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Abstract 

Current upper-limb prosthetic grasping methods are predominately myoelectric, where surface 

electromyogram (sEMG) pattern recognition is used to predict a grasp type for a prosthetic hand to grasp 

objects. The sEMG patterns also simultaneously detect the action intent of a grasping action and overall 

movements of the prosthetic arm. Since the overall control strategy of a myoelectric prosthesis is coupled, 

the prediction of grasp types can be inaccurate, especially if the grasp type has a similar sEMG pattern for 

manipulating the prosthetic arm or selecting other grasp types. Recent vision-based prosthetic grasping 

methods solve the coupled control strategy of myoelectric prostheses, by implementing a camera system 

to capture an RGB image of an object and a convolutional neural network (CNN) to predict a grasp type. 

The action intent to move the prosthetic arm and perform the grasping action is independently determined 

through sEMG pattern recognition. Unlike myoelectric prostheses, vision-based prostheses can predict a 

suitable grasp type based on the features of an object (e.g. object’s shape). However, current vision-based 

grasping methods are limited because each object can only be grasped with a single grasp type, despite 

the object’s shape, environmental context, and the available tasks. Recent robotic grasping applications 

implement grasp affordance detection to identify the regions on an object that can be grasped for a task. 

By adapting the detection of grasp affordances into a vision-based prosthetic device, multiple task-

oriented grasp-type predictions are possible for each object. Therefore, to improve the vision system in 

vision-based prostheses, grasp affordance detection methods from robotic grasping applications are 

adapted in this thesis research. 

Grasp affordances, as grasp-type and task regions, are predicted by implementing instance 

segmentation models. Instance segmentation models utilize RGB images to localize objects and their 

grasp affordances with bounding box locations and image mask segmentation. Since there is no instance 

segmentation model and dataset that can allow the simultaneous detection of objects and their grasp 

affordances, the Multi-Affordance Detection Network (MAD-Net) model and Multi-Object Multi-Grasp-

Affordance (MOMA) synthetic dataset were developed as part of this thesis research. Unlike the current 

vision-based prosthetic grasping methods, MAD-Net can detect objects and their grasp affordances in 

multi-object RGB scenes. The MAD-Net model was derived from the Mask R-CNN model, a common 

baseline model for instance segmentation. Most instance segmentation models were derived from Mask 

R-CNN, since the additional mask prediction head in Mask R-CNN can convert all object detection 

models into instance segmentation models. The MOMA synthetic dataset is a collection of 20K RGB 

images that is generated from placing random images of objects on random background images. Each 
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image generated was automatically annotated with the instances of objects and their grasp affordances 

(grasp-type and task regions). The single-object RGB images used for synthetic dataset generation were 

manually captured with a camera and then manually annotated. 

The mean average precision (mAP) metric is used to evaluate the performance of MAD-Net and other 

instance segmentation models on the MOMA dataset. The mAP metric is a good indicator of model 

performance, since it determines how accurate the predicted bounding box and image mask locations are 

w.r.t. the ground truth annotations. MAD-Net has outperformed all the other instance segmentation 

models across all detection categories (objects, grasp types, tasks) on the validation datasets. On the test 

datasets, MAD-Net has maintained a similar mAP score as the other instance segmentation models. In all 

cases, MAD-Net has outperformed Mask R-CNN, especially in the grasp-type detection category, where 

MAD-Net has a 10% increase in the mAP score compared to Mask R-CNN. When the objects and their 

grasp affordances are jointly trained on the MOMA dataset, the total training time decreased by 50%. 

Since MAD-Net has outperformed Mask R-CNN, the joint detection of objects and their grasp 

affordances is a feasible solution to implement in the vision system for vision-based prostheses. Although 

the proposed vision system produces multiple task-oriented grasp types on a single object, modern 

myoelectric prostheses can select a grasp type from a small selection of pre-programmed grasp types. A 

grasp database can also be implemented alongside the proposed vision system. Prosthetic users can 

continuously update the database for new unseen objects and their corresponding task-oriented grasp 

types. 
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Chapter 1 

Introduction 

Humans are gifted with versatile hands that allow them to complete a plethora of daily tasks, from 

prehension tasks, such as grasping a mug, to more dexterous tasks, such as typing on a keyboard. The 

visual system in the human body plays a fundamental role in translating visual data to motor actuation in 

the hands. Before a grasping task is executed, the brain receives visual feedback from the eyes and 

perceives the features of all surrounding objects in the environment. A task-oriented grasp is intuitively 

calculated after evaluating the relationship between the selected object, given task, and context. 

In upper-limb amputees, a grasping task is evidently difficult to perform depending on what muscle 

groups on the upper-limb are lost after an amputation. For example, a transradial amputee (below-elbow) 

would lose the grasping functionality of a hand, while a transhumeral amputee (above-elbow) would also 

lose the ability to control the movements of the forearm. Although an upper-limb prosthesis can restore 

some prehensility (the ability to grasp objects), the selection of available grasps is limited and not task 

oriented.    

1.1 Visual Context and Affordances 

The visual context perceived in an environment can influence how objects are grasped without altering 

their state in a scene. For example, a knife is likely used for cutting, if a piece of steak is presented in 

front of the user; whereas the same knife is likely used for spreading, if both the bread and butter are 

present instead of the steak. In this example, environmental context changes the task and resulting grasp 

configuration to hold a knife. In another example, a mug is most likely held at its handle if the containing 

liquid is too hot, the handle is visible, and/or the mug handle is conveniently oriented in the direction 

towards the grasping hand; otherwise, the mug is held at its body. Technically, a mug could still be held 

by the handle if the handle is not visible in a scene. However, the user must have some prior knowledge 

of the existence of the mug’s handle (e.g. if the same mug was visually perceived in a different 

environment). In the mug example, object context not only influences the resulting grasp configuration, 

but it also defines the location or task-suitable region to grasp the mug. A grasp configuration, also known 

as a grasp synergy [1, 2], is a specific hand shape for grasping objects through the collective manipulation 

of all finger joint angles. If the grasp configurations are generalized to canonical hand shapes, they are 

referred to as the grasp types [3] (described in Sec. 2.2). Given these examples, visual context is 
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ultimately semantically reasoned through the opportunities of interactions an environment provides to the 

perceiver, which are known as the affordances [4, 5]. The environment can represent the setting a 

perceiver is situated in (such as the kitchen) or the physical objects surrounding the perceiver. In robotic 

grasping applications, affordances largely describe the object-to-object interactions that humans perceive 

[6, 7, 5, 8], and the affordances can be categorized as the object affordances [8, 9, 10] or grasp 

affordances [11, 6, 5, 7, 12]. Object affordances describe the actions an object provides to the user (the 

perceiver); for example, a cup is drinkable because it affords to contain water. Grasp affordances 

describes the task locations on the object (also known as a task-suitability region, or a task region for 

short) [6, 7, 12], and/or the possible grasp configurations to stably (without slipping) grasp an object [5]. 

For example, the handle of a mug is held with the hook grasp type (as illustrated in Table 2.1 of Sec. 2.2), 

and it could be associated with the carry, drink, or pour task. 

1.2 Types of Commercially Available Upper Limb Prostheses and Their 

Limitations 

The systematic process of grasping objects may be intuitive to humans. However, developing a vision-

based system for robotics and prostheses is complicated due to the number of processes involved. For 

example, a model is needed for both the trajectory planning of the upper limb, and the grasp selection on 

an object. Currently, body-powered and myoelectric prostheses are commercially available to restore 

some of the basic functions of the upper limb, including the ability to grasp objects (prehensility) [13, 14, 

15, 16, 17, 18, 19]. However, depending on the severity of the amputation, only certain functions of the 

upper limb can be restored. 

1.2.1 Body-powered Prostheses 

Early functional prosthetic arms are body-powered and cable-operated, as seen in Fig. 1.2. An amputee 

wears the prosthesis on their residual limb with an accompanying shoulder harness on their shoulders. A 

single tension control cable connects the shoulder harness to the prosthetic arm, terminal device, or both 

[13]. A terminal device (Fig. 1.3) is a prosthetic hand or hook that fits onto the wrist of a prosthetic arm 

[13]. Other task-specific tools could also be attached to the terminal device, such as a fork for eating. The 

overall control strategy of the prosthesis differs depending on the existence of the elbow on the residual 

limb. There are two types of shoulder harnesses for a body-powered cable-operated prosthesis: a single-

control system for transradial (below-elbow) amputees, and a dual-control system for transhumeral 

(above-elbow) amputees [13]. In all cases, the terminal device will correspondingly release or grasp 
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objects when the residual limb is extended or relaxed. The opposite shoulder can also control the terminal 

device by flexing or relaxing. For a dual-control system, the control cables are also fixed onto the upper 

arm and forearm of the prosthesis to produce flexion and extension movements of the forearm. In both 

cases, the movements of the arm and terminal device are coupled. Body-powered prostheses also have 

limited control of the other movements of the arm, such as the supination and pronation (Fig. 1.1) of the 

forearm, are either naturally adjusted by the residual limb or the opposite hand. In all levels of amputation 

beyond a wrist disarticulation (the amputation at the wrist of an upper-limb [20]), the amputee cannot 

control the orientation of the wrist with a body-powered prosthesis [13]. 

The terminal device is operable in all levels of an upper-limb amputation with limited functionality. 

Only a single prehensile grasp type can be achieved since the opening and closing mechanism couples the 

manipulation of all finger joints to a single degree-of-freedom (DOF). Prehensile grasps include all grasps 

that a hand can hold an object stably without slippage [21, 22]. The ability to control the tension control 

cables to operate the terminal device also becomes increasingly difficult as the severity of an upper-limb 

amputation increases. If an amputee has a partial-hand amputation, they still have the option to restore 

individual finger control for more varying grasp types. The traditional cable-operated prosthesis is 

replaced with a wearable prosthetic finger (Fig. 1.4) for each of the missing digits, as long as the proximal 

phalange (the bone above the knuckle) is preserved to fit the prosthetic finger [15]. The prosthetic fingers 

are composed of mechanical linkages, where finger flexion is achieved when the residual finger pulls onto 

the attached suspension ring [15]. For upper-limb amputees beyond a partial-hand amputation, 

myoelectric prostheses could replace the body-powered prostheses for more independent control of the 

arm and hand. Myoelectric prostheses also provide a larger selection of unique grasp types for a grasping 

task. 
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Figure 1.1: Supination and pronation movements of the forearm and hand, adapted from [23]. 

 

 

Figure 1.2: Parts of a single-control system, body-powered cable-operated prosthesis with a hook 

terminal device. The terminal device is controlled through a control cable, that is connected to the 

shoulder harness. Adapted from [24]. 
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Figure 1.3: Examples of terminal devices. (a) for a body-powered prosthesis, (b) and (c) for a 

myoelectric prosthesis. (a) Hosmer 88-x Hook adapted from [14], (b) Össur i-limb Quantum Bionic Hand 

(adapted from [24]), and (c) Ottobock BeBionic Hand (adapted from [24]). 

 

Figure 1.4: MCPDriver prosthetic finger from Naked Prosthetics. Adapted from [15]. 

1.2.2 Myoelectric Prostheses 

A myoelectric prosthetic arm (Fig. 1.5) enables an amputee to control the arm and terminal device by 

recognizing muscle activity patterns with surface electromyograms (sEMG). Electrodes are placed on the 

muscle groups of the residual limb to produce multi-channel sEMG readings [25, 26, 2, 27]. Most 

movements of an arm are restored with a myoelectric prosthesis, except for wrist rotation. However, a 

motorized wrist joint can achieve active wrist rotation, by pressing a button with the opposite hand (Fig. 

1.4) [17]. Myoelectric prostheses can offer up to eight different pre-programmed prehensile grasp types at 

a time [17, 18, 16, 19]. 

                          (a)           (b)            (c) 
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Although myoelectric prostheses solve most of the limitations of body-powered cable-operated 

prostheses, the number of available grasp types are still limited to a small subset of all possible grasp 

types. Manual control from the intact hand is still required to cycle through the alternative grasp types. 

The simultaneous sEMG pattern recognition of both the arm movements and grasp types may also 

overwhelm the user, due to the complexity of the control strategy [28]. A precise muscle movement from 

the amputee is required to trigger a specific sEMG pattern for an intended action [25, 27]. Recent 

prosthetic devices overcome the problem of the coupling control strategy in pure myoelectric prostheses, 

by detecting the grasp types with computer vision first, before action intent and arm movements are 

determined through sEMG pattern recognition [25, 26, 27]. With computer vision, a more suitable grasp 

type can be selected for a corresponding grasping task [25, 29]. 

 

Figure 1.5: Example of a myoelectric prosthesis: Open Bionics’ Hero Arm. The circular button on the 

back of the terminal device is the program switch to cycle through an alternative set of grasp types. 

Adapted from [24]. 

1.3 Vision-based Prosthetic Grasping and Related Vision-based Methods in 

Robotic Grasping 

Vision-based prostheses use a red-green-blue (RGB) camera to capture images or video scenes of the 

objects in the environment [25, 27, 30]. The visual data from the camera is then used to train a deep-

learning model to predict grasp types for the detected objects. The deep-learning model used is typically a 

deep convolutional neural network (CNN), where a grasp type is classified for each object detected in a 

scene. The camera can be mounted on the back of the hand [25, 27, 30] or worn on the head [31, 32, 30]. 

If the camera is head mounted, multi-object scenes can be detected while surveying the actions of other 
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hands (such as the user’s intact hand) [31, 32]. Most prosthetic grasping methods opt for the hand-

mounted camera to detect single objects, while eliminating the need for additional object-and-grasp-

selection models [25, 26, 29, 27, 30]. However, single-object scenes lose the visual context about other 

objects and the environmental setting, since only the features of the selected object influence the final 

grasp-type prediction in current vision-based prosthetic grasping methods [25, 26, 29]. 

Currently, most of the issues involving the movements of the prosthetic arm are already solved with 

myoelectric solutions [25, 26, 17, 16, 19, 2]. However, the available selection of task-oriented grasps for 

terminal devices is still lacking in myoelectric and vision-based prostheses. For myoelectric prostheses, 

the aforementioned problem can be attributed to the fixed pre-programmed grasp types [17, 18, 16, 19] 

and the inability to utilize object features to predict a grasp (e.g. the object’s overall shape). With the 

introduction of vision-based prostheses, the object’s class predetermines the resulting grasp-type 

predictions. The class of an object is the label or name used to denominate similar objects. The main issue 

with current vision-based methods is the assumption that all objects have one possible grasp type to grasp 

the object, no matter the object’s environmental context and the intended task a prosthetic user wants to 

perform. The same class of objects are grasped in the same manner, despite the variances in the object’s 

shape, pose, parts, and functions (the affordances). No alternative grasp types are offered to the prosthetic 

hand even if the predicted grasp type fails to grasp the selected object. The object pose describes the 

orientation and position of the object in a scene. Current vision-based prostheses also prioritize the 

selection of stable grasps over task-oriented grasps [25, 26, 29].While visual data can be leveraged for 

grasp selection, there are currently only a limited number of vision-based methods implemented in 

prosthetic grasping [27, 25].  

Recalling Sec. 1.1, robotic grasping applications that leverage affordance detection for the selection of 

task-oriented grasps can be adapted to improve the vision system in prosthetic devices. In robotic 

grasping, affordances relate to visual context of the whole scene. Other objects in the environment are 

interpreted by the deep-learning model as well. Affordances enable deep-learning models to perceive the 

different object parts and characterize each object part with a different task. For a given RGB image, 

affordances are typically detected by a deep-learning CNN segmentation model as image masks, 

bounding boxes, or both [8, 7].Therefore, this thesis will focus on the development of a visualization 

model for vision-based prostheses using affordance detection methods adopted from robotic-grasping 

applications. 
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1.4 Research Objectives 

The main goal of this thesis is to develop a deep-learning model that can simultaneously detect all objects 

and their grasp affordances in RGB multi-object scenes for application to prosthetic grasping. Ultimately, 

the deep-learning model is a deep CNN segmentation model that will find the semantic relationship 

between objects and grasp affordances. To accomplish this objective, a list of specific objectives is 

outlined below: 

a) Create a dataset that provides image mask annotations of objects and their grasp affordances (as 

grasp-type and task regions) for every RGB image. 

b) Train and evaluate the performance of several existing deep CNN segmentation models for the 

separate detection of object and grasp-affordances, using the dataset created in objective (a). A 

segmentation model is therefore trained and evaluated three times on the dataset, once per 

detection category (objects, grasp types, task regions). 

c) Develop a new multi-tasking deep-learning model that jointly trains the detection of objects and 

their grasp affordances on RGB images. 

d) Evaluate the performance of the new model in (c) for jointly detecting objects, and grasp-

affordances. Determine the feasibility of the joint detection of objects and their grasp affordances 

in comparison to the trained models in (b). 

1.5 Research Contributions 

The main research contributions in this thesis are the creations of a new synthetic dataset and a deep CNN 

segmentation model that detects multiple grasp-affordances (as grasp-type and task regions) and objects 

in a scene, in application to vision-based prosthetic grasping. The specifics of each contribution are 

outlined below: 

a) The Multi-Object Multi-Grasp-Affordance (MOMA) synthetic dataset that consists of 20K RGB 

images of multi-object scenes in varying object poses was newly developed. Each RGB image 

contains annotations for the detections of objects and their grasp affordances. The grasp 

affordances are further subdivided into two categories of annotations: task-oriented grasp-types 

and task regions. The details about the creation of the MOMA dataset are given in Sec. 3 of this 

thesis. 

b) A Multi-Affordance Detection Network (MAD-Net) model was newly developed to 

accommodate the creation of the MOMA dataset. MAD-Net is a variation of the traditional object 
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instance segmentation model, Mask R-CNN [33] that predicts instances of objects, and their grasp 

affordances as task-oriented grasp-types and task-suitable regions. Additional details about 

instance segmentation are given in Sec. 2.4.1, and the development of the MAD-Net model in 

Sec. 3.4.4 of this thesis. 

1.6 Thesis Outline 

In this chapter, the motivation and rationale for the thesis objectives were discussed. Chapter 2 discusses 

the definitions of grasps, affordances, and task-oriented grasping in applications to prosthetic and robotic 

grasping. Chapter 3 summarizes the reasoning and steps leading to the creation of the MOMA synthetic 

dataset. In addition, Chapter 3 discusses the models that were trained and evaluated on the MOMA 

dataset for the detection of objects, and their grasp affordances (as grasp-type and task regions), as well as 

the evaluation methods used on all the models. Chapter 4 provides the results and discussion of the 

experimental evaluation of all models described in Chapter 3. Chapter 5 concludes the findings of this 

thesis in relation to the research objectives in Sec. 1.4. 
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Chapter 2 

Background and Literature Review 

In this chapter, current vision-based prosthetic and robotic grasping methods are reviewed. Sec. 2.1 

provides details of grasp definition and object manipulation by a hand. Sec. 2.2 outlines how grasps can 

be categorized into a grasp taxonomy of unique grasp types and utilized for grasp-type classification in 

videos of activities of daily living. Sec. 2.3 explains how grasps are estimated and represented in current 

prosthetic and robotic grasping applications. Sec. 2.4 and Sec. 2.5 describe the implications of choosing 

stability over task-suitability for a task, and how a grasp can be selected by identifying affordance 

regions. Sec. 2.6 provides a synopsis of current prosthetic and robotic grasping methods, as well as the 

rationale for the thesis objectives that was outlined in Sec. 1.4. 

2.1 Definition of a Grasp 

Humans can interact with objects by using one hand through prehensile (grasping objects without slipping 

[21, 22]) and non-prehensile manipulation, or with two hands through bimanual manipulation. 

Throughout this thesis, a hand refers to anything that enables an object to be picked up, unless otherwise 

specified: a human hand, a robotic hand or gripper, and a terminal device for a prosthesis. All prehensile 

object manipulations are prehensile grasps since the object and the hand can leave a surface as a single 

conjoined entity [22, 21]. Conversely, all non-prehensile object manipulations are not grasps, although 

they are classified as a non-prehensile “grasp” in a grasp taxonomy (discussed in Sec. 2.2) [21, 22, 32]. 

As seen in Fig. 2.1a, an apple is grasped if the apple is enveloped. An apple is not grasped but merely 

supported by the hand with non-prehensile manipulation (non-prehensile grasp) in Fig. 2.1c. Examples of 

prehensile grasps are shown in Figs. 2.1a and 2.1b, and non-prehensile manipulation in Fig. 2.1c. 

Bimanual object manipulation (by both hands) can also be classified as prehensile or non-prehensile. In 

this thesis, only one-handed prehensile grasps will be analyzed. 
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Figure 2.1: Examples of (a, b) prehensile and (c) non-prehensile grasps. (a) also represents a force-

closure grasp as there are three defined contact points on the apple, whereas (b) is a form-closure grasp 

since the hand completely wraps around the apple to form infinite contact points. 

2.1.1 Prehensile and Non-Prehensile Grasps 

Prehensile grasps are the most analyzed subset of all grasps involving hands interacting with an object 

[31, 32]. Approximately 60% of all grasps by upper-limb amputees are prehensile, where less than 10% 

of all prehensile grasps are performed on a prosthesis [31]. As mentioned in Sec. 1.2, upper limb 

amputees find it difficult to operate a body-powered and a myoelectric prosthesis due to the lack of 

functionality and the complex control strategy [28]. Although myoelectric prostheses provide more 

unique grasp types and remove the need to operate a prosthesis primarily by muscles, the prosthesis usage 

for prehensile grasps between the two types of prostheses remains unchanged [31]. There is thus a need to 

improve the prehensile grasping capabilities on a prosthesis. Therefore, only prehensile grasps will be 

analyzed in this thesis. 

In robotic applications, a prehensile grasp is defined as the ability of a hand to achieve force closure by 

maintaining contact on a held object [21, 32]. Although this thesis research will not focus on the force 

analysis of prehensile grasps, the robotics definition of a prehensile grasp is important to understand how 

prehensile grasps are classified and organized in a grasp taxonomy (discussed in Sec. 2.2). Force closure 

(Fig. 2.1a) defines how an object is stably constrained to a hand without internal movements (slippage) by 

balancing external wrenches at the contacts [21, 34]. A wrench at a contact point is a vector that contains 

both the resultant force vector from the induced friction cone, and the generated torque between the 

grasped object’s center of mass and the contact point. The friction cone at a contact point is modelled as a 

      (a)                         (b)                 (c) 
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conical shape to represent the possible directions that the friction force is exerted on an object [35, 34]. 

For a grasp to be stable, the resultant friction force from the friction cone must be in equilibrium with the 

counteracting normal and finger contact forces [35]. If the supposed grasp also resists all external forces 

and moments in any direction, then the grasp is said to have form closure (Fig. 2.1b) [21]; though, 

achieving only force closure is enough to define a prehensile grasp. All grasps that allow the environment 

(such as gravity) to affect the movements of an object are classified as non-prehensile grasps [22]. An 

example of a non-prehensile grasp is illustrated in Fig. 2.1c, where the object is supported by the palm of 

the hand without other opposing finger forces. Other examples of a non-prehensile grasp include the 

manipulation of objects by pushing or pulling against a surface. 

In the case of a form closure grasp, there could be an infinite number of contact points between the 

hand and object. If there are at least two opposing sets of fingers that are in equilibrium with an object, 

then the grasp is also a prehensile grasp [22]. A set of fingers that apply a similar direction of force on an 

object is called a virtual finger, where the palm of a hand could also be a virtual finger by itself; each 

virtual finger produces a resultant finger contact force with an object [22]. For example, in Fig. 2.1b, there 

are three virtual fingers: from the thumb, from the palm of the hand, and from the index finger to the 

pinky. Each set of virtual fingers act in opposition to keep the apple stably in the hand. 

The classification of force closure and form closure grasps is useful to further subdivide all prehensile 

grasps based on how the finger forces of the hand are applied on the surface of an object. In Fig. 2.1a, the 

fingertips of the hand maintain force closure with an apple, where the apple can easily be further 

manipulated by the hand in the case of a dexterous task. However, in Fig. 2.1b, the apple is grasped in a 

way that is fully enveloped by the hand, where further manipulation of the apple would be difficult. The 

grasp configurations on the object in Figs. 2.1a and 2.1b can therefore be categorized as a precision grasp 

or a power grasp, respectively. If a grasp has characteristics of a precision and power grasp, then the grasp 

is categorized as an intermediate grasp [22]. 

2.2 Grasp Taxonomy 

All hand-object interactions – regardless of whether the hand action is prehensile or non-prehensile – can 

be generalized to a set of hand poses of unique grasp types categorized in a grasp taxonomy [36, 22, 37, 

38, 21, 3, 31, 32]. Each hand pose in a grasp taxonomy can be extracted for a default set of joint 

parameters using hand-pose estimation models [39, 40, 41]. These parameters correspond to each DOF of 

the fingers joints and wrist joint to form a specific grasp configuration. When hand poses are used to 
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estimate a specific joint configuration to grasp an object, they are known as the grasp pose or grasp 

configuration [6]. Otherwise, all generalized pose estimates of a hand are described as hand poses. Most 

grasp taxonomies only analyze prehensile grasps since most grasping applications require the capability 

to estimate stable grasp configurations for pick-and-place tasks [22, 37, 38, 21]. Prehensile grasp types 

are classified based on the quality of the grasps, whether the intended grasp emphasizes more on stability 

or dexterity; therefore, each grasp would be classified as a power, precision, or lateral (intermediate) 

grasp [31, 32, 22] (Table 2.1). 

The creation of grasp taxonomies is rather ambiguous. The vague definition of unique grasp types has 

led to multiple interpretations of grasp taxonomies with varying cardinalities [36, 22, 37, 38, 21]. For 

instance, Cutkosky’s grasp taxonomy [21] identifies 15 unique prehensile grasps defined from object 

geometry, which includes the object’s overall shape, and dimensions [21]. In contrast, the GRASP 

taxonomy [22] contains 33 unique prehensile grasps when object features, positioning of the thumb, and 

configurations of the virtual finger forces are considered. Alternatively, there are 17 unique prehensile 

grasps [22] in a grasp taxonomy if the shape of the object is not considered. Some of these identified 

grasp types also share similar characteristics among the existing grasp types in the taxonomy. When grasp 

taxonomies are applied in deep learning models, these redundant grasps will increase the inaccuracies in 

classification and in the ground truth annotations of datasets. For example, the GRASP taxonomy [22] 

indicates that there is a 69.7% chance for the misclassification of tripod grasps with lateral grasps, even 

though human experts manually annotated each video sequence. Overall, grasp taxonomies provide a 

simple basis to describe the most common grasp types and their associations with object features. 
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Table 2.1: Examples of prehensile grasp types adapted from Feix’s Grasp Taxonomy [22] and [42]. Each 

grasp type is organized into power, precision, and lateral subcategories. 

Power Precision Lateral (Intermediate) 

Cylindrical Wrap 

  

Precision Disk 

 

Distal 

 

Adducted Thumb 

 

Prismatic 2 Finger 

 

Lateral Tripod 

 

Hook (Fixed Hook) 

 

Prismatic 4 Finger 

 

Ventral 

 

Index Extension 

 

Tripod 

 

Light Tool 

 

Parallel Extension 
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2.2.1 Grasp Type Recognition in Human Activity Datasets 

In recent grasp analysis applications, wearable head-mounted cameras have been increasingly used to 

capture images and videos in a first-person view [31, 32, 36, 37, 38]. As seen in Fig. 2.2, a video captured 

in first-person view (FPV), is also known as an egocentric video. Egocentric videos in grasping 

applications capture timelapses of human activities with evolving hand poses. The FPV of egocentric 

videos maintains a similar viewpoint as if the camera were fixed onto a rigid frame: overlooking a scene, 

but in motion. Currently, there is no known method that applies egocentric video to prosthetic grasping 

models. However, there are some experiments conducted to analyze the grasp distributions among 

individuals with an upper limb unilateral amputation [31, 32]. With egocentric video, grasp types can be 

automatically detected by using machine-learning models [36, 37] to learn hand poses, unlike 

conventional means of manual annotations [31, 32, 22] on videos. Specifically, egocentric videos fully 

capture the perspective of human grasping which allows an accurate representation of the many grasp 

types utilized in daily human activities. 

 

Figure 2.2: An egocentric frame from the UTG dataset [38, 37] during the collection of video data. The 

user performs a grasping task that is recorded by a head-mounted camera. 

The UTG Dataset [37, 38] is an example of a FPV human-activity dataset used to automate prehensile 

grasp-type detection. It contains egocentric videos of five participants grasping unique objects on a table 

in an office setting, where each object is grasped multiple times using one of the 17 unique grasp types 

from the GRASP taxonomy [22]. Despite the variations in the available objects, the general finger poses, 

number of contact points, and physical appearance of each unique grasp type remains relatively constant. 
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However, since the trajectory to approach an object and the object shape are different for each instance, 

the fingers and wrist poses need to adjust accordingly to comfortably wrap around the object. Therefore, 

the UTG dataset has changing wrist poses for each grasp action and multiple objects that require the same 

grasp types. The UTG Dataset [37, 38] also includes a machine-learning model to automate prehensile 

grasp analysis. Each hand region is first pre-processed with a feature descriptor to detect low-level 

features by computing the local intensity gradients in an image. The sharp contrast between neighbouring 

pixels is a common indicator of an object edge. A Histogram of Oriented Gradients (HOGs) and a Scale-

invariant Feature Transform (SIFT) are examples of feature descriptors utilizing local pixel intensities for 

edge detection. These encoded feature descriptors are then trained on a classifier to identify the grasp 

types, such as a Support Vector Machine (SVM) model that can handle data with high dimensionality. 

For automatic taxonomy generation, the identified grasp types are grouped together based on the 

correlations of hand postures with hierarchical clustering methods [36, 37]. 

2.3 Grasp Estimation and Representation 

Computer vision is commonly incorporated into robotic systems for visual perception of the environment. 

Current developments in robotic grasping implement vision systems to directly identify potential grasp 

poses from object features [43, 44, 45, 46, 6, 10, 7, 12], observed hand poses for grasp analysis [36, 37, 

47, 38, 40, 48, 41, 3], or a combination of hand-object features [11, 49, 50, 37, 40, 5, 3]. Traditional 

prosthetic grasping solutions have been primarily focused on pattern recognition of myoelectric signals 

through sEMGs on the forearm [25, 26, 2, 51, 52]. Recent advancements predict 3D hand poses from 

sEMG signal patterns; however, these methods have yet to be implemented for grasping applications [51, 

52]. Robotic grasping models can detect grasps for multi-object cluttered scenes, while prosthetic grasp 

models are limited to single-object scenes. In recent prosthetic grasping methods, there is an emerging 

interest to combine myoelectric signals with image data to predict grasps [25, 26, 51, 52]. 

Image recognition is increasingly applied to existing myoelectric prostheses, eliminating the need for 

decoding noisy sEMG signal patterns to estimate grasps [25, 26, 43]. However, sEMG signals are still 

necessary for predicting grasp intent and motion trajectories for the arm to approach an object. During the 

experimental evaluation of myoelectric and myoelectric-vision models, the tests are either conducted with 

simulated prostheses on abled individuals [26], or amputees with existing prosthetic devices [25]. When 

robotic systems are utilized in simulating grasps for a prosthesis, a robotic hand with varying dexterities is 
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fixated on a robotic manipulator. In this case, the robot arm is controlled by a human operator via manual 

control [43], or teleoperation [2].  

The choice of placement of the cameras is crucial to achieve the highest possible accuracy in vision 

models, since cameras suffer from occlusions and distorted frames, resulting from an obstructed camera 

view and high-speed camera motion, respectively. Placing the camera on the hand (Fig. 2.3) may 

contribute to consistent detection errors in a single trial, leading to significantly longer runtimes to 

complete a task [25]. Since the hand moves jointly with the camera, the overall movement may cause 

streaking in the image, leading to poorly defined edges representing an object. During the execution of a 

task, the camera is unable to capture the entire object as it approaches too close to an object. Although an 

image of the object can be captured before the hand approaches the object, the hand may not be in a 

position to orient the camera to see the object at all. For example, the hand is in a resting position on an 

individual’s side where the camera faces towards the ground. However, the selected object is left 

undetected if it is placed on a table above the hand and camera. Pre-grasps can also obstruct the view of 

the camera, which will also eliminate the possibility of detecting an object beyond the occlusion. A pre-

grasp is a premature grasp configuration used to prepare a hand, moments before an object is grasped. In 

simulated vision-based myoelectric prostheses, the camera is fixed onto a tripod to face and overlook both 

the arm with a gripper and surrounding objects [26, 43]. In application to prosthetic grasping, however, 

this method would be impractical to implement on a prosthetic hand since the user is situated in a 

changing environment. Therefore, recent robotic applications analyze grasps in an egocentric view to 

imitate grasps from a human’s perspective [53, 42, 49, 50, 47, 3]. 

 

Figure 2.3: Hand-mounted camera during a grasping task trial from an upper-limb amputee. Adapted 

from [25]. 
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2.3.1 Grasp-Type Classification and Detection for Grasp-Pose Estimation 

Recent vision-based grasp estimation models leverage edge detection and spatial invariance properties of 

deep CNNs, for both robotics [53, 49, 50] and prosthetic-grasping applications [25, 26, 43]. To estimate a 

suitable grasp pose using grasp types, a CNN with multiple convolutional and pooling layers is first 

deployed as feature extractors to learn the image embeddings of a given RGB scene. These image 

embeddings are then passed through a fully connected layer with a sigmoid activation function to predict 

the most probable grasp type for the detected object shapes [25, 26, 42]. As mentioned in Sec. 2.2.1, other 

feature extractors can replace a CNN network. However, CNNs recognize a hierarchical representation of 

features, while HOGs and SIFTs only describes low-level features (such as edges) based on pixel 

intensities. Since each convolutional layer contains trainable weights, CNNs are adaptable to changes 

between every training example and generalize better to unseen examples. 

The aforementioned CNN structure only works well if the predictions are made for single object 

scenes. Since object selection is not necessary, a single grasp type is directly predicted on the one object. 

In application to prosthesis users, however, most settings take place in cluttered scenes with multiple 

objects in changing scenes. Multi-class classification can still be directly applied to the entire image frame 

in a single iteration. Bounding-box regression models for object detection, such as YOLO [54], SSD [55], 

and Faster R-CNN [56] localize image patches of all identifiable objects in a scene. Each of these image 

patches are then classified in a single pass for its grasp types in a CNN classifier [5, 8, 29, 47]. However, 

current methods still only predict a single grasp type for each object, in both grasp type classification [25] 

and grasp-type detection [29, 47] models. Grasp-type classification has also been done where multiple 

grasp types are assigned to each unique object [27]. However, the user still needs to proactively reject 

each unsuitable grasp type for the grasping task, and an increase in runtime to complete the grasping task 

can therefore be expected [27]. The main problem with current vision-based methods for grasp type 

selection is that the grasp types are not selected for the suitable object parts, but rather, the objects as a 

whole. 

The same deep CNN models used for images are also applicable to grasp type analysis in videos [42, 3] 

and ultimately for physical grasp execution [53, 49, 50]. RGB videos adds an extra temporal 

dimensionality to conventional RGB image datasets, which allows for new features that describe the time 

evolution of grasp poses and the trajectory paths to approach an object [42, 40, 41]. In conjunction with a 

CNN, a mean-shift object-tracking algorithm can continuously track a localized hand throughout a video 

to understand how grasp poses change during tasks [42]. By implementing localization algorithms for 
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both hands and objects in a video, it is possible to distinguish grasp poses from casual gestures and 

estimate action intent [42]. 

An RGB image can be plagued with colour noise, and the indistinguishable colours between the 

foreground and background negatively impact how well a CNN model can identify objects based on their 

shape. To solve this problem, in recent research, CNN models have been trained with a multimodal 

dataset to extract and learn features from multiple perspectives [26, 29]. For example, using just RGB 

images results in a classification accuracy of 81.16%; however, by converting RGB images to grayscale 

images and complementing the result with depth images, the classification accuracy improved by 12.75% 

[26]. The same accuracy improvement can also be seen in a grasp-type detection model when multimodal 

data of RGB and depth images are used [29]. Depth images provide a pseudo image segmentation of all 

objects in a scene, resulting in more defined edges on each object. When the RGB images are converted 

to grayscale images, the colour features are removed, while providing some information about the overall 

3D geometry and texture on the object. Therefore, by leveraging both modalities of data, the classification 

and detection accuracy can significantly improve the performance of grasp-type detection and grasp-pose 

estimation models [26, 29]. 

2.3.2 Object-Pose Estimation in Grasp-Pose Estimation 

Grasp poses are largely described by detected object features, including an object’s shape and object’s 

class. As discussed in Sec. 2.3.1, deep CNNs for grasp-type classification intuitively select grasp types 

that closely match the selected object and its detected shape. All objects can also be described by their 

pose. An object in a 3D space is vectorized as a 6-DOF pose (commonly referred as a 6D pose), which 

contains information about its position and orientation within a scene. For every instance the same object 

appears in a scene, its pose relative to the camera changes if the camera position is not fixed, or the 

objects are relocated. Therefore, raw grasp-type poses classified in a CNN need to be refined to ensure 

contact is made on the object. Grasp-type estimation is still necessary as it provides a simpler solution to 

reduce the number of possible grasp poses on an object. Since all prosthetic and robotic hands have 

varying DOFs, the same grasp pose may not be applicable to all hands. With grasp-type estimation, a 

general grasp pose can be determined and adapted by all hands with minimal corrections needed to 

establish contact with an object. In this thesis research, only grasp types are used to determine how an 

object should be grasped. However, grasp-pose estimation methods are still discussed in this section to 

provide some details of how grasp-type estimation can be applied or replaced in grasp-pose estimation 
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models. Most grasp-pose estimation methods require the initial estimation of the object pose [49, 50, 37, 

40, 5, 3]. 

In the GanHand model [5], the 6D pose of all detectable objects is computed from a single RGB image, 

while simultaneously learning the 3D geometries of the detected objects. The GanHand model is a 

Generative Adversarial Network (GAN) that can receive input RGB images with one or more objects in a 

scene, and generate multiple grasp poses on a single object. In multi-object scenes, the object pose is 

directly estimated from the RGB image, and the model additionally produces the 3D shape of the object. 

In contrast, the objects in single-object scenes are first reconstructed as 3D point clouds with AtlasNet 

[57]. The AtlasNet model is trained on the ObMan dataset to choose a synthetic 3D object model that 

closely resembles the shape of the detected object. The resulting 3D object shapes are then projected onto 

a 2D segmented mask and concatenated with the original RGB image to predict the grasp type; only one 

grasp type is predicted for each object, despite the multiple grasp poses for the same object. The grasp 

type is then converted to a 51-DOF MANO [58] representation to produce realistic hand meshes with 

human-like hand configurations. Finally, the 51-DOF MANO representation of the grasp type is 

optimized in the hand refinement network. In the hand refinement stage of the GanHand model [5], the 

selected grasp types are converted to grasp poses. Each finger on the 51-DOF MANO representation is 

moved to establish contact with the target object, before the arc lengths formed between the distal, 

proximal, and knuckle joints of each finger are minimized. Although the GanHand model [5] can predict 

realistic grasp poses, the selected grasp poses are not necessarily task oriented. In addition, the GanHand 

model [5] may not be feasible for prosthetic grasping and real-time applications since the grasp poses are 

estimated one at a time for a given multi-object scene. 

There are other alternative methods to estimate object-based grasp poses without the need to classify 

grasp types [43, 44, 45, 50, 49, 6]. Similar to the GanHand model [5] for single-object scenes, a deep 

CNN can first be trained from scenes captured in a simulation environment (such as Gazebo [59]) before 

performing the grasping tasks on real scenes [43]. In this case, the simulation environment captures both 

an RGB and depth image of the simulated scene, and an initial grasp pose on the target object is also 

generated with GraspIt! [60]; GraspIt! [60] is a grasp planner that allows the user to generate stable grasp 

poses on a chosen gripper. Instead of directly feeding the generated grasp pose to a deep learning 

network, a suitable palm patch is extracted from the depth map and the vectorized palm pose from the 

generated grasp plan. The original grasp pose produced from GraspIt! [60] serves as a ground truth 

annotation to evaluate the deep learning model [43]. A final grasp pose is then computed in a Grasping 
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Posture Prediction Network (GPPN), which predicts the overall alignment of a gripper’s palm on the 

target object and the corresponding finger poses. The intuition behind this method is that the alignment of 

the palm is inherently important to find the specific grasping posture for the task, even if the palm of the 

hand is not in contact with the object (e.g. pinch grasp); the finger poses can always be fine-tuned to 

produce a stable grasp pose by maximizing the grasp quality index [43, 34, 35]. Objects can additionally 

be further dissected into their primitive shapes (cubes for example) and trained independently on a deep 

CNN network and generalize to more complex shaped objects (everyday objects such as a mug) [60, 45]. 

2.3.3 Applications of Hand-Pose Estimators in Grasp-Pose Estimation 

As discussed, in Sec. 2.3.2, grasp estimation tasks are commonly solved by first identifying a target 

object, followed by the estimation of a suitable grasp pose from the extracted object’s features, which 

includes its shape, class name, and pose. Recalling Sec. 2.2, all general pose estimates of a hand are the 

hand poses. A hand pose cannot be directly used as a grasp pose, since only the detected object features, 

such as an object’s shape, can accurately allow contact between the object and a hand. However, general 

hand-pose estimations are still useful to understand common hand structures for applications in grasp-

type analysis [36, 37, 47, 40, 48, 41, 38, 3] as a general hand pose predetermines a general pre-grasp hand 

shape. Recent methods combine hand-object poses to learn realistic human hand-grasp poses in real 

scenes [49, 50, 37, 40, 5, 3], eliminating the need for training models on synthetic datasets with software-

generated artificial grasp poses [44, 5]. 

Human hand poses can be estimated in several ways: from a capacitive soft sensing stretch glove like 

the CyberGlove [61, 2, 62], sEMG pattern recognition [51, 52], 3D point cloud data of objects [49, 5], or 

vision-based keypoint detection models to localize and structure the human hand as a 21-jointed skeletal 

kinematic chain, or a 21-jointed grasp configuration (Fig. 2.4) [49, 50, 39, 40, 41, 52, 51]. All of these 

methods have also been widely applied for real-time applications to continuously track hand poses. 

Vision-based techniques can be adapted to estimate hand poses as the locations of a 21-joint hand 

configuration (Fig. 2.4) directly from image and video data [49, 50, 39, 40, 41]. In application to 

prosthetic grasping, current deep learning models, such as NeuroPose [52], associate detected sEMG 

patterns on the hand with a 3D hand pose, provided that there are additional annotations of captured 3D 

hand poses from hand-tracking devices or software. Current hand-pose-estimation models, such as 

MediaPipe [39], are modelled as a classification problem to identify the positions of each joint as a 

keypoint on the detected hand. Since an image is projected to a flat 2D plane, recent studies use CNNs to 
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recover the missing third dimension from depth data, to fully estimate the 3D coordinates of each joint in 

the hand pose [49, 50]. Alternatively, there are known 3D hand pose datasets that provide a complete set 

of 3D hand poses with corresponding object poses in image and video scenes. These hand poses are 

acquired by attaching multiple magnetic sensors on the grasping hand during the execution of a task [40, 

41]. The First-Person Hand Action Benchmark (F-PHAB) dataset [40] is an example of a 3D hand-object 

pose dataset that also allows the user to train an action-recognition model in egocentric videos. In 

applications to robotic grasping, the 6D pose of a hand can either be directly incorporated into a 21-joint 

grasp configuration [41] or estimated separately [49] as a regression problem with CNN models.  

 

Figure 2.4: Examples of hand-pose estimation predictions from a hand-object interaction using the 

MediaPipe [39] model. Each hand pose is a grasp pose that represents a 21-joint configuration of a grasp 

type during a grasping task. (a) is the grasp pose for a prismatic-2-finger grasp (pinch grasp), and (b) 

represents a spherical grasp.  

In applications to prosthetic grasping, a deep-learning model that first estimates grasps, as grasp types, 

is a simpler and less error-prone method than estimating the individual joint angles and positions of a 

hand. A default grasp pose with the 21-joint configuration can be assigned to each unique grasp type (Fig. 

2.4), where each grasp pose is modifiable if a tighter fit on the selected object’s shape is necessary. In 

addition, the grasp-pose estimation model needs to be modified and re-trained each time a new hand with 

varying DOFs from the original hand is tested. 

    (a)                                 (b) 
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2.4 Affordance Detection 

Every object in a scene can be interacted with in multiple ways depending on the chosen task. As humans, 

we intuitively understand what actions each object can afford, their connections with other objects, and 

the reasoning behind a certain grasp pose for the intended task. For example, if a whole apple and a knife 

are placed next to each other on top of a cutting board, in this scene, the apple affords being grasped for a 

cut or transfer task; the knife affords being used for a cutting task by holding its handle; and the cutting 

board affords to support both the apple and knife on its surface. The scene is in a kitchen, where the apple 

is deformable, and the knife is used to cut the apple; the action of cutting an apple can only be performed 

on the cutting board, which provides a flat surface to work on without damaging the countertop under the 

cutting board. In this situation, one of the user’s hands will grasp the apple and expose the desired 

cuttable surface; the other hand will pick up the knife by its handle and perform the cutting task on the 

apple. Affordance detection therefore assists the selection of task-oriented grasps based on the predictable 

actions on the objects. Affordance detection also allows each object to be further segmented based on 

their object parts, and independently classified for their possible actions. However, an issue arises when 

the same object part or region contains multiple affordances. This problem is generally avoided by 

eliminating redundant affordance classes that are similar to existing classes. In the knife and apple 

example, the cut, peel, chop affordance classes all occur on the handle of a knife, which can be simplified 

to a single use affordance class. As described in Chapter 1, affordances are either represented as object 

affordances [8, 9, 10] or grasp affordances [11, 6, 5, 7, 12] in robotic applications. Affordance detection 

methods are only found in robotic grasping applications and have yet to be implemented for prosthetic 

grasping applications.  

In current prosthetic grasping methods, a single grasp type is predicted for each object [25, 16, 17, 18, 

26, 29, 19]. Myoelectric protheses allows the user to select a fixed set of pre-programmed grasp types [16, 

17, 18, 19], while vision-based protheses (including vision-based myoelectric prostheses) use deep CNNs 

to predict a suitable grasp type that closely matches the shape of the selected object [25, 26, 29]. By 

adapting affordance detection in vision-based prostheses, the limitation in current prostheses of having no 

alternative and task-suitable grasp types can be solved. Alternative grasps are useful since the predicted 

grasp type can fail to pick up the object or is unsuited for a specific task (task-oriented grasps). For 

prosthetic grasping applications, the affordances can be detected as the grasp affordances: to identify all 

object parts in an RGB image and assign each object part with a grasp type. As seen in Sec. 1.3, most 

vision-based prostheses use a hand-mounted camera to capture RGB images of single objects. When the 
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camera is head-mounted instead, the field of view of the environment is expanded, and the affordance 

detection of multiple object scenes is possible. The head-mounted camera setup for prosthetic grasping 

applications can allow the detection of affordances on other objects, which can influence the resulting 

grasp-type predictions to grasp an object. 

2.4.1 Object Affordance Detection 

Object affordance detectors are all modelled as a multi-class classification problem, a regression problem, 

or both. When affordance detection is applied to 3D point clouds of objects, each data point is 

independently classified with an object-affordance label [49, 9]. When object-affordance detection is 

applied to 2D images and videos, models like AffordanceNet [8] apply image segmentation techniques on 

object parts with a per-pixel classifier. Fig. 2.5 provides an illustration of expected affordance detection 

results from ground truth annotations found in the IIT-AFF [8] and 3D Affordance Net [9] datasets. In 

both Figs. 2.5a and 2.5b, each object affordance region is represented with a different colour in the image. 

Fig. 2.5a illustrates a single-object RGB image of a mug with a bounding box and the 2D object 

affordance regions as image masks. Fig. 2.5b illustrates a 3D point cloud of a bottle, where each 3D point 

is assigned a different affordance label. In application to prosthetic grasping, only 2D RGB image 

affordance detection methods are considered in this thesis since it is assumed that a prosthesis user would 

only have access to a single FPV camera to capture scenes. As with AffordanceNet [8], the affordance 

detection model is applied to multiple-object RGB image scenes, where both the object classes and their 

respective object affordances are simultaneously estimated. 
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Figure 2.5: Ground truth affordances from (a) IIT-AFF and (b) 3D AffordanceNet datasets. (a), the wrap-

grasp affordance (yellow) and the contain affordance (blue) are bounded by a bounding box of the 

detected mug. In (b), each 3D point in the point cloud is assigned a single affordance label: grasp (red), 

wrap-grasp (blue), contain (orange), open (green), pour (magenta).  

AffordanceNet is a variant of the Mask R-CNN instance segmentation model [33] that requires two 

stages to make object affordance predictions from input RGB images. In the first stage, a variant of the 

Faster R-CNN [56] object detection model is used to segment and localize all image patches containing 

the Regions of Interest (ROI) of supposed object locations [8]. A VGG16 backbone extracts the object 

features and predicts the ROI regions as bounding box proposals through a Region Proposal Network 

(RPN) [8]. A ROI Align module then converts each ROI region into a 7 × 7 feature map, where each ROI 

feature map is aligned with the full input image feature map [33, 8]. The resulting ROI feature maps are 

fed as inputs into the second-stage subnetworks of AffordanceNet. In the second stage, the affordance and 

object detection networks run in parallel with individual loss calculations, but the loss optimizations are 

jointly evaluated. The object classification network is comprised of a dual layered Fully Convolutional 

Network (FCN) [63] to further learn the features of the ROI feature maps. The extracted features are then 

converted to a 𝑁 × 𝐶 vector of object class probabilities with a linear softmax layer [8], where 𝑁 

represents the number of instances in an image and 𝐶 represents the probability score of an object class. 

In addition, the extracted features are regressed to produce 𝑁 × 4 bounding box locations: the box’s x-y 

centre coordinates, width, and height relative to the dimensions of the input image in pixels. This method 

allows all objects in a scene to be simultaneously detected and localized in a single pass. The affordance 

(a)                             (b) 
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subnetwork also feeds the same ROI feature maps, and the affordance subnetwork has a multi encoder-

decoder structure that gradually upscales the feature maps to the same dimensions as the original RGB 

image [8]. The final output consists of all the detected bounding boxes of objects with the corresponding 

object classes, the classification scores, and the segmented affordance image masks. Unlike the traditional 

Mask R-CNN [33] instance segmentation model, the affordance subnetwork is a semantic segmentation 

model. The affordance image mask produced by AffordanceNet are 2D per-pixel affordance label maps 

with matching dimensions of the input images. Each pixel in the affordance label map can only be 

classified to a single affordance label; thus, overlapping affordance image mask predictions are not 

possible with AffordanceNet. If an object has overlapping affordance masks, then each of those 

affordance masks can be treated as an independent instance. Each instance has a binary mask against the 

background label (true if it contains the affordance label, false otherwise) with their corresponding 

affordance label and bounding box. Fig. 2.6 illustrates the difference between an affordance-image mask 

predicted as a per-pixel affordance map (Fig. 2.6a) and as instances of binary affordance masks (Fig. 

2.6b). 

  
(a) (b) 

Figure 2.6: Comparison of affordance masks as: (a) a per-pixel affordance label, and (b) as independent 

instances. (a) are the object affordances from the IIT-AFF dataset [8], and (b) are the grasp affordances 

(as grasp types) from the MOMA synthetic dataset. Note that the objects in (b) appear to be floating since 

the image was created by placing random single-object images on a random background. 
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2.4.2 Grasp Affordance Detection 

Affordances can be interpreted as affordable grasp poses, as in the GanHand [5] model, to show all the 

possibilities of task-oriented grasp poses on an object. Each grasp affordance region is evaluated to 

determine the task-suitability pertaining to a certain grasp pose [50, 6, 10, 5, 7, 12]. In conjunction with 

the object or hand-object pose estimation models, affordance detection models are deployed first for 

scene understanding before a grasp pose is chosen for a desired task [49, 10, 7, 12]. Alternatively, grasp 

affordances can be represented as task-suitability regions with either segmentation [6, 11, 12] or object 

detection [7] methods. Additional features, including the environmental context and object attributes can 

be implemented on an affordance detection model and visualized in a Knowledge Base (KB) graph [7]. 

An example of environmental context includes the location of the visualized scene; and an example of 

object attributes includes its texture, material type, and its purpose (such as for food storage, or as a 

utensil) [7]. Since the GanHand [5] model theoretically detects grasp types as grasp affordances, then 

each object part can represent a different grasp-type region. Unlike the GanHand [5] model, more than 

one grasp type should exist on an object if applicable; for example, a bottle has three unique grasp 

affordances, as illustrated in Fig. 2.6b; a lateral tripod grasp for the bottle lid, a precision disk grasp for 

the base of the bottle, and a cylindrical wrap for the body of the bottle. 

2.5 Task-Oriented Grasping 

Traditionally in robotic systems, prehensile grasp poses are selected based on the overall stability of the 

grasp configuration, by evaluating its grasp quality index [43, 34, 35]. As described in Sec. 2.1.1, stability 

in a grasp pose is achieved by balancing all wrenches at the contacts to achieve force closure [35, 34, 21]. 

However, there is an infinite number of solutions to balance all contact wrenches to equilibrium. This is 

because each friction cone contains varying force directions within its extrema, and varying magnitudes 

of forces can be applied at each contact [34]. Therefore, the grasp quality index is utilized to solve an 

optimization problem to identify the most efficient combination of wrenches within the grasp wrench 

space (GWS), while minimizing the forces required to resist external wrenches and ensure force closure 

[43, 34, 35]. The grasp wrench space is the convex hull of all wrenches produced at the contacts [43, 34, 

35], and a higher grasp quality index means that a grasp is more stable. 

Although the estimation of stable grasp poses allows successful manipulation of the object, there is a 

lack of detail pertaining to how these defined grasps are tuned to complete a specific task. For example, a 

bottle can be grasped in many ways depending on the task: a cylindrical wrap-grasp parallel to the length 
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of the bottle for a pick-and-place task; and a tripod grasp facing downwards towards the table to transfer 

the bottle along a surface or to twist the bottle cap open. As seen in the YCB-Affordance Dataset [5], the 

selected grasp poses may not necessarily be the most stable; however, they are the most task-suitable 

pose.  

Task-oriented grasping has been widely applied to robotic applications [61, 45, 11, 49, 46, 6, 5, 10, 7, 

12], [8], but not yet towards prosthetic grasping. Task-oriented grasp poses are predicted in conjunction 

with affordance detection models, since affordance detection describes the possibilities of actions on an 

object [11, 6, 5, 10, 7, 12, 8]. The process of task selection is generally defined by the user, and the 

following affordance detection model determines the task-suitability locations for a task. The grasp poses 

can then be estimated based on learned object shapes, or hand-object poses, as seen in Sec. 2.3. Therefore, 

a new multimodal model can improve the performance of a vision-based prosthesis by leveraging task-

oriented grasp poses (or grasp types) with affordances. 

2.6 Summary 

Current methods in vision-based prosthetic grasping predominately use a fixed camera on the prosthetic 

hand. The grasp selection method can therefore simplify to the single object within the camera frame. 

However, the extreme motion of the camera can lead to the capture of poor-quality image frames, where 

the captured objects could be occluded by other objects or the prosthetic hand in a pre-grasp shape. The 

object could also simply not be captured during the duration of the grasping task if the camera is not 

oriented to face the intended object. An FPV camera can resolve most of the issues found in an on-hand 

placement of a camera. The FPV camera allows the capture of multi-object cluttered scenes in the user’s 

perspective, as seen in the analysis of prosthesis usage in upper limb amputees in Sec. 2.2.1. 

Vision-based prosthetic grasping methods are currently limited to the classification and detection of a 

single grasp type from a single-object RGB image [29, 25]. By correlating a single grasp type to a single 

object, the classification model is unable to predict and use alternative grasp types in the case the 

prosthesis fails to pick up the object. The prediction of alternative grasp types is necessary if the predicted 

grasp type is misclassified and unsuitable for the object. As seen in Sec. 2.3, multiple attempts to predict a 

suitable grasp type on a single object are made in a single trial when a grasping task is executed. Each 

prediction attempt leads to a significant increase in total runtime, leading to the infeasibility of the grasp 

selection method [25]. As described in Sec. 2.4, alternative grasp types are also necessary to allow a 

prosthetic user to choose different grasp types on the same object for different tasks. For example, a 
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cylindrical grasp type can be used to hold the mug’s body for the most stable pose, while a hook grasp on 

the mug’s handle would permit drinking or pouring fluids. In current prosthetic grasping methods, 

multiple grasp types have been assigned to each unique object [27]. However, the prosthesis user still 

needs to proactively reject all unsuitable grasp types for the current grasping task [27], which also 

increases the runtime of the grasping task also increases [27]. As mentioned in Sec. 2.3.1, the main issue 

with current vision-based methods [27] is the assignment of grasp types to the whole object, instead of the 

individual object parts. 

The current vision system in prosthetic hands can be improved to solve the aforementioned issues (i.e. 

limited task-oriented grasp selection and the one-to-one correspondence of an object with a grasp type), 

by adapting the robotic grasping methods discussed in Secs. 2.3 to 2.5. Recent robotic grasping 

applications introduce the estimation of stable prehensile grasps as a 6D grasp pose [49], a 21-jointed 

configuration grasp pose [49, 41], or the combination of both [41]. The estimation of grasp poses is 

directly correlated to an object’s shape. Grasp poses are the hand poses that are specific to grasping, 

which can ultimately define a grasp type. By detecting the grasp types first, a unique robotic gripper or 

terminal device with varying DOFs could all be trained and tested on the same grasp-type estimation 

model. As seen in Sec. 2.3.2, grasp types are used in robotic grasping applications to first define the 

general shape of a grasp pose before the final grasp pose is adjusted to better fit the object’s shape [5]. 

Since current vision-based prosthetic grasping methods already estimate grasps as grasp types [25, 27], 

the prosthetic grasping vision system developed in this thesis will also predict grasps as grasp types to 

simplify the grasp estimation model.  

The robotics definition of a grasp pose is primarily based on a stability criterion that maximizes the 

overall grasp quality on an object [26, 34, 35]. However, the most stable grasp pose is not necessarily the 

most suitable grasp pose for a given task [11, 6, 5, 7, 12]. Currently, prosthetic grasping methods also 

prioritize stable grasp poses over task-suitable grasp poses [25, 26]. Therefore, in robotic applications, the 

affordances of an object (either as object affordances or grasp affordances) are widely used for choosing 

task-oriented grasps through scene understanding, by correlating the visual features of an object with 

semantic reasoning [6, 10, 7, 12]. The visual features of an object include the object’s parts and the 

potential actions the object provides to the user. As seen in Sec. 2.4.2 and 2.5, the affordances of an object 

provide vital contextual information about where an object can be grasped for a specific task based on the 

predicted grasp affordance regions. Similar to robotic grasping applications, the detection of affordances 
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in prosthetic grasping can introduce a new method of assigning a task-oriented grasp type for each object 

part detected in an RGB image. 

In current prosthetic grasping applications, affordance detection and task-oriented grasping are not 

applied in any vision-based prosthetic grasping models. Therefore, in this thesis, affordance detection 

models from robotic applications will be analyzed and adapted for prosthetic grasping applications, where 

the goal is to find the distribution of grasp types and the task-suitable regions in a multi-object, cluttered 

RGB image. Although the use of depth images with RGB images (i.e. multi-modal data) has improved the 

overall accuracy of classifying grasp types [29, 26], only RGB images will be used. All models analyzed 

in this thesis research exclusively accept RGB images as the inputs. Theoretically, task-oriented grasp 

types and potential tasks on an object can be estimated as grasp affordances and be incorporated into an 

affordance detection model. Each grasp affordance region on an object part will contain a suitable grasp 

type to grasp the object. When grasp affordances are detected as tasks, the grasp types detected on an 

object can be filtered to match the potential tasks on an object. By combining the detection of grasp 

affordances as grasp-types and task-regions, the prosthetic hand user will be able to choose a selection of 

related grasp types that are suitable for the task. Therefore, in this thesis research, a multi-grasp 

affordance model can be proposed to improve the vision system in prosthetic hands. 
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Chapter 3 

Methods for Simultaneously Detecting Objects and Their Grasp 

Affordances with A Deep CNN Segmentation Model 

In this research, an ablation study (discussed in Sec. 3.1) was initially conducted to determine the best 

method for detecting objects (i.e. cups, bottles, knives, and hammers) and their grasp affordances in RGB 

images. In the context of machine learning, an ablation study is an experimental method, which involves 

the removal of a module in a machine learning model to understand the significance of the module [64]. 

A module is essential to a machine learning model if the machine learning model performs worse (e.g. 

lower classification accuracy) without the module. Since most object affordance detection methods use 

segmentation models (as described in Sec. 2.4.1), the ablation study in Sec. 3.1 will investigate the 

significance of the object detection module in instance segmentation. Traditionally, an instance 

segmentation model detects objects (cups, bottles, etc.) as instances of an image mask and a localized 

bounding box for a given RGB image. Each of the detected instances corresponds to a single object class. 

A semantic segmentation model is similar to an instance segmentation model, except that the semantic 

segmentation model lacks an object detection module. For a given RGB image, a semantic segmentation 

model predicts an object class for each pixel in the image. Therefore, the image mask for each object class 

is present; however, the location of each object in an RGB image is not explicitly determined. For the 

ablation study, the object affordances will be detected instead of the objects. 

The ablation study in Sec. 3.1 found that an instance segmentation model was significantly more 

accurate in detecting object affordance masks than a semantic segmentation model. In AffordanceNet [8], 

an instance segmentation model, the resulting object affordances were precisely localized in the bounding 

boxes of the detected object in an image. Unfortunately, most existing instance segmentation models are 

only trained to detect the instances of objects (cups, bottles, etc.) from the COCO dataset [65]. Therefore, 

a new Multi-Object Multi-Grasp-Affordance (MOMA) synthetic dataset was created in this research to 

allow the simultaneous detections of objects, grasp types, and task-region as instances. The details of the 

MOMA dataset creation are described in Secs. 3.2 and 3.3. Secs. 3.4 and 3.5 discuss how the instance 

segmentation models were trained and evaluated in Chapter 4. In addition, Secs. 3.4 and 3.5 introduce the 

newly developed Multi-Affordance Detection Network (MAD-Net) for the joint detection of objects and 

their grasp affordances as instances. 
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3.1 Ablation Study to Determine the Significance of Object Localization in 

Instance Segmentation Models 

The purpose of the following ablation study was to determine the significance of object localization in 

instance segmentation models, by removing the object detection module from the studied model. An 

object detection module provides the location of a labelled bounding box in an RGB image to localize and 

classify an object. The instance segmentation model investigated in this ablation study is the 

AffordanceNet [8] model, which has a backbone network for feature extraction (typically a variant of the 

ResNet model [66]), an object detection module, and an image segmentation module. The ResNet-34 

FCN model was developed to compare the object affordance detection results with the AffordanceNet 

model [8]. The dataset used to train the ResNet-34 FCN and AffordanceNet [8] models for object 

affordance detection is the IIT-AFF [8] dataset, which provides the annotations for 10 object-affordance 

classes on real RGB images. Currently, there is no dataset that provides the annotations to simultaneously 

detect objects, grasp types, and task regions as bounding box and image mask segmentations. The 

outcome of the ablation study would dictate the type of dataset that needs to be created to train the object 

and grasp affordance detection model. 

3.1.1 ResNet-34 FCN Semantic Segmentation Model Architecture 

In the ablation study, a supervised semantic segmentation CNN model, ResNet-34 FCN, was trained and 

tested on the IIT-AFF RGB [8] image dataset. The CNN model followed the encoder-decoder 

architecture, since it adapts the Residual Network (ResNet) [66] architecture as the backbone for feature 

extraction, where a proceeding FCN-like subnetwork upsamples the features back to the original input 

image dimensions with the object affordance scores. Fig. 3.1 shows the architecture of the ResNet-34 

FCN network. The ResNet model [66] used is a deep CNN classification model with 34 convolutional 

layers (ResNet-34) pre-trained on the ImageNet-1K dataset [67]. ImageNet-1K contains 1000 different 

object classes with over one million images in the training dataset [67]. 
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Figure 3.1: Network Architecture of the ResNet-34 FCN model for object affordance detection. The 

Concat blocks concatenate the feature maps along the channel dimension. 

A deeper CNN model with more convolutional layers usually results in lower training and validation 

accuracy; however, the performance of the Res-Net model improves as more convolutional layers are 

added to the model. Beginning at the outputs of the first convolutional block to the outputs of the last 

convolutional block, a skip connection is successively added to every pair of convolutional layers. The 

skip connection takes each pair of convolutional layers and concatenates them with the previous pair of 

convolutional layers, through element-wise summation. As a result, a CNN model with skip connections 

can recall and learn the features from the earlier layers of the CNN, where vanishing gradients are 

mitigated. Vanishing gradients occur when a model’s weights near the input layers of a neural network 

converge to zero during backpropagation (the backward pass during weight optimization), where the 
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neurons at the earlier layers of the model are unable to update their values and the model thus cannot 

learn the features from the earlier layers. The ResNet model also includes a batch normalization layer in 

between each convolutional layer and Rectified Linear Unit (ReLU) activation function, which also 

solves the vanishing gradient problem [63]. 

Following the ResNet-34 backbone for feature extraction, a decoder with an FCN-like CNN 

subnetwork gradually upsamples the resolution of the feature maps to a close approximation of the 

original input image dimensions. The decoder consists of three deconvolutional layers, where the output 

channels of each succeeding deconvolutional layers are reduced by half, from 576 channels to 72 

channels; the deconvolutional layers are each activated with a ReLU function. Each deconvolutional layer 

contains trainable weights that use 1 × 1 kernels to simulate the one-to-one connections of each neuron in 

the model network as seen in the FCN [63] model. When 1 × 1 kernels are used to convolve the 

oncoming inputs, the resulting output feature map has the same dimensions as the input feature map. In 

the final layer of the ResNet-34 FCN model, the outputs of the decoder are upsampled once more, to 

ensure the outputs match the input image dimensions. The outputs of the decoder are upsampled with a 

bilinear interpolation layer that does not contain trainable weights. The ResNet-34 FCN model also has a 

skip connection to connect the outputs of the second convolutional block in the ResNet-34 backbone to 

the first deconvolutional layer. The skip connection concatenates the two layers by stacking the feature 

maps along the channel dimension, instead of element-wise summation.  

The outputs to the ResNet-34 FCN model contains pixel-wise object affordance class scores of size 

𝑁 × 𝐶 × 𝐻in × 𝑊in, where 𝑁 is the batch index, 𝐶 is the total number of object affordance classes in the 

IIT-AFF dataset (which is 10), 𝐻𝑖𝑛 is the height of the input image, and 𝑊𝑖𝑛 is the width of the input 

image. Each pixel has 10 object affordance class scores of raw probabilities ranging from 0-1. However, 

for each pixel, the total sum of raw probabilities across all object affordance classes may not necessarily 

sum to one. The raw probabilities in this case are known as the logits. 

3.1.2 Training and Evaluation of the ResNet-34 FCN Semantic Segmentation Model 

The ResNet-34 FCN model was trained and evaluated in PyTorch [68] on the IIT-AFF [8] dataset, which 

contains 8835 real RGB images of single-object and multi-object scenes, with some image sequences in 

an egocentric view. Each image contains an annotation for a per-pixel object affordance label map, a per-

pixel depth label map, and object classes with bounding boxes in (𝑐𝑜𝑏𝑗 , 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) format. 

𝑐𝑜𝑏𝑗 is the object class label, (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛) are the top-left box coordinates in pixels, and (𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥) are 
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the bottom-right box coordinates in pixels. In this ablation study, only the object affordance map 

annotations were used since object detection was not required. There were ten object classes and ten 

object affordance classes in the IIT-AFF dataset. The object classes consisted of the following labelled 

from 0-9 in the following order: bowl, TV monitor, pan, hammer, knife, cup, drill, racket, spatula, and 

bottle. The object affordance classes consisted of the following labelled from 0-9 in the following order: 

background (no object affordance), contain, cut, display, engine (the authors of the IIT-AFF dataset [8] 

have only used this object affordance to indicate the motor on a drill), grasp, hit, pound, support, and 

wrap-grasp (form closure grasps). The IIT-AFF dataset was partitioned, where 70% of the images were 

for training (6184 images) and 30% of the images for testing (2651 images) the ResNet-34 FCN model. A 

validation set was not included in this ablation study since hyperparameter tuning was not necessary. The 

evaluation results (Sec. 3.1.3) of the model were sufficient to determine the feasibility of using semantic 

segmentation for affordance detection without object localization (as in affordance segmentation). 

During training, the input images were all equally resized to 200 × 200 images, and each pixel was 

normalized to values between 0-1, with the RGB mean [0.485, 0.456, 0.406], and standard deviation 

[0.229, 0.224, 0.225], values from the ImageNet dataset [67]. Each of the normalized, resized input 

images were converted to tensors (n-dimensional arrays) for computations in the GPU. The target object 

affordance map (ground truth) was also converted to a 𝐻in × 𝑊in tensor with the same height and width 

dimensions as the input image. The ResNet-34 FCN model was trained with a batch size of 64 images and 

optimized with the Adaptive Moment Estimation (ADAM) optimizer [69], at a learning rate of 1 × 10−3. 

The model needed 6.8 GB of GPU memory, and 12 hours and 46 minutes to train for 100 epochs on a 

Nvidia GeForce RTX 3080 card. An epoch represents the evolutional state of the model parameters (such 

as the model weights), where each training image has, at least once, been processed by the model. In this 

ablation study, the ResNet-34 FCN model was trained beyond 10 epochs to examine the trends in the 

training loss curve beyond the initial point of convergence with the minimized loss value. Throughout 

training, the model was optimized with the cross-entropy loss function, which is the negative log-

likelihood loss as a function of the output logits as log-softmax probabilities, as represented in the 

following equations [68]. 

𝑆(𝐗𝑛,𝐘𝑛
) =

exp(𝐗𝑛,𝐘𝑛
)

∑ exp(𝐗𝑛,𝑐)𝐶
𝑐=𝑐0

 
 (3.1) 
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𝐋𝐶𝐸𝑛
= − ln 𝑆(𝐗𝑛,𝐘𝑛

) 
(3.2) 

𝐿𝐶𝐸 = ∑
𝐿𝐶𝐸𝑛

𝑐𝑜𝑢𝑛𝑡(𝐘𝑛)

𝑁

𝑛=1
= ∑

∑ (𝐋𝐶𝐸𝑛
)

𝑖𝑗𝑖,𝑗

𝑐𝑜𝑢𝑛𝑡(𝐘𝑛)

𝑁

𝑛=1
 (3.3) 

𝐗𝑛,𝐘𝑛
 is a subset of the predicted output logits from the ResNet-34 FCN model, 𝐗𝑛, for the positive target 

object affordance class in the target object affordance tensor, 𝐘𝑛. 𝐗𝑛,𝐘𝑛
 is a tensor with the input image 

dimensions, 𝐻𝑛 × 𝑊𝑛, of image 𝑛 in a batch of 𝑁 images. Each pixel value in 𝐗𝑛,𝐘𝑛
 is assigned to one of 

the 10 output logits in 𝐗𝑛 (each pixel in 𝐗𝑛 is a 10 × 1, 1D vector) based on the matching pixel location 

and value of the target object affordance class. As an example, a pixel located at (1,0) has a target object 

affordance class of three. Since the pixel has 10 output logits, only the fourth output logit is assigned to 

the pixel (since the object affordance classes are indexed from zero). Eq. 3.1 is the softmax function with 

the same dimensions as 𝐗𝑛,𝐘𝑛
 that bounds the output logits to probability values that sum to 1 across all 

object affordance classes. The softmax function is the ratio between 𝐗𝑛,𝐘𝑛
 and the natural exponent of 𝐗𝑛 

that is summed across each object affordance classes, 𝑐. 𝑐 is an integer belonging to the 10 possible object 

affordance classes, where [0 ≤ 𝑐 < 10]. Eq. 3.3 is the total cross-entropy loss for all predictions in an 

image batch 𝑁, where 𝐋𝐶𝐸𝑛
 (Eq. 3.2) is a tensor of pixel-wise cross-entropy losses for a single image with 

matching dimensions as 𝐗𝑛,𝐘𝑛
. The negative operator is added to Eq. 3.2 since the natural logarithm of a 

probability value is negative, and the loss value is generally set to positive. The total cross-entropy loss 

for a batch of 𝑁 images is reduced to a single loss value with Eq. 3.3: the cross-entropy loss tensor for 

each image 𝑛 is element-wisely summed and averaged with the total number of elements in the target 

object affordance tensor (average loss per pixel). The cross-entropy loss value per image is further 

summed to obtain the total cross-entropy loss for the batch of images. 

 Before evaluation, the predicted output logits of ResNet-34 FCN, for each image, 𝐗𝑛, were first 

converted to an object affordance map as follows: 

𝑓𝑎𝑓𝑓(𝐗𝑛) = arg max
𝐶

𝐗𝑛 (3.4) 

where 𝐗𝑛, with the dimensions of 𝐶 × 𝐻𝑖𝑛 × 𝑊𝑖𝑛, is converted to a 𝐻𝑖𝑛 × 𝑊𝑖𝑛 matrix, where each pixel is 

assigned to an index value of 𝑐 (the object affordance label) that contains the highest object affordance 

class scores along dimension 𝐶. For example, a pixel in the output object affordance map has a 10 × 1, 

1D vector of object affordance class scores, where the highest score is located at index two. Therefore, the 
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object affordance class at that pixel is also two, which is the third object affordance class (since 𝑐 and the 

index position starts at zero). Each pixel in the predicted and target object affordance map can only 

contain one value belonging to 𝑐. 

The mean intersection over union (mIOU) metric was used to evaluate the performance of the ResNet-

34 FCN model on the training and test sets of the IIT-AFF dataset. A mIOU value was calculated for each 

test image in the test set and averaged across all the images in the test set. The mIOU metric indicates 

how accurate the predictions (the segmented object affordance masks) match with the ground truth (the 

target object affordance masks) by evaluating the total class-based ratios of overlapping area between the 

predictions and the ground truths. A model that is evaluated on a dataset performs well if it can achieve an 

mIOU score of more than 0.5, where 1.0 is a perfect score. As seen in the equation below [70], the overall 

mIOU is the average of all IOUs (intersection over union) from each class 𝑐, where mIOU can have a 

score from 0-1. 

mIOU𝑛 =
1

𝐶
∑

𝑎𝑟𝑒𝑎(𝑓𝑎𝑓𝑓(𝐗𝑛,𝑐) ∩ 𝐘𝑛,𝑐)

𝑎𝑟𝑒𝑎(𝑓𝑎𝑓𝑓(𝐗𝑛,𝑐) ∪ 𝐘𝑛,𝑐)
 

𝐶

𝑐=𝑐0

 (3.5) 

𝐗𝑛,𝑐 and 𝐘𝑛,𝑐 represent the segmented image masks of all pixels that have an object affordance class 𝑐. 𝐗𝑛 

is the predicted object affordance map calculated from Eq. 3.4 and 𝐘𝑛 is the target object affordance map. 

𝐗𝑛 and 𝐘𝑛 both have the input image dimensions of image 𝑛, 𝐻𝑖𝑛 × 𝑊𝑖𝑛, containing all per-pixel labels 

for all possible values of 𝑐 (integer values between 0-9, with 10 possible values). For each object 

affordance class, the local mIOU value calculated in Eq. 3.5, is the ratio of the intersecting area over the 

unified area between the predicted and target object affordance maps. 
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3.1.3 Results and Discussion of the ResNet-34 FCN Semantic Segmentation Model 

The ResNet-34 FCN model achieved an mIOU of 0.884 on the entire training dataset, while the mIOU 

score was 0.544 on the entire test dataset. Therefore, ResNet-34 was evidently overfitting with the 

training dataset and cannot generalize to new unseen RGB scenes. The overfitting problem in the ResNet-

34 FCN model can be attributed to the extended training of 100 epochs, when 10 epochs is sufficient to 

minimize the training losses. In Fig. 3.2, the training losses begin to converge to a minimum, as early as 

in the 10th epoch, and settle to a loss value of approximately 0.03 by the 20th epoch. There are also 

anomalies at the 25th and 53rd epochs as the loss values suddenly increase; however, the losses still 

eventually converge to a value of 0.01 by the end of the 100th epoch. The anomalies in the training loss 

were most likely due to the errors in weight optimization during backpropagation, which caused the 

training losses to increase before gradually converging to zero in the later epochs. Since the training 

losses converge, the model can make accurate predictions of object affordance maps that are similar to the 

ground truths, as reflected in the overall training mIOU score. 

 

Figure 3.2: Training losses from the ResNet-34 FCN model for 100 epochs. 
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In the prediction images (Fig. 3.3), most of the pixel accuracy is attributed to the accurate classification 

of the background object affordance class 0. Specifically, the ResNet-34 model generalizes to the 

background where object affordances are non-existent. Since most of the RGB images in the IIT-AFF 

dataset predominately contain the background and not the objects, the mIOU metric is a poor indicator of 

performance for affordance detection. Affordance detection requires a model that emphasizes the accurate 

detection of objects, since an object’s shape is the determining factor for predicting the varying 

affordances on an object. As seen in Fig. 3.4, the sample predictions of AffordanceNet [8] on the IIT-AFF 

dataset show that the added object localization of an object for affordance detection essentially removes 

most of the unwanted background noise in an image. Only the relevant pixels on the objects of interest, 

restricted by the detected object’s bounding box, should be labelled with a non-background object 

affordance class. Therefore, instances of objects should be detected (predicted and localized object in an 

image) first before affordance segmentation should take place; an instance segmentation model like Mask 

R-CNN [33] can accomplish such task. In addition, an evaluation metric like the mean average precision 

(mAP) score rewards detection and segmentation models with better object localization accuracy; the 

evaluation method using the mAP metric will be discussed later in Sec. 3.4.2. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 3.3: Inferencing results on the IIT-AFF [8] dataset for the object affordances (see colour key at the 

top of the figure). The images on the left are the predictions, and the images on the right are the ground 

truth annotations. 
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Figure 3.4: Sample inferencing results in the IIT-AFF dataset by the original creators of AffordanceNet, 

adapted from [8]. 

In this thesis, the methods used in this chapter are similar to how affordances were detected in 

AffordanceNet [91]. However, instead of predicting a single affordance map for the entire input image, 

each predicted affordance on an object part will have its own affordance map as instances of a binary 

image mask and a corresponding bounding box. Each binary mask contains a single affordance class, 

where pixels predicted with a value of one contain the affordance class, and the background for the value 

of zero. Therefore, each affordance and object are independently detected. In addition, each detected 

object will also include a segmented object image mask as instances. Since the purpose of this thesis 

research is to improve how grasps are detected for a vision-based prosthesis, grasp affordances will be 

detected instead of the object affordances. The grasp affordances are now defined here as the instances of 

the task-oriented-grasp-type and the task regions for task-suitability on the detected objects, where each 

grasp affordance represents the location an object affords to grasp by a prosthetic hand. 

Currently, there are no available datasets that detect objects and their grasp affordances as instances of 

grasp-types or task-suitable regions. Instead of collecting and manually annotating real RGB images to 

produce a similarly sized dataset like IIT-AFF [8], a new dataset was synthetically generated as part of 

this thesis research. Theoretically, an infinite number of unique multi-object images can be created from a 

small subset of manually annotated single-object images [71]. However, there is an apparent reality gap in 

a model that is strictly trained on synthetic images, where the model’s performance significantly 

decreases when evaluated with real images. Fortunately, models that are trained with a combination of 

synthetic and real data can still outperform models purely trained on real images [71]. Since the primary 

focus is to test the feasibility of adapting instance segmentation models for affordance detection, the 

choice of using real or synthetic data is irrelevant. A model can always be further trained with additional 
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real data to improve performance. The details about how the MOMA dataset was created will be 

discussed in Sec. 3.2 and 3.3.  

3.2 Preparation of Single-Object RGB Images for Synthetic Dataset Generation 

The MOMA dataset has four primary object classes: cups (including mugs), bottles, knives, hammers. As 

outlined below, there are five steps required to prepare the single-object scenes for the synthetic dataset 

generation of the MOMA dataset:  

a) RGB image collection of single-object scenes. 

b) Annotate each object in the RGB images as a binary image mask for background removal and 

as polygons with the x-y coordinates of the object’s external edges. 

c) Annotate the grasp affordances as grasp-type regions by further partitioning the object’s 

polygon annotation. Each grasp-type region is a polygon annotation on an object part. 

d) Additionally annotate the grasp affordances as task regions by combining the polygons of the 

object parts. 

e) Organize the images and annotations of each captured object into standard and irregular object 

sets. The standard object set contains objects with similar features (appearance, shape, 

functions) that are expected in one of the four primary object classes (cups, bottles, knives, 

hammers). Otherwise, the captured object is categorized into the irregular object set. The 

criteria for organizing the captured objects into these object sets are detailed in Sec. 3.2.5. 
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3.2.1 Image Collection of Real Objects in Single-Object RGB Scenes 

Real RGB images of single-object scenes were captured using a Luxonis OAK-D Camera [72, 73] that 

was fixed on a tripod (Fig. 3.5). The OAK-D camera was set to UVC mode, to allow image capture 

through Windows 10’s Camera application. Each image captured had a dimension of 1920 × 1080 pixels, 

or a two-million-megapixel resolution. During image capture, the camera pose was adjusted to change the 

line of sight on an object, thus simulating the changing egocentric viewpoints of an observer. For all 

knives and hammers, three different camera poses were used since the knives and hammers could only be 

placed flat on a surface. Table 3.1 shows the different camera poses used to capture the objects. On the 

other hand, all bottles and cups were captured with the same camera pose since each image can be rotated 

90o to produce an artificial egocentric viewpoint. The added rotation simulates the changing angle of 

elevation or depression when observing an object at different positions (Fig. 3.6). 

 

Figure 3.5: Camera setup to capture real single-object RGB images with the OAK-D Camera. 
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(a) (b) 

 

 

(c) (d) 

 

 

(e) (f) 

Figure 3.6: (a, c, e) original images of the captured bottle, and (b, d, f) the artificial change in the 

egocentric view of the object after a 90o rotation CCW or CW. 

 

Table 3.1: Camera positioning during real image capture of objects. 

 Camera Pose 

Measurements 1 2 3 4 

Objects Captured Bottles, Cups Knives, Hammers Knives, Hammers Knives, Hammers 

Distance from 

camera to the object 

(along the diagonal) 36 cm  30 cm 44 cm 75 cm 

Height of camera  

to table 12 cm 16 cm 30 cm 70 cm 

Camera Tilt (w.r.t to  

the horizontal plane) 0o 32.2o 43.0o 69.0o 
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Each object was placed on a white backdrop, and the objects were illuminated with a table lamp to 

ensure that the object was visibly clear without colour contamination from nearby surfaces and objects, 

especially if the object was transparent, or the object had a shiny surface. The distinctive colour contrast 

between the background and the objects assisted the background removal process during image 

annotation. For each object, an image was captured at every 45o increments as the object rotated about the 

axis orthogonal to the horizontal tabletop (azimuth). If the object could be stably placed in alternate poses 

by flipping the object on its side or bottom, then the same procedure of rotating an object per image 

capture was repeated. If the object was axially symmetric, then the similar or duplicate object poses 

would not be captured by the camera. On average, 12 images for each bottle, 50 images for each cup with 

handles (mugs), 12 images for each cup without handles, 24 images for each knife, and 24 images for 

each hammer were captured. The visible differences when changing the orientation of a mug’s handle are 

considered, therefore each mug had four times more unique poses than the other object classes.  

In total, 1561 images of 65 unique objects were captured, consisting of 29 bottles, 25 cups, 9 knives, 

and 2 hammers. Since there was an evident object-class imbalance between the four types of objects, 

additional knives and hammers were captured using 3D models, as described in Sec. 3.2.2. Fig. 3.7 shows 

the various objects used to collect the images for the real portion of the single-object dataset. As shown in 

Fig. 3.7, the objects captured for the MOMA dataset are organized into standard and irregular object sets. 

The exact categorization and reasoning for the partitioning of the objects are described in Sec. 3.2.5. 

  



 

 46 

 Standard Object Set Irregular Object Set 

Bottles 

  

Cups 

  

Hammers 

  

Knives 

  

Figure 3.7: All real objects captured for the MOMA dataset, by object class and object set. 
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3.2.2 Image Collection of Synthetic 3D Objects in Single-Object RGB Scenes 

The 3D object models of knives and hammers were obtained from Sketchfab, an online open-source 

repository of virtual 3D models. The collected 3D object models were uploaded to a WebGL GLTF 

viewer [74] and placed in a plain white background. A similar image collection method from Sec. 3.2.1 

was used, where each 3D object was rotated in increments of 45o about the axis orthogonal to the 

horizontal plane. Each of the 3D objects were additionally adjusted to three different viewpoints by 

modifying the angle of elevation or depression, to simulate an observer looking up or down at an object 

that is placed on a surface, respectively. A total of 24 images were saved for each 3D object. 

Occasionally, the 3D models were modified in Blender, a 3D modelling software, if the 3D object was not 

exactly aligned flat against the horizontal plane. Some of these unaligned models were left unmodified to 

capture the 3D objects in a unique pose that is unseen in the real single-object images. 

Overall, 1216 images of 46 unique synthetic 3D objects were captured, consisting of 22 hammers and 

24 knives. The images of the synthetic 3D objects were combined with the images of the real objects for a 

combined total of 2777 single-object RGB images. Fig. 3.8 shows the various 3D objects used to collect 

the images for the synthetic portion of the single-object dataset. Similar to the real images captured in 

Sec. 3.2.1, the objects were also partitioned into standard and irregular object sets, as described in Sec. 

3.2.5. 

 Standard Object Set Irregular Object Set 

Hammers 

 

 

Knives 
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Figure 3.8: All synthetic objects captured for the MOMA dataset, by object class and object set. 

3.2.3 Preparation of the Single-Object RGB Images for Object Mask Annotations 

The single-object RGB images collected from Sec. 3.2.1 and Sec. 3.2.2 were first annotated for the object 

masks. Object-mask annotations are necessary for grasp affordance annotations, background removal in 

single-object images, and model evaluation. The real images were manually annotated with Roboflow 

[75], while the synthetic images were semi-automatically annotated by binary thresholding the image and 

manually adjusting the resulting object image masks with LabelMe [76]. Both Roboflow [75] and 

LabelMe [76] are annotation tools for drawing image masks and boxes as a series of x-y coordinates to 

form a polygon mask (Fig. 3.9). 

  
(a) (b) 

Figure 3.9: Example polygon annotation process on a knife in Roboflow [75]. (a) creation of object 

image mask with the Smart Polygon tool, and (b) converted polygon annotation. 

For the real images, binary thresholding cannot be applied since pixel noise is prevalent, despite having 

the objects placed on a white backdrop during image capturing. Unlike the synthetic images, the 

background of the real images is not a solid colour. However, the contrast between the foreground object 
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and background is significant enough to use the Smart Polygon tool in Roboflow, where the edge 

locations of the objects are automatically inferred. As seen in Fig. 3.9a, the green points represent the 

locations on an object, and the red points represent the background. The image mask then gets converted 

into x-y points (Fig. 3.9b). Once the polygon annotation is created for an object, the annotated objects 

were manually modified to ensure that the correct object edge was annotated, in the case of visible 

shadows, low contrasting edges of an object with the background (including transparent objects), or thin 

objects in the image. Each of the polygon annotations was labelled with the corresponding object class. 

Once all of the real images were annotated for objects as polygons, the dataset was converted to a single 

COCO JSON file. The COCO JSON file contains all of the images’ metadata (such as the file location 

and image dimensions), and the corresponding polygon annotations. Since the generation of the synthetic 

dataset requires an individual annotation file for each image, the COCO JSON file was converted to a 

LabelMe JSON file for each corresponding image. The initial annotation was in COCO JSON format 

because Roboflow does not support the exportation of individual annotation files in LabelMe JSON 

format. 

Using the OpenCV Python library [77], the synthetic images were first converted into binary image 

masks from an RGB image (Fig. 3.10b) by using Algorithm 3.1. Before binary thresholding was applied, 

the synthetic images were converted to a grayscale image. The three colour channels of an RGB image 

were compressed into a single colour channel of pixel intensities, where each pixel was represented as a 

single integer value between 0 and 255. The value of a grayscale pixel was obtained by calculating the 

weighted sum across the RGB channels for that pixel. To convert a grayscale image into a binary image 

mask, all pixel values above a certain threshold are set to a value of 0 (black), and 255 (white) otherwise. 

In this case, all pixels containing the object have a value of 255, whereas all background pixels have a 

value of 0. Occasionally, the segmented object may contain holes in the binary image mask, as seen in 

Fig. 3.10b. Therefore, the morphological closing transformation, which is a morphological erosion 

operation followed by a morphological dilation operation, is applied on the binary image mask to ensure 

that the external edge of the segmented object is more visually distinctive. The morphological erosion 

first removes the pixelated noise within the object, while the morphological dilation thickens the edges of 

the segmented object. Morphological dilation is necessary since morphological erosion shrinks the area of 

the segmented object mask. The morphological dilation and erosion operations are the respective 

Minkowski sums (in geometry, it is the sum of the points between two shapes [78]) and differences that 

are iteratively calculated by sliding a smoothing kernel across the entire binary image mask. 
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Algorithm 3.1: Conversion of a single-object RGB image to a binary mask. 

 CONVERT-TO-GRAYSCALE(𝑋) 

  in: an RGB image of 8-bit integer pixel intensities 𝑋 ∈ ℕ𝐻×𝑊×3 with height 𝐻, width 𝑊, and 3 

colour channels, where {𝑋𝑖,𝑗,𝑘 ∈ ℕ|𝑋𝑖,𝑗,𝑘 ≤ 255}. 

  out: a grayscale image of 8-bit integer pixel intensities 𝑌 ∈ ℕ𝐻×𝑊 with height 𝐻, width 𝑊, where 

𝑌𝑖,𝑗 ≤ 255. 

  
1: 𝑌 ∈ ℕ𝐻×𝑊 ← 𝑂 ▷ initialize a 𝐻 × 𝑊 matrix of zeros 

  2: for all 𝑑𝑜𝑚𝑎𝑖𝑛(𝑋, 3) ∈ 𝑋 do ▷ iterate through each RGB pixel 

  3:  𝑌𝑖,𝑗 ←  0.299c0 + 0.587c1 + 0.114c2 ▷ linear combination of RGB channels 

  4: return 𝑌 

 CREATE-BINARY-MASK (𝑌, 𝐾, 𝑡) 

  in: a grayscale image of 8-bit integer pixel intensities 𝑌 ∈ ℕ𝐻×𝑊 with height 𝐻, width 𝑊, where 

𝑌𝑖,𝑗 ≤ 255; smoothing kernel 𝐾, where 𝐾 = 𝐽𝑛, and 𝐽𝑛 is a 𝑛 × 𝑛 square matrix of ones; pixel 

intensity threshold  𝑡, {𝑡 ∈ ℕ|𝑡 ≤ 255} 

  out: binary image mask matrix 𝑀 ∈ ℕ𝐻×𝑊 with height 𝐻 and width 𝑊,  𝑀𝑖,𝑗 ∈ {0,255} 

 
 1: 𝑌 ← 𝑌||〈CONVERT-TO-GRAYSCALE(𝑌)〉  

  2: 𝑀 ← copy 𝑌  

  3: for all 𝑀𝑖,𝑗 ∈ 𝑀 do  

  4:  if 𝑀𝑖,𝑗 ≥ 𝑡 then  

  5:   𝑀𝑖,𝑗 ← 0  

  6:  else  

  7:   𝑀𝑖,𝑗 ← 255  

  8: 𝑀 ← 𝑚𝑜𝑟𝑝ℎ-𝑐𝑙𝑜𝑠𝑒(𝑀, 𝐾) ▷ apply morphological operation, erode 

then dilate image (remove “holes” in 

foreground object) 

 

  9: return 𝑀  
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(a) (b) 

  
(c) (d) 

Figure 3.10: Automatic polygon annotation by binary thresholding for synthetic images: (a) original 

image on white background, (b) object image mask from binary thresholding, (c) conversion of binary 

image mask to polygon points, and (d) final polygon point annotation with reduced number of points. 

Using Algorithm 3.2, the binary image mask is converted to a polygon that encloses the external edges 

of the object. The polygon, a closed line segment, is represented as a list of x-y coordinate pairs. When 

the initial external contour of the object is traced with OpenCV’s [77] find-contours algorithm, the 

resulting polygon had over 1000 points (Fig. 3.10c). In practice, the annotated objects usually require less 

than 50 points to represent the segmented object. Therefore, the object’s polygon was simplified by using 

the Douglas-Peucker algorithm [79], which is provided in the OpenCV [77] library. The Douglas-Peucker 

algorithm [79] iteratively selects two points on a given line segment at opposite ends, and the points in 

between the sliced line segment are removed if they do not meet some tolerance value 𝜖. 𝜖 in this case, 

represents the maximum error that the approximated polygon deviates from a given polygon. By using the 

Douglas-Peucker algorithm [79], the number of points required to annotate the objects in the images were 

consistently less than 50 points (Fig. 3.10d). Fig. 3.10 shows the conversion process of a binary image 
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mask to a polygon of the annotated object. The final polygon annotation of the object was manually 

modified in LabelMe for all objects with a reflective surface, since the white glare on the object’s edge 

blends with the white background of the image (Fig. 3.11). 

 

Figure 3.11: Example of an object with an inaccurate polygon annotation (displayed in LabelMe [76]) 

after using Algorithm 3.2, due to the indistinctive edges from the natural sheen on the knife’s blade. 

Once the real and synthetic images were all annotated for the object polygons and binary image masks, 

the objects were cropped from the background by subtracting the pixels contained in the object binary 

mask. The new background-less images were then converted to RGB-A images, which are RGB images 

with the transparency alpha channel, so that the objects can be overlaid on a random background during 

synthetic image generation. The program used to convert the images from RGB to RGB-A is a 

modification of the open-source repository by Gilbert Tanner [79]. The original program [79] discarded 

the LabelMe JSON files, which meant that binary thresholding would need to be applied again on the 

Algorithm 3.2: Conversion of a binary mask of an object to x-y polygon points.  

 
BINARY-MASK-TO-POINTS(𝑀, 𝑑) 

 

  in: binary image mask matrix 𝑀 ∈ ℕ𝐻×𝑊 with height 𝐻 and width 𝑊,  𝑀𝑖,𝑗 ∈ {0,255}; deviation 

factor 𝑑 for point reduction. 

  out:  optimal contour of the segmented foreground object as a polygon object: a 2D vector of x-y 

coordinate pairs 𝑃∗ ∈ ℝ𝑁×2 with 𝑁 points. 

  
1: 𝐿 ← 𝑓𝑖𝑛𝑑-𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑠(𝑀) ▷ find binary mask edges and compute line segment as x-y 

coordinate pairs 

  2: 𝑃 ← max 𝑆 ▷ save line segment/contour with the most x-y points, 𝑃 is 

the closed line segment of the polygon 

  3: 𝜖 ← 𝑑 ∙ 𝑎𝑟𝑐𝑙𝑒𝑛𝑔𝑡ℎ(𝑃) ▷ maximum deviation of approximated polygon from 

polygon 𝑃 

  4: 𝑃∗ ← 𝑎𝑝𝑝𝑟𝑜𝑥-𝑝𝑜𝑙𝑦𝑔𝑜𝑛(𝑃, 𝜖) ▷ optimal approximation of polygon 𝑃 with the reduced 

number of points 
  5: return 𝑃∗  
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single-object images during data synthesis. As mentioned previously, binary thresholding only works well 

if there is a visible distinction between the background and an object’s edge. Instead, each RGB-A single-

object image retains the corresponding LabelMe JSON annotation file of an object’s class and the object’s 

polygon in x-y coordinates. The top-left corner of the cropped object’s bounding box was also aligned to 

the top-left corner of the new RGB-A image by subtracting each x-y coordinate of the object’s polygon 

with the top-left x-y coordinate of the original object’s bounding box. 

3.2.4 Annotation of Grasp Affordances as Instances of Image Masks 

Given that a polygon object annotation exists for each single-object RGB-A image, the grasp affordances 

were annotated by partitioning the object’s polygon into smaller polygons of a unique object part. Each of 

the object parts were directly classified as a grasp affordance, instead of explicitly classifying each object 

part by its name (e.g., a bottle cap). As mentioned at the end of Sec. 3.1.3, the grasp affordances are 

represented as grasp-type regions and task regions. The grasp types are directly labelled on each object 

part, meaning that a single object part corresponds to a single grasp-type class. However, since the same 

task can be performed on various parts of an object, the task regions are annotated by combining the 

polygons of the object parts. For example, to use a mug, the handle and the body of the mug can be 

grasped. Therefore, the handle and the body of the mug are labelled with the use task. The annotation 

method of combining the polygons from the object parts also accounts for the overlapping regions 

between the different task classes. For example, a mug can be carried and used by grasping the handle; 

therefore, the handle can be labelled with the carry and use task. Note that the carry task is exclusively 

labelled for the regions on an object that provides a safe and stable grasp location to transport with the 

object (e.g., walking with the object). Whereas, the use task includes all other object class-specific tasks, 

such as, to pour, in the case of a mug. 

3.2.4.1 Annotation of Grasp-Type Regions 

Before the object parts were labelled as grasp types, a polygon partitioning tool, that follows Algorithm 

3.3, was developed to divide an input object polygon from a given set of pre-annotated line segments and 

polygons. For each RGB-A image and in their respective object annotation file, the additional line 

segments and polygons were annotated using LabelMe. As shown in Fig. 3.12c, the line segments 

indicate a dividing line in the object’s polygon. By using Algorithm 3.3, the annotation process was 

simplified, since the line segments automatically split the object mask into smaller polygons, to eliminate 

the need to manually annotate a new polygon for each object part. Occasionally, an object part was 
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positioned far from the edges of the object’s polygon and the dividing lines. Therefore, the nested object 

parts were directly annotated as another polygon. In addition, the pre-annotated polygons enabled the 

annotations of a hole within the object’s polygon, where the annotations at the hole should be omitted, 

since the region was part of the image background (Fig. 3.12c). The holes in the object’s polygons were 

reconverted to a binary image mask, and the image pixels within the hole were deleted from the image 

(Fig. 3.12e). Unfortunately, the polygons in LabelMe could only annotate the external edges of a polygon. 

When the polygons were later re-converted to binary image masks, only the background pixels could be 

physically removed from the image. Unless the hole in the object’s polygon coincides with the edges of 

the object or an object part (Figs. 3.12c and 3.12e), then the binary image masks of the object or object 

part would contain the annotations of the hole.  

    
(a) (b) (c) (d) 

 
(e) 

Figure 3.12: Polygon split for the grasp-type annotations from Shapely [81] to LabelMe [76]: (a) original 

image of a cup, (b) cup’s contour and image mask, (c) object mask with the dividing lines, (d) divided 

polygon regions, and (e) the annotated grasp-types on the polygons with the removed hole adjacent to the 

cup’s handle. 
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In Algorithm 3.3, the functions used to manipulate the polygons and the line segments were 

implemented using the Shapely library [81]. The pre-annotated polygons of object parts or holes 𝑃𝑈, were 

first subtracted from the object’s polygon 𝑃𝑂. The line segments of the resulting difference polygon of 𝑃𝑂 

were merged with the pre-annotated line segments 𝐿. The polygonize command in Shapely then 

automatically returned all the divided polygons from the merged line segments 𝐿𝑀. To eliminate the 

artifacts of small polygons from the divided polygons 𝑃𝑀, the area of each divided polygons 𝑃𝑀𝑖
 were 

measured in relation to the difference polygon 𝑃𝑂 by calculating a ratio between 𝑃𝑀𝑖
 and 𝑃𝑂. The polygon 

was only included in the final polygon annotation file if the area ratio between 𝑃𝑀𝑖
 and 𝑃𝑂 was more than 

0.001. As seen in Fig. 3.13, the accepted polygon may contain residual artifacts along the edges. Similar 

to Sec. 3.2.3, the small fragments along the edges of the polygon were filtered with a morphological 

closing transformation, by calculating the Minkowski difference, followed by a Minkowski sum, between 

the polygon and a small circle with a radius of 0.5 pixels. Also similar to Sec. 3.2.3, the contour of the 

polygon was again simplified with the Douglas-Peucker algorithm [79] to reduce the number of x-y 

points required to form the polygon. All of the filtered polygons 𝑃𝑆, were then saved into a new LabelMe 

JSON file without the original object’s polygon. 

 

Figure 3.13: Example scenario where a residual thin rectangle (circled in red) exists after dividing the 

object image mask into smaller polygon regions. 

Finally, for every image, each polygon annotation of an object part was manually relabeled with a 

grasp type that matched the shape and the type of task that can be accomplished with the object part. The 

object parts could be labelled with one of the following grasp types: adducted thumb, cylindrical wrap, 

hook, lateral tripod, light tool, precision disk, and prismatic 4 finger. The illustrations of each of the listed 

grasp types are shown in Table 2.1 in Sec. 2.2. 
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Algorithm 3.3: Division of a polygon annotation of an object by given line segments and polygons.  

 
SPLIT-OBJECT-POLYGON(𝑃𝑂, 𝑃𝑈, 𝐿, 𝑎, 𝑟) 

 

  in: x-y coordinates of the object’s polygon 𝑃𝑂 ∈ ℝ𝑁×2 with 𝑁 points; a set of line segments 𝐿, 

where each line 𝐿𝑖 ∈ ℝ𝑁×2 has 𝑁 x-y coordinates; a set of pre-defined polygons 𝑃𝑈 (𝑃𝑈𝑖
∈ ℝ𝑁×2) 

that can either be a hole in the object’s polygon, or an existing annotation of a polygon; the 

minimum area tolerance value 𝑎, that a polygon is accepted based on the ratio between the 

polygon in question and the object’s polygon; radius 𝑟 of a circle object 𝐶𝑟 for polygon 

simplification. 

  out: A set of divided polygons 𝑃𝑆, where 𝑃𝑆𝑖
∈ ℝ𝑁×2  has 𝑁 points. 

  
1: 𝑃𝑆 ← ∅ ▷ initialize an empty set of polygons (output) 

  2: if 𝑃𝑈  ≠ ∅ then ▷ check if there are existing annotations of holes 

and polygons 

  3:  for all 𝑃𝑈𝑖
∈ 𝑃𝑈 do   

  4:   𝑃𝑂 ← 𝑃𝑂 − 𝑃𝑈𝑖
 ▷ Subtract the area of 𝑃𝑂 and 𝑃𝑈𝑖

, update 𝑃𝑂 (now 

the difference polygon) 

  5:   if 𝑙𝑎𝑏𝑒𝑙(𝑃𝑈𝑖
)  ≠ ℎ𝑜𝑙𝑒 then  

  6:    𝑃𝑆 ← 𝑃𝑆 ∪ {𝑃𝑈𝑖
} ▷ append polygon to 𝑃𝑆 if it is not a hole 

  7: 𝐿𝑀 ← 𝑚𝑒𝑟𝑔𝑒({𝐿𝑂 ∈ 𝑃𝑂} ∪ 𝐿)  ▷ merge all lines with all lines that form the 

object’s polygon 
  8: 𝑃𝑀 ← 𝑝𝑜𝑙𝑦𝑔𝑜𝑛𝑖𝑧𝑒(𝐿𝑀) ▷ convert the merged lines and divide into 

smaller polygons 
  9: for all 𝑃𝑀𝑖

∈ 𝑃𝑀  do ▷ iterate and filter the divided polygons 

  10:  𝑎𝑝 = 𝑎𝑟𝑒𝑎(𝑃𝑀𝑖
) div 𝑎𝑟𝑒𝑎(𝑃𝑂)   ▷ calculate the area ratio between current polygon 

and difference polygon 𝑃𝑂 
   11:  if 𝑎𝑝 ≥ 𝑎 then  

  12:   𝑃𝑀𝑖
← (𝑃𝑀𝑖

⊖ 𝐶𝑟 ) ⊕ 𝐶𝑟  ▷ Minkowski difference and sum on a circle 

object,  𝐶𝑟, with radius 𝑟 (morphological closing)  
  13:   𝑃𝑀𝑖

∗ ← 𝑎𝑝𝑝𝑟𝑜𝑥-𝑝𝑜𝑙𝑦𝑔𝑜𝑛(𝑃𝑀𝑖
, 𝑟) ▷ optimal approximation of polygon 𝑃 with the 

reduced number of points 
  14:   𝑃𝑆 ← 𝑃𝑆 ∪ {𝑃𝑀𝑖

∗ }  

  15: return 𝑃𝑆  
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3.2.4.2 Annotation of the Task Regions for Task Suitability 

With the resulting polygon annotation files from Sec. 3.2.4.1, the task regions were automatically 

annotated using Algorithm 3.4, provided that a set of x-y point annotations and their respective task labels 

were given; the functions from the Shapely library was used in Algorithm 3.4 to manipulate the polygons 

and points. A carry, use, or handover task label was manually assigned to an object part, by annotating an 

x-y point inside the polygon of the object part (Fig. 3.14a). Each object part can be annotated with 

multiple x-y points from different task classes. As mentioned at the beginning of Sec. 3.2.4, the carry task 

is dedicated to the object parts that can be most stably grasped to transport the object, while the use task is 

for other object class-specific tasks. A handover task constitutes all object parts that allow the user to 

safely pass the object to another hand without obstructing the primary location to carry the object (e.g., a 

handle). In effect, the suitable task regions account for user safety and the accessibility of the grasping 

location, unlike the annotations of grasp types, which primarily only considered the object part’s shape. 

For this reason, the original polygon object annotation of all knives was further divided to include the 

bolster (the area where the handle meets the blade) and the cutting edge as a unique knife part, using the 

same method proposed in Sec. 3.2.4.1. The bolster of a knife can be used to handover a knife to leave the 

handle open for grasping, while the cutting edge of a knife is discarded from all task-region annotations 

(no x-y points are labelled at the cutting edge) since it is hazardous to the user. Once the x-y points of the 

task regions were annotated, Algorithm 3.4 was implemented to automatically label the polygon regions 

of the object parts with the corresponding tasks. The labelled polygons were also combined with the 

adjacent polygons that were labelled with the same task (Fig. 3.14b). Therefore, no further annotation or 

relabeling of the object parts was required after using Algorithm 3.4. 
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(a) 

 

(b) 

Figure 3.14: Point annotation process in LabelMe [75] for the task regions: (a) point locations of each 

task, where the placeholder regions are the unlabeled polygon regions, and (b) combined polygon regions 

by task class after using Algorithm 3.4. 

In Algorithm 3.4, the given point annotations in an image are first matched with the locations of the 

polygons of the object parts. If a point lies within the polygon, then the polygon is appended to the set of 

polygons with the matching label. For example, if the annotated point is labelled with the carry task, then 

the selected polygon is also labeled with the carry task. At this stage, the polygons are only included into 

each corresponding set of polygons with their corresponding task labels, unmerged. Once all of the given 

annotated points are matched with the polygons, any polygon that remains without a corresponding 

labeled point annotation will be discarded from the final annotation file. If a point lies on multiple 

polygons, then the polygon with the smallest area will be selected. The polygons in their respective task 

classes are then merged (e.g., all polygons labeled with the carry task are internally combined separately 
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from other polygons with a different task label). All polygons belonging to the same task class that are not 

coincident with each other are left unmerged as a separate entry in the final annotation file. 

Algorithm 3.4: Combining polygons from a set of given points and labels for automated task-region 

annotations. 

 

 
COMBINE-POLYGONS(𝑃𝑆, 𝑄, 𝑙𝑑 , 𝑙𝑒 , 𝑡) 

 

  in: x-y coordinates of a set of unlabeled coinciding polygons 𝑃𝑆, where 𝑃𝑆𝑖
∈ ℝ𝑁×2 has 𝑁 points; a 

set of x-y points 𝑄 with corresponding class labels 𝐿𝑄 ∈ ℕ|𝑄|, where each point 𝑄𝑖 ∈ ℝ2 has a 

corresponding class label 𝑙𝑄𝑖
∈ {0,1,2}; the default class label 𝑙𝑑 ∈ {0,1,2}; the exclusion class 

label 𝑙𝑒 ∈ {0,1,2}, for the labelled polygons omitted 𝑃𝑙𝑒
∈ 𝑃 from the default polygon 𝑃𝑙𝑑

∈ 𝑃 with 

label 𝑙𝑑; tolerance  𝑡 ∈ ℝ for the maximum distance between two adjacent polygons. 

  out: A set of organized, class-based polygons 𝑃 = {𝑃0, 𝑃1, 𝑃2}, where 𝑃𝑙 contains all polygons with 

the corresponding class labels 𝑙 ∈ {0,1,2}, and 𝑃𝑙𝑖
∈ ℝ𝑁×2  has 𝑁 points. 

  
1: 𝑃 ← ∅ ▷ initialize an empty set of polygons (output) 

  2: for all 𝑄𝑖 ∈ 𝑄 do  

    𝐽 ← 𝑖𝑛𝑑𝑖𝑐𝑒𝑠(𝑄𝑖 ∈ 𝑃𝑆) ▷ return the indices where a given point is 

within any of the polygons 𝑃𝑆 
  3:  if |𝐽| = 1 then ▷ check for a single matching index 

  4:   𝑗 ← 𝐽  ▷  𝐽 contains only one index  𝑗 

  5:  else if  |𝐽| > 1 then ▷ check for nested polygons 
  6:   𝑗 ← arg min(𝑎𝑟𝑒𝑎(𝑃𝑆[𝐽]) ▷ index  𝑗 ∈ 𝐽, find the polygon with the 

smallest area 
   7:  𝑃𝑙=𝑙𝑎𝑏𝑒𝑙(𝑃𝑆[𝑗]) ← 𝑃𝑆[𝑗] ▷ save the polygon to one of the subsets of 𝑃 

with the matching label 
  8: if 𝑙𝑑  ≠ NIL then ▷ default polygons (if exists) are all polygons 

minus the excluded polygons 𝑃𝑙𝑒 

  9:  if 𝑙𝑒  ≠ NIL then  
  10:   𝑃𝑙𝑑

← 𝑃 ∖ { 𝑃𝑙𝑒}  

  11:  else  
  12:   𝑃𝑙𝑑

← 𝑃  

  13: for all 𝑃𝑙 ∈ 𝑃 do  

  14:  𝑃𝑙 ← 𝑚𝑒𝑟𝑔𝑒(𝑃𝑙) ▷ initial merge of each subset of polygons for 

each class label 
  15:  if |𝑃𝑙| > 1 then  
  16:   𝑃𝑙 ← 𝑒𝑥𝑝𝑙𝑜𝑑𝑒(𝑃𝑙) ▷ unmerge polygons 
  17:   𝐶 ← {{𝑋, 𝑌}|𝑋, 𝑌 ∈ 𝑃𝑙  ∧ 𝑋 ≠ 𝑌}  ▷ find all pair-wise combinations, without 

repetition, of the smaller polygons of label 𝑙. 
  18:   𝑃𝑙 ← ∅  
  19:   for all 𝐶𝑖 ∈ 𝐶 do  
  20:    if |𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶𝑖1

, 𝐶𝑖2
)| < 𝑡 then ▷ absolute distance between pairwise 

polygons 
  21:     𝑃𝑙 ← 𝑃𝑙  ∪ 𝑚𝑒𝑟𝑔𝑒(𝐶𝑖) ▷ append the merged polygons 
  22: return 𝑃  
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3.2.5 Organization of the Foreground Images and Annotations of Captured Objects into 

Standard and Irregular Object Sets 

The annotated single-object RGB-A images were used as the foreground images to generate the MOMA 

synthetic dataset on random background images. A total of 111 objects produced 2777 foreground 

images, where the corresponding images and annotations of each object were included in either standard 

or irregular object sets. The captured objects were divided into the two object sets, since the grasp-type 

and task regions change when the object’s shape and features deviate from the objects of the same object 

class. Therefore, the categorization of the objects, as standard or irregular objects, was based on the 

overall appearance and functionality of the objects, as shown in Table 3.2. 

Table 3.2: Evaluation criteria to classify and categorize each unique object, by object class and object set, 

respectively. 

 

Object 

Class 

General Definition Additional Criteria for Each Object Set 

Standard Object Set Irregular Object Set 

Bottle Any tall, narrow-necked, 

and lidded container that 

can hold liquids. 

The object is axially 

symmetrical when observed 

from the top. 

The cap of the bottle can be 

a dispensing medium (such 

as a spray bottle), and the 

object does not necessarily 

have to be radially 

symmetrical when viewed 

from the top. 

Cup Any short container that 

generally has a wide-

open top. The object can 

hold liquids and may 

have a handle. 

Like the bottle, the body of the 

object is axially symmetrical 

when observed from the top. 

The body of the object is 

cylindrical with a uniform 

diameter. 

The body of the object does 

not need to have a uniform 

diameter (such as a wine 

glass). 

Hammer Any long tool with a long 

handle and a blunt head, 

for tasks such as driving 

nails. 

The tool head is metal, and 

roughly has the same diameter 

as the handle. 

The tool head can be non-

metal, and its diameter can 

vary from the handle. 

Knife Any sharp tool with a 

handle and a flat blade 

for tasks such as cutting 

and paring. 

The width of the blade and 

handle are relatively constant 

(no blade heel). 

The blade of the object can 

be significantly larger than 

the handle in terms of 

width. The handle of the 

object features a blade 

guard.  
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After using Table 3.2 to categorize the objects into the standard and irregular object sets, there were 76 

objects in the standard object set and 35 objects in the irregular object set. Fig. 3.15 summarizes the 

number of unique foreground images and objects in both standard and irregular object sets. There is a 

class imbalance in the distribution of the objects and foreground, by object class, even when the number 

of objects in each object class are mostly equal, as in the case of the standard object set. As described in 

Sec. 3.2.1, the class imbalance is because a varied number of images of unique poses are captured for 

each object. However, the object class imbalance issue is eliminated during data synthesis, since there is 

an equal probability that an object from each object class is placed on the synthetic images.  

Figure 3.15: Distribution of all objects across all object classes and object sets by: (a) number of objects 

and (b) number of captured foreground images. 
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3.3 Creation of the MOMA Synthetic Dataset 

The MOMA synthetic dataset contained 20K images that are divided into 5 unique datasets for training, 

validation, and testing. Each synthetic image was generated by randomly selecting and placing 

foreground images over a random background image (Fig. 3.16). The foreground images are the 

annotated single-object RGB-A images from Sec. 3.2, where each RGB-A image has a single-object on a 

transparent background. Every single-object RGB-A image has three individual LabelMe JSON 

annotation files of the object, grasp-type regions, and task regions, where each annotation contains the x-y 

coordinates of a polygon and the class label from one of the annotation categories. The code used to 

synthesize the images for the MOMA dataset was based on the implementation of the synthetic dataset 

generator from [80]. 

 

Figure 3.16: Sample synthetic image generated for the MOMA dataset, containing the foreground objects 

of a cup, hammer, and bottle. 

3.3.1 Development of Synthetic Dataset Generation Tool and Procedure for Generating 

Synthetic Images in COCO JSON and YOLO TXT. 

The goal of the synthetic dataset generator is to simultaneously automate image generation and the 

annotation process. The original annotations of each foreground image are transferred to the synthetic 

image, so that every generated synthetic image has the transformed annotations of all foreground images 

across all annotation categories (objects, grasp types, tasks). 

To generate a synthetic image, a random number of foreground images and a random background 

image is selected and resized. The foreground images are scaled-down based on the resulting user-

specified output image dimension of the background image (the statistics of the MOMA dataset is 
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discussed in Sec. 3.3.2). Each foreground image is resized and relocated, by applying the following affine 

transformation function in homogenous coordinates: 

[
𝑥′

𝑦′

1

] = [
𝑠𝑥 0 𝑡𝑥

0 𝑠𝑦 𝑡𝑦

0 0 1

] [
 𝑥′
𝑦
1

] (3.6) 

where 𝑥′ and 𝑦′ are the transformed coordinates of all pixels in the foreground image from the original 

position at 𝑥 and 𝑦, 𝑠𝑥 and 𝑠𝑦 are the scaling factors in the x and y directions, respectively; and 𝑡𝑥 and 𝑡𝑦 

are the translation of the foreground image’s 𝑥 and 𝑦 coordinates, respectively. Essentially, 𝑡𝑥 and 𝑡𝑦 are 

the new top-left coordinates of the transformed foreground image in the composite image since the top-

left position of the foreground image is aligned to (0, 0), prior to the affine transformation in Eq. 3.6. In 

addition, a constant scaling factor is used to resize the foreground image in both 𝑥 and 𝑦 directions to 

maintain the same aspect ratio of the original foreground image. Therefore, Eq. 3.6 can be simplified as: 

[
𝑥′

𝑦′] = 𝑠 [
 𝑥′
𝑦

] + [
𝑡𝑥

𝑡𝑦
] (3.7) 

Using Eq. 3.7, the coordinates of all polygon annotations across all annotation categories are transformed 

in the same manner. The modified annotations of all foreground images are added to a new set of 

annotation files for each synthetic image, with one LabelMe JSON file per annotation category (objects, 

grasp-type regions, task regions). 

Once the images are synthesized, the annotations of the synthetic images need to be converted to a 

COCO JSON or YOLO JSON format before the dataset can be used for model training, validation, and 

testing. By using the LabelMe JSON to COCO JSON formatting tool by LabelMe [76], a single, unique 

annotation file is generated for each annotation category, where three annotation files in COCO format 

are generated for each training, validation, and testing sets. Similar to Sec. 3.2.3, the annotations in 

COCO format contains the metadata of all images in that particular dataset, as well as the x-y coordinates 

of the polygons and bounding boxes with its corresponding class label. For YOLO TXT format, similar to 

LabelMe JSON format, each synthetic image also has a corresponding annotation file; in this case, each 

synthetic image has three annotation files in YOLO TXT format, one for each annotation category. Each 

polygon annotation is converted to a one-line entry in the text file: [𝑐, 𝑥1, 𝑦̂1, … , 𝑥𝑛, 𝑦̂𝑛], where 𝑐 is the 

class label as an integer value (e.g., the value 2 to represent the object class hammer), and each (𝑥, 𝑦̂) 

coordinate pair represents the normalized coordinates of each corresponding coordinates of the original 
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polygon coordinates. To normalize each x-y coordinate pair from a polygon annotation, the following 

equations were used: 

                                          𝐱̂ =
𝐱

𝑤
,  𝒚̂ =

𝐲

ℎ
                       0 ≤ 𝐱̂, 𝒚̂ ≤ 1 (3.8) 

where all x coordinates are divided by the image width 𝑤, and all y coordinates were divided by the 

image height ℎ; 𝐱̂ and 𝒚̂ are the resulting normalized coordinates for all x-y coordinates of the polygon 

annotation. Each of the normalized x-y coordinates can have a value between 0 and 1. Unlike COCO 

JSON, annotations in YOLO TXT format do not contain the metadata of the corresponding image, nor do 

they contain the bounding boxes of the transformed polygon annotation. However, a bounding box can be 

automatically created by finding the minimum and maximum values of the normalized x-y coordinates. 

3.3.2 MOMA Synthetic Dataset Summary 

Before the MOMA synthetic dataset is generated using the method developed in Sec. 3.3.1, the 

foreground and background images are first distributed to each of the training, validation, and test 

datasets. The images of the MOMA synthetic dataset are then generated accordingly to the specified 

output image dimensions, foreground image scaling, and the number of foreground objects in Table 3.3; 

the number of foreground images, unique objects, and background images in each dataset are also 

summarized in Table 3.4. Overall, the MOMA dataset has one training set (10K images), two validation 

sets (2.5K images each), and two test sets (2.5K images each). The order of the datasets in Table 3.4 

represents the decreasing familiarity of the objects that a trained model is exposed to. The training, 

validation, and standard test datasets (Test S) all used objects from the standard object set, while the 

irregular object set was only used by the irregular test set (Test I). Therefore, the irregular object set was 

only used to evaluate a model’s performance on unconventional and unseen objects. The MOMA dataset 

was generated on 200 background images that were sourced from Unsplash and Pexels, which are open-

source image repositories. From Fig. 3.17, the background images were a collection of real RGB images 

from a kitchen, dining room, office, bathroom, landscape, plain texture, and random objects. 
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Table 3.3: Specifications used to generate each dataset in the MOMA synthetic dataset. All validation 

and test sets were generated in the same manner. 

Specification Specification Group 

1 2 3 4 

Number of objects 5-10 5-10 2-5 1-3 

Object Scale (w.r.t. the image  

dimensions of the foreground image) 

0.5-1 0.25-1 0.25-0.5 0.2-0.3 

Output image dimension 1920 × 1080 1920 × 960 960 × 540 480 × 540,  

540 × 480 

Number of images generated  

according to each specification for 

each dataset 

    

Train Set 2500 2500 2500 2500 

Validation/Test Set 1250 - 625 625 
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Table 3.4: Training, validation, and test split of the single-object RGB-A foreground images, and 

distribution of unique background images in each dataset. 

Dataset 

Type and 

Name 

Dataset Description Number of 

Unique Objects 

per Object Class 

Number of Unique 

Foreground Images 

per Object Class 

Number of 

Unique 

Background 

Images 

Train 

(Train-S) 

Objects and foreground 

images from the standard 

set. Represents everyday 

common objects in 

common scenes. 

14 bottles, 14 

cups, 13 

hammers, 14 

knives. 

152 bottles, 320 

cups, 278 hammers, 

277 knives. 

100 

Validation 1 

(Val-S1) 

Same objects and 

foreground images as the 

training set. New 

background images that 

differ from the training 

set. Represents everyday 

common objects in 

unfamiliar scenes. 

Same objects as 

the training set. 

Same foreground 

images as the 

training set. 

50 

Validation 2 

(Val-S2) 

Unique poses of the same 

objects (unique poses of 

the everyday objects) 

used in the training set. 

Same background images 

as Validation 1. 

Same objects as 

the training set. 

45 bottles, 113 cups, 

84 hammers, 100 

knives. 

Same 

background 

images as 

Validation 1. 

Test S 

(Test-S) 

Unique objects from the 

standard set that are not 

used in the training and 

validation sets. New 

background images that 

differ from the training 

and validation sets. 

Represents objects 

similar, yet different, to 

everyday objects in new 

scenes. 

4 bottles, 8 cups, 

5 hammers, 4 

knives. 

51 bottles, 254 cups, 

101 hammers, 106 

knives. 

50 

Test I 

(Test-I) 

All objects from the 

irregular set. Same 

background images as 

Test S. Represents unseen 

and uncommon objects in 

unfamiliar scenes. 

11 bottles, 3 cups, 

6 hammers, 15 

knives. 

233 bottles, 103 

cups, 153 hammers, 

407 knives. 

Same 

background 

images as 

Test S. 
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a) Kitchen b) Dining c) Office d) Bathroom 

 

  
 

e) Natural landscapes f) Plain/Textured g) Random Objects 

Figure 3.17: Sample background images of used to generate the MOMA synthetic dataset. 

The annotations of the completed MOMA synthetic dataset had over 70K instances of objects, 190K 

instances of the grasp-type regions, and 214K instances of the task regions across the five training, 

validation and test sets. While Fig. 3.18 shows that there is a class balance of the number of the objects 

and the task regions, the distribution of grasp-types are imbalanced. Some grasp types are more common 

than others, and a grasp type can have more than one instance on an object. 
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(a) 

 
(b) 

 
(c) 

Figure 3.18: Instance distribution of the number of (a) objects, (b) grasp types, and (c) task regions in the 

MOMA synthetic dataset.  

0

2

4

6

8

10

12

Train Val 1 Val 2 Test S Test I

N
u

m
b

e
r 

o
f 

In
st

an
ce

s 
(×

1
0

3
)

Dataset Type

Bottle

Cup

Hammer

Knife

0

5

10

15

20

25

30

35

Train Val 1 Val 2 Test S Test I

N
u

m
b

e
r 

o
f 

In
st

an
ce

s 
(×

1
0

3 )

Dataset Type

Adducted Thumb

Cylindrical

Hook

Lateral Tripod

Light Tool

Precision Disk

Prismatic 4 Finger

0

5

10

15

20

25

30

35

40

Train Val 1 Val 2 Test S Test I

N
u

m
b

e
r 

o
f 

In
st

an
ce

s 
(×

1
0

3 )

Dataset Type

Carry

Handover

Use



 

 69 

3.4 Object and Affordance Detection Model Architectures 

The Mask R-CNN [33], YOLACT [82], and YOLOv5s-Seg [83] instance segmentation models were 

selected to be trained and evaluated on the MOMA synthetic dataset. All models were trained and 

evaluated using the PyTorch library [68]. YOLACT [82] and YOLOv5s-Seg [83] models were developed 

for real-time performance, while Mask R-CNN [33] prioritized overall model accuracy. Since the focus of 

this thesis research was to develop a Multi-Affordance Detection Network (MAD-Net) that emphasizes 

model accuracy, the Mask R-CNN [33] network was selected as the base model. The three-prediction 

head variant of the Multi-Head Mask R-CNN [33] model described in Sec. 3.4.4 was the selected model 

for MAD-Net. MAD-Net was therefore a joint detection network capable of simultaneously detecting the 

instances of objects and their grasp affordances (as grasp types, and task regions).  

By using transfer learning, all the models analyzed in this section were already pre-trained on the 

COCO 2017 instance segmentation dataset [65]. All models tested in this section were suitable for objects 

in cluttered scenes, and simultaneously detected object classes, bounding boxes, and binary image masks 

for each detection category (objects, grasp types, and task regions). 

In the proceeding sections, when the object was mentioned in the context of object classification, the 

object can refer to the physical objects in an image (such as a cup), or the object parts that a grasp 

affordance is associated with. Otherwise, the type of object is dependent on the specific type of detection 

mentioned (physical objects, grasp types, and tasks). 

3.4.1 Mask R-CNN 

Mask R-CNN [33] (Fig. 3.20) is the Faster R-CNN [56] object detection model with an additional image 

mask prediction module. In contrast to Faster R-CNN, Mask R-CNN replaces the ROI Pool module with 

the ROI Align module. ROI Align and ROI Pool both pool the values in a feature map enclosed by the 

ROIs (the localized bounding boxes) predicted in the RPN. However, ROI Align is also location 

dependent since the coordinates of the ROI are bilinearly interpolated with the enclosed feature map 

values [33]. ROIAlign in instance segmentation was necessary since the boundaries of the ROI may not 

align with the grid of the feature maps. The accuracy of binary image mask prediction was dependent on 

how precise the ROI captured a potential object [33]. 

Initially, the input images were resized and normalized using the provided Transform module in the 

Mask R-CNN [33] model. The ground truth annotations (bounding boxes and corresponding binary image 
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masks) were also resized in the same manner as the input images, but not normalized. Using the same 

image normalization method in Sec. 3.1.2, the input images were normalized with the mean and standard 

deviation values from the ImageNet dataset [67]. Due to the GPU memory constraints, the input images 

were resized to maintain a minimum and maximum of 800 and 1344 pixels, respectively (the largest 

image in the MOMA dataset is 1920 × 1080 pixels). The lengths and widths of the input images must be 

divisible by 32 pixels for the Mask R-CNN [33] model to run. Although the images were resized, the 

original aspect ratios of the images were maintained. Unlike the YOLOv5s-Seg [83] and YOLACT [82] 

models, however, the input images for the Mask R-CNN [33] network can have varying image 

dimensions and aspect ratios. For example, one image (after resizing) can have the dimensions of 

1344 × 768 pixels (approximately 16:9), while another image in the same batch can be 960 × 960 pixels 

(1:1). 

Once the input images are normalized and resized, the input images are fed into the ResNet-50-FPN 

backbone (Fig. 3.21) for feature extraction. From 𝐶2 to 𝐶5 in ResNet-50 [66], the outputs of each 

succeeding convolutional blocks are concatenated, by summation, with a convolutional block in the 

Feature Pyramid Network (FPN) [84] of the same feature map dimensions. For example, the output of 𝐶2 

from the ResNet-50 network is connected to 𝑃2 in the FPN since they both have a feature map resolution 

of 192 × 336 pixels. Before the layers of the ResNet-50 are concatenated with the FPN, an extra 

convolutional layer with batch normalization and reLU activation (𝑇𝑁) downsizes the output channels of 

the ResNet-50 feature maps to 256 units. In addition, each succeeding FPN layer (𝑃𝑁) upsamples (using 

nearest neighbours) the resolution of the previous FPN outputs (𝑃𝑁−1) by a factor of 2. In total, five 

feature maps are produced with five unique resolutions: four from the FPN, and one from 𝑃6, which is the 

extra max pooling layer after 𝐶5 in the ResNet-50 network. The final feature maps from the FPN (from 𝑃2 

to 𝑃5) are also refined with a 3 × 3 kernel convolutional layer (𝑆𝑁) before they are collectively fed into 

the RPN for ROI generation. 

The feature maps produced from the ResNet-50 FPN backbone correspond to the scaled-down 

representations of the resized (and normalized) input image (Table 3.5). Before the bounding boxes can 

be located on the input image, the RPN initially generates the anchor boxes that are placed on the resized 

input image based on the corresponding locations on the feature maps (Fig. 3.19). The anchor boxes are 

the initial bounding boxes placed on the input image before they are optimized to precisely enclose the 

detected object. The scaling factor between the dimensions of the resized input image and the feature map 
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determines the stride, or the frequency of the placement of the anchor boxes on the resized input image. 

For example, in Fig. 3.19, since the scaling factor is 4 for a feature map produced at 𝑃2, a set of anchors 

boxes are placed at regular intervals of 4 pixels in the x and y directions on the resized input image. Since 

all locations on a feature map correspond to the anchor box placement in the resized input image, each 

feature map produces 𝑊 ×  𝐻 ×  3 anchor boxes, where 𝑊 and 𝐻 are the height and width of the feature 

map, respectively. For each set of anchor boxes, three aspect ratios are used (1:1, 1:2, 2:1). Therefore, 

three anchor boxes are placed in the respective locations on the resized input image, as determined by the 

locations in the feature maps. As seen in Table 3.5, a unique anchor size is also used for each feature map. 

Table 3.5: Mask R-CNN [33] anchor specifications for each feature map produced at the FPN and 

ResNet-50 models. The stride values are rounded up to the nearest pixel. 

Feature Map Level 

(𝑷𝑵) 

Feature Map 

Dimensions  

(𝑾 ×  𝑯) 

Stride (𝒙 × 𝒚) Anchor Size 
Anchor Aspect 

Ratios 

𝑃2 336 × 192 4 × 4  32 1:1, 1:2, 2:1 

𝑃3 168 × 96 8 × 8 64 

𝑃4 84 × 48 16 × 16 128 

𝑃5 42 × 24 32 × 32 256 

𝑃6 21 × 12 64 × 64 512 
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Figure 3.19: Anchor generation example for an input image (after resized in Mask R-CNN) and a feature 

map from 𝑃2 of Mask R-CNN [33]. 

After anchor generation, the ROIs, as bounding boxes, are predicted through another CNN in the RPN. 

At this stage in the Mask R-CNN network, the detections of the objects are only based on the likelihood 

of the existence of an object (the objectness); therefore, each of the predicted bounding boxes do not have 

an assigned object class. In the CNN of the RPN, one convolutional layer is added for every feature map 

(𝑅𝑁), before the succeeding layers in the RPN predict the objectness and the change in coordinates to 

align the anchor boxes to a supposed ROI. Both class logits for the objectness and the bounding box 

predictions (the ROIs) are determined with one final convolutional layer each, with 𝑅𝐶 and 𝑅𝐵, 

respectively. The output channel of 𝑅𝐶 is 3, since an objectness value is predicted for each of the anchor 

box aspect ratios. The output channel of 𝑅𝐵 is 4, since each bounding box is a 4-D vector of the predicted 

bounding box locations, [𝑥1, 𝑦1, 𝑥2, 𝑦2]. The final ROIs are filtered with Non-maximum Suppression 

(NMS), to reduce the total number of ROIs to 2000 during training, and 1000 during testing. The 

threshold value used for NMS was 0.7, which is the mIOU value between the ROI in question and all 

other ROIs predicted from the same feature map. Each of the predicted ROIs is determined from one of 

the five feature maps. Therefore, each of the ROIs were filtered independently based on the scale of the 

feature map with respect to the resized input image. In addition, the different scaling of each feature map 
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enables the RPN to detect objects of different sizes. The larger the feature map is, the higher the 

likelihood of detecting smaller objects, since the resolution of the feature map becomes finer. By using 

ROIAlign, each ROI was then used to extract a single 7 × 7 feature map and aligned with the 

corresponding location in the resized input image. 

The object’s bounding boxes, class, and binary image masks were predicted in three parallel networks. 

The object class and bounding box network branches (box head) first flatten the 7 × 7 feature maps into a 

1D vector with two linear dense layers of 1024 units. These linear layers were activated with reLU. The 

object class was then predicted in a linear classification layer that reduces the 1024 linear units to a single 

logit for each object class. On the other hand, the bounding boxes were determined similarly as the object 

classes, except the 1024 linear units were passed in a linear regression layer to be reduced to a 1D vector. 

The 1D vector contains the two coordinate pairs that make up the bounding box, [𝑥1, 𝑦1, 𝑥2, 𝑦2]. 

The binary image masks were predicted in the mask head that first upsamples the 7 × 7 feature maps to 

14 × 14 feature maps. Eight convolutional layers proceed, while maintaining the feature map sizes and 

the number of channels (256). To obtain the binary image masks, a transpose convolutional layer (an 

upsampling layer with trainable weights) doubles the size of the 14 × 14 feature maps to 28 × 28. A final 

convolutional layer then downsizes the number of channels to match the total number of object classes 

before all feature maps, which become the binary image masks, are bilinearly upsampled to the original 

input image dimensions. NMS was performed again with a 0.7 threshold to reduce the number of detected 

instances (object class, bounding box, and binary image mask) to the top 100 best-scoring detections. 
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Figure 3.20: Architecture of the Mask R-CNN [33] model. All image dimensions (in red) are listed in the 

following order: number of proposals or instances (if applicable), width, height, and number of channels. 

The image dimensions vary depending on the dimensions of the input image. 
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Figure 3.21: Architecture of the ResNet-50 FPN Network. All image dimensions (in red) are listed in the 

following order: width, height, and number of channels. The image dimensions vary depending on the 

dimensions of the input image. The blue × 2 blocks indicate an upsampling layer, doubling the previous 

feature map size. 

3.4.2 YOLACT 

The YOLACT model (Fig. 3.22), accepts input images of all sizes. However, the received images are all 

resized to 550 × 550 pixels. The input images are also normalized with the mean and standard deviation 

values from the ImageNet dataset [67]. Like Mask R-CNN [33], YOLACT uses a ResNet-50 backbone 

with a similar FPN structure for multi-scale feature map predictions. However, the model network 

connections between ResNet-50 and FPN are modified, and each convolutional layer outside of the 

ResNet-50 model does not use batch normalization. As seen in Fig. 3.23, the skip connections begin 

between the 𝐶3 and 𝑃3 layers, instead of the 𝐶2 and 𝑃2 layers as in Mask R-CNN. The connections 
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between each FPN layer in Mask R-CNN [33] flows in one direction, with each succeeding layer 

downsampling the previous layer as seen from 𝑃2 to 𝑃5. However, in YOLACT [82], the 𝑃5 layer in the 

FPN branches into an upsampling layer and a downsampling layer. From 𝑃5 to 𝑃7, the FPN layers are 

downsampled with a convolutional layer, whereas the FPN layers are upsampled from 𝑃5 to 𝑃3. All the 

feature maps generated for bounding box, binary image mask, and object class predictions are only from 

the outputs from the FPN. Each of the upsampling layers in YOLACT [82] uses bilinear interpolation, 

instead of nearest neighbours sampling like in Mask R-CNN [33]. 

A smoothing convolutional layer (𝑆𝑁) was similarly applied to the feature maps from the FPN, before 

being fed into the prediction head and mask prototyping network (Protonet) [82]. Unlike Mask R-CNN 

[33], YOLACT [82] eliminates the need for a RPN and ROIAlign module; however, the same anchor 

generation method was adapted from Mask R-CNN [33], where three aspect ratios (1:1, 1:2, 2:1), and a 

single anchor size was used for each of the five feature maps [82]. Table 3.6 shows the expected feature 

map dimensions, stride on the resized input image and the anchor sizes, similar to Table 3.5 for Mask R-

CNN [33]. 

Table 3.6: YOLACT [82] anchor specifications for each feature map produced at the FPN and ResNet-50 

models. The stride values are rounded up to the nearest pixel. 

Feature Map Level 

(𝑷𝑵) 

Feature Map 

Dimensions  

(𝑾 ×  𝑯) 

Stride (𝒙 × 𝒚) Anchor Size 
Anchor Aspect 

Ratios 

𝑃3 69 × 69 8 × 8  24 1:1, 1:2, 2:1 

𝑃4 35 × 35 16 × 16 48 

𝑃5 18 × 18 32 × 32 96 

𝑃6 9 × 9 64 × 64 192 

𝑃7 5 × 5 128 × 128 384 
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In YOLACT [82], only 𝑃3 (with the largest feature map) was used to generate mask prototypes for 

image mask predictions [82]. The optimal number of mask prototypes to balance both speed and accuracy 

was 32, as stated in [82]. The Protonet has a similar architecture to the mask prediction head in Mask R-

CNN [33], except only three convolutional layers are used before the feature map is upsampled with 

bilinear interpolation to double its size. Two convolutional layers proceed, before the feature map channel 

dimension is reduced to 32 for the total number of prototype image masks. The generated image mask 

prototypes do not have an associated object class at this stage, as it only shows the objectness value for 

each pixel in the resized image. Unlike Mask R-CNN [33], YOLACT [82] predicts the image masks on 

the entire image, instead of on each object from a given ROI. 

The prediction head independently determines the predictions for each level in the FPN. For each 

feature map from the FPN, two convolutional layers with 256 output channels were applied, before the 

object classes, bounding boxes, and the mask coefficients were predicted in the corresponding 𝐻𝐶, 𝐻𝐵, 

and 𝐻𝑀 submodules of 𝐻𝑁. The mask coefficients are the weights that instruct the model on how the 

prototype masks should be assembled to produce an image mask. Each weight value can be any real 

number that is assigned to each mask prototype. Through a linear combination of the weighted mask 

prototypes, the binary image masks for each corresponding object class are assembled [82]. Before the 

assembly of the binary image masks, the maximum number of instances is reduced to 200, by using NMS 

with a threshold of 0.5. The final binary image masks are cropped from the image, and then filtered with 

binary thresholding to remove the background noise. 
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Figure 3.22: Architecture of the YOLACT model adapted from [82]. All image dimensions (in red) are 

listed in the following order: number of proposals or instances (if applicable), width, height, and number 

of channels. The blue × 2 blocks indicate an upsampling layer, doubling the previous feature map size. 
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Figure 3.23: Modified architecture of the ResNet-50 FPN Network for YOLACT, adapted from [82]. All 

image dimensions (in red) are listed in the following order: width, height, and number of channels. The 

blue × 2 blocks indicate an upsampling layer, doubling the previous feature map size. 
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3.4.3 YOLOv5s-Seg 

The YOLOv5s-Seg [83] model (Fig. 3.24) is an extended version of the YOLOv5 object detection model 

with the mask coefficient and mask assembly prediction head adapted from YOLACT [82]. All initial 

input images in YOLOv5s-Seg were resized to 640 × 640 pixels. The backbone of YOLOv5s-Seg used 

the CSP-Darknet53 architecture instead of the ResNet-50 FPN network, as seen in Mask R-CNN and 

YOLACT. Each of the 𝐶3 blocks functions like the ResNet-50 convolutional blocks (𝐶𝑁) for feature 

extraction in the backbone network. In addition, the 𝐶3 blocks assist the transition to a higher resolution 

feature map during upsampling, which functions similarly to an FPN structure. Unlike the ResNet-50 

FPN based models, YOLOv5s-Seg replaced all ReLU activation functions with Sigmoid Linear Units 

(SiLU). 

As seen in Fig. 3.25, the 𝐶3 blocks followed the architecture of a Cross Stage Partial Network 

(CSPNet) [85]. The base layer before each 𝐶3 block splitted the incoming inputs into two parallel 

networks: one subnetwork with a single convolutional layer with batch normalization, and another that 

followed the architecture of the convolutional blocks in the DarkNet53 model. The first subnetwork was 

composed of a convolutional layer with batch normalization, and a bottleneck module. The two parallel 

subnetworks were then concatenated along the channel dimension. 

The YOLOv5s-Seg model had two similar modules that function like an FPN in ResNet-50 FPN. The 

first module was the Spatial Pyramid Pooling Fusion (SPPF) block (Fig. 3.25) that immediately followed 

the backbone network. Unlike the FPN in ResNet-50 FPN, the SPPF block only received one input from 

the last layer of the backbone network. The input feature mapped to the SPPF block passed through three 

max pooling layers, which gradually reduced the resolution of a feature map without reducing the size of 

the feature map. The feature maps produced by the max pooling layers maintained the size of the feature 

maps at 20 × 20 pixels; however, the details of the new feature maps gradually got coarser to represent 

the lower-level features from a given RGB image. The outputs from each of the max pooling layers were 

then concatenated along the channel dimension. The concatenated feature maps went through a final 

convolutional layer with batch normalization to return the output channel dimension to 1024. The second 

FPN-like structure occurred at the neck of the YOLOv5s-Seg model that followed after the SPPF module. 

The feature map from the SPPF module was upsampled two times, doubling the size of the feature map 

each time. Similar to ResNet-50 FPN, a skip connection from the backbone network concatenated the 

outputs of the 𝐶3 blocks to the similarly sized upsampling layers (with the same number of channels and 
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feature map size) in the neck. The layers connected in the skip connections were concatenated by 

summation. In YOLOv5s-Seg [83], only three unique scales of the feature maps (20 × 20, 40 × 40, 80 ×

80) were used to make bounding box and object class predictions. 

During bounding box predictions (the prediction head module in Fig. 3.26), the anchors were generated 

by using the same method proposed in Mask R-CNN [33] and YOLACT [82]. However, three aspect 

ratios and three unique anchor sizes (instead of one anchor size) were chosen for each feature map, as 

shown in Table 3.7. Similar to YOLACT [82], the bounding boxes were predicted independently on each 

of the three feature maps at the three unique scales, except that the convolutional layers were replaced 

with 𝐶3 blocks; for each feature map, there was a corresponding prediction head for the object class, 

bounding boxes, and mask coefficients. The final prediction layer was a single convolutional layer 

without any activation functions. 

Table 3.7: YOLOV5s-Seg [83] anchor specifications for each feature map produced before the prediction 

head. The stride values were rounded up to the nearest pixel, and the anchor sizes were automatically 

adjusted based on the collective dimensions of the input images in the MOMA dataset. 

Feature Map 

Level 

Feature Map 

Dimensions  

(𝑾 ×  𝑯) 

Stride (𝒙 × 𝒚) 
Anchor Sizes 

(𝑾 ×  𝑯) 

1 80 × 80 8 × 8  10 × 13, 16 × 30, 33 × 23 

2 40 × 40 16 × 16 30 × 61, 62 × 45, 59 × 119 

3 20 × 20 32 × 32 116 × 90, 156 × 198, 373 × 326 

 

During image mask prediction (mask prototyping network in Fig. 3.26), 32 initial mask prototypes 

were generated by using the feature map with the largest size (80 × 80) with a similar architecture as 

ProtoNet in YOLACT [82]. The mask prototyping network was comprised of 5 convolutional layers, 

where the feature map was upsampled to 160 × 160 in between the second and third convolutional 

layers. The maximum number of instances detected was reduced to 300 with NMS, before the binary 

image masks were assembled by using the weights of the mask coefficients. 
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Figure 3.24: Architecture of the YOLOv5s-Seg model adapted from [83]. All image dimensions (in red) 

are listed in the following order: width, height, and number of channels. The blue × 2 blocks indicate an 

upsampling layer, doubling the previous feature map size, while the Concat blocks concatenate the 

feature maps along the channel dimension. 
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Figure 3.25: Basic building blocks of the YOLOv5s-Seg model, adapted from [83]. 
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Figure 3.26: Network architecture of the mask prototyping network and prediction head of the 

YOLOv5s-Seg model [83]. 

3.4.4 Multi-Head Mask R-CNN for MAD-Net 

The Multi-head Mask R-CNN model (Fig. 3.27) was a modification of Mask R-CNN with N prediction 

heads, where 𝑁 is the number of detection categories. Since the Multi-Head Mask R-CNN model was 

used for the detections of objects, grasp types, and task regions, three prediction heads were used (𝑁 =

3). The purpose of developing a joint object-and-affordance detection network was to demonstrate the 

feasibility that the detected object instances can positively impact the accuracy in predicting the grasp 

affordances, as grasp-type and task affordances. The Mask R-CNN model was expected to perform well 

in detecting instances of objects since it was already pre-trained on the COCO 2017 dataset [65]. 

Therefore, by using transfer learning, minimal learning was required to detect the instances of the grasp 

affordances. 

As seen in Fig. 3.27, the ResNet-50 FPN and RPN modules remain unmodified since the object and 

grasp-affordance classes were not defined at this stage. After the ROIs were reduced from NMS, each of 

the three prediction heads (𝐻𝑂, 𝐻𝐺𝑇 , 𝐻𝑇𝑅) received a copy of the ROIs. Fig. 3.28 shows the network 

architecture of the prediction head. As a result, the object and their grasp affordances could be inferenced 

separately if required. Each of the prediction heads predicted the bounding boxes, object or grasp 

affordance class, and the binary image masks using the same mask and box head in Mask R-CNN. During 
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training, the loss values across all prediction heads were independently computed, but jointly optimized 

by summing all losses. In addition, the corresponding annotation categories were also matched with the 

correct detection category of the prediction head (e.g., grasp-type annotations were compared with the 

grasp-type predictions).

 

Figure 3.27: Architecture of the MAD-Net model. All image dimensions (in red) are listed in the 

following order: number of proposals or instances (if applicable), width, height, and number of channels. 
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Figure 3.28: Prediction Head for the detection of object classes, bounding boxes, and binary image masks 

in MAD-Net. 
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3.5 Experimental Procedure for Training and Evaluating on the MOMA Synthetic 

Dataset 

The deep-learning models described in Sec. 3.4 were all trained using the Nvidia GeForce RTX 3060 

graphics card, which has 12 GB of available memory. All models were initially trained for 10 epochs. If 

the training and validation losses did not converge by the end of training, the training was resumed in 

intervals of 5 epochs. During training, all models were optimized with an SGD optimizer that has a 

learning rate of 1 × 10−3 and momentum of 0.9.  

Before the RGB images and the ground truth annotations were fed into the models for training, the 

images were additionally augmented with a function that randomly rotates the image 90 degrees 

clockwise, counterclockwise, or remaining the same. The probability of the images rotating by 90 degrees 

was set to 0.5 (0.25 each for both clockwise and counterclockwise directions). The rotation of the images 

simulated the artificially changing egocentric viewpoint on the objects as discussed in Sec. 3.2.1. In 

addition, the extra rotation transformation diversified the small collection of unique background images 

used in the MOMA synthetic dataset. For Mask R-CNN, YOLACT, and Multi-Head Mask R-CNN 

(MAD-Net), the annotations were in the COCO JSON format, while YOLOv5s-Seg had the annotations 

in YOLO TXT format.  

During training, Mask R-CNN and MAD-Net used a batch size of 2 images, while YOLACT and 

YOLOV5s-Seg used a batch size of 8 images. For Mask R-CNN, YOLACT, and YOLOV5s-Seg, the 

training, validation, and evaluation process was repeated three times for each detection category (objects, 

grasp types, and task regions). On the other hand, MAD-Net was trained and evaluated in a single session 

with all detection categories. During evaluation, all test images were inferenced first before the evaluation 

metrics described in Sec. 3.5.2 were used to evaluate model performance. 

For all models, the data used to train, validate, and test were sourced from the MOMA dataset. During 

training, the Train-S set was used, and during validation, the Val-S1 set was used. Only the loss functions 

specified in Sec. 3.5.1 were used to evaluate model performance during training and validation. For 

evaluation, all validation and test sets (Val-S1, Val-S2, Test-S, Test-I) were evaluated separately with the 

evaluation metric specified in Sec. 3.5.2. 
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3.5.1 Training Loss Criterion for Object and Grasp-Affordance Detection with Instance 

Segmentation 

During training and validation, the computed losses were obtained for every batch of 𝑁 images that got 

passed into the inputs of the instance segmentation models. The total sum of all losses from all image 

batches was the resulting loss value for one epoch. 

The objective function for Mask R-CNN is given below in Eq. 3.9 [68],  

𝐿𝑇 = 𝐿𝑐𝑙𝑎𝑠𝑠 + 𝐿𝑏𝑜𝑥 + 𝐿𝑚𝑎𝑠𝑘 + 𝐿𝑟𝑝𝑛 (3.9) 

where 𝐿𝑐𝑙𝑎𝑠𝑠 is the object class loss, 𝐿𝑏𝑜𝑥 is the box loss, 𝐿𝑚𝑎𝑠𝑘 is the mask loss, and 𝐿𝑟𝑝𝑛 is the total loss 

from the RPN during training and validation. 𝐿𝑐𝑙𝑎𝑠𝑠 is the cross-entropy loss computed with Eq. 3.3 from 

Sec. 3.1.2, by comparing the predicted and ground truth object classes. The predicted classes in Mask R-

CNN were a 1D vector of logits, containing the probabilities for each object class. 𝐿𝑏𝑜𝑥 and 𝐿𝑚𝑎𝑠𝑘 were 

computed in the box and mask heads, respectively. Using Eq. 3.10, 𝐿𝑏𝑜𝑥 was calculated with the smooth 

L1 loss function [68] since the prediction of bounding boxes is a regression problem. The bounding boxes 

in Mask R-CNN was a 𝐵 × 4, 2D vector with 𝐵 boxes, where each box was in the form: 

[𝑥1𝑏, 𝑦1𝑏
, 𝑥2𝑏

, 𝑦2𝑏
]. 𝑏 was used to represent the selected 1D box coordinates, since 𝑛 was already used in 

Eq. 3.10 [68] to describe the 𝑛𝑡ℎ image in a batch of 𝑁 images. 

𝐋𝑏𝑜𝑥𝑛
= 𝐋𝑆𝐿1𝑛

= {
0.5(𝐱𝑛 − 𝐲𝑛)2/𝛽, |𝐱𝑛 − 𝐲𝑛| < 𝛽
|𝐱𝑛 − 𝐲𝑛| − 0.5𝛽, 𝑒𝑙𝑠𝑒

 
(3.10) 

𝐿𝑏𝑜𝑥 = 𝐿𝑆𝐿1
= ∑ 𝐿𝑆𝐿1𝑛

𝑁

𝑛=1
= ∑ ∑ (𝐋𝑆𝐿1𝑛

)
𝑖𝑗

𝑖,𝑗

𝑁

𝑛=1
 

(3.11) 

In Eq. 3.10, 𝐱𝑛 and 𝐲𝑛 are the predicted and target bounding box locations for image 𝑛, respectively. Eq. 

3.10 computes the Smooth L1 loss vector, 𝐋𝑏𝑜𝑥𝑛
, for all bounding boxes predicted in image 𝑛; and the 

error difference tolerance value, 𝛽, was set to 1/9 for Mask R-CNN. The error difference between 𝐱𝑛 and 

𝐲𝑛 was penalized more if it was less than 𝛽 to ensure that all errors in the predictions (minor or major) 

were weighted similarly. In Eq. 3.11 [68], 𝐋𝑏𝑜𝑥𝑛
 was reduced to a single loss value by summing all of its 

elements, before the total box loss, 𝐿𝑏𝑜𝑥, was calculated. The sum of all box losses for each image in a 

batch of 𝑁 images was the total box loss. To calculate the mask loss, 𝐿𝑚𝑎𝑠𝑘, the binary cross-entropy loss 

function [68] was used. The calculation of the binary cross-entropy losses was similar to Eq. 3.3 from 
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Sec. 3.1.2. However, the sigmoid function was used in-place of the softmax function since the object class 

label on the mask could be either 1 or 0 (objectness). The objects existed on an image if a mask logit had 

a value greater than 0.5. The binary cross-entropy losses were calculated using Eqs. 3.12, 3.13, and 3.14 

[68]. 

𝜎(𝐗𝑛) =
1

1 + exp(𝐗𝑛) 
 

(3.12) 

𝐋𝑚𝑎𝑠𝑘𝑛
= 𝐋𝐵𝐶𝐸𝑛

= −[𝐘𝑛ln 𝜎(𝐗𝑛) + (1 − 𝐘𝑛) ln(1 − 𝜎(𝐗𝑛))] (3.13) 

𝐿𝑚𝑎𝑠𝑘 = 𝐿𝐵𝐶𝐸 = ∑
𝐿𝐵𝐶𝐸𝑛

𝑐𝑜𝑢𝑛𝑡(𝐘𝑛)

𝑁

𝑛=1
= ∑

∑ (𝐋𝐵𝐶𝐸𝑛
)

𝑖𝑗𝑖,𝑗

𝑐𝑜𝑢𝑛𝑡(𝐘𝑛)

𝑁

𝑛=1
 

(3.14) 

Eq. 3.12 is the sigmoid function that receives the predicted binary image mask, 𝐗𝑛 for image 𝑛. The 

resulting 2D matrix was evaluated with the target image mask, 𝐘𝑛 in Eq. 3.13. Eq. 3.13 calculates 𝐋𝐵𝐶𝐸𝑛
, 

the binary cross-entropy loss matrix for image 𝑛. In Eq. 3.14, 𝐋𝐵𝐶𝐸𝑛
 is first reduced by taking the average 

of each element in the loss matrix to find the single loss value, 𝐿𝐵𝐶𝐸𝑛
, for image 𝑛. All 𝐿𝐵𝐶𝐸𝑛

 loss values 

for all images in batch 𝑁 are then summed together to obtain the total mask loss for batch 𝑁. The 

objective function of Mask R-CNN also calculates the loss values from the RPN, 𝐿𝑅𝑃𝑁. 𝐿𝑅𝑃𝑁 is 

determined by summing the box and mask losses (Eqs. 3.11 and 3.14) by the end of the RPN and the five 

feature maps produced by the ResNet-50 FPN backbone, respectively. 

For MAD-Net, the same objective function for Mask R-CNN (Eq. 3.9) was used to calculate the 

training and validation losses. Since MAD-Net simultaneously detects the instances for the objects, grasp 

types, and task regions, the losses were independently calculated for each detection category. Therefore, 

the objective function for MAD-Net was: 

𝐿𝑇 = 𝐿𝑂 + 𝐿𝐺𝑇 + 𝐿𝑇𝑆 (3.15) 

where 𝐿𝑂 is the total loss for the detection of the objects (cups, bottles, etc.),  𝐿𝐺𝑇 is the total loss for the 

detection of grasp types, and 𝐿𝑇𝑆 is the total loss for the detection of the task regions. 

The objective function for YOLACT [82], adapted from SSD [55], was a linear combination of the 

smooth L1 losses and the cross-entropy losses, as shown in Eq. 3.16 [55, 82]. The cross-entropy losses 
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represent the losses during classification, while the smooth L1 losses represent the losses during 

regression. 

𝐿𝑇 =
1

𝑀
[ 𝐿𝐶𝐸𝑇

+ 𝐿𝑆𝐿1𝑇
], 

(3.16) 

where 𝑀 is the number of matching boxes with the target boxes, 𝐿𝐶𝐸 𝑇
 is the total cross-entropy (and 

binary cross-entropy) losses and 𝐿𝑆𝐿1𝑇
 is the total smooth L1 losses. The total cross-entropy and smooth 

L1 losses for YOLACT [82] are given in Eqs. 3.17 and 3.18. 

𝐿𝐶𝐸𝑇
= ∑ 𝛼1𝐿𝑐𝑙𝑎𝑠𝑠𝑛

+ 𝛼2𝐿𝑠𝑒𝑔𝑛
+ 𝛼3𝐿𝑚𝑎𝑠𝑘𝑛

𝑁

𝑛

 

(3.17) 

𝐿𝑆𝐿1𝑇
= 𝛼 ∑ 𝐿𝑏𝑜𝑥𝑛

𝑁

𝑛

 

(3.18) 

In Eq. 3.17, for image 𝑛, 𝐿𝑐𝑙𝑎𝑠𝑠𝑛
 is the class loss during the classification of object classes, 𝐿𝑠𝑒𝑔𝑛

 is the 

segmentation loss during the mask prototype generation at 𝑃3, and 𝐿𝑚𝑎𝑠𝑘𝑛
 is the mask loss from the 

resulting binary image masks during mask assembly. 𝐿𝑐𝑙𝑎𝑠𝑠𝑛
 is the same as calculating the cross-entropy 

losses over all possible object classes (Eq. 3.3), while 𝐿𝑚𝑎𝑠𝑘𝑛
 and 𝐿𝑠𝑒𝑔𝑛

 are calculated as a binary cross-

entropy loss (Eq. 3.14). 𝐿𝐶𝐸𝑇
 in Eq. 3.17 therefore finds the total cross-entropy and binary cross-entropy 

losses in a batch of 𝑁 images. The class and segmentation losses were weighted equally, with 𝛼1 = 𝛼2 =

1, while the errors during mask assembly was weighted higher with 𝛼3 = 6.125. In Eq. 3.18, 𝐿𝑏𝑜𝑥𝑛
 

represents the box loss for a single image 𝑛. Since the bounding boxes were predicted through regression, 

only the box loss was calculated with the smooth L1 loss function (Eq. 3.11). The box loss was also 

similarly weighted with 𝛼 = 1.5. Overall, the mask loss and box losses had a higher penalty cost, since 

the localization of the boxes and the accuracy in the segmented binary masks were more significant than 

simply predicting if the instance was accurately classified. 

For YOLOV5s-Seg [83], the objective loss function was similar to YOLACT; however, the loss from 

predicting the bounding boxes was treated as both a regression and classification problem. The following 

equation was used to calculate the total box loss for a batch of 𝑁 images: 
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𝐿𝑏𝑜𝑥 = 𝐿𝐶𝐼𝑂𝑈 + 𝐿𝑜𝑏𝑗, (3.19) 

𝐿𝑜𝑏𝑗 is the objectness loss that describes if the predicted bounding box is accurately placed where an 

object exists, while 𝐿𝐶𝐼𝑂𝑈 is the Complete Intersection Over Union (CIOU) losses adapted from [86]. 

𝐿𝐶𝐼𝑂𝑈 is similar to finding the smooth L1 losses like in Mask R-CNN and YOLACT; however, 𝐿𝐶𝐼𝑂𝑈 also 

penalizes the model if the aspect ratios between the predicted and target boxes do not match. Therefore, 

𝐿𝐶𝐼𝑂𝑈 enforces the predicted bounding boxes to have a similar aspect ratio, centre coordinates, and IOU 

as the matched ground truth bounding boxes. In YOLOV5s-Seg [83], both class and mask losses are 

computed as binary cross-entropy losses (Eq. 3.14). The final losses are the sum of the box, class, and 

mask losses, except that the total loss is divided by the number of images in a batch. Therefore, the final 

objective function for YOLOV5s-Seg [83] is: 

𝐿𝑇 =
1

𝑁
(𝐿𝑏𝑜𝑥 + 𝐿𝑚𝑎𝑠𝑘 + 𝐿𝑐𝑙𝑎𝑠𝑠), 

(3.20) 

where 𝑁 is the total number of images in a batch, 𝐿𝑏𝑜𝑥 is the total box loss, 𝐿𝑚𝑎𝑠𝑘 is the mask loss, and 

𝐿𝑐𝑙𝑎𝑠𝑠 is the class loss. 

3.5.2 Evaluation Metrics 

Before the models were evaluated by an evaluation metric, the images from all validation and test sets in 

the MOMA dataset were inferenced. All predictions with a confidence score in the object class 

predictions (objectness probability) that had a value of at least 0.5 were kept. When a prediction was 

discarded, the corresponding boxes and binary image masks were also discarded. The predictions of the 

binary image masks were further filtered, so that all mask logits with a value greater than 0.5 were 

considered to contain an object. 

During the evaluation of all models, the mean average precision (mAP) metric was used since model 

performance was dependent on a model’s ability to localize the detected instances. The mAP scores were 

determined for each detection category (objects, grasp types, and task regions) and for each of the 

validation and test sets from the MOMA dataset (4 in total). The mAP scores were also calculated twice – 

once for the bounding box predictions, and once for the binary mask predictions. For each image, the 

precision and recall scores were first determined using the following equations: 



 

 92 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(3.21) 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3.22) 

where 𝑃 and 𝑅 are the precision and recall scores, respectively; and 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 are the number of 

true positives, false positives, and false negatives, respectively. A true positive occured when the mIOU 

between the predicted instances and the matching target instances (as a bounding box or as an image 

mask) was at least 0.5. In addition, the object class for the matched instances had to be the same, 

otherwise, the prediction was a false positive. All unmatched instances between the predictions and the 

targets were the false negatives. During the calculation of the precision and recall curves, the scores were 

separated by object class; thus, each object class received a precision-recall score. 

 Once the precision and recall scores were calculated for each image and each object class, the 

precision-recall curve was plotted. The mAP score was then obtained by finding the area-under-the-curve 

(AUC) of the precision-recall curve. The average of all mAP scores across all object classes was then 

computed. 
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Chapter 4 

Results and Discussion of the Instance Segmentation Models Trained 

on the MOMA Dataset 

For the experimental results presented in this chapter, the Mask R-CNN [33], YOLACT [82], YOLOV5s-

Seg [83], and MAD-Net models were trained, evaluated, and inferenced (by creating prediction images 

from an input image) on the MOMA dataset. The primary objective was to determine the feasibility of 

training the detection of objects with the grasp affordances, in applications to prosthetic grasping. 

Therefore, the joint detection model, MAD-Net, was evaluated against the other models (Mask R-CNN 

[33], YOLACT [82], and YOLOV5s-Seg [83]) for the quality of the inference images and mAP scores on 

the MOMA dataset. Overall, each model was trained to detect the instances of objects, grasp types, and 

task regions. 

Sec. 4.1 presents the resulting training and validation loss curves of the models that were initially 

trained for 10 epochs. The training session was completed only if both the training and validation losses 

had stably converged (no random loss explosion). In Secs. 4.2.1 and 4.2.2, the evaluated mAP scores are 

compared for each detection category (objects, grasp types, and task regions) across all the validation and 

test sets of the MOMA dataset. Sec. 4.2.1 compares the mAP scores during bounding box detection, and 

Sec. 4.2.2 compares the mAP scores during binary image segmentation of the detected instances. Sec. 

4.2.3 and Sec. 4.2.4 then give the resulting prediction images during inferencing for the Test-S and Test-I 

datasets, respectively. Sec. 4.2.5 provides the overall summary of the model performance during training 

and evaluation, including the overall training time, GPU usage, and the average validation and test mAP 

score. Finally, Sec. 4.3 concludes Chapter 4 to discuss the factors that may have contributed to how each 

model performed, and the feasibility of the detection of object and its grasp affordances with instance 

segmentation. 

4.1 Experimental Evaluation of the Instance Segmentation Models during Training 

The Mask R-CNN [33], YOLACT [82], YOLOV5s-Seg [83], and MAD-Net models were trained and 

validated for each epoch during the training sessions. The mAP scores were not evaluated during training 

and validation since the loss values were enough to determine whether the model had completed training. 
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4.1.1 Training and Validation Loss Curves 

The training and validation loss curves for the detection of object, grasp-type, and task-region instances 

are given in Figs. 4.1, 4.2, and 4.3, respectively. When training the models for the detection of object 

instances, the Mask R-CNN [33], YOLACT [82], and MAD-Net models only required 10 epochs to 

complete training, whereas YOLOv5s-Seg [83] required 20 epochs. In most cases, the validation losses 

matched the training losses for all models across all detection categories (Fig. 4.1). Note that the initial 0th 

epoch in all training-validation loss plots are the loss values during the weight initialization of the models. 

When training the models for the detection of grasp-type instances, the Mask R-CNN model was trained 

for 15 epochs, since there was an unexpected spike in the validation losses by the end of 10 epochs (Fig. 

4.2a). The YOLACT and MAD-Net models were trained for 10 epochs each, while the YOLOv5s-Seg 

model similarly completed training after 20 epochs. During the training sessions for the detection of the 

task-region categories (Fig. 4.3), the Mask R-CNN, YOLACT, MAD-Net models all required 10 epochs 

to complete training, and YOLOv5s-Seg required 20 epochs. 

For the YOLOv5s-Seg model, the learning rate had an initial value of 0.0 before it reached the original 

learning rate of 1 × 10−3 by the second epoch. The resulting loss graphs were smoother than the other 

models in Figs. 4.1c to 4.3c. YOLACT similarly had the warmup learning rate, starting from 1 × 10−4 

and ending at 1 × 10−3; however, the resulting training and validation losses still converged similarly to 

Mask R-CNN and MAD-Net, except that the validation losses remained stable without the sudden loss 

explosion.  
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(a) (b) 

  

(c) (d) 

Figure 4.1: Training and validation plots for detection of instances of objects (cups, bottles, etc.): (a) 

Mask R-CNN, (b) YOLACT, (c) YOLOv5s-Seg, and (d) MAD-Net. 
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(a) (b) 

  

(c) (d) 

Figure 4.2: Training and validation plots for detection of instances of grasp types: (a) Mask R-CNN, (b) 

YOLACT, (c) YOLOv5s-Seg, and (d) MAD-Net. 
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(a) (b) 

  

(c) (d) 

Figure 4.3: Training and validation plots for detection of instances of task regions: (a) Mask R-CNN, (b) 

YOLACT, (c) YOLOv5s-Seg, and (d) MAD-Net. 
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4.2 Experimental Evaluation of the Instance Segmentation Models during Testing 

Secs. 4.2.1 and 4.2.2 presents the mAP evaluation scores for the Mask R-CNN [33], YOLACT [82], 

YOLOV5s-Seg [83], and MAD-Net models. Sec. 4.2.1 gives the mAP scores during bounding box 

detection, while Sec. 4.2.2 provides the mAP scores for binary image mask segmentation. The models 

tested were evaluated on their ability to simultaneously detect the instances of objects, grasp types, and 

task regions on new and familiar objects. The minimum mIOU threshold for a true positive detection as 

an image mask or bounding box was set to 0.5. 

4.2.1 mAP Evaluation Results for Bounding Box Detection 

The final bounding box detection, mAP evaluation results for the tested models (Mask R-CNN [33], 

YOLACT [82], YOLOV5s-Seg [83], and MAD-Net) are given in Tables 4.1 to 4.3. Overall, the MAD-

Net model had the best average mAP score across all datasets and detection categories, except for the 

detection of task-region instances where YOLOv5s-Seg had a better average mAP score. All the tested 

models had a consistent mAP score in all datasets. However, the Mask R-CNN and MAD-Net models did 

underperform in the detection of the carry task in the task-region detection category (Table 4.3). As later 

seen in Sec. 4.2.4, the inference results show that the Mask R-CNN and MAD-Net models could not 

simultaneously detect two entirely overlapping instances. Therefore, only one of the instances was kept 

and labelled with an object category (use class in the case of the detection of task-region instances). The 

mAP scores generally decreased as the models were evaluated on the datasets with more unfamiliar 

objects. The validation mAP scores were significantly higher than the test mAP scores, especially when 

the models were evaluated on the Test-I dataset (Tables 4.1 to 4.3). The Test-I dataset was generated to 

contain completely new objects with unconventional object parts. For example, a wine glass was 

introduced into the cups category, which had an extra stem to carry and use the object with a prismatic-4-

finger grasp type. 
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Table 4.1: mAP scores for object bounding box detection (cups, bottles, etc.). The tested models were 

evaluated on all validation and test sets of the MOMA dataset. 

Model Dataset mAP Scores by Object Class at mIOU >= 0.5 

Bottle Cup Hammer Knife All 

Mask R-CNN Val-S1 0.997 0.990 0.999 0.991 0.994 

 

Val-S2 0.989 0.980 0.990 0.982 0.985 

Test-S 0.986 0.962 0.978 0.894 0.955 

Test-I 0.914 0.791 0.831 0.803 0.834 

Average mAP 0.972 0.931 0.949 0.918 0.942 

MAD-Net Val-S1 1.000 0.998 0.999 0.997 0.998 

 

Val-S2 0.998 0.996 0.997 0.993 0.996 

Test-S 0.995 0.978 0.991 0.894 0.965 

Test-I 0.943 0.827 0.859 0.749 0.845 

Average mAP 0.984 0.950 0.962 0.908 0.951 

YOLACT Val-S1 0.946 0.979 0.830 0.729 0.871 

 

Val-S2 0.944 0.968 0.882 0.712 0.877 

Test-S 0.865 0.934 0.813 0.609 0.805 

Test-I 0.865 0.934 0.813 0.609 0.805 

Average mAP 0.905 0.953 0.834 0.665 0.839 

YOLOV5s-Seg Val-S1 0.995 0.989 0.978 0.951 0.978 

 

Val-S2 0.989 0.986 0.973 0.954 0.975 

Test-S 0.976 0.971 0.921 0.882 0.938 

Test-I 0.868 0.848 0.760 0.870 0.837 

Average mAP 0.957 0.949 0.908 0.914 0.932 
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Table 4.2: mAP scores for grasp-type bounding box detection. The tested models were evaluated on all 

validation and test sets of the MOMA dataset. 

Model Dataset mAP Scores by Grasp-Type Class at mIOU >= 0.5 

Adducted 

Thumb 

Cylindrical Hook Lateral 

Tripod 

Light 

Tool 

Precision 

Disk 

Prismatic 

4 Finger 

All 

Mask R-CNN Val-S1 0.931 0.853 0.860 0.788 0.858 0.841 0.905 0.862  

Val-S2 0.937 0.830 0.888 0.784 0.799 0.795 0.915 0.850 

Test-S 0.729 0.741 0.798 0.812 0.901 0.729 0.673 0.769 

Test-I 0.443 0.381 0.287 0.436 0.477 0.483 0.373 0.411 

Average 

mAP 

0.760 0.701 0.708 0.705 0.759 0.712 0.717 0.723 

MAD-Net Val-S1 0.996 0.989 0.994 0.997 0.997 0.991 0.991 0.994  

Val-S2 0.968 0.919 0.960 0.747 0.952 0.946 0.969 0.923 

Test-S 0.809 0.932 0.920 0.962 0.979 0.939 0.789 0.904 

Test-I 0.500 0.483 0.320 0.483 0.561 0.744 0.439 0.504 

Average 

mAP 

0.818 0.831 0.799 0.797 0.872 0.905 0.797 0.831 

YOLACT Val-S1 0.843 0.943 0.854 0.913 0.788 0.915 0.771 0.861  

Val-S2 0.769 0.891 0.849 0.758 0.783 0.837 0.746 0.805 

Test-S 0.662 0.840 0.848 0.722 0.748 0.781 0.548 0.736 

Test-I 0.662 0.840 0.848 0.722 0.748 0.781 0.548 0.736 

Average 

mAP 

0.734 0.879 0.850 0.779 0.767 0.829 0.653 0.784 

YOLOV5s-Seg Val-S1 0.800 0.947 0.920 0.862 0.931 0.954 0.801 0.888  

Val-S2 0.780 0.914 0.889 0.855 0.893 0.908 0.793 0.862 

Test-S 0.624 0.923 0.889 0.925 0.855 0.913 0.619 0.821 

Test-I 0.371 0.548 0.376 0.500 0.585 0.738 0.519 0.520 

Average 

mAP 

0.644 0.833 0.769 0.786 0.816 0.878 0.683 0.773 
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Table 4.3: mAP scores for task-region bounding box detection. The tested models were evaluated on all 

validation and test sets of the MOMA dataset. 

Model Dataset mAP Scores by Task-Region Class at mIOU >= 0.5 

Carry Handover Use All 

Mask R-CNN Val-S1 0.617 0.992 0.996 0.869  

Val-S2 0.626 0.970 0.970 0.855 

Test-S 0.581 0.936 0.946 0.829 

Test-I 0.509 0.826 0.655 0.664 

Average mAP 0.583 0.931 0.892 0.804 

MAD-Net Val-S1 0.617 0.994 0.997 0.869  

Val-S2 0.621 0.973 0.966 0.854 

Test-S 0.565 0.931 0.941 0.812 

Test-I 0.509 0.799 0.651 0.653 

Average mAP 0.578 0.924 0.889 0.797 

YOLACT Val-S1 0.812 0.889 0.877 0.859  

Val-S2 0.778 0.870 0.848 0.832 

Test-S 0.711 0.834 0.818 0.788 

Test-I 0.711 0.834 0.818 0.788 

Average mAP 0.753 0.856 0.840 0.817 

YOLOV5s-Seg Val-S1 0.921 0.958 0.954 0.944  

Val-S2 0.897 0.933 0.946 0.925 

Test-S 0.864 0.904 0.919 0.895 

Test-I 0.777 0.819 0.666 0.754 

Average mAP 0.865 0.904 0.871 0.880 

4.2.2 mAP Evaluation Results for Binary Image Mask Segmentation 

The final binary image segmentation, mAP evaluation results for the tested models (Mask R-CNN [33], 

YOLACT [82], YOLOV5s-Seg [83], and MAD-Net) are given in Tables 4.4 to 4.6. Similarly to Sec. 

4.2.1, the MAD-Net model had the best average mAP score across all datasets and detection categories; 

the MAD-Net model was able to outperform YOLOv5s-Seg model in all cases except for the 

segmentation of the carry image masks in Table 4.6. Overall, all the tested models also had a consistent 

mAP score in all datasets, and a similar decreasing trend in performance when the models were evaluated 

on the test sets. However, the YOLOv5s-Seg model had a significant mAP score decrease in the 

segmentation of the task-region image masks for the use task. The Mask R-CNN and MAD-Net models 
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had a similar performance drop in the detection of the carry task (Table 4.6). YOLACT generally had a 

consistent mAP score in all datasets for all detection categories (objects, grasp types, task regions). 

Table 4.4: mAP scores for object, binary image mask segmentation (cups, bottles, etc.). The tested 

models were evaluated on all validation and test sets of the MOMA dataset. 

Model Dataset mAP Scores by Object Class at mIOU >= 0.5 

Bottle Cup Hammer Knife All 

Mask R-CNN Val-S1 0.997 0.990 0.999 0.991 0.994  

Val-S2 0.945 0.956 0.900 0.928 0.932 

Test-S 0.986 0.962 0.981 0.894 0.956 

Test-I 0.911 0.802 0.831 0.798 0.836 

Average mAP 0.960 0.927 0.928 0.903 0.929 

MAD-Net Val-S1 1.000 0.998 0.998 0.997 0.998  

Val-S2 0.998 0.996 0.997 0.993 0.996 

Test-S 0.998 0.982 0.972 0.926 0.970 

Test-I 0.942 0.845 0.853 0.744 0.846 

Average mAP 0.984 0.955 0.955 0.915 0.953 

YOLACT Val-S1 0.947 0.979 0.830 0.738 0.873  

Val-S2 0.944 0.968 0.882 0.713 0.877 

Test-S 0.866 0.934 0.813 0.619 0.808 

Test-I 0.866 0.934 0.813 0.619 0.808 

Average mAP 0.906 0.953 0.834 0.672 0.841 

YOLOV5s-Seg Val-S1 0.995 0.989 0.981 0.953 0.979  

Val-S2 0.989 0.986 0.973 0.950 0.975 

Test-S 0.976 0.971 0.925 0.882 0.938 

Test-I 0.868 0.858 0.764 0.866 0.839 

Average mAP 0.957 0.951 0.911 0.913 0.933 
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Table 4.5: mAP scores for grasp-type, binary image mask segmentation. The tested models were 

evaluated on all validation and test sets of the MOMA dataset. 

Model Dataset mAP Scores by Grasp-Type Class at mIOU >= 0.5 

Adducted 

Thumb 

Cylindrical Hook Lateral 

Tripod 

Light 

Tool 

Precision 

Disk 

Prismatic 

4 Finger 

All 

Mask R-CNN Val-S1 0.993 0.880 0.958 0.974 0.970 0.921 0.959 0.951  

Val-S2 0.936 0.792 0.886 0.781 0.800 0.738 0.905 0.834 

Test-S 0.730 0.672 0.796 0.758 0.901 0.667 0.681 0.744 

Test-I 0.457 0.341 0.283 0.449 0.518 0.435 0.376 0.408 

Average 

mAP 

0.779 0.671 0.731 0.740 0.797 0.690 0.730 0.734 

MAD-Net Val-S1 0.994 0.988 0.993 0.997 0.997 0.981 0.980 0.990  

Val-S2 0.968 0.902 0.957 0.710 0.953 0.905 0.958 0.907 

Test-S 0.850 0.921 0.933 0.945 0.984 0.811 0.824 0.895 

Test-I 0.510 0.437 0.320 0.467 0.652 0.648 0.437 0.496 

Average 

mAP 

0.831 0.812 0.801 0.780 0.897 0.836 0.800 0.822 

YOLACT Val-S1 0.843 0.917 0.745 0.845 0.801 0.814 0.746 0.816  

Val-S2 0.770 0.857 0.741 0.660 0.794 0.731 0.724 0.754 

Test-S 0.675 0.827 0.801 0.647 0.769 0.701 0.568 0.713 

Test-I 0.675 0.827 0.801 0.647 0.769 0.702 0.568 0.713 

Average 

mAP 

0.740 0.857 0.772 0.700 0.783 0.737 0.652 0.749 

YOLOV5s-Seg Val-S1 0.800 0.912 0.889 0.810 0.928 0.906 0.790 0.862  

Val-S2 0.778 0.880 0.865 0.810 0.893 0.845 0.781 0.836 

Test-S 0.625 0.901 0.866 0.788 0.851 0.835 0.615 0.783 

Test-I 0.385 0.516 0.370 0.513 0.636 0.685 0.517 0.517 

Average 

mAP 

0.647 0.802 0.748 0.730 0.827 0.818 0.676 0.750 
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Table 4.6: mAP scores for task-region, binary image mask segmentation. The tested models were 

evaluated on all validation and test sets of the MOMA dataset. 

Model Dataset mAP Scores by Task-Region Class at mIOU >= 0.5 

Carry Handover Use All 

Mask R-CNN Val-S1 0.617 0.991 0.996 0.868  
Val-S2 0.558 0.898 0.842 0.766 

Test-S 0.577 0.930 0.946 0.818 

Test-I 0.506 0.812 0.704 0.674 

Average mAP 0.564 0.908 0.872 0.781 

MAD-Net Val-S1 0.617 0.994 0.996 0.869  
Val-S2 0.619 0.969 0.954 0.848 

Test-S 0.577 0.926 0.949 0.817 

Test-I 0.513 0.782 0.705 0.667 

Average mAP 0.582 0.918 0.901 0.800 

YOLACT Val-S1 0.757 0.863 0.861 0.827  
Val-S2 0.722 0.855 0.820 0.799 

Test-S 0.703 0.822 0.812 0.779 

Test-I 0.703 0.822 0.812 0.779 

Average mAP 0.721 0.840 0.826 0.796 

YOLOV5s-Seg Val-S1 0.695 0.671 0.086 0.484  
Val-S2 0.668 0.632 0.071 0.457 

Test-S 0.623 0.661 0.081 0.455 

Test-I 0.603 0.530 0.071 0.401 

Average mAP 0.647 0.624 0.077 0.449 

4.2.3 Inferencing Results for the Test-S Set in the MOMA Dataset 

The Test-S set of the MOMA dataset contains unique objects and background images that differ from the 

training set (Train-S) that the models (Mask R-CNN [33], YOLACT [82], YOLOV5s-Seg [83], MAD-

Net) were trained on. However, since the Train-S and Test-S sets of the MOMA dataset used objects from 

the standard object set, the objects in the Test-S set had similar features as the objects in the Train-S set. 

As a result, all models, except YOLOv5s-Seg, precisely localized the instances with the corresponding 

bounding boxes and binary image masks across all detection categories. The inferencing results for the 

detection of object and grasp-type instances, are given in Figs. 4.4 and 4.5, respectively. For the detection 

of task-regions, the inferencing results are displayed on separate images by task class, since the task 
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regions on an object excessively overlap one another. The inferencing results for the detection of task-

region instances are shown in Figs. 4.6, 4.7, and 4.8. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.4: Instance segmentation predictions for the object (bottles, cups, etc.) detection category: (a) 

original input image, and (b) ground truth or target. (c) to (f) are predictions from Mask R-CNN, 

YOLACT, YOLOv5s-Seg, and MAD-Net, respectively. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.5: Instance segmentation predictions for the grasp-type detection category: (a) original input 

image, and (b) ground truth or target. (c) to (f) are predictions from Mask R-CNN, YOLACT, YOLOv5s-

Seg, and MAD-Net, respectively. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.6: Instance segmentation predictions for the task-region detection category, for the carry class: 

(a) original input image, and (b) ground truth or target. (c) to (f) are predictions from Mask R-CNN, 

YOLACT, YOLOv5s-Seg, and MAD-Net, respectively. 

 



 

 108 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.7: Instance segmentation predictions for the task-region detection category, for the handover 

class: (a) original input image, and (b) ground truth or target. (c) to (f) are predictions from Mask R-CNN, 

YOLACT, YOLOv5s-Seg, and MAD-Net, respectively. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.8: Instance segmentation predictions for the task-region detection category, for the use class: (a) 

original input image, and (b) ground truth or target. (c) to (f) are the predictions from Mask R-CNN, 

YOLACT, YOLOv5s-Seg, and MAD-Net, respectively. 
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4.2.4 Inferencing Results for the Test-I Set in the MOMA Dataset 

The Test-I set of the MOMA dataset contained scenes of irregular objects on new backgrounds that were 

unencountered by the trained models (Mask R-CNN [33], YOLACT [82], YOLOV5s-Seg [83], MAD-

Net). 

During the detection of object instances on the Test-I Set of the MOMA dataset, all models had 

consistent results in the inference images in Fig. 4.9. Overall, the MAD-Net model (Fig. 4.9f) had the best 

image mask quality on the objects, although it occasionally misclassified the object instances. For 

example, the wine glass in Fig. 4.9f was supposed to have an object class label, cup, as indicated by the 

ground truth annotations in Fig. 4.9b. For YOLOv5s-Seg, however, the model had a higher tendency to 

generalize to objects in the background (Fig. 4.9e). 

The image mask quality of Mask R-CNN and MAD-Net precisely matched the possible locations for 

grasp-type and task affordances on each object (Figs. 4.10 and 4.13). Since MAD-Net simultaneously 

trained the detection of objects and their grasp affordances (grasp types and task regions), the resulting 

locations of the binary image masks on the object parts always aligned with the detected object image 

mask. However, since the objects in the scene were unconventional compared to the objects found in the 

training set, Mask R-CNN and MAD-Net both suffered from the misclassifications of the identified 

instances, which will ultimately decrease the mAP scores. For YOLACT and YOLOv5s-Seg, the model 

was generally capable of precisely classifying and localizing the instances within the bounding boxes. 

However, the overall mask quality in detecting the grasp affordances (Figs. 4.10d to 4.13d) were lacking 

compared to MAD-Net and Mask R-CNN. Mask R-CNN and MAD-Net were also unable to identify the 

task-regions of two or more instances that were exactly overlapping on top of each other (Figs. 4.10 and 

4.13). For example, the hammer should have both the carry and use task on its handle as seen in Fig. 

4.11b and Fig. 4.13b; however, only the use region was correctly identified by Mask R-CNN in Fig. 

4.13c, and MAD-Net in Fig. 4.13f. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.9: Instance segmentation predictions for the object (bottles, cups, etc.) detection category: (a) 

original input image, and (b) ground truth or target. (c) to (f) are predictions from Mask R-CNN, 

YOLACT, YOLOv5s-Seg, and MAD-Net, respectively. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.10: Instance segmentation predictions for the grasp-type detection category: (a) original input 

image, and (b) ground truth or target. (c) to (f) are predictions from Mask R-CNN, YOLACT, YOLOv5s-

Seg, and MAD-Net, respectively. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.11: Instance segmentation predictions for the task-region detection category, for the carry class: 

(a) original input image, and (b) ground truth or target. (c) to (f) are predictions from Mask R-CNN, 

YOLACT, YOLOv5s-Seg, and MAD-Net, respectively. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.12: Instance segmentation predictions for the task-region detection category, for the handover 

class: (a) original input image, and (b) ground truth or target. (c) to (f) are predictions from Mask R-CNN, 

YOLACT, YOLOv5s-Seg, and MAD-Net, respectively. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.13: Instance segmentation predictions for the task-region detection category, for the use class: 

(a) original input image, and (b) ground truth or target. (c) to (f) are predictions from Mask R-CNN, 

YOLACT, YOLOv5s-Seg, and MAD-Net, respectively. 

4.2.5 Summary of the Training, Validation, and the Evaluation Results 

A summary of the model performances during training, validation, and evaluation is given in Tables 4.7, 

4.8, and 4.9. MAD-Net was trained collectively to detect the instances of objects, grasp types, and task 

regions. Therefore, the elapsed training time in Tables 4.7, 4.8, and 4.9 was the average time that MAD-

Net took to train each detection category; the actual training time for MAD-Net was 12:20:47 (hh:mm:ss), 
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which was surprisingly slightly slower than just training the Mask R-CNN [33] model to detect grasp-

type instances. In addition, the MAD-Net model only added a small overhead to train than Mask R-CNN 

when comparing their overall GPU memory usage. 

The YOLOv5s-Seg [83] model trained the fastest and required the least GPU memory to run, while 

YOLACT [82] took the longest to train. For the grasp-type detection category, however, Mask R-CNN 

took longer to complete training only because Mask R-CNN needed an extra five epochs to converge the 

losses. While YOLOv5s-Seg completed training the fastest, it was also underperforming compared to the 

other models in terms of the mAP score; however, the YOLOv5s-Seg did have the best bounding box 

predictions during validation and evaluation. In general, the YOLACT model was consistent in the 

performance, and at times the mAP score for YOLACT outperformed MAD-Net, especially during 

testing. MAD-Net generally outperformed the other models, especially in the object detection category in 

Table 4.7. For the detection of grasp-types and task instances, both MAD-Net and Mask R-CNN had a 

significant decrease in the mAP score because of their poor performance on the Test-I set from the 

MOMA dataset. Overall, MAD-Net outperformed its Mask R-CNN counterpart in all detection 

categories. 

Table 4.7: Results summary for all models trained and evaluated for the detection of object instances 

(cups, bottles, etc.). The best result values across each category are highlighted in bold. The asterisk (*) 

indicates the average time for MAD-Net to complete training for the detection of object instances. 

Model Number of 

Trained 

Epochs 

Batch 

Size 

Training 

Time 

(hh:mm:ss) 

GPU 

Usage, 

Training 

(GB) 

Average 

Validation 

mAP 

Average Test 

mAP 

Boxes Masks Boxes Masks 

Mask R-CNN 10 2 06:28:45 6.00 0.990 0.963 0.895 0.896 

YOLACT 10 8 08:26:30 7.30 0.874 0.875 0.805 0.808 

YOLOv5s-Seg 20 8 02:38:12 2.71 0.977 0.977 0.888 0.889 

MAD-Net 10 2 *04:06:56 8.50 0.997 0.997 0.905 0.908 
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Table 4.8: Results summary for all models trained and evaluated for the detection of grasp-type 

instances. The best result values across each category are highlighted in bold. The asterisk (*) indicates 

the average time for MAD-Net to complete training for the detection of object instances. 

Model Number 

of 

Trained 

Epochs 

Batch 

Size 

Training 

Time 

(hh:mm:ss) 

GPU 

Usage, 

Training 

(GB) 

Average 

Validation mAP 

Average Test 

mAP 

Boxes Masks Boxes Masks 

Mask R-CNN 15 2 11:16:21 7.25 0.856 0.892 0.590 0.576 

YOLACT 10 8 07:51:22 7.90 0.833 0.785 0.736 0.713 

YOLOv5s-Seg 20 8 02:58:35 3.04 0.875 0.849 0.671 0.650 

MAD-Net 10 2 *04:06:56 8.50 0.958 0.949 0.704 0.696 

 

Table 4.9: Results summary for all models trained and evaluated for the detection of task-region 

instances. The best result values across each category are highlighted in bold. The asterisk (*) indicates 

the average time for MAD-Net to complete training for the detection of object instances. 

Model Number 

of 

Trained 

Epochs 

Batch 

Size 

Training 

Time 

(hh:mm:ss) 

GPU 

Usage, 

Training 

(GB) 

Average 

Validation mAP 

Average Test 

mAP 

Boxes Masks Boxes Masks 

Mask R-CNN 10 2 06:41:04 6.10 0.862 0.817 0.746 0.746 

YOLACT 10 8 08:15:54 8.00 0.846 0.813 0.788 0.779 

YOLOv5s-Seg 20 8 03:01:40 3.16 0.935 0.471 0.825 0.428 

MAD-Net 10 2 *04:06:56 8.50 0.861 0.858 0.733 0.742 
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4.3 Final Discussion of the Training, Validation, and Testing Results on the MOMA 

Dataset 

Overall, the Mask R-CNN [33], YOLACT [82], YOLOv5s-Seg [83], and MAD-Net models all trained 

well since the training and validation losses all converged by the end of all epochs. All models were 

trained using a Nvidia GeForce RTX 3060 graphics card, and all models generally had consistent results 

in the mAP scores during bounding box detection and binary image segmentation on the MOMA dataset. 

The resulting mAP scores from Secs. 4.2.1 and 4.2.2 were an accurate indicator to determine a model’s 

performance as shown in the inference images from the test sets in Secs. 4.2.3 and 4.2.4. 

The MAD-Net model introduced in this thesis overall had produced better quality image masks, similar 

to its Mask R-CNN counterpart. The MAD-Net model excelled in all detection categories, in terms of the 

averaging mAP scores, and displayed a significant improvement over the Mask R-CNN model, in which 

only a single detection category could be trained and evaluated on. Based on the resulting mAP score 

improvement from the Mask R-CNN model to the MAD-Net model, the joint detection of the object and 

its grasp affordances is a feasible solution to implement for a vision system in current prosthetic hands. In 

addition, the MAD-Net model only required an additional 2.05 GB overhead, on average, to 

simultaneously train on each detection category (objects, grasp types, task regions). In terms of the overall 

training time for MAD-Net, the total training time to train all three detection categories was 12:20:48 

(hh:mm:ss), while Mask R-CNN took 24:26:10 (hh:mm:ss). The joint detection of all the detection 

categories reduced the overall training time in MAD-Net by approximately 50% compared with Mask R-

CNN. As expected, YOLOv5s-Seg model had the fastest total training time of 08:38:27 (hh:mm:ss); 

however, the accuracy in the binary image segmentation was significantly lower than for the rest of the 

models (Mask R-CNN, MAD-Net, YOLACT). The resulting bounding boxes from YOLOv5s-Seg model 

did have a comparable bounding box mAP score to the other tested models, however. The YOLACT 

model generally had the most consistent mAP scores across all object classes from all detection 

categories. The MAD-Net and Mask R-CNN models also had consistent mAP scores on the validation 

sets and the Test-S set; however, the mAP scores on the Test-I set were significantly less in MAD-Net 

and Mask R-CNN, since both models were unable to detect instances from different classes that were 

exactly overlapping each other. 

In the MAD-Net and Mask R-CNN model, the failure to detect overlapping instances unlike YOLACT 

and YOLOv5s-Seg was possibly due to the initial NMS filtering of the ROI proposals. Before an object 
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class was assigned at the end of the RPN, the predicted ROI boxes were first filtered with NMS. At that 

stage, the “object class” was separated between each feature map level, where each value of the feature 

map was an indicator for objectness. Therefore, the ROI boxes with a similar same aspect ratio and 

dimensions were filtered out, which means that the possibility of duplicate instances were nearly 

impossible. The annotated task regions in the MOMA dataset contained excessively cluttered and 

overlapping instances, especially between the carry and the use class. In real life applications, the use task 

would constitute a specific task on a specific object class. For example, a cup can be used to pour or drink 

liquids, while a bottle can be used to pour, drink, and dispense liquids. With the further denominations of 

the task classes, the duplicate instance problem can be solved. However, due to the limitations of training 

a supervised learning model, any new object classes (tasks in this case) are not understandable by the 

trained model since it was not trained on related examples. Therefore, the probability of a trained 

supervised model on an object with new object classes would be zero. One method to solve this problem 

is to introduce a KB graph, whereby similar tasks can be correlated to one or more of the annotated 

grasping locations. For all models, the difference in mAP scores between the Test-S and Test-I sets was 

mainly due to the inconsistent classifications of the instance regions during annotation. For example, the 

hammer object was expected to have a hook grasp type at the tool head. However, a mallet, which was 

also classified as a hammer in this case, had a cylindrical tool head, which is only suitably grasped with 

the cylindrical grasp type. 

The poor performance of YOLOv5s-Seg’s ability to segment image mask was mostly due to the 

condensed detection of the bounding boxes, object classes, and binary image masks under a single 

prediction head for each anchor scale. The prediction head in YOLOv5s-Seg was a single convolutional 

layer that contained the channels for the objectness score, object class logits, bounding box coordinates, 

and the mask coefficients used to assemble the final binary image masks. As seen in YOLACT, Mask R-

CNN, and MAD-Net, each prediction head was decoupled to perform a single task: to predict the 

bounding boxes with its corresponding object class, and independently segment a binary image mask. 

Sometimes, the detection of the instances in an RGB scene may have had a positive prospect in a 

model’s overall performance for unseen objects. As seen in Fig. 4.14c, the cup object located at the 

bottom right of the image (or Fig. 4.14d) should have been a false positive. The object was supposed to be 

a jug that was currently used to hold live plants; therefore, the jug was technically classified as a vase. 

The discrepancies in the classification scheme of the objects were a significant issue during annotation, 

training, and evaluation. However, in the case of Fig. 4.14, despite that classifying the vase as a cup was 
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technically incorrect, the localization and segmentation of the object was very accurate, and the potential 

grasp-type regions were labelled correctly. Therefore, based on the predictions in Fig. 4.14c, this 

particular model (MAD-Net) had generalized to unseen objects. 

 

  
(a) (b) 

  
(c) (d) 

Figure 4.14: Example scenario where a model incorrectly detected an object but provided the correct 

grasp-type affordances for the unaccounted (previously unseen) object: (a) original image, (b) ground 

truth, (c) detection of grasp-type instances by MAD-Net, and (d) enlarged location of the detected 

anomaly.  
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Chapter 5 

Conclusion 

The recently, commercially available myoelectric prosthetic hands [17, 18, 16, 19] use sEMG pattern 

recognition to simultaneously control the movement of the prosthetic arm, select a grasp type, and 

identify the action intent to perform a grasping action. Therefore, the coupled control strategy in 

myoelectric prostheses will increase the inaccuracies in predicting the intended grasp type for a grasping 

task due to the possibility of misclassifying similar sEMG patterns for other actions on the prosthetic arm. 

For example, an sEMG signal can be mistaken for other grasp types or the movements of the arm that the 

prosthetic user did not intend to perform. To decouple the control strategy of a myoelectric prosthetic 

hand, recent vision-based current applications in prosthetic grasping use a camera-based vision system to 

predict a grasp type from an object, before the sEMG signals from the residual limb trigger the action 

intent of grasping the selected object. However, current vision-based methods are only limited to the 

detections of a single grasp type for a single object (cups, bottles, etc.) with a simple CNN classification 

network [29, 25, 27]. In robotic applications, the detection of the object affordances [8, 9, 10] and grasp 

affordances [11, 6, 5, 7, 12] allows the inference of a task, in the same manner as how humans 

semantically understand the relationships between an object and their surroundings. Since the current 

vision-based prostheses are limited to the selection of stable grasps over task-suitable grasps, the 

detection of grasp affordances was adapted from the robotic grasping applications to complete the thesis 

objectives. The grasp affordances are the possible regions on an object that affords to be grasped for a 

specific task [11, 6, 5, 7, 12]. 

In application to prosthetic grasping, the main objective of this thesis research was to develop a vision-

based, deep-learning model that can simultaneously detect all objects and their grasp affordances in each 

RGB multi-object scene. Based on the outcome of the ablation study in Sec. 3.1, the localization of an 

object in an RGB image was necessary to precisely localize the objects and their grasp affordances to 

segment the binary image masks, as seen in the AffordanceNet [8] model. The image segmentation of the 

grasp affordances also provided the exact shape and assists the implicit classification of an object part, 

which can ultimately influence the type of grasp type and task that can be performed in the object region. 

Unfortunately, the IIT-AFF [8] dataset used to train the AffordanceNet [8] model only contains the image 

masks of the object affordances, or the actions that an object can provide to a user, along with the 

bounding boxes of the objects. Unlike the instance segmentation models trained in this thesis research, 
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AffordanceNet [8] is also only capable of assigning a single image pixel location to an affordance class, 

or the grasp affordances in this case. Therefore, to complete the main thesis objectives, the MOMA 

synthetic dataset was first created and annotated, where the existing Mask R-CNN [33], YOLACT [82], 

and YOLOv5-Seg [83] instance segmentation models were initially trained and evaluated on. Secondly, a 

new joint detection model called MAD-Net was then developed in this thesis research (Sec. 3.4.4) to 

make possible the simultaneous detection of objects, grasp types, and task regions as instances.  

As seen in Chapter 4, the developed MAD-Net model outperformed Mask R-CNN [33], YOLACT 

[82], and YOLOv5-Seg [83] in terms of the overall average mAP scores and the quality of the produced 

inferencing images. In comparison with Mask R-CNN, the base model that MAD-Net was based on, 

MAD-Net outperforms Mask R-CNN in all performance categories, including the overall training time, 

all mAP scores across all detection categories (objects, grasp types, and task regions), and the GPU usage 

during training. MAD-Net only requires a small overhead of 2.05 GB to simultaneously train over all 

detection categories, while requiring approximately a 50% reduced training time to do so. Unfortunately, 

both MAD-Net and Mask R-CNN suffer from an overall mAP score decrease on the images of unseen 

unique objects (Test-I). The reduced performance of MAD-Net and Mask R-CNN was largely due to the 

NMS filtering of the ROI regions at the end of the RPN, since the duplicate box proposals were removed. 

Although the mAP score was a significant metric in the determination of how well a model has 

performed, a false positive in the detection of instances may not always be unfortunate. As discussed in 

Sec. 4.3, some background objects are misclassified due to the limitations of a supervised learning 

network, such as the detection of an instance on new unseen object class. The general object class is 

mostly insignificant since the related object with a different class may afford similar tasks and grasp 

types. The object image mask helps localize and bound the regions of the object parts, which influences 

the increase in mAP accuracy, as seen in the MAD-Net model. 

Overall, the joint detection of the objects and their grasp affordances as the instances of objects, grasp 

types, and task regions is feasible for vision-based prostheses. While the developed vision system 

produces a selection of possible grasp types on a single object, current commercially available, 

myoelectric prostheses can still handle a small selection of up to eight different pre-programmed grasp 

types at a time [17, 18, 16, 19]. In most cases, the determination of the object class and the possible task 

classes filter the number of possible grasp types available to the prosthetic user. 
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5.1 Future Work and Improvements 

The current vision system developed and implemented in this thesis research can still be improved for 

future research. While an object is no longer limited to a single grasp type, the vision system is still 

lacking a task recognition system. Currently, only one grasp type was associated with the object part, 

which was the intended design. However, as seen in Chapter 2, a task requiring more stability or dexterity 

may change the suggested grasp type on the object part. For example, the light tool grasp type can be used 

to hold the hammer, only when a nail is driven into a piece of wood. However, if the user is casually 

carrying the hammer around, the light tool grasp type may not be preferred over the more stable 

cylindrical grasp type. The current task-region detection method does filter some grasp-type regions 

based on the possible task. However, the task regions are only detected, and the tasks are currently not 

inferred. 

To solve the issue with the contested grasp types on an object part due to the changing task, one 

method could involve the creation of a grasp database. The grasp database can include the common 

contact points on an object, such as in the database ContactDB [87], for the task class to infer a grasp 

type. The benefit of this new approach is that the new object, grasp type, and task classes can be 

automatically and continuously updated in the database. Therefore, the manual and semi-automatic 

annotation methods used in Chapter 3 can be eliminated, as training examples can be generated by the 

participating users. In addition, the suitable tasks no longer need to be determined as an instance mask 

and bounding box. Another benefit of using a database to store grasp types, is that the participating users 

could use a simulated prosthesis to provide the training examples; alternatively, the same grasp database 

could be available to the prosthetic user when they need a new prosthesis replacement. In an alternative 

method, gaze estimation [88, 89, 90, 91] can be implemented to assist the inference of the available tasks. 

Gaze estimation [88, 89, 90, 91] predicts what the user is looking at, which can highly suggest the type of 

task they intend to perform on what object. Once the task and object are selected, suitable grasp types can 

be inferred by mapping the task regions to the grasp-type regions that were detected from a grasp 

affordance detector like MAD-Net. Alternatively, the suitable grasp types can be inferred from a grasp 

database that has the matching task and object. 

Currently, the MAD-Net model is not optimized for real-time applications, which is necessary for 

prosthetic grasping applications. For the instance segmentation of objects (e.g. cups, bottles), Mask R-

CNN [33] has an inference speed of 5 frames per second (fps), whereas YOLACT [82] and YOLOv5-Seg 
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[83] could achieve more than 30 fps. Since MAD-Net is more computational expensive than the base 

model, Mask R-CNN, the inference speed of the MAD-Net model would most likely be less than 5 fps. 

Therefore, MAD-Net may not be suitable for real-time applications. Fortunately, the joint detection of 

objects and their grasp affordances could still be applied to the YOLACT and YOLOv5-Seg models for 

faster inference speeds and real-time processing of RGB images.  
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