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Abstract

The theory of non-regular separation is examined in its geometric form and applied to

the bi-Helmholtz equation in the flat coordinate systems in 2-dimensions. It is shown

that the bi-Helmholtz equation does not admit regular separation in any dimensions

on any Riemannian manifold. It is demonstrated that the bi-Helmholtz equation

admits non-trivial non-regular separation in the Cartesian and polar coordinate sys-

tems in R2 but does not admit non-trivial non-regular separation in the parabolic and

elliptic-hyperbolic coordinate systems of R2. The results are applied to the study of

small vibrations of a thin solid circular plate. It is conjectured that the reason as to

why non-trivial non-regular separation occurs in the Cartesian and polar coordinate

systems is due to the existence of first order symmetries (Killing vectors) in those

coordinate systems. Symmetries of the bi-Helmholtz equation are examined in detail

giving supporting evidence of the conjecture.
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Chapter 1

Introduction

The method of separation of variables is a very useful and powerful tool for solving

linear partial differential equations (PDEs). However, for high order equations it is

not always possible to find separable solutions in the usual sense. In this thesis we

investigate methods of separation applied to bi-Helmholtz equation ∆2u = λu where

∆ is the Laplace-Beltrami operator. Studying solutions to this equation shows to be

extremely useful in elasticity theory which has direct applications in engineering. The

bi-Helmholtz equation also has applications in more theoretical frameworks such as

Hořava–Lifshitz gravity [7] where fourth order equations in space are a fundamental

part of the theory representing the anisotropy between space and time at high ener-

gies.

Historically much work on the theory of separation of variables has been done in the

context of the Hamilton-Jacobi equation

∂S

∂t
+H

(
qi,

∂S

∂qi
, t

)
= 0, (1.1)

where H is the Hamiltonian of some dynamical system which is assumed to be a

smooth function of its arguments. This is generally a non-linear equation and the

type of separable solution sought is of the form

S =
∑
i

S(i)(q
i) (1.2)
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and is called an additively separable solution; S(i) here are single variable functions of

their corresponding coordinate.

Levi-Civita [10] in a 1904 paper gave necessary and sufficient conditions for the sep-

arability of the Hamilton-Jacobi (HJ) equation. However, this only gave a method of

checking whether the HJ equation admits an additively separable solution in a coor-

dinate system, but said nothing about which coordinate systems have this property.

A particular HJ equation that was of interest to Levi-Civita was the geodesic HJ

equation where the Hamiltonian function has the following form

H(qi, pj, t) = gij(q)pipj, (1.3)

where gij are the inverse components of some (pseudo-)Riemannian metric on a local

patch of a (pseudo-)Riemannian manifold and pi are the canonical momenta. The

question then becomes, which coordinate systems admit a HJ equation which is ad-

ditively separable?

Stäckel [13] provides us with a partial answer to this question. He develops the theory

of orthogonal separation, i.e., separation in coordinate systems where the metric gij

is diagonal. Stäckel gives us the general form of a metric for which the geodesic HJ

equation is separable, that is that gii must be a row of the inverse of a Stäckel matrix.

A Stäckel matrix sij(q) is one such that ∂ksij = 0 whenever i ̸= k. This has become

the standard theory for approaching additive separation of HJ equations. Robertson

[12] further gave sufficient conditions for the multiplicative separability of Schrödinger

equations

−∆ψ + V ψ = Eψ (1.4)

based on the work done by Stäckel.

In a seminal paper, Eisenhart [6] demonstrated a deep geometrical insight into separa-

tion of variables. He shows that separable coordinates of the geodesic HJ equation are

characterised by the existence of n−1 quadratic first integrals (S = aijpipj) satisfying

some conditions in orthogonal coordinates. Furthermore, he shows that his geometric
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characterization is equivalent to that of Stäckel, giving an invariant characterization

of separation for the geodesic HJ equation. We discuss his results in more detail in

the final chapter.

Benenti [1] simplified and generalized Eisenhart’s result to show that the geodesic HJ

equation is separable in orthogonal coordinates if and only if there exists a (valence

two) Killing tensor K with pointwise real non-degenerate eigenvalues and orthogo-

nally integrable eigenvectors.

Kalnins and Miller [9] generalize the work of Stäckel and others on separation of

variables to a very general type of PDE of the form

H(qi, u, ui, ...., ui1···ik) = h, (1.5)

where h here is a constant and H is in general a non-linear function of the coordinates

qi, u and its derivatives up to kth order. They give necessary and sufficient condi-

tions for additive separability which we discuss in the coming chapters as well as an

in depth discussion of a geometric generalization by Benenti, Chanu and Rastelli [2].

We now turn our attention to the study of linear PDEs and their separability.

Let D be a linear partial differential operator of order k on a manifold Q with local

coordinates {qi}ni=1. We say the equation Du = 0 admits a multiplicatively separable

solution if there exists a function

u(x) =
n∏

i=1

fi(q
i) (1.6)

for some smooth single variable functions fi which satisfies Du = 0. The solution of

course, will depend on separation and integration constants. The maximal number

of independent constants is nk + 1 where k is the degree of the differential operator

D. This is due to the fact that in the best case one obtains n separated kth order

ordinary differential equations each of which needs k constants, and the additional
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constant is a separation constant. If a solution has the maximal number of indepen-

dent constants then we say the equation Du = 0 admits regular separation. However,

in the general case one does not always obtain the maximal number of independent

constants when looking for separated solutions. In this case we say the PDE admits

non-regular separation.

Kalnins and Miller [8] developed the theory of non-regular separation for equation

(1.5) and gave conditions for regular separation. However, in this case the separation

considered is additive separation

u =
∑
i

S(i)(q
i) (1.7)

However, one can show that with a substitution ψ = eu this amounts to a multiplica-

tively separated solution of a different equation obtained by substituting u = ln(ψ)

into the PDE. However, Kalnins and Miller did not give conditions for when non-

regular separation can occur and the number of constants involved. This is done by

Chanu [4] who also gives a geometric interpretation of non-regular separation which

will be discussed the next chapter.

Given a linear equation Du = λu, which admits regular (multiplicative) separation

of variables, one can build a new higher order equation D2u = λ2u. One can clearly

see that every solution to the lower order equation solves D2u = λ2u, which hence

admits non-regular separation with at least the same number of constants as the the

original equation. We say the non-regular separation is trivial when the solution

has the same number of constants, and in the case where the solution of D2u = λ2u,

admits more constants we say the equation admits non-trivial non-regular separation.

A symmetry S of a linear equation Du = 0, is a linear differential operator which

commutes with D. This allows one to find new independent solutions by applying

the symmetry operator to a given solution. Given a solution u of Du = 0, v = Su
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also solves the equation since

Dv = DSu = SDu = 0

A natural question to ask would be: is there a way to characterize when trivial or

non-trivial separation occurs? In the following chapters we will provide examples

of trivial and non-trivial non-regular separation. These computations motivate the

possible relation between existence of symmetries of a PDE and non-trivial non-

regular separation.
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Chapter 2

Geometric theory of separation for

PDEs

2.1 General theory

Let Q be an n dimensional smooth manifold with local coordinates {qi}ni=1 and u be

a smooth function on Q. We consider a k-th order non-linear PDE of the form

H(qi, u, ui, ...., ui1···ik) = h (2.1)

where H is some smooth function of the coordinates, u and its derivatives and h ∈ R

a constant. Note that we use ui1···ik to denote ∂ku
∂qi1 ···∂qik . We say that a function u is

an additively separable solution of (2.1) if it solves the equation and has the form

u =
∑
i

S(i)(q
i, ca), (2.2)

where S(i) are functions of only the i-th coordinate qi and depends on nk + 1 con-

stant ca. To guarantee independence of these constants the following completeness

condition must hold [9]

rank

[
∂u

∂ca

∣∣∣∣∂ui∂ca

∣∣∣∣ . . . ∣∣∣∣∂u(l)i∂ca
]
= nk + 1 (2.3)
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2.1. GENERAL THEORY

If u is additively separable then it is necessary for the mixed partial derivatives of all

order to vanish, i.e.

ui = S ′
(i), uij = S ′′

(i)δij = u
(2)
i δij, uijk = S ′′′

(i) = u
(3)
i δijδik, ... (2.4)

where we defined the compact notation u
(k)
i to be the kth derivative with respect to

the ith coordinate. When looking for additively separable solutions, (2.1) has the

form

H(qi, u, ui, ..., u
(k)
i ) = h

Since H is constant we must have dH = 0. In coordinates that is the following

condition

∂H
∂qi

+
∂H
∂u

ui +
∂H
∂ui

u
(2)
i + · · ·+ ∂H

∂u
(k)
i

u
(k+1)
i = 0 (2.5)

Without loss of generality we assume that ∂H
∂u

(k)
i

̸= 0. Then we can isolate for the

highest order derivative

u
(k+1)
i = −

(
∂H
∂u

(k)
i

)−1(
∂H
∂qi

+
∂H
∂u

ui +
∂H
∂ui

u
(2)
i + · · ·+ ∂H

∂u
(k−1)
i

u
(k)
i

)
def
= Ri(q

j, u, ..., u
(k)
j ) (2.6)

Define the following operators

Di =
∂

∂qi
+ ui

∂

∂u
+ · · ·+ u

(k)
i

∂

∂u
(k−1)
i

+Ri
∂

∂u
(k)
i

(2.7)

The equation (2.5) can now be written as DiH = 0. A PDE of the form (2.5) is said to

be regularly/freely separable if it admits a solution of the form (2.2) and satisfies the

completeness condition (2.3). Kalnins and Miller [9] proved that regular separation

occurs if and only if

DiRj = 0 (2.8)
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2.2. GEOMETRIC THEORY

identically everywhere for i ̸= j. Since we are treating the derivatives of our function

as independent coordinates we need to identify the derivatives with the coordinates.

Our system then becomes

∂iu = ui

∂iui = uii
... (2.9)

∂iu
(k)
i = Ri

2.2 Geometric theory

Benenti, Chanu and Rastelli [2] showed that if one has operators as in equation (2.7)

without assuming assuming the form the functions Ri have in equation (2.6), then

the conditions

[Di, Dj] = 0 DiH = 0 (2.10)

determine the functions Ri to be as in (2.6) and also give the condition DiRj = 0 for

i ̸= j. This means that regular separation is the same as the existence of n commuting

symmetries of H as in (2.10).

Theorem. (Benenti, Chanu, Rastelli [2]) A first-order differential system of the form

(2.9) is completely integrable, i.e., it admits a local complete solution satisfying the

completeness condition (2.3) if and only if the operators Di commute.

These operators can now be interpreted as vector fields in involution on a larger

manifold M with local coordinates
{
qi, u, ui, , ..., u

(k)
i

}
. One can also view the space

M as a formal trivial bundle over Q

M
π−−−→ Q

of rank nk + 1.

8



2.2. GEOMETRIC THEORY

Since Di are a set of commuting smooth sections of TM , by Frobenius’ theorem the

distribution ∆ = Span {Di} is integrable giving an n dimensional foliation of M .

The leaves of the foliation are then solutions of the PDE. This distribution can also

be viewed as specifying a choice of horizontal subspaces in the bundle (Ehresmann

connection), the condition [Di, Dj] = 0 implies that the connection is flat. Boundary

data is given by fixing values of u,ui,...,u
(k)
i at a point q ∈ Q which in turn fixes the

leaf which corresponds to the unique solution of the boundary value problem.

The figure below shows this foliation on M in the k = 1 and n = 1 case. Here Q is a

one dimensional manifold which has two dimensional leaves which correspond values

for u(q) and u′(q) at each point q ∈ Q.

Figure 2.1: Leaves of the folation of M . The vector field Di is shown tangent to the

leaves. The point p which corresponds to (q, u(q), ui(q), ..., u
(k)
i (q)) for some q ∈ Q.

Q is transverse to the leaves of the foliation.

This completes the geometric classification of regular additive separation of a PDE.
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2.2. GEOMETRIC THEORY

Generally it is not always possible to find a separated solution which depends on the

maximal number of independent constants N . However one might be able to find

separated solutions which depend on a smaller number number of constants N − r.

This occurs when the condition (2.8) is not satisfied identically everywhere and the

separation is called non-regular. This means that generally the derivatives of u will

depend on each other through relations other than H = h.

In [4] Chanu gives a geometric interpretation of non-regular separation which goes as

follows. Let N be a submanifold of M described implicitly by

fa = 0 (a = 1, . . . , r),

where fa are functions on M . These functions represent the non-trivial relations

between the derivatives of our solution that decrease the number of independent

constants. If the condition DiRj|N= 0 for i ̸= j is satisfied and the vectors Di are

tangent to N (in other words Difa = 0), then the foliation can be restricted to N and

the total number of independent constants will have decreased to nk + 1 − r. The

completeness condition now has the form

rank

[
∂u

∂ca

∣∣∣∣∂ui∂ca

∣∣∣∣ . . . ∣∣∣∣∂u(l)i∂ca
]
= nk + 1− r (2.11)

Thus for non-regular separation to occur there must be n vector fields Di as well as

r functions fa such that the following conditions are satisfied

DiH = 0, [Di, Dj]
∣∣
N
= 0, Difa

∣∣
N
= 0 (2.12)

So we can interpret this geometrically as a foliation on the submanifold N due to the

Frobenius’ theorem. One implication which follows immediately is that if DiRj does

not vanish at any point in M then H = h does not admit any (additively) separated

solutions.
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2.2. GEOMETRIC THEORY

We present the Helmholtz equation in Cartesian coordinates as an example of an

equation that admits regular separation with the geometric considerations taken into

account.
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2.3. THE HELMHOLTZ EQUATION IN CARTESIAN COORDINATES

2.3 The Helmholtz equation in Cartesian coordi-

nates

The Helmholtz equation (with no potential function) has the following form

∆ψ = λψ

where ∆ is the Laplace-Beltrami operator. In Cartesian coordinates in n-dimensions

we have ∑
i

∂2ψ

∂x2i
= λψ (2.13)

Generally we know that this equation admits multiplicatively separated solutions. To

apply the previously discussed geometric theory we use the following trick. Define

u = lnψ, if ψ is multiplicatively separate then u is additively separate and vice versa.

Taking derivatives of ψ = eu gives us an associated differential equation to (2.13)

which should admit additive separation.

∂2ψ

∂x2i
=
(
uii + (ui)

2
)
ψ

This gives the associated differential equation for u by substituting into (2.13)

H def
=
∑
i

uii + (ui)
2 = λ (2.14)

In this special case we see that the function H a priori does not depend on mixed

partial derivatives of u. This equation has a simple way of separating, let c1, ..., cn ∈ R

such that ∑
i

ci = λ

Then (2.14) additively separates into n ODEs of the form

uii + (ui)
2 = ci (2.15)

12



2.3. THE HELMHOLTZ EQUATION IN CARTESIAN COORDINATES

The sections Di have the form

Di =
∂

∂xi
+ ui

∂

∂u
+ uii

∂

∂ui
+Ri

∂

∂uii

Recall that the condition DiH = 0 determines the functions Ri

DiH = 2uiiui +Ri = 0

Which gives Ri = −2uiuii, notice that in this case the function Ri only depends on

u’s corresponding derivatives (ui and uii). Consequently, we have DiRj = 0 every-

where for i ̸= j and hence [Di, Dj] = 0 everywhere and we have the maximal foliation

corresponding to regular separation.

Regarding the number of independent constants, at first glance one might over-count

the number as follows: n − 1 independent separation constants ci (since they obey

one linear equation), and 2n integration constants from the n second order ODEs.

Hence one counts 3n − 1 constants. However notice that the solutions of (2.15) are

themselves defined up to a constant (since the ode only depends on derivatives of u).

Recalling that for additively separable solutions we have u =
∑

i S(i), the previous

implies that adding a constant αi to each S(i) does not affect the solution as long as

the constants add up to 0∑
i

(
S(i) + αi

)
=
∑
i

S(i) +
∑
i

αi =
∑
i

S(i) = u (2.16)

This takes away n − 1 independent constants from our count, since there are n − 1

independent constants αi. So we have 3n−1−(n−1) = 2n constants as expected. This

redundancy can also be seen in the multiplicative formulation, due to the projective

nature of the constants involved. If ψ =
∏

i U(i), the separated functions U(i) satisfy

the following differential equations

U ′′
(i) = ciU(i)

It’s easy to see that these solutions are defined upto a multiplicative constant αi. So

as long as those constants multiply to 1 the final solution ψ remains unchanged.
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2.4. THE HELMHOLTZ EQUATION IN LIOUVILLE COORDINATES IN
2-DIMENSIONS

2.4 The Helmholtz equation in Liouville coordi-

nates in 2-dimensions

Liouville coordinates are coordinates on Rn, characterized by the following metric:

g =

(
n∑

i=1

fi(x
i)

)
g0. (2.17)

where fi are positive functions depending only on their corresponding coordinate xi,

and g0 is the standard flat metric on Rn.

We will show that the Helmholtz equation is (regulary) separable in this coordinate

system in 2-dimensions, and in fact this turns out to be the most general class of

coordinate systems in 2-dimensions for which the Helmholtz equation admits regular

separation (see chapter 5).

In two dimensions the Liouville metric has the following form:

g = (f(x) + g(y)) (dx2 + dy2) (2.18)

This metric is conformally flat. Consequently, in two dimensions the Laplace-Beltrami

operator associated to this metric has a simple form in terms of the flat Laplacian

∆ =
1

f + g

(
∂2

∂x2
+

∂2

∂y2

)
=

1

f + g
∆0 (2.19)

So the Helmholtz equation becomes:

∆0ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
= λ(f + g) (2.20)

after multiplying both sides by (f + g). Now this problem is quite similar to the

Cartesian case, we do the same substitution ψ = eu to obtain

H = uxx + (ux)
2 + uyy + (uy)

2 − λ(f + g) = 0 (2.21)

14



2.4. THE HELMHOLTZ EQUATION IN LIOUVILLE COORDINATES IN
2-DIMENSIONS

Further we apply Dx and Dy to H to find the functions Rx and Ry:

Rx = λf ′(x)− 2uxxux Ry = λg′(y)− 2uyyuy (2.22)

Once again we have that Rx depends only on x, ux, uxx and thus DyRx = 0 holds

everywhere, and similarly for Ry. This means that this equation admits regular

separation. This example will be useful for our investigations in the coming chapters.
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Chapter 3

The bi-Helmholtz equation

At the end of the previous chapter we investigated the separability of the Helmholtz

equation in different coordinate systems as examples of PDEs admitting regular sep-

aration. In this section we investigate the separability of the bi-Helmholtz equation

∆2ψ = λψ (3.1)

The bi-Helmholtz equation appears regularly in the subjects of continuum mechan-

ics, solid mechanics, harmonic analysis and many others. We mainly investigate the

bi-Helmholtz equation as a concrete example to further understand non-regular sep-

aration, when it occurs and the number of constants in those solutions.

Since we know the Helmholtz equation separates regularly in the Liouville coordinate

systems, we should investigate the separability of the bi-Helmholtz equation in those

coordinates since we are guaranteed to have non-regular separability (since every

solution to the Helmholtz equation is a solution of the bi-Helmholtz equation). We

will call a separated solution non-trivial if it is a solution to the bi-Helmholtz equation

but not a solution of the Helmholtz equation.

16



In a general coordinate system the Laplace-Beltrami operator has the following form

∆ = gij∂ij − gijΓk
ij∂k = gij∂ij − Γk∂k (3.2)

where Γk = gijΓk
ij (summation over repeated indices1). Squaring this operator we

obtain the bi-Laplace operator, this has the following form

∆2ψ = gij∂ij(g
hk∂hkψ − Γh∂hψ)− Γi∂i(g

hk∂hkψ − Γh∂hψ) =

= gijghk∂ijhkψ + 2(gij∂jg
hk − ghkΓi)∂ihkψ +

(gij∂ijg
hk − 2gjk∂jΓ

h − Γi∂ig
hk + ΓhΓk)∂hkψ + (3.3)

(−gij∂ijΓh + Γi∂iΓ
h)∂hψ,

for the sake of brevity we will write the bi-Laplace operator in the following form

∆2 = Aijkl∂ijkl +Bijk∂ijk + Cij∂ij +Di∂i (3.4)

where

Aijkl = g(ijgkl) (3.5)

Bijk = 2(gh(i∂hg
jk) − g(ijΓk)) (3.6)

Cij = gkl∂klg
ij − 2gk(i∂kΓ

j) − Γk∂kg
ij + ΓiΓj (3.7)

Di = −gjk∂jkΓi + Γj∂jΓ
i = −∆Γi (3.8)

The following is the a general result from our paper [5] about the separability of the

bi-Helmholtz equation:

1In this chapter summation over repeated indices is implied unless otherwise specified
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Theorem. Let (M, g) be any Riemannian manifold. The bi-Helmholtz equation on

M does not admit regularly separable solutions in any coordinate system.

Proof. We begin with the same substitution ψ = eu and taking all the required

derivatives we obtain the following:

∂iψ = uiψ (3.9)

∂ijψ = (uij + uiuj)ψ (3.10)

∂ijkψ = (uijk + ukiuj + ujkui + uijuk + uiujuk)ψ (3.11)

=
(
uijk + 3u(ijuk) + uiujuk

)
ψ

∂ijklψ =
(
uijkl + 4u(iujkl) + 3u(ijukl) + 6u(iujukl) + uiujukul

)
ψ (3.12)

Substituting these derivatives into the bi-Helmholtz equation and dividing by ψ we

get our PDE for u

H =Aijkluijkl + (Bijk + 4Aijklul)uijk + (Cij + 3Bijkuk)uij+

3Aijkluijukl + 6Aijkluiujukl+ (3.13)

Aijkluiujukul +Bijkuiujuk + Cijuiuj +Diui = λ

Now since we are looking for additively separable u, the mixed partial derivatives

vanish and H depends only on derivatives of the form u
(k)
i :

H = (gii)2u
(4)
i + (4giigijuj +Biii)u

(3)
i (giigjj + 2(gij)2)u

(2)
i u

(2)
j

+ (2(giighj + 2gijgih)ujuh + (Biij +Biji +Bjii)uj + Cii)u
(2)
i (3.14)

+ gijghkuiujuhuk +Bihkuiuhuk + Cijuiuj +Diui

Since g is a Riemannian metric gii ̸= 0, this is due to the fact that g is positive def-

inite; g−1(dqi, dqi) = gii > 0, where g−1 is the induced metric on the cotangent spaces.

Furthermore, this function is homogeneous in spatial derivatives, meaning that in

every term the number of derivatives of u appearing in the term plus the number
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of derivatives of the metric is constant (in this case 4), this is due to the fact that

Bijk, Cij and Di contain first, second and third order derivatives of the metric respec-

tively.

With all of this in mind we can start by computing Ri as in (2.6)

Ri = −

(
∂H
∂u

(4)
i

)(
∂H
∂qi

+
∂H
∂u

ui +
∂H
∂ui

u
(2)
i +

∂H
∂uii

u
(3)
i +

∂H
∂u

(3)
i

u
(4)
i

)

= − 1

gii

(
∂H
∂qi

+
∂H
∂ui

u
(2)
i +

∂H
∂uii

u
(3)
i +

∂H
∂u

(3)
i

u
(4)
i

)
(3.15)

with no sum over repeated indices in the equation and used the fact that H is inde-

pendent of u. Now we will show that DiRj cannot vanish everywhere.

DiRj = ∂iRj + u
(2)
i

∂Rj

∂ui
+ u

(3)
i

∂Rj

∂u
(2)
i

+ u
(4)
i

∂Ri

∂u
(3)
i

+Ri
∂Rj

∂u
(4)
i

(3.16)

We begin by computing the last term Ri
∂Rj

∂u
(4)
i

Ri
∂Rj

∂u
(4)
i

= − Ri

(gjj)2

(
∂2H

∂qj∂u
(4)
i

+ u
(2)
j

∂2H
∂u

(4)
i ∂uj

+ u
(3)
j

∂2H
∂u

(4)
i ∂u

(2)
j

+ u
(4)
j

∂2H
∂u

(3)
j ∂u

(4)
i

)

= −Ri∂j(g
ii)2

(gjj)2
(3.17)

Next we have the term u
(4)
i

∂Ri

∂u
(3)
i

u
(4)
i

∂Rj

∂u
(3)
i

= − u
(4)
i

(gjj)2

(
∂2H

∂qj∂u
(3)
i

+ u
(2)
j

∂2H
∂u

(3)
i ∂uj

+ u
(3)
j

∂2H
∂u

(3)
i ∂u

(2)
j

+ u
(4)
j

∂2H
∂u

(3)
j ∂u

(3)
i

)

= − u
(4)
i

(gjj)2

(
∂jB

iii + 4∂j(g
iigik)uk + 4u

(2)
j giigij

)
(3.18)

Notice that this contains a term of the form

−4
giigij

(gjj)2
u
(2)
j u

(4)
i (3.19)
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Then we have the term u
(3)
i

∂Rj

∂u
(2)
i

u
(3)
i

∂Rj

∂u
(2)
i

= − u
(3)
i

(gjj)2

(
∂2H

∂qj∂u
(2)
i

+ u
(2)
j

∂2H
∂u

(2)
i ∂uj

+ u
(3)
j

∂2H
∂u

(2)
i ∂u

(2)
j

+ u
(4)
j

∂2H
∂u

(3)
j ∂u

(2)
i

)

= − u
(3)
i

(gjj)2

(
∂2H

∂qj∂u
(2)
i

+ u
(2)
j

∂2H
∂u

(2)
i ∂uj

+ 2(giigjj + 2(gij)2)u
(3)
j

)
(3.20)

We note that this contains the following term

−2

(gjj)2
(giigjj + 2(gij)2)u

(3)
j u

(3)
i (3.21)

Finally we have the term u
(2)
i

∂Rj

∂ui

u
(2)
i

∂Rj

∂ui
= − u

(2)
i

(gjj)2

(
∂2H
∂qj∂ui

+ u
(2)
j

∂2H
∂ui∂uj

+ u
(3)
j

∂2H
∂ui∂u

(2)
j

+ u
(4)
j

∂2H
∂u

(3)
j ∂ui

)

= −u(2)i

(
4
giju

(4)
j

gjj
+ Lower order derivatives of u

)
(3.22)

This contains the terms

−
4giju

(4)
j u

(2)
i

gjj
(3.23)

These highlighted terms (3.19,3.21,3.23) are the only terms containing u
(4)
l u

(2)
m and

u
(3)
l u

(3)
m in DiRj, and we can see by inspection that they do not cancel when added and

none of them vanish since gii > 0. We conclude that DiRj does not vanish implying

that the bi-Helmholtz equation does not admit regular separation in any coordinate

system on any n-dimensional Riemannian manifold.
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3.1. CARTESIAN COORDINATES

3.1 Cartesian Coordinates

In Cartesian coordinates the bi-Laplacian takes the simple form:

∆2 = (∂2x + ∂2y)
2 = ∂4x + ∂4y + 2∂2x∂

2
y (3.24)

Looking for a separable solution for the bi-Helmholtz equation ∆2ψ = λψ for some λ ∈

R, we assume ψ(x, y) = f(x)g(y). Substituting this into the bi-Helmholtz equation

we obtain

f (4)g + fg(4) + 2f ′′g′′ = λfg

f (4)

f
+
g(4)

g
+ 2

f ′′g′′

fg
= λ (3.25)

A necessary condition for separation can be obtained applying ∂xy to (3.25) which

gives

(
f ′′

f

)′(
g′′

g

)′

= 0 (3.26)

This condition immediately tells us that the separation of variables is non-regular

since there are extra conditions on the functions for the solution to be separable. The

previous equation gives three case: Either one of the terms or both terms in the above

equation must vanish. We first consider the case

f ′′

f
= C1

g′′

g
= C2

For some C1, C2 ∈ R \ {0} such that the following relation holds

C2
1 + C2

2 + 2C1C2 = λ = (C1 + C2)
2 (3.27)

Since f ′′ = C1f gives f (4) = C1f
′′ = C2

1f and similarly for g. So this case only works

when λ ≥ 0. Now we let ki =
√
Ci for i = 1, 2 where ki can be imaginary, then we

have
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3.1. CARTESIAN COORDINATES

f = A1 cosh(k1x) + A2 sinh(k1x)

g = A3 cosh(k2y) + A4 sinh(k2y)

For some arbitrary constants A1, ..., A4 and the constants k1 and k2 need to satisfy

(3.27). We can see that in this case the solution is what we previously called trivially

separable since this is a solution to a Helmholtz equation ∆ψ =
√
λψ.

The other sufficient conditions is when one of f ′′

f
, g′′

g
is constant and the other is not.

In the case that f ′′ = cf = ±k2f and g′′

g
is not constant we have that

f = A cosh(kx) +B sinh(kx) or f = A cos(kx) +B sin(kx) (3.28)

Depending on the sign of c, where A,B ∈ R. We also have that g satisfies

g(4) + 2cg′′ + (c2 − λ)g = 0 (3.29)

Which comes from (4.2) after subbing in f ′′ = cf . This has a characteristic equation

r4 + 2cr2 + c2 = λ (3.30)

(r2 ± k2)2 = σ4 (3.31)

We see that to have a separated solution we also need σ4 = λ ≥ 0 in these cases as

well. From here we obtain all possible solutions by considering the different cases for

the signs and magnitude of c. We see that in this case g satisfies a fourth order equa-

tion and hence our solution can never be a solution to a Helmholtz equation so this

is an example of non-trivial non-regular separation. As a result of this the solution

will contain 6 independent constants (4 for g and 2 for f) and 1 separation constant

namely c. If the equation had regular separation then one would have 2× 4 + 1 = 9

constants, and hence from the geometrical interpretation we expect there to be a

six dimensional submanifold (defined by two constraint functions) of our bundle on

which the non-regular separation occurs. We now show the geometrical treatment of

this problem to compare.
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3.1. CARTESIAN COORDINATES

After substituting f = eu1 and g = eu2 the equation (3.25) the only term which

obstructs the additive separation is the term corresponding to f ′′g′′

fg
which has the

form

(u′′1 + u′21 )(u
′′
2 + u′22 ) (3.32)

and must be constant. Applying the mixed partial gives

(u
(3)
1 + 2u′1u

′′
1)(u

(3)
2 + 2u′2u

′′
2) = 0 (3.33)

As before without loss of generality we assume the first term is zero which gives the

following equations

u
(3)
1 + 2u′1u

′′
1 = 0 u

(4)
1 + 2(u′′1)

2 + 2u
(3)
1 u′1 = 0 (3.34)

where the second equation is the derivative of the first and must also be identically

zero for the separation to occur. We now have two candidate functions f1 and f2 that

will define our submanifold on which the non-regular separation occurs. So let’s take

f1 = u
(3)
1 + 2u′1u

′′
1 f2 = u

(4)
1 + 2(u′′1)

2 + 2u
(3)
1 u′1

we now need to check the Difa|N= 0 on the submanifold N defined by f1 = f2 = 0.
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3.2. POLAR COORDINATES

3.2 Polar Coordinates

For polar coordinates we have Γr = −1
r
,Γθ = 0, so the Laplace-Beltrami operator has

the form

∆ = gij∂ij − Γi∂i = ∂2r +
1

r2
∂2θ +

1

r
∂r

From this we have that the bi-Laplacian

∆2ψ = ∆

(
∂2rψ +

1

r2
∂2θψ +

1

r
∂rψ

)
= ψrrrr +

1

r4
ψθθθθ +

2

r
ψrrr −

1

r2
ψrr +

1

r3
ψr +

4

r4
ψθθ −

2

r3
ψrθθ +

2

r2
ψrrθθ (3.35)

Looking for a separable solution ψ(r, θ) = R(r)Θ(θ), where we require the theta

function to be 2π periodic. Plugging this into the bi-Helmholtz equation we have

∆2ψ

ψ
=
R(4)

R
+

Θ(4)

r4Θ
+

2R(3)

rR
− R′′

r2R
+

R′

r3R
− 2

R′Θ′′

r3RΘ
+ 2

R′′Θ′′

r2RΘ
+ 4

Θ′′

r4Θ
= λ

r4R(4) + 2r3R(3) − r2R′′ + rR′ − λr4R

R
+

Θ(4) + 2(r2R
′′

R
− rR

′

R
+ 2)Θ′′

Θ
= λ (3.36)

We can see that the necessary condition for separation in (3.36) is

(
r2
R′′

R
− r

R′

R
+ 2

)′(
Θ′′

Θ

)′

= 0 (3.37)

This gives gives three cases as in the Cartesian case, the case where both terms vanish

as before gives trivial non-regular separation. Given that our coordinate θ is a cyclic

coordinate we need to insure that our function Θ is continuous. Thus we should

consider the case where Θ′′ = C1Θ where C1 < 0 for our function to be periodic

(continuous in the periodic variable). In this case we obtain a fourth order equation

for R

r4R(4) + 2r3R(3) + (2C1 − 1)r2R′′ + (1− 2C1)rR
′ + (C2

1 + 4C1 − λr4)R = 0 (3.38)

Obtained by plugging in Θ′′ = C1Θ and Θ(4) = C1Θ
′′ = C2

1Θ into (3.36). Similar to

the Cartesian case this case gives non-regular separation where R satisfies a fourth
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3.2. POLAR COORDINATES

order equation and Θ satisfies a second order equation. This gives two constraint

function in the additive formulation

f1 = u
(3)
2 + 2u2u

′′
2 f2 = u

(4)
2 + 2(u′′2)

2 + 2u
(3)
2 u′2, (3.39)

where Θ = eu2 , in which case we also have Difj = 0 on the surface defined by the

functions.
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3.3. LIOUVILLE COORDINATES

3.3 Liouville Coordinates

Liouville coordinates are the most general set of coordinates in which the Helmholtz

equation in 2-dimensions separates. The metric in this coordinate system has the

form

ds2 = (f(u) + g(v)) (du2 + dv2)

Since the metric is conformally flat Γi = 0 in 2-dimensions and hence we have the

Helmholtz equation has the form

∆ψ =
1

f + g

(
∂2uψ + ∂2vψ

)
= λψ (3.40)

For a separable solution ψ = U(u)V (v)(
U ′′

U
− λf

)
+

(
V ′′

V
− λg

)
= 0, (3.41)

which directly tells us that the equation separates for any smooth functions f, g.

Since this case always admits separation for the Helmholtz equation we can use it

to investigate which functions f, g give non-trivial non-regular separation for the bi-

Helmholtz equation. A special case of Liouville coordinates on R2 are Cartesian, polar,

parabolic and elliptic hyperbolic coordinates all obtained by appropriately changing

f and g. The aforementioned cases all have vanishing Gaussian curvature which in

this coordinate system has the form

K = − 1

2(f + g)2

(
f ′′ + g′′ − f ′2 + g′2

f + g

)
(3.42)

From here on we will set K = 0 in order to consider the parabolic and elliptic-

hyperbolic cases in which we also have that f ′ ̸= 0, g′ ̸= 0. We use the Laplace-

Beltrami operator as in (3.40) to write the bi-Laplace operator

∆2ψ =
∆2

0ψ

(f + g)2
− 2

(f + g)3
(f ′∂u∆0ψ + g′∂v∆0ψ) +

1

(f + g)4
(
f ′2 + g′2 + 2(f + g)3K

)
∆0ψ

=
∆2

0ψ

(f + g)2
− 2

(f + g)3
(f ′∂u∆0ψ + g′∂v∆0ψ) +

f ′′ + g′′

(f + g)3
∆0ψ (3.43)
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3.3. LIOUVILLE COORDINATES

Where ∆0 = ∂2u+∂
2
v is the flat Laplacian. The vanishing Gaussian curvature condition

was used to simplify the form of ∆2. Looking for separable solutions of the form

ψ = U(u)V (v) and subbing this into the bi-Helmholtz equation we get

f
U (4)

U
+ g

V (4)

V
− 2f ′U

(3)

U
− 2g′

V (3)

V
+ f ′′U

′′

U
+ g′′

V ′′

V
− λf 3 − λg3+

+2(f + g)
U ′′V ′′

UV
+ g

U (4)

U
+ f

V (4)

V
− 2f ′U

′V ′′

UV
− 2g′

V ′U ′′

UV
+ f ′′V

′′

V
+ g′′

U ′′

U
(3.44)

−3λf 2g − 3λfg2 = 0.

We see that the equation does not admit regular separability as expected. However

it might still admit non-regular separability. Applying ∂u,v to this once we obtain

f ′
(
V (5)

V
− V (4)V ′

V 2

)
+ g′

(
U (5)

U
− U (4)U ′

U2

)
− 6λ(f + g)f ′g′+

+

(
V (3)

V
− V ′′V ′

V 2

)(
f ′′ + 2f

U ′′

U
− 2f ′U

′

U

)′

(3.45)

+

(
U (3)

U
− U ′′U ′

U2

)(
g′′ + 2g

V ′′

V
− 2g′

V ′

V

)′

= 0.

This condition once again does not separate. To obtain a simpler sufficient condition

for separation, we divide by f ′g′ and apply ∂uv once again

(
1

g′

(
V ′′

V

)′)′((
f ′′ + 2f U ′′

U
− 2f ′U ′

U

)′
f ′

)′

+

(
1

f ′

(
U ′′

U

)′)′((
g′′ + 2g V ′′

V
− 2g′ V

′

V

)′
g′

)′

= 0. (3.46)
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3.3. LIOUVILLE COORDINATES

From here we obtain several cases: (i) neither
(

1
f ′

(
U ′′

U

)′)′
nor

(
1
g′

(
V ′′

V

)′)′
vanish,

from which we obtain λ = 0 (ii) only one vanishes which also implies λ = 0 (iii) both

vanish which gives us a solution to the Helmholtz equation in Liouville coordinates.

Hence, we do not get any non-trivial separated solutions. The proof in case (i) is

given below and in Appendix A while that for cases (ii) and (iii) is given in Appendix

B.

Case(i): Dividing (3.46) by
(

1
f ′

(
U ′′

U

)′)′ ( 1
g′

(
V ′′

V

)′)′
we obtain a separable equation.

Separating and integrating (see appendix A for this calculation) we find the following

equations

(2g − C)
V ′′

V
− 2g′

V ′

V
+ g′′ − C1g − C2 = 0, (3.47)

(2f + C)
U ′′

U
− 2f ′U

′

U
+ f ′′ −D1f −D2 = 0, (3.48)

where C,C1, C2, D1.D2 ∈ R. We can use these conditions in (3.45) to obtain

1

g′

(
V (4)

V

)′

+
1

f ′

(
U (4)

U

)′

+
D1

g′

(
V ′′

V

)′

+
C1

f ′

(
U ′′

U

)′

− 6λ(f + g) = 0. (3.49)

Notice that this condition is now separable. And using this condition we can integrate

back to get a simplified form of equation (3.44)

f
U (4)

U
+ g

V (4)

V
− 2f ′U

(3)

U
− 2g′

V (3)

V
+ f ′′U

′′

U
+ g′′

V ′′

V
− λf 3 − λg3+

+ f
V (4)

V
+ g

U (4)

U
+ (C1g + C2)

U ′′

U
+ (D1f +D2)

V ′′

V
− 3λf 2g − 3λfg2 = 0. (3.50)

To make sure we account for all the constraints properly we also need to use the

derivatives of equations (3.47) and (3.48). There are other constraints coming from

the additional requirement K = 0, for the interest of brevity we will include these

calculations Appendix A.
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3.3. LIOUVILLE COORDINATES

After using all the constraint equations we end up with the following

(C2 −D2 − (C1 +D1)f)

C1 +D1

(
αf + β + 3λf 2 − (k + C1)(D1 − k)f + C1(D2 −D) +D(D1 − k)

2f + C

+ 2
f ′2

(2f + C)2
(D1 − k)− (D1f +D2)

2 − f ′′2

(2f + C)2

)
− 2

(D1 − k)

2f + C
f ′2

+ ((k − C1)f + C2 +D)

(
(D1 − k)f +D2 −D

2f + C

)
+ 2λf 3 + αf 2 + (β + γ)f = δ,

(3.51)

where from the condition K = 0 we have f ′2 = kf 2+2Df−k and g′2 = −kg2+2Dg+

k. Thus the above equation simplifies to a polynomial in f after multiplication by

(2f+C)2. Furthermore, since f ′ ̸= 0, the set {1, f, f 2, . . . , fn} is linearly independent.

This implies that the coefficients of the different powers of f must all vanish. The

coefficient of the highest power of f the is 8λ the vanishing of which implies that

λ = 0. In the case that C1 + D1 = 0 (20) is a polynomial in f with highest order

term 3λf 2 which also implies λ = 0.
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Chapter 4

Vibrating circular clamped plate

A vibrating plate with some constant thickness and constant density satisfies [11]

c4∆2u+ ü = 0, (4.1)

on the region Ω in the interior of the plate, where u is the lateral elevation at every

point of the plate and c4 is some positive constant of the material which contains

the density, Young’s modulus and thickness. A derivation of this equation can be

found in Rayleigh’s book [11]. If the plate is clamped the boundary conditions on u

are u|∂Ω= un|∂Ω= 0 where the subscript n denotes differentiating with respect to the

normal coordinate to the boundary. For the case of a circular plate we have that Ω

is a disk of some radius a. First we separate out the time variable u = w(r, θ)T (t)

∆2w

w
= − 1

c4
T̈

T
= k4, (4.2)

where we used a positive separation constant since we expect oscillatory behaviour in

time. Notice that this separation is regular since there are no additional constraints

on the separated functions. We define ω2 = k4c4, so the time part will have the form

T (t) = G cos(ωt) +H sin(ωt) (4.3)
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The spatial part will satisfy a bi-Helmholtz equation,

∆2w = k4w (4.4)

Written out explicitly in polar coordinates this has the form

wrrrr +
1

r4
wθθθθ +

2

r
wrrr −

1

r2
wrr +

1

r3
wr +

4

r4
wθθ −

2

r3
wrθθ +

2

r2
wrrθθ = k4w (4.5)

Now to separate the spatial coordinates first we require our solution to be 2π periodic

in θ. This means that we can write wn = Rn(r)Θn(θ) where Θ
′′
n = −n2Θ. Substituting

this into the (4.5) we have the following equation

(
d2

dr2
+

1

r

d

dr
− n2

r2
+ k2

)(
d2

dr2
+

1

r

d

dr
− n2

r2
− k2

)
Rn = 0 (4.6)(

d2

dr2
+

1

r

d

dr
− n2

r2
− k2

)(
d2

dr2
+

1

r

d

dr
− n2

r2
+ k2

)
Rn = 0, (4.7)

where we have explicitly written the equation in two ways to show that these operators

commute. Rayleigh in his book [11] arrives at a similar result starting with a Fourier

series ansatz. These are the Bessel and modified Bessel operators. Since we know

a basis of solutions to the Bessel and modified Bessel equations which are linearly

independent the radial function will be a linear combination of those solutions

Rn(r) = AnJn(kr) +BnYn(kr) + CnIn(kr) +DnKn(kr), (4.8)

where Jn, Yn, In, Kn are the Bessel and modified Bessel functions of the first and

second kind. The Bessel functions of the second kind are inadmissible since they are

singular at the origin so we take Bn = Dn = 0. The angular function satisfies the

second order DE and thus has the form

Θn = En cos(nθ) + Fn sin(nθ)
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One retrieves the solution to the vibrating membrane when also taking Cn = 0. The

boundary conditions tell us that Rn(a) = R′
n(a) = 0.

Rn(a) = AnJn(ka) + CnIn(ka) = 0 (4.9)

R′
n(a) = kAnJ

′
n(ka) + kCnI

′
n(ka) = 0 (4.10)

To solve (4.9) we either need ka = jn,m (the mth zero of Jn) and Cn = 0 in which case

we retrieve the vibrating membrane solution, or An = − In(ka)
Jn(ka)

Cn (we can absorb Cn

into the definition of En, Fn to simplify). Since we are interested in solutions other

than the ones for the vibrating membrane we take the latter in which case (4.10)

becomes

I ′n(ka)−
In(ka)

Jn(ka)
J ′
n(ka) = 0 (4.11)

I ′n(ka)

In(ka)
− J ′

n(ka)

Jn(ka)
= 0 (4.12)

We can find the roots numerically and get a condition ka = ln,m where ln,m is the

mth root of equation (4.12) some fixed m

Rn,m(r) = Cn

(
In

(
ln,mr

a

)
− In(ln,m)

Jn(ln,m)
Jn

(
ln,mr

a

))
(4.13)

So the general solution for u has the form

u =
∑
m,n

(En cos(nθ) + Fn sin(nθ)) (Gn,m cos(ωn,mt) +Hn,m sin(ωn,mt))Rn,m, (4.14)

where ωn,m = ckn,m = c ln,m

a
. This is an application of non-regular separation in a

physical situation, as mentioned at the beginning of the section. Rayleigh approached

this problem with a Fourier approach and has more details in his book [11].
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Chapter 5

Symmetries of the bi-Laplace

operator

The link between symmetries of a linear partial differential equation and separable

coordinates has been a longstanding area of research. There has been good progress

in understanding this link especially for the Helmholtz equation and other second

order equations mainly due to Stäckel, Eisenhart, Miller and others [6, 8, 13]. The

full picture of the relationship, however, has yet to be understood. In this section we

present a new avenue in this area of study by trying to understand the relationship

between symmetries and non-regular separation.

In the previous section we looked at the bi-Helmholtz equation in a special class

of coordinate systems: those which we called Liouville coordinate systems. These

coordinate systems are characterized by the existence of a second order symmetry

(valence two Killing tensor); it is due to this fact that, as mentioned before, they

are the most general coordinate systems in 2-dimensions for which the Helmholtz

equation separates. There are four of these coordinate systems where the Gaussian

curvature K vanishes, namely Cartesian, Polar, Parabolic and Elliptic-Hyperbolic

coordinates.
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5.1. PRELIMINARIES

The Cartesian and Polar coordinate systems also admit a first order symmetry opera-

tor (Killing vector); these are ∂x, ∂y for Cartesian and ∂θ for the polar coordinates. In

these coordinate systems we see that we obtain what we call non-trivial non-regular

separation, non-regularly separable solutions to the bi-Helmholtz equation which are

not solutions of the Helmholtz equation. The other two coordinate systems (Parabolic

and Hyperbolic-Elliptic), do not admit first order symmetries. We see in our analysis

that in these two cases we do not obtain non-trivial non-regular separation, i.e. if the

solution is separable it was a solution of the Helmholtz equation.

This indicates that a coordinate system having a first order symmetry could be a

sufficient condition for non-trivial non-regular separation of the bi-Helmholtz equa-

tion. We study the symmetries of the bi-Laplace operator ∆2 (which are those of the

bi-Helmholtz operator) in order to investigate this hypothesis between symmetry and

non-trivial non-regular separation.

5.1 Preliminaries

A symmetry of a linear differential operator D is a linear differential operator L such

that [D, L] = 0. If u is a solution to Du = 0 then Lu is also a solution since

DLu = LDu = 0 (5.1)

We are interested specifically in the case of the bi-Laplacian D = ∆2. In this case we

have [
∆2, L

]
= ∆[∆, L] + [∆, L]∆ = {∆, [∆, L]} , (5.2)

where { , } is the anticommutator bracket. We can immediately see that if L is a

symmetry of the Laplacian it follows that it must be a symmetry of the bi-Laplacian.
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5.1. PRELIMINARIES

We reformulate the problem in the following way for ease of computation, a symmetry

L of the bi-Laplacian must satisfy

[∆, L]
def
= S (5.3)

{∆, S} = 0 (5.4)

As mentioned earlier it is clear that if L is a symmetry of ∆ it is a symmetry of ∆2.

Hence we will only be interested in non-zero operators S.

Let ∇ be the Levi-Civita connection on a given Riemannian manifold (M, g). Recall

we can write the Laplacian as follows

∆ = gij∇i∇j, (5.5)

where ∇i = ∇∂i and g
ij are the components of the inverse of the metric in a given

coordinate basis {∂i}ni=1. For notational purposes we will denote

∇i∇j · · · ∇k = ∇ij···k

The computations in this chapter will rely on some identities from Riemmanian ge-

ometry. We recall and derive some of these identities before getting into the bulk of

the calculation. In a coordinate basis we have

(∇ij −∇ji)f = 0 (5.6)

(∇ij −∇ji)ωk = Rl
kijωl (5.7)

and for a general covariant tensor

(∇ij −∇ji)ωkl···m = Rn
kijωnl···m +Rn

lijωkn···m + · · ·+Rn
mijωkl···n (5.8)

These identities will be useful in order to symmetrize covariant derivatives. The

symmetrization is required in order to compare differential operators order by order.

The symmetrized covariant derivatives ∇(ij···k) cannot be reduced to any lower order

symmetric covariant derivatives by the Ricci identities.
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5.1. PRELIMINARIES

Compare this with the un-symmetrized version of the covariant derivatives where we

have for example

∇ijkf = ∇jikf +Rl
kij∇lf (5.9)

∇ijklf = ∇jiklf +Rm
kij∇mlf +Rm

lij∇kmf, (5.10)

which come from applying (5.8) to ω = ∇f = df and ω = ∇∇f = Hessf . This shows

that the un-symmetrized covariant derivatives can be reduced down using the Ricci

identity. Symmetrizing the above relations we have

∇ijkf = ∇(ijk)f − 2

3
Rl

(jk)i∇lf (5.11)

∇ijklf = ∇(ijkl)f +
3

2
Rm

(j|i|k∇l)mf − 2

3
(∇iR

m
(kl)j∇mf +Rm

(kl)j∇imf) (5.12)

∇ijklmf = ∇(ijklm)f + terms of order 3 and less (5.13)

It’s generally always possible to symmetrize a covariant derivative of order n by

obtaining terms which are of order n− 2 or less by using the Ricci identity (5.8):

∇i1i2···inf = ∇(i1i2···in)f + unsymmetrized derivatives of order n− 2 or less.

With this in mind we start investigating the symmetries of the bi-Laplace operator.
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5.2. FIRST ORDER SYMMETRIES

5.2 First order symmetries

We investigate non-trivial first order operators which commute with the bi-Laplace

operator (on functions). Any such operator X can be written X = X i∇i. As de-

scribed before we start by calculating the commutator with the Laplace-Beltrami

operator and then set the anticommutator of the result with the Laplace-Beltrami

operator to 0. Recall that the Laplace-Beltrami operator can be written as ∆ = gij∇ij

in terms of the Levi-Civita connection, computing the commutator first we have

[∆, X]f = gij∇ij

(
Xk∇kf

)
−X i∇i

(
gjk∇jkf

)
= gij∇ijX

k∇kf + gij∇jX
k∇ikf + gij∇iX

k∇jkf −X igjkRl
kij∇lf

The third order derivatives of f cancel. Grouping terms by order of covariant deriva-

tives we have

[∆, X]f = 2∇(iXj)∇ijf +
(
∆X l −X igjkRl

kij

)
∇lf (5.14)

= (Sij∇ij + σl∇l)f := Sf, (5.15)

where we define Sij = 2∇(iXj), σl =
(
∆X l −X igjkRl

kij

)
and S = Sij∇ij + σl∇l.

Now we compute the anticommutator of S with ∆ and set it equal to 0

{∆, S} f = (gijSkl + gklSij)∇ijklf + lower order terms (5.16)

The highest order terms (4th order here) are the ones where all the derivatives act

on f ; these are the terms that are shown in the above equation. As mentioned before

we can always symmetrize the derivatives to obtain lower order terms:

∇ijklf = ∇(ijkl)f + lower order terms (5.17)

Specifically the lower order terms are second order in the covariant derivatives in this

case. Substituting this into (5.16) we have

{∆, S} f = 2g(ijSkl)∇(ijkl)f + lower order terms (5.18)

So this gives us

g(ij∇kX l) = 0 (5.19)
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5.2. FIRST ORDER SYMMETRIES

This is of course is equivalent to the equation

gi(j∇kX l) = 0

since g is symmetric. Contracting with gij and expanding the symmetrization brackets

we have

gij(g
ij∇kX l + gil∇jXk + gik∇lXj + gik∇jX l + gil∇kXj + gij∇lXk) = 0

n∇kX l + δlj∇jXk + δkj∇lXj + δkj∇jX l + δlj∇kXj + n∇lXk = 0

n∇kX l +∇lXk +∇lXk +∇kX l +∇kX l + n∇kX l = 0

4(n+ 2)∇(kX l) = 0

Hence obtaining ∇(kX l) = 0, and X is a Killing vector in which case the integrability

condition ∆X l−X igjkRl
kij = σl = 0 is satisfied [14] and thus [X,∆] = 0. This means

that X is a also a symmetry of the Lalplace-Beltrami operator. We conclude that

any first order symmetry of the bi-Laplace operator is also a symmetry of the Laplace

operator (a Killing vector). We note that if a metric admits a Killing vector, then

it also admits a valence two Killing tensor obtained by taking the symmetric tensor

product of the Killing vector with itself. This will be of relevance to the upcoming

section.
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5.3. SECOND ORDER SYMMETRIES

5.3 Second order symmetries

We consider second order operators of the following formKf = ∇i(K
ij∇jf) such that

Kij is symmetric. These are the operators which, when identified as endomorphisms

of vectors, are self-adjoint with respect to the metric g [3]. Carter computes the

commutator of these operators with the Laplace-Beltrami operator [3]:

[∆, K] =2∇hKij∇(ijh) + 3∇h∇(hKij)∇(ij)

+∇j

(
1

2
ghk(∇j∇(iKhk) −∇i∇(jKhk)) +

4

3
K

[j
h R

i]h

)
∇i (5.20)

:= S

Highlighting the first term as before we get

{S,∆} f =
(
gijSklm + glmSijk

)
∇ijklmf + terms of lower order derivatives

= 2g(ijSklm)∇(ijklm)f + terms of lower order derivatives, (5.21)

where here Sklm = ∇kKij is the leading order term in (5.20), and we have symmetrized

to obtain lower order derivative terms and obtain an independent leading term. For

the anti-commutator to vanish we must have

g(ijSklm) = g(ij∇kK lm) = 0 (5.22)

As before contracting with gij give us that K is a (valence two) Killing tensor

∇(kK lm) = 0. Substituting this backing into (5.20) we have

S = [∆, K] =
4

3
∇j

(
K

[j
h R

i]h
)
∇i := Ci∇i, (5.23)

where we have defined Ci = 4
3
∇j

(
K

[j
h R

i]h
)
. This can go back into the anti-commutator

equation to see what happens to the lower order terms
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5.3. SECOND ORDER SYMMETRIES

We have

{S,∆} =
(
gijC l + gjlCi

)
∇ijl + lower order terms

= 2g(ijC l)∇(ijl) + lower order terms,

where as before we symmetrize the covariant derivative of the leading term to obtain

lower order terms. Thus we have that g(ijC l) = 0 must be satisfied which when

contracted with gij and expanded gives that Ci = 0. In other words

4

3
∇j

(
K

[j
h R

i]h
)
= 0 (5.24)

must be satisfied for K to be a a symmetry of the bi-Laplace operator. This condi-

tion being satisfied makes (5.23) vanish identically. The above condition is called the

Carter condition which must be satisfied by a second order symmetry of the Laplace-

Beltrami operator. So we have once again that a symmetry of the bi-Laplace operator

is a symmetry of the Laplace-Beltrami operator.

A special case of when the Carter condition (5.24) is satisfied is when our Riemannian

manifold is Einstein, i.e we have Rij = αgij:

4

3
α∇j

(
K

[j
h g

i]h
)
=

2

3
α∇j

(
Kj

hg
ih −Ki

hg
jh
)

(5.25)

=
2

3
α∇j

(
Kji −Kij

)
= 0 (5.26)

since K is symmetric. Hence indeed the Carter condition is satisfied. We will now

briefly discuss how this relates to the specific set of coordinates which we have exam-

ined in the past chapters (the Liouville coordinate systems).
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5.4. SEPARABLE COORDINATES FROM SYMMETRY

5.4 Separable coordinates from symmetry

In his 1934 paper, Eisenhart [6] investigated the link between symmetries and sepa-

rable coordinate systems. We summarize some of his results in this section as well

as apply it to our case study. Eisenhart was specifically interested in quadratic first

integrals of the geodesic equation, i.e. if γ is a geodesic in our Riemannian manifold

he was interested in constant quantities along the geodesic of the form

a(γ̇, γ̇) = aij γ̇
iγ̇j = const (5.27)

A sufficient and necessary condition for this to hold is that aij is a Killing tensor.

This can be seen by taking the covariant derivative along γ̇ = d
dt

of both sides. aij

can be taken to be a symmetric tensor without loss of generality. We deviate slightly

from Einsenhart’s work, since we are interested in the 2-dimensional case. We write

our metric in conformal or isothermal coordinates which always exist locally in 2-

dimensions.

g = H2(dx2 + dy2) (5.28)

In contrast, Eisenhart writes the Killing equations ∇(iajk) = 0 explicitly in an orthog-

onal coordinate system in which aij is diagonal. These coordinates are constructed

by integrating the eigenvectors of aij when seen as a endomorphism of vector fields.

Note that, since aij is symmetric its associated endomorphism will be self-adjoint

with respect to our metric and hence the eigenvectors will be orthogonal given that

the eigenvalues are distinct; any degenerate eigenspaces can be made orthogonal by

the Gram-Schmidt procedure. Integrating these orthogonal vectors Eisenhart obtains

a local orthogonal coordinate system in which both the metric and aij are diagonal.

Thus we can assume in our isothermal coordinates that aij is diagonal. Eisenhart

writes the Killing equations in orthogonal coordinates which for the case of n = 2

become

∂ log
(√

aii
)

∂xi
=
∂ logH

∂xi
(5.29)

∂aii
∂xj

− 4aii
∂ logH

∂xj
+
ajj
H2

∂H2

∂xj
= 0, (i, j = 1, 2) (5.30)
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5.4. SEPARABLE COORDINATES FROM SYMMETRY

Integrating (5.29) we immediately obtain that aii = ρiH
2 where ρi does not depend

on qi (i.e. ∂ρi
∂qj

= 0 for i ̸= j). Combining this with (5.30) Eisenhart writes an equation

for these multipliers ρi which in our coordinate system reads

∂ρi
∂qj

= (ρi − ρj)
∂ logH2

∂qj
(5.31)

One integrability condition of this equation is obtained by applying ∂
∂qi

to both sides

of the equation, keeping in mind that ∂ρi
∂qj

= 0 for i ̸= j

0 = −∂ρj
∂qi

∂ logH2

∂qj
+ (ρi − ρj)

∂2 logH2

∂qj∂qi

= (ρi − ρj)
∂ logH2

∂qi
∂ logH2

∂qj
+ (ρi − ρj)

∂2 logH2

∂qj∂qi

= (ρi − ρj)

(
∂ logH2

∂qi
∂ logH2

∂qj
+
∂2 logH2

∂qj∂qi

)
(5.32)

For distinct ρi this implies

∂2 logH2

∂qj∂qi
+
∂ logH2

∂qi
∂ logH2

∂qj
= 0 (5.33)

For our case with only two coordinates we obtain a single equation

∂2 logH2

∂x∂y
+
∂ logH2

∂x

∂ logH2

∂y
= 0 (5.34)

It is an equation for the conformal factor of our metric. We now show that this

conformal factor is of the Liouville type. Expanding the derivatives in (5.34) we

obtain

0 =
∂

∂x

(
∂y(H

2)

H2

)
+
∂x(H

2)∂y(H
2)

H4

=
∂xy(H

2)

H2
−��������∂x(H

2)∂y(H
2)

H4
+��������∂x(H

2)∂y(H
2)

H4

=⇒ ∂xy(H
2) = 0 (5.35)
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5.4. SEPARABLE COORDINATES FROM SYMMETRY

Integrating this gives us back the conformal factor for the Liouville metric

H2 = f(x) + g(y) (5.36)

This insight tells us that the bi-Helmholtz equation admits at least trivial non-regular

separation in the coordinate system defined by (5.36). This result is due to the fact

that the Helmholtz equation separates in this coordinate system as shown in chapter

2. We’ve seen that the bi-Helmholtz equation admits non-trivial non-regular separa-

tion in some of these coordinate systems (in Euclidean space) namely the Cartesian

and polar coordinate systems, and does not admit non-trivial regular separation in

the elliptic-hyperbolic and parabolic coordinate systems all of which are special cases

of the Liouville coordinate system. The Cartesian and polar coordinate systems

both admit a first order symmetry (Killing vector), where the elliptic-hyperbolic and

parabolic coordinate systems do not. This leads us to the following conjecture:

Conjecture. If D = L2 is a linear operator which is the square of another linear

operator L, the equation Du = 0 admits non-trivial non-regular separation if D has

a first order symmetry operator S.

Further work is needed to fully comprehend the link between non-regular separation

and symmetry. Nonetheless, this analysis provides a starting point for further investi-

gation into the link between non-regular separation and symmetries of the bi-Laplace

and other globally defined linear differential operators.
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Chapter 6

Conclusion

In previous chapters we investigated the method of non-regular separation and applied

it to the bi-Helmholtz equation. The bi-Helmholtz equation provides a good example

of a PDE admitting non-regular separation; it shows the intricacies of the dependence

of non-regular separation on the coordinate system and its symmetries. In the final

chapter we show that the coordinate systems examined in the previous chapters arise

naturally from considering symmetries of the bi-Helmholtz equation. Furthermore, we

conjecture that non-trivial non-regular separation occurs when the equation admits a

first order symmetry. Thus, the previous analysis of the bi-Helmholtz equation serves

as a stepping stone toward exploring the interesting and rich theory of separability

of high order PDEs in relation to their symmetries.

In light of our analysis in this thesis, future investigations on this topic should address

the bi-Helmholtz equation in higher dimensions, including spaces with constant scalar

curvature. Our study of the symmetries of the bi-Helmholtz equation might also be

extended to give an invariant characterization of non-trivial non-regular separation

of this equation. This would be a step in a program towards studying invariant

characterization of non-trivial non-regular separation for a general PDE.
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Appendices

Appendix A

Dividing (3.45) by
(

U(3)

f ′U
− U ′′U ′

g′U2

)′ (
V (3)

g′V
− V ′′V ′

g′V 2

)′
, we see that we can separate as

follows

((
g′′+2g V ′′

V
−2g′ V

′
V

)′

g′

)′

(
V (3)

g′V
− V ′′V ′

g′V 2

)′ = −

((
f ′′+2f U′′

U
−2f ′ U′

U

)′

f ′

)′

(
U(3)

f ′U
− U ′′U ′

f ′U2

)′ = C, (1)

where C ∈ R. Separating and integrating

(
g′′ + 2g V ′′

V
− 2g′ V

′

V

)′
g′

=
C

g′

(
V ′′

V

)′

+ C1 (2)(
f ′′ + 2f U ′′

U
− 2f ′U ′

U

)′
f ′ = −C

f ′

(
U ′′

U

)′

+D1 (3)

The case where one of
(

U(3)

f ′U
− U ′′U ′

g′U2

)′
,
(

V (3)

g′V
− V ′′V ′

g′V 2

)′
vanish corresponds to setting

C = 0 in one of the above equations. Multiplying through by f ′ and g′ respectively

and integrating once again we obtain

g′′ + 2g
V ′′

V
− 2g′

V ′

V
= C

V ′′

V
+ C1g + C2 (4)

f ′′ + 2f
U ′′

U
− 2f ′U

′

U
= −CU

′′

U
+D1f +D2, (5)

where C1, C2, D1.D2 ∈ R. Or more compactly
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(2g − C)
V ′′

V
− 2g′

V ′

V
+ g′′ − C1g − C2 = 0 (6)

(2f + C)
U ′′

U
− 2f ′U

′

U
+ f ′′ −D1f −D2 = 0 (7)

We can now separate (3.49)

U (4)

U
+ C1

U ′′

U
− 3λf 2 = αf + β (8)

V (4)

V
+D1

V ′′

V
− 3λg2 = −αg + γ (9)

The condition K = 0 separates into

f (3)

f ′ = −g
(3)

g′
= k, (10)

where k ∈ R is a separation constant. Integrating once

f ′′ = kf +D g′′ = −kg +D (11)

These are extra conditions that have to be taken into account. We also need to

account for the derivatives of equation (6) and (7)

U ′′

U
=

2f ′

2f + C

U ′

U
+
D1f +D2 − f ′′

2f + C
(12)

U (3)

U
=
D1f +D2 + f ′′

2f + C

U ′

U
+
D1 − k

2f + C
f ′ (13)

U (4)

U
=

D1

2f + C
f ′′ +

D1f +D2 + f ′′

2f + C

U ′′

U
− 2f ′

2f + C

U (3)

U
(14)

=
(D1 − k)f ′′

2f + C
+

(D1f +D2)
2 − f ′′2

(2f + C)2
− 2f ′2

(2f + C)2
(D1 − k) (15)

V ′′

V
=

2g′

2g − C

V ′

V
+
C1g + C2 + g′′

2g − C
(16)

V (3)

V
=
C1g + C2 + g′′

2g − C

V ′

V
+
C1 + k

2g − C
g′ (17)

V (4)

V
=

C1

2g − C
g′′ +

C1g + C2 − g′′

2g − C

V ′′

V
− 2g′

2g − C

V (3)

V
(18)

=
(C1 + k)g′′

2g + C
+

(C1g + C2)
2 − g′′2

(2g − C)2
− 2g′2

(2g − C)2
(C1 + k) (19)
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Using (12) to eliminate higher derivatives in (8)

(C1 +D1)
2f ′

2f + C

U ′

U
− 2

f ′2

(2f + C)2
(D1 − k) + (D1 − k)

f ′′

2f + C
+

(D1f +D2)
2 − f ′′2

(2f + C)2
+

+C1
D1f +D2 − f ′′

2f + C
− 3λf 2 = αf + β (20)

(C1 +D1)
2g′

2g − C

V ′

V
− 2

g′2

(2g − C)2
(C1 + k) + (C1 + k)

g′′

2g − C
+

(C1g + C2)
2 − g′′2

(2g − C)2
+

+D1
C1g + C2 − g′′

2g − C
− 3λg2 = −αg + γ (21)

Substituting (8) into (3.50) we have the following

−2f ′U
(3)

U
− 2g′

V (3)

V
+ ((k − C1)f + C2 +D)

U ′′

U
+ (D2 +D − (k +D1)g)

V ′′

V

+2λ(f 3 + g3) + α(f 2 − g2) + (β + γ)(f + g) = 0 (22)

Separating this equation we have

−2f ′U
(3)

U
+ ((k − C1)f + C2 +D)

U ′′

U
+ 2λf 3 + αf 2 + (β + γ)f = δ (23)

−2g′
V (3)

V
+ (−(k +D1)g +D2 +D)

V ′′

V
+ 2λg3 − αg2 + (β + γ)g = −δ (24)

For some δ ∈ R. Eliminating the derivatives from (23) we have the following

2f ′C2 −D2 − (C1 +D1)f

2f + C

U ′

U
− 2

(D1 − k)

2f + C
f ′2 (25)

+ ((k − C1)f + C2 +D)

(
(D1 − k)f +D2 −D

2f + C

)
+2λf 3 + αf 2 + (β + γ)f = δ (26)

Isolating for 2f ′

2f+C
U ′

U
from (20) assuming C1 + D1 ̸= 0 and using this to eliminate

derivatives in (25)
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(C2 −D2 − (C1 +D1)f)

C1 +D1

(
αf + β + 3λf 2 − (k + C1)(D1 − k)f + C1(D2 −D) +D(D1 − k)

2f + C

+ 2
f ′2

(2f + C)2
(D1 − k)− (D1f +D2)

2 − f ′′2

(2f + C)2

)
− 2

(D1 − k)

2f + C
f ′2

+ ((k − C1)f + C2 +D)

(
(D1 − k)f +D2 −D

2f + C

)
+ 2λf 3 + αf 2 + (β + γ)f = δ

(27)

When C1 +D1 = 0, (20) implies λ = 0.
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Appendix B

Case (ii): In this case we have(
1

f ′

(
U ′′

U

)′)′

= 0,

(
1

g′

(
V ′′

V

)′)′

̸= 0. (28)

Integrating we get

U ′′

U
= α5f + α6, (29)

where α5, α6 are constants. Equation (3.46) implies that

2f
U ′′

U
− 2f ′U

′

U
+ f ′′ = α3f + α4 (30)

α3, α4 are constants. Substitution for U ′′

U
from (29) yields

2f ′U ′ = (f ′′ + 2α5f
2 + (2α6 − α3)f − α4)U. (31)

Differentiation of the above equation followed substitution for U ′′ from (29) and 2f ′U ′

from (31) yields after simplification

(2α5f
2 + (2α6 − α3)f − α2

4)
2 − f ′′2 + 2f ′f (3) + 4α5ff

′2 − α3f
′2 = 0 (32)

Using the relations between f and its derivatives

f ′′ = kf +D, f ′2 = kf 2 + 2Df + Λ (33)

Equation (32) becomes a polynomial in f , the coefficient of the highest power of f

is 4α2
5 which implies that α5 = 0. In view of the above equation (3.46) separates,

the compatibility of the separated equation for U with (29) and (31) gives us that

λ = α2
5, thus we conclude that λ = 0 in this case as well.
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Case (iii): both of the following conditions hold:

(
1

f ′

(
U ′′

U

)′)′

= 0 (34)

(
1

g′

(
V ′′

V

)′)′

= 0. (35)

The solutions of (34) and (35) are given by

U ′′

U
= α5f + α6 (36)

V ′′

V
= (β5f + β6) (37)

Computing derivatives of the above equations:

U (3) = (α5f + α6)U
′ + α5f

′U (38)

U (4) = 2α5f
′U ′ + (α5f

′′ + (α5f + α6)
2)U (39)

V (3) = (β5g + β6)V
′ + β5g

′V (40)

V (4) = 2β5g
′V ′ + (β5g

′′ + (β5g + β6)
2)V (41)

With the use of the above derivatives the integrability condition (3.45) separates to

yield the following equations:

2(β5 − α5)f
′U ′ = ((α5 + β5)f

′′ + α5(α5 + 2β5)f
2 (42)

+ (2α6(α5 + β5)− α)f − 3λf 2 + α2
6 − α7)U, (43)

2(α5 − β5)g
′V ′ = ((α5 + β5)g

′′ + β5(α5 + 2β5)g
2 (44)

+ (2β6(α5 + β5) + α)g − 3λg2 + α2
6 − α7)V, (45)

where α is the separation constant. If β5 = α5, (42) and (44) imply that

λ = α2
5, β5 = α5, β6 = −α6 (46)
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We conclude that (46) implies that ϕ(u, v) = U(u)V (v) defines a separable solution

of the Helmholtz equation. If β5 ̸= α5, one differentiates (42) and (44) and eliminates

all derivatives of U and V . One obtains polynomial equations in f and g which imply

that β2
5 = α2

5. The case β5 = α5 has already been considered. The case β5 = −α5,

yields 3λ = −α2
5, which is un-physical. This completes the proof of Case (iii).
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