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Abstract

Novelty detection, a fundamental task in the field of machine learning, has drawn a lot
of recent attention due to its wide-ranging applications and the rise of neural approaches. In
this thesis, we present a general framework for neural novelty detection that centers around a
multivariate extension of the univariate quantile function. Our general framework unifies and
extends many classical and recent novelty detection algorithms, and opens the way to exploit
recent advances in flow-based neural density estimation. We adapt the multiple gradient descent
algorithm to obtain the first efficient end-to-end implementation of our framework that is free
of tuning hyperparameters. Extensive experiments over a number of synthetic and real datasets
confirm the efficacy of our proposed method against state-of-the-art alternatives.
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Chapter 1

Introduction

Novelty detection, the fundamental task in machine learning that detects “novel” or “unusual”
samples in a data stream. It has wide-ranging applications such as network intrusion detection
[2], medical signal processing [3], jet design [4], video surveillance [5, 6], image scene analysis
[7, 8], document classification [9, 10], reinforcement learning [ 1], etc.; see the review articles
[12, 13, 14, 15] for more insightful applications.

Over the last two decades or so, many novelty detection algorithms have been proposed
and studied in the field of machine learning, of which the statistical approach that aims to
identify low-density regions of the underlying data distribution has been the most popular [e.g.

, 17,18, 19]. More recently, new novelty detection algorithms based on deep neural networks
le.g. 20, 21,22, 23,24, 25,26,27, 28,29, 30, 31, 32, 33] have drawn a lot of attention as they
significantly improve upon their non-neural counterparts (i.e., shallow methods), especially in
domains such as image and video where complex high-dimensional structures abound.

1.1 Novelty Detection as One-Class Classification

Novelty detection methods [34] are usually categorized into supervised, semi-supervised, and un-
supervised approaches. In the supervised setting, novelty detection is seen as binary classification
to learn the decision boundary from labeled nominal and novel instances in the training dataset.
However, due to the unpredictability and difficulty in acquiring novel samples and accurately
labeling training data, unsupervised or semi-supervised algorithms have become increasingly
popular and more widely used than their supervised alternatives. On the other hand, the task, if
categorized as unsupervised approach, becomes particularly challenging without the utilization of
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Figure 1.1: Semi-supervised Novelty Detection

any potential label information. Therefore, most novelty detection approaches are in the semi-
supervised setting, in which the training dataset usually includes nominal samples, sometimes
also includes partially labeled novel samples. In Figure 1.1, we list three popular semi-supervised
settings for novelty detection: one-class novelty detection, multi-class novelty detection, and open
set recognition (OSR).

In this thesis, we only focus on one-class novelty detection. Novelty detection is seen as
“one-class classification”[ 1 5], in which a model is constructed to describe nominal training data.
The novelty approach is typically used when the quantity of novel data is insufficient to construct
explicit models for novel classes and the quantity of nominal data is very large such that the model
of nominal may be accurate.

1.2 Formulation

We follow the standard setup for novelty detection [e.g. 14]: Given n i.i.d. samples {Xj, ..., X,
from an unknown distribution P over R¢, we want to decide if a new sample X is “novel”, i.e., if
it is unlikely to come from the same distribution P.

Due to lack of supervision, the notion of “novelty” is not well-defined. Practically, a popular
surrogate is to identify the low-density regions of the distribution P [16, 19, 17], as samples from
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these areas are probabilistically unlikely. For simplicity we assume the underlying distribution P
has a density p w.r.t. the Lebesgue measure.

1.3 Outline

The current dominant approach in novelty detection is the use of the likelihood or other metrics
from a generative model trained on the in-distribution data. This thesis offers a closer look at
these recent neural novelty detection algorithms, by making a connection to recent flow-based
generative modelling techniques [35].

In §2 we show that the triangular map studied in [35] for neural density estimation serves as a
natural extension of the classical univariate quantile function to the multivariate setting. Since
density estimation is extremely challenging in high dimensions, recent neural novelty detection
algorithms all extract a lower dimensional latent representation, whose probabilistic properties
can then be captured by our multivariate triangular quantile maps. Based on this observation we
propose a general framework for neural novelty detection that includes as special cases many
classical approaches such as one-class SVM [17] and support vector data description [ 8], as
well as many recent neural approaches [e.g. 31, 24, 26, 22, 21]. This unified view of neural
novelty detection enables us to better understand the similarities and subtle differences of the
many existing approaches, and provides some guidance on designing next-generation novelty
detection algorithms.

More importantly, our general framework makes it possible to effortlessly plug in recent
flow-based neural density estimators, which have been shown to be surprisingly effective even in
moderately high dimensions. Furthermore, centering our framework around the (multivariate)
triangular quantile map (TQM) also enables us to unify the two scoring strategies in the literature
[36]: we can either threshold the density function [16, 19] or the (univariate) quantile function
[17, 18]. Using the multivariate triangular quantile map, for the first time we can simultaneously
perform both, without incurring any additional cost.

In §3, motivated by the sub-optimality of pre-training we cast our novelty detection framework
as multi-objective optimization [37] and apply the multiple gradient descent algorithm [38, 39, 40]
for the first time. We present an efficient implementation that learns the TQM consistently, end-to-
end and free of tuning hyperparameters. In §4 we perform extensive experiments on a variety of
datasets and verify the effectiveness of our framework against state-of-the-art alternatives.



1.4 Contributions

Finally, we end this chapter by summarizing the contributions made by this thesis.

* We extend the univariate quantile function to the multivariate setting through increasing
triangular maps. This multivariate triangular quantile map may be of independent interest
for many other problems involving multivariate probabilistic modelling.

* We present a new framework for neural novelty detection, which unifies and extends many
existing approaches including the celebrated one-class SVM and many recent neural ones.

* For the first time we apply the multiple gradient descent algorithm to novelty detection and
obtain an efficient end-to-end implementation of our framework that is free of any tuning
hyperparameters.

* We perform extensive experiments to compare to existing novelty detection baselines and
to confirm the efficacy of our proposed framework.

Our PyTorch implementation is available at ht tps: //github.com/GinGinWang/MTO.
This thesis is an extended version of my published work [1] at NeurIPS.


https://github.com/GinGinWang/MTQ

Chapter 2

General Framework for Novelty Detection

In this chapter, we present a general framework for novelty detection centered around Triangular
Quantile Maps (TQM). Our framework builds on recent progresses in generative modelling and
unifies and extends many existing works.

First, we extend the univariate quantile to multivariate setting using the TQM, and also
give a brief introduction of multivariate quantiles which lack a unified definition. We introduce
our multivariate generalization of the univariate quantile function in §2.1 and propose a novel
multivariate quantile function inspired by the transformation interpretation of univariate quantiles.
Additionally, we explore other multivariate quantile definitions and conduct a comparative analysis
with our proposed approach.

2.1 Multivariate Generalization of the Quantile Function

Before delving into our general framework, which allows for simultaneous establishment of
density thresholding rules and quantile thresholding rules without any additional cost, let’s first
explore the multivariate generalization of the quantile function.

2.1.1 Transformation interpretation of the Quantile Function

Recall that the cumulative distribution function (CDF) F' and the quantile function @) of a
univariate random variable X is defined as:

F(z) =Pr(X <), Q(u) = F ' (u) :==inf{z : F(x) > u}. (2.1



While the CDF can be easily generalized to the multivariate setting, it is not so obvious for the
quantile function, as its definition intrinsically relies on the total ordering on the real line. However,
following [e.g. 41, 42] we observe that if U follows the uniform distribution over the interval
[0, 1], then Q(U) follows the distribution F'. In other words, the quantile function can be defined
as a mapping that pushes the uniform distribution over [0, 1] into the distribution F of interest.
This mapping is fundamental in statistical analysis and is essential for various applications such
as generating random variates from the desired distribution F'. More importantly, This alternative
interpretation allows us to extend the quantile function to the multivariate setting.

Now the question is whether the multivariate quantile function can be depicted as a transfor-
mation that converts the uniform distribution over [0, 1] into the desired distribution F' over R?
of interest. The following are the prerequisites that such a mapping satisfy.

» Existence and Uniqueness: For every point in the uniform distribution over [0, 1]”, there
exists a unique corresponding point in the distribution £, and vice versa. Mathematically,
the mapping should be bijective.

* Preservation of Order: If one point in the uniform distribution is greater than another, its
corresponding point in /' should also be greater than the corresponding point of the other
point in F'.

* Efficiency and Computational Feasibility: The mapping should be computationally feasi-
ble and efficient, especially for high-dimensional data. This ensures that the transformation
can be practically applied in various statistical analyses and simulations.

» Expressive Power: The implementation of the mapping must have complicated structure to
model any desired distribution and can be easily adjusted the complicated level considering
the trade-off with computational efficiency.

In the upcoming section, we will introduce our novel multivariate quantile function designed to
fulfill all the aforementioned requirements.

2.1.2 Triangular Quantile Map

We recall that a mapping T = (11, ..., Ty) : R* — R%is called triangular if forall j = 1, ... d,
the j-th component 7); depends only on the first j coordinates of the input, and it is called
increasing if for all j, T} is increasing w.r.t. the j-th coordinate when all other coordinates are
fixed. We call T triangular since its derivative is always a triangular matrix (and vice versa). In
Figure 2.1, we provide a concise illustration demonstrating the definition of increasing triangular
maps.
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Figure 2.1: Illustration of the definition of increasing triangular maps.

Definition 1 (Triangular Quantile Map (TQM)) Let X be a random vector in R, and let U
be uniform over the unit hypercube [0,1]%. We call an increasing triangular map Q = Qx :
[0,1]7 — R? the triangular quantile map of X if Q(U) ~ X, where ~ means equality in
distribution.

Here we give two special cases to illustrate the definition of the TQM and the second one will be
frequently used later when stacking TQMs to remove constraint on the support of TQMs.

Remark 1 (Reduced to Univariate) Q is the quantile function when d = 1, i.e., the TOM is
reduced to the univariate quantile function. .

Remark 2 (Inverse Gaussian CDF) Q = &', where ® = (®,..., D) with ® the CDF of
standard univariate Gaussian.

Note that the TQM Q is vector-valued, unlike the CDF which is always real-valued. The
existence and uniqueness of QQ follows from results in [43]. Our definition immediately leads to
the following quantile change-of-variable formula (cf. the usual change-of-variable formula for
densities):

Proposition 1 (Quantile Change-of-Variable Formula) Let T : R? — RY be an increasing
triangular map. If Y = T(X), then

Qy = ToQx. (2.2)
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Practically, eq. (2.2) allows us to easily stack elementary parameterizations of increasing triangular
maps together and still obtain a valid TQM. This stacking property is very useful when designing
and adjusting the complexity level of the TQM. For example, when the target distribution is
complicated and we need a higher complexity of the mapping model, we can stack a few more
TQMs (i.e., increasing the number of parameters of the designed model), as shown in Figure 2.2.

........ oM, | T S f oM, | T - L oM |1 ,

Figure 2.2: Schematic of a valid TQM by stacking multiple TQM:s.

Overall, following Definition 1, we know that the TQM satisfy the existence and uniqueness,
and preservation of order. Also, from Proposition 1, we can control the expressive power or model
complexity by stacking. The only unmentioned prerequisite is efficiency, we will go to details
into how to implement computationally convenient TQMs in §3.

2.1.3 Other Multivariate Quantile Function

To our best knowledge, a similar definition, through conditional univariate quantiles, appeared in
a number of works [44, 45, 46, 47], albeit mostly as a theoretical tool. Our definition makes the
important triangular structure explicit and amenable to parameterization through deep networks.
Needless to say, when d = 1, the triangular property is vacuous and our definition reduces to the
classical quantile function. For a more comprehensive introduction to triangular maps and its
recent rise in machine learning, see [35, 48, 49].

A different definition of the multivariate quantile map, based on the theory of optimal transport
[50], is discussed in a number of recent works [e.g. 41, 42, 51]: Q is instead constrained to be
maximally cyclically monotone, i.e. it is the subdifferential of some convex function. On one
hand, this definition is invariant to permutations of the input coordinates while ours is not. On
the other hand, our definition is composition friendly (see Proposition 1) hence can easily exploit



recent progresses in deep generative models, as we will see shortly. The two definitions coincide
with each other only when reduced to the univariate case.

We note that the recent work of Inouye and Ravikumar [52] proposed yet another similar
definition where QQ (termed density destructor there) is only required to be invertible. However,
this definition does not lead to a unigue quantile map and it is less computationally convenient.

2.2 Framework for Novelty Detection based on the TQM

We are now ready to present our general framework centering around the TQM for novelty
detection. Let f : RY — R™ be a feature map and X a random sample from the unknown density
p. We propose to learn the density' f4p of the latent random vector Z = f(X) using the approach
illustrated in [35]. In details, we learn the feature map f and the TQM Q simultaneously by
minimizing the following objective:

nff}gl YKL (£4p[|Qxq) + M(f) + C9(Q), (2.3)

where g embodies some potential constraints on the increasing triangular map Q, ¢ is some loss
associated with learning the feature map f, ¢ is a fixed reference density (in our case the uniform
density over the hypercube [0, 1]™), ¢, A\,v > 0 are regularization constants, and we use the
KL-divergence to measure the discrepancy between two densities.

Exploiting Proposition 1 we parameterize the TQM as the composition Q = T o &1, where
® = (P,..., ) with ® the CDF of standard univaraite Gaussian and T : R — R an increasing
triangular map. Note that unlike (Q whose support is constrained to the unit hypercube, there is no
constraint on the support of T, hence it is easier to handle the latter computationally.

2.3 Novelty Detection Rules

Once the feature map f and TQM Q are estimated (see §3), we can detect novel test samples by
either thresholding the density function of the latent variable Z or thresholding its TQM.

!The notation T 4 p stands for the push-forward density, i.e., the density of T(X) when X ~ p.
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Figure 2.3: Schematic of our general framework for novelty detection.

2.3.1 Density Scoring Rule

The density of Z = f(X) = Q(U) = T(®!(U)), using the change-of-variable formula, is

m

pa(2) = 1/1QQ )] = ety [[ 2T )], where =@ 4)

j=1
Thus, we declare a test sample X to be “novel” if
log | T'(T~H(£(X)))| + 3| T (F(X)[I5 > 7, (2.5)

where 7 is some chosen threshold. Crucially, since T is increasing triangular, T~! and the
triangular determinant |'T’| can both be computed very efficiently [35]. The (slight) downside of
this density approach is that the scale of an appropriate threshold 7 is usually difficult to guess.

2.3.2 Quantile Scoring Rule

Alternatively, we can declare a test sample X to be “novel” by directly thresholding the TQM Q.
Indeed, let N C [0, 1]™ be a subset whose (uniform) measure is 1 — o for some a € (0, 1), then
we say X is “novel” iff

Q '(f(X)) & N. (2.6)

10



For instance, we can choose NV to be the cube centered at (1/2,...,1/2) and with side length
(1 — a)'/™, in which case

Q' (E(X) gN = QX)) ~ 5lle = (1 —a)t/™/2. 2.7)

The upside of this quantile approach is that we can control Type-I error (i.e. false positive)
precisely, i.e. if X is indeed sampled from p, then we will declare it to be novel with probability
at most a.

Nominal

® Novel

.
"{,“;"' False Nominal
XX

Figure 2.4: Illustration of controlled Type-I error by using the quantile scoring rule.

In Figure 2.4, we present a simplified example using a quantile with two dimensions to
illustrate the application of the quantile scoring rule. After we get the estimated Q, we just
thresholding the 2D quantile directly. As showed in the figure, we designate the inner square
(e.g., area = 0.9) as the selected region N. If the quantile of the test point Q‘l( f (Xt)) falls
within this square, we classify X; as “nominal”; otherwise, it is classified as “novel”. In an ideal
scenario, where Q is estimated accurately, the probability that the quantile of a "nominal" sample
falls within [0, 1] is uniform across all regions. Consequently, for a "nominal" test sample, the
probability of its quantile falling outside the selected square is less than 0.1, precisely representing
the controlled false positive rate (i.e., we will declare a nominal test point to be novel with
probability at most 0.1). This method not only outputs a prediction but also controls the risk of
the prediction.

The quantile scoring rule prompts us to explore a broader and more intriguing question: How
can we precisely quantify the accuracy and uncertainty of predictions made by complex models,
such as deep neural networks? Typically, this question receives only a rough approximation. For
instance, in this thesis, the control of Type-I error relies on the assumption that we have accurately
learned the TQM Q, a condition that is challenging to ensure in practice. Consequently, the

11



control over Type-I error is only approximate. To address this challenge, numerous works have
been proposed to solve this question, especially in the field of conformal inference [53], [54]
provides a general distribution-free method to rigorously calibrate the output of any machine
learning algorithm for novelty detection.

2.4 Advantages of Our General Framework

Before proceeding to the implementation details of our framework (2.3), let us mention the
advantages of our general framework (2.3) for novelty detection:

(a) It allows us to perform feature extraction on the original sample X in an end-to-end
fashion. As is well-known, density estimation hence also novelty detection becomes
extremely challenging when the dimension d is high. Our framework alleviates this curse-
of-dimensionality by setting m < d and employing f to perform dimensionality reduction.

(b) Our end-to-end framework enables us to adopt the recent flow-based density estimation
algorithms, which have been shown to be universally consistent [55, 35] and extremely
effective in practice.

(c) By estimating the TQM Q once, we can employ the two scoring rules, i.e. the density
scoring rule (2.5) and the quantile scoring rule (2.6), simultaneously, without incurring
any extra overhead. This allows us to perform a fair and comprehensive experimental
comparison of the two complementary approaches.

(d) Last but not least, our framework recovers, unifies, and extends many existing approaches
in the literature.

In this section, we will introduce three classic approaches that can be unified under our general
framework.

Example 1 (One-class SVM [17]) As shown in [56], the one-class SVM minimizes precisely the
conditional value-at-risk, which is the average of the tail of a distribution:

mfin CVaRo(f(X)) + M| fIl5,., where CVaR,(Z):=E(Z|Z > Qz(a)), (2.8)
Qz(«) is the a-th quantile of the real random variable Z, and H,; is the reproducing kernel
Hilbert space (RKHS) induced by some kernel r. This approach employs the quantile scoring rule
(2.6).

12



To cast one-class SVM into our framework (2.3), let us set m = 1 hence the TQM reduces to
the classical one. Let ((f) = || f|3,. and g(Q) = CVaR,(Qxq). Now with { = 1 and v = o0 in
(2.3) we recover the celebrated one-class SVM.

If instead of choosing f from an RKHS, we represent f using a deep network, then we recover
the recent approach in [57].

Example 2 (Support Vector Data Description (SVDD) [18]) Similar to one-class SVM, it is
easy to show that SVDD also minimizes the conditional value-at-risk:

min  CVaR,([[¢(X) — clf3,), (2.9)

CGHK

where ¢ : RY — H,. is the canonical feature map of the RKHS. This approach also employs the
quantile scoring rule (2.6). It is well-known known that SVDD and one-class SVM are equivalent
for radial kernels [e.g. 17].

Again in this case m = 1. Let f(X) = [|¢(X) — cl[3,.. £ = 0 and g(Q) = CVaR,(Qxq). As
v approaches oo in (2.3), we recover the SVDD formulation.

If instead of choosing  as the canonical feature map of an RKHS, we represent e using a
deep network, then we recover the recent approach in [25].

Example 3 (Latent Space Autoregression (LSA) [31]) The recent work [31], following a se-
quence of previous attempts [24, 26, 22, 21], proposed to learn the feature map f using an
auto-encoder structure, and to learn the density of the latent variable Z. = f(X) using an autore-
gressive model, which, as argued in [35], exactly corresponds to a triangular map. In other words,
if we set f as the parameters of an auto-encoder, { to be its reconstruction loss, and g = 0, then
our framework (2.3) reduces to LSA. However, our general framework opens the way to exploit

more advanced flow-based density estimation algorithms, as well as the quantile scoring rule
(2.6).
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Chapter 3

Estimating TQM Using Deep Networks

In this chapter, we will present the details of implementing our general framework (2.3) for
novelty detection. In §3.1, we give a specific case of implementing our general framework, which
consists of three components: a feature extractor, a flow-based neural density estimator, and the
empirically estimated KL-divergence term. Specially, we introduce how to estimate the TQM

Q in (2.3) based on samples Xy, ..., X, s p. In particular, any flow-based neural density
estimator can be plugged into our framework. In §3.2, we cast the two competing objectives in
(2.3) as multi-objective optimization and apply the Multiple Gradient Descent Algorithm (MGDA)
to automatically tune the trade-off hyperparameter in each iteration.

3.1 Details of Our Implementations

Our framework (2.3) not only recovers, but also unifies and extends numerous existing approaches
documented in the literature. Consequently, there exist various implementation of each component
within our framework, depended on the deployed models and applications. In this section, we
present our implementation (see Figure 3.1), which other deep feature extractors and flow-based
neural density estimator can be plugged into.

(1) A feature extractor f for performing dimensionality reduction. Following previous works
[31, | we implement £ through a deep autoencoder that consists of one encoder
Z = £(X; 6g) and one decoder X = D(Z;0p) . We use the Euclidean reconstruction loss:

9 b b

U(E) = £(0p,0p) = >, [IX; — X[ (3.1
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Figure 3.1: Implementation of our general framework for novelty detection.

As argued in [58], the reconstruction error, aside from low likelihood, is an important indicator
for “novelty.” Indeed, since the autoencoder is trained on nominal data, a test sample will incur
a large reconstruction error only when it is novel, as such samples have never been encountered
before.

A flow-based neural density estimator for (). Here we adopt the sum-of-squares (SOS)
flow proposed in [35], although other neural density estimators would apply equally well. The
SOS flow consists of two parts: an increasing (univariate) polynomial Bs, 1 (u; a) with degree

2r 4 1 for modelling conditional densities and a conditioner network C;(u1, ..., u;j_1;0¢) for
generating the coefficients a of the polynomial:
U r 2
Pori1(u;a) =c+ fo lezl (Zz:o al,stl) dt, (3.2)

where ¢ € R is an arbitrary constant, r € IN is the degree of polynomial, and £ can be chosen
as small as 2. In other words, the TQM Q learned using SOS flow has the following form:

Q = ’:[‘O(ﬁ_l7 where VJ, Tj(ul,...,uj) :‘Bgr+1(uj;0j(u1,...,uj_l;GQ)). (33)

Any regularization term on the conditioner network weights 6 can be put into the function
9(Q) in our framework (2.3).

Lastly, the KL-divergence term in (2.3) can be approximated empirically using the given
sample [ Xy, ..., X, [. Upon dropping irrelevant constants we reduce the KL term in (2.3) to:

min 3 [log|Q(Q ()] ~ logg(@ ! (F(X,))], (3.4)

where each component of Q is given in (3.3). Crucially, since Q is increasing triangular,
evaluating the inverse Q! and the Jacobian |Q’| can both be done in linear time [35].

15



Since ¢ is the uniform density over the hypercube, upon simplification the final training
objective we use in our experiments is as follows. Let Z; = £(X;; 0g), we aim to solve:

-~

min > (1= 3)[log [T/(T(Z)] + T\ (Z)[3/2] + A |X: - D(Zi 6o, (3:5)
=1 negative log—lik;Tihood h(X;;0) reconstruction loss £(X;;0)
and recall that Q = T o ®~! is parameterized through the conditioner network weights 0 in
(3.3). We did not find it necessary to further regularize Q hence set ¢ = 0 in (2.3) and w.l.o.g.
y=1-—A\

3.2 MGDA for auto-tuning hyperparameters

The first KL term in (2.3), as is well-known, reduces to the negative log-likelihood of the latent
random vectors Z; in (3.5), and the second term is the standard reconstruction loss. The two terms
share the encoder weights @ and the trade-off is balanced through the hyperparameter A. This
design choice conforms to the psychology findings in [5&]. In practice, we found that the variance
of the log-likelihood is much larger than that of the reconstruction loss, and as a consequence we
observed substantial difficulty in directly minimizing the weighted objective in (3.5).

A popular pre-training heuristic is to train the whole model in two stages: we first minimize
the reconstruction loss ¢(0g, 8p) and then, with the learned hidden vector Z, we estimate the
TQM Q by maximum likelihood. However, as shown in [22], the latent representation learned in
the first stage does not necessarily help the task in the second stage.

Instead, we cast the two competing objectives in (3.5) as multi-objective optimization, which
we solve using the multiple gradient descent algorithm (MGDA) [38, 39, 40]. Our motivation
comes from the following observation: the two-stage procedure amounts to first setting A = 1 and
running gradient descent (GD) for a number of iterations, then switching to A = 0 (or A = 0.5
say) and running GD for the remaining iterations.

Naturally, instead of any pre-determined schedule for the hyperparameter A (such as switching
from 1 to 0 or 0.5), why not let GD decide what A to use in each iteration? This is precisely the
main idea behind MGDA, where at iteration ¢ we solve

2

— i (Vhi =Vt Vhr)
_mln{l,maX{O,W R

> (1= NVA(X;;6,) + AVIU(X;; 6,)

el

Ay = argmin
0<A<1

(3.6)
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where I C {1,...,n} is a minibatch of samples, and obviously Vh; = .., VA(X;; 6,) and
similarly for V/;. With ), calculated we can continue the gradient update:

9t+1 = 0,5 — 77[(1 — )\t)Vh[ -+ )\tv&], (37)

where n > 0 is the step size. As shown in [40], this algorithm converges to a Pareto-optimal
solution under fairly general conditions. Pleasantly, MGDA eliminates the need of tuning the
hyperparameter \ as it is determined automatically on the fly. To our best knowledge, our work is
the first to demonstrate the effectiveness of MGDA on novelty detection tasks.

We end our discussion by pointing out that the algorithm we develop here can easily be
adapted to other design choices that fit into our general framework (2.3). For instance, if we use
a variational autoencoder [59] or a denoising autoencoder [60], then we need only replace the
square reconstruction loss in (3.5) accordingly.
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Chapter 4

Evaluation

In this chapter, we present experiments to demonstrate the effectiveness of our proposed frame-
work. In §4.1, we first introduce the experimental setting up, including the variants of our
framework, datasets, baselines and the related performance metrics. In §4.2, we then compare five
variants of our proposed method with different scoring functions, to show that our framework’s
general effectiveness for common scores used in novelty detection. In §4.3, We conduct exper-
iments testing various training strategies, and the results demonstrate that our MGDA strategy
outperforms other two-stage training strategies. Lastly, in §4.4, we evaluate the effectiveness
of our proposed novelty detection method by comparing it with traditional and state-of-the-art
alternatives. Additionally, we include visualization results in §4.5 to enhance our understanding
of the performance of our methods.

4.1 Experimental Settings

4.1.1 Variants of QOur Method

In this subsection, we first introduce some variants of our proposed method based on different
scoring function. We consider the following five scoring functions that we threshold at some
level 7. In particular, given a test example X, we denote its reconstruction by X and its latent
representation by Z = f(X).

(1) Reconstruction error (REC): X — X2

(2) Negative log-likelihood (NLL):  log |T'(T~Y(Z))| + |'T-Y(2Z)|3/2;

18



(3) 1-norm of quantile (TQM,): H‘P(T_I(Z)) - %Hl’
(4) 2-norm of quantile (TQM,): |®(T~Y(Z)) - 3ll2s

(5) Infinity norm of quantile (TQM..): || ®(T(Z)) — 1|/

4.1.2 Datasets and Competitor Algorithms

In our experiments, we use two public image datasets: MNIST and Fashion-MNIST, as well as
two non-image datasets: KDDCUP and Thyroid. A detailed description of these datasets, the
applied network architectures, and the training hyperparameters can be found in Appendix A. For
MNIST and Fashion-MNIST, each of the ten classes is deemed as the nominal class while the
rest of the nine classes are deemed as the novel class. We use the standard training and test splits.
For every class, we hold out 10% of the training set as the validation set, which is used to tune
hyperparameters and to monitor the training process.

We compare our method with the following alternative algorithms:

* OC-SVM [I7]. OC-SVM is a traditional kernel-based quantile approach which has been
widely used in practice for novelty detection. We use the RBF kernel in our experiments.
We consider two OC-SVM-based methods for comparison. 1) RAW-OC-SVM: the input is
directly fed to OC-SVM; 2) CAE-OC—SVM: a convolutional autoencoder is first applied to the
input data for dimensionality reduction, and then the low-dimensional latent representation
is fed to OC—-SVM.

¢ Geometric transformation (GT) [28]. A self-labeled multi-class dataset is first created
by applying a set of geometric transformations to the original nominal examples. Then,
a multi-class classifier is trained to discriminate the geometric transformations of each
nominal example. The scoring function in GT is the conditional probability of the softmax
responses of the classifier given the geometric transformations.

* Variational autoencoder (VAE) [59]. The evidence lower bound is used as the scoring
function.

* Denoising autoencoder (DAE) [60]. The reconstruction error is used as the scoring function.

* Deep structured energy-based models (DSEBM) [2|]. DSEBM employs a deterministic
deep neural network to output the energy function (i.e., negative log-likelihood), which
is used to form the density of nominal data. The network is trained by score matching in
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a way similar to training DAE. Two scoring functions based on reconstruction error and
energy score are considered.

* Deep autoencoding Gaussian mixture model (DAGMM) [22]. DAGMM consists of a com-
pression network implemented using a deep autoencoder and a Gaussian mixture estimation
network that outputs the joint density of the latent representations and some reconstruction
features from the autoencoder. The energy function is used as the scoring function.

* Generative probabilistic novelty detection (GPND) [26]. GPND, based on adversarial
autoencoders, employs an extra adversarial loss to impose priors on the output distribution.
The density is used as the scoring function. By linearizing the manifold that nominal data
resides on, its density is factorized into two product terms, which are then approximately
computed using nominal data.

» Latent space autoregression (LSA) [31]. A parametric autoregressive model is used to
estimate the density of the latent representation generated by a deep autoencoder, where
the conditional probability densities are modeled as multinomials over quantized latent
representations. The sum of the normalized reconstruction error and log-likelihood is used
as the scoring function.

4.1.3 Performance Metrics

For evaluation, we use precision, recall, F1 score, and the Area Under Receiver Operating
Characteristic (AUROC) curve as our performance metrics, which are commonly used in previous
works. Same as the setting of novelty detection, we take “novelty” as positive cases and ‘“nominal”
cases as negative cases.

4.2 Comparing Variants of Our Method

In Table 4.1, we compare two approaches on MNIST for selecting the hyperparameter \ in the
training phase: 1) chosen from a pre-set family using the validation set; and 2) automatically
optimized using MGDA [38, 39, 40]. We report the average AUROC over 10 classes. It is clear
that for all scoring functions, the optimized A\ generally leads to the highest AUROC. This is also
observed on other datasets such as Fashion-MNIST. Within the proposed variants, NLL results in
the highest AUROC among all scoring functions, followed by TQOM,.
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In Table 4.2, on the two non-image datasets we evaluate the average precision, recall, and
F1 score. The superscript * on the baselines indicates that the results are directly quoted from
the respective references. The threshold is chosen by assuming the prior knowledge of the ratio
between the novel and nominal examples in the test set. Under this assumption, the number of
false positives is equal to that of false negatives, thus the value of the three metrics coincides. On
Thyroid, TQM,, is slightly better than the density-based method. On KDDCUP, the density and
quantile-based approaches have the same performance, while REC results in the worst performance.
On both datasets, our proposed methods are superior to the benchmarks.

Table 4.1: AUROC of Variants of Our Method on MNIST
Scoring function A =099 0.9 0.5 0.1 Optimized

NLL 0.9729 0.9692 0.9537 0.9389  0.9728
TQOM; 0.9622 09616 0.9430 0.9319  0.9666
TQM, 0.9666 0.9645 0.9465 0.9347  0.9699
TQOMoo 0.9499 09527 0.9371 009128  0.9531

Table 4.2: Average Precision, Recall, and F1 Score on Non-image Datasets

Thyroid KDDCUP

Method Precision Recall F1 Precision Recall F1

RAW-OC-SVM *  0.3639 0.4239 0.3887 0.7457 0.8523 0.7954
DSEBM * 0.0404 0.0403 0.0403 0.7369 0.7477 0.7423
DAGMM * 04766 0.4834 0.4782 09297 0.9442 0.9369
Ours-REC - - - 0.6305 0.6287 0.6296
Ours-NLL 0.7312  0.7312 0.7312  0.9622 0.9622 0.9622
Ours-TQM; 0.5269 0.5269 0.5269 0.9621 0.9621 0.9621
Ours-TQM, 0.5806 0.5806 0.5806 0.9622 0.9622 0.9622
Ours-TQM,, 0.7527 0.7527 0.7527 0.9622 0.9622 0.9622

4.3 Comparing MGDA with two-stage training strategies

In our proposed algorithm the autoencoder and the estimation network are trained jointly by
employing MGDA. For comparison, we also consider the following two-stage training strategies:
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(1) We first train the autoencoder, then fix the autoencoder and train the estimation network
alone (denoted as Fix-).

(2) We first pretrain the autoencoder, then jointly train the autoencoder and the estimation
network with the weight \ fixed to 0.5 (denoted as Pretrain-).

Table 4.3: Comparison between joint and two-stage training: AUROC on MNIST
Class ‘ Fix-NLL  Pretrain-NLL Ours-NLL ‘ Fix-TQM, Pretrain-TQM, Ours-TQOM,

0 0.9939 0.9954 0.9951 0.9904 0.9939 0.9925
1 0.9971 0.9988 0.9977 0.9972 0.9985 0.9969
2 0.9403 0.9677 0.9526 0.9188 0.9568 0.9479
3 0.9568 0.9496 0.9627 0.9481 0.9414 0.9567
4 0.9703 0.9445 0.9657 0.9700 0.9388 0.9625
5 0.9612 0.9564 0.9618 0.9525 0.9486 0.9601
6 0.9878 0.9907 0.9915 0.9841 0.9881 0.9895
7 0.9629 0.9676 0.9686 0.9587 0.9656 0.9660
8 0.9549 0.9587 0.9551 0.9397 0.9527 0.9512
9 0.9736 0.9733 0.9768 0.9742 0.9641 0.9756

avg | 0.9699 0.9703 0.9728 | 0.9634 0.9649 0.9699

The comparison regarding AUROC on MNIST is shown in Table 4.3. We found that the
proposed joint training method leads to the best performance for both the density-based and the
quantile-based scoring functions. This is consistent with the findings in many existing works [e.g.

, 57,25, 21]. For the fixed two-stage method, our understanding is that the latent representation
learned in the first stage may not be the most beneficial for the training of the estimation network
in the second stage, which in turn degrades the overall performance. For the pretrained two-stage
method, although in the second stage the two parts are trained jointly the autoencoder is initialized
with the parameters learned in the first stage, which might prevent it from being updated to a more
suitable local optimum.

In Table 4.4, we show the comparison between joint and two-stage training on Fashion-MNIST
dataset. The observation is similar to that on MNIST dataset.
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Table 4.4: Comparison between joint and two-stage training: AUROC on Fashion-MNIST
Class ‘ Fix-NLL  Pretrain-NLL Ours-NLL ‘ Fix-TQM, Pretrain-TQM, Ours-TQOM,

0 | 09114 0.8612 0.9217 | 0.8959 0.8650 0.9169
1 | 09764 0.9852 0.9579 | 0.9639 0.9813 0.9496
2 | 0.8799 0.8575 0.8985 | 0.8809 0.8548 0.8990
3 | 09370 0.9222 0.9304 | 0.9269 0.9233 0.9245
4 | 09013 0.9132 0.9223 | 0.8859 0.9080 0.9209
5 | 0.9096 0.9117 0.8940 | 0.9140 0.9098 0.8844
6 | 0.8424 0.7488 0.8435 | 0.8391 0.7617 0.8384
7 | 09757 0.9842 0.9802 | 0.9689 0.9843 0.9718
8 | 09125 0.8851 0.9450 | 0.8962 0.8750 0.9429
9 | 09776 0.9879 0.9825 | 0.9780 0.9827 0.9830
avg | 0.9224 0.9057 0.9276 | 0.9150 0.9046 0.9234

4.4 Comparing with Baselines

In this section, we compare our method with the baseline approaches. Note that except RAW-
OC—-SVM and GT, all other methods, including our own variants, are based on autoencoders.

In Table 4.5, we show the comparison of AUROC on the image datasets. Among the proposed
quantile scoring functions we only list TQM,, which outputs the highest value of AUROC. We
observe that on both datasets our proposed methods are superior to most of the benchmarks, with
the density scoring function being slightly better than the quantile one. On MNIST, GPND and
GT have better performance; and on Fashion-MNIST, GT outputs the highest value of AUROC
followed by Ours-NLL and RAW-OC—-SVM. However, since GT explicitly extracts features by
using a set of geometric transformations, it inevitably suffers a high computational and space
complexity.

4.5 Visualization

In this section, we show visualization results on the MNIST dataset. We use digit 1 as the nominal
class. The results for other classes are similar. These visualizations can be used for diagnosing the
training process and for assessing the quality of the learned TQM: by definition, the pre-image of
data under TQM should be uniformly distributed on the hypercube [0, 1]™.

In Figure 4.3, we show the violin plots of the scoring statistics NLL, TOM;, TQM,, and TQM,,
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Table 4.5: AUROC on MNIST and Fashion-MNIST

MNIST
Class 0C-SVM . .
RAW CAE VAE DAE LSA GT DAGMM GPND DSEBM Ours-NLL Ours-TQM,
0 0995 0990 0985 0982 0.998 0.982 0.500 0.999 0.320 0.995 0.993
1 0999 0.999 0997 0998 0.999 0.893 0.766 0.999 0.987 0.998 0.997
2 0926 0919 0943 0936 0923 0.993 0.326 0.980 0.482 0.953 0.948
3 0936 0939 0916 0929 0974 0.987 0.319 0.968 0.753 0.963 0.957
4 0967 0.946 0945 0940 0955 0.993 0.368 0.980 0.696 0.966 0.963
5 0955 0936 0929 0928 0.966 0.994 0.490 0.987 0.727 0.962 0.960
6 0987 0979 0977 0982 0992 0.999 0.515 0.998 0.954 0.992 0.990
7 0966 0951 0975 0971 0969  0.966 0.500 0.988 0.911 0.969 0.966
8 0903 0.896 0864 0.857 0935 0974 0.467 0.929 0.536 0.955 0.951
9 0962 0960 0967 0974 0969  0.993 0.813 0.993 0.905 0.977 0.976
avg 0960 0952 0950 0.950 0968 0.977 0.508 0.982 0.727 0.973 0.970
Fashion-MNIST
Class OC-SVM .
RAW CAE VAE DAE LSA GT DAGMM GPND DSEBM Ours-NLL Ours-TQM,
0 0919 0908 0874 0.867 0916 0.903 0.303 0.917 0.891 0.922 0.917
1 0990 0.987 0977 0978 0983 0.993 0.311 0.983 0.560 0.958 0.950
2 0.894 0.884 0816 0.808 0.878 0.927 0.475 0.878 0.861 0.899 0.899
3 0942 0911 0912 0914 0923 0.906 0.481 0.945 0.903 0.930 0.925
4 0907 0913 0872 0.865 0.897 0.907 0.499 0.906 0.884 0.922 0.921
5 0918 0.865 0916 0921 0907 0.954 0413 0.924 0.859 0.894 0.884
6 0.834 0.820 0.738 0.738 0.841 0.832 0.420 0.785 0.782 0.844 0.838
7 0988 0984 0976 0977 0977 0.981 0.374 0.984 0.981 0.980 0.972
8 0903 0.877 0.795 0.782 0910 0.976 0.518 0.916 0.865 0.945 0.943
9 0982 0955 0965 0963 0984 0.99%4 0.378 0.876 0.967 0.983 0.983
avg 0928 0910 0.884 0.881 0922 0.937 0.472 0911 0.855 0.928 0.923

on MNIST test set (with digit 1 serving the nominal class). We use the network parameters
produced at every 20 epochs in training to generate each curve. We can see that, in the beginning
the nominal and novel data have a large region of overlap and after more training epochs they are
gradually separated. After about 20 epochs of training they can be clearly distinguished under
NLL, TQOM;, and TQM,, which indicates the effectiveness of these scoring functions. For TQM,,
the distribution of novel data is concentrated within a narrow region, which is near the boundary
of that of nominal data.
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Figure 4.1: All marginals of pre-image of training data in [0, 1]%4: 1) marginals at initialization;
and 2) marginals at 1000 epochs of training.
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Figure 4.2: All marginals of pre-image of test data in [0, 1]%4: 1) marginals at initialization; and 2)
marginals at 1000 epochs of training.
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Chapter 5

Conclusion

In this thesis, we have developed a general framework for neural novelty detection, motivated by
extending the univariate quantile function to the multivariate setting through increasing triangular
maps.

Our framework unifies and extends many existing algorithms in novelty detection. We adapted
the multiple gradient algorithm to obtain an efficient, end-to-end implementation of our framework
that is free of any tuning hyperparameters. We performed extensive experiments on a number of
datasets to confirm the competitiveness of our method against state-of-the-art alternatives.
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Appendix A

Datasets and network architectures

In this section, we briefly describe the datasets, the network architectures, as well as the hyper-
parameters that are used in our proposed algorithm. For all image datasets, the pixel values of
each image are scaled to [0, 1]. For non-image datasets, no extra preprocessing is applied. The
statistics of the datasets are summarized in Table A.1.

 MNIST [61]

— Dataset description: MNIST [61] includes 70, 000 grayscale images of numeric digits
from 0 to 9, each of size 28 x 28. There are 7, 000 examples per class. The training
set contains 60, 000 examples, and the test set contains 10, 000 examples.

— Network architecture: We use the same autoencoder as that in L.SA, and the dimension
of the latent vector is set to 64. The estimation network is based on SOS [35], which
contains multiple blocks each consisting of a SOS-flow layer, a normalization flow
layer and a reversing layer. The number of blocks is set to 1. In the SOS-flow
layer, we set £ = 5 and » = 4 in Eqn.(8) in [35]. All the parameters are generated
by a conditioner network, which contains one fully-connected layer: FC(724, 64,
none)-FC(64, c, none), where c is the number of the parameters in the SOS-flow layer.

— Optimization hyperparameters: The number of epochs is set to 1000, and training is
stopped after 100 epochs of non-decreasing loss. The size of each mini-batch is 256.
We use Adam with the learning rate 107°.

e Fashion-MNIST [62]
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— Dataset description: Fashion-MNIST includes 70,000 grayscale images of fashion
products in 10 classes. This dataset has the same image size and the structure of
training and test splits as in MNIST.

— Network architecture: same as that in MNIST.

— Optimization hyperparameters: same as those in MNIST.
 KDDCUP [63]

— Dataset description: KDDCUP dataset contains 125 dimensions in total. In this dataset,
20% of data are labeled as “normal” and the rest are labeled as “attack”. We treat
“normal” data as novel since they are minority.

— Network architecture: We use the same autoencoder as that in DAGMM except that the
dimension of the latent vector is set to 2. The structure of the autoencdoer is as follows:
FC(125,60,tanh)-FC(60,30,tanh)-FC(60,30,tanh)-FC(30,10,tanh)-FC(10,2,none)-FC(2,10,tanh)-
FC(10,30,tanh)-FC(30,60,tanh)-FC(60,125,tanh).

— Optimization hyperparameters: The size of each mini-batch is 1024. The learning rate
in Adam is 107°. Training is stopped after 100 epochs of non-decreasing loss.

* Thyroid [64]
— Dataset description: Thyroid dataset consists of three classes. We treat the hyperfunc-

tion class as the novel class and the rest as the nominal class.

— Network architecture: We remove the autoencoder and only use the same estimation
network as that in MNIST.

— Optimization hyperparameters: The size of each mini-batch is 1024. The learning rate
in Adam is 1073, Training is stopped after 100 epochs of non-decreasing loss.

Table A.1: Statistics of Datasets
Dimension Instance Classes Anomaly ratio

MNIST 784 70,000 10 0.9
Fashion-MNIST 784 70,000 10 0.9
KDDCUP 125 494,021 2 0.2
Thyroid 6 3,772 2 0.025
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Appendix B

Comparison between density and quantile
approaches

Theorem 1 In the univariate case, if the nominal distribution Fy is unimodal and symmetric w.r.t
the origin, then the density approach and the quantile approach achieve the same AUROC.

Proof: 1Tt is well-known that AUROC is equal to the probability of a random nominal example
being ranked higher than a random novel example, i.e.,

AUROC = Pr(S(Xj) > S(X1)), (B.1)

where X ~ Fj is nominal and X; ~ F} is novel, and S is the scoring rule.

For the density approach, we have S = f,, where f, = F{ is the density of the nominal
distribution. Thus,

AUROCy. = Pr(fo(Xo) > fo(X1)) = Pr(|Xo| < |Xi]), (B.2)

where the last equality follows from the unimodal and symmetric assumption on fj.

On the other hand, for the quantile approach, the scoring rule is S = —|Fy — %| (note the
negation since we assume the higher S is the more nominal it is). Thus, where again the last
equality is due to the unimodal and symmetric assumption on Fj,. |

Remark 3 There is nothing special about the origin: the same result holds if Fy is unimodal and
symmetric w.r.t any point c.
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Remark 4 We suspect a similar result holds for multivariate distributions as well. A natural
condition on f is that its contours are multiples of the (., ball. We need to show that the TOM
for such distributions are symmetric in some sense.

Theorem 2 [In the univariate case, if the nominal distribution Fy is uni-modal and symmetric,
then the density approach and the quantile approach lead to the same ROC curve.

Proof: Denote the novel data as positive and nominal data as negative. For the quantile approach,
given a threshold ¢, the set of data identified as novel can be characterized by {z : |Fy(z) — 1| >
t,}. In contrast, for the density approach, given a threshold ¢, the identified novel data can be
characterized by {z : — fo(z) > t4}, where fo(x) is the density of the nominal distribution. For
both cases, the left hand side of the inequality represents the scoring function, and the higher the
value of the scoring function the more likely the data being identified as novel.

In an ROC curve, each point is associated with a threshold. Therefore, to prove the result it
suffices to show that there exists a one-to-one correspondence between ¢, and ¢, that leads to the
same partition of the novel and nominal regions under the quantile and density approach respec-
tively. Obviously, if Fy is uni-model and symmetric, given ¢, we can set tq = — fo(F " (t, + 1))
and the partition is the same. |

Remark S In general the above conclusion cannot be extended to the multivariate case. For
example, assume that the nominal data follows the 2-D standard Gaussian. Then, under the
density approach, the boundary between novel and nominal data is an ellipsoid; while under the
quantile approach, the boundary is square (assuming we employ the infinity norm scoring rule).
The corresponding experimental results are shown below.

B.1 1-D: uni-model and symmetric model

Assume that the nominal data follows the standard univariate Gaussian distribution N(10,1).
Consider two types of novel data: I) novel data are far away from nominal data, say following
N(15,1); and IT) novel data are near nominal data, say following N (12, 1). For both cases, the
density and quantile methods have exactly the same ROC curve, confirming our theoretical results
above. In particular, for the first case, the curve goes vertically from (0,0) to (0, 1), and then
horizontally to (1, 1), indicating perfect performance in anomaly detection. See Figures B.1 and
B.2.
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Figure B.1: Type I novel data. 1) distribution of test data; 2) distribution of pre-image in [0, 1] for
nominal data; 3) distribution of pre-image in [0, 1] for novel data; and 4) ROC curve.
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Figure B.2: Type Il novel data. 1) distribution of test data; 2) distribution of pre-image in [0, 1]
for nominal data; 3) distribution of pre-image in [0, 1] for novel data; and 4) ROC curve.

B.2 1-D: mixture model

Assume that the nominal data follows the Gaussian mixture model 0.7N(0,2?%) 4+ 0.3N (10, 1).
Consider two types of novel data: I) novel data is far away from nominal data, say following
N(15,1); and II) novel data is surrounded by nominal data, say following N (5, 1). For the first
case, both methods have perfect performance; while for the second case, the quantile method is
dominated by the density method. See Figures B.3 and B .4.

B.3 2-D: uni-modal and symmetric model

Assume that the nominal data follows the 2-D Gaussian distribution with mean [0, 0] and co-
variance matrix [1,0;0,1]. Consider two types of novel data: I) novel data is far away from
nominal data, say following the 2-D Gaussian distribution with mean [5, 5] and covariance matrix
[1,0;0,1]; and II) novel data is near nominal data and follows the 2-D Gaussian distribution
with mean [2, 2| and covariance matrix [1,0; 0, 1]. For the first case, both methods have perfect
performance; while for the second case, the density method is slightly better than the quantile
method. See Figures B.5 and B.6.
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Figure B.3: Type I novel data. 1) distribution of test data; 2) distribution of pre-image in [0, 1] for
nominal data; 3) distribution of pre-image in [0, 1] for novel data; and 4) ROC curve.
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Figure B.4: Type Il novel data. 1) distribution of test data; 2) distribution of pre-image in [0, 1]
for nominal data; 3) distribution of pre-image in [0, 1] for novel data. The novel data are projected
around the middle instead of at the ends; and 4) ROC curve.

B.3.1 2-D: donut example

Let us consider the donut distribution’

350

0, otherwise

Lo ifl<a2®+42<4

pzr,y) = (B.3)

Under the increasing triangular map Q, the pre-images of x and y in [0, 1]* are F'(z) and F(y|z),
respectively, where F'(-) denotes the cumulative distribution function.

The marginal density of x can be represented by

=(Vi-22-V1—-2?), if —l<z<1
p(r) = § =4 — a2, if —2<z<—-lorl<z<2. (B.4)
0 otherwise

'We thank an anonymous reviewer for suggesting this example.
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Figure B.5: Type I novel data. 1) ROC curve; 2) density of nominal test data; 3) density of novel
test data; 4) pre-image of nominal data in [0, 1]%; and 5) pre-image of novel data in [0, 1]°.
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Figure B.6: Type Il novel data. 1) ROC curve; 2) density of nominal test data; 3) density of novel
test data; 4) pre-image of nominal data in [0, 1]%; and 5) pre-image of novel data in [0, 1]°.

Then F'(z) can be calculated as follows:

(

0, ifo < -2
%(§m+2arcsm§+w), if —2<zr<-1
Flr)=4q & (3r+2V4—a? - 2V1 — 22+ 2arcsin £ — Larcsinz), if —1<z<1
%(g—i—%M—i—Qarcsin%), ifl<z<?2
[ 1, otherwise
(B.5)

Given z, y is uniformly distributed.

1. f =2 <x < —1lorl <z <2, the conditional density p(y|z) can be represented by

pole) = { A if -vVi-@<y<vi-a?

0, otherwise ®-6)
and the corresponding conditional CDF
0, ify < —4 — 22
Fyle) =  L2E2if —VI— 22 <y <VA—a?. (B.7)

1, otherwise
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Figure B.7: Donut example: 1) samples of nominal and two types of novel data; and 2) analytical
pre-images in [0, 1]? for nominal and novel data.

2. If -1 <2 <1,

pylz) = VT if —Vi—22<y<-—V1-2lorvV1I—22<y<4—2a2
0, otherwise ’
(B.8)

and the corresponding conditional CDF

0, ify < —v4 — 2?2
N .
2(4\/?12—471\/72), lf—\/4—$2§y<—\/l—l’2
F(ylz) =< 3, if —V1I—22<y<+V1-—2% . (B.9)
/122 .
%4-2(4\/:1!_7&82—1_1\/?2), 1f\/1—$2§y<\/4—$2
1, otherwise

(

\

On Figure B.7 (left) we show the random samples of the nominal and novel data, and on
Figure B.7 (right) we show the pre-images of these samples in the square [0, 1]? using the derived
analytical formula. It can be seen that the outer novel data is projected onto the boundary of the
square hence can be identified using TOM,,. The inner novel data, however, cannot be identified
easily using the current quantile-based scoring functions. To improve the performance we might
need some prior knowledge of such novel data and then adjust the scoring function accordingly.

In contrast, the density approach would work well by setting a density threshold between 0 and
1
g.
In Figure B.8, instead of applying the analytical formula we use an SOS-based estimation
network to learn the TQM. The observation is generally consistent with that derived using the

analytical formula.
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Figure B.8: Donut example: The density and the quantile map are learned by SOS. (1) pre-image
of nominal training data in [0, 1]?; 2) pre-image of test data in [0, 1]?; 3) density of nominal
training data; and 4) density of test data.
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Figure B.9: Donut example: In the first row, the density and the quantile map are learned by SOS:
(1) pre-image of nominal training data in [0, 1]%; 2) pre-image of test data in [0, 1]; and 3) density
of test data. In the second row, the density and the quantile map are learned by MAF. The last plot
shows the comparison of ROC curves.

B.3.2 Discussion

The quantile and density methods apply different scoring functions to identify novel data. Specifi-
cally, under the density method data with a low density (or log-likelihood) is deemed novel, while
under the quantile method, for example, data projected to the boundary regions of the hypercube
[0, 1] is deemed novel. A main advantage of the quantile method is that by checking whether data
projected onto [0, 1]¢ is uniformly distributed we can tell whether the quantile map is estimated
successfully. In contrast, for the density method, generally it is difficult to assess the accuracy
of the estimated density. To give an example, consider the donut example in Section B.3.1 and
assume the outer data as novel. In Figure B.9, we show the results when the TQM Q is learned by
SOS and MAF [65], respectively. By projecting data onto [0, 1]? (using the inverse TQM), we
can conclude that SOS learns a better quantile map and indeed the corresponding ROC curve

44



dominates that under MAF.

We also point out that under the current quantile thresholding rules (see §4.1.1) the identified
nominal region is generally (path) connected, due to the increasing requirement we impose on
TQM. Therefore, provided that nominal data follows some multi-modal distribution and novel
data is located between different modes, as the shown example of 1-D mixture model in §B.2,
the current quantile scoring rules would not work well. This reveals the importance of learning a
(unimodal) hidden representation in our framework (2.3). It would be interesting to design new
quantile thresholding rules to induce disconnected nominal region.

45



	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Novelty Detection as One-Class Classification
	Formulation
	Outline
	Contributions

	General Framework for Novelty Detection
	Multivariate Generalization of the Quantile Function
	Transformation interpretation of the Quantile Function
	Triangular Quantile Map
	Other Multivariate Quantile Function

	Framework for Novelty Detection based on the TQM
	Novelty Detection Rules
	Density Scoring Rule
	Quantile Scoring Rule

	Advantages of Our General Framework

	Estimating TQM Using Deep Networks
	Details of Our Implementations
	MGDA for auto-tuning hyperparameters

	Evaluation
	Experimental Settings
	Variants of Our Method
	Datasets and Competitor Algorithms
	Performance Metrics

	Comparing Variants of Our Method
	Comparing MGDA with two-stage training strategies
	Comparing with Baselines
	Visualization

	Conclusion
	References
	APPENDICES
	PDF Plots From Matlab
	Comparison between density and quantile approaches
	1-D: uni-model and symmetric model
	1-D: mixture model
	2-D: uni-modal and symmetric model
	2-D: donut example
	Discussion



