
A Differentiable Particle Filter for
Jump-Diffusion Stochastic Volatility

Models

by

Michelle Ko

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Mathematics
in

Statistics

Waterloo, Ontario, Canada, 2024

© Michelle Ko 2024

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Stochastic volatility with jumps has emerged as a crucial tool for understanding and
modelling the stochastic and intermittently discontinuous nature of many processes in fi-
nance. Due to the highly nonlinear structure of these models, their likelihood functions
are often unavailable in closed-form. A common numerical approach is to reformulate the
original model as a state-space model, where under this framework, the marginal like-
lihood of the parameters can be estimated efficiently by integrating the latent variables
via particle filtering. A combination of such particle-estimated likelihood and Markov
Chain Monte Carlo can be used to sample from parameter posteriors, but imposes a sub-
stantial computational burden in multi-dimensional parameter space. Bayesian normal
approximation serves as a more efficient alternative, if the mode and quadrature of the
stochastic approximation of the posterior can be obtained via a gradient-based method.
This is not immediately possible, however, as the particle-estimated marginal posterior is
not differentiable due to (1) the inherent discontinuity of jumps in the model, and (2) the
widely used multinomial resampling technique in particle filtering. This thesis presents
a novel construction of a particle filter that incorporates a multivariate normal resam-
pler and circumvents the jump-induced discontinuity with a customized proposal density,
thereby attaining full differentiability of the marginal posterior estimate. A comprehen-
sive simulation study and application to S&P 500 Index data are provided to investigate
the performance of the differentiable particle filter for parameter inference and volatility
recovery.

iii

Acknowledgements

First and foremost, I would like to thank Dr. Martin Lysy for introducing me to the
captivating world of computational inference through STAT 440 in Winter 2020. Since
then, I have had the privilege to explore various applications of stochastic differential
equations under his supervision, ranging from biochemistry to quantitative finance. This
thesis would not have been a possibility without his unwavering support throughout my
undergraduate and graduate studies combined.

I would also like to express my gratitude to the committee members, Dr. Samuel Wong
and Dr. Tony Wirjanto, for their precious time and effort to revise this thesis.

My sincere thanks go to Dr. Shoja’eddin Chenouri for believing in my potential and
granting admission to the program. In addition, I would also like to thank the admin-
istrative staff of the Department of Statistics and Actuarial Science. In particular, I am
grateful for Mary Lou Dufton’s guidance on the logistical aspect of completing my degree
and for her insights into balancing between academics and other facets of life.

I am very grateful for the teachings of Dr. Adam Kolkiewicz, Dr. Tony Wirjanto,
Dr. Yuying Li, and Dr. Fan Yang on subjects relating to quantitative finance, which con-
tributed to shaping the context of this thesis.

I extend my heartfelt gratitude to Omnium—Johnny, Colin, and Adam—for continuing
to offer me valuable employment opportunities, allowing me to support myself financially
and grow as a professional throughout my degree. It was a great pleasure to have a highly
skilled and hardworking individual like Arvind as my first intern.

I wholeheartedly appreciate both my longstanding friends and those I have met along
the way. Thanks to Jonathan, Max, and Zac—for their talent and passion—my first term
of graduate studies was one of the most memorable and inspiring periods of my academic
career. Connecting with Kyumin, Qing, Chris, and Sohoon, my fellow academically moti-
vated MMath friends, has made this journey less lonely. I cannot imagine how my time in
Waterloo for the past two years would have been without Alan, Hawon, Kate, and Mike.
Leanne, my best friend of over a decade, holds my deepest appreciation for her kindness,
companionship, and everything else that I could ask for in a friend.

Most importantly, I am forever indebted to my family. No words can possibly express
the magnitude of the love, support, and patience they provided throughout my life.

iv

Dedication

This is dedicated to the younger selves of me and my mother, for our enduring belief
in the better things in life.

v

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Dedication v

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution and Thesis Outline . 2

2 Background 4

2.1 Jump-Diffusion Models . 4

2.1.1 Stochastic Volatility with Contemporaneous Jump 5

2.2 State-Space Model . 5

2.2.1 Discretization of Jump-Diffusion Models 7

2.2.2 Error-Free Observation Model . 8

vi

2.3 Particle Filters . 9

2.3.1 Bridge Proposal for Jump-Diffusion Models 11

2.3.2 Particle Filters for SVCJ Models with Error-Free Observations . . . 12

3 Methodology 14

3.1 Differentiable Particle Filters . 14

3.1.1 Multivariate Normal Resampler . 15

3.1.2 Discontinuity due to Jumps . 16

3.1.3 Gumbel-Softmax Smoothing . 16

3.1.4 Bridge Proposal under Different Jump Propensity 17

3.2 Parameter Inference . 19

3.2.1 Variable Transformation . 19

3.2.2 Gradient-Based Methods . 19

4 Experimental Results 22

4.1 SVCJ Model Specification . 22

4.1.1 Choice of Initial Point . 24

4.1.2 Hyperparameter Configuration . 24

4.2 Computational Specification . 25

4.2.1 Implementation in JAX . 25

4.2.2 Computational Environment . 26

4.3 Simulation Study . 26

4.3.1 MVN Resampler vs Multinomial Resampler 27

4.3.2 Parameter Inference . 30

4.3.3 Volatility Filtering . 35

4.4 Real-World Data: S&P 500 . 36

4.4.1 Parameter Inference . 37

4.4.2 Volatility Filtering . 39

4.4.3 Jump Filtering . 40

vii

5 Conclusion 41

5.1 Limitation and Future Direction . 42

References 43

APPENDICES 46

A Derivation of Incremental Weight 47

A.1 Diffusion Bridge with Different Jump Propensity 48

B Gumbel-Softmax Approximation for Bernoulli Random Variable 50

C Ito Formula for Jump-Diffusion 51

D Filtered Volatility against VIX and CBOE 52

E Inference Results of Particle Gibbs 53

viii

List of Figures

2.1 State-Space Model . 6

2.2 State-Space Model with Error-Free Observations 9

4.1 Exponential Decay Learning Rate Scheduler 25

4.2 Synthetic Dataset Generated from the SVCJ Model 27

4.3 Projection Plot of Marginal Likelihood Estimate 28

4.4 Projection Plot of Marginal Likelihood Estimate (Gumbel-Softmax) 29

4.5 Loss and Parameter Values across Iteration for Example Dataset (Single-Seed) 30

4.6 Approximate Posterior Density in Original Scale for Example Dataset (Single-
Seed) . 31

4.7 Approximate Posterior Density in Original Scale for Example Dataset (100
Single-Seed) . 32

4.8 Approximate Posterior Density in Original Scale for 1,000 Synthetic Datasets
(Single-Seed) . 34

4.9 Filtered Volatility for Example Dataset . 35

4.10 S&P 500 Index Data . 36

4.11 Approximate Posterior Density in Original Scale for S&P 500 (100 Single-Seed) 38

4.12 Filtered Volatility for S&P 500 Dataset (with SPOTVOL) 39

4.13 Filtered Jumps for S&P 500 Dataset . 40

D.1 Filtered Volatility for S&P 500 Dataset (with VIX and SPOTVOL) 52

E.1 Posteriors of APG versus DPF in Transformed Scale for Example Dataset . 54

ix

List of Tables

3.1 Trade-off in Selecting λ⋆ . 18

3.2 Variable Transformations for Unconstrained Optimization 19

4.1 Interpretation of SVCJ Model Parameters 23

4.2 Starting Points for SVCJ Model Parameters 24

4.3 Configuration for Particle Filter and Optimizer 24

4.4 Computational Parameters for Large-Scale Jobs 26

4.5 Parameter Estimates in Transformed Scale for Example Dataset (Single-Seed) 31

4.6 Parameter Estimates in Transformed Scale for Example Dataset (100 Single-
Seed, Average Mode and Quadrature) . 33

4.7 Parameter Estimates in Transformed Scale for 1,000 Synthetic Datasets
(Single-Seed, Average Mode and Quadrature) 35

4.8 Parameter Estimates in Transformed Scale for S&P 500 (Single-Seed on
1,000 Datasets, Average Mode and Quadrature) 38

E.1 Configuration for Adaptive Particle Gibbs 53

x

Chapter 1

Introduction

1.1 Motivation

Jump-diffusion models have emerged as a crucial tool in understanding the stochastic and
intermittently discontinuous nature of various financial processes. Stochastic volatility with
jumps (SVJ) is an important variant of jump-diffusion, which offers a sensible depiction
of asset price dynamics that captures many phenomena in real-world financial markets.
Some of the empirical characteristics captured by this class of models include (1) abrupt
movements in price, (2) leptokurtic return distribution, and (3) auto-correlation in squared
returns, also known as volatility clustering (Cont & Tankov, 2004).

Despite a wealth of literature addressing the forward problem—numerical methods for
simulating process trajectories and pricing options within the jump-diffusion framework
(Broadie & Kaya, 2006; Casella & Roberts, 2011; Glasserman & Merener, 2003; Metwally
& Atiya, 2002)—the inverse problem, or inferring model parameters from observed data,
remains notoriously challenging. As nonlinear models like SVJ rarely admit a closed-form
solution, their likelihood functions are analytically intractable, thus rendering standard
maximum likelihood methods for parameter estimation unusable.

A common approach to tackle these challenges involves data augmentation, whereby
highly nonlinear and continuous-time models are approximately discretized and recast into
state-space models consisting of parameters, latent variables, and observations. Under the
state-space framework, the latent state-space variables can be efficiently integrated out by
particle filtering (Doucet & Johansen, 2011; Murray, 2015). A combination of particle filter
and Markov Chain Monte Carlo (MCMC), namely particle MCMC, has been the method of

1

choice for sampling from the parameter posterior densities (Andrieu, Doucet, & Holenstein,
2010). However, without an informative parameter proposal, the computational cost of
particle MCMC grows substantially with the dimensions of the parameter space.

Recent studies have revealed a promising avenue for differentiable particle filters cou-
pled with gradient-based techniques (Corenflos et al., 2021; Jonschkowski, Rastogi, &
Brock, 2018). For the purpose of parameter inference for jump-diffusion models, the in-
terest lies in incorporating particle filters to gradient-based stochastic optimization over
the model parameter space, which can offer a fast inference method via Bayesian normal
approximation of the posterior densities (Gelman et al., 1995). This requires the particle-
estimated marginal likelihood to be differentiable with respect to the model parameters.
However, due to the usual resampling algorithm and the discrete random variables in the
jump-diffusion model, particle filters do not immediately yield a differentiable stochastic
approximation of the marginal likelihood.

1.2 Contribution and Thesis Outline

This thesis presents a fully differentiable particle filter for jump-diffusion models, particu-
larly tailored to a highly complex stochastic volatility with contemporaneous jump (SVCJ)
model. The said particle filter is not only differentiable in its resampling step, but also
through the non-differentiable compound Poisson process that governs the jump occur-
rences in the model. A simulation study demonstrates the effectiveness of this approach,
producing reasonable parameter estimates for models with a high number of latent vari-
ables requiring integration. The results are achieved in orders of few minutes by leveraging
JAX, a high-performance computing library in Python. The performance of differentiable
particle filter for parameter inference was further validated using S&P 500 Index data,
where the recovered volatility closely matched SPOTVOL, CBOE’s spot volatility index.

Chapter 2 provides a detailed description of jump-diffusion models and SVCJ models,
along with their full state-space representation. The standard particle filter and a bridge
proposal for state-space models with error-free observations are also outlined. Chapter 3
begins by identifying the sources of non-differentiability, both in the model and the particle
filter. Suitable treatments for each of the discontinuities are proposed in detail. As well, the
gradient-based optimization framework for parameter inference via the mode-quadrature
method is justified. Chapter 4 presents a simulation study, in which the performance of
the differentiable particle filter in an inference problem is assessed with a synthetic dataset.
The same test is conducted on a real-world S&P 500 dataset, with comparison between

2

the particle-recovered volatility and SPOTVOL. Chapter 5 summarizes the findings of this
thesis and discusses its limitations, which may evolve into further research directions.

3

Chapter 2

Background

2.1 Jump-Diffusion Models

Jump-diffusion models are a class of stochastic processes that incorporate both continuous
diffusion processes and discontinuous jumps, introduced by Merton (1976) to capture the
stochastic and intermittently discontinuous behaviour of asset price movement. A typical
formulation of jump-diffusion models is given by combining a stochastic differential equa-
tion (SDE) model with a compound Poisson jump process, where jumps are considered
rare events and have finite occurrences in any finite intervals. Then, a one-dimensional
jump-diffusion process S(t) satisfies

dS(t) = µθ(S(t), t)dt+ σθ(S(t), t)dB(t) + J(t)dNλ(t), (2.1)

where µθ and σθ are drift and diffusion functions governed by a set of unknown pa-
rameters θ, respectively, B(t) is a Brownian motion process, Nλ(t) is a Poisson process
with intensity λ, and J(t) is a random variable that follows a specific jump size distri-
bution πJ(·). Some well-known examples that adhere to this structure are the Merton
jump-diffusion model (Merton, 1976) and the Kou model (Kou, 2002), whereby a Black-
Scholes-type (Black & Scholes, 1973) geometric Brownian motion (GBM) is coupled with
log-normal and double-exponential jump size distributions, respectively.

The Merton jump-diffusion model is one of the only few exceptional cases where a
closed-form solution and a tractable likelihood are available. Under different specifications
of the SDE and/or the jump component, the dynamics of the processes become highly

4

complex and nonlinear, posing a critical obstacle for analytical approaches to simulation
or inference of these models.

2.1.1 Stochastic Volatility with Contemporaneous Jump

Stochastic volatility models are an extension of Black-Scholes diffusion that addresses the
heteroskedastic nature of asset returns. These models consider volatility as a stochastic
process, unlike the constant value assumption in GBM or the treatment as a deterministic
function in local volatility models. The Heston model (Heston, 1993) is one prominent
example of such extension, in which the volatility follows a stochastic square-root process.

Stochastic volatility with jump—a combination of stochastic volatility and jump-diffusion
models—were promptly investigated, and early works by Bates (1996) introduced incor-
porating log-normal jumps to the price process of the Heston model. After Bates (2000),
Duffie, Pan, and Singleton (2000), and Pan (2002) identified the need for a jump compo-
nent in the volatility process as well, one of the specifications reviewed in Eraker, Johannes,
and Polson (2003) is the stochastic volatility with contemporaneous jump (SVCJ) model.
This paper examines a generalized version of the SVCJ model with the following system
of SDEs for the price-volatility pair (S(t), V (t)):

dS(t) = µθ(S(t), t)dt+ σθ(V (t), S(t), t)dBS(t) + JS(t)dNλ(t)

dV (t) = αθ(V (t), t)dt+ βθ(V (t), t)dBV (t) + JV (t)dNλ(t)

Corr(BS(t), BV (t)) = ρ.

(2.2)

Notice that the volatility process V (t) satisfies an SDE with jumps—occurring simul-
taneously with price but varying in jump sizes.

As with jump-diffusion models in Section 2.1, arbitrary assignments of the drift/diffusion
functions or jump distributions in SVCJ models usually lead to analytical intractability.
However, modelling volatility as a distinct stochastic process presents an additional caveat
to the inference problem. As volatility is not an observable quantity, it must be inferred
from observed asset price data along with unknown model parameters.

2.2 State-Space Model

State-space model refer to a graphical characterization of the dependence structure between
two layers of random variables: the (latent) state and the measurement models. In discrete

5

and homogeneous time, when the state {Xk} is Markovian and observations {Yk} are
independently distributed when conditioned on the state process for k = 0, 1, ..., N , the
resulting model can be succinctly described in three probability statements:

X0 ∼π(X0 | θ)
Xk ∼f(Xk | Xk−1,θ)

Yk ∼g(Yk | Xk,θ),

(2.3)

where f(·) and g(·) in Equation (2.3) are referred to as the transition density and the
measurement density, respectively. Figure 2.1 illustrates the evolution of the latent process
and the observations.

Xk−1 Xk Xk+1

Yk−1 Yk Yk+1

θ

Figure 2.1: State-space model with latent process {Xk} and observations {Yk}.

The joint likelihood of the state and observation variables conditioned on θ is

L(X0:N ,Y0:N | θ) = π(X0 | θ)
N∏
k=1

f(Xk | Xk−1,θ)
N∏
k=0

g(Yk | Xk,θ). (2.4)

In Bayesian inference, a suitable choice of prior πθ leads to the joint posterior distribution
on parameters and latent states

p(X0:N ,θ | Y0:N) ∝ π(θ)L(X0:N ,Y0:N | θ). (2.5)

The quantity of interest in this paper is the marginal posterior, obtained by integrating
the posterior over X0:N :

p(θ | Y0:N) =

∫
p(X0:N ,θ | Y0:N)dX0:N . (2.6)

6

It is generally not possible to obtain the marginal posterior in closed-form for nonlinear
or non-Gaussian state-space models (Doucet & Johansen, 2011). Along with the task of
integrating over X0:N , it becomes necessary to take a numerical approach to estimating
this quantity.

2.2.1 Discretization of Jump-Diffusion Models

To cast a continuous-time jump-diffusion model into a state-space model, the model must
be first discretized. This can be done conveniently with the Euler-Maruyama scheme
(Maruyama, 1955), where the Equation (2.1) transforms into

S(t+∆t)− S(t) = µθ(S(t), t)∆t+ σθ(S(t), t)∆B(t) + J(t+∆t)Q(t+∆t),

where ∆Bk ∼ N(0,∆t) is a Brownian increment, and Q(t+∆t) ∼ Bern(λ∆t) is a Bernoulli
random variable with jump probability λ∆t ≪ 1 (Golightly, 2009; Pedersen, 1995). For
data observed at equally-spaced intervals, we have

Sk+1 − Sk = µθ(Sk, tk)∆t+ σθ(Sk, tk)∆Bk + Jk+1Qk+1, (2.7)

where tk = k∆t and Sk = S(tk).

Further discretization may be needed if ∆t is not sufficiently small. That is, each
interval ∆t can be partitioned into M inter-observation times such that ∆∗t = ∆t/M and

S
(m)
k = S

(
t
(m)
k

)
with t

(m)
k = k∆t + m∆∗t. Note that t

(0)
k = tk and t

(M)
k = t

(0)
k+1, thus

S
(M)
k = S

(0)
k+1 = Sk+1. Then, Equation (2.7) can be rewritten as

S
(m+1)
k = S

(m)
k + µθ

(
S
(m)
k , t

(m)
k

)
∆∗t+ σθ

(
S
(m)
k , t

(m)
k

)
∆∗B

(m)
k + J

(m+1)
k Q

(m+1)
k (2.8)

for all m = 0, ...,M − 1 and k = 0, ..., N − 1, where ∆∗Bk ∼ N(0,∆∗t) and Q
(m+1)
k ∼

Bern(λ∆∗t). This can be directly translated as a sampling procedure for the transition
density in Equation (2.3).

Discretization of the SVCJ model follows suit, where Equation (2.2) transforms into

S
(m+1)
k = S

(m)
k + µθ

(
S
(m)
k , t

(m)
k

)
∆∗t+ σθ

(
V

(m)
k , S

(m)
k , t

(m)
k

)
∆∗B

S,(m)
k + J

S,(m+1)
k Q

(m+1)
k

V
(m+1)
k = V

(m)
k + αθ

(
V

(m)
k , t

(m)
k

)
∆∗t+ βθ

(
V

(m)
k , t

(m)
k

)
∆∗B

V,(m)
k + J

V,(m+1)
k Q

(m+1)
k

Corr(∆∗B
S,(m)
k ,∆∗B

V,(m)
k) = ρ.

(2.9)

7

2.2.2 Error-Free Observation Model

Casting a jump-diffusion model in Section 2.1 into a state-space model requires more
thoughtful consideration, as observations do not have random noise, i.e. Yk = S(tk). In the
context of state-space models, error-free observations imply a measurement density given
by a Dirac measure δXk

, as illustrated in Figure 2.2. That is, the error-free observation
model admits the measurement density

Yk ∼ δXk
: Yk = Xk with probability 1.

Applying this to the discretized SVCJ model in Equation (2.9), the full state-space

SVCJ model is given by Xk = (S
(1:M)
k , V

(1:M)
k , Q

(1:M)
k , J

S,(1:M)
k , J

V,(1:M)
k) and Yk = Yk (one-

dimensional observation).

Initial Density:

S
(0)
0 ∼ δS0 , V

(0)
0 ∼ π(V0 | θ)

For k = 0, . . . , N − 1

Transition Density :

For m = 0, . . . ,M − 1

Q
(m+1)
k ∼ Bern(λ∆∗t)

J
S,(m+1)
k ∼ π(JS | Q(m+1)

k ,θ)

J
V,(m+1)
k ∼ π(JV | Q(m+1)

k ,θ)[
S
(m+1)
k

V
(m+1)
k

]
∼ N

S
(m)
k + µθ

(
S
(m)
k , t

(m)
k

)
∆∗t+ J

S,(m+1)
k Q

(m+1)
k

V
(m)
k + αθ

(
V

(m)
k , t

(m)
k

)
∆∗t+ J

V,(m+1)
k Q

(m+1)
k

 ,

 σ2
θ

(
S
(m)
k , t

(m)
k

)
ρσθ

(
S
(m)
k , t

(m)
k

)
βθ

(
V

(m)
k , t

(m)
k

)
ρσθ

(
S
(m)
k , t

(m)
k

)
βθ

(
V

(m)
k , t

(m)
k

)
β2
θ

(
V

(m)
k , t

(m)
k

)
Measurement Density :

Yk+1 ∼ δSk+1
.

(2.10)

While error-free observations are not problematic when purely solving the forward
problem, the marginal posterior in Equation (2.6) is inextricably conditioned on some

8

Xk−1 Xk Xk+1

Yk−1 Yk Yk+1

θ
δXk−1 δXk

δXk+1

Figure 2.2: State-space model in 2.1 with error-free observations.

predetermined observed data. This implies that, for any sample trajectory X̃0:N where X̃k

is not identical to Yk at any time k = 0, ..., N , the joint likelihood reduces to zero due to

g(Yk | X̃k,θ) = δX̃k
(Yk) = 0 if X̃k ̸= Yk. (2.11)

The consequences of this degeneracy to estimating the marginal posterior are to be dis-
cussed in subsequent sections.

2.3 Particle Filters

Particle filtering is a variant of importance sampling that allows to (1) sample trajectories
from the latent process and (2) numerically approximate the marginal posterior in Equation
(2.6) for any nonlinear state-space model (Del Moral, 1997; Murray, 2015). This is achieved
efficiently by exploiting the Markovian structure of state-space models, thereby sampling
trajectories, or particles, from the posterior distribution in Equation (2.5) sequentially
(Doucet & Johansen, 2011).

The procedure of the filter at each observation time involves propagating, reweighing
and resampling particles using the transition and measurement densities of the state-space
model in Equation (2.3), accompanied with a proposal distribution q(Xk | Xk−1,Yk,θ).
The filter is initialized with P particles {X̃i

0, i = 1, . . . , P} sampled independently from
the prior π(X0 | θ), where each particle is assigned weight wi

0 = π(X̃i
0 | θ)/q0(X̃i

0 | Y0,θ).
Then, the particle filter proceeds follows the steps below recursively through time:

9

• Propagate: Each particle is propagated to the next time step by sampling from the
proposal distribution: X̃i

k ∼ q(Xk | X̃i
k−1,Yk,θ).

• Reweigh: The weight of each of the particles is updated with an incremental weight

ωi
k =

g(Yk | X̃i
k,θ)f(X̃

i
k | X̃i

k−1,θ)

q(X̃i
k | X̃i

k−1,Yk,θ)
. (2.12)

• Resample: The particles are replaced with a fresh set of particles, where the selec-
tion of each new particle is determined by its weight, following a particular resampling
mechanism. One common choice is the multinomial resampler, in which for each par-
ticle, the number of its copies (offspring) to be passed to the next step is determined
by a multinomial distribution.

Algorithm 1 Particle Filter

for each i = 1, . . . , P do // Initialize
X̃i

0 ∼ π(X0 | θ)
wi

0 = π(X̃i
0 | θ)/q0(X̃i

0 | Y0,θ)
end for
for each k = 1, . . . N do

w̃i
k−1 = wi

k−1/
∑P

j=1w
j
k−1 // Normalize weights

X̄1:P
k−1 ∼ Resampler(X̃1:P

k−1; w̃
1:P
k−1) // Resample

for each i = 1, . . . , P do
X̃i

k ∼ q(Xk | X̄i
k−1,Yk,θ) // Propagate

ωi
k = g(Yk | X̃i

k,θ)f(X̃
i
k | X̄i

k−1,θ)/q(X̃
i
k | X̄i

k−1,Yk,θ) // Incremental weight
wi

k = wi
k−1 · ωi

k // Update weight
end for

end for
return Marginal likelihood estimate: p̂(Y0:N | θ) = π(θ)

∏N
k=0

(∑P
j=1

1
P
wj

k

)
return (Optional) Particles and final weights: X̃1:P

0:N , w
1:P
N

For the purpose of Bayesian inference, the marginal posterior estimate can be obtained
with a particle filter by

p̂(θ | Y0:N) ∝ π(θ)p̂(Y0:N | θ). (2.13)

If the proposal distribution q(·) is chosen to be the transition density, then the particle
filter in Algorithm 1 reduces to the bootstrap particle filter (Gordon, Salmond, & Smith,

10

1993), where the incremental weight is then given by the measurement density. However,
in the case of error-free observations of jump-diffusion models, the degeneracy problem
described by Equation (2.11) renders the bootstrap particle filter unfit for marginal pos-
terior estimation, as incremental weight in Equation (2.12) for every particle will be zero.
To overcome this issue, Subsection 2.3.2 will introduce the idea of diffusion bridge to the
construction of the proposal distribution.

2.3.1 Bridge Proposal for Jump-Diffusion Models

Diffusion bridge serves as a remedy to the error-free observation cases (Durham & Gallant,
2002), in which the the trajectory at inter-observational time is sampled from a Gaussian
distribution conditioned on its previous step and and the end point. For SVCJ models,
given observations y0:N , Golightly (2009) suggested simulating a bridge proposal as out-
lined in Algorithm 2. Note that this SVCJ bridge proposal can reduce to that of the
jump-diffusion model in Equation (2.1) by omitting the volatility process and replacing

σθ(Ṽ
(m)
k , S̃

(m)
k , t

(m)
k) with σθ(S̃

(m)
k , t

(m)
k).

Algorithm 2 Bridge Proposal for SVCJ model

S̃
(0)
0 = y0 // Initialize

for each k = 0, . . . , N − 1 do

Q̃
(1:M)
k

iid∼ Bern(λ∆∗t) // Simulate jumps

J̃
S,(1:M)
k

iid∼ πJS(θ) // Simulate price jump sizes

J̃
V,(1:M)
k

iid∼ πJV (θ) // Simulate volatility jump sizes
for each m = 0, . . . ,M − 1 do

α̃
(m)
k = αθ(Ṽ

(m)
k , t), β̃

(m)
k = βθ(Ṽ

(m)
k , t) // Drift and diffusion for volatility

Ṽ
(m+1)
k ∼ N(V

(m)
k + α̃

(m)
k ∆∗t+ J̃

V,(m+1)
k Q̃V,(m+1),

β̃
(m)
k ∆∗t) // Sample volatility

S̃
(m+1)
k ∼ N(S̃

(m)
k +

yk−S̃
(m)
k

M−m
+ J̃

S,(m+1)
k Q̃

S,(m+1)
k −

∑M
i=m+1 J̃

S,(i)
k Q̃

S,(i)
k

M−m
,

M−m−1
M−m

σ̃2
θ(Ṽ

(m)
k , S̃

(m)
k , t

(m)
k)∆∗t) // Sample price

end for
end for
Return S̃

(1:M)
k for k = 0, . . . , N − 1

The bridge proposal in Algorithm 2 reduces to a Brownian bridge between S
(m)
k and

yk if the model contains no jump. In the presence of jumps, the mean of the bridge is

11

adjusted to incorporate the jump components. Note this bridge requires full knowledge of
the future jump occurrences and jump sizes within the interval, which is possible as these
do not depend on neither of (Sm

k , V m
k).

2.3.2 Particle Filters for SVCJ Models with Error-Free Obser-
vations

While Algorithm 2 describes how to sample from the diffusion bridge, hence the propagation
step, it is now necessary to derive the incremental weight ωi

k with a bridge proposal to
formalize the reweighing step. To obtain the incremental weight, instead of writing down
the full expression for the transition and bridge proposal densities, a simpler way is to use
the fact that there is only one source of difference between the two densities: the price. In
the proposal distribution,

S̃
(m+1)
k ∼ N(S̃

(m)
k +

yk − S̃
(m)
k

M −m
+ J̃

S,(m+1)
k Q̃

S,(m+1)
k −

∑M
i=m+1 J̃

S,(i)
k Q̃

S,(i)
k

M −m︸ ︷︷ ︸
µprop(S̃

(m)
k ,yk)

,

M −m− 1

M −m
σ̃2
θ(Ṽ

(m)
k , S̃

(m)
k , t

(m)
k)∆∗t︸ ︷︷ ︸

σ2
prop(S̃

(m)
k ,yk)

),

S
(m+1)
k is conditioned on the next observation yk, as seen in Algorithm 2. However, the

transition density, being not conditioned on yk, simply becomes

S̃
(m+1)
k ∼ N(S̃

(m)
k + µθ(S̃

(m)
k , t

(m)
k)∆∗t+ J̃

S,(m+1)
k Q̃

S,(m+1)
k︸ ︷︷ ︸

µtrans(S̃
(m)
k)

,

σ2
θ(Ṽ

(m)
k , S̃

(m)
k , t

(m)
k)∆∗t︸ ︷︷ ︸

σ2
trans(S̃

(m)
k)

).

Revisiting the expression for the incremental weight in Equation (2.12), it is easy to
note that the transition and the proposal densities are positioned in opposite sides of the
fraction. This indicates that the densities of all other states generated by the same law—
volatility, jump, and jump sizes—will appear on both the numerator and the denominator,
thus cancelling each other. The mathematical details are provided in Appendix A. With

12

M intervals between observations, the incremental weight becomes

ωi
k =

∏M
j=1 ϕ(S̃

(j)
k ; S̃

(j−1)
k + µtrans(S̃

(j−1)
k), σ2

trans(S̃
(j−1)
k))∏M−1

j=1 ϕ(S̃
(j)
k ; S̃

(j−1)
k + µprop(S̃

(j−1)
k , yk), σ2

prop(S̃
(j−1)
k , yk))

. (2.14)

It is worth noting that the measurement density in this case trivially equals to one,
as δ

S̃
(M)
k

(yk) = δyk(yk) = 1. This derivation aligns with the acceptance ratio used in a

Metropolis-Hastings update outlined in Golightly (2009).

13

Chapter 3

Methodology

3.1 Differentiable Particle Filters

A particle filter with bridge proposal in Subsection 2.3.2 coupled with a multinomial resam-
pling scheme may be sufficient if parameter inference is performed via MCMC. Methods
that blend particle filtering with MCMC, namely particle MCMC (PMCMC), include par-
ticle marginal Metropolis-Hastings (PMMH) and particle Gibbs (PG) (Andrieu, Doucet,
& Holenstein, 2010):

• PMMH: The acceptance ratio incorporates the particle-estimated marginal likeli-
hood, such that A = π̂(θ∗)p(Y0:N |θ∗)φ(θ|θ∗)

π(θ)p̂(Y0:N |θ)φ(θ∗|θ) , where φ(·) is the parameter proposal.

• PG: The sampler alternates between:

– The parameters, sampled from a parameter proposal, and

– The states, sampled by the particle filter conditioned on the parameters.

However, these methods are computationally intensive, especially when the proposal of
candidate parameters in each MCMC step is not efficient. The inference result of PG with
an adaptive learning rate is presented in Appendix E.

An alternate way to estimate the posterior density is by Bayesian normal approxima-
tion, which states that the posterior density is approximately normal under the conditions
in which the maximum likelihood estimator (MLE) is asymptotically normal. That is,
instead of sampling from the posterior via MCMC, finding the mode and the quadrature of

14

the posterior suffices to provide a normal approximation to the posterior density (Gelman
et al., 1995). That is,

θ | Y0:N ∼ N(θ̂, Σ̂)

θ̂ = argmaxθ log p(θ | Y0:N), Σ̂ =

[
∂2

∂θ2 − log p(θ | Y0:N)

∣∣∣∣
θ=θ̂

]−1

.
(3.1)

While p(θ | Y0:N) is unavailable due to the intractability of the model, the particle
filter yields a stochastic approximation p̂(θ | Y0:N), as shown in Equation (2.13). A
natural extension is to replace p(θ | Y0:N) with p̂(θ | Y0:N), thus finding the mode and the
quadrature becomes a stochastic optimization problem. However, this approach requires
that the posterior be differentiable with respect to the parameters.

This prompts the idea of differentiable particle filters, in which its marginal posterior
estimate is differentiable with respect to the parameters, such that the mode and quadra-
ture estimates are efficiently computed using gradient-based optimization (Jonschkowski,
Rastogi, & Brock, 2018; Rosato et al., 2020). However, particle filters for jump-diffusion
models encounters two main sources of discontinuity: the multinomial resampler and the
jump components. The subsequent subsections address the challenges and how to mitigate
them to build a fully differentiable particle filter for SVCJ models.

3.1.1 Multivariate Normal Resampler

Particle filter suffers from non-differentiability when the resampling step involves a dis-
continuous distribution. Multinomial resampler is one example, in which discontinuity
arises between each particle and its ancestor. While it is possible to compute the gradient
estimate by ignoring the non-differentiable terms from the multinomial resampler, this es-
timate leads to a discernible bias and does not propagate through time (Corenflos et al.,
2021).

Multivariate normal (MVN) resampler is the simplest particle resampling scheme that
offers differentiability with respect to the model parameters. At each observation time, the
MVN resampler calculates the weighted mean and variance of the particles to draw a new
set from the resulting MVN distribution. While extremely fast, the MVN resampler may
present bias if the weighted particles exhibit multimodality.

Note that for error-free observations in SVCJ models, the MVN only needs to resample
the volatility component Ṽ

(M)
k . This is evident from the fact that every particle is coerced to

15

have its price component S̃
(M)
k land on yM at observation time. Then, the MVN resampler

takes a simple form:

µV =
M∑
j=1

w̄j
kṼ

(M),j
k , σV =

1

M − 1

M∑
j=1

w̄j
k(Ṽ

(M),j
k − µV)

2

V̄
(M),1:P
k

iid∼ N(µV , σ
2
V).

(3.2)

3.1.2 Discontinuity due to Jumps

For a diffusion-only state-space model, the MVN resampler would be sufficient to turn the
particle filter into a differentiable one. However, the task at hand deals with jump-diffusion,
where discontinuities in particle trajectories are inherent and seemingly inevitable. This
causes the particles to be non-differentiable in λ, the jump propensity. To see why this is
the case, we revisit the propagation mechanism. In generating the latent states, the jump
occurrence variable is obtained by

Q̃
(m)
k ∼ Bern(λ∆∗t)

⇐⇒ Q̃
(m)
k = H(λ∆∗t− U

(m)
k), U

(m)
k ∼ Unif(0, 1)

(3.3)

where H(x) is a Heaviside step function such that H(x) = 1 if x ≥ 0 and H(x) = 0

otherwise. For a fixed U
(m)
k = u,

(Q̃
(m)
k | Ũ (m)

k = u) = H(λ∆∗t− u)

is not differentiable with respect to λ at λ = u/(∆∗t).

3.1.3 Gumbel-Softmax Smoothing

The Gumbel-Softmax distribution is a continuous approximation of the categorical distri-
bution, where the Gumbel-Softmax samples are differentiable with respect to the proba-
bilities (Jang, Gu, & Poole, 2016). In the instance of a Bernoulli variable, where there are
only two categories, the Gumbel-Softmax approximation W reduces to

Z ∼ Logistic(0, 1)

W =
1

1 + exp
{(

Z + log
(

1−p
p

))
/τ

} , (3.4)

16

where p ∈ [0, 1] is the Bernoulli probability and τ > 0 is the smoothing parameter.
Full derivation is available in Appendix B. The distribution of W converges to Bern(p) as
τ → 0, and to Unif(0, 1) as τ → +∞.

The jump component Q̃
(m)
k can be reparameterized with Gumbel-Softmax smoothing

such that each particle is differentiable with respect to λ. However, this method inevitably
introduces bias in the marginal posterior estimate, the extent of which is controlled by τ .
The choice of τ becomes a nontrivial task, where the trade-off between bias and numerical
stability of the gradient estimate must be carefully considered.

3.1.4 Bridge Proposal under Different Jump Propensity

While Gumbel-Softmax smoothing offers per-particle differentiability, it is not the only
way to attain differentiability of the marginal posterior estimate for the SVCJ model. It
is to simply use a separate jump propensity λ⋆ for the bridge proposal, such that

q(Xk | Xk−1, yk,θ
∗) = q(Xk | Xk−1, yk, {λ⋆} ∪ θ \ {λ}).

Then, since the jumps are generated under a different parameter than that in the transition
density, the incremental weight is modified to

ωi
k =

∏M
j=1 ϕ(S

(j)
k ;S

(j−1)
k + µtrans(S

(j−1)
k), σtrans(S

(j−1)
k))∏M−1

j=1 ϕ(S
(j)
k ;S

(j−1)
k + µprop(S

(j−1)
k , yk), σprop(S

(j−1)
k , yk))

∏M
j=1 b(Q

(j)
k ;λ∆∗t)∏M

j=1 b(Q
(j)
k ;λ⋆∆∗t)

, (3.5)

followed by the derivation in Equation (A.1).

The incremental weight in Equation (3.5) is differentiable with respect to λ with a

fixed seed. To see this, if Q
(j)
k = q

(j)
k for j = 1, . . . ,M using λ⋆ and a certain seed,

n(qk) =
∑M

j=1 q
(j)
k is fixed and does not depend on λ. Then, the only component of the

incremental weight that depends on λ is

M∏
j=1

b(Q
(j)
k ;λ∆∗t) = (λ∆∗t)n(qk)(1− λ∆∗t)M−n(qk),

which is evidently differentiable with respect to λ.

17

When Jumps are Rare Events

Selecting an adequate proposal jump propensity λ⋆ involves a trade-off in effective sample
sizes, as outlined in Table 3.1. In cases where λ is suspected to be sufficiently small, a
small λ⋆ will increase the variability in jump-related parameter estimates, whereas a large
λ⋆ will produce unnecessary particles that jump more than once in the given interval.

Small λ⋆ Large λ⋆

Better effective sample size for
intervals with no jumps

Better effective sample size for
intervals with a jump

Poor performance on estimat-
ing jump-related parameters

Particles with
∑M

j=1 Q̃
(j)
k ≥ 2

wasted when jumps are rare
events

Table 3.1: Trade-off in Selecting λ⋆

If λ is suspected to be small such that the probability of two or more jumps occurring
between adjacent observations is negligible, this trade-off can be mitigated by modifying
the jump distribution in the bridge proposal.

Instead of samplingM Bernoulli random variables (as a result of sampling at each inter-
observation time), just one can be sampled from Qk ∼ Bern(λ⋆∆t), thereby assigning each

particle whether it will jump or not in the given interval. If Qk = 0, then Q
(j)
k = 0 for all

j = 1, . . . ,M , whereas if Qk = 1, then a random index J is sampled from Cat(M ; [1/M]M)

such that Q
(J)
k = 1 and Q

(j)
k = 0 for j ̸= J . Then,

p∗(Q
(j)
k | θ

∗) =

{
1− λ⋆∆t if Qk = 0
1
M
λ⋆∆t if Qk = 1,

(3.6)

where p∗(Q
(j)
k | θ

∗) replaces
∏M

j=1 b(Q
(j)
k ;λ⋆∆∗t) in Equation (3.5).

Furthermore, if one wishes to use Equation (3.6) as an approximation to the jump
distribution of the transition density, the resulting incremental weight simplifies to

ω∗,i
k =

∏M
j=1 ϕ(S

(j)
k ;S

(j−1)
k + µtrans(S

(j−1)
k), σtrans(S

(j−1)
k))∏M−1

j=1 ϕ(S
(j)
k ;S

(j−1)
k + µprop(S

(j−1)
k , yk), σprop(S

(j−1)
k , yk))

R(Qk;λ, λ
⋆), (3.7)

where

R(Qk;λ, λ
⋆) =

{
1−λ∆t
1−λ⋆∆t

if Qk = 0
λ
λ⋆ if Qk = 1.

18

Note that the λ from this approximation is interpreted as the propensity of one jump
happening in ∆t under Bernoulli assumption. Then, the jump propensity under Poisson
assumption can be recovered by

λ∆t

1− λ∆t
=

PrPoi(Jump)

PrPoi(No Jump)
= λPoi∆t =⇒ λPoi =

λ

1− λ∆t
.

3.2 Parameter Inference

3.2.1 Variable Transformation

A preliminary step before employing an unconstrained optimizer is to transform the pa-
rameter space in which the marginal posterior estimate is well-defined everywhere. This
is necessary since the optimization algorithm fails when the updated parameter yields an
undefined posterior estimate. Table 3.2 summarizes two common variable transformations.

Parameter Space Transform Name Transform Formula Recovery
θ ∈ R+ Log: log(θ) θ∗ = log(θ) θ = exp(θ∗)

θ ∈ [a, b] Expit: expit(θ; a, b) θ∗ = log θ−a
b−θ

θ = b exp(θ∗)+a
exp(θ∗)+1

Table 3.2: Variable Transformations for Unconstrained Optimization

3.2.2 Gradient-Based Methods

The efforts dedicated to the construction of a differentiable particle filter culminate in a
gradient-based approach for parameter inference. That is, instead of sampling the posterior
with particle MCMC, the mode of the particle-estimated marginal posterior can be directly
found by a gradient-based optimizer. Along with the Hessian matrix taken at the mode,
the posterior can be obtained via normal approximation, as discussed in Section 3.1.

Single-Seed Optimization

An optimization is said to be deterministic if the objective function and its gradient have
no randomness. For particle-estimated marginal posterior, which are inherently stochastic,
deterministic optimization is performed by fixing a single seed. That is, for all iterations

19

of the optimizer, the seed that realizes all the random variables in the system remains
unchanged.

The simplest choice for deterministic gradient-based optimizer is gradient descent, out-
lined in Algorithm 3. A typical convergence criterion is given by a combination of tolerance
on the magnitude of the gradient update and a maximum number of iterations.

Algorithm 3 Gradient Descent

Initialize starting point θ0, learning rate η
while not converged do

t← t+ 1

∇J(θt−1) =
∂J
∂θ

∣∣∣∣
θ=θt−1

// Compute gradient

θt ← θt−1 − η∇J(θt−1) // Update parameter
end while
Return θt

Multi-Seed Optimization

The marginal posterior estimate from particle filtering, as mentioned above, has an inherent
randomness (and so as its gradient) which requires a fixed seed across all iterations to
employ deterministic optimization methods. However, single-seed optimization incurs a
bias associated with that particular choice of seed. This is because fixing a seed is equivalent
to using the same subset of random components to calculate the gradient throughout the
optimization process.

To mitigate this, one can either increase the number of particles, hence the size of
the subset, or consider multi-seed optimization. That is, instead of relying on one seed,
the posterior estimate and its gradient are fed a different seed in each of the iterations.
Algorithm 4 outlines a popular stochastic optimization algorithm: Adam, a momentum-
based method with adaptive learning rate (Kingma & Ba, 2014).

While multi-seed optimization methods may not suffer seed-specific bias and work bet-
ter when the objective function is multimodal at a fixed seed, it is more difficult to de-
termine when convergence is achieved. Because of the noise of the objective function,
thresholds on magnitude of gradient updates become unusable for convergence criterion.
Calculation of the Hessian matrix at the mode may also be difficult without knowing
whether the mode has been reached.

20

An alternate multi-seed approach is to perform many single-seed optimization routines,
and build the normally approximated posterior using the average mode and quadrature
from the optimization results. While it may be easier to find the mode and take the
quadrature per seed, the obvious drawback is the computational cost that grows with the
number of single-seed optimization routines to perform. However, if a compute cluster is
accessible, the optimization routines can be distributed and run completely in parallel as
they do not depend on each other.

Algorithm 4 Adam

Initialize hyperparameters: learning rate α, parameters β1, β2 ≈ 1, small constant ϵ
Initialize starting point θ0, m0 ← 0, v0 ← 0, t← 0
while not converged do

t← t+ 1
gt ← ∇J(θt−1) // Compute gradient
mt ← β1 ·mt−1 + (1− β1) · gt // Update first moment estimate
vt ← β2 · vt−1 + (1− β2) · g2

t // Update second moment estimate
m̂t ← mt

1−βt
1
// Compute bias-correction for first moment

v̂t ← vt

1−βt
2
// Compute bias-correction for second moment

θt ← θt−1 − α · m̂t√
v̂t+ϵ

// Update parameter
end while
Return θt

21

Chapter 4

Experimental Results

4.1 SVCJ Model Specification

The SVCJ model of interest in this thesis is given by the following:

dS(t) = αS(t)dt+
√

V (t)S(t)dBS(t) + JS(t)S(t)dNλ(t)

dV (t) = κ(θ⋆ − log V (t))V (t)dt+ σV (t)dBV (t) + JV (t)dNλ(t)

log
(
JS(t) + 1

)
∼ N(µx, σ

2
x), J

V (t) ∼ Expo(1/µz)

Corr(dBS(t), dBV (t)) = ρ.

Applying Ito’s lemma for X(t) = log S(t) and Z(t) = log V (t), the resulting model becomes

dX(t) = (α− 1

2
V (t))dt+

√
V (t)dBS(t) + JX(t)dNλ(t)

dZ(t) = κ(θ − Z(t))dt+ σdBV (t) + JZ(t)dNλ(t)

JX(t) ∼ N(µx, σ
2
x), (e

JZ(t) − 1)V (t) ∼ Expo(1/µz)

Corr(dBS(t), dBV (t)) = ρ.

(4.1)

The underlying log volatility follows an Ornstein–Uhlenbeck (OU) process, which ren-
ders the volatility an Exponential OU (ExpOU) process (Fouque, Papanicolaou, & Sircar,
2000). The asset price jump is the well-established Merton jump, whereas the choice of the
volatility jump requires additional justification: the jump, whose magnitude is given by
an Exponential distribution, is additive in the volatility, while the diffusion of the volatil-
ity is geometric. The transformation on JZ(t) is the direct result of the Ito formula for
jump-diffusion processes in Equation (C.1) (Cont & Tankov, 2004).

22

The model parameters are

θ = (α, θ, κ, σ, λ, µx, σx, µz, ρ), (4.2)

where transformation and interpretation of each parameter is given in Table 4.1.

Parameter Transformation Interpretation
α None: α Constant drift rate of log price
θ None: θ Long-term mean of log volatility
κ Log: log(κ) Mean reversion speed of log volatility
σ Log: log(σ) Volatility of log volatility
λ Expit: expit(λ; 0, 1) Jump propensity
µx None: µx Mean jump size in log price
σx Log: log(σx) Standard deviation of jump size in log price
µz Log: log(µz) Mean jump size in volatility
ρ Expit: expit(ρ;−1, 1) Correlation between log price and log volatility

in their Brownian increments

Table 4.1: Interpretation of SVCJ Model Parameters

The log volatility at starting time is given by Z(0) ∼ N(θ, σ2/2θ), using the long-term
mean and unconditional variance of an OU process. For the parameters, an uninformative
prior is taken in the transformed parameter space, such that

π(θtf) ∝ 1 for T (θtf) ∈ R9.

Since the prior is flat, the marginal posterior estimate is essentially equivalent to the
marginal likelihood. Thus, the objective function to minimize is thus the particle-estimated
negative marginal log-likelihood

fobj(θtf) = − log(p̂(Y0:N | θtf))

as in Algorithm 1. As given by Equation (3.1), the posterior density of θtf is approximated

by N(θ̂tf , Σ̂tf), where

θ̂tf = argminθtf
fobj(θtf), Σ̂tf =

[
∂2

∂θ2fobj(θtf)

∣∣∣∣
θ=θ̂

]−1

.

23

4.1.1 Choice of Initial Point

For the gradient-based optimization, a well-informed starting point θ0 is helpful for an
efficient search of the mode. However, to ensure fairness of the assessment, it must not
rely on some prior knowledge of the parameters that are unattainable in real-life scenar-
ios. Nonetheless, educated guesses on certain parameters are possible based on empirical
properties of the log price data and assumption on the rarity of the jump events, as out-
lined in Table 4.2. All other parameters are initialized at 0 in their transformed (hence
unconstrained) scale.

Parameter Starting point
θ Log of the variance of log returns
λ Some small probability (e.g. 0.03)
µx Average of λ∆t · 100% worst case log returns (CV aR1−λ∆t)
σx Standard deviation of λ∆t · 100% worst case log returns

Table 4.2: Starting Points for SVCJ Model Parameters

4.1.2 Hyperparameter Configuration

The particle filter and optimizer for parameter inference of the SVCJ model are configured
as in Table 4.3.

Hyperparameter Setup
Number of particles 300
Number of inter-observations 10
Optimizer Adam
Number of optimizer iterations 200
Learning rate Exponential Decay (in Figure 4.1)

• Initial Learning Rate: 0.1

• Decay Rate: 0.01

• Transition Steps: 1,000

Table 4.3: Configuration for Particle Filter and Optimizer

24

Figure 4.1: Exponential decay learning rate scheduler across 1,000 iterations.

The choice of hyperparameters in Table 4.3 amounts to the total number of latent
variables of

Ntotal = 10 inter-observations× 2 state variables×Nobs

= 20×Nobs,

where 300 particles are integrated at each of the 200 iterations.

4.2 Computational Specification

4.2.1 Implementation in JAX

JAX is a high-performance computing library in Python suitable for computationally inten-
sive machine learning tasks. (Bradbury et al., 2018). Key features of JAX are just-in-time
(JIT) compilation, automatic differentiation, vectorization, and parallelization, which in
combination provide fast execution speed and low memory usage.

25

An efficient, JAX-based particle filter is provided in the pfjax library (Lysy et al.,
2022). The stochastic volatility with jump model and MVN resampler are fully imple-
mented in JAX and compatible with pfjax functionalities. A JAX-based optimization
framework is provided by the optax library, in which various optimization algorithms and
learning rate schedulers are implemented in a highly modularized fashion (DeepMind et al.,
2020).

4.2.2 Computational Environment

Single-seed optimization routine was performed using an Apple M2 8-core CPU Processor
(4 high-performance @3.5 GHz and 4 efficiency @2.42 GHz). Large-scale optimization
jobs involving many single-seed optimization routines were run in parallel by leveraging
the hpc-pr3 cluster, provided by the University of Waterloo’s Math Faculty Computing
Facility (MFCF). The configuration details are given in Table 4.4.

Computational Parameter Setup
CPU Type Intel(R) Xeon(R) Gold 6326 CPU @2.90GHz
CPU per task 20 CPUs
Number of seeds per task 10 seeds
Memory per CPU 4GB

Table 4.4: Computational Parameters for Large-Scale Jobs

4.3 Simulation Study

This section presents the parameter inference results on the SVCJ model using a synthetic
dataset comprising 1,260 observations—equivalent to 5 years of 252 trading days—to in-
vestigate the performance of the differentiable particle filter. The model parameters for
the simulation study are given by:

θ = (α, θ, κ, σ, λ, µx, σx, µz, ρ)

= (0.15, log(0.12), 0.022, 0.19, 0.0084,−3.1, 1.7, 0.65,−0.5)
X(0) = 100, Z(0) ∼ N(θ, σ2/2θ).

The synthetic dataset was generated with Euler discretization as outlined in Subsection
2.2.1 with 10 intra-day steps between adjacent observations. One instance of the resulting

26

log price and underlying volatility are shown in Figure 4.2. Note that only the end-of-day
log price is taken as the observation, since both intra-day log price and underlying volatility
are unobserved latent processes.

Figure 4.2: Synthetic example dataset generated from the SVCJ model, consisting of:
log price (top), differenced log price (middle), underlying volatility (bottom), with jump
occurrences shown in grey dashed line.

4.3.1 MVN Resampler vs Multinomial Resampler

It is first required to validate whether the MVN resampler is (1) differentiable, and (2) an
adequate substitution for the multinomial resampler. A set of projection plots of the (neg-

27

ative) marginal likelihood estimate, obtained by varying the values of each (transformed)
model parameter while holding all other constant (including the seed), serves as a visual
check.

Figure 4.3: Projection plot of marginal likelihood for each model parameter, estimated
from MVN resampler (blue) and multinomial resampler (sky blue).

Figure 4.3 confirms the differentiability of marginal likelihood estimates using the MVN
resampler, as the curves are visibly smooth in all projection plots. In addition, from this
instance, there is no evidence of discernible bias introduced by the MVN resampler in the
location of the mode.

28

Projection Plot for Gumbel-Softmax Filter

Figure projection plot, generated from the differentiable particle filter that employs the
Gumbel-Softmax reparameterization trick in Subsection 3.1.3. Note that the location of
the mode is substantially different than in Figure 4.3 for most parameters. More impor-
tantly, the log-likelihood curve for the jump propensity parameter λ is shown to display
either roughness (with small τ) or multimodality (with large τ). These may lead to non-
differentiability with respect to λ or incorrect convergence to local minima.

Figure 4.4: Projection plot of marginal likelihood for each model parameter, estimated
from the Gumbel-Softmax filter with varying smoothing factor.

29

4.3.2 Parameter Inference

The inference results are presented in this section, consisting of three versions:

• Single-seed optimization on dataset in Figure 4.2 (hereinafter example dataset)

• Many single-seed optimizations on dataset in example dataset

• Single-seed optimization on many datasets

Single-seed Optimization on Example Dataset

A single single-seed optimization routine on the example dataset was performed with con-
vergence result in Figure 4.5 and posterior densities in Figure 4.6. The optimization routine
and Hessian matrix calculation were completed within 7-8 minutes. The model parameters
are well-estimated, as evidenced by the mode located near the true value for most param-
eters. The standard deviation of the log price jump size is slightly misaligned with its true
value, but this is to be expected as only 7 jumps occurred in the example dataset.

Figure 4.5: Loss (negative marginal log-likelihood estimate) and parameter values (in
transformed scale) versus optimization iterations.

30

Figure 4.6: Normally-approximated posterior densities via single-seed optimization routine
(converted into original parameter scale), with true values in vertical lines.

αtf θtf κtf σtf λtf µx,tf σx,tf µz,tf ρtf
True Value 0.150 -2.120 -3.817 -1.661 -4.771 -3.100 0.531 -0.431 -1.099
Estimate 0.151 -2.278 -3.527 -1.671 -4.872 -3.148 0.804 -0.086 -1.093
Std. Error 0.010 0.241 0.258 0.156 0.389 0.306 0.125 0.417 0.298

Table 4.5: Parameter Estimates in Transformed Scale for Example Dataset (Single-Seed)

31

Many Single-seed Optimization on Example Dataset

To verify the consistency of the result above, 100 single-seed optimization routines were
performed on the example dataset. With configuration outlined in Table 4.4, 100 seeds
were partitioned into 10 tasks and completed with average wall-time of 13-14 minutes per
task. The log price jump size parameters µx, σx show relatively large variability in their
estimates in Figure 4.7. This aligns with the observation made above in Subsection 4.3.2.

Figure 4.7: Normally-approximated posterior densities via 100 single-seed optimization
routines (converted into original parameter scale). In each plot, density in sky blue rep-
resents each single-seed optimization result, and blue curve is given by the average mode
and quadrature.

32

αtf θtf κtf σtf λtf µx,tf σx,tf µz,tf ρtf
True Value 0.150 -2.120 -3.817 -1.661 -4.771 -3.100 0.531 -0.431 -1.099
Estimate 0.150 -2.270 -3.559 -1.711 -4.828 -3.206 0.701 -0.002 -1.061
Std. Error 0.010 0.241 0.263 0.165 0.361 0.245 0.091 0.431 0.304

Table 4.6: Parameter Estimates in Transformed Scale for Example Dataset (100 Single-
Seed, Average Mode and Quadrature)

Single-seed Optimization on Many Datasets

As the example dataset is only one instance of the SVCJ model, it prompts the question
of how optimization method performs across different realizations. Figure 4.8 illustrates a
single-seed optimization routine operated on 1,000 synthetic datasets. Similarly to above,
1,000 seeds were partitioned into 100 tasks and completed with similar wall-time of 13-
14 minutes per task. 10 results contained a non-positive definite Hessian matrix and
hence were excluded in Figure 4.8, but included in the calculation of average mode and
quadrature. The average mode and quadrature appear to align well with each of the true
parameter values. Again, it is observed that the jump size parameters µx, σx exhibit the
most variability.

33

Figure 4.8: Normally-approximated posterior densities via single-seed optimization routine
on each of the 1,000 synthetic datasets (converted into original parameter scale). In each
plot, density in sky blue represents each single-seed optimization result, and blue curve is
given by the average mode and quadrature.

34

αtf θtf κtf σtf λtf µx,tf σx,tf µz,tf ρtf
True Value 0.150 -2.120 -3.817 -1.661 -4.771 -3.100 0.531 -0.431 -1.099
Estimate 0.147 -2.084 -3.708 -1.683 -4.734 -2.887 0.336 -0.507 -1.225
Std. Error 0.010 0.238 0.266 0.136 0.355 0.219 0.100 0.447 0.317

Table 4.7: Parameter Estimates in Transformed Scale for 1,000 Synthetic Datasets (Single-
Seed, Average Mode and Quadrature)

4.3.3 Volatility Filtering

Using the parameter estimates from the many single-seed optimization in Table 4.6, the
underlying volatility process of the example dataset is recovered via the optional output
of Algorithm 1. The mean filtered volatility is obtained by the weighted average of the
particles, and the 95% confidence band by the ±1.96 weighted standard deviation. As seen
in Figure 4.9, the underlying volatility is well-captured by the confidence band.

Figure 4.9: Filtered volatility with 95% confidence band constructed by particle filtering
with parameter estimates in Table 4.6 for the example dataset.

35

4.4 Real-World Data: S&P 500

Daily observations on the adjusted closing price of the S&P 500 Index data were retrieved
with Python’s yfinance package for the period of January 1st, 2019 to January 1st, 2024,
totalling 1,258 trading days. Because the SVCJ model in Equation (4.1) is specific to this
thesis, there is no prior knowledge on the parameter values calibrated to S&P 500 data in
literature (most previous studies have focused on the Merton jump-diffusion coupled with
Heston model). The dataset was normalized such that the logarithm of the closing price
begins at 100:

y0:N ← log(Price0:N)×
100

log(Price0)
.

Figure 4.10: S&P 500 price data from January 1st, 2019 to January 1st, 2024, consisting
of: rescaled log price (top) and differenced rescaled log price (bottom).

36

4.4.1 Parameter Inference

The many-single-seed approach was employed for parameter inference of the (rescaled)
S&P 500 data, involving 100 single-seed optimization routines as in Subsection 4.3.2. The
computing performance is very similar to that of Subsection 4.3.2, since the number of
observations is almost identical. 7 results contained a non-positive definite Hessian ma-
trix. Again, while it is excluded in Figure 4.11, it is factored into the average mode and
quadrature.

Figure 4.11 shows the inference results from the 100 single-seed optimization routines.
7 of these resulted in a non-positive definite Hessian matrix, hence excluded from Figure
4.11, but nonetheless included in average mode and quadrature calculation, similarly to
Subsection 4.3.2. While the diffusion parameters (α, θ, κ, σ, ρ) show consistency in the
average mode and quadrature, the remaining parameters governing the jumps exhibit larger
variability. This aligns with the findings in the simulation study in Section 4.3.

37

Figure 4.11: Normally-approximated posterior densities via 100 single-seed optimization
routines (converted into original parameter scale). In each plot, density in sky blue rep-
resents each single-seed optimization result, and blue curve is given by the average mode
and average quadrature.

αtf θtf κtf σtf λtf µx,tf σx,tf µz,tf ρtf
Estimate 0.012 -4.380 -3.903 -1.280 -5.106 -0.307 -2.522 -3.617 -2.424
Std. Error 0.003 0.376 0.340 0.121 0.608 0.060 0.397 0.733 0.284

Table 4.8: Parameter Estimates in Transformed Scale for S&P 500 (Single-Seed on 1,000
Datasets, Average Mode and Quadrature)

38

4.4.2 Volatility Filtering

While the ground truth for the underlying volatility of the S&P 500 data is unknown, there
are several proxies available:

• Close-to-Close Volatility: Standard deviation of log returns over a certain time
frame, such as 30-day or 90-day window.

• VIX: A commonly used measure for market volatility that estimates the implied
volatility of S&P 500 options with an average expiration of 30 days (CBOE, 1993).
Publicly available on the CBOE VIX dashboard.

• SPOTVOL: A recently released index by Chicago Board of Options Exchange
(CBOE) for the spot volatility of S&P 500 Index (CBOE, 2024). Publicly avail-
able on the CBOE SPOTVOL dashboard.

SPOTVOL serves as the most appropriate benchmark for the filtered volatility, since the
close-to-close volatility is a crude approximation highly dependent on the selection of the
window. VIX includes additional investor sentiment of the volatility in the next 30 days.
In Figure 4.12, it is demonstrated that the recovered volatility via particle filtering with
the parameter estimates obtained in Table 4.8 aligns well with SPOTVOL.

Figure 4.12: Filtered volatility with 95% confidence band constructed by particle filtering
with parameter estimates in Table 4.8 for the S&P 500 dataset, with SPOTVOL.

39

4.4.3 Jump Filtering

The idea of latent state recovery can extend to filtering jump indicators. That is, the
weighted mean of the particles’ Bernoulli jump variables roughly gives the probability
whether the jump has occurred in the day.

The critical days in which the mean probability of jump is greater than 0.4 are labeled
in Figure 4.13. It is interesting to note that, during the COVID-induced 2020 stock crash
between February 2020 and April 2020, the first fall on Monday February 24th was captured
as a jump event, while the March Black Mondays (March 9th and 16th) and Black Thursday
(March 12th) were not. This may be due to the already heightened level of fear in the
market at the beginning of the pandemic that translated into high volatility, as seen in
Figure 4.12.

Figure 4.13: Filtered jumps from particle filtering for the S&P 500 dataset; represented
as red vertical dashed lines with opacity given by the mean probability, overlaid onto
differenced rescaled log price.

40

Chapter 5

Conclusion

In this thesis, we introduced a differentiable particle filter tailored to a class of jump-
diffusion models, specifically the stochastic volatility with contemporaneous jump models.
High levels of non-linearity and non-differentiability, exhibited by these models, pose a
nontrivial challenge to the parameter inference problems.

Firstly, the jump-diffusion model was discretized, represented as a state-space model,
and coupled with a bridge proposal to handle the degeneracy problem associated with
error-free observations in particle filtering in Subsection 2.3.2. By identifying two sources
of discontinuities—one in the model and one in the filter—and suggesting appropriate
remedies in Section 3.1, the marginal likelihood estimate transformed into a differentiable
quantity. This facilitated an efficient search of the mode and Hessian matrix calculation
via a gradient-based optimization method, such that the posterior densities of the model
parameters can be normally approximated, in lieu of a computationally intensive MCMC
sampler.

The results of parameter inference performed in Section 4.3 using synthesized dataset
showcased alignment between the mode of the particle-estimated marginal likelihood and
the true parameter values. The variability in the jump-related parameter estimates were
observed to be greater than the diffusion-related ones, which is an expected phenomenon
given that jumps are assumed rare events. The performance of the differentiable particle
filter for parameter inference on real-world S&P 500 Index data was demonstrated in 4.4.
In particular, the underlying volatility recovered by the particle filter with its parameter
estimates is shown to match well with CBOE’s spot volatility index.

41

5.1 Limitation and Future Direction

Below are several inquiries that arise from this thesis and may be worthwhile to investigate
in further detail:

• The SVCJ model specified in this thesis only considers one kind of jump in the
asset price, usually jumping in a negative direction. It may be of interest to con-
sider different types of jump processes that admit both directions, such as the Kou’s
double-exponential jumps.

• The model does not account for time-dependent market behaviours, such as the
weekend effects. This is a more difficult point to consider; substantial knowledge on
time-related trends of financial market data is required for an appropriate treatment.

• It is assumed that the model parameters stay constant for the entire duration of
the data. This may be problematic if the data contains an event that permanently
alters the dynamics of the asset price. The performance of this method for a regime-
switching model remains a question.

• The differentiable particle filter here relies on the fact that the jump-diffusion model
is Markovian. This implies that this approach is not immediately applicable for
models with non-Markov processes, such as rough volatility models.

• Practitioners are often interested in the correlation structure across multiple assets.
The work presented in this thesis may have the potential of extension to inference of
multi-asset models.

42

References

Andrieu, C., Doucet, A., & Holenstein, R. (2010). Particle Markov chain Monte Carlo
methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
72 (3), 269–342.

Bates, D. S. (1996). Jumps and Stochastic Volatility: Exchange Rate Processes Implicit
in Deutsche Mark Options. The Review of Financial Studies, 9 (1), 69–107. https:
//doi.org/10.1093/rfs/9.1.69

Bates, D. S. (2000). Post-’87 crash fears in the S&P 500 futures option market. Journal of
Econometrics, 94 (1-2), 181–238. https://EconPapers.repec.org/RePEc:eee:econom:
v:94:y:2000:i:1-2:p:181-238

Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. Journal
of Political Economy, 81 (3), 637–654.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula,
G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX:
Composable Transformations of Python+NumPy Programs (Version 0.3.13). http:
//github.com/google/jax

Broadie, M., & Kaya, Ö. (2006). Exact simulation of stochastic volatility and other affine
jump diffusion processes. Operations Research, 54 (2), 217–231.

Casella, B., & Roberts, G. O. (2011). Exact Simulation of Jump-Diffusion Processes with
Monte Carlo Applications.Methodology and Computing in Applied Probability, 13 (3),
449–473. https://doi.org/10.1007/s11009-009-9163-1

CBOE. (1993). Volatility Index Methodology Cboe Volatility Index [Accessed: April 28,
2024].

CBOE. (2024). CBOE S&P 500 Spot Volatility Index Methodology [Accessed: April 28,
2024]. https://cdn.cboe.com/api/global/us indices/governance/Cboe SnP 500
Spot Volatility Index Methodology.pdf

Cont, R., & Tankov, P. (2004). Financial Modelling with Jump Processes. Chapman &
Hall/CRC Financial Mathematics Series.

43

https://doi.org/10.1093/rfs/9.1.69
https://doi.org/10.1093/rfs/9.1.69
https://EconPapers.repec.org/RePEc:eee:econom:v:94:y:2000:i:1-2:p:181-238
https://EconPapers.repec.org/RePEc:eee:econom:v:94:y:2000:i:1-2:p:181-238
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1007/s11009-009-9163-1
https://cdn.cboe.com/api/global/us_indices/governance/Cboe_SnP_500_Spot_Volatility_Index_Methodology.pdf
https://cdn.cboe.com/api/global/us_indices/governance/Cboe_SnP_500_Spot_Volatility_Index_Methodology.pdf

Corenflos, A., Thornton, J., Deligiannidis, G., & Doucet, A. (2021). Differentiable Parti-
cle Filtering via Entropy-Regularized Optimal Transport. Proceedings of the 38th
International Conference on Machine Learning, 139, 2100–2111.

DeepMind, Babuschkin, I., Baumli, K., Bell, A., Bhupatiraju, S., Bruce, J., Buchlovsky,
P., Budden, D., Cai, T., Clark, A., Danihelka, I., Dedieu, A., Fantacci, C., Godwin,
J., Jones, C., Hemsley, R., Hennigan, T., Hessel, M., Hou, S., . . . Viola, F. (2020).
The DeepMind JAX Ecosystem. http://github.com/google-deepmind

Del Moral, P. (1997). Nonlinear filtering: Interacting particle resolution. Comptes Rendus
de l’Académie des Sciences - Series I - Mathematics, 325 (6), 653–658. https://doi.
org/10.1016/S0764-4442(97)84778-7

Doucet, A., & Johansen, A. M. (2011). A Tutorial on Particle Filtering and Smoothing:
Fifteen Years Later. Oxford Handbook of Nonlinear Filtering, 12, 656–704.

Duffie, D., Pan, J., & Singleton, K. (2000). Transform analysis and asset pricing for affine
jump-diffusions. Econometrica, 68 (6), 1343–1376.

Durham, G. B., & Gallant, R. A. (2002). Numerical Techniques for Maximum Likelihood
Estimation of Continuous-Time Diffusion Processes. Journal of Business & Eco-
nomic Statistics, 20, 279–316.

Eraker, B., Johannes, M., & Polson, N. (2003). The Impact of Jumps in Volatility and
Returns. The Journal of Finance, 58 (3), 1269–1300.

Fouque, J.-P., Papanicolaou, G., & Sircar, R. (2000). Mean-reverting stochastic volatility.
International Journal of Theoretical and Applied Finance, 3, 101–142.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian Data Analysis.
Chapman; Hall/CRC.

Glasserman, P., & Merener, N. (2003). Numerical solution of jump-diffusion LIBOR mar-
ket models. Finance and Stochastics, 7 (1), 1–27. https : / / doi . org / 10 . 1007 /
s007800200076

Golightly, A. (2009). Bayesian Filtering for Jump-Diffusions With Application to Stochas-
tic Volatility. Journal of Computational and Graphical Statistics, 18 (2), 384–400.
https://doi.org/10.1198/jcgs.2009.07137

Gordon, N. J., Salmond, D. J., & Smith, A. F. (1993). Novel approach to nonlinear/non-
Gaussian Bayesian state estimation. IEE Proceedings F (Radar and Signal Process-
ing), 140 (2), 107–113.

Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with
applications to bond and currency options. Review of financial studies, 6 (2), 327–
343.

Jang, E., Gu, S., & Poole, B. (2016). Categorical Reparameterization with Gumbel-Softmax.
5th International Conference on Learning Representations (ICLR) 2017 - Confer-
ence Track Proceedings.

44

http://github.com/google-deepmind
https://doi.org/10.1016/S0764-4442(97)84778-7
https://doi.org/10.1016/S0764-4442(97)84778-7
https://doi.org/10.1007/s007800200076
https://doi.org/10.1007/s007800200076
https://doi.org/10.1198/jcgs.2009.07137

Jonschkowski, R., Rastogi, D., & Brock, O. (2018). Differentiable Particle Filters: End-to-
End Learning with Algorithmic Priors.

Kingma, D., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. International
Conference on Learning Representations.

Kou, S. G. (2002). A Jump-Diffusion Model for Option Pricing. Management Science,
48 (8), 1086–1101. Retrieved March 31, 2024, from http://www.jstor.org/stable/
822677

Lysy, M., Subramani, P., Ramkissoon, J., Wu, M., Ko, M., & Chopra, K. (2022). pfjax:
Particle Filtering Methods in JAX. https://github.com/mlysy/pfjax

Maruyama, G. (1955). Continuous Markov processes and stochastic equations. Rend. Circ.
Mat. Palermo, 4, 48–90. https://doi.org/10.1007/BF02846028

Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous.
Journal of Financial Economics, 3 (1-2), 125–144. https://doi.org/10.1016/0304-
405X(76)90022-2

Metwally, S. A., & Atiya, A. (2002). Using Brownian Bridge for Fast Simulation of Jump-
Diffusion Processes and Barrier Options. The Journal of Derivatives, 10 (1), 43–54.
https://doi.org/10.3905/jod.2002.319189

Murray, L. M. (2015). Bayesian State-Space Modelling on High-Performance Hardware
Using LibBi. Journal of Statistical Software, 67 (10), 1–41. https ://doi .org/10 .
18637/jss.v067.i10

Pan, J. (2002). The jump-risk premia implicit in options: Evidence from an integrated
time-series study. Journal of Financial Economics, 63 (1), 3–50. https://doi.org/
10.1016/S0304-405X(01)00088-5

Pedersen, A. (1995). A New Approach to Maximum Likelihood Estimation for Stochastic
Differential Equations Based on Discrete Observations. Scandinavian Journal of
Statistics, 22, 55–71.

Rosato, C., Beraud, V., Horridge, P., Schön, T. B., & Maskell, S. (2020). Efficient Learning
of the Parameters of Non-Linear Models using Differentiable Resampling in Parti-
cle Filters. 2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 1942–1946.

45

http://www.jstor.org/stable/822677
http://www.jstor.org/stable/822677
https://github.com/mlysy/pfjax
https://doi.org/10.1007/BF02846028
https://doi.org/10.1016/0304-405X(76)90022-2
https://doi.org/10.1016/0304-405X(76)90022-2
https://doi.org/10.3905/jod.2002.319189
https://doi.org/10.18637/jss.v067.i10
https://doi.org/10.18637/jss.v067.i10
https://doi.org/10.1016/S0304-405X(01)00088-5
https://doi.org/10.1016/S0304-405X(01)00088-5

APPENDICES

46

Appendix A

Derivation of Incremental Weight

The derivation of incremental weight in Equation (2.12) is illustrated for ρ = 0. The
general case ρ ̸= 1 follows similar procedure.

The transition density for Xk = (S
(1:M)
k , V

(1:M)
k , Q

(1:M)
k , J

S,(1:M)
k , J

V,(1:M)
k), the latent

state variables of the SVCJ model at observation time k, is given by

f(Xk | Xk−1,θ) =
M∏
j=1

p(Xj
k | X

j−1
k ,θ)

=
M∏
j=1

p(S
(j)
k | S

(j−1)
k , V

(j)
k , Q

(j)
k , J

S,(j)
k , J

V,(j)
k ,θ)

× p(V
(j)
k | V (j−1)

k , Q
(j)
k , J

V,(j)
k ,θ)

× p(J
S,(j)
k , J

V,(j)
k | Q(j)

k ,θ)

× p(Q
(j)
k | θ)

=
M∏
j=1

ϕ(S
(j)
k ;S

(j−1)
k + µtrans(S

(j−1)
k), σtrans(S

(j−1)
k))

× ϕ(V
(j)
k ;V

(j−1)
k + αθ(V

(j−1)
k , t

(j−1)
k)∆∗t+ J

S,(j)
k Q

(j)
k︸ ︷︷ ︸

αj−1(V
(j−1)
k)

, βθ(V
(j−1)
k , t

(j−1)
k)︸ ︷︷ ︸

βj−1(V
(j−1)
k)

)

× πJS(J
S,(j)
k ;θ)πJV (J

V,(j)
k ;θ)

× b(Q
(j)
k ;λ∆∗t),

47

where ϕ(·) is the normal p.d.f. and b(·) is the Bernoulli p.m.f.

Now for the proposal density as described in Algorithm 2, it follows that

q(Xk | Xk−1, yk,θ) =
M−1∏
h=1

ϕ(S
(h)
k ;S

(h−1)
k + µprop(S

(h−1)
k), σprop(S

(h−1)
k))

×
M∏
j=1

ϕ(V
(j)
k ;V

(j−1)
k + αj−1(V

(j−1)
k), βj−1(V

(j−1)
k))

× πJS(J
S,(j)
k ;θ)πJV (J

V,(j)
k ;θ)

× b(Q
(j)
k ;λ∆∗t).

Then, we have

f(Xk | Xk−1,θ)

q(Xk | Xk−1, yk,θ)
=

∏M
j=1 ϕ(S

(j)
k ;S

(j−1)
k + µtrans(S

(j−1)
k), σtrans(S

(j−1)
k))∏M−1

j=1 ϕ(S
(j)
k ;S

(j−1)
k + µprop(S

(j−1)
k , yk), σprop(S

(j−1)
k , yk))

,

as required.

A.1 Diffusion Bridge with Different Jump Propensity

If the bridge proposal uses a different jump propensity λ∗, we have

q(Xk | Xk−1, yk,θ
∗) = q(Xk | Xk−1, yk, {λ∗} ∪ θ \ {λ})

=
M−1∏
h=1

ϕ(S
(h)
k ;S

(h−1)
k + µprop(S

(h−1)
k), σprop(S

(h−1)
k))

×
M∏
j=1

ϕ(V
(j)
k ;V

(j−1)
k + αj−1(V

(j−1)
k), βj−1(V

(j−1)
k))

× πJS(J
S,(j)
k ;θ)πJV (J

V,(j)
k ;θ)

× b(Q
(j)
k ;λ∗∆∗t),

48

and the resulting ratio becomes

f(Xk | Xk−1,θ)

q(Xk | Xk−1, yk,θ
∗)

=

∏M
j=1 ϕ(S

(j)
k ;S

(j−1)
k + µtrans(S

(j−1)
k), σtrans(S

(j−1)
k))∏M−1

j=1 ϕ(S
(j)
k ;S

(j−1)
k + µprop(S

(j−1)
k , yk), σprop(S

(j−1)
k , yk))

×
∏M

j=1 b(Q
(j)
k ;λ∆∗t)∏M

j=1 b(Q
(j)
k ;λ∗∆∗t)

=
f(Xk | Xk−1,θ)

q(Xk | Xk−1, yk,θ)
×

∏M
j=1 b(Q

(j)
k ;λ∆∗t)∏M

j=1 b(Q
(j)
k ;λ∗∆∗t)

.

(A.1)

49

Appendix B

Gumbel-Softmax Approximation for
Bernoulli Random Variable

The Gumbel-Softmax approximation method for a Bernoulli random variable with proba-
bility p is equivalent to:

G1, G2
iid∼ Gumbel(0, 1)

W,WA = Softmax

(
log(p) +G1

τ
,
log(1− p) +G2

τ

)
W =

exp{(log(p) +G1)/τ}
exp{(log(p) +G1)/τ}+ exp{(log(1− p) +G2)/τ}

=
1

1 + exp
{

(log(1−p)+G2)−(log(p)+G1)
τ

}
=

1

1 + exp
{(

G2 −G1 + log
(

1−p
p

))
/τ

}
=

1

1 + exp
{(

Z + log
(

1−p
p

))
/τ

} , where Z ∼ Logistic(0, 1),

since the difference of two Gumbel(0, 1) random variables follows a Logistic(0, 1) distribu-
tion.

50

Appendix C

Ito Formula for Jump-Diffusion

The Ito formula for jump-diffusion models given by

df(X(t), t) =
∂f(X(t), t)

∂t
dt+

∂f(X(t), t)

∂x
dX(t) +

1

2
σ2(X(t), t)

∂2f(X(t), t)

∂x2
dt

+[f(X(t−) + ∆X(t), t)− f(X(t−), t−)]
(C.1)

from Cont and Tankov (2004).

51

Appendix D

Filtered Volatility against VIX and
CBOE

Figure D.1: Filtered volatility with 95% confidence band constructed by particle filtering
with parameter estimates in Table 4.8 for the S&P 500 dataset, with VIX and SPOTVOL.

52

Appendix E

Inference Results of Particle Gibbs

An Adaptive Particle Gibbs (APG) sampler is run on the synthetic dataset in Figure 4.2
with configuration outlined in Table E.1. As the sampler suffers from divergence with a
flat prior, a normal prior of N(0, 502) was imposed on each transformed parameter for
stabilization.

Hyperparameter Setup
Adaptation rate 0.01
Maximum adaptation 0.1
Initial random walk size 0.001
Number of particles 300
Number of inter-observations 10
Number of MCMC iterations 1,000
Burn-in 100

Table E.1: Configuration for Adaptive Particle Gibbs

With the same Apple M2 Processor for single-seed optimization in Subsection 4.2.2,
the APG sampler was completed in approximately 17 minutes. Figure E.1 compares the
posteriors from APG with those from the methodology outlined in Section 3.2. With the
exception of α, the discrepancy between the two posteriors is prominent in each parameter.
The APG posteriors of the diffusion parameters (θ, κ, σ, ρ) suggest presence of bias, whereas
the jump parameters (λ, µx, σx, µz) show considerable variability.

53

Figure E.1: Parameter posteriors sampled from APG (orange) versus approximate posterior
densities in Figure 4.6 (sky blue), with true values in vertical lines (blue).

54

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contribution and Thesis Outline

	Background
	Jump-Diffusion Models
	Stochastic Volatility with Contemporaneous Jump

	State-Space Model
	Discretization of Jump-Diffusion Models
	Error-Free Observation Model

	Particle Filters
	Bridge Proposal for Jump-Diffusion Models
	Particle Filters for SVCJ Models with Error-Free Observations

	Methodology
	Differentiable Particle Filters
	Multivariate Normal Resampler
	Discontinuity due to Jumps
	Gumbel-Softmax Smoothing
	Bridge Proposal under Different Jump Propensity

	Parameter Inference
	Variable Transformation
	Gradient-Based Methods

	Experimental Results
	SVCJ Model Specification
	Choice of Initial Point
	Hyperparameter Configuration

	Computational Specification
	Implementation in JAX
	Computational Environment

	Simulation Study
	MVN Resampler vs Multinomial Resampler
	Parameter Inference
	Volatility Filtering

	Real-World Data: S&P 500
	Parameter Inference
	Volatility Filtering
	Jump Filtering

	Conclusion
	Limitation and Future Direction

	References
	APPENDICES
	Derivation of Incremental Weight
	Diffusion Bridge with Different Jump Propensity

	Gumbel-Softmax Approximation for Bernoulli Random Variable
	Ito Formula for Jump-Diffusion
	Filtered Volatility against VIX and CBOE
	Inference Results of Particle Gibbs

