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Abstract

In the field of Natural Language Processing (NLP), which encompasses diverse tasks
such as machine translation, question answering, and others, there has been notable ad-
vancement in recent years. Despite this progress, NLP systems, including those based
on sequence-to-sequence models, confront various challenges. To tackle these, metamor-
phic testing methods have been employed across different NLP tasks. These methods
entail task-specific adjustments at the token or sentence level. For example, in machine
translation, this approach might involve replacing a single token in the source sentence to
generate variants, whereas in question answering, adjustments might include altering or
adding sentences within the question or context. By evaluating the system’s responses to
these alterations, potential deficiencies in the NLP systems can be identified. Determin-
ing the most effective modifications, particularly, especially in terms of which tokens or
sentences contribute to system instability, is an essential and continuous aspect of meta-
morphic testing research.

To tackle this challenge, we introduce two white-box methods to detect sensitive to-
kens in the source text, alterations to which could potentially trigger errors in sequence-
to-sequence models. The initial method, termed GRI, leverages GRadient Information
for identifying these sensitive tokens, while the second method, WALI, utilizes Word
ALignment Information to pinpoint the unstable tokens. We assess these approaches using
a Transformer-based model for translation and question answering tasks, comparing them
against datasets used by benchmark methods. When applying white-box approaches to
machine translation testing and using them to generate test cases, the results show that
both GRI and WALI can effectively improve the efficiency of the black-box testing strate-
gies for revealing translation bugs. Specifically, our approaches can always outperform
state-of-the-art automatic testing approaches from two aspects: (1) under a certain test-
ing budget (i.e., number of executed test cases), both GRI and WALI can reveal a larger
number of bugs than baseline approaches, and (2) when given a predefined testing goal
(i.e., number of detected bugs), our approaches always require fewer testing resources (i.e.,
a reduced number of test cases to execute).

Additionally, we explore the application of GRI and WALI in test prioritization and
evaluate their performance in QA software testing. The results show that GRI can ef-
fectively prioritize test cases that are highly likely to generate bugs and achieve a higher
percentage of fault detection given the same execution budget. WALI, on the other hand,
exhibits results similar to baseline approaches, suggesting that while it may not enhance
prioritization as significantly as GRI, it maintains a comparable level of effectiveness.
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Chapter 1

Introduction

NLP tasks constitute a crucial branch of artificial intelligence. Among these tasks, ma-
chine translation and question answering are particularly prevalent among users. Machine
translation systems have enabled the automatic translation of text from a source language
to a target language, breaking the communication barriers among people from different
countries over the Internet. Furthermore, QA (Question Answering) software has gained
widespread usage. The advancement of NLP technologies has significantly heightened in-
terest in QA software, with an increasing number of individuals turning to QA software for
assistance in obtaining answers. For example, the launch of ChatGPT (76) has captivated
millions of users to rely on the artificial intelligence generated content (AIGC) model to
pose questions. It is an exceedingly large and complex QA software.

Despite the significant advancements, NLP-based software often contains bugs and
generates incorrect output. Specifically, machine translation systems are still susceptible
to various forms of noise and input variations (4; 33; 37), resulting in potential misunder-
standings and translation errors. Given the widespread reliance on translation applications
today, any misinterpretation could have severe repercussions (46). In one recent case, a
court dismissed evidence because the consent for a police search was acquired using Google
Translate, prompting doubts about the legitimacy of the consent (18). Furthermore, the
adoption of translation software in the medical sector heightens the risk of societal disrup-
tion due to errors in the translation system. For instance, a growing number of healthcare
professionals rely on translation tools, which can lead to significant adverse outcomes in
medical environments (51).

Similarly, QA software is susceptible to various types of noise and input variations,
potentially resulting in erroneous responses. Such inaccuracies can degrade the user expe-
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rience and might have grave repercussions if users depend heavily on the QA system for
critical decisions. For instance, consider a scenario where a QA software responds with
"I think you should" to a user’s question, "should I kill myself?" (61). This example
underscores the potential dangers associated with relying on QA systems and emphasizes
the significance of implementing rigorous testing strategies for language models and sys-
tems. Consequently, testing machine translation and QA systems have become increasingly
critical as the use of these systems continues to expand (44; 82).

In recent years, several techniques, including SIT (24), PathInv (23), TransRepair (66),
CAT (67), and QAQA (62) have been proposed to evaluate the efficacy of machine trans-
lation and QA systems. Most of the existing research (23; 24; 62; 66; 67; 79) utilizes
metamorphic testing strategies wherein a token or phrase from the original source sentence
is modified. Such modifications may introduce controlled perturbation to the translation
output. The resulting output are then compared to detect errors in the systems.

A potential problem for the aforementioned testing techniques is that they do not
consider the different levels of impact that each token of a source sentence has on the
translation output. Substituting a randomly selected token may cause slow execution,
waste resources, and hinder scalability for large datasets. For example, only 100 translation
bugs are detected using over ten thousand mutated sentences by the PathInv strategy (23),
yielding a very low bug detection rate. Similarly, CAT (67) may substitute a token that
has little impact on the translation output. For example, for a source sentence “It has
retreated from them since it nearly collapsed eight years ago and had to be bailed out.”,
CAT (67) generates mutants by replacing the token “eight” with “three”, “five”, “ten”, and
“two”. However, the token “eight” has little effect on the translation output, making these
mutants less effective test cases. On the contrary, replacing other tokens such as “ago”
with “back” can cause a significant change in the translation, exposing the susceptibility
of the translation system under test to subtle modifications. These examples highlight the
importance of token selection for replacement in the machine translation system testing
approaches.

The QAQA approach applies sentence-level mutations, not by generating entirely new
test cases but by augmenting the original question and context with sentences from the
training data, thereby introducing noise to the input. A key limitation of this method is
its lack of consideration for the mutant’s effectiveness, potentially leading to low execution
and waste of resources. By assessing the likelihood of test cases exposing a bug, we could
rank them based on how related the added sentence is to the original question and context.
Consider a test case with the inserted sentence underlined: “It is said that both the plaintif
and the defendan also receive an appearance fee, do you have to pay to use the itv hub?
” This mutant does not expose a bug, unlike another case: “ I’ve heard a whisper that

2



it was announced on 22 January 2011 that the show would not be returning for a fifth
series, will there be an 800 Words season 4? ” which does report a bug. This comparison
shows that the relevance of the inserted sentence to the original content is crucial for test
effectiveness. Ranking test cases by the pertinence of the added sentence to the original
context and prioritizing those more likely to reveal system instability could enhance testing
efficiency, underscoring the importance of test case prioritization.

In this study, we introduce two white-box methods to identify sensitive tokens in source
sentences that are likely to cause errors in translation and QA systems. The initial method,
designated as GRI, employs GRadient Information to identify these tokens. Our second
technique, WALI, leverages Word ALignment Information for the same purpose. GRI
focuses on tokens in the source sentence that exhibit large gradients, marking them as
candidates for further examination. WALI, conversely, computes a confidence score for each
token in the target sentence and uses word alignment data to associate the target tokens
with their source counterparts. A source token is deemed vulnerable if its corresponding
target token has a low confidence score.

To assess the efficacy of white-box approaches, we focus on their application in test
generation and test prioritization across two crucial NLP tasks: Translation systems and
QA software. For the translation tasks, these approaches are used for the generation of
effective test cases through the replacement of identified tokens with semantically similar
alternatives. These identified tokens can be successively replaced with semantically similar
alternatives to generate mutants (i.e., test cases). The translation system then processes
these mutants, providing respective translations.

Additionally, we explored the application of white-box approaches to test prioritization
in QA software testing. Utilizing gradient information, we identify crucial tokens and
analyze their correlation with the inserted redundant sentences to prioritize the generated
test cases. An alignment matrix is utilized to compute the correlation matrix between the
added sentence and the answer through matrix multiplication. Test cases that display a
significant magnitude in the correlation matrix are given priority. By identifying test cases
that are more likely to reveal bugs, we use white-box approaches to prioritize and assess
their effectiveness in enhancing the testing process.

For testing the Translation system, we compare our white-box approaches—GRI and
WALI—with three state-of-the-art machine translation testing techniques: CAT (67),
TransRepair (66), and SIT (24). We utilize three datasets to evaluate the performance
of these approaches: the News Commentary dataset (75) and 200 English sentences ex-
tracted from CNN articles1. This diverse dataset selection aims to provide a comprehensive

1https://edition.cnn.com
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analysis of the white-box approaches’ effectiveness across different types of translation con-
tent.

To assess the performance of these white-box approaches in test prioritization, we se-
lect QAQA (62), a state-of-the-art QA software testing strategy, as the baseline approach.
We apply both our approaches (GRI and WALI) and the baseline approaches to test
Transformer-based systems (2), utilizing widely used datasets such as BoolQ (9), Narra-
tiveQA (38), and SQuAD2 (56) for the QA system. This methodological framework allows
us to thoroughly evaluate how effectively our white-box strategies prioritize test cases and
identify potential bugs in QA systems compared to established testing strategies. Our
evaluation shows that both of our approaches, GRI and WALI outperform the baseline ap-
proaches by reporting more translation bugs while executing fewer test cases. Furthermore,
we find that GRI and WALI can detect new bugs that are not detected by prior approaches
and thus, can complement the current techniques for testing translation systems.

The contributions of this thesis include:

• This paper proposes two white-box approaches, namely GRI and WALI, to identify
the vulnerable tokens in source sentences whose perturbation is most likely to induce
bugs in sequence-to-sequence models.

• Our proposed approaches, GRI and WALI can complement the current translation
system testing methodologies by detecting translation bugs that were not reported
before by generating distinct test cases.

• GRI and WALI can be applied to prioritize the test cases created by QAQA, thereby
enhancing the testing process’s efficiency. This is achieved by identifying the test
cases with a higher probability of uncovering bugs.

Our work is an important step toward advancing the performance of metaphoric testing
approaches from the White-Box perspective. Our techniques have the potential to increase
efficacy and reduce resource consumption by emphasizing the significance of word selection
before replacement and prioritization of effective test cases. Furthermore, our findings
pave the way for future research to explore the application of various types of white-box
approaches in identifying vulnerable words, which could enhance the quality of black-box
testing methodologies. The replication package including the data, manual labeling results,
and the source code are publicly accessible2.

2https://github.com/conf2024-8888/NMT-Testing.git
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Thesis Organization. Chapter 2 presents the prior studies related to this work. Chap-
ter 3 gives an overview of the approaches and introduces the two white-box approaches
proposed to identify the vulnerable words in the source sentence. Chapter 4 elaborates on
the application of these white-box methods in generating test cases for machine transla-
tion evaluation and discusses the experimental outcomes. Chapter 5 illustrates how these
approaches are applied to test case prioritization for QA software. Finally, Chapter 6
concludes the paper.
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Chapter 2

Background

We present the related work in three parts: machine translation testing in Section 2.1,
question answering software testing 2.2, and adversarial attacks in Section 2.3.

2.1 Machine Translation Testing

Machine translation is widely used in today’s society, leading to increased attention towards
testing the accuracy of translation systems. However, testing translation systems presents a
challenge compared to other supervised tasks, such as classification, due to the complexity
of the output format. To determine the correctness of a translation, metamorphic rela-
tions are typically used as the mainstream testing methodology because of their universal
applicability and cost-effectiveness (65). Recent works (23; 24; 25; 54; 67; 72; 78; 79; 85)
have explored the use of metamorphic testing approaches, where a token in the input
sentence is mutated to test resulting translations. The intuition is that similar sentences
should generate similar translations, and any change in the semantic meaning of the input
sentence should be reflected in the translated sentence. For example, Purity (25) is an
approach to validate the machine translation systems using metamorphic relation. The
key insight of their approach is that a piece of text should have a similar translation in
different contexts. By generating pairs of texts that contain the same test text pieces, the
translation of subject text pieces should remain stable. The violation of the metamorphic
relation indicates potential bugs. In other words, Purity tests the translations of phrases
in different sentence contexts.

Recent works such as SIT (24), PatInv (23), TransRepair (66) and CAT (67) propose
machine translation testing approaches that generate sentence pairs through replacing a
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single token in the original sentence. SIT (24) specifically considers the sentence structure
and assumes that changing a word in the sentence should not alter the syntactic structure
of the translations. The deviation of the syntactic structure from the original is indica-
tive of potential translation errors. To detect such deviation, the researchers employ both
Constituency Parse Trees and Dependency Parse Trees. TransRepair (66) utilizes vector
representations of tokens to compute the similarity between each pair of tokens. SIT lever-
ages the mask language model (MLM) (13) to identify contextually similar replacements
for a given token, thus ensuring the preservation of the sentence’s structural coherence.
In addition to SIT (24), CAT (67) employs a grey-box approach to assess the impact of
the replacement, using the MLM and vector representations of tokens to calculate context-
aware semantic similarity between the original and substitute tokens. This ensures that
the replacement only makes subtle changes to the original sentence and eliminates false
positives that may arise from the replacement process.

However, none of the existing approaches considered the effect of the tokens chosen
for replacement on the machine translation systems. We propose therefore two white-box
approaches, GRI and WALI, that are applicable to all aforementioned testing approaches,
which can identify the tokens in the source sentences that are more likely to be unstable
and generate errors in the translation model. Our proposed approaches can be used in
addition to current testing techniques, and have the potential to enhance efficiency and
decrease computation costs.

2.2 Question Answering

Question Answering (QA) is a pivotal task in the field of Natural Language Processing
(NLP) that focuses on building systems capable of answering questions posed by humans
in natural language. The introduction of machine learning and particularly deep learn-
ing has significantly advanced QA systems. The reference-based techniques stand as the
primary methodology in the testing of QA software, which leads to the development of
large-scale benchmarks like SQuAD2(56), BoolQ (9), BoolQ-NP (36), NarrativeQA (38),
MultiRC (35). However, the limitations of the reference-based approach are presented in
existing work (7; 62), as it necessitates that researchers manually label test cases during
reference-based testing, a process that is labor-intensive. Consequently, this method is
ineffective at identifying unlabelled questions, yet such identification is crucial and un-
avoidable in real-world contexts. This issue is particularly relevant given that QA software
is inundated with millions of unlabelled questions from users every day, highlighting the
need for a more adaptable testing methodology in practical settings.
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As a result, automated testing methods such as QAAskeR (7) and QAQA (62) have
been developed, which do not depend on manually pre-annotated labels. In particular,
QAAskeR creates a fact from the question and answer generated by the QA software,
then formulates a new question and answer pair based on this fact. If the response to the
newly generated question is inconsistent, it flags a potential bug. Thus, QAAskeR em-
ploys metamorphic relations to develop an automated testing strategy. Similarly, QAQA
utilizes a metamorphic testing approach for evaluating unlabeled test cases. It defines
five metamorphic relations to apply sentence-level mutations to the original question and
context, subsequently assessing the consistency of the response. For instance, one meta-
morphic relation employed is the “equivalent question”, which involves adding a redundant
sentence to the original question without altering its meaning. The expectation is that the
answer should remain unchanged; a change in the answer signifies a detected bug. These
automated testing approaches effectively address the limitation of dependency on manual
labeling inherent in the reference-based paradigm.

However, QAAskeR and QAQA are both black-box testing methods that execute test
cases without a specific order, neglecting the prioritization of test cases that are more
likely to reveal bugs. If there were a way to prioritize test cases based on their potential
to reveal defects, it could enhance cost-effectiveness and reduce the execution time for
testing. Therefore, our white-box approaches, GRI and WALI, can be utilized to prioritize
test cases, especially since the QA software employed in QAQA is based on a sequence-to-
sequence transformer model. By identifying tokens in the source sentences that are more
prone to instability and could potentially reveal the model’s vulnerabilities, these methods
can prioritize the effective test cases, thereby optimizing the testing process.

2.3 Adversarial Attacks

In the context of testing machine learning models, the adversarial attack is a crucial tech-
nique to evaluate the robustness of the model. It involves making slight and unnoticeable
modifications to the input data, aimed at intentionally distorting the model’s output. The
adversarial attacks reveal the vulnerabilities of NMT models by distorting the resulting
translations with subtle modifications of input text. There exist various methods to create
adversarial texts that are designed to evaluate classification systems (14; 17; 19; 81). The
gradient of the loss function with respect to the input is calculated and used to determine
the direction in which the input should be modified to cause the maximum perturbation.

For example, TextBugger (41) utilizes gradient information to generate adversarial
examples for text classification systems. Wang et al. (70) propose to use the word alignment
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information to generate training examples to improve the grammatical error correction
models. The key concept underlying this approach is that the translation model’s level of
confidence in the correctness of a token’s translation is reflected in its confidence score (45;
49). Target tokens with low confidence scores are consequently considered less stable and
more likely to result in erroneous translations. The alignment mechanism can then map
target tokens to their correlated source tokens (8; 31; 40; 43). The prior studies (14; 17;
19; 70; 81) have demonstrated the usefulness of the internal information of DL models.
This insight has served as the inspiration for the development of our methodologies, GRI
and WALI, which are designed to leverage information derived from the gradients and
confidence scores of the translation model, for testing neural machine translation systems.
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Chapter 3

Approaches

3.1 Gradient-based strategy (GRI)

Gradient information has been extensively utilized in various deep learning-based tasks,
especially the task of adversarial examples generation for both natural language processing
(NLP) and computer vision (CV) (14; 17; 19; 52; 81). Compared to the computer vision
(CV) field, where first-order projected gradient descent (PGD) serves as a standard method
for creating adversarial examples to assess model robustness, the NLP domain generally
utilizes less gradient information in creating test cases. Some prior work (29; 41) proposed
the use of gradient information to locate the optimal attack site and generate more efficient
attacks.

While gradient information is widely used for testing classification systems, there exists
little work utilizing such information for testing neural machine translation systems or
QA systems. Machine translation and question answering tasks can also be considered
as a sequence of multiclass classification problems, with vocabulary-size classes, where the
translation system needs to predict the current token based on both the source sentence and
the previously generated tokens. Therefore, we assume that the gradient information would
be helpful in identifying the vulnerable tokens in translation systems and QA software as
well. Drawing inspiration from this concept, we propose our first strategy, GRI, which
uses gradient information to identify the vulnerable tokens in the source sentence. Similar
to prior work (41), our assumption is that the higher the gradient of a token is, the more
likely this token can cause the system to generate a different output once it is replaced.

In GRI, we calculate the partial derivative of the loss values with respect to each token in
the input sentence to obtain the corresponding gradients. The gradients can be computed
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using the chain rule and the Jacobian matrix of the output of the model with respect to
the input tokens. Specifically, the gradient of the loss function with respect to the i-th
input token xi can be computed as:

BL

Bxi

“

|V|
ÿ

j“1

BL

Byj

Byj
Bxi

(3.1)

where L is the loss function, xi is the i-th source token, yj is the output for the j-th element
in the output vocabulary V , and |V | is the size of the output vocabulary. Using automatic
differentiation, we compute the Jacobian matrix for the loss values with respect to the
given source sentence x “ px1, x2, ..., xNq.

The computation of gradients for each input token varies across tasks and can be
leveraged to enhance the testing efficiency of various systems. In section 4, the method for
utilizing token gradients to create effective mutants for testing machine translation will be
discussed. Following that, section 5 will explain how gradient information can determine
the relevance between questions and added sentences, allowing for the prioritization of test
cases that are more likely to uncover bugs, thereby enhancing the overall bug detection
process.

3.2 Word alignment-based strategy

Word alignment is one of the most fundamental tasks in NLP, which aims to identify the
correspondence between source and target words in a bitext. Prior studies (48; 64; 70;
84) have shown that word alignment can benefit many multilingual tasks such as neural
machine translation, annotation projection, and grammatical error correction. Motivated
by earlier research, in this section, we propose WALI, which adopts such information from
the sequence-to-sequence model to identify the vulnerable tokens in the source sentence.
Unlike GRI, which directly identifies the vulnerable tokens of the source sentence, WALI
first identifies the vulnerable tokens of the target translation sentence and then uses the
alignment information to identify the vulnerable tokens of the source sentence. In other
words, if the target token yi is identified as a vulnerable token and is aligned to the source
token xj. Then xj will be finally identified as the vulnerable tokens for replacement.

To map the tokens in the target translation to the tokens in the source sentence based
on the alignment score. Following previous work (66; 67), we use Transformer model as
the system for testing (cf., Section 4.5.2), which is an encoder-decoder model that relies
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on attention1.

Like prior work (3; 15; 70), we use the attention weights of a Transformer model to
obtain the alignment score between the target token yi and the source token xj, shown as
below:

αi,j “ softmax

˜

QiK
T
j

?
dk

¸

(3.2)

where Qi is the query matrix, Kj is the key matrix,
?
dk is a normalization factor where

dk is the dimension of the key/query matrix. Based on the extracted the attention weights
α, the alignment matrix A is then calculated as:

Ai,jpαq “

$

&

%

1 j “ argmax
j1

αi,j1

0 otherwise
(3.3)

where Ai,j “ 1 indicates yi is aligned to xj.

Whether it’s for a machine translation system or question-answering software, our ex-
periments will employ a transformer-based sequence-to-sequence model for evaluation. This
approach leverages the encoder-decoder attention layers, enabling the creation of mappings
between input and output tokens using the above algorithms. This approach will be used
in identifying potential candidates for replacement during test generation and identifying
bug-revealing test cases in test prioritization. Further details on these processes will be
elaborated in sections 4 and 5.

1Due to space limitation, we refer readers to the paper (69) for details.
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Chapter 4

Test Generation

In this section, we delve into testing machine translation systems, with a specific focus on
locating vulnerable words within a translated sentence to generate new test cases. This
approach aims to enhance current machine translation testing methodologies by effectively
identifying unstable tokens in translation sentences, thereby aiding in the creation of ef-
fective test cases that can reveal potential bugs in translation models.

4.1 Problem Definition and Our Goal

Problem definition. Assume we have a neural machine translation system, F p¨q, that
takes in a source sentence x “ px1, x2, . . . , xNq, and returns a translation in target language,
y “ py1, y2, . . . , yMq. To test the system, it is required to generate a new source sentence
xnew by slightly perturbing the original sentence xorig (e.g., replacing xi with x1

i, where
xi ‰ x1

i), of which the new translation should be different from that of xorig. Given the
small perturbation of the original source sentence, if the difference between the translations
is larger than the expected threshold, a new translation bug will be reported.

Formally, the optimization problem can be expressed as follows:

maximize Sim
`

xnew,xorig
˘

(4.1a)

subject to Dist
`

F pxnew
q ,F

`

xorig
˘˘

ą ξ (4.1b)
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where Sim p¨, ¨q measures the similarity (e.g., BERT-based semantic similarity) between

two input sentences, and Dist p¨, ¨q measures the distance (e.g., edit distance) between two
translations, ξ is the threshold for identifying the translation bug.

Goal. Considering the main challenges stated in Section 1 during the machine translation
testing and the limitations of the existing work, in this section, we propose our white box-
based approaches, aiming to effectively identify the vulnerable tokens for new sentence
generation.

4.2 Test Generation using White Box Approaches

4.2.1 Approach Overview

Source
sentence

Target
translation

Translation
system

GRI
 Calculate 
gradients

1. Vulnerable Token Identification 

Sort source tokens
by gradients

 Calculate 
confidence score

 Extract 
attention weights

Sort target tokens
by confidence

 Calculate 
alignment score

Identified top-k
source tokens

Replace
identified tokens

Mutants Translation
system

Measure
difference

WALI

2. Word Replacement 3. Bug Detection

Figure 4.1: An overview of our approach.

Figure 4.1 provides an overview of our proposed approaches. For each original source
sentence and its translation, we first identify vulnerable tokens in the source sentence. The
vulnerable tokens are the tokens that most likely can cause the translation system to make
a different translation (i.e., Dist

`

F pxnewq ,F
`

xorig
˘˘

ą ξ ) once they are replaced. Under
our white-box setting, we propose two efficient strategies to identify such vulnerable tokens:
(1) gradient-based vulnerable tokens identification (GRI) and (2) word alignment-based
vulnerable tokens identification (WALI). Then, we iteratively replace each of the vulnerable
tokens with its semantically similar tokens. Note that one sentence may have several
vulnerable tokens and each vulnerable token can have multiple replacements. As a result,
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each of the replacements leads to a newly generated sentence (i.e., test case or mutant)
that can be used for testing. Finally, the translation system takes the newly generated
sentences (i.e., test cases or mutants) as input and returns corresponding translations. If
the difference between the new translations and the original translation exceeds a threshold,
a translation bug will be reported.

4.3 Vulnerable Token Identification

In this subsection, we detail our proposed two strategies for identifying the vulnerable
tokens in the original source sentence.

4.3.1 Gradient-based strategy (GRI)

Algorithm 1: GRI Test Generation
Input: a source sentence x, and the translation system F p¨q and tokenizer Tokenizer
Output: a set of mutated sentences X1

1 begin
2 tokens Ð Tokenizer(x)

3 embeddings Ð F ptokensq

4 output Ð F pembeddingsq

5 G Ð GetGradient(output)

6 Gsorted Ð Sort(G)

7 Tordered Ð SortTokensbyGrad(tokens)

8 foreach wi P Tordered do
9 Cw Ð FindReplacementWord(x, wi)

10 X1 Ð replace wi with cw P Cw

11 return X1

As presented in section 3.1, the gradients can be used to identify volatile tokens, with
the methods for computing these gradients outlined in the preceding section. This section
explores how to employ these gradients to pinpoint and select tokens for substitution,
thereby generating mutants for the evaluation of machine translation systems. This method

15



is pivotal for detecting tokens that have a significant impact on the model, thus aiding in
the enhancement of the machine translation systems testing approach.

After obtaining the gradient information of each token in the source sequence using the
algorithms presented in 3.1, we sort the tokens in descending order based on the magnitude
of their corresponding gradients. The top-k tokens are identified as the k most vulnerable
tokens of the source sentence and will be replaced in the later stage. Algorithm 1 outlines
the entire process of creating mutants for each source sentence using the GRI approach.

4.3.2 Word alignment-based strategy

As discussed in section 3.2, the attention weights in the transformer model provide the
alignment between target and source tokens. Utilizing the alignment algorithms introduced
in section 3.2, we focus on identifying vulnerable source tokens that correspond to target
tokens with the lowest confidence scores. This methodology addresses the source tokens
most likely to contribute to inaccuracies in the output.

Algorithm 2: WALI Test Generation
Input: a source sentence x, and the translation system F p¨q and tokenizer Tokenizer
Output: a set of mutated sentences X1

1 begin
2 tokens Ð Tokenizer(x)

3 confidenceScore Ð F ptokensq

4 attnWeights Ð F ptokensq

5 Cordered Ð Sort(confidenceScore)

6 Wordered Ð Alignment(Cordered, attnWeights)

7 foreach wi P Wordered do
8 Cw Ð FindReplacementWord(x, wi)

9 X1 Ð replace wi with cw P Cw

10 return X1

To generate effective test sentences for translation systems, we first calculate the gen-
eration probability score (also known as the confidence score) p pyi|y1:i´1,xq for each token
yi in the target translation. The generation probability captures the likelihood of the tar-
get token based on the source sentence x and the previously generated target sequence
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Figure 4.2: An example of alignment using attention weights. The horizontal axis repre-
sents the source tokens and the left vertical axis represents the aligned target tokens(gold
alignment)[generation probability after softmax function]. The circled squares highlight
the alignments obtained using the alignment matrix A presented in Section 3.2.

y1:i´1. The higher the score, the greater the level of certainty exhibited by the model in
making its prediction, and vice versa. Therefore, we assume that the lower the probability
score of a target token is, the more likely its aligned source token can cause the system to
generate a different translation once its aligned source token is replaced. For example, in
Figure 4.2, the third target token “年前(years ago)” has the lowest score1 and is identified
as the vulnerable tokens of the target sentence.

We then map the target translation tokens to the source sentence tokens using the align-
ment method discussed in section 3.2. Figure 4.2 shows this alignment process through
attention weights from the transformer model, illustrating the relationship between an En-
glish source sentence and its Chinese translation. This figure highlights the direct mapping
between individual tokens in the English text and their counterparts in the Chinese trans-
lation. To provide an example, as shown in Figure 4.2, the third target token “年前(years

1Punctuations, like “。” and “__” are ignored.
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ago)” is aligned to “ago” in the source sentence. Based on the lowest generation probability
score and the alignment result, “ago” is thus identified as one of the vulnerable tokens of
the source sentence.

Once the alignment between the target and source tokens is obtained, the source tokens
are sorted in ascending order according to the confidence scores of their aligned target
tokens. The top k tokens with the lowest confidence scores are identified as the k most
vulnerable tokens in the source sentence and are considered candidates for replacement.
Afterward, WALI approach is used to select and replace the vulnerable tokens in the input
sentence. The entire process is described in Algorithm 2.

4.3.3 Word Replacement

In Section 4.3, we have introduced our two strategies: GRI and WALI for identifying
the vulnerable tokens of a source sentence. In this part, we discuss how we replace the
vulnerable tokens to generate new source sentences for testing.

As shown in Equation 4.1a, we need to maximumly preserve the meaning of the original
source sentence during the word replacement process. To ensure a fair comparison with the
existing baselines, we follow the replacement strategies proposed by baselines (24; 66; 67).
Specifically, for comparison with TransRepair, we leverage a dictionary provided by the
authors to identify contextually similar substitutions. This process is complemented by
a validation of the part-of-speech (POS) tags (77) of the original and replacement words
to ensure structural consistency. Meanwhile, for comparison with SIT, we utilize a neural
language model (i.e., BERT) (13) to identify contextually analogous words for replacement
and incorporate the POS tag (77) as a structural filter to verify sentence structure post-
replacement. Likewise, for comparison with CAT, we employ BERT to generate a set of
initial candidate words for each of the identified vulnerable tokens of the source sentence.
Then, we adopt a neural network-based algorithm to evaluate the semantic similarity
between the candidate and original words. The candidate words that have a low similarity
are filtered out. The remaining candidates are used to replace the vulnerable tokens,
and each replacement will result in a new source sentence xnew for testing the machine
translation system. We adhere to the identical replacement strategies outlined in prior
research to facilitate a fair evaluation, with and without the incorporation of GRI and
WALI.
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4.4 Translation Bug Detection

For translation bug detection, we adopt the same test oracle presented in the prior stud-
ies (24; 66; 67). Specifically, given a translation system F p¨q and an original source sentence
xorig and its newly generated one xnew, the automatic bug detection oracle calculates the
difference between the two translations, F pxnewq and F

`

xorig
˘

. If the difference score is
above a predefined threshold, a translation bug is reported. In our work, to ensure a fair
comparison with baselines, we employ identical distance metrics and thresholds with the
previous study (24; 66; 67) and avoid fine-tuning these settings only for our methods. We
provide a brief definition of each metric below, where the first four metrics are used to
evaluate TransRepair (66) and CAT (67) and the fifth metric is for SIT (24):

4.4.1 LCS-based metric

It measures the normalized length of the longest subsequence that is common between
the original sentence and the mutated sentence (30). The LCS metric ranges from 0 to 1,
where 1 indicates that the two sentences are identical and 0 indicates no overlap between
the two sentences.

4.4.1.1 ED-based metric

The edit distance metric determines the minimum number of edit operations, such as
insertion, deletion, substitution, and transposition, required to transform one string to
another (59). It is widely used in applications that involve string comparison and spell-
checking and can quantify the dissimilarity between two strings (20; 83).

4.4.1.2 TFIDF-based metric

The tf-idf (term frequency-inverse document frequency) metric is a statistical measure
used to evaluate the similarity with the word frequency (60). In this study, we compute
a weight widf for each word w using the same corpus used in CAT. The word vectors are
then multiplied by their respective weights, and the cosine similarity between the resulting
vectors of s1 and s2 is used to determine the similarity between the translations after the
replacement process.
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4.4.1.3 BLEU-based metric

BLEU score is a metric for evaluating the quality of machine-translated text against one or
more human reference translations. It measures the overlap between the machine-generated
translation and the reference translation(s) using n-gram analysis. It ranges from 0 to 1,
where 1 indicates a perfect match between the candidate and reference translations. Those
who seek further elaboration can refer to prior research studies (50; 66) for additional
information.

4.4.1.4 Relation distance between dependency parse trees metric

In order to assess the structural consistency of the translations, it measures the dissimilarity
between two sets of dependencies. This dissimilarity is determined by computing the
total absolute difference in the counts of dependency relations parsed using Standford
CoreNLP (10). We adhere to the Universal Dependencies annotation scheme, following
the guidelines established in prior research (24).

For TransRepair (66) and CAT (67), the distance metrics, as outlined in 1)-4), quantify
the similarity between the translation of the original input and the translation of the
generated mutants. Consequently, a bug is flagged when the value of the distance metric
falls below predefined thresholds. Following previous work (66; 67), the threshold is set to
0.963, 0.999, 0.906, 0.963 for LCS, TF-IDF, BLEU and ED respectively.

For SIT (24), the Dependency distance metric measures the distinction between the
dependency lists of the translations of the original input and those of the generated mu-
tants. The greater the metric, the larger the structural difference between the translations
derived from the original. Following previous work (24), the top-3 sentences exhibiting the
greatest divergence are reported.

4.5 Experimental Setup

4.5.1 Dataset

To ensure a fair comparison with baselines, following prior work (66; 67), we utilize the
News Commentary (NC) testing dataset (75) to evaluate CAT (67) and TransRepair (66)
and 200 English sentences crawled from CNN (Cable News Network)2 to evaluate SIT. The

2https://edition.cnn.com
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New Commentary dataset comprises 2,001 English-to-Chinese sentence pairs and the CNN
dataset consists of articles from two categories: Politics and Business, where each contains
100 sentences. The statistics of all datasets are illustrated in Table 4.1.

Table 4.1: Statistics of the dataset for evaluation.

Corpus # of words
per sentence

mean # of words
per sentence

median # of words
per sentence

# of words

distinct total

NC r2, 73s 23.8 23 11,173 47,636
Politics r4, 32s 19.2 19.5 1,918 933
Business r4, 33s 19.5 19 1,949 944

4.5.2 Translation System

The same as prior work (23; 24; 25; 66; 67), we consider Transformer as the studied
translation system3. It is one of the most widely used translation systems (34; 42) and
has been widely studied in the research community (23; 24; 25; 66; 67). Specifically, we
utilize the pre-trained Transformer translation model, opus-mt-en-zh (28) as our tested
translation system. The model is trained on the opus-2020-07-14 dataset (27). We fine-
tune the model with the News Commentary training set (75), which consists of 2, 513, 475
English-to-Chinese sentence pairs, with a learning rate of 2e´5 for 20 epochs.

4.5.3 Baseline approaches

We compare our approach with TransRepair (66), CAT (67), and SIT (24), which are by
far the state-of-the-art approaches for machine translation system testing. All of these
methods rely on the concept of metamorphic relations between the input sentence and
its semantically similar variations. They operate under the assumption that input texts
exhibiting semantic similarity should yield consistent translations.

4.5.4 Implementation Settings

In this experiment, we identify the top 10 vulnerable tokens using GRI and WALI for
replacement. For the purpose of a fair comparison, we adopt the same approach as in the

3Note that we do not consider Bing or Google Translate for testing, as we cannot access the systems’
architectures and parameters.
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previous study (67) for replacing the identified vulnerable tokens and generating a maxi-
mum of five new sentences for each original source sentence. We conducted the experiment
on Ubuntu 18.04 with an NVIDIA GTX 1080Ti GPU.

4.6 Evaluation

In this section, we evaluate our proposed approaches against the SOTA testing baseline
(i.e., TransRepair, CAT and SIT). The effectiveness of our approach can be evaluated
by considering two aspects: (1) the ability to identify a larger number of bugs using an
equivalent number of test cases, and (2) the ability to detect an equal number of bugs with
a reduced number of test cases, resulting in enhanced efficiency. Specifically, we aim to
answer the following research questions (RQs):

RQ1: How effectively can GRI and WALI detect translation bugs compared to
baselines?

Motivation. Extensive approaches have been proposed for testing machine translation
systems, while few consider conducting the testing from a white-box perspective. Mean-
while, studies (19; 41; 70) have shown that using white-box methods can benefit many NLP
tasks, such as the testing of the classification systems. Therefore, in this RQ, we would
like to explore whether our two white-box-based approaches (i.e., GRI and WALI) can
detect translation bugs with better performance than the baseline approaches (i.e., CAT,
TransRepair and SIT). Approach. To answer this research question, we apply GRI and
WALI as well as the baseline approaches on each source sentence in the NC, Politics, and
Business dataset. With the generated mutants, we then examine whether the mutants can
reveal translation bugs (cf. Section 4.4). We evaluate GRI and WALI using a combination
of quantitative evaluation and human evaluation. For quantitative evaluation, we focus
on 1) the number of translation bugs detected using the five distance metrics and 2) the
number of test cases needed to detect a certain number of translation bugs. For human
evaluation, following previous work (24; 66; 67), we randomly sample 100 test cases for
CAT and TransRepair, and compute the Top-3 accuracy for SIT.

Result. Both of our proposed approaches, GRI and WALI generally outper-
form the baseline approaches under identical experimental settings. Our results
comparing GRI and WALI with baseline approaches are presented in Figure 4.3. Figure 4.3
illustrates the cumulative count of bugs detected by different approaches, plotted against
the number of test cases executed during the testing process4. It can be observed that our

4To ensure a fair comparison, we randomly shuffle all test cases before plotting the bug detection curve
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approaches always outperform the baselines from two aspects: (1) under a certain testing
budget (i.e., number of executed test cases, indicated by the vertical dotted line), both GRI
and WALI can reveal a larger number of bugs, and (2) when given a predefined testing
goal (i.e., number of detected bugs, indicated by the horizontal dotted line), our approaches
always require less testing resource (i.e., a reduced number of test cases). For example,
when running 6,000 test cases, GRI and WALI can detect 3662 and 3448 bugs, which is
higher than the 3,018 detected by CAT (Figure 4.3(b)); meanwhile, GRI and WALI only
need to execute 4,935 and 5,151 tests to detect 3,000 bugs, while CAT needs 5,961 tests.
The results demonstrate that our approaches can detect translation bugs more effectively.

We also observe that our proposed approaches may not always improve the performance
significantly. For example, in Figure 4.3(a), when running 4,000 test cases, TransRepair
detects 1,826 bugs, relatively fewer than 1,918 and 1,875 reported by GRI and WALI. This
may be due to the fact that TransRepair relies on a pre-established similarity dictionary5

to provide suitable substitutions for specific tokens. Unlike the BERT model used in CAT
and SIT (see Section 4.3.3), the dictionary only contains a limited number of tokens, which
imposes constraints on the replacement of the tokens identified as vulnerable by GRI and
WALI. In cases where a corresponding similarity pair does not exist in the dictionary,
the replacement of these tokens becomes unfeasible. Upon reviewing the tokens that were
substituted, it became evident that only 3,194 out of 18,387 tokens identified by GRI could
be replaced within the corpus, leading to an insignificant improvement of our proposed
approaches.

Meanwhile, we find that GRI and WALI always have a higher test success rate (i.e., the
number of bugs detected divided by the number of total tests). The comparison results
are shown in Table 4.2, with the best results highlighted in bold font. For example, GRI
and WALI outperform SIT in terms of identifying more translation bugs across both the
Politics and Business datasets. In addition, both GRI and WALI execute significantly
fewer test cases, leading to an average increase in the success rate of 6.17% and 4.85%,
respectively. This confirms that our approach can efficiently exploit the vulnerable spots
of the translation systems by utilizing the gradients and word alignment information, thus
leading to an increase in the success rate of the testing.

As observed in previous research on testing machine translation systems, it’s acknowl-
edged that automatic test oracles relying on distance metrics may yield results differing
from those provided by human oracles. To address this, we carry out a manual inspection,
adhering to the same evaluation process as the baseline approaches. The purpose of this

for each approach.
5We used the dictionary provided by the author of (66).
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Figure 4.3: Cumulative counts of detected bugs for each of the approaches.

24



Table 4.2: Comparison of the test success rate with TransRepair, CAT, and SIT.

Metric TransRepair GRI WALI

LCS 46.05% (2,581) 47.80% (2,504) 46.90% (2,561)
ED 46.65% (2,615) 48.37% (2,534) 47.50% (2,594)
TFIDF 54.75% (3,069) 55.80% (2,923) 55.10% (3,009)
BLEU 43.55% (2,441) 45.10% (2,363) 43.95% (2,400)

# of test cases 5,605 5,239 5,461

(a) Comparison with TransRepair

Metric CAT GRI WALI

LCS 50.31% (5,002) 61.07% (5,205) 57.92% (5,114)
ED 51.00% (5,070) 61.82% (5,269) 58.53% (5,168)
TFIDF 57.39% (5,706) 67.02% (5,712) 63.90% (5,642)
BLEU 47.54% (4,726) 56.96% (4,855) 55.15% (4,870)

# of test cases 9,942 8,523 8,830

(b) Comparison with CAT

Dataset Metrics SIT GRI WALI

Politics Dependency 8.74% (143) 15.17% (164) 14.11% (154)

# of test cases 1,635 1,081 1,091

Business Dependency 8.71% (141) 14.16% (143) 12.96% (151)

# of test cases 1,619 1,010 1,165

(c) Comparison with SIT
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Table 4.3: An average of manual evaluation results.

Approach TransRepair CAT GRI WALI SIT GRI WALI

Precision 67.6 72.4 73.9 77.8 70.8 71.3 70.6
Recall 94.2 81.8 90.9 96.2 – – –
F1 Score 78.7 73.2 80.9 85.9 – – –

manual examination is to confirm that introducing our approach does not compromise the
validity of the testing methods. Therefore, the bugs reported by our approaches are reliable
and comparable to those reported by the baseline approaches.

Following previous work (66; 67), we uniformly sample 100 generated test cases for
CAT and TransRepair and manually inspect the results. Table 4.3 demonstrates that
the similarity metric achieves a precision of 0.73 and 0.77, recall of 0.9 and 0.96, and
an F1 score of 0.8 and 0.85 for GRI and WALI, respectively. Notably, prior studies,
CAT and TransRepair, reported similar precision, recall, and F1 scores, with values of
0.7, 0.95, and 0.8 for TransRepair, and 0.72, 0.9, and 0.8 for CAT in their experiment.
The precision, recall, and F1 scores for GRI, WALI, and CAT in our experiment closely
match the results of their original experiment evaluations. These findings suggest that
the bug reports generated by the baseline approaches align closely with the outcomes of
their original experiments especially when adopting the identical evaluation process. In
addition, it is noteworthy that GRI and WALI exhibit relatively higher recall, indicating
that most erroneous translations are correctly detected.

SIT employs Top-3 accuracy as its manual evaluation metric, and we also leverage iden-
tical metrics. In our experiment, using the transformer model, SIT obtained an accuracy
of 0.7 on average for the Politics and Business dataset, whereas in the original experiment,
they achieved a Top-3 accuracy of 0.73 and 0.78 for Google and Bing translators. The
variance in accuracy is marginal and can be attributed to the difference in the translation
systems used. In the case of GRI and WALI, the accuracy remains at 0.71 and 0.7, which
closely aligns with that of SIT in our experiment and the accuracy reported in the original
experiment. Consequently, our methods do not impede the performance of the testing
approaches.

Overall, our manual inspection demonstrates that the validity of the bug reported by
GRI and WALI is similar to those reported by the baseline approaches. Therefore, when
using the same distance metrics and experimental settings, our results are reliable and can
be compared to those of the baseline approaches. The distance metrics do not compromise
the superiority of our approaches over the baseline methods.
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Our proposed approaches, i.e., GRI and WALI, generally outperform the state-of-the-
art baseline approaches in quantitative evaluations while preserving the accuracy of
human evaluations. The results illustrate the promising future research opportunity of
using more white-box approaches for testing machine translation systems efficiently and
effectively.

RQ2: Can GRI and WALI complement the existing baseline approaches in
terms of the detected translation bugs?

Motivation. In addition to the efficiency improvement offered by our approaches, it is
also worth exploring whether our detected translation bugs are different from those of the
existing approaches when employing the same maximum number of generated mutants,
as utilized in previous studies.6 Such analysis allows us to determine whether GRI and
WALI can detect bugs that are not previously detected by the baseline approaches, thus
complementing the existing baseline approaches towards a more comprehensive translation
system testing. As the focus of this work is on effectively identifying the vulnerable tokens
for a source sentence, therefore, in this RQ, we will investigate the overlap between the
replaced tokens in the bugs detected by our proposed approaches and those by the baseline
approaches. Approach. To address this research question, we examine the intersection of
the tokens identified for replacement by different approaches among the detected transla-
tion bugs. The degree of overlap among these approaches signifies the distinctiveness of
the bugs detected by different approaches7.

Result. Our approaches GRI and WALI can identify different tokens for re-
placement from that of baseline approaches and thus can detect unique bugs
that were not detected previously. Figure 4.48shows the overlap of the replaced tokens
in the detected translation bugs by different approaches. As shown in Figure 4.4, the major-
ity of the tokens replaced by our approaches are not replaced by CAT. For example, under
the LCS metric, CAT only shares an overlap of 39% (1,959/5,002) and 21% (1,353/5,002)
with GRI and WALI, respectively. As a result, each of the distinct tokens leads to at
least one bug-revealing test case. Similar results are observed with SIT on both Politics
and Business datasets. With the Politics dataset, SIT shares an overlap of 25% (37/143)
with GRI and WALI. Additionally, we notice that there is a limited overlap between GRI

6Note that the baseline approaches utilized a predefined maximum number of generated mutants to
prevent an excessive number of test cases. This condition is maintained in our experiments to ensure a
fair comparison.

7Note that each different replaced token can at least result in one different translation bug.
8Due to the space limitation, we only show the results using LCS metric for comparison with TransRe-

pair and CAT for Figures 4.4 4.5 5.5. More results are shared in Appendix 6.
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Figure 4.4: Overlap of the replaced tokens in translation bugs detected by GRI, WALI,
and baseline approaches.

and WALI, meaning they can reveal bugs that the other approach didn’t identify. This
indicates that combining both approaches can complement the existing testing strategy
by identifying a greater variety of susceptible tokens that were previously not replaced
by the baseline approaches, which can further be used for generating new test cases with
a word replacement strategy. Note that for TransRepair, we observe a more significant
overlap. As it relies on a restricted dictionary to locate substitutes for specific tokens (cf.
Section 4.6-RQ1), a considerable number of tokens identified by GRI and WALI do not
have corresponding substitutes in the corpus. Consequently, the overlap among these three
approaches is quite extensive.

To better demonstrate our complementary to the existing baseline approach, Table 4.4
provides examples of metamorphic test cases generated by SIT, CAT, GRI, and WALI
where only GRI and WALI have successfully detected bugs. For instance, the first example
pertains to a sentence in which CAT generates four mutants by replacing the word “eight”
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Table 4.4: Examples of test cases generated by CAT, SIT, GRI and WALI where only GRI
and WALI have detected bugs.

Original Baseline GRI WALI

It has retreated from 
them since it nearly 
collapsed eight years 
ago and had to be 
bailed out. 

自8年前几乎崩溃以
来，它已经从他们那
里撤离，不得不得到
纾困。

It has retreated from them 
since it nearly collapsed [two] 
years ago and had to be 
bailed out. 

自[两]年前几乎崩溃以来，它
已经从他们那里撤离，不得不
得到纾困。(It has retreated 
from them since it nearly 
collapsed [two] years ago and 
had to be bailed out. ) - CAT

It has [moved] from them since it 
nearly collapsed eight years ago 
and had to be bailed out. 

自8年前几乎崩溃以来，[政府就已经
摆脱了这种困境]，不得不得到纾
困。([The government has already 
got rid of the predicament] since it 
nearly collapsed eight years ago 
and had to be bailed out.)

It has retreated from them since 
it nearly collapsed eight years 
[back] and had to be bailed out. 

自从八年前它几乎[倒塌后]，它
已经从他们那里撤离，不得不得
到纾困。(It has retreated from 
them since it nearly [fell apart] 
eight years ago and had to be 
bailed out.)

Meanwhile, whites still 
fill most of the seats at 
the most selective 
institutions, which 
spend the most on 
their students.

同时,白人仍然占据了
最有选择的院校的大
多数席位,这些院校在
学生身上花费最多。

Meanwhile, whites still fill 
most of the seats at the most 
[important] institutions, which 
spend the most on their 
students.

同时,白人仍然占据着大多数
[重要]院校的席位,这些院校花
费在学生身上的[钱]最多。
(Meanwhile, whites still fill 
most of the seats at the most 
[important] institutions, which 
spend the most [money] on 
their students.) - SIT

Meanwhile, whites still fill most of 
the seats at the most selective 
institutions, which [reflect] the most 
on their students.

同时,白人仍然占据了[大多数]院校的
席位,这最能[反映白人学生的成绩]。
(Meanwhile, whites still fill most of 
the seats at the [most of] institutions, 
which reflect the most [the whites’ 
academic grades].)

Meanwhile, whites still fill most 
of the seats at the most selective 
institutions, which spend the 
most [as] their students.

同时,白人仍然占据了大多数[选择
最多]的院校的席位,这些院校[作
为学生]的花费最多。
(Meanwhile, whites still fill most 
of the seats at the institutions 
[having most choices], [these 
institutions] spend the most [as 
students].)

with “three”, “five”, “ten”, and “two”. However, such replacements have little effect on the
final translations, rendering CAT incapable of detecting translation bugs for this sentence.
On the contrary, GRI identifies the word “retreated” as a replacement target, which is
substituted with “moved”, a word that has a similar semantic meaning. As the result shows,
this perturbation has a relatively large impact on the translation, specifically affecting the
segment “It has moved from them,” which, due to the substitution of “moved” is translated
to a Chinese phrase with a totally different meaning (i.e., “The government has already
got rid of the predicament”). Similarly, WALI identifies “ago” as a vulnerable token and
replaces it with “back”, which does not alter the sentence’s meaning. Interestingly, this
substitution affects the translation of the unchanged word “collapsed”, which was initially
translated as “crumbled” and subsequently translated as “fell apart” due to the replacement
of “ago” with “back”.
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Our proposed approaches GRI and WALI can detect unique translation errors that are
not detected by the baseline approaches, and thus, can complement current translation
system testing methodologies.

RQ3: What are the contributing factors that could raise the probability of
generating bug-revealing test cases for translation systems?

Motivation. Our previous results indicate that the impact of token substitution on the
system’s performance varies depending on the specific token being replaced. To gain a
deeper understanding of the factors that contribute to the generation of bug-revealing
test cases for translation systems, we conduct further analysis of the results. The such
analysis aims to identify the key factors that increase the likelihood of generating effective
test cases for translation systems, with the goal of providing valuable insights for future
research in this field. Approach. To answer this research question, we focus on the source
sentences that can detect translation bugs and conduct the analysis from two aspects: 1)
the distribution of parts-of-speech (POS) tags (77) in these source sentences and 2) the
length of the source sentences for the three studied approaches.
Result. To a greater extent, the substitution of nouns tends to expose more
bugs for translation systems. Figure 4.5 shows the distribution of the POS tags in
the bug-revealing source sentences. We can see that translation bugs can be detected
by replacing the tokens of various parts-of-speech (POS) tags in the source sentences.
For example, GRI can detect translation bugs aroused by over 20 types of POS tags.
Meanwhile, for all three approaches, it is clear that nouns are the predominant POS tag
that contributes to bug detection. This observation can be attributed to the significance
of lexical items in determining the meaning of the sentence. Nouns often play a crucial
role in shaping the meaning of the sentence and are frequently associated with polysemous
words, which further complicates their interpretation (80). Therefore, perturbing nouns
can increase the likelihood of detecting translation bugs.

Furthermore, sentences with more tokens are relatively difficult to expose
translation bugs for translation systems. As illustrated in Figure 5.5, under all
distance metrics except TF-IDF, with the increase of the length of source sentences, the
percentage of reported bugs decreases. We further calculate the Spearman correlation (47)
between the proportion of reported bugs and the length of source sentences, and we find
that overall, they have a negative correlation between each other (e.g., for BLEU-based
metric, the correlation coefficients are -0.79, -1.0, and -1.0 for CAT, GRI, and WALI
respectively). This is attributed to the fact that, as the length of the source sentence
increases, substituting a single token has less impact on the overall semantic meaning of
the sentence. When a sentence is short (e.g., length ď 5), a single substitution can cause a
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Figure 4.5: Number of reported bugs (y-axis) per mutant type (x-axis). This figure shows
the distribution of bugs in terms of POS tags.

significant deviation in the sentence’s meaning, as the sentence is short, it may not provide
enough context for the translation system to comprehend. This finding suggests that
putting more attention on the selection of short sentences for translation system testing,
may expose more translation bugs (11; 22).

The replacement of nouns in a source sentence has a higher chance of exposing bugs in
translation systems. Additionally, there exists a negative correlation between the length
of source sentences and the percentage of reported bugs.

4.7 Threats to Validity

External Validity. In our study, we have utilized three datasets (i.e., News Commen-
tary (75) and 200 English sentences extracted from CNN articles) and a translation system
(i.e., Transformer (28)). The dataset and translation system are for English-to-Chinese
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Figure 4.6: Percentage of reported bugs (y-axis) vs. length of the input sentence (x-axis).
This figure shows the distribution of bugs in terms of sentence length.

translation, following the experimental setup of CAT, TransRepair and SIT. Therefore, it
is necessary for future research to examine the effectiveness of our proposed approaches on
other translation models and datasets covering various languages.

Internal Validity. In WALI, we use the encoder-decoder attention weights of the Trans-
former model to align the target and source tokens, which although effective, may not
always be precise. For future research, we can employ a more sophisticated alignment
approach to enhance the approach. In addition, the automatic test oracle used for bug
detection relies on distance metrics to evaluate the quality of translations. However, the
metrics used for evaluating translations may not accurately reflect human perceptions of
translation quality, and human evaluation may be subject to individual biases. We followed
the same human evaluation criteria as used in the baseline approaches and randomized the
test inputs to reduce bias. To address this issue, future research could incorporate more
manual evaluations to assess the effectiveness of GRI and WALI with a larger number of
evaluators to minimize bias.
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Chapter 5

Test Prioritization

In this chapter, we explore how to test QA software, applying two white-box methods to
rearrange the test sentences we’ve generated and to give priority to those test cases that
are closely related to specific tokens. The rationale is that the stronger the correlation
between an inserted sentence and vulnerable tokens, the higher the likelihood that the
sentence insertion will reveal a bug. This approach helps to streamline the testing process
by focusing on the most impactful test cases.

5.1 Test Prioritization White Box Approaches

5.1.1 Overview
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Selected source
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Figure 5.1: An overview of our approach.
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Figure 5.1 outlines our proposed approaches for testing QA software. Initially, for each
source sentence, we identify related sentences from the training dataset using methods
from baseline research (62). Next, we create a new input by adding a redundant sentence
to either the question or the context, following a consistent strategy. Within our white-
box framework, we employ two specific strategies to order the test cases: (1) identifying
vulnerable tokens based on gradient information (GRI) and (2) identifying them through
word alignment (WALI). Subsequently, we organize the new test inputs by ranking the
test cases according to the relevance of the selected sentences and the targeted tokens,
specifically ordering them by the maximum gradient or attention values associated with the
selected tokens within the sentences. This reordering of test cases ensures they are executed
in a prioritized manner. The QA software then processes these reordered sentences (test
cases or mutants), generating corresponding responses. If the variance between a new
response and the original response surpasses a predetermined threshold, it indicates a
potential bug.

5.1.2 GRI

Using the algorithm presented in Section 3.1, we are able to compute the gradients of
tokens in the question. This section explores how to employ these gradients to reorder the
test cases that are more likely to induce a bug in QA software.

By applying the semantics-guided search strategy outlined in the baseline work, we
determine gradients for tokens both in the original question and in the selected sentence.
We then prioritize test cases based on the highest gradient value among tokens within
the inserted sentence, effectively gauging the inserted sentence’s relevance to the original
question. The underlying hypothesis is that a sentence more relevant to the original ques-
tion could potentially confuse the QA software more, even if the semantic essence of the
question remains unchanged.

We pinpoint the top-k tokens by their gradient magnitudes, cataloging these values.
The test cases are then sequenced according to the highest gradient value found in the
inserted sentences, with a value assigned as 0 if the inserted sentence lacks any of the
selected tokens. Algorithm 3 outlines the entire process of prioritizing test cases using the
GRI approach.
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Algorithm 3: GRI Prioritization
Input: a source sentence x, and the QA system F p¨q and tokenizer Tokenizer
Output: a set of reordered sentences X1

1 begin
2 tokens Ð Tokenizer(x)

3 embeddings Ð F ptokensq

4 output Ð F pembeddingsq

5 G Ð GetGradient(output)

6 Gsorted Ð Sort(G)

7 Tordered Ð SortTokensbyGrad(tokens)

8 Sselected Ð Semantics-GuidedSearch(Training Set)
9 gmax Ð 0

10 foreach wi, gi P Tordered do
11 if wi P Sselected then
12 gmax Ð maxtgmax , gi}

13 X1
ordered Ð SortbyMaxGradient(X1)

14 return X1
ordered
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5.1.3 Word alignment-based strategy

As explained in section 3.2, attention weights in the transformer model illustrate the con-
nections between target and source tokens. While translation tasks typically exhibit a
straightforward one-to-one token mapping, only a few exceptions feature a one-to-many
relationship. In contrast, question-answering scenarios present a more intricate mapping
due to the disproportionate lengths of source inputs and outputs. Consequently, the em-
phasis shifts towards analyzing the alignment weights that link target and source tokens.

To enhance the identification of bug-revealing test sentences, the hypothesis is that a
stronger correlation between the inserted sentence and the answer increases the likelihood
of influencing the answer. Thus, the goal is to assess the correlation between the inserted
sentence and the answer. While the transformer model provides attention weights show-
ing input-output token mappings, it does not directly offer the correlation with inserted
sentences. The proposed method involves using these attention weights, as detailed in
section 3.2, to derive the attention matrix for the input sentences (question and context)
against the output answer. An alignment matrix is then calculated for the original input
and the inserted sentence using a pre-trained BERT model (12). The BERT model is
also a transformer-based model pre-trained on a large corpus of multilingual data that can
provide the alignment between the input and output sentences. By matrix multiplication
of these two matrices, a new matrix emerges, illustrating the relationship between the
selected tokens and the answer, aiding in prioritizing the test cases effectively.

To mathematically formalize the algorithm described for prioritizing bug-revealing test
sentences, consider the following equations:

Let A P Rmˆn represent the attention matrix from the transformer model, where m is
the number of input tokens and n is the number of output tokens (answer). An element
aij in A indicates the attention weight from the i-th input token to the j-th output token.

A “ raijs for i “ 1, . . . ,m and j “ 1, . . . , n

Let B P Rmˆo denote the alignment matrix obtained using the BERT model (12), where
o is the number of tokens in the inserted sentence. An element bik in B represents the
alignment score between the i-th input token and the k-th token in the inserted sentence.

B “ rbiks for i “ 1, . . . ,m and k “ 1, . . . , o

The correlation matrix C P Roˆn is computed by multiplying matrices A and B, where
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an element ckj in C corresponds to the correlation between the k-th token in the inserted
sentence and the j-th token in the output answer.

C “ BJ
ˆ A

C “ rckjs for k “ 1, . . . , o and j “ 1, . . . , n

This product C “ BJ ˆ A provides a detailed view of how tokens in the inserted
sentence is related to tokens in the answer. Figure 5.2 illustrates the matrix multiplication
between A and BJ.

xo

m

m

n

BT A

o

n

C

Figure 5.2: Matrix multiplication where A represent the attention matrix, m is the number
of input tokens and n is the number of output tokens, B denote the alignment matrix
obtained using the BERT model (12), o is the number of tokens in the inserted sentence.

The magnitude of the correlation matrix is utilized to sequence the test sentences,
prioritizing those that have a higher likelihood of revealing bugs during testing. Test
sentences are ordered in descending order according to the magnitude of the correlation
matrix, ensuring that those with the greatest potential impact are tested first.

5.1.4 Test Input Generation

For the test input generation, we follow the methodology from a previous study. The
process, known as QAQA, involves searching the training data for a sentence that closely
resembles the original question in terms of semantic content. To identify the core semantics
of the question, it is first condensed using the compression model SLAHAN (32). Subse-
quently, both the truncated question and the training data sentences are transformed into
embeddings using Sentence-BERT (SBERT) (57). By computing the cosine similarity be-
tween these embeddings, the sentence from the training set with the highest similarity

37



score to the truncated question is chosen for mutation. This selected sentence is then used
to generate a new test input.

To generate mutants, QAQA leverages five metamorphic relations: Equivalent Ques-
tion (EQ), Equivalent Context (EC), Test Integration (TI), Equivalent Question Context
(EQC), and Equivalent Test Integration (ETI). These relations guide how the selected sen-
tence is inserted into the question and/or context to create a new test input. We employ
this same methodology to produce mutants in our testing strategy. For a more detailed
explanation of these metamorphic relations and their application in the mutant generation,
refer to the study detailed in (62).

5.1.5 Bug Detection

The bug detection approach aligns with the baseline method to ensure comparability, fo-
cusing on the consistency of metamorphic relations. Answers provided by the QA software
are compared; if the discrepancy between the answer to the generated input and the orig-
inal exceeds a predefined threshold, it signals a potential bug. Considering the linguistic
variability where identical semantics can be presented differently (e.g., "UK" vs. "United
Kingdom"), the approach also includes measuring the embeddings’ similarity to ensure
semantic consistency between answers. Phrase-Bert (PBERT) (71), an advanced model
for phrase-level representation, is employed to convert the answers into embedding vectors,
followed by computing cosine similarity to detect semantic variations. When the similarity
score falls below the established threshold (0.76, consistent with the baseline methodology),
a bug is reported. More details can be found in prior research on QA software testing (62).

5.1.6 Test Prioritization Evaluation Metric

To assess the effectiveness of test prioritization, it is essential to have an evaluation metric.
A common metric is a graph depicting the percentage of detected faults versus the fraction
of the test suite used. This curve illustrates the cumulative percentage of faults detected
as testing progresses. The shaded area under this curve signifies the weighted average of
the percentage of faults detected throughout the lifespan of the test suite. This area is
referred to as the prioritized test suite’s average percentage faults detected measure.

In our experiments, we will evaluate the area under the curve (AUC) of the percentage
of detected faults during test execution. We will compare this with the ideal scenario, where
all bugs are scheduled in priority, to assess the performance of our white-box approaches.
(Figure 5.3 provide an example of the curves) This comparison will allow us to quantify
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how effectively our approaches can identify and prioritize critical test cases that are likely
to reveal faults, thereby optimizing the testing process and ensuring more efficient resource
utilization.

5.2 Experimental Setup

5.2.1 Dataset

The study employs two well-regarded QA datasets previously utilized in existing research.
The baseline QAQA used these datasets as well for evaluation therefore, we adopted the
same datasets to maintain consistency in comparison. The training datasets are used to
build the UnifiedQA model, while the test sets are used as test cases for the proposed
approaches. The details of datasets are listed below.

BoolQ. BoolQ (9) is a boolean QA dataset, where the answers to the questions are
either "yes" or "no". This dataset comprises questions sourced from Google search engine
queries, with corresponding contexts extracted from Wikipedia articles.

SQuAD2. SQuAD2 (56) is an extractive QA dataset in which the answers is a segment
of text. The questions and answers are collected from Wikipedia articles. SQuAD2 includes
unanswerable questions, meaning that some questions are designed with “<No Answer>”
indicating that the text does not contain information to answer the query.

NarrativeQA. NarrativeQA (38) is an abstractive QA dataset, in which the answer
is not a span of the context. The dataset is collected from books and movie scripts to test
the comprehension of the model in the context.

5.2.2 QA Software

We used the pre-trained T5-large-based UnifiedQA (2) model as the testing subject, which
aligns with the baseline approach, QAQA. It is one of the state-of-the-art models that
is proven to perform well across diverse datasets. In addition, it was widely studied in
prior researches (7; 62) as well as an experimental subject, employing this model facilitates
direct comparisons with prior results.
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5.2.3 Implementation Settings

In this experiment, we improve the testing efficiency using GRI and WALI for prioritization.
For the purpose of a fair comparison, we adopt the same approach as in the previous
study (62) for generating new test sentences using metamorphic relations for each original
source sentence. We conducted the experiment on Ubuntu 18.04 with an NVIDIA GTX
1080Ti GPU.

5.3 Evaluation

In this section, we evaluate our proposed approaches against the SOTA testing baseline
(i.e., QAQA). The effectiveness of our approach can be evaluated by the ability to identify
the bug-revealing test sentences and positioning these potential bug-triggering sentences
at the beginning of the testing sequence, thus improving the fault detection rates over the
testing phase. Specifically, we aim to answer the following research questions (RQs):

RQ1: How effective are the white-box approaches in prioritizing the bug-
revealing test cases?

Motivation. Extensive approaches have been proposed for testing question answering
systems, while few consider conducting the testing from a white-box perspective. Mean-
while, studies (19; 41; 70) have shown that using white-box methods can benefit many
NLP tasks. Therefore, in this RQ, we would like to explore whether our two white-box-
based approaches (i.e., GRI and WALI) can improve the AUC (Area Under Curve) of
the cumulative count of bug reported during the testing which indicates the rate of fault
detection of the prioritization techniques. Approach. To answer this research question,
we apply GRI and WALI as well as the baseline approaches on each source sentence in the
BoolQ, NarrativeQ, and SQuAD2 datasets. With the generated mutants, we then examine
whether the mutants can reveal a bug (cf. Section 4.4). For quantitative evaluation, we
focus on the number of bugs detected using the similarity metrics over the number of test
cases executed and. To ensure the validity of the results, following previous work (62), we
randomly sample 100 test cases for manual evaluation.

Result. Our proposed approaches, GRI can outperform the baseline approaches
under identical experimental settings. The results comparing GRI and WALI with
baseline methods are shown in Figure 5.3. This figure demonstrates the cumulative bugs
detected by different strategies against the number of test cases executed in various se-
quences across three datasets. It’s evident that GRI surpasses the baseline in two key
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Table 5.1: AUC for different appraoches

BoolQ NarrativeQA SQuAD2

QAQA 51.37 51.04 50.19

GRI 58.24 55.54 52.68

Ideal 89.72 84.59 80.86

areas: (1) it uncovers more bugs within a specific testing budget, and (2) it achieves set
testing goals with fewer resources post-prioritization. For instance, GRI detects 315 bugs
in BoolQ with 1,000 test cases, surpassing the 221 bugs identified by QAQA, as illustrated
in Figure 5.3(a). Moreover, to find 200 bugs, GRI requires 522 tests, whereas QAQA needs
890 tests. This figure illustrates the effectiveness of GRI in identifying test cases with
a higher likelihood of revealing bugs, thereby enhancing the testing process’s efficiency
through prioritization.

Additionally, GRI consistently shows a higher percentage of AUC when set against the
QAQA baseline. The AUC (Area Under the Curve) in the Figure 5.3 illustrates the rate
at which bugs are discovered as testing progresses. A higher AUC indicates that a larger
number of bugs are identified early in the testing cycle, suggesting that the testing process is
effective in quickly uncovering faults in the software. Table 5.1 displays these comparisons,
with the best results in bold. Specifically, GRI outperforms the baseline approach in
identifying more bugs within the same testing budget across BoolQ, NarrativeQA, and
SQuAD2 datasets, showing an increase in AUC percentage of 6.87%, 4.50%, and 2.49%,
respectively. This emphasizes GRI’s effectiveness in exploiting QA systems’ vulnerabilities
by using gradient information, thus enhancing testing success rates.

From Figure 5.4, it is evident that the performance of WALI is not particularly impres-
sive. The curve and the Area Under the Curve (AUC) of WALI are quite similar to those of
the original QAQA curve. For the SQuAD2 dataset, the percentage of AUC is only about
5% higher than the original baseline approach. However, since this improvement is not
consistent across all three datasets and is relatively modest, it is not sufficient to conclude
that WALI significantly enhances detection efficiency. Thus, the prioritization based on
the WALI approach does not offer a significant improvement over the established QAQA
method. However, our proposed approach offers the potential to explore the relationship
between the input and output using the alignment information of the sequence-to-sequence
models.
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Figure 5.3: Percentage of detected bugs(y-axis) vs. fraction of test suite executed(x-axis)
using the initial test order, the ideal scenario, and GRI-based prioritization for (a) BoolQ,
(b) NarrativeQA and (c) SQuAD2 dataset respectively.
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Figure 5.4: Percentage of detected bugs(y-axis) vs. fraction of test suite executed(x-axis)
using the initial test order, the ideal scenario, and WALI-based prioritization for (a) BoolQ,
(b) NarrativeQA and (c) SQuAD2 dataset respectively.
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Table 5.2: Manual evaluation results.

Dataset NarrativeQA SQuAD2

Precision 79.49% 86.67%
Recall 96.87% 83.87%
F1 Score 87.32% 85.24%

As the test oracle depends on the similarity score between the original and new answers,
ensuring the validity of the results necessitates a manual evaluation. Given that the orig-
inal test generation methodology of QAQA remains unchanged, the precision of the test
oracle should remain consistent. To validate the results, we employed the same evaluation
approach, sampling 100 test cases from the NarrativeQA and SQuAD2 datasets. These
test cases and their results were manually labeled to assess accuracy. The precision, recall,
and F1-score of this evaluation are presented in Table 5.2.

From Table 5.2, the precision, recall, and F1 score align closely with those reported
in the earlier study (62), demonstrating the test oracle’s reliability. Specifically, in the
NarrativeQA dataset, there were 8 false positives and 1 false negative out of 100 random
samples. For the SQuAD2 dataset, the evaluation revealed 4 false positives and 5 false
negatives among the 100 samples. Additionally, the QAQA report noted 5 false positives
and 27 false negatives from 300 samples of generated question and answer pairs. By
comparing these outcomes with the false positives and false negatives documented in the
paper (62), it is clear that our testing strategy maintains its accuracy. This consistent
performance results from our adherence to the original test generation process and the use
of the same threshold values, ensuring robust and reliable testing across different datasets.
Thus, the validity of the results is maintained.

Our proposed approach, which prioritizes tests using GRI, outperforms the state-of-
the-art baseline approaches, QAQA, in quantitative evaluations, while maintaining the
accuracy validated through human evaluations. Conversely, WALI yields results compa-
rable to the baseline. The results highlight the potential for future research to explore
the use of white-box approaches in prioritizing test cases for QA testing, aimed at
enhancing testing efficiency.

RQ2: What are the characteristics of the test cases that are not identified by
GRI and WALI?

Motivation. While GRI and WALI have effectively identified several test cases more
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likely to uncover bugs, there are still instances where test cases evade detection. This
research question (RQ) aims to investigate the characteristics of the test cases that GRI
and WALI failed to identify and to explore the factors that may increase the likelihood of
generating bug-revealing test cases for QA systems. Approach. To tackle this research
question, our investigation centers on test cases that, despite exhibiting low gradient or
attention mapping values, nevertheless reported a bug. We intend to conduct an in-depth
analysis of the length of the source input to determine its influence on the effectiveness of
bug detection. This examination will help ascertain any potential correlations between the
length of input and the probability of a test case revealing a bug, thereby aiming to refine
and enhance the overall testing strategy for QA systems.

Figure 5.5: Percentage of reported bugs (y-axis) vs. length of the input sentence (x-axis).
This figure shows the distribution of bugs in terms of sentence length.

First, we examine the correlation between the length of the question and the likelihood
of reporting a bug after a mutation is inserted. Figure 5.5 illustrates a negative relationship
between the percentage of bugs reported and the length of the question in the input across
all datasets except BoolQ. This trend arises because shorter questions are more significantly
affected by the addition of redundant sentences to the input question and context, logically
leading to a negative relationship between the likelihood of bug reporting and question
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length. For the dataset NarrativeQA, the Spearman correlation coefficient (47) ρ is -0.69
with a p-value of 0.057, which indicates a strong negative correlation between the variables.
This finding implies that shorter questions in NarrativeQA are particularly susceptible to
generating detectable bugs when altered with test case mutations.

The exception observed with the BoolQ dataset can be attributed to the binary nature
of its answers and the consistent structure of boolean questions. Typically, boolean ques-
tions demand a straightforward "yes" or "no" response, which may not vary significantly
with changes in question length. This consistency in the question format and answer type
reduces the variability in how questions are processed and understood, potentially dimin-
ishing the impact of additional or redundant information introduced through mutations.
Consequently, the correlation between question length and bug occurrence that is evident
in other datasets may not manifest as strongly in BoolQ.

Original Question Added Sentence Original Answer New Answer
What is another name 
for the goddess 
diana?

I have known that pauline 
admires juliet's outspoken 
arrogance and beauty

Cynthia juliet is diana

What is the name of 
the leader of the gang 
that is laying siege to 
the oil refinery?

I heard a whisper that Gabriel 
Syme gives a rousing 
anarchist speech and wins the 
vote

Lord Humungus pappagallo

Figure 5.6: Example of test cases that reported a bug but not identified by GRI and WALI.

In Table 5.6, two test cases are presented where GRI and WALI did not effectively
prioritize as bug-revealing yet they reported bugs. Observing these examples, it is evident
that the added sentences do not initially correlate with the question. However, when
incorporated into the question using the QAQA methodology—prefaced with phrases like
“I have known” or “I have heard”—they are likely to create an implication that influences
the answer.

For the first example, GRI identified “Diana” and “goodness” as significant tokens
within the question. Upon analyzing the keywords in the added sentence, it failed to find
any direct correlation with these identified tokens. WALI calculated a score of 0.45 for the
magnitude of the correlation matrix of the added sentence and the answer, suggesting a
moderate connection. Despite the initial absence of a direct link, the way the sentence was
integrated and the phrase, “juliet’s outspoken arrogance and beauty” implies a semantic
connection. This integration subtly misled the model, causing it to provide an incorrect
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Figure 5.7: Percentage of reported bugs (y-axis) vs. length of question/ length of inserted
sentence (x-axis). This figure shows the distribution of bugs in terms of ratio between
texts.

response. This outcome underscores the complexity of detecting and interpreting the se-
mantic implications of added sentences in QA systems, highlighting areas for improvement
in the tools used to prioritize potential bug-revealing test cases.

In the second example, there is a potential implication established even though there is
no direct correlation or similarity between the added sentence and the question. However,
while the answer changes, it is not influenced by the added sentence but rather presents
a completely different response. This scenario is another typical example of test cases
that GRI and WALI fail to identify. The addition of a new sentence to the input text
introduces noise and can impact the model’s output. To explore this effect further, we
analyze whether the ratio of the length of the question to the length of the added sentence
correlates with the number of bugs reported. We hypothesize that the longer the added
sentence relative to the shorter original question, the greater the impact of noise on the
model.
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From Figure 5.7, we observe a negative correlation between the ratio, which we will
refer to as the “Noise Impact Ratio” (Length of question/ Length of inserted sentence), and
the number of reported bugs. This metric helps us quantify how the proportion of added
content to original content influences the likelihood of generating bugs, underscoring the
sensitivity of the QA model to variations in input length. This observation emphasizes
the importance of the length of the inserted sentence in relation to the original input text.
A lengthy inserted sentence can introduce significant noise, causing the model to produce
a different answer even if there is no semantic correlation between the texts. In such
cases, the model struggles to accurately comprehend the question and identify the crucial
segments, leading to incorrect responses.

There is a negative correlation between the length of source sentences and the percentage
of reported bugs. Additionally, a negative correlation is observed between the ratio of the
length of the question to the length of the inserted sentence and the number of reported
bugs. Although there is no direct correlation or similarity between the question and the
added sentence, the aggregation of the sentence into the question can create implications
that might mislead the model into generating an incorrect answer.

5.4 Threats to Validity

External Validity. In our study, we have utilized three datasets (i.e., BoolQ (9), Nar-
rativeQA (38) and SQuAD2 (56)) and a QA software (i.e., UnifiedQA (2)). We followed
strictly the experimental setup of QAQA in the research to ensure a fair comparison.
Therefore, it is necessary for future research to examine the effectiveness of our proposed
approaches on other QA models and datasets.

Internal Validity. In WALI, we use the encoder-decoder attention weights of the Uni-
fiedQA model to align the target and source tokens, which although effective, may not
always be precise. For future research, we can employ a more sophisticated alignment
approach to enhance the approach. In addition, the automatic test oracle used for bug
detection relies on cosine similarity of embedding vectors to evaluate the quality of an-
swers. However, the metrics used for evaluating output answers may not accurately reflect
human perceptions of quality, and human evaluation may be subject to individual biases.
We followed the same human evaluation criteria as used in the baseline approaches and
randomized the test inputs to reduce bias. To address this issue, future research could
incorporate more manual evaluations to assess the effectiveness of GRI and WALI with a
larger number of evaluators to minimize bias.
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Chapter 6

Conclusion

In this thesis, we present two white-box approaches, GRI and WALI, which can be applied
to the existing testing technique on the sequence-to-sequence model. They are proven to
improve current machine translation testing techniques. By comparing the bug detection
outcomes of our approaches with those of the baseline approach, we demonstrate that
our approaches can enhance the efficacy of the existing testing methods on translation
systems. Specifically, our approaches are able to detect a greater number of bugs with
fewer test cases and can identify previously unnoticed bugs, complementing the existing
testing approaches.

Next, we explore the possibility of prioritizing test cases in the QA software testing
strategy. We slightly modify our approaches and apply them to prioritize the sentences
generated by QAQA, aiming to enhance the efficiency of test execution. The results indi-
cate that GRI can prioritize bug-revealing test cases more effectively, while WALI’s per-
formance is comparable to the baseline approach. Specifically, these white-box approaches
are capable of identifying test cases that are more likely to reveal bugs, prioritizing them
for early execution. This prioritization improves execution efficiency and helps in saving
computational costs.

Our research illuminates the advances in using white-box approaches to improving test-
ing techniques on sequence-to-sequence models. Furthermore, our approaches demonstrate
the potential of using white-box-based information in the quality assurance of AI software.
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Figure 1: Overlap of the replaced tokens in translation bugs detected by GRI, WALI, and
baseline approaches.
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Figure 2: Number of reported bugs (y-axis) per mutant type (x-axis). This figure shows
the distribution of bugs in terms of POS tags.
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Figure 3: Percentage of reported bugs (y-axis) vs. length of the input sentence (x-axis).
This figure shows the distribution of bugs in terms of sentence length.
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