system works with a 
single receiver. More receivers are required 
to discriminate targets from different angles 
instead of referring to the range.  

• More features can be extracted to have 
reliable results.  

[6], [74] 
• The accuracy of the multiclass 

classification and binary 
classification methods: 97% 

• No theoretical information for the CFAR 
detector  

• Inappropriate model evaluation based on k-
fold  

[75] 

• The accuracy of detection in 
different postures: more than 84% 

• The accuracy of detection of 
dynamic experiments: more than 
91% 

• No theoretical background for a CFAR 
detector 

[11], [73] 
• The accuracy of occupancy 

detection is more than 90% 
• The accuracy of left-behind human 

detection is 100% 

• There is not enough theoretical background 
in threshold detection in the proposed 
algorithm for left-behind human detection. 

[72] 
• The average classification accuracy 

for a human with or without motion 
is 98.6%. 

• Multi-passenger has not been tested. 

[71] 
• The accuracy of occupancy 

detection in each row of a car is 
97.8%. 

• The occupancy of detection has not been 
tested for each seat of a row separately.  

• Inappropriate model evaluation 
[79] • The performance of the proposed 

method for passenger detection is 
• The designed radar system works with a 

single receiver. More receivers are required 
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   One of the hottest research areas is hand-based gesture detection, which is crucial for creating human-

computer interfaces. An in-cabin gesture interface can help the driver to do a variety of functions. Using 

radar for gesture recognition for the human-car interface inside a vehicle by radar can overcome other kinds 

of sensor issues, especially privacy concerns and unaffordable prices [121]. In addition, it is a contactless 

sensor and can work in a dark environment [116]. 

   Recent studies have considered several parameters in their system design. The first parameter is the used 

frequency. Recent papers have mostly used mm-wave radar to have accurate detections. As seen in Table 

D. 3, higher frequencies are more sensitive to small RCS changes and would have better results [115]. The 

bandwidth signal determines the range resolution. Better range resolution provides better and more accurate 

data for classification. To have better range resolution and better Doppler signatures, recent studies have 

used the maximum frequency bandwidth of employed radar. Recent studies mostly employed a package 

radar to be easily used inside a car. 

Based on the expected functionality of the system, other crucial variables will be defined. One of the 

key elements is how many gestures are proposed to be determined. The task of classification will become 

more challenging with more gestures. According to recent studies, there are typically 7 to 8 features to 

classify and identify. Another crucial element is the distance of the hand from the radar. Most 

recent investigations have proposed that their algorithms can identify gestures in hand-to-radar distances 

up to 100 centimeters. 

 

validated by an area under the curve 
greater than 0.98. 

to discriminate targets from different 
angles instead of referring to the range. 

• No harmonic analysis to estimate HR. 
• The HR is assumed to be 48 to 108. But it 

could be more than 120 [112]. 
[25] • Accurate occupancy detection • Single-seat occupancy detection  

[98], [99] 
• The sensor is highly robust to noise 

and environmental influences like 
traffic or weather, resulting in fewer 
false alarms. 

• Single-seat occupancy detection 
• Not enough tests have been done 

[100] 

• The peak of the reflected signal from 
a human differs significantly from 
that of an unoccupied seat. 

• A unique antenna design for in-cabin 
sensing 

• Single-seat occupancy detection 
• Lack of collected data in real driving 

environments 
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Table D. 3: Comparison between different in-cabin published papers for gesture recognition for human-car 

interface by radar. 

 

Reference Data representation 

and data 

dimensions 

Approach Frequency 

(GHz) 

No. of 

gestures 

Hand-to-

radar 

distance 

(cm) 

No. of 

participants 

and samples 

for each 

gesture 

[116] Range–Doppler (2D) 
Random 

forest 
60 6 

Not 

specified 

Not specified,  

20 

[117] 

Range-doppler, horizontal 

angle-range, and pitch angle-

range(3D) 

3DCNN and 

series LSTM 

network 

60 8 10-90 

4, 

1000, 

(2 seconds for 

each recording) 

[115] Time-frequency (2D) CNN 77 9 20-100 
Not specified,  

360 

[118] Time-frequency (2D) 
Decision 

tree 
25 6 0-30 

4, 

60, 

(4 seconds for 

each recording) 

[119] 

Time-frequency receiver 1, 

time-frequency receiver 2, and 

time-frequency receiver 3 (3D) 

3DCNN 24 10 0-50 
3, 

1714 

[121] 

Frequency of the reflected 

signal, Variation of time of 

arrival, the variance of 

the probability density function 

K-means 6.8 5 0-100  
3, 

50 

[120] Time–Doppler (2D) 
Energy 

estimation 
25 10 0-150 Not specified 

[122] 

3 extracted features from the 

time-range (the variance of the 

hand's displacement, the 

magnitude variance, and the 

hand's surface area) 

Neural 

Network 
6.8 6 

Not 

specified 

1, 

Not specified 

(10 seconds for 

each recording) 
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Appendix E 
FMCW Radar Fundamentals 

FMCW radar has some advantages over other radar systems. The first one is the high-range resolution. This 

radar can discriminate targets in range accurately due to high-frequency bandwidth [143], [144], [213]. This 

kind of radar can work with millimeter wave signals and is sensitive to insignificant changes in the range 

of the target. It can estimate chest wall displacements accurately [247]. In addition, it is highly robust to 

noise since the useful information is usually in its phase. Hence, it is less sensitive to noise than impulse 

radar [133].  

   Radars transmit an electromagnetic signal into an environment in which there are many reflectors. The 

wave's echo is then collected by radar receivers. A sinusoidal signal is swept by an FMCW radar from fmin 

to fmax. The frequency bandwidth of an FMCW signal is fmax - fmin. A signal known as the beat signal is 

created once the received signal at the output port of the receiver antenna is correlated with the transmitted 

signal. The beat signal provides details about targets. For example, the frequency difference between the 

sent and received chirps can achieve the range of the target in the received signal [133]. 

   Assume that the transmitted signal is: 

xTx(t) = ATxcos �2πfct + π B
T

t2�, (E.1) 

where ATx is the amplitude of the transmitted signal, fc is the carrier frequency, B is frequency bandwidth, 

and T is the duration of every chirp. The slope of the chirp is: 

k = B
T
. (E.2) 

By applying this assumption, the transmitted signal will be: 

xTx(t) = ATxcos(2πfct + πkt2). (E.3) 

The reflected signal off a target with a delay of td is as follows: 

xRx(t) = ARxcos(2πfc(t − td) + πk(t − td)2), (E.4) 

in which ARx is the amplitude of the received signal. An attenuated version of the transmitted signal will be 

correlated with the received signal. Then, the filtered version of the output signal will be the beat signal. 

The beat signal is as follows: 
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y(t) = α. xTx(t). xRx(t) = αATxcos(2πfct + πkt2) . ARxcos(2πfc(t − td) +

πk(t − td)2) 
 low pass filter
�����������αATxARxcos(2πfctd + 2πk(t. td − td

2)), 

(E.5) 

in which α is the attenuation factor. By assuming that td << t, the y(t) can be simplified as follows: 

y(t) ≈ αATxARxcos(2πfctd + 2πkttd). (E.6) 

   The time delay in the beat signal depends on the range of the target [248]. If the target is a moving object 

like the chest wall of the human body, the delay is: 

td = 2R(t)
c

, (E.7) 

where R(t) is the range of the target, hence, the beat signal based on a time-varying range of the target is: 

y(t) ≈ αATxARxcos(4πfcR(t)
c

+ 4πktR(t)
c

). (E.8) 

The beat frequency and phase of the beat signal can be expressed as follows: 

ωb(t) =
4πkR(t)

c
, 

ψ(t) =
4πfcR(t)

c
. 

(E.9) 

   The beat signal is a cosine wave. Its frequency and phase have the information of range. The sensitivity 

of phase and frequency to the target’s range can be compared [249]. The sensitivity of phase to the target’s 

range in comparison with the sensitivity of frequency to the target’s range is as follows: 

dψ(t)
dR(t)

dωb(t)
dR(t)

=
k
fc

=
B

fc. T
. 

(E.10) 

For example, when fc is 60 GHz, B is 5 GHz, and T is 64 µs, the sensitivity of phase to chest wall vibrations 

is by far more than frequency. Hence, after taking a FFT from the beat signal, the phase can be employed 

to estimate the BR of subjects.  

The chest wall displacement can be calculated as follows [124]: 

R(t) =
ψ(t). c
4πfc

. 
(E.11) 
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The chest wall displacement rate is equal to the BR. The BR is the frequency of peak after taking FFT from 

the chest wall displacement [133].  
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Appendix F 
Further Discussion on the Signal Processing Chain for BR Estimation 

In this appendix, some further methods in the signal processing chain are discussed. It completes the 

proposed approach for BR estimation.  

   The DC value of the signal must be eliminated; otherwise, the phase quality will be affected [248]. In the 

frequency domain, the DC of a signal is at zero frequency. Figure E.1 represents a raw signal in the 

frequency domain before and after DC bias removal. The zero frequency of this raw signal becomes zero 

after this process. 

   Figure E. 2 shows the range-slow time-frame cube reconstructed from raw signals after the fast time FFT. 

For a specific range, a matrix of slow time frames will be processed to estimate breathing signals [133].  

 

 

Figure E. 1: A raw signal before and after DC bias removal. 
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   Another used approach in the proposed signal processing chain is the phase unwrapping algorithm. Figure 

G.3 shows this algorithm [250].  

 

Figure E. 3: Phase unwrapping algorithm. 

 

Figure E. 2: Range-slow time-frame cube. 
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The mean subtraction from the breathing signal removes non-vibrational clutters with strong reflections 

[248]. Figure E. 4 shows how mean subtraction removes the constant range of the target from the breathing 

signal. 

 

Figure E. 4: mean subtraction to remove a constant range of targets from the breathing signal. 

   The breathing signal should be filtered to remove unwanted vibrations and estimate the BR. Figure E. 5 

shows the frequency response of the designed filters. The magnitude of out-of-band signals is suppressed 

by almost 10 and 20 dB, respectively. Additionally, the phase of the filters has a line equation, resulting in 

constant time delays in signals. Figure E. 6 depicts the magnitude of the breathing signal before and after 

these two filters. The applied filters suppressed out-of-band signals significantly, while in-band ones 

remained without any attenuation. The ripple of the pass band is low. A high ripple can affect the breathing 

signal waveform.  
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(a) (b) 

  
(c) (d) 

Figure E. 5: Frequency response of two assumed filters (a) magnitude of the frequency response of an FIR filter with 10 

dB loss for out-of-band signals, (b) phase of the frequency response of an FIR filter with 10 dB loss for out-of-band 

signals, (c) magnitude of the frequency response of an FIR filter with 20 dB loss for out-of-band signals, and (d) phase 

of the frequency response of an FIR filter with 20 dB loss for out-of-band signals. 
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(a) (b) 

 
(c) 

Figure E. 6: The magnitude of the breathing signal in the frequency domain: (a) before filtering, (b) after 

filtering by a filter with 10 dB loss for out-of-bound signals, and (c) after filtering by a filter with 20 dB loss 

for out-of-bound signals. 

   The human body vibrations can make many harmonics. Figure E. 7 shows the harmonics of a pulse train 

in the frequency domain. The frequency distance of two sequential harmonics in the frequency domain is 

the frequency of the pulse train. The breathing signal resembles a pulse train. There exists breathing 

harmonics, heartbeat harmonics, and a combination of both in the human vibration signal [134]. Figure E. 
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8 shows the harmonics of human body vibrations in the frequency domain. Fb is the breathing signal 

frequency. There are other harmonic components with frequencies nFb for n=2,3,4. Fh is the heartbeat signal 

frequency. The main problem of harmonics is other harmonic components with frequencies Fb – nFh for 

n=1,2. They can make BR estimation difficult. 

   Another issue with BR estimation in the frequency domain is having a strong 2Fb. Figure E. 9 depicts two 

simulated breathing patterns with different peak frequencies. The peak frequency of the first breathing 

pattern is two times of the second one. But they are very similar in the time domain. Figure E. 10 shows 

two chest wall displacements from one measurement estimated in two sequential range bins. The estimated 

BR for the first one is two times the actual BR. But the second one has an accurate estimation. In this 

research proposal, the wrong estimation based on the second harmonic has been replaced by the actual 

value based on other range bins. This is another advantage of using more than one range bin for BR 

estimation. 

 

Figure E. 7: A pulse train in the frequency and time domains. 
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Figure E. 8: Human vibration signal in the frequency domain. 

 

Figure E. 9: Two simulated breathing patterns with different peak frequencies. 
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(a) (b) 

Figure E. 10: Two breathing patterns estimated from one measurement in two sequential range bins: (a) 

the estimated BR is two times the actual BR, and (b) the estimated BR is equal to the actual BR. 
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